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Introduction to the  
New Statistics

This is the first introductory statistics text to use an estimation approach from the start to 
help readers understand effect sizes, confidence intervals (CIs), and meta-analysis (“the new 
statistics”). It is also the first text to explain the new and exciting Open Science practices, 
which encourage replication and enhance the trustworthiness of research. In addition, the 
book explains null hypothesis significance testing (NHST) fully so students can understand 
published research. Numerous real research examples are used throughout. The book uses 
today’s most effective learning strategies and promotes critical thinking, comprehension, and 
retention, to deepen users’ understanding of statistics and modern research methods. The free 
ESCI (Exploratory Software for Confidence Intervals) software makes concepts visually vivid, 
and provides calculation and graphing facilities. The book can be used with or without ESCI.
Other highlights include:

 ■ Both estimation and NHST approaches are covered, and full guidance given on how to 
easily translate between the two.

 ■ Some exercises use ESCI to analyze data and create graphs including CIs, for best under-
standing of estimation methods. 

 ■ Videos of the authors describing key concepts and demonstrating use of ESCI provide an 
engaging learning tool for traditional or flipped classrooms.

 ■ In-chapter exercises and quizzes with related commentary allow students to learn by 
doing, and to monitor their progress.

 ■ End-of-chapter exercises and commentary, many using real data, give practice for analyz-
ing data, as well as for applying research judgment in realistic contexts. 

 ■ Don’t fool yourself tips help students avoid common errors. 
 ■ Red Flags highlight the meaning of “significance” and what p values actually mean. 
 ■ Chapter outlines, defined key terms, sidebars of key points, and summarized take-home 

messages provide study tools at exam time. 
 ■ www.routledge.com/cw/cumming offers for students: ESCI downloads; data sets; key 

term flashcards; guides; tips for using IBM’s SPSS and R for analyzing data; and videos.  
For instructors it offers: tips for teaching the new statistics and Open Science; additional 
assessment exercises; answer keys for homework and assessment items; question bank for 
quizzes and exams; downloadable slides with text images; and PowerPoint lecture slides.

Designed for introduction to statistics, data analysis, or quantitative methods courses in 
psychology, education, and other social and health sciences, researchers interested in under-
standing the new statistics will also appreciate this book. No familiarity with introductory 
statistics is assumed.

Geoff Cumming is professor emeritus of La Trobe University and has been teaching sta-
tistics for over 40 years.

Robert Calin-Jageman is a professor of psychology and the neuroscience program director 
at Dominican University and has been teaching and mentoring undergraduate students for 
nine years. 
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Preface

This book is about how you can use limited data to draw reasonable conclusions about how the 
world works. Put more formally, this book is about inferential statistics, the art of using information 
from a sample to estimate what might be true about the world as a whole.

Inferential statistics is an exciting and powerful field! It’s how physicians can test a new drug 
on a limited number of patients and then estimate how well the drug might work for the gen-
eral public. It’s how psychologists can test a new therapy on a limited number of clients and then 
estimate how well the therapy is likely to work for all patients with the same disorder. It’s how 
pollsters can survey a limited number of likely voters and then estimate how much support there 
is for a candidate in an upcoming election. All this and so much more: It’s no exaggeration to say 
that inferential statistics is at the very heart of our civilization’s expanding ability to understand, 
predict, and control the world around us. This book will help you learn this amazing set of skills 
for yourself. With some work, you’ll soon be able to make sound estimates from limited data, and 
you’ll also be able to understand and critically assess the attempts of others to do so.

We hope this sounds enticing, but you may have heard that inferential statistics is dull, impene-
trable, and confusing. Well— it doesn’t have to be. This book teaches what we call the new statistics, 
an approach that we believe is natural and easy to understand. Here’s an example. Suppose you 
read in the news that “Support for the President is 68%, in a poll with a margin of error of 3%.” 
Does that seem particularly confusing? Hopefully not. You can immediately understand that the 
poll was conducted with a sample of voters, not by surveying everyone in the whole country. Then 
the pollsters applied inferential statistics to the results from the sample to determine that 68% is 
our best estimate, and that we can be reasonably confident that support in the whole population 
is within 68% ± 3%, which is the 95% confidence interval (CI). That, in a nutshell, is the estimation 
approach to inferential statistics, a key component of the new statistics. Of course, there’s a lot to 
understand to be able to use estimation for yourself. We’ll discuss issues like how to select the 
sample, how big the sample should be, and how to calculate and understand the margin of error. 
We’ll also emphasize combining results from multiple studies, an approach called meta- analysis, 
which is a second key component of the new statistics. The important point for now is that the 
new statistics is not something you need be afraid of— learning from this book will take effort (see 
Making the Most of This Book, below), but we believe it will be easier and more intuitive than the 
way inferential statistics was taught in the past.

Although inferential statistics is very powerful, it can only lead to sound estimates if the data are 
collected and analyzed without bias. For example, you obviously couldn’t trust poll data if certain 
types of voters were excluded or if the poll asked leading questions. Therefore, this book teaches 
not only inferential statistics, but also some approaches for minimizing bias while conducting 
research. Specifically, we emphasize Open Science, an evolving set of practices intended to reduce 
bias by increasing the openness of research and thus ensuring that research results are accurate, 
and worthy of our trust. Open Science emphasizes the stating of research plans and predictions 
in advance. Then, after you conduct the study, it emphasizes sharing materials, posting data pub-
licly for others to analyze and use, and conducting replications to double- check your own work 
and the work of others. It’s basically the old scientific method updated for the internet age— it’s 
an exciting development that’s leading researchers in many disciplines to change the ways they 
have traditionally worked. We introduce Open Science in Chapter 1, then throughout the book 
we discuss Open Science and other ways to limit bias.
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Before we begin, you may be wondering: If this book teaches the new statistics, then what was 
the “old statistics”? In many fields, a more traditional type of inferential statistics, known as null 
hypothesis significance testing (NHST), has dominated. In Chapter 6, we’ll explain this approach in 
detail. And throughout the book, we’ll help you understand how to translate back and forth between 
estimation and NHST, so that when you read research conducted using NHST you’ll easily be able 
to understand it using the estimation approach we take in this book. As you’ll see, the estimation 
and NHST approaches are built on the same foundations and often lead to similar conclusions. We 
believe, however, that the estimation approach is not only easier to learn but also helps research-
ers make better judgments from their data. And this isn’t just our opinion. An increasing number 
of journals and professional organizations are urging researchers to avoid problems with NHST by 
using the new statistics. This textbook is the very first of its kind to help beginning students learn 
the new statistics and Open Science practices. We hope you’ll be excited to know, then, that work-
ing your way through this book will help put you right at the forefront of best research practices.

If You Are a Student
Especially if you are starting your first statistics course, welcome, and we hope you find it reward-
ing. As we’ve said, we hope you find estimation a natural way to think about research and data. 
We also hope that you’ll find the section Making the Most of This Book helpful.

We hope you come to feel at least some of the passion we have for statistics. It’s great to see a 
beautiful picture that makes clear what some data are telling us! Statistics is not really about math-
ematics, but about what data reveal, and examining pictures of data is usually the best approach. 
Perhaps this gives us new insights into the world, or how people think and behave. Welcome to 
the world of research, statistics, and informative pictures.

If You Are a Researcher or Instructor
You are probably very familiar with NHST and appreciate how well established it is. Between the 
two of us, we’ve taught NHST for almost 50 years and understand the challenges of changing. We 
believe, however, that all of us should carefully consider statistical reform issues, and decide how 
best to proceed in our own research areas and with our own students. Perhaps the new statistician’s 
greeting will appeal: “May all your confidence intervals be short!”

Although adjusting the way you’ve been teaching statistics may seem daunting, we believe 
the work you put in will benefit your students tremendously. Not only should the new statistics 
be easier for your students to learn and use, but making the change should better prepare your 
students for a research world that’s rapidly adopting Open Science practices. As an example of 
evolving standards, consider the new guidelines for authors introduced in 2014 by the leading 
journal Psychological Science. The editorial explaining the changes is at tiny.cc/eicheditorial and the 
new guidelines include this statement:

Psychological Science recommends the use of the “the new statistics”— effect sizes, confidence intervals, 
and meta- analysis— to avoid problems associated with null- hypothesis significance testing (NHST). 
Authors are encouraged to consult this Psychological Science tutorial [Cumming, 2014, available 
from tiny.cc/tnswhyhow] by Geoff Cumming, which shows why estimation and meta- analysis 
are more informative than NHST and how they foster development of a cumulative, quantitative 
discipline. Cumming has also prepared a video workshop on the new statistics [available from tiny.cc/ 
apsworkshop]. (From: tiny.cc/pssubguide accessed 1 July 2016.)

Psychological Science also encourages researchers to adopt Open Science practices, and offers badges 
to recognize preregistration of research plans, open materials, and open data (tiny.cc/badges). An 
editorial published in December 2015 (tiny.cc/lindsayeditorial) drew on Geoff Cumming’s work to 
help justify further steps the journal was taking to increase the reproducibility of research it would 
accept for publication. Other journals and professional associations are making similar moves.
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PrefaceWe are excited to work with you and your students to prepare for a future in which estimation 
and Open Science are the norm in our fields. We invite you also to consider the following section, 
Making the Most of This Book.

Intended Audience
This book assumes no previous statistical knowledge. It is designed for use in any discipline, espe-
cially those that have used NHST, including psychology, education, economics, management, soci-
ology, criminology and other behavioral and social sciences; medicine, nursing and other health 
sciences; and biology and other biosciences. If you are teaching or studying in any such discipline, 
then this book is intended for you. We hope it serves you well.

KEY FEATURES OF THIS BOOK

An Estimation Approach Based On Effect Sizes and Confidence 
Intervals: The New Statistics
We’re convinced that the new statistics, meaning estimation based on confidence intervals (CIs), 
is a better approach to data analysis. We believe it’s easier for students to understand and more 
informative for researchers. Moreover, it’s becoming widely used so it’s vital that students and 
researchers understand it and can use it with their own data. We assume no previous statistical 
knowledge and focus on estimation from the very start, explaining it in simple terms, with many 
figures and examples. We also explain the traditional approach (NHST, null hypothesis significance 
testing) in Chapter 6 and use it alongside estimation in the subsequent chapters— with ample guid-
ance for easy conversion back and forth between the two approaches.

Meta-Analysis, From the Very Start
Meta- analysis combines results from several studies and is a key component of the new statistics. 
It allows us to draw quantitative conclusions from a research literature, and these are what we 
need for evidence- based practice. We introduce meta- analysis in Chapter 1, then in Chapter 9 we 
explain it in a highly accessible way using the simple forest plot, without any formulas. This is the 
first introductory textbook to do so.

Open Science, From the Very Start
This is the first introductory textbook to integrate Open Science all through. The new statistics and 
Open Science are closely linked, and together are the way of the future.

Open Science promotes openness and replicability. Journals, funding bodies, and professional 
associations are revising their policies in accord with new Open Science standards. The basic ideas, 
including preregistration and open data, are easy for students to grasp. We discuss them through-
out the book, with many examples— including examples of student research projects, which are 
often part of a highly valuable world- wide replication effort.

Promotion of Effective Learning and Studying Techniques
Recent research on how students study has identified how learning can be strikingly more effi-
cient; for example, by having students work with meaningful examples and express things in their 
own words, and by asking them to keep retrieving earlier material. We’ve used these findings to 
guide the design of the book and the way we use numerous real research examples. We explain 
the effective learning techniques in the section Making the Most of This Book.
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Compatible with Traditional or Flipped Classrooms
This book and all the materials provided at the website are designed to support effective learning, 
whether the course is organized along traditional lines or is based on a flipped classroom, in which 
students undertake assigned work with the book and its materials before coming to class.

Promotes Critical Thinking and Statistical Judgment
We emphasize careful critical thought about every stage of conducting research, rather than focus-
ing on calculations. We provide essential formulas and many examples of data analysis, but our 
discussion of the numerous real research examples aims to develop students’ deep understanding 
and confidence in making their own statistical judgments. The use of ESCI (Exploratory Software 
for Confidence Intervals) simulations, and guidance from the instructional videos, help students 
develop a deeper understanding and greater confidence in their own statistical judgment.

SUPPORTIVE PEDAGOGY

 ■  Each chapter starts with pointers to what it contains, and closes with summary take- 
home messages. These summarize key points of the chapter, provide an overview, and serve as 
a study tool.

 ■  Often in the text the student is asked to pause, reflect, and discuss intriguing issues. Research 
shows this is an effective learning technique, so we often ask students to write about a topic or 
discuss it with another student, to encourage critical thinking. These are also useful as prompts 
for class discussion or activities.

 ■ Definitions of key terms are set off from the text. Many terms and expressions are also defined 
in the Glossary near the end of the book, which provides students with a quick reference and 
study tool. Lists of abbreviations and symbols appear at the very start of the book, and a list of 
selected formulas at the very end.

 ■ Exercises and quizzes are placed throughout each chapter. Answers and our commentary, includ-
ing much discussion of conceptual issues, are at the end of the chapter to allow students to test 
their understanding and quickly obtain feedback about their progress.

 ■

 ■   Some of the exercises use the ESCI software (see below), for interactive learning and a 
visual grasp of concepts.

 ■  We highlight common pitfalls, or things to watch out for. We call these Don’t fool yourself 
(DFY) points, in recognition of Richard Feynman’s sage advice that “The first principle is that 
you must not fool yourself”. We hope these will help students avoid making such errors.

 ■  In considering the NHST approach to data analysis, we explain important cautions that 
students always need to keep in mind, including troubles with the meaning of “significance” 
and what p values can and cannot tell us. These are the five Red Flags.

 ■ There are end- of- chapter exercises, which often use real data sets and allow students to analyze 
real data as well as practice research judgment in realistic contexts. Our answers and com-
mentary for these exercises are at the end of the book.

Sidebars in the margins are visual markers 
highlighting key issues and points. This makes it 
easier for the reader to gain an overview and to 
find key points when reviewing for exams.
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ESCI (Exploratory Software for Confidence Intervals) is the free software that goes with the book 
and is available for download on the book’s website. You can readily use the book without ESCI, 
but it’s designed to help by presenting statistical concepts vividly and interactively. Watch out for 
the dance of the means, dance of the CIs, and dance of the p values. You can use ESCI to analyze 
your own data, especially to calculate confidence intervals and create graphical depictions of your 
results. See the Appendix for more about ESCI. At the book website (see below) there are also guides 
for using the book with other software, in particular R and IBM’s SPSS.

SUPPLEMENTAL RESOURCES ON THE BOOK WEBSITE

The book’s website is: www.routledge.com/cw/cumming For easy typing, use tiny.cc/itns. The 
website is an integral part of the learning package we offer.

For Students:
 ■ Reading guides that provide chapter- by- chapter guidance for making best use of the book 

and materials.
 ■ Free download of ESCI, which runs under Microsoft Excel.
 ■ Downloadable data sets, including those used in end- of- chapter exercises.
 ■ Model manuscripts showing how to report your research in APA format.
 ■ Glossary flashcards for practice and exam preparation.
 ■ Guides for using other statistical software—in particular R and SPSS—for analyzing your own 

data and example data discussed in the text, and for answering end- of- chapter exercises.
 ■ Videos that explain important concepts. Many of the videos show how to use ESCI to see 

concepts and analyze data.

For Instructors:
 ■ An Instructor’s Manual, which includes guidance for instructors teaching the new statistics, 

including additional reading suggestions and sample syllabi.
 ■ Additional homework exercises (with solutions for instructors).
 ■ Complete Powerpoints for each chapter, plus in-class activities with answer keys.
 ■ Quiz and test bank questions.
 ■ Downloadable images from the text.

CONTENTS

Here’s a brief outline of what each chapter contains. The sequence is what we feel is best, but chap-
ters can easily be used in a different order, in accord with the preferences of different instructors.

Chapter 1 introduces the process of asking research questions and using data to provide answers. 
It mentions Open Science and introduces many research and statistical concepts informally and 
intuitively.

Chapter 2 introduces further fundamental research ideas, says more about Open Science, and 
explains many terms.

Chapter 3 describes basic descriptive statistics, introduces the ESCI software, and uses ESCI to 
illustrate a number of ways to picture data.

http://www.routledge.com/cw/cumming


xxii

Pr
ef

ac
e

Chapter 4 discusses the normal distribution and explains the basics of sampling. It uses ESCI 
simulations to explore sampling variability.

Chapter 5 explains CIs and effect sizes, and describes four ways to think about and interpret 
CIs. It also introduces the t distribution.

Chapter 6 discusses p values, NHST, and their close links with estimation.
Chapter 7 discusses the independent groups design for comparing two treatments. It describes 

both estimation and NHST approaches, including the t test for independent groups. It also intro-
duces the standardized effect size measure, Cohen’s d.

Chapter 8 describes the paired design, also taking both estimation and NHST approaches, includ-
ing the paired t test. It discusses Cohen’s d for the paired design.

Chapter 9 introduces meta- analysis using a visual approach based on forest plots, and provides 
many examples to illustrate its importance.

Chapter 10 has more on Open Science, then takes two approaches to planning studies: first, 
by finding N to achieve a desired precision of estimation and, second, by using statistical power.

Chapter 11 discusses Pearson correlation, r, and describes applications, including its value for 
meta- analysis.

Chapter 12 discusses linear regression, and explains how regression relates to correlation.
Chapter 13 uses proportions to analyze frequencies and discuss risk, and also introduces 

chi- square.
Chapter 14 takes a contrasts approach to analyzing one- way designs, and introduces one- way 

analysis of variance (ANOVA).
Chapter 15 continues the contrasts approach with two- way factorial designs, including discus-

sion of interactions, and introduces two- way ANOVA.
Chapter 16 brings together earlier discussions of Open Science, and sketches a number of future 

directions, including longitudinal studies and big data.
The Appendix explains how to download and use ESCI, with numerous hints for getting the 

most out of the software. Look here to find which ESCI page you need to explore a concept, or to 
carry out calculations on your own data.

ACKNOWLEDGMENTS

GC: Numerous colleagues and students have contributed to my learning that has led to this book. 
I thank them all. Mark Burgman, Fiona Fidler, and Tim van Gelder are valued colleagues who have 
assisted in many ways. Eric Eich and Steve Lindsay, successive editors-in-chief of Psychological Science, 
and Alan Kraut and other leaders of the Association for Psychological Science, have guided and encour-
aged my work, and have also provided outstanding leadership toward better research practices. 
My treasured colleague Neil Thomason continues to provide inspiration, wonderful ideas, and an 
unswerving commitment to sound argument and clear communication. This book is way better 
because of his efforts. I’m grateful for the sustained dedication, intellectual rigor, and good humor 
of all members of the group Neil led to critique drafts, especially John Campbell, Keith Hutchison, 
Larry Lengbeyer, Michael Lew, Erik Nyberg, and Yanna Rider. At home I’m forever grateful to 
Lindy for her enduring support and encouragement.

RC- J: My contributions to this book would not have been possible had I not been fortunate 
enough to co- teach methods and statistics for the past eight years with outstanding and dedicated 
colleagues: Tracy Caldwell, Tina Taylor- Ritzler, Kathleen O’Connor, and most especially Rebecca 
Pliske, who mentored us all. Thanks for the many discussions, beers, and tears spent together 
pushing each other to do even better for our students.

Together we warmly thank Gabrielle Lehmann and Sarah Rostron for their painstaking work. 
We also thank the many researchers whose data we use, both those who provided their data openly 
to the world and those who kindly provided data in response to our request. We thank Gideon Polya 
for the artistry of his drawings and for his generosity in creating such a broad range to fit the book. We 



xxiii

Prefaceare grateful to the reviewers of draft chapters, who gave us valuable guidance that improved the book 
in numerous ways. Some remain anonymous; reviewers who agreed to be named were: Dale Berger, 
Claremont Graduate University; Bruce Blaine, Saint John Fisher College; Karen Brakke, Spelman 
College; Stephanie DeLuca, Virginia Tech; Thomas Faulkenberry, Tarleton State University; Franklin 
Foote, University of Miami; Catherine Fritz, University of Northampton (U.K.); Jon Grahe, Pacific 
Lutheran University; Rink Hoekstra, Groningen University (The Netherlands); S. Jeanne Horst, 
James Madison University; Fred Li, National Chai- yi University of Taiwan; Kevin Matlock, Humboldt 
State University; Christopher Nave, Rutgers University- Camden; Carrol Perrino, Morgan State 
University; Ed Purssell, King’s College London; Robert Rieg, Aalen University (Germany); William 
Roweton, Chadron State University; Christopher Sink, Old Dominion University; Susan Troncoso 
Skidmore, Sam Houston State University; Jorge Tendeiro, Groningen University (The Netherlands); 
Patrizio Tressoldi, Università di Padova (Italy); Meg Upchurch, Transylvania University; Michael 
Van Duuren, University of Winchester (U.K.); Jordan Wagge, Avila University; Meg Waraczynski, 
University of Wisconsin- Whitewater. We warmly thank Toby Cumming, David Erceg- Hurn, Chuck 
Huber, Ryne Sherman, and others named at the book website, who developed valuable materi-
als to go with this book— all are free downloads from that website. We thank David Erceg-Hurn 
again, for assistance with Chapter 16. We are greatly indebted to Debra Riegert, senior editor, and 
Rebecca Pearce, our development editor, both at Routledge, and Tom Moss Gamblin, our copy 
editor, for their outstanding support and professionalism. After that long list of wise advisors we 
must say that any remaining errors and weaknesses are all our own work. Please let us know of 
any you discover. Finally, thank you for joining us on this exciting journey of helping to shape 
how research will be done. May this book serve you well on that journey.

ABOUT THE AUTHORS

As you can see on the front cover, there are two of us, but we have decided, starting with the next 
section Making the Most of This Book, to write as if we were one, and to use “I” often. A particular “I” 
may refer to either of us, but usually it’s both. We hope this gives a more informal and personal 
tone, which is how we both like to discuss ideas with students.

Geoff Cumming is professor emeritus at La Trobe University, Melbourne, and the author of 
Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta- Analysis, published by 
Routledge in 2012. He has taught statistics for more than 40 years at every level, from introduc-
tory to advanced. His statistics tutorial articles have been downloaded more than 370,000 times. 
See: tiny.cc/errorbars101 and tiny.cc/tnswhyhow. The Association for Psychological Science has pub-
lished six videos of his highly successful workshop on the new statistics (see: tiny.cc/apsworkshop). 
His main research interests are the investigation of statistical understanding and promotion of 
improved statistical practices. A Rhodes Scholar, he received his Doctorate degree in experimental 
psychology from Oxford University.

Robert Calin- Jageman is a professor of psychology and the neuroscience program director at 
Dominican University. He has taught statistics and mentored students in psychological science for 
nine years, publishing with 16 undergraduate co- authors (so far). His research focuses on how 
memories are formed and forgotten. He has also been active in exploring the replicability of psy-
chological science and promoting Open Science. He received his PhD in biological psychology from 
Wayne State University.



   Throughout the book, I use this little picture when I’m asking you to pause and do something. It really is worth giving 
it a try before reading on.

Making the Most  
of This Book

While writing this book I’ve been fascinated by recent research on practical ways 
that people can learn more efficiently. Before saying more about that, I invite 
you to consider the common learning techniques listed in Table 0.1 and record 
how often you use each strategy and how effective you judge each to be. If you 
like, have a guess at the third column— what research tells us.

Table 0.1 Learning Techniques

Technique
How often you  
use it

How effective  
you think it is

How effective 
research finds it to be

1. Reread the textbook. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
2. Highlight key points. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
3. Write summaries. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
4.  Study one topic thoroughly before 

moving on.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

5.  Use tests, including self- tests. Ask and 
answer questions, alone or in a group.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

6.  Retrieve material from memory, even 
when not fully mastered and retrieval is 
difficult. Correct any errors.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

7.  Move on to the next topic before 
mastering the current topic. Try to figure 
out the next thing for yourself.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

8.  Practice reflection: Identify important 
ideas, invent examples, and make links 
with earlier material.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

9.  Distribute study activities over time. 
Retrieve material later, then again after a 
delay. Then again.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

10.  Interleave study activities. Mix things up. 
Study a range of different topics; use a 
variety of activities.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

If you skipped to here, I urge you to go back to the table and think about 
all the items on the left, and how useful you think they are.

Research on how students study and learn has in recent years found startling 
results. There’s good evidence that most of us can do way better. Before I go 
on, here’s an analogy: I recently read an article (tiny.cc/runfast) about a long- 
distance runner who learned from a coach how to breathe differently: more from 
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the diaphragm and in a different rhythm. It took effort and practice, but with 
the new technique he shattered his previous personal best for the marathon.

I found that story intriguing and instructive, because it just goes to show 
that even something you already think you are good at (like breathing!) can 
be drastically improved through science. Well, according to a range of research 
from psychology, it’s the same for study skills.

I’ll summarize a few of what I see as important lessons from the research, 
then I’ll revisit Table 0.1, and suggest some first steps you can take.

Get Motivated and Engaged
Of course, anyone learns better if they feel engaged, and see the material as 
relevant for themselves. I’ll do my best to explain why I believe statistics are 
so important. There will be numerous real world examples that will help you 
see that statistics are part of all our lives, and persuade you that they really 
matter— to you, me, and all of us. That’s one reason I find them so fascinating. 
I’ll also try to provide lots of interesting, even enjoyable activities. I invite you 
to seek reasons relevant to you for getting engaged and I hope you find that 
statistical understanding helps not only in your studies, but also in the wider 
world. Unfortunately, reports in the media and discussions of current affairs 
often invoke research findings, but draw unjustified conclusions. Distortions 
and misleading claims can be tricky to spot, but basic statistical understanding 
can be a great help— you can enjoy using your data detective skills.

Thinking of a different approach to motivation, you no doubt appreciate 
that finding the right friends to work with can help— in person or in cyber-
space. I’ll often invite you to pause and reflect on some issue; you may find 
that discussion with others is a good strategy.

I’ve seen many students at first skeptical about statistics and their own 
abilities who become absorbed by the challenges of understanding research 
and drawing conclusions from data. I hope you also can become absorbed by 
these challenges.

Spend Time on Task
Who would have guessed it? We need to put in the hours. Motivation and 
engagement help us find the time, and keep up the concentration. Working 
with others may help. If rewards work for you, then allow yourself coffee, 
chocolate, or a walk on the beach when you finish a chapter, or master a tricky 
idea— whatever it takes to keep up the motivation and put in the time.

Build Your Statistics Confidence
For years I asked students at the start of my introductory course to rate their 
attitude towards statistics on a scale from “no worries” to “blind panic”. Then 
I’d invite especially the blind panic students to extra lunchtime meetings where 
we discussed any statistical questions they cared to ask. They were usually reas-
sured to find others who shared their concerns, and also that working through 
the basics, with many pictures, led them to feel increasingly confident. If you 
are initially anxious, I hope the many examples and pictures in this book, and 
the interactive simulations we’ll use in ESCI, will similarly reassure you and 
help you build your confidence. Maybe find some others with initial doubts, 
and work at it together.

Seek ways to keep 
motivated and 
engaged, to help you 
put in the time.
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Use the Most Effective Learning Techniques
Before reading on, if you haven’t written down your responses for the blanks 
in Table 0.1, please do so now. One of the main messages of this section is that 
it’s highly valuable to think and do, as well as read. My request that you think 
about your response for all the blanks in the table is a first go at that.

Surveys suggest that enormous numbers of students, perhaps the major-
ity, rely on 1– 4 in the table. However, research indicates that these techniques 
are generally not the most effective use of time. They often give the illusion of 
understanding— you seem to be working hard, focusing on the material, and 
grasping it. However, the learning is often superficial and won’t persist because 
it’s not sufficiently elaborated and integrated with prior knowledge, or linked 
with examples and practical application.

By contrast, 5– 10 have been found effective for achieving learning that’s 
deep and enduring. One key idea is retrieval, which means closing the book and 
trying to bring to mind the main points, and maybe writing some bullet points 
in your own words. You could practice now for this section. Then open the 
book and check. It’s fine if you miss lots and make mistakes— the great value 
is retrieval itself, even when you only partly grasp something. Come back to 
it, retrieve again, and enjoy doing way better!

In other words, a valuable learning activity is to work at retrieving some-
thing, even if it’s only half- learned, half- understood. Persist, do your best, 
compare with the correct answer, then come back later and retrieve again. It 
can be difficult working with not- quite- understood material, but it’s effective, 
even if it doesn’t seem so at the time. Researchers who study retrieval suggest 
that achieving a difficult retrieval actually changes your brain and makes you 
smarter. In summary, the slogan is: “Don’t read again, retrieve again”.

If you are a runner, maybe think of retrieval as the studying equivalent of 
diaphragm breathing— a great way to do better that, with a bit of effort, anyone 
can learn, but which most people don’t appreciate.

I summarize 5– 10 in the table as “Make it your own”. Take any new idea 
and express it in your own words, make a picture, link it back to things you 
know already, think up an example, then a crazy example, try explaining it 
to someone else— do whatever helps to make it your own. Then later test 
yourself— do your best to retrieve it. Then tomorrow retrieve it again.

Change a Fixed Mindset to a Growth Mindset
A further key idea is the distinction between a fixed mindset and a growth mindset. 
Carol Dweck and colleagues have demonstrated that helping students adopt 
a growth mindset can be a highly effective way to help them learn better and 
achieve more. Here’s how Dweck describes the two mindsets:

In a fixed mindset students believe their basic abilities, their intelligence, their 
talents, are just fixed traits. They have a certain amount and that’s that…. In 
a growth mindset students understand that their talents and abilities can be 
developed through effort, good teaching and persistence. They don’t necessarily 
think everyone’s the same or anyone can be Einstein, but they believe everyone 
can get smarter if they work at it. (Carol Dweck, tiny.cc/dwecktalk)

I’ve mentioned three important ideas about learning.
…before reading on, you may care to close the book and practice retrieval…

Many students rely 
on rereading and 
highlighting, but 
these strategies may 
give only superficial 
learning that won’t 
last.

Work at a 
challenging retrieval 
to change your brain 
and get smarter.

 ■  Don’t read 
again, retrieve 
again.

 ■  Make it your 
own. 

Fixed mindset: 
The belief that my 
capabilities are 
more or less fixed, 
whatever I do. 
Growth mindset: 
The belief that 
effort, persistence, 
and using good 
techniques can 
help me learn 
more successfully 
and become more 
capable.
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  Here’s a first chance to write your own take- home messages. Think (or look) back over this Making the Most of This 
Book section, and choose what, for you, are the main points. I’ve written four, but you can write as few or as many 
as you wish.

 ■ Retrieval is valuable, even when it is difficult, even when you don’t fully 
grasp the material.

 ■ To “make it your own” by elaboration, discussion, or in any other way can 
be highly effective.

 ■ Adopting a growth mindset can motivate effective learning efforts.

Reflect on how the three relate, and how you might make use of them. Explain 
your thinking to someone else.

Make It Stick
Make it stick: The science of successful learning is a great book by Brown, Roediger, 
and McDaniel (2014). It describes the research findings on effective learning, 
and uses real stories to make the main recommendations intuitive and vivid. 
You may find reading the book helpful. For a start, you could try one or more 
of the following:

 ■ Browse the book’s website, at makeitstick.net At the “About” tab, find a 
paragraph that summarizes the main message. At the “Contents” tab go 
to a page for each chapter with a one- paragraph summary and a box with 
a brief version of that chapter’s story. Which is your favorite story? (Mine 
is about Michael Young, the Georgia medical student.)

 ■ Watch this video: tiny.cc/misvideo

Writing Take- Home Messages
Each chapter in this book ends with take- home messages, and towards the end 
of each chapter I’ll encourage you to write your own, before reading mine. 
Make that part of your doing, not just reading.

Pause, write, discuss, before reading on…
It really is worth closing the book and bringing to mind what you think 

are the main messages.

No, don’t read on yet…
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Take- Home Messages

 ■ Find ways to engage. Find whatever strategies work for you to find motivation, to relate 
statistical ideas to your own interests, and to keep engaged— so you can keep putting in the 
time. Work with others if it helps.

 ■ Make it your own. Use a mix of activities— asking and answering questions, discussing, 
writing in your own words, using the software, applying the ideas— as you seek to make sense 
of it all, and to make the material your own.

 ■ Retrieve and retrieve again. Retrieve again, rather than read again. Retrieval that’s 
challenging can give good learning, change your brain, and make you smarter. Then retrieve 
again later, then again later.

 ■ Adopt a growth mindset. Use good learning techniques, seek guidance, and persist, and you 
will learn and become more capable.



A large part of science is asking questions, then trying to find data that can 
help answer them. In this chapter I’ll use an everyday example to illustrate 
the general idea of asking and answering questions. I’m hoping you’ll find 
the example pretty intuitive— you may discover that you already have a good 
idea of how data can show us how the world works.

This chapter introduces:

 ■ A simple opinion poll that illustrates how data can help answer a research 
question

 ■ The scientific research process, from asking questions to interpreting 
answers

 ■ Pictures that help us understand data
 ■ Basic ideas of population and sample, and of estimate and margin of error
 ■ The idea of a confidence interval, a vital part of the answer to our research 

question
 ■ Open Science: An approach to research that tackles some of the ways that 

data can mislead, and emphasizes the need to think carefully about every 
stage of the research process

 ■ The value of replication studies that repeat research to check its accuracy, 
and of meta- analysis to combine results from a number of similar studies

Words in italics, like population, are terms I’ll define later. For the moment, 
read them as normal English words, although you could, if you wished, consult 
the Index or Glossary at the back of this book. Also, be sure to explore the 
book’s website, which has lots of goodies, including videos. Make it a favorite or 
bookmark: www.routledge.com/cw/cumming or, for easy typing: tiny.cc/itns

A SIMPLE OPINION POLL

Here’s the example— a simple opinion poll. You read this in the news:

Public support for Proposition A is 53%, in a poll with a 2% margin of error.

Let’s say Proposition A proposes a law requiring serious action on climate 
change by reducing the use of fossil fuels and switching to renewable energy. 
Soon there will be a state- wide vote to determine whether the proposition 
becomes law. You and your friends have set up a website explaining why the 
proposition is a great idea, and are eager to know the extent of support for it 
among likely voters. Therefore, our question is:

What’s the support for Proposition A in the population of people likely 
to vote?

1
Asking and Answering  
Research Questions

http://www.routledge.com/cw/cumming
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The poll’s answer is:

Estimated support in the population of likely voters is 53±2%.

This result from the poll is displayed in Figure 1.1. Does this make you happy? 
Probably yes, because estimated support is greater than 50%, so the proposition 
is likely to pass, although perhaps only by a small margin.

A Thumbnail Sketch of Research
Here’s a slightly fuller account of the poll example, which illustrates a com-
mon way research proceeds.

1. Ask a research question. What’s the support for Proposition A in the population 
of people likely to vote?

2. Design a study to collect data that can answer the question. Design a poll 
that will ask a sample of intending voters about their support for Proposition A.

3. Carry out the study and collect the data. Choose a sample of intending voters 
and ask them about their support for the proposition.

4. Apply statistical analysis to picture and describe the data, and provide 
a basis for drawing conclusions. Calculate that 53% of people in the sample 
say they support the proposition. Use knowledge of the poll design, especially 
the size of the sample, to calculate from the data that the margin of error is 
2%, and therefore the confidence interval extends from 51% to 55%. Prepare 
Figure 1.1.

5. Draw conclusions about what the data tell us in answer to our original 
question. We take the 53% as the best estimate the data can give us of support 
in the population of likely voters, and the 2% margin of error as indicating the 
uncertainty in that estimate. In the figure, the dot marks the best estimate, and the 
confidence interval indicates the range of uncertainty.

6. Interpret the results, give a critical discussion of the whole study, and 
prepare a report. Think about the next study. Most likely, the true level of 
support among intending voters is within the interval from 51% to 55%, therefore 
the proposition is likely to be approved— although it may not be.

Of course, that’s a mere sketch of the research process. You may have many 
questions: “How do we choose the sample?”, “How large a sample should we 
use?”, “How do we calculate the margin of error?”, “How should we interpret 
the 95% confidence interval in Figure 1.1?” We’ll discuss answers to these 
and many other relevant questions throughout this book.

Where in the process do you need to know about statistics? Most obviously 
at Step 4, to calculate the confidence interval. However we need statistical 
understanding at every single one of the steps, from formulating the question 

49 50 51 52 53 54 55 56
Support for Proposition A (%)

Figure 1.1. Support for Proposition A, in percent, as reported by the poll. The dot marks the point 
estimate, and the two lines display the margin of error (2%) either side of the dot. The full interval, 
from 51% to 55%, is the 95% confidence interval.
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and designing a study, to interpreting the results and making a critical evalu-
ation of the whole study. Throughout the book, whatever statistical idea we’re 
discussing, always bear in mind the whole research process. Statistical ideas 
are needed at every stage.

Perhaps the most amazing thing about statistics- based research is that 
the process sketched above permits us to study just a relatively small sample 
of people, and yet draw conclusions that might apply broadly, in some cases 
to the whole world! Statistical techniques give us a sound basis for analyzing 
sample data and making inferences— drawing conclusions— that sometimes 
apply very broadly. Yes, there’s always uncertainty, but our analysis can tell 
us how much uncertainty. That’s the magic of statistics.

Scientists have used more fully developed versions of this framework— my 
thumbnail sketch above— and statistical understanding to discover much of 
what we know about people and the world. Among a vast number of examples, 
such research has told us about

 ■ how effective cognitive- behavior therapy can be for depression;
 ■ how much ice mass the Greenland icecap is likely to lose in the next two 

decades; and
 ■ the extent that having more friends can lead to improved learning in 

elementary school.

You may not wish to be a researcher, although you may have the chance 
to participate in worthwhile research as part of your course. In any case, 
to appreciate how such knowledge was gained requires statistical under-
standing. Beyond that, to be a critically aware citizen means being able to 
understand data reported about society and our immediate world, and to 
know what searching questions to ask. Statistical understanding is essential 
for that.

Conducting research properly can be tricky— Chapter 2 is about lots of 
ways we can fool ourselves. We’ll see examples where wrong statistical choices 
cost lives, and poor research practices cause widespread misconceptions about 
what’s true in the world. It’s essential to use the best research and statistical 
practices we can, and to use them correctly. And always to think carefully 
about what any data really tell us.

Intuitions About the Poll
I invite you now to think informally and intuitively about the poll example. 
Here are some points worth thinking about:

 ■ Our question is about the whole population, meaning all people likely to 
vote on the proposition.

 ■ The poll couldn’t ask everyone, or even most people, in the population, 
so it took a sample from the population, and asked people in the sample 
whether they supported the proposition.

 ■ If the sample was chosen in a fair and unbiased way, it’s probably represen-
tative of the population, so we can take the sample results as a reasonable 
estimate of support in the population.

 ■ There is some unknown true level of support in the population. Our best 
point estimate of that is 53%, the support the poll found in the sample.

We use results 
from a sample to 
estimate something 
about a population.

The point estimate is 
the best single value 
the data can give 
us for what we’re 
estimating about the 
population.
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 ■ We calculate the margin of error (2%) as the likely greatest error in the 
point estimate. In other words, 53% is unlikely to be more than 2% away 
from the true value.

 ■ Most likely the true value of support in the population lies in the range 
53±2%, or [51, 55]. That’s the full extent of the interval displayed in 
Figure 1.1.

If at least some of those points match your intuitions, well done! You are well 
on the way to appreciating the basic logic of research that asks and seeks to 
answer questions of this kind.

We call that range of values, [51, 55], our 95% confidence interval, abbrevi-
ated as “CI.” It’s an interval inside which the true value is likely to lie, which 
means we can say:

We are 95% confident the interval [51, 55] includes the true level of support in the 
population.

The 95% CI extends from 51% to 55%, so the margin of error (2%) is half 
the length of the CI, as Figure 1.1 illustrates. The “95%” means we are not 
guaranteed that the CI includes the true value. However, most likely it does, 
assuming that the poll was carried out well— later there’s much more on 
what it means to carry out studies well. You might be dissatisfied with “most 
likely”— we would prefer to be certain. However, research studies rarely, if 
ever, give definitive answers to our questions, so we must be willing to think 
about uncertainty and not fool ourselves by looking for certainty. The great 
value of a CI is that it quantifies uncertainty— its length is a measure of the 
extent of uncertainty in our point estimate.

We can also say that the CI tells us how precise our estimate is likely to 
be, and the margin of error is our measure of precision. A short CI means a 
small margin of error and that we have a relatively precise estimate— the 53% 
is likely to be close to the population value. A long CI means a large margin 
of error and that we have low precision— the 53% may be further from the 
true value.

The curve in Figure 1.2 illustrates how plausibility or likelihood varies across 
and beyond the interval. Values around the center of the CI, say around 52% 
to 54%, are the most plausible, the most likely, for the true value in the popu-
lation. Values toward either end of the CI are progressively less plausible, and 
values outside the interval even less so. The further a value lies outside the 
CI the more implausible it is. In other words, values near the point estimate 
are relatively good bets for where the true value lies, and values progressively 

49 50 51 52 53 54 55 56
Support for Proposition A (%)

Figure 1.2. Same as Figure 1.1, but with the addition of the smooth curve that pictures how likelihood 
varies across and beyond the 95% CI. Likelihood, or plausibility, is represented by the height of the 
curve above the CI and the fine horizontal line.

The 95% confidence 
interval (CI) is a 
range of values 
calculated from 
our data that, most 
likely, includes the 
true value of what 
we’re estimating 
about the 
population.

The margin of error 
is half the length 
of the 95% CI, and 
the likely greatest 
error in the point 
estimate.

The margin of error 
is our measure of 
the precision of 
estimation. A small 
margin of error 
means a short 
CI and a precise 
estimate.

Figure 1.2 illustrates 
how values near 
the center of a CI 
are most plausible 
for the true 
population value, 
and how plausibility 
decreases toward 
the ends of the CI 
and then beyond 
the CI.
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So, have you written down your answer?

further away from the point estimate are progressively less good bets. In other 
words again, the likelihood that a point is the true value is greatest for points 
near the center of the interval and drops progressively for points further from 
the center.

Note in particular that there’s nothing special about the endpoints of the 
CI. Always keep in mind the smooth likelihood curve of Figure 1.2, which 
applies to just about any CI and illustrates how likelihood, or plausibility, 
varies across and beyond the interval.

Why 95%? Good question. You might occasionally come across other 
CIs, perhaps 90% or 99% CIs, but 95% CIs are by far the most common. It’s 
almost always best if we agree on which CI to use, so I recommend we follow 
convention and use 95% CIs, unless there are very strong reasons for using 
something different. I’ll routinely use 95% CIs, so if I mention a CI assume 
95% CI unless I say otherwise.

Estimates and Estimation
We can refer to a CI as an interval estimate because it’s an interval containing 
the most plausible values for the population value, as illustrated in Figures 1.1 
and 1.2. The main approach to data analysis in this book is based on point 
and interval estimates, and you won’t be surprised to hear that this general 
approach is referred to as estimation. It’s a highly informative way to analyze 
data. I hope you’ll find it a natural and easily understood way to report results 
and draw conclusions from data.

To use estimation, what type of research questions should we ask? We 
could ask “Is Proposition A likely to pass?” but this suggests a yes- or- no way 
of thinking about the world, and that a yes- or- no answer would be sufficient. 
However, we’re much less likely to fool ourselves if we think about the world 
in a quantitative way, and therefore ask quantitative questions, such as “What’s 
the extent of support?” or “How great is the support?” Such questions call 
for quantitative answers, in terms of percent support, which are more infor-
mative and therefore preferable. Using estimation, we should always express 
research questions in quantitative rather than yes- or- no terms. We should ask 
“To what extent…?”, “How much…?”, or similar questions, then appreciate 
the quantitative, informative answers.

Making Your Interpretation
A couple of paragraphs back I said that, after calculating point and interval 
estimates, we need to “draw conclusions from data”. After reporting a CI, you 
should give us your interpretation— what do the values mean, in the context 
of the study? In our example, what might you say about the poll result? We 
can summarize the result as “53% support, 95% CI [51, 55]”. What do those 
values imply, considering the impending vote on Proposition A?

I’ll often ask you questions like that. You can read straight on and see my answer, but 
it’s much better to look away and think of your own. Write it down! Even better— call 
a friend for a chat before you write. I’ll use the pause and think logo, as below, to 
suggest a good moment for you to pause, think, discuss, and write. But be encouraged to 
pause, chat, and write whenever you like. Often is good.

The CI is our interval 
estimate of the 
population value of 
interest.

Express research 
questions in 
estimation terms. 
Ask, for example, 
“How much…?”, or 
“To what extent…?”
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As I explained earlier, in “Making the Most of This Book”, research tells us that 
learning is much better if you write things in your own words, even if you feel you are 
making a wild guess.

Think of the campaigns for and against the proposition. Think of what 
51% and 55%, the limits of the CI, might mean— ”limits” is what we call those 
two endpoints of a CI.

You might suggest that a 2% margin of error is not bad— we’d always like a 
smaller margin of error, meaning higher precision, but the result we have is useful. 
You might say the CI indicates that all plausible values for the true level of support 
in the population are greater than 50%, so we can feel confident the proposition 
will pass. However, you might also worry that a strong “No” campaign has been 
running, and there’s enough time for a few percent of voters to be persuaded to 
change their minds— the poll suggests that such a small change could tip the 
result. You’d therefore encourage your friends to make a final effort to keep support 
high, perhaps by stepping up your social media campaign. The important point 
is that how you interpret the result requires you to think about the context and 
implications. You need to consider both the point estimate and the CI, then go 
beyond those mere numbers and give your judgment of what they mean in the 
particular situation. One aim of this book is to help you build your confidence to 
acknowledge uncertainty and make interpretations based on judgment.

FURTHER INTUITIONS

Here are some questions to test your intuitions further:

If we ran the poll again, with a new sample, but using the same procedure and 
as close as possible at the same time, what’s the likely result?

The limits of a CI are 
its two endpoints.

Use judgment to 
interpret the point 
estimate and CI, 
in the particular 
context.

Pause… think… call… chat… write…

Sampling variability 
is variability in 
results caused by 
using different 
samples.

Hint: Think of an enormous sample. A tiny sample. It’s often a good strategy to think of extreme cases.

For the first question you probably quickly appreciated that a second poll 
would be very unlikely to give exactly the same point estimate. However, 
it’s likely to give a similar estimate, not too far from 53%. Most likely, it will 
give a value in the interval [51, 55], which is our 95% CI from the original 
poll. Sampling variability is the name we give to the variation caused by using 
different samples. It’s the variation from poll to poll— when we assume they 
are all carried out at the same time and in the same way, but using different 
samples. The CI gives us a good idea of the extent of sampling variability.

For the second question, a much larger sample is likely to give a result 
that’s closer to the true value in the population, meaning its CI will be shorter, 
its estimate more precise. In fact, if we used a sample four times as large, the 
CI would probably be about half the length. On the other hand, a smaller 
sample is likely to give us a longer CI.

Larger sample, 
shorter CI; smaller 
sample, longer CI— 
all else remaining 
the same. A sample 
four times as large 
gives a CI about half 
as long.

Instead of my answer, here’s another question:

Suppose we ran the poll again, with a much larger sample, what do you think 
is likely to happen to the margin of error? With a much smaller sample? Which 
result is most useful?
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Further Intuitions

Do we prefer our 95% CIs to be long or short?

If you like, reward yourself (chocolate? coffee?) for taking a break to think about the question.

That’s an easy one: short, of course. A short CI means our sample estimate 
is most likely very close to the true value— the margin of error is smaller, the 
precision is greater. That’s good news. That’s why we go to the expense and 
trouble of running a poll with a large sample— to get a smaller margin of 
error, meaning a short CI.

From now on I’m going to refer to the margin of error as MoE, which 
I pronounce as “MO- ee”, although you can say it as you wish. So MoE is half 
the length of a 95% CI, and MoE is our measure of precision.

Quiz 1.1

1. A company is interested in how satisfied its customers are. To help find out, 50 customers are 
randomly selected to take part in a survey. Which of the following is true?
a. The 50 customers surveyed are the sample, all the company’s customers are the 

population.
b. Whatever result is found in the sample will be exactly the same in the population.
c. The company would be better off sampling only 10 customers, as this would produce less 

uncertainty about overall customer satisfaction.
d. All of the above.

2. A confidence interval (CI) expresses
a. a range of plausible values for what is most likely true in the population.
b. our uncertainty about what is true in the population.
c. the fact that results from a sample may not perfectly reflect the population, due to 

sampling variability.
d. all of the above.

3. You read a poll result that says “62±4% of likely voters support the referendum”. What is the 
±4% part?
a. This is the point estimate for referendum support.
b. This is the population for referendum support.
c. This is the margin of error (MoE).
d. This is the sample size.

4. If the poll in Question 3 was conducted well, which of these results would be most unlikely?
a. The referendum passes with 66% support.
b. The referendum passes with 63% support.
c. The referendum passes with 61% support.
d. The referendum passes with 55% support.

5. We calculate a CI from the sample /  population and use it to tell us about the sample /  
population. Half the length of the CI is called the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , with abbreviation 
_ _ _ _ _ _ .

6. If N, the sample size, is made four times as large, the CI length will be about _ _ _ _ _ _ _ _ _ _  what 
it was before, the precision will be lower /  higher, and the researcher is likely to be more /  
less happy.

7. Make for yourself at least three further quiz questions, then give your answers. Swap with a 
friend.

Next, some exercises. It’s so important to be thinking and doing, not just reading, that 
I’ve included exercises throughout the text. These in-chapter exercises often introduce 
new ways of thinking about what we’ve been discussing, or even new concepts. They 
are not just there for practice, but often play an important part in the main discussion, 

MoE stands for 
margin of error.
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so please be encouraged to read and think about them all. You’ll find my commentary 
and the answers at the end of each chapter.

1.1 Your company has decided to branch out into beauty products and has 
produced Invisible Blemish Cream. (I didn’t invent that name— who cares 
about blemishes you can’t see?!) A survey assessed people’s first prefer-
ence when given a choice of your company’s cream and three competing 
products. For the test, the products were given the neutral labels A, B 
(your cream), C, and D. Figure 1.3 displays the results.

a. What is the point estimate of the first preference for your product? The 
interval estimate? The margin of error?

b. What is the population? Who would you like to have in the sample?
c. Make two statements about the level of first preference for your product 

in the population.

1.2 If people chose randomly, you would expect 25% first preference for 
your product. Is your product more strongly preferred than this? Why or 
why not?

1.3 How could you achieve a CI about half as long as that shown in Figure 1.3?

CAREFUL THINKING ABOUT UNCERTAINTY

In later chapters we’ll discuss important ideas raised by this poll example, 
including sampling, point estimates, and CIs, and how to use sample data 
to make conclusions about a population. We’ll see definitions and formulas, 
and discover how to calculate 95% CIs. But for now I want to continue our 
informal discussion.

It’s vital when reading a result like “53% with a 2% margin of error”, or 
seeing a picture like Figure 1.1, to appreciate immediately that the result— 
the percentage support in the sample— could easily have been different. The 
CI gives us an idea of how different it might have been, if all details of the 
poll remained the same but we’d happened to choose a different sample. 
Sampling variability is one source of uncertainty with our results, and statisti-
cal procedures— calculating the CI— quantifies that for us.

However, beyond sampling variability there’s virtually always additional 
uncertainty, which is much harder to pin down. It can have different causes 
in different situations, and usually there’s no statistical formula to quantify it. 
We need careful critical thought to identify problems that might be contribut-
ing additional uncertainty.

Thinking of the poll example, here’s one problem that could be contrib-
uting additional uncertainty. The news website where we read the poll result 
reported only this single poll, but perhaps there were other polls taken at the 
same time that it didn’t report? If so, did it report the largest or best, or were 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Percentage of people whose first preference is Product B

Figure 1.3. First preference for your product (Product B), marked by the dot, with 95% CI.

Beyond sampling 
variability there 
may be uncertainty 
arising from 
incomplete or 
biased reporting, or 
other causes.
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the results we saw selected— by which I mean chosen to reflect some preference 
or bias? Other polls may have given different results, and our news source may 
have chosen to report just this particular poll because it liked its message. If 
a news source selects what to report from a number of results, then we can’t 
draw confident conclusions from what it does report. There’s an unknown 
amount of extra uncertainty and we can no longer be 95% confident the CI 
based on the poll results includes the true value. We need to seek out the most 
trustworthy news sources, seek out any other poll results, and note any signs 
of bias in a particular news source. In general, we need to think carefully and 
critically about any results, especially by asking:

Do we have the full story, or were these results selected in some way that might give a 
misleading message?

If we suspect such selection, we can’t draw confident conclusions.
You might also ask how the sample of people to be polled was obtained— 

we need to have confidence that it’s likely to be reasonably representative of 
the whole population of intending voters. You could also be thinking that a 
poll result can be influenced by the wording of the question people are asked, 
by the communication channel used— phone or email or face- to- face— and 
especially by the proportion of people in the sample who cannot be contacted 
or refuse to respond. These are all good thoughts. Reputable polling companies 
have refined their procedures to minimize all these problems, but we still 
need to be alert to such additional ways that poll results may be uncertain. 
To help us assess the results, we need to have full details of the poll, including 
information about how it was conducted, what questions were asked, how the 
sample was chosen, and how many of the people in the sample answered the 
questions. In general, to have confidence in any data we need to ask:

Do we have full details about how the data were collected?

THE REPLICABILITY CRISIS AND OPEN SCIENCE

Those two questions (Were the results selected in a way that might mislead? Do we 
have full information?) mark our first encounter with Open Science, a central 
idea that we’ll meet often in this book. We can only have full confidence in 
conclusions from research when a number of Open Science requirements are 
met, and these questions express two of those.

“Open Science” comprises a number of practices designed to improve 
research. It has emerged only in the last few years and is still developing. It 
has largely been prompted by the replicability crisis— the alarming discovery 
that a number of widely known and accepted research findings cannot be 
replicated. In other words, when researchers repeat the earlier studies that 
reported the findings in question, they get clearly different results. In one dra-
matic example, a company wanting to develop new cancer therapies examined 
53 findings from cancer research that looked promising. The company first 
attempted to confirm each finding by running a replication study, meaning a 
study designed to be as similar as possible to the original study that reported 
the promising result. In only 6 of the 53 cases (Begley & Ellis, 2012) could they 
confirm the main findings. That’s terrible! It seems that some well- accepted 
research findings are simply wrong.

The first two 
requirements for 
Open Science 
are: (1) avoid 
misleading selection 
of what’s reported, 
and (2) report 
research in full 
detail.

A replication is a 
repeat of an original 
study, similar to the 
original but with a 
new sample.
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Similar, although happily less extreme, results have been reported in 
psychology and other disciplines. Here’s an example from psychology. Gorn 
(1982) published evidence that even unobtrusive music, perhaps in a super-
market, can markedly influence consumer preference. The finding has been 
cited hundreds of times and is routinely included even in recent textbooks on 
consumer psychology. The first large and careful attempt at replication was by 
Vermeulen et al. (2014), who reported three studies that together suggested 
the effect was either zero or very much smaller than reported by Gorn, and of 
little, if any, practical import. Students, teachers, and psychologists working 
in marketing have been misled by the original results for several decades.

Open Science
Open Science addresses the crisis by aiming to reduce the chance that incor-
rect research results are obtained and reported. I’ve mentioned two of its 
requirements— to avoid selection in what’s reported, and to report research 
in full detail. We’ll meet further requirements in later chapters, but another 
aim of Open Science is to encourage replication. Rarely, if ever, can a single 
study give a definitive answer to a research question, and so we should look 
for a replication study that found similar results before starting to have con-
fidence in any finding.

Why “open”? Good question. The idea is that, as much as possible, full 
information about every stage of research should be openly available. In par-
ticular, the data and full details of the data analysis should be available, so 
other researchers can repeat the original data analysis as a check, or analyze 
the data in a different way. Sometimes, for privacy or other reasons, data can’t 
be openly available, but where possible it should be. Having full information 
also allows other researchers to conduct a replication study, confident that it’s 
as similar as possible to the original.

A good summary of a number of Open Science requirements is the ques-
tion I asked earlier: “Do we have the full story?” We can now add “Seek rep-
lication.” as another Open Science guideline.

Suppose we have results from an original study and a number of replica-
tion studies. The results look broadly similar, but of course are not exactly the 
same— for a start, sampling variability will cause them to vary. Fortunately, 
there are statistical tools that allow us to combine the results and provide a 
basis for overall conclusions. I’m referring to meta- analysis, our next topic.

META- ANALYSIS

One great thing about estimation is that it can be extended beyond a sin-
gle study. If we have results from two or more similar studies, we can use 
meta- analysis to combine the results. Usually, meta- analysis gives an overall 
CI that’s shorter than the CI for any of the single studies. That’s reasonable 
because adding further information from additional studies should reduce our 
uncertainty about where the population average lies, and reduced uncertainty 
corresponds to a shorter CI.

We’ll discuss meta- analysis more fully in Chapter 9, but here I’ll report 
a meta- analysis of our original poll (Poll 1) and two further polls that I’m 
supposing were taken at a similar time, asking the same or a similar question. 
Figure 1.4 shows the result of Poll 1, the same as in Figures 1.1 and 1.2, and 

The replicability 
crisis is the 
realization that 
some published 
findings can’t be 
replicated and 
therefore are almost 
certainly wrong.

Two Open Science 
slogans are:

•  Do we have the 
full story?

• Seek replication.

Use meta- analysis 
to combine results 
from two or more 
studies on the same 
or similar questions.
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also the results of Polls 2 and 3. For each poll we have the point estimate and 
95% CI. I applied meta- analysis to combine the three results, and obtained 
52.8% as the overall point estimate, with CI of [51.6, 54.0]. That result is pic-
tured as the diamond in Figure 1.4. That figure is our first example of a forest 
plot, which displays individual study results and uses a diamond to show the 
results of a meta- analysis. We’ll see later that the diamond shape is a revealing 
way to picture a CI, but for the moment just note that the diamond indicates 
a special CI, a CI that is the result of a meta- analysis.

Just to be sure, say in words what those numbers found by the meta- 
analysis represent. How are they pictured by the diamond?

Meta-analysis

Poll 3

Poll 2

Poll 1

49 50 51 52 53 54 55 56
Support for Proposition A (%)

Figure 1.4. A forest plot showing the result of Poll 1, the original poll as in Figures 1.1 and 1.2, and 
two further polls, together with the result of a meta- analysis of all three polls. For each poll, the point 
estimate and 95% CI are displayed. The diamond is the 95% CI that is the result of the meta- analysis.

A forest plot, such 
as Figure 1.4, shows 
point and interval 
estimates for 
individual studies, 
and displays the 
meta- analysis result 
as a diamond.

Hint: Point and interval estimates?

Yes, 52.8%, the overall point estimate, is our best single 
estimate of support in the population of intending voters. We 
are combining, or integrating, evidence from the three stud-
ies, and so it makes sense that the overall estimate (52.8%) 
lies well within the range of the three separate estimates, as 
marked by the three large dots in Figure 1.4. The 95% CI, the 
interval estimate given by the meta- analysis, is [51.6, 54.0], 
meaning that after considering all three studies we can be 
95% confident this interval includes the true level of support 
in the population. This interval is shorter than the other CIs, 
as we expect for the result of a meta- analysis, which, after all, 
is based on the results from all three studies. As usual, a short 
CI is good news.

Meta- Analytic Thinking
Partly because of the rise of Open Science, researchers now increasingly appre-
ciate the crucial importance of replication. Well- conducted replications make 
a vital contribution to building a research literature that includes fewer wrong 
findings, and therefore deserves our trust. Once we have an original study and 
at least one replication study, we can use meta- analysis to integrate the results.

Replication and meta- analysis are so important that we should adopt 
meta- analytic thinking. That’s thinking that prompts us to watch out for any 

Meta- analytic 
thinking is the 
consideration of any 
study in the context 
of similar studies 
already conducted, 
or to be conducted 
in the future.
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opportunity for meta- analysis to help. It prompts us to think of any study as 
one contribution, to be combined where possible with earlier studies, repli-
cations, and other related studies yet to come. We should adopt meta- analytic 
thinking whenever we review, plan, or interpret research.

It’s time to step back and look in a general way at the estimation approach 
we’ve been using.

A STEP- BY- STEP PLAN FOR ESTIMATION

Here’s my suggested list of the important steps in an estimation approach 
to asking and answering research questions. It’s a slight expansion of my 
thumbnail sketch earlier in this chapter.

1. State the research question. Express it as a “how much” or “to what extent” 
question.
What’s the support for Proposition A in the population of people likely to vote?

2. Identify the measure that’s most appropriate for answering that question.
The percentage of likely voters who express support.

3. Design a study that uses that measure and gives us good point and interval 
estimates to answer our question.
Choose a sample of intending voters and ask them about their support for the 
proposition.

4. After running the study, examine the data, calculate point and interval 
estimates, and make a figure.
See Figures 1.1 and 1.2. In answer to our question, the poll found a point estimate 
of 53%, with CI of [51, 55].

5. Interpret these, using judgment in the research context.
See the section “Making Your Interpretation”.

6. Report the study, making sure to state there was no selective reporting 
of just some of the results, and giving full details of every aspect of the 
study.
These are two Open Science requirements.

7. Adopt meta- analytic thinking throughout. Seek other similar studies and, 
if appropriate, conduct a meta- analysis. Consider conducting a replication.

Figure 1.4 shows results from two further similar polls and meta- analysis 
of the three polls.

This list is not meant to be a comprehensive guide to conduct-
ing good research, but it does express many of the important steps. 
We’ll expand and refine the list in later chapters.

In the course of discussing the poll example we’ve encoun-
tered a number of important ideas in an informal way. I’ve intro-
duced many terms, again informally. If you feel you are beginning 
to understand the whole estimation approach to finding out about 
the world, then give yourself a big pat on the back: You are well 
on the way to understanding research and statistics.
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 Quiz 1.2

1. You see the result of a poll. What are three additional things you need to know before you 
can understand the result?

2. A poll found 66% support for a proposition, with margin of error of 4%. What is the CI? If the 
poll were repeated, with a second sample of the same size, what result would you expect?

3. A replication study
a. uses the same sample as the original study.
b. most likely gives exactly the same result as the original study.
c. is usually a waste of time.
d. is similar to the original study but with a new sample.

4. A forest plot displays for each study a dot that marks _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  and a line that marks 
_ _ _ _ _ _ _ _ _ _ . The diamond represents _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

5. What are two important slogans for Open Science?_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ 

6. It is important not only to replicate results but also to combine the data across replications 
to determine the overall pattern of results. Which is the correct term for this?
a. Repli- analysis.
b. Meta- analysis.
c. Under- analysis.
d. Repeato- analysis.

7. Make further quiz questions, some on material from near the start of the chapter. Swap with 
a friend.

Looking Ahead
Our poll was perhaps the simplest possible estimation study— it estimated 
just a single percentage. In future chapters we’ll discuss many more studies, 
which address various types of research questions. For all of them we’ll take 
the estimation approach that I’ve introduced in this chapter, and our step- 
by- step plan will be a useful guide. Here are a few words about several of the 
studies that we’ll discuss:

Two separate groups of participants. To what extent do you learn more from 
lectures if you use a pen rather than a laptop to take notes? This study 
compared the quality of notes taken, and amount learned from the 
lecture, for two separate groups of students, one for each method of 
note- taking. We’ll discuss this study further in Chapter 2, then again 
in later chapters.

A single group of participants, measured twice. How effective is a computer- 
based method called argument mapping in improving students’ critical 
thinking ability? Scores on a critical thinking test were compared 
before and after a single group of students had learned and practiced 
the argument mapping method. There’s more on this in Chapter 8.

The correlation between two variables. To what extent do people in large cities 
tend to walk faster than people in towns or small villages? Walking 
speeds were observed for people in cities, towns, and villages in various 
countries around the world, and then used to assess the correlation, or 
relationship, between observed walking speed and the population size 
of the city, town, or village. We’ll discuss correlation in Chapter 11.

In the next five chapters we’ll discuss some further fundamentals of research 
(Chapter 2), graphs to help us explore our data and statistics that summa-
rize data (Chapter 3), and a number of steps that lead to the calculation of 
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 I’ll close the chapter with take- home messages. You can look ahead to see what I’ve written, but it’s much more 
useful if you write yours first. What are the major points so far? What’s worth remembering? I suggest you try 
writing a list, then sleep on it, discuss with others, then revise your list. Then you can compare it with my list— and 
give yourself extra points for including any important items I’ve left out. 

 After your fi rst go at writing some take- home messages, try these 
exercises— which may suggest more items for your list. 

  1.4     Draw a picture of a CI and use it to explain (a) point estimate, (b) interval 
estimate, (c) MoE.  

  1.5     Make up two interesting exercises involving CIs. Swap with a friend, or 
post to your discussion group. Discuss everyone’s answers. How about a 
prize for the most interesting exercise?  

  1.6     Search the web for examples of different ways that CIs are pictured in 
fi gures reporting data. Do you have a preference?  

  1.7     Revise again your list of take- home messages. Scan through the chapter 
again, looking for anything further that’s important enough to include. 
I have 10 items on my list, but your list can have whatever number you 
think best.   

  Finally, a quick reminder that it’s worth visiting the book website— have you 
made a favorite or bookmark? It’s at  www.routledge.com/cw/cumming  but 
for easy typing you can use  tiny.cc/itns  Incidentally, I use tiny.cc shortenings 
for some links in later chapters, for easy typing and so that I can, if necessary, 
update where they point, after the book is published. At the book website 
there’s a list of those shortenings and the full links. 

   Reporting Your Work 

 An essential part of the research process is reporting your work— presenting or publishing 
your results so that others can learn from the data you have collected. Because this is so 
important, you’ll find a section like this one at the end of most chapters with pointers for 
this vital step. You’ll also find example manuscripts on the book website that you can use 
as a model. 

 To get us started, here are four basic principles to follow in reporting your work. They 
may seem a bit vague for the moment, but you’ll see how they work in practice as you 
move through the book. In the last chapter of the book,  Chapter 16 , there’s a recap of these 
principles plus, for each, bullet points that we’ve encountered along the way. 

   Tell the full story.   Give a complete account of your research process and the data you 
collected. Don’t selectively report results.  

   Provide sufficient detail.   Include all the details necessary for someone else to replicate 
your work. Include all the data necessary for someone else to incorporate your results into 
a meta- analysis. Share your data online, if possible. 

  Tell the full story  is 
our main guideline 
for reporting 
research. 

confi dence intervals ( Chapters 4  and  5 ), with a look in  Chapter 6  at an alter-
native to estimation— a second approach to analyzing data and drawing con-
clusions about a population. Then we’ll have the tools we need to discuss and 
analyze studies of the types I described just above. 

 I now invite you to revisit this chapter, and discuss with other learners 
anything you fi nd particularly interesting, or puzzling, or surprising. 

http://www.routledge.com/cw/cumming
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   Show the data.   Whenever possible, provide figures that show your key findings. Prefer 
figures that show all the data rather than just summary statistics. 

   Interpret the point estimate and CI.   Focus your conclusions and interpretation on the 
point estimate and confidence interval. 

 Choose a style and format that is appropriate for your audience. To help with this, 
these sections provide tips for following the APA Style laid out in the  Publication Manual 
of the American Psychological Association  (APA, 2010). APA style is the most commonly 
used style for writing manuscripts in a very wide range of disciplines. In fact, you’ll notice 
that I’ve tried to make this book consistent with APA style, so examples you encounter in 
the text and the end- of- chapter exercises will, in many cases, provide further examples 
of APA style in action. Keep in mind, though, that these pointers are not a comprehensive 
treatment of APA style; you’ll still need to consult the  Manual  when writing your own 
reports. 

 Even though APA style is our focus, that doesn’t mean you should always follow 
its conventions. If you are using this book for a class, be sure to follow the assignment 
guidelines carefully. In addition, keep in mind that APA style is intended primarily as a pre- 
publication format, for manuscripts that will be submitted to a journal for transformation 
into more readable form. If your work is going direct to readers, you should adapt 
accordingly. For example, in this book I don’t always follow exact APA referencing style— I 
might write Chaix et al. rather than several researchers’ names, as specified by APA, when 
there’s no ambiguity and to avoid cluttering the text, especially when we’re discussing that 
study for several pages. 

 If you’d like to work seriously on your writing, or just read about how to be a great writer, 
try  The Sense of Style  by Steven Pinker (2014)— would you believe, it’s beautifully written.        

  Take- Home Messages  
 ■   Think in a quantitative, not a yes- or- no way. State research questions in 
estimation terms: “How much…?”, “To what extent…?”  

 ■   An outline of the research process is provided by the seven- step plan for 
estimation. Refer to the listing of the seven steps.  

 ■   Point estimates and interval estimates provide quantitative, informative answers 
to research questions.  

 ■   A confidence interval (CI) is our interval estimate, and is a range of values 
calculated from data that most likely includes the true population value we are 
estimating.  

 ■   We can say we’re 95% confident our 95% CI includes the true population value. 
Values near the center of the CI are most plausible for the true value, and 
plausibility decreases with increasing distance from the center of the CI.  

 ■   Use judgment and knowledge of the research context to interpret the results— 
the point and interval estimates. A figure is usually helpful.  

 ■   Open Science requires (a) avoidance of possibly misleading selection of results to 
be reported, (b) fully detailed reporting of research, and if possible (c) replication 
with an eye to meta- analysis.  

 ■   Meta- analysis combines results from two or more studies on the same or similar research 
questions, and is likely to give more precise estimates.  

 ■   Meta- analytic thinking considers any study in the context of past similar studies and with 
the expectation that replications are likely to be valuable.  

 ■   Using simple examples, pictures, and estimation suggests that learning about research methods 
and statistics need not be scary or mysterious, but is actually absorbing, highly useful, and even 
fun. (I didn’t say that earlier, and you may not agree, but my aim is to persuade you it’s true.)    
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End- of- Chapter Exercises

Answers to all end- of- chapter exercises are at the back of the book.

1) A study estimated the percentage decrease in pain ratings following 60 minutes of guided 
relaxation. The result was 34% [19, 49].

a. What is the point estimate of the decrease? The interval estimate? The 95% CI? MoE?
b. Make two statements about what the CI tells us. Give your interpretation of the results.
c. Considering Open Science, what concerns do you have?

2) Suppose the result from the pain study had instead been 13% [−3, 29]. Answer all the same 
questions.

3) You are considering a replication of the pain study of Exercise 1 above.

a. Supposing you want MoE from the replication to be about half of MoE from the original 
study, describe your replication study.

b. Invent the results of such a replication. Compare with the original results.
c. Suppose you meta- analyze those two sets of results. Suggest roughly what results the 

meta- analysis might give, and interpret those.
d. What’s the value of replication and meta- analysis?

Answers to Quizzes

Quiz 1.1
1) a; 2) d; 3) c; 4) d; 5) sample, population, margin of error, MoE; 6) half, higher, more; 7) Questions don’t need to be 

complicated, but it’s best to choose things you find somewhat tricky.

Quiz 1.2
1) Are there other similar polls? Information about the sample— how was it chosen, how large? How was the poll 

conducted— what questions, what procedure? 2) [62, 70], most likely a point estimate within the first CI; 3) d; 4) the 
point estimate, the CI, the result of the meta- analysis; 5) Do we have the full story? Seek replication; 6) b; 7) It’s 
worth using quizzes to review the whole chapter.

Answers to In-Chapter Exercises

1.1 a. 32%, marked by the solid dot; the 95% CI, which is [28, 36]; 4%, the length of either arm, or half the 
full CI length; b. All potential purchasers of the cream; potential purchasers; c. We are 95% confident the 
interval from 28% to 36% includes the true first preference in the population for Product B, and values 
inside the CI are plausible for the true level of first preference, whereas values outside are relatively 
implausible.

1.2 The whole CI lies above 25%, so all plausible values for the true first preference are greater than 25%. Most 
likely our product is more strongly preferred than that.

1.3 Use a sample four times as large.
1.4 Refer to Figure 1.1. a. The point estimate is 53%, the solid dot, and is our best single estimate of the true 

value in the population; b. The interval estimate, the 95% CI, is the interval from 51% to 55%, marked by the 
line; c. MoE, the margin of error, is 2%, and is the length of either segment of the line, and half the length of 
the CI.

1.5 You might choose a current media report that includes—or should include—data, then ask how knowing 
the CI would help us understand what’s really going on. Once you are aware of sampling variability, as 
signaled by a CI, you begin to notice how often people mention only the point estimate, for example an 
average or a percentage, with no mention that there’s often considerable uncertainty in that value.

1.6 I found pictures like those in this chapter, or with little crossbars at the ends, and others that pictured a 
CI as a narrow stripe, without a dot in the middle or crossbars at the ends. I also saw the diamond, as in 
Figure 1.4. Often CIs are reported only as numbers in text, with no picture. But pictures with CIs are so 
informative, so cool. An easy search that presents many pictures is for “pictures of confidence intervals”.

 



It can be wonderfully exciting to discover new and perhaps surprising things 
about how the world works— that’s the fascination of research. Research 
can also be hard work, and there are lots of things we need to think about to 
avoid jumping to unjustified conclusions. A good scientist is always question-
ing, always skeptical, always looking for error and thinking carefully about 
alternative explanations.

This chapter is about fundamental research concepts. I’ll summarize its 
main theme with a quotation. Richard Feynman, the famous physicist— also 
bongo drummer— wrote:

The first principle is that you must not fool yourself and you are the easiest 
person to fool.

That’s our first Don’t- Fool- Yourself, or DFY, statement.

2
Research Fundamentals:  
Don’t Fool Yourself

DFY: Don’t fool yourself, and you are the easiest person to fool.

This chapter is about not fooling ourselves. I’ll define lots of terms and 
discuss lots of cautions, but don’t let all that distract you from the excitement 
of research and thrill of new discovery.

You might be wondering why I keep referring to carrying out research, 
and to you as a researcher, when you may be feeling very new to it all and not 
(yet) planning a career in research. There are several reasons. First, research 
has become important in many, many fields: Corporations carry out market 
research, human resource offices conduct surveys of employee satisfaction, 
schools conduct trials to evaluate new teaching technologies, hospitals help 
enroll patients in clinical studies, governments conduct studies to evaluate 
policy changes, and so much more. You could easily be involved in planning, 
conducting, and interpreting research in your future career— perhaps often. 
In addition, as a citizen and consumer you will often encounter issues and 
choices for which understanding research will be invaluable, even essential. 
In such cases, it’s often helpful to take the researchers’ perspective— how did 
they see their work, how did they choose what to report and how to report it?

Research has become such an important part of society that more and 
more students— undergraduate as well as graduate— are participating in real 
research projects, so you may have such a chance before too long. The pen– 
laptop study (Mueller & Oppenheimer, 2014), which I mentioned at the end 
of Chapter 1, is a nice example of research by a student, Pam Mueller, that 
quickly became famous. Who knows where your class project may lead!
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I’ll mention that pen– laptop study a few times in this chapter. When you 
take notes in a lecture, is it better to write notes on paper, or type them on your 
laptop? What’s the difference, in terms of quality of notes, and the amount you 
understand and remember? Before reading on, write down your thoughts.

Here’s our agenda for the chapter, all with the theme of not fooling 
ourselves:

 ■ Using a sample to make inferences about a population
 ■ Basic concepts, including experimental and non- experimental research
 ■ The measure that provides our data, and its reliability and validity
 ■ Four levels of measurement, which have this acronym: NOIR
 ■ Three problematic types of selection; planned and exploratory analysis
 ■ Open Science: Do we have the full story?

INFERENCE FROM SAMPLE TO POPULATION

In the poll in Chapter 1 we used the results from a sample of people to make an 
inference, or conclusion, about the population of all intending voters. The main 
goal of this book is to explain techniques of statistical inference that justify doing 
that— using a sample to reach a conclusion about a population. There’s almost 
always uncertainty, and ways we can easily fool ourselves, but inference is a bit 
of magic at the heart of most research. Estimation is the main statistical inference 
technique we’ll discuss, then in Chapter 6 I’ll describe an alternative approach.

I’ll now define some basic terms, many of which I used informally in 
Chapter 1. From here on, I’ll generally mark important terms by making them 
bold and italic the first time they are defined or explained. I’ll continue to use 
plain italics for general emphasis. Note that the Index and Glossary can also 
help you find information about terms.

Statistical inference is a set of techniques for drawing conclusions from a sample to 
the population the sample came from. Estimation is our favored approach to statistical 
inference.

Figure 2.1 illustrates the idea. The population of interest is at left, and the 
sample of N people chosen for the sample at right.

From now on, I’ll usually refer to the average by its slightly more technical 
name, the mean.

The sample mean 
(M, or sometimes X ) 
is a sample 
statistic that is 
the average of the 
sample data. It’s 
our point estimate 
of the population 
parameter, the 
population mean, μ.

The mean is simply another name for the average.

It’s vital to be clear about the distinction between a sample and the underlying 
population it came from. The population is usually large, even extremely large, 
whereas the sample is a manageable number of people taken from the population. 
To help make the distinction clear, for the sample we use Roman letters and refer 
to sample statistics, such as the sample mean, M. (Some books use X , rather than 
M, for the sample mean.) For the population, we use Greek letters and refer to 
population parameters, such as the population mean, μ (Greek mu).

I’ve been talking about a population and sample of people, but we may be 
interested in other populations, of school classes, or companies, or rabbits— 
whatever our research question refers to. However, to keep things simple I’ll 
continue to refer to people.
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In a moment I’ll discuss how we should select the sample, but first a couple 
more definitions. The first step in data analysis is usually to calculate descrip-
tive statistics from the data, for example the sample mean, to summarize the 
sample data.

A population is a usually very large set of people about which we are interested in 
drawing conclusions.

The population 
(usually way bigger than this)

The sample, 
size N

Random 
sampling

Population parameter: 
Mean is µ (mu)

Sample statistic: 
Mean is MInference

We don't know µ
M is our estimate of µ

We calculate M from
our sample data

Figure 2.1. A population on the left, random sampling to obtain the sample shown on the right, 
and inference from the sample to the population. Sample mean, M, is our point estimate of 
population mean, μ.

A sample is a set of people selected from a population.

A descriptive statistic is a summary number, such as the sample mean, that tells us 
about a set of data.

We also calculate from the data inferential statistics, which are designed to tell 
us about the population—for example, a confidence interval (CI), which is a 
range of values that most likely include the population mean.

An inferential statistic, such as a CI, is calculated from sample data and tells us about the 
underlying population.

Random Sampling
A sample is useful to the extent that it tells us about the population, which 
means that it needs to be representative of the population. How should we 
choose the sample so it’s representative? The best strategy is usually to seek a 
random sample, meaning one that’s generated by a process of random sampling. 
In Figure 2.1, that’s the label on the arrow from population to sample. Random 
sampling requires that

Using a random 
sample is usually 
the best way to 
obtain a sample 
likely to be 
representative of 
the population.
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A convenience sample is a practically achievable sample from the population.

 ■ every member of the population has an equal probability of being 
chosen; and

 ■ all members of the sample are chosen independently, meaning separately— 
the choice of one sample member has no influence on whether another 
is chosen.

A random sample is chosen from the population such that all population members have 
the same probability of being chosen, and all sample members are chosen independently.

If for your study you wanted a random sample of students at your college, you 
might obtain a complete list of all such students, then choose a sample of, 
say, N = 50 by using some random selection method. You might, for example, 
put all the names on separate slips of paper in a box, stir well, and pull out 
50 names. More practically you could use a table of random numbers (search 
online for this) to select 50 names from the list. Can you see any practical 
difficulties with using such a random sample of 50 students in your study?

What if you can’t obtain access to a full list of enrolled students? Even if 
you can choose a sample randomly, what if you can’t contact all of the chosen 
50, or if some decline to participate or drop out halfway through the study? In 
practice it’s rarely possible to meet the two requirements of random sampling, 
and you are likely to have to use a convenience sample, meaning the students 
who were willing to sign up to your online request then actually showed up 
on the day, or who agreed to participate when you asked in a large lecture 
class for volunteers, or who particularly like the flavor of ice  cream you are 
offering as a reward.

If random sampling 
is in doubt, we need 
to judge a sample 
to be reasonably 
representative of a 
population before 
using inferential 
statistics to reach 
a conclusion about 
that population.

You know this logo is a reminder to pause, think, find someone for a discussion, and have a coffee. Then write 
down your thoughts.

We have a dilemma. Using CIs for inference relies on the assumption of 
random sampling, but usually we have to use a convenience sample. What 
should we do? First, we should come as close as possible to meeting the require-
ments for random sampling. Second, it’s usual to make the assumption in order 
to calculate CIs, and then make a judgment as to whether it’s reasonable to 
draw conclusions about a particular population.

The key question is the extent to which we judge our sample to be rea-
sonably representative of a population. If, for example, our research question 
concerned political attitudes and our convenience sample was all psychology 
students, it probably wouldn’t be wise to generalize the result to students 
majoring in, say, law, who may have different political attitudes. Or to students 
in another country with a quite different culture. If we’re doubtful about how 
representative our sample is of a population, any conclusion needs to be corre-
spondingly tentative. As usual, we can’t escape careful thought and judgment.

I said that calculation of a CI requires the assumption of random sam-
pling. More formally, I can say that calculation of inferential statistics requires 
statement of a statistical model, which is a set of assumptions. One assumption 
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of our statistical model is random sampling. We’ll meet other assumptions of 
the model in Chapters 4 and 5.

A statistical model is a set of assumptions. Random sampling is one assumption in the 
statistical model we use for calculation of inferential statistics.

In summary, sampling is a central issue. Advanced books describe more 
complex ways to sample from a population, but in this book we’ll rely on 
random sampling. Be aware, however, of the practical difficulties of achieving 
random samples, and the need to make a judgment as to whether it’s reason-
able to apply a conclusion to a particular population.

Ignoring the random sampling assumption and not considering care-
fully how representative our sample is of the population is a major way to 
fool ourselves.

 DFY: Don’t let statistical inference fool you: It relies on a statistical model. Our model includes the 
assumption of random sampling, which is often not achievable. If it isn’t, use judgment before applying a 
conclusion to a particular population.

2.1 Figure out a good way to understand and remember all the definitions 
we are encountering. Make flash cards and use them again and again? 
Invent an example for each definition? Form a group and test each other? 
For suggestions, revisit the Making the Most of This Book section near the 
start of this book.

MAKING COMPARISONS

The Chapter 1 poll asked one question about support for the proposition, but 
more often we want to make comparisons. How much has support for our can-
didate increased since the last poll? How much less depressed are those treated 
with an antidepressant compared with those not treated? How much better is 
critical thinking in 16- year- olds than in 10- year- olds? These are all research 
questions that require comparisons between different sets of measurements.

Let’s define some more terms. I’ll refer again to the pen– laptop study as 
an example. To make a comparison, a study needs at least two variables. First 
is the independent variable (IV), the pen- or- laptop variable, which defines the 
two conditions we wish to compare. The IV can take two values or levels, Pen 
and Laptop. Levels are also referred to as conditions or treatments.

The independent variable (IV) is the variable whose values are chosen or manipulated by 
the researcher.

Levels are the different values taken by the independent variable, for example, Pen and 
Laptop. Levels are also called conditions, or treatments.

Sometimes one of the conditions is chosen to provide a baseline, or starting 
point, for a comparison, in which case we can refer to it as the control condition. 
For example, if our research question asks about the effect of a low- fat diet, 
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A confound is an unwanted difference between groups, which is likely to limit the 
conclusions we can draw from a study.

then the conditions might be usual diet and low- fat diet. The usual diet is the 
baseline, or control condition. As you’d guess, a control group is simply a group 
that experiences the control condition.

A control condition is the condition that provides a baseline or starting point for a 
comparison. A control group is a group that experiences the control condition.

The first important variable is the IV. The second is the measure that 
provides the data sought, such as some measure of the quality of the notes 
taken by the student. This is the dependent variable (DV), so called because it 
depends on the participants’ behavior.

The dependent variable (DV) is the variable that’s measured in the study and provides 
the data to be analyzed.

Experimental and Non- Experimental Research
To make a comparison, how should we set up our study? There are several 
options. For pen– laptop, one option would be to simply find students who 
choose to write notes with a pen, and others who choose to use a laptop, then 
compare learning or memory scores for those two groups. We would be tak-
ing a non- experimental approach. Another option would be to manipulate the 
note- taking method to create two independent— meaning separate— groups 
or conditions. We could create a pen group and a laptop group by randomly 
assigning some students to use pen, and others to use laptop. Alternatively, we 
could ask the same students to use pen for one study session and laptop for 
another, randomly assigning each student to which order they will use. Either 
way, making a manipulation means we are taking an experimental approach. 
Experimental approaches have strengths and also weaknesses; the same is 
true for non- experimental approaches. Can you think of a few for each?

Pause, discuss, reflect… Consider how easy each type of study might be to set up. Consider how convincing the 
result might be. Which would you prefer? Write down your thoughts.

The non- experimental approach is often easy and convenient, but the 
trouble is that the groups almost certainly differ in ways other than note- 
taking method. Perhaps some pen students can’t afford a laptop. Perhaps 
some laptop students are more committed to their studies. We therefore can’t 
conclude that any difference we observe was caused by the choice of pen or 
laptop; it could have been caused by any of the possible differences between 
the two groups, or perhaps several of those differences. We call those addi-
tional differences confounds. A confound is an unwanted difference between 
groups that limits the conclusions we can draw from a study. We say that 
interpretation of the study is confounded by the possible extra differences 
between the Pen and Laptop groups.
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Experimental research uses random assignment of participants to groups or  
conditions— to the different levels of the IV that is being manipulated. It can justify  
a causal conclusion.

The key feature of the experimental approach is that it uses random 
assignment to form the groups or conditions to be compared. Random assign-
ment tends to even out all the other differences, meaning that it helps avoid 
confounds. It gives us groups or conditions that, most likely, differ in only 
one way— for example whether the student used pen or laptop, which is the 
experimental manipulation, the IV, that we’re interested in. With groups that 
differ in only one way— the note- taking method— we can conclude that any 
difference we observe was, most likely, caused by use of pen or laptop. That’s 
gold, because the aim of research is to investigate cause and effect— we’d love 
to discover what causes cancer, or depression, or better learning.

If two groups or 
conditions differ 
on only one factor, 
then that factor 
is the likely cause 
of any observed 
difference between 
the two.

Random assignment is great, but often it isn’t possible, for example 
if the IV is gender, or whether or not a couple is married, or whether or 
not a child has been exposed to a neurotoxin. But we can assign students 
randomly to the Pen or Laptop groups. Random assignment needs to be 
done strictly, using coin tosses, or a random number table, or computer 
assignment. It’s not good enough, for example, to assign all the students 
who come on Monday to Pen and those on Thursday to Laptop. Such groups 
might differ in any number of other ways— perhaps the Monday folk are 
still recovering from the weekend, or Thursday is sports day and Thursday 
volunteers are the non- sporty types?

If our IV is gender, and so random assignment isn’t possible, we can’t 
conclude that gender is the cause of any observed difference. To investigate 
causality in non- experimental studies we need advanced techniques, many 
of them based on regression, the topic of Chapter 12.

Both experimental and non- experimental studies can be valuable, and 
often their data are analyzed in the same way— which is great news. We need 
to take care, however, when stating conclusions. An experimental study 
can justify concluding that using pen rather than laptop most likely caused 
increased learning. By contrast, for a non- experimental study we can say 
only that gender “is associated with” the observed difference, or that females 
“tend” to respond more quickly than males, without making any presumption 
about cause.

Random 
assignment of 
participants 
to groups or 
conditions gives 
the best grounds 
for a conclusion of 
causality.

Data analysis is 
often the same for 
an experimental and 
non- experimental 
study, but 
conclusions usually 
must be quite 
different: Only an 
experimental study 
can justify a causal 
conclusion.

 DFY: Don’t let lack of random assignment fool you. Only experimental research, based on careful random 
assignment, can justify a causal conclusion. Be cautious about any causal conclusion you read— is it based 
on experimental research?

I’ve presented a blizzard of terms and definitions, but they cover issues at 
the core of research. It’s worth reviewing the chapter to this point. One key idea 

Non- experimental research uses pre- existing groups, not formed by random assignment 
or manipulation of the IV. It cannot justify a causal conclusion, because there could easily 
be confounds.
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is random sampling to obtain a sample of participants for our study, even if in 
practice we often have to make do with a convenience sample. A second key 
idea is the distinction between experimental and non- experimental research. 
Only experimental research may be able to justify a causal conclusion— which 
can make us very happy. The next major topic is measurement, and the nature 
of the variables we use.

2.2 Once again, work on good ways to learn all those definitions and funda-
mental concepts. Can social media help?

2.3 Suppose a study measures the word knowledge and number knowledge 
of four groups of children, who are, respectively, 3, 4, 5, and 6 years old.
a. Is this an experimental or a non- experimental study?
b. What is the IV and how many levels does it have?
c. What is or are the DV(s)?

2.4 Suppose the study in 2.3 uses a random sample of children in a large 
urban school district.
a. How might that sample have been chosen? Is random assignment to 

groups possible? Explain.
b. Suggest two populations to which you think it would be reasonable to 

apply a conclusion from the study. Explain.
c. Suggest two populations to which you think it would not be reasonable 

to apply such a conclusion. Explain.
d. Suppose the study found differences between the group means on the 

DVs. Would it be reasonable to conclude that differences in age caused 
those differences? Explain.

e. Do you have an experimental study? Explain.
2.5 Suppose you wish to evaluate the effectiveness of visual imagery of restful 

scenes in nature as a therapy for mild depression. Forty people with mild 
depression have agreed to participate.
a. You decide to use independent groups. How would you form the 

groups? Why?
b. What is your IV, and what is your DV?
c. What type of conclusion could you draw? What assumption are you 

making? Is it reasonable? Explain.

Quiz 2.1

1. Statistical inference uses the _ _ _ _ _ _ _ _ _ _  mean, which has symbol _ _ _ _ _ , to tell us about the 
_ _ _ _ _ _ _ _ _ _  mean, which has symbol _ _ _ _ _ .

2. If you have a random sample from a population, you know that
a. the sample is a convenience sample.
b. the researcher chose the people to include in the sample very carefully after seeing 

their data.
c. people in the sample were chosen independently.
d. the sample is an inconvenience sample.

3. The variable that a researcher manipulates is the _ _ _ _ _ _ _ _ _ _  variable, abbreviation _ _ _ , and 
the variable the researcher measures is the _ _ _ _ _ _ _ _ _ _  variable, abbreviation _ _ _ .

4. A study has independent groups that see a movie, or read a book, or listen to some songs. 
Participants then report their state of relaxation. What is the DV? What is the IV? What are 
the levels of the IV?
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5. If you have random assignment of _ _ _ _ _ _ _ _ _ _  to form two _ _ _ _ _ _ _ _ _ _  groups, you 
can /  cannot conclude that any difference you observe is most likely caused by the IV 
manipulation.

6. Using random sampling to obtain participants, and random assignment to form two groups, 
means that we have an experimental /  a non- experimental study, and that the two groups 
are likely to differ in only one /  more than one way.

7. Make some more quiz questions, swap with a friend, and compare answers.

MEASUREMENT

To measure the length of a table you reach for a tape measure and report the 
length as 110.4 cm. You hardly give it a thought, although, if I asked, you 
would say that doing it again would give very close to the same result, and 
that even using a different tape measure should give close to the same result. 
In psychology and other disciplines that study people, however, measurement 
is not so easy. To measure a person’s anxiety, or the amount they learned from 
a lecture, we need to find relevant questions to ask and a way to score the 
answers that gives us an acceptable measure of anxiety or amount learned. In 
many cases there are well- established tests or instruments we could choose. 
For anxiety, one such as the State- Trait Anxiety Inventory (STAI; Spielberger 
et al., 1983), which is a set of 40 items such as “I am tense; I am worried”, which 
the respondent rates on a four- point scale from “almost never” to “almost 
always”. Higher scores indicate greater anxiety.

We call anxiety the construct of interest. It’s the underlying psychological 
characteristic we wish to study. The STAI score is the measure we use to opera-
tionalize anxiety, meaning that we take that score as our measure of anxiety. 
We say anxiety is operationalized as the STAI score. This acknowledges that 
the STAI score and the underlying construct of anxiety are different, and that 
we’re using one as our measure of the other. We could say that length is our 
construct of interest and that we operationalize the length of the table as the 
reading on the tape measure.

Measurement is 
an important issue 
across science. 
Choose measures 
carefully.

A construct is the underlying characteristic we wish to study. Anxiety, well- being, and 
confidence are examples of constructs.

A measure operationalizes a construct if it provides a practical way of measuring that 
construct. For example, the STAI score operationalizes anxiety.

Can you think of a couple more constructs and measures that 
operationalize them?

I won’t always insert the icon, but by now you know to pause and reflect, 
discuss and write. It’s always better to put things in your own words.

What makes a good measure? Two basic features of a good measure are 
reliability and validity.

Reliability
Reliability refers to repeatability or consistency: If you measure again, are you 
likely to get the same or a very similar value? With the tape measure the answer 

Two basic features 
of a good measure 
are reliability and 
validity.
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In this book we’ll usually assume our measures are reliable and valid. 
Yet again, judgment is required. If we suspect a measure does not have high 
reliability and validity we need to be very cautious in drawing any conclu-
sions based on it, to avoid the syndrome of GIGO— garbage in, garbage out.

Time for another Don’t fool yourself statement.

is “Yes”, but what about the measure of anxiety, or learning? Reliability can be 
measured in various ways, but the simplest is test- retest reliability, which is the 
extent to which two scores on the test are the same or similar, when they come 
from the same person and are taken under conditions as close as possible to the 
same. For example, you might assess a questionnaire measure of anxiety by 
giving it to a sample of 100 people, then giving it to them again a day later and 
assessing the closeness of the two sets of scores. In Chapter 11 on correlation 
we’ll see one way to measure such closeness. Conditions can never be exactly the 
same for the second testing— levels of anxiety might vary from day to day— but 
when assessing reliability the researcher will make them as similar as possible.

Test- retest 
reliability is the 
extent that a 
measure gives the 
same result when 
repeated in the 
same situation.

The reliability of a measure is its repeatability, the extent to which we get the same or a 
similar value if we measure again.

Validity
Validity refers to the extent a measure actually measures what we want it to 
measure. We can be confident that our tape measure does measure length, 
and not density or temperature. But does our questionnaire tap anxiety, 
rather than, say, arousal or introversion? One way to assess validity is to 
compare or correlate scores on the anxiety questionnaire with scores on 
a different, already well- established, measure of anxiety. (Again, there’s 
more on how to do this in Chapter 11 on correlation.) Close correspondence 
between the two scores suggests our measure of anxiety has reasonable 
validity. Another approach is to investigate how well scores predict a rel-
evant outcome. An example is a test of job aptitude, which is designed to 
predict later job performance. We could test a number of new employees 
on the aptitude test, then compare their scores with their later job perfor-
mance. Again, close correspondence indicates good validity of the test for 
its purpose.

The validity of a measure is the extent to which it measures what it is designed to 
measure.

 DFY: Don’t let a measurement fool you. The measure is not the same as the underlying construct. Consider 
how well the measure operationalizes the construct. Consider its reliability and validity.

2.6  a. Is the number of words in a term paper a reliable measure?
b. Is it a valid measure of the academic quality of the paper?
c. Suggest a better measure of the academic quality of a paper.
d. Suggest how you could assess the reliability of that measure.
e. Suggest how you could assess its validity.

Next is more on measurement: I’ll consider four different types, or levels, of 
measurement.
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FOUR TYPES OF MEASURE: NOIR

Length is a detailed and informative measure. Classifying someone as left-  
or right- handed is also a measure, but is, by contrast, a much less detailed 
measure— a dichotomy. It’s useful to distinguish four different types, or levels, 
of measurement, which differ in their degree of detail. They can be summa-
rized by the handy acronym: NOIR. This stands for nominal, ordinal, interval, 
and ratio levels of measurement, which are the four levels ordered from least 
to most detailed and informative. Let’s take a look at each of these.

Nominal Measurement
Suppose you classify people as left-  or right- handed. Those labels illustrate 
the simplest and most basic level of measurement— nominal, also referred to 
as categorical measurement. Similarly, if you label ice cream as strawberry, 
chocolate, vanilla, or coffee, the labels are a nominal, or categorical, mea-
sure. We can also refer to a measure having nominal or categorical scaling. 
The labels identify different categories, but are not quantitative and there’s 
no notion of ordering— we’re not saying that coffee flavor is larger or better 
than strawberry, just different. We might for convenience code strawberry as 
1, chocolate as 2, vanilla as 3, and coffee as 4, but the numbers are arbitrary 
and their values mean nothing beyond labeling: We could have coded the 
flavors as 80, 70, 999, and −8. Using words emphasizes the categorical nature 
of nominal measurement. If we use numbers, we must be cautious because 
numbers suggest calculations, but in this case these would be meaningless or 
even misleading. The average of 1, 2, 3, and 4 is 2.5, but it makes no sense to 
say that the average ice cream flavor is 2.5. Whenever we calculate anything 
we need to think of what the numbers represent and whether it makes sense 
to do the calculation. Which leads us to an important warning.

The four levels 
of measurement 
are: nominal, 
ordinal, interval, 
and ratio, 
summarized 
as NOIR.

 DFY: Don’t let calculations and results fool you. Think about what the numbers represent: Does it make 
sense to manipulate them? Don’t average the flavors!

We can’t calculate a mean with nominal data, but are there other oper-
ations we can apply? Yes, we can count, and record the number, or frequency, 
of cases in a category. We might for example count how many of each flavor 
were sold last week— these are the frequencies for each flavor.

With nominal 
data, all we can 
do is record the 
frequency of cases 
in each category.

A measure has nominal or categorical scaling if it comprises category labels, with no 
sense of order or quantity. For example, ice cream flavors.

Ordinal Measurement
An ordinal measure, meaning a measure with ordinal scaling, has order or 
rank, but no sense of distance between ranks. For example, after a race we 
may give medals to the runners who placed 1st, 2nd, and 3rd. These numbers 
represent the order of finishing, but say nothing about the margins between 
them. The first- place winner could have blown away the competition or could 
have won by a fraction of a second. Ordinal measures have some numerical 
meaning (1st is faster than 2nd in the race example) but this is limited solely to 
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comparisons of greater and less than. At graduation, students may have a class 
rank; you might have consulted a list of rankings when choosing a college; 
and you may find yourself obsessively checking your favorite sports team’s 
rank as the playoffs draw near. These are all ordinal measures. Can you think 
of some other examples?

With ordinal data, we can arrange values in order, but in general we 
can’t calculate a mean. If I came 1st in yesterday’s race and 3rd in today’s, it 
doesn’t make sense to say that, on average I came 2nd, because the differences 
between the different finishing positions could be small or large or anything 
at all, whereas calculating a mean assumes that all the differences between 
adjacent values in the ordering (between 1st and 2nd, and between 2nd and 3rd, 
etc.) are equivalent.

With ordinal data, 
we can arrange 
values in order, 
but can’t calculate 
a mean.

A measure has ordinal scaling if it gives information about order, meaning that increasing 
numbers represent increasing (or decreasing) amounts of whatever is being measured. For 
example, a ranking of sports teams is an ordinal measure.

Interval Measurement
Each step forward through NOIR gives a measure that’s more detailed and infor-
mative. Taking the next step, an interval measure has order, and also distance, 
which means we can add and subtract data values. Each unit interval on the 
scale is equivalent— it has the same size. For example, you could measure age 
by asking people to tell you their birth year, and you could put those numbers 
in order, from oldest respondent to youngest. In addition, you could subtract 
to find the distances between birth years: Someone born in 1946 (like me) is 
50 years older than someone born in 1996 (perhaps like you). Calculation of 
differences works because each year is the same amount of time (let’s not quib-
ble about leap years), unlike with ordinal data where the difference between 
1st and 2nd may not be the same as the difference between 2nd and 3rd.

However, for birth year, even though differences have meaning, ratios 
do not. The ratio between my birth year (1946) and 1996 would be 1946/ 
1996 = 0.975. Does this mean I have 97.5% as much age as the person born 
in 1996? Clearly that doesn’t make sense; why not? Because birth year is 
a measure on a relative scale, with all measurements made relative to a 0 
point that was chosen purely because of its importance within Christianity. 
However, 0 is not an absolute zero point for the concept of time— different 
cultures anchor their calendars to different 0 points. Thus, your birth year 
doesn’t represent your age in any absolute sense, but just the amount of time 
that passed between the “first” Christmas and your birth.

Another example with an arbitrary zero is longitude, which by interna-
tional agreement is measured relative to Greenwich, England. We need to 
agree on an arbitrary reference point because there’s no natural or absolute 
zero of longitude. Similarly, many psychological and educational variables 
lack a natural or absolute zero. It makes little practical sense to think of a 
person having zero intelligence, or zero extraversion. Can you think of other 
psychological variables that cannot be measured in absolute terms?

For interval data we have distance, meaning all unit intervals are of the 
same size. We can therefore calculate an average. However, without a true 
zero, it’s not meaningful to calculate the ratio of two scores, or to express one 
as a percentage of another.

With interval 
data, we can 
calculate means, 
but not ratios or 
percentages.
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A measure has interval scaling if we are willing to assume that all unit intervals anywhere 
on the scale are equivalent. For example, birth year and longitude are interval measures.

Table 2.1 The 
Four Levels of 
Measurement, NOIR

Ratio Measurement
A ratio measure has a meaningful zero, as well as distance, so the measure 
represents absolute quantities of what’s being measured. On a ratio scale, 0 
represents a complete absence of whatever is being measured. For example, 
a person’s height is a ratio measure, because zero height has physical mean-
ing. It serves as a natural zero for measuring height, even though no person 
can have zero height. We not only have distance— a centimeter difference 
in height is the same amount of height anywhere on the scale— but we can 
also calculate meaningful ratios. A 204 cm basketballer is twice as tall as her 
daughter who is 102 cm tall.

Ratio measures are the most informative ones, and are common in the 
physical sciences: Distance, mass, and force are all ratio measures, because they 
all have a natural zero. The time taken to complete a task is also a ratio mea-
sure. But, as I mentioned above, in psychology and other human disciplines 
many variables lack a natural zero and so don’t have ratio scaling.

Because it has distance and a true zero, a ratio measure permits us to 
calculate means, ratios, and percentages.

With a ratio 
measure we 
can calculate 
means, ratios, and 
percentages.

A measure has ratio scaling if it has a meaningful zero, as well as distance. For example, 
length, mass, and the time taken to complete a task are all ratio measures.

Considering the Four Levels of Measurement
Table 2.1 summarizes the four levels. Suppose your measure is the number of 
items correct out of 100. What’s the level of measurement?

Hmmm…

If you suggested ratio, well done. It’s probably reasonable to consider 
that an additional one item correct is pretty much equivalent whether it’s an 
increase from 60 to 61, or 73 to 74; in addition, zero items correct is an abso-
lute zero and so it makes sense to say that a score of 80 is twice a score of 40. 
Note that you could translate to letter grades, say A to E, which would be an 
ordinal measure— A is more than B, but it’s probably not reasonable to assume 
that the distance from A to B is equivalent to the distance from B to C. That 
translation, however, from a ratio measure to an ordinal measure, is from a 

Level Feature Allowable operations Examples

Nominal Same/ different Count frequencies Gender, ice cream flavors

Ordinal Order As nominal, plus: arrange 
in order

Ranking of colleges

Interval Distance As ordinal, plus: add and 
subtract, calculate mean

Birth year, longitude

Ratio True zero As interval, plus: calculate 
ratio and percentage

Height, mass, time to 
complete a task
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higher level (later in the NOIR sequence) to a lower level of measurement. It 
throws away information, which we should avoid where we can.

 DFY: Don’t let translating a measure to a lower level fool you. Such a translation loses information, and 
should be avoided if possible. Prefer higher levels, where that’s possible. In other words, prefer ratio to 
interval to ordinal to nominal.

A nominal measure, like gender, is often easy to identify. A nominal mea-
sure often serves as the IV in a study, as in our example in which pen– laptop 
is a nominal or categorical variable. At the other end of the NOIR scale, a ratio 
measure is also usually easy to identify— for example a participant’s response 
time to a stimulus, or the number of items correct out of 100— and often serves 
as a study’s DV. However, in the middle of the NOIR scale, considering ordinal 
and interval scaling, things often become tricky. Should we regard a variable 
as having ordinal or interval scaling? This question deserves its own section.

Ordinal or Interval Scaling?
The central question is: Do we have distance? Is one unit on the scale the same 
at all points on the scale? This is often a question for judgment in context, 
without a clear yes or no answer. Consider a type of self- report question often 
used in surveys. You’ve no doubt answered many such questions yourself.

Please mark X in one square to record your level of agreement with the statement.
“Global warming presents a terrible threat to humanity.”

Very strongly 
disagree

Strongly 
disagree

Disagree Neutral Agree Strongly 
agree

Very strongly 
agree

□ □ □ □ □ □ □
1 2 3 4 5 6 7

Items like that are called Likert (“LICK- ert” or “LIKE- ert”) items. Likert items 
can give useful information, and people can often answer them quickly and 
reasonably easily, so they are widely used. Researchers usually score the 
answers by using the numbers I’ve placed under the response options; these 
numbers are usually not included in the version seen by respondents.

What type of measure are those numbers? Interval scaling would require 
even spacing between response items: The “distance” from “Strongly disagree” 
to “Disagree” would need to be equivalent, in some sense, to the distance from 
“Neutral” to “Agree”, and to every other single step on the scale. That’s not a 
statistical question, but a question about strength of agreement and how we 
can measure it. Do you think those two steps are equivalent, so have the same 
size? (Pause… discuss…)

Actually, the question is not what we think, but whether the respondents 
are using the scale in a way that reflects equal steps between each of the 
answer options. Assuming our respondents used the scale that way seems to 
me a strong and perhaps unrealistic assumption. Thus, some psychologists 
argue that responses on self- report scales should be regarded as ordinal. Many, 
though, are willing to make that assumption about how respondents use the 
scale, and therefore treat measurements from these scales as interval.
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Quiz 2.2

1. If a measure operationalizes a construct, then we can be sure that
a. the measure is reliable and valid.
b. the measure helps us carry out research that involves the construct.
c. we have an experimental study.
d. All of the above.

2. Suppose a measure of happiness gives the result 3.5 for a person in a particular situation, 
then on another day again gives 3.5 for that same person in the same situation. That suggests 
the measure may be _ _ _ _ _ _ _ _ _ _ .

3. If a measure actually measures the construct we wish it to measure, we say it is a(n) _  _ _ _ _ _ _  
measure.

4. A variable with _ _ _ _ _ _ _ _ _ _  scaling is also referred to as having categorical scaling. We can /  
cannot place different values of such a variable in order.

5. If a variable has ratio level of measurement, then
a. we can order different values of the variable.
b. we can calculate a mean, CI, and percentage.
c. it has a true zero.
d. All of the above.

You may be wondering: Who cares? The answer matters because the inter-
val assumption permits calculation of means, CIs, and other useful statistics. 
If we assume only ordinal scaling, we can use other statistics, as we’ll discuss 
in Chapter 3, but these are generally less informative.

Researchers very often do calculate means for response data from Likert 
items. However, before doing so they should think carefully about the strong 
equal- steps assumption they are making— difficult though that is— and bear 
in mind that assumption when they report and interpret the mean.

Earlier I stated a DFY about always considering what numbers represent. 
Here’s a more specific version:

Using the mean (or 
CI) requires interval 
scaling, even though 
the equal- intervals 
assumption may 
seem unrealistic.

 DFY: Don’t let precise numbers fool you into believing they must mean something. When using a mean or 
other statistic that requires interval scaling, consider whether the equal- interval assumption is justified.

I’ll end by saying that whether or not the interval assumption is appropri-
ate is often a matter for careful judgment in context. Every stage of research 
is like that, which makes it all the more interesting.

2.7 Consider the numbers worn by basketball players.

a. What’s the level of measurement? Why?
b. Suggest a way to assign those numbers so they have ordinal scaling.

2.8 A grade point average is calculated by translating A = 4, B = 3, etc. What 
assumption is necessary to justify that calculation? To what extent is it 
reasonable? Explain.

2.9 Consider the Likert item “Self- testing is a practical and effective method 
for students to improve their learning”. Responses are scored from 1 = Very 
strongly disagree, to 7 = Very strongly agree. The mean response for a 
group of 50 students is 5.3.

a. What level of scaling is required to justify calculation of that mean?
b. What assumption does that require? Do you think it’s reasonable? 

Explain.
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6. If you are prepared to make the equal- interval assumption for a variable, you can assume it 
has _ _ _ _ _ _ _ _ _ _  scaling and therefore you can /  cannot calculate a mean. If not, it probably 
has _ _ _ _ _ _ _ _ _ _  scaling and you can /  cannot calculate a mean.

7. Question 7 is always the same: Make some more quiz questions and swap with a friend.

THREE PROBLEMATIC FORMS OF SELECTION

In Chapter 1, the two main Open Science points were “Do we have the full 
story?” and “Seek replication”. I’m now going to expand a little, by consider-
ing three different ways that selection can be problematic for research. First, 
let’s consider replication and selection of the studies that are available to us.

Replication and Selection of Studies
I mentioned in Chapter 1 that rarely, if ever, can a single study provide a 
definitive answer to a research question. The scientist, ever skeptical, needs 
to see one or more replications and then consider them all before reaching 
any conclusion. Note that not all replications are the same: There’s a spectrum 
from a close replication, designed to be as similar as possible to an original study, 
through to a more distant replication that’s designed to be a little different so 
it can extend the research in some interesting way— maybe it compares note- 
taking in two quite different disciplines, such as history and engineering.

The first question to 
ask whenever you 
see a result is: Has it 
been replicated?

A close replication uses a new sample, but otherwise is as similar as possible to the 
original study. It’s also called an exact or literal replication.

A more distant replication is deliberately somewhat different from the original study. It’s 
also called a modified or conceptual replication.

In practice, no replication is perfectly close. Even if conducted by the same 
researchers using the same procedure, some details are inevitably different— 
perhaps the weather, or what the participants had eaten for breakfast. However, 
if all studies give reasonably similar results, meta- analysis of the original study 
and the replications should give more precise estimates. It should also provide 
reassurance that the original result was not a fluke, a mere fluctuation caused 
by sampling variability.

 DFY: Don’t let lack of replication fool you. Usually we need replications before we have confidence in a 
research finding.

In Chapter 1, I also mentioned that if the poll we discussed had been 
selected from a number of similar polls, we might be getting a biased impres-
sion. To have the full story we need to know about all studies on our research 
question. This means that replication by itself is not sufficient— in addition we 
need to know full details of all relevant replications that have been conducted. 
Unfortunately, journals are more likely to publish studies that “work”— that 
find large or striking results. This is an under- appreciated but damaging type 
of selection known as publication bias, and it often means that we don’t have 
the full story because studies that “didn’t work”, that happened to find smaller 

Selection of 
studies is the first 
problematic type of 
selection. If only a 
limited selection of 
relevant studies is 
available, we don’t 
have the full story 
and meta- analysis 
may mislead.
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or less striking results, are not published and thus not available. Therefore, 
meta- analysis of available studies is likely to give a biased result. One of the 
goals of Open Science is to ensure that all relevant studies are available. That’s 
what we need in order to have the full story.

Publication bias is the selection of which studies to make available according to the 
results they obtain. Typically, studies finding large or striking results are more likely to be 
published.

Selection of which studies are available— publication bias— is the first of 
three types of selection that are problematic. Replications must not only be 
carried out, but reported. Otherwise we don’t have the full story, and meta- 
analysis of available studies could easily mislead.

 DFY: Don’t let selection of studies fool you. All relevant studies must be available for us to have the full 
story. If publication bias means that some relevant studies are unavailable, even meta- analysis may give a 
biased result.

Full Reporting of a Study
The second problematic type of selection is straightforward: The report of a 
study must be fully detailed. Just as we can’t evaluate a single study without 
the full context, we also can’t evaluate a single variable or condition of a study 
if we lack the full context. For example, suppose a researcher examined how 
therapy influences depression. Because depression can be tricky to measure, 
the researcher used five different ways of measuring it— two self- report scales, 
one clinical diagnosis, one behavioral test, and one report from a close friend. 
Even if the therapy has absolutely no effect, sampling variability makes it 
unlikely that all five measures will obtain the exact same result. The danger is 
that the researcher may select by highlighting the measure that shows the best 
result and may dismiss or even fail to report the other four. As always, we need 
all relevant evidence to reach a justifiable conclusion— we need the full story.

Furthermore, suppose you want to conduct a close replication. You need 
to have full details about the original study, including participants, stimuli, 
and the procedure. That’s another excellent reason why fully detailed report-
ing is so important.

Selection of what 
to report about a 
study is the second 
problematic type 
of selection. Fully 
detailed reporting 
is needed for us to 
have the full story, 
and also for close 
replication to be 
feasible.

 DFY: Don’t let incomplete reporting of a study fool you. Fully detailed reporting is needed, to avoid being 
misled.

Planned and Exploratory Data Analysis
The third type of problematic selection is a bit more tricky to grasp. The basic 
idea is that you should state in advance which aspects of your data you will 
focus on. If you scan all possible differences or effects before selecting what to 
focus on, you may just be telling us about some random fluctuation.

I’ll use a fictitious example to explain. Suppose you evaluate what you 
hope is a wonderful new way to support learning in high school. You have 
10 improvement scores obtained in a wide range of areas, from sports to 
mathematics and science, to history, to music and art. Figure 2.2 shows what 
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I’m assuming are your results. You eagerly examine the 10 sets of scores and 
note considerable variability, but that history, say, shows a dramatic increase 
with the new approach. You triumphantly report that the new approach leads 
to greatly improved learning in history, and perhaps other areas. Do you see 
any problem here?

Discuss, ponder…
The trouble is that results always vary, so one of your 10 improvement 

score means is bound to lie somewhat higher than the others, even if only 
because of sampling variability. If you examine all 10 and focus on the highest, 
perhaps you are simply telling us which one happened to be highest; perhaps 
you are only telling us about sampling variability. You selected which result 
to focus on after seeing all the results.

If, instead, you had good reason to predict that your new approach is likely 
to be especially effective for history, and you tell us that in advance, then I’ll 
be more impressed by Figure 2.2. You made a prediction in advance and this 
was confirmed by the data. That makes any researcher happy. (But maybe 
I’m skeptical and need convincing that you really did make the prediction in 
advance? We’ll consider that problem shortly.)

The vital distinction is between planned and exploratory data analysis. Each is 
valuable, but they are very different and must be distinguished clearly. Planned 
analysis requires that a data analysis plan be stated in advance. This is a document 
that states your predictions, describes what measures you will use, and gives full 
details of how you will analyze the data to evaluate your predictions. In other 
words, planned analyses are prespecified in such an analysis plan. Then you run 
the study, follow the stated plan to analyze the data, and report the results. Such 
planned analysis provides the most convincing conclusions.
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Figure 2.2. Means and 95% CIs for the improvement in scores in 10 different subject areas, from 
a fictitious evaluation of a new way to support learning in high school.

A data analysis plan 
states, in advance of 
carrying out a study, 
the researcher’s 
predictions and 
full details of the 
intended data 
analysis.

Planned analysis is specified in advance and provides the best basis for conclusions.

If you don’t state a data analysis plan in advance, you are carrying out 
exploratory analysis— also called post hoc analysis— which runs the risk of simply 
telling us which effect happened to be largest; it may only be telling us about 
sampling variability. However, after carrying out the planned analysis it can 
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be highly illuminating to explore your data further— you may even discover 
some unexpected and important finding. Such a finding can only be a ten-
tative suggestion, for possible further investigation, but just might lead to an 
important advance.

Exploratory or post hoc analysis (“post hoc” is Latin for “after the fact”) is not specified 
in advance. It risks merely telling us about sampling variability, but may provide valuable 
hints for further investigation.

If you don’t use planned analysis, we say that you are cherry picking the 
result you prefer, or are capitalizing on chance by focusing on the result that 
happened to be largest. We could also say you are chasing noise, meaning you 
are just responding to random variability— noise— in the data.

Have you ever gazed up at the sky and daydreamed about shapes in the 
clouds? Clouds are more or less random, but it’s often easy to see monsters or 
faces or what you will in the clouds. I call this human tendency seeing a face 
in the clouds. It’s another way to think of cherry picking, of seeing patterns 
in randomness. We’d probably love to find some real effect in our data, but 
perhaps all we’re seeing is a face in the cloud of randomness.

Cherry picking, or capitalizing on chance, or seeing a face in the clouds, is the choice 
to focus on one among a number of results because it is the largest, or most interesting, 
when it may be merely a random fluctuation. It’s triumphantly reporting the history 
result in Figure 2.2, in the absence of a prior prediction.

Any report of research must provide full details of all data analyses, and make 
very clear which of the analyses were planned and which only exploratory. 
Only the planned analyses can justify firm conclusions.

A result predicted 
in advance is much 
more convincing 
than a result 
selected afterwards, 
which may be 
cherry picked.

 DFY: Don’t be fooled by seeing a face in the clouds, by results that may be cherry picked. Distinguish 
carefully between planned and exploratory analysis.

To summarize, the three problematic selection issues are:

1. What selection of studies are published? We need to know 
about all relevant studies, especially for meta- analysis.

2. What’s been selected to report about a study? Reporting 
must be fully detailed, or we may be misled, and repli-
cation may be difficult or impossible.

3. Which results have the researchers selected to focus on? 
If that selection occurs after seeing the data, we may 
have cherry picking. We may only be seeing a face in 
the clouds.

OPEN SCIENCE: DO WE HAVE THE 
FULL STORY?

All three selection problems, and especially the third— which requires a 
careful distinction between planned and exploratory analysis— have long 
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been recognized by researchers. However, the replicability crisis I mentioned 
in Chapter 1 and the rise of Open Science have emphasized the importance 
of all three. They are all part of the fundamental Open Science question: Do 
we have the full story?

Open Science is a set of evolving strategies designed to make science more, 
well, open. Overcoming selection problems is a major aim. I’ll briefly mention 
here two Open Science strategies; there will be more on Open Science in later 

chapters, especially Chapters 10 and 16.

Preregistration
How can we be sure that a research report is complete? 
How can I be sure that you really did nominate history in 
advance? The best strategy is preregistration of a research 
plan in advance, meaning that the plan was lodged at some 
secure website with a date stamp. The plan should describe 
in full detail all aspects of the planned study, and include 
a full data analysis plan.

Preregistration, also called registration in advance, is the lodging in advance, at a 
secure website and with a date stamp, of a fully detailed research plan, including a data 
analysis plan.

The researcher conducts the study and analyzes the data in accordance 
with the plan, then, in the research report, provides a link to the preregistered 
plan. We can check what’s reported against the plan, and be confident that 
we are getting the full story and that the reported analysis had indeed been 
planned in advance.

Preregistration is new for most researchers, but its use is increasing rapidly. 
We’ll meet studies that were preregistered, and you’ll be able to read preregis-
tered plans for studies that are currently being conducted, which adds to the 
excitement of research— you can read about studies that will lead to some of 
the discoveries shortly to be reported.

 DFY: Don’t let lack of preregistration fool you. Without preregistration, aspects of the study or its analysis 
may be missing from what’s reported.

Open Materials and Data
Researchers should post online full details of their study, including the stimuli, 
measures, and any other materials they used. This allows anyone to consider 
the full context as they evaluate the results. It’s also essential for anyone 
wishing to replicate the study.

Wherever possible, researchers should also post their full data online. This 
is important for future meta- analyses, and allows other researchers to check 
the data analysis, or run other analyses they think could be insightful. One 
way to do this is through the Open Science Framework (OSF, osf.io), a free 
website that makes it easy for researchers to share their data and materials. 
There’s more on OSF in later chapters. As you complete the exercises in this 
book you’ll notice that many of them use data that was made available from 
the OSF— so Open Science is also helping with statistics education!
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2.10 You read about a large study that reports evidence that boys behave more 
aggressively than girls. What should you require before accepting the 
conclusion of a gender difference in aggressive behavior? Does the study 
provide evidence that gender causes the difference? Explain.

2.11 Another study mentioned it had measured many aspects of girls’ and boys’ 
behavior. It reported data and analyses only for two measures on which 
there were clear gender differences.
a. Discuss the approach to reporting data and analysis.
b. If many studies reported data and analyses only for measures that 

showed clear gender differences, is the published research literature 
likely to give an overestimate or underestimate of any difference 
between girls and boys?

c. What’s the solution to the issues raised in parts (a) and (b)?
2.12 A research team reports a study of a number of therapies for mild depres-

sion. Exploratory analysis suggests that visual imagery of restful scenes in 
nature may be helpful. The researchers decide to use independent groups 
to investigate further.
a. Outline a good study the researchers might conduct.
b. From an Open Science standpoint, what should the researchers do 

before starting data collection? Explain.
2.13 Preregistration requires the researcher to foresee what data analysis will be 

most appropriate. Is that always possible? What’s a possible disadvantage 
of preregistration?

WHERE DO RESEARCH QUESTIONS COME FROM?

At the start of this chapter I mentioned the excitement of research. Let’s 
revisit this excitement by asking where research questions come from. Often 
they come from previous research, plus a good idea about how to take the 
research further. Perhaps most excitingly, a research project can arise from 
sharp observation of everyday life experience. The pen– laptop research is a 
lovely example. Pam Mueller, who was at the time a graduate student, wrote:

We began this line of research because we wanted to scientifically test some intuitions 
we’d experienced in real life. I was a teaching assistant for Prof. Oppenheimer’s 
Psychology 101 course, and usually brought my laptop to class. But one day I found 
I had forgotten it. I used a notebook that day, and felt like I’d gotten so much more 
out of the lecture. I told him that, and a few days later, he had a complementary 
experience in a faculty meeting, where he’d been typing lots of notes, but found that 
he had no idea what the person had actually been saying.

Curious researchers are always thinking about what’s going on around 
them. Also, it’s a great habit when reading about a study to think of what the 
next study might be. What question would be most interesting to ask next? 
Can you think of an alternative explanation for the result, and a study that 
could test your idea? Sure, there are lots of ways of fooling ourselves, but also 
lots of scope for good ideas. Never stop thinking, discussing, and wondering.

While you are wondering, start formulating your take- home messages. Bring to mind 
the terms and concepts we’ve encountered and the long list of DFYs. Think about 
measurement and different types of measures, the three types of selection issues, and 
faces in the clouds. Maybe post your first list of take- home messages on social media 
and ask for comments.

When reading a 
research report, 
think what the next 
study might be.
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   Quiz 2.3  
  1.     A replication that’s as similar as possible to the original study is called a(n) _ _ _ _ _ _ _ _   

replication. One that’s somewhat different is called a(n) _ _ _ _ _ _ _ _ _ _  or _ _ _ _ _ _ _ _ _ _  
replication.  

  2.     If only selected studies are published, then  
  a.     meta- analysis is likely to give a biased result.  
  b.     meta- analysis is needed to fill in what’s missing.  
  c.     fully detailed reporting of the published studies can compensate for what’s missing.  
  d.     research is more efficient, because only important results are published.    

  3.     The fundamental Open Science question is “Do we _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ?”  
  4.     Data analysis that is specified in advance is called _ _ _ _ _ _ _ _ _ _ _  analysis; otherwise we are 

conducting _ _ _ _ _ _ _ _ _ _ _  analysis. We can have greater confidence in results from _ _ _ _ _ _ _ _ _ _   
analysis.  

  5.     Looking at the data, then reporting the result that is largest and most interesting, can be 
referred to as  
  a.     cherry picking.  
  b.     capitalizing on chance.  
  c.     seeing a face in the clouds.  
  d.     All of the above.    

  6.     If you state in advance a detailed research plan for a study, you are _ _ _ _ _ _ _ _ _ _  the study. The 
plan  should /  need not  include a data analysis plan.  

  7.     …just a prompt to do what you always do at the end of a quiz.       

  2.14     Some professors provide detailed notes in advance and encourage students 
not to take their own notes during lectures, but instead to listen, question, 
and discuss. Suggest a study to investigate effects of this strategy.  

  2.15     Suggest a further study to follow up the original pen– laptop study.  
  2.16     Revise your list of take- home messages if you wish.   

  Have you discovered the quizzes, videos, and other stuff at the book website? 
Have a squiz at:  www.routledge.com/ cw/ cumming  

   Reporting Your Work 

 The fundamental issues covered in this chapter will come up throughout your research 
report. So here are a few guidelines.  

 ■   Throughout the manuscript, be sure to match the language you use to the research 
design. For experimental research use causal language, for non- experimental research 
use relational language. This is true not only for describing your own work, but also for 
summarizing the work of others.  

 •   For experimental research, use phrases to indicate causation. For example, 
you can write that the independent variable affects the dependent variable, 
that it determines the dependent variable, that it produces an effect, or that 
it causes a change in the dependent variable. When writing about causation, 
keep in mind the tricky spelling of affect/ effect: affect is usually a verb (“the 
variable affected the scores”), whereas effect is usually a noun (“the variable 
produced a large effect”).  

 •   For non- experimental research we cannot draw causal conclusions, so instead 
we use phrases indicating a relationship  between  the variables being studied. 
You might for example write that one variable is  associated  with the other, 
that the variables are correlated, that as one changes the other tends to 

http://www.routledge.com/cw/cumming
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change, or that participants with a high score on one variable also tended to 
have high scores on another. Be sure to avoid any language that suggests a 
causal relationship.    

 ■   Your research report should be a complete account of your research process, without 
selection. It can actually help to state this at the end of the introduction, so that your 
reader is clear. For example you might state “This report describes all the studies we 
have so far conducted on this topic. For each study, all measures and conditions are 
described, and any participants excluded are noted.”    

 ■     If you preregistered your research design, state this at the beginning of the Method 
section. Note and explain any deviations you made from the preregistered plan. Also 
note if you have posted the materials or data online and provide a link.  

 ■   As you describe each measure in the method section, note any information you have 
about the measure’s reliability and validity. For established measures you may be able 
to cite a reference with this information.  

 ■   In the results section, make it very clear which analyses were planned and which were 
exploratory. If you did not make a clear plan in advance of viewing the data, then state 
that all analyses are exploratory.   

  Seek to make your research report publicly available, either in a peer- reviewed 
journal or in an online repository. For example, the OSF ( osf.io ) provides a free platform 
for posting materials, data, and research reports (more information about this is in 
 Chapters 10  and  16 ).    

  Take- Home Messages  
 ■   “The first principle is that you must not fool yourself and you are the easiest person 
to fool.” There are many ways to be fooled. Each  Don’t fool yourself  (DFY) statement 
describes one.  

 ■   Fundamental concepts include  mean ,  sample, sample mean  ( M ),  sample statistic, 
population, population mean  (μ),  population parameter ,  descriptive statistic ,  inferential 
statistic , and  statistical inference .  

 ■   The  independent variable  (IV) is the variable that the researcher chooses or manipulates, 
and the  dependent variable  (DV) is the  measure  that provides the data.  

 ■   For a  random sample , every  population  member must have the same probability of being 
chosen, and all sample members must be chosen independently.  

 ■    Experimental research  requires random sampling, and groups or  conditions  that differ 
in only one way, which is usually best achieved by  random assignment  of participants. 
A conclusion of causality may be justified.  Non- experimental research  lacks random 
assignment and may have  confounds . It cannot justify causal conclusions.  

 ■    Reliability  of a measure refers to its repeatability.  Validity  refers to the extent to which it 
measures what we want it to measure.  

 ■   The four levels of measurement are, from least to most informative:  nominal ,  ordinal , 
 interval , and  ratio  (remember NOIR). Deciding the level of measurement requires judgment.  

 ■   A  close replication  is very similar to the original. A more  distant replication  can address 
additional research questions.  

 ■   Selective publication of studies can mislead, and bias meta- analysis. Selective reporting of 
only some aspects of a study can mislead, and make replication difficult.  

 ■    Planned analysis  provides the best support for conclusions.  Exploratory analysis  risks cherry 
picking— seeing faces in the clouds— but may provide hints for further investigation.  

 ■    Open Science  requires  preregistration  where possible, and open materials and data, where 
possible. Do we have the full story?  

 ■   Enjoy the fascination of research. Always be skeptical and thinking of alternative 
explanations. Try to think of what the best next study would be.    

 Let your reader 
know your report 
is the full story, 
and describe in full 
the Open Science 
practices you have 
adopted. 
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End- of- Chapter Exercises

1) Suppose you are tasked with finding out about the study habits of students at your school. 
Which of these approaches would provide a random sample of your intended population? 
Explain your decisions.

a. You obtain a list of all student emails. For each email you roll a die with 6 sides. Any 
time you get a 1, that student’s email is added to the list of participants to contact.

b. You wait at your school’s café. Every time a participant walks by you roll a die with 6 
sides. Any time you get a 1, you invite that student to be in your study. Otherwise you 
don’t approach the student.

c. You invite all of your friends to be part of the study, and you ask each of them to ran-
domly give you the email of another of their friends for you to contact.

d. You obtain a list of all the psychology majors and randomly select half of these students 
to contact to be part of your study.

e. You obtain from the registrar a list of all currently enrolled students. You use a table of 
random numbers to assign a random number from 1 to 10 to each student, and select 
all those assigned a 2 to be contacted for the study.

2) For each of the following, give the scale of measurement:

a. Participants are asked about their political orientation and instructed to mark a 1 for 
conservative, a 2 for liberal, and a 3 for unsure.

b. Participants are asked to mark their political orientation by rating themselves on a 
scale from 1 (very conservative) to 10 (very liberal).

c. Participants are asked if they support or oppose 10 different political initiatives. The 
number of opinions deemed consistent with liberal policies is tallied, giving a score 
from 0 to 10 indicating the degree to which the participant agrees with liberal policies.

d. Romantic interest in a potential partner is investigated by asking the participant to 
rate her or his interest on a scale of 1 (not if we were the last two people on Earth) to 7 (you 
haunt my dreams).

e. Romantic interest in a potential partner by marking a photo of the partner as “hot” 
or “not”.

3) How much do babies learn from electronic media? To investigate, 100 families with two- 
year- old children were surveyed. Parents indicated how many educational DVDs they 
owned. They also indicated how many different words their child knew from a set of early 
vocabulary words. It was found that children whose families own more educational DVDs 
are also rated as knowing more words.

a. Is this an experimental study or a non- experimental study? How can you tell?
b. From these results, it could be that owning more educational DVDs increases word 

knowledge. What are some other explanations for the finding?
c. For number of DVDs owned, what is the measurement scale?
d. The researchers asked the parents to report their child’s word knowledge on two dif-

ferent days. They found that responses on day 1 were about the same as those on day 
2. What are the researchers checking here?

e. Who might be the intended population for this study? Does it seem likely that random 
sampling was used?

f. For further thought: Would it be reasonable to assume this finding would apply to 
families with three- year- old children? To families in other countries? To families that 
speak other languages?

4) To what extent does thinking of money make you less egalitarian? Caruso, Vohs, Baxter, and 
Waytz (2013) reported five studies, in each of which participants were randomly assigned 
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to be subtly exposed to either images of money or control images. In every study, those 
exposed to money became less egalitarian than those not exposed. (Search for “meaning 
of egalitarian” if you wish.)

a. Are these experimental or non- experimental studies?
b. Although all five studies reported by Caruso et al. (2013) showed consistent effects, 

it turns out that four similar studies were conducted by those researchers but not 
reported, and that in each of those four there was little to no change in egalitarian 
attitudes (Rohrer, Pashler, and Harris, 2015). What issues does this raise in terms of 
selection? What is a meta- analysis of just the five published studies likely to find? What 
about a meta- analysis of all nine studies?

c. In one of the studies reported by Caruso et al. (2013), participants were asked eight 
questions about their support for egalitarian tax policies. When responses were aver-
aged over all eight questions, those exposed to money had scores that were similar 
to those not exposed to money. However, when the data were examined question  by  
question it was found that three of the questions did show somewhat less egalitarian-
ism for the participants exposed to money. Does the item- by- item finding seem like a 
planned or an exploratory analysis? How would this finding need to be reported?

Answers to Quizzes

Quiz 2.1
1) sample, M, population, μ; 2) c; 3) independent, IV, dependent, DV; 4) a measure of relaxation, the activity required 

of participants, seeing the movie/ reading the book/ listening to the songs; 5) participants, independent, can; 6) an 
experimental, only one; 7) It’s worth the effort!

Quiz 2.2
1) b; 2) reliable; 3) valid; 4) nominal, cannot; 5) d; 6) interval, can, ordinal, cannot; 7) Treat yourself to an ice cream of 

your favorite flavor when you’re fully done.

Quiz 2.3
1) close, more distant, conceptual (or modified); 2) a; 3) have the full story; 4) planned, exploratory, planned;  

5) d; 6) preregistering, should; 7) It can be useful to ask about tricky things in earlier chapters.

Answers to In-Chapter Exercises

2.1 Repeated testing over an extended period of time is effective for learning. Best is testing that requires you to 
express ideas in your own words and explain them to others. Doing all this requires effort and persistence, but 
does pay off.

2.2 Experiment, to find what works for you and your friends. Mix it up, to keep things interesting. Make sure to 
revisit early things much later.

2.3 a. Non-experimental. b. The IV is age, with four levels (3, 4, 5, and 6 years). c. There are two DVs: measures of 
word and number knowledge.

2.4 a. To be a random sample it must be chosen randomly from all students, perhaps by random selection 
from a complete list of all students currently enrolled in the district. The groups differ by age, so 
children cannot be randomly assigned to the different groups. b. Conclusions could be applied to that 
school district, and probably to other urban school districts that are similar, for example having similar 
demographics, because the sample is likely to be reasonably representative of the population of children 
in such districts. c. It would not be reasonable to apply the conclusions to children in other districts that 
differ in important ways, for example by being rural or having quite different demographics, because 
the sample is not likely to be representative of such populations. d. For any population, no, because we 
don’t have random assignment to groups. Such differences might have many causes. e. We don’t have an 
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experimental study because random assignment to groups is not possible, and groups may differ in more 
than one way.

2.5 a. Assign the participants randomly to the two groups, N = 20 in each, so we have an experiment and can 
most likely draw a causal conclusion for any difference we find. b. The experimental group would be trained to 
use visual imagery of restful scenes. The other group, the control group, may be trained to use visual imagery 
of some neutral scenes, perhaps houses or shops. The IV is type of scene: restful nature, or neutral. The DV is 
some measure of depression. c. To draw the conclusion that the different type of imagery causes any change 
in depression in the population of all mildly depressed people, we need to assume—in addition to random 
assignment to groups—that our 40 participants are a random sample from that population. That’s probably 
unrealistic, but we may judge the group sufficiently representative of the population that we’re willing to apply 
the conclusion to the population.

2.6 a. Number of words is a reliable measure of length, because if you count again you should get the same 
number. b. It’s hardly a valid measure of quality. c. A better measure would be a professor’s grade for the paper. 
d. To assess the reliability of a set of grades, ask the professor to grade the papers again, perhaps after a delay 
so she is less likely to remember particular papers, then examine how closely the two sets of grades match. 
e. For validity, we might match the professor’s original grades against the grades assigned for the same set of 
papers by a more experienced professor.

2.7 a. Nominal, assuming that order or size of number does not provide meaningful information. b. If numbers 
were assigned so their order matched, for example, players’ salaries, or points scored last year, or age, then the 
numbers would have ordinal scaling, and perhaps even interval or ratio scaling.

2.8 The distance assumption, meaning that the difference in achievement between A and B is assumed 
the same as that for each other single letter difference. I think the assumption is arguable. People 
are likely to have different views as to whether it’s justified. Averages are very commonly calculated, 
however, so the assumption is being made, even if most people don’t realize that it’s necessary to 
justify calculating an average.

2.9 a. Interval scaling, b. This requires the distance assumption—that every unit interval on the scale represents 
the same difference in amount of agreement. Perhaps that assumption is a bit unrealistic, but it’s very 
commonly made and I’m often prepared to make it.

2.10 Was the analysis planned and do we have full information about all analyses conducted? Could the result 
have been cherry-picked? We would also like to see replication. Groups of girls and boys differ in many ways. 
Random assignment is not possible, so there may be many causes contributing.

2.11 a. Probably the two were cherry-picked because they were the measures that showed differences; they 
may be faces in the clouds. b. Any particular effect varies from study to study because of sampling 
variability. If it’s more likely to be reported when it happens to be large, and not when small, then a meta-
analysis of the reported values is likely to overestimate the true effect size. Chapter 9 has more on that. 
c. An Open Science approach provides the best solution, especially by requiring preregistration where 
possible and fully detailed reporting.

2.12 a. As for Exercise 2.5, compare a group trained to use visual imagery of nature scenes with a group using 
imagery of neutral scenes. Allocate participants randomly to the two groups, so a causal conclusion may be 
justified. b. Before starting data collection, preregister the plan for the study, including analysis of the change 
in depression scores for the two groups, so this primary comparison is planned.

2.13 It’s a joy and a frustration that research is unpredictable. Sometimes unforeseen results can open up 
exciting new research directions. Sometimes an analysis of data that was not foreseen can be highly 
revealing. The best strategy is to preregister a detailed plan and follow that carefully, but then to explore 
the data further if that looks interesting. The results of any such exploration might be faces in the clouds, 
but nonetheless may be valuable hints worth investigating in future studies. Preregistration takes effort 
and thought, but is important.

2.14 Use independent groups to compare traditional note taking by pen with the pre-prepared notes condition, 
with amount remembered as DV.

2.15 A follow-up study might compare note taking by pen with notes dictated (say, to a phone) by the student 
during the lecture—this study could use a video lecture seen by students individually, wearing headphones, so 
their dictation would not disturb surrounding students.



Usually, the most exciting moment in research is when, for the first time, you 
have your data and are ready to use them to start answering your research 
questions. We’ll discuss two approaches: data pictures and descriptive statistics. 
Both can be wonderfully revealing about your data. As usual, there are choices 
to make and careful thinking is essential.

This chapter discusses:

 ■ Pictures of data that reveal the location, spread, and shape of a distribution
 ■ Dot plots, frequency histograms, and the beautiful bell- shaped normal 

distribution
 ■ Descriptive statistics for location: mean, median, and mode
 ■ Descriptive statistics for spread: variance and standard deviation
 ■ Descriptive statistics for individual data points: z scores and percentiles
 ■ Good and bad pictures, and ways that pictures can mislead

This chapter also introduces ESCI (“ESS- key”, Exploratory Software for 
Confidence Intervals), which runs under Microsoft Excel. Exploring ESCI pictures 
will, I hope, help make statistical ideas memorable and intuitive.

PICTURES OF A DATA SET

Most often, our data will be a sample from a population, in which case we’ll 
want to make inferences about the population. We’ll discuss statistical inference 
in Chapters 4 and 5, but the first step is to consider the data set itself, starting 
with one or more pictures.

My main example data set in this chapter is from the Laptop group in Study 
1 of Mueller and Oppenheimer (2014). The researchers found that students 
on average remembered more after taking notes with pen than with laptop. 
They investigated further, and found that laptop notes tended to include more 
verbatim transcription from the lecture. By contrast, when using pens, students 
tended to express the material in their own words, rather than transcribing. 
The researchers suspected that such re- expression gives better learning than 
mere transcription. I’ll discuss these comparisons of Pen and Laptop further 
in Chapter 7, but for now I’ll simply use the Laptop transcription scores as an 
example data set. Figure 3.1 is a stacked dot plot of that data set. The colored dots 
represent the individual data points, which are stacked up where necessary so 
we can see every dot. The dependent variable is transcription score in percent 
—the percentage of a student’s notes that was a verbatim transcription from the 
lecture. I’ll use X as a general name for that dependent variable. The stacked 
dot plot is one way we can picture how the data points are distributed along 
the X axis; in other words it’s a picture of the distribution of the data.

3
Picturing and  
Describing Data
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The distribution of a set of data is the way the data points are distributed along the X axis.

When seeing such a distribution of data we should consider four major aspects:

1. The Measure and the Scale. That’s X, which here is transcription score. 
Note the values on the X axis, and the full possible range of the scale, 
which is from 0 (no transcription) to 100 (completely copied).

2. Location. Where, overall, do the data lie? Eyeballing of Figure 3.1 suggests 
that the Laptop data points are centered around, roughly, 15%.

3. Spread. How dispersed or spread are the data points? Over what range? 
What’s their  variation or dispersion? The Laptop data range from, roughly, 
0 to 35%, meaning that some students included very little transcription 
in their laptop notes, whereas others included up to around one- third of 
verbatim transcription from the lecture.

4. Shape. What’s the shape of the whole distribution of data points? Is it 
symmetric or asymmetric? The distribution of Laptop data is a little heaped 
around its center and looks approximately symmetric.

With those four aspects in mind, what might the picture imply? What 
might it mean for note- taking that transcription scores were centered around, 
roughly, 15%—rather than around, say, 5% or 35%? Thinking of spread, did 
the students who gave particularly high transcription scores use a deliberate 
copying strategy, or were they just good typists? Did they generate longer notes 
than other students? Did the students with low scores learn better from the 
lecture? A data set can give answers, but also often prompts further interesting 
questions. That’s one of the fascinations of research.

Figure 3.2 shows the stacked dot plots of six fictitious data sets. For each, 
write a few words about the location, spread, and shape.

0 5 10 15 20 25 30 35 40

X (Transcription %)

Figure 3.1. A stacked dot plot of the verbatim transcription data, in percent, for the Laptop group, with 
N = 31, from Study 1 of Mueller and Oppenheimer (2014).

When seeing a data 
set, think of the 
measure (X), the 
location of the data, 
their spread, and the 
overall shape of the 
distribution.

Time to pause, consult, write…

The data sets in A and B differ in location and also in spread. The data sets 
in A, B, and C are all approximately symmetric. Distributions like those three 
with a single overall peak are called unimodal. In contrast, the distribution in 
D has two main peaks and is bimodal. Asymmetric distributions, such as those 
in E and F, are said to be skewed. The distribution in E is positively skewed, or 
skewed to the right; that in F is negatively skewed, or skewed to the left. Remember 
that, for skew, “positive” or “to the right” refers to the tail, not the peak. All 
those descriptions refer to the general shape of the distributions, ignoring small 
local fluctuations in the heights of columns of dots. Imagine defocusing your 
eyes to get an overall impression of the distribution shape.

A bimodal distribution has two main peaks, as in Panel D of Figure 3.2.
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A unimodal distribution has a single peak, as in all other panels of Figure 3.2.

Skew is asymmetry as in Panels E and F of Figure 3.2. Panel E illustrates right or positive skew; 
Panel F illustrates left or negative skew.

You should go beyond a simple description of shape 
to consider what the shape  means, for your X in 
context. A bimodal distribution might suggest two 
subgroups of scores—perhaps, for example, the data 
set combines test scores from younger and older 
children. Positive skew, as in Panel E, is common 
when X is the time to complete a task: There’s a minimum (around X = 35 in 
Panel E), which is a kind of lower boundary, and most people take only a little 
more time than that. However, some times are rather longer, perhaps because 
of a lapse of attention or an interruption. The negative skew in Panel F may 
also reflect a boundary. The data set might, for example, be scores on a test with 
66 items, so a score above 66 is not possible. It’s an easy test, so most people 
scored only a little below 66, but a few did poorly.

Dot Plots and Frequency Histograms
Almost always there’s more than one way to picture a data set. Figure 3.3 
presents four pictures of the Laptop data. Panel B is the same as Figure 3.1.

Panel A is a dot plot without stacking, so dots often overlap and can coin-
cide if the same value occurs more than once. Panel B is a stacked dot plot, as 
in Figure 3.1. Points have been moved by tiny amounts left or right so they can 
be stacked in neat columns, so points are typically a tiny distance from their 
correct X value. However, this isn’t a problem because we should use pictures 
to gain understanding of the whole data set rather than to read off exact values. 
A stacked dot plot is useful because it gives information about individual data 
points as well as the whole set.

F

20 30 40 50 60 70 80
X

Negative 
skew

D

20 30 40 50 60 70 80

Bimodal distribution

B

20 30 40 50 60 70 80

A

20 30 40 50 60 70 80

C

20 30 40 50 60 70 80

E

20 30 40 50 60 70 80
X

Positive 
skew

Figure 3.2. Stacked dot plots of six fictitious data sets to illustrate different distribution shapes. The distributions in Panels A, 
B, and C are all unimodal and approximately symmetric. The spread is relatively small in A, larger in B, and larger again in C.

Interpret the 
location, spread, 
and overall shape of 
the distribution, for 
the particular X in 
context.
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Panel C shows a frequency histogram of the same data set, using 12 bins, each 
of width 3. The relevant portion of the X axis is divided into 12 equal- width 
intervals, or bins, then the number, or frequency, of data points in each bin is 
represented by the height of the column. The bin boundaries are marked by 
the small numbers, so the first bin is from 0 to 3, the next from 3 to 6, and so 
on. The height of the first column is 1, because only one data point falls in that 
bin as the stacked dot plot shows. How many data points lie between 6 and 9? 
Can you find the answer in two places?

0 4 8 12 16 20 24 28 32 36
0
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8
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0 5 10 15 20 25 30 35 40
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X (Transcription %)
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0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

Figure 3.3. Four different pictures of the Laptop data in Figure 3.1. Panel A shows a simple dot plot, and 
Panel B a stacked dot plot, as in Figure 3.1. Panel C shows a frequency histogram with 12 bins, and D a 
similar histogram with 9 bins. The small numbers on the horizontal axis mark bin boundaries.
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Both Panels B and C tell us that 4 data points lie between 6 and 9. Bin 
boundaries should be convenient numbers (e.g., 6, rather than 9.123). Panel 
D is a frequency histogram with 9 bins of width 4, with bin boundaries of 0, 4, 
8, … The different overall shapes of C and D reflect the different numbers of 
bins, and how data points happen to fall into the bins.

How many bins should we use? Good question, and the answer is that—as 
so often—there’s no clearly right answer and judgment is needed. Too few bins 
and details of the shape may be lost; too many and the overall shape may not 
be so clear. The histograms in Panels C and D are probably both reasonable 
choices, although Panel C may have too many bins. Another reasonable choice 
would be 7 bins with the natural boundaries of 0, 5, 10, …

The general message of Figure 3.3 is that there are many ways to picture 
a data set, and different pictures can give different impressions. Therefore, 
when examining any figure we should be thinking of how else the data could 
be represented, to avoid fooling ourselves.

A frequency 
histogram shows 
the overall shape 
of a data set, but 
its appearance 
depends on the 
bin boundaries and 
number of bins.

DFY: Don’t let any one particular picture fool you. A different picture may give a different impression. Consider 
other ways the data set might be pictured.

Thinking back, what did we already have in mind when considering any 
data set?

A stacked dot plot 
gives information 
about every point 
in a data set and 
also shows the 
overall shape.

Recall our discussions of Open Science.

You could ask whether we have the full story, because if we don’t, and 
are seeing only selected data, we might be getting a misleading impression. 
Second, do we sufficiently understand how the data were collected and what 
they are measuring? Those are Open Science questions; now we have one 
more: How else might this data set be pictured, and how might that change 
our understanding?

Would you prefer to see the stacked dot plot or one of the frequency histograms?

Frequency histograms are used more often, and can do a good job of rep-
resenting very large data sets in a simple way. Remember, however, that the 
choice of number of bins can change histogram shape, especially for small data 
sets. I generally prefer a stacked dot plot because it gives information about 
every data point as well as overall shape.

USING THE ESCI SOFTWARE

To enable us to play around with pictures like those in Figure 3.3 I’ll introduce 
the ESCI (“ESS- key”) software, which runs under Microsoft Excel. Many of the 
exercises in this book involve using ESCI to explore statistical concepts—these 
are marked with an ESCI logo. These exercises are integral, so you shouldn’t 
skip over them. I aim, however, to include enough figures so you can follow 
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along even if you’re not in front of a computer. As usual, challenge yourself 
to think, question, and reflect, and focus as much as you can on the statistical 
ideas, not the details of the software.

  3.1 Load and run ESCI intro  chapters 3– 8, which is a free download from the 
book website at: www.routledge.com/cw/cumming; the Appendix  can 
assist.

  3.2 Click the bottom tab to go to the Describe page. Compare with Figure 3.4.
If you don’t see the data shown in that figure, scroll right to see the yellow areas, 
then click the button at red 11 to load the Laptop data.

  3.3 Find red 1 (the bold red 1 near the top left), and read the popout comment 
(hover the mouse near the little red triangle). If you wish, type to change 
any of the three labels. Start by clicking near the left end of the white cell 
and end with the Enter key. Note that the Units label appears on the X 
axis and in a few other places.
The bold red numbers (1, 2, …) give a suggested sequence for looking around 
the page, but feel free to explore as you wish.

If you ever seem to be in an ESCI mess, look for some helpful popout 
comments. The Appendix may help. Or experiment with the checkboxes, spinner, 
and other on- screen controls—you won’t break anything. Or you can close ESCI 
(don’t Save), and start again.

  3.4 Use the spinner at red 6 to change the number of bins. Click slowly to 
allow the display to change. Choose 9 bins to match Figure 3.3D.
This needs Excel macros. If you get an error message, you may not have 
enabled macros. See the Appendix.

  3.5 Click and unclick the checkbox at red 8 and watch the dot plot. What’s 
going on? The popouts should help.

  3.6 Type a new value in any cell below red 2 to replace the current value (end 
with Enter) and see the dot plot and frequency histogram update. (To get 
back to the original data set, retype the original value, or scroll right and 
click the button at red 11 to reload the Laptop data. Or close ESCI—don’t 
Save—and open it again.)

  3.7 Scroll down the list of data points below red 2 and type some additional 
values below the original 31. Do the figures update as you expect?
ESCI is not intended to be a full data analysis application, and has no facilities 
for loading or saving data sets. To save a data set, you need to save the ESCI 
intro  chapters 3– 8 file with a new name—add something to the filename to 
indicate it contains your data set.

  3.8 If a data point lies exactly on a bin boundary, does ESCI place it in the bin 
to the left or the right? Perform an experiment to find out.
You could type in a new data point, with value equal to a bin boundary, then 
see which column in the frequency histogram changes.

In general, simply explore and see what happens. To get back to Figure 3.4, 
Exit (don’t Save) and reopen ESCI.

http://www.routledge.com/cw/cumming
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  3.9 To clear all data, click the Clear data button at red 4, then OK. You can 
type in any new data you wish.

 3.10 Suggest a redesign of a histogram so it shows graphically how many dots 
are in each bin.

THE NORMAL DISTRIBUTION

The attractive smooth bell- shaped curve in Figure 3.5 is probably the most 
widely  known shape for a statistical distribution. It’s the normal distribution. 
We’ll discuss it further in Chapter 4, but I want to introduce it briefly here. 
Think of it as an extremely large, or even infinite, set of potential data points. 
The lower panel shows the idea: The data points are piled most deeply around 
the center, and become progressively less deep as we move away from the 
center. The two thin tails extend to infinity in both directions, getting ever 
thinner, but most of the action usually happens in the central area shown in 
the figure. The curve is symmetric around its midpoint, which is X = 50 in the 
figure. Other normal distributions have different midpoints and scales, but all 
have the characteristic bell shape.

The normal distribution is important in the theory and practice of sta-
tistics and also sometimes occurs, at least approximately, in the world—as 
we’ll discuss in Chapter 4. Many statistical models assume the population 
of interest is normally distributed and that the sample data are a random 
sample from that normal distribution. I usually make those assumptions 
in this book, although in Chapter 16 we consider techniques that don’t 
require them all.

10 20 30 40 50 60 70 80 90

X

Figure 3.5. Two pictures of a normal distribution. In the lower panel, open dots represent some of 
the data points in the distribution.

The normal 
distribution is a bell- 
shaped distribution 
that’s important 
in statistics and 
sometimes occurs, 
approximately, in 
the world.
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Quiz 3.1

1. We’ve looked at three different ways to picture the distribution of a set of scores: A(n) _ _ _ _ _ _ 
_ _ _ _ _ _ _ _  shows a dot for each data point but similar data points can overlap; a(n) _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _  shows a dot for each data point, but with dots stacked up so as not to overlap; and 
a(n) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  shows a bar indicating the frequency of scores within a certain bin 
or range.

2. When looking at a data picture, four important features to note are the _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ ,  
___ _ _ _ _ _ , and _ _ _ _ _ _ _ _ .

3. A distribution spread out over a wide range indicates diversity /  similarity in scores.
4. A distribution with two prominent peaks is called unimodal /  bimodal. What might this say 

about the set of scores?
5. A distribution that stretches much further to the right has positive /  negative skew. What might 

this say about the set of scores?
6. The normal distribution

a. is symmetric, meaning both tails are similar, without skew.
b. has one peak.
c. is often assumed true in a population of interest.
d. All of the above.

7. In your own quiz questions, include some about earlier chapters.

DESCRIPTIVE STATISTICS: MEASURES OF LOCATION

Examining one or more pictures should give you an overall impression of your 
data. Then you may want to text your friends some brief information about 
your findings. For this you need descriptive statistics, which are numbers that 
summarize important aspects of the data. We’ll focus on descriptive statistics 
for location and spread, two of the aspects you considered when inspecting 
data pictures.

Usually, the most informative descriptive statistic is a measure of location, 
which tells us where, overall, the data lie. Location is also referred to as the 
central tendency of the data set. The mean is the most familiar measure of central 
tendency, and we’ll also consider the median and the mode.

The Mean
As you know, the mean is the simple average. Suppose last week I counted 
the number of calls I received on successive days, Monday to Friday. The first 
column of numbers in Table 3.1 is those counts. I have 5 data points, which 
I can refer to as X

1
, X

2
, … X

5
. In general, we can refer to a set of N data points 

as X
1
, X

2
, … X

i
, … X

N
, so X

i
 is a general symbol for any individual data point, 

and the index i can take any value from 1 to N.

Table 3.1 My Phone 
Calls Last Week

Day X
i

(X
i
 –  M) (X

i
 –  M)2

Monday 7 −1 1

Tuesday 9 1 1

Wednesday 14 6 36

Thursday 7 −1 1

Friday 3 −5 25

Total 40 64
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As you expect, my sample mean, M, is calculated as the total of my data 
divided by N, so M = 40/5 = 8.0. In general,

M
X X X X

N
i N=

+ + … + + … +1 2

We can also write that as

 M
X

N

i
= ∑

 (3.1)

where Σ (Greek upper case sigma) signals addition, and ∑X
i indicates that we 

add all the X
i
, meaning all our data points from X

1
 to X

N
.

If you are following along in ESCI, near red 3 click the checkbox to the 
left of Mean. (Note that “near red 3” or even “at red 3” can refer to anywhere 
in the colored area that has red 3 at the top.) The sample mean should be 
marked by a green triangle and vertical line in both the histogram and the dot 
plot—which should look like Figure 3.6. I use a triangle because the mean is 
the balance point of the data. Imagine the data points are basketballs and the 
X axis is a long beam that itself has no weight and rests just on the triangle. 
If the triangle is at the mean, the beam will balance. Which balls have most 
influence, which have hardly any influence?

The mean, M.

The mean is the 
balance point of 
a data set and is 
strongly influenced 
by very low and very 
high points.

Imagine how the beam would tip if you shifted a ball slightly, or removed it from the beam.

The extreme data points, at around 1 or 35, have most influence—the 
largest tendency  to tip the beam. Remove either of those points and you need 
to move the mean considerably to regain balance. Data points very close to 
the mean have very little influence. You could add an additional data point 
exactly at the mean without altering the balance—or the mean. The further a 
data point is from the mean, the greater its pulling power on where the mean 
is, so the mean is especially sensitive to very low or high data points. That’s 
particularly true for small data sets—for large data sets, any individual data 
points have smaller influence.

At red 3, click beside Show values to see the 
value of the mean reported as 14.5%. (Rounded 
from 14.519. I’ll often round a value read from the 
screen.) Recall that calculating a mean requires 
interval scaling—the equal- interval assumption—as 

0 5 10 15 20 25 30 35 40
X (Transcription %)

Figure 3.6. A stacked dot plot of the Laptop data, as in Figure 3.1. The sample mean is the balance 
point, marked by the triangle and vertical line.
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we discussed in Chapter 2. Our next measure of location does not require that 
assumption.

The Median
The median is a measure of location that requires only ordinal scaling. The 
median is  the value on the X axis below and above which half of the data 
points lie. The Laptop data set has N = 31 data points, so to find the median 
we arrange the 31 points in order, then count along from the lowest to find 
the 16th value, which is the median, because 15 data points lie below this 
value and 15 lie above. In Figure 3.6, count dots from the left (or right) to find 
the 16th. It’s one of the vertical pile of 3, which are in fact three data points 
all equal to 12.8. (You could check that by examining the data values below 
red 2.) So 12.8% is the median of the Laptop data set, a little to the left of the 
mean at 14.5%.

For another example of a median, I clicked the Generate data button at 
red 5 to make a data set. I saw the dialog box shown in Figure 3.7. The four 
radio buttons on the left allow us to choose the shape of the distribution 
from which ESCI will take a random sample of N data points. I clicked Skew 
right and Go. I got a frequency histogram and dot plot for a new data set 
with N = 100 points. I clicked below red 3 to mark the Median in the figures 
with a pink diamond and a vertical line. The dot plot on my screen resembled 
Figure 3.8.

With N = 100, to find the median we could count from the lowest value to 
find the  50th and 51st values, then average these two. In my data set shown 
in Figure 3.8 the median is 48.1, as marked by the diamond and vertical line. 
(My mean is 50.5.) If you are following along in ESCI, your data set no doubt 
looks a little different and your mean and median are also a little different 
from mine.

The distribution has positive skew, which is what I requested by choosing 
Skew right in the dialog box, as shown in Figure 3.7, to instruct ESCI to gen-
erate data from a distribution with right skew.

The median is the 
value on the X axis 
below and above 
which half of the 
data points lie.

To find the median, 
order the data, 
then count halfway 
through the data 
points. If N is even, 
average the two 
middle values.

Figure 3.7. Dialog box displayed when the Generate data button is clicked. Choose characteristics of 
the distribution from which N data points will be randomly sampled.
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The mode is the 
most frequent data 
value, and requires 
only nominal scaling.

To find the median we only need to arrange the data points in order then 
count. We need ordinal scaling to justify ordering the values, but not interval 
scaling, so using the median allows us to avoid the interval scaling assumption.

You might be thinking that averaging the 50th and 51st values requires 
interval scaling. Strictly, you are correct, but in practice those two values are 
usually very close together, and the averaging of the two middle values is such 
a small part of finding a median that we don’t worry too much about needing 
the equal- interval assumption for this final small step. When N is odd there is 
a single middle value—as with our example above with N = 31—so no averag-
ing is needed.

Looking at Figure 3.8, consider what happens to the median if you slide 
(in your  mind’s eye) any of the dots to the left of the diamond further left, 
or pile them up very close to the diamond. There’s no change to the median, 
provided they all remain to the left of the original median. Similarly, bring 
some of the far distant points to the right back in toward the center, or shift 
them even further to the right: again, no change to the median. The mean is 
strongly influenced by outliers—meaning points considerably lower or higher 
than most others, as I discuss below—but the median is not influenced at all by 
how far any point is to the left or right of the median. All that matters is where 
the middle value in the data set falls.

In Figure 3.8, the few values in the long right tail pull the mean higher, 
so it’s higher  than the median. Mean higher than median is a strong sign we 
have positive skew in a data set; mean lower than median indicates negative 
skew. For the Laptop data, the mean of 14.5 is a little higher than the median 
of 12.8, reflecting the small positive skew shown in Figure 3.6.

Keep pictures like Figure 3.6 and 3.8 in your head. They can help you asso-
ciate any mean with the balance of balls on a beam—so outliers can easily pull 
the mean up or down—and any median with the middle of a collection of dots.

The Mode
Our third descriptive statistic for location is the mode, which is the most frequent 
data value. Recall our discussion in Chapter 2 of nominal measurement and ice 
cream flavors: If the highest frequency, meaning the largest number of sales 
last week, was for chocolate, then chocolate is the mode of the distribution of 
sales. Chocolate was the modal flavor last week.

The mode requires only nominal scaling, and it makes sense as a rudi-
mentary  descriptive statistic of a set of frequencies, such as the ice cream sales 

30 35 40 45 50 55 60 65 70 75 80 85 90 95
X 

Figure 3.8. A data set generated by ESCI with N = 100 and right skew. The mean is marked by the 
triangle and vertical line, and the median by the diamond and vertical line.

The median requires 
only ordinal scaling 
and is not influenced 
by how far points are 
to the left and right 
of the median.

Extreme points pull 
the mean, but not 
the median. Mean 
greater than median 
indicates right skew; 
mean less than 
median left skew.
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data. For a frequency histogram, as in Figure 3.3, the mode is the bin with the 
highest frequency. That may make little sense, however, because it can change 
merely by changing the number of bins: For Figure 3.3C the mode is the 15– 18 
bin, whereas for D it’s the 8– 12 bin.

We’ve already met a common use of the mode, to describe distributions 
as unimodal or bimodal, depending on whether they have one or two peaks.

In summary, our three descriptive statistics for location, or central 
tendency, are:

 ■ The mean, which requires interval scaling. It’s sensitive to extreme points.
 ■ The median, which requires ordinal scaling. It reflects only whether points 

are above or below it, and not how far above or below they are.
 ■ The mode, which requires only nominal scaling. A common use is as a 

count of the major peaks in a distribution.

3.11 In Figure 3.6, what would happen to the mean and the median if you 
shifted the highest data point down to 20? Up to 40?

 In Describe, click to display the mean and median in the figures. Find 
the highest value below red 2 and change it to 20, then 40, to test your 
predictions.

3.12 Think of two data points you could add to the Laptop data set to achieve 
the following. Explain in each case:

a. The mean changes but the median does not.
b. Both the mean and median change.
c. The mean doesn’t change but the median does.
d. Neither the mean nor the median changes.

In Describe, type in two new values below the data at red 2 to test any of 
your predictions if you wish.

3.13 Consider that every person has a certain number of friends. (Choose some 
definition of “friend”.) Let X be a variable that is that number, so X can 
take values of 0, 1, 2, … What do you think is the mean of X? The median? 
Are they likely to differ? Explain.

DESCRIPTIVE STATISTICS: MEASURES OF SPREAD

The Standard Deviation
We’d like a descriptive statistic that tells us generally how spread or dispersed 
the data points are. Our first choice is the standard deviation (SD), which seems 
a bit complicated but has desirable statistical properties. Think of the SD as 
being, very roughly, a measure of how far a typical data point lies from the 
mean. To calculate the SD, we first calculate the variance, which is a slightly 
strange property of a data set that’s also commonly used because it has valuable 
statistical properties. The variance, V, is

 V
X M

N

i
=

−( )
−

∑ 2

1
 (3.2) The variance, V.
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and the SD, for which we use the symbol s, is simply the square root of the 
variance, s V= . Therefore, the formula for s is

 s
X M

N

i
=

−( )
−

∑ 2

1
 (3.3)

Here are the steps to apply that formula, referring to my phone data in Table 3.1:

1. Calculate M, which for us is M = 8.0.
2. For each X

i
, calculate its deviation from the mean, which is (X

i
 –  M), as in 

the second column of numbers in the table.
3. Square those deviations, as in the rightmost column in the table, then 

add to find the total Σ(X
i
 –  M)2 = 64.0. Why do we square? That’s a good 

question, which I’ll discuss shortly.
4. Divide by (N –  1) = 4 to find the variance, V = 16.0. Why (N –  1) and not 

N? Another good question, and I’ll discuss that shortly also.
5. Take the square root to find s = 4.0.

I conclude that my mean number of calls last week, Monday to Friday, was 
M = 8.0 calls, and the standard deviation was s = 4.0 calls.

The deviation of a data point, X
i
, is its distance from the mean, which is (X

i
 –  M).

The SD is calculated from the squared deviations, which are the values 
shown in the  rightmost column of Table 3.1. The total of that column, which is 
64.0, comes very largely from the two data points (for Wednesday and Friday) 
that lie furthest from the mean—the two data points that have particularly 
large deviations. Our s is strongly influenced by the Wednesday and Friday data 
points, which illustrates how the squaring magnifies the influence of any data 
point that is relatively far from the mean. The value of s is even more strongly 
influenced by extreme values than is the mean.

Figure 3.9 illustrates the standard deviation for the Laptop data: The upper 
cross at left is one SD below the mean, and the cross at right is one SD above 
the mean. The standard deviation is s = 7.29 transcription percentage points. 
You might be thinking that the great majority of data points are closer than 
one SD from the mean, so the SD is hardly a “typical” distance from M. That’s 
a good thought. As I mentioned above, the squaring means that points a great 
distance from M have an especially large influence, so the SD is often larger 
than we might first guess. In general, the variance and SD are very strongly 
influenced by low or high points.

The standard 
deviation, s.

The standard 
deviation is a 
measure of the 
spread of data 
points. It’s the 
square root of the 
variance. SD is very 
strongly influenced 
by very low and very 
high points.

0 5 10 15 20 25 30 35 40
X (Transcription %)

Figure 3.9. Same as Figure 3.6 but with cross symbols and line segments marking a distance one SD 
above and one SD below the mean. The SD is s = 7.29.
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Why do we square? I said I’d discuss the squaring in Equations 3.2 and 3.3, 
but it’s not essential to know the details—if your eyes glaze over, skip ahead to 
Unbiased estimates. First, why don’t we simply average the deviation scores? 
If you average the (X

i
 –  M) values in Table 3.1, you’ll obtain 0. The result is 

always 0, because the mean is chosen so the negative and positive deviations 
balance. Another possibility is to ignore whether the deviations are negative 
or positive, regard them all as positive and find the average. However, we 
rarely do that. Instead, we square the deviations to find the variance, because 
unlike the two other possibilities I just mentioned, it has a very valuable sta-
tistical property. That valuable property is that often you can add variances, 
as I’ll now illustrate.

Suppose to get home you wait for a bus, then travel home on the bus. Total 
time to get home is waiting time plus travel time:

Time to get home = Waiting time + Travel time

From day to day there is variability in both those times. It turns out that 
not only do times add, but the variances also add. The variance of the total 
time to get home equals the variance of the waiting time plus the variance of 
the travel time:

Variance(Time to get home) = Variance(Waiting time) + Variance(Travel time)

However, adding those variances requires the important assumption that 
waiting time  and travel time are independent, meaning that waiting and travel 
time are separate and don’t influence each other. That may be unrealistic—if 
there’s heavy rain, for example, both are likely to be long—but if they are inde-
pendent we can add variances. For variables that are independent, variances 
add. Standard deviations don’t add. That’s why variance is highly useful, and 
is the basis for a number of widely used statistical techniques, including one 
called, would you believe, “analysis of variance”, ANOVA for short.

Unbiased estimates. There’s one further tricky thing I raised earlier. Why 
do Equations 3.2 and 3.3 have (N –  1), and not simply N, in the denominator? 
Because, as statisticians tell us, using (N –  1) in Equation 3.2 gives an unbiased 
estimate of population variance. An unbiased estimate is given by a formula 
that, on average, gives an accurate estimate of the population value. If we take 
a large number of samples, the average of their values of V will be very close 
to the variance of the population. Using N instead of (N –  1) would give biased 
estimates—on average a little smaller than the population variance. Incidentally, 
for the mean, you’ll be pleased to know that Equation 3.1 gives an unbiased 
estimate of the population mean.

An unbiased estimate is given by a formula that on average gives a value equal to the 
population value.

Usually we consider our data set to be a sample from a population, so 
want the variance we calculate to be a good estimate of population variance. 
We prefer an unbiased estimate, so we choose Equation 3.2. Most statistical 
software including ESCI does that. Once we have the variance, Equation 3.3 
tells us to take the square root to find the standard deviation, which is s V= .

Variances add, 
when variables are 
independent.
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What are the units of M, s, and V? The mean, as marked in Figures 3.6 and 
3.9, is in transcription percentage points. We square the deviations to find the 
variance, V, of the transcription scores, so V is in units of (transcription per-
centage points, squared). We take a square root to find s, which is, therefore, 
back in transcription percentage points, and can be shown as a distance on the 
X axis, as in Figures 3.6 and 3.9. Because it’s a squared measure, variance is 
hard to picture and can be hard to think about.

Quiz 3.2

1. Consider the mean, median, and mode as measures of location.
a. Which is calculated as the sum of scores divided by the number of scores?
b. Which is defined as the most common score?
c. Which is the most sensitive to outliers?
d. Which can be used with nominal data?
e. Which can be used with ordinal, but not nominal, data?
f. Which requires the assumption of interval scaling?

2. How is the variance of a set of scores calculated?
3. The standard deviation is the _ _ _ _ _ _ _ _ _ _ _  of the variance.
4. On the first exam of the semester, nearly everyone in the class scored over 90%. The second 

exam was much harder, with scores ranging from 30% to 90%. Which exam would have the 
larger standard deviation?

5. On the final exam for the semester, s = 0. What does this tell you about the diversity of scores 
in the class? Can you think of two different ways this could happen?

6. What is an unbiased estimate? Give two examples.
7. I’m sure you don’t need more reminders to make your own questions.

DESCRIPTIVE STATISTICS: INDIVIDUAL DATA POINTS

A descriptive statistic can summarize the data set, as we’ve seen for measures 
of location and spread. It can also tell us about where an individual data point 
sits in the whole data set, and this can matter, as you may have experienced. 
For example, scoring a low mark on a test can be discouraging, but if you learn 
that your mark is a lot higher than the mean for the class, you’ll probably be 
much encouraged. First I’ll consider individual data points that are extreme.

Outliers
Points that are very low or very high, relative to most of the other data points, 
are outliers. There’s no good or widely agreed criterion for deciding which points 
are sufficiently atypical to be identified as outliers. We’ll use the term informally 
for points that look extreme.

An outlier is a data point that is extreme, relative to others in a data set.

Removal of outliers can be useful. For example, surveys usually include 
a small number of respondents who enter outrageous responses as a type of 
joke. Including such non- compliant responders can distort our conclusions. 
On the other hand, removing data is a form of selection, and can easily lead 
to biased or flawed understanding. Ideally you should remove outliers only if 
(i) you can specify an objective standard for identifying which responses are not 
valid, and (ii) the rules for removing outliers were made in advance of seeing 
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the results, as part of a planned analysis. In any case, you should always report 
what outliers were removed, why they were removed, and when this decision 
was made. Recognize that outliers may be telling us something important, so 
consider what that might be.

An alternative approach, if you suspect you might obtain outliers, is to state 
in advance that you will use descriptive statistics that are relatively insensitive to 
outliers, for example the median rather than the mean. A further approach is to 
report two analyses, the first of all the data and the second without the outliers.

z Scores
Now for an extremely useful measure of where an individual data point lies in 
a distribution or data set. It uses the standard deviation as a measuring unit: We 
note that a particular data point, or X value, is a certain number or multiple of 
standard deviations below or above the mean. This number is called the z score 
of that point. In Figure 3.9, for example, a data point at about X = 22% would 
line up with the right hand cross symbol, and would therefore be 1 SD above the 
mean. So z = 1 for such a point. In Figure 3.10, vertical lines mark values of X 
that are various numbers of SDs away from the mean. We call those vertical lines 
z lines because they mark z = 0 (the mean), z = −1 (at a distance of one standard 
deviation below the mean), z = 1, and so on. A z score can be calculated for 
any data point or X value, and z lines displayed for any data set or distribution.

A z score is the distance of a data point, or an X value, from the mean, in standard deviation 
units.

For example, to calculate the z score for X = 34.7%, the highest data value 
in the Laptop data set, find how far it is from M then divide by s. The formula is:

 z
X M

s
=

−
 (3.4)

For X = 34.7%, the formula gives z = (34.7% –  14.5%)/ 7.29% = 2.77, which 
reflects what we can see in Figure 3.10: The rightmost data point is almost 3 
SDs above the mean. To go in the other direction, use

 X M zs= +  (3.5)

If z = −1.00, then X = 14.5% − 1.00 × 7.29% = 7.2%, which is the position of 
the first z line to the left of the mean in Figure 3.10.

z = –2 z = –1 z = 0 z = 1 z = 2 z = 3

0 5 10 15 20 25 30 35 40
X (Transcription %)

Figure 3.10. Same as Figure 3.9 but with vertical lines marking X values that are 1, 2, and 3 SDs above 
the mean, and 1 and 2 SDs below the mean. These z lines mark z scores, as indicated by the labels. The 
z score at the mean is 0, as labeled.

Calculate z from X.

Calculate X from z.
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The Laptop data set in Figure 3.10 has the majority of its points between 
z = −1 and z = 1 (they lie within 1 SD of the mean) and only a few points lie 
beyond z = −2 and z = 2 (they lie more than 2 SDs from the mean). That pattern 
is roughly true for many, but far from all data sets.

Figure 3.11 shows a normal distribution, as in Figure 3.5, with z lines. Most 
of the area under the curve lies between z = −1 and z = 1 (within 1 SD of the 
mean) and only small areas lie beyond z = −2 and z = 2 (more than 2 SDs from 
the mean). Areas indicate the relative numbers of data points available, so a 
random sample of data from a population with a normal distribution is likely to 
have a majority of data points within 1 SD of the mean, and only a few that are 
more than 2 SDs from the mean. That’s as we observed for the Laptop data, so 
perhaps it’s reasonable to assume that those data were a random sample from a 
normally distributed population of potential transcription scores. In Chapter 4 
there will be more about z scores and sampling from normal distributions.

Here are two things to note about z scores:

 ■ Because they are based on the mean and standard deviation, z scores 
require interval scaling.

 ■ We can calculate z scores for any distribution or data set for which we 
know the mean and standard deviation. They don’t apply only to normal 
distributions.

Finally, reflect on how incredibly useful z scores can be—they provide 
a standardized way of thinking about individual scores. We can compare 
two z scores, even when they were calculated from different X variables. 
Consider depression, for example, which is often measured using the Beck 
Depression Inventory (BDI), with scores ranging from 0 (not at all depressed) 
to 63 (extremely depressed). Another frequently used measure is the Quick 
Inventory of Depressive Symptomology (QUIDS), with scores ranging from 0 
(not at all depressed) to 16 (extremely depressed). We can’t compare scores 
directly—16 is only mild depression on the BDI, but extreme on the QUIDS. 
However, if Jack’s depression score is z = 1.5 and Jill’s is z = 0, then we can 
compare, and conclude that Jill is around average whereas Jack is definitely 
depressed. We can compare, even without knowing whether BDI or QUIDS 
was used with Jack, or with Jill. There’s lots more about these types of com-
parisons in Chapters 7 and 8.

3.14 Make up a cover story to tell us what the data in Table 3.2 represent. Find 
the mean, M, then fill in all the cells marked with two dots. Use Equations 
3.2 and 3.3 to calculate variance, V, and standard deviation, s.

In many, but far 
from all, data 
distributions, a 
majority of points 
are within 1 SD of 
the mean, and only a 
few are more than 2 
SDs from the mean.

z = –4 z = –3 z = –2 z = –1 z = 0 z = 1 z = 2 z = 3 z = 4

10 20 30 40 50 60 70 80 90
X

Figure 3.11. The same normal distribution shown in Figure 3.5, but with z lines.
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lated above were correct.
a. Calculate z for the largest X value in Table 3.2.
b. What X would have z = 1?

3.16 Consider the data set comprising the digits from 0 to 9. Find the mean, 
median, and SD. What’s the z score of 7?

3.17 With the Laptop data as in Figure 3.6, what two extra data points could 
you add without changing the mean or the SD?
  Use ESCI to test your prediction. (To load the Laptop data, scroll right and 
click at red 11 in the Describe page.)

  3.18 a.  Clear all the checkboxes at red 3. Click at red 5 to generate a data set. 
Examine the dot plot and histogram, and guess the mean and SD. Ask 
a friend to guess, then click at red 3 to display values, and markers in 
the pictures. How did you both do?

b. Repeat. Try small and large data sets. (To set N, change the value in the 
dialogue box shown in Figure 3.7). Try left and right skew. Make it a 
competitive game.

c. Do you prefer estimating mean and SD from the dot plot, or the 
histogram? Why?

d. Do you make consistent over-  or underestimates? Suggest why.

Percentiles
Next is a measure that requires only ordinal scaling. To find the median we 
order the data, then count 50% of the way from the left. The median can be 
called the 50th percentile of the data set. Do the same for any other percentage 
to find X that is that percentile of the data. The largest data value is the 100th 
percentile. Figure 3.12 illustrates the idea: A cursor marks the 25th percentile, 
and data points to the left (25% of all data points) are red.

In Describe, generate a data set of your choice, perhaps with N at least 100. 
Click Cursor at red 7 to see a red vertical cursor in the dot plot and a large slider 
below. Use the slider to move the cursor and note the red percentage value 
displayed on it. Experiment—can you figure out what’s going on?

Dots in the dot plot that are to the left of the cursor are displayed red in 
Figure 3.12. Move the slider to the right and see more red. The cursor in the dot 
plot moves in small steps, usually corresponding to data point by data point. The 
red percentages tell us which percentile of the data set the current cursor position 
represents. A percentile is the value of X below which the stated percentage of 

Table 3.2 
Calculating a 
Standard Deviation

X
i

(X
i
 –  M) (X

i
 –  M)2

6 .. ..

7 .. ..

3 .. ..

10 .. ..

7 .. ..

9 .. ..

Total .. ..
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25.0%

30 35 40 45 50 55 60 65 70 75 80 85 90 95
X

Figure 3.12. The data set shown in Figure 3.8. The diamond and vertical line mark the median. 
A percentile cursor is shown at 25%.

data points lie. Use the slider to position the cursor in the dot plot to mark any 
percentile you wish to find. Is the median indeed the 50th percentile?

A percentile is the value of X below which the stated percentage of data points lie.

Quartiles
The first quartile, with label Q1 or Q

1
, is another name for the 25th percentile,  

meaning that 25% of the data points lie below Q1. Similarly, the third quartile, or 
Q3, is another name for the 75th percentile. Of course, 75% of the data points 
lie below Q3. As you probably guessed, the second quartile, Q2, is simply the 
median. Below red 3, click Show values to see the values of Q1 and Q3. Click 
at Median and Quartiles to see the quartiles marked as in Figure 3.13. Move 
the cursor to check that the quartile lines are where they should be.

Quartiles, like percentiles, require only ordinal scaling. We can think of Q1 
as the  median of the half of the data set that lies below the median. Similarly, 
Q3 is the median of the half of the data set above the median. We can use the 
first and third quartiles to give us an indication of the spread of the data in our 
data set. The interquartile range (IQR) is simply the interval from the first to the 
third quartiles. Perhaps I could have introduced the IQR earlier, in the section 
Descriptive Statistics: Measures of Spread, but it’s here because it’s based on quar-
tiles, which more naturally fit in this section. For the data set in Figure 3.13, 
the IQR extends from 44.5 to 53.4, which is the interval between the two fine 
vertical lines in the figure.

Finally, I should mention the simplest descriptive statistic for spread. It’s 
the range, which is simply the interval from the lowest to the highest data point. 
The range also could fit in the earlier section about spread, but is here because 
it’s based on individual data points. For the data set in Figure 3.13, the range 
is from 38.4 to 88.4, which are the values of the leftmost and rightmost dots 
in the figure.

A problem with the range is that it’s dependent only on the two extreme 
points in a data set, so is extremely sensitive to any outliers. Perhaps we should 
ignore some of the points at the two ends of the distribution? That’s a good 
thought, and is what the IQR does: The IQR is the range of the core of the 
data set, after we’ve removed the bottom 25% and top 25% of data points. It’s 
therefore not sensitive to outliers, or how points might be distributed in the 
lower or upper tails of the distribution of points. On the other hand, it tells us 
only about the middle 50% of the data.

The first quartile, 
or Q1, is the 25th 
percentile and the 
third quartile, or 
Q3, is the 75th 
percentile.

The interquartile 
range (IQR) extends 
from Q1 to Q3, and 
is an indicator of the 
spread of points in a 
data set.

The range is the 
interval from the 
lowest to the highest 
point in a data set.
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Removing the lower and upper 25% of points to obtain the IQR is an 
example of  trimming, which refers to removal of a selected proportion of data 
points from the two ends of the distribution. The range is calculated after 0% 
trimming (no points removed) and the IQR after 25% trimming, meaning 
25% from each end of the distribution. Of course, other trimming strategies 
are possible, reflecting different decisions about how much of the two tails to 
ignore. An extreme case is the median, which is what’s left after 50% trim-
ming. In Chapter 16 we’ll consider 20% trimming, which turns out often to 
be a good choice.

CHOOSING DESCRIPTIVE STATISTICS

We’ve seen descriptive statistics that summarize a data set—think mean, 
median, and standard deviation—and others that position a particular data 
point in the set—think z score and percentile. So our aims should be the first 
consideration when choosing descriptive statistics.

Even so, often there are options. The commonest question is prob-
ably: mean or median? The two statistics convey different information, and 
sometimes it may be useful to report both. We need to think carefully (as 
usual) about what message a particular statistic is giving. For example, suppose 
X in Figure 3.8 is annual income in thousands of dollars. A politician want-
ing an upbeat message might boast that average income is around $50,000, 
whereas an opposing politician might say times are not so easy, with income 
only around a median of $48,000. To make the contrast more striking, type 
an additional data point of 1000 into ESCI, for an Internet entrepreneur with 
an income of $1,000,000, and see the mean leap to about $59,000, while the 
median is virtually unchanged.

The mean and SD are by far the most widely used descriptive statistics, 
even though they require interval scaling and the assumption of equal intervals 
is often questionable. The median is widely used, especially with skewed data 
sets. Percentiles, quartiles, and the IQR should probably be used more often 
than they are. Those measures, and the median, can be used with data having 
ordinal scaling, but they can also, of course, be used with data having interval 
scaling. Most of our common statistical techniques, including the calculation 
of CIs, are based on means and SDs. These techniques are usually the most 
informative, and are what I’ll almost always use in this book, but we need to 
keep in mind that they assume interval scaling.

In practice, researchers will often simply do whatever is customary in their 
research field, which for Likert items and GPA, for example, is usually to assume 

30 35 40 45 50 55 60 65 70 75 80 85 90 95
X

Figure 3.13. The same data set as in Figure 3.12, but with fine vertical lines marking Q1 and Q3, the 
first and third quartiles. The interquartile range (IQR) is the interval between the two fine vertical lines.

Trimming refers to 
removal of a stated 
percentage of the 
data points from 
the two ends of the 
distribution.

The mean and 
SD are the most 
commonly used 
descriptive statistics, 
and what we’ll 
usually choose. But 
they require interval 
scaling.
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interval scaling. Therefore, when we read their reports containing means, SDs, 
and CIs, we need to bring to mind the interval scaling assumption as we think 
about what their results mean.

We need to understand any numbers we elect to feed in to the computer, 
and need to think about what lies behind any data picture or summary statistics 
we read in a research report. Only then can we understand what’s going on, 
and draw justified conclusions.

3.19 a.  Invent your own data set of a dozen numbers. Find the median, first 
and third quartiles, IQR, and range.

b.  Change the largest data point to a considerably higher value. What 
happens to the mean, SD, z lines, median, IQR, and range? Explain.

3.20 Many IQ tests are designed so that their scores have close to a normal 
distribution, with mean = 100 and SD = 15 in the general adult popula-
tion. (The normal distribution extends to infinity in both directions, but 
we are not saying that negative IQ scores are possible. As usual, we pay 
most attention to the central part of the normal distribution, within, say, 
3 or 4 SDs of the mean.) Suppose you had the IQ scores of a sample of 
100 adults, randomly chosen from the general population. About where 
would you expect most of the scores to lie? Specify two intervals in which 
you would expect just a few scores to lie. Where would you expect to find 
very few or no scores?

3.21 In a data set with N = 60, how many points lie to the left of the 10th 
percentile? How many to the right of the 80th percentile? How many lie 
between Q1 and Q3? If your variable has interval scaling, would any of 
your answers change? Explain.

3.22 a.  A teacher calculates the mean score for all students in the class, then 
notices that only 40% of the students scored higher than the mean. Is 
that possible? What is a likely shape of the distribution?

b. It’s not possible for everyone in the class to score above the class aver-
age, but what’s the maximum number of students who could, and 
what would the distribution look like?

3.23 To measure happiness, you ask people: “In general, how happy are you 
these days, on a scale from 1 to 20, where 1 means as unhappy as you 
can imagine, and 20 means as happy as you can imagine.” You collect 
happiness ratings from 30 people.
a. Would it be reasonable to calculate the mean and SD of those 30 rat-

ings? Explain.
b. Suppose you calculated M = 14.6 and s = 3.7 for those 30 ratings. What 

assumption would you be making? How could you interpret that mean 
and SD?

c. How else could you summarize your 30 ratings? What would be the 
best way to report your data set, with some statistics to describe it?

d. If M = 17.6 and s = 3.7, what can you say about the shape of the 
distribution?

GOOD AND BAD PICTURES

Having discussed descriptive statistics, I want to close the chapter by return-
ing to data pictures and considering a key question: What makes a good or 
bad picture? I could insert here some examples, but it’s more fun to explore 
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the numerous examples easily available online. Search for “misleading 
graphs” or similar. Wikipedia gives a good overview of bad graphs, at tiny.cc/  
wikimisgraph The best website is probably that of Michael Friendly of York 
University in Toronto: tiny.cc/mfdatavis At that site, the links on the left present 
laurels and give the thumbs-up to several collections of good graphs, and links 
on the right give the thumbs-down to collections of bad graphs.

There’s no simple definition of “good” and “bad”. As you’d expect, it’s to 
some extent a matter for judgment in context and depends on your research 
questions. A good graph is informative and revealing, and doesn’t mislead.

When examining any picture of data, here are some basic first questions 
to ask:

 ■ What’s the measure, in what units? What does any single data point 
represent?

 ■ What are the axes? Check the label and units for each axis, and look for 
zero and for markings of equal intervals.

 ■ How else could the same data set be pictured? How would that change the 
impression I’m getting?

 ■ Behind the numbers, what does the data set tell us about what’s going on 
in the world?

Here are a few things not to do, if you want to make a good graph:

 ■ Change the vertical scale, perhaps omitting zero, to change the impression 
given by a series of data points. Almost flat becomes a dramatic increase, 
simply by changing the vertical scale.

 ■ Omit some values on the horizontal scale, so it doesn’t proceed in regular 
steps from left to right. This often happens with dates, or ranges of dates.

 ■ Use pictographs (little pictures of people, cars, or other things) that expand 
in size to dramatize a change in amount. Using a pictograph twice as high 
gives the impression of a four- fold increase because the area of the larger 
pictograph is four times greater. Try 3- D for even greater exaggeration.

Such bullet point lists can only give starting points. Find and discuss lots 
of examples, good and bad. Keep copies of your favorites. Make your own 
bullet point lists. Playing with pictures and designing better ones can be highly 
entertaining—make it a party game.

Possibly the most widely known statistics book 
is How to Lie with Statistics by Darrell Huff (1954). It 
may be dated but it’s still wonderful, with numerous 
examples of misleading graphs and ways to select or 
distort information to give the wrong impression. It’s 
a book of things to look out for. Search for the book 
title and you’ll easily find a full copy online that you 
can read, or even download and keep. You can even 
find both the U.S. and the British editions, which have 
different cartoons.

It’s time for take- home messages. Look back 
over the whole chapter and make your own list, with 
pictures if you like. Sleep on it, and see if you can 
improve your list.
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 Use figures and 
descriptive statistics 
to help provide 
the full story of 
your data. 

  3.24     Explore Michael Friendly’s Data Visualization Gallery at  tiny.cc/mfdatavis  
and choose your favorite graph, or graphs, that illustrate:  

 ■   the importance of seeing zero on the vertical axis;  
 ■   the importance of using a well- chosen, complete set of values on 

the horizontal axis;  
 ■   the danger of using small pictographs.    

  3.25     Choose three graphs you like, and explain to your friends why you 
chose these.  

  3.26     Go to  tiny.cc/bbcdatavis  and try the four questions. Discuss with your 
friends before clicking below each question to see an explanation.  

  3.27     Search on “pie charts” and choose two that illustrate how terrible pie 
charts can be. Can you fi nd an example of a good pie chart?  

  3.28     Have these exercises suggested anything you should add to your list of 
take- home messages? Revise your list if you wish.   

   Quiz 3.3  
  1.     In  Figure 3.13 , which single point might you consider an outlier? Which three points might you 

consider to be outliers?  
  2.     A  z  score is an individual score ( X ) minus the _ _ _ _ _ _  and then divided by the _ _ _ _ _ .  
  3.     Anna has taken four exams in her physics class. Her results are:  Exam 1:  z  =1.1; Exam 2:  z  = 0.0; 

Exam 3:  z  = −0.8; Exam 4:  z  = 2.3  
  a.     On which exam did Anna score exactly at the class mean?  
  b.     On which exam did Anna score below average?  
  c.     On which exam did Anna do the best?    

  4.     In a data set with  M  = 10 and  s  = 2, what  X  score corresponds to  z  = −1.5?  z  = 0.5?  z  = 3? Does 
 X  have to be normally distributed?  

  5.     The interquartile range is the range of scores between Q_ _  and Q_ _ . The interquartile range is 
a measure of spread that is  more/ less  sensitive to outliers than the standard deviation.  

  6.     Q1 is another name for the _ _ _ _  percentile, Q2 for the _ _ _ _ , and Q3 for the _ _ _ _  percentile.        

  Reporting Your Work  

  Descriptive statistics often form the heart of the results section when reporting your work. 
Here are some key points to keep in mind.  

 ■   The shape of a distribution is important (roughly normal, skewed, etc.). But it takes a good 
bit of data (at least 100 cases) to get a good sense of the shape of a variable’s distribution. 
If you have fewer cases than this, it’s probably best not to make judgments about shape.  

 ■   As usual, it’s best if your readers can see the data. However, you usually can’t include a dot 
plot or histogram for every single variable collected. As you’ll see in later chapters, many of 
the graphs used for complex analysis provide all the information in a dot plot plus more.  

 ■   Although data pictures are really useful, so are good descriptive statistics. For every   
measure collected, you should provide a measure of location and a measure of spread. 
Typically, these will be the mean and standard deviation, but use your judgment and 
consider other descriptive statistics, especially if you have outliers or strong skew. If 
you have a complex study with lots of measures, a table of descriptive statistics can 
efficiently summarize a tremendous amount of information.   

 ■   When interpreting descriptive statistics, be sure to consider not only the mean but also 
the spread of the variable, as both are important.  

 ■   Remember to think about the scale of measurement for the variables you collected 
and to select appropriate descriptive statistics. Don’t report the mean gender of your 
participants!  
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 ■   In APA style, Roman letters serving as statistical symbols are italicized, so use  M  for 
sample mean,  s  for sample standard deviation,  N  for overall sample size, and  n  for any 
subsample or subgroup being summarized. However, Greek letters serving as statistical 
symbols are not italicized, so use  µ  (not   µ  ) for the population mean. Be sure the sample 
size for any descriptive statistic is clear.  

 ■   For each measure, consider the number of decimal places that could be meaningful and 
then round appropriately. For example, you would probably report an exam grade average 
as  M  = 85% or 85.3%, not as  M  = 85.292% because the extra digits almost certainly 
suggest greater precision than your data justify. In other words, too many decimal places 
may mislead and not be useful for drawing conclusions. Be sure to round  only  at the stage 
of reporting your statistics, never during calculations.   

 No sample write- ups yet; these start in  Chapter 5 , when we can integrate various 
measures and CIs.   

  Take- Home Messages   

 ■   Pictures of data can be highly revealing. Bring to mind other ways to picture the same data, 
which might give a different impression.  

 ■   A  frequency histogram  can give a good overview, especially of a large data set. A  stacked dot 
plot  provides an overview and also information about individual data points.  Descriptive 
statistics  can be indicated on both types of data picture.  

 ■   An asymmetric distribution has  skew —positive skew if the longer tail is to the right, and 
negative skew if to the left.  

 ■   The  normal distribution  is a symmetric bell- shaped distribution that’s important in the theory 
of statistics and also sometimes occurs, approximately, in the world.  

 ■    Take- home picture:   Figure 3.5 , showing two views of a normal distribution.  

 ■   The  mean  is the balance point of a data set and is strongly influenced by low and high values, 
especially  outliers .  

 ■   The  median  is the center point, below and above which 50% of the data points lie; it’s not 
influenced by how far out the extreme points are.  

 ■   With positive skew the mean is greater than the median.  Take- home picture:   Figure 3.8 , 
showing a stacked dot plot with mean and median.  

 ■   The  standard deviation  is calculated from squared deviations of data points from their mean, 
and is greatly influenced by low and high values. The  variance  is the square of the standard 
deviation.  

 ■   A  z  score is the distance of a point from the mean, expressed in standard deviation units. 
Lines at  z  = … −1, 0, 1, … are  z  lines and can be displayed for any data set.  

 ■   A  percentile  is the point on the  X  axis below which the stated percentage of the data points 
lie. The first and third  quartiles , Q1 and Q3, are the 25th and 75th percentiles. The interval 
between Q1 and Q3 is the  interquartile   range , IQR.  

 ■   The mean and standard deviation require interval scaling. The median, quartiles, and 
percentiles require only ordinal scaling.  

 ■   Pictures of data can reveal or mislead. Design pictures carefully. Watch out for ways that pictures 
can deceive. Think of what lies behind the picture and any descriptive statistics reported.    

  End- of- Chapter Exercises   
  1)     Let’s practice calculating descriptive statistics.  Table 3.3  contains a set of ACT scores from 

a sample of college students. The ACT is a standardized college- readiness exam taken by 
many U.S. students; scores can range from 1 to 36.       
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a. Location: Calculate the mean (M), median, and mode for this sample.

b. Spread: Calculate the standard deviation (s), range, and interquartile range for this 
sample. For s, fill in the two columns on the right in Table 3.3, then use the formula 
to calculate s yourself.

2) Now let’s look at some distributions of data (ESCI will help you with this, or you may 
have other software you like to use). From the book website, load the College_ Survey_ 1  
data set. This is a large data set containing data from a wide- ranging survey of college 
students. You can read the code book for the data file to get a better sense of the different 
variables measured.

a. Visualize the distribution of positive affect scores (Positive_ Affect). Students rate how 
often they experience each of 10 positive emotions, using a scale from 1 (not at all) 
to 5 (extremely), then the score is the average of the 10 ratings. To use ESCI, follow 
these steps:

 ● In Describe, click at red 4 to clear data.
 ● Switch to the data set, select the Positive_ Affect data, and copy to the clipboard.
 ● Switch back to Describe, click to select the top data cell at red 2, and use Paste 

Special/ Values to enter the column of data.
 ● At Units near red 1, click near the left of the blank cell and type “Pos Affect” 

or similar, press Enter.
 ● If you wish to have easy future access to the positive affect data, save the ESCI 

file with a new name.
Describe the distribution you see, noting the location, spread, and shape, and the 
number of major peaks.

b. Visualize and describe the distribution of student age. Note the skew and the high 
outliers. Note the mean and median and explain why they differ. Would it make sense 
to delete outliers? Explain.

c. Visualize the distribution of exercise scores, which are calculated as 9×strenuous + 
5×moderate + 3×light, where students report the number of times per week they 
engage in strenuous, moderate, and light exercise. There is an extreme outlier. What 
would that extreme value mean? Would it make sense to delete it? Explain. If you do 
delete it, what happens to the standard deviation? Test your prediction.

Table 3.3 ACT Scores for Exercise 1.

Student ACT (X
i
 –  M) (X

i
 –  M)2

1 26

2 24

3 28

4 31

5 20

6 27

7 18

8 17

9 21

10 29

11 24

Total
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d. Visualize the distribution of Raven scores (Raven_ Score), which are the proportion 
correct on a short 8- item IQ test. Next, visualize the distribution of GPA. Compare the 
two distributions. Why might they differ in shape?

e. In this data set, Gender is coded as female = 1 and male = 2. ESCI calculates that the 
mean is M = 1.28 for Gender. Does this make sense? How might you better summarize 
gender in this sample?

3) Continuing with the same data set as in Exercise 2, let’s put some individual scores in 
context:

a. One female participant achieved a score of .875 on the Raven measure.  
What is her z score?

b. The same female participant has a GPA of 3.9. What is her z score for GPA? On which 
measure (GPA or Raven) is she more unusual?

c. One participant scored a 2 for Positive Affect and a 2 for Negative Affect. Even though 
these raw scores are the same, they are very different within the context of the whole 
study. Express both as z scores and percentiles. Which score is more unusual?

d. A z score of more than 3 or less than −3 is sometimes considered an outlier. By this 
standard, would the participant who is 59 qualify as an outlier for age? Would the 
participant who reported an exercise score of 1,810 qualify as an outlier for exercise?

4) Let’s look at some data about religious beliefs. The Religious_ Belief data set on the book 
website has data from a large online survey in which participants were asked to report, on 
a scale from 0 to 100, their belief in the existence of God.

a. First, sketch the distribution you think this variable will have. Consider the relative 
frequencies of people you expect to strongly believe in God (high end of the scale), to 
strongly not believe in God (low end of the scale), or to be unsure (middle of the scale).

b. Now make a picture of these data and describe it in words.

c. Does the mean do a good job representing this data picture? Does the median? The 
mode? Why do all these measures of location seem to fail?

Answers to Quizzes

Quiz 3.1
1) Dot plot, stacked dot plot, frequency histogram; 2) measure, location, spread, shape; 3) diversity; 4) bimodal, there 

may be two subgroups; 5) positive, there may be a boundary just below the lowest score; 6) d.

Quiz 3.2
1) a. mean, b. mode, c. mean, d. mode, e. median, f. mean; 2) The difference between each score and the mean is 

calculated, then each result is squared, then all the squared deviation scores are summed, then the sum is divided 
by (N –  1); 3) square root; 4) The second, because the standard deviation measures spread, which is much larger 
for that exam; 5) s = 0 means that all scores were the same; perhaps the test was extremely easy, so everyone 
scored 100%, or was extremely hard, so everyone scored 0%. Other scores are also possible, for example if 
everyone cheated from the same cheat sheet; 6) An unbiased estimate is given by a formula that, on average 
in the long run, gives an accurate estimate of the population value. Sample mean and variance are unbiased 
estimates of population mean and variance.

Quiz 3.3
1) the highest point, about 88; the three highest points, about 75, 79, 88; 2) mean (M), standard deviation (s); 3) a. 

Exam 2; b. Exam 3; c. Exam 4; 4) 7, 11, 16, no; 5) Q1, Q3, less; 6) 25th percentile, median, 75th percentile.
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Answers to In-Chapter Exercises

3.5 As you click and unclick, many of the dots move a tiny amount left or right, so they line up neatly in columns 
when stacked.

3.8 ESCI places it in the bin to the left.
3.10 One possibility is to combine the two displays, so we see both dots and columns, although that would 

be messy. Better might be to mark fine horizontal lines across each column to indicate frequency more 
pictorially: A column representing a frequency of 5, for example, would be divided by horizontal lines into a 
stack of 5 small rectangles.

3.11 No change to the median. Shift to 20 and the mean decreases to 14.04; to 40 and the mean increases to 14.69. 
(If you know about Excel, you may have expected the Undo command would allow you to reverse any change to 
a data value. However, the Describe page needs to use macros to update the figures, so the Undo command is 
not available after changes to data values. Sorry!)

3.12 a. A value just below the median and another just above it; b. Two values both considerably above, or below, 
the mean and median; c. Two values both at the mean; d. This last one is tricky: We need one value some 
distance below the mean and another the same distance above the mean—and the two points added must be 
on opposite sides of the median.

3.13 I’ll let you guess a value for the mean. The distribution is likely to be positively skewed, because 0 is a lower 
boundary. If so, many people have a moderate number of friends but a few have many friends, and the mean will 
be greater than the median.

3.14 The completed table is Table 3.4.

3.15 a. z = 1.22; b. X = 9.45
3.16 4.5, 4.5, 3.03, 0.83
3.17 Type in an additional point 1 SD below the mean and another point 1 SD above the mean, and find that the mean 

is unchanged and the SD remains the same or changes by only a tiny amount.
3.18 a–d. I prefer the dot plot. Every time I do this task I remind myself how valuable it is to think of the mean as the 

balance point. Even so, with skew I often don’t place the mean sufficiently far into the longer tail. Also, I often 
underestimate the SD, and need to learn how to increase my first guess to get a more accurate estimate of SD.

3.19 a. If the values are X
1
, X

2
, …, X

12
, then Q2, the median, lies half way between X

6
 and X

7
; Q1 lies half way between 

X
3
 and X

4
; Q3 lies half way between X

9
 and X

10
; IQR is the interval from Q1 to Q3; Range is the interval from X

1
 to 

X
12

; b. If X
12

 is made much larger, the mean, SD, and range will increase, while the median and IQR won’t change; 
the z lines will be more widely spaced and z = 0 will be higher.

You may be wondering about how to place Q1 and Q3 when N is not neatly divisible by 4. If N = 9, or 10, 
then Q1 should be between X

2
 and X

3
, but where exactly? ESCI uses an Excel function that interpolates between 

the two values. Other software may use slightly different interpolation—choice of a formula for interpolation 
is rather arbitrary. In practice it’s not worth worrying about exactly how it’s done. Placing the quartile half way 
between the two values is usually a simple and acceptable strategy.

3.20 Think of Figure 3.11, but with a different X axis of IQ scores. The mean is at 100, and the z = 1 line is at 115 (i.e., 
one SD above the mean) and the z = −1 line is at 85. The curve is highest around 100, so we expect most scores 
around 100, in particular between about 85 and 115. A few scores would lie a little further out from the mean, a 
bit below 85 and above 115. Very few would be even further out, say around 50–60 or 140–150.

Table 3.4 Calculating a Standard Deviation

X
i

(X
i
 –  M) (X

i
 –  M)2

6 –1 1

7 0 0

3 –4 16

10 3 9

7 0 0

9 2 4

Total 42 30

The mean is M = 7.0, variance is V = 30/(6 – 1) = 6.0, and SD is s = 6  = 2.45.
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3.21 Six points (10% of 60) lie to the left of the 10th percentile, and 12 to the right of the 80th percentile (48, which 
is 80% of 60, lie to the left). Half the points, which is 30, lie between the first and third quartiles. No, answers 
wouldn’t change. Percentiles require only ordinal scaling, but can just as easily be used with interval scales.

3.22 a. By definition, 50% of students score above the class median. If the score distribution is positively skewed, the 
mean will be greater than the median, so less than 50% of students will score higher than the mean. Only 40% 
scoring above the median is quite possible and suggests considerable positive skew; b. If one student has a very 
low score and all other students score the same, then the mean will be a little below their common score. All but 
one student will score above the mean. So it’s not possible for everyone to score above the mean, but almost 
everyone can, just!

3.23 a. Calculating the mean and SD requires the equal-interval assumption, so we have an interval scale. Many 
researchers do make this assumption and calculate the mean and SD for rating scales such as this happiness scale, 
although we can doubt whether the difference in happiness represented by the change from 10 to 11 is really 
equivalent to the difference represented by the change from 2 to 3, or from 18 to 19; b. To calculate these values 
of M and s, we’d be making the equal-interval assumption. To interpret the values of M and s I would describe 
the scale fully and present a dot plot of the 30 ratings, with M and s illustrated as in Figure 3.9. I would explain 
the mean in terms of the amount of happiness corresponding to its position on the scale, and would similarly 
describe s as an interval on the scale and a corresponding step in amount of happiness. I would note that I’m 
assuming interval scaling, and would make some remarks about whether that seems reasonable. In general, I’m 
prepared to adopt common practice and assume interval scaling in such cases, but the issue is arguable; c. An 
alternative would be to present the dot plot and report the median, Q1, and Q3 to summarize, along with some 
remarks about only needing to assume ordinal scaling; d. The M of 17.6 is close to the maximum, 20, which is a 
boundary. So s as large as 3.7 must reflect many points considerably below the mean. There must be considerable 
negative skew.

3.24 The site is a gold mine of good and poor examples. Bullet points can be useful summary statements, but there 
are exceptions to most. There’s no substitute for inspecting and thinking about lots of examples.

3.25 A good data picture is informative, conveys an accurate and fair message, and is quickly and easily understood by 
readers. It should be as simple as possible, and also look appealing.

3.26 The questions address basic issues in the design of good data pictures.
3.27 It’s hard to find examples where a pie chart is the best picture, and some authorities advise never using pie charts. 

Go to tiny.cc/ediblepie for an interesting example.
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The Normal Distribution  

and Sampling

Take a sample, then use the sample results to draw conclusions about the 
world—well, the particular population at least: As you know, that’s statistical 
inference, the foundation of most research. Sampling, the first step, is our 
main business in this chapter. Then, in Chapter 5, we’ll go on to the second 
step by discussing CIs. In this chapter, we’ll start with more about the normal 
distribution, and then mostly we’ll discuss samples and sampling. Watch out for 
the dance of the means, and the mean heap. Here’s the plan for this chapter:

 ■ Continuous distributions, z scores, and areas and probabilities
 ■ The normal distribution
 ■ The population and a random sample
 ■ Sampling: Dance of the means and the mean heap
 ■ A measure of sampling variability: The standard error
 ■ Some statistical magic—the central limit theorem

To understand statistics it helps to appreciate dancing, and the dance of the 
means is our first dance. It illustrates sampling variability, which is a central 
idea that’s vital to grasp intuitively. People usually underestimate sampling var-
iability, so they often don’t grasp how much uncertainty there is in data. Here 
we’ll discuss our measure of sampling variability, the standard error; then, in 
Chapter 5, we’ll use the standard error to calculate what we really want, the CI.

CONTINUOUS DISTRIBUTIONS

Figure 3.5 illustrated the smooth curve of the normal distribution and how we 
can think of such a curve as a pile of an extremely large number of potential 
data points. The variable X in that figure is a continuous variable, meaning it can 
take any value in some range—it’s not restricted to taking separate, discrete 
values. By contrast, the number of eggs in a bag is a discrete variable, which can 
take only the distinct values 0, 1, 2, …, assuming we have no broken fractions 
of an egg. The continuous variable X might measure time to carry out a task, 
or the weight gained by a baby in a month. In practice we can only measure 
such variables to a certain accuracy—perhaps the weight gain is recorded as 
173.2 g or 173.3 g—but, in principle, variables like time, length, and weight 
can take any (positive) value, so they are continuous.

A continuous variable is a variable that can take any of the unlimited number of values in 
some range.

A discrete variable is a variable that can take only distinct or separated values.
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The smooth normal distribution curve of Figure 3.5 is the probability distri-
bution of  the continuous variable X. Figure 4.1 pictures a different probability 
distribution, which has positive skew, a longer tail to the right. Such a curve 
might picture the population of times that different people take to complete 
today’s crossword—distributions of times often have positive skew. Instead of 
marking X values on the horizontal axis, the figure displays z lines and marks 
z scores on that axis, which we can call a z axis.

Areas under the curve correspond to probability. Probability runs from a 
minimum of  0, meaning impossible, to 1, meaning certain, and probability 
distribution curves are designed so the total area under the curve is 1—after 
all, a study will certainly give us some results. We might for example judge 
that roughly 40% of the total area under the curve in Figure 4.1 lies between 
z = −1 and the mean, which implies that the probability is roughly .40 that a 
randomly chosen time to complete the crossword has a z score between −1 and 
0. We could, alternatively, write that as “40%”, that being an acceptable way to 
express a probability. Figure 4.1 also indicates that hardly any values are lower 
than z = −2, whereas a small proportion of values lie more than 2 SDs above 
the mean, and some even 3 SDs above it.

The height of the curve represents probability density, which is the label 
on the vertical axis. Probability density indicates how high the probability 
is “piled up” at various points along the z axis—in this case, piled highest 
between z = −1 and the mean, and decreasing smoothly to left and right. 
Don’t be too concerned about probability density—treat it simply as a 
label on the axis, since we won’t be using it further. The vital thing is 
that area under the curve represents probability. Now let’s return to the 
normal distribution.

THE NORMAL DISTRIBUTION

In Chapter 3 and the section above we saw how z scores and z lines can be 
used with  any data set and any variable, whatever the shape of its distribu-
tion. However, one common use of z is to represent the normal distribution in 
Figure 4.2, which is the standard normal distribution, with mean of 0 and SD of 
1. We use z as the name of a variable that has this distribution—but we need 
to state clearly that’s how we’re using z, because z scores can also be used with 
any other shape of distribution.
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Figure 4.1. A probability distribution with positive skew. The vertical lines are z lines and the numbers 
on the z axis are z scores, in standard deviation units.

The probability 
distribution of a 
continuous variable 
is a smooth curve, as 
in Figure 4.1.

Areas under 
a probability 
distribution 
correspond to 
probability. The 
total area under the 
curve is 1.

The standard 
normal distribution 
has mean of 0 and 
SD of 1. It’s usually 
displayed on a z axis.
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 Just a reminder. Pause, ponder, ask yourself questions, challenge your friends—and do these good things often.

z Scores, Probabilities, and Areas
Figure 4.2 shows the approximate percentages of data points that lie in various 
z intervals, for any normal distribution. Distributions other than normal will 
almost certainly have different percentages—different areas—as Figure 4.1 
illustrated. The normal curve is symmetric about the mean, and therefore the 
percentages are the same below and above the mean, as Figure 4.2 reports. 
About 34% of values lie between the mean and z = −1, and another 34% 
between the mean and z = 1. Some 2.5% lie in the left tail, below z = −2, and 
the same percentage above z = 2. About 95% of values lie within 2 SDs of the 
mean, as indicated by the shaded area. Of course, 50% of values lie to the left 
of the mean and 50% to the right. We can just as easily think of the percentages 
and areas in Figure 4.2 as probabilities: For example, the probability a randomly 
chosen z will lie between −1 and 0 is about .34.

IQ scores, which came up in Exercise 3.20, are a widely- known example of 
a variable that’s set up to be approximately normally distributed. They are usually 
scaled to have a mean of 100 and SD of 15. Therefore a person scoring 115 would 
have a z score of 1, because 115 is 1 SD above the mean. That person would score 
higher than about 84% of the population of people to whom the distribution applies.

Can you figure out where that 84% came from? Make up a couple more 
simple examples of IQ scores, z scores, and percentages.

Any normal 
distribution has 
about 68% of values 
within 1 SD of the 
mean, and about 
95% within 2 SDs of 
the mean.

You could think of the person scoring 115 as being at the z = 1 point in 
Figure 4.2. Add all the percentages to the left and get 84%, or simply add 
50% (all the distribution to the left of the mean) and 34% for the distribution 
between the mean and z = 1. Another way of saying the same thing is to note 
that the person is at the 84th percentile of the distribution of IQ scores. As fur-
ther examples you might observe that roughly 2/ 3 of people are likely to score 
between 85 and 115 and only about 2.5% of people above 130.

What about the thin tails? About 0.13% of data points lie below z = −3 
and, of course, 0.13% above z = 3, which corresponds to an IQ score of 145. 
That means we expect on average about 1 person in 770 to score above 145. 
However, whenever we apply a statistical distribution like the normal distribu-
tion to a real- life example such as IQ scores we need to be cautious about the 
tails, because distributions often don’t represent the real world very well at the 
extremes. As I mentioned in Chapter 3, of course IQ scores can’t be negative, 

–4 –3 –2 –1 0 1 2 3 4

P
ro

ba
bi

lit
y 

de
ns

ity

z

34%34%

13.5%13.5% 2.5%2.5%

Figure 4.2. The normal distribution on a z axis. The percentages are approximate and refer to areas 
between the z lines, except that 2.5% refers to the whole tail area beyond z = −2 (left tail) and likewise 
beyond z = 2 (right tail). The shaded area between z = −2 and 2 is approximately 95% of the total area. 
The areas indicate probabilities.
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Figure 4.3. Three normal distributions, shown with the same units on the vertical and horizontal axes. 
The SD doubles from the distribution on the left to the one in the middle, and doubles again to the 
curve on the right. In every case, the shaded area extends from z = −2 to z = 2 and therefore marks 
about 95% of the area under the curve. The total area under each curve is 1.

even though the normal distribution continues left to minus infinity, as well 
as right to infinity.

You may be wondering what I mean by “between 100 and 115”: Am 
I including or excluding 100 and 115? That’s a good thought. IQ scores are typi-
cally given as whole numbers, with no decimal places—in other words IQ score 
is a discrete variable, taking only distinct values, like 94, 95, 96, and so on. Yet 
I’m referring to IQ scores, represented by X, as if they were continuous. For the 
moment, let’s keep things simple by assuming X is continuous and ignore the 
fact that IQ scores are usually considered discrete. I’ll come back to this issue.

The normal distribution is expressed by a mathematical function that’s a 
little complicated, but requires only the mean and SD to specify the curve in 
full. To say that a bit more technically, the normal distribution is a two- parameter  
distribution: State the mean and SD, which are the two parameters, and the distribu-
tion is fully specified. Figure 4.3 pictures three normal distributions with different 
SDs. The SD doubles in size from the distribution on the left to the one in 
the middle, and doubles again to the curve on the right. In each case the 
central area between z = −2 and z = 2 is shaded, so about 95% of the area 
under each curve is shaded. In each case the total area under the curve is 
1, corresponding to total probability of 1, or 100% of the data points. With 
the changing SDs, the heights need to change correspondingly, to maintain 
that fixed area under the curve. So the height halves from the distribution 
on the left to the one in the middle, and halves again to the curve on the 
right, and the area of shading is the same in each case.

The three curves in Figure 4.3 may look a little different, but they 
are all normal distributions. The relations between z and area, or prob-
ability, expressed in Figure 4.2 apply to all of them, as well as to every 
other normal distribution.

z Scores and X Scores
I hope you found it easy to swap back and forth between IQ scores, or X, and 
z scores, by keeping in mind that a z score is the distance from the mean, in 
units of the SD. In the previous chapter we used Equations 3.4 and 3.5 to 
translate from X to z, and from z to X. However, with normal distributions we 
usually have in mind a population. We follow the convention and use Greek 
letters for the population parameters, so the population mean is μ (mu) and SD 
is σ (lower case sigma). The corresponding sample statistics are mean, M, and 
standard deviation, s, and we usually use M as our estimate of μ, and s as our 

The mean and 
SD are the two 
parameters that 
fully specify a 
normal distribution.

Sample statistics 
are mean, M, and 
standard deviation, 
s. Corresponding 
population 
parameters 
are mean, μ, 
and standard 
deviation, σ.
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estimate of σ. Thinking of populations we can use μ and σ rather than M and 
s to calculate z scores, so Equation 3.4 becomes

 z =
−X µ
σ

 (4.1)

If X = 85, then z = (85 − 100) /  15 = −1 as we expect. Equation 3.5 becomes

 X = +µ σz  (4.2)

If z = 1.50, then X = 100 + 1.5 × 15 = 122.5, which we’d probably report as 122.
Do we need to make any assumptions about the scale of measurement if 

we want to use z scores?
(I know you are reaching for the coffee, your bike, or your cellphone. I said 

I wasn’t going to mention such things so often.)
We need to assume interval scaling because we are using the mean and 

SD. If we are willing to assume only ordinal scaling we should not be using 
the mean, SD, or z scores.

Quiz 4.1

1. A normal distribution
a. is symmetrical, meaning both tails are similar, without skew.
b. has one mode.
c. is defined by two parameters: the mean, μ, and the standard deviation, σ.
d. All of the above

2. Geo takes a statistics exam and scores exactly at the class average. What is Geo’s z score?
a. < 0
b. 0
c. > 0
d. We can’t tell.

3. On the next exam, Geo’s teacher tells him that he has z = 3. Should Geo be happy?
a. Yes, this means he did much better than average.
b. No, this means he did much worse than average.
c. Sort of— it means he is again around average.
d. Trick question, you can’t turn exam scores into z scores.

4. Which of the following is true about the standard normal distribution?
a.  The total area under the curve is −1.
b. The mean is 1, the standard deviation is 0.
c. About 95% of all scores fall within 2 SDs of the mean.
d. All of the above.

5. What is the difference between a discrete variable and a continuous variable? Give an 
example of each.

6. We often use a sample /  population statistic, represented by a Roman /  Greek letter, to 
estimate the sample /  population parameter, represented by a Roman /  Greek letter.

7. Just one last reminder!

Finding z Scores and Probabilities
Very often we’ll work with populations that we assume are normally distrib-
uted. One reason for this is that many common statistical methods require this 
assumption, although in Chapter 16 we’ll discuss other possibilities. A second 
reason is that a fair number, although far from all, of the variables we encounter 

Calculate z from X.

Calculate X from z.
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in the world have approximately a normal distribution—I’ll discuss that remark-
able fact later in this chapter. Fortunately, in many cases it’s reasonable to use 
statistical methods based on normal distributions, even for populations that 
are only approximately normally distributed.

We need a way to translate accurately between z scores and area or 
probability. We’ll use such translations to help calculate CIs and other good 
things. Some statistics books provide tables that do the job, or you can use 
Excel or other software, or an online calculator. Here we’ll use the Normal 
page of ESCI.

4.1 Find the z score for an IQ of 60, and the IQ score for a z score of 1.2.
4.2 With Figure 4.2 in mind, state at least three approximate rules about normal 

distributions that express how z scores relate to areas—or probabilities or 
percentiles. Choose rules you think it would be handy to remember.

  4.3 Open ESCI intro  chapters 3– 8 and go to the Normal page. Read any labels 
and popout comments of interest, and explore the controls. Can you figure 
out what’s going on? If you like, look for the red numbers.

  4.4 If necessary, below red 3 click the checkbox on, and type in 100 as the 
mean and 15 as the SD of X. Type in a brief label for the units if you wish.

  4.5 Click at red 2 to show the Mean line, and at red 1 select Two tails and 
Areas. Use the big slider at the bottom to shift the cursors until the Two 
tails area is .05, meaning 5%. When I did all that I saw Figure 4.4.

  4.6 Note the z axis at the bottom and corresponding X axis above. What z score 
gives that upper tail area of .025? What can you say about the approximate 
values in  Figure 4.2? It’s z = 1.96 that gives that upper tail area, as Figure 4.4 
illustrates. The left cursor is at z = −1.96 and the area of the two tails is .05; 
the remaining area, between z = ±1.96, is .95, or 95%. That 1.96 value of z 
comes up often, so it’s worth remembering. Mention it casually at parties 
to make sure everyone knows you are a statistics groupie.

  4.7 As you move the slider, you can focus on z displayed at the bottom, or X 
at the top. The z and X values of the cursor positions are shown under the 
figure. Select One tail at red 1. What proportion of randomly chosen people 
are likely to score at least 120 on the IQ test? What proportion between 
70 and 80? For the moment, assume X to be a continuous variable.

Hint: It’s often useful to make a sketch of a normal curve and shade in the area 
of interest. You may need to use ESCI twice, to find two areas, which you need 
to write down and add or subtract.

  4.8 Make up a few more questions about values and probability, and use ESCI 
to find the answers. You could use a different X variable, with different 
mean and SD. Swap with friends.

Let’s return to the issue of IQ score as a discrete variable. We can think of 
an underlying continuous variable, X, that can take any value, which is then 
rounded to the nearest integer as the IQ score. (An integer is a number like 0, 
1, 2, −15, or 107, with no fractional part.) Then we could for example calculate 
the probability a person will score 100 by finding the area under the curve 
between the X values of 99.5 and 100.5, because any X value in that interval 
is rounded to an IQ score of 100.

The area under a 
normal distribution 
to the right of 
z = 1.96 is .025, 
and to the left of 
z = −1.96 is also 
.025. The area 
between z = −1.96 
and z = 1.96 is .95. 
So 95% of values in 
a normal distribution 
are within 1.96 SDs 
of the mean.
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  4.9 Find that probability—that a randomly chosen person will give an IQ 
score of 100.

  4.10 What’s the probability a person scores between 100 and 115, first exclud-
ing those two values from the interval of interest, then including both?

  4.11 One international grading system for students’ academic performance 
calculates GPAs on a scale from 1 to 7. Suppose in a particular college the 
students’ GPA values are approximately normally distributed, with mean 
of 4.7 and SD of 0.8. What proportion of students are likely to score at 
least 4? What proportion less than 3?

  4.12 That GPA scale extends only from 1 to 7, yet the normal distribution 
extends from minus infinity to plus infinity. What about the upper tail 
of the normal distribution corresponding to GPA scores greater than 7?

POPULATION AND SAMPLES

We’re getting closer to pictures of sampling variability. The next step: Consider 
a population having a normal distribution, and samples taken from that pop-
ulation. We’ll shift from IQ scores to a new example. Suppose you are investi-
gating the climate change awareness of college students in your country. You 
decide to use the Hot Earth Awareness Test (HEAT), which is a well- established 
survey—actually, I just invented it—that asks questions about a respondent’s 
knowledge, attitudes, and behavior in relation to climate change. You plan 
to test a sample of students to estimate the mean HEAT score for students in 
your country.

Now we do some statistical assuming. Suppose there’s a large population 
of students in your country, and their HEAT scores are normally distributed 
with mean of μ and SD of σ. You take a random sample of N students from 
that population, obtain their scores, and calculate the mean, M, and standard 
deviation, s, of your sample. You’ll use M as your point estimate of μ. Later 
you’ll calculate a CI to tell us the precision of your estimate—how close M is 
likely to be to the unknown μ.

Our statistical model assumes a normally distributed population and ran-
dom sampling. This is the model we need in Chapter 5 to calculate CIs. The 
assumptions are:

.025
.95

.025

.05
two tails

25 40 55 70 85 100 115 130 145 160 175

–5 –4 –3 –2 –1 0 1 2 3 4 5z

X

IQ points

Figure 4.4. A normal distribution with both X and z axes, where X displays IQ scores. The cursors are positioned at z = 1.96 
and z = −1.96 to give two tails with total area of .05. From the Normal page of ESCI.



79

Population and Sam
ples

 ■ Normality. This strong assumption about the population distribution is often 
but not always reasonable.

 ■ Random sampling. Recall that there are two vital aspects:

1. Every member of the population must have an equal probability of 
being sampled; and

2. All members of the sample must be chosen independently.

You should always keep these assumptions in mind, and judge how closely 
they are met in a particular situation. It’s probably reasonable to assume at 
least approximate normality of HEAT scores. You will probably need to use a 
convenience sample of students, but, as we discussed in Chapter 2, you should 
aim to come as close as practical to random sampling, and judge how repre-
sentative your sample is of the population.

Always keep in mind the distinction between population and sample. We 
know M and s for our sample, although repeating the experiment would of 
course give different M and s—that’s sampling variability. We don’t care about 
our M and s, except to the extent they are useful as estimates of the unknown 
population parameters μ and σ.

Now comes a critical moment. I’ve said that μ and σ are unknown. However, 
to use a simulation to explore sampling we need to assume particular values for 
μ and σ. Working with the computer, there are fundamental differences from 
the usual situation of a researcher:

1. For a simulation we need to assume a population distribution—usually 
normal—with stated values of μ and σ.

2. We’ll simulate taking many, many samples.

In real life, in stark contrast, the researcher doesn’t know μ and σ, can only 
hope the  population is approximately normal, and usually takes only one 
sample. However, computer simulations can be highly revealing, even if they 
are different from carrying out real-life research.

  4.13 Open the CIjumping page. Have a look around. At red 2 click Population, 
and below red 1 make sure the Normal button is selected. Use the sliders 
to adjust μ and σ. As you change σ, the vertical scale changes so the curve 
always has a convenient height.

  4.14 Set μ = 50 and σ = 20. (The manual for the HEAT test suggests these 
values are typical.) At red 2 click Fill random and see most of what’s in 
Figure 4.5. ESCI can’t display the infinite number of dots under the curve 
that, notionally, make the population of potential HEAT scores, but you 
get the idea. We’ll assume the population of HEAT scores in your country 
is normally distributed, with μ = 50 and σ = 20, so ESCI is now displaying 
that population.

  4.15 Click the Clear button near red 3—nothing happens, but we’re get-
ting set. Click near red 4 so Data points is clicked on, and unclick both 
Sample means and Dropping means. Yes, still nothing, but now a dra-
matic moment: We’re about to take our first random sample.

  4.16 Use the spinner near red 4 to select your sample size, perhaps N = 20 or 
whatever you choose. Take a deep breath, then click the Take sample 
button. You should see a scatter of N points just below the curve, as in 
Figure 4.5. They are the data points of our sample. That’s our simulated 

Our statistical 
model assumes a 
normally distributed 
population and 
random sampling 
from the population.

We use sample 
statistics M and s 
as point estimates 
of population 
parameters μ and σ.

In simulation, 
unlike in real-life 
research, (i) we 
specify μ, σ, and 
the shape of the 
population; and 
(ii) we take many 
samples.



80

Th
e 

N
or

m
al

 D
is

tr
ib

ut
io

n 
an

d 
Sa

m
pl

in
g

equivalent of finding a random sample of N students and testing them 
on the HEAT.

  4.17 Take more samples. You might try the Run- Stop button. The scatters of 
data points for successive samples vary greatly—they appear to be dancing 
wildly. As we’ll discuss, randomness is intriguing and weird, and sample- 
to- sample variation is often large.

  4.18 Watch your samples carefully. Do you observe that the sampled points in 
the long run are about equally often below and above μ? That they tend 
to cluster fairly close to μ, but values further from μ are quite common? 
That just occasionally you get an extreme point? Those features of sampled 
values follow directly, of course, from the shape of the population, and 
our sampling, which we assume gives every data point in the population 
an equal chance of being chosen.

SAMPLING: THE MEAN HEAP AND DANCE OF 
THE MEANS

The next important idea is the sampling distribution of the sample mean, and to 
discuss this we’ll need some pictures of sampling variability. Imagine taking 
lots of independent samples from a population—we’ll do that in a moment. 
The means of those successive samples vary, but they tend to cluster around 
the population mean, μ. A collection of many such sample means forms a 
distribution in its own right, called the sampling distribution of the sample 
mean. If we could take an infinite number of samples, their infinite number of 
means would form a normal distribution, thus demonstrating that the sampling 
distribution of the sample mean is normal. It’s an excellent question why this 
sampling distribution is normal in shape—more on that shortly.

The sampling distribution of the sample mean is the distribution created by the means of 
many samples.

As I mentioned, always distinguish carefully between playing around 
on the computer with simulations of many experiments, and running and 
 analyzing a single experiment in real life. One vital lesson from computer 
simulations is that any data we obtain from a real experiment could easily 
have been different—perhaps very different—if we’d happened to take a  
different sample. That’s sampling variability, which is often disappointingly 
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Figure 4.5. A normally distributed population with μ = 50 and σ = 20, and, below, a scatter of points 
that’s a single random sample, N = 20, of HEAT scores taken from the population. From CIjumping.
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large. Simulations can help us build good intuitions about the extent of sam-
pling variability, and how it depends on N and other factors.

In the exercises that follow, I’ll keep thinking of X as representing HEAT 
scores, but you can, if you wish, make up your own interpretation of X and 
the sampling of X values. Perhaps X represents the time, in seconds, to carry 
out some dexterity task, and you take samples of six- year- old children and 
measure the time they take to complete the task. Or X could be the number 
of seeds in the large seed pod of a particular type of tree, and to take a sample 
you find N seed pods in the forest.

 4.19 We’ll now work towards generating pictures like those in Figure 4.6.

a. Click the Clear button and click near red 4 so Sample means and 
Dropping means are both clicked on. Take a sample. The sample mean 
appears as a green dot just below the scatter of data points.

b. Near red 4, values are shown for M and s, the sample statistics for the 
latest sample you’ve taken. Compare these with the values we’ve 
chosen for their population counterparts, μ and σ.

  4.20 Click Take sample a few times. The means drop down the screen, as in 
Figure 4.6. Watch the values bounce around, and compare them with 
the μ value you set. Each click is equivalent to running an experiment, 
meaning you take a new sample of size N, obtain the HEAT scores for those 
N students, then calculate M and s. Click Run- Stop and watch the sample 
means dance down the screen. It’s the dance of the means, as in Figure 4.6, 
which illustrates the extent of variation or bouncing around of the mean, 
from sample to sample. Imagine (or play on your computer) your choice 
of backing music for the dance. It’s sampling variability in action: Enjoy!

  4.21 Click Run- Stop to stop the dance, then Clear. Now think about two 
predictions: First, if you change N, what will happen to the dance? Will 
larger N give a wider, more frenzied dance—the means tending to vary 
side- to- side more—or a narrower, more restrained dance? What about 
smaller N? Make your predictions—write them down. The two halves of 
Figure 4.6 illustrate the dance for different values of N. Are your predic-
tions consistent with what that figure shows?

  4.22 Second, what would happen if you increase or decrease σ? Any change 
to the width of the dance? Which way would it change? Lock in your 
predictions.

  4.23 Try, say, two different values of N, and two of σ, to test your predic-
tions. Which change—a different N or a different σ—tends to make more 
difference?

  4.24 Click Mean heap near red 5 to see dancing means collect into a heap of 
green dots, as Figure 4.7 illustrates. This is the sampling distribution of 
the mean, which I call  the mean heap. It’s another picture of sampling 
variability. Run the simulation to build up a good- sized heap. (Not quite 
time for a quick coffee!) Do this for at least two very different values of 
N, and keep track of how wide the heap appears: Record for each N your 
eyeball estimate of the SD of the mean heap. (To help estimate an SD, recall 
the rule of thumb that about 95% of the values in a normal distribution 
lie within 2 SDs of the mean.) Figure 4.7 shows the mean heap for two 
values of N. Should we prefer a narrow or a wide mean heap? Translate 
your conclusion into advice for a researcher who is considering what size 
sample to take.

The dance of the 
means is my name 
for a sequence of 
sample means falling 
down the screen.

The mean heap is 
my name for the 
sampling distribution 
of the sample mean. 
It’s a pile of green 
dots that represent 
sample means.
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Figure 4.6. Dance of the means—the dots dropping down the screen. Upper half: N = 15. Lower half: N = 60. In 
each case the population distribution is displayed at the top, and the latest sample appears as the scatter of N data 
points in a horizontal line just below.
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Figure 4.7. The mean heap, in each case after taking 175 samples. Most means are in the heap, a few are still dancing down. Upper 
half: N = 15, and my eyeball estimate of the SD of the mean heap is about 5. Lower half: N = 60, and the SD of the mean heap 
looks to be about 3.
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  4.25 Click Sampling distribution curve near red 5. The normal distribution 
displayed on the mean heap, as in the lower panel of Figure 4.8, is the 
theoretical sampling distribution of the sample mean. We can compare that with 
the mean heap, which is the empirical sampling distribution of the sample 
mean—the heap of the means we’ve taken so far. The curve is the distri-
bution theoretically predicted from knowing μ, σ, and N. (In ESCI, the 
curve is scaled vertically so it fits to the mean heap. Take more samples, 
and the mean heap and sampling distribution curve both grow higher—
but not wider; the SD of the sampling distribution remains the same.)

Quiz 4.2

1. The use of confidence intervals for estimating population parameters from sample statistics 
depends on two important assumptions. What are they?

2. To conduct random sampling,
a. participants must be selected in groups and all members in the population must have an 

equal chance of selection.
b. participants must be selected in groups and some portions of the population must be 

given a higher chance of being selected.
c. participants must be selected independently and all members in the population must have 

an equal chance of selection.
d. participants must be selected independently and some portions of the population must be 

given a higher chance of being selected.
3. The _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  is the distribution created by the 

means of many samples.
4. From exploring the dance of the means, you know that

a. due to sampling variability, any given sample might provide a poor estimate of the 
population mean.

b. even though individual sample means dance around, the distribution of sample means is 
normally distributed around the population mean.

c. the larger the sample size, the less sample means dance around the population mean.
d. All of the above.

5. The larger the value of σ, the more /  less sample means tend to vary from the 
population mean.

6. The theoretical sampling distribution of the sample mean is a normal /  non- normal 
distribution that has larger /  smaller spread than the population distribution.

THE STANDARD ERROR

Here comes the next important idea: The SD of the sampling distribution of the  
sample mean is important, and so is given a name: It’s called the standard error 
(SE). The SE summarizes the breadth or spread of the mean heap—or its curve. 
It’s a measure of sampling variability. Yes, the SE is a particular case of an SD. 
That continues to confuse many people, so you can feel a tiny bit smug when 
you understand. It’s worth making a chant. Dismay your friends at parties by 
intoning: “The standard error is the standard deviation of the sampling distri-
bution of the sample mean.” You can easily explain by pointing to the mean 
heap, and the vital distinction between population and sample—between the 
normal distribution in the upper panel (the population) and that in the lower 
panel (the sampling distribution of the mean) in Figure 4.8.

The standard error is the standard deviation of the sampling distribution of the sample mean.

Take an infinite 
number of 
samples: The 
distribution of 
their means is 
the theoretical 
sampling 
distribution 
of the sample 
mean. (The 
mean heap is 
my name for 
the empirical 
sampling 
distribution 
of the 
sample mean.)

A chant: “The 
standard error is the 
standard deviation 
of the sampling 
distribution of the 
sample mean.”
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Happily, the formula is reasonably simple. Here it is:

 SE = σ
N  (4.3)

where, as usual, σ is population SD and N is sample size. Here I’m still assum-
ing we know σ, and therefore can use that formula. In practice we hardly 
ever know σ, and in Chapter 5 we’ll find how to drop the assumption that 
σ is known.

The SE formula is vital, and one you need to explore and remember. 
Informally, think of the SE as telling us roughly how far from the population 
mean the sample means are likely to fall.

  4.26 Click SE lines near red 5 and see vertical lines marking SE units across 
the sampling distribution curve, as in the lower panel of Figure 4.8. Do 
these look as though they are the z lines marking SD units of that normal 
distribution?

  4.27 Near red 5 find Curve SE and note its value. The popout comment explains 
that it’s the SE of the sampling distribution curve. Does it change if you 
take further samples? Explain.
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Figure 4.8. The upper panel displays the population distribution, with lines marking SD units, showing 
σ = 20. Below is the mean heap of 300 sample means. The superimposed curve is the theoretical 
sampling  distribution of  the mean, with  lines marking  standard  error  (SE)  units.  In  this  example, 
N = 15 and SE = σ/ N  = 20/ 15  = 5.16.

Formula for SE.



86

Th
e 

N
or

m
al

 D
is

tr
ib

ut
io

n 
an

d 
Sa

m
pl

in
g

  4.28 Click SD lines near red 2 (if necessary, click Population and unclick Fill 
random). SD lines for the population curve are displayed, as in the upper 
panel of Figure 4.8. Compare these with the SE lines for the sampling 
distribution curve in the lower panel. In each case you can regard the 
lines as z lines for the respective normal distributions. (To see the sampling 
distribution curve more clearly, unclick Sample means near red 4.)

The sampling distribution of the mean is normally distributed—as the 
curve on the mean heap illustrates—with mean μ and SD of σ/ N . Therefore, 
SE = σ/ N , which is Equation 4.3, a vital formula to remember. Post it to your 
social media site, for safe- keeping? The mean heap and its curve are centered 
symmetrically under the population. The SD of that curve is smaller than that 
of the population—by a factor of N . As I said, the SE is a particular case of an 
SD. Note how I’m deliberately talking about SE and SD all at once—not trying 
to confuse you, but to warn you that people often don’t speak or write clearly 
about the SE. Just remember that our chant says it all: “The SE is the SD of the 
sampling distribution of M.” Here’s an even simpler version: “The SE is the SD 
of the mean heap.”

If N is made four times bigger, N  becomes twice as large, so the SE 
should be halved.  Compare the lower halves of Figures 4.6 and 4.7, for which 
N = 60, with the upper halves, for which N = 15. Does the lower dance seem 
about half as varied, half as wide as the upper? The lower mean heap about 
half as wide as the upper? Unfortunately, to halve the amount of variation we 
need to take a sample four times as big. That’s bad news for researchers trying 
to make precise estimates because, as we’ll see, the SE determines precision. 
A broad mean heap signals a large SE and imprecise estimates. Perhaps you are 
reminded of the approximate guideline in Chapter 1, that using N four times 
as large is likely to give a CI about half as long? If so, well done—that’s a great 
intuition, because CI length depends heavily on the SE.

We like greater precision, so we like a restrained, narrow dance of the 
means, a narrow mean heap, a small SE and, therefore, a large N. When I ask 
my classes “What do you want for your birthday?”, they know to answer 
immediately “Big N!”

  4.29 Use the values of σ and N that you set, which are shown near red 1 and 
red 4, to calculate SE. Check that the value shown at Curve SE is correct.

  4.30 Suppose HEAT scores have population mean 50 and SD of 20 in your 
country. For samples with N = 30, what is the SE? Use the formula to 
calculate it, then use ESCI to check. Describe the sampling distribution 
of the mean.

4.31  That’s a typical textbook problem. Invent and solve a few more. Swap 
with a friend.

4.32 Someone asks “What’s a standard error?” How do you respond?
  4.33 Make up some exercises for discovery learning of the SE = σ/ N  relation. 

You could suggest first making predictions, or guesstimates, of the SE of 
the mean heap (and the sampling distribution curve) for a few widely 
separated values of N of your own choosing. Turn off Sampling distri-
bution curve, then, for each of those N values, take at least 50 samples 
and eyeball the SD of the mean heap—which, as you know, is the SE. 
See Figure 4.8. Compare those eyeballed estimates with the ESCI values 
near red 5 for the Mean heap SE, which is the SE of the displayed mean 

A formula to 
remember is   
SE = σ/ N . The SE 
varies inversely as 
the square root of 
sample size.

To halve the SE, we 
need N that’s four 
times as large.
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heap. What does a sketched graph of those SE values against N look like? 
How accurate were the original predictions? Find someone who doesn’t 
know about SE to try out your exercises.

We’ve come a long way on our journey towards calculating CIs. We’ve 
seen a dance and a heap, both of which are pictures of sampling variability. 
We’ve discovered the SE, which is a measure of sampling variability, and have 
a formula for calculating it. Now for some magic, before we jump to the next 
chapter for MoE and CIs. Do you recall the excellent question asking why the 
sampling distribution of the mean is normal in shape?

SOME STATISTICAL MAGIC: THE CENTRAL LIMIT 
THEOREM

Why do statisticians choose the normal distribution as a statistical model? 
Because of the central limit theorem, which is a central result in theoretical sta-
tistics. Consider this example: Suppose T is the time it takes you to get home 
from your workplace or campus, and therefore T is the sum (i.e., total) of the 
times it takes for all the components of the journey. Perhaps these are: T

1
, 

time to walk from your desk to the elevator; T
2
, waiting time until an elevator 

arrives; T
3
, time the elevator takes to deliver you to the ground floor; … lots 

more components, including T
i
, time spent traveling on the bus; … T

N
, time 

taken to unlock the door of your home and step inside. Therefore,

T = T
1
 + T

2
 + T

3
 + … T

i
 +… T

N

Each of the T
i
 is likely to vary from day to day, and will influence how T, 

the sum of  all the T
i
, varies from day to day. Let’s assume that all the T

i
 are 

independent, meaning that they don’t influence each other on any particular 
day. That assumption may not be realistic—for example, on a wet day many are 
likely to be longer—but for now we’ll assume independence anyway. The central 
limit theorem says this amazing thing: The distribution of T, the total time, is 
approximately normal. Most remarkably, this is the case almost regardless of the 
distributions of the various T

i
! The times for the components of my journey may 

vary in all sorts of different ways, but, provided they are all independent, their 
sum is approximately normally distributed. The normal distribution appears out 
of thin air, and therefore represents some fundamental aspect of the universe.

The theorem also states that the more components there are to be added—
the larger N is—the closer the distribution of T to the normal. Also, the the-
orem applies if T is the mean, rather than the sum, of the T

i
—which isn’t too 

surprising, because the mean is just the sum divided by N.
The upper panel of Figure 4.8 shows the population of HEAT scores and 

the lower panel, a heap of sample means. The central limit theorem tells us 
that the sampling distribution in the lower panel is approximately normal—for 
virtually any shape of population in the upper panel! A bit of statistical magic. Our 
sampling has been from a normal population, but the central limit theorem tells 
us that the mean heap and the sampling distribution curve (in the lower panel) 
will be close to normal, even if our population (upper panel) has some quite 
different shape, perhaps a totally weird shape. Also, with larger N (samples of 
larger size), the curve is even closer to normal.

The central limit 
theorem states 
that the sum, or the 
mean, of a number 
of independent 
variables has, 
approximately, a 
normal distribution, 
almost whatever 
the distributions of 
those variables.
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Sampling From Non- normal Populations
Let’s take samples from populations having some non- normal shapes. First 
we’ll explore a rectangular distribution, also referred to as a uniform distribution.

  4.34 Click Clear, then at red 1 click Rectangular to select that population shape. 
Display it in the upper panel, perhaps filled with dots. Can you think of 
a variable likely to have this population shape?

  4.35 With N of 20 or more, take samples—let it run for a bit—and observe the 
shape of the mean heap. Click Sampling distribution curve and compare 
that curve with the mean heap.

  4.36 Now try a very small value of N. How well does the sampling distribution 
curve fit the mean heap? In what ways does it not fit well? What happens 
if you use N = 1? Explain.

With moderate or large N, the heap of means looks to be normally dis-
tributed, even though all data points were sampled from a population with a 
distribution that’s nothing at all like normal. The smooth bell shaped curve 
appears by magic from thin air! Yes, that’s the central limit theorem in action.

When you click to display the sampling distribution curve in the lower 
panel, ESCI  uses the population values you chose for μ and σ, and sample size 
N, to calculate a normal curve for display, with mean μ and standard deviation 
of σ/ N . It does this whatever the shape of the population. Therefore, if that 
sampling distribution curve appears to fit the mean heap of sample means 
coming from a rectangular population, we have an illustration of the central 
limit theorem, and also evidence that Equation 4.3 for the SE applies for a 
rectangular as well as a normal population.

When the population is not normally distributed, the sampling distribution 
is only approximately normal, but the ESCI simulations show that the approx-
imation is surprisingly good for the rectangular distribution. Figure 4.9 shows 
what ESCI gave me when I took 550 samples with N = 3. Even for N as tiny as 3, 
much smaller than we ever wish to use in our research, the sampling distribution 
curve looks to fit the heap of means very well. For larger N, the fit is even closer.

One reason the sampling distribution here is a close approximation to the 
normal is that the population is symmetric. If the population has a skewed 
distribution, the sampling distribution is typically not so well approximated by 
the normal—at least not for smaller N. Skewed distributions come in numerous 
different shapes, but ESCI includes just one. It’s skewed to the right and you 
can choose the degree to which it is skewed.

  4.37 Repeat the last three exercises for a skewed population distribution. At red 
1 click Skew, then use the spinner to specify the amount of skew. Observe 
the shape for all the values available, from 0.1 to 1. Do Exercises 4.34– 4.36 
for small skew and for large skew.

Figure 4.10 shows what ESCI gave me when I took 400 samples of size 
N = 6, from a skewed population, with skew spinner set to 0.7. As usual, 
I used μ = 50 and σ = 20. In the lower panel, compare the normal sampling 
distribution curve and the mean heap: The heap looks to be closer to nor-
mal in shape than the population, but is still positively skewed. Its peak is 

For larger samples 
(larger N) the 
sampling distribution 
of the sample 
mean is closer to 
normally distributed, 
with mean μ and 
standard deviation 
of σ/ N .
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a little to the left of the mean of the sampling distribution curve and 
it has dots on the right, suggesting a tail to the right. The left tail of 
the curve, however, looks to be empty of sample means. Even so, the 
fit of the curve to the mean heap is not terrible. With N even smaller 
than 6, the mean heap is more different from normal, and with larger 
N, as we’d always hope, the normal sampling distribution is a better 
approximation to the mean heap. With a smaller amount of skew, the 
fit will also be closer.

It’s an important conclusion that sampling distributions of the mean 
are often normal, or closely approximated by a normal distribution, at 
least unless samples are very small. It’s important because much of the 
standard statistical theory that underlies CIs and other aspects of statis-
tical inference assumes that sampling distributions are normal. Yes, we 
often assume that populations are normal, which guarantees that the sampling 
distribution of the mean is normal. But even if a population departs somewhat 
from normal, the sampling distribution is likely to be close to normal—thanks 
to the central limit theorem. And having a normal sampling distribution is 
often the crucial thing for our statistical techniques. It implies, for example, 
that we can routinely use Equation 4.3 in most common situations.
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Figure 4.9. Sampling from a population with a rectangular distribution. The lower panel displays the 
means of 550 samples of size N = 3. The latest sample is the 3 dots just below the population. The 
curve is the normally distributed sampling distribution calculated using μ = 50, σ = 20, and N = 3, so 
the curve has mean of 50 and SD of 20/ 3  = 11.55.

Thanks to the central 
limit theorem, the 
sampling distribution 
of sample means 
is often close to 
normally distributed, 
even for non- normal 
populations.
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Figure 4.10. Sampling from a population with strong right skew. The lower panel displays the means 
of 400 samples of size N = 6. The curve is the normally distributed sampling distribution calculated 
using μ = 50, σ = 20, and N = 6, so the curve has mean of 50 and SD of 20/ 6  = 8.16.

That’s the good news, but we still need to be alert for cases in which the 
sampling distribution may not be close to normal. One case to watch for is the 
combination of strong skew and small samples. Chapter 16 has more on these 
issues, but until then I’ll generally assume the central limit theorem gives us 
sampling distributions that are sufficiently close to normal for us to use the 
standard methods for estimation. These are coming soon.

The Normal Distribution in the World
Think of my “journey home” example, in which total time T is approximately 
normally  distributed, even though it’s the sum of many components that 
differ greatly. The individual components may have all sorts of different dis-
tributions, but, if they are independent, the central limit theorem can do its 
work. It turns out that quite a few variables in the world have approximately a 
normal distribution, probably because they are a bit like T. Suppose the length 
of an adult’s arm, or the time it takes a penguin egg to hatch, are determined 
by the addition of lots of independent influences—maybe various genes, food 
habits, temperature and other environmental factors, perhaps some random 
influences, and so on—then we can expect arm length or egg hatching time to 
be approximately normally distributed. Provided enough of the influences are 
independent, and that they add to give total length or hatching time, then the 
central limit theorem applies. No doubt mere addition of independent influences 

Thanks to the central 
limit theorem, 
many—although far 
from all—variables 
in the world have, 
approximately, a 
normal distribution.
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is much too simplistic a biological model, but the idea probably does explain 
why the normal distribution often appears in nature, at least approximately. 
The central limit theorem and the normal distribution do seem to express some 
basic aspects of how the natural world functions.

Enjoy and marvel at the central limit theorem, which gives meaning to 
the beautiful normal curve, and links it firmly to real life. It’s also the basis for 
most of what we’ll do in statistics.

It’s nearly time for MoE and CIs, but they deserve a new chapter. So it’s 
time to write your take- home messages for this chapter. To help you think 
back over this chapter and to give a couple of hints about Chapter 5, here are 
a few more exercises.

4.38 What’s the total area under a normal distribution and what does it rep-
resent? How much of it lies within 3 SDs of the mean?

4.39 Remarkably, scores on a number of standard tests of IQ have for decades 
been increasing at an average rate of about 3 points per decade, meaning 
an increase of 15 points, a full SD, over the last 50 years (Flynn, 2012). 
This is the Flynn effect, named for the New Zealand scholar James Flynn. 
Therefore, if an IQ test is to remain current, and continue to give a mean 
of 100 in the general adult population, it needs to be revised periodically. 
Later versions will need to be more difficult, so a person at the population 
mean still scores 100. Suppose we have 2005 and 2015 versions of an IQ 
test, each with mean 100 and SD of 15 in the general adult population 
at the date the version was published. Assuming an increase of 3 points 
per decade, we would expect someone who now scores 100 on the 2015 
version to score higher on the 2005 version, also taken now. How much 
higher? Why?

4.40 With the same assumptions, consider testing people from the general 
adult population in 2015.

a. What proportion of these people would you expect to score above 
100 on the 2015 version? (Assume IQ score is a continuous variable.) 
What proportion above 130?

b. If the same people were also tested in 2015 on the 2005 version, what 
proportion would you expect to score above 100 on that old version? 
Above 130? Compare your answers for the two versions.

c. What thoughts do you have about testing with the 2005 version? What 
additional assumption are you making?

4.41 In the United States, a capital offender with mental retardation can avoid 
the death penalty. Scoring below 70 on an IQ test is often regarded as 
an important part of the evidence for mental retardation. If you are the 
defense lawyer for such an offender, would you wish them to be tested 
by a recently- revised test, or an old version? Explain.

4.42 Consider IQ scores with population mean = 100 and SD = 15. If N = 36, 
what is the SE? How large a sample would you need for the SE to be no 
more than 2?

4.43 A news report of a study claims that 45% of children show signs of a 
food allergy, almost double the figure of 20 years earlier. How would you 
respond?

4.44 What do you want for your birthday? Why?
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  4.45 With a normally distributed population in ESCI, take a large number of 
samples. Examine the mean heap, then turn on the sampling distribution 
curve and SE lines.

a. About what proportion of the sample means fall within 2 SEs of the 
overall mean? About what proportion of samples would you expect 
to have a sample mean that’s within 2 × SE of the population mean, 
μ? Explain.

b. If you did the same investigation of sampling with a non- normal pop-
ulation, would your answers change? Try it if you like. Explain.

4.46 Look back over the chapter. Perhaps the figures prompt useful memories. 
Revise your list of take- home messages if you wish.

Quiz 4.3

1. Sample means tend to be normally distributed around the true population mean. The 
standard deviation of the distribution of sample means is
a. the SE.
b. z.
c. X.
d. the MoE.

2. What is the formula for the SE?
3. The SE gets smaller as _ _ _ _ _ _  increases or as _ _ _ _ _  decreases.
4. The _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  states that the sum or mean of many independent 

variables will tend to be normally distributed.
5. We find that all /  many /  few /  no variables in psychology and biology have normal 

distributions, perhaps because the phenomena studied in these fields are often the sum of 
lots of independent factors.

6. For the SE to be halved, N needs to be _ _ _ _ _  times smaller /  larger. If N is 9 times larger, the 
SE will be larger /  smaller by a factor of _ _ _ _ _ .

Take- Home Messages

 ■ The probability distribution of a continuous variable X is a smooth curve that plots probability 
density against X, as in Figures 4.1 and 4.2. Areas under the curve represent probability, and 
the total area under the curve is 1.

 ■ The standard normal distribution has mean 0 and standard deviation 1. Take- home 
picture: Figure 4.2, which shows some approximate areas under the normal curve: About 34% 
of cases lie between z = 0 and z = 1, and about 95% within 2 SDs either side of the mean. 
The Normal page of ESCI provides accurate areas for any z score of a normal distribution.

 ■ Sample statistics are mean M and standard deviation s, and population parameters are 
mean μ and standard deviation σ. Equations 4.1 and 4.2 (also Equations 3.4 and 3.5) allow 
translation in either direction between X values and z scores.

 ■ We often use a statistical model that assumes random sampling from a normally distributed 
population.

 ■ Take- home movie: The dance of the means, as in Figure 4.6, which illustrates the extent of 
sampling variability.

 ■ The mean heap is a nickname for the empirical sampling distribution of the sample 
means. After a notionally infinite number of samples it becomes the theoretical sampling 
distribution, which is illustrated in ESCI by the sampling distribution curve. Take- home 
picture: The mean heap, as in Figures 4.7 and 4.8.
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 ■ For a normally distributed population, the sampling distribution of the sample means is 
normally distributed with mean μ and standard deviation of σ/ N , as in Figure 4.8.

 ■ The SD of the sampling distribution is called the standard error (SE), which prompts the chant, 
“The standard error is the standard deviation of the sampling distribution of the sample 
mean.” More briefly, “The SE is the SD of the mean heap.” The formula SE = σ/ N  is a vital 
one to remember.

 ■ The central limit theorem states that the sum, or mean, of a large number of variables that are 
independent has, approximately, a normal distribution, pretty well whatever the distributions 
of those variables.

 ■ Even for non- normal populations, the sampling distribution of the mean is often 
approximately normally distributed, thanks to the central limit theorem. For larger sample 
sizes (i.e., larger N), the sampling distribution becomes closer to normal.

 ■ Sampling distributions are not always very close to normally distributed, for example when 
the population is strongly skewed and N is small.

 ■ The central limit theorem can explain why quite a few, although far from all, variables 
occurring in nature are approximately normally distributed.

End- of- Chapter Exercises

1) For a standardized exam of statistics skill, scores are normally distributed: μ = 80, σ = 5. 
Find each student’s z score:

a. Student 1: X = 80
b. Student 2: X = 90
c. Student 3: X = 75
d. Student 4: X = 95

2) For each student in Exercise 1, use ESCI to find what percent of students did better. (Assume 
X is a continuous variable.)

3) Gabriela and Sylvia are working as a team for their university’s residential life program. They 
are both tasked with surveying students about their satisfaction with the dormitories. Today, 
Gabriela has managed to survey 25 students; Sylvia has managed to survey 36 students. 
The satisfaction scale they are using has a range from 1 to 20 and is known from previous 
surveys to have σ = 5.

a. No mathematics, just think: which sample will have the smaller SE: the one collected 
by Gabriela or the one collected by Sylvia?

b. When the two combine their data, will this shrink the SE or grow it?
c. Now calculate the SE for Gabriela’s sample, for Sylvia’s sample, and for the two samples 

combined.
d. How big a sample size is needed? Based on the combined SE you obtained, does it seem 

like the residential life program should send Gabriela and Sylvia out to collect more 
data? Why or why not? This is a judgment call, but you should be able to make relevant 
comments. Consider not only the SE but the range of the measurement.

4) Rebecca works at a nursing home. She’d like to study emotional intelligence amongst the 
seniors at the facility (her population of interest is all the seniors living at the facility). Which 
of these would represent random sampling for her study?

a. Rebecca will wait in the lobby and approach any senior who randomly passes by.
b. Rebecca will wait in the lobby. As a senior passes by she will flip a coin. If the coin lands 

heads she will ask the senior to be in the study, otherwise she will not.
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c. Rebecca will obtain a list of all the residents in the nursing home. She will randomly 
select 10% of the residents on this list; those selected will be asked to be part of the study.

d. Rebecca will obtain a list of all the residents in the nursing home. She will randomly 
select 1% of the residents on this list; those selected will be asked to be part of the study.

5) Sampling distributions are not always normally distributed, especially when the variable 
measured is highly skewed. Below are some variables that tend to have strong skew.

a. In real estate, home prices tend to be skewed. In which direction? Why might this be?
b. Scores on easy tests tend to be skewed. In which direction? Why might this be?
c. Age of death tends to be skewed. In which direction? Why might this be?
d. Number of children in a family tends to be skewed. In which direction? Why might 

this be?

6) Based on the previous exercise, what is a caution or warning sign that a variable will be 
highly skewed?

Answers to Quizzes

Quiz 4.1
1)  d; 2) b; 3) a; 4) c; 5) A continuous variable can take on any value within its range; a discrete variable can only take 

on distinct values. For example, height is a continuous variable, but number of car accidents is a discrete variable; 
6) sample, Roman, population, Greek.

Quiz 4.2
1)  normal distribution of the variable being studied and random sampling of participants; 2) c; 3) sampling 
distribution of the sample mean; 4) d; 5) more; 6) normal, smaller.

Quiz 4.3
1)  a; 2) SE = σ/ N ; 3) N, σ; 4) central limit theorem; 5) many; 6) 4, larger, smaller, 3.

Answers to In-Chapter Exercises

4.1  −2.67, 118
4.2 About 34%, or one third, between z = 0 and either z = −1 or z = 1; about 95% between z = −2 and z = 2; about 

2.5% in either tail, beyond z = −2 or z = 2; about 5% total outside z = ±2.
4.6 1.96. The approximate values in Figure 4.2 are usefully close to accurate.
4.7  .092, .068 (If you prefer to think in percentages, 9.2% and 6.8%.)
4.9 Click Two tails and position the cursors as close as possible to X = 99.5 and 100.5. The area between, which is 

the answer, is reported as .026.
4.10 Sketch a picture. Find areas for 99.5, 100.5, 114.5, and 115.5. Add or subtract areas to find the answers: .32 and 

.36.
4.11 .81, using 4.0 as the cursor position; .017, using 3.0 for the cursor.
4.12 It’s important to bear in mind any such limitation on the applicability of the normal distribution. However, if 

fit is questionable, it’s probably in the far tails that fit is most in doubt, and what happens in the far tails of a 
distribution often doesn’t matter much in practice. With mean of 4.7 and SD of 0.8, just .002 of values under the 
normal curve lie above 7.0 and only .0002 beyond 7.5, so for practical purposes the lack of perfect fit of the upper 
tail—which represents impossible GPA scores—is unlikely to be a problem.

4.19 b. Compare M and s, which are different for each sample and shown near red 4, with μ and σ shown near red 1.
4.21 Larger N gives smaller sampling variability, M values generally closer to μ, less bouncing around, more sober 

dance. Smaller N the reverse.
4.22 Larger σ means broader spread in the population, so larger sampling variability, M values generally bouncing 

around more, and a more drunken dance.
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4.23 That depends of course on the sizes of the changes to N and σ, but generally changes to σ have more dramatic 
effects.

4.24 Narrow. Larger N gives a narrower heap. This indicates smaller sampling variability, which is more desirable.
4.26 Observe that about one third of the area under the curve lies between the mean and one SE either lower or 

higher, and about 95% of the area lies within 2 SE lines below and above the mean. In other words, check that 
the lines in relation to the curve appear as in Figure 4.2. Similar proportions of dots in the mean heap should lie 
in the various intervals defined by the SE lines, which are the z lines of the sampling distribution curve. So the 
lines do appear to be z lines marking SD units for this normal distribution.

4.27 It doesn’t change as we take more samples, because the SE is the SD of the curve in the lower panel, which doesn’t 
change its spread as we take more samples.

4.29 Use SE = σ/ N .
4.30 3.65. The sampling distribution of the mean is normal, with mean = μ = 50 and SD = SE = 3.65.
4.32 You could state one of our chants, while pointing to the mean heap. Explain that the SE is the SD of that heap of 

sample means.
4.33 There’s lots of evidence that it can be a good learning strategy—for yourself or someone else—to first make 

predictions, then find what happens, then compare and draw lessons. A graph of SE against N would show SE 
dropping slowly as N increases: N four times larger means SE half the size.

4.34 Random numbers chosen from an interval, often between 0 and 1, should have a rectangular distribution because 
every value in the interval should have the same chance of occurring. The last two digits of the phone numbers, 
or license plates, of your friends are likely to be more or less random, and so have a rectangular distribution.

4.35 It fits remarkably well, although of course means cannot fall outside the range of the distribution, so the tails, or 
extreme tails, of the sampling distribution are empty.

4.36 It still fits quite well, although once again the tails are empty. With N = 1, each “sample” comprises a single point, 
so the heap of “means” is just a heap of points, and in the long run this will match the population shape, which 
here is a rectangular distribution.

4.37 Distributions of response time—the time it takes to complete some task—are often found to be positively 
skewed, perhaps as in Figure 4.1. The distribution of personal or household income is an example with strong 
right skew, because most incomes are low or medium and relatively few are high. Values from 0.1 to 1 specify 
skew that ranges from just visibly different from normal, to very strongly skewed. The sampling distribution 
normal curve is a closer fit to the mean heap for less skew and/or larger N; the mean heap is more clearly non-
normal for more skew and smaller N. With N = 1, again the sampling distribution will in the long run be the 
same as the population distribution. (The distribution with skew of 0.7 is what the Describe page uses when 
you click the Generate data button to ask for a data set with right skew. For left skew it uses a mirror image of 
that distribution.)

4.38 The total area is 1, which represents total probability, or certainty. Use Normal to find that almost all of the area, 
actually 99.7% of it, lies within 3 SDs of the mean.

4.39 We expect them to score 3 points higher, because the earlier test was easier by 3 points.
4.40 a. Testing in 2015 on the 2015 version, 50% should score above 100. I used Normal to find that 2.3% should score 

above 130; b. Testing in 2015 on the 2005 version, we expect anyone on average to score 3 points higher on the old 
version, so anyone scoring over 97 on the new version should score over 100 on the old version. The Normal page 
tells us that 57.9% score over 97 on the new and thus over 100 on the old. For 130 on the old I entered 127 into 
Normal and found 3.6% as the answer. Comparing 50% with 57.9% and 2.3% with 3.6% suggests that even fairly 
small shifts in the mean—just 3 points—can shift the percentages considerably. The most dramatic change is in 
the tail proportions—there is more than a 50% increase (from 2.3% to 3.6%) in the percentage of people scoring 
above 130; c. We’re assuming random sampling from the whole adult population, and that the average increase of 
3 points per decade is the same at every level across the distribution. Flynn (2012) discussed these and many other 
related issues, including likely causes of the effect. I’ve given answers assuming IQ is a continuous score, although 
you can easily use the Normal page to find percentages assuming IQ scores are integers. For example, to find the 
percentage of people scoring above 100, enter X = 100.5 and find 48.7% score higher.

4.41 A person is likely to score higher on an old test, so you would want your client tested on the latest reputable test 
available, which would give the best indication of their status now and, incidentally, the lowest score. If that test 
were a number of years old, you could argue that the score obtained in testing today should be reduced by 0.3 
points for each year since the test was revised and published. If no adjustment were made, a person with mental 
retardation could be executed merely because they were tested with an outdated test. A current test should 
give 2.3% of the population scoring below 70, but a ten year old test, used today, would give only 1.4% of the 
population scoring below 70—to find that value I entered 67 into the Normal page. See Flynn (2012, Chapter 4) 
for a fascinating discussion, or search online for “Flynn effect and the death penalty”. Understanding z scores and 
the normal distribution can be a life-or-death issue!

4.42 SE = σ/ N  = 15/ 36  = 2.5. Set SE = 2 and the same formula gives 2 = 15/ N , and therefore N = (15/2)2 = 56.25. 
Choose N = 57, the next highest integer, and SE will be a little less than our target of 2. Later we will use this logic 
to find how large an experiment we need to run to achieve precision as high as we would like.
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4.43 You would want to know full details of the studies on which the percentages were based. What were the 
populations of children, and how were the samples drawn? What size samples? What definition of food allergy was 
used and how were children in the samples assessed? How precise were the estimates of the percentage having 
an allergy? You would be particularly concerned that such characteristics were comparable for the two studies, 
otherwise it may not make sense to compare the old and new estimates. Think of further Open Science issues: You 
would also want to know whether either study had been selected from a number of available studies because of 
its results—perhaps a particularly low estimate 20 years ago, and a particularly high one now.

4.44 Big N, because larger samples give more precise estimates and thus better answers to our research questions.
4.45 a. About 95% of sample means should fall within 2 SEs of the overall mean, because the sampling distribution 

is normally distributed, its SD is the SE, and one of the characteristics of any normal distribution is that about 
95% of values lie within 2 SDs of the mean. The mean of the sampling distribution is μ, the population mean, 
and therefore about 95% of the sample means should lie within 2 × SE below or above μ; b. With a non-normal 
population, if the normal sampling distribution curve is a good fit to the mean heap, then same answer. In other 
cases, for example if we have a strongly skewed population and very small N, the percentage could be different.



This is the chapter in which a trumpet fanfare announces a more detailed 
discussion of CIs. At one level, most people have a reasonable idea what a CI 
tells us, as we discussed in Chapter 1. However, at a deeper level CIs are tricky 
and it’s fascinating as well as important to try to understand them well. In this 
chapter I discuss four ways to think about and interpret CIs. Here’s the agenda:

 ■ Errors of estimation and MoE
 ■ Trumpets for CIs, and the dance of the CIs
 ■ The t distribution
 ■ An interlude on randomness
 ■ Effect sizes
 ■ Four ways to think about and interpret CIs

These are all ideas at the heart of estimation, and, therefore, at the heart 
of this book. We’ll see more dancing and, as usual, pictures and simulations 
will help us develop good statistical intuitions.

DISCUSSING CIS INFORMALLY

I started Chapter 1 with this example: “You read this in the news:

“Public support for Proposition A is 53%, in a poll with a 2% margin of error.”

We summarized the result as “53% support, 95% CI [51, 55]”. Figure 5.1 
pictures that, with  some labels as reminders. Our point estimate of the true 
level of support in the population of likely voters is 53%. We can refer to the 
line segments either side of the mean as error bars. Each error bar has length 
MoE, the margin of error. The two error bars together picture the 95% CI. The 
total length of the CI is twice the MoE, and the ends are the lower and upper 
limits. I’ll discuss the two curves in a moment.

While discussing CIs informally, I made statements such as:

 ■ We can be 95% confident the interval [51, 55] includes the true value of 
support in the population.

 ■ MoE, which is 2%, is the largest likely error of estimation, so our point 
estimate (53%) is most likely no more than 2% away from the true value.

 ■ If we repeat the poll, using the same procedure but with a new sample, 
we’ll quite likely get a result in the original CI, although we may not.

5
Confidence Intervals and  
Effect Sizes

Error bars are the 
line segments either 
side of the mean in 
a picture of a CI. The 
length of each error 
bar is MoE.
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Just a quick reminder. I’m hoping you are now strongly in the habit of pausing, discussing, and writing whenever 
I ask questions in the text. Or any other time.

Now for the curves. The upper curve in Figure 5.1 is the same curve as in 
Figure 1.2,  which indicates how likelihood, or plausibility, varies across and 
beyond the CI. The lower curve is simply the mirror image of the upper curve, 
and the two curves make the cat’s- eye picture of a CI. That picture is fattest in the 
middle, which tells us that values around 52% to 54% are the most likely for 
the true level of support in the population, and that lower and higher values 
get progressively less likely, or less plausible, the further they are from M. I can 
add a fourth informal statement about our CI:

 ■ The cat’s- eye picture illustrates how the plausibility, or likelihood, that any 
particular value is the true value is greatest near the point estimate and 

decreases smoothly out to the limits of the CI, and in fact beyond 
those limits.

Later in this chapter I’ll develop statements like those into the 
four ways to think about CIs—which are our basis for estimation. 
Use any of those four to help you interpret any CI you read about 
or calculate. Now let’s pick up the discussion from Chapter 4. First 
we need to discuss estimation error.

ESTIMATION ERROR AND MOE

Look back at Figure 4.8. We were sampling from a population dis-
tribution of HEAT scores, assumed to be normally distributed with μ = 50   
and σ = 20. Using N = 15, we calculated the SE to be σ/ N  = 20/ 15 = 5.16, 
assuming σ = 20 is known. Later we’ll discuss a technique that allows us to drop 
that last, rather unrealistic assumption, which is good news, because in prac-
tice we rarely know σ. SE lines are displayed in the lower panel of Figure 4.8. 
Exercise 4.45 asked what proportion of sample means in a mean heap like that 
displayed in the figure would fall within 2 SEs of μ. Equivalently, what area 
under the sampling distribution curve lies between 2 SEs below and above the 
mean? Consider Figure 4.8 as you choose your answer.

MoE MoE

50 51 52 53 54 55 56
Support for Proposition A (%)

Upper
limit

Lower 
limit

M, the point estimate

Figure 5.1. The result of the poll example in Chapter 1, with error bars to picture the 95% CI. Same as 
Figure 1.1, with addition of labels and cat’s- eye picture.

The answer is about .95, or 95%, because that’s the proportion of area 
within 2 SDs of the mean of any normal distribution, and the SE is the SD of 

The cat’s-eye 
picture indicates 
how the plausibility, 
or likelihood, that 
a value is the true 
value is greatest near 
M and decreases out 
to the limits of the 
CI, and beyond.
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the sampling distribution. Again, I’m taking every opportunity to use SE and 
SD in the same sentence, so you can feel good about understanding what others 
might find confusing. Remember our chants!

 With the display of Figure 4.8 on my screen in CIjumping, near red 5 I clicked 
±MoE around μ, and near red 7 I clicked μ line. I saw the display in Figure 5.2, 
which has green vertical lines placed approximately 2 SEs either side of μ = 50. I’ll 
call those lines the MoE lines. There’s a green stripe at the bottom between them.

What is the z score corresponding to exactly 95% of the area under a normal 
distribution? We know that it’s approximately 2, but what is it more accurately? 
(Think, consult,…) Knowing that number shows you are a real statistics groupie.

It’s 1.96, because 95% of the area under any normal distribution lies within 
1.96 SDs either side of the mean. The MoE lines are placed to enclose 95% of 
the area under the sampling distribution curve so that, in the long run, 95% 
of sample means will fall between the MoE lines. The MoE lines are therefore 
positioned 1.96 × SE either side of μ—just inside the SE lines that are 2 SEs 
below and above the mean.

Now we need to focus on estimation error. Each dot in the mean heap is a 
value of M, the sample mean. How good an estimate of μ is it? The center of 
the mean heap is at μ, and the sample means, shown by the green dots, gener-
ally fall a little to the right or left of μ. The distance away they fall is (M –  μ), 
the estimation error, which is different for every sample. The mean heap, and 
the sampling distribution curve, illustrate that (i) most means fall fairly close 
to μ, so have small estimation errors; (ii) many fall a moderate distance away; 
and (iii) just a few fall in the tails of the sampling distribution, signaling large 
estimation errors.

The estimation error is (M –  μ), the distance between our point estimate based on the 
sample, and the population parameter we are estimating.

We defined MoE, the margin of error, as the largest likely estimation error. 
We usually choose “likely” to mean 95%, so there’s a 95% chance the estima-
tion error is less than MoE, and only a 5% chance we have been unlucky and 
our sample mean M falls in a tail of the sampling distribution. Because the MoE 
lines in Figure 5.2 mark the central 95% of the area under the curve, they are at 
a distance of MoE below and above μ. The 95% of means that fall between the 
lines have estimation error less than MoE. As we discussed above, the lines are 
positioned 1.96 × SE from μ. Recall the formula for SE, assuming σ is known. 
Putting it all together, we can state that

 MoE  1 96  SE  1 96 = × = ×. .
σ
N

 (5.1)

The trumpets are very close, but let me first invite you to use ESCI to 
explore MoEs and estimation errors.

 5.1 At ESCI’s CIjumping page, click near red 5 to display the mean heap, 
sampling distribution curve, and SE lines. Take samples using μ = 50, 
σ = 20, and N = 15. Near red 5 click ±MoE around μ and near red 7 click 
μ line. Your screen should resemble Figure 5.2.

5.2 What percentage of green dots do you expect will fall beyond the MoE 
lines to the left? Beyond them to the right? Explain.

The margin of error 
(MoE) is the largest 
likely estimation 
error. Choosing 
“likely” to mean 
95%, the MoE is 
1.96 × SE.

This is the 
MoE when σ is 
assumed known.
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 5.3 Click Dropping means near red 4, run the simulation, and watch how 
often a mean falls outside the MoE lines to the left or right.

a. Still assuming N = 15, state an interval of HEAT values that should in 
the long run include 95% of sample means.

 5.4 Now consider N = 36. Calculate MoE. Set N = 36 near red 4 and take 
samples.

a. Are the MoE lines positioned about where you would expect?
b. Again state an interval that in the long run should include 95% of 

sample means.
c. Make sure ±MoE around μ is clicked on, and note the MoE value 

shown near red 5. Check that it’s the same as you calculated.

 5.5 How would you expect MoE to change for different σ? Test out your 
prediction. For any value of σ you try, observe about how many green 
dots fall outside the MoE lines.

Imagine now a big drum roll…

0 10 20 30 40 50 60 70 80 90 100
X

MoE

Population

0 10 20 30 40 50 60 70 80 90 100
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MoE line

Mean 
line

MoE line

MoE

µ

Figure 5.2. Same as Figure 4.8, but with the vertical MoE lines marking the central 95% of the area 
under the sampling distribution curve. Mean, μ, is also marked with a vertical line. The stripe at the 
bottom between the MoE lines extends a distance of MoE either side of the mean μ = 50, where 
MoE = 1.96 × SE = 1.96 × 5.16 = 10.12 (assuming σ = 20 is known). In the long run, 95% of sample 
means will fall between the MoE lines.
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CALCULATING A CI: SOUND THE TRUMPETS!

Keep an eye on Figure 5.2 or ESCI as you read this paragraph. For 95% 
of means the estimation error is less than MoE, meaning that |M –  μ| 
< MoE. (The vertical bars mean absolute value, so |M –  μ| is the positive 
value of the difference, ignoring any minus sign. The absolute value is 
never less than zero.) In other words most values of M are close to μ, 
where “close to” means “less than MoE away from”. When we run ESCI 
simulations we assume μ is known, and observe lots of values of M. By 
contrast, in real life as researchers we don’t know μ—we want to estimate 
it—and have only one observed value of M. Even so, MoE can help us 
enormously. Considering our single M, where do we think μ lies? Yes, 
most likely close to our M. In fact within MoE of our M would be our best 
bet, likely to be correct for 95% of M values. If we make an interval extending 
MoE below and above our M, that interval is likely to include μ, which is what 
we’re trying to estimate. What do you think we might call such an interval?

Did that previous paragraph make the slightest sense? The argument it 
presents is at the heart of estimation, and important enough to consider in more 
detail. The ESCI simulations we’ve been using require us to assume μ and σ are 
known. Figure 5.3, by contrast, shows all we know as typical researchers: our 
single sample of N = 15 data points and their mean. Whenever you see a data set, 
as in Figure 5.3, first imagine in your mind’s eye the population, and recognize 
you don’t know its μ or σ. You usually don’t even know whether it’s normally 
distributed, although here we’re assuming it is. Next, visualize the dance of 
the means and the mean heap. We have a single green dot, but it’s randomly 
chosen from the infinite dance. The width of the dance—the amount the means 
bounce around from side to side—or the width of the mean heap, would tell 
us how far our M might be from the μ we want to estimate.

We use our M to estimate μ, and we know most values of M are close to μ. 
Therefore, for most samples μ is not far away from our M, in fact, within MoE 
of our M. If we mark out an interval extending MoE either side of our M, for 
most samples we’ll include μ. Sound the trumpets! As I’m sure you’ve guessed, 
that interval is the confidence interval (CI).

We define the interval [M –  MoE, M + MoE] as the CI. In 95% of cases, 
that interval will include the unknown population mean μ. That’s the interval 
we want, and the reason for trumpets. The formal definition is:

The 95% confidence interval (CI) is an interval calculated from sample data that’s one from 
an infinite sequence, 95% of which include the population parameter. For example, the CI on 
the sample mean is [M –  MoE, M + MoE]. In the long run, 95% of such intervals include μ.

For 95% of samples, 
|M –  μ| < MoE, 
meaning that for 
most samples M is 
close to μ. Therefore 
in most cases μ is 
close to M.
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Sample mean, M

Figure 5.3. All a researcher knows: A single sample of N = 15 data points and their mean, M = 52.5.
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The level of 
confidence, or 
confidence level, 
is the 95 in “95% 
CI”. It specifies how 
confident we can be 
that our CI includes 
the population 
parameter μ.

This gives the 
C% CI when σ is 
assumed known.

Recall Equation 5.1, which stated that MoE = 1.96 × SE = 1.96 × σ/ N . 
Therefore the 95% CI is:

 M
N

M
N

− × + ×








1 96 1 96. , .

σ σ  (5.2)

For eyeballing purposes, you can use 2 in place of 1.96.
As a first example, consider Figure 5.2. MoE is 10.12 and therefore if we 

observe M = 52.50, which is the sample mean in Figure 5.3, we can calculate 
our 95% CI to be [52.50 − 10.12, 52.50 + 10.12], which is [42.38, 62.62]. It 
easily includes μ = 50, because our M did not fall in either of the tails outside 
the MoE lines.

We’ve been using the fact that any normal distribution has 95% of its area 
between z = −1.96 and z = 1.96. I’ll write that as z

.95
 = 1.96, where the “.95” 

refers to the area captured by that value of z below and above the mean of a 
normal distribution. Can you use ESCI’s Normal page to find the value of z

.99
?

Simply click to select Two tails and Areas, and move the cursors until the 
central  area is .99, to find z

.99
 = 2.58. That’s important enough to be another 

number for the statistics groupies, worth remembering.

Quiz 5.1

1. Although samples can help us understand a population, the sample mean is not always equal 
to the population mean. The difference between the sample mean and the population mean 
is known as _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

2. The _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  is the typical or standard amount of estimation error, whereas the  
_ _ _ _ _ _ _ _ _  of _ _ _ _ _ _ _ _  is the largest likely estimation error.

3. For a 95% CI we find the MoE by multiplying the standard error by 1.96. Where does the 1.96 
come from?

4. Once we know the MoE, the CI is found by simply _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
5. Which of the following is (or are) true?

a. Sample means tend to be normally distributed around the true mean. That is, most sample 
means will be relatively close to the true population mean, some will be further away on 
either side, and even fewer will be quite far away on either side.

b. The SE is the standard deviation of the normal distribution of sample means around the 
true mean.

c. The MoE is based on the SE and indicates the furthest distance most sample means will 
fall from the population mean.

d. A 95% CI gives boundaries around the sample mean that indicate the largest estimation 
error likely, given the sample characteristics.

6. A 95% CI is one of a(n) _ _ _ _ _ _ _ _  sequence, _ _ _ _  % of which include the sample /  
population mean.

Level of Confidence, C
We can label the 95 as the level of confidence, C, because it specifies how confi-
dent  we can be that a CI includes μ. It’s also referred to as the confidence level. 
As you probably know we almost always choose C = 95, but other values are 
possible and you can use ESCI to experiment with them. In Equations 5.1 and 
5.2, the 1.96 value is actually z

.95
, so for the 99% CI we would simply replace 

that with z
.99

, which is 2.58. More generally, for the C% CI we would use z
C/ 100

, 
and write the C% CI as:

 M z
N

M z
N

C C− × + ×








/ /,100 100

σ σ
 (5.3)

This is the 95% 
CI when σ is 
assumed known.

For statistics 
groupies: z

.95
 = 1.96, 

meaning 95% of 
the area under the 
normal curve lies 
between z = −1.96 
and z = 1.96. Also 
z

.99
 = 2.58.
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And therefore:

 MoE 1C Cz
N

= ×/ 00
σ  (5.4)

where MoE
C
 is of course MoE for a C% CI.

You might have noticed a problem: MoE is calculated from σ but, you ask, 
how can we do that when we don’t know σ? You’re correct, but as a first step 
we’ll keep assuming σ is known and use it to calculate MoE and the CI. Later 
I’ll introduce a way to avoid that assumption about knowing σ. OK, formula 
overload—time for some ESCI play.

 5.6 Near red 5 click ±MoE around μ, and red 7 click μ line. With N = 15, take 
samples. Compare with Figure 5.4, upper panel. Do you have any means 
beyond MoE? What percentage would you expect in the long run?

 5.7 The green stripe at the bottom has length 2 × MoE. We place a line of that 
length over each sample mean, to mark an interval extending MoE either 
side of the mean.  Near red 6 click Known and CIs, and there they are. 
Run the simulation and enjoy the dance of the CIs. Music? Compare with 
Figure 5.4, lower panel.

 5.8 A CI includes μ, or captures μ, every time, unless the sample mean falls 
outside the MoE lines. Run the simulation and watch. What percentage 
of CIs will in the long run miss μ? What percentage will miss to the left? 
To the right?

 5.9 Unclick ±MoE around μ to remove the MoE lines. Near red 7, in 
the purple area, click Capture of μ. (μ line must also be clicked 
on.) The CIs all change color. If a CI doesn’t capture μ, it’s red. 
Do you have any red CIs? Explain what a red CI means.

 5.10 Run the simulation, enjoy the dance of the CIs to your favorite 
music, and watch Percent capturing μ near red 7. What happens 
near the start of a run? What happens after a minute or two? 
After 10 minutes? After an hour or more?

 5.11 Run it again with a very small value of N, and then with N = 100, 
the maximum ESCI allows. What can you say about the extent 
of bouncing around? Does the length of a single CI tell you 
anything about the bouncing, the width of the dance?

How should we interpret a CI? The dance of the CIs gives the 
basic answer. Our CI is one of an infinite sequence of possible CIs 
generated from the infinite sequence of possible samples, any one of which 
we might have obtained in our experiment. In the long run, 95% of those CIs 
will capture μ, and 5% will miss and be red in ESCI.

It’s a basic CI slogan: “It might be red!” We can be 95% confident that our CI  
captures μ, but it might be red. In your lifetime of calculating and reading and 
considering numerous 95% CIs, around 95% will include the population param-
eters they estimate, and 5% will be red. In other words, on average 19 out of 20 
will include the parameter and just 1 will miss and be red. Occasionally you’ll 
find an opinion poll report such as “Support for the proposition was 53%, plus 
or minus 2%, 19 times out of 20”—this is what that last comment is referencing.

It’s a great convenience that ESCI can display in red the CIs that miss μ. 
Alas, in real life CIs don’t come in color: You can never be sure whether any 
particular CI should be red or not.

This gives the MoE 
for a C% CI, σ 
assumed known.

The dance of 
the confidence 
intervals is the 
sequence of CIs for 
successive samples, 
as in Figure 5.4, 
lower panel.

For any CI, bear in 
mind “It might be 
red!” It might be one 
of the intervals that 
doesn’t capture μ, 
although in real life 
we’ll never know.
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5.12 What would you expect if we change C, the level of confidence? Would 
99% CIs be shorter or longer than 95% CIs? For higher confidence of 
capturing μ, would you need a smaller or a larger net? What about 90% 
or 80% CIs? Note down your predictions.

 5.13 Near red 6 is the spinner to set C. Read the popout. Change C and test 
your predictions. Does it make sense that CIs sometimes change color as 
you change C? Explain. (Note: The spinner will give you values up to 99, 
but you can type in values up to 99.9. Type in a value, then press Enter.)

µ
0 10 20 30 40 50 60 70 80 90 100

X

For every sample, 
CI extends MoE 
either side of M

For this sample, CI 
does not capture µ

For most samples, 
CI captures µ

For this sample, CI 
does not capture µ

µ
0 10 20 30 40 50 60 70 80 90 100

X

MoE lines mark a 
distance of MoE below 

and above µ

Figure 5.4. Dance of the means for N = 15, with the same dance in the two panels. A vertical line marks 
μ = 50. In each half of the figure a stripe at the bottom extends MoE either side of μ, and the green MoE 
lines are displayed. Most means fall between those lines, just two happen to fall outside them. In the 
lower half, error bars of length MoE either side of each mean are displayed: These are the 95% CIs, and 
this is the dance of the CIs. Most CIs capture μ; only for the two means falling outside the MoE lines does 
the CI fail to include μ.

For larger 
C, the CI is 
longer, for 
smaller C it is 
shorter. A 99% 
CI is longer 
than a 95% CI.
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 5.14 Play around with C. Think back to Figure 4.8, the mean heap, and MoEs 
and the percentage of the mean heap the MoE lines include. Any surprises 
as you vary C?

5.15 Suppose you take a sample of N = 25 IQ scores and observe M = 106.6.

a. Calculate the 95% CI for the mean of the population from which 
the sample came. Use σ = 15, as usual for IQ scores. What might you 
conclude?

b. Calculate the 99% CI. Compare the lengths of the two intervals. What 
might you conclude?

 5.16 These are typical textbook problems. Invent a few more, as varied as you 
can, and swap with a fellow learner. Perhaps use HEAT scores because 
they fit conveniently on the CIjumping X axis, so you can use ESCI to 
check your answers.

In Chapter 1 we discussed how estimation can answer many research ques-
tions. Since then you have played with simulations of sampling and calculated 
your first CIs. You therefore know the fundamentals of estimation and the 
main job of the book is done. From here on, we investigate how to use those 
fundamentals of estimation in different situations. You can feel very positive 
about reaching this point. Reward yourself with more CIjumping!

The next step is to find a way to avoid assuming σ is known, so we can 
calculate CIs for realistic situations. For this we need the t distribution.

THE t DISTRIBUTION

Refer back to Figure 5.2. For any M, we can consider a z score that tells us 
where that sample mean falls in the sampling distribution. We need Equation 
4.1—here it is again:

 z
X

=
− µ
σ

 (4.1)

Apply that to our latest M in Figure 5.2. The z we want refers to the sam-
pling distribution curve, which is a normal distribution with mean μ and SD 
of SE = σ/ N . Therefore,

 z
M

N
=

− µ
σ

 (5.5)

Does that make sense? The MoE lines mark where that z equals ± z
.95

, which 
is ±1.96.

Now suppose we don’t know σ, as is usually the case. Our best information 
about σ will be s, the SD of our sample. We’ll need to use our s to estimate σ, 
so we can calculate a CI for μ. Rather than using the z score for our sample, 
which needs σ, I’ll define a value of t instead. This is calculated in the same 
way, but uses s in place of σ:

 t
M

s N
=

− µ  (5.6)

Does z vary from sample to sample? Does t?

Calculating t for 
sample mean M.

Calculate z from X.

Calculating z for 
sample mean M.
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The quantity defined 
by Equation 5.6 has 
a t distribution, with 
df = (N –  1) degrees 
of freedom.

t
.95

(df) 
defines the 
central 95% 
of the area 
under the t 
distribution 
with df 
degrees of 
freedom.

Yes and yes! Of course z varies, because M varies. In a sense t varies more, 
because t depends on both M and s, and both of these vary from sample to 
sample. Perhaps that makes it not so surprising that the distribution of t is a bit 
more complicated than the distribution of z, which is, of course, the normal 
distribution.

The statisticians tell us that t, as defined by Equation 5.6, has what they 
call a t distribution, sometimes called “Student’s t distribution”. There’s actually 
a whole family of t distributions, and to select the one we need we have to 
specify a parameter called the degrees of freedom (df). In our situation there are 
(N –  1) degrees of freedom, so we specify df = (N –  1).

What’s this weird “degrees of freedom” number? Please hold that ques-
tion for a moment while we use ESCI to see some t distributions. I promise to 
come back to it.

 5.17 Open ESCI’s Normal and t page, unclick all checkboxes, click at red 1 
on t, and watch what happens to the red curve as you play around with 
the df spinner near red 1. You are visiting the family of t distributions.

 5.18 At red 1 click on t and z.What are the two curves? Again change df. What 
happens? Describe the t distribution in relation to the normal, and describe 
how that relation changes with df.

 5.19 We used z
.95

 to refer to the value of z that defines the central 95% of 
the area under a normal curve. We’ll use t

.95
(df) to refer to the t value 

that defines the central 95% of the  area under the t distribution with 
the stated df. Set df = 14, click Two tails at red 2, click Areas, and move 
the large slider to find t

.95
(14). Compare with Figure 5.5. Find t

.99
(14).

 5.20 Find t
.95

(3), t
.95

(9), t
.95

(29), and t
.95

(59). Compare with z
.95

. Is that what 
you would expect? Compare the pattern of t

.95
(df) values with what you 

observed about the shape of the different t distributions in Exercise 5.18.
 5.21 Many statistics textbooks include tables that allow you to look up values of 

z
C/ 100

 and t
C/ 100

(df). Instead, I provide ESCI’s Normal and t page. You could, 
if you like, make up your own table of t

.95
(df) values, for df = 1, 2, 3 ….

.025
.95

.025

.05
two tails

–5 –4 –3 –2 –1 0 1 2 3 4 5z or t

Normal
t

t distribution 

t distribution 

Normal 
distribution

t = –2.145  t = 2.145 

Probabilities
are areas
under the red
curve (t)   

Figure 5.5. The t distribution (red line) with df = 14, and the normal distribution (blue line). The cursors are set to t = ±2.145, 
which gives the two red shaded tail areas each of .025 and the central area of .95. Therefore t

.95
(14) = 2.145. From 

Normal and t.
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5.22 If you know about Excel, you may care to investigate the func-
tions NORM.S.INV() and T.INV(), which allow you to find z

C/ 100
 and   

t
C/ 100

(df), respectively. However, be careful because the formats of the 
two functions are a little different: compare “=NORM.S.INV(.975)” and  
“=T.INV(.975,14)”.

5.23 What does the Guinness brewery in Dublin have to do with the history 
of the t distribution? Why is that sometimes called “Student’s t distribu-
tion?” Search on “William Gosset” to find out.

Degrees of Freedom
I’ll give three answers to the question about degrees of freedom. First is the “trust 
me” non- answer: You have seen in ESCI that the t distribution changes shape 
with df, especially when df is small or very small. We therefore need to specify 
df so we know which t distribution to use. For a single sample, df = (N –  1).  
In other situations I’ll provide the formula for the appropriate df, which is usu-
ally strongly dependent on N. So df is simply a number we need to know so we 
can choose the appropriate t distribution for our situation.

My second answer is that we expect s to be a good estimate of σ when N 
is large, in which case df is large and you have seen that the t distribution is 
similar to the normal. The larger N is, the closer t is to normal, and the closer 
t
.95

(df) is to z
.95

. Therefore, we can think informally of df as an indicator of how 
good an estimate or approximation we have—the larger df is, the better s is as 
an estimate of σ and the closer we are to the normal distribution, which requires 
that we know σ. Large df is good, just as large N is good.

Now for my third answer, but if your eyes glaze over it’s OK to skip to the 
next section. The number of degrees of freedom is the number of separate, 
independent pieces of information we have that relate to the question at hand. 
For example, suppose I tell you I’m thinking of 4 numbers and their mean is 
7.0. If I tell you 3 of the numbers, I’m giving you fresh information, but once 
you know those 3, you can figure out the fourth, because you know the mean. 
Given the mean, there are only 3 degrees of freedom in my set of 4 numbers. 
Now consider s as an estimate of σ. The df tells us how many independent pieces 
of information s provides. Recall Equation 3.3 for s:

 s
X M

N

i
=

−( )
−

∑ 2

1
 (3.3)

The addition is of a number of terms, all like (X
i
 –  M)2. In fact, N terms are 

added, one for  each data point. Each of these provides information about σ 
because each is a measure of how far away a particular X

i
 is from the sample 

mean. However, as in my example with 4 numbers, calculating M from those 
N data points, X

1
 to X

N
, uses up one degree of freedom and so, even though we 

add N terms in the course of calculating s, they provide only (N –  1) separate 
pieces of information. Once M has been calculated, only the first (N –  1) of the 
(X

i
 –  M)2 terms are free to vary, then the Nth term is set by the requirement 

that X
1
 to X

N
 have mean M. Therefore, df = (N –  1). Incidentally, s having (N –  

1) degrees of freedom for the estimation of σ is related to why (N –  1) appears 
in Equations 3.2 and 3.3. In general, the larger df is—the larger the amount of 
relevant information we have—the closer t is to normal, and the happier we 
are. Now back to CIs, the reason for all this t and df business.

This formula gives 
the standard 
deviation, s.

The number of 
degrees of freedom, 
df, is the number 
of separate, 
relevant pieces of 
information that are 
available.
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This is the C% 
CI when σ is 
not known.

This is the MoE 
for the C% CI, σ 
not known.

This is the MoE 
for the 95% CI, σ 
not known.

CIs When σ is not Known
Almost always in practice we don’t know σ, so need to use s, the SD of our 
sample. To calculate CIs and MoE we use Equations 5.3 and 5.4, but with  
t
C/ 100

(df) in place of z
C/ 100

 and s in place of σ. Making those substitutions gives us 
the C% CI when σ is not known:

 M t df
s

N
M t df

s

N
C C− × + ×









/ /( ) , ( )100 100  (5.7)

And therefore:

 MoE  1C Ct df
s

N
= ( ) ×/ 00  (5.8)

Usually we want the 95% CI, for which

 MoE  t  95= ( ) ×. df
s

N
 (5.9)

Let’s watch those formulas in action.

 5.24 Click back to CIjumping. Still assuming μ = 50 and σ = 20, take samples 
with N = 15 and display the dance of the means. Near red 6 make sure 
C = 95 and that Assume σ is: Known is selected. Click CIs. Near red 7 
click μ line and Capture of μ. Take more samples and enjoy the dance 
of the CIs. Compare with the upper half of Figure 5.6. What can you say 
about the lengths of the CIs? Explain.

 5.25 Stop the dance and select Assume σ is: Unknown. Compare with 
Figure 5.6, lower half. Click on and off a few times and watch carefully. 
If we drop the assumption that σ is known we are being much more 
realistic. MoE for each sample is now calculated using that sample’s s to 
estimate σ. What can you say about the lengths of the CIs? Explain.

5.26 Every sample has its own s, so the CIs vary in length from sample to sam-
ple. What would happen for N = 10, or even smaller? Would s vary more 
or less, from sample to sample? Would s typically be a better or worse 
estimate of σ? Would you expect CI length to vary more, or less, from 
sample to sample? What about N = 100? Lock in your predictions.

 5.27 Experiment to test your predictions. Eyeball the amount of variation in 
CI length with very small N, and large N. Compare and explain.

5.28 Recall the Pen– Laptop study we discussed in Chapters 2 and 3.

a. For the Laptop group, N
2
 = 31, and for transcription scores, M

2
 = 14.52 

and s
2
 = 7.29, as Figures 3.6 and 3.9 illustrated. (I’m referring to Laptop 

as Group 2, for consistency with the discussion of the whole study in 
Chapter 7.) Calculate the 95% CI, of course without knowing σ.

b. Do the same for the Pen group, for which, as we’ll see in Chapter 7, 
N

1
 = 34, and for transcription scores, M

1
 = 8.81 and s

1
 = 4.75.

5.29 Suppose the Pen group had N
1
 = 136 and happened to obtain M

1
 = 8.81 

and s
1
 = 4.75 as before.

a. How does this value of N
1
 compare with the first value? How do you 

expect the CI with this new N
1
 to compare with the first CI? Explain.

b. Calculate the CI using this new N
1
. Compare with the first CI. Comment.

5.30 Invent a few more textbook problems like those, as varied as you can, 
and swap with a friend. Compare answers and discuss.
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After all these simulations we should once again remind ourselves what a 
researcher typically knows: just the data from one study, as in Figure 5.3. Now, 
however, the researcher can calculate the CI, as in Figure 5.7. I mentioned 
earlier that, when seeing a data set, we should think about what population 
lies behind the data, and the dance of the means. Now we can add thinking 
about the dance of the CIs. As before, we always need to be aware of what we 
easily could have obtained instead. The dance of the CIs reminds us that our 
CI could have been different, perhaps very different. And that it just might be 
… what color?

Yes, it could be one of the 5% in the dance that are red, although we’ll 
never know.

µ
0 10 20 30 40 50 60 70 80 90 100

X

In this panel, σ is 
assumed   

known

The CIs are the 
same length for 

every sample

For most samples, 
CI captures µ

For this sample, CI 
does not capture µ

so in ESCI is red  

For this sample, CI 
does not capture µ

so in ESCI is red  

µ
0 10 20 30 40 50 60 70 80 90 100

X

The CIs vary in 
length from 

sample to sample

For this sample, CI 
does not capture µ

so in ESCI is red  

For most samples, 
CI captures µ

For this sample, CI 
does capture µ

In this panel, σ is 
assumed not

known

Figure 5.6. Dance of the CIs, N = 15, for the same set of means in the two panels and in Figure 5.4. CIs that 
miss μ are red. Upper panel: Assuming σ is known, all CIs are the same length. Lower panel: That assumption is 
dropped and each CI is calculated using s for that sample, so the CIs vary in length. Whether a CI captures μ or 
not may change when the assumption about σ changes, as here for the bottom sample.
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X

95% CI

Figure 5.7. All a researcher knows: The data points of a single sample with N = 15, as shown in Figure 5.3, 
but now the 95% CI has been calculated, using s.

In the short run, a 
random sequence 
is likely to appear 
lumpy, with enticing 
fragments of 
patterns. Beware 
faces in the clouds!

5.31 Figure 5.7 is the same as Figure 5.3, but now we have calculated the 95% 
CI, using s from our data points. Focus on that CI. What two aspects of 
the dance of the means does our CI tell us about?

RANDOMNESS

Before discussing different ways to think about CIs, I’d like to say a few more 
words about randomness. In Chapter 2 I talked about seeing faces in the 
clouds—our mind’s eye wants to find meaning even in random swirls of 
clouds. People generally have poor intuitions about randomness. As well as 
seeing patterns where there are none, they make predictions when there’s 
no basis to predict. Poor judgments like those help keep casinos in business. 
CIjumping can’t show you how to win at the casino, but it can illustrate a 
few of the pitfalls.

The dances in ESCI illustrate the random bouncing around we expect from 
sampling variability.

 5.32 Set C = 95. Select Assume σ is: Known, so the CIs are all the same length. 
Make sure μ capture is indicated by color. Run the simulation, enjoy the 
dance of the CIs to your favorite music, watch for red CIs and watch Percent 
capturing μ near red 7. What happens to that percentage near the start of 
a run? What happens after a few minutes? After an hour?

 5.33 Do it all again without assuming σ known, so the CIs vary in length. Use a 
very low value of N, and also N = 100. If you like, try different values of C.

Watching those dances, do you see patterns? Just as we see faces in clouds, 
do the means or CIs dancing down the screen suggest glimpses of runs, or alter-
nations, or other brief patterns? We can’t help but see patterns in  randomness—
it seems that we’re just wired that way. Beware: It’s very easy to be misled by 
such apparent patterns in data that are actually random.

In the short term, randomness is lumpy, weird, surprising, totally unpre-
dictable. Short- term lumpiness explains why early in a run, after taking a small 
number of samples, the percent capturing μ is likely to differ a bit from C, and 
to fluctuate, perhaps a lot. Further into a run it’s likely to be closer to C and to 
fluctuate progressively less.

In the long run, true randomness looks very different: The percentage of 
samples for which the CI captures μ becomes close and eventually extremely 
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close to C, and there is very little or no fluctuation. And that’s true for any N, 
any C, and whether or not you assume σ is known. Yes, the formulas for CIs 
predict extremely well how random sampling behaves—in the long run.

There is no memory in the sequence. Whether or not any CI captures μ is 
entirely  independent of any other. The effect of any early clumps simply gets 
diluted by the large number of following samples, so the overall percentage 
capturing is eventually very close to C.

You may be thinking that ESCI is just a computer program, so the samples 
can’t be truly random. You are right, but the software random number generator 
that ESCI uses gives numbers that are, for planet Earth, as close to random as 
we are likely to get. I’m happy to regard the dances as truly random.

So there’s the fascination of randomness—it’s ever surprising, locally lumpy, 
yet in the long term entirely predictable. Lumps in the randomness—faces in the 
clouds—can be enticing, and suggestive of differences or patterns. Beware—try 
not to be caught by interpreting a pattern that most likely is merely a lump in 
the randomness.

5.34 Suggest three areas in everyday life in which we could expect to see local 
lumpiness and long- term regularity, just as a random process would 
give us.

5.35 Casinos often have an electronic display near each roulette table to let 
you know the last dozen or more results given by that particular wheel. 
Why do they do this? Does it help the gambler?

EFFECT SIZES

Interpretation of CIs is not far away, but first I need to introduce a slightly 
awkward term. An effect size (ES) is the amount of anything that’s of research 
interest. Typically, it’s what our dependent variable measures in a study. 
Some examples are the percentage of verbatim transcription in a student’s 
notes, the difference between the weights I can lift with my left and right 
hands, and the time it takes to solve a crossword. The term is awkward 
because “effect” might suggest there has to be an identified cause, but that’s 
not necessary. We can calculate verbatim transcription score without con-
sidering any particular cause. Similarly, the mean systolic blood pressure 
of a group of children, the number of companies that failed to submit tax 
returns by the due date, and the ratio of good to bad cholesterol in a diet 
are all perfectly good effect sizes.

Effect size (ES) is the amount of anything that’s of research interest.

The population ES is simply the true value of an effect in the population. 
The sample ES is calculated from the data, and is typically used as our best point 
estimate of the population ES. It’s often referred to as an ES estimate.

A population effect size is the true value of an effect in the population.

A sample effect size, or effect size estimate, is calculated from sample data.

We calculate from 
our data the sample 
effect size (ES), 
and use this as our 
estimate of the 
population ES, which 
is typically what we 
would like to know.

In the long run, a 
random sequence 
gives an overall 
outcome very close 
to what we expect.
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Thinking back to our step- by- step plan for estimation near the end of 
Chapter 1, our research question (Step 1) typically asks about a population 
ES (What’s the support for Proposition A in the population of people likely to vote?). 
Step 2 requires us to identify the measure that’s most appropriate for answer-
ing that question (The percentage of likely voters who express support is …). We can 
now restate Step 2 as requiring us to state the sample ES we need to answer 
our research question. We’ll use that sample ES as our point estimate of the 
population ES specified in Step 1. Of course, we’ll also provide the CI, our 
interval estimate.

Often the research question asks about a difference, in which case the effect 
size we want is a difference. So the Pen– Laptop ES is the difference between the 
two group mean transcription scores, and the corresponding interval estimate 
is the CI on that difference.

Note that people use “effect size” to refer to the measure (The ES we’ll use 
is the percentage of likely voters.) and also to a particular value (The ES was 53%.). 
Usually that won’t cause a problem, but be aware of the two possible mean-
ings of ES. Sometimes I’ll refer to an “effect size measure” if that seems clearer. 
Often it takes careful thought to choose the most appropriate ES measures 
when designing a study.

5.36 Study Figure 5.7 again. That’s all a researcher knows. That’s all that’s 
available for the report of a study. Whenever you see such a figure you 
should bring to mind two underlying things to illuminate how you think 
about the results. What are they? Hint: Look back to Figure 5.3 and the 
discussion of that.

5.37 In Figure 5.7, what’s the sample ES? The population ES? In each case, do 
we know it, or do we wish to know it?

Quiz 5.2

1. State whether each of the following statements is true or false.
a. Although we typically calculate a 95% CI, we can calculate CIs for any level of confidence 

desired.
b. Compared to a 95% CI, a 99% CI will be longer.
c. For a given level of confidence, we find the z score corresponding to our selected 

percentage of cases in the normal distribution, then use that z to help calculate the MoE.
2. When the population standard deviation is not known, we must estimate it using the sample 

standard deviation. Then, when calculating a CI we use _ _ _  rather than _ _ _  to help find 
the MoE.

3. The t distribution is more complex than the z distribution—it depends on the _ _ _ _ _ _  of _ _ _ _ _ _ . 
For small sample sizes, the t distribution is wider /  narrower than the z distribution.

4. Randomness is
a. lumpy, meaning that clusters and runs of scores can occur.
b. sometimes easy to mistake for patterned or meaningful data.
c. in the long run, going to give us what we expect.
d. All of the above.

5. A(n) _ _ _ _ _ _ _ _ _ _ _ _  is the amount of something that’s of research interest.
6. In practice, we know /  don’t know the population ES, and we know /  don’t know the sample 

ES. So we use the sample /  population ES to estimate the sample /  population ES.

7. Time for chocolate or coffee—as soon as you’ve invented a few of your own quiz questions, 
and swapped with a friend.
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INTERPRETING EFFECT SIZES AND CONFIDENCE 
INTERVALS

Back to CIs at last. In Chapter 1 I made statements like: “The poll estimated 
support in the population to be 53% [51, 55]”. Here I’ll discuss how to inter-
pret such CIs, but I included the previous short section on ESs because a CI is 
only as useful as the point estimate it tells us about. The effect size is the best 
single answer to our research question that our data can provide. Therefore, 
interpretation should refer, first, to the ES estimate (the 53%) and then to the 
CI, although we usually discuss the two together.

It may seem surprising, but even the experts are not fully agreed on how best 
to interpret CIs. Of the four ways to think about CIs that I’ll describe, only the 
first is endorsed by everyone. The others each attract quibbles or criticism from 
one expert or another. However, all four interpretations are, in my view, reason-
able and I recommend using any or all of them, as seems most illuminating in a 
particular situation. After I’ve discussed the four, Table 5.1 provides a summary.

CI Interpretation 1: Our CI Is One From the Dance
It’s always correct to think of our CI, which is [51, 55], as one from the notion-
ally  infinite sequence of intervals we’d obtain if the experiment were repeated 
indefinitely. Each interval is one randomly chosen from the dance of the CIs. 
Seeing your interval, have in your mind’s eye the dance of similar intervals. If 
your interval is short, most likely the dance is quite narrow; the longer your 
interval, the wider the dance is likely to be. Most likely your interval captures 
the parameter you wish to estimate, but, by chance, you may have an interval 
that doesn’t include the parameter, and which ESCI would show in red. Never 
forget: “It might be red!”

Some strict scholars will say only that our CI is randomly chosen from a 
dance, 95% of which include μ. They permit no comments about our particular 
interval. In practice, however, we need to interpret what we have—our single 
interval. Is that justified? My answer is that yes, it’s reasonable to interpret our 
CI, but on one important condition: It only makes sense if our CI is likely to be 
representative of the whole dance. It usually is, but I can think of two cases in 
which our CI is not likely to tell us truly about the dance. Can you think of one?

Hint: Look back at Exercises 5.26 and 5.27, which asked about the variation 
in CI length for different values of N. What happened for very small samples?

Select Assume σ is: Unknown and choose a small N, say N = 4. Watch the 
dance of  the CIs, as illustrated by Figure 5.8. CI length varies enormously—some 
intervals are more than 5 times longer than others. Therefore, the length of 
any one interval—for example, the CI we calculated from our data—may not 
give us a good idea of the uncertainty. That CI may not be representative of the 
dance, and a repeat of the study may give a CI with a very different length. We 
need N of at least, say, 6 to 8 to be reasonably happy about interpreting a CI.

I mentioned that there is a second problematic case. Think back to our 
discussion of Open Science. We need reassurance that the result we see has 
not been selected from a larger set of results on our question of interest. If the 
study had been run several times it would be misleading if we were given only 
the shortest CI, or only the result with the largest ES. Our CI would not be 
representative of its dance because it has been selected, rather than coming 
randomly from the dance.

Interpretation 1 
of a CI. Our CI 
is one from the 
dance—a notionally 
infinite sequence 
of repeats of the 
experiment. Most 
likely it captures the 
parameter we’re 
estimating, but “It 
might be red!”

If N is less than 
about 6 to 8, CI 
length may be a 
very poor indicator 
of precision and the 
width of the dance. 
Such a CI may 
mislead.
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Very short CI

Very long CI

Figure 5.8. The dance of the CIs when σ is not assumed known and N = 4. CI length varies dramatically 
from sample to sample.

Interpretation 2 of 
a CI. The cat’s-eye 
picture shows 
how plausibility 
is greatest near 
the center of the 
CI, and decreases 
smoothly towards 
and beyond either 
limit. The CI includes 
values that are most 
plausible for μ.

If we don’t have very small N, at least 6 to 8, and if our CI hasn’t been 
selected in some possibly misleading way, then I recommend we go ahead and 
interpret our CI. It’s likely to give us a good idea of the whole dance. The fol-
lowing three ways to interpret a CI all focus on our interval. We must, however, 
always remember that our CI is one from the dance. It might not include μ.  
It might be red!

CI Interpretation 2: The Cat’s- Eye Picture Helps 
Interpret Our Interval
Bear in mind the cat’s- eye picture, as shown in Figure 5.9. Focus on the 95% 
CI in the middle; I’ll refer to the others later. The cat’s- eye picture tells us how 
plausibility, or likelihood, varies smoothly, being greatest around the center at 
M and dropping away towards either limit and beyond. There’s no step at the 
CI limits, so we shouldn’t take much note of whether a value falls just inside 
or just outside a CI.

Consider the lower panel of Figure 5.2 and the sampling distribution curve 
it shows on the mean heap. This curve tells us that, in most cases, M is close to 
μ. Now consider the cat’s- eye curves in Figure 5.9. The cat’s- eye pictures are 
fattest at M, which tells us that, most likely, the unknown μ lies close to M. The 
two figures give us the same message, just expressed differently. Figure 5.2 
tells us that most means fall close to μ and progressively fewer means fall at 
positions further away from μ. Correspondingly, the cat’s- eye curves tell us that, 
most likely, μ is close to M, and likelihood drops progressively for values of μ 
farther away from M, out to the limits of the CI and beyond. To put it another 
way, the cat’s- eye picture in Figure 5.9 is fattest around M, which tells us that 
our best bet for where μ lies is close to M. It also illustrates how bets for μ get 
progressively worse as we consider values further from M.

I’m not saying that researchers should necessarily include cat’s- eye pictures 
in their research reports, but you should be able to see them in your mind’s eye 

If N is at least 6 to 
8 and our CI has 
not been selected 
in a way that might 
mislead, then 
interpret our interval.
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whenever you see a CI. Imagine the cat’s eye on our result of 53% [51, 55]—do 
you see Figure 5.1 in your mind’s eye? You might say that values around 52% 
to 54% are most plausible for μ, because they are near the center of the CI, 
and the likelihood for other values being μ decreases gradually in both direc-
tions, out to and beyond the limits of the CI. And always remember… What 
color did I mention?

Yes, even CIs with cat’s- eye pictures might be red.
I find the cat’s eye highly revealing about what a 95% CI is telling us, so 

I see it as a beautiful picture. I hope you can share the feeling.
For Exercise 5.28 you probably calculated that, for Laptop, the mean tran-

scription score was 14.5% [11.8, 17.2]. It may be tempting to say “the probabil-
ity is .95 that μ, the mean Laptop transcription percentage in the population, lies 
in that 95% CI”, but I recommend avoiding probability language, which may 
suggest μ is a variable, rather than having a fixed value that we don’t know. 
However, it’s acceptable to say “we are 95% confident our interval includes μ”, 
provided we keep in mind that we’re referring to 95% of the intervals in the 
dance including μ. I’m also happy to say “most likely our CI includes μ” and 
“values in the interval are the most plausible for μ”.

Substantive interpretation of the CI should start with the point estimate 
in the center (14.5, or roughly 15), and also consider the two ends of the 
interval (roughly 12 and 17). The lower limit (LL) is a likely lowest estimate, 
or lower bound, for μ, and the upper limit (UL) is a likely highest estimate, or 
upper bound, for μ.

So, for substantive interpretation we should consider what it means to say 
that around 15% of the notes  are verbatim transcriptions from the lecture. We 
also need to consider that the population value could plausibly be as low as 
around 12% or as high as around 17%—or even a little beyond those values. 
That sounds complicated when described in words, but the cat’s- eye picture 
can help. In Chapter 7 we’ll consider also how this Laptop mean compares 
with the Pen mean.

M
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Figure 5.9. The cat’s- eye picture, for CIs with various levels of confidence, C, as indicated at the 
bottom, all for the same data set. Each CI spans C% of the total area between the curves. In each 
case this area is shaded. At left are two different pictures of the 99% CI.

The lower limit (LL) 
of our interval is a 
likely lower bound 
for μ, and the upper 
limit (UL) a likely 
upper bound.

Make a substantive 
interpretation of 
values in our CI, 
especially the point 
estimate and the 
limits. Bear the cat’s 
eye in mind.
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CI Interpretation 3: MoE Gives the Precision
A third approach to CI interpretation focuses on MoE and the quality of infor-
mation a  result gives us. MoE indicates how close our point estimate is likely 
to be to μ; it’s the largest likely error of estimation, and MoE of a 95% CI is our 
measure of the precision of our experiment. Take care: It’s easy to get tangled 
up in language about precision, because our measure of precision is MoE of a 
95% CI, but increased precision means a shorter MoE, and an increase in MoE 
(perhaps because we used smaller N) means lower precision.

In Chapter 1, MoE for the poll result was 2%. We discussed the precision of 
the poll, as indicated by this MoE, and how we might achieve higher precision. 
A focus on precision can be helpful especially when planning a study—how 
large a sample should we use, to obtain some desired precision? Chapter 10 is 
about research planning and makes much use of MoE as our measure of preci-
sion. It thus uses this Interpretation 3 of CIs.

CI Interpretation 4: Our CI Gives Useful Information 
About Replication
In Chapter 1, I asked what’s likely to happen if we ran the poll again, just the 
same but with a new sample. I said that such a close replication would be likely 
to give a similar result, quite likely in the range [51, 55], which is the 95% CI 
from the original poll. We can think of that original CI as predicting where 
the mean of a close replication experiment is likely to land. I’ll refer to such a 
mean as a replication mean, and so we can say that a CI is a prediction interval for 
a replication mean. The CI tells us how close a replication mean is likely to be 
to the original mean.

A replication mean is the mean obtained in a close replication.

Let’s investigate a HEAT example with ESCI.

 5.38  In CIjumping, set up the dance of the CIs, with a normal population. Click 
near red 8 in the tan area to select Capture of next mean. You should see 
something like Figure 5.10, which is what I obtained with samples of size 
N = 20, and σ assumed not known. Think of each CI as predicting where 
the mean of the following sample will lie—that’s the mean displayed just 
above it.
a. Focus on the short diagonal pink lines. Explain in your own words 

what they are telling us.

5.39 Suppose your study estimated the mean HEAT score as 57.4 [48.2, 66.7]. 
What mean would you expect a replication to give? Your original result 
happens to be the bottom CI in Figure 5.10. Eyeball the next mean, just 
above it in the figure. Is it captured by your CI? Does the CI on that next 
mean (second from the bottom) capture the mean next above it? Explain.

 5.40 Note the percent capturing next mean near red 8 and read the popout. 
Clear, then slowly take a dozen or so single samples and watch the percent 
capturing. What’s going on?

 5.41 Run the dance for a few minutes, and note the percent capturing. Do 
this for σ known, and for σ not known. For σ not known, try a couple of 
values of N.

Interpretation 3 of 
a CI. The MoE of a 
95% CI indicates 
precision, and is the 
maximum likely 
estimation error.
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You know that 95% of CIs in the dance will, in the long run, capture μ. 
Here we are considering something quite different. We are identifying whether 
a CI includes the next replication mean, which is the mean immediately 
above it in the dance—the next mean. When the next mean is not captured by 
a CI, ESCI displays a pink diagonal line joining the closer limit of the CI up 
to that next mean. When, as usual, the CI captures the next mean, no line 
is displayed.

Figure 5.10 displays 25 means, so there are 24 predictions by a CI of the 
next mean. Five pink diagonal lines are displayed because in 5 cases the CI does 
not capture its next mean; in the other 19 cases the CI captures. Therefore, 
percent capturing is 19/ 24 = 79.2%. In your experiments, I expect you found 
percentages around 80– 85%.

Perhaps you expected 95%? We’re asking, however, not whether a CI 
captures a fixed μ, but a moving target—the next mean. Both the CI and next 
mean bounce around with sampling variability, so we should expect percent 
capture of less than 95%. What’s the percent capture in the long run? Almost 
always about 83%.

On average, a 95% CI has about a .83 chance of capturing the next mean; 
that’s about a 5 in 6 chance. It’s an 83% prediction interval for where the result 
of a close replication will fall. That’s an important thing a CI does: It gives us 
information about the future, by telling us what’s likely to happen on replica-
tion. It’s likely—although certainly not guaranteed—that a replication of the 
poll would give a mean in the interval [51, 55].

I’ve discussed four ways to interpret a CI. In Chapter 6 I’ll describe a fifth. 
To close this section, Table 5.1 summarizes the four interpretations we’ve seen so 
far. In the next section I’ll discuss, in terms of cat’s eyes, how CI length changes 
with C, the level of confidence.

0 10 20 30 40 50 60 70 80 90 100
X

When a CI does not 
include the next mean 
(the mean immediately 
above it) a diagonal line 
joins the  closer end of the 
CI up to that next mean.

Most CIs include the 
next mean (the mean 
immediately above it), 
so no diagonal line is 
displayed.

Figure 5.10. Dance of the 95% CIs on HEAT means, assuming a normally distributed population with 
μ = 50 and σ = 20, and using N = 20. The 95% CIs were calculated with σ assumed not known. When 
a CI does not capture the next mean—the mean immediately above it—a diagonal pink line joins the 
closer limit of the CI up to that next mean.

Interpretation 4 
of a CI. A 95% CI 
has on average an 
83% chance of 
capturing the mean 
of a replication 
experiment, so it’s 
an 83% prediction 
interval for a 
replication mean.
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Table 5.1 Four Ways 
to Interpret a 95% 
CI for μ

1 The dance Our CI is a random one from an infinite sequence, the dance of the 
CIs. In the long run, 95% capture μ and 5% miss, so our CI might be 
red.

2 Cat’s- eye 
picture

Interpret our interval, provided N is not very small and our CI hasn’t 
been selected. The cat’s- eye picture shows how plausibility, or 
likelihood, varies across and beyond the CI—greatest around M and 
decreasing smoothly further from M. There is no sharp change at the 
limits. We’re 95% confident our CI includes μ. Interpret points in the 
interval, including M and the lower and upper CI limits.

3 MoE MoE of the 95% CI gives the precision of estimation. It’s the likely 
maximum error of estimation, although larger errors are possible.

4 Prediction A 95% CI provides useful information about replication. On average 
there’s a .83 chance (about a 5 in 6 chance) that a 95% CI will 
capture the next mean.

The tragedy of the 
error bar is my name 
for the unfortunate 
fact that error bars 
don’t automatically 
announce what they 
represent. We need 
to be told.

Always state what 
error bars in a figure 
represent. Whenever 
possible, use error 
bars to represent a 
95% CI.

CI LENGTH, MOE, AND LEVEL OF CONFIDENCE, C

Flip back to Figure 5.9, which illustrates how CI length changes with C, the 
level of confidence. It shows  the cat’s- eye picture on 99%, 95%, and 80% CIs. 
All the CIs are calculated for the same data. The percentages shown are also 
the percentage of the area between the curves that is spanned by the particular 
CI. Those areas are shaded in the figure. For the 95% CI, does the shaded area 
look to you to be about 95% of the total area? For the 80% CI, about 80% of 
the total area? For the 99% CI we can hardly see the tiny unshaded areas at 
each end, beyond the limits of the CI, but they are there. I included a second 
copy of the 99% CI so you can see its length more easily.

Figure 5.9 uses the same error bar graphic to represent CIs of different 
levels of  confidence. Of course, unless we are told C, we can’t make any sense 
of the interval. In addition, researchers commonly use error bars also to rep-
resent other quantities. It’s best to use error bars to represent a CI with C = 95, 
but error bars may represent a CI with any other level of confidence, or they 
might be picturing standard deviations or standard errors, or something else 
entirely. These are fundamentally different quantities, telling us very different 
things. Of course, unless we know what error bars represent we can’t interpret. 
It’s extremely unfortunate that we don’t have graphical conventions to make 
clear what error bars are picturing. Even worse, figures including error bars 
often neglect to state what the bars represent. That’s terrible! I call the problem 
the tragedy of the error bar. When you include error bars in a figure, state clearly 
what they show, even when they just show 95% CIs—our usual choice. When 
you see error bars, look for a statement of what they mean. If there’s no such 
statement, we simply can’t interpret them.

The curves in Figure 5.9 are the same for all the CIs in the figure. All that 
changes as  we change C is the proportion of the area between the curves that’s 
spanned by the bars. In other words, for a given data set, 99%, 95%, and 80% 
CIs don’t give us substantively different information, they just report differ-
ent fractions of the whole cat’s eye. This means that, given a 95% CI, we can 
calculate the 99% CI for the same data if we wish, or indeed the CI with any 
other level of confidence.

The C% CI spans C% 
of the total area of 
the cat’s-eye picture.
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To investigate, let’s use the 95% CI in Figure 5.9 as a standard. Compared 
with this, how much longer do you judge the 99% CI to be, for the same data 
set? How much shorter do you judge the 80% CI to be? Write down your 
eyeballed answers, then we’ll calculate.

Recall that, for any CI, total length is twice MoE. For the moment I’ll assume 
σ is known, and use the basic formula:

 MoE 1C Cz
N

= ×/ 00
σ  (5.4)

5.42 The σ/ N  doesn’t change if we change C. Therefore to calculate MoE, 
or CI length, for various values of C, we need to consider only z

C/ 100
. Can 

you recall z
.95

 and z
.99

? They are two numbers for the statistics groupies, 
and what we need to find how much longer MoE for the 99% CI is than 
MoE for the 95% CI. In other words, how much longer MoE

99
 is than 

MoE
95

. The ratio z
.99

/ z
.95

 is the ratio of the two MoEs, which is the same 
as the ratio of the two CI lengths. If you need to, look back or use the 
Normal page to find z

.99
 and z

.95
, then find how much longer a 99% CI 

is than a 95% CI. Recall also Exercise 5.15 and my answer to that.
5.43 Do the same for an 80% CI.

In Figure 5.9, compare MoE
99

 and MoE
95

. To my eye, MoE
99

 is about one- 
third longer than MoE

95
. In other words, a 99% CI is about one- third longer 

than a 95% CI. Why so much longer? The 99% CI must span 99% of the area 
between the curves, but the cat’s- eye picture is quite narrow just beyond the 
limit of the 95% CI. Therefore the 99% CI has to be considerably longer, to 
span sufficient (i.e., 99%) of the total area. Now compare the 80% CI with 
the 95% CI. To my eye, MoE

80
 is about one- third shorter than MoE

95
. In other 

words, the 80% CI is about one- third shorter than the 95% CI.
In summary, Figure 5.9 illustrates that, compared with the 95% CI,

 ■ the 99% CI is about one- third longer;
 ■ the 80% CI is about one- third shorter.

These simple relationships are worth remembering. They are usually most 
valuable for helping us translate from a CI reported with some C other than 
95, into what we’d prefer—the equivalent 95% CI. You can also use them for 
approximate eyeballing of CIs with other values of C. For example, a 90% CI 
will be intermediate in length between the 80% and the 95% CIs. A 99.9% CI 
will be even longer than the 99% CI—in fact, about two- thirds longer than the 
95% CI. If you like, make that an additional bullet point to remember.

One final comment. To prepare Figure 5.9, I assumed σ known, as we 
did for Exercises 5.42 and 5.43. The cat’s- eye curves are normal distributions. 
Assuming σ is not known, the curves would be t distributions. However, unless 
N is very small, say 10 or less, the changes would not be great. I’m suggesting 
the approximate guidelines above for building intuitions and for eyeballing, 
rather than for accurate calculations. Therefore, I’m happy to recommend these 
pictures and guidelines as sufficiently accurate for general use.

Just to recap, whenever you see a CI, you should bear in mind a number 
of things, four of which are:

This gives the 
MoE for C% CI, σ 
assumed known.
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 ■ A CI is calculated assuming a statistical model. Our model assumes random 
sampling and a normally distributed population.

 ■ Our CI is one from a dance, and could easily have been different. Visualize 
sample means with CIs dancing down the screen, with music if you like.

 ■ However we interpret our CI, “It might be red!”
 ■ Provided our CI was not selected in a way that might mislead, and N is not 

very small, then it’s reasonable to interpret our single interval. Use any or 
all of Interpretations 2– 4.

It’s almost time for take- home messages. We started this chapter with esti-
mation error and MoE, and touched on dances, CIs, t, randomness, then the 
four interpretations and various levels of confidence. Perhaps play the dance of 
the CIs as inspiration while a group of you discuss your take- home messages.

Quiz 5.3

1. The cat’s- eye image is useful when thinking about a CI because:
a. Even though the whole range of the CI is plausible, the middle of the range is most likely 

and the end the least likely.
b. Even though the whole range of the CI is plausible, the end of the range is most likely and 

the middle is the least likely.
c. Even though the whole range of the CI is plausible, the middle of the range and the ends of 

the range are equally likely.
d. CIs, like cat’s eyes, always come in pairs.

2. Any given CI you calculate is one from the dance of the CIs. Why is this important to keep 
in mind?

3. In the long run, we expect about 95% of CIs to capture the population mean. However, this 
depends on the assumption that
a. The data have not been selected in a way that could bias the sample mean.
b. Random sampling was used.
c. The variable measured is normally distributed.
d. All of the above.

4. Even though we expect 95% of CIs to capture the population mean, we only expect _ _ _ % to 
capture the mean of a close replication.

5. When you make a figure that has error bars, it’s vital always to _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
6. Compared with a 95% CI, the 99% CI for the same data is about _ _ _ _ _  shorter /  longer, and 

the 80% CI is about _ _ _ _ _ _  shorter /  longer.

5.44 Choose a CI or two, from Chapters 1 or 2, or somewhere else, and interpret 
them in each of the four ways. Which seem to you best?

5.45 Find, on the Internet or elsewhere, three examples of results reported 
with a CI, perhaps in research reports, news media, or science magazines. 
Identify for each CI what interpretation is given, and which of my four it 
best matches. Use another of the four to make your own interpretation.

5.46 Think of the dance of the means, the mean heap, and the dance of the 
CIs. Are you dreaming about them yet? You are sufficiently familiar with 
them when they come up in your dreams.

5.47 Suppose the mean reduction in anxiety is reported as 8.0 points on an 
anxiety scale, 99% CI [2.0, 14.0]. What, approximately, is the equivalent 
95% CI? The equivalent 80% and 99.9% CIs?

5.48 Revise your own take-home messages from this chapter.
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   Reporting Your Work 

 With your new knowledge of CIs plus your understanding of descriptive statistics 
( Chapter 3 ), you’re ready to write basic results sections.  

 ■   For variables where a mean makes sense, report the mean with a CI, almost always the 
95% CI. Report the CI immediately following its mean. State the units after the mean, 
but don’t repeat them for the CI.  

 ■   In APA format, a CI is reported in brackets with a comma between the lower and upper 
ends of the interval. This is preceded by the confidence level and the abbreviation for 
confidence interval. Strange but true: In APA style “CI” is not italicized because it is 
regarded as an abbreviation rather than a statistical symbol. Also a bit odd is the fact that 
the abbreviation is not marked with periods (it’s CI, not C.I.). Here’s an example: 

 Average age was typical for a college sample:  M  = 21.6 years, 
95% CI [20.6, 22.6].  

 ■   In interpreting your results, always focus on the CI, as well as the point estimate from   the 
sample. Be sure your conclusions acknowledge the full range of uncertainty within the CI. 
For very large samples, the CI may be so short as to need no comment. When the CI is 
long, be sure your conclusions are appropriately tentative.   

 ■   Remember from  Chapter 3  that the spread of your measures deserves as much attention 
as the location. Any mean reported should be accompanied by a measure of spread 
(usually the standard deviation) and the sample size should also be stated.  

 ■   Report statistics using a reasonable number of decimal places (see  Chapter 3 ). For each 
measure, be consistent in the number of decimal places used to report its mean, CI, and 
standard deviation.   

 Here are three examples: 

 Happiness ratings covered the full range (1– 7,  s  = 1.2). The 
average level of happiness was moderate ( M  = 3.8, 95% CI [3.6, 
4.0]). The short CI indicates the population mean is likely 
moderate. 

 There was considerable variation in recall scores ( s  = 15.1%), 
but no participant remembered more than 80% of the material. 
The average in the sample was fairly low ( M  = 32.6%, 95% CI 
[21.8, 43.3],  N  = 10). The CI is fairly long, however, and is 
consistent with anywhere from poor up to moderate levels of 
recall. 

 For females, there was tremendous variability in resting heart 
rate, with participants varying from 52 up to 94 bpm at rest 
( s  = 10 bpm). The average heart rate in the sample was 74 
bpm, 95% CI [70, 78],  n  = 27. This CI is somewhat long, but 
indicates the average resting heart rate for females in this 
age group is likely to be somewhere in the 70s for bpm.    

  Take-Home Messages  
 ■   The 95% CI extends MoE either side of  M , so is [ M  –  MoE,  M  + MoE]. Assuming  σ  is known, 
the 95% CI is

   
M z

N
M z

N
C C− × + ×









/100 /100,

σ σ

    

 ■   Dropping the unrealistic assumption of known  σ , we use  s  as an estimate of  σ , and the CIs 
vary in length from sample to sample—and more so for smaller  N . We need the  t  distribution 
with degrees of freedom  df  = ( N  –  1). The 95% CI is

   
M t N

s

N
M t N

s

N
− − × + − ×









. .( ) , ( )95 951 1
    

 For most variables, 
use text or tables 
to provide the 
mean, the 95% 
CI on the mean, 
and the standard 
deviation. For 
example:  M  = 450 
ms, 95% CI 
[435, 465], 
 s  = 77 ms. 
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Table 5.2 ACT Data (N = 9) for Exercise 1

Student ACT

1 26

2 34

3 21

4 26

5 23

6 24

7 15

8 18

9 21

 ■ Take- home movie: The dance of the CIs, as in Figure 5.6. In the long run, 95% of intervals in 
the dance include μ, while 5% miss μ and are red.

 ■ Randomness, as in the dances, is endlessly intriguing, but beware seeing faces in the clouds. 
Expect surprises and lumpiness in the short term but, in the very long term, very close to 95% 
of CIs capturing μ.

 ■ An effect size (ES) is the amount of anything of research interest, for example a mean, 
median, percentage, or difference between two means. We typically use a sample ES as our 
point estimate of the population ES. Routinely interpret ESs and the CIs on those ESs.

 ■ Interpretation 1 of a CI: One from the dance. Our CI is defined to be one from an infinite sequence 
of replications, 95% of which will include μ. Our CI is one from the dance, but “It might be red!”

 ■ If N is not very small, and our CI not misleadingly selected from a number of results, then our 
CI is likely to be representative of its dance and it’s reasonable to interpret our interval. The 
remaining three ways to interpret CIs do this.

 ■ Interpretation 2 of a CI: Cat’s- eye picture. I’m 95% confident my CI includes μ. The cat’s- eye 
picture shows how plausibility, or likelihood, varies across and beyond the CI: greatest around 
the center, then smoothly decreasing to the limits and beyond. Our CI is a range of values 
that are most plausible for μ.

 ■ Take-home picture: The cat’s- eye picture, as in Figure 5.9, especially for a 95% CI.

 ■ Interpretation 3 of a CI: MoE gives the precision. MoE of the 95% CI, the largest likely error of 
estimation, is our measure of precision. Small MoE means high precision and good estimates; 
large MoE means poor precision.

 ■ Interpretation 4 of a CI: Information about replication. A 95% CI is, on average, an 83% 
prediction interval for the next mean, obtained as the result of a close replication. CIs give 
useful information about replication.

 ■ Error bars are used to represent various different quantities. That’s the tragedy of the error bar. 
Every figure with error bars must state what the bars represent. Routinely use error bars to 
report 95% CIs.

 ■ CIs with different values of C span corresponding percentages of the area of the cat’s- eye 
picture. A 99% CI is about one- third longer than the 95% CI, and the 80% CI is about one- 
third shorter.

End- of- Chapter Exercises

1) A student wants to know the average ACT score at her college (the ACT is a standardized 
college- readiness exam taken by many U.S. students). She surveys 9 students; Table 5.2 
shows the data.
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a. Nationally, for ACT scores, σ = 5. Using this knowledge, calculate MoE and the 95% 
CI for this sample to estimate the average ACT score at this college.

b. Later, this student finds out from a college administrator that the true ACT mean at 
the college is μ = 22. Has this sample done a good job estimating that true mean?

c. Suppose the student hadn’t known σ, but instead used the sample s. Would the CI 
become shorter or longer (assume that s will come out to be close to σ)? Check your 
prediction by re- calculating MoE and the 95% CI using the sample s. Be sure to use a 
t value as a multiplier to obtain MoE, rather than z.

d. If the student were to collect more data, would the CI become shorter or longer? How 
much more data would need to be collected to make the CI about half as long?

e. Open Data two and look around. For Group 1, near red 2, type in the nine ACT values 
in Table 5.2. Type labels at red 1. (Click towards the left in the white box to select it, so 
you can type in a label.) Your screen should resemble Figure 5.11. Play around with 
the display options at red 4 and 5 if necessary. Check that the values shown near red 6 
for mean and SD match what you calculated. Check that the values for MoE and the 
CI shown near red 7 match yours.

2) Let’s examine some more ACT scores. Load the College_ Survey_ 1 data set from the book 
website. This contains real data from a large student survey (as used for exercises at the 
end of Chapter 3). Use ESCI to help you explore this data set, or some other software if you 

Figure 5.11. ACT scores (N = 9) have been entered near red 2 at left. The figure shows individual data points (open dots), mean, 
and 95% CI. Values for mean and CI are shown near red 6 and 7. From Data two.
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prefer. If using ESCI, the Data two page is useful for the exercises in this chapter. First, in 
the file with the data for this question, select the column of ACT values in the data set, and 
copy. Then switch to ESCI, select the first data cell near red 2, and use Paste Special/ Values 
to paste the ACT scores as the data for Group 1. Type labels at red 1.

a. This sample contains 215 ACT scores. Do you expect the CI to be short or long? (Note 
that only the first 100 data points in a data set are displayed in the figure as dots. See 
the popouts near red 4.)

b. As I mentioned above, it turns out that the true average ACT score for this school is 
known: μ = 22. Has this sample provided an accurate estimate of the population parameter?

c. Some CIs won’t capture the true mean (some CIs are red!). However, in several years 
of helping students conduct surveys like this, the samples almost always have mean ACT 
scores that are higher than the college mean. Why might this be? Does it help to know 
that this survey uses a convenience sample? Does it matter that students self- report 
their ACT scores?

3) Continuing with the same data set:

a. To what extent are students doing well, on average, at this school? Calculate M, MoE, 
and a 95% CI for GPA, which is measured on a scale with maximum 4.0. Interpret 
your result.

b. To what extent are students happy at this school? Calculate M, MoE, and a 95% CI 
for the Subjective Well-Being Scale, a common measure related to happiness, which 
has a scale from 1 to 7. Does your conclusion for this school match with Diener and 
Diener’s claim (1996) that “most people are happy”?

c. To what extent do students at this school feel wealthy relative to others? Calculate M, 
MoE, and a 95% CI for Self- Reported Wealth, which was measured on a scale from 1 
(well below average) to 5 (well above average). Interpret your result.

4) Replication is important! The year after the student survey you analyzed in Exercises 2 and 
3, a second survey was administered containing many of the same measures.

a. Based on your results for GPA, Subjective Well-Being, and Wealth, predict what you 
would expect for this second sample.

b. Load College_ Survey_ 2 which contains the data from the second survey. For each of 
these three variables calculate M, MoE, and 95% CI. Interpret each result.

c. Have the results replicated well across these two surveys?

Just as important as calculating a CI is interpreting it. Exercises 5 and 6 present reports of 
CIs, each with a number of alternative interpretations or statements. Give your comments 
on each. As usual, be prepared to use your judgment.

5) Anxiety was measured on a scale from 1 to 5 in a random sample of city dwellers. We found 
M = 3.50, 95% CI [3.25, 3.75].

a. The probability is .95 that the mean level of anxiety in the city lies between 3.25 
and 3.75.

b. Such a short CI indicates that there’s little variability in anxiety amongst city dwellers.

c. City dwellers are moderately anxious.

d. This CI is too long to be useful; more data must be collected.

6) April wants to know to what extent business majors are politically conservative. She asks 
9 business majors to complete a measure of political conservatism on a scale from 1 to 10, 
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with 10 being most conservative. She finds M = 8.0, [6.0, 10.0]. This supports April’s notion 
that business majors tend to be conservative, but the CI is long. April decides to collect more 
data to narrow the CI.

a. As more data are collected the CI will shorten, and stay centered around 8.

b. As more data are collected the CI will shorten, and the center change to a value within 
the original CI.

c. As more data are collected, the CI will shorten, and the center change to a value outside 
of the original CI.

d. Trick question—as more data are collected the CI will actually get longer.

Answers to Quizzes

Quiz 5.1
1) estimation error; 2) standard error, margin, error; 3) 1.96 is z

.95
, and 95% of the area under a normal distribution 

lies between z = −1.96 and z = 1.96; 4) calculating M –  MoE and M + MoE as the lower and upper limits of the CI, 
respectively; 5) All four are true; 6) infinite, 95, population.

Quiz 5.2
1) All are true; 2) s, σ; 3) degrees, freedom, wider; 4) d; 5) effect size; 6) don’t know, know, sample, population.

Quiz 5.3
1) a; 2) because 95% of CIs capture μ, while 5% miss and are red—ours may be red; 3) d; 4) 83; 5) State what the 

error bars represent; 6) one- third, longer, one- third, shorter.

Answers to In-Chapter Exercises

5.2 In the long run, 95% should fall between the lines and therefore, using the distribution curve’s symmetry, we 
would expect 2.5% in either tail.

5.3 a. Use the mean of the sampling distribution curve ± MoE, which is approximately μ ± 2 × SE; by eyeball from 
Figure 5.2 this gives an interval approximately from 40 to 60. Using SE = 5.16, as we calculated a little earlier, the 
interval is from 39.7 to 60.3.

5.4 b, c. SE = 20/ 36  = 3.33, still assuming σ = 20 is known, so MoE is 1.96 × SE = 6.53. The interval is from 43.47 
to 56.53.

5.5 Smaller σ gives smaller MoE. In any case we expect about 5% of green dots to fall outside the MoE lines, about 
equal numbers in the left and right tails.

5.6 &  
5.8 Again, 5%, about equally often (i.e., 2.5% each) to the left and the right.
5.9 CIs are red if they don’t include μ, meaning M falls farther than MoE from μ.
5.10 The percent of 95% CIs capturing typically bounces around a lot near the start of a run, then settles down. It then 

continues to vary, but slowly gets less variable and closer and closer to 95%. After many thousands of samples 
have been taken, it will be very close to 95%.

5.11 Small N: long CIs, wide bouncing, frenetic dance; large N: short CIs, narrow bouncing, restrained dance. The length 
of our interval—of any single interval from the dance—gives a reasonable idea of the amount of bouncing, of 
the width of the dance.

5.12 Larger C, for  example 99 rather than 95, means we wish to be more confident of capturing μ, so we’d better 
throw out a larger net. MoE needs to be larger so that more of the mean heap is within the MoE lines. MoE is 
calculated using a larger value of z, corresponding to .99 rather than .95. Larger C gives longer CIs, smaller C gives 
shorter CIs.

5.13 Change C and a different percentage of CIs will include μ, so some will need to change color. In every case, 
(100 – C)% of CIs will, in the long run, be red.



126

C
on

fi
de

nc
e 

In
te

rv
al

s 
an

d 
Ef

fe
ct

 S
iz

es

5.14 We expect in the long run that C% of means will fall between the MoE lines, meaning within MoE of μ. But there 

may be some short-run surprises—lumps in the randomness, faces in the clouds.
5.15 a. MoE = 1.96 × 15/ 25  = 5.88, so the 95% CI is [106.6 − 5.88, 106.6 + 5.88], or [100.7, 112.5]. We can interpret 

that interval, for example by saying that values in the interval are plausible for the mean of the population the 
sample came from. We are 95% confident that interval includes the population mean; b. For 99%, as above, 
but use 2.58 in place of 1.96, so the CI is [106.6 − 7.74, 106.6 + 7.74], or [98.9, 114.3]. We are 99% confident 
that interval includes the population mean. We might say that interval is the range of all values that are at least 
somewhat plausible for the population mean. The 99% interval is longer than the 95% interval; the ratio is 
2.58/1.96 = 1.32, so the 99% CI is about 32% or one-third longer than the 95% CI. That’s a general finding that 
we’ll revisit later in this chapter.

5.18 The red curve is t, the blue is normal. For large df the two curves are almost the same, but as df decreases they get 
more and more different, with t being lower at the center and having progressively fatter tails. Like the normal, 
the t curves are all symmetric and centered at 0, but for very small df the curves are considerably different.

5.19 t
.95

(14) = 2.14, and t
.99

(14) = 2.98. Read the popout at red 5 and figure out what the values below the slider are 
telling you. That’s where to find very accurate values, given to many decimal places.

5.20 t
.95

(3) = 3.18, t
.95

(9) = 2.26, t
.95

(29) = 2.05, and t
.95

(59) = 2.00, so t
.95

(df) quickly approaches z
.95

 = 1.96 as df 
increases, as we would expect given our observations of the t curves in Exercise 5.18.

5.21 Here’s a table for the first ten values of df.

df 1 2 3 4 5 6 7 8 9 10

t
.95

(df) 12.7062 4.3027 3.1824 2.7764 2.5706 2.4469 2.3646 2.3060 2.2622 2.2281

5.22 NORM.S.INV(.975) = 1.9600. More generally, use NORM.S.INV(0.5+C/200). T.INV(.975,14) = 2.1448. More 
generally, use the same approach but include the degrees of freedom: T.INV(0.5+C/200,DF).

5.23 William Gosset worked for the Guinness Brewery in Dublin. To analyze data from his experiments with small 
sample sizes he developed the fundamentals of what became the t distribution, but his employer only permitted 
him to publish his results under a pseudonym. He chose “Student”.

5.24 All CIs are the same length because MoE for every interval is calculated from σ, which is assumed known and 
doesn’t change.

5.25 Each sample has its own value of s, and so the calculated CI length will differ for each. When you click, some 
intervals get a bit longer, some a bit shorter. Occasionally, an interval changes color because it changes from 
including to not including μ, or vice versa—note the bottom interval in the upper and lower halves of Figure 5.6.

5.26 When we assume σ is not known, the variation in s from sample to sample will be greater for small N than for 
larger N, and so CI length will vary more from sample to sample for small N. With small N, there will be more 
change when you click between Known and Unknown for σ. Small samples typically give more variable and less 
precise estimates of σ. Try N = 5, or even 3 or 2.

5.27 As usual, large N is best. Very small samples, especially those with N < 10, have values of s that bounce around 
a great deal, so their CI lengths also bounce around a lot. Such small samples often give a very poor indication 
of the extent of uncertainty: If N is very small, we can’t put great trust in CI length. What do you want for your 
birthday? Big N!

5.28 a. Laptop: mean transcription score was 14.52 [11.85, 17.19]; b. Pen: 8.81 [7.15, 10.47].
5.29 a. The sample size is four times as large so we expect the CI to be about half as long, by our approximate 

guideline, also considering the formula for a CI; b. For N
1
 = 34, CI length is 10.47 − 7.15 = 3.32. For N

1
 = 136, the 

CI is [8.01, 9.62] and so CI length is 9.62 − 8.01 = 1.61, which is half, as expected.
5.31 The position of our CI—where its M is—tells us approximately where the dance is located, and the length of our 

CI tells us approximately how much bouncing there is in the dance, how wide the dance is.
5.32–  
5.33  All the same as 5.10, except that percent of CIs capturing μ settles down at C%.
5.34 Performance in many sports: A higher ranked golfer is more likely to win, but on a particular hole or a particular 

day performances often go against that long term probability. The weather: January is reliably hotter than 
March in the Southern Hemisphere—the opposite in the Northern Hemisphere—but individual days in either 
month often go against that long-term average. The stock market: During several years of economic growth, 
the market may rise year by year, but show large day-by-day fluctuations. None of those examples shows pure 
randomness—there are no doubt numerous causal factors contributing to what we observe—but the short-term 
haphazard bouncing around, despite long-term steady differences, is consistent with randomness playing an 
important role, which is often not sufficiently appreciated.

5.35 Many gamblers believe they can spot patterns and trends and they bet accordingly. They see patterns in 
randomness, faces in the clouds. On the basis of recent results, they believe a wheel may be running hot, or about 
to get hot. Casinos provide the recent record of each wheel to support such fallacious beliefs, and thus encourage 
gamblers to keep betting, and—on average—losing.
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5.36 Bring to mind (i) the population—we don’t know its μ or σ but we wish to estimate them—and (ii) the dance 
from which our single result came.

5.37 The sample ES is M, the mean of our sample, whose value we know. The population ES is the population mean μ, 
which we don’t know, would like to know, and will estimate.

5.38 a. The pink lines appear only when the next mean does not fall within the CI just below. The line then joins 
whichever limit of the CI is closer to the mean just above it.

5.39 A replication would be quite likely, but certainly not guaranteed, to give a mean within [48.2, 66.7]. The second 
bottom mean appears to be about 52, and it is captured by the bottom CI. The second bottom CI doesn’t capture 
the mean just above it, so a diagonal line is displayed.

5.40 The percent capturing next mean is the percentage of CIs for which the next mean does fall within the CI just 
below; these are the cases without diagonal lines.

5.41 Cumming and Maillardet (2006) reported that, in the long run, percent capturing when σ is known is 83%, for 
any N. When σ is not known, the percent capturing is, perhaps surprisingly, a little higher for very small N, but, for 
practical purposes, always think of 83%.

5.42 See my comments on Exercise 5.15.
5.43 From Normal, z

.80
 = 1.28, so z

.80
/z

.95
 = 1.28/1.96 = 0.65, so an 80% CI is about two-thirds as long as a 95% CI. 

In other words, an 80% CI is about one-third shorter than a 95% CI, as we might eyeball from Figure 5.9.
5.44 You could seek examples of how I use each of the four interpretations by scanning Chapter 1 and this chapter. 

For Interpretation 1 you could also refer to the dance of the CIs, and note that our CI might be red. Do you agree 
with my preferences, which I note in comments on the next exercise?

5.45 You may find a CI is reported, but, in discussion of the results, is not interpreted or even referred to. That’s 
unfortunate, because the CI provides essential information about the precision of the point estimate, which is 
usually the main result, of most interest to others. Interpretation 2 is often most useful, but Interpretation 4 can 
sometimes give a useful perspective, and fits with meta-analytic thinking.

5.46 I wish you sweet dancing dreams.
5.47 MoE

99
 = 6.0, half the length of the 99% CI. So MoE

95
 is about 4.5—check that increasing 4.5 by one-third 

gives MoE
99

. So the 95% CI is approximately [3.5, 12.5]. The 80% CI is about [5, 11] and the 99.9% CI about 
[0.5, 15.5].



You may have noticed, in books or research reports, expressions like these:

“The result was significant, p < .05.”

“We rejected the null hypothesis of no difference, and concluded there was a 
statistically significant increase, at the .01 level.”

Such statements reflect null hypothesis significance testing (NHST), which is 
the traditional approach to statistical inference in many disciplines. You need 
to know about NHST, which is mainly based on what are called p values, at least 
so you can understand research reports that use them. Fortunately, there are 
many close links between NHST—including p values—and estimation based on 
confidence intervals, and many of the statistical formulas they need are very 
similar. So keep firmly in mind what you know about CIs as we discuss NHST.

Here’s our agenda for this chapter:

 ■ The basics of NHST and p values
 ■ p values and the normal distribution
 ■ p values and the t distribution
 ■ Translating from a CI to p, and from p to a CI
 ■ Four cautions about NHST and p values: The four red flags
 ■ NHST decision making: The alternative hypothesis, and Type I and Type 

II errors

THE BASICS OF NHST AND p VALUES

What I’m calling NHST is actually a mixture of two quite different approaches, 
one developed by Sir Ronald Fisher, and the other by Jerzy Neyman and Egon 
Pearson, who famously disagreed with Fisher. Salsburg (2001) tells that and 
many other fascinating stories about the early days, but I’ll keep it simple by 
discussing just the mixture, which is what researchers mainly use in practice.

Let’s return to the poll example of Chapter 1, which estimated support for 
Proposition A as 53% [51, 55]. Figure 6.1 shows that result, with the cat’s eye 
on the 95% CI. Recall that the CI and its cat’s eye tells us that values around 
53% are most plausible for the true level of support, values towards and beyond 
the limits are progressively less plausible, and values well beyond the CI, such as 
50% and 56%, are relatively implausible, although not impossible. As always, 
you have in the back of your mind that our CI may be red. Now let’s consider 
NHST and p values. We use a three- step process.

6
p Values, Null Hypothesis  
Significance Testing, and  

Confidence Intervals



129

The Basics of N
H

ST and p Values

1. State a null hypothesis. The null hypothesis is a statement about the population 
that  we wish to test. It specifies a single value of the population parameter 
that serves as a reference or baseline value, to be evaluated. Here we would 
probably choose 50% as our null hypothesis value, so our null hypothesis 
is the statement that “there is 50% support in the population”—the level 
to be exceeded for the proposition to pass. Often a null hypothesis states 
that there has been no change, or that an effect is zero.

2. Calculate the p value. Calculate from the data the p value, which we can 
think of  informally as measuring the extent to which results like ours are 
unlikely, IF the null hypothesis is true. (A little later I’ll say how we define 
“results like ours”.) The “IF” is vitally important: To calculate a p value, we 
assume the null hypothesis is true. A p value therefore reflects both the data 
and the chosen null hypothesis. For our poll result, and a null hypothesis 
of 50% support in the population, the p value turns out to be .003, which 
indicates that results like those found by the poll are highly unlikely, IF 
there’s really 50% support in the population. It’s therefore reasonable to 
doubt that null hypothesis of 50% support. More generally, we can say 
that a small p value throws doubt on the null hypothesis.

3. Decide whether to reject the null. NHST compares the p value with a criterion 
called the significance level, often chosen to be .05. If p is less than that level, 
we doubt the null hypothesis. In fact we doubt it sufficiently to reject it and 
say we have a statistically significant effect. If p is greater than the significance 
level, we don’t reject the null hypothesis and can say we have a statistically 
nonsignificant effect, or that we didn’t find statistical significance. Note 
carefully that we say the null hypothesis is “not rejected”, but we don’t 
say the null hypothesis is “accepted”. Sorry about the multiple “nots”; I’m 
afraid they come with the NHST territory.

The significance level, often .05, is the criterion for deciding whether or not 
to reject the null hypothesis. Strictly, the significance level should be chosen in 
advance of seeing the data; we could call that approach strict NHST. However, 
most researchers in practice do not nominate in advance the significance level 
they intend to use. Instead they compare the p value with a small number 
of conventional significance levels, most commonly .05, .01, and .001, as 
Figure 6.2 illustrates. Finding p = .017, for example, justifies rejecting the null 
hypothesis at the .05 level, whereas finding p = .006 justifies rejecting at the 
.01 level. The researcher uses the smallest value that permits rejection, because 
rejecting at a lower level (.01 rather than .05) provides a more convincing 
outcome. The researcher tailors the conclusion to where p falls in relation to 
the set of values, and therefore might conclude:

50 51 52 53 54 55 56
Support for Proposition A (%)

Figure 6.1. The result of the poll example in Chapter 1, with 95% CI and cat’s- eye picture.

The null hypothesis 
states, for testing, 
a single value of 
the population 
parameter.

The smaller the p 
value, the more 
unlikely are results 
like ours, IF the null 
hypothesis is true.

NHST compares p 
with the significance 
level, often .05. If 
p is less than that 
level, we reject the 
null hypothesis and 
declare the effect 
to be statistically 
significant.

Strict NHST requires 
the significance 
level to be stated in 
advance. However, 
researchers usually 
don’t do that, but 
use a small number 
of conventional 
significance levels.
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 ■ If p > .05: “The null hypothesis was not rejected, p > .05.”
 ■ If p < .05 (but p > .01): “The null hypothesis was rejected, p < .05.” Or “…

rejected at the .05 level.”
 ■ If p < .01 (but p > .001): “The null hypothesis was rejected, p < .01.” Or 

“…rejected at the .01 level.”
 ■ If p < .001: “The null hypothesis was rejected, p < .001.” Or “…rejected at 

the .001 level.”

The researcher may also make corresponding statements about statistical 
significance, such as: “The effect was statistically significant at the .05 level.” 
Or “…was highly statistically significant, p < .001.”

The significance level is the criterion for deciding whether or not to reject the null hypothesis. 
If the p value is less than the significance level, reject; if not, don’t reject.

Researchers strongly prefer a lower significance level, because that pro-
vides a more  convincing conclusion. Why? Think of the definition of the p 
value: A smaller p tells us that results like ours are less likely, IF the null hypoth-
esis is true. The smaller the p, the more surprising are results like ours, IF the 
null is true. Therefore, a smaller p value gives us stronger reason to doubt the 
null; it provides stronger evidence against the null. To use a lower significance 
level (e.g., .01 rather than .05) we need a smaller p value. Therefore, a lower 
significance level provides stronger evidence against the null, more reason to 
doubt the null, and a more convincing conclusion.

Most researchers probably think of p values in terms of the evidence they 
provide against the null: The smaller the p, the stronger the evidence and the 
more confident they can feel in rejecting it. That’s why you might hear research-
ers say things like “p < .001, which provides very strong evidence against the 
null hypothesis.”

Anyone who uses NHST should report the p value itself: p = .30 or .04 or 
.007, and  not merely p > .05, p < .05, p < .01. This provides more complete 
information, while also allowing readers to compare with any significance 
level they choose.

Now let’s consider how to translate from CIs.

Using a Confidence Interval for NHST and p Values
NHST is usually carried out by calculating the p value directly, with no reference 
to a CI. Fortunately, however, if we have the CI there are easy ways to translate 
between estimation and p values. Choosing the .05 significance level, the basic 
relation between a 95% CI and the p value is illustrated in Figure 6.3 and can 
be stated as follows:

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p Values

.05

.01

.001

Figure 6.2. The three most commonly used significance levels, .05, .01, and .001, shown on a scale representing the possible 
range of p values from 0 to 1.

A lower significance 
level (.01 rather 
than .05) requires 
a smaller p value, 
which provides 
stronger evidence 
against the null 
hypothesis.

If using NHST, report 
the p value itself 
(p = .14), not only a 
relative value  
(p > .05).
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 ■ If the null hypothesis value lies outside the 95% CI, the p value is less than 
.05, so p is less than the significance level and we reject the null hypothesis.

 ■ Conversely, if the null hypothesis lies inside the 95% CI, the p value is 
greater than .05, so we don’t reject.

Using .05 as the significance level, we simply note whether the null hypothesis 
value  is inside or outside. Outside and we reject the null hypothesis and con-
clude the effect is statistically significant; inside and we don’t reject. Could we 
reject a null hypothesis that support in the population is 50.5%? What about 
60%? What about 52%? Consider where those values lie in Figure 6.3.

I suspect you were right—you probably said we can reject the first two 
null hypotheses because the values stated are both outside the CI in Figure 6.3. 
And we can’t reject the third because it lies inside the CI.

Later I’ll talk about the translation from CIs to p values in more detail, and 
we’ll see how to use significance levels other than .05.

Figure 6.3 suggests that p = .05 when the null hypothesis value is at one of 
the limits  of the CI. What’s p for other null hypothesis values? Figure 6.4 shows 
the idea—how, approximately, p varies for null hypothesis values at various 
positions inside and outside the CI. A null hypothesis of 50%, where the cat’s 
eye is thin, well outside the CI, gives p = .003. That’s strong evidence against 
that null hypothesis. By contrast, consider a null hypothesis of 52%. If that’s 
the true level of support in the population, obtaining support around 53% in 
the poll is quite likely, so the p value is large, in fact p = .33. At 52%, the cat’s 
eye is fairly fat. That’s the pattern: Where the cat’s eye is fat, p is large and gives 
no evidence against that null hypothesis value. As we consider values further 
from 53% and the cat’s eye becomes thinner, the p value becomes smaller and 
gives progressively stronger evidence against those values as the null hypothesis.

You’ve probably already seen the parallel: Plausibility, as indicated by the 
cat’s eye, changes inversely with strength of evidence, as indicated by the p 
value. The p value gives no evidence against highly plausible values—around 
52% to 54% where the cat’s eye is fattest. And p gives progressively stronger 
evidence against values that are progressively less and less plausible, as we move 
further from 53% and beyond the CI, and as the cat’s eye gets progressively 
thinner. Again the cat’s- eye picture is wonderfully revealing: You can read it 
in terms of plausibility, or p values and strength of evidence. Everything ties 
together, as we’d hope.

Consider the null hypothesis that support in the population is 51.5%. 
What can you say about the plausibility of that value? What would you guess 
the p value is for our poll results and that null hypothesis? What evidence do 
we have against that null hypothesis?

For the .05 
significance level, 
reject the null 
hypothesis if its 
value lies outside 
the 95% CI; if inside, 
don’t reject.

The further our 
sample result 
falls from the null 
hypothesis value, the 
smaller the p value 
and the stronger the 
evidence against the 
null hypothesis.

The cat’s eye 
illustrates how 
strength of evidence 
varies inversely with 
plausibility of values, 
across and beyond 
the CI.

50 51 52 53 54 55 56
Support for Proposition A (%)

If the null hypothesis value is anywhere here, don't reject
If the null hypothesis 

value is anywhere 
here, reject 

If the null hypothesis 
value is anywhere 

here, reject 

Figure 6.3. Same poll result as in Figure 6.1, but now indicating whether a null hypothesis should be rejected or not, at the .05 
significance level, depending on whether the null hypothesis value lies outside or inside the 95% CI.
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Those questions go a little beyond what I’ve discussed, but Figure 6.4 should help. Can you find someone to call or 
chat with?

.003 .05 .33 1.0 .33 .05 .003

50 51 52 53 54 55 56
Support for Proposition A (%)

Approximate p values:

Figure 6.4. Same as Figure 6.1, but with approximate p values shown for different null hypothesis 
values. For example, the null hypothesis that support in the population is 52% gives p = .33.

At 51.5% the cat’s eye still has some fatness, so this value is somewhat 
plausible as the true value, even if not as plausible as values closer to 53%. The 
p value lies between .05 and .33; it’s actually .14, which provides virtually no 
evidence against the null hypothesis of 51.5%. I hope you are getting a feel for 
the way plausibility, the p value, and the strength of evidence all tie together. 
The key is always to keep the cat’s- eye picture in mind.

Now for a couple of exercises, then we’ll start calculating p values.

6.1 Consider a null hypothesis value of 54.5%.

a. What can you say about the p value for our poll results?
b. What could you conclude about 54.5% as a possible true level of 

support?

6.2 Do the same for the null hypothesis that support in the population is 57%.

Quiz 6.1

1. The null hypothesis
a. is a statement we wish to test using NHST.
b. specifies a single value for the parameter we are interested in.
c. is rejected when the p value obtained is very low.
d. All of the above

2. In the NHST approach, p is the probability of obtaining results like ours IF the null hypothesis 
is true. What values can p take?
a. Minimum of 0, maximum of 1.
b.	 Minimum	of	−1,	maximum	of	1.
c. Minimum of 0, no maximum at all.
d. Trick question—there is no minimum or maximum for p values.

3. When p is very small (close to 0) it means we have obtained results that are likely /  unlikely if 
the null hypothesis is true.

4. In the NHST approach, once a p value is obtained it is compared to the significance level, 
which is usually set at .05. If p < significance level,
a. the null hypothesis is not rejected.
b. the null hypothesis is rejected.
c. the result is not statistically significant.
d. something has gone horribly wrong in your research.
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5. If the 95% CI contains the null hypothesis value, the corresponding p value will be greater 
than /  less than .05 and the NHST decision will be to reject /  not reject the null hypothesis.

6. For a null hypothesis value at a point where the cat’s eye is very thin, the p value is large /  
medium /  small and the evidence against the null hypothesis is strong /  medium /  weak /  
very weak.

p VALUES AND THE NORMAL DISTRIBUTION

This is a notable moment: the calculation of our first p value. It might not 
deserve  trumpets, but let’s have a drum roll. First, a couple of symbols. I’ll refer 
to the null hypothesis as H

0
, and the null hypothesis value as μ

0
. I’ll calculate 

the p value for a HEAT example. As in Chapter 5 for CIs, I’ll first use a statisti-
cal model based on the normal distribution that assumes σ is known, then a 
second model based on t that doesn’t require that assumption. The p value is 
defined as the probability of obtaining the observed result, or more extreme, 
IF the null hypothesis is true.

The p value is the probability, calculated using a stated statistical model, of obtaining the 
observed result or more extreme, IF the null hypothesis is true.

Note the shift from my earlier informal description of the p value that 
referred to “results like ours”. “Like ours” becomes “ours or more extreme”. 
The “more extreme” refers to any possible result that’s further than the 
observed result from what H

0
 would predict—any possible result that would 

give stronger evidence against H
0
 than our result does. Why include more 

extreme results in the p value? Good question. It’s tricky, but the idea is that 
we want the p value to reflect all possible results that are at least as question-
ing of the null hypothesis as our result, that are at least as surprising if the 
null hypothesis is true.

We’ll investigate the HEAT scores of students at College Alpha, and compare 
these with the population mean for students generally. I’ll assume HEAT scores 
in the population of all college students are normally distributed with μ = 50 
and σ = 20. Our null hypothesis is that the mean HEAT score for the popula-
tion of all students at College Alpha is the same as the mean of the population 
of all students, namely 50. So our null hypothesis value is 50, and I’ll write 
the null hypothesis as H

0
: μ = 50. You test N = 30 students from that college 

and calculate M = 57.8, so the mean HEAT for your sample of 30 students is 
7.8 points above the null hypothesis value we’re examining. The p value is the 
probability that a study like ours would obtain M that’s 57.8 or more, or 42.2 
or less, IF H

0
 is true (i.e., μ = 50).

Where did that 42.2 come from? Yes, it’s the same 7.8 points below 50 as 
our result is above, so values below 42.2 are just as extreme as values above 
our result of 57.8. When, like now, we’re assuming σ is known, the sampling 
distribution of M is normal, so the p value we seek is the area under both tails 
of that normal distribution. We need to find the z score corresponding to our 
result, IF H

0
 is true, then inspect the normal distribution to find the tail areas 

that will give us the p value.
From Chapter 4 we know that the sampling distribution of the sample mean, 

M, is a normal distribution with mean μ and standard deviation of SE = σ/ N . 
Therefore, to calculate a CI when σ is known, in Chapter 5 we chose a statistical 
model based on the normal distribution. We do the same here. To find the z score 
we want we can use the following formula from Chapter 5:

The null hypothesis 
is H

0
, and the 

null hypothesis 
value is μ

0
.

Use z to calculate 
the p value when we 
are willing to assume 
σ is known.
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 z
M

N
=

−( )µ
σ

 (5.5)

When H
0
 is true, the population mean is μ

0
. Insert that into Equation 5.5 

to obtain:

 z
M

N
=

−( )µ

σ
0  (6.1)

For our example, z = (57.8 − 50)/ (20/ 30 ) = 2.136. This z is a measure of how 
far M = 57.8 is from μ

0
 = 50, in SE units; it’s a measure of how far our result 

deviates from what H
0
 would suggest. The p value is the probability of obtaining 

this amount of deviation or even more, in either direction, IF H
0
 is true.

Figure 6.5 shows the standard normal distribution with cursors at z = 2.136 
and −2.136 to define the two tail areas we want. To make that figure, at the 
Normal page I clicked Two tails and Areas, and used the large slider to posi-
tion the cursor. The total area of those two shaded tails is .0327. Our p value is 
therefore .0327, which I’ll round to .03. So p = .03 is the probability of obtaining 
z = 2.136 or more, or −2.136 or less, in any normal distribution. Equivalently, .03 
is the probability of obtaining M of 57.8 or more, or 42.2 or less in our example, 
IF the true mean is 50. What does that p value tell us about our null hypothesis?

A p value of around .03 says that, IF H
0
 is true, there’s only about a 3% 

chance of getting M of 57.8 or more extreme, and so this p provides some evidence 
against H

0
. If we use NHST decision making, the fact that p < .05 leads us to reject 

the hypothesis that the mean HEAT score for College Alpha students is 50, the 
same as for students generally, and instead conclude the population mean for 
College Alpha students is greater than 50. We’ve found a statistically significant 
difference. In a moment there’s an exercise that considers the CI for our result.

Here’s a step- by- step summary of how we found and interpreted that p value:

1. We identified our sample result (M = 57.8) and our null hypothesis 
(H

0
: μ = 50).

2. We focused on the difference, or discrepancy, between that result and the 
null hypothesis value. Our difference was (57.8 − 50).

z score for 
the sampling 
distribution of M

z score when H
0
 

is true

.0163
.9673

.0163

.0327
two tails

–5 –4 –3 –2 –1 0 1 2 3 4 5z

z = 2.136z = –2.136

Figure 6.5. The standard normal distribution with cursors at z	=	2.136	and	−2.136.	The	two	shaded	tails	have	total	area	of	
.0327. From the Normal page.
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3. We used a formula (Equation 6.1) to calculate from that difference the 
value of a test statistic, IF H

0
 were true. We calculated that z = 2.136.

4. We consulted the distribution of the test statistic, z, to find the two tail areas 
corresponding to that value of the test statistic. Figure 6.5 tells us that the 
total area is .03 (after rounding); this is our p value.

5. We interpreted the p value, using the NHST or strength of evidence 
approach.

A test statistic is a statistic with a known distribution, when H
0
 is true, that allows calculation 

of a p value. For example, z is a widely used test statistic that has the standard normal 
distribution.

In future chapters we’ll use some version of that step- by- step process to 
calculate the p value for various different dependent variables and various 
different study designs.

6.3 Considering Open Science, what questions should we ask about the College 
Alpha study?

6.4 Suppose we had obtained M = 54.6 in our HEAT study, with N = 30.

a. Calculate the p value, assuming σ = 20 is known.
b. Recall that MoE is half the length of a CI. Calculate MoE and the 95% 

CI for our result, still assuming σ = 20 is known.
c. Compare the formula you used to find MoE and the formula you used 

for the z that gave you the p value.
d. Compare the information provided by the CI and by the p value.

 6.5 a.  Suppose you had used a sample of N = 100 College Alpha students, and 
happened to get the same M = 54.6. Calculate the p value and CI, and 
interpret. Compare with your original smaller study.

b. Make up at least three more such exercises, which give a wide range 
of p values. Swap with friends.

p VALUES AND THE t DISTRIBUTION

If we drop the assumption that σ, the population SD, is known, we can follow 
the same step- by- step process as before to find the p value. The only difference 
is that, as in Chapter 5 when we calculated CIs without assuming σ is known, 
we need a statistical model based on the t distribution rather than the normal. 
Our test statistic is t, not z, and we refer to the t distribution to find the tail areas 
that give us the p value. As before, our null hypothesis is H

0
: μ = 50 and our 

sample of N = 30 students gave a mean HEAT score of M = 57.8. We also need 
to know that the standard deviation for our sample was s = 23.5. As before, 
the p value is the probability that a study like ours would obtain M that’s 57.8 
or more, or 42.2 or less, IF H

0
 is true.

In Chapter 5, our formula for t was:

 t
M

s N
=

−( )µ
 (5.6)

t for the sampling 
distribution of M, 
using s
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This is the same as Equation 5.5 for z, but with s in place of σ because we don’t 
know σ and therefore must use the sample standard deviation, s = 23.5, as our 
best estimate of σ. There are df = (N –  1) = 29 degrees of freedom.

When H
0
 is true, the population mean is μ

0
. Insert that into Equation 5.6 

to obtain

 t
M

s N
=

−( )µ0  (6.2)

For our example, t = (57.8 − 50)/ (23.5/ 30 ) = 1.818. This t is a measure of 
how far  M = 57.8 is from μ

0
 = 50, in SE units; it’s a measure of how far our result 

deviates from what H
0
 would suggest. The p value is the probability of obtaining 

this amount of deviation or even more, in either direction, IF H
0
 is true.

Figure 6.6 shows the t distribution with df = 29 and cursors at t = 1.818 and 
−1.818 to define the two tail areas we want. To make the figure, at the Normal 
and t page I clicked t, Two tails, and Areas, and used the slider to position the 
cursor. The total area of the two shaded tails is .0794. Our p value is therefore 
.0794, which I’ll round to .08. So p = .08 is the probability of obtaining t = 1.818 
or more, or −1.818 or less, in the t distribution with df = 29. Equivalently, .08 is 
our calculation of the probability of obtaining M of 57.8 or more, or 42.2 or less, 
IF the true mean is 50. What does that p value tell us about our null hypothesis?

A p value of around .08 says that, if H
0
 is true, there’s about an 8% chance 

of getting M of 57.8 or more extreme, and so this p provides very little, if any, 
evidence against H

0
. If we use NHST decision making, with p > .05 we could 

not reject the hypothesis that the mean HEAT score for College Alpha students 
is 50, the same as for students generally. (Note that, as usual, we speak of not 
rejecting the null hypothesis, and not of accepting it. A sample mean of 57.8 is 
definitely not evidence the population value is 50.) We found no statistically 
significant difference. Again there’s an exercise in a moment, but consider 
what you can already say about the CI, calculated using t. Where does it fall in 
relation to 50, our null hypothesis value?

Using z and t, our two p values are only a little different, .03 and .08 
respectively. However, they happen to fall on opposite sides of .05, so NHST 

t when H
0
 is true

Use t and s, the 
sample SD, to 
calculate the p 
value when σ is 
not known.

.0397
.9206

.0397

.0794
two tails

–5 –4 –3 –2 –1 0 1 2 3 4 5
z or t

t = –1.818 t = 1.818

Figure 6.6. The t distribution with df = 29 showing cursors at t	=	1.818	and	−1.818.	The	two	shaded	tails	have	total	area	of	
.0794. From Normal and t.
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with that significance level gives two different conclusions. Why do the two p 
values differ, despite our using the same sample mean, M = 57.8, in both cases?

The main difference, of course, is that the two are based on different 
statistical  models. If we think it’s reasonable to use the population value of 
σ = 20 for students at College Alpha, then we choose a normal distribution 
model and use z to calculate the p value. If we consider students at that college 
to be notably different from the whole college population to which the HEAT 
refers, then we might prefer to avoid assuming σ = 20 for students at College 
Alpha, choose a t distribution model, and use s and t to calculate the p value 
(or CI). As so often, it’s a matter of your informed judgment. We will generally 
prefer to use a population value of σ, if available, rather than use our sample 
s as an estimate of σ, especially if N is small and therefore our s may not be a 
good estimate of σ.

 6.6 Suppose again that we had obtained M = 54.6 in our HEAT study, with 
N = 30, and that s = 14.3.

a. Calculate the p value, without assuming σ is known.
b. Calculate the 95% CI for our result, still without assuming σ is known.
c. Compare the formula you used to find MoE and the formula for the t 

you used to find the p value.
d. Compare the information provided by the CI and the p value.

 6.7 Suppose you had used a sample of N = 100 College Alpha students, and 
happened to get the same M = 54.6 and s = 14.3. Calculate the p value and 
CI, and interpret. Compare with your original experiment.

6.8 If you used a sample of N = 400 College Alpha students, would the sample 
s be a better or less good estimate of σ than s when N = 30? Why?
a. Make up at least three more exercises like the last two, which give a 

wide range of p values. Swap with friends.

We’ve now seen how to calculate p values for a single group study, either 
with σ assumed known or without that assumption. The formulas for calculat-
ing p were very similar to those for calculating CIs, thus illustrating again the 
close links between p values and estimation. In future chapters we’ll see many 
more examples of those links. Next I’ll explore those links by discussing how 
we can translate back and forth between CIs and p values.

TRANSLATING BETWEEN 95% CIS AND p VALUES

From a 95% CI to a p Value
In Chapter 5 I discussed four ways to interpret a CI. Figure 6.3 illustrates 
a fifth way: Note whether the null hypothesis value μ

0
 is outside or inside 

the CI to know whether p < .05 or p > .05. Here I’ll go further and consider 
how to eyeball a p value, given a 95% CI and a null hypothesis value μ

0
. 

Translation to p is my least favored way to interpret a CI, because it ignores 
much of the useful information a CI provides. However, I include this fifth 
approach partly because it broadens our options for thinking about a CI, but 
mainly because it’s a stepping stone to the following section, which considers 
the valuable translation in the reverse direction: See a p value and mean, 
and eyeball the CI.

When it’s reasonable 
to assume σ is 
known, do so, and 
use z to calculate 
the CI and/ or p 
value. If not, use s 
to estimate σ and 
calculate t.
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Figure 6.7 displays four sample means with 95% CIs, all of the same length, 
and four guidelines for p values. The null hypothesis value of μ

0
 is marked by 

the horizontal line. The p value is shown at the bottom for each sample. First, 
note that the simple rule displayed in Figure 6.3 holds: The first CI, on the left, 
includes μ

0
 and so p > .05. The third and fourth CIs, on the right, do not include 

μ
0
 and so p < .05. The second CI illustrates the borderline case and Guideline 

2: When a limit of the CI falls at μ
0
, then p = .05.

That’s a start, but we can do better. Above I noted also that the further a 
CI falls from μ

0
, the more our data throw doubt on the null hypothesis and the 

lower the p value. The four CIs in Figure 6.7 are, from left to right, successively 
further above μ

0
 and so we would expect the p value to decrease from left to 

right—as it does. I chose the four sample means to illustrate four cases that are 
easy to remember as guidelines to help eyeballing the p value, for any 95% 
CI on means.

Below are the four guidelines that the figure illustrates from left to right. 
Guideline 2 in the list below is exact and the others are approximate, but close 
enough for practical purposes. Recall that MoE is the length of one arm of a 
CI, as labeled in the figure.

1. If a 95% CI falls so μ
0
 is about 1/ 3 of MoE back from a limit of the CI, then 

p = .20, approximately. (Guideline 1 on the left in Figure 6.7.)
2. If a 95% CI falls so that μ

0
 is at a limit, then p = .05.

3. If a 95% CI falls so that μ
0
 is about 1/ 3 of MoE beyond a limit, then p = .01, 

approximately.
4. If a 95% CI falls so that μ

0
 is about 2/ 3 of MoE beyond a limit, then p = .001, 

approximately.

Note that it doesn’t matter whether the CI falls above or below μ
0
—the 

guidelines are the same. Of course, most cases we’ll see in practice lie some-
where in between the cases illustrated in Figure 6.7, so we’ll need to interpo-
late between the two cases that come closest. That’s fine, because the aim is 

If a 95% CI falls so 
that μ

0
 is about one- 

third of MoE beyond 
a limit, p = .01, 
approximately—
Guideline 3 in 
Figure 6.7. The figure 
also illustrates three 
further guidelines 
to assist with 
eyeballing a p value.

M

M

M

M

µ0

p = .05 p = .01 p = .001p = .20

Guideline 1

Guideline 2

Guideline 3

Guideline 4

D
ep

en
de

nt
 V

ar
ia

bl
e 

.

MoE

approx 
2/3 of 
MoE

approx 1/3 of 
MoE

Figure 6.7. Four sample means with 95% CIs, all of the same length. The null hypothesis value is μ
0
, 

often zero. The p value is shown below each CI. The labels indicate four approximate guidelines for 
eyeballing the p value from where the CI falls in relation to μ

0
.
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to eyeball a rough estimate of the p value, not to replace the calculation we’d 
need if we want an accurate p value.

Of course you can use the same guidelines when a CI is reported in text 
rather than shown in a figure. Perhaps you read that “the decrease in mean 
response time was 32 ms [10, 54].” You wish to estimate the p value for testing 
the null hypothesis of zero change, meaning μ

0
 = 0. First, note that 0 is not in 

the CI, so we know p < .05. Then sketch—or see in your mind’s eye—the CI and 
how it falls in relation to zero. Compare with Figure 6.7, note that our CI falls 
between the two rightmost cases, meaning p is between .01 and .001, perhaps 
around .005. Again, note that we’re happy for our eyeballing to be rough—the 
aim is a ballpark idea of the p value, not an exact calculation.

Figure 6.8 provides a further illustration of how the p value changes 
depending on where a 95% CI falls in relation to μ

0
. Imagine moving M and 

the CI up and down, and eyeballing the p value. The short dotted lines labeled 
with p values move up and down with the CI, and mark our four guidelines.

 6.9 Open the CI and p page of ESCI intro  chapters 3– 8. Explore as you 
wish. Use the big slider to move the heavy blue 95% CI up and down in 
relation to the fixed μ

0
 value. Try clicking on Small hints. Compare with 

Figure 6.8.
 6.10 Make up games or challenges to practice reading p values, given a 95% 

CI and μ
0
. For example, turn off the p value (red 2) and all hints, move 

M, eyeball p, then turn on the p vale to check your accuracy. Go for speed 
and competition.

6.11 For each of the 95% CIs in Figure 6.9, estimate the p value.
6.12 You read that “the increase in mean reading age was 2.3 months [−0.5, 

5.1].” What is the approximate p value, for the null hypothesis of zero 
increase?

If a 95% CI falls so μ
0
 is at a limit (i.e., exactly at one end of the CI), then 

p = .05. Suppose a 99% CI falls so μ
0
 is at a limit, what do you think the p value 

would be?

µ0

M

.001

.01

.05

.20

D
ep

en
de

nt
 V

ar
ia

bl
e 

.

Figure 6.8. An illustration of how the p value changes according to where a 95% CI falls in relation 
to the null hypothesis value, μ

0
. When μ

0
 is just inside the 95% CI, as illustrated, p = .07. The short 

dotted lines and their p value labels provide hints for eyeballing. From the CI and p page, with Small 
hints turned on.
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What about a 90% CI?
If you guessed that a 99% CI falling so μ

0
 is at a limit gives a p value of .01, 

give yourself a pat on the back. For a 90% CI, the p value is .10. You probably 
see the pattern: For a C% CI, if μ

0
 is at a CI limit, p = (1 –  C/ 100). Check that 

formula works for 95% CIs.

6.13 We saw in Chapter 5 that a 99% CI is about one- third longer than a 95% 
CI. Explain how that observation relates to our Guideline 3.

One final note: The guidelines in Figure 6.7 are based on large samples and 
the normal distribution, but are sufficiently accurate, for practical purposes, 
unless N is very small, say less than about 10. So feel encouraged to use these 
guidelines for any CIs on means.
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…Pause, think, discuss…
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Figure 6.9. Six 95% CIs, for p value eyeballing practice.
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Figure 6.10. Six means, with their p values shown at the top, for eyeballing practice of the 95% CI 
on each mean.
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From a Mean and a p Value to a 95% CI
If you are given a mean and a p value, and also know the null hypothesis value, 
then  you can run the guidelines in Figure 6.7 backwards to eyeball the 95% CI 
on that mean. That’s useful, because you can then interpret the result in terms 
of an effect size estimate (the mean) and the uncertainty of that estimate (the 
eyeballed CI). In practice, eyeballing the CI, even roughly, usually emphasizes 
that there’s considerable uncertainty—the CI is often long—whereas seeing 
only the p value might give a misleading impression of certainty.

Figure 6.10 displays six means and, at the top, their p values. Can you 
sketch or eyeball the CIs now, before I give a couple of hints? Very rough is OK.

Eyeballing the CI 
may be the best 
way to interpret 
a p value. If p is 
around .05, the CI 
extends from M to 
close to μ

0
.

Given M, the p 
value, and μ

0
, use 

the guidelines in 
Figure 6.7 to eyeball 
the approximate 
95% CI.

If p > .05, the 95% 
CI extends past 
μ

0
, and the larger 

the p, the further 
it extends. If p < 
.05, the CI doesn’t 
extend as far as μ

0
, 

and the smaller the 
p, the shorter the CI.

Pause, discuss … As usual it’s worth trying it yourself. Best is to make up a couple more examples.

Here’s a simple way you could approach the task:

 ■ If p = .05, the CI extends exactly from the mean to μ
0
. Otherwise, there 

are two possibilities:

1. p > .05, and the CI must extend past μ
0
. The larger the p, the further 

the CI extends past μ
0
.

2. p < .05 and the CI extends only part way towards μ
0
. The smaller the p, 

the shorter the CI in relation to μ
0
.

Following even just those basic rules often gives useful insight, but you can 
go further:

 ■ If p > .05, consider Guideline 1 in Figure 6.7. Note whether the p value is 
larger or smaller than .2 and eyeball the CI to be longer or shorter, respec-
tively, than that in Figure 6.7. Remember: The larger the p, the further 
the CI extends past μ

0
.

 ■ If p < .05, consider Guidelines 3 and 4 in Figure 6.7. Note where the p 
value falls in relation to .01 and .001, and eyeball the CI accordingly to be 
longer or shorter than those in Figure 6.7. Remember: The smaller the p, 
the shorter the CI in relation to μ

0
.

For example, consider (a) in Figure 6.10. The p value of .006 lies between 
.01 and .001,  so the CI we want falls between the two rightmost cases in 
Figure 6.7. I’m eyeballing the mean as about 75 and the CI as extending down 
to about 25. Therefore my eyeballed CI extends from 25 up to 125, which is 
the same distance (50) above 75 as 25 is below. My eyeballed result is thus 75 
[25, 125]. The accurate value is 77 [22, 132], so my eyeballed CI is easily good 
enough to give useful insight. It tells us there’s wide uncertainty—the true value 
could plausibly be anywhere between, roughly, 25 and 125. That’s an important 
message: Yes, the small p value of .006 provides quite strong evidence against 
μ

0
 = 0, but if we think only of the p value we may not be sufficiently aware of 

the wide uncertainty remaining.
Even a rough, ballpark idea of the CI provides guidance about uncertainty. 

Bringing  to mind the approximate CI may be the best way to interpret a p value. 
Note, especially, that p around .05 tells us that the CI extends from M to close 
to μ

0
, as in Figure 6.7, Guideline 2.
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6.14 Sketch and write as numbers your eyeballed CIs for the remaining five 
cases in Figure 6.10. Rough is OK.

6.15 You read that “the increase in mean reading age was 2.3 months, which 
was statistically significantly greater than zero, p = .03.” What is the 
approximate 95% CI?

The next section discusses one of this book’s most important messages, 
which I’ll describe as a number of red flags.

Quiz 6.2

1. In NHST, the test statistic is used to obtain a p value by determining the probability of 
obtaining
a. the observed result, or more extreme, if the null is true.
b. the observed result, or less extreme, if the null is true.
c. the observed result exactly, if the null is true.
d. the observed result approximately, if the null is true.

2. With a sample test statistic z = 1, which panel in Figure 6.11 represents the associated 
p value?

3. Use ESCI to calculate the p values for each test statistic:
a. z = 1
b. z	=	−1
c. z = 3
d. t(20) = 2
e. t(50) = 2
f. t(30)	=	−1

4. For the question above, which of these results would lead to rejecting the null hypothesis 
with a significance level of .01?

5. When testing a null hypothesis about a population mean, you need to calculate a test statistic 
that you will use to obtain a p value. Which of the following statements is (or are) true?
a. Calculate a z score if you know σ, the population SD; otherwise calculate a t score.
b. Calculate a z score if the data includes negative numbers, otherwise calculate a t score.
c. Calculate a z score if you reject the null, otherwise calculate a t score.

6. A new training procedure gives a mean increase in performance of 8 points, 95% CI [1, 15]. 
Roughly, what is the p value to test the null hypothesis of zero change? Would you reject the 
null hypothesis at the .05 level? At the .01 level? At the .001 level?

FOUR NHST AND p VALUE RED FLAGS

Whenever you read about p values or NHST, these cautions should automatically 
pop up in your mind. I’ll describe four here, and there’s a fifth in Chapter 7.

–3 –2 –1 0 1 2 3
Z

–3 –2 –1 0 1 2 3
Z

–3 –2 –1 0 1 2 3
Z

Figure 6.11. Three distributions of the z test statistic.
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Beware Dichotomous Thinking
If there’s uncertainty in data—as there virtually always is—we should be wary 
of any  conclusion that gives a false sense of certainty. The world is usually not 
black- and- white, but numerous shades of gray, so a dichotomous conclusion 
is likely to be inappropriate and too readily give a sense of certainty. A major 
disadvantage of NHST is that it prompts dichotomous thinking by giving a dichot-
omous conclusion—we reject or do not reject the null hypothesis; we conclude 
there is or is not a statistically significant effect.

In contrast, estimation thinking focuses on quantitative information, which is 
usually  far more useful. For example, consider a new therapy for anxiety. NHST 
addresses the question “Is there an effect?” and concludes that the therapy does 
or does not have a statistically significant effect, which is a yes/no answer to 
the question. However, an estimate of the size of the likely reduction in anxiety 
provides much better guidance for practical decision making about whether or 
not to use the therapy. A good way to prompt such useful quantitative answers 
is to express research questions in estimation terms: “How large is the effect?” 
rather than “Is there an effect?”

Recall Step 1 in the step- by- step plan in Chapter 1:

1. State the research question. Express it as a “how much” or “to what extent” 
question.

What’s the support for Proposition A in the population of people likely to vote?

When you read an aim that prompts a yes/no answer (“Does the therapy 
work?”),  automatically reword it in your head as an estimation question. Often 
that’s easy: Just add “to what extent” at the start. Expressing our research aims 
as estimation questions may be the key step toward adopting an estimation 
approach to research.

Express research 
questions in 
estimation terms.

“Significant”, the 
“S” word, can be 
highly misleading. 
A large or important 
effect might not be 
statistically significant; 
a trivial effect may 
be highly statistically 
significant.

I refer to the 
following fallacy as 
the slippery slope 
of significance: An 
effect is found to be 
statistically significant, 
is described, 
ambiguously, as 
“significant”, then 
later is discussed as if 
it had been shown to 
be important or large.

Dichotomous 
thinking focuses 
on two mutually 
exclusive 
alternatives. The 
dichotomous 
reject- or- don’t- 
reject decisions 
of NHST tend to 
elicit dichotomous 
thinking.

Estimation thinking 
focuses on “how 
much”, by focusing 
on point and interval 
estimates.

Beware dichotomous conclusions, which may give a false sense of certainty. Prefer 
estimation thinking. Express research aims as “how much” or “to what extent” questions.

Beware the Ambiguity of the “S” Word, “Significant”
The danger here is that “statistically significant” too easily suggests an effect 
is large  or important. After all, the dictionary tells us that “significant” means 
“important” or “noteworthy”. However, an effect can be of no importance, but 
highly statistically significant—simply use a very large N. Conversely, an effect 
can easily be highly important, but not even close to statistically significant. 
Therefore “significant”, the “S” word, can be highly misleading: When used 
statistically, “significant” does not imply “important”.

As an example of how the S word can be dangerously ambiguous, consider 
the  common fallacy I call the slippery slope of significance: In the data analysis 
section of an article, you read that “there was a statistically significant decrease 
in anxiety, p = .03”. However, in the discussion the authors state that “anxiety 
was significantly reduced”, which suggests that the reduction was substantial 
or important. The ambiguous S word silently morphs from its statistical to its 
everyday meaning. Discussing an effect size as large or important requires 
justification based on informed judgment, whatever the value of p. Seeing 

Red Flag 1
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the S word should automatically trigger your “ambiguous S word” red flag. In 
particular, beware the slippery slope of significance.

To avoid ambiguity, add “statistical” in front of the S word whenever that’s 
the  intended meaning. For other meanings, replace “significant” by “impor-
tant”, “notable”, “large”, or some other suitable word.

Researchers need to be especially careful when writing for the general 
public, or explaining their findings to the media. Journalists love to highlight 
that a result is “significant”. Avoid using the S word when describing your 
results, and watch out for a journalist who adds it in anyway. Of course, make 
sure an especially large red flag pops up whenever you see the S word in any 
media report of a research result.

“Significant” is 
a dangerously 
ambiguous word 
when used by itself. 
Say “statistically 
significant”, or use a 
different word.

I refer to the 
following fallacy as 
the slippery slope of 
nonsignificance: An 
effect is found to 
be statistically 
nonsignificant, then 
later discussed as if 
that showed it to be 
non- existent.

Beware the dangerously ambiguous S word. Say “statistically significant”, or use a 
different word. Beware the slippery slope of significance.

6.16 Find uses of the S word in reports of research, in the media, or online. 
Reword to make clear which meaning is intended. Bonus points if you 
can find an example of the slippery slope of significance.

Beware Accepting the Null Hypothesis
Using NHST decision making, we reject H

0
 when p < .05. If p > .05 we don’t 

reject. That seems simple, but the danger is that failing to reject H
0
 can easily 

lead to believing H
0
 is true. First, we must be careful to say “H

0
 was not rejected” 

rather than “H
0
 was accepted”. Second, we must be vigilant for any hint that 

“no sign of a difference” becomes “the difference is zero”. Think of the many 
long CIs we’ve seen. Failing to reject H

0
 merely tells us that μ

0
 is somewhere 

within the CI, and provides no grounds for thinking that μ
0
 is the true value. 

In other words:
“Not rejecting H

0
 is not sufficient reason to conclude that H

0
 is true.”

Sentences with multiple “nots” are hard to read, but that’s what we need 
here. Read that statement aloud a few times, faster and faster…

Here’s another common fallacy: the slippery slope of nonsignificance. The 
data  analysis states: “Because p > .05, we couldn’t reject the null hypothesis 
of no difference in the levels of anxiety in the two groups.” That’s fine, but 
later, in discussing the results we see: “The treatment made no difference to 
the children’s level of anxiety….” The statistically nonsignificant difference 
quietly became no difference, which a reader is likely to think of as a zero 
difference. Whenever a null hypothesis is not rejected, your “don’t- accept- 
H

0
” red flag should pop up to remind you of the danger of accepting the null 

hypothesis.
What, you might ask, if an effect is actually zero? Good question. The 

best approach is to estimate the size of the effect. If the CI is close to zero—
perhaps zero is inside the interval, or perhaps not—and all values in the 
interval are very small, or negligible, you might be willing to conclude that, 
for practical purposes, the effect is around zero. That’s usually as close as we 
can come to accepting a null hypothesis—to concluding that H

0
 is true—and 

we didn’t use NHST.

Red Flag 2
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6.17 a.  Suppose the result of our poll was 53% in a poll with margin of error of 
4%. Test the null hypothesis of 50% support in the population. Describe 
how a researcher using NHST might report that result, (i) falling into 
the trap of accepting H

0
, and (ii) avoiding that trap.

b. Interpret a result of 50.2% with a margin of error of 1%.

The inverse 
probability fallacy is 
the incorrect belief 
that the p value is 
the probability that 
H

0
 is true.

A large p value provides no evidence that the null hypothesis is true. Beware accepting 
the null hypothesis. Beware the slippery slope of nonsignificance.

Beware the p Value: What a p Value Is, and What 
It’s Not
As you know, the p value indicates strength of evidence against H

0
. It’s the prob-

ability of getting our observed result, or more extreme, IF the null hypothesis 
is true.  However, it’s a common error to think the p value is something very 
different: the probability that H

0
 is true. Unfortunately the p value can’t tell us 

that, and believing it does is the inverse probability fallacy. Consider the striking 
difference between:

 ■ Probability 1. The probability you speak English, IF you are reading this 
book (close to 1, I would think); and the reverse:

 ■ Probability 2. The probability you will read this book, IF you speak English. 
(Even if one million people read this book—I wish!—that’s still a probability 
close to 0, because so many millions of people in the world speak English.)

Here’s another example of the same distinction. Compare:

 ■ Probability 3. The probability of getting certain results, IF H
0
 is true (that’s 

our p value); and the reverse:
 ■ Probability 4. The probability H

0
 is true, IF we’ve obtained certain results. 

(We’d like to know that but, alas, p can’t tell us.)

In both of these examples, the two probabilities are fundamentally dif-
ferent, with the second being the reverse of the first. It’s worth reading them 
all again, to fully grasp that the relation between 3 and 4 is the same as the 
relation between 1 and 2.

Probability 3 is the p value that often is easily calculated when we assume 
H

0
 is true. Probability 4 refers to truth in the world, and in a sense it must be 

either 0 (H
0
 is false) or 1 (H

0
 is true), but we don’t know which. Probabilities 1 

and 2 obviously have very different values. Probabilities 3 and 4 might be just 
as different. They are certainly not referring to the same thing.

Here’s another way to think about the p value. Suppose you run an 
experiment to investigate whether your friend can use the power of her mind 
to influence whether a coin comes up heads or tails. You take great care to 
avoid trickery—consult a skilled conjurer to discover how difficult that is. 
Your friend concentrates deeply then predicts correctly the outcome of all 
10 tosses in your trial. I can tell you that the p value is .001, the probability 
she would get all 10 correct, IF the null hypothesis of a fair coin and random 

Red Flag 3
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guessing were true. Are you going to reject H
0
, and buy her the drink she 

bet you? Or will you conclude that most likely she’s just had a very lucky 
day? Sure, .001 is very small, but you find her claimed power of the mind 
very hard to accept. That’s our dilemma: Either H

0
 is true and a very unlikely 

event has occurred as the tiny p value indicated, or H
0
 is not true. It’s relevant 

to note the p value as we consider those two possibilities, but p doesn’t tell 
us the probability that your friend is merely guessing. That’s the dilemma, 
which NHST side- steps by using conventions that .05 or .01 are reasonable 
p values for rejecting H

0
, thus resorting to a mechanical rule that takes no 

account of the situation.
Some statistics textbooks say that p measures the probability that “the 

results are due to  chance”; in other words, the probability that the null hypoth-
esis is correct. However, that’s wrong, and merely a restatement of the inverse 
probability fallacy. Jacob Cohen, a distinguished statistics reformer, wrote that a 
p value “does not tell us what we want to know, and we so much want to know 
what we want to know that, out of desperation, we nevertheless believe that it 
does!” (Cohen, 1994, p. 997). In other words, we want to know whether H

0
 is 

true (Probability 4 above), but p does not measure that—it measures the proba-
bility of obtaining certain results IF H

0
 is true (Probability 3). In desperation we 

believe that p measures the probability H
0
 is true (Probability 4)—wrong!—and, 

unfortunately, some textbooks perpetuate the error.

The p value is not 
the probability 
the results are due 
to chance. That’s 
another version 
of the inverse 
probability fallacy.

Beware any suggestion that the p value is the probability that H
0
 is true. In other 

words, the p value is not the probability that our results are due to chance.

6.18 What is the probability that a person is an American citizen, IF they are 
a member of the U.S. Congress? What is the probability a person is a 
member of the U.S. Congress, IF they are an American citizen? Explain 
why the two are different.

6.19 Call your answers to 6.18 Probabilities 5 and 6. Use them to explain how 
Probabilities 3 and 4 are different things, and might well have different 
values.

We’ve seen four red flags (there’s a fifth to come, in Chapter 7):

1. The dichotomous thinking red flag. Be wary of black- and- white hypotheses 
or conclusions, which may give a false sense of certainty. Use estimation 
thinking and ask “how much” questions.

2. The ambiguous S word red flag. “Significant” is ambiguous—which meaning 
is intended? Avoid using the word, or say “statistically significant”. Beware 
the slippery slope of significance.

3. The don’t- accept- H
0
 red flag. Not rejecting H

0
 is not sufficient reason to 

conclude that it’s true. Beware the slippery slope of nonsignificance.
4. The what the p value isn’t red flag. The p value is a tricky probability, IF H

0
 is 

true; it’s not the probability that H
0
 is true, or that results are due to chance.

I hope your red flags are beginning to pop up and wave automatically, when-
ever you encounter any red flag triggers. I also hope that using estimation will 
reduce your red flag count.

Red Flag 4
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NHST DECISION MAKING

To give a more complete picture of NHST, I need to discuss some additional 
topics. However, you could skip this whole section, and come back to it when, 
in Chapter 10, we discuss statistical power—which uses many of the concepts 
I’ll now introduce. Here’s the list:

 ■ NHST decision making: Not only H
0
, the null hypothesis, but also H

1
, the 

alternative hypothesis
 ■ The two possible errors: Type I and Type II errors
 ■ A courtroom analogy for NHST decision making and the four possible 

outcomes
 ■ An optional extra: How the p value, and the alternative hypothesis, may 

be one- tailed or two- tailed

Next comes a new concept, then a few slightly complicated steps as I describe 
how NHST decision making works. At the end I’ll describe a courtroom anal-
ogy that I hope helps it all make sense. At any point, you might find it helpful 
to skip ahead and read the short courtroom analogy section, then come back.

The Alternative Hypothesis
So far we’ve considered only the single hypothesis, H

0
, and have rejected H

0
, 

or failed to reject it. The first new concept is the alternative hypothesis, with 
symbol H

1
. NHST assumes that H

0
 and H

1
 do not overlap and that just one is 

true. Informally, think of it like this:

 ■ H
0
: There’s no effect.

 ■ H
1
: There is an effect.

The alternative hypothesis is a statement about the population effect that’s distinct from 
the null hypothesis.

It’s common for NHST to use

 ■ the null hypothesis H
0
: μ = 0, and

 ■ the alternative hypothesis H
1
: μ ≠ 0.

In other words, either the effect is zero, or it isn’t.

The NHST Decision Rule
Recall strict NHST decision making, which requires the significance level to be  
chosen in advance. I’ll refer to that significance level as α (Greek lower case 
alpha). NHST rejects H

0
 if p < α, and does not reject if p ≥ α. Recall our study 

that examined the HEAT scores of a sample of students at College Alpha. We 
used H

0
: μ = 50. We can now state an alternative hypothesis, which is H

1
: μ 

≠ 50. We found (using t) that p = .08. Choosing α = .05, we note that p ≥ α 
and so we don’t reject H

0
. We conclude that the mean HEAT score of College 

Alpha students is not statistically significantly different from 50, the mean in 
the general student population.

Informally, the 
alternative 
hypothesis, H

1
, 

states “There is an 
effect.”

The strict NHST 
significance level 
chosen in advance is 
α, and the decision 
rule is: Reject 
H

0
 when p < α; 

otherwise don’t 
reject.
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6.20 Suppose we had found p = .02, what would we have decided? State your 
conclusion in good NHST language.

Type I and Type II Errors
Given the assumption that either H

0
 or H

1
 is true, there are two possible states 

of the world: Either there’s no effect and H
0
 is true, or there is an effect and H

1
 

is true. In addition, there are two decisions we can make: Reject H
0
, or don’t 

reject H
0
. Therefore, there are four possibilities, as illustrated by the four main 

cells of Table 6.1.
There are two cells we’d be happy to occupy, because our decision would 

be correct:  In the top left cell, there’s no effect, H
0
 is true, and we correctly don’t 

reject it. In the bottom right, there is an effect, H
1
 is true, and we correctly reject H

0
.

The other two cells are errors, which are called Type I and Type II errors:

A Type I error is the rejection of H
0
 when it’s true, as in the bottom left cell in Table 6.1.

A Type I error is a false positive. We shout “There’s an effect!”, but alas we’re  
wrong. If we reject the null hypothesis that μ = 50 for College Alpha students 
when that is indeed their population mean HEAT score, then we are making 
a Type I error.

A Type II error is failing to reject H
0
 when it’s false, as in the top right cell in Table 6.1.

A Type II error is a false negative, also called a miss. There is an effect, but 
we missed it. If we don’t reject the null hypothesis that μ = 50 for College 
Alpha students when their population mean HEAT score is not 50, then we are 
making a Type II error.

6.21 If you choose α = .01 and obtain p = .03, what do you decide? Which cells 
in the table could you be in?

 ■ Describe and name each of those cells.
 ■ Do you ever know which single cell you are in? Explain.
 ■ Can you ever be sure whether to be happy or sad? Explain.

6.22 Suppose you choose α = .05 and obtain p = .03. Answer Exercise 6.21 for 
these values.

6.23 What’s α, what’s p, and how are they different?

Next comes a crucial point about α, and what it tells us about Type I errors.

There are four 
possibilities for 
NHST decision 
making. Two would 
make us happy, two 
are errors.

A Type I error, or 
false positive: We 
reject when we 
shouldn’t.

A Type II error is a 
false negative, or 
miss: We don’t reject 
when we should.

Table 6.1 The 
Four Possibilities 
for NHST 
Decision Making

State of the world

H
0
 is true, and μ = 0

There’s no effect
H

1
 is true, and μ ≠ 0

There is an effect

Decision

p ≥ α, don’t 
reject H

0

Correctly don’t reject H
0
 ☺

No sign of an effect
Type II error (rate = β) ☹
Don’t reject H

0
 when it’s false

False negative: We missed the effect

p < α, 
reject H

0

Type I error (rate = α) ☹
Reject H

0
 when it’s true

False positive: Wrongly claim 
an effect

Correctly reject H
0
 ☺

We found the effect!
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The Type I Error Rate, α, and What It Means
What’s the probability we’ll make a Type I error when H

0
 is true? When H

0
 is 

true, we’ll be unlucky and get p < .05 on just 5% of occasions in the long run. 
That’s the definition of the p value. Choosing α = .05, those 5% of occasions are 
when p < α and we reject H

0
. Therefore α is the Type I error rate—the probability 

that we make a Type I error when the null hypothesis is true.

The Type I error rate, α, is the probability of rejecting H
0
 when it’s true. It’s also called the 

false positive rate. (Consider the bottom left cell in Table 6.1.)

 α = Probability (Reject H
0
, WHEN H

0
 is true) (6.3)

It’s vital to remember “WHEN H
0
 is true” (same as “IF H

0
 is true”) for α,  

just as we must remember it for p values. Both α and a p value are probabilities 
that assume H

0
 is true, and both can be misunderstood in the same way. Recall 

the warning about any statement like “The p value is the probability that H
0
 is 

true.” (Wrong!) Here we must beware any statement that α is the probability 
that H

0
 is true, or the probability there’s no effect. (Both wrong!)

Whenever you see α or a p value, say to yourself “assuming the null 
hypothesis is true.”

6.24 Suppose you choose α = .05. When the null hypothesis is true, what 
percentage of the NHST decisions you make will be false positives? Do 
we ever know whether the null hypothesis is true?

The Type II Error Rate, β, and What It Means
I’ll now define the Type II error rate, which we refer to as β.

The Type II error rate, β, is the probability of failing to reject H
0
 when it’s false. It’s also called 

the false negative rate, or miss rate. (Consider the top right cell in Table 6.1.)

 β = Probability (Don’t reject H
0
, WHEN H

1
 is true) (6.4)

To calculate a p value and consider α, the Type I error rate, we needed a null 
hypothesis that states a single value, such as H

0
: μ = 0. Similarly, to use Equation 

6.4 to calculate β, the Type II error rate, we need an alternative hypothesis that 
states a single value. For our College Alpha example we might choose:

 ■ H
0
: μ = 50 for the population of College Alpha students.

 ■ H
1
: μ = 60.

Why 60? We might choose 60 because we know it has an especially strong 
environmental awareness program. Even so, it’s artificial to suppose that the 
population mean is either exactly 50 or exactly 60, but using those hypotheses 
at least allows calculation of Type II as well as Type I error rates.

Using H
1
: μ = 60, β calculated using Equation 6.4 is the probability we’ll 

miss the difference from 50, IF the College Alpha mean really is 60. Here we 
must note carefully that β is not the probability that H

1
 is true—it’s a probability 

that assumes H
1
 is true. Whenever you see β or any mention of Type II errors, 

say to yourself “assuming H
1
 is true”, or “assuming there is an effect of exactly 

that size”.

Type I error rate, α.

The Type I error rate, 
α, is the probability 
of rejecting H

0
 when 

it is true. It is not the 
probability that H

0
 

is true.

Type II error rate, β.

The Type II error rate, 
β, is the probability 
of failing to reject H

0
 

when H
0
 is false (i.e., 

H
1
 is true). It is not 

the probability that 
H

1
 is true.
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A Courtroom Analogy to NHST Decision Making
After that blizzard of Greek letters, definitions, and sentences with lots of nega-
tives (e.g., “don’t reject”, “false negatives”), here’s the courtroom analogy. Earlier 
I described the dilemma of a researcher using NHST: Given a small p value, which 
indicates that our results are rather extreme, then either H

0
 is true and an unlikely 

event has occurred, or H
0
 is not true. Compare that with the dilemma in a court-

room. Suppose you are on a jury and hearing evidence about a defendant accused 
of a crime. If the person is innocent, the evidence you hear seems unlikely to have 
occurred, so you conclude there’s fairly strong evidence of guilt. You are aching 
to know the truth—the accused either did or did not commit the crime—but you 
and the jury must decide, given only the evidence you’ve heard, whether to cry 
“guilty”, or to let the initial strong presumption of innocence stand. You know 
that, whichever decision you make, you might be wrong.

There are strong parallels between the courtroom and NHST. In both 
cases there are  two possible states of the world (the accused is not guilty or 
guilty; H

0
 true or not), and a decision is required, despite uncertainty. Also, 

there is an initial presumption (the accused is innocent; H
0
 is true) and a 

deliberate bias to reject that presumption only if the evidence is sufficiently 
strong—in the courtroom case, beyond reasonable doubt. There are two 
possible decision errors, one of which is regarded as more serious than the 
other. Here’s the parallel:

Researcher’s Dilemma Jury’s Dilemma

Possible states of world Effect exists, or it doesn’t. Accused is guilty, or not.

Initial presumption H
0
 true: No effect. Not guilty.

Basis for deciding Small p value. Evidence, beyond reasonable doubt.

Decision possibilities Reject H
0
, there is an effect

or don’t reject H
0
, and initial 

presumption stands.

Guilty
or not guilty, and initial 
presumption stands.

Correct outcomes Reject H
0
 when effect exists.

Don’t reject H
0
 when no effect.

Guilty person jailed.
Innocent person walks free.

More serious error False positive. Reject H
0
 when 

there’s really no effect.
False conviction. Innocent person 
jailed.

Less serious error Miss. Don’t reject H
0
 when there 

is an effect.
Miss a conviction. Guilty person 
walks free.

When you encounter NHST ideas, think back to the courtroom analogy if 
you find that’s helpful.

6.25 a. What’s the courtroom equivalent of H
1
?

b. What courtroom outcome corresponds to a Type I error? Explain.
c. What corresponds to a Type II error? Explain.

What Influences Type I and Type II Error Rates?
In the courtroom, suppose we decide to require even stronger evidence before 
deciding “guilty”. What will happen to the two error rates—the numbers of 
guilty people who walk free and innocent people who are jailed? That’s worth 
pondering… write down your thoughts.

An analogy: A jury 
decides “guilty” or 
it doesn’t; NHST 
rejects H

0
 or doesn’t 

reject.
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Ponder, call, discuss…

The equivalent for the researcher is to choose smaller α, perhaps .01 rather 
than .05, so stronger evidence is required before we can reject H

0
 and conclude 

there is an effect. What will happen to the Type I and Type II error rates?
Well, small α means we require stronger evidence before rejecting H

0
, 

which means we’ll be less likely to make Type I errors (less likely to convict 
the innocent); on the other hand, with a higher standard of evidence we’ll also 
miss more effects that do exist (let more guilty people go free). In other words, 
smaller α means fewer Type I errors, but also more Type II errors.

Scientific progress is best if we can minimize both errors, but the two tend 
to trade off. For a given study, we can set smaller α so we make fewer Type 
I errors, but at the expense of more Type II—that’s fewer false positives but 
more misses. Or we can choose larger α for the opposite pattern: More false 
positives, but we identify more effects when they do exist. Fortunately, there’s a 
way out of this dilemma: Run a larger study. Other things remaining the same, 
for a stated Type I error rate (α), a larger N will give us a smaller Type II error 
rate (β), which is good news. With very large studies, you can even require a 
higher standard of evidence by reducing the Type I error rate (choosing smaller 
α) while still maintaining a quite low Type II error rate—again, all other things 
remaining the same. What do you want for your birthday? Big N! We’ll discuss 
Type II error rates and choice of N as part of research planning in Chapter 10.

NHST tradition is to set a smallish α, usually .05, to limit the risk of false 
positives, and to test a single null hypothesis of no effect. The trouble is that 
it takes effort and judgment to specify a single H

1
 value and consider β, and 

so NHST is often used without attention being paid to these critical factors—
meaning we can’t know what the Type II error rate might be. Therefore, if you 
read that H

0
 was not rejected, bring to mind the risk of a Type II error—perhaps 

there’s a real effect that was missed? Recall Red Flag 3 and make sure not to 
accept the null.

Finally in this section on the two errors, consider an important difference 
between them. The researcher chooses α, but what determines β? We’ve already 
seen two influences. If all other things remain the same:

 ■ The two errors trade: Smaller α means larger β, and larger α means—you 
guessed it—smaller β.

 ■ For a stated α, larger N gives smaller β.

The research design, for example independent groups or paired as we’ll 
discuss in  Chapters 7 and 8, influences β, and there’s one more crucial influence. 
What difference do you think H

1
 makes to β? In our College Alpha example, 

consider H
1
: μ = 65 rather than H

1
: μ = 60. Would you expect more or fewer 

Type II errors for a mean of 65 for the College population rather than 60?

Choose smaller α for 
fewer Type I errors, 
at the cost of more 
Type II. Fewer false 
positives, but more 
misses.

Traditional NHST 
considers only H

0
 

and rejects it or not, 
with little or no idea 
of the risk of missing 
an effect by making 
a Type II error.

Type II error rate, β, 
is influenced by the 
research design, α, 
N, and the effect size 
stated by H

1
.

For a larger difference between H
0
 and H

1
, it will be easier to obtain sta-

tistical significance, meaning fewer Type II errors. The larger the effect, the 
easier it is to find. Therefore, other things remaining the same, we can say this:

 ■ When H
1
 states a larger effect (more different from the null hypothesis 

value), β is smaller.
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One- Tailed p Values and One- Sided Hypotheses
These are two optional extra NHST concepts. First, one- tailed p values. To 
calculate the p value for the sample HEAT mean of M = 57.8 we included as 
“extreme” both values greater than 57.8 and values less than 42.2. However, 
if College Alpha has an especially strong environmental awareness program 
we might consider such low values as unbelievable and irrelevant—you may 
feel that, if the college mean is not 50, it can only be greater. If so, you could 
define “extreme” as only values greater than 57.8, in which case our p value is

p = Probability (M ≥ 57.8, IF H
0
 true)

This is a one- tailed p value, whereas p that includes values above 57.8 and below 
42.2 is  called two- tailed. Working with means, the two tails have equal areas, 
and so one- tailed p is half of two- tailed p.

A one- tailed p value includes values more extreme than the obtained result in one direction, 
that direction having been stated in advance.

A two- tailed p value includes values more extreme in both positive and negative directions.

If NHST tests H
0
: μ = 50 against the alternative H

1
: μ ≠ 50, the alternative 

includes  departures from H
0
 in both directions, so requires two- tailed p. If we 

regard negative departures from H
0
 as unbelievable, or beyond the scope of 

our research, we need the one- sided, or directional, alternative H
1
: μ > 50 and 

one- tailed p.

A one- sided, or directional, alternative hypothesis includes only values that differ in one 
direction from the null hypothesis value. For example, H

1
: μ > 50.

If we’ve decided to use that one- tailed alternative, what do we do if we find 
M = 41, which is surprisingly far from 50, but in the “wrong”, or unpredicted 
direction? We would simply not reject H

0
, because rejecting it means deciding 

in favor of the directional hypothesis H
1
: μ > 50, which for M = 41 would be 

silly. We’d probably also plan a further study using a two- tailed alternative (or 
even H

1
: μ < 50) to explore the unexpected finding.

In our HEAT example we found two- tailed p = .08 and did not reject H
0
. 

Had we predicted the direction in advance and used a directional alternative 
hypothesis, we would have calculated one- tailed p = .04 and could have rejected 
H

0
. Does it make sense that M = 57.8 gives two different conclusions, depend-

ing merely on choice of H
1
? That’s worth thinking about, but is correct. The 

point is that our result, M = 57.8, is in the correct, or predicted direction. It’s 
consistent with one- sided H

1
 and this consistency provides a bit more evidence 

against H
0
 and in favor of H

1
.

The key requirement is that you must choose H
1
 in advance of conducting 

the study, and only choose a one- tailed alternative if you have a very good 
reason. It’s totally unacceptable to calculate, for example, p = .06, two- tailed, 
then claim that you really meant to use a one- tailed alternative, so one- tailed 
p = .03 and you can declare statistical significance. No! Any report that includes 
p values should state whether they are two- tailed or one- tailed. When a report 

When using means, 
one- tailed p is half 
of two- tailed p.

One- tailed p 
includes values 
more extreme than 
the observed result 
only in the direction 
specified by the one- 
sided, or directional, 
alternative 
hypothesis, H

1
.
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states a one- tailed p value there might be doubt as to whether a directional 
alternative had actually been specified in advance, especially if one- tailed p is 
just less than .05. To be fully convinced we’d like to see a preregistered data 
analysis plan that included specification of the directional H

1
.

One- tailed p values are justifiable in some situations, but generally I prefer 
to keep life simple by always using two- tailed p. That’s what ESCI does and 
what I do throughout this book. Of course, another option is to use estimation 
and CIs, and not use p values at all.

Quiz 6.3

Linda runs a study to compare donations to a charity prompted by the door- in- the- face 
technique with those prompted by a standard donation request. She will use NHST, using 
α = .05 and the null hypothesis that donations are the same regardless of type of request. 
(Have you heard of the door- in- the- face technique? You can find out more at tiny.cc/ 
doorinface).

1. What would be a Type I error for this study?
a. The null hypothesis is true but Linda rejects it. That is, the door- in- the- face technique is 

not better, but Linda comes to think that it is.
b. The null hypothesis is false, but Linda fails to reject it. That is, the door- in- the- face 

technique is better, but Linda remains skeptical.
c. The null hypothesis is true, but Linda fails to reject it. That is, the door- in- the- face 

technique is not better, and Linda remains skeptical about it.
d. The null hypothesis is false but Linda rejects it. That is, the door- in- the- face technique is 

better, and Linda comes to think that it is.
2. What would be a Type II error for this study? Choose again from a, b, c, and d.
3. Linda finds p = .001 for the comparison of donation amounts. She thus decides to reject the 

null hypothesis. In this case, what types of errors does Linda need to worry about?
a. Linda might be making a Type I error, but she doesn’t need to worry about a Type II error.
b. Linda might be making a Type II error, but she doesn’t need to worry about a Type I error.
c. Linda could be making either a Type I or a Type II error.
d. No need to worry about any kind of error: The p value is very small, so Linda is almost 

certainly correct. (Hint: This is not the right answer!)
4. If I choose smaller α, then β will be _ _ _ _ _ _ _ _ _ _ , and there will be more _ _ _ _ _ _ _ _ _ _  errors, but 

fewer _ _ _ _ _ _ _ _ _ _  errors.
5. When interpreting NHST results, it is important to remember that

a. statistically significant (p < α) does not necessarily mean the finding is important, large, or 
meaningful.

b. just because the null is not rejected does not mean you should accept the null as true.
c. p is not the probability that H

0
 is true, it is the probability of obtaining your results or 

more extreme if H
0
 is true.

d. All of the above.
6. If you state α and H

0
, but not H

1
, could you make a Type I error? Do you know the Type 

I error rate? If so, what is it? Could you make a Type II error? Do you know the Type II error 
rate? If so, what is it?

7. Text your own quiz questions to your friends, and ask for theirs.

NHST and p Values in Context
In this chapter we’ve mainly discussed p values and NHST, but remember 
that estimation almost always provides the most complete and best basis for 
interpretation and drawing conclusions. You need to know about p values 
and NHST to read the literature, and sometimes you may wish to supplement 
full estimation reporting with p values and comments. However, especially as 

Consider using 
one- tailed p only 
when there are 
strong reasons 
for specifying a 
directional H

1
 in 

advance.
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meta- analysis, replication, and other Open Science concepts gain widespread 
attention and support, I suspect that reliance on NHST will wane. That would 
be a benefi cial development. 

 It’s time now to write your take- home messages. We’ve calculated  p  val-
ues, translated back and forth between 95% CIs and  p  values—bring to mind 
a fi gure picturing some important relationships. We discussed four red fl ags, 
then explored researcher and jury decision making, and a few new NHST ideas 
and terms.  

  6.26     A researcher chooses  α  = .01 and calculates  p  = .004.  
  a.     What does the researcher decide?  
  b.     What error might the researcher have made? Can you calculate the 

probability the researcher has made that error? If so, what is that prob-
ability? Explain.    

  6.27     A jury decides that a defendant is not guilty.  
  a.     What’s the NHST equivalent of this decision?  
  b.     Which two cells in  Table 6.1  could we be in? Explain.  
  c.     If the defendant is actually guilty, what’s the probability the jury would 

make that decision? (Hint: It’s a Greek letter.) Explain.    
  6.28     A researcher chooses  α  = .01 and is keen for  β  to be small. Describe two 

ways the researcher could achieve that aim. Which of the two would you 
recommend, and why?  

  6.29     Revise your take- home messages if you wish.   

   Reporting Your Work 

 Although we’re discussing NHST approaches in this chapter, it is still best to focus any 
research report on point and interval estimates. It is ok, though, to supplement this with 
NHST information. If you do so, you should always report: 

 ■   whether the analysis is planned or exploratory, unless this is already clear;  
 ■   the basic descriptive statistics for the measure you are analyzing (usually mean, 

standard deviation, and sample size);  
 ■   a figure, if possible, and state in the figure caption what error bars represent—95% CIs;  
 ■   the information required for the estimation approach (the 95% CI);  
 ■   the test statistic used to generate a  p  value (test statistics introduced in this chapter are 

 z  and  t );  
 ■   the degrees of freedom (if any) for the test statistic (for  t , for example, there is always 

an associated degrees of freedom)—the degrees of freedom are usually included in 
parentheses after the symbol for the test statistic;  

 ■   the  p  value itself; and  
 ■   an interpretation focused on the point estimate and CI.   

  For the  p  values you should give exact values, usually rounded to two decimal places. 
 There are two exceptions to this rule. First, if  p  is very very small, it’s best to just write  p  < 
.001 rather than give an exact value with lots of zeros in front. Second, if  p  is between .02 
and .001, it can be a good idea to report three decimal places.  

 Another rule for APA formatting: Do not use a leading zero to report statistics which cannot 
exceed 1. So we report  p  = .02 rather than  p  = 0.02 because  p  values cannot be greater than 1. 

 Below are three examples of how you might write up NHST results in APA style. Note, 
as usual, that the focus is on explaining the conclusion drawn from the analysis—you 
don’t have to write a statistics textbook to explain the concepts behind  p , H 

0
 , and so on. 

What is important, though, is that it is clear what variable you are analyzing and what 
groups you are comparing. 

 Report an exact 
( p  = .03) rather 
than relative ( p  < 
.05) value. Give two 
decimal places, or 
three for values less 
than .02. State 
 p  < .001 rather than 
stating exact very 
small values. 
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 Improvement in depression scores averaged 17.1 points (95% 
CI [8.5, 25.7],  s  = 18.9,  N  = 21). This CI is consistent 
with anywhere from moderate to very large average relief 
from depression. Moreover, this improvement in scores is 
statistically signifi cant relative to the null hypothesis of 
no improvement ( t (20) = 4.15,  p  < .001). Although there was 
considerable variation in improvement, only 6 participants 
showed no change or worsened; the rest showed at least some 
improvement. 

 Those who drank Neuroaid scored close to the national average of 
100 on the IQ test ( M  = 101, 95% CI [98, 104],  s  = 15,  N  = 84). 
The CI indicates that it is unlikely that the drink produces 
more than a 4- point benefi t in IQ, and is also consistent with 
no improvement or even a very small decline in IQ. Given a 
null hypothesis of performance at the national average, this 
result is not statistically signifi cant ( z  = 0.61,  p  = .54). 

 Although this was not a planned analysis, we did note during 
exploration that participants enrolled in the music education 
class scored well on the ACT ( M  = 26, 95% CI [22.4, 29.6], 
 s  = 5,  N  = 10). The CI is quite long, but the mean was 
statistically signifi cantly greater than the national average 
of 21 ( t (9) = 3.16,  p  = .01). This suggests that music education 
could be somewhat associated with better college readiness, 
but an independent replication is needed to investigate this 
possibility further.        

  Take- Home Messages 
  The Basics of NHST and p Values  

 ■   The three- step NHST process: State the null hypothesis, H 
0
 ; calculate the  p  

value assuming H 
0
  is true; then reject the null if  p  is less than the significance 

level (often .05) and otherwise don’t reject.  

 ■   The null hypothesis value,  μ  
0
 , is the value that H 

0
  states to be true. It’s often 

zero, in which case H 
0
 :  μ  = 0, but other values may be chosen.  

 ■   The  p value  is the probability of obtaining the observed result, or more 
extreme, IF H 

0
  is true. The lower the  p  value, the stronger the evidence 

against H 
0
 , and the more we should doubt it.  

 ■   For a single- sample study, if  σ  is known use  z  given by Equation 6.1 to find 
the  p  value. If  σ  is not known, use  t  given by Equation 6.2 to find the  p  value. 
Report exact rather than relative  p  values .     

  Translation Between a 95% CI and a p Value  

 ■   Use the way a 95% CI falls in relation to  μ  
0
  and the approximate benchmarks in  Figure 6.7  

(a  take- home picture ) to eyeball the approximate  p  value. For example, if  μ  
0
  falls 1/ 3 of MoE 

beyond a limit,  p  is about .01. Also, given the  p  value,  M , and  μ  
0
 , use the same patterns to 

eyeball the approximate 95% CI.    

  Four Red Flags  

 ■    Red Flag 1.  Beware dichotomous conclusions, which may give a false sense of certainty. Prefer 
estimation thinking. Express research aims as “to what extent” questions.  

 ■    Red Flag 2.  Beware the dangerously ambiguous S word (“significant”). Beware the slippery 
slope of significance, in which a statistically significant difference is unjustifiably discussed as 
large or important.  
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 ■ Red Flag 3. Beware accepting the null hypothesis. Beware the slippery slope of 
nonsignificance, in which failing to reject H

0
 leads later to a statement that an effect is zero.

 ■ Red Flag 4. The p value is the probability of obtaining our result, or more extreme, IF H
0
 is 

true. Beware the inverse probability fallacy: p is not the probability our results are due to 
chance.

NHST Decision Making

 ■ NHST can test H
0
 against the alternative hypothesis, H

1
. Strict NHST requires the significance 

level, most commonly α = .05, to be stated in advance.

 ■ A Type I error, or false positive, is rejection of H
0
 when it’s true; the Type I error rate is α. 

A Type II error, or miss, is not rejecting H
0
 when it’s false. The Type II error rate is β. See the 

four main cells in Table 6.1.

 ■ If there are excellent reasons for specifying in advance a directional alternative hypothesis, 
such as H

1
: μ > 0, you could consider using a one- tailed p value.

End- of- Chapter Exercises

These exercises will give you practice using the NHST approach. Remember, though, that it would 
be better to use the estimation approach: The CI provides all the information necessary to test any 
null hypothesis and gives a much better sense of the precision with which the research question 
has been answered.

1) Andrew is studying the extent to which Neuroaid influences IQ. He has 16 students drink 
Neuroaid and then take an IQ test which has a national average of 100 with σ = 15. His null 
hypothesis is that IQ after Neuroaid is also 100 (H

0
: µ

Neuroaid
 = 100). Given a significance level 

of .05, which of the following findings would be statistically significant?
a. p = .5
b. p = .01
c. p = .99
d. z = 2.5 (use ESCI to look up the p value)
e. z = −2.5
f. z = 0
g. The sample mean is 106, 95% CI [98.5, 113.5]
h. The sample mean is 115, 95% CI [107.5, 122.5]

2) Maria is studying the extent to which a first- year workshop on study skills helps students 
get more out of college. She asks 268 seniors to take a critical thinking test: Half took 
the study skills workshop during their first year, half did not. Using NHST, Maria obtains 
t(266) = 2.19, p = .03. Which of the following point estimates and confidence intervals for 
the difference (M

2
 –  M

1
) between these two group means make sense and are consistent 

with that p value?
a. (M

2
 –  M

1
) = 2.6, 95% CI [−3, 8.2]

b. (M
2
 –  M

1
) = 2.6, 95% CI [0.3, 5]

c. (M
2
 –  M

1
) = 0, 95% CI [−3, 3]

d. (M
2
 –  M

1
) = 2.6, 95% CI [1.7, 3.5]

3) To what extent might an online chemistry class lead to better learning than a traditional 
chemistry course? You administer a standardized final to a sample of 36 students and obtain 
an average score of 82.0. Nationally, the average on this exam is 80, with an SD of 12, for 
a traditional course. Use NHST to test the null hypothesis that the online chemistry course 
has the same mean as a traditional course (that μ

online
 = μ

national
 = 80). Use a significance level 

of .05.
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a. What test statistic will you calculate, z or t? Why?
b. Calculate the test statistic (it’s z!). What is its value?
c. Use ESCI to look up the p value for this test statistic.
d. Based on the p value obtained, is this a statistically significant result? Will you reject 

the null hypothesis?
e. Calculate the 95% CI for the difference between your online sample mean and the 

national average. Does the CI support a similar conclusion? Why might you prefer to 
know the CI rather than just the p value?

f. Since this is not a statistically significant difference, can you therefore conclude that 
an online chemistry course is just as effective as traditional chemistry courses? Hint: 
Think about the four red flags.

g. Write up an APA- formatted results section reporting your analysis.
4) Lauren is designing a study and will use the NHST approach with a significance level of .05 

(α = .05).
a. If the null hypothesis is true, what is Lauren’s chance of nevertheless rejecting the null 

hypothesis, making a Type I error?
b. If the null hypothesis is not true, what factors influence Lauren’s risk of making a Type 

II error?
c. What can Lauren do to reduce the risk of a Type I error? What is a drawback of this 

strategy?
d. What is the best way to reduce the risk of Type II error?

5) Does learning a new skill require a regular sleep pattern? Stickgold, James, and Hobson 
(2000) trained 11 participants on a new skill. That night all participants were sleep deprived. 
The data are (−14.7, −10.7, −10.7, 2.2, 2.4, 4.5, 7.2, 9.6, 10, 21.3, 21.8)—or download them 
from the book website (Stickgold data set). The data are the changes in learning scores from 
before training to after: 0 represents no change, positive scores represent improvement, and 
negative scores represent decline. Use NHST, test against the null hypothesis of no change 
(H

0
: μ

sleep_ deprived
 = 0). Use α = .05. Data set courtesy of DataCrunch (tiny.cc/Stickgold)

a. What test statistic will you calculate, z or t? Why?
b. Calculate the test statistic (it’s t!).
c. Use ESCI to lookup the p value.
d. Is this a statistically significant result? Will you reject the null hypothesis?
e. Stickgold, James, and Hobson write that those sleep deprived show “no significant 

improvement” and therefore conclude that learning requires sleep. Which red flag 
about NHST does this call to mind?

f. Calculate the 95% CI for change in learning scores. Does the evidence support the 
notion that no learning occurs during sleep deprivation?

g. Write up an APA- formatted results section reporting your analysis.

Answers to Quizzes

Quiz 6.1
1) d; 2) a: p is a probability and therefore can only range between 0 (no chance) and 1 (certain); 3) unlikely; 4) b; 

5) greater than, not reject; 6) small, strong.

Quiz 6.2
1) a; 2) The panel on the left; 3) a. p = .32, b. p = .32, c. p = .003, d. p = .06, e. p = .05, f. p = .33; 4) Only result c, 

with z = 3, which gives p = .003; none of the other test statistics given produce p < .01 (the significance level), so 
none of these would lead to rejecting the null hypothesis; 5) a; 6) p = .03, yes, no, no.
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 Answers to In-Chapter Exercises

6.1 a. Between .33 and .05, actually .14; at the .05 significance level, we don’t reject that null hypothesis; b. The cat’s 
eye suggests this value is somewhat plausible.

6.2 a. 57% is a great distance beyond the CI limit, so p is extremely small; at the .05 significance level, we reject 
that null hypothesis and conclude that support is statistically significantly lower than 57% (we’ll see later that 
we could also reject at much lower significance levels); b. The cat’s eye is extremely thin and so 57% is highly 
implausible.

6.3 Do we know the full story? For example, are there any other similar studies? Are the results we have selected in 
any way? We want full details of what was done, and reassurance in particular that the assumption of random 
sampling is reasonable.

6.4 a. Equation 6.1 gives z = 4.60/3.651 = 1.260, for which p = .2077, rounded to .21; b. Equation 5.1 gives 
MoE = 1.96 × 20/ 30  = 7.157, so the CI is [47.44, 61.76]; c. Very similar, except that for the CI we use a critical 
value of z (i.e., 1.96) and for p we calculate z and find the corresponding tails area, which is the p value; d. The CI 
gives us a range of relatively plausible values for the true mean; the p value of .21 indicates only that we can’t 
reject the null hypothesis.

6.5 a. Equation 6.1 gives z = 2.3, for which p = .02. Equation 5.1 gives a CI of [50.68, 58.52]. The p value is consistent 
with the null hypothesis value a little outside the CI, and means we can reject the null at the .05 level. The larger 
sample gives, for the same M, a smaller p value and shorter CI.

6.6 a. Equation 6.2 gives t = 4.6/(14.3/ 30 ) = 1.762, the df = 29, and so p = .0886, rounded to .09; b. Equation 5.8 
gives MoE = 2.045 × 14.3/ 30  = 5.34, so the CI is [49.26, 59.94]; c. Very similar, except that for the CI we use a 
critical value of t with df = 29 (i.e., 2.045) and for p we calculate t and find the corresponding tails area, which is 
the p value; d. The CI gives us a range of relatively plausible values for the true mean; the p value of .09 indicates 
only that we can’t reject the null.

6.7 Equation 6.2 gives t = 3.217, with df = 99, and p = .002. MoE = 1.984 × 14.3/ 100  = 2.84, so the CI is [51.76, 
57.44]. The p value indicates strong evidence against the null hypothesis of 50, which is consistent with the CI 
being considerably above 50, and allows us to reject the null at the .01 level. The much shorter CI indicates a 
more precise estimate than before.

6.8 The much larger sample gives a much more precise estimate of s, just as it gives a much more precise estimate 
of the population mean.

6.9 My favorite is Small hints, but play with Large hints if you would like to see how CI length changes with C, the 
level of confidence.

6.11 The accurate values are, from a to f: .033, .12, <.001, .29, .70, .006.
6.12 About .11.
6.13 In Figure 6.7, focus on the (95%) CI second from right, and note that its p value is .01. Imagine extending it by 

one-third of MoE both upward and downward, which makes it approximately a 99% CI. The lower limit would be 
at μ

0
, which means, because it’s a 99% CI, that p = .01, and this accords with Guideline 3.

6.14 Cases a to f in Figure 6.10 are the same as cases f to a (i.e., order is reversed) in Figure 6.9. In Figure 6.10, from a 
to f	the	means	and	CIs	are	77	[22,	132],	7	[−28,	42],	24	[−20,	68],	44	[22,	66],	44	[−11,	99],	36	[3,	69].

6.15 [0.2, 4.4]
6.16 When the statistical meaning is intended, insert “statistically”. Otherwise replace with a synonym. If you can’t 

tell which meaning is intended, there’s a problem.
6.17 a. The result is 53% [49, 57], which includes 50% and so we can’t reject that null hypothesis. (i) The poll found no 

statistically significant difference from 50%, or, worse, there was no difference from 50%. (ii) The null hypothesis 
of 50% could not be rejected; b. The second result is 50.2% [49.2, 51.2] so the null hypothesis is not rejected. The 
CI is very short and includes 50% so we might conclude that the true value is 50% or very close to 50%; for 
practical purposes, voters are split about 50–50.

6.18 That’s 1, because being an American citizen is a requirement for members of Congress. Choose a random 
American citizen and there’s only an extremely tiny chance he or she is a member of Congress, so the second 
probability is close to 0. The two are quite different conditional probabilities and there’s no reason to expect 
them to be equal or even similar.

Quiz 6.3
1) a; also, note that c and d are not errors, but correct decisions! 2) b; 3) a; 4) increased, Type II, Type I; 5) d; 6) Yes, 

yes, α, yes, no.
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6.19 Probability 5 is 1; Probability 6 is close to 0. To get the two we simply swapped which of the two events “is an 
American citizen” and “is a member of Congress” comes after IF. The two Probabilities 3 and 4 are similarly a swap 
of which event, “getting certain results” or “H

0
 is true”, comes after the IF, so there is no reason to expect the two 

to be equal or even similar.
6.20 p = .02 means that p < α = .05 and so we reject the null hypothesis and conclude that the mean for the college 

is statistically significantly greater than 50, assuming the M for our sample was greater than 50. You might be 
thinking that H

1
: μ ≠ 50 and, therefore, if we reject H

0
 we should conclude that the mean for College Alpha is 

different from 50, rather than greater than 50. Strictly, you are correct. However, virtually all researchers take a 
pragmatic approach and draw a directional conclusion, meaning that if M > 50 they conclude that rejecting H

0
 

justifies a conclusion that the true value is statistically significantly greater than 50.
6.21 Don’t reject H

0
. Either of the top two cells. If H

0
 is really true (top left cell) the decision is correct: No sign of an 

effect. If H
0
 is false, H

1
 is true, and we’ve made a miss (Type II error, top right cell). We never know which of those 

two cells we’re in, because we never know whether H
0
 or H

1
 is true—which implies that, in general, we can never 

know exactly which cell we are in, so can never be sure whether to be happy or sad.
6.22 Reject H

0
, either of the bottom two cells. If H

0
 true (bottom left), false alarm, Type I error. If H

0
 false, correct 

rejection, bottom right cell. As before, we never know which of the two cells we’re in.
6.23 Using strict NHST, α is the significance level chosen in advance, often .05 or perhaps .01 or .001. It’s also the Type 

I error rate. The p value is calculated from the data and is the probability of obtaining our result or more extreme 
IF the null is true. So the two are quite different, one being chosen, the other calculated. We reject the null if p < 
α and otherwise don’t reject.

6.24 5%; no.
6.25 a. For H

0
, the equivalent is to assume innocent, and so for H

1
 it’s guilty; b. A Type I error corresponds to wrongly 

rejecting H
0
, which is finding an innocent person guilty; c. A Type II error corresponds to failing to reject H

0
 when 

it’s false, which is letting a guilty person walk free.
6.26 a. p < α, and so decide to reject H

0
; b. This decision is a Type I error IF H

0
 is actually true. We can’t calculate the 

probability that error has occurred. All we know is that IF H
0
 is true, the probability is α (the Type I error rate) that 

we would obtain p < α, and therefore make a Type I error. But we never know whether H
0
 is true.

6.27 a. H
0
 is that the defendant is not guilty, so the jury’s decision corresponds to not rejecting H

0
; b. We are in one of 

the top two cells, because we are not rejecting H
0
; c. If the defendant is actually guilty, the jury has made a Type 

II error. The probability of this occurring, IF the defendant is guilty, is β, the Type II error rate. Usually we don’t 
know the value of β.

6.28 (i) Use very large N, or (ii) choose H
1
 that specifies a population parameter that is very different from H

0
, so IF H

1
 

is true the result is likely to be sufficiently far from the H
0
 value for H

0
 to be rejected. So β will be small, as wanted. 

However, such an H
1
 may be unrealistic and not of practical interest, whereas (i) gives a more informative study, 

so should be our preference.



Researchers often wish to investigate the difference between two conditions—
between note- taking with pen and laptop, for example. This chapter consid-
ers the design that compares the conditions by using separate, independent, 
groups of participants. Then in Chapter 8 we’ll consider a second approach: the 
paired design, in which a single group of participants contributes data for both 
conditions.

This chapter starts with the basics for independent groups: The estimation 
approach, which focuses on the difference between the two means—our effect 
size—and its CI. Then I’ll introduce a different way to express that effect size, 
using a standardized effect size measure called Cohen’s d. Cohen’s d is a wonder-
fully useful measure that allows us to compare results across many different 
types of study. Finally, I’ll discuss a second approach to data analysis, based on 
NHST and p values. Here are the key points:

 ■ The independent groups design
 ■ The CI on the difference between the two means
 ■ Cohen’s d, a standardized effect size measure
 ■ Interpreting d and the CI on d
 ■ Using p values and NHST with independent groups
 ■ The dance of the p values, an intriguing picture of variability, and Red Flag 5

THE INDEPENDENT GROUPS DESIGN

To compare note- taking with pen and laptop, Mueller and Oppenheimer (2014) 
used two independent groups, with random assignment of students to the two 
conditions. This is the independent groups design, in which the performance data 
with pen are independent of the data with laptop because they come from 
different groups of students. It’s an experiment, which justifies a conclusion 
that any difference observed was most likely caused by the Pen– Laptop IV. The 
study found that students learned more after taking notes in longhand than 
after typing notes. The researchers wondered whether writing encouraged 
expression of concepts in the student’s own words, whereas typing encour-
aged relatively mindless transcription that led to relatively poor learning. To 
investigate, the researchers devised a transcription score, the percentage of notes 
that was verbatim transcription from the lecture. As in Chapter 2, transcription 
score is the dependent variable I’ll discuss here.

The first step is to examine the data. Figure 7.1 presents individual data, 
which show wide variation in both groups. As we calculate descriptive and 
inferential statistics, always bear in mind the underlying individual data. Don’t 
let a pattern of means fool you—individuals may not follow the overall trend.

7
The Independent  

Groups Design

In the independent 
groups design, each 
participant is tested 
on only one of the 
two conditions being 
compared.
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The CI on the Difference
Our question is “What’s the difference in mean transcription scores 
between Pen and  Laptop?” The corresponding effect size is the 
difference between the two group means, (M

2
 –  M

1
). I’m calling Pen 

the first group and Laptop the second, so M
1
 is the Pen mean and 

M
2
 the Laptop mean, and (M

2
 –  M

1
) is (Laptop mean –  Pen mean). 

I’ll therefore be discussing the (Laptop –  Pen) difference between 
means. Why not (Pen –  Laptop)? Some textbooks and software use 
(M

1
 –  M

2
), which is the same difference but reversed in sign. Either approach is 

fine, but be consistent and report clearly which you are using. This book and 
ESCI use (M

2
 –  M

1
).

To evaluate our effect size—the difference between the two group means—
we want Figure 7.2, which displays not only the difference, but the 95% CI 
on that difference. It uses a difference axis, with zero lined up with M

1
, and 

marks the (M
2
 –  M

1
) difference with the small solid triangle lined up with M

2
. 

The difference is about 6. The CI on the difference extends from about 2 to 
about 9—values on the difference axis corresponding to the limits of the CI on 
the triangle. Unfortunately, it’s very common for research reports to present 
only the separate means and CIs, as in Figure 7.1, but if our research question 
is about the difference—as it usually is—then we need to focus on the differ-
ence and its CI. The difference axis helps us do that.

M1

M2
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sc
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%

Figure 7.1. The Pen– Laptop transcription data for independent groups. Open dots are data for 
individual students. Group means M

1
 and M

2
, with 95% CIs, are displayed.

 DFY: Don’t let a mean or pattern of means fool you. Behind any mean may be individual data points that 
show large variability.

With two 
independent groups, 
the ES of interest is 
usually (M

2
 –  M

1
), 

the difference 
between the two 
group means. Focus 
on that difference 
and its CI.
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Table 7.1 presents statistics for the data shown in Figures 7.1 and 7.2. We’ll 
use these to calculate the difference and its CI as our point and interval estimates 
of the population mean difference. Our statistical model for calculating those 
estimates has three assumptions:

 ■ Random sampling. Both samples of data are random samples from the respec-
tive populations. Equivalently, we obtain a random sample of students, 
then use random assignment to form the independent groups.

 ■ Normal populations. Both Pen and Laptop populations are normally 
distributed.

 ■ Homogeneity of variance. The variances of the Pen and Laptop populations are 
equal. Equivalently, the two population SDs are the same. “Homogeneity” 
here means “sameness” or “equality”.

I discussed random sampling in Chapter 2, and emphasized the importance 
of random assignment to groups, which we have here. However, the students 
participating in the study are a convenience sample, so when drawing conclu-
sions about a population we need to consider how representative the sample 
is likely to be of that population.

Is it reasonable to assume normally distributed populations? The dot plots 
in Figure 7.1 both have some clumping around the center and don’t look to 
have strong skew, and therefore look similar to the many samples from normal 
distributions that we’ve seen in CIjumping. We thus have no strong reason to 
doubt the second assumption of our model. I’ll say more about the homogen-
eity of variance assumption in a moment.

10

5
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–5

0
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25
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      Pen Laptop Difference
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%

Difference
(M2 – M1)

95% CI on the 
difference between the 

means

Figure 7.2. Pen– Laptop group means and CIs, with the difference and its 95% CI shown on the 
difference axis at right. The triangle marks the difference of the sample means, ES = (M

2
 –  M

1
), 

which looks to be around 6.
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7.1 Identify how Figures 7.1 and 7.2 represent each of the values in Table 7.1. 
Eyeballing the figures, do the values look about right?

Now for the calculations. The difference itself is simply

(M
2
 –  M

1
) = 14.52 − 8.81 = 5.71

Our basic CI formula from Chapter 5 is that a CI is [M –  MoE, M + MoE]. To 
calculate the 95% CI on a single mean, when σ is not known, we used

 MoE 95= ( ) × ×






t df s
N

.
1

 (5.9)

Table 7.1 Statistics 
for the PenLaptop 1 
Groups

Pen Laptop

N N
1

34 N
2

31

Mean M
1

8.81 M
2

14.52

SD s
1

4.75 s
2

7.29

MoE MoE
1

1.66 MoE
2

2.67

For the CI we seek on our ES, the difference, we need a similar formula. 
I’ve labeled three components in Equation 5.9, to help me explain the CI on 
the difference. Let’s consider the three components.

The t component for the difference is t
.95

(df), where each group contributes 
to df, and so df for the difference between independent means is

 df = (N
1
 − 1) + (N

2
 − 1) = (N

1
 + N

2
 − 2) (7.1)

The variability component for the difference needs to reflect variability 
in both the Pen and Laptop populations, as estimated by our s

1
 and s

2
, which 

are the SDs of the two groups. Table 7.1 tells us that their values are 4.75 and 
7.29 respectively. Our statistical model assumes that the two populations—the 
populations of Pen and Laptop scores—have the same SD, which I’ll call σ. 
Equivalently, I can say the two populations have the same variance, σ2. This is 
the third assumption of our model, the homogeneity of variance assumption. Often, 
but not always, it’s reasonable to make this assumption, and we’ll make it here.

The next step is to combine, or pool, s
1
 and s

2
 to calculate s

p
, the pooled SD, 

which is our best estimate of σ. Here’s the formula:

 s
N s N s

N Np =
−( ) + −( )

+ −
1 1

2
2 2

2

1 2

1 1

2
 (7.2)

The group standard deviations, s
1
 and s

2
, measure the spread within each 

group. The pooled standard deviation, s
p
, is a type of weighted average of s

1
 and 

s
2
, and so s

p
 is called the pooled SD within groups. It’s the variability component 

we need for calculating the CI.

The sample size component for the difference is 
1 1

1 2N N
+ , which reflects 

the sizes of both our Pen and Laptop samples, as we’d expect.

t component, which 
makes it a 95% CI

Variability 
component

Sample size  
component

MoE for the CI on a 
single mean.

df for the 
difference between 
independent means.

To calculate MoE 
for the difference 
between two 
independent means, 
we often assume 
the two underlying 
populations have 
the same variance. 
That is, we assume 
homogeneity of 
variance.

Pooled SD for 
independent groups.
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Now we can follow the pattern of Equation 5.9 above to combine the three 
components for the difference to get

 
MoEdiff p= + −( )× × +t N N s

N N.95 1 2
1 2

2
1 1

 (7.3)MoE for the CI 
on the difference 
between two 
independent means.

In a number of 
common cases, 
MoE is based on 
three components: a 
t component 
reflecting df and the 
level of confidence 
C, a variability 
component 
reflecting population 
SD, and a sample 
size component.

The CI on the 
difference between 
independent means 
is a little longer than 
either of the CIs on 
those two means.

where MoE
diff

 is MoE for the 95% CI on the difference between 
independent means.

Now we’ll calculate. The first term is t
.95

(N
1
 + N

2
 − 2) = t

.95
(63), and ESCI 

Normal and t tells us that t
.95

(63) = 2.00. Applying Equation 7.2 to the values 
reported in Table 7.1 gives s

p
 = 6.09. This lies between s

1
 = 4.75 and s

2
 = 7.29, 

as we’d expect for a pooled estimate based on both s
1
 and s

2
. The third com-

ponent is 
1 1

1 2N N
+  = 0.248. Putting those values into Equation 7.3, we get 

MoE
diff

 = 2.00 × 6.09 × 0.248 = 3.02. Our CI on the difference is therefore 
[5.71 − 3.02, 5.71 + 3.02], so we can state that the difference is 5.71 [2.69, 
8.73], in transcription score percentage points. This is the difference and CI 
pictured at right in Figure 7.2.

If you followed all that discussion, give yourself a pat on the back. That’s 
about as complicated as it gets in this book. The main idea is that CI length 
reflects three main influences, via the three components on the right in Equation 
7.3: Our choice of C (usually 95), the variability, and the sample size(s). In a 
moment some questions about those three, but practice a few calculations first.

7.2 Follow the discussion above to calculate for yourself the CI on the 
difference.

 ■ Use ESCI Normal and t to find t
.95

(df).
 ■ Use the values in Table 7.1 to calculate s

p
 and the sample size com-

ponent, then the CI.

7.3 How does the t component change for a 90% CI? What effect does that 
have on the CI?

7.4 If variability in the population increases, what happens to the variability 
component? What happens to the CI? Explain.

7.5 Consider the third component. If one sample size is increased, what hap-
pens to the component? What happens to the CI?

Now consider Figure 7.2 and note that the CI on the difference is a little longer 
than  either of the CIs for the groups. For independent groups, this is always 
the case because variability in the difference between the means, (M

2
 –  M

1
), 

reflects contributions from the variability in each of M
1
 and M

2
, and therefore 

is larger. In other words, the uncertainty in the difference is greater than the 
uncertainty in either mean. I’ll explain how the formulas make this happen 
but, if your eyes glaze over, it’s OK to skip the following paragraph.

Compare Equation 5.9 for MoE for a single sample mean, and Equation 
7.3 for MoE for the difference between independent means. The first  
components—the critical values of t—are similar, and close to the same if sample 
sizes are large. The variability components are similar, in each case being an 
estimate of population SD. The difference comes in the sample size component, 

t component, which 
makes it a 95% CI

Sample size  
component

Variability 
component
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which is 
1

1N
 = 0.17 to calculate the CI on the Pen mean and 

1

2N
 = 0.18 for 

the CI on the Laptop mean. For the CI on the difference, it’s 
1 1

1 2N N
+  = 0.25, 

which is a little larger than either 
1

1N
 or 

1

2N
. Therefore, the CI on the dif-

ference is longer than the CIs on either of the group means.
If you had only Figure 7.1, could you eyeball the difference and the CI on 

the difference? Yes you could, although sketching something like Figure 7.2 
might be easier than creating the figure in your mind’s eye. Here are the steps:

 ■ Sketch the difference axis, with zero lined up with M
1
 and the difference 

itself (marked in Figure 7.2 by the solid triangle) lined up with M
2
.

 ■ Sketch the CI on the difference, making it a little longer than the CIs for 
the independent group means.

 ■ Interpret the difference and its CI, with reference to the difference axis.

Note that we’re talking about the difference between two independent 
means, the means of two independent groups. If the groups are not independ-
ent, the situation is quite different, as we’ll discover in Chapter 8. The key point 
is that, for independent groups, the CI on the difference will be a little longer 
than the CIs on the group means.

ESCI for the CI on the Difference
Figure 7.3 shows how ESCI analyzes and pictures the data shown in Figures 7.1 
and 7.2. Examine Figure 7.3, or ESCI itself, as I again step through what we 
need for the independent groups design.

 7.6 Open Data two in ESCI intro  chapters 3– 8. If you don’t see the 
PenLaptop 1 data, scroll right and click at red 14. Your screen should 
resemble Figure 7.3.

 ■ Explore the page and figure out what’s going on. As usual, you could 
elect to follow the red numbers. Note the popouts. What does Offset 
points near red 4 do?

 ■ Identify where all the values in Table 7.1 are shown.

 7.7 Use this ESCI page as you wish. Change some data points and observe 
how the figure and CIs change. You could click at red 3 to clear the data 
then type in your own. To reload the PenLaptop 1 data, scroll right and 
click at red 14.

 7.8 Click at red 10 to reveal a second figure like Figure 7.2.
 ■ Find where s

p
, MoE

diff
, and the CI on the difference are shown. Verify 

that the values we calculated are correct.

Note, incidentally, that Data two doesn’t display cat’s- eye pictures on any 
of the CIs. I hope by now you can bring to mind a cat’s- eye picture if you wish. 
That’s a great skill to have, and worth practicing, for example while working 
through this chapter.

Our calculations have relied on our statistical model, including the assump-
tion of homogeneity of variance. Next I’ll discuss this assumption and a way 
to avoid it.

For independent 
means, if you see the 
two means and CIs, 
you can eyeball the 
CI on the difference.
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The Assumption of Homogeneity of Variance and 
How to Avoid It
Click Yes at red 8 to assume homogeneity of variance, and instruct ESCI to use  
Equations 7.2 and 7.3, which rely on that assumption. If you click No you will see 
MoE for the difference and the CI change a little. ESCI is now using the Welch (also 
called the Welch– Satterthwaite) method, which is a good approximate method for 
calculating MoE and the CI for a difference, without assuming the two population 
variances are equal. It’s a bit complicated, so just leave it to ESCI. It makes little 
difference which method you use—Yes and No give similar results—unless the 
two sample SDs are considerably different, and the two sample sizes also differ. In 
any case, when reporting the CI, mention which method you used to calculate it.

 7.9 Explore the effect of making or not making the homogeneity of vari-
ance assumption. Try changing some of the data values in the Laptop 
group so you have even more very low data points and very high data 
points. Note how different the two s values now are, and observe what 
difference clicking Yes or No at red 8 makes to MoE

diff
 at red 9. Watch 

the change in the figure on the right in ESCI, with the difference axis.
 7.10 Delete at least half the data points in one of the groups, so N

1
 and N

2
, as 

well as the two s values, are considerably different. Again observe the 
effect of clicking Yes or No. What do you need to change about the data 
before clicking back and forth makes much difference to MoE

diff
?

 7.11 When you click No, what happens to df? Read the popout for df.

Interpretation and Discussion
Our main result is that mean transcription scores for Pen and Laptop were 
8.8% and 14.5% respectively. (I’m judging that one decimal place is plenty 
when reporting and discussing these results.) On average, Laptop scores were 
5.7 percentage points [2.7, 8.7] greater than Pen scores, or more than half as 
much again as Pen scores. The CI suggests the population difference could 
plausibly be anywhere between about 3 and 9 points higher for Laptop. The CI 
is not very long, with MoE of around 3, so precision is reasonable.

In those brief comments I’ve referred to values in our interval and to MoE, 
so I’ve used Interpretations 2 and 3 of a CI, as we discussed back in Chapter 5. 
You could use other interpretations if you wish.

The homogeneity of 
variance assumption 
is likely to be 
problematic only 
if the two group 
standard deviations 
are considerably 
different, and the 
two sample sizes are 
also considerably 
different.

Can you suggest a few more issues that deserve comment?
Thinking, discussing…

We could note the wide spread of scores in each group, suggesting that the 
extent of students’ verbatim note- taking varied considerably. We could com-
ment on the assumptions we’re making, and Open Science issues we discussed 
in Chapter 2. We could also suggest further research questions prompted by 
the result. For example, we might ask the extent to which students with less 
transcription in their notes learned better and remembered more.

7.12 Table 7.2 reports the summary statistics for PenLaptop 2, a second study 
from Mueller and Oppenheimer (2014), which also used independent 
groups. Use Equation 7.2 to calculate s

p
. Explain what s

p
 is and compare 

it with s
p
 for PenLaptop 1.
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7.13 Use Equation 7.3 to calculate MoE for the CI on the difference. What 
assumption are you making? Does it seem reasonable? Compare with 
PenLaptop 1.

 7.14 To load the PenLaptop 2 data set, scroll right and click at red 15. Compare 
what ESCI reports with the values in Table 7.2.
a. Also compare your answers to Exercises 7.12 and 7.13 with what 

ESCI reports.

ESCI also offers an alternative approach: The Summary two page provides 
figures and carries out the calculations, given just the summary information 
shown in Table 7.2 about this independent groups study.

 7.15 Open the Summary two page. If necessary, near red 1 type a label for the 
units, and the values from Table 7.2 for N, M, and s for each group. Your 
screen should resemble Figure 7.4.
a. Check that the values in the table for MoE

1
 and MoE

2
 agree with 

those on your screen.
 7.16 Eyeball the difference between the means and the CI on the difference. 

Make a sketch.
a. Click near red 6 to reveal a second figure that shows the difference 

and its CI on a difference axis. How similar was your sketch?

Quiz 7.1

1. In a study with two independent groups, which of these is usually the research question?
a. To what extent are the group means different?
b. Is the difference between the two groups 0?
c. Are the groups actually the same?
d. What is the p value?

2. When calculating a CI for the difference between two group means we usually assume that
a. both groups represent random samples.
b. in each group the scores being compared come from normally distributed populations.
c. the population variance is the same for both groups.
d. All of the above.

3. The variability component for the CI on the difference is the _ _ _ _ _ _ _ _ _ _  standard deviation, 
with symbol _ _ _ _ _ _ , which is calculated from the two group _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

4. For the comparison of two independent groups, what is the formula for degrees of freedom?
5. The CI for the difference between two group means is shorter /  longer than the CIs for the 

means of the two single groups.
6. For the PenLaptop 1 study, what is the DV we are discussing? What level of measurement are 

we assuming for the DV? What is the IV? How many levels does it have and what are they? 
What level of measurement are we assuming for the IV?

7. Now it’s your turn, although it’s probably best not to work alone.

Table 7.2 Statistics 
for the PenLaptop 2 
Study

Pen Laptop

N N
1

48 N
2

103

Mean M
1

6.88 M
2

12.09

SD s
1

4.22 s
2

5.52

MoE MoE
1

1.23 MoE
2

1.08
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So far we’ve expressed effect sizes in the units of the dependent variable, 
for example transcription score. Often, however, it’s valuable to express effect 
sizes in other ways. The independent groups design is a good context to intro-
duce the most important of these: Cohen’s d.

A STANDARDIZED EFFECT SIZE MEASURE:  
COHEN’S d

Now for a bit of measurement magic—a way to compare results even when 
they’re measured on different scales. Consider an example. Many studies show 
that when students get enough sleep they do better—Diekelmann and Born 
(2010) reviewed some of the research. Students do better in mathematics, in 
Spanish, and in sports, and may even play the violin more musically. To under-
stand the effects of good sleep we need to compare, but how can we compare 
the number of mathematics problems solved with times to run 400 m? Scores 
on the Spanish exam with ratings of musicality? I’m happy to report that there 
is a solution, an effect size measure called Cohen’s d. Using d we can make those 
comparisons, and also do other clever things, as we’ll discover.

Figure 7.4. Summary statistics for the PenLaptop 2 study, as shown in Table 7.2. The figure displays the mean and 95% CI for 
each group. From Summary two.
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Let’s consider a test of mathematics problem solving, and suppose that 
students on average solve 5.0 more problems after good sleep. I’d like some 
idea of what 5.0 means. Is it a big improvement, or hardly worth the effort? 
One approach is to consider the 5.0 against the distribution of scores of all the 
students. That’s the ingenious strategy of Cohen’s d, which expresses the 5.0 
as a number of standard deviations, like a z score.

Figure 7.5 illustrates the idea. In the upper panel the Control curve is a 
normally distributed population of scores after normal sleep, with SD = 15. 
The Sleep curve is the same, but shifted up by 5.0 points. The effect size is 5.0 
original units, meaning units of the problem- solving test.

Original units are the units of the dependent variable, in which the data are originally 
expressed.

The lower panel shows the same curves, but labeled in units of the stand-
ard deviation, which are the units of Cohen’s d. We’ll see in a moment that 
the effect size is d = 0.33. We saw normal curves like this in Chapter 3 and in 
Normal and t, labeled as z scores. Cohen’s d is a number of SDs and is described 
as a standardized ES measure.

Cohen's d
0.33

Shaded area 
63%

SleepControl

–3 –2 –1 0 1 2 3
d

5.0

Shaded area 
63%

SleepControl

70 80 90 100 110 120 130 140 150 160

Problem-Solving Score

ES, Original Units

Figure 7.5. Two pictures of supposed distributions of mathematics problem- solving scores after 
normal sleep (Control curve) and good sleep (Sleep curve). The upper panel shows an average score 
difference of 5.0. The curves are normal, with SD = 15. Below, the same distributions represent 
values of Cohen’s d, and the ES is d = 0.33. The shaded areas show that 63% of scores after good 
sleep are greater than the Control mean.
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Cohen’s d is a standardized effect size measure, which is expressed in standard 
deviation units.

To convert from original units, use the basic formula for d, which is:

 d =
Effect size in original units

An appropriate standard deviiation

ES

SD
=  (7.4)

The SD we choose is called the standardizer, and is the unit in which d is 
expressed. Here the  SD is 15, as in the upper panel of Figure 7.5, and Equation 
7.4 tells us that d = 5/ 15 = 0.33, as in the lower panel. The two means differ by 
5.0 in original units, or one- third of a standard deviation.

The standardizer for Cohen’s d is the standard deviation chosen as the unit for d. It’s the 
denominator in Equation 7.4.

We can use Equation 7.4 to calculate d for an improvement in exam marks 
in Spanish, musicality ratings of violin performances, or even times to run 
400 m. Cohen’s d is a common metric for the differences in all those diverse 
abilities, which allows us to make the seemingly impossible comparisons I first 
described. In Chapter 9 we’ll see that d also enables us to use meta- analysis to 
combine results from studies that used measures with different original units. 
Yes, d is a valuable tool.

Other Names for d
You may come across other names for Cohen’s d. In medicine, what I’m call-
ing d is referred to as the standardized mean difference, or SMD, which is a nice 
descriptive term for d. Another term for a standardized ES is Hedges’ g, but, 
unfortunately, it’s not used consistently. Sometimes it refers to what I’m call-
ing d, sometimes to other quantities, so I suggest it’s best avoided. My recom-
mendation is to use “d”.

Calculating d for Independent Groups
Let’s calculate d for independent groups and use it to compare the results of two 
studies. Damisch et al. (2010) investigated the possible effect of superstition on 
performance. Their first study (Damisch 1) used a golf- putting task. Students 
in the experimental group were told they were using a lucky ball; those in the 
control group were not. Mean performance was 6.4 successful putts out of 10 
in the experimental group, but only 4.8 in the control group—a remarkable 
difference of 1.67 [0.10, 3.24]. To interpret their result, the researchers sug-
gested that invoking luck increased their participants’ self- efficacy, which is a 
person’s belief in their capability to succeed in a particular situation, and that 
this led to the better putting performance.

Aruguete et al. (2012) followed up the Damisch result by investigating a 
different way to increase self- efficacy. After checking that the great majority of 
their students had religious beliefs, they attempted to increase self- efficacy by 
reminding participants of their religious faith before they undertook a reason-
ing task. Their first study (Aruguete 1) used a reasoning task and compared an 
experimental group who were reminded of their faith with a control group who 
heard no mention of faith. Mean number of reasoning items correct was 16.1 
in the control group and 16.4 in the experimental group, so being reminded of 
faith led to an increase of just 0.32 [−1.19, 1.83] items correct.

Cohen’s d is an 
original- units 
ES divided by a 
standard deviation.

Basic formula for 
Cohen’s d.
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Table 7.3 reports summary results for the two studies, which used com-
pletely different dependent variables—number of successful golf putts and 
number of reasoning items correct—as in the second column of the table. We 
need d to compare the results.

For each study, as standardizer for d we need an estimate of population 
SD, which we’ll calculate from the data. The usual approach is to assume 
homogeneity of variance and use as standardizer the pooled SD for the groups, 
s

p
, calculated using Equation 7.2. Substitute in that equation the values from 

Table 7.3 for Damisch 1 to obtain the value of s
p
 shown in the table:

sp =
−( ) × + −( ) ×

+ −
=

14 1 2 15 14 1 1 88

14 14 2
2 02

2 2. .
.

The ES in original units is the (M
2
 –  M

1
) difference. Substitute in Equation 7.4 

to obtain our formula for Cohen’s d for independent groups:

 d
M M

s
=

−( )2 1

p
 (7.5)

For Damisch 1 the (M
2
 –  M

1
) difference is 1.67, so Equation 7.5 gives d = 1.67/ 

2.02 = 0.83. Our standardizer, the measurement unit for d, is the population 
SD on the putting task, and our best estimate of that SD is 2.02. Our observed 
ES is 0.83 of those estimated units.

Let’s see what ESCI has to offer, and also find d for Aruguete 1.

 7.17 Open Summary two. Near red 1 type in labels for the units and group 
names, and the summary data for Damisch 1 from Table 7.3. If you label 
the experimental group “Lucky”, your screen should resemble Figure 7.6.

a. Find the two values you need and calculate Cohen’s d.
b. Look around and see all that ESCI has calculated and displayed. Make sure 

Yes is selected at red 4. Reveal a figure displaying the difference and its CI.

 7.18 Type labels and data for Aruguete 1 into Summary two. Explain what 
the two figures tell us.

 7.19 Use the values in Table 7.3 to calculate d for Aruguete 1. Since two later 
examples use Summary two for Aruguete 1, you may care to save the 
whole ESCI file with a new name, so you can reopen this page and see 
Aruguete 1 when you need to.

7.20 Compare d for Damisch 1 and Aruguete 1. We don’t have CIs yet, but 
what are your thoughts at this stage?

Table 7.3 Data for 
Studies Investigating 
the Effect of 
Superstition and 
Religious Faith on 
Performance

To calculate d for 
independent groups, 
we usually assume 
homogeneity of 
variance and use s

p
, 

the pooled SD, as 
standardizer.

Cohen’s d for 
independent groups.

Control group
Experimental 

group

Study Original units
Mean (SD)
M

1
 (s

1
) N

Mean (SD)
M

2
 (s

2
) N

Difference 
(M

2
 –  M

1
)

Pooled SD
s

p

95% CI 
on the 
difference

Damisch 1 Number of 
successful putts

4.75 (2.15) 14 6.42 (1.88) 14 1.67 2.02 [0.10, 3.24]

Aruguete 1 Number of 
reasoning items 
correct

16.11 (4.59) 71 16.43 
(4.49)

70 0.32 4.54 [−1.19, 1.83]
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7.21 Switch to the Data two page, where you should see the PenLaptop 1 data. 
Figure 7.7 shows part of the data analysis. Find the two values you need 
and calculate Cohen’s d. Explain what it tells us.

Sampling Variability and d
Consider a close replication of Damisch 1 or of Aruguete 1. Would you expect 
the ES in original units to be different? The SD estimate we use as standardizer? 
The value of d?

Figure 7.6. Means and 95% CIs for number of putts, for the two groups of Damisch 1. From Summary two.

Ponder, discuss…

Sampling variability means that all the means and SDs will almost certainly 
be different on replication. Therefore, both the numerator and denominator—
both the top and the bottom—of Equation 7.5 will be different, so our calculated 
d will be different. There’s a dance of the (M

2
 –  M

1
) values and a dance of the s

p
 

values, so values of d = (M
2
 –  M

1
)/ s

p
 are likely to bounce around even more. The 

answers to my three questions are yes, yes, and especially yes. Always think 
of d as a ratio, and remember that sampling variability usually contributes to 
both the top and bottom of the ratio.
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Choosing a Standardizer
Choice of meters or feet makes a big difference to the number expressing 
someone’s height. Similarly, choice of standardizer can greatly influence d. 
Let’s discuss that choice; there are two major issues.

First, do we know a relevant population SD? For the mathematics 
problem- solving example, I assumed we knew a population SD—perhaps the 
test is widely used and the test manual reports that the SD is 15 in some rel-
evant reference population, such as all college students. Anyone calculating 
d for scores on that test will use 15 as standardizer, so all will be using the 
same measurement unit, which is great. If, however, the problem- solving 
test, like most college tests, was simply a convenient collection of problems 
assembled for a single use, we don’t know a population SD, and must use 
s

p
 as standardizer. Our d will depend not only on the original- units ES, but 

also on the value of s
p
 for our data. In short, if a relevant population SD 

is known, use it. If not, as for the two studies in Table 7.3, we are forced 
to use an estimate calculated from data, and d will reflect that estimate as 
well as the ES.

Second, what’s the best population to choose? Suppose you read reports 
of two studies that assessed the influence of good sleep on problem solving by 
mathematics majors. One used students at Harvard and the other students at 
Noname College. Suppose each found an average 5.0 advantage after good 
sleep. Think about the two populations—mathematics majors at the two col-
leges. Do you think they have the same or different spread of mathematical 
ability? Because Harvard students are highly selected, I suspect their scores vary 

Figure 7.7. Part of the data analysis of the PenLaptop 1 data. From Data two.

To interpret d, 
we need to know 
the standardizer. 
Always state what 
standardizer was 
used to calculate d.
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If a relevant 
population SD is 
known, use it as 
standardizer for d. If 
not, use an estimate 
calculated from data.

less than scores from the probably much more diverse students at Noname. 
Perhaps s

p
 for the Harvard study was 10, but for Noname was 20, in which case 

d = 5.0/ 10 = 0.5 for Harvard, but d = 5.0/ 20 = 0.25 for Noname. In original units, 
the effect size of good sleep is the same for the two colleges, but in standard-
ized units it’s very different. Two values of s

p
 may differ because of sampling 

variability, but also, as in this example, because they estimate different SDs in 
different populations.

To compare the two results we’d prefer a standardizer we could use for 
both—ideally the SD for all students across the country. If that’s not available, 
we might use original units rather than d. However, if different tests were used 
at Harvard and Noname we have to use d, based in each case on that college’s 
s

p
. Unfortunately, we wouldn’t know to what extent a difference in values of 

d reflects a real difference in the effect of sleep, or a difference in spread of 
mathematical ability in the two colleges.

Again the message is that d is a ratio, and we need to think about the 
denominator, which is the standardizer, as well as the numerator, which is the 
original- units ES. Choice of standardizer is important, so it’s essential to state 
for any d what standardizer was used. Otherwise we can’t make sense of d. 
Next I’ll discuss CIs for d.

Quiz 7.2

1. Cohen’s d enables comparison across studies that use different measures; it is a(n) _ _ _ _ _ _ _ _ _   
effect size measure.

2. Cohen’s d is calculated by dividing a(n) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  expressed in _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
by an appropriate _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

3. If there is no difference between two groups, M
1
 = M

2
, and Cohen’s d will be _ _ _ _ _ .

4. For two independent groups, it’s most common to use _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  as the 
standardizer, in which case we need to assume _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

5. Although s
p
 is commonly used as the standardizer for Cohen’s d, it’s important to be 

thoughtful about this, because
a. different participant populations can have different levels of variation, which can lead to 

big differences in the d that is calculated.
b. sometimes the population SD is known, and it may make more sense to use that rather 

than an estimate calculated from the data.
c. Both a and b.

6. The population SD of the HEAT is 20. A change in mean HEAT score of 5 is equivalent to 
d = _ _ _ _ _ _ _ _ _ _ . A change of d = −0.8 corresponds to _ _ _ _ _ _ _ _ _ _  on the HEAT.

Confidence Intervals on d
A value of d is our point estimate but, as usual, we’d like the CI as well. To cal-
culate  a CI on d for independent groups, our statistical model requires random 
sampling, a normally distributed population, and homogeneity of variance. So 
in this section we’ll need to make those assumptions.

The population equivalent of d is called δ (Greek lower case delta), in 
line with the convention that Greek letters represent population parameters 
(notably μ and σ). In our first example, d = 0.33 is our point estimate of δ, 
the standardized ES for good sleep in the population of all students, which is 
measured in units of the population standard deviation, σ. We’d like a CI for 
δ, but note that we can refer to that interval as “the CI on d” or “the CI for δ”. 
They refer to the same interval and both are correct.

To calculate a CI on 
d we need to assume 
(i) random sampling 
from (ii) a normal 
population and (iii) 
homogeneity of 
variance.
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Unfortunately, calculating the CI on d is tricky. We’ll leave the details to 
ESCI, but  you need to click a button to initiate calculation, which can take a 
second or two to complete. Also, the CI on d is slightly asymmetric, meaning 
the upper MoE (the distance from d to the upper limit of the CI) and the lower 
MoE are slightly different.

7.22 Figure 7.8 shows data analysis for Damisch 1, the same as Figure 7.6 but 
with a panel for d at red 8. Note d and the CI for δ, and interpret.

 7.23 In Summary two, set up for Damisch 1 as you did for Exercise 7.17. Click 
at red 7 to reveal the panel for d. Click the button near red 8 to trigger 
calculation of the CI for δ. You should see Figure 7.8.

 ■ Read the popout at red 8, which states some restrictions on when 
ESCI can calculate a CI.

 ■ Note the value reported below red 8 of MoE
av

 and read the popout.

7.24 What would happen to the CI if one or both of the sample sizes were 
larger? Smaller? Why?

 ■  Test your predictions by adjusting N
1
 or N

2
 near red 1.

 7.25 Follow Exercise 7.18 to set up for Aruguete 1, or reopen the file with 
these data that you saved. Find the CI on that d. Interpret.

7.26 As you did in Exercise 7.20, compare d for Damisch 1 and Aruguete 1, 
but now consider the CIs as well.

Removing Bias in d
We usually calculate d because we want to estimate population effect size, δ. 
Unfortunately, whenever the standardizer is an estimate (for example, s

p
), d is 

a biased estimate—it tends to overestimate δ, especially with small samples. An 
adjustment to d gives an unbiased estimate, which I call d

unbiased
.

CIs on d are tricky to 
calculate and a little 
asymmetric.

Figure 7.8. Data analysis for Damisch 1 as in Figure 7.6, but including the panel for d. From 
Summary two.
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The extent of bias depends on the degrees of freedom of the standard-
izer. The larger  the df, the smaller the bias, and for df = 50 or more, d and 
d

unbiased
 hardly differ. ESCI makes it easy to routinely use d

unbiased
, and that’s my 

recommendation.
So, you ask, should I have been using d

unbiased
 rather than d when discuss-

ing the examples for which we had no population SD and therefore used s
p
? 

Yes, that would have been better. Unfortunately, many research reports don’t 
make clear whether bias has been removed from the d values they discuss. If 
df is 50 or more, that hardly matters. For smaller df that’s poor practice, and 
leaves us in doubt about what the values are telling us. You should, of course, 
always make clear whether you are reporting d or d

unbiased
. For the CI there’s no 

problem, because ESCI gives us the CI for δ, which is the best interval estimate 
of δ, whether we choose to use d or d

unbiased
 as our point estimate.

7.27 In Figure 7.8, or on your Summary two page, find the values for d and 
d

unbiased
 near red 8, also the value of df near red 5. By what percentage does 

d exceed d
unbiased

? What does that tell us?
7.28 Set up for Aruguete 1 in Summary two, as you did for Exercises 7.18 and 

7.25. For this example, what’s the df, and what’s the extent of bias in d?
7.29 What results for Damisch 1 and Aruguete 1 would you now report? Would 

you give the same interpretation as you gave in Exercise 7.26? Explain.

THINKING ABOUT VALUES OF COHEN’S d

I keep saying that we should interpret d and its CI in context, but what does 
that mean? I’ll mention a few things to consider, then bring it all together. I’ll 
refer to d, but the discussion applies equally to d

unbiased
.

Overlap Pictures of d
Whatever we are measuring, if the two distributions are at least roughly nor-
mal, then Figure 7.5 illustrates d = 0.33. The two distributions overlap con-
siderably. Figure 7.9 shows comparisons about which you may already have 
intuitions: The difference in mean weight between American women and 
men (d = 0.81) and the same for height (d = 2.26). The normal curves are an 
approximation. How do the pictures strike you?

I was surprised that d for height was much larger than d for weight. 
However, to understand d, always remember it’s a ratio and that the stand-
ardizer matters. In round numbers, men are, on average, 13 kg heavier than 
women, but the pooled SD is as large as 16 kg, so d is 13/ 16, or about 0.8. Men 
and women’s mean weights differ by less than one SD—mainly because the SD 
is so large. For height, there’s a 14 cm mean difference, but the pooled SD is only 
6 cm, so d is 14/ 6, which is more than 2, so men and women’s mean heights 
differ by more than two SDs—mainly because the SD is so small. Yes, size of 
standardizer does matter. The very large d for height means that around 99% 
of men are taller than the average woman, but, even so, the two distributions 
overlap noticeably, and we all know many cases of a woman taller than a man.

There are two lessons here. First, consider the standardizers and, second, 
keep overlap pictures in mind. Such pictures tell us that even when d is large 
there’s overlap—even with a large mean difference, many individuals go against 
the trend.

Routinely use d
unbiased

, 
although for df of 
50 or more, d and 
d

unbiased
 hardly differ.

Consider overlap 
pictures. Even when 
d is large there’s 
overlap, and many 
individuals go 
against the trend.
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Effect Sizes in Original Units
I discussed the weight and height values of d by referring to the original units –   
kilograms and centimeters. Thinking of both effect size and standardizer in 
terms of original units helps appreciation of those two different components 
of d. It can also make the discussion more concrete, if the original units are 
familiar. Thinking in terms of original units should often be the first approach 
to consider when interpreting results.

The Standardizer and Reference Population
One lesson of the weight and height example was the importance of consider-
ing the standardizer. A second aspect of the choice of standardizer is choice 
of reference population, which I illustrated with the Harvard and Noname 
example. If you suspect the two colleges have different SDs, then comparing 
values of d based on those different SDs could easily be misleading. As I said 
before, it’s probably better, if possible, to find a single reference population, 
perhaps all college students in the country, and use the SD of that popula-
tion—or an estimate of it—as standardizer for both colleges. In any case, 
we need to consider the reference population when interpreting d. That’s 
another aspect of the vital question: d is a number of SD units, but the units 
are based on the SD of what?

Cohen’s Reference Values for d
When distinguished statistical reformer Jacob Cohen introduced d, he suggested  
that d = 0.2, 0.5, and 0.8 might for psychology be considered small, medium, 
and large effects, respectively. Figure 7.10 pictures these three values. He offered 
his reference values reluctantly and said that they provided a “conventional 
frame of reference which is recommended for use only when no better basis… 
is available” (Cohen, 1977, p. 25). Even so, his reference values have become 
widely used.

Values of d in Different Disciplines
What size effects do researchers study? In any discipline, of course, there’s a 
wide range, but knowing what’s typical may help us interpret our d values.

Psychology. Richard, Bond, and Stokes- Zoota (2003) reviewed evidence from 
more than 25,000 studies in social psychology. They found the aver-
age ES was about d = 0.4. About 30% of effects had d < 0.2, meaning 

d
0.81

MenWomen

Weight

79%

d
2.26

MenWomen

Height

99%

Figure 7.9. Pictures to illustrate d for differences between American men and women: weight on the left, height on the right. 
The curves represent roughly the distributions of weight and height. The percentages refer to the shaded areas and are the 
percentages of men with values greater than the women’s mean.

Thinking in terms of 
original units is often 
a good way to make 
sense of a value of d.

Choose the most 
relevant reference 
population, then 
use the SD of that 
population—or an 
estimate of it—as 
standardizer for d.

Cohen suggested 0.2, 
0.5, and 0.8 as values 
for small, medium, 
and large effects, 
but recommended 
interpretation of d 
in context whenever 
possible.
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small or less than small in Cohen’s terms. Only around 17% had d > 
0.8, meaning large. I suspect that ESs studied in at least some other 
areas in psychology are similar.

Education. Visible Learning is a landmark book by John Hattie (2009) that 
reviewed more than 800 meta- analyses. Average d was 0.40 for the 
influence on learning over one school year of numerous variables, 
including a wide range of teaching innovations. Hattie recommended 
that, in the context of school learning, it’s reasonable to regard d = 0.2 
as small, 0.4 as medium, and 0.6 as large.

Medicine. Rutledge and Loh (2004) discussed ESs in medicine. They reported 
that  taking aspirin routinely can decrease the risk of heart attack, with 
d = 0.03, and that being fit can reduce mortality in the next 8 years 
by d = 0.08. These look like tiny effects, but can really matter: Taking 
aspirin could avoid hundreds of heart attacks each year in a large city. 
Many common treatments and recommendations to change behavior 
to improve health are prompted by values of d between about 0.05 
and 0.2.

Pharmacology. Whenever I talk about small values of d, my colleague Michael 
Lew reminds me that in his discipline, pharmacology, researchers 
typically study effects for which d is greater than 5. Yes, it’s vital to 
consider any d in its context.

The reviews of Richard et al. (2003), Hattie (2009), and Rutledge and Loh 
(2004) suggest that, for psychology,  education, and especially medicine, refer-
ence values rather lower than Cohen’s may often be appropriate.

Interpreting d and its CI in Context
To summarize so far, we should make our judgment of what d means in the 
particular situation, perhaps considering

 ■ effect sizes in original units,
 ■ the standardizer and reference population,
 ■ the overlap picture for our d,
 ■ values typical for our discipline, and
 ■ perhaps, Cohen’s or Hattie’s reference values.

That’s a long list, but thinking of the particular context usually prompts even 
further questions; for example, how difficult was it to achieve the effect? What’s 
the cost- benefit? How big a practical difference does it make? What are the theo-
retical implications? How does it compare with previous research? Consider any 
of those questions that are relevant, as you use your judgment to interpret d.

d
0.20Small d

0.50Medium d
0.80Large

58% 69% 79%

Figure 7.10. Reference values for small, medium, and large values of d, as suggested by Cohen (1977). The percentages refer 
to the shaded areas.

In terms of Cohen’s 
benchmarks, many 
researchers in 
psychology and 
education study 
effects around 
“small”, and in 
medicine many life- 
saving effects are 
small or tiny.

Use judgment to 
interpret values of 
d in context. Where 
relevant, consider 
original units, the 
standardizer and 
reference population, 
overlap of 
distributions, other 
results, and reference 
values.
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7.30 For Damisch 1 you probably calculated d = 0.83, and for Aruguete 1, 
d = 0.07. Figure 7.11 shows overlapping curves to illustrate those two 
values of d. Again compare the ESs for Damisch 1 and Aruguete 1, in light 
of Figure 7.11.

 7.31 Open d picture. Use the slider to set d, and click at red 2 to see an area 
shaded. Choose d = 0.83 and you should see curves like those on the left 
in Figure 7.11.

a. Explore. Use this page to illustrate overlap for any d you are 
interested in.

7.32 Recall that IQ scores are usually scaled so the population mean is 100 and 
SD is 15. Suppose in an independent groups study the IQ means are 115 
and 125 for the control and experimental groups respectively.

a. What are the z scores for the two means?
b. What is d? What’s the relation between z and d?

Now I want to turn from Cohen’s d to consider an additional approach 
to analyzing an independent groups study, based on NHST and p values. But 
first, a quiz.

Quiz 7.3

1. A CI on d is an interval estimate of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  in the _ _ _ _ _ _ _ _ _ _ , for which 
the symbol is _ _ _ _ .

2. When interpreting Cohen’s d it is important to remember that
a. Cohen’s suggestions for small, medium, and large effects are only general rules of thumb.
b. what counts as a small, medium, or large effect varies quite a bit by field.
c. it is probably best to consider an effect size relative to other similar findings in the field.
d. All of the above.

3. The further Cohen’s d is from 0, the more /  less the distributions of the two groups overlap.
4. In a review of thousands of social psychology experiments, the average effect size was about 

d = _ _ _ _ .
5. d slightly _ _ _ _ _ _ _ _ _ _ - estimates δ, and therefore d

unbiased
 is a little _ _ _ _ _ _ _ _ _ _  than d.

6. Cohen’s d is expressed in units of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ , which is the numerator /  denominator 
in the formula for d, and is the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  of a suitable reference population, or 
a(n) _ _ _ _ _ _ _ _ _ _ _  of that.

NHST AND p VALUES

My recommended approach is to use estimation, but here I’ll discuss another 
possibility that’s based on the same statistical model. It uses NHST to test the 

d
0.83

80%

d
0.07

53%

Figure 7.11. Overlapping curves to illustrate, on the left, d = 0.83 as in Damisch 1, and, on the right, d = 0.07 as in Aruguete 
1. From d picture.
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null hypothesis of no difference between the group means. The p value for that 
difference is what’s needed for an independent groups t test. In Chapter 6 we used 
Equation 6.2 to calculate t for a single sample when μ

0
 is the null hypothesis 

value. Here is that equation again, in a slightly rewritten form:

 t df
M

s
N

( ) =
−( )

×






µ0

1
 (6.2) t for a single group.

t for independent 
groups.

with df = (N –  1). Again I’ve labeled three components.
Our null hypothesis is zero difference between the group means, so the 

effect size is the (M
2
 –  M

1
) difference. Equation 7.1 tells us that df = (N

1
 + N

2
 − 2).  

Equations 7.2 and 7.3 guide me to use s
p
 as the variability component and 

1 1

1 2N N
+  as the sample size component. Entering all that into the equation 

just above gives

 t N N
M M

s
N N

1 2
2 1

1 2

2
1 1

+ −( ) =
−

× +

( )

p

 (7.6)

where s
p
 is calculated using Equation 7.2 and we are assuming homogeneity 

of variance.
For the PenLaptop 1 data in Figure 7.1 and Table 7.1 we know that df = 63, 

(M
2
 –  M

1
) = 5.71, s

p
 = 6.09, and 

1 1

1 2N N
+  = 0.248. Substitute in Equation 7.6 

and we get t(63) = 5.71/ (6.09 × 0.248) = 3.78. To find the p value corresponding 
to this value of t, I opened ESCI Normal and t. I selected t and clicked Two tails 
and Areas, then set df = 63, moved the large cursor to t = 3.78 and observed 
the two tails area to be .0004, which we write as p < .001. I conclude that the 
p value for testing the null hypothesis that the population means of Pen and 
Laptop are the same is p < .001. Note in Figure 7.3 that Data two reports near 
red 9 the values of df, t, and p. Check that these match the values I’ve calculated 
above. (As usual, we’re not concerned if there are tiny differences attributable 
to rounding errors.) Recall that if software reports a p value of 0, we take that 
to mean p < .001, the smallest value we report.

As usual, I chose two tails so the p value would be the probability of results 
like ours, or more extreme in either direction, if the null hypothesis is true.

Compare this p value of < .001 with how the CI on the difference falls in 
relation to zero on the difference axis in Figure 7.2. Relative to its length, the 
CI is a long way from zero, which corresponds to a p value close to zero. The 
data provide very strong evidence that the Laptop population mean is greater 
than the Pen population mean. Our independent- groups t test has found the 
difference to be highly statistically significantly greater than zero.

Earlier, using estimation, we considered the CI on the difference, rather 
than a p value. Advantages of the estimation approach include that it focuses 
attention on the ES, and the CI is more informative than a t test about the 
extent of uncertainty.

Variability 
component

Sample size  
component

Effect size

The independent 
groups t test uses 
a p value to test 
the null hypothesis 
of zero difference 
in an independent 
groups study.
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7.33 Refer back to Table 7.2. Use the formulas in this section to calculate the 
p value for the difference between Pen and Laptop.
a. What assumption are you making? Is it reasonable?
b. Compare your p value with that reported in Figure 7.4. Interpret.
c. Consider the figure you saw when completing Exercise 7.16. Compare 

your interpretations for the p value and the CI on the difference.
7.34 Table 7.4 presents data from an unrealistically small HEAT study compar-

ing independent groups of students.
a. Use Equations 3.1 and 3.3 to calculate M and s for each group.
b. Use Equation 5.9 to calculate the CIs on the two means.

7.35 Calculate the ES, s
p
, and the CI on the difference, assuming equality of 

the two population SDs. Interpret.
a. Calculate the p value to assess the null hypothesis of no difference 

between Colleges A and B. What can you conclude?
b. Compare with the CI on the difference. Explain.

7.36 Type the data in Table 7.4 into Data two. Click to display the individual 
data points, and again to see the figure with a difference axis. Confirm 
all the values you calculated.
a. Compare the CI on the difference with the two separate CIs.

OVERLAP OF CIS ON INDEPENDENT MEANS

I want to describe a handy way to think about a figure that shows independ-
ent means with their CIs. Figure 7.12 shows four changed versions of the 
PenLaptop 1 results, with four different supposed Laptop means. The labels 
at the top describe how the two CIs relate: Do they overlap, just touch, or 
is there a gap?

From left to right, do we have stronger or weaker evidence of a population 
difference? Would the p value increase or decrease?

Those questions are worth reflection. Think of the Pen CI as a range of 
values plausible for the Pen population mean, and ditto for Laptop: In each 
case, what does that suggest about the evidence for a difference?

Table 7.4 Data for 
an Independent 
Groups Study 
Comparing HEAT 
Scores at Two 
Colleges

College A College B

63 41
66 56

49 39

50 74

84 66

74 45

57 51

79 46

38

Ponder, call, discuss…
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The farther apart the two means, the stronger the evidence of a difference 
and the smaller the p value. From left to right the evidence becomes weaker and 
the p value larger. In fact, there is an approximate relation between the amount 
of overlap or gap, and the p value. Figure 7.13 adds lines to mark overlap or 
gap, and a statement of the approximate p values.

In the leftmost panel, all the plausible Pen values are lower than all the 
plausible Laptop values, so there’s very strong evidence of a population dif-
ference and p is very small. In the rightmost panel, the two ranges of plausible 
values overlap considerably, so there’s little or no evidence of a difference 
and p is large. It so happens that 95% CIs just touching corresponds approx-
imately to p = .01, and moderate overlap to p = .05. I’ll summarize by stating 
the overlap rule.

The Overlap Rule for CIs on Independent Means
Here’s the overlap rule for independent means:

 ■ If the two 95% CIs just touch, p is approximately .01. There’s a moderate 
amount of evidence of a population difference.

 ■ If the two 95% CIs overlap moderately, p is approximately .05. There’s a 
small amount of evidence of a population difference.

By “overlap moderately” I mean overlap as in the third panel of Figure 7.13, 
by about half of MoE. The two means must be independent—in Chapter 8 

For independent 
CIs, the smaller the 
overlap (or larger 
the gap), the smaller 
the p value and 
greater the evidence 
of a population 
difference.
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Figure 7.12. Four changed versions of the PenLaptop 1 results, with four different supposed Laptop means. The labels at the 
top describe how the two CIs relate.

The overlap rule: If 
independent CIs just 
touch, p is about 
.01; if they overlap 
moderately, p is 
about .05.
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we’ll see that the situation is totally different when they are not. To be 
reasonably accurate, the rule also requires that the sample sizes are at 
least about 10 and that the two CIs are not very different in length. See 
Cumming and Finch (2005) for more about overlap, as well as a general 
introduction to CIs.

Does it seem surprising that CIs overlapping moderately provide some 
evidence of a difference? Imagine cat’s- eye pictures on both CIs: Only the 
thin ends overlap, not the fat central bulges, so maybe the rule is not so 
surprising?

Regard the rule as rough but handy. Amaze your friends by noncha-
lantly stating a conclusion about the population difference, when all you’re 
given is means and CIs. IF the means are independent, that is. Did I mention 
that independence is essential?

 7.37 Open Summary two and type in from Table 7.1 the PenLaptop 1 mean, 
SD, and N for each group. Type in different values for M

2
 and watch as 

the amount of overlap changes. Note the p value shown near red 5.
a. Click at red 2 to Display CI overlap, and note the value of Overlap 

(or Gap—ESCI tells you which) near red 3. Read the popouts. Change 
any of M

1
, M

2
, s

1
, or s

2
, and watch overlap or gap, and p change.

b. When overlap is exactly .5, what is p? When overlap is exactly 0, 
what is p? What can you conclude about the overlap rule?
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Figure 7.13. Same as Figure 7.12, but with horizontal lines to mark overlap or gap, and approximate p values stated—
assuming independent groups.
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7.38 Click at red 7 to see d. Click to calculate the CI for δ. Why can’t you see a p 
value to go with that CI? Because the p value for testing the null hypoth-
esis of zero difference is the same, whether we are using original units 
or d. Simply use the p value near red 5, which we noted in the previous 
exercise.
a. Click at red 6 to see the second figure. Change M

2
 so that p = .05 

and note something special about the CI on the difference. Click to 
calculate the CI for δ. Is it special in the same way? Explain.

Now I want to discuss a further red flag, perhaps the biggest red flag of 
all, and a strong reason for using estimation rather than NHST and p values.

BEWARE THE ENORMOUS VARIABILITY OF p: THE 
DANCE OF THE p VALUES

We’ve seen the dance of the means and dance of the CIs. We know that there 
are strong links between CIs and p values, so is there a dance of the p values? 
Figure 7.14 shows 25 simulated replications, assuming the population mean is 
μ = 10 as marked by the dashed line. The means and CIs dance as we expect.

Now consider the p values for testing the null hypothesis of 0 as marked 
by the solid vertical line. These are shown at left. You can check any p value by 
noting where its CI falls in relation to 0: The farther to the right a CI falls, the 
smaller the p value. The p values are marked using the star convention: * if p < 
.05, and ** if p < .01, and *** if p < .001. CIs that just overlap zero, so .05 < p < 
.10, are marked “?” to indicate they are close to statistical significance.

Now consider the column of p values—they vary dramatically! It seems 
our study could give us almost any p value—in the figure, p ranges from a low 
of < .001 up to .67. The dance of the p values is indeed very wide.

Think of running a study and obtaining a randomly chosen one of the 25 
results in the figure. Would your CI tell us anything about the whole dance? Yes, 
it would: Its length would give us a reasonable idea of the amount of bouncing 
around in the dance of the means. However, if we could see only the p value, 
would that tell us anything about the dance? No, it would tell us very little 
because the p values range so widely.

The trouble is that a p value is a single value that gives no hint of the extent 
of uncertainty, whereas CI length gives information about uncertainty. Despite 
the strong links between CIs and p values, my conclusion is that a CI is much 
more informative than a p value—which tells us very little indeed. Alas, we 
really shouldn’t trust any p value.

Beware the enormous variability of the p value. A single p value gives only very vague 
information. A replication study can easily give a very different p value. A p value is not 
to be trusted. Red Flag 5

By convention, stars 
are used to indicate 
strength of evidence 
against H

0
: *** 

marks p < .001, ** 
marks .001 < p < 
.01, and * marks 
.01 < p < .05.

The dance of the 
p values is very 
wide; a p value gives 
only very vague 
information about 
the dance.

A p value gives 
no indication of 
uncertainty, whereas 
a CI is much more 
informative.

Especially at this point, look on the book website for videos relevant to our 
discussion—here, the dance of the p values.

INTERPRETING THE INDEPENDENT GROUPS DESIGN

Let’s return to the main topic of this chapter, the independent groups design, 
and consider interpretation. Recall the definition from Chapter 2:
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Figure 7.14. Dance of the 95% CIs, with μ = 10 as marked by the dashed line. At left is the dance 
of the p values for testing the null hypothesis of 0, as marked by the solid line.

Random assignment 
to groups ensures 
experimental 
research and can 
justify a causal 
conclusion.

Experimental research uses random assignment of participants to groups or conditions—to 
the different levels of the IV that is being manipulated. It can justify a causal conclusion.

If the independent groups we compare are two pre- existing groups, such 
as groups of students who themselves prefer to use pen or laptop, then we 
have non- experimental research. We can calculate and interpret the CI for the 
difference between the two groups, but we cannot make causal conclusions. 
Alternatively, we could use random assignment, in this case to separate pen and 
laptop groups. This should give groups that on average differ in only one way, 
which is the IV manipulation. It’s experimental research and, therefore, we 
can conclude that, most likely, the pen–laptop manipulation caused whatever 

difference we observed in the DV.
Of course, here as in all other cases, our interpretation will also 

depend on our assessment of the reliability and validity of the depend-
ent variable, and all the Open Science issues: Are the comparisons 
planned or exploratory, has there been any selection of participants or 
results, and so on. The question “Do we have the full story?” should 
automatically spring to mind.

It’s time for take- home messages. Reflect, discuss, then write 
yours. Our main topic has been the independent groups design, and 
we encountered the importance of the CI on the difference. We’ve 
seen several bits of d magic. Do you have a lucky golf ball and would 
it help anyway? Recall the frenetic dance of the p values and a large 
red flag.
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   Quiz 7.4  
  1.     To compare two independent groups, the estimation approach focuses on the CI for the 

mean difference between groups. Considering NHST to compare two independent groups:  
  a.     NHST uses the same basic information as the CI: an effect size, a variability component, 

and a sample size component.  
  b.     NHST typically tests the null hypothesis that the difference between the groups is zero 

(H 
0
 :  μ  

diff
  = 0).  

  c.     Unlike the estimation approach, the NHST approach yields a  p  value which is then used to 
make a yes/ no decision about the null hypothesis.  

  d.     All of the above.    
  2.     Once a  t  value is calculated, a  p  value can be obtained. Think back to  Chapter 6  on the NHST 

approach, then state what the  p  value represents.  
  3.     When the 95% CI for the difference between two means includes 0, this means that  p  will be 

 less than /  greater than  .05 and the result  will /  will not  be judged statistically significant.  
  4.     The more the CIs for independent groups overlap, the  smaller /  larger  the  p  value and the 

 weaker /  stronger  the evidence against the null hypothesis.  
  5.     Both  p  values and CIs dance due to sampling variation. The dance of the  p  values, however, is 

 more /  less  erratic than the dance of the CIs, and thus a single  p  value can tell you  more /  less  
about the dance as a whole.  

  6.     When the 95% CIs on the means of two independent groups just touch, the  p  value is about 
_ _ _ _ _ ; when they overlap considerably,  p  is _ _ _ _ _ _ ; and when they overlap moderately,  p  is 
about _ _ _ _ _ _ .      

  7.39     You read a study claiming that wearing a red shirt makes a person feel 
more confi dent and assertive, with  p  = .01. A second researcher replicates 
the study as closely as possible, reports  p  = .42, and claims that the effect 
can’t be real because it did not replicate. A third researcher then replicates 
the study as closely as possible, fi nds  p  = .08, and also claims that the effect 
can’t be real.  
  a.     What should we conclude? If you wish to research the issue yourself, 

what should you do?    
  7.40     Watch the dance of the  p  values video again. Summarize the similarities 

and differences between the dance of the  p  values and the dance of the CIs.  
  7.41     Revisit your take- home messages. Revise and extend the list if you wish.   

   Reporting Your Work 

 Comparing groups is at the heart of most research projects, so being able to report and 
interpret group comparisons is indeed a wonderful skill to have. It will take some practice, 
as there is a lot of information to convey to the reader. For research questions about group 
differences your report will typically include: 

 ■   whether the comparison is planned or exploratory, unless this is already clear;  
 ■   basic descriptive statistics for both groups;  
 ■   the group difference, ( M  

2
 -   M  

1
 ) and its CI;  

 ■   a standardized effect size estimate ( d  
unbiased

  is best), preferably with its CI—in your 
Method section, make clear how your standardized effect size was calculated (which 
denominator was used);  

 ■   a figure if possible, preferably one like ESCI produces that shows all the raw data and 
which emphasizes the estimated group difference and its CI. State in the figure caption 
what error bars represent—95% CIs;  
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 ■   an interpretation of the group difference that considers not only the point estimate but 
also the CI. You can focus on the group difference in original units or the standardized 
group difference, whichever you feel will be easier for readers to understand. Be sure, 
though, that the language in your conclusion is consistent with the research design 
(causal for experimental, relational for non- experimental).   

  Although figures (i.e., graphs) are ideal for showing group comparisons, they are not ideal 
for   extracting data for meta- analysis. So including a figure does not replace the need to 
report the relevant statistics in the text, a table, or the figure caption.  

 Here are some examples. Each is based on analysis of a motor skill task that produces 
scores on a percentage scale. 

 The fi rst planned analysis found that scores in the power 
condition ( M  = 32.6%,  s  = 14.8%,  n  = 68) were very slightly 
higher than in the control condition ( M  = 31.0%,  s  = 14.7%, 
 n  = 83). Relative to other fi ndings in the fi eld, the difference 
in performance was very small  (M  

power
  –   M  

control
 ) = 1.6%, 95% 

CI [- 3.2, 5.4],  d  
unbiased

  = 0.11, 95% CI [- 0.21, 0.43]). The 
CI is fairly short, indicating that the effect of power on 
performance is, most likely, no more than moderate in size. 

 The participants in this sample had a much wider range of 
ages than in the study we replicated. Although this was not 
a planned analysis, we also assessed the effect of power 
on motor skill when restricting the analysis to only those 
participants younger than 30. In this restricted sample, 
scores in the power condition ( M  = 37.4%,  s  = 14.1%,  n  = 29) 
were somewhat higher than in the control condition ( M  = 34.5%, 
 s  = 14.5%,  n  = 42). The difference in performance was moderate 
( M  

power
  –   M  

control
 ) = 3.0%, 95% CI [- 4.0, 9.8],  d  

unbiased
  = 0.20, 95% 

CI [- 0.27, 0.68]). The CI is long, and is consistent with 
power producing a small detriment, no change, up to a large 
benefi t. This exploratory analysis, then, does not provide 
clear evidence of a benefi t of power in younger participants. 

 Motor skill for men ( M  = 33.8%,  s  = 12.8%,  n  = 62) was a 
little higher than for women ( M  = 29.7%,  s  = 15.8%,  n  = 89). 
The difference in performance may seem small in terms of 
raw scores ( M  

men
  –   M  

women
  = 4.0%, 95% CI [- 0.7, 8.8]), but the 

standardized effect size was moderate ( d  
unbiased

  = 0.28, 95% CI 
[- 0.05, 0.61]) relative to the existing literature. However, 
both CIs are quite long, and are consistent with anywhere from 
no advantage up to a large advantage for men. More data are 
required to estimate more precisely the degree to which gender 
might be related to motor skill. 

 For complex studies, writing out all this information for each dependent variable can 
become overwhelming. Fortunately, a table can provide a very efficient way to summarize 
lots of comparisons, although of course you’ll still need to write your interpretation as text. 
Here’s a link to an example you can use as a model, although note that units should not be 
stated again with the values of CI limits inside the square brackets:  tiny.cc/statextable     

  Take- Home Messages  
 ■   An independent groups study focuses on ( M  

2
  –   M  

1
 ), the difference between two sample 

means. This can be displayed with its CI on a difference axis, as in  Figure 7.2 , which is a  take- 
home picture .  

 ■   Assuming homogeneity of variance, the CI on the difference is calculated using  s  
p
 , the pooled 

SD for the two groups. To avoid the assumption, use the Welch approximate method. The CI 
on the difference is a little longer than either of the two separate CIs.  

 Compare two groups 
by focusing on the 
difference between 
the means (in 
original units and/ 
or standardized) and 
its CI. 
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 ■ The CI on the difference is based on a t component, a variability component, and a sample 
size component. Use Equation 7.3.

 ■ Cohen’s d allows comparison of results obtained using different original measures. It’s an ES 
in original units divided by a suitable SD—the standardizer—so d is a number of standard 
deviations. The population ES is δ, which is a number of σ units.

 ■ If a suitable population SD is available, use it as the standardizer. If not, we usually assume 
homogeneity of variance and use s

p
, the pooled SD within groups. Always state what 

standardizer was used.

 ■ The CI for δ (the same as the “CI on d” and “CI on d
unbiased

”) is tricky to calculate, but 
important.

 ■ Prefer d
unbiased

 to d, although for df of 50 or more there’s little difference.

 ■ Use judgment to interpret values of d or d
unbiased

, and the CI for δ, in context. Consider 
ESs in original units, the standardizer and reference population, the extent of overlap of 
distributions, previous research, cost- benefit, and practical and theoretical implications.

 ■ If appropriate in context, consider reference values for small, medium, and large effects, 
for  example 0.2, 0.5, and 0.8 as suggested by Cohen for psychology, or 0.2, 0.4, and 0.6 as 
suggested by Hattie for education.

 ■ The independent groups t test assesses the null hypothesis of zero difference. To calculate 
t use Equation 7.6, which needs the ES, (M

2
 –  M

1
), and the variability and sample size 

components.

 ■ Given independent means and CIs, we can use the overlap rule: If the CIs just touch, p is 
around .01 and there’s some evidence of a difference. If they overlap moderately, p is around 
.05 and there’s a small amount of evidence of a difference.

 ■ Red Flag 5. A close replication can easily give a very different p value. The dance of the p 
values is very wide and a p value gives only very vague information about the dance. A p 
value is not to be trusted. CIs are much more informative.

 ■ Random assignment to groups gives experimental research and can justify a causal 
conclusion.

End- of- Chapter Exercises

1) To what extent does a professor’s presentation style influence students’ perceptions of learning? 
Carpenter et al. (2013) asked students to watch a video of a professor giving a lecture fluently 
or haltingly, then to predict the percentage of the presented information they would remember 
on a quiz 10 minutes later. Table 7.5 shows the results. Use Equation 7.3 to calculate the dif-
ference, and its CI, between the fluent and halting groups for predicted learning.

a. Is the assumption of equal variance reasonable? Explain.

b. What is df?

c. Look up the critical value of t.

d. Calculate s
p
.

e. Almost there—calculate the sample size component.

Table 7.5 Summary Statistics for Students’ Predictions 
of Amount Remembered

Fluent Halting

M 48% 25%

s 23% 21%

N 21 21
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f. Now calculate MoE
diff

.

g. Calculate the 95% CI for the difference between the two groups.

h. Just as important as calculating the CI is interpreting it. Given that the two groups 
have means that are 23 percentage points apart, what does the CI tell you?

i. Type the values into Summary two and check your calculations.

2) Let’s get some more practice calculating a CI for the difference between two means. 
Continuing the example, Carpenter et al. (2013) also gave participants a quiz to measure 
their actual learning. Table 7.6 shows the result.

a. Follow the same steps as in Question 1 to calculate the 95% CI on the difference.

b. Based on these results, Carpenter et al. (2013) claimed that presentation style (fluent 
or halting) does not impact learning at all, even though students think it will. Based 
on the CI you calculated, do you agree? Explain.

3) We often have to make numerical estimates (e.g., How many people will come to my party? 
What’s a reasonable price to pay for a new car?). Jacowitz and Kahneman (1995) wanted 
to know how much our estimates can be influenced by subtly changing the context of the 
question. Specifically, they asked participants to make numerical estimates, but provided 
either a high or low anchor. For example, they asked participants to estimate how many 
babies are born in the United States each day, but provided some with the fact that the 
answer is more than 100 (low anchor) and others with the fact that the answer is less than 
50,000 (high anchor). To what extent do these anchors influence the estimates provided? 
Load the Anchor_ Estimate data set from the book website. This file has data from a large, 
multi- lab replication of this classic study (Klein et al., 2014a, 2014b). The file has data from 
just one of the labs that helped conduct the replication. Provided are the data from three 
different estimation tasks (number of babies born in the U.S./ day, population of Chicago, 
and height of Mount Everest).

a. For number of babies born/ day, use ESCI to make a figure showing estimates for the 
high and low anchors.

b. Looking at the descriptive statistics provided by ESCI, does it seem reasonable to assume 
equal variance in both groups? Use the option in ESCI to choose an appropriate method 
of calculating the CI on the difference.

c. Write an APA- style summary of this finding, incorporating the descriptive statistics (M 
and s for each group), the difference and its CI, and a standardized effect size estimate 
(Cohen’s d). Include an interpretation of the overall result.

d. Optional: Repeat steps a– c for the other two estimation tasks.

4) Some researchers claim that moral judgments are based not only on rational considerations 
but also on one’s current emotional state. To what extent can recent emotional experiences 

Table 7.6 Summary Statistics for Students’ 
Amount Remembered

Fluent Halting

M 26% 22%

s 22% 26%

N 21 21
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influence moral judgments? Schnall et al. (2008) examined this question by manipulating 
feelings of cleanliness and purity and then observing the extent that this changes how 
harshly participants judge the morality of others. In Study 1, Schnall et al. asked participants 
to complete a word scramble task with either neutral words (neutral prime) or words related 
to cleanliness (cleanliness prime). All students then completed a set of moral judgments 
about controversial scenarios (Moral_ judgment is the average of 6 items, each rated on a 
scale from 0 to 9, high meaning harsh). The data from this study are in the Clean_ Moral 
data set available on the book website. This file also contains data from a replication of the 
original (Johnson, Cheung, & Donnellan, 2014).

a. Examine the data from the original study. Make a figure and interpret the difference 
between the two means.

b. Based on the data from the original study, Schnall et al. (2008) concluded that activat-
ing intuitions about cleanliness can reduce the severity of moral judgments. Do you 
agree or disagree with this interpretation? Explain.

c. Based on the data from the original study by Schnall et al. (2008), what would you 
expect for the replication attempt by Johnson, Cheung, and Donnellan (2014)—which 
had group sizes of 106 and 102? Write down your prediction before looking at the data.

d. Examine the data from the replication study. Make a figure and interpret the difference 
between the two means.

e. Is the replication study consistent with the finding in the original study? To what extent?

f. Considering both studies, to what extent do you think manipulating cleanliness influ-
ences moral reasoning?

5) To what extent do men and women differ in their attitudes towards mathematics? To 
investigate, Nosek et al. (2002) asked male and female students to complete an Implicit 
Association Test (IAT)—this is a task designed to measure a participant’s implicit (non- 
conscious) feelings towards a topic. (If you’ve never heard of the IAT, try it out here: tiny.
cc/harvardiat) On this IAT, students were tested for negative feelings towards mathematics 
and art. Scores reflect the degree to which a student had more negative implicit attitudes 
about mathematics than art (positive score: more negative feelings about mathematics; 
0: same level of negativity to both; negative score: more negative feelings about art). From 
the book website you can load the Math_ Gender_ IAT data set which contains data from 
two different labs that participated in a large- scale replication of the original study (Klein 
et al., 2014a, 2014b).

a. Examine the data from the Ithaca lab. Use ESCI to make a figure of how men and 
women differ in their IAT scores and obtain the 95% CI for the difference. Write an 
APA- style results paragraph summarizing and interpreting the degree to which gender 
is related to implicit attitudes toward mathematics.

b. Based on the data from the Ithaca lab, what would you predict for a second lab, which 
used somewhat larger samples? How similar do you expect the results to be?

c. Examine the data from the SDSU lab. How do they compare with your prediction? 
Compare the two results: To what extent are they consistent with each other?

d. Can you conclude from these results that gender causes differences in math attitudes? 
Explain.
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Answers to Quizzes

Quiz 7.1
1) a; 2) d; 3) pooled, s

p
, standard deviations; 4) df = (N

1
 + N

2
 − 2); 5) longer; 6) transcription score in percent, 

interval, pen- laptop or note- taking method, 2, Pen and Laptop, nominal or categorical.

Quiz 7.2
1) standardized; 2) effect size, original units, standard deviation (or standardizer); 3) 0; 4) the pooled SD within 

groups (s
p
), homogeneity of variance; 5) c; 6) 5/ 20 = 0.25, a decrease of 0.8 × 20 = 16.

Quiz 7.3
1) effect size, population, δ; 2) d; 3) less; 4) 0.40; 5) over, smaller; 6) standardizer, denominator, standard deviation, 

estimate.

Quiz 7.4
1) d; 2) p is the probability of obtaining the observed result, or more extreme, IF the null hypothesis is true; 

3) greater than, will not; 4) larger, weaker; 5) more, less; 6) .01, >.05, .05.

Answers to In-Chapter Exercises

7.3 For a 90% CI, the critical value of t is smaller, so the CI is shorter than for 95% (actually about one-sixth shorter).
7.4 Larger σ in either or both populations is likely to give larger s

p
, so the variability component increases and the CI 

is longer.

7.5 If N
1
 is larger, 1/N

1
 is smaller and 

1 1

1 2N N
+  is also smaller, so the CI is shorter. Similarly if N

2
 is larger. In general, 

larger samples give shorter CIs, as we expect.
7.6 Offset points shifts some points sideways so all are visible. It also moves them very slightly up or down so they 

line up neatly.
7.7 Type in a data value and press Enter. You can then use Undo and Redo to watch changes in the figure and in the 

values reported for descriptive statistics and CIs.
7.8 Near red 9.
7.9–
7.10  There’s usually little difference unless the sample sizes are considerably different and s

1
 and s

2
 are also distinctly 

different.
7.11 df changes a little and almost always becomes a non-integer.
7.12 s

p
 = 5.15 and is the pooled SD, calculated from s

1
 and s

2
, that’s used to estimate σ, which is assumed to be the 

SD in both populations. For PenLaptop 1, s
p
 = 6.09, which is similar to 5.15, the value for PenLaptop 2.

7.13 The difference is 5.21 percentage points [3.43, 6.98]. We are assuming the SD is the same in the two populations. 
Making the assumption is reasonable because s

1
 = 4.22 and s

2
 = 5.52 are not very different. Similarly for 

PenLaptop 1.
7.16 Make your eyeballed CI on the difference a little longer than each of the separate CIs.
7.17 a. Near red 3, ES = (M

2
 – M

1
) = 1.67. Near red 5, s

p
 = 2.02, so d = 1.67/2.02 = 0.83.

7.18 The difference is small and the two CIs overlap almost totally, so there’s no evidence of a population difference.
7.19 See Figure 7.15. d = 0.32/4.54 = 0.07, which suggests a very small difference.
7.20 0.83 seems big, and very different from 0.07, which seems very small, although we need the CIs.
7.21 d = 5.71/6.09 = 0.94, so almost one SD more transcription for laptop than pen.
7.22 d = 0.83 [0.05, 1.59]. Population effect size, δ, is most likely around 0.8, which is quite large, but the CI is very 

long, no doubt largely because the samples are small, and δ could plausibly be within about 0 to about 1.6.
7.23 The restrictions are that, to calculate the CI for δ, d must lie between −10 and 10 (which is rarely a problem) and 

df must not exceed 200. MoE
av

 = 0.774, which is the average of upper MoE = 1.593 − 0.827 = 0.766, and lower 
MoE = 0.827 − 0.046 = 0.781. Upper and lower MoE are not very different, so the CI is only slightly asymmetric. 
In practice, asymmetry of the CI on d hardly matters.
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Figure 7.15. Data analysis for Aruguete 1. From Summary two.

7.24 Other things being equal, larger samples give more precise estimates and a shorter CI on the difference, 
whereas smaller samples give less precise estimates, meaning a longer CI on the difference.

7.25 The CI for δ is [−0.26, 0.40], so its center is not far from zero, and the interval is much shorter than that for 
Damisch 1. The Aruguete 1 result suggests the difference is at most very small.

7.26 For Damisch 1, d = 0.83 [0.05, 1.59]. For Aruguete 1, d = 0.07 [−0.26, 0.40]. The Damisch ES is large but with great 
uncertainty, the Aruguete ES near zero, with less uncertainty. The two CIs overlap somewhat.

7.27 d = 0.827 and d
unbiased

 = 0.803; the ratio is 0.827/0.803 = 1.030, so d overestimates δ by 3%, when, as here, 
df = 26.

7.28 df = 139, and both d and d
unbiased

 = 0.070, so d = d
unbiased

 to three decimal places, when df is so large. There’s 
virtually no bias.

7.29 Report d
unbiased

 in both cases, although the values are so similar to d that the interpretation would be the same.
7.30 The pictures emphasize the difference between the two ESs, with considerable separation of the Damisch 1 

curves and close to complete overlap for Aruguete 1. However, we need to consider the two CIs. The CI for 
Damisch 1 is long.

7.32 a. 1.00 and 1.67; b. d = (125 − 115)/15 = 0.67; both z and d are numbers of SDs, the SD being the unit of 
measurement in each case, and d is the difference between the two z scores.

7.33 t(149) = 5.79, so p < .001. a. Assume homogeneity of variance, which is reasonable because the two sample 
SDs in Table 7.2 are not very different. b. Figure 7.4 reports p = 0, which is rounded to 3 decimal places, so is 
consistent with our p < .001. c. The data provide very strong evidence against the null hypothesis of 0, as also 
does the CI on the difference, which is very far from 0.

7.34 a. For College A, M = 65.25 and s = 13.02; for College B, M = 50.67 and s = 12.51; b. For A the CI is [54.4, 76.1] 
and for B the CI is [41.1, 60.3].

7.35 The ES = −14.58, s
p
 =12.75 and the CI on the difference is [−27.8, −1.38]. We estimate that the College 

A population mean score is about 15 points higher on the HEAT than the College B mean, although the difference 
could plausibly be anywhere from about 1 point to about 28 points. MoE

diff
 is about 13 points, so our estimate 
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of the population difference lacks precision; a. t(15) = −2.35 and p = .03 (the same as for t(15) = 2.35); b. The CI 
just misses 0, which is consistent with p just less than .05. The difference is statistically significant; there’s a small 
amount of evidence against the null hypothesis of 0.

7.36 The CI on the difference is a little longer than each of the separate CIs, as we expect for independent groups.
7.37 b. When M

2
 = 12.058, overlap is 0.500 and p = .036. When M

2
 = 13.141, overlap is 0 and p = .006. These p values 

are a little smaller than the .05 and .01 expected from the rule, which suggests the rule is a bit conservative. In 
fact, it usually but not always is.

7.38 a. When M
2
 = 11.83, p = .05, and, in the figure, the CI on the difference just touches 0, as we expect. The lower 

limits of that CI, and the CI for δ, are both reported as very close to 0, illustrating that the same p value applies 
whether we are using original units or d.

7.39 a. This common pattern illustrates the problem of relying on p values, which bounce around enormously even 
for close replications. Interpreting p = .42 and .08 as evidence that the effect “can’t be real” or “didn’t replicate” 
is a version of Red Flag 3, which highlights the danger of interpreting nonsignificance as evidence of no effect. 
We can conclude little from the p values. We need the ES and CI for each study. If all three gave a positive effect, 
together they may give evidence of a non-zero effect, perhaps strong evidence. We should combine the results 
using meta-analysis, and interpret, then decide whether a further study is advisable. A fourth study would be 
added to the meta-analysis to give an even more precise estimate of the effect.

7.40 Both dances bounce a lot, p values even more than CIs. The key point is that any single CI makes the uncertainty 
salient: Its length gives a reasonable idea of the amount of bouncing in the dance of the means. In striking 
contrast, any single p value tells us nothing about uncertainty and virtually nothing about the dance it comes 
from. So p tells us very little indeed.



To compare note- taking using pen and laptop, Mueller and Oppenheimer 
(2014) used two independent groups of students. An alternative would be to 
ask a single group to use pens one day and laptops another day, so each student 
would provide a transcription score for both conditions. We’d then be able to 
compare pen and laptop within participants, rather than between participants 
as in the independent groups design. A single group and comparison within 
participants gives us the paired design, which is the second basic design we’ll dis-
cuss for comparing two conditions. It’s not always possible—think of comparing 
females and males—but, when it is, it can often be efficient and give relatively 
precise estimates. However, using a pen one day can influence performance 
with a laptop on another day—practice at the task, perhaps, or boredom with 
being in the study. We’ll discuss ways to minimize this problem that can, in 
some cases, justify a causal conclusion, which is what we always seek.

My main example will be studies by Thomason et al. (2014) that used the 
paired design to evaluate a promising new approach to teaching critical thinking. 
Most sections in this chapter follow the pattern of the corresponding sections 
in Chapter 7 for independent groups. It’s worth comparing back often. I close 
this chapter with a brief description of the two designs, and also consider the 
choice between the two. As you probably expect, I’ll say it’s a matter for judg-
ment—which, as usual, just adds to the interest. Here’s our agenda:

 ■ The paired design, using a pretest vs. posttest example
 ■ Confidence intervals for the paired design
 ■ Cohen’s d for the paired design
 ■ NHST and p values for the paired design
 ■ Interpreting the paired design
 ■ Independent groups and the paired design: comparing and choosing

THE PAIRED DESIGN

Evaluation of a Course in Critical Thinking
Many colleges require a course in critical thinking, but such courses are not 
particularly effective, with a meta- analysis by Alvarez (2007) finding that 
average gain in critical thinking ability is only d = 0.34 in a semester. Courses 
based on argument mapping, however, showed about twice that gain. Argument 
mapping is a graphical technique for representing and critiquing an argument. 
Thomason et al. (2014) reported seven studies evaluating a promising approach 
to teaching critical thinking that combines argument mapping with a form of 
mastery learning (Mazur, 1997). Studies were conducted in the United States, 
Canada, and the United Kingdom, and each study used a single group of stu-
dents. Students were tested on various well- established measures of critical 
thinking, both before (the Pretest) and after (the Posttest) training. Group sizes 

8
The Paired Design

The paired design 
uses a single group 
of participants, each 
of whom contributes 
a pair of data values, 
one for each of the 
conditions being 
compared.
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ranged from 7 to 39. All the Thomason studies compared the two conditions, 
Pretest and Posttest, within participants, and therefore used the paired design.

Now is the moment to define a few handy terms. The IV for the independ-
ent groups design is a between- groups variable. The IV for the paired design is a 
within- group variable, also called a repeated measure. Those different IVs define a 
between- groups design and a paired design.

A between- groups IV gives a between- groups design, meaning that different levels of the 
variable are seen by independent groups of participants. For example, pen– laptop in Chapter 7.

A within- group IV gives a within- group design, meaning that all levels of the variable are 
seen by a single group of participants. Equivalently, a repeated measure gives a repeated 
measure design; for example, the paired design, such as pretest– posttest in this chapter.

The first Thomason study, Thomason 1, used a group of N = 12 students, 
whose critical thinking ability was assessed at Pretest and Posttest using the 
Logical Reasoning section of the Law School Aptitude Test (LSAT). Figure 
8.1 presents the means and CIs for Thomason 1. The line joining the Pretest 
and Posttest means indicates a paired design—in other words that we have a 
repeated measure. The means and CIs don’t look promising, with an apparently 
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Figure 8.1. On the left, means and 95% CIs at Pretest and Posttest from the Thomason 1 paired 
design study of critical thinking. On the right, the same but with a pair of data points shown for 
each of the N = 12 students, joined by a blue line. The line joining the Pretest and Posttest means 
indicates a repeated measure.
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I suggest:

 ■ What data lie behind the summary statistics?
 ■ What data lie behind what the figure shows?

On the right in Figure 8.1 we have what we need: As in Figure 7.1 (I said 
we’d compare back often to Chapter 7) the open dots are individual data points, 
and pairs of dots joined by a blue line are the Pretest and Posttest scores for 
one student. All but one of the lines slopes up, so 11 of the 12 students gave a 
higher LSAT score after the training. That looks more encouraging.

I mentioned large overlap of the two CIs on the left in Figure 8.1, which would 
be relevant if we had independent groups. For the paired design, however, we’ll 
discover that overlap of those CIs is almost irrelevant for answering our research 
question. Now, what is that question, and what effect size do we need to answer it?

The question is simply “To what extent are Posttest scores on average 
greater than Pretest scores?” The effect size is the (Posttest –  Pretest) mean dif-
ference, and we want the CI as well. Figure 8.2 displays these, on a difference 

I know you don’t need reminding…

modest increase in the mean from Pretest to Posttest, and CIs that overlap sub-
stantially. However, we need to take the analysis further. What questions should 
spring to mind whenever you see summary statistics, or a summary figure?
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Figure 8.2. The Thomason 1 data as in Figure 8.1, with the mean difference and its 95% CI displayed 
on a difference axis. The line joining the Pretest and Posttest means indicates a repeated measure. The 
open pink triangles are the (Posttest –  Pretest) differences for the N = 12 individual students. The data 
for one student are highlighted: The solid blue points joined by the heavy red line are from that student, 
and the large red triangle marks that student’s (Posttest –  Pretest) difference of −1 on the difference axis.
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axis. It also marks the (Posttest –  Pretest) difference for each student with a 
pink triangle. The data for the only student whose score decreased are high-
lighted: The solid blue dots joined by a heavy red line and the large red triangle 
both show that Posttest was 1 lower than Pretest for that student. Seven open 
pink triangles at 1 on the difference axis show that for seven of the students 
the Posttest score was 1 greater than the Pretest, as indicated also by seven of 
the blue lines sloping up to the right by the same small amount.

The CI on the Difference
The most striking thing about Figure 8.2 is that the CI on the difference is so 
short. For independent groups that CI is a little longer than the separate CIs, as 
in Figure 7.2, but here it’s distinctly shorter, and a short CI is great news. That’s 
the beauty of the paired design—it often gives us a precise estimate of our effect 
size. Let’s calculate. Table 8.1 gives the descriptive statistics.

As for independent groups, the effect size is the difference between the 
two means:  (M

2
 –  M

1
) = 13.25 − 11.58 = 1.67. However, for the paired design 

we focus on the (Posttest –  Pretest) differences for each participant. The mean of 
those differences is M

diff
, which is always equal to (M

2
 –  M

1
), so M

diff
 is our effect 

size for the paired design. Check that M
diff

 = (M
2
 –  M

1
) in the table.

Our statistical model for calculating the CI has two assumptions:

 ■ Random sampling. The differences are a random sample from a population 
of differences. In practice this usually means that we’re using a random 
sample of participants from the relevant population.

 ■ Normal population. The population of differences is normally distributed.

For the CI I’ll again start with the formula for MoE for the 95% CI on a 
single mean, when σ is not known:

 MoE 95= ( ) × ×






t df s
N

.
1

 (5.9)

Table 8.1 Statistics  
for the LSAT Data 
from the Thomason 1  
Study of Critical 
Thinking

Pretest Posttest Difference

N 12 12 12

Mean M
1

11.58 M
2

13.25 M
diff

1.67

SD s
1

3.32 s
2

2.90 s
diff

1.50

MoE MoE
1

2.11 MoE
2

1.84 MoE
diff

0.95

The ES for the paired 
design is the mean 
of the differences, 
M

diff
, which is always 

equal to (M
2
 –  M

1
).

MoE for the CI on a 
single mean.

df for the paired 
design.

For the CI we seek on M
diff

, we need the appropriate three components.
The t component is t

.95
(df), where df for the paired design is

 df = (N –  1) (8.1)

So df = (12 − 1) = 11, and Normal and t tells us that t
.95

(11) = 2.20.
The variability component is the standard deviation of the N differences, 

meaning the standard deviation of the (Posttest –  Pretest) differences, with 
symbol s

diff
. Table 8.1 tells us s

diff
 = 1.50. There’s no pooling, so we don’t need 

to assume homogeneity of variance.

Sample size  
component

t component, which 
makes it a 95% CI

Variability 
component
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The sample size component for our single group is (1/ N ) = (1/ 12) 
= 0.289.

Enter those components into Equation 5.9 and we find that MoE
diff

, for 
the CI on the difference in the paired design, is

 MoE
diff

 = t
.95

(df) × s
diff

 × (1/ N ) (8.2)

Use Equation 8.2 to find that MoE
diff

 = 2.20 × 1.50 × 0.289 = 0.95. This is the 
value reported in Table 8.1. Therefore, the difference with its CI is 1.67 [1.67 − 
0.95, 1.67 + 0.95], or 1.67 [0.72, 2.62].

Our main finding is that the mean increase in LSAT score after training 
was 1.67 LSAT units [0.72, 2.62]. Given good understanding of the LSAT 
and what its scores indicate, we could interpret this result and use it to guide 
conclusions about the effectiveness of the innovative training procedure for 
improvement of students’ critical thinking. Soon we’ll also express the result 
in terms of Cohen’s d.

Let’s further consider the CI on the difference. We noted in Figure 8.2 that 
almost all  students showed a gain from Pretest to Posttest—almost all the lines 
for the data pairs slope up and the corresponding open triangles are above zero 
on the difference axis. In addition, the triangles are much more tightly bunched 
than either the Pretest or Posttest scores, and, therefore, the SD of the differences 
(s

diff
 = 1.50) is smaller than both s

1
 = 3.32 and s

2
 = 2.90. A small SD for differences 

is good news, because it means the CI on the difference will be short. Indeed, 
MoE

diff
 = 0.95, which is considerably less than both MoE

1
 = 2.11 and MoE

2
 = 1.84.

The CI on the mean difference is shorter than either of the other CIs, which 
says that we’re estimating the mean gain in critical thinking ability more pre-
cisely than we could estimate the mean Pretest or mean Posttest scores. The 
key reason for this is that the differences are fairly closely bunched—they are 
reasonably consistent over students, and so s

diff
 is small. We’re comparing the 

two conditions, Pretest and Posttest, within rather than between participants. In 
other words, each participant is her or his own control. The choice of a paired 
design has given us a sensitive study.

Here’s another way to think about the pattern in Figure 8.2. Note that 
the participants with high Pretest scores tend to have high Posttest scores as 
well, and those with low Pretests tend to have low Posttests as well. We say 
that Pretest and Posttest scores tend to be highly correlated. In Chapter 11 we 
discuss correlation in detail, but I’ll mention here that correlation, symbol r, is 
a measure of the extent to which two variables are associated, the extent to 
which they vary together. Values of r can range from −1 through 0 to 1. High 
positive correlations, meaning r close to 1, occur when high values of one 
variable, for example Pretest, are generally associated with high values of 
the other variable, for example Posttest; and low values of Pretest with low 
values of Posttest. Zero correlation (r = 0) means no association, while neg-
ative correlation (r < 0) would mean that high Pretest is associated with low 
Posttest, and vice versa.

In Figure 8.2, the correlation between Pretest and Posttest scores is r = .89, 
which is a  high positive correlation, close to the maximum of 1. Such a high cor-
relation goes with the similarity of most of the lines joining Pretest and Posttest 
pairs, tight bunching of the triangles, a small s

diff
, a short CI on the difference, 

and a sensitive study. In brief, when the two measures—in our example, Pretest 
and Posttest—are highly correlated, the paired design is especially advantageous 
because it gives high precision.

MoE for the CI on 
the difference in the 
paired design.

With the paired 
design, if differences 
are fairly consistent 
over participants, 
the CI on the mean 
difference is likely to 
be short, so precision 
is high.

Correlation, r, 
is a measure of 
the strength of 
association between 
two variables, such 
as Pretest and 
Posttest; r can take 
values from −1 
through 0 to 1.

With the paired 
design, when the 
two measures (for 
example Pretest and 
Posttest) are highly 
correlated, precision 
is high.
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Comparing Two Designs
Here I want to consider one central aspect of the comparison of the two designs. 
Figure 8.3 shows the means and CIs for a study comparing two conditions, A and 
B, but doesn’t tell us the study design. We can eyeball or sketch the difference 
on a difference axis, as at right, but can we eyeball the CI on the mean differ-
ence? If it’s independent groups we can—simply make that CI a little longer 
than either of the other CIs.

For the paired design, however, we need extra information: We need s
diff

, 
a key component in Equation 8.2 that determines the length of the CI on the 
difference. Depending on the value of s

diff
, the length of that CI may be just about 

anything, from zero up to even longer than the CIs on the separate means. 
Usually the CI on the difference is shorter than the other two CIs, and Figure 8.2 
shows a case where it’s considerably shorter—which makes us happy. Often, s

diff
 

is small and the paired design is sensitive, but it may not be. 
One consequence of needing extra information, beyond what Figure 8.3 

tells us, is that no overlap rule is possible for the paired design. We’ll see cases, 
such as that in Figure 8.2, in which the CIs on the two separate means overlap 
considerably, but the CI on the difference is short. The overlap might suggest 
little evidence of a difference, but the short CI should be our focus: It may tell 
us truly that there is strong evidence of a substantial difference. The overlap 
rule is very handy, but only when it applies—for independent groups. Before 
considering overlap of two CIs, always pause and check: If the CIs are for a 
repeated measure, overlap is irrelevant and perhaps misleading.

In summary, for a paired design, if we see only the means and CIs, as 
on the left in Figure 8.3, we can’t eyeball what we really want, the CI on the 
difference. Most likely it’s shorter than the other CIs, but we don’t know how 
much shorter unless we have s

diff
 and can calculate.

A B Difference

D
ep

en
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nt
 V

ar
ia

bl
e 

.

A B

Figure 8.3. Means and 95% CIs for a fictitious study comparing conditions A and B. Given the left 
panel, we can eyeball the difference between the means, as marked by the pink triangle in the right 
panel. However, only with independent groups can we eyeball the CI on the difference.

With the paired 
design, knowing the 
means and separate 
CIs is not sufficient 
to work out the 
CI on the mean 
difference. We need 
to know s

diff
 as well.

 For the paired 
design, no overlap 
rule is possible.
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A line joining the means, as in Figures 8.1 and 8.2, indicates a paired design. 
Including such a line is a valuable convention, much to be encouraged, but 
unfortunately the convention is not universally followed. Therefore, absence 
of such a line, as in Figure 8.3, is not a reliable indicator of independent groups. 
It’s a deficiency of current graphical conventions that a figure like that on the 
left in Figure 8.3 does not indicate the design. We need to be told in the caption. 
If we are not told, we can’t interpret—we can’t tell how precisely it estimates 
the difference between means. Of course, it’s even better to see the figure on 
the right, but showing also the CI on the difference.

8.1 Suppose that in Figure 8.2 the differences—the open triangles—were even 
more tightly bunched: Would s

diff
 be larger or smaller? What would this 

imply for precision and the CI on the difference? Explain. How would the 
correlation of Pretest and Posttest change?

8.2 Does it matter if the groups in an independent groups study are different 
in size? What about in a paired design?

8.3 A second study from Thomason et al. (2014) used the paired design with 
N = 16. The measure was again the LSAT. Table 8.2 shows summary data. 
Calculate the values in the rightmost column and find the CI on the mean 
difference.

ESCI for the Paired Design
8.4 Fire up Data paired and see the Thomason 1 data as in Figure 8.4. (Scroll 

right and click at red 12 if necessary.) As usual, explore, read popouts and 
experiment. Compare values with Table 8.1 and the figure with Figure 8.2.

 ■ Near red 1 note the Differences column, the heading Highlight and 
4 checkboxes. Read the popouts and experiment. Explain. Compare 
with Figure 8.2.

 ■ Near red 7 note that the correlation r = .89 is reported.

8.5 Compare the two columns of data shown in Figure 7.3 with the two 
columns in Figure 8.4. Would it make any difference if you changed the 
order of a few of the data values in the left column in Figure 7.3 without 
changing those in the right? Explain.

 ■ What about in Figure 8.4: Could you change the order of a few data 
values just in the Pretest column? Explain.

8.6 With your screen showing the data as in Figure 8.4, think how you could 
change a few Posttest values to decrease s

diff
. Try out your idea.

 ■ Note what happens to s
diff

, to the pattern of lines in the figure, and to 
MoE

diff
 and the CI on the mean difference. Explain.

 ■ Note what happens to the value of r. Explain.

Any figure with 
means and CIs, such 
as Figure 8.3, must 
state the design, or it 
can’t be interpreted.

Table 8.2 Statistics for 
the LSAT Data from 
the Thomason 2 Study 
of Critical Thinking

Pretest Posttest Difference

N 16 16

Mean M
1

12.88 M
2

14.25 M
diff

SD s
1

3.40 s
2

4.285 s
diff

2.13

MoE MoE
1

1.81 MoE
2

2.28 MoE
diff
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8.7 Make further changes to some Posttest values that will increase s
diff

. Again 
note and explain what happens.

 ■ What is your conclusion about s
diff

 and precision?
 ■ What is your conclusion about correlation r?
 ■ Put those conclusions in different words by describing when the paired 

design is likely to be especially advantageous.

8.8 Scroll far right and click at red 13 to load the Thomason 2 data. Check that 
ESCI gives the values in Table 8.2, and also your answers to Exercise 8.3.

8.9 Figure 8.5 shows Summary paired with summary statistics for Thomason 
2, and a figure showing the difference with its CI. Compare values with 
those in Table 8.2.

 ■ Note how the length of the CI on the difference compares with the 
other two CIs, for Thomason 2. Make the same comparison for the 
Thomason 1 data in Figure 8.4. Compare the effectiveness of using a 
paired design in the two studies.

 ■ Open Summary paired. If you don’t see the summary data for 
Thomason 2, type them in. Compare with Figure 8.5. Explore the page.

Quiz 8.1

1. Which of the following is a paired design to find out how much Neuroaid improves IQ?
a. One group of students drank Neuroaid and another group drank water; all students then 

took an IQ test.

Figure 8.5. Statistics for the Thomason 2 data as in Table 8.2 and a figure showing the difference and its 95% CI on a difference 
axis. From Summary paired.
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b. One group of students took an IQ test immediately after drinking Neuroaid and, on a 
different day, another version of the same IQ test immediately after drinking water.

c. One group of students took an IQ test after drinking Neuroaid and their scores were 
compared to national norms.

d. All of the above.
2. In a paired design, two conditions are compared within /  between participants, and the IV 

is a within- group /  between- groups variable. With independent groups, two conditions are 
compared within /  between participants, and the IV is a within- group /  between- groups 
variable.

3. In a paired design, the effect size is _ _ _ _ _ _ _ _ _ _ _ . How is it calculated?
4. For a paired design, the variability component for the CI on the difference is _ _ _ _ _ _ _ _ _ _ , 

which is the SD of the _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ .
5. Paired design studies usually give more /  less precise estimates than independent group 

studies, meaning that the CI is usually shorter /  longer. A paired design is especially 
advantageous when s

diff
 is smaller /  larger, the CI on the difference is shorter /  longer, and the 

correlation is smaller /  larger.
6. A figure shows the means and CIs for conditions A and B. The length of the CI on the effect 

size is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  if the design is independent 
groups, and is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  if it’s a paired design.

COHEN’S d FOR THE PAIRED DESIGN

In Chapter 7 we discussed Cohen’s d, the standardized effect size, and I described 
three ways it can be useful. It can help us:

1. understand an original- units ES;
2. compare ESs from measures in different original units that are all assessing 

the same characteristic or ability, such as critical thinking; and
3. compare ESs from measures that are assessing a possibly very wide range of 

different characteristics or abilities, such as those influenced by good sleep.

As an illustration of use 2, note that Thomason et al. (2014) used three 
well- established measures of critical thinking: part of the Law School Aptitude 
Test (LSAT), and also the California Critical Thinking Skills Test (CCTST) and 
the Halpern Critical Thinking Assessment (HCTA). These are all measures of 
critical thinking, but use quite different scales, so values in original units can’t 
be directly compared. The researchers made extensive use of d to compare 
results from the three measures. Even within their own project they needed d 
to make sense of their findings.

The basic formula for d is

 d =
Effect size in original units

An appropriate standard deviiation

ES

SD
=  (7.4)

For the paired design, M
diff

 is our effect size. We need to choose an appropriate 
standardizer. For pretest– posttest studies, the standard deviation of the Pretest, 
s

1
 in Tables 8.1 and 8.2, is often a reasonable choice. However, a slightly better 

estimate of population standard deviation is usually an average calculated 
from the SDs for the two conditions—here the Pretest and Posttest SDs—using

 s
s s

av =
+1

2
2
2

2  (8.3)
Standardizer for 
paired design, s

av
.

Basic formula for 
Cohen’s d.
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and the degrees of freedom for this standardizer is df = (N –  1). Substitute in 
Equation 7.4 to obtain

 d = M
diff

 /  s
av

 (8.4)

Consider Thomason 1, for which Table 8.1 reports M
diff

 = 1.67, s
1
 = 3.32, 

and s
2
 = 2.90. Equation 8.3 gives s

av
 =  ( . . /)3 32 2 90 22 2+  = 3.11, and Equation 

8.4 gives d = 1.67/3.11 = 0.54. So Thomason 1 found a gain of d = 0.54 in LSAT 
score after training. We could use any or all of the approaches we discussed in 
Chapter 7 to interpret that value of d, including understanding of the original 
LSAT scores, and reference to overlapping distributions, to previous research 
using the LSAT in different situations, and to Cohen’s rule- of- thumb value of 
0.5 for a medium effect.

Note what we did not use as standardizer: s
diff

. For the paired design we 
need s

diff
 to calculate the CI on the difference, but s

diff
 is not the appropriate 

standardizer for calculating d. I’ll say more about this shortly.

For the paired 
design, the 
standardizer for d is 
s

av
, which is based on 

the SDs for the two 
measures, such as 
pretest and posttest.

d for the paired 
design.

Figure 8.6. Statistics for the LSAT data from Thomason 1, as in Figure 8.4, but also showing at red 10 
the panel for Cohen’s d. From Data paired.
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8.10 a.  Use the data in Table 8.2 to calculate d for Thomason 2. Interpret, and 
compare with Thomason 1.

b. What standard deviation in the table did you not need to use?

8.11 The Thomason 3 study used the HCTA measure of critical thinking, and 
a paired design with N = 39. The summary statistics are: M

1
 = 67.41, 

M
2
 = 71.77, s

1
 = 7.42, s

2
 = 5.85, and s

diff
 = 6.09.

a. Do you need all those values to calculate d?
b. Calculate the ES, then the standardizer, then d.
c. Interpret, and compare with Thomason 1 and 2.

8.12 Figure 8.4 shows the Thomason 1 data. Figure 8.6 shows the same, but 
after clicking at red 9 to reveal at red 10 a panel showing Cohen’s d. Find 
the two values required by Equation 8.4. Use that equation to calculate 
d, and compare with the value shown in the figure.

8.13 Figure 8.5 shows the Thomason 2 data as displayed by Summary paired. 
Figure 8.7 shows the same, but after clicking at red 4 to reveal at red 5 a 
panel showing Cohen’s d. Find the two values required by Equation 8.4. 
Use that equation to calculate d, and compare with the value you found 
in Exercise 8.10, and the value shown in the figure.

Confidence Intervals on d
As with independent groups, for the paired design we need to assume random 
sampling from a normally distributed population to calculate a CI on d. Again 
the CI on d is a little tricky to calculate, so you need to click a button to initiate 
calculation. The CI is again a little asymmetric. In Figures 8.6 and 8.7 you can 
see the button and the values of the CI for δ, for Thomason 1 and 2.

Figure 8.7. Statistics for the Thomason 2 data as in Table 8.2 and Figure 8.5, but also showing at red 
5 the panel for Cohen’s d. From Summary paired.
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For the paired design also we need to consider removing bias from d, 
unless N is large. You can see the values of d

unbiased
 in Figures 8.6 and 8.7, and 

can compare with d.

8.14 Open Data paired, scroll right, and click at red 14 to load the HCTA data 
for Thomason 3. Click to reveal the d panel.

a. Compare d with what you found in Exercise 8.11.
b. Compare the values shown for d

unbiased
 and d, and comment on the 

amount of bias, compared with Thomason 1 and 2.
c. Click to calculate the CI for δ. Interpret. Compare with the results from 

Thomason 1 and 2.
8.15 Thomason 4 used the California Critical Thinking Skills Test (CCTST) and 

a paired design with N = 7 students. The Pretest mean was 17.29 and SD 
was 3.04; the Posttest mean was 20.43 and SD was 4.96.
a. Is that sufficient information to calculate an original- units effect size? 

An original- units CI? Explain.
b. Is that sufficient information to calculate d? A CI on d? Explain.

8.16 Type those values into Summary paired. Type in suitable labels, and make 
sure the d panel is visible.
a. Can ESCI calculate an original- units effect size? An original- units CI? 

Explain.
b. Can it calculate d? A CI on d? Explain.

8.17 Type in 3.08 as s
diff

, the SD of the differences.
a. What’s the original- units CI?
b. What’s the CI for δ?
c. Interpret the result of Thomason 4 along with those of the other three 

studies.

I should mention that ESCI uses a good approximate method for calculating 
a CI for δ for the paired design. However, there are restrictions, as the popouts 
in the d panel in Data paired and Summary paired state: The df must be at least 
5 and not more than 200, the level of confidence (C) must be 95, and d

unbiased
 

must lie between −2 and +2. Sorry about that. Fortunately, in practice these 
restrictions are rarely a problem.

Choice of Standardizer
I said that I’d discuss further our choice of standardizer for d for the paired 
design, and in particular why we use s

av
 and not s

diff
. Think of d in terms of 

the overlap of two distributions. In our paired examples, the overlap is of the 
assumed population distributions of pretest and posttest scores, which Figure 8.8 
illustrates for the Thomason 1 value of d = 0.54. The overlap is very similar to 
overlap in the center panel in Figure 7.10, for Cohen’s medium effect.

The standardizer we need is the SD of the curves in Figure 8.8, and s
av

 is 
our estimate of that. For Thomason 1, s

av
 = 3.11 and d = 0.54. If instead we use 

s
diff

 as standardizer, we obtain s
diff

 = 1.50 from Table 8.1, and calculate d = 1.67/ 
1.50 = 1.11. That’s far too large to correspond to the overlap shown in Figure 8.8. 
My conclusion is that, for the paired design, we need s

av
 as our standardizer for d.

When reading any report of d for a study with a paired design, note what 
standardizer  was used. Sometimes researchers wrongly use s

diff
 as standardizer, 

so beware suspiciously large d values reported for a paired design. As usual, 
unless we know how d was calculated, we can’t be sure what it tells us.

For the paired 
design, use s

av
 as 

standardizer for d, 
not s

diff
.

Beware suspiciously 
large d for a paired 
design study. Was s

diff
 

used as standardizer, 
not s

av
?
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Finally in this section, consider calculation of the CI, and of d, for our two 
designs.  We saw in Chapter 7 that, for independent groups, we assume homo-
geneity of variance and use s

p
, the pooled SD within groups, to calculate the 

CI on the difference and also as standardizer for d. In contrast, for the paired 
design we need to use different quantities to calculate the CI on the difference 
(use s

diff
) and as standardizer for d (use s

av
). Table 8.3 gives a summary. It’s great 

news that for the paired design we can use s
diff

 for inference, because small s
diff

 
gives a short CI and thus a precise estimate of our effect size.

Interpretation of d
Interpretation of d is much the same, whether it comes from independent 
groups or a  paired design. You may care to review the section Thinking About 
Values of Cohen’s d in Chapter 7, while bearing in mind our examples with a 
paired design. Here again is the closing summary of that section. We should 
make our judgment of what d means in the particular situation, perhaps 
considering

 ■ effect sizes in original units,
 ■ the standardizer and reference population,
 ■ the overlap picture for our d,
 ■ values typical for our discipline, and
 ■ perhaps, Cohen’s or Hattie’s reference values.

The independent 
groups design uses 
s

p
 both for inference 

and as standardizer 
for d. By contrast, 
the paired design 
uses different 
quantities: s

diff
 for 

inference, and s
av

 as 
standardizer for d.

Whatever the study 
design, use judgment 
to interpret values of 
d in context.

d
0.54

PosttestPretest

–3 –2 –1 0 1 2 3
d

Figure 8.8. The d = 0.54 result of Thomason 1, illustrated as overlapping population distributions of 
pretest and posttest scores.

Table 8.3 Effect 
Size, Variability 
Component and 
Standardizer for Two 
Designs

Independent groups design Paired design

Effect size (M
2
 –  M

1
) M

diff
, same as (M

2
 –  M

1
)

Variability component for 
inference (to calculate the CI)

s
p

s
diff

Standardizer for d s
p

s
av
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That’s a long list, but thinking of the particular context usually prompts 
further questions still, such as: How difficult was it to achieve the effect? What’s 
the cost- benefit trade- off? How big a practical difference does the effect make? 
What are the theoretical implications? How does the effect size compare with 
previous research? Consider any of those questions that are relevant, as you 
use your judgment to interpret d.

As in Chapter 7, I’ll next turn from Cohen’s d to consider NHST and p 
values.

8.18 Suppose Class W accepts a very wide range of students and has SD = 24 on 
a test of achievement. Suppose Class N is selective entry and has SD = 12 
on the test. Over the year, Class W achieves a mean increase of 12 points, 
whereas Class N achieves 9.

a. What’s d for the improvement in each class? Compare and interpret.

8.19 The state- wide SD on that achievement test is 15. Using this as standard-
izer, find d for the two classes. Interpret.

a. What standardizer would you recommend, and why?

Quiz 8.2

1. For the paired design, using d may allow us to
a. compare results from measures of various underlying characteristics.
b. compare results from different measures of the same underlying characteristic.
c. understand a result expressed in original units.
d. All of the above.

2. For the paired design, the basic formula for d is d = ES/ SD. The ES is _ _ _ _ _ _ _ _ _ _ .
3. The SD is called the standardizer. For the paired design we use _ _ _ _ _ _ _ _ _ _ _  as standardizer.
4. If a value of d reported for a paired design looks suspiciously large, what error might the 

researchers have made?
5. Consider the variability component used to calculate the CI, and the standardizer for d. For 

independent groups, these are the same /  different. For the paired design, these are the same 
/  different.

6. For the paired design, when interpreting d,
a. among other things, consider how big a practical difference the effect makes.
b. it doesn’t matter whether you use d or d

unbiased
.

c. the CI is likely to be long, indicating great uncertainty.
d. to be on the safe side, also analyze the data as if the groups were independent.

NHST AND p VALUES FOR THE PAIRED DESIGN

My recommended approach is to use estimation, but here I’ll discuss NHST, 
specifically the paired t test, which we’ll use to test the null hypothesis of zero 
difference between  Pretest and Posttest. We use the same statistical model as 
we used earlier in this chapter to calculate the CI on M

diff
. As in Chapter 7, I start 

with Equation 6.2, which is the formula for t for a single group.

 
t df

M

s
N

( ) =
−( )

×






µ0

1  (6.2)

The paired t test 
uses a p value to test 
the null hypothesis 
of zero difference in 
a study with a paired 
design.

t for a single group.

Variability 
component

Sample size  
component

Effect size
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Thinking, discussing…

Once again we just need to insert the appropriate components for the 
paired design. Our effect size is M

diff
. Equation 8.2 tells us that the appropri-

ate variability component is s
diff

 and sample size component is (1/ N ). Also, 
df = (N –  1). Substituting into Equation 6.2, we get

 t N
M

s
N

( )− =
×







1
1

diff

diff

 (8.5)

Consider Table 8.3, specifically the two rows labeled “variability component” 
and “standardizer”. Which row applies for the calculation of t for finding a p 
value? Is the answer the same for both designs?

t for the paired 
design.

For both designs, 
the t statistic is the 
mean difference 
(the ES) divided 
by the variability 
and sample size 
components. That 
value of t gives the 
p value.

Here, as in Chapter 7, there’s great similarity between the calculations for a CI 
and a p value: For both designs, the “variability component” row applies for 
calculating the CI, and also t and the p value.

For Thomason 1, we know from Table 8.1 and Figure 8.4 that df = 11, 
M

diff
 = 1.67, s

diff
 = 1.50, and 1/ N  = 0.289. Substituting those values in Equation 

8.5 we get t(11) = 1.67/ (1.50 × 0.289) = 3.85. The two tails area in Normal 
and t for t(11) = 3.85 is .003, which is the p value we seek. Note in Figure 8.4 
that Data paired reports near red 8 the values of df, t, and p. Check that these 
match the values I’ve calculated above. I conclude that the p value for testing 
the null hypothesis of zero difference from Pretest to Posttest is p = .003. The 
study provided strong evidence against that null hypothesis; it found a statis-
tically significant gain.

8.20 a.  Use the statistics reported in Table 8.2 to calculate t, then find the p 
value for the difference between Pretest and Posttest for Thomason 2.

b. Compare with the p value reported in Figure 8.5. Compare also with 
the CI on the mean difference in that figure. Interpret.

8.21 Set up Summary paired with the data for Thomason 2 and display the d 
panel, as in Figure 8.7. Change M

2
 and watch the CI on the mean differ-

ence and the p value change.

a. Adjust M
2
 so p = .05. What’s special about the CI on the difference in the 

figure? What’s special about the values reported for that CI? Explain.
b. Click for the CI for δ. What’s special about that CI? Explain.
c. What’s the p value to test the null hypothesis that δ is zero? Explain.

8.22 Table 8.4 presents data from a fictitious and unrealistically small HEAT 
study comparing scores for a single group of students before and after a 
workshop on climate change.

a. Calculate the M, s, and CI for the Before and After scores.
b. Calculate the differences, M

diff
, s

diff
, and the CI on the difference. 

Interpret.
c. Calculate the p value to assess the null hypothesis that scores were 

unchanged after the workshop. What can you conclude?
d. Compare with the CI on the difference. Explain.
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8.23 Type the data in Table 8.4 into Data paired. Click to display the data points 
and differences. Confirm all the values you calculated.

a. Compare the CI on the difference with the two separate CIs. Explain.
b. Find d, d

unbiased
, and the CI for δ. Interpret.

c. Test the null hypothesis that δ is zero.

Quiz 8.3

1. For a pretest– posttest study, you need the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  t test, not the _  _ _ _ _ _ _ _ _ _ _ _ _ _ _  
t test.

2. When analyzing a paired design using the NHST approach, the null hypothesis is usually that 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

3. In a paired design, how are the degrees of freedom (df) calculated?
4. In a pretest– posttest study, if all participants show zero change from pretest to posttest, what 

is M
diff

? What is t? What is the result of the t test?
5. Considering the paired design, the overlap rule to compare two CIs

a. involves the CI on the difference, not just the other two CIs.
b. is not applicable for this design.
c. states that CIs overlapping moderately corresponds to p = .01, approximately.
d. is the same as that for independent groups.

6. For the paired design, the p value to test δ = 0 is the same as /  different from the p value to 
test the null hypothesis in original units.

7. No more prompts, but remember that it’s always best for you and your friends to make your 
own quizzes, and to test yourselves and each other.

INTERPRETING THE PAIRED DESIGN

What conclusions can we draw from a study with the paired design? As usual we’ll 
need judgment, but in some cases we can draw a causal conclusion, which is gold. 
At the start of the chapter I mentioned the complication that, for example, using 
a pen one day can influence performance with a laptop on another day—practice 
at the task, perhaps, or boredom with being in the study. More generally, the two 
measures from the same participant are not independent, because the first testing 
may have effects that persist and influence the second. These are called carryover 
effects. First I’ll discuss ways to minimize these, then strategies that can in some 
cases achieve experimental research, justifying a causal conclusion.

A carryover effect in a paired design is any influence of the first measurement on the second.

Table 8.4 Data for a 
Paired- Design Study 
Comparing HEAT 
Scores Before and 
After a Workshop

Before After

74 88

52 59

65 75

38 40

61 63

69 66

76 84

62 77
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The commonest way to minimize carryover effects is to counterbalance the 
order of testing. A randomly chosen half of the students would use pen first, 
then laptop, and the other half laptop then pen. That should balance out any 
carryover effect of order of testing, at least to a large extent. In this example, 
further counterbalancing is needed because we don’t, of course, want any 
student to take notes of the same lecture twice. We could use videos of two 
different lectures, L

1
 and L

2
, chosen to be of similar complexity and interest. 

Each student would see both lectures, in counterbalanced order. We would 
actually use four conditions that combine our two counterbalanced features. 
One- quarter of the students would be randomly assigned to each of these four:

Pen– L
1
 then Laptop– L

2

Pen– L
2
 then Laptop– L

1

Laptop– L
1
 then Pen– L

2

Laptop– L
2
 then Pen– L

1

Then we would analyze as a paired design, with each participant providing a 
Pen and a Laptop transcription score.

Counterbalancing in a paired design is the assignment of different participants to different 
orders of presentation, or different versions of the same condition, to reduce carryover effects.

With a pretest– posttest design we can’t counterbalance order. An alter-
native strategy to minimize the practice carryover effect is to use two parallel 
forms of the test, and that’s exactly what the Thomason team did. For example, 
in the studies using LSAT they chose LSAT- A and LSAT- B as tests that used 
different examples and questions, but probed the same abilities and were of 
similar difficulty. Half the students completed A at Pretest, then B at Posttest; 
the other half completed B first, then A.

Parallel forms of a test are versions that use different questions, but measure the same 
characteristic and are of similar difficulty.

In addition, we could be concerned that gains from Pretest to Posttest might 
reflect  anything else the students experienced during that period of time—per-
haps other courses they were taking, or general life experience—rather than 
training in critical thinking. It would be valuable to have a second group of 
students, a control group, who spent about the same amount of time on a con-
ventional critical thinking course. Ideally we would assign students randomly to 
the control or experimental groups, measure both at Pretest and Posttest, and 
compare gain scores (i.e., Posttest –  Pretest scores) for the two groups. That’s 
an example of a more complex design, as we discuss in Chapters 14 and 15.

Experimental Research, Causal Conclusions
Now for the second stage in this discussion of interpretation. Again recall the 
definition from Chapter 2:

Experimental research uses random assignment of participants to groups or conditions—to 
the different levels of the IV that is being manipulated. It can justify a causal conclusion.

For independent groups, as we discussed in Chapter 7, random assignment 
to groups should give groups that on average differ in only one way, which is 

A paired design with 
random assignment 
to counterbalanced 
orders of testing can 
often in practice 
justify a causal 
conclusion. We 
have experimental 
research.

To reduce 
carryover effects, 
consider using 
counterbalancing, 
two parallel forms 
of tests, and/ or a 
control group.
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the IV manipulation. It’s experimental research and a causal conclusion can be 
justified. Random assignment is the key step. For a pen– laptop study with the 
paired design we don’t have random assignment to pen and laptop, but we can, 
however, assign randomly to the pen– laptop and laptop– pen orders of testing. 
Often in practice this counterbalancing of order does at least very largely over-
come carryover effects, giving sets of scores on the DV that, on average, differ 
in only one way. We have experimental research and can therefore conclude 
that, most likely, the pen– laptop manipulation caused whatever difference we 
observed in the DV.

The third strategy I mentioned for overcoming carryover effects was use 
of a more complex design that added a control group. Participants would be 
randomly assigned to the independent treatment and control groups, so again 
we would have experimental research and could draw a causal conclusion.

As I mentioned at the end of Chapter 7, our interpretation will also depend 
on our assessment of the reliability and validity of the dependent variable, and 
all the Open Science issues: Are the comparisons planned or exploratory, has 
there been any selection of participants or results, and so on. Does the question 
“Do we have the full story?” come up in your dreams yet?

TWO DESIGNS: COMPARING AND CHOOSING

First, I’ll summarize key features of the two designs, then consider making a 
choice.

The Independent Groups Design
The independent groups design is simple and each participant is tested only 
once. In addition, assuming you test everyone separately, the observations 
are all independent—there’s no possible contamination of one observation by 
another. As we discussed in Chapter 7, if we compare two pre- existing groups, 
such as groups of students who themselves prefer to use pen or laptop, we have 
non- experimental research. Random assignment, in this case to separate pen 
and laptop groups, gives us experimental research.

The main disadvantage of independent groups is that very often there’s 
large variability from person to person, so the difference between the means is 
estimated with low precision. The two conditions are compared between partic-
ipants and so the comparison is inevitably mixed, at least to some extent, with 
variability from person to person. Using large groups can help, but costs more 
in time and effort and is not always possible.

The Paired Design
The main advantage of the paired design is that it makes the comparison of 
interest within each participant. Often the two measures—Pen and Laptop, 
or Pretest and Posttest—are fairly highly correlated, in which case the mean 
difference can be estimated with reasonable or even high precision. A small 
group may give an adequately precise result.

The challenge with the paired design is to come as close as possible to the 
ideal of  two conditions that differ on only the one factor you are interested in—
the IV manipulation, such as pen and laptop. As we discussed above, this requires 
either counterbalancing or the addition of a control group. Counterbalancing, 
however, is not always possible, and adding a control group takes considerable 
effort and also makes the study more complicated.

Independent 
groups and random 
assignment may 
justify a causal 
conclusion, but the 
effect size may be 
estimated with low 
precision.

A paired design 
requires additional 
effort to be 
experimental, but 
often the two 
measures are highly 
correlated and 
so the effect size 
may be estimated 
with relatively high 
precision.
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Choosing a Design
Designing a study can be challenging but also great fun. You can brainstorm all 
sorts of possibilities as you try to find the best design, the best measure, and the 
best way to target your research question as closely as possible. In Chapter 10 
we’ll take this discussion of planning further. Here I’ll focus on the choice 
between our two designs.

Sometimes you have no choice. If you want to compare left handers and 
right handers, you need independent groups. If you are investigating the change 
from before to after some treatment, you need a paired design. Often, however, 
you could choose either design, as with pen vs. laptop.

Table 8.5 summarizes some important aspects of the two designs that need 
consideration when making a choice. If testing large samples is practical, then 
independent  groups is appealing. If participants are scarce or if it’s difficult or 
expensive to provide the treatment and carry out the testing, the paired design 
with a smaller group is likely to be best—if carryover effects can be minimized. 
I’ll often prefer a paired design if it’s practical, with careful attention to reducing 
carryover effects as much as possible. But, of course, you need to weigh up the pros 
and cons of the two designs for your questions in your particular research context.

It’s time for take- home messages. Reflect, discuss, then write yours. Our 
main topic has been the paired design, and we’ve made many comparisons with 
independent groups. Again we’ve seen the importance of the CI on the differ-
ence. Recall the unfortunate ambiguity of the figure on the left in Figure 8.3. 
Think of the variability components for inference, and the standardizers for 
d shown in Table 8.3. When is the paired design experimental research? We 
closed with the fun of planning a study, often with at least two possible designs 
to consider.

Quiz 8.4

1. A CI on d is an interval estimate of the _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  in the _ _ _ _ _ _ _ _ _ _ , for which 
the symbol is _ _ _ _ .

2. What variability component do you use for the t test
a. for the paired design?
b. for independent groups?

If you have the 
choice, a paired 
design may be a 
good choice, but 
only if carryover 
effects are not likely 
to be a big problem.

Table 8.5  
A Comparison of 
Two Designs

Independent groups design Paired design

Variation of the IV Between groups Within group

Experimental research? Easy: Use random assignment 
to groups

Less easy: Use random assignment 
to counterbalanced orders, or add a 
control group

Every participant is 
tested…

Once, which keeps things 
simple

Twice, which makes things a little 
more complicated

Group size(s) May need to be large Small or medium may suffice

Precision of estimation 
of effect size

Often low, because 
comparison is between 
participants

Can be high, because comparison is 
within participants

Carryover effects Don’t arise A major concern: Try hard to 
minimize.
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  3.     How much does a GRE prep course improve GRE scores? To investigate, 20 students 
took the GRE before and after completing a prep course. The average (Posttest –  Pretest) 
difference was 10 points. The average standard deviation ( s  

av
 ) was 50. What is Cohen’s  d ? 

Can you conclude that the prep course caused the difference? Explain.  
  4.     What is a carryover effect?  
  5.     To minimize carryover effects, the order of administering different levels of the IV can be 

varied across participants. This is known as _ _ _ _ _ _ _ _ _ _ _ _ _ _ .  
  6.     Parallel forms of a test are  

  a.     used with independent groups to increase the precision of estimation.  
  b.     different versions of the test tailored for different levels of the IV.  
  c.     averaged to give a better estimate of an individual participant’s performance.  
  d.     used with the paired design to reduce carryover effects.        

  8.24     In Exercise 8.22 you analyzed HEAT scores for a single group of students 
before and after a workshop on climate change.  

  a.     Might using the HEAT for both pretest and posttest raise a problem? 
What would you recommend? Explain.  

  b.     Can you conclude that the workshop caused any change you observe? 
Explain.    

  8.25     You wish to investigate the possible infl uence of caffeine on short- term 
memory. The two levels of your independent variable are a drink of strong 
regular coffee, and the same volume of decaffeinated coffee.  

  a.     Describe how you could conduct the study using each of the two 
designs.  

  b.     Which would you prefer and why? What precautions would you take?  
  c.     For the independent groups study, could you conclude that caffeine 

caused any difference you observe in short- term memory? Explain.  
  d.     For the paired study, answer the same question and explain.    

  8.26     Revisit your take- home messages. Revise and extend the list if you wish.   

   Reporting Your Work 

 Reporting comparisons for the paired design is pretty similar to comparing independent 
groups, but with a few vital additional things to remember. Typically, you need to report: 

 ■   Whether the comparison is planned or exploratory, unless this is already clear.  
 ■   Basic descriptive statistics for both sets of measurements.  
 ■   The average difference,  M  

diff
 , its standard deviation, and its CI.  

 ■   A standardized effect size estimate ( d  
unbiased

  is best) with its CI. In the Method section 
make clear how your standardized effect size was calculated (which denominator 
was used).  

 ■   Essential for future meta- analysis: the standard deviation of the differences (third 
bullet point above) or the correlation between the two measures (discussed further in 
 Chapter 11 ). Reporting both can be very helpful.  

 ■   A figure, if possible, preferably one like ESCI produces that shows the raw data, the 
paired nature of the data, and the estimated difference with its CI. State in the figure 
caption what error bars represent—95% CIs. Join the means with a line to indicate a 
repeated measure, as in  Figures 8.1  and  8.2 , and  Data paired  and  Summary paired  
in ESCI.  

 ■   An interpretation of the group difference that considers not only the point estimate but   
also the CI. As usual, be careful to match the language you use to the research design 
(causal for experimental, relational for non- experimental).     

 For the paired 
design, focus on the 
mean difference, 
 M  

diff
 ; report the SD 

of the differences 
and the correlation 
between the two 
measures. 
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 Here are examples. 

 The fi rst planned analysis found that, when drinking the juice 
with a label stating “Generic”, participants rated their 
enjoyment fairly high ( M  = 6.86,  s  = 2.13, scale from 1 to 
10). The same participants given the same drink with the 
label “Organic”, however, rated their enjoyment even higher 
( M  = 7.82,  s  = 2.09). This difference in enjoyment was 
substantial, relative to the scale and previous marketing 
research ( M  

diff
  = 0.96, 95% CI [0.48, 1.44],  N  = 51,  r  = .68). 

In standardized terms, this is a large effect ( d  
 unbiased 

  = 0.45, 
95% CI [0.22, 0.69]), and the CI is consistent with at least 
small up to a quite large impact on enjoyment. 

 As expected, heart rate at rest was fairly low ( M  = 66.80 
bpm,  s  = 10.8). During exploration, though, we noticed that 
when participants were asked to recall a memory of intense 
happiness their heart rate was somewhat higher ( M  = 69.50 bpm, 
 s  = 10.92). Thus, emotion was related to an increase in heart 
rate ( M  

 diff 
  = 2.70 bpm, 95% CI [0.14, 5.22],  d  

unbiased
  = 0.24, 

95% CI [0.01, 0.48],  N  = 20,  r  = .87). The CI indicates that 
happiness is likely related to an increase in heart rate, 
but the CI is quite long and the degree of increase could be 
anywhere from around zero up to fairly large. In addition, the 
analysis was exploratory. An independent replication is needed 
to estimate more precisely the degree to which happiness may 
be associated with an increased heart rate. 

 In a preregistered replication with a larger sample size 
( N  = 48) we observed the same increase in heart rate during 
recall of a happy memory. Heart rate at rest was again fairly 
low ( M  = 63.7 bpm,  s  = 10.1). During the recall of a happy 
memory, heart rate was higher ( M  = 68.8 bpm,  s  = 12.8). This 
emotion- induced increase in heart rate was slightly larger 
than in the fi rst study ( M  

 diff 
  = 5.1 bpm, 95% CI [3.0, 7.2], 

 d  
 unbiased 

  = 0.44, 95% CI [0.24, 0.64],  r  = .82). With the larger 
sample size the CI is much shorter, and indicates that happiness 
is related to a moderate increase in heart rate.   

     

  Take- Home Messages  
 ■   The paired design uses a single group of  N  participants, each of whom is tested on 
both conditions being compared. Data analysis focuses on the set of  N  differences. 
The effect size is  M  

diff
 , the mean difference, which is the same as ( M  

2
  –   M  

1
 ).  

 ■   Use Equation 8.2 to calculate the CI on the mean difference, which is based on 
 s  

diff
 , the SD of the differences, and can usefully be displayed on a difference axis 

as in  Figure 8.2 . Often the two measures, such as Pretest and Posttest, are highly 
correlated, in which case the CI is short and gives a relatively precise estimate of 
the difference.  

 ■   Cohen’s  d  is an ES in original units divided by the standardizer. For the paired 
design, the usual standardizer is  s  

av
 , which is based on the SDs of the two measures, 

for example pretest and posttest. Always state what standardizer was used.  

 ■   Use judgment to interpret values of  d  or  d  
unbiased

 , with the CI, in context. Where 
it helps, consider ESs in original units, the standardizer and reference population, 
previous related research, and the extent of overlap of distributions.  
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 ■ If appropriate in context, consider reference values for small, medium, and large effects, for 
 example 0.2, 0.4, 0.6 as suggested by Hattie for education, or 0.2, 0.5, 0.8 as suggested by 
Cohen for psychology.

 ■ For the paired design, knowing the two means and their CIs is insufficient to eyeball the CI on 
the difference or the p value. No overlap rule is possible.

 ■ Use Equation 8.5 to calculate t for the paired t test, which tests the null hypothesis of zero 
difference between the conditions.

 ■ If either design is possible, weigh up the pros and cons in context. The paired design can 
often estimate effects with relatively high precision. To minimize carryover effects, consider 
counterbalancing, using parallel forms of measures, and, perhaps, adding a control group.

 ■ Random assignment to counterbalanced orders of testing can give experimental research, 
which may justify a causal conclusion.

End- of- Chapter Exercises

1) When studying new information, students often just re- read their notes or textbook. 
A possibly better strategy is re- reading plus practice retrieving the material. Do you recall 
the Making the Most of This Book section at the start of this book? To what extent do these 
two study strategies differ in promoting learning? To investigate, Kang and Pashler (2014, 
Experiment 1) asked 38 psychology students to study Swahili words. Each student first 
read the words and then studied each word four times. The style of studying varied. Each 
student studied half the words using only re- reading and the other half using re- reading 
+ retrieval practice. The amount of time studying was the same for the two strategies. 
Students were promised $0.05/ word learned as motivation to do well. Two days after 
studying, the students were tested for memory of all words. Table 8.6 shows summary 
statistics.

a. What is df?

b. Look up the critical value of t.

c. Almost there—calculate the sample size component.

d. Now calculate MoE
diff

.

e. Calculate the 95% CI for the mean difference between the conditions.

f. Just as important as calculating the CI is interpreting it. Given that the mean difference 
is 15 percentage points, what does the CI tell you?

g. Type the values into Summary paired and check your calculations.

2) Continuing from the previous example, Kang and Pashler (2014, Experiment 1) wanted to 
know the extent that motivation might play a role in determining study strategy success. 
Within the same experiment they asked the same 38 students to learn a second set of words, 

Table 8.6 Summary Statistics for Students’ Memory for Swahili Words, With Low Reward, N = 38

Re- read (%) Re- read + Retrieval (%) Difference

M 35 50 15

s 29 30

s
diff

 27.2
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with a higher reward: $0.30/ word learned. With this much higher motivation, is retrieval 
practice still the better study strategy? Table 8.7 shows summary statistics.

a. Follow the same steps as in Question 1 to calculate the 95% CI on the difference.

b. Based on these results, Kang and Pashler claimed that retrieval practice is the superior 
study strategy regardless of motivation. Comparing the CIs you obtained, do you agree 
with this conclusion? Does the fact that students paid more didn’t actually learn more 
contribute to your interpretation? Explain.

3) Anger is a powerful emotion. To what extent can feeling angry actually change your heart 
rate? To investigate, Lakens (2013) asked students to record their heart rate (in beats per 
minute) at rest before (baseline) and then while recalling a time of intense anger. This is 
a conceptual replication of a classic study by Ekman, Levenson, and Friesen (1983). Load 
the Emotion_ Heartrate data set from the book website.

a. Use ESCI to compare heart rate during rest and anger. Write an APA- style description 
of this finding, incorporating the descriptive statistics (M and s for each condition), the 
difference and its CI, and a standardized effect size estimate (Cohen’s d). Include your 
interpretation.

b. What if this study had been conducted as a between- participants study and had obtained 
the same data? Would the CI on the difference be shorter or longer? Write down your 
prediction and explain.

c. Test your intuitions: Use ESCI to analyze these data as an independent groups study, 
using the baseline data as Group 1, and anger data as Group 2. Was your prediction 
about the CI correct? Explain.

d. Can we conclude that feeling angry causes higher heart rate? Answer for each of the 
two designs considered above. In each case, explain.

4) To what extent do brand labels influence perceptions of a product? To investigate, partici-
pants were asked to participate in a taste test. All participants were actually given the same 
grape juice, but one glass was poured from a bottle labeled “Organic” and the other glass 
from a bottle labeled “Generic”. After each tasting (in counterbalanced order), participants 
were asked to rate how much they enjoyed the juice on a scale from 1 (not at all) to 10 (very 
much). Participants were also asked to say how much they’d be willing to pay for a large 
container of that juice on a scale from $1 to $10. Load the Labels_ Flavor data set from the 
book website. These data were collected as part of a class project by Floretta- Schiller, Berent, 
and Salinas (2015), whose work was inspired by a very clever study looking at the effects of 
fast food wrappers on children’s enjoyment of food (Robinson, Borzekowski, Matheson, & 
Kraemer, 2007).

a. Use ESCI to compare enjoyment ratings for juice labeled organic or generic. To what 
extent does label influence enjoyment?

b. During debriefing, participants were probed to see if they might have suspected that 
the juice samples were actually the same. Five participants correctly guessed that this 
was the case. Would you expect the effect of label on enjoyment to be stronger or 

Table 8.7 Summary Statistics for Students’ Memory for Swahili Words, With 
High Reward, N = 38

Re- read (%) Re- read + Retrieval (%) Difference

M 36 49 13

s 32 33

s
diff

24
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weaker with these participants excluded from the analysis? Make a prediction, then 
check using ESCI.

c. Should the researchers report their results with the suspicious participants included or 
excluded? What considerations are important in making this decision? Does it matter 
when the researchers make this decision—before seeing the data or after?

Answers to Quizzes

Quiz 8.1
1) b; 2) within, within- group, between, between- groups; 3) M

diff
, calculated as the mean of all the N differences, or as 

(M
2
 –  M

1
), which gives the same value; 4) s

diff
, the difference scores; 5) more, shorter, smaller, shorter, larger; 6) a 

little longer than either of the separate CIs for A and B, in most cases shorter than either of those CIs.

Quiz 8.2
1) d; 2) M

diff
; 3) s

av
; 4) They may have used s

diff
 rather than s

av
 as standardizer; 5) the same, different; 6) a.

Quiz 8.3
1) paired, independent  groups; 2) that the population mean difference is zero; 3) df = (N –  1); 4) 0, 0, do not reject 

the null hypothesis; 5) b; 6) the same as.

Quiz 8.4
1) Effect size, population, δ; 2) s

diff
, s

p
; 3) d = ES/ SD = 10/ 50 = 0.20; no, because random assignment was not  

possible and carryover effects may have contributed to the difference; 4) A carryover effect is any influence 
of the first measurement in a paired design on the second, for example practice at taking the test; 5) 
counterbalancing; 6) d.

Answers to In-Chapter Exercises

8.1 Smaller, so the CI on the difference is shorter and thus the precision of estimation of the population difference 
is greater. Differences that are even more consistent correspond to an even higher correlation.

8.2 It doesn’t matter if independent groups have different sizes, as in the PenLaptop studies, although it is usually 
most efficient if the two groups are of similar size. In the paired design, there is only one group and every 
participant is measured twice, so the number of data points is the same for the two measures, such as Pretest 
and Posttest.

8.3 N = 16, M
diff

 = 1.37, MoE
diff

 = 1.14, [0.24, 2.50].
8.4 Clicking a checkbox highlights a data pair and the corresponding difference, as for the one negative difference 

shown in red in Figure 8.2.
8.5 For independent groups, as in Figure 7.3, the ordering of data values for either group makes no difference, so any 

value can be shifted. In contrast, for the paired design as in Figure 8.4, the data values are paired, so you can’t 
shift just values in the Pretest column. Pairs of data values could be shifted up or down, but the two values in a 
pair must be kept together.

8.6 Change some Posttest values to make those differences closer in size to the mean difference. That moves some 
open triangles in Figure 8.4 closer to the solid triangle, so s

diff
 gets smaller, the lines joining the data pairs look 

more similar, and MoE
diff

 and the CI on the difference become shorter. In addition, Pretest and Posttest values 
correspond more closely (high with high, low with low), so correlation r is greater.

8.7 As s
diff

 gets larger, the changes are in the opposite direction: The CI on the difference gets longer and so precision is 
lower, and r is also lower, although still positive. The general conclusion is that the paired design will be especially 
advantageous, by giving a high precision estimate of the mean difference, when the differences are all similar in 
direction and size, meaning that s

diff
 is small, r is large, and the effect of the treatment is fairly consistent over 

participants.
8.9 For Thomason 1, about half as long as the CIs on Pretest and Posttest means, and for Thomason 2 a little more 

than half as long. The paired design is effective in both cases, and a little more so in the first.
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8.10 a. 0.35, a small-to-medium effect and a little less than 0.54 for Thomason 1; b. We did not need to use s
diff

, the SD 
of the differences.

8.11 a. To calculate d we don’t need s
diff

; b. ES = 71.77 − 67.41 = 4.36, Equation 8.3 gives s
av

 = 6.68, d = 0.65; c. This is 
a medium-to-large effect, somewhat larger than found by Thomason 1 and 2.

8.12 d = M
diff

/s
av

 = 1.67/3.11 = 0.54
8.13 d = M

diff
/s

av
 = 1.37/3.87 = 0.35

8.14 b. d = 0.652 and d
unbiased

 = 0.639; the ratio is 0.652/0.639 = 1.02, so d overestimates δ by 2%, when, as here, 
df = 38. Less bias here than for Thomason 1 and 2, which have smaller df; c. CI is [0.33, 0.97], so δ is most likely 
around 0.6 but could plausibly be anywhere from around 0.3 to 1. The values for Thomason 1 and 2 are a little 
smaller, but all CIs are long, so we don’t have clear evidence of differences between the studies.

Figure 8.9. Summary CCTST data for Thomason 4. From Summary paired.

8.15 a. Yes, no, because the CI requires s
diff

, the SD of the paired differences; b. Yes, no, for the same reason.
8.16 Same answers as Exercise 8.15, for the same reason.
8.17 a. Figure 8.9 shows the screen after s

diff
 entered: [0.29, 5.99], p = .04. b. CI for δ is [0.05, 1.44]; c. d = 0.763 and 

d
unbiased

 = 0.663 suggest a medium-to-large effect, but with a very long CI, because N is only 7. The effect size is 
broadly comparable with those found by the other three studies.
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8.18 a. Using the separate SDs gives, for W, d = 12/24 = 0.50 and, for N, d = 9/12 = 0.75, both of which are fairly large 
in terms of Hattie’s suggestions. We don’t have the CIs, which are likely to be moderately long. The difference 
between the two d values arises more from the different SDs than different original units ESs. For a direct 
comparison of classes W and N, it may be better to compare the mean increases in original units, or find some 
SD that’s applicable to both.

8.19 For W, d = 12/15 = 0.80 and, for N, d = 9/15 = 0.60, both of which are large by Hattie’s reference values, although 
we have no CIs. a. Using the state-wide SD probably permits the most useful comparison of the two classes, as 
well as comparisons with other classes in the state.

8.20 a. t(15) = 2.57, p = .02, which is consistent with the CI on the difference falling a little distance above 0; b. There 
is a statistically significant difference, and some evidence against the null hypothesis.

8.21 a. For p = .05, set M
2
 = 14.015. The CI on the difference just touches zero on the difference axis. The CI is shown 

near red 3 as [0, 2.27], so 0 is the lower limit (this might be displayed as something like 3.1E-06, which is 
3.1 ×10−6, a value very close to zero, expressed in exponential notation); b. The CI for δ is [0, 0.58], also with 0 as 
lower limit; c. The p value is the same for original units and δ, so is .05.

8.22 a. Before: M
1
 = 62.12, s

1
 = 12.39, and CI [51.8, 72.5]; After: M

2
 = 69.00, s

2
 = 15.46, and CI [56.1, 81.9]; b. M

diff
 = 6.88, 

s
diff

 = 6.24, and the CI on the difference is [1.7, 12.1]; The experiment estimated the mean population improvement 
to be about 7 points, with the 95% CI extending from about 2 to about 12 points. The workshop did seem to lead 
to increased HEAT scores, although the precision of the estimate was not high. However, practice on completing 
the HEAT might have contributed to the higher scores on the second testing; c. t(7) = 3.11 and p = .02, so we can 
reject the null hypothesis of no change and conclude there was a statistically significant increase in HEAT scores 
from Before to After; d. The CI on the difference was a little distance from 0, corresponding to p = .02, indicating 
0 is a relatively implausible true value.

8.23 a. The CI on the difference is around half the length of each of the separate CIs, so the paired design is sensitive 
and gives a relatively precise estimate of the difference; b. d = 0.491, d

unbiased
 = 0.436, and the CI for δ is [0.08, 

0.88], suggesting a medium effect estimated with low precision; c. The null hypothesis that δ is zero is rejected, 
as p = .02. Before and After scores look to have a strong correlation (high with high, low with low) and indeed 
r = .92.

8.24 a. Scores on the second completion of the same test could be higher because of familiarity with the test. Using 
parallel forms of the HEAT could reduce such a carryover effect; b. No, because random assignment is not 
possible, and things other than the workshop may have influenced the increase in scores from first to second 
testing, for example any other experience the participants had between those times.

8.25 a, b. Using independent groups, randomly assign participants to Regular and Decaf, and make these two groups 
equal or about equal in size. Aim for groups as large as practical, expecting that precision of estimation of the 
difference would not be high. The paired design is attractive, and our preference, because it’s likely to estimate the 
difference more precisely. Counterbalance order: A random half of the participants would receive Regular, then 
Decaf, and the other half the reverse order. Leave an interval of at least one day between the tests, so caffeine 
levels can return to normal after the Regular drink. For either design, make the testing as similar as possible on 
the two occasions—same time of day, and checking that participants had consumed no caffeine for, say, 12 
hours before testing; c. For independent groups, if we assign participants randomly to Regular and Decaf, we 
have reasonable grounds for concluding that our IV manipulation (Regular vs. Decaf) caused any difference we 
observe in the DV—after considering sampling variability as indicated by MoE; d. For the paired study, we need 
to consider the extent that random assignment to the two counterbalanced orders of presentation overcomes 
any carryover effects. If we judge that it does so, at least largely, then we have reasonable grounds for concluding 
that the Regular vs. Decaf manipulation caused any observed difference.



This is the good news chapter. In previous chapters I’ve said that, unfortunately, 
sampling variability is often large and CIs long. Jacob Cohen, the great statistical 
reformer, said “I suspect that the main reason they [CIs] are not reported is that 
they are so embarrassingly large!” (Cohen, 1994, p. 1002.)

The good news is meta- analysis, which can produce strong evidence where at 
first sight there’s only weak evidence. It can turn long CIs into short ones (well, 
sort of), find answers in what looks like a mess, and settle heated controversies. 
Much of what it does can be displayed in a beautiful picture, the forest plot, which 
I’ll use to explain meta- analysis and why I think it’s so great. Here’s our agenda:

 ■ The forest plot, the attractive face of meta- analysis
 ■ The simplest approach, which assumes all studies investigated the same 

population: fixed effect meta- analysis
 ■ A more realistic approach, which assumes different studies may have 

investigated different populations: random effects meta- analysis
 ■ Moderator analysis, which can give insight beyond an overall effect size
 ■ Cohen’s d for meta- analysis, when studies have used different original- 

units measures
 ■ The seven steps in a large meta- analysis
 ■ Meta- analyses that have changed the world

In a single phrase, think of meta- analysis as estimation extended across more 
than one experiment. Here’s a slightly more formal definition:

Meta- analysis is the quantitative integration of results from more than one study on the 
same or similar questions.

I’ll start with a brief story. The Women, Infants, and Children welfare pro-
gram in the United States provided a range of support to low- income pregnant 
women and mothers with young children. There were strident lobby groups who 
supported the program, and others who believed it should be abolished. Studies of 
its effectiveness gave conflicting results. By 1983 it had been running for around a 
decade, with an ever- growing budget. In advance of Senate hearings on its fate, a 
meta- analysis was commissioned to integrate results from the evaluation studies. 
This found a positive and usefully large overall result, and gave insight into why 
the program was effective. It was probably crucial to the decision to continue 
the program. This is an example of how decision making can be evidence- based, 
even in a complex and ideologically charged area of social policy.

That story comes from Morton Hunt’s book How Science Takes Stock: The Story 
of Meta- analysis (1997). I highly recommend this book, which reads more like 
a novel than a textbook. There are simple descriptions of meta- analysis, tales 
of the pioneers, and numerous examples of meta- analysis finding important 
conclusions, despite messy and conflicting results. Two key messages are that 
meta- analysis needs effect size information from every study, and that NHST 
is irrelevant. Hunt reports that one pioneer, Gene Glass, was critical of NHST 

9
Meta- Analysis



223

D
oes a Brain Picture Increase C

redibility?

because it doesn’t provide the ES information he needed. Glass stated: “Statistical 
significance is the least interesting thing about the results. You should describe 
the results in terms of measures of magnitude— not just, does a treatment affect 
people, but how much does it affect them? That’s what we needed to know.” 
(Hunt, pp. 29– 30, emphasis in the original).

THE FOREST PLOT

In Chapter 1, I mentioned that, if we had two additional polls similar to the one 
we  discussed, meta- analysis could combine the results of all three. Figure 9.1, 
same as Figure 1.4, shows the three results and uses a diamond to picture the 
point estimate (the center of the diamond) and 95% CI (the horizontal extent 
of the diamond) that are the result of the meta- analysis. The overall point 
estimate is a weighted average of the point estimates of the three polls. If the 
individual results are reasonably consistent, the overall CI will be shorter than 
the individual CIs, and that’s the case here. So the meta- analysis provides a 
more precise estimate than any of the individual studies, which is good news.

Is it reasonable to combine the three? We need to judge the three to be 
sufficiently similar, meaning that, first, the question being asked must be the 
same or similar. Second, the procedures, including choice of participants, need 
to be reasonably similar. The studies may be close replications, but often there 
will be some differences, perhaps including deliberately chosen variations. We’ll 
see later that meta- analysis can actually give additional insight when there are 
some limited differences among studies, so we can consider using meta- analysis 
even when studies are not close replications.

DOES A BRAIN PICTURE INCREASE CREDIBILITY?

Now for a real example. You’ve probably seen cross sections of the brain with 
brightly colored areas indicating which brain regions are most active during 
a particular type of cognition or emotion. Search online for fMRI (Functional 
Magnetic Resonance Imaging) to see such pictures and learn how they are 
made. They can be fascinating— are we at last able to see how thinking works? 
In 2008, McCabe and Castel published studies that investigated how adding a 
brain picture might alter judgments of the credibility of a scientific article. For 
one group of participants, an article was accompanied by a brain image that 

Meta-analysis

Poll 3

Poll 2

Poll 1

49 50 51 52 53 54 55 56
Support for Proposition A (%)

Figure 9.1. Same as Figure 1.4. A forest plot shows the point estimate and 95% CI for each of three 
polls, together with a diamond to represent the 95% CI that’s the result of meta- analysis of the three.

A forest plot is 
a CI picture that 
displays results from 
a number of studies, 
and a diamond that 
represents the result 
of a meta- analysis of 
those studies.

Meta- analysis 
requires that, across 
included studies, 
the questions asked 
and the procedures 
are the same or 
reasonably similar.
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was irrelevant to the article. For a second, independent group, there was no 
image. Participants read the article, then gave a rating of the statement “The 
scientific reasoning in the article made sense”. The response options were 1 
(strongly disagree), 2 (disagree), 3 (agree), and 4 (strongly agree). The research-
ers reported that mean ratings were higher with a brain picture than without, 
but that the difference was small. It seemed that an irrelevant brain picture 
may have some, but only a small influence. The authors drew appropriately 
cautious conclusions, but the result quickly attracted attention and there were 
many media reports that greatly overstated it. At least according to the pop-
ular media, it seemed that adding a brain picture made any story convincing. 
Search on “McCabe seeing is believing”, or similar, to find media reports and 
blog posts. Some warned readers to watch out for brain pictures, which, they 
said, can trick you into believing things that aren’t true.

The result intrigued some New Zealander colleagues of mine who discov-
ered that, despite its wide recognition, the finding hadn’t been replicated. They 
ran replication studies using the materials used by the original researchers, and 
found generally small ESs. I joined the team at the data analysis stage and the 
research was published (Michael et al., 2013). I’ll discuss here a meta- analysis of 
two of the original studies and eight replications by our team. The studies were 
sufficiently similar for meta- analysis, especially considering that all the Michael 
studies were designed to have many features that matched the original studies.

Figure 9.2 shows meta- analysis of the two original studies, and our eight 
replications. The figure is complicated, so let’s take it step- by- step. You may 
care to fire up ESCI to follow along. If so, open ESCI intro Meta- Analysis and 
go to the Original two groups page. You should see Figure 9.2.

At left in the figure— or on your screen— are the 10 study names. McCabe 
1 and 2 refer to original results from McCabe and Castel (2008). Michael 1 to 8 
refer to our replications. Then follow six columns of data: the mean rating, SD, 
and N for the No Brain group, which did not see a brain picture, then the same 
for the Brain group. To the right of the data at red 8 is a column showing the 
(M

2
 –  M

1
) difference between the two group means, which is our ES of interest. 

Next right is a column of MoE values for the individual study CIs.
Further to the right is the forest plot of those individual study ESs, each 

with its 95% CI. At the bottom, the red diamond pictures the result of the meta- 
analysis. The bottom row of numbers, to the right of red 11, is the result of the 
meta- analysis, starting with the overall mean, which is 0.068. The CIs are shown 
at red 13, which is to the right of the forest plot and beyond what Figure 9.2 
shows. For the result the CI is [0.012, 0.125]. The middle of the diamond marks 
0.068, the point estimate, and the horizontal extent is the 95% CI, which is 
[0.012, 0.125]. Does that look about right for the diamond in the figure? I like 
this custom of using a diamond, because it identifies the result of a meta- analysis 
as special. In addition we can see the diamond shape as a stylized cat’s eye.

 9.1 If you haven’t already done so, open the Original two groups page of 
ESCI intro Meta- Analysis. Look carefully around the screen, using the 
popouts to help discover what’s going on. At red 1 you can type in the 
units or a label for the dependent variable (“Rating difference”, or your 
choice), and names for the two groups. To complete Figure 9.2, I clicked 
at red 5 to see the vertical line at zero in the forest plot.

I mentioned that the result of a meta- analysis is the weighted average of all 
the study ESs. How should studies be weighted? If studies vary in size, should a 

The result of a 
meta- analysis is 
shown as a diamond, 
which is a stylized 
cat’s-eye picture. The 
horizontal extent of 
the diamond is the 
95% CI.
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study with larger N get more or less weight in the meta- analysis? If the SD varies 
over studies, should a study with a large SD, meaning greater variability, get 
more or less weight? Should a study with a longer CI get more or less weight?

Just once for the chapter, a reminder that it’s worth pausing, reflecting, discussing…

The general answer is that weights should reflect the precision of a 
study: Greater precision earns greater weight, so a short CI, which indicates 
greater precision, deserves greater weight. CI length reflects both N and SD, with 
larger N and smaller SD giving a shorter CI, and thus earning greater weight.

I’m not going to explain how to calculate weights— we’ll leave that task 
to ESCI. Figure 9.2 reports values: Just to the left of the forest plot, below 
red 9, is a column of red study weights, which are percentages that add to 
100. The largest weight is 35.7% for Michael 5, which used particularly large 
groups, of size 274 and 255. To see the influence of SD, compare Michael 6 
and 7: Michael 7 gets almost the same weight (3.3%) despite smaller groups 
(each 34), because it has smaller SDs than Michael 6. The easiest way to think 
of weight is in terms of CI length: a shorter CI gives us better information and 
that deserves greater weight.

One problem with CIs is that a longer CI tends to attract the eye, whereas 
we should take most notice of short CIs. Figure 9.2 follows an excellent meta- 
analysis convention: The forest plot uses squares of various sizes to mark the 
study ESs, with large squares indicating short CIs and greater weights. Large 
squares tend to attract the eye, which is what we want, because they are the 
more heavily weighted studies.

 9.2 Click a few times at red 3, to see how the forest plot changes as study ESs 
are displayed by weights, or not. Does anything other than the size of the 
squares change? If so, why?

 9.3 Click at red 3 to display by weights. Focus on a single study and predict 
how its weight and the forest plot would change if you changed the mean, 
SD, or N for one of the groups in that study.

 ■ One at a time, test your predictions: Type in a quite different new value 
and watch the forest plot change, especially the weight for that study 
and the size of square.

 ■ Type in the original value again, or use Undo, then test the next prediction.

The result of the meta- analysis is a rating difference of 0.068 [0.012, .125], 
meaning Brain was rated slightly higher on average. Let’s consider that differ-
ence of 0.068. Most of the study means listed in Figure 9.2 are in the range of 
about 2.5 to 3. Recall that 2 indicates “disagree” and 3 indicates “agree” that 
the scientific reasoning in the article makes sense. The overall mean for Brain 
is about 2.88 (That’s not in the figure— I calculated it.) and for No brain about 
2.81, both of which correspond roughly to weak agreement. The meta- analysis 
result of 0.068 is our estimate of the effect of adding a brain picture, which on 
the response scale we’re using is tiny. Even the upper limit of the CI was only 
about 0.1, a very small effect. Our conclusion is that the 10 studies together 
indicated, first, that brain pictures do seem to influence judgments of credibility 
and, second, that the influence is very small. The second conclusion— that the 
effect is very small— is the main finding, and what meta- analysis emphasizes. 
The very small size is also what any media report should highlight.

A study with a 
shorter CI earns 
greater weight— 
study weight is 
indicated by the 
size of the square 
marking the 
study ES.
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TWO MODELS FOR META- ANALYSIS: FIXED EFFECT 
AND RANDOM EFFECTS

Bottom left in Figure 9.2, and near red 10 on your screen, is a choice of Model 
for meta- analysis. The two possible models, or ways to calculate meta- analysis, 
are Fixed effect and Random effects, and the radio button for Fixed effect is 
selected. The fixed effect model is the simplest, and assumes that all the studies 
investigated the same population and, therefore, all the studies estimate the 
same population ES. In effect, it combines the results from all the studies as if 
they were one single large study. That’s what Figure 9.2 reports and what I’ve 
discussed above. However, is it realistic to assume every study investigated 
exactly the same population? Studies inevitably differ to some extent, typically 
being carried out by different researchers at different times. There may also 
be differences in procedure, participants, and any number of other aspects. In 
practice, the assumption of identical populations, with every study estimating 
the same population ES, is rarely, if ever, justified.

We can avoid the assumption by using the random effects model, which 
allows for the possibility that studies may have differed and may therefore be 
estimating somewhat different population ESs. Perhaps some studies had mainly 
humanities students and others science students, and humanities students are 
more easily impressed by brain pictures? Or perhaps some studies used more 
vivid and persuasive brain pictures?

To see the result of a random effects meta- analysis, click at red 10, which 
is at the bottom left in Figure 9.2. You should see Figure 9.3, which is the same 
as Figure 9.2 except that it shows a random effects rather than fixed effect 
meta- analysis.

 9.4 Click back and forth between the two models at red 10 and note which 
features change: The result of the meta- analysis? The diamond? The means 
and CIs of the individual studies? The weights?

As you switch between the two different ways to calculate a meta- 
analysis, there is no change to any of the study means or CIs. Probably the 
most noticeable change is in the study weights. Many of the squares marking 
study ESs change size, and the values in the Study weight column below 
red 9 all change. For fixed effect, the weights range from 2.1% to 35.7%, 
but for random effects, the weights vary much less, ranging from 3.7% to 
22.0%. Random effects meta- analysis usually weights studies more evenly 
than fixed effect meta- analysis. It does this as part of the model’s recognition 
that every study has a role to play, because every study may be estimating a 
different population ES.

The meta- analysis mean changes, from 0.068 to 0.094. The meta- analysis 
MoE changes from 0.057 to 0.079. The result is now 0.09 [0.02, 0.17]. As we 
switch from fixed effect to random effects the diamond shifts a little and gets 
distinctly longer. The diamond is longer because random effects meta- analysis 
is recognizing considerable variability in the study ESs, sufficient to suggest that 
they are indeed estimating different population ESs. The more the diamond 
lengthens as we switch to random effects, the greater the likely variation in the 
population ESs the studies are estimating— the greater the difference between 
humanities and science students, or between the effects of different types of 
brain pictures.

Fixed effect meta- 
analysis assumes 
that all the studies 
investigated the 
same population, 
and all estimate the 
same population ES.

Random effects 
meta- analysis 
allows for the 
possibility that the 
studies investigated 
somewhat different 
populations, and 
therefore estimate 
somewhat different 
population ESs.

Random effects 
meta- analysis 
usually weights 
studies more evenly 
than fixed effect 
meta- analysis.
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Heterogeneity— the Variability of Effect Sizes
If all studies were estimating the same population ES, the fixed effect model 
would be accurate and we would describe the studies as homogeneous. Even so, 
the study ESs would bounce around, because of sampling variability. The forest 
plot would resemble a dance of the CIs, although with different sample sizes 
for different studies. On the other hand, if, as usual, the studies are estimat-
ing different population ESs, we’d expect even more variability— even more 
bouncing around— in the forest plot, and we say the studies are heterogeneous.

Studies in a meta- analysis are homogeneous if they all estimate the same population ES. 
Otherwise they are heterogeneous, and estimate population ESs that are at least somewhat 
different.

Heterogeneity is the extent to which the population ESs vary. I mentioned 
that random effects meta- analysis allows for heterogeneity, and the length of 
the random effects diamond reflects the amount of heterogeneity. If population 
ESs differ greatly— perhaps humanities students are influenced by brain pictures 
way more than are science students— there’s large heterogeneity and the random 
effects diamond is especially long. With small heterogeneity the random effects 
diamond is the same length as, or only a little longer than the fixed effect diamond.

To compare the lengths of the random effects and fixed effect diamonds, 
I use the diamond ratio, which is simply diamond length for random effects 
divided by diamond length for fixed effect. At the bottom in Figures 9.2 and 9.3, 
at red 12, the Diamond ratio is reported to be 1.4. It’s the same as the random 
effects MoE divided by the fixed effect MoE, which in the brain picture meta- 
analysis is 0.079/ 0.057 = 1.4 (allowing for a small rounding error). To your eye, 
as you switch from fixed effect to random effects, does the diamond look to 
increase in length by about 40%? The diamond ratio tells us it gets 40% longer.

The diamond ratio is an estimate of the amount of heterogeneity. If the ratio 
is 1 there’s probably little heterogeneity, but as the ratio increases past about 
1.3 and up to 2 and beyond, there is, most likely, progressively more hetero-
geneity. The diamond ratio is calculated from sample ESs, and is an estimate 
of heterogeneity, which is variation in population ESs. There’s uncertainty in 
that estimate, so the diamond ratio is usually only a rough estimate, but it’s 
valuable to have even a rough idea of the amount of heterogeneity.

What change to the data would increase the diamond ratio? An increase 
in the variability of the study ESs increases the diamond ratio, which hints at 
larger heterogeneity of population ESs. You can experiment to see this happen.

 9.5 Focus on one study and think of a change in its ES that would increase 
variation of the study ESs. Perhaps an increase in ES of a study with a large 
ES, such as Michael 7? Type in a new value for one of the group means for 
that study to increase the ES, and note the change in the diamond ratio. 
Then Undo and experiment further.

I said just now that, in practice, different studies almost certainly estimate 
population ESs that differ by at least a little. The random effects model allows 
for such variation, and, therefore, we should routinely choose, report, and 
interpret random effects meta- analysis, and not fixed effect. For our 10 brain 
picture studies we would interpret the random effects result, which is 0.09 
[0.02, 0.17]. Even if there were zero heterogeneity, which would justify the 

Heterogeneity is the 
extent to which the 
population ESs vary.

The diamond ratio 
is random- effects 
diamond length 
divided by fixed- 
effect diamond 
length.

The diamond ratio is 
a rough estimate of 
heterogeneity.

Use random effects 
meta- analysis in 
preference to fixed 
effect meta- analysis.
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fixed effect model, the two models give the same results, so we lose nothing 
by always choosing random effects.

Why, then, mention fixed effect at all? The main reason is so we can cal-
culate the diamond ratio, our estimate of heterogeneity. If there’s considerable 
heterogeneity, meta- analysis may offer some additional magic— the possibility 
of finding moderators, which are variables that can account for heterogeneity.

Quiz 9.1

1. It may be reasonable to use meta- analysis to combine results from studies that are
a. close replications.
b. asking the same question, but using somewhat different procedures.
c. using the same DV and procedure, but asking somewhat different questions.
d. Any of the above.

2. Increase the SD of a study and its weight will increase /  decrease; increase the N of a study 
and its weight will increase /  decrease; increase the length of a study’s CI and its weight will 
increase /  decrease.

3. In many cases, the diamond is shorter than all the individual study _ _ _ _ _ _ _ _ _ _ . If so, this is 
good /  bad news because it means precision of the result is greater /  less.

4. Random effects meta- analysis allows for the possibility that the studies estimate population 
/  sample effect sizes that are the same /  different.

5. Prefer random effects /  fixed effect meta- analysis to random effects /  fixed effect meta- 
analysis.

6. When the random effects diamond is distinctly longer /  shorter than the fixed effect 
diamond, the diamond ratio is large, which suggests that _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  is large.

MODERATOR ANALYSIS

Is heterogeneity a problem? It may be, but often it’s gold. If the diamond ratio 
suggests we have considerable heterogeneity, we can ask: Why do the study 
ESs vary so much? Do our studies differ in some way that contributes to that 
variation? Can we identify a variable that might explain why our diamond ratio 
is 1.4— large enough to suggest we may have appreciable heterogeneity? Such 
a variable that accounts for heterogeneity is called a moderator, and identifying 
it may give great insight into why brain pictures are influential.

Consider the 10 studies. Can you think of some way they differ, some 
variable we could use to classify them, perhaps into two sets? I’m asking about 
differences in the studies themselves, not in the results they found.

One possibility is researcher: Two studies were conducted by the McCabe 
team, eight by the Michael team. There’s another possibility I haven’t men-
tioned. McCabe 1 used selected science articles, but McCabe 2 used the same 
articles with a twist: A critique was added to each article because the researchers 
wondered what difference that might make to how influential a brain picture is 
on rated credibility. The Michael team designed studies 1 through 5 to replicate 
McCabe 1, and 6 through 8 to replicate McCabe 2. I’ll refer to studies that used 
articles with no critique as the Simple studies, and the others as the Critique 
studies. I can say the studies differ on the Simple– Critique variable.

If adding a critique changes the effect of a brain picture, Critique stud-
ies would give different results from Simple studies. In other words, the 
Simple– Critique variable would cause variation in study ES. It would be a 
moderator because it accounts for heterogeneity— variation in population 
ESs, which gives variation in study ESs beyond what we’d expect because of 

To choose a 
potential moderator, 
consider how the 
studies themselves 
differ, rather than 
how their results 
differ.
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sampling variability. The Simple– Critique variable can take only two values, 
so it’s a dichotomous moderator.

In the context of meta- analysis, a moderator is a variable that accounts for some 
heterogeneity.

Let’s investigate our potential moderator, the Simple– Critique variable. 
ESCI can apply meta- analysis to subsets of studies, so we can compare Simple 
and Critique studies. Go to the Subsets page and you should see Figure 9.4, 
which shows the 10 studies, with two subsets identified by a label (Simple or 
Critique) in a column below red 8. The diamonds in Figure 9.4 display the 
results of random effects meta- analysis of all 10 studies, and of each of the 
subsets. The small triangle marks the difference between the two subset means 
on the difference axis at the bottom; the CI on this difference is also displayed.

 9.6 Click a few times at red 7, to see the subset analysis turned on and off. 
When off, random effects meta- analysis of the 10 studies is displayed, as in 
Figure 9.3. What changes do you see as you click the subset analysis on?

The study ESs and CIs don’t change, but the subsets are identified by color— 
red and blue. When subset analysis is displayed, the study weights displayed 
are those for each subset meta- analysis, so the red weights add to 100%, as do 
the blue weights. The squares may change size to reflect these weights.

The difference between subset means is shown to the right of red 14, bottom 
center in the figure, and is 0.18 [0.04, 0.33]. In Figure 9.4, the subset diamonds 
and their difference (the triangle) with its CI suggest there’s a clear difference 
between the subset means, with Critique rated an average of about 0.18 higher 
than Simple. That difference suggests that the Simple– Critique variable can 
account for some of the variability of study ESs, and, therefore, may account 
for some heterogeneity. Note also the diamond ratios near red 15. For all 10 
studies, the ratio is 1.4, but for each subset it is 1.0, which suggests only little 
heterogeneity remains within each subset. Again it seems Simple– Critique can 
account for some heterogeneity among the set of 10, which probably results in 
less heterogeneity within each subset.

Overall, Figure 9.4 tells the story: The result for 10 studies is shown by 
the gray diamond and is 0.09 [0.02, 0.17], which suggests that brain pictures 
increase credibility ratings by an average of around 0.1 points. The subset dia-
monds and the CI on the difference axis suggest that brain pictures are more 
influential (average around 0.2 points) for articles with a critique, and have 
little or no effect for articles without a critique.

Figure 9.4 suggests that Simple– Critique is a moderator that accounts 
for some heterogeneity, some of the variability in effect size over studies. 
Identifying a moderator may lead to more sophisticated understanding— it’s 
not just brain pictures, but brain pictures together with analytic or critical 
aspects of the article that prompts higher credibility ratings. Identifying a 
previously unsuspected variable that makes a difference can be an enormous 
step forward in research.

Let’s step back for a moment. The McCabe team ran McCabe 2 to explore 
the extent that adding a critique might make a difference. However, the CIs for 
McCabe 1 and 2 are long and completely overlapping— they give virtually no 
evidence that Critique is on average any different from Simple. Even with the four 
additional Michael Critique studies there’s considerable variation over studies, 

Moderator 
analysis can be 
highly valuable 
by identifying 
a previously 
unsuspected variable 
that contributes to 
an effect of research 
interest.
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and the CI on the (Critique–Simple) difference in the forest plot is long, extending 
from 0.04 to 0.33. Suppose Figure 9.4 represents the current state of research on 
brain pictures and the Simple– Critique variable. What would you recommend?

Moderator analysis 
should, where 
possible, be planned 
in advance. If 
exploratory, it only 
provides hints, 
possibly for further 
investigation.

Pause, ponder, discuss…
Write down at least a couple of options…

You probably suggested a further study, with N as large as practical. Good 
thinking. Perhaps the best strategy would be to include both Simple and Critique 
in the same study, so Simple– Critique would be an IV in that study, not a mod-
erator in a set of separate studies. Another option would be to run one or more 
further Critique studies, considering that we already have six Simple studies 
with a reasonably short meta- analysis CI (red diamond in the figure) but only 
four Critique studies with a much longer meta- analysis CI (blue diamond).

In fact, the Michael team did run two further Critique studies,which I didn’t 
include in Figure 9.4. Figure 9.5 includes the additional Critique studies, Michael 
9 and 10, and gives a rather different picture: The diamonds all overlap very con-
siderably and the CI on the difference is very long compared with the difference 
between the subset means. The potential moderator Simple– Critique is making 
little or no difference. The subset diamond ratios of around 1.2 and 1.4 are similar 
to the overall ratio of 1.3, so there’s no sign that heterogeneity within the sub-
sets is less than heterogeneity in the whole set of 12 studies. I now have to shift 
from my previous conclusion, and conclude that adding a critique has little or 
no effect— and that’s the conclusion we should take away from this discussion.

With no clear evidence that Simple– Critique is a moderator, our conclusion 
is based on the overall result for the full set of 12 studies, which is that the brain 
picture increased ratings by an average of 0.07 [0.00, 0.14] points on our four- 
point scale. The mean of 0.07 is tiny, and even the upper limit of 0.14 is very 
small. Michael et al. (2013) concluded from this meta- analysis result and other 
recent findings that, on average, brain pictures make little or no difference. They 
wrote that there is now “compelling evidence that when it comes to brains, the 
‘amazingly persistent meme of the overly influential image’ has been wildly 
overstated” (p. 724). That, surely, is good news: We can continue to be fascinated 
by what brain images might be revealing about how the brain works, but without 
being unduly worried that people are being easily swayed by irrelevant material 
when considering a scientific article— at least not by brain images.

I have four further comments to make about moderator analysis. First, 
recall the distinction between planned and exploratory analysis that we dis-
cussed in Chapter 2. The distinction is just as important for moderator analysis 
as for any other data analysis. In our example, both teams deliberately inves-
tigated the Critique and Simple conditions with the intention to compare the 
two. The moderator analysis was, therefore, planned. Much more commonly, 
however, a meta- analysis includes studies that were not designed to be direct 
replications, and that differ in all sorts of ways. If possible, moderator analysis 
should be planned in advance, but usually in practice the meta- analyst will 
explore the effects of a number of potential moderators. Such exploration can 
suggest interesting lines of investigation for future research, but could easily 
be seeing faces in the clouds. As ever, it’s vital to state clearly whether any 
moderator analysis was planned or exploratory, and to regard the result of any 
exploration of possible moderators as only tentative.

Second, moderators need not be dichotomous. Suppose our set of studies 
could be classified into three or more subsets— which perhaps used different 
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types of pictures. Then picture type could be a potential moderator, with three 
or more values. We could even consider a continuous moderator, meaning a 
moderator that could take any value in a range. Consider a large set of studies, 
some with young participants, some with old, and others using various ages in 
between. Mean participant age could then be a potential continuous modera-
tor, and there are meta- analytic techniques that can assess the extent to which 
such a moderator can account for heterogeneity. There are other advanced 
techniques that can identify more than one moderator in a large set of studies.

Third, consider the initial question of whether the brain picture studies were 
sufficiently similar for it to be reasonable to apply meta- analysis. We may have hes-
itated, knowing that some included a critique and some didn’t. We could proceed, 
however, knowing that a moderator analysis of the Simple– Critique variable might 
be revealing. It can be a good meta- analysis strategy to include studies that ask more 
or less the same question, but differ in possibly interesting ways that moderator 
analysis can investigate. However, as I mentioned earlier, remember to focus on 
differences between the studies themselves and not on the results they obtained. 
If the diamond ratio is large, most likely there’s heterogeneity, and this may be 
valuable— if we can identify one or more moderators that can account for part of it.

Finally, we need to be cautious about what we conclude from a moderator anal-
ysis. Our moderator analysis was planned in advance, but, even so, we don’t have 
an experimental study specifically designed to compare Simple and Critique, with 
participants randomly assigned to one or the other. Only such an experimental study 
could justify a conclusion that Simple– Critique most likely caused any difference we 
found, such as the difference between subsets in Figure 9.4. Rather, the studies in the 
two subsets of the meta- analysis may differ in some other way we haven’t identified. 
We observed an association or correlation between Simple– Critique and rating, but 
that doesn’t imply causation. I’ll have more to say about that in Chapter 11. The 
point here is that any moderator analysis can support only a cautious conclusion. 
Even if a moderator accounts for considerable heterogeneity, we shouldn’t conclude 
that the variable caused the ES differences we observe. Instead we might consider 
it a valuable suggestion, and a promising line for further research.

9.7 Suppose you have found 40 previous studies of the effect of using visual 
imagery on memory for words. Overall, using visual imagery leads to 
higher memory scores, but the studies differ in all sorts of ways. Suggest 
at least one possible dichotomous moderator, one possible moderator with 
more than two levels, and one possible continuous moderator.

WHAT META- ANALYSIS CAN GIVE US

The first highly valuable result of a meta- analysis is the overall ES estimate, pic-
tured by the diamond. Unless the studies are very heterogeneous, this result is 
likely to have greater precision than any of the individual studies. High precision, 
meaning a short diamond, is great news, and an excellent reason to integrate 
evidence over studies— and meta- analysis is the way to do that.

The second great feature of meta- analysis is its potential to identify mod-
erators, meaning variables that can account for the variation in study ES that’s 
common and can be large. We used meta- analysis to examine the Simple– 
Critique potential moderator, even though no single study had manipulated 
that variable. Identifying a moderator can be an enormous contribution to 
understanding. A strong suggestion of a variable worth further investigation 
can guide development of theory and also the planning of empirical research.

A moderator 
analysis can suggest 
an important 
relation for further 
investigation, but 
cannot establish that 
the moderator is 
causing changes to 
the ES.
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So that’s the beauty of meta- analysis: It can give us high- precision estimates 
of effects, investigate questions that no single study has addressed, and identify 
variables that are theoretically and practically important. It’s our best strategy 
for integrating and presenting the findings of diverse studies in a research field. 
It should be used often, and be highly appreciated by all researchers.

THE PROBLEM OF PUBLICATION BIAS

In Chapter 2 we discussed publication bias, which is the selection of studies to 
be made available according to the results they obtain. Typically, studies finding 
large or striking or statistically significant results are more likely to be published, 
and therefore more easily available for meta- analysis. We concluded that publi-
cation bias can easily cause meta- analysis to give biased and misleading results.

Have you noticed that so far in this chapter I’ve made no mention of p 
values or NHST? Meta- analysis doesn’t need p values, and in fact meta- analysis 
results can be distorted because of publication bias caused by selective publica-
tion of statistically significant results. This publication bias is called the file drawer 
effect, because studies with p > .05 are likely to be languishing in the researcher’s 
file drawer, or cloud storage, and not be readily available for meta- analysis.

Suppose the 12 studies in Figure 9.5 had been carried out by different 
researchers and published in separate journal articles. The last two studies, 
Michael 9 and 10, gave results close to zero. Considered individually they could 
easily have been rejected for journal publication as being not statistically signif-
icant and of little interest. They could be hidden in file drawers, in which case 
we would see only the 10 studies in Figure 9.4. We would reach the probably 
erroneous conclusion that the Simple– Critique variable is a substantial mod-
erator, as well as finding a larger overall effect than the full set of 12 studies 

would give. Publication bias can be a major threat to the accuracy 
of meta- analysis, and it’s a big drawback of NHST that it probably 
causes much publication bias.

We can investigate publication bias in our example. Figure 9.6 
shows random effects meta- analysis of all 12 brain picture studies, as 
in Figure 9.5. (At Original two groups you could type in the data for 
Michael 9 and 10, and follow along.) I clicked at red 5 to display the 
zero line that marks the null hypothesis value, and at red 4 to show 
at left the p values. Check that the p values correspond to where the 
CIs fall in relation to the zero line. Only for McCabe 2 and Michael 7 
do the CIs fall entirely to the right of the line and have p < .05, and 
thus qualify to be awarded “*” next to the p value. Below red 7 you 
can click to include a study, or banish it to the file drawer, so you 

can explore as you wish.

 9.8 a.  Click below red 7 to remove Michael 9 and 10 and check you get the 
results in Figure 9.3. Remove all the studies with p > .05, and note the 
result.

b. Suppose just the studies giving a negative ES were not published. 
Remove them and note the result.

Removing all the p > .05 studies gave a much bigger estimate of the 
effect of a brain picture. Removing the four studies with negative ESs gave 
a mean effect of 0.12 [0.05, 0.19], considerably higher than 0.07 for all 

Meta- analysis 
usually provides 
higher precision 
ES estimates than 
individual studies, 
and can also identify 
variables that 
are theoretically 
and practically 
important.

The file drawer 
effect is the 
tendency for studies 
with a high p value 
(usually p > .05) to 
remain unpublished, 
and therefore not 
readily available for 
meta- analysis.
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For Open Science 
and to avoid 
publication bias, 
the results of every 
study carried out 
to a reasonable 
standard should 
be made available, 
whatever the results.

12 studies. Each of our pretend publication biases increased our estimate 
of the effect. In other words they gave overestimates, compared with the 
result from all 12 studies, which is our best estimate of the effect. This is a 
common pattern because studies with p > .05 (labeled statistically nonsig-
nificant) generally tend to have smaller estimated ESs than studies with p 
< .05 (statistically significant), and so if p > .05 studies tend to be unavail-
able, a meta- analysis of the available studies is likely to overestimate the 
population ES. In general, the more studies that are missing, the worse the 
overestimation is likely to be.

Our conclusion is that it’s crucial that a meta- analysis includes all research 
of an acceptable quality that has been conducted on the question of interest. 
If we suspect studies are missing, we can’t have full confidence in the meta- 
analysis— we simply don’t have the full story.

9.9 Look back at Figure 7.14, which displays the dance of the CIs and the 
corresponding dance of the p values.

a. What result would a meta- analysis of all 25 studies be likely to give? 
(No calculations, just think.)

b. Would you expect the results of random effects and fixed effect meta- 
analysis to be the same? What diamond ratio would you expect? Why? 
Is there heterogeneity?

9.10 Imagine omitting from a meta- analysis all the studies in Figure 7.14 
where the CI overlaps zero— the p > .05 experiments. Roughly what result 
would a meta- analysis of the remaining studies give? (No calculations, 
just eyeball.) Compare the result with the population ES we wish to 
estimate.

Researchers conducting meta- analysis have traditionally taken two 
approaches to the problem of publication bias. The first is to examine the 
available studies for any signs that studies may be missing. That might seem 
an impossible task, but in some cases it’s possible, although often the results 
are uncertain. I won’t try to explain the methods here. The second approach 
is simply to try very hard to find all relevant research— we try to look in 
researchers’ file drawers. The researcher conducting the meta-analysis will 
search not only for journal articles, but also, for example, for papers pre-
sented at conferences, student dissertations, and reports available online. 
He or she will also email all researchers known to be active in the research 
area, requesting information about any further studies.

A much better solution would be for the results of every study of at least 
reasonable quality to be made available online, even if not accepted for pub-
lication in a journal. Then we could have confidence that a meta- analysis can 
include all relevant research and so give results that are unlikely to be distorted 
because of publication bias. Making results available, regardless of what they 
are and what the value of p is, would be a big change from past practice, but is 
an important Open Science goal.

We thus have a new item to add to our Open Science list: Full details of 
every research study carried out to a reasonable standard should be made pub-
licly available, whatever the results. File drawers should be emptied out. We’ll 
discuss this further in Chapter 10.

In the next section I’ll discuss using Cohen’s d for meta- analysis.
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9.11 Open Science applies to meta- analysis, as to any other research. What’s 
the newly- expanded list of Open Science issues we need to have in mind? 
Explain why each is particularly important for meta- analysis.

Quiz 9.2

1. If a meta- analysis has considerable heterogeneity, then
a. the diamond ratio will be less than 1.
b. choosing random effects rather than fixed effect meta- analysis makes little or no 

difference.
c. moderator analysis may be valuable.
d. publication bias is probably small.

2. A moderator is a variable that accounts for variability in population _ _ _ _ _ _ _ _ _ _ ; in other 
words, it accounts for some of the _ _ _ _ _ _ _ _ _ _ .

3. For meta- analysis, the p values for individual studies are
a. used to calculate the weights.
b. used to check the accuracy of calculations based on CIs.
c. irrelevant.
d. used to calculate the extent of publication bias.

4. If a moderator accounts for considerable heterogeneity, we can conclude that, most likely,
a. it causes variation in study ESs.
b. it was manipulated by the meta- analyst.
c. it should be used as a DV in future research.
d. it is associated with differences in the DV.

5. Publication bias is usually caused by preferential publication of studies that  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

6. To avoid bias, meta- analysis needs reports of all _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

COHEN’S d FOR META- ANALYSIS

Here’s some additional magic from d: It allows us to apply meta- analysis 
to studies that used different original measures. In Chapter 7 we discussed 
Damisch 1, which investigated golf putting with a lucky ball. The Damisch 
group conducted five further investigations of superstition and luck. These 
used a variety of tasks and measures, and so we need to use Cohen’s d to 
include them all in a meta- analysis. Reflect on this for a moment: Without a 
standardized effect size measure, for example Cohen’s d, none of the meta- 
analysis or moderator analysis we carry out below would be possible.

Calin- Jageman and Caldwell (2014) reported two studies designed to 
replicate Damisch 1. The first (Calin 1) followed Damisch 1 as closely as 
practical, although the participants were American rather than German 
college students. The second (Calin 2) made several changes designed to 
increase any effect of superstition on putting performance. The two studies 
also used larger sample sizes. The two Calin replications found only very 
small effects, in contrast to the large effects found by the Damisch group. 
Figure 9.7 shows meta- analysis of the d

unbiased
 values from the six Damisch 

and two Calin studies.

9.12 Study the forest plot in Figure 9.7. Identify which studies used fairly small 
samples and which used much larger samples. Note the corresponding 
differences in study weights, sizes of square, and CI lengths. What do you 
make of the overall set of results?

Cohen’s d enables 
meta- analysis of 
studies that used 
different original- 
units DVs.
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9.13 Identify the results of the six Damisch studies, and the two Calin studies. 
Compare the results of those two subsets of studies. (Eyeball only, no 
calculations.)

 9.14 Open d two groups. You should see Figure 9.7. Look around the page to 
see what’s going on. As usual, reading popouts can help. What data do 
you need to enter to carry out such a meta- analysis?

 9.15 Click back and forth between the two radio buttons at red 2 to select 
whether the meta- analysis is applied to d or d

unbiased
. What changes and 

what doesn’t change?
 9.16 Click the Calculate CIs button (top center in Figure 9.7) to recalculate 

all the study CIs. This may take several seconds— you can watch the CI 
values change as ESCI works.

 9.17 At red 11, click back and forth between the two models for meta- analysis. 
Note how the diamond changes.

a. Does the value of the diamond ratio reported at red 14 seem about 
right?

b. What do you conclude about heterogeneity? Does that fit with the 
appearance of the forest plot?

Figure 9.7 reports that random effects meta- analysis of the whole set 
of 8 studies found d

unbiased
 = 0.54 [0.23, 0.85]. However, the most striking 

thing about the forest plot is what looks like a clear disjunction between 
the first six studies, all relatively small, which found substantial effects of 
around d

unbiased
 of 0.6 to 0.9, and the two larger studies, which found effects 

of around zero.
Calin- Jageman and Caldwell (2014) followed good Open Science prac-

tice by preregistering their two replication studies, meaning that they lodged 
online their full research plan, including data analysis plan, in advance of 
starting data collection. They subsequently made the data available. You can 
see it all at osf.io/0zqbo. They planned to make the comparison that’s shown 
in Figure 9.8, which uses the d subsets page. That page, like the Subsets page 
illustrated in Figures 9.4 and 9.5, provides meta- analyses of two subsets of 
studies. Figure 9.8 shows meta- analyses of the Damisch and Calin subsets, 
which are identified by labels in the column below red 9, and the red and 
blue colors.

To the right of red 14 in Figure 9.8 are the subset results: The Damisch 
subset comprising six studies found an average of d

unbiased
 = 0.82 [0.52, 1.11], 

and the 2- study Calin subset found d
unbiased

 = 0.05 [−0.21, 0.30]. Those subset 
results are illustrated by the red and blue diamonds in the forest plot. The 
difference between the subsets is reported to the right of red 15: −0.77 [−1.15, 
−0.38], illustrated in the forest plot by the triangle and CI on the difference axis 
at the bottom. That’s a large and very clear difference between the Damisch 
and Calin studies.

In their discussion, Calin- Jageman and Caldwell (2014) noted that the six 
Damisch studies are surprisingly consistent— there looks to be less bouncing 
around of the six means than we might expect in a dance of the CIs— and 
all were reported to have p a little less than .05. It remains a puzzle why the 
Damisch results are all so similar, and so different from the larger Calin studies. 
Further investigation would be needed to understand why. Calin- Jageman 
and Caldwell argued that their studies, using larger sample sizes and careful 
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procedures including preregistration, are likely to be giving trustworthy esti-
mates of the effect of luck on performance.

As I emphasized earlier, Cohen’s d was the essential tool that allowed 
us to bring together the eight studies. Then meta- analysis, including mod-
erator analysis, provided the best way to analyze and understand the set of 
studies. It also provides the best guidance for further research on superstition 
and luck. Meanwhile, the later evidence throws strong doubt on the initial 
Damisch finding that a mention of luck is likely to give a substantial increase 
in performance.

Next I’ll outline the seven steps for carrying out a large- scale meta- analysis.

STEPS IN A LARGE META- ANALYSIS

To carry out a meta- analysis you need a minimum of two studies, and it can 
often be very useful to combine just a few studies. Don’t hesitate to carry out 
a small- scale meta- analysis whenever you have studies it would be reason-
able to combine.

Carrying out a large- scale meta- analysis can be a lengthy and daunting 
task, but a well- done meta- analysis that integrates a whole research field can 
be immensely valuable. Anyone publishing such a meta- analysis should receive 
a prize, a promotion, and a long paid vacation!

What I’m calling a large- scale meta- analysis is also often referred to 
as a systematic review, especially in medicine. Whatever the name, we use a 
seven- step procedure to refine our questions, find as much of the relevant 
literature as possible, and use meta- analytic methods to analyze the results. 
Critical analysis is required at every stage. Here my example is Bisson et al. 
(2013), which is a systematic review on the issue of psychological therapies 
for post- traumatic stress disorder (PTSD). PTSD can be a chronic and terribly 
destructive affliction and is typically initiated by some traumatic experience, 
such as physical or sexual assault, or involvement in war. The 2013 report is 
the most recent update, after a 2007 update of the original 2005 report— it’s 
especially valuable to have a recently updated review. I’ll sketch the seven 
steps very briefly.

I chose Bisson et al. partly to illustrate an important practical contribution 
of meta- analysis. In medicine, psychology, and many other professions there’s 
an expectation that practice should be evidence- based. Evidence- based practice 
should be the norm, meaning that professional practitioners should be able to 
justify their choices of therapy by referring to relevant research results. Meta- 
analysis is usually the best way to assemble the evidence to provide the strongest 
basis for evidence- based practice. Bisson et al. does that.

1. Formulate Your Problem
Bisson and colleagues decided to focus on the two types of psychotherapy cur-
rently recognized as treatments of choice for chronic PTSD: a tailored form of 
cognitive behavioral therapy (CBT), and eye movement desensitization and 
reprocessing (EMDR), which aims to help the person reprocess their memories 
of the traumatic event so they are less disturbing. The reviewers discussed the 
theoretical bases proposed for the two therapies, but the focus was on estimating 
therapeutic benefits rather than advancing theory. They were interested in studies 
that compared those therapies with other therapies, or with control treatments 
that did not include psychotherapy— for example, being assigned to a wait list. 

A systematic review 
seeks to include all 
relevant research 
and is almost always 
based on meta- 
analysis.
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They chose a number of measures, the main one being ratings by the psychologist 
of the severity of PTSD symptoms, before and at various times after the treatment.

2. Search the Literature and Select Studies
The reviewers formulated selection criteria for studies, including:

 ■ PTSD must be the formal diagnosis for all participants;
 ■ the study must be a randomized control trial (RCT), meaning that partici-

pants were randomly assigned to groups that received different treatments, 
for example CBT or no psychotherapy; and

 ■ outcome data must be reported, sufficient to calculate ES differences 
between the groups.

They cast a very wide net: They searched many databases, bibliographies, and 
registers of research, and contacted numerous researchers seeking unpublished 
studies. They found 1,477 studies that might qualify for inclusion. Applying their 
criteria resulted in a pool of 70 studies involving a total of 4,761 participants.

3. Record Information About the Studies and 
Collect Data
The reviewers extracted a range of selected information about each of the 70 
studies and included that in a database. They recorded, for example, details of 
the participants, the treatments, the measures, and the times the measures were 
taken— before the therapy, just after, and perhaps later as follow up. They also 
recorded means, SDs, sample sizes, and any other relevant statistical information.

4. Assess Bias
The reviewers rated each study for various types of possible bias, for example 
whether the clinician who rated the severity of PTSD symptoms was blind to 
(i.e., did not know) which treatment group a participant belonged to. Another 
example of possible bias was incomplete or selective reporting of results.

5. Design the Analyses and Analyze the Data
To plan their analyses the reviewers needed to make many decisions about how 
to organize the measures and data. For example, they decided to combine vari-
ous similar treatments into broad groups, including tailored CBT, EMDR, other 
psychotherapy, and no psychotherapy. They grouped follow- up measures into 
short-  (1– 4 months), medium-  (5– 8 months), and long- term (9– 12 months) 
follow up. They identified 13 comparisons they could make, for example tailored 
CBT vs. no psychotherapy, and tailored CBT vs. EMDR. For each comparison 
they planned a number of meta- analyses, each using a different measure, for 
example clinician rating of PTSD severity at short- term follow up, or a measure 
of depression immediately after treatment.

They then carried out a total of 131 meta- analyses. For some of those anal-
yses, only a single study provided relevant data; for many only a few studies 
provided data, but in some cases 20– 30 studies could be included. Given their 
focus on the effectiveness of the various therapies, rather than developing 
theory, they didn’t carry out any moderator analyses, even though many of 
the meta- analyses showed heterogeneity.
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6. Interpret the Findings
Many of the studies were rated as possibly biased in various ways. In addi-
tion, many used only small groups of participants, so could provide only low- 
precision estimates. For these reasons the reviewers judged that only very 
low quality evidence was available for any of the 13 comparisons. With that 
important qualification, they concluded that tailored CBT and EMDR were both 
substantially effective in treating PTSD, and there was little or no difference 
between those two therapies. Other psychotherapies were less effective, but 
more effective than no psychotherapy.

7. Present the Review
Bisson et al. (2013), a 247- page report, included an enormous amount of infor-
mation about the 70 studies and details of how all of the steps of the project 
were carried out. The meta- analyses were presented in 131 forest plots, and the 
report also included a variety of tables and figures presenting summaries of the 
results. There were extensive critical discussions of the research field and the 
studies that qualified for inclusion. The reviewers discussed the implications 
for clinical psychological practice, and provided a plain language summary 
intended to be understandable by non- specialists.

Here are my main reactions to Bisson et al. (2013):

 ■ I’m impressed and happy that experts devoted so much effort to drawing 
practical conclusions from 25 years of research on issues that are vitally 
important, especially given the vast numbers of people around the world 
who experience PTSD. This review provides the best current basis for 
evidence- based psychological practice for PTSD.

 ■ Meta- analysis was the essential tool for integrating evidence, and forest 
plots gave insight into those analyses.

 ■ I’m greatly disappointed that, despite the importance of the issues and the 
large number of studies conducted, the evidence was judged to be of very 
low quality. It’s a further great strength of meta- analysis that it can often 
identify weaknesses in past research, and thus give valuable guidance for 
future research.

 ■ The review illustrates how, at every step in a large meta- analysis, choices 
need to be made, based on expert judgment. Choices include formulating 
questions, setting criteria for inclusion, grouping measures, selecting com-
parisons, and shaping numerous other aspects of the project.

 ■ It also illustrates how critical discussion is needed throughout, in particular 
when formulating conclusions and recommendations. Conducting a large 
review based on meta- analysis is no mere mechanical procedure!

META- ANALYSIS CAN CHANGE THE WORLD

I’d love to tell you about a dozen or more examples of meta- analysis making 
fascinating and important contributions, but I’ll restrict myself to five, and then 
I’ll mention a wonderful resource based on meta- analysis.

Clumsy children lack coordination— they tend to trip over, and have dif-
ficulty manipulating objects. Clumsiness can result in a diagnosis of dyspraxia, 
which was the focus of Peter Wilson’s PhD project (Wilson & McKenzie, 1998). 

Meta- analysis can 
identify weaknesses 
in past research, and 
thus give valuable 
guidance for future 
research.

Meta- analysis can 
identify important 
variables, and 
thus help shape 
theoretical and 
empirical research.
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Dyspraxia was not well understood, and Wilson was keen to identify variables 
likely to be important in any proposed theory of the condition. The empirical 
literature was very messy: Many studies were small and had less than ideal 
designs and measures. Wilson located 50 studies that met his inclusion criteria 
and carried out a number of meta- analyses on various measures of children’s 
abilities. He found a particularly large deficit for children diagnosed with dys-
praxia (informally: conspicuously clumsy children) compared with control 
children on complex visuospatial tasks, which included, for example, visual 
discrimination of shapes, and building with blocks. Wilson had examined many 
variables and knew his analysis was exploratory and so his conclusion was 
tentative— it may have been cherry picked; he may have been seeing a face in 
the clouds. He therefore carried out his own empirical comparison of groups 
of children diagnosed with dyspraxia, and control children, using a battery of 
tests including 10 visuospatial tasks. He confirmed that children diagnosed with 
dyspraxia find such tasks especially difficult. This deficit had not previously 
been identified as a particular problem for such children, but Wilson provided 
strong evidence that it needs to be included as a key variable in any theory of 
dyspraxia. Wilson’s project illustrates how meta- analysis can make a theoretical 
contribution by identifying important variables in a messy literature, and help 
shape subsequent theoretical and empirical research.

My second example is heart- rending, and a lesson in what can happen 
if evidence is not synthesized quantitatively. Sudden Infant Death Syndrome 
(SIDS), or crib death, is the death while sleeping of apparently healthy babies. 
When my wife and I were young parents in the late 1970s, we carefully followed 
what was then the best advice for reducing the risk of SIDS: Our three babies 
slept on their front on a sheepskin. Now, however, the best advice is that back 
sleeping is substantially safer. Gilbert, Salanti, Harden, and See (2005) related 
the history, by describing how research evidence in favor of back sleeping was 
building over the years, but, alas, meta- analysis was not available to integrate 
the evidence quantitatively. Therefore, tragically, the advice given in childcare 
books, including the highly popular and influential one by Doctor Spock, lagged 
many years behind the research. Gilbert et al. conducted meta- analyses of the 
research results that had been available at various time points. They found that 
meta- analysis of the results available in 1970 provided reasonably clear evidence 
that back sleeping was safer than front. The evidence strengthened during sub-
sequent years, but still was not at the time integrated by meta- analysis. They 
found frequent recommendation of front sleeping as late as 1988.

Gilbert et al. estimated that, if back sleeping had been widely recommended 
from 1970, as many as 50,000 infant deaths could have been prevented in 
the developed world. Had meta- analysis been available and used in 1970, we 
would have achieved better understanding of SIDS and much tragedy could 
have been averted. I’m happy to report that our grandchildren are resolutely 
put down to sleep on their backs.

Third, consider the teaching of reading. Since the days when Greek slaves 
taught rich Romans to read, numerous methods for teaching reading have come 
and gone. The pendulum of popularity has swung back and forth between largely 
phonic methods and largely whole- word— or analytic— methods. Phonic meth-
ods pay careful attention to how letters represent sounds, whereas analytic meth-
ods emphasize complete words in a meaningful context. The two approaches are 
based on different theories of how we read, and how we learn to read. Much 
research has been conducted, and many reviews of the literature published. Since 
the 1960s the best of these have identified the importance of phonics. Even so, 

If meta- analysis 
had been available 
and used in 1970, 
it might have 
prevented 50,000 
SIDS deaths.
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Meta- analysis 
supports a central 
role for phonics 
in the teaching of 
reading.

conclusions have often been equivocal and different experts have given different 
advice. In many English- speaking countries it seems that ideology and fashion, 
rather than evidence, has for many decades guided educational policy on the 
teaching of reading, and shaped teachers’ beliefs and practices.

Then the U.S. National Reading Panel (2000) made a concerted effort to 
bring order to the enormous research literature. To conduct a meta- analysis on 
the effects of different teaching methods, they winnowed 1,072 studies down to 
only 38 that met their selection criteria— which included requirements as sim-
ple as having a control group and reasonable measures, and providing sufficient 
statistical information to calculate ESs. Based on the work of the Panel, Diane 
McGuinness wrote an impressive book: Early Reading Instruction: What Science 
Really Tells us About How to Teach Reading (McGuinness, 2004). She concluded 
that we now know how to teach reading successfully: Stories and meaning and 
enjoyment all matter, but early phonics is vital. The best reviews in the 1960s 
were right. This is an example of meta- analysis settling, in decisive fashion, a 
long- standing and heated controversy. The pendulum should swing no more.

My final example illustrates the damage that publication bias and selective 
reporting can have. In the 1970s, reviews listed many well- established differ-
ences between girls and boys— in verbal ability, mathematical ability, aggressive-
ness, and more (Maccoby & Jacklin, 1974). Then researchers gradually realized 
that selective publication was distorting the picture. No doubt many “not statis-
tically significant” studies on gender differences languished in file drawers, but 
there was an additional type of incomplete reporting. Many researchers studied 
issues other than gender and, being careful researchers, explored aspects of their 
data beyond their planned analyses. Often they compared scores for boys and 
girls, but if they found “no statistically significant difference” they were likely 
to omit any mention of gender from their journal articles— because they may 
have had no particular research interest in gender. If, however, an exploratory 
analysis of gender happened to find a statistically significant difference, this result 
(and, with luck, the means and SDs) would probably be reported. The published 
research on gender differences was distorted by studies in the file drawer, but 
also by selective reporting of gender differences found incidentally during data 
exploration by researchers primarily studying other issues.

Reviewers are now alert to these problems and make great efforts to find 
even unpublished results. Recent meta- analyses identify fewer and generally 
smaller differences, and a list of abilities on which there is little, if any, differ-
ence (Hyde, 2007).

The study of gender differences illustrates how estimation, full reporting 
of all studies and all analyses, and avoidance of any publication bias, are all 
essential if reviewers are to build an accurate picture. That’s so important 
I want to say it again. The aim of science is to discover accurately how the 
world works and how people tick. Estimating the sizes of effects— the strength 
of gravity on Earth, the extent to which back sleeping reduces the risk of 
SIDS, the amount of relief from PTSD that a particular therapy is likely to 
provide— is core business for science. In addition, those estimates are vital 
information to guide how professionals, and all of us, can use science for the 
benefit of humanity. If estimates are systematically distorted, for example if 
publication bias caused by NHST means they are overestimates, then science 
is severely undermined. Professionals are likely to make wrong choices. Use 
of estimation and meta- analysis rather than NHST, and adopting the Open 
Science practice of reporting all competently conducted research, are crucial 
steps forward for science.

Publication bias, at 
least partly based 
on NHST, for many 
years distorted 
the conclusions 
drawn about gender 
differences.

Using estimation 
and meta- analysis, 
and following Open 
Science practice by 
reporting all well- 
done research, are 
important steps 
forward for science.
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The Cochrane Collaboration
The world’s primary resource for evidence- based healthcare is the Cochrane 
Library, an online database of more than 5,000 systematic reviews on a vast 
range of health and medical topics. These are developed and maintained by 
the Cochrane Collaboration (www.cochrane.org), a network of centers and 
researchers in over 120 countries. At the Cochrane home page, see “About us” 
for an overview. Bisson et al. (2013), which I used above to outline the seven 
steps of a large meta- analysis project, is a Cochrane Review.

Cochrane provides numerous resources for scholars who are preparing 
systematic reviews, or for anyone who is interested in meta- analysis. The 
Cochrane meta- analysis software, called RevMan, is freely available. The 
Cochrane Handbook covers just about any meta- analysis issue you can imagine. 
Check it out at handbook.cochrane.org and note how the chapter titles, from 
Chapters 5 to 12, correspond fairly closely with my seven steps. Much in the 
early chapters of the Handbook is surprisingly accessible, and some students 
are finding it a valuable resource for their senior and capstone projects.

I find it fascinating simply to browse the library. At the Cochrane home page, 
you can browse the Top 10, or click to go to the Cochrane Library and use the search 
function. You might enjoy clicking on ‘What is Cochrane evidence and how can 
it help you?’, then watching the video. Here are some examples of what I found:

 ■ How does a herbal remedy compare with anti- depressant drugs? I searched 
for “St John’s wort” and found the summary (and an interesting podcast) 
of a 2009 review of 29 studies involving 5,489 patients that had compared 
some high- grade extracts of St John’s wort with anti- depressant drugs, or 
placebo (a pill with no active ingredient), for people with depression. The 
review concluded that these high- grade extracts were distinctly better 
than placebo, and about as effective as the drugs while having fewer side 
effects. This conclusion should prompt researchers to consider carefully 
what future research would be most informative, and clinicians to discuss 
possible implications for clinical practice.

 ■ My somewhat random browsing led me to a list of interesting reports. 
I clicked on one with “Kangaroo mother care” (KMC) in the title— 
something I’d never heard of. It was a 2014 review of the effectiveness 
of mothers of low- birthweight infants having a lot of skin- to- skin contact 
with their baby, breastfeeding frequently, and leaving hospital early. 
The review included 18 RCTs and concluded that KMC is valuable and 
effective.

 ■ I searched for “speed cameras” and found a 2012 review of 35 studies from 
12 countries of the effect of fixed speed cameras on speeding and the rate 
of road crashes. All studies that reported crash rates found a reduction, 
with most reductions falling between 14% and 25%. The reviewers con-
cluded that speed cameras make a worthwhile contribution to reducing 
road traffic injuries and deaths.

To go beyond the summaries and gain access to the full reviews, you need 
a subscription to the Cochrane Library. Many countries have national subscrip-
tions, although in Canada and the United States only some provinces and states 
have subscriptions. You may need to find a library that subscribes. When you 
do reach a review that interests you, read the overview at the start, then scroll 

The Cochrane 
Library is an 
online database of 
systematic reviews 
that support 
evidence- based 
healthcare practice.

http://handbook.cochrane.org
http://www.cochrane.org
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to the end to see all the forest plots. Enjoy the diamonds, 
which summarize the findings.

The Cochrane Collaboration is a great achievement 
and provides a wonderful resource— the Cochrane 
Library— which is essential if evidence- based practice 
of medicine and health sciences is to flourish. It’s meta- 
analysis in action. You could use it to learn about health 
and help you make good choices— or to get ideas for your 
next research project.

The Campbell Collaboration
What about other disciplines? The Campbell Collaboration 
(www.campbellcollaboration.org) is modeled on 
Cochrane and has similar aims, for the fields of social welfare, crime and justice, 
and education. It’s named after Donald T. Campbell (1916– 1996), an American 
psychologist who argued that public policy should be evidence- based, and that 
policy initiatives should be regarded as experiments and evaluated as such, to 
guide future policy choices. The Campbell Collaboration has so far released 
about 100 systematic reviews, all available online.

During some quick browsing of the Campbell Library I discovered that:

 ■ A review of 18 RCTs concluded that parental involvement with elementary 
children’s schooling leads to a usefully large improvement in academic 
performance, despite median program length being only 11 weeks.

 ■ The “Scared Straight” program takes young people who are delinquent or 
at risk of delinquency to visit a prison and meet inmates, with the aim of 
deterring future offending. A review of nine studies found evidence that 
such programs are counterproductive: Such visits tend to increase consid-
erably the risk of later offending.

 ■ A meta- analysis of 44 studies led to the conclusion that school- based 
anti- bullying programs can be effective. Program elements that usefully 
increase effectiveness were identified, and also other elements that are 
counterproductive.

META- ANALYTIC THINKING

Back in Chapter 1, I defined meta- analytic thinking as the consideration of any 
study in the context of similar studies already conducted, or to be conducted 
in the future. It’s important because it prompts us to design any single study in 
the context of all related research, past and future, and to report the study in a 
way that helps a reviewer include the results in a future meta- analysis. It also 
encourages replication and, of course, meta- analysis, which together usually 
provide the most convincing conclusions.

I’ve tried to illustrate in this chapter how meta- analysis can contribute in 
a range of ways. Meta- analysis can:

 ■ summarize past research to give the best basis for planning our study;
 ■ identify from past research important variables that should be incorporated 

into theories and investigated empirically;
 ■ integrate several of our own related studies, to help us see an overall 

picture;

The Campbell 
Library is an 
online database of 
systematic reviews 
in the fields of 
social welfare, crime 
and justice, and 
education.

http://www.campbellcollaboration.org
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 ■ integrate our latest results with past research, to give the best basis for 
drawing theoretical and practical conclusions, and the best starting point 
for future research; and

 ■ provide the best evidence to guide evidence- based practice.

Bearing all these roles for meta- analysis in mind is a big part of meta- 
analytic thinking. Do you get the feeling I’m convinced that meta- analysis is a 
good thing? Indeed— it’s a great thing!

Finally, a few words about software for meta- analysis. Beyond what ESCI 
offers, Comprehensive Meta- Analysis (www.meta- analysis.com) is a full professional 
package that’s widely used. I’ve already mentioned RevMan, the software from 
Cochrane. However, you may find Meta- Essentials (tiny.cc/metaessentials) most 
useful: It’s a free, accessible Excel- based package that goes well beyond ESCI.

Have you noticed that this chapter contains no formulas? Don’t worry— 
there will be a few in the following chapters. It’s time for take- home messages. 
To help prompt what you might write, I’ll mention the forest plot, two models 
for meta- analysis, heterogeneity, moderators, a standardized effect size measure, 
and lots of examples of how meta- analysis can help.

Quiz 9.3

1. The Bisson et al. (2013) systematic review was from the Cochrane /  Campbell Library. It 
reviewed RCTs that investigated the effectiveness of therapies for treating _ _ _ _ _ _ _ _ _ _ . It 
judged that the available evidence was of low /  high quality.

2. You enter d, N
1
, and N

2
 for each study in a meta- analysis. The ES measure we choose for 

carrying out the meta- analysis could be _ _ _ _ _ _ _ _ _ , but we are likely to prefer _ _ _ _ _ _ _ _ _ _ .
3. In the 1970s, reviewers of the psychological literature identified more /  fewer gender 

differences than they do now, partly because publication bias was probably greater /  less 
back then.

4. Preregistration of a detailed research plan in advance of starting data collection
a. helps avoid cherry picking.
b. is good Open Science practice.
c. increases our confidence in the results.
d. All of the above.

5. Cochrane makes extensive use of NHST / meta- analysis to support the evidence- based /  
significance- based practice of education /  medicine.

6. Using meta- analytic thinking is likely to prompt you to
a. use NHST and p values.
b. focus mainly on the single study you are conducting.
c. report your study in full detail.
d. All of the above.

9.18 a.  Can you recall what approach to teaching reading was used in your ele-
mentary school? To what extent did it reflect the advice of McGuinness 
(2004) that early attention to phonics is vital?

b. What approach is currently used in an elementary school near you? 
What attention does it pay to phonics?

9.19 Following my suggestions in the text, search Cochrane for a report on a 
topic that interests you. Just below the summary, click to open the abstract 
and try to identify all seven steps. If you can access the whole report, even 
better. Try to identify sections that describe what the reviewers did for 
each of the seven steps.

9.20 Using that report, or another of your choice, suggest a useful further 
experiment that picks up on any critical comment you can find about 

http://www.meta-analysis.com
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defi ciencies in past research. That might, for example, be a comment that 
past research has used only small groups, or that many past studies have 
various types of biases.  

  9.21     Suggest a second further experiment that could advance understanding 
beyond what past research has given us. You might, for example, con-
sider extending the research to a different population, or investigating a 
potential moderator.  

  9.22     In the Campbell Library, fi nd a report that interests you.  

  a.     If the report uses meta- analysis— not all Campbell reviews do— identify 
the contribution that meta- analysis makes.  

  b.     Suggest how the fi ndings of the report should infl uence practice.    

  9.23     Revise your take- home messages if you wish.   

   Reporting Your Work  

 Meta- analysis can be highly useful for small (minimum two) or large sets of studies. 
For meta- analyses intended to be comprehensive, as is usually the case for example in 
Cochrane research syntheses, tens or even hundreds of studies may be included. For a 
comprehensive meta- analysis, you would follow the seven- step plan described in this 
chapter and then write a report that tells the full story of every step. Here’s a general 
breakdown of how the overall manuscript would be structured: 

 ■   The Introduction explains why the meta- analysis was conducted and what research 
questions will be addressed. It is great practice to preregister the meta- analysis strategy 
and questions in advance; if you did this, be sure to let the reader know.  

 ■   The Method section explains the nuts and bolts of how the meta- analysis was 
conducted: the search strategy for identifying studies, the criteria for including studies, 
the model used (almost always random effects), how effect sizes were calculated, what 
software was used, and more.  

 ■   The Results section reports the overall effect size estimate obtained, the variety observed 
in effect sizes, and any planned or exploratory moderator analyses.  
  •     Summary tables are usually used to provide information about important features 

of each study and the effect size each provided for the meta- analysis.  
  •     Forest plots are typically provided to give a visual summary of the findings.    

 ■   A critical discussion is needed of the whole process, with interpretation of the findings 
informed by past research.  

 ■   The References section includes a reference for each study included in the meta- analysis. 
These are often flagged with an asterisk (*) to distinguish them from other citations 
made in the manuscript.    

 As usual, the primary requirement is that reporting is full and detailed— you need to 
tell the full story. 

 If you are embarking on a comprehensive meta- analysis, it is wise to draw on 
 additional resources for proper planning and reporting. For example, the  APA Manual  (APA, 
2010) provides Meta- Analysis Reporting Standards (pp. 251– 252) as well as a sample 
meta- analysis manuscript (pp. 57– 59).  

 Although this may seem daunting, keep in mind that meta- analysis does not have to 
be comprehensive and complex. Meta- analysis is also a perfect tool for synthesizing results 
across related studies in a single manuscript, providing a quantitative synthesis of all the 
evidence collected. This currently isn’t very common, but it should be: It’s easy to do and 
provides a more precise estimate of the effect than any of the individual studies. For a 
within- paper meta- analysis, report  

 ■   whether the meta- analysis was planned prior to conducting the series of studies, or 
perhaps before just some of them;  

 ■   your model (almost always random effects);  
 ■   the overall estimated effect size and its CI— you can report the raw effect size, the 

standardized effect size, or both;  

 Meta- analysis can 
be applied to a few 
or to many studies. 
Preregister plans for 
all stages, including 
analysis, where 
possible. 
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 ■   a forest plot— state in the figure caption what error bars and the diamond length 
represent (95% CIs);  

 ■   the sample sizes of the studies being integrated, unless this is already clear;  
 ■   some indication of the heterogeneity of the effect size: In this book, and ESCI, I use 

the diamond ratio as a simple approximate estimate of the extent of heterogeneity, 
but more advanced books and specialized meta- analysis software use several other 
measures of heterogeneity; and lastly,  

 ■   an interpretation of the overall effect size, with critical discussion informed by past 
research.   

 Here are some examples of reporting a within- paper meta- analysis: 

 Across the two previous studies, a random effects meta- analysis 
indicates an effect that is large ( d  

 unbiased 
  = 0.71, 95% CI [0.27, 

1.15]), especially relative to previous studies of placebo 
effects on motor skill. The CI is fairly long, but indicates 
at least a moderate effect up to a very large effect. The two 
studies had similar effect sizes (diamond ratio = 1.0). 

 We used a random effects meta- analysis to integrate results 
across the fi ve studies we completed. The integrated effect 
size we obtained is very small ( d  

 unbiased 
  = 0.09, 95% CI [−0.07, 

0.24]). This CI indicates no more than a small-to-moderate 
placebo effect on motor skill. The fi ve studies were consistent 
in this fi nding, with little heterogeneity of effect sizes 
(diamond ratio = 1.0). 

 Integrating our fi ve studies with the two previous experiments 
on this topic, a random effects meta- analysis suggests a small 
placebo effect on motor skill ( d  

unbiased
  = 0.19, 95% CI [0.01, 

0.38]). The CI is moderately long, though, and is consistent 
with anywhere from a moderate down to a vanishingly small effect. 
In addition, there was substantial variation in effect size 
across studies (diamond ratio = 1.6), which suggests that one 
or more moderators may have infl uenced effect sizes across these 
studies. With a larger number of studies, moderator analysis 
could be considered. For now, it seems a placebo effect on motor 
skill may be plausible though small. Still, given that even a 
small improvement in motor skill can be useful in competitive 
sports, further investigation is warranted.  

    

  Take- Home Messages  
 ■   Meta- analysis is a set of techniques for the quantitative integration of 
evidence from related studies. It usually gives more precise estimates than 
any of the individual studies.  

 ■   A forest plot pictures the result of each study as an ES and a CI. The study 
ESs are represented by squares of sizes that reflect study weights. The result 
of the meta- analysis is shown as a diamond, which represents the overall ES 
estimate and its CI.  

 ■    Fixed effect meta- analysis  assumes that every study estimates the same 
population ES.  Random effects   meta- analysis  allows for different studies 
estimating somewhat different population ESs. Routinely use random effects 
meta- analysis.  

 ■    Heterogeneity  is variation in population ESs.  
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 ■ The diamond ratio is diamond length from random effects meta- analysis divided by diamond 
length from fixed effect, and is a rough estimate of heterogeneity. A ratio larger than around 
1.3 suggests appreciable heterogeneity.

 ■ If there is appreciably heterogeneity, a moderator analysis might identify one or more 
variables that can account for some of the heterogeneity.

 ■ Identifying a moderator can give insight and valuable guidance for further investigation, but 
does not establish that the moderator causes variation in ESs.

 ■ NHST and p values are not needed for meta- analysis. Publication bias, or the file drawer 
effect, is often caused by selective publication of studies with p < .05, and can bias the result 
of a meta- analysis.

 ■ To avoid publication bias, Open Science requires that all research of a reasonable standard 
should be made publicly available, whatever the results.

 ■ Where studies have used different original- units measures, d may enable meta- analysis.

 ■ Meta- analysis can be applied to two or a small number of related studies. Large- scale meta- 
analysis, as usually required for a substantial systematic review, can be a large task, comprising 
seven steps.

 ■ The Cochrane Library is a large online library of systematic reviews in health and medicine 
that support evidence- based practice. The smaller Campbell Library plays a similar role in 
some social sciences.

 ■ Meta- analytic thinking considers any study in the context of past and possible future related 
research, with an emphasis on replication and meta- analysis.

End- of- Chapter Exercises

1) To what extent does the wording of a question influence one’s judgment? In end- of- chapter 
Exercise 3 in Chapter 7 we encountered the classic study of Jacowitz and Kahneman (1995), 
which asked participants to estimate how many babies are born each day in the United States. 
Participants were given either a low anchor (“more than 100 babies/ day”) or a high anchor 
(“less than 50,000 babies/ day”). Those who saw the low anchor estimated many fewer 
births/ day than those who saw the high anchor, which suggests that the wording can have 
a profound influence. The correct answer, as it happens, is ~11,000 births/ day in 2014. To 
investigate the extent that these results are replicable, the Many Labs project (Klein, et al., 
2014a, 2014b) repeated this classic study at many different labs around the world. You can 
find the summary data for 30 of these labs in the Anchor_ Estimate_ MA data set, available 
on the book website.

a. Conduct a meta- analysis of the effect of anchor on estimate. Use Original two groups  
and enter the data from the 30 different sites. You can use Copy/ Paste Special/ Values for 
the first seven columns in the data file. Using a fixed effect model, what is the overall 
effect size estimate and its CI? Interpret.

b. What is the diamond ratio? What does this tell you? Do you expect the CI on the overall 
effect size to be shorter or longer when using a random effects model?

c. Switch to a random effects model. What is the effect size and 95% CI? Interpret.
d. Let’s explore the variation in effect size over studies. Note the Subset column in the 

data file, which indicates that some studies were conducted in the United States and 
others were not. Perhaps respondents from other countries may not know as much 
about the U.S. population and may therefore be more influenced by the anchor when 
having to estimate births/ day in America? Test this idea by conducting the same random 
effects meta- analysis, but using the Subsets page. You can use Copy/ Paste Special/ 
Values for the first eight columns in the data file. Does location seem to be an important 
moderator of the anchoring effect? Why or why not?
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2) To what extent does being exposed to the American flag influence political attitudes? One 
seminal study (Carter, Ferguson, & Hassin, 2011) explored this issue by subtly exposing par-
ticipants either to images of the American flag or to control images. Next, participants were 
asked about their political attitudes, using a 1– 7 rating scale where high scores indicate con-
servative attitudes. Participants exposed to the flag were found to express substantially more 
conservative attitudes. The Many Labs project replicated this finding at 25 different locations 
in the United States. The data are available in the Flag_ Priming_ MA data set.

a. What would be more appropriate for this meta- analysis: random effects model or fixed 
effect model? Why?

b. Use Original two groups to conduct a meta- analysis. Write a sentence interpreting the 
result: Based on these data, to what extent does flag exposure alter political attitudes?

c. What is the diamond ratio? Does it seem that there is substantial variation in effect size 
across these different sites? Should we try subset analysis? Explain.

d. The original study found that flag exposure produced a substantial difference in polit-
ical attitudes: (M

Flag
 –  M

No_ flag
) = 0.45, 95% CI [0.02, 0.88]. Is this consistent with the 

findings from the Many Labs project? Does the fact that the CIs overlap mean that 
the replications succeeded in supporting the original conclusion that exposure to the 
American flag changes political attitudes? Discuss.

3) To what extent does gender relate to negative attitudes about mathematics? In EOC 
Exercise 5 in Chapter 7 we encountered the classic study of Nosek, Banaji, and Greenwald 
(2002) in which male and female participants completed an Implicit Association Test 
(IAT) that measured the extent of negative attitudes towards mathematics, compared 
with art. The study found that women, compared with men, tended to have more nega-
tive implicit attitudes towards mathematics. The Many Labs project (Klein, et al., 2014a, 
2014b) repeated this study at locations around the world. Summary data for 30 of these 
labs are available in Math_ Gender_ IAT_MA. Higher scores indicate more implicit bias 
against mathematics.

a. Use these summary data and Original two groups to conduct a meta- analysis of gender 
and mathematics bias. Interpret.

b. Can this meta- analysis support a causal conclusion about gender and mathematics 
bias? Explain.

c. What is the diamond ratio? What does this tell us?
d. To explore possible variation in effect size over studies, use Subsets to compare results 

from labs in the United States with those from other labs. Interpret.

4) To what extent could feeling powerful affect your performance at motor skills? To investi-
gate, Burgmer and Englich (2012) assigned German participants to either power or control 
conditions and then asked them to play golf (Experiment 1) or darts (Experiment 2). They 
found that participants manipulated to feel powerful performed substantially better than 
those in the control condition. To study this finding further, Cusack et al. (2015) conducted 
five replications in the United States. Across these replications they tried different ways 
of manipulating power, different types of tasks (golf, mirror tracing, and a cognitive task), 
different levels of difficulty, and different types of participant pools (undergraduates and 
online). Summary data from all seven studies are available in Power_ Performance_ M A.

a. Why must you use Cohen’s d (or d
unbiased

) to conduct this meta- analysis?
b. Use d two groups to conduct a random effects meta- analysis of this series of studies. 

You will need to copy the data column by column. Then be sure to click the Calculate 
CIs button to obtain CIs for d for each study. If nothing happens, be sure you have 
enabled macros. Interpret.
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c. What is the diamond ratio? What does this tell you?
d. There were numerous differences between these studies. Use d subsets to explore 

potential moderators. Does task difficulty (normal vs. difficult) help explain the dif-
ferences? Does participant pool (online vs. in- person)? What about nation (Germany 
vs. U.S.)?

e. Explain why your moderator analysis should be considered tentative and exploratory.
f. For thought: Based on your moderator analysis, what seems to be the most promising 

next study to conduct?

Answers to Quizzes

Quiz 9.1
1) d; 2) decrease, increase, decrease; 3) CIs, good, greater; 4) population, different; 5) random effects, fixed effect; 

6) longer, heterogeneity.

Quiz 9.2
1) c; 2) effect size, heterogeneity; 3) c; 4) d; 5) are statistically significant, have p < .05; 6) relevant studies that have 

been conducted to a reasonable standard, whatever their results.

Quiz 9.3
1) Cochrane, PTSD, low; 2) d, d

unbiased
; 3) more, greater; 4) d; 5) meta- analysis, evidence- based, medicine; 6) c.

Answers to In-Chapter Exercises

9.2 No.
9.3 Change either the No Brain or Brain mean for a study and see the square in the forest plot move, but no change 

to the weight or CI length. Increase an SD and see no change to the position of the square, but the CI get longer, 
the weight smaller and, perhaps, the square smaller. Increase an N and see no change to the position of the 
square, but the CI get shorter, the weight larger and, perhaps, the square larger. The diamond will shift and change 
in length, perhaps only to a tiny extent, with any of those changes to the data.

9.4 Yes; yes; no; yes. See the text.
9.5 Type in a higher Brain mean or a lower No Brain mean for a study to increase the study ES. If the study ES is 

already high, that increases variability of the study ESs, and, therefore, also heterogeneity and the diamond ratio.
9.6 See the text.
9.7 Whether a word is concrete (bicycle) or abstract (hope) may influence the usefulness of imagery. If some studies 

used concrete words, and others abstract, type of word may be a dichotomous moderator. If more than two 
different types of words were used by different studies, word type may be a moderator with more than two 
values. If different studies used different amounts of training to use imagery and if more training gives a larger—
or smaller—imagery effect, then amount of training may be a continuous moderator.

9.8 a. 0.32 [0.11, 0.53]; b. See the text following the exercise.
9.9 a. The studies all come from a population with mean 10, which is the population ES. This is the same for all 

studies, so there is no heterogeneity. I expect meta-analysis to give a short diamond centered close to 10; 
b. Because there is no heterogeneity, fixed effect and random effects meta-analysis are likely to give the same 
result, so the diamond ratio equals 1.

9.10 Omitting the 9 studies with p > .05 removes studies that tend to have the lower means. Meta-analysis of the 
remaining 16 studies would therefore give a mean greater than 10, and thus an overestimate.

9.11 Are we seeing only a selection of all relevant research that has been conducted to a reasonable standard, because 
of publication bias or any other reason? Have any replications been conducted but not reported? Are all relevant 
studies reported in full detail, including details of all data analyses? Preregistration, if possible? We need all these 
because they are required if meta-analysis is to give unbiased results.

9.12 The first six have comparatively small samples, the last two distinctly larger. The first six studies agree quite 
closely, but disagree sharply from the last two, which themselves agree closely.
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9.13 The Damisch studies all found substantial and similar effects, whereas the Calin studies both found results close 
to zero, with shorter CIs, meaning greater precision.

9.14 Values are needed for d, N
1
, and N

2
 for each study.

9.15 For each study, the CI does not change, but the square, which marks d or d
unbiased

, may move, being a little further 
to the right for d than d

unbiased
. The result of the meta-analysis, the CI on the result, and the diamond ratio all 

change slightly.
9.16 Calculation speed depends on the speed of your computer and the version of Excel. Excel 2003 is the fastest.
9.17 a. The diamond ratio = 1.62, which matches the change in length of the diamond as I click back and forth; b. This 

suggests some heterogeneity, perhaps a considerable amount, and accords with the substantial variability of 
study ESs in the forest plot.

9.18 a, b. I started elementary school in 1951 and can remember lots of attention to what particular letters and letter 
combinations “said”. That’s phonics. My grandchildren seem to be getting plenty of phonics along with hearing 
and reading whole stories. In those two cases, classroom practice seems broadly consistent with the McGuinness 
message.

9.19 I chose Conde-Agudelo and Díaz-Rossello (2014), which is the KMC review I mentioned. I could easily find 
mention in the abstract of each of the seven steps, although for Step 5 (Design the analyses and analyze the 
data) there was just a reference to the standard analyses used by the Cochrane Neonatal Review Group. In the 
full report there was considerable material on each of the seven steps, although the report used the standard 
Cochrane format, not a listing of seven steps.

9.20 The abstract identified the need to study whether the positive results transfer from the controlled setting of an 
RCT to everyday practice in a hospital. Using the jargon, the RCTs tell us the efficacy, but we also want to know 
the effectiveness. I would aim for a study that compared KMC adopted as standard practice in some hospitals 
with conventional non-KMC practice in other hospitals.

9.21 I would investigate why KMC works by studying a small group of mothers in great detail, recording many 
measures and tracking the babies’ progress closely. I would try to identify the most important aspects of KMC 
for further larger-scale study.

9.22 a. I chose Winokur, Holtan, and Batchelder (2014), which reviewed research on where it is best to place a 
child removed from the family because of maltreatment. Should placement be with kin—family members who 
are not the parents—or unrelated foster parents? The reviewers included 102 studies and used 29 outcome 
measures. They found sufficient ES information to conduct meta-analyses using 21 of those measures, and these 
meta-analyses provided the main findings of the review. I’m disappointed no forest plots appear in the report; 
b. Placement with kin was usefully better on a range of measures, so should be preferred where possible.



Our topic is the planning of research. I’ll discuss what’s called the replicability 
crisis, then focus on Open Science because that needs attention from the very 
start of planning. I’ll move on to discuss pilot testing, and the formulation of 
sampling and analysis plans. Much of the rest of the chapter is about the vital 
issue of choosing N: Of course, we’d like big N, but there are costs as well as 
benefits, and sometimes big N is impossible. I’ll take two approaches to choos-
ing N. First, using estimation, we take the precision for planning approach by 
asking “How large an N do we need to estimate the effect we are studying with 
a certain precision, say within ±0.2 units of d?”, where Cohen’s d is the effect 
size measure we’re using. Second, using NHST, we can take the statistical power 
approach by asking “How large an N do we need to have an 80% chance of 
achieving statistical significance at the .05 level when we test the null hypothesis 
of δ = 0 in the population, if the population effect size is really, say, δ = 0.4?”

Here’s the agenda:

 ■ The replicability crisis: Why many published results may be false, and 
what to do about it

 ■ Open Science, and how to adopt Open Science practices
 ■ Pilot testing, preregistration of plans, and open materials and data
 ■ Precision for planning for the independent groups design
 ■ Precision with assurance: Finding N so we can be reasonably certain our CI 

won’t be longer than the target length we’ve chosen
 ■ Precision for planning for the paired design
 ■ Statistical power and how it can guide choice of N when planning research

THE REPLICABILITY CRISIS: WHY MANY PUBLISHED 
RESULTS MAY BE FALSE

In Chapter 1, I outlined a striking example of results that failed to replicate 
(Gorn, 1982). Here’s a second example: Caruso et al. (2013) reported five 
studies showing “currency priming”, meaning that a subtle reminder of the 
concept of money increases people’s endorsement of free- market systems and 
social inequality. This was a substantial and perhaps surprising result, which 
was picked up by media outlets. However, Klein et al. (2014a, 2014b) published 
extensive replication results, which found d = −0.02 [−0.07, 0.03], which is a 
precisely estimated zero or trivially small effect.

Science progresses by identifying and correcting error. However, when few 
replications are carried out and probably incorrect conclusions are influential 
for decades (Gorn, 1982), we have a problem. An excellent explanation of the 

10
Open Science and  
Planning Research
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main causes of the replicability crisis was given by Ioannidis (2005) in a famous 
article with the stunning title “Why most published research findings are false”. 
He identified three problems:

 ■ Selective publication. Studies that do not achieve statistical significance are 
less likely to be published— the file drawer effect.

 ■ The .05 imperative. Researchers feel enormous pressure to achieve p < .05 
so their results have a chance of publication in a good journal, which is 
the key to obtaining a faculty job, tenure, and funding.

 ■ Lack of replication. Once a result has reached statistical significance and been 
published, it is regarded as established. There is little incentive to conduct 
replications, and replication studies are difficult to get published. Therefore, 
they are rarely conducted.

In Chapter 9 I discussed the first problem, selective publication, and 
explained the Open Science requirement that, to avoid the problem, all research 
conducted to a reasonable standard must be made publicly available, whatever 
the results. Now let’s consider the second and third problems.

The .05 Imperative: Questionable Research Practices 
and p- Hacking
In Chapter 2 we discussed the problem of cherry picking, of merely seeing a 
face in the clouds. I explained that specifying a single effect in advance can give 
us a conclusion that deserves our confidence, whereas if we inspect the data 
before choosing a result of interest, we are much more likely to be capitalizing 
on chance, of merely seeing a lump in the randomness. In other words, we 
should use planned analysis, and distinguish that carefully from exploratory 
analysis. Recently, however, researchers have started to appreciate that usually 
there are many more choices to make than merely choosing which result to 
highlight. Suppose we’re comparing two independent groups. As we run and 
analyze the study we might make many choices, including some of these:

 ■ If our first attempt doesn’t seem to work, we make the participant’s task 
easier and start again.

 ■ We run 20 participants in each group, look at the data, then run 10 more. 
(A “run- and- check” approach: We stop the study when we like the results.)

 ■ We note a few outliers, and exclude those aberrant results.
 ■ The SDs differ considerably, so we use the Welch– Satterthwaite method 

rather than assume homogeneity of variance.
 ■ We had used three measures of performance, but one is easier to measure 

and seems to give more consistent results so we drop the other two.

On any of those issues we could easily have made a different decision. 
There’s a vast number of possibilities, any of which we might report as our 
study. Simmons, Nelson, and Simonsohn (2011) demonstrated that there are 
typically so many combinations that it’s possible to start with random numbers, 
make a few judicious choices, and probably find some analysis for which p < 
.05. As they summarize in the title of their article, “Undisclosed flexibility in 

Choices made after 
seeing the data 
are questionable 
research practices, 
and p- hacking 
is using these to 
achieve p < .05.
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data collection and analysis allows presenting anything as significant”. The 
various choices made after seeing at least some of the data, as in my five bullet 
points, are questionable research practices. Cherry picking a single result to report 
is just one of many possible questionable research practices. Indulging in any 
of them is p- hacking, defined as trying multiple things until you get the desired 
result. Specifically, p- hacking is finding a way to achieve p < .05.

Questionable research practices arise often, and can be subtle. Any time 
you analyze data, you must be alert. Choose the median rather than the mean? 
Choose to use percentages, not the original scores? Choose to transform to 
Cohen’s d? Any such decisions are questionable if made after seeing the data, 
because they might be influenced, perhaps unconsciously, by a 
desire to achieve p < .05 and a publishable result. To avoid such 
p- hacking, we not only need to distinguish carefully between 
planned and exploratory analysis but should also, wherever 
possible, preregister a detailed research plan, including a full data 
analysis plan. More on that shortly.

Lack of Replication
Now for the third problem identified by Ioannidis (2005). In many 
disciplines, almost all journal articles report statistically signifi-
cant results, p < .05. Ioannidis explained how the combination of 
selective publication and p- hacking might lead to many, perhaps 
even the majority, of those results being false. To complete this 
sad picture, he argued that researchers tend to have so much 
faith in statistical significance indicating truth that, once a result achieves p < 
.05 and is published, it is rarely questioned, and so replication may not seem to 
be necessary. In addition, journals wish to publish exciting new findings, not 
me- too replications, so researchers have little incentive to conduct replication 
studies. Therefore, few replications are conducted and published false findings 
simply persist.

In summary, Ioannidis (2005) identified over- reliance on p < .05 as an 
underlying factor in all three problems he discussed. Using estimation and 
meta- analysis rather than p values should help substantially, but cannot pro-
vide the full solution. It can be just as misleading to use questionable research 
practices when using estimation. It’s just as important to distinguish planned 
and exploratory analysis, and to preregister. Also, replication remains essential. 
Therefore, adopting estimation is a big step forward, but to overcome the three 
problems, we also need Open Science.

OPEN SCIENCE

The Center for Open Science (cos.io) was created in 2013 “to foster the open-
ness, integrity, and reproducibility of scientific research”. That’s a pithy sum-
mary of the aims of Open Science. The Center’s first major project is the Open 
Science Framework (osf.io), which is an ever- growing online environment that 
provides numerous facilities to help researchers use Open Science practices.

10.1 What’s the list of Open Science requirements that we’ve built up in pre-
vious chapters? What’s the slogan?

The risk of p-hacking 
emphasizes the 
importance of 
preregistration 
of a full research 
plan, including data 
analysis plan.

Once a result has 
achieved p < .05 and 
been published, it 
is often regarded as 
true. Few replications 
are carried out.

The imperative to 
achieve p < .05 
underlies all three 
Ioannidis problems.

The Open Science 
Framework is an 
online resource to 
help researchers 
use Open Science 
practices.
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10.2 a.  Visit osf.io and click Support at the top. Click on Frequently Asked 
Questions (also available via FAQ if you scroll to the bottom). Click 
to read any of interest. Read about registration. Note that, when any 
document is registered, it is date-stamped. What would be most useful 
to register on OSF in advance of running your study?

b. At osf.io, again click Support at the top. Click on Guides to see the simple 
introductory resources that are available. Try one or two, to get a general 
idea of the OSF. You could take the plunge and sign up. It’s easy and free.

10.3 a.  At cos.io read the brief summaries of what the Center does. From the top 
menus, go to Services/ Statistical Consulting and read what COS offers.

b. Find one or two services that might be helpful to you. Find one or two 
that you might like, but that the Center doesn’t offer.

Open Science is our best prospect for escaping the replicability crisis and 
solving the three Ioannidis problems. It’s a momentous development that 
requires major changes in what researchers do— especially by preregistering 
studies. To succeed it requires journals to revise their policies so researchers are 
encouraged, or even required, to adopt Open Science practices.

This is now happening. For example, Psychological Science has require-
ments for full reporting of the studies it publishes to ensure that readers are 
given important parts of the full story. It also “recommends the use of the 
‘new statistics’— effect sizes, confidence intervals, and meta- analysis— to avoid 
problems associated with null hypothesis significance testing (NHST)” (tiny.cc/ 
PSsubmissionnew). There’s more on that in the Preface to this book.

Open Science Badges
In addition, Psychological Science was one of the first eight journals to offer three 
badges created by the Center for Open Science to acknowledge articles that 
use particular open practices. Here are the badges with brief descriptions. Each 
comes in a labeled and a simplified version:

Open Science is the 
best strategy for 
solving the three 
Ioannidis problems.

The Center for Open 
Science badges 
acknowledge use 
of desirable Open 
Science practices.

    The Open Data badge is earned for making the full data 
publicly available.

    The Open Materials badge is earned by making publicly available 
sufficient information to enable replication, including details 
of the procedure, materials, participants, and data analysis.

    The Preregistered badge is earned for having preregistered the 
design and data analysis plan for the reported research and for 
conducting and reporting the research according to that plan.
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Pilot Testing

Not every study can be preregistered or earn badges. For example, researchers 
are often quick to respond to catastrophic events, such as Hurricane Katrina, 
not only to offer immediate assistance, but also to study people’s reactions and 
to investigate how psychological therapies should be tailored for disaster situa-
tions. Such studies are developed on the spot and may change day by day. They 
can be highly valuable, despite preregistration not being possible. As another 
example, in some cases data cannot be made publicly available for commercial 
or privacy reasons.

10.4 From the home page cos.io go to Communities, read the note about Badges 
to Acknowledge Open Practices, then click on Learn more. State briefly 
in your own words why the badges were created.

Now I’ll turn to four important aspect of planning: pilot testing, preregis-
tration, open materials and data, and finally the big one— choice of N. These 
are four of the main things we need to work on to be using Open Science, and 
perhaps even submitting our study to Psychological Science.

PILOT TESTING

When you watch a good movie, it’s easy to get caught up in the action and not 
appreciate what it took to produce the film. However, any “making of” documen-
tary shows us that there’s a tremendous amount of groundwork that takes place 
before filming even begins: scripts are edited and re- edited, shooting locations 
are scouted, lines are painstakingly rehearsed, and so much more. Then there are 
numerous decisions: which camera angles are best, what lighting is most effec-
tive, which scenes to cut… the list goes on. We don’t see all this initial work and 
decision making in the final film, but it was essential to making a quality movie.

Strange to say, but research is rather like film production: In most cases, 
the exciting new article we read required a tremendous amount of initial plan-
ning, rehearsal, and decision making. Consider the pen– laptop article (Mueller 
& Oppenheimer, 2014). The authors had to decide how many students to test, 
what topics to have them learn about, how to measure their learning, and many 
other aspects of the study. To help make these decisions wisely, the researchers 
needed pilot testing. Like rehearsals prior to shooting a film, a small- scale pilot 
study tests part or all of the study being planned. Pilot studies allowed Mueller 
and Oppenheimer to refine all aspects of their studies before data collection 
commenced. This careful preliminary work led to a research plan for the final 
studies that so effectively addressed their research questions.

Sometimes previous research gives strong guidance for pilot testing, but 
often pilot explorations can be exciting, as you follow your hunches and, 
perhaps, make new discoveries. There are no restrictions— you can adjust and 
restart and run further participants and analyze as you wish, but the results 
are hardly ever for reporting, because you’ve been exploring. Be prepared to 
spend considerable time and effort on piloting, as you aim for a study you can 
conduct within all the practical constraints. Think hard, discuss with others, 
and enjoy the excitement of being creative. Pay careful attention to what your 
pilot participants tell you. After conducting any study you debrief your partici-
pants, meaning you describe the aims and how their participation is a valuable 
contribution. You answer their questions and ask for their perspective. Listen 
carefully and try to see the study through their eyes— then improve it. Finally, 

Pilot testing is 
exploration that 
guides selection 
of all aspects of 
a planned study. 
It should lead to 
preregistration.
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you decide that you’re ready to formulate your research plan. If possible, pre-
register that plan, then run your study, with good reason to hope it will answer 
your research questions.

Piloting is required even for a replication study. For a close replication, the 
goal is to mimic the original study as closely as possible, and for this you need 
piloting. You need to practice to make sure the protocol is being administered 
correctly, and that your participants experience the stimuli the same way as 
the participants in the original study. It’s important, if possible, to contact the 
original researchers. With their cooperation, you can obtain the original mater-
ials and discuss any points of confusion that arise as you pilot. Let’s go behind 
the scenes of a close replication.

Behind the Scenes: Lucky Golf Ball Replications
In Chapters 7 and 9 we met the close replication that Calin- Jageman and 
Caldwell (2014) conducted of Damisch 1, the lucky golf ball study. Here’s some 
of what took place behind the scenes.

We contacted Lysann Damisch, who provided us with tremendous 
assistance— information on the exact putter used, where to place the golf tee, 
and what feedback to provide after each shot. To be really sure we were admin-
istering the study correctly, we made a videotape of our pilot procedure and sent 
it to her for review. This turned out to be really important— she reported that 
our lab assistant was too jovial when saying that the ball was lucky, which a 
participant could have interpreted as a lack of conviction. With this feedback, we 
retrained the lab assistants to match the demeanor in the original study. Protocol 
videos are becoming another important Open Science practice for increasing 
replicability— after all, if a picture is worth a thousand words, just imagine how 
useful a video is for conveying what, exactly, was done in the original study.

PREREGISTRATION

You wouldn’t want to board an aircraft if the pilot didn’t have a clear plan for 
getting to the destination. Open Science tells us the plan should, where possible, 
be preregistered before takeoff. Think of your research plan as a statement of your 
research questions, then the Method section of your final report, plus much of 
the Results section although without any data. You therefore need to consider:

Research questions— Express these in estimation terms (“To what extent?”).
Participants— Who do you wish to participate and how will you recruit 

them? The big question is N— how many— which we’ll discuss at length below.
Materials— Instructions to participants. Stimuli to be presented. Tasks to 

be completed. Measures.
Procedure— A time line of events during a testing session: instruction, prac-

tice, testing, debriefing.
Data preparation— Data coding and checking.
Exclusion rules— Should we really exclude any data as problematic? 

Unfortunately, participants may not follow instructions, may exhibit careless 
responding (such as filling in the same answer over and over), or may fail to 
complete the study. You don’t want to include junk data— responses that prob-
ably lead to longer CIs, the opposite of what we want. It’s reasonable to have 
exclusion rules, provided that (i) they are stated in advance, and (ii) you report 
fully about any exclusions you make. For example, in the pen– laptop study 
the researchers could have decided to exclude any participant who scored 0% 
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for conceptual knowledge, taking that score as evidence of a participant who 
didn’t take the study seriously. Looking carefully at your pilot data often helps 
with formulating the rules, because it can reveal participant misunderstand-
ings and the range of responses to expect. Also think carefully about any data 
point that’s excluded: Is it offering an unexpected message you need to hear?

Data analysis— Effect sizes to be calculated and details of all analyses to be 
run, to provide answers to your research questions.

Studies vary enormously— tasks in the lab, a questionnaire in the shopping 
mall, systematic observations at the zoo, a survey posted on social media— so 
the above list is only a general guide. Adjust it to suit your study.

Preregistration may sound daunting, but the process is actually easy thanks 
to the Open Science Framework, which provides free online accounts that ena-
ble researchers to upload their materials and research plan in advance of data 
collection. When you are ready, a simple click of the button creates a citeable, 
permanent, unalterable preregistration of all your plans.

We always need to bring critical thinking to bear on any new study, but 
seeing a preregistration badge helps us feel confident the study was thought 
through in advance, rather than shaped in consultation with the data.

You might be wondering why, when I’m saying it’s so important, you 
don’t see many preregistration badges in journals. That’s an excellent question. 
It’s partly because preregistration is not always possible, but mainly because, 
although preregistration has long been practiced in some medical research 
fields, appreciation of its importance has only recently been spreading in other 
disciplines. I hope and expect it will become common.

One of the benefits of the Open Science push for preregistration is that it’s 
now possible for anyone, including students, to browse the preregistered plans 
for completed studies and for those currently in progress. Reading these plans 
can be incredibly helpful, giving you a better sense of what goes into planning 
a study and what fascinating questions researchers are currently investigating. 
Here are some of my current favorites:

 ■ Collaborative Replications and Education Project (CREP) osf.io/wfc6u: This is 
an exciting project that encourages groups of undergraduate students, 
supported by their professors, to replicate published studies they choose 
from a list, probably as part of their statistics or methods course. Start by 
reading the wiki.

 ■ Investigating Variation in Replicability: A “Many Labs” Replication Project osf.io/ 
wx7ck: This was a landmark collaborative effort by numerous different 
labs from around the world to replicate 13 famous psychology studies. It’s 
a treasure trove of materials, data, and ideas. Check out the videos used to 
ensure the replications were as similar as possible to the original studies. 
Click on “final manuscript” and examine Figure 1, which compares the 
replication and original results for all 13 effects. Caruso et al. (2013), the 
currency priming result I mentioned at the start of this chapter, is bottom 
in the figure, and shows a large discrepancy between the original result 
(indicated by a cross) and all the replication results (dots).

 ■ RRR –  Strack –  Chasten osf.io/4rh87: This is a project page made by undergrad-
uate psychology major Kelsie Chasten. For her Honors project, Kelsie applied 
to be part of a large, registered replication of the facial feedback hypothesis, 
organized by Beek, Dijkhoff, Wagenmakers, and Simons (2014, see osf.io/ 
pkd65). Kelsie’s application was accepted, so she ran participants at her   

Preregistration 
greatly reduces the 
risk of questionable 
research practices, 
and provides 
fascinating 
information about 
studies currently in 
progress.



264

O
pe

n 
Sc

ie
nc

e 
an

d 
Pl

an
ni

ng
 R

es
ea

rc
h

own university using the exact protocol and materials developed for the 
overall project. She uploaded her final data to the project page.

10.5 At osf.io, use the search function (magnifying glass, top right) to find 
studies you may be interested in. Often there are many files listed, but 
a .pdf or .docx file is most likely to be a plan or report that’s interesting 
to read. Or click to open the project’s wiki, which usually starts with an 
overview. Or sign up, log in, and go to Browse/New Projects at top right. 
Use the links at left to see popular projects and popular registrations.

OPEN MATERIALS AND DATA

To have the full story we need access to the materials and data of any study 
we care about. The Open Materials and Open Data badges indicate that a pub-
lished study provides that information. Mueller and Oppenheimer (2014), 
for example, earned those two badges, and the article includes a link (osf.io/ 
crsiz) to where anyone can access their materials and data. Calin- Jageman and 
Caldwell (2014), the two replications of the Damisch study, earned those two 
badges and, in addition, the preregistration badge (osf.io/fsadm).

Open sharing in this way has many benefits: It makes meta- analysis easier, 
allows anyone to check for errors of analysis and interpretation, and makes 
it much easier for others to replicate your work. In addition, researchers can 
analyze your data in different ways, perhaps to address different research ques-
tions. Of course, you must not post sensitive or identifying information about 
your participants, and you need to be sure your participants have consented 
to anonymous data sharing. When at the outset of your study you seek ethical 
approval, you should describe how you plan to remove identifying information 
and then place the materials and data on open access.

You might feel that, having made the enormous effort to 
collect your precious data, you want to be able to use it as part 
of future research, rather than release it immediately to other 
researchers. When there are good reasons, it can be acceptable 
to delay release of full data while you work further with it, but 
usually 12 months should be the maximum delay before it is 
made openly available.

What about your final full report? You’ll probably want to 
seek journal publication, but another option is simply to place it 
on open access in the Open Science Framework. Recall that the 
first of the Ioannidis problems is selective publication, and the 
Open Science solution is for every study carried out to a reason-
able standard to be made publicly available, whatever the results. 
Make sure you fulfill your responsibilities by making your report 
available, so your findings will be available for possible inclusion 
in future meta- analyses.

To summarize, here’s a five- stage view of a research study:

1. Pilot exploration— Use pilot studies to explore as you wish. Refine your 
research questions, tasks, and measures. Decide the details of a study that’s 
likely to be most informative. Formulate a detailed research plan, including 
your planned data analysis.

Open materials and 
open data assist 
replication, meta- 
analysis, and follow- 
up research.



265

Precision for Planning

2. Registration, planned analysis— If possible, preregister the research plan. Run 
the study and carry out the planned analysis.

3. Exploratory analysis— If you wish, explore the data further. Watch out for 
exciting discoveries, although any conclusions are speculative.

4. Full report— Report the whole study in full detail. Make the materials and 
data openly available, to the extent that’s possible.

5. Seek replication— You expected this to appear in the list, didn’t you? Even if 
your main finding was planned— and even more so if it was exploratory— 
you should seek, if possible, to investigate how robust and replicable it is 
by either conducting a replication yourself, or seeing if you can arrange 
for others to replicate your work. Then meta- analysis can integrate the 
results. More broadly, always have meta- analysis in mind as you consider 
what further studies would be valuable.

Quiz 10.1

1. What are the three problems identified by Ioannidis?
2. State whether or not each of the following is a questionable research practice:

a. Deciding to drop some outliers from the analysis.
b. Examining the data, then deciding to run some additional participants.
c. Reporting full details of the data analysis.
d. Preregistration of a research plan.
e. Seeing the results and then deciding to use Cohen’s d.

3. p- hacking is
a. the use of questionable research practices to achieve statistical significance.
b. the combination of p values from different studies, as a form of meta- analysis.
c. appreciation that larger p values (values > .05) can be valuable.
d. an important component of Open Science.

4. Researchers have been reluctant to carry out replications because
a. there seems little point, once a finding has achieved statistical significance.
b. journals prefer to publish new findings, not replications.
c. journal publication is required for career advancement.
d. All of the above.

5. Psychological Science recommends use of NHST /  estimation, to avoid problems associated 
with NHST /  estimation.

6. The three Open Science badges are for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , and  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

PRECISION FOR PLANNING

Now let’s turn to the central planning issue of deciding on N. First I’ll take an 
estimation approach and consider what N we should use to get a sufficiently 
short CI. In other words, what N do we need to obtain a sufficiently precise 
answer to our research question? Recall that our measure of precision is the 
margin of error, MoE, which is half the length of the 95% CI. Consider planning 
a follow up to our Chapter 1 survey, which gave MoE of 2%. If we want a more 
precise estimate, say within ±1% instead of ±2%, we need a larger sample. We 
would choose 1% as our target MoE, meaning the MoE we’d like to achieve. 
Then we want to find the N that’s likely to give us that target MoE. The rough 
guideline I mentioned in Chapter 1 tells us that, approximately, to halve MoE, 
we should multiply N by four.

Larger N gives 
smaller MoE, and 
thus higher precision.
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Target MoE is the precision we want our study to achieve.

We need to take that relationship between N and MoE further. Large N is 
good because it gives higher precision— our estimate is likely to be closer to the 
true value. On the other hand, large N requires more time and resources and 
may not always be feasible. We need to weigh up costs and benefits— indeed 
some scientists have argued that choosing N carefully is an ethical obligation 
(Button et al., 2013), since we ought to be able to assure participants when 
recruiting them into the study that their time won’t be spent in vain.

Let’s take as an example the replication of Damisch 1, as we discussed 
in Chapter 9. Figure 10.1 shows the results from six Damisch studies, and a 
meta- analysis of them. The six studies had similar precision— all CIs about the 
same length— and the mean MoE for all six was 0.74. The figure also reports 
near red 12 and 13 that the meta- analysis result was 0.82 [0.53, 1.11], and 
MoE of 0.29 is marked. The effect size measure selected by the radio button 
at red 2 is d

unbiased
, so MoE is expressed in the units shown on the d

unbiased
 axis 

at the top in the figure, which I’m assuming are units of population SD. The 
Damisch studies all used two independent groups, with average group size 
of around N = 16.

Using the rough guideline, if our replication of Damisch used two groups 
each four times as large (i.e., with N = 64), we’d expect MoE of around half of 
0.74, or 0.37. With N larger than 64, we’d expect even smaller MoE. For a more 
detailed view of the relationship between N and MoE, we need Figure 10.2, 
in which the heavy black line is a graph of N against MoE, for a study with 
two independent groups each of size N. MoE is plotted on the horizontal axis 
in units of population SD, the same units we’re assuming that d, or d

unbiased
, is 

expressed in.
We can use the slider at the bottom to position the vertical cursor labeled 

Target MoE at the MoE value that we’d like our study to achieve. Target MoE is 
expressed in units of population SD. The numbers on the black curve show how 
required N increases dramatically as we aim for shorter and shorter 95% CIs 
by shifting the cursor left to specify smaller and smaller values of target MoE. 
The values of N are based on our usual statistical model of random sampling 
from a normally distributed population, and assume CIs are calculated using 
t. In Figure 10.2 I’ve set the cursor to highlight, for example, a target MoE of 
0.4. The cursor indicates that we need N = 50 to expect to achieve that MoE.

How should you choose target MoE? Good question, and I’ll say more 
about this later. Here we’ll use MoE from the Damisch studies and MoE from 
the meta- analysis as starting points. We could also consider the effect size we 
expect to find, or the ES that would be of interest to find— the smaller this is, 
the higher the precision we probably need to identify the effect clearly. Later 
I’ll suggest the rough guideline that target MoE of half the expected effect size 
is desirable, although this may not always be practical to achieve.

One approach to selecting N would be to choose a value for target MoE, 
then read off from Figure 10.2 the N that’s likely to give that MoE, and simply 
use that N in your study. It’s better, however, to consider a number of values 
for target MoE and note the N required for each. Understanding the trade- off 
between target MoE and N gives a better basis for weighing the costs of running 
N participants against the benefits of achieving a particular level of precision. 
This approach of considering precision in order to choose N is called precision 

When planning 
research, consider 
what MoE a 
particular N is likely 
to give.

The heavy black 
line in Figure 10.2 
shows how required 
N increases 
dramatically as 
we choose smaller 
target MoEs.

Use past research 
and perhaps the 
expected effect size 
to guide your choice 
of target MoE.

Precision for 
planning bases 
choice of N on 
the MoE the study 
is likely to give. 
Consider N for 
various values of 
your target MoE.
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for planning. It’s also called AIPE— accuracy in parameter estimation— which 
is another good description of this approach to planning.

Figure 10.2. Graph of N against target MoE for a study with two independent groups of size N. The number on the cursor 
indicates N = 50 is required to achieve target MoE = 0.4, on average. From Precision two.

10.6 Referring to Figure  10.2, what N is needed for target 
MoE = 0.6? For 0.3? How well do those two values of N 
match with our rough guideline?

10.7 a.  If a study uses two independent groups of 16, what MoE 
do you expect for the CI on the difference between the 
two group means?

b. Compare your answer with MoE reported in Figure 10.1 
for the six Damisch studies. Explain.

10.8 Suppose you decide your replication of the Damisch studies 
should have about the same precision as the meta- analysis of 
all six of those studies. What target MoE should you choose, 
and what N would you need?

10.9 a.  The Calin 1 and Calin 2 replications shown in Figure 9.7 
used average N of 59. What precision would you expect 
they found?

b. Average MoE for Calin 1 and Calin 2, as pictured in 
Figure 9.7, was 0.36. Is that as you expected?
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10.10 Fire up ESCI intro  chapters 10– 16 and go to the first precision page, 
Precision two. You should see Figure 10.2. If not, move the cursor to 
0.4. Your chosen target MoE is shown also at red 1.

10.11 Find N for target MoE = 0.2, and 0.1. You will need to investigate the 
small slider at red 4.

The main curve in Figure 10.2 tells us something fundamental about how 
independent groups studies work. Whatever your area of research, if you have 
independent groups each with N = 32, then expect the CI on the difference 
between the group means to have MoE around 0.50, or half a population SD. 
You might even care to remember those values of N = 32 and MoE = 0.5, as 
part of your intuitions about group sizes and what they can tell us. Yes, that’s 
moderately large N and, even so, quite a long CI, but that simply reflects the 
extent of sampling variability, which often is disappointingly large.

Sorry, but now I need to discuss a small complication. Fortunately, assur-
ance can help us out.

Obtaining Target MoE With Assurance
The main curve in Figure 10.2 tells us the N that will on average give a CI with 
MoE no greater than the target MoE we have chosen. However, any individual 
study may give MoE that’s smaller or larger than target MoE.

Recall that, in the dance of the CIs, not only the sample means but also 
the CI lengths bounce around. Unless, that is, we know σ, the population SD, 
which we hardly ever do. Here I’m assuming that, as usual, we don’t know σ, 
and therefore CIs will vary in length over replications. In Figure 10.2, the small 
brown curve labeled MoE distribution illustrates how MoE varies over repeated 
studies, with N = 50. The small vertical line to the left is the curve’s probability 
density axis. The curve tells us MoE is most likely close to 0.4, and usually lies 
between 0.35 and 0.45. Rarely will MoE be as small as 0.3 or as large as 0.5.

That little curve is worth thinking about for a moment. If we run our study 
over and over, always with N = 50 in each group, MoE will bounce around— the 
CIs will vary in length. The curve tells us that, on average, MoE will be 0.4, and 
most often will lie between 0.35 and 0.45. Also, there’s about a 50% chance we’ll 
be unhappy because our study gives MoE larger than target MoE, larger than 0.4.

Now for the crucial step. We know that N = 50 will give us our target MoE 
of 0.4 on average, but that’s not good enough. We also know that using larger 
N means that MoE found by our study will on average be shorter, but how 
much larger must N be before MoE found by our study will almost certainly 
be less than 0.4, our target MoE? How large an N should we use, to be pretty 
sure we’ll obtain MoE no more than target MoE?

The answer is N = 65, but, to explain why, I need the concept of assurance. 
In Figure 10.3 the curve shown in Figure 10.2 still appears, but is light gray, 
and above it is displayed a red curve. This red upper curve is the assurance curve, 
which tells us that N = 65 is required for us to obtain target MoE of 0.4 with 
99% assurance. Assurance is the probability, expressed as a percentage, that 
an individual study gives MoE no more than target MoE. Using N specified by 
the assurance curve, I can be 99% sure my study will obtain MoE that’s no 
larger than target MoE. The red assurance curve tells us that, if we use N = 65, 
in the long run only 1 study in 100 will have MoE greater than our target of 
0.4— assuming, as usual, that our statistical model applies.

Independent groups 
each with N = 32 
give MoE = 0.5, on 
average.

Increase N from 50 
to 65 and, on 99% 
of occasions, the 
MoE will be less than 
or equal to a target 
MoE of 0.4.

The MoE distribution 
illustrates how MoE 
varies from study 
to study.
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Assurance is a bit tricky at first— maybe read the above paragraph again. 
Better still, close the book and say in your own words what N = 65 gives us. 
With target MoE of 0.4, why might I prefer to use N = 65 rather than N = 50?

Assurance is the probability, expressed as a percentage, that a study obtains MoE no more 
than target MoE.

Click the lower button at red 2, which is labeled N curve for target MoE, 
with 99% assurance, to see the red assurance curve.

The numbers on the cursor in Figure 10.3 tell us we need to increase N from 
50 to 65 to achieve 99% assurance that our study will obtain MoE no more than 
0.4. The MoE distribution curve at the bottom shows variation in MoE when 
N = 65. That curve in Figure 10.3 has shifted left, so only a tiny upper tail area 
is to the right of the cursor— corresponding to the mere 1% chance that MoE 
is greater than the target MoE marked by the cursor.

10.12 Consider the MoE distribution curve in Figure 10.3.

a. About what MoE is most likely? What range includes most MoE 
values?

b. Consider the lower, gray curve in Figure 10.3. Using N = 65, about 
what MoE do we expect on average? Compare with what the MoE 
curve in Figure 10.3 tells us.

10.13 Suppose you want greater precision.

a. Would you select a larger or smaller target MoE? Would you need to 
move the cursor in Figure 10.3 to the left or right?

b. Would the MoE distribution curve shift left or right? Would N be larger 
or smaller?

10.14 Meta- analysis of the six Damisch studies had MoE = 0.29. Exercise 10.8 
asked that a replication should have MoE of about 0.29, on average. You 
probably chose target MoE of 0.3 and found N = 87. What N should we 
use to be 99% assured that our MoE is no more than 0.3?

10.15 Recall the dance of the CIs. When, as usual, σ is not known, CI length 
(and therefore MoE) varies over the replications. With larger N, does 
MoE vary more, or less? Would the distribution of MoE values be wider 
or narrower?

10.16 a.  For smaller target MoE, is the required N larger or smaller? Does the 
MoE distribution curve shift left or right?

b. Does that distribution become wider or narrower? Explain.
c. What happens to the width of that curve for larger target MoE?
d. Test your predictions in ESCI.

Before moving on to the paired design, I have three comments. First, some 
of the exercises used the curves in Figures 10.2 and 10.3 not to plan a future 
study, but to look at values of MoE and N in past studies. The relation between 
MoE and N should be the same for a study already completed and one yet to 
be run. Because of sampling variability, we can’t predict exactly the MoE of 
any individual study. Even so, we can use the curves to help plan a study, then 
later to check that the MoE obtained in our study is reasonable, given the N 
we used. A MoE that’s very different from what we’d expect might signal an 
error in our planning, doubt about our statistical model, or that something 
else strange is going on that we should investigate.
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For the paired 
design, precision is 
greatly influenced 
by the population 
correlation between 
the two measures. 
High correlation 
gives high precision, 
meaning a short CI.

The population 
correlation, ρ, 
between the two 
measures in pretest–
posttest studies is 
often in practice 
around .6 to .9.

Second, we express target MoE in population SD units. You might be 
thinking, however, that we hardly ever know σ, so how can we use precision 
for planning based on σ, the population SD? That’s an excellent question. The 
best approach is to use Cohen’s d (or d

unbiased
) as our measure, and interpret 

values as numbers of population SD units, as we did in Chapter 9, and when 
we were discussing the Damisch and Calin studies above.

Finally, consider again our replication of Damisch 1. We’ve explored pos-
sibilities, but what N should we choose? We want our replication to stand up 
well alongside the original study, or, in this case, the meta- analysis of the six 
Damisch studies. This suggests it should be no less precise than the meta- analysis 
result, for which MoE = 0.29. Figure 10.3 tells us that N = 108 for each group 
would give MoE of 0.3 with 99% assurance, while N = 125 would give MoE of 
0.25 on average. For our study to have similar precision to the meta- analysis 
result, we need to consider values like those. They are, of course, much larger 
than the group sizes of around 16 that each of the Damisch studies used.

If there are many previous studies, however, the meta- analysis may have 
a very short MoE and it may be unrealistic for us to use that as our target MoE. 
We might instead be guided in our choice of target MoE by what effect size 
we expect, or that the meta- analysis obtained. A little later I’ll suggest that 
choosing target MoE to be half the expected ES can be a useful strategy. In any 
case, when thinking of replication we should, for a start, consider aiming for 
greater precision than the original study achieved, if that’s feasible. Such higher 
precision is likely to require larger N.

The Paired Design
In Chapter 8 we discussed pretest– posttest studies, as a common example of the 
paired design. Our main examples were the Thomason studies in which groups 
of students gave pretest and posttest critical thinking scores. One important 
conclusion was that the paired design can give high precision, meaning a short 
CI on the mean of the differences. It does so when the differences are consistent 
over participants, in which case s

diff
 is small and the correlation between the two 

measures— pretest and posttest scores— is high. I mentioned that correlation, 
r, takes values from −1 to 1, with values closer to 1 indicating strong positive 
correlation between the two variables. We’ll discuss correlation in Chapter 11, 
but in this chapter we need it as an important aspect of the paired design. The 
key point is that the higher the correlation between the two measures, the 
shorter the CI, the higher the precision and the happier we are.

In Chapter 8, ESCI reported correlation r that was calculated from the 
paired design data. That’s the sample correlation. We can also consider the 
correlation of the two measures in the population. I’ll use the symbol ρ (Greek 
lower case rho, “roe”) for the population correlation. Take care: Don’t confuse 
correlation ρ with p as in p value. As you would probably guess, we often use 
sample r, calculated from data, as an estimate of the population correlation ρ. 
Chapter 11 has much more on that, but, now, back to the paired design.

In the previous section we explored how target MoE depends on N for 
independent groups. For the paired design it depends on N and also on the 
correlation. This is great news because a high correlation means a smaller N 
is needed to achieve target MoE. The complication is that, to use precision 
for planning, we need to know the correlation. However, before carrying out 
the study, how can we know what value of correlation to expect? I’ll discuss 
later how we might choose a population correlation value to enter into our 

For precision for 
planning, use 
Cohen’s d, assumed 
to be in units of 
population SD, σ.

A replication should 
usually have N at 
least as large as the 
N of the original 
study, and probably 
larger.
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precision for planning calculations, but for now I’ll just say that, in practice, 
pretest–posttest studies often find quite large positive correlations, between 
about .6 and .9.

For Figure 10.4, I chose ρ = .70 as a typical value. The cursor at target 
MoE = 0.4 tells us that, assuming ρ = .70, a single group as small as N = 17 
gives MoE not more than 0.4, on average— that’s the lower, gray curve. It also 
tells us we need a much larger group, with N = 28, to achieve target MoE with 
99% assurance— that’s the red upper curve. The small brown MoE distribution 
curve at the bottom shows the spread of MoE values we expect for N = 28.

10.17 Open the Precision paired page and set it up as in Figure 10.4.
a. At red 1, change ρ to .60 and note how N changes. The curve may 

take a moment to update.
b. Change ρ to .80, and note how N changes. Try .90. What do you conclude 

about the influence of the correlation between pretest and posttest?

Table 10.1 reports selected summary statistics from three Thomason studies 
we saw in Chapter 8. The values of r in the rightmost column are the correlations 
of pretest and posttest scores in each study. They are estimates of population 
correlation ρ, which I’ll assume is the same for all studies. The r values in the 
table vary, perhaps largely because of sampling variability.

Consider the statistics for Thomason 1. Is it reasonable that a single group 
of N = 12 gave MoE of 0.35, with correlation r = .89? Figure 10.5 displays the 
curves for ρ = .89 and target MoE = 0.35, and shows that N = 10 would, on 
average, obtain MoE of 0.35, and that N of 17 is required before we could be 
99% assured our MoE would be no more than 0.35. It’s therefore perfectly 
reasonable that Thomason et al. found this MoE with their N of 12.

10.18 Enter ρ = .60 and target MoE = 0.30 to match Thomason 3 as closely as 
possible.

a. What N would give this MoE on average? What N is required for 99% 
assurance?

b. Is it reasonable that Thomason 3 found MoE = 0.32? Why?

I hope you are getting a feel for how both ρ and target MoE influence N. 
Small changes in target MoE, especially for values below about 0.5, give quite 
big changes in the required N. Similarly, even small changes in ρ make quite 
large changes in required N. For a given N, larger ρ gives higher precision, 
meaning smaller MoE. Correspondingly, larger ρ means that smaller N is needed 
to achieve a particular target MoE.

Now let’s consider the critical thinking study we wish to run. I’ll first use 
ρ = .70. That’s a somewhat arbitrary choice, but roughly guided by the values 
reported in Table 10.1, especially Thomason 3, the largest study. I would like 
to estimate the gain in critical thinking more precisely, so I’ll choose target 
MoE = 0.25. ESCI tells me that, with ρ = .70, we need N = 40 for average 
MoE = 0.25, and N = 58 for 99% assurance. We could use those values of N to 
guide our planning, but it would be better to explore further by trying a few 
different values of ρ and target MoE.

10.19 If you aim for higher precision, with target MoE = 0.20, what N would 
you need?
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10.20 If you ran the study with N = 58, and population correlation is actually 
ρ = .80, about what MoE would you expect to get? A rough eyeballed 
answer is sufficient.

Further exploration with Precision paired could help us understand bet-
ter the influence of ρ and N on the precision we might expect our replication 
study to achieve, and thus help us choose N for our study. We’re not seeking 
a single “correct” N to use, but guidance as to the approximate consequences 
of various choices of N.

What value of ρ should we specify when using Precision paired? 
Sometimes, as above, there are previous similar studies and we can be guided 
by the correlations they report. Often, however, reports of research don’t 
report those correlations. If full data are available we can calculate the cor-
relations, but otherwise we would need to contact the researchers and ask. 
In any case, especially with small studies, the correlations calculated from 
data are not precise estimates of population correlation ρ, and so may be a 
poor guide to what correlation our study is likely to find. If there are no rea-
sonably similar studies, all we can do is guess. An extreme choice would be 
zero, which is the population correlation for independent groups. However, 
paired designs with human participants in psychology and education often 
find correlations between about .6 and .9, so it’s often reasonable to use such 
values when planning.

After we’ve completed our study we’ll calculate and report the correlation 
r between the measures, and note how it compares with the ρ values we used 
during planning. That could be interesting, and may also help plan any future 
similar studies.

I’ll now discuss a practical strategy for using precision for planning.

A Strategy for Using Precision for Planning
Cohen’s d is our measure, assumed to be in units of σ, the population SD. Target 
MoE is expressed in the same units. Even when, as usual, we don’t know σ, 
we can still use population SD as the unit for precision for planning. Here’s an 
example that shows how.

Suppose we have just taken delivery of a new driving simulator and are 
planning a study to compare the response times of experienced and novice 
drivers to sudden unexpected stimuli. We may have no idea of population SD 
for response time. We could still use Precision two to tell us that two groups 
with N = 32 will on average give us MoE of 0.5 population SDs. Suppose we 
suspect— or previous research suggests— that there is a population difference 
between experienced and novice drivers of around Cohen’s d = 0.8, which 
is a number of population SDs. On the left in Figure 10.6 I’ve shown δ = 0.8 

Table 10.1 Summary 
Statistics for Three 
Thomason Critical 
Thinking Studies 
With a Paired Design

Study N

ES
(Posttest –  Pretest)

d
unbiased

MoE of CI on ES

Correlation, r,
of Pretest and 

Posttest

Thomason 1 12 0.50 0.35 .89
Thomason 2 16 0.34 0.30 .87
Thomason 3 39 0.64 0.32 .60
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with MoE of 0.5, which is roughly what we’d expect if we ran the study with 
two groups of N = 32 and δ is in fact 0.8. That’s what we’d expect on average in 
the long run, and any single study would give d and MoE differing from these 
because of sampling variability. We should also note that N = 44 would be 
needed for 99% assurance of achieving MoE = 0.5 or less.

If we’d like greater precision we could, for example, consider target 
MoE = 0.30, as shown on the right in Figure 10.6. Precision two tells us that 
N = 87 is needed to achieve MoE = 0.30 on average, and N = 108 if we want 
99% assurance. We can, of course, also find N for any other target MoE values 
we might wish to consider.

Do we need to consider, as part of planning, the likely size of the effect 
we’re estimating? In Figure 10.6, I assumed a value, δ = 0.8, for population 
effect size, but precision for planning doesn’t require any consideration of 
the effect size. When discussing N and MoE of the Thomason studies I didn’t 
refer to the values of d

unbiased
, the effect size reported in Table 10.1. Our focus 

is on precision, indicated by MoE. We can weigh up MoE = 0.5 or 0.3, as 
illustrated in Figure 10.6, and consider how useful it would be to estimate 
the effect size, whatever it is, within ±0.50, or ±0.30, or more generally 
±(target MoE). Our focus is on the ±, the precision, the maximum likely error 
of estimation. That’s estimation thinking, and what a precision approach to 
planning encourages.

Even so, it’s often useful to have at least a rough idea of the effect size we 
might expect, especially if we’d like our study to give a CI that’s some distance 
from zero, to give strong evidence the effect size is nonzero. If that’s an aim, 
then a reasonable strategy is to aim for target MoE that’s half the expected effect 
size, meaning we’d investigate target MoE = 0.4 if the expected effect size is 0.8 
as in Figure 10.6. In practice, that strategy may require unrealistically large N 
and we may be forced to consider larger target MoE.

Consider again a replication to investigate the Damisch results in Figure 10.1. 
So far I’ve referred to MoE of the individual studies and of the meta- analysis 

For precision for 
planning, there’s no 
need to consider the 
effect size, although 
doing so can often 
be helpful: Consider 
target MoE of 
half the expected 
effect size.

N = 32 N = 87

N = 44 N = 108

Average

Assurance
0

0.5

1

1.5
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MoE = 0.50

MoE = 0.30

Figure 10.6. Means and 95% CIs for the difference between the means in an independent groups 
study. These results are expected, on average, if population effect size is δ = 0.80 and each group 
has N = 32 (on left), or N = 87 (on right). Any single study will give results differing from these 
because of sampling variability. For 99% assurance, target MoE of 0.50 requires N = 44, and target 
MoE of 0.30 requires N = 108, as indicated at the bottom.
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Precision for 
planning keeps the 
focus on effect sizes 
and estimation at 
every stage, from 
planning through 
to interpretation of 
results and beyond.

result. Now consider the effect sizes: All studies found d
unbiased

 around 0.7 to 
0.9, and the meta- analysis result was 0.82, with MoE = 0.29. If the true effect 
is much smaller, a replication study is likely to give an estimate closer to zero, 
in which case MoE even as large as around 0.4 might suggest a disagreement 
with the Damisch results.

10.21 Suppose meta- analysis of the Damisch results estimated an effect of 0.4 
instead of 0.82, again with MoE = 0.29. Would you recommend using a 
smaller target MoE? Explain.

In summary, to use precision for planning we need to choose

1. a design,
2. target MoE, and,
3. in the paired case only, a value for ρ.

Then ESCI can tell us the values of N needed to achieve target MoE on average, 
and with assurance. We could consider different designs as well as various values 
of target MoE (and perhaps ρ), to get a good understanding of our options. Then 
we can weigh up costs and benefits and choose a design and N. Making such 
choices must remain a matter for judgment. It can’t be reduced to a formula 
or a few bullet points, and must, of course, take into account the practicalities 
of available time, resources, and participants.

Often, unfortunately, precision for planning suggests that a disappoint-
ingly large N is needed. If so, we might increase target MoE, or consider other 
designs— perhaps paired? Or we might seek other researchers interested in 
running similar studies, so we could combine results using meta- analysis. We 
might even have to conclude that we don’t have the resources to conduct a 
useful study, and need to revise our research plans totally. In any case, preci-
sion for planning provides useful guidance in advance of conducting research.

Finally, I’ll mention a great strength of precision for planning, which is 
that there is good continuity from the planning stage through to analysis and 
interpretation, and perhaps further to replications and meta- analysis. At every 
stage we think of estimation— of estimating the parameter of interest. Before 
the study we consider what precision of MoE = 0.3, for example, means in the 
research context. After running the study, we consider what the MoE calcu-
lated from our data (maybe around 0.2– 0.4?) tells us about the uncertainty in 
our results. In advance, when planning, we might consider the importance of 
likely values of Cohen’s d and, during interpretation, we do exactly the same 
for the d we obtained in the study. Precision for planning keeps our focus on 
effect sizes and estimation at every stage of research.

Quiz 10.2

1. Precision for planning requires choice of target _ _ _ _ _ _ _ _ _ _ , which is expressed in units of  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

2. To aim for a CI half as long, expect required N to be about _ _ _ _ _ _ _  as large.
3. Assurance of 99% means that

a. target MoE refers to a 99% CI.
b. the population correlation is .99.
c. on average, 99% of studies will have MoE greater than target MoE.
d. 99% of studies will have MoE no greater than target MoE.
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4. For independent groups, precision for planning analysis indicates that N = 32 will give MoE of 
0.50 on average. For assurance of 99%, required N will be smaller /  larger. Reduce target MoE 
and required N will be smaller /  larger.

5. For a paired design, increase ρ and required N will decrease /  increase. Increase target MoE 
and required N will decrease /  increase.

6. For a paired design, required N is strongly influenced by _ _ _ _ _ _ _ _ _ _  and also by _ _ _ _ _ _ _ _ _ _ , 
which has symbol _ _ _ _ _ _ _ _ .

PLANNING USING STATISTICAL POWER

This second approach to choosing N is based on NHST. It asks, “What N is likely 
to give a sufficiently small p value that we can reject H

0
, assuming there is an 

effect of a particular size?” We need the concept of statistical power, and to discuss 
power we need the following NHST concepts that we discussed back in Chapter 6:

 ■ Type I error rate, α, often .05, which is the criterion for rejection: Reject H
0
 

if p < α. Rejecting H
0
 when it is true is a Type I error, a false alarm.

 ■ Strict NHST, which requires statement of α in advance— which here means 
before any power calculation.

 ■ The alternative hypothesis (H
1
), which states that there is an effect. When 

we reject H
0
, we decide in favor of H

1
.

 ■ Type II error, which is failing to reject H
0
 when H

1
 is true. We miss a true 

effect.
 ■ Type II error rate, β, which is the probability of making a Type II error.

Recall also the courtroom analogy to NHST decision making and Table 6.1, 
which illustrated the four possibilities for NHST.

Statistical Power
Informally, statistical power is the chance our experiment will find an effect of a 
particular size, IF it exists. It’s the chance our replication will find a statistically 
significant effect IF there really is a lucky golf ball effect of size, for example, 
0.82. More formally, power is the probability we’ll reject H

0
, for a stated α, 

when H
1
 is true. For power, focus on the bottom right cell in Table 6.1, which 

is labeled “Correctly reject H
0
. We found the effect!”

Statistical power is the probability that a study will find p < α IF an effect of a stated size 
exists. It’s the probability of rejecting H

0
 when H

1
 is true.

To calculate power, H
1
 must state a specific value, for example H

1
: δ = 0.82. 

I’ll refer to the δ specified in H
1
 as the target effect size, because I’m supposing 

the study we’re planning is targeting such an effect. We’re asking about the 
probability it will find an effect of that size, IF it exists.

Target effect size is the value of δ specified by H
1
. It’s the population effect size for which 

we calculate statistical power.

10.22 Explain in your own words the courtroom equivalent of statistical 
power.

Power is the 
probability of 
rejecting H

0
 IF the 

target effect size, δ, 
is true.
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10.23 a.  Consider your intuitions about N. Other things being the same, 
would larger N give higher or lower power? Explain.

b. Consider your intuitions about target effect size: Would a larger target 
effect size be easier or harder to find? Would it give higher or lower 
power? Explain.

The Type II error rate, β, is the probability we won’t reject H
0
 IF an effect 

of the stated size exists. Focus on the top right cell in Table 6.1. Compare with 
the definition of power to see that power = (1 –  β). IF there really is an effect, β 
tells us the glass- half- empty part of the story— the risk we won’t find the effect. 
Power tells us the glass- half- full part by telling us the probability we’ll obtain 
sufficiently small p to be able to reject H

0
 and announce the effect.

Power depends on many aspects of a study, most notably

 ■ the design, for example independent groups,
 ■ chosen α, for example .05,
 ■ target effect size, for example δ = 0.5, and
 ■ N, the size of each group.

When considering power, it’s vital to keep all those relevant aspects of a 
study in mind.

Power for the Independent Groups Design
Figure 10.1 shows that meta- analysis of the six Damisch studies estimated 
the effect to be 0.82 [0.53, 1.11]. To plan a replication, we might want N to 
give sufficient power to find an effect of 0.82. Or we might focus on 0.53, the 
lower limit of the CI and, therefore, the smallest somewhat plausible effect, 
according to the Damisch results. To find values of power for a study with two 
independent groups we can use Figure 10.7.

Figure 10.7 gives power only for a small number of selected, illustrative 
values of α, target effect size δ, and N. In the upper panel, α = .05, and in the 
lower, α = .01. In each panel, an orange curve corresponds to a single value of 
target effect size δ, as marked. Each line shows power for N of 15, 20, 30, 40, 
50, 60, 80, and 100. The upper circled point, for example, tells us that, with 
α = .05, a study with two groups of size N = 30 would have power of .48 to 
find an effect of δ = 0.5, which is traditionally labeled a medium- sized effect. 
Power = .48 means that a study with two groups of 30 has only about a coin 
toss chance (i.e., 50% chance) of finding statistical significance at the .05 level, 
if there is a medium- sized effect.

Surely researchers wouldn’t conduct such low- power studies? However, 
analyses of published research have found that in many research fields the aver-
age power to find a medium- sized effect is only around .50. Around half of such 
studies would, by chance, fail to find statistical significance even when there is a 
medium- sized effect, so are thus unlikely to be published. That’s indeed waste-
ful. Jacob Cohen, the great statistical reformer, explained that power is vitally 
important, and exhorted researchers to consider power and use larger N, or find 
other ways to increase the power of their studies. Over the years, researchers 
have become more aware of power, but, even so, the power of much research 
to find medium- sized effects is often low. A likely reason for this unfortunate 
state of affairs is that researchers follow NHST custom and focus on α and Type 
I errors, while paying relatively little attention to β and Type II errors.

Power = (1 –  β).

Power is often low in 
published research. 
Aim for high power.
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10.24 Explain what the value of .91 for the lower circled point in Figure 10.7 
means.

10.25 Exercise 10.23 asked about your intuitions about how power changes if 
you change N.

a. Use Figure 10.7 to check your answer— read to the right along an 
orange line to see the effect of increasing N.

b. Check your answer to the question about changing target effect size— 
read up a column of power values to see the effect of increasing δ.

10.26 One convention is that power of .8 is adequate. Adopting this conven-
tion, find about what N you need to find a medium effect (δ = 0.5), using 
α = .05. Do the same using α = .01.

If power is .80, there’s a 20% risk of missing an effect of the stated target 
size, because you don’t obtain p < α. Higher power is definitely preferable. Aim 
for .90 or even .95 if you can.
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Power for 
independent groups 
depends on α, 
target δ, and N. All 
must be stated for 
a value of power to 
make sense.

10.27 a.  What N do you need to find a medium effect with power = .90? What 
N for power = .95? Use α = .05.

b. What about α = .01?
c. What about small effects (δ = 0.2), for both those α values?

10.28 With two groups of N = 20, and α = .05, what’s the power to find an effect 
of δ = 0.40? What about δ = 0.50, and δ = 0.60? What do you conclude 
about the influence of target effect size on power?

10.29 Consider planning a replication of Damisch.

a. About what N would you need to have a 90% chance of statistical 
significance at the .01 level if there is an effect of 0.82, the mean 
reported by the meta- analysis in Figure 10.1?

b. What N would you need if there is an effect of 0.53, the lower limit 
of the CI reported by the meta- analysis in Figure 10.1?

10.30 You read a statement that a study used two groups of N = 50 and had 
power of .70. Do you have sufficient information to interpret? Explain.

I’ve said that, for the independent groups design, power depends on α, 
target δ, and N. All must be considered. I hope you are building your intuitions 
about how each of those influences power. Now let’s move on to the paired 
design.

Power for the Paired Design
For the paired design, in addition to α, target δ, and N, we need to consider ρ, the 
population correlation between the two measures, such as pretest and posttest. 
As with precision for planning, to select ρ we might consider previous research 
or use a value around the common values of .6 to .9. Figure 10.8 reports values 
of power for the paired design for α = .05 and the same values of target δ, and 
N that appear in Figure 10.7. Figure 10.8 provides power for just two values 
of ρ, namely .60 and .80. Like Figure 10.7, it’s intended to be illustrative of a 
few common situations rather than a comprehensive tool for finding power.

Compare the values in Figure 10.8 with those in Figure 10.7, for the same 
α, target δ, and N. Aim to build your intuitions about how power varies with 
those aspects of a study, and also with ρ, the population correlation. Here are 
a few things you could try:

10.31 Flip back to Figure 10.7.

a. For two groups with N = 30 and a medium effect, what’s power?
b. For a single group and the paired design with N = 30 and ρ = .60, 

what’s power?
c. What about ρ = .80?

10.32 In Figure 10.8, compare values for ρ = .60 and ρ = .80. What do you 
conclude?

10.33 Suppose you are planning a replication of the critical thinking stud-
ies reported in Table 10.1. Focus on the effect sizes found in the 
Thomason studies, rather than the MoE values.

a. If there is an effect of δ = 0.40, and you assume ρ = .60, what N might 
you choose?

b. What if you assume ρ = .80?
c. Explore some further cases. What might you recommend?
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A Strategy for Using Power for Planning
Do you feel you are developing intuitions about power for the two designs we’ve 
considered? I suggest that the most important intuitions are these:

 ■ Target δ is very influential. Larger δ gives higher power, sometimes dra-
matically higher.

 ■ Type I error rate α is very influential: Lower α means it’s harder to reject 
H

0
, so more misses (Type II errors) and lower power.

 ■ Group size N is influential. Larger N gives higher power.
 ■ For the paired design, ρ is very influential. Larger ρ gives higher power. Put 

another way, larger ρ requires smaller N for the same power.
 ■ Once again the paired design is appealing, when it’s applicable— here 

because it can give high power.
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Figure 10.8. Power for the paired design, with a single group of size N, and α = .05. Upper panel: population correlation, 
ρ = .6. Lower panel: ρ = .8. Each orange line corresponds to a single value of population effect size δ, as marked. In the 
lower panel, no line is shown for δ = .8 because, for that effect size, power = 1.0 for all N of 15 or more.

Target δ and α 
strongly influence 
power, as does ρ for 
the paired design. 
Changes in N also 
often give large 
changes in power.
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Post hoc, or 
observed, power 
is useless, perhaps 
misleading. Never 
use it.

Beware software 
that gives power 
without asking for a 
meaningful value for 
target δ.

Table 10.2 Effect 
Size and Post Hoc 
Power for the First 
Three Simulated 
Replications in 
Figure 7.14

For power calculations, how should we choose target effect size δ? We should 
consider values that are of interest in the research context. We might be guided 
by past research, or by what we guess— or hope— is the true value. We might 
use Cohen’s small- medium- large conventions. Usually it’s best to explore a few 
values, to get a feel for the trade- offs among N, target δ, (and, for the paired 
design, ρ,) and power, all for our chosen α. Exploring those trade- offs should 
inform choice of N, which, as usual, is a matter for judgment. If your focus is 
NHST, a central part of planning should be to explore all those trade- offs to help 
you select your research strategy, especially your design and N.

Post Hoc Power
I need to close this section on power with a caution. Power is most valuable 
when used as part of planning, but it’s possible to calculate power after con-
ducting a study and, further, to use the observed value of d (or d

unbiased
) as the 

target δ. Power calculated that way is called post hoc power, or observed power.

Post hoc power, also called observed power, is power calculated after running the study, 
using the obtained effect size as target δ.

However, there’s a major problem. Results of replications typically bounce 
around considerably. Well, post hoc power values bounce similarly. Recall 
Figure 7.14, which showed the dance of the CIs for 25 simulated replications of 
a study. Table 10.2 reports the first three replications at the top in Figure 7.14, 
with post hoc power for each. The values vary enormously— they can take 
virtually any value across the range from 0 to 1. Post hoc power tells us little 
or nothing beyond the effect size observed in the study. It’s true that a study 
with the design and N of that shown in Figure 7.14 has power of .16 to find 
δ = 0.25 and also power of .97 to find δ = 1.01. However, that’s uninformative 
and perhaps misleading, because for planning we want to know the power 
such a study has to find δ that, beforehand, we’re interested in, or that previous 
research suggests is likely.

In other words, post hoc power values don’t tell us something fundamental 
about our study, but mainly merely reflect the result our study gave. My con-
clusion is that post hoc power is useless. Avoid post hoc power— simply never 
use it. I mention this because, unfortunately, some software packages report it. 
A software package should ask you to specify the target δ you regard as meaning-
ful before it calculates and reports power. If it doesn’t, you are probably seeing 
post hoc power. Interpret any such value with great care or, better, ignore it.

COMPARING POWER AND PRECISION FOR PLANNING

Good research requires good planning. I’ve discussed two approaches to a vital 
part of planning: the choice of N. There are important similarities, and also 
important differences. Here’s a comparison:

Result Effect size, d
unbiased

Post hoc power

1 0.37 .30
2 1.01 .97
3 0.25 .16
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Precision for planning Power for planning

The general aim Choose N, considering costs Same
and benefits

The measure Cohen’s d (or d
unbiased

), assumed Same
to be in units of population SD

The setting Estimation of effect size NHST, statistical significance
The focus MoE, precision of result Power, which is the probability

Small MoE is good that p < α, IF target δ is true—
high power is good.

The specific aim (a) Find N that gives target MoE, Find N to give chosen power,
on average for stated α and target δ
(b) Find N that gives target MoE, (and ρ for paired design)
with assurance

Build intuitions N varies with target MoE (and ρ Power varies with α, target δ,
about how… for paired), on average, and and N (and ρ for paired)

with assurance
One general lesson Required N is often impractically Same

and disappointingly large

Precision or Power: Which Should We Use?
Techniques for calculating power are relatively well developed. Cohen (1988) is 
very helpful, and the G*Power software (tiny.cc/gpower3) is free, and can calcu-
late power for many different measures and designs, way beyond Figures 10.7 
and 10.8. Power is not often mentioned in published articles, but many research-
ers include a power calculation as part of applications for grant funding or ethics 
approval, to justify the proposed design and numbers of participants.

In contrast, precision for planning is less well developed, although tech-
niques and software are advancing quickly. It has excellent potential and 
I expect it to become much more widely used, including for justifying funding 
and ethics applications. As I mentioned earlier, effect sizes and MoE are the 
focus, from planning through to interpretation of a study. This focus continues 
as we think of replications, and meta- analysis to integrate results over studies. 
When planning we need to specify target MoE, and after running the study we 
calculate MoE and can compare with the target, to build our understanding 
and contribute to the planning of further studies.

Power, on the other hand, applies primarily at the planning stage. Later, 
when interpreting the study, focus shifts to p values and statistical significance. 
After analyzing the data we either obtain p < α or we don’t, and can say little 
about the appropriateness of the earlier power calculation. Post hoc power 
doesn’t help and may mislead. A major drawback of power is its dichotomous 
nature. Did you notice the dichotomous language in the power section of 
this chapter? In earlier chapters I’ve mainly spoken of effect sizes, estimates, 
CIs, and uncertainty, but for power I needed to talk of dichotomies, because 
its definition focuses on a dichotomous decision based on whether p < α or 
p ≥ α. In addition, to calculate power we need H

1
 that states an exact value, 

so the two hypotheses, H
0
 and H

1
, assume a dichotomous world in which the 

effect is, for example, either 0 or 0.80. In most cases that’s highly unrealistic, 
because the effect can take any of a range of values. Recall the first red flag:

Beware dichotomous conclusions, which may give a false sense of certainty. Prefer 
estimation thinking.

Precision for 
planning is less well 
known than power, 
but it keeps the 
focus on estimation 
and has great 
potential.

Power is defined 
in dichotomous 
terms, and requires 
assumption of 
dichotomous 
hypotheses, H

0
 and 

H
1
, which both state 

exact values.

Red Flag 1
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 Any researcher who uses NHST needs to understand and consider power, 
but precision for planning has distinct advantages. 

 It’s time for take- home messages. You’ll recall Open Science, and pilot 
testing, preregistration, and badges. Then the two main sections, on precision 
for planning and statistical power. Looking back to my comparison of the two, 
just above, may help you write your take- home messages. Perhaps as you pon-
der a dichotomous choice between healthy apple and indulgent chocolate— or 
decide how much to have of your favorite. 

   Quiz 10.3   

  1.     Power is the probability of  rejecting /  not rejecting /  accepting  H 
0
  when the  null /  alternative  

hypothesis is true. It can take values between  −1 /  0 /  .5  and  0 /  .5 /  1 .  
  2.     If  β  = .10, power = _ _ _ _ _ _ _ _ _ _  and the Type II error rate is _ _ _ _ _ _ _ _ _ _ .  
  3.     To calculate power, we need an exact value of target _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , which is  chosen 

and stated in advance /  by convention taken to be 0.80 , and is the  size of effect /      N   we are 
interested in.  

  4.     In each case, state whether power increases or decreases if everything remains the same 
except that you  
  a.     increase  N .  
  b.     increase  α .  
  c.     increase target  δ .  
  d.     increase  ρ  in a paired design.  
  e.     observe a larger  p  value. (Hey, does this make sense?)    

  5.     Observed power is calculated  before /  after  running the study. For target  δ  the calculation 
uses  chosen  δ  /  obtained    d  . Any value of observed power is most likely  useful /  useless .  

  6.     A disadvantage of power is that  
  a.     it considers only the null hypothesis and a single exact size of effect.  
  b.     it is based on dichotomous decision making.  
  c.     it is usually of little use after a study has been completed.  
  d.     All of the above.       

  10.34     An easy way to increase power is to select a different  α . What change 
in  α  increases power? Is this a good way to increase power? Explain.  

  10.35     Your friend excitedly points to the screen that displays their data anal-
ysis and says that their study had power of .96. What question do you 
ask? Why might you be less excited?  

  10.36     Your ethics review board has traditionally required a power analysis as 
part of any application for approval of empirical studies, to justify the 
proposed  N . You would prefer to submit a precision for planning anal-
ysis instead. Briefl y explain to the board why you think they should 
agree to consider your proposal.  

  10.37     Swap lists of take- home messages with a friend, then revise your list if 
you wish.   

   Reporting Your Work  

 As soon as you begin thinking about a research project you can start developing a 
preregistration document. In fact, drafting and revising a preregistration document isn’t just 
a good Open Science practice; it’s also an excellent way of helping you develop and refine 
your research ideas. 
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 The APA  Publication Manual  (APA, 2010) does not (yet) provide specific guidance on 
preregistration documents, but the OSF provides a very useful template for original projects 
plus a great preregistration checklist for direct replications (Brandt et al., 2014). These 
templates can be completed online ( osf.io/prereg ) or within your favorite word processor 
( osf.io/jea94 ). To access the first of those sites, you need to first register with OSF and login. 
At  osf.io  this is quick, easy, and free. 

 The OSF template for preregistering original projects includes sections for your  sampling 
plan, measures, design, and analysis plan. Each section has prompts to help you think through 
key issues. For example, the design section prompts researchers conducting experiments to 
explain how random assignment will be conducted (an important issue!). Once you feel 
confident in your research plan, you simply upload the completed document to the Open 
Science Framework to create a permanent and citable registration of your research plan. If 
your goal is to publish in a journal with preregistered review (described in  Chapter 16 ), this 
would be the time to submit your research plan to the journal.  

 Once you have completed your research, it is critical to: 

 ■   develop a research report that tells the full story of the project;  
 ■   make this report publicly available either through peer- reviewed publication or by 

posting the manuscript to a scientific repository like the OSF; and  
 ■   share, if possible, the materials and data in a scientific repository like the OSF.   

  Throughout the manuscript, be sure to mention the Open Science practices you have 
adopted. In particular, many journals now require specific details on sample size. Specifically, 
you should include a “Sampling plan” section within your method that reports: 

 ■   what sample size target you set;  
 ■   the rationale for this sample size target; and  
 ■   the “stopping rule” you used (how you determined when to end the study).   

  In developing and reporting a sample size target, the planning for precision approach is 
best, but you can supplement this with comments on statistical power. 

 Next are two examples of sampling plans. 

  A Plan Based on a Target MoE 
 We set a sample size target of 73 to 99 participants. This was 
based on a target margin of error of 0.25, which was selected 
based on the effect sizes of 0.34 to 0.64 in previous studies 
(insert a reference here). In these previous studies, the 
pretest to posttest correlations were always >.60. For this 
correlation, a sample size of 73 provides, on average, the 
desired margin of error, and a sample size of 99 provides the 
desired margin of error with 99% assurance. These calculations 
were made using the ESCI software (Cumming, 2016). For a 
stopping rule, we decided to end advertising for the study 
once the sample size minimum was met, fi nishing then only the 
remaining appointments. Our sample size target and stopping 
rule were preregistered, with details available at <link to 
OSF preregistered plan>.  

  A Plan Based on Previous Sample Sizes 
 For this direct replication, we set a sample size goal of 64 
participants per group. This was based on the original sample 
size of 25 participants/ group and Simonsohn’s recommendation 
(2015) to conduct replications with 2.5 times the original 
sample size. We expect, based on this sample target, a margin 
of error of roughly 0.35. In addition, this target provides 
power of 0.98 to detect the original effect size ( d  = 0.7). 
Online participant recruitment was set to close when the 
target sample size was obtained.        

 Preregister your 
measures, sampling 
plan, and analysis 
plan. The Open 
Science Framework 
provides excellent 
templates. 
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Take- Home Messages
Open Science

 ■ Open Science is our best strategy for countering the three Ioannidis 
problems of selective publication, questionable research practices and p- 
hacking, and lack of replication.

 ■ The Center for Open Science and the Open Science Framework encourage 
researchers to preregister research plans, including data analysis plans, and 
to make all materials and data openly available, wherever possible. Badges 
recognize some desirable Open Science practices.

Precision for Planning

 ■ Target MoE, expressed in units of population SD, is the precision we would 
like the planned study to achieve. Use judgment to select target MoE, in the 
light of past similar research if possible. Perhaps consider several values for 
target MoE.

 ■ MoE varies because of sampling variability, but precision for planning tells us the N that will, 
on average, give MoE no greater than target MoE. Use Precision two for an independent 
groups study, and Precision paired for a paired study.

 ■ Using assurance of 99%, precision for planning tells us the N that will give MoE no greater 
than target MoE on 99% of occasions. Use N that gives target MoE on average, and the larger 
N that gives that MoE with assurance, to guide choice of N for a planned study.

 ■ For the paired design, the values of N are greatly influenced by ρ, the population correlation 
between the two measures: for a given target MoE, higher ρ requires smaller N (so for once, 
you can live with a different birthday present). Often in practice ρ is roughly .60 to .90.

Power for Planning

 ■ Power is the probability a study will find an effect of a particular size, IF it exists.

 ■ To calculate power, the alternative hypothesis must state an exact target δ, for example 
H

1
: δ = 0.80. Power is the probability that, IF the effect is exactly 0.80, the study will give p < 

α so H
0
 is rejected. Power is (1 –  β).

 ■ Power depends on the design, α, N, and target δ. For the paired design it also depends on ρ. 
Figures 10.7 and 10.8 provide illustrative values of power.

 ■ Aim for high power, .90 or higher if possible. Explore how power varies for selected values of 
target δ (and ρ in the paired case) and use judgment to choose N.

 ■ If using NHST, use power calculations to help plan a study. Post hoc, or observed, power is 
calculated using the obtained effect size and should not be used.

Planning, Precision, and Power

 ■ Planning, starting with pilot testing, is important, to maximize research efficiency and 
reassure us that a study is likely to give worthwhile results. Planning should, where possible, 
lead to preregistration.

 ■ Power is based on dichotomous NHST decision making. Precision for planning has the 
advantage that it emphasizes estimation, and keeps the focus on effect sizes and precision at 
every stage from planning through interpretation to replication and meta- analysis.
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End- of- Chapter Exercises

1) Navigate to the Open Science Framework (osf.io) and use the search and browse features 
to find and review

a. a preregistered analysis plan (try searching for “analysis plan”).

b. a preregistered sample size target (try searching for “sample plan” or “a priori sample”).

c. a project that includes the materials needed for replication (sign in, click Browse, select 
“New Projects”, and explore; note four links at left).

d. a project that includes original data.

2) Look back to end- of- chapter Exercise 4 in Chapter 7 about feelings of cleanliness and moral 
judgment. Schnall et al. (2008) used independent groups each with N = 20 and found a 
(Clean –  Neutral) difference of d

unbiased
 = −0.59, 95% CI [−1.23, 0.04].

a. Approximately, what was MoE in population SD units? Consult Precision two and 
consider N. Is that MoE reasonable? Explain.

b. You plan a replication and decide to aim for MoE of 0.3. What N would you recom-
mend? Explain.

c. The replication by Johnson, Cheung, and Donnellan (2014) found d
unbiased

 = −0.01. The 
MoE could not be calculated by ESCI, because df > 200, but it was around 0.3. Is this 
about what you would expect, given that Johnson et al. used N

1
 = 102 and N

2
 = 106? 

Explain.

d. If you had decided to use two groups of N = 150, about what MoE would you expect? 
Explain.

3) In a two- groups study, target δ = 0.40 and N = 78.

a. With α = .05, what’s the power?

b. If the population ES is 0.40 and only statistically significant results are published, what 
percentage of studies remains in the file drawer?

4) Look back at Exercise 2 above, about moral judgment, and the result that d
unbiased

 = −0.59, 
[−1.23, 0.04].

a. Suppose you plan a replication and want to have power of at least .9, using α = .05. 
Choosing target δ = 0.6, what N would you need?

b. You decide to use α = .01 instead. Now what N would you need?

c. You find you can obtain samples with N = 100. Using δ = 0.6, what is the power, for 
each of those values of α?

d. Using α = .05, what power did the replication by Johnson et al. have, to find δ = 0.3, 
an effect about half as large as that found in the original study?

5) Researchers studying birds can identify individuals by fitting several colored leg bands. With 
bees you can apply tiny colored dots of paint to the backs of individuals. Frogs, however, 
are more difficult to mark. For decades, standard practice has been to clip a small amount 
from the end of one or more toes. The pattern of clipping identifies the individual. The 
method has been used successfully in many studies, but a worry remains: Might clipping 



290

O
pe

n 
Sc

ie
nc

e 
an

d 
Pl

an
ni

ng
 R

es
ea

rc
h

reduce a frog’s chance of survival, and more so if more toes are clipped? That would not 
only bias the research, but perhaps threaten the species, when one aim of research is to 
help ensure survival of the species. Parris and McCarthy (2001), two Melbourne colleagues, 
reviewed the four then- available articles that reported studies of the effect of toe clipping. 
The articles reached conflicting conclusions, with several cases of “no statistically significant 
effect” being interpreted as evidence that toe clipping does not have bad consequences.

a. Which red flag springs to mind? Why?

b. Parris and McCarthy estimated the power of the studies to find a 40% decrease in 
survival, which would be a very large and biologically important effect. For the three 
studies for which they could estimate power, they estimated values from .2 to .6. 
Explain what these values mean.

c. Suppose the original researchers had reported an effect size (estimated percentage 
decrease in survival) and CI. Would you expect the CI to be short or long? Would you 
expect it to extend to include 0% decrease? Explain.

d. How could those studies have been improved? How could planning have helped?

e. Open Fiona Fidler’s PhD thesis, at tiny.cc/fionasphd. Read the short Section 3.5 (pp. 68– 
71), which is a brief account of the “toe clipping wars”. What main point were Parris 
and McCarthy trying to make? What opposition did they encounter? What is your 
conclusion?

6) Your friend excitedly points to her data analysis output, which states that power = .94. 
What do you ask? What do you explain?

7) State at least two reasons why your ethics review board requires a planning analysis, based 
on either power or precision, as part of every proposal for research with human participants. 
Explain.

8) Explain

a. at least one reason for preferring power over precision for planning.

b. at least two reasons for preferring precision over power for planning.

Answers to Quizzes

Quiz 10.1
1) Selective publication, the p < .05 imperative (or questionable research practices, or p- hacking), lack of replication; 

2) yes, yes, no, no, yes; 3) a; 4) d; 5) estimation, NHST; 6) open data, open materials, preregistration.

Quiz 10.2
1) MoE, population SD; 2) four times; 3) d; 4) larger, larger; 5) decrease, decrease; 6) target MoE, population 

correlation, ρ.

Quiz 10.3
1) rejecting, alternative, 0, 1; 2) .90, .10; 3) population effect size (δ), chosen and stated in advance, size of effect; 

4) increases, increases, increases, increases, doesn’t make sense; 5) after, obtained d, useless; 6) d.
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Answers to In- Chapter Exercises

10.1 We need to know about all relevant studies that have been carried out to a reasonable standard, so researchers 
must make all such studies available. Fully detailed reporting of studies is required and, where possible, full data. 
Encourage replication. “Do we have the full story?”

10.2 a. Most useful is preregistration, meaning registration of a full plan for a study, including data analysis plan, in 
advance of running the study.

10.3 b. Useful and offered: Help using OSF, help understanding and interpreting statistical analyses, help adopting 
new statistical techniques. Possibly useful but not offered: Carry out statistical analyses, complete student 
assignments.

10.4 Badges were created to acknowledge adoption of particular Open Science practices in a journal article or other 
publication.

10.6 23, 87, reasonably well, because 87 ÷ 4 is close to 23.
10.7 a. Around 0.72, on average; b. Mean MoE for the six Damisch studies is 0.74, which is very close to the 0.72 

expected on average. Sampling variability could easily have given bigger disagreement.
10.8 0.30, close to the meta- analysis MoE of 0.29; 87 for MoE of 0.30 on average.
10.9 a, b. Around 0.35, on average, very close to the 0.36 observed.
10.11 194, 770.
10.12  a. 0.35, 0.3 to 0.4; b. The gray curve tells us that N = 64 gives MoE of 0.35 on average, which agrees with the 

center of the MoE curve, with N = 65, appearing at about 0.35.
10.13 a. Smaller, to the left; b. Left, larger.
10.14 108.
10.15 Less, narrower.
10.16  a. Larger, left; b. Narrower, because MoE varies less when N is larger; c. For larger target MoE, N is smaller and 

the curve wider. (Note that the curve in Figure 10.2 for N = 50 is wider than that in Figure 10.3 for N = 65.)
10.17  a, b. N changes dramatically. For example, for target MoE = 0.20 on average, and ρ = .60, .80, .90, we require, 

respectively, N of 80, 41, 22.
10.18 a. 37, 54; b. Yes, because 0.32 is close to 0.30.
10.19 61 (on average), 84 (assurance).
10.20  N = 41 for target MoE = 0.20, on average, and N = 71 for 0.15. Eyeball between these two and expect MoE 

around 0.17 for N = 58.
10.21  If the effect is smaller we probably want to estimate it with greater precision, meaning we should choose 

smaller target MoE. One reason is to help us distinguish it from zero.
10.22  Power is the probability of landing in the bottom right cell, if H

1
 is true. That’s the probability of deciding guilty 

when the accused is guilty.
10.23  a. For a given non- zero population ES, larger N is likely to give a smaller p value, and so is more likely to reject, 

which means power is higher; b. A larger effect should be easier to find. For a given design of study and N, a 
larger true effect size would be more likely to give a small p value, so more likely to reject H

0
, so power would 

be higher.
10.24 For two independent groups of size 50, using α = .01, the power is .91 to find an effect of size δ = .80.
10.25 a, b. Power increases left to right across any line (increasing N) and up any column (increasing δ).
10.26  Using α = .05, for N = 60, power is .78 and for N = 80, power is .88, so N of about 64 in each group gives power 

of .80. Using α = .01, an N of about 96 gives power of .80.
10.27  a. About 86, about 103; b. For α = .01, more than 100, maybe roughly 110 and 120; c. For δ = 0.2, even using 

α = .05, N would need to be much more than 100; for α = .01, even larger.
10.28 .23, .34, .46; target effect size can have a very large influence on power.
10.29 a. About 50 or a little less; b. More than 100, maybe around 115.
10.30  If α = .05 then δ = 0.50 gives power of .70, but with α = .01, then δ of around 0.65 is needed for power of 

.70. Other combinations of α and δ are possible. We can suggest options, but need more information for an 
unambiguous interpretation.

10.31 Using α = .05: a. .48, b. .84, c. .99. Using α = .01: a. .24, b. .62, c. .93.
10.32  Power is substantially more for ρ = .80 than ρ = .60, until the ceiling of power = 1.00 is reached. The population 

correlation between the measures in the paired design influences power greatly.
10.33  a. Using α = .05, N = 60 gives power of .93 when ρ = .60; b. N = 40 gives power of .97 when ρ = .80; c. The 

Thomason studies suggest ρ may be around .70, between the values of .60 and .80 shown in Figure 10.8. 
Therefore I suggest using N around 50, which could give power of around .95, using α = .05. I would prefer to 
use α = .01, which for similar power would require higher N.



292

O
pe

n 
Sc

ie
nc

e 
an

d 
Pl

an
ni

ng
 R

es
ea

rc
h

10.34  Other things remaining the same, higher α (e.g., .05 rather than .01) gives higher power, but at the expense of 
a higher Type I error rate, so we are hardly better off. Not a good strategy for increasing power.

10.35  You ask what δ, what target ES, was used in the power calculation. If your friend doesn’t know, or says it used 
d obtained in the study, explain about post hoc power, and advise your friend that the high value most likely 
means only that they obtained a large d. Before being excited about high power, your friend should calculate 
power using a chosen value of δ that’s of research interest in the context.

10.36  You could say that you intend to use estimation rather than NHST to analyze the data, and that a precision 
for planning analysis is the corresponding way to justify choice of N. You could also comment about the 
advantages of estimation and the disadvantages of the dichotomous decision making that a power analysis 
assumes.



How satisfied are you with your body? Are you concerned that advertisers 
and the media bombard us all with images of idealized but unrealistic bodies? 
Are there bad consequences for some young people? Researchers investigat-
ing such questions often study the relations between variables, starting with 
the correlation between two variables. Correlation is our topic in this chapter, 
and Figure 11.1 is a scatterplot, a revealing picture of the correlation between 
Body Satisfaction (X) and Well- being (Y) for a group of 106 college students. 
Each point represents one student, and is positioned to reflect that person’s X 
and Y scores.

I’ll say more about the measures in a moment, but for now simply notice 
that there’s lots of scatter, and, overall, higher Y scores tend to go with higher X 
scores. Our measure of that tendency is r = .47, where r is a units- free measure 
of correlation that can take any value from −1 through 0 to 1. The r of .47 here 
indicates a moderately strong tendency for higher values of body satisfaction 
to be associated with higher well- being scores.

What do you think the scatter of points might be telling us?
Do you think greater body satisfaction tends to make people feel 

generally good?
Can you think of any other reason for the positive correlation?

11
Correlation

 Forgive me if once again I start the chapter with this encouragement to pause, reflect, and discuss.

Correlation helps us investigate numerous intriguing issues, and often 
enables meta- analysis. Correlation, in particular r, is one of the most impor-
tant and widely used effect size measures in many disciplines. In addition, 
r leads to further highly useful statistical techniques, including regression, 
which we’ll see in Chapter 12. So there are good reasons to know about r. 
Here’s the agenda:

 ■ The scatterplot, a revealing picture of correlation
 ■ Calculating r
 ■ The confidence interval on r
 ■ Correlation and possible causation
 ■ Interpreting values of r
 ■ Using r for meta- analysis

The Body Satisfaction variable in Figure 11.1 is the mean rating of how 
satisfied a person is (from 1 = very dissatisfied to 5 = very satisfied) with various 
aspects of their body (e.g., satisfaction with one’s face, one’s muscle tone, 
one’s weight…). It’s a subscale of the Multidimensional Body Self- Relations 
Questionnaire (MBSRQ, Cash, 2000). The Well- being variable is the mean rating 
of strength of agreement (from 1 = strongly disagree to 7 = strongly agree) with 
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a number of statements about a person’s feeling of well- being (Diener, et al., 
1985). For example, one item is “In most ways my life is close to ideal”. In our 
data set, the two variables are correlated, r = .47, but with lots of scatter. One 
message of this chapter is that often there’s considerable scatter, even when two 
variables show, overall, a fairly strong correlation. Note, for example, the one 
unhappy student, represented by the blue dot on the X axis, who had greater 
than average body satisfaction (X = 4), but minimum well- being (Y = 1).

I asked what the scatter of points might be telling us. You probably imme-
diately thought that high body satisfaction causes improved well- being: X 
causes Y. However, perhaps a general feeling of well- being causes us to feel 
generally satisfied, in particular with our body: Perhaps Y causes X? Or each 
could influence the other. There could easily be other variables involved as 
well: For example, perhaps good health tends to increase both well- being and 
body satisfaction. These are all speculations about causes between variables, but 
another important message of this chapter is that correlation— the association 
pictured in a scatterplot— may not say anything about causes. Correlation does 
not necessarily imply causation. Much more on that later.

Before I say more about scatterplots, note a striking contrast with ear-
lier chapters. So far in this book we have usually focused on the mean of a 
sample, and regarded the spread of points around that mean as a problem, a 
distraction. Here, however, we focus on that spread, rather than the means. 
We do this because correlation is driven by the scatter of data points away from 
their means. We’re focusing on the spread of Well- being and Body Satisfaction 
scores; I haven’t even reported means of those scores. Either spread or means 
can be important, depending on your perspective, but in this chapter and the 
next we’re focusing on individuals and how they vary— we’re focusing on 
difference, not sameness.

1

2

3

4

5

6

7

1 2 3 4 5

W
el

l-b
ei

ng
 (Y

) 

Body Satisfaction (X) 

= .47r

Figure 11.1. Scatterplot of Body Satisfaction (X) and Well- being (Y) scores for N = 106 college 
students.

Correlation does not 
necessarily imply 
causation.

Correlation is driven 
by scatter. The focus 
is on spread within 
samples, not on 
means.
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The Scatterplot, a Revealing Picture of C
orrelation

THE SCATTERPLOT, A REVEALING PICTURE OF 
CORRELATION

The key to correlation is the scatterplot, and another of the main messages of this 
chapter is that, for any (X, Y) relationship we care about, we need to see the 
scatterplot. Any single measure of correlation can capture only one aspect of 
such a relationship so, without the scatterplot, we may miss important things. 
There are other measures of correlation, but in this chapter we’ll discuss the 
most widely used measure, Pearson’s r, which can range from −1 through 0 to 
1. Pearson’s r measures the degree or strength of the linear component of an (X, Y) 
relationship, meaning the aspect of the relationship that can be represented by 
a straight line. We’ll see many examples for which r does not tell the full story, 
and for which it’s vital to see the scatterplot, perhaps in addition to calculating 
r. I’ll come back to that idea shortly, but, first, let’s consider some pictures to 
help build intuitions about r.

Figure 11.2 presents four scatterplots picturing different values of r. I’m 
following custom by labeling as X and Y the two variables, which I’m assuming 
have interval measurement. Each panel in the figure is a plot of N = 50 points, 
where each point is a pair of (X, Y) values. The first shows r = .9, which is close 
to the maximum of 1. The next two show lesser values of correlation, .6 and .3.  
On the right, X and Y are uncorrelated and so r = 0. A cloud of points as for r = 0, 
which roughly resembles a circular scatter, can be described as a shotgun blast. 
The cloud for r = .3 also looks rather like a shotgun blast. Do you think the 
scatter in Figure 11.1, for which r = .47, lies between the clouds for .6 and .3?

Figure 11.3 presents three further scatterplots. The left plot illustrates the 
maximum correlation, r = 1.0. In the center plot, Y decreases as X increases, so 
the correlation is negative: r = −.6. Does the plot for −.6 look to have roughly 
the same amount of scatter as the plot for .6 in Figure 11.2? That’s what we’d 
expect. Now look back at the r = .9 plot in Figure 11.2. Do you feel an urge to 
eyeball a straight line that seems to fit, or represent the points? If so, you may 
be thinking of something like the plot on the right in Figure 11.3, which shows 
the same data with r = .9 as in Figure 11.2, but displays also the regression line 
of Y on X. That line tells us what Y value is most likely associated with some 
particular X value we might be interested in.

Regression, or more particularly linear regression, is our topic in Chapter 12. 
Correlation as we discuss it in this chapter and linear regression are closely 
related, so it’s a useful instinct to think of a straight line that may represent, 
at least to some extent, the relation between X and Y. As I mentioned, it’s 

0r =

X

.3r =

X

.6r =

X

.9r =

Y

X

Figure 11.2. Scatterplots, each with N = 50, to illustrate the four indicated values of r, the Pearson correlation between 
X and Y.

Pearson correlation, 
r, is a measure of the 
linear component 
of the relationship 
between two 
interval variables, X 
and Y. It takes values 
between −1 and 1, 
and is 0 if X and Y 
are uncorrelated.
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the strength of such a linear component in a relationship that’s measured by 
Pearson’s r. Incidentally, you may feel that the line for r = .9 in the figure should 
be a little steeper to fit the points well. That’s a good observation, which we’ll 
discuss in Chapter 12. For this chapter, just think informally of an eyeballed 
line that seems, approximately, to fit the points in a scatterplot.

Figure 11.4 shows two fictional but plausible cases in which there looks to 
be a relation between X and Y that’s nonlinear— that can’t be well represented 
by any straight line. On the left, there looks to be a curvilinear relation: Rated 
room comfort is greatest at a medium room temperature and decreases at both 
lower and higher temperatures. On the right, score on a driver knowledge 
test, required for obtaining a driver license, at first increases with High School 
GPA, then tops out at or near 30, the maximum possible score on the test. This 
pattern is typical of an easy test, and the topping out is called a ceiling effect: On 
a much harder test of driver knowledge, students with a high GPA may well 
do better, but the easy test denies them the opportunity. On an even harder 
test, students with GPA below 3 might score close to zero, and only for GPA 

–.6r =

X

.9r =

X

1.0r =

Y

X

Figure 11.3. Three further scatterplots. On the left, r = 1.0, its maximum value. In the center the correlation is negative. The 
plot on the right is the same as that for r = .9 in Figure 11.2, but with the regression line of Y on X displayed.
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Figure 11.4. Scatterplots for two fictional data sets. On the left is an illustration of how rated room comfort (Y) might vary 
with room temperature (X). On the right is an illustration of how the score on an easy test— a driver knowledge test— (Y) 
might vary with High School GPA (X). Correlation values are shown, but in neither case does r represent the relationship well.

A scatterplot may 
reveal that an (X, 
Y) relationship is 
curvilinear, or shows 
a ceiling effect.
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above 3 would scores rise: That would be an example of a floor effect, because 
scores can’t go below zero.

Correlation r can be calculated for any scatterplot of X and Y values, but it 
doesn’t always make sense. On the left in Figure 11.4, r = .30 tells us little or 
nothing useful about the relationship, and may even mislead. Compare it with 
the r = .30 example in Figure 11.2. On the right, r = .76 does reflect the fact 
that, in general, Y increases as X increases, but it misses the topping out— the 
ceiling effect— which is probably one of the most important things to note. 
Yes, it’s vital to see the scatterplot and to think carefully about what it tells us. 
The value of r may be highly informative, or irrelevant, or even misleading.

Estimating r From a Scatterplot
Leaving aside examples like those in Figure 11.4, it’s often not difficult to make 
a rough estimate of r from a scatterplot. On the right in Figure 11.3, when r = .9 
the points are quite tightly bunched to the line. In the center, with r = −.6 they 
are less tight to the imagined line, whereas on the left, for r = 1.0, they are on 
the line. For high correlations, tighter to the line means higher |r|, where |r| is 
the absolute value of r, dropping the minus sign, if any. More specifically, for 
|r| greater than around .7, degree of tightness to the imagined line helps when 
eyeballing r. Note that it’s tightness that indicates r, not the slope of the line, 
which is easily changed just by changing the scale on the X or Y axis. Keep the 
Figure 11.3 examples in mind.

A second eyeballing strategy is to use a cross through the means. In 
Figure 11.5, the second and fourth panels illustrate this idea. The vertical line 
is at the mean of the N values of X, and the horizontal line at the mean of the 
N values of Y. The second scatterplot labels the four quadrants defined by the 
cross: HH is high- high, meaning both X and Y are relatively high; HL is high- 
low, meaning X is high, Y is low, and so on. Now eyeball the numbers of points 
in the HH and LL quadrants, which I call the matched quadrants, and compare 
with the numbers in the LH and HL quadrants, the mismatched quadrants. The 
larger the proportion of matched quadrant points, compared with mismatched 
quadrant points, the larger the r. More mismatched than matched points indi-
cates that r is negative. Actually, it’s not just numbers of points that matter, but 
how far they are from the cross lines— we’ll see that points far from the means 
have larger influence. However, looking at the whole pattern and noting rel-
ative numbers of points in the quadrants is often sufficient. Examine the first 
and third scatterplots: Eyeball the cross and estimate the r values. Look back 
to Figure 11.2 if that helps.

They are r
1
 = .6 and r

2
 = .3. Examine the second and fourth panels, which 

show the same scatters of points, with cross. Do the quadrants help? For high 
correlations I find that thinking of tightness to the line helps. For any correla-
tion, I find that imagining the cross and thinking in terms of relative numbers 
of points in the quadrants helps.

Figure 11.6 shows the two examples of Figure 11.4, but with crosses 
through the means. Check that considering the relative numbers of points in 
the pairs of quadrants does lead to a rough estimate of r. Do the crosses give 
extra insight into the relationships? Perhaps on the right the cross makes the 
topping out more salient but, in general, the crosses strategy helps the eyeballing 
of r rather than the insightful reading of a scatterplot. One last comment: The 
aim of eyeballing is not numerical accuracy, but to get a rough idea of r to help 
appreciation of correlation and scatterplots.

For a full picture 
of an (X, Y) 
relationship, inspect 
and think about 
the scatterplot. 
The value of r may 
be informative, 
irrelevant, or 
misleading.

For high correlation, 
degree of tightness 
to the imagined line 
indicates r, as in 
Figure 11.3.

To eyeball r, consider 
the relative numbers 
of points in the 
quadrants defined 
by a cross through 
the X and Y means. 
More in HH, LL 
(matched quadrants) 
indicates r closer to 
1; more in HL, LH 
(mismatched),  
r closer to −1.
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r1

Y

Y

X

r2

X

r1

LL
matched

LH mis-
matched

HL mis-
matched

HH
matched

X

r2

X
Figure 11.5. Two pairs of scatterplots, each with N = 50. The second of each pair is the same as the first, but shows a cross 
through the means of X and Y. Eyeball r for the first and third panels, then note how the cross can help. HH is high- high, LH 
is low- high, and so on. HH and LL are the matched quadrants, the other two the mismatched.
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Figure 11.6. Same as Figure 11.4, but with a cross through the means of X and Y in each panel.
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11.1 Eyeball r for each panel in Figure 11.7. In each case, compare the useful-
ness of tightness to the line and of quadrants.

11.2 Open the See r page of ESCI intro  chapters 10– 16. At red 1, choose your 
own N. At red 2, click the radio button on, and use the slider to set r, the 
correlation you wish to see. ESCI generates a data set with your chosen 
N and r, and displays its scatterplot.

a. Choose, for example, N = 30 and r = .3. At red 5, click the first checkbox. 
Your screen should resemble Figure 11.8.

b. Vary N and r, and see a new data set when you change a value. Explore. 
What does r = .1 look like? What about r = −1? r = .4? r = −.4?

11.3 At red 5 click to turn on the second checkbox, to see a cross through the 
means. Eyeball the relative numbers of points in the pairs of quadrants, 
for various values of r.

a. Click to turn off the first checkbox. Practice using the cross to help with 
eyeballing r.

b. Try negative as well as positive values. Try larger values of N.

11.4 a.  Turn off the cross, then eyeball the cross and estimate r. Rough is OK.
b. Make it a game: one person sets r, the other eyeballs r from the scat-

terplot. Try various values of r, and of N. Display the cross, then turn 
it off.

c. Keeping N and r the same, click the button at red 4 to see new examples. 
Note the variation in scatterplot appearance.

11.5 Eyeball r for each of the four scatterplots in Figure 11.9.

All four scatterplots in Figure 11.9 have r = .4, illustrating how scatterplot 
appearance can vary, even for a single value of r. Eyeballing is challenging, but 
as I mentioned we’re aiming for intuitions, not precise numbers. Refer back to 
Figures 11.2, 11.3, and 11.5 if that helps. Now let’s use an example we met in 
Chapter 8 to calculate r.

CALCULATING r

Thomason 1 is a small critical thinking study with N = 12 and a paired pretest– 
posttest design. It’s a great example of how correlation can be vitally important. 
Back in Chapter 8, Figure 8.4 showed means and CIs for pretest and posttest 
LSAT logical reasoning scores, and the paired differences plotted on a difference 
axis. The CI on the mean difference was short, compared with the other CIs, 
which was great news that indicated a sensitive design. As I mentioned, it was 

XXX

Y

X

Figure 11.7. Four scatterplots, for eyeballing practice.
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the high correlation of pretest and posttest that gave the short CI. In practice, 
the correlation of pretest and posttest scores is often high— at least .6 and 
sometimes up to .9— in which case we have a sensitive study, likely to give a 
relatively precise estimate. Let’s calculate r for the Thomason 1 data.

Figure 11.10 is a different picture of the same data: A simple scatterplot 
of posttest against pretest. Participant 6, for example, scored (17, 18) on the 
(pretest, posttest), so did well on both, and Participant 10 scored (7, 8), two 
low scores. Students high on pretest were generally high on posttest, and 
those low on pretest were also low on posttest, so the correlation is strong and 
positive: r = .89.

The value of r results from the battle of the quadrants: The matched team 
(HH, LL) pushes r up toward 1, whereas the mismatched team pushes it down 
toward −1. The more points in a team’s quadrants, and the further the points are 
from the means of X and Y, the stronger the team. The battle is a quantitative 
version of our quadrant way to eyeball r. I’ll use Figure 11.11 to explain. First, 
note the pretest (X) and posttest (Y) scores at left, and the corresponding points 
in the scatterplot. The data and points for four participants are highlighted. 
Next, see that the X and Y values have been transformed to z scores, which 
appear in the columns headed Z

X
 and Z

Y
. I used the transformation because 

Y

X X X X

Figure 11.9. Four scatterplots, each with N = 50, for eyeballing practice.
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Figure 11.10. Scatterplot of the pretest and posttest data, from the paired design study Thomason 1, 
with N = 12. The data points for two of the participants are identified. From Scatterplots.

If the two measures 
(e.g., pretest and 
posttest) in a paired 
design are highly 
correlated, the 
estimate of the 
mean difference is 
likely to be precise.
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it gives a simpler formula for r, and links more intuitively with the battle of 
the quadrants. The calculation uses Equation 3.4 for z scores from Chapter 3, 
which for our X and Y gives

 Z
X M

s
Z

Y M

sX
X

X
Y

Y

Y

=
−

=
−

and  (11.1)

The values of M
X
 and s

X
, the mean and SD of X, are shown at the top left 

in the figure, similarly for Y. For Participant 6, for example, we get

ZX =
−( )

=
.

.
.

17 11 58

3 32
1 63

which is the value reported in the Z
X
 column for this participant. It tells us that 

the point for Participant 6 is around 1.6 standard deviations, or around 5 LSAT 
points, to the right of the vertical line of the cross in the scatterplot, which looks 
about right. Similarly, Z

Y
 = 1.64, and the point is indeed considerably above the 

horizontal line of the cross.
The next step is, for each participant, to multiply the two z scores to get 

Z
X
Z

Y
, which is that participant’s contribution to r. The values are shown in 

the column below red 5 and in the scatterplot for four of the points. For the 
matched (HH, LL) quadrants, Z

X
Z

Y
 is positive, and for the mismatched quad-

rants, negative. To find r, we add all the Z
X
Z

Y
 values and divide by the number 

of degrees of freedom, (N –  1):

 r
Z Z

N
X Y=
−( )

∑
1

 (11.2)

Adding the Z
X
Z

Y
 values is how the battle plays out, with the matched team con-

tributing positive values and the mismatched team negative values. Incidentally, 
there’s a parallel between why (N –  1) appears in Equation 11.2 for r, and 
Equation 3.3 for standard deviation. (Ignore this remark if makes your eyes 
glaze over— you don’t need to know— but 1 is subtracted because in both cases 
the N quantities added in the numerator are based on deviations from a sample 
mean, and calculating that mean uses one of the available N degrees of freedom, 
leaving df = (N –  1) for the SD or correlation.)

11.6 Examine the Z
X
Z

Y
 values below red 5 in Figure 11.11.

a. Identify the two that make the largest contribution to r.
b. Find the corresponding points in the scatterplot. What’s special 

about them?

11.7 Open Scatterplots. If you don’t see the data in Figure 11.11, scroll right. 
Click the red 16 button to transfer the Thomason 1 data back left, replacing 
any data there. Click at red 4 to show z scores, and near red 8 to choose 
which display features you wish to see. Your screen should resemble 
Figure 11.11.

11.8 Type in X = 11 and Y = 11 as Participant 13. (Use Undo or delete to 
remove them.)

a. Note the new Z
X
Z

Y
 value, and where the new point falls. Does r change 

much? Explain.
b. Try different X and Y values for Participant 13. When does r change 

most? Explain.

z scores for X and Y.

Correlation r is 
calculated from the 
Z

X
Z

Y
 values, which 

are positive in the 
matched (HH, LL), 
and negative in 
the mismatched 
quadrants.

Pearson 
correlation, r.
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The Influence of Outliers
Figure 11.12 shows the difference made by the extreme additional outlier point 
(3, 30), for an imagined Participant 13 who supposedly goes from tiny pretest 
to huge posttest scores. In practice we would have serious doubts about such 
values— perhaps a data- recording error, or a student who for some reason 
made no effort at pretest? However, the example shows that a single outlier 
point can dramatically change r, even swinging it from large and positive, to 
negative. Focus on which quadrant a point lies in, and how far it is from the 
means of X and Y, to understand its Z

X
Z

Y
, and, therefore, its influence on r. 

A point that’s far from both cross lines has large (in absolute value) Z
X
 and Z

Y
, 

and therefore especially large Z
X
Z

Y
. Its contribution to r can be overwhelming, 

as in Figure 11.12 in which a single data point changed r from .89 to −.15.
Looking for outliers is yet another reason we need to see the scatterplot. 

You may be thinking, however, that journal articles rarely include scatterplots, 
so how can we be sure that the correlation analyses we read are appropriate? 
That’s a good question. Unless the authors tell us that the scatterplots of their 
data show no outliers and no signs of departure from linearity, they are asking 
us to take their analyses and interpretation on trust. One advantage of open 
data, as we discussed in Chapter 10 as part of Open Science, is that even if the 
scatterplot is not shown in the report, anyone can go to the data and create 
the scatterplot. So, if you don’t see a scatterplot for any (X, Y) relationship you 
care about, think carefully about what it might show, and perhaps try creating 
it yourself.

11.9 In the column of Z
X
Z

Y
 values in Figure 11.12, find the value for the outlier 

point and compare with the other Z
X
Z

Y
 values. Explain why this point is 

so influential on r.
11.10 You can click at red 15 to reveal a second scatterplot, which is a graph 

of Z
Y
 against Z

X
. It displays the same set of points, but on axes of Z

X
 and 

Z
Y
 rather than X and Y. It may help clarify how any point has Z

X
 and Z

Y
 

values, which multiply to give Z
X
Z

Y
.

Quiz 11.1

1. Pearson’s r indicates the degree of linear /  nonlinear /  quasi- linear /  oblique relationship 
between two variables.

2. A negative correlation means that as one variable increases, the other _ _ _ _ _ _ _ _ _ .
3. If two variables are perfectly positively correlated, r will be _ _ _ _ ; if the variables are perfectly 

negatively correlated, r will be _ _ _ _ ; if the variables are not at all correlated, r will be _ _ _ .
4. When there is a strong positive relationship between two variables, a scatterplot will have 

most of its dots in the matched /  mismatched /  adjacent quadrants.
5. To calculate r, first transform the X and Y scores to _ _ _ _ _ _ _ _ _ _ .
6. When an X and a Y score are matched (both above the mean or both below the mean), then 

Z
X
Z

Y
 will be positive /  negative and will tend to increase /  decrease the value of r. When an X 

and a Y score are mismatched (one above the mean, the other below the mean), then Z
X
Z

Y
 

will be positive /  negative and will tend to increase /  decrease the value of r.

SCATTERPLOTS THAT REVEAL

In Figure 11.4 the scatterplot of room comfort and room temperature suggested 
a curvilinear relation, and that of driver knowledge and High School GPA a 

A point far from the 
mean of X and mean 
of Y has large (in 
absolute value) Z

X
 

and Z
Y
, and therefore 

large Z
X
Z

Y
 and large 

influence on r.
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ceiling effect. These examples emphasize that we need to look carefully at the 
scatterplot because r measures only the degree of linearity in a relationship, and 
therefore often doesn’t tell the whole story.

I learned that lesson many years ago, when some colleagues and I were 
studying children learning to read. We had reading scores for children at age 6, 
then again at 9. The data haven’t survived, but Figure 11.13 is my reconstruction 
of the pattern. The correlation was about .5, but the scatterplot showed that 
virtually all the points fell in three quadrants, with the lower right quadrant 
virtually empty. A child scoring below the mean at age 6 might score above or 
below the mean at age 9— in the upper or lower left quadrant in the figure. 
However, a child scoring above the mean at age 6 was virtually guaranteed of 
scoring above the mean at age 9— in the HH, upper right quadrant. That’s good 
news: If a child “gets it” (scores above the mean) by age 6, they will continue 
to progress. They can read. But if by age 6 they still don’t quite get it (they 
score below the mean), then they may or may not get it by age 9. Only a few 
children slip considerably backward.

Our r of about .5 was unsurprising, but didn’t tell the whole story. Our main 
conclusion and guide for follow- up research was given not by r but by the pat-
tern in the scatterplot. It’s the same lesson we’ve been learning all along: Always 
plot your data in ways that are revealing, and think carefully about what the 
pictures might be telling you. Don’t be blinded by calculations of r, p, CIs, or 
anything else, but use these along with pictures to seek the messages within your 
data. In particular, if you are reading a report of research that highlights one or 
more correlations, then you need to see the scatterplots to have the full story.

The Effect of Range Restriction on Correlation
Range restriction is another aspect of correlation best understood by consider-
ing the scatterplot. The correlation between high school and college GPA was 

R
ea

di
ng

 S
co

re
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t A
ge

 9

Reading Score at Age 6

= .52r

Figure 11.13. Data for N = 50 children showing a correlation of r = .52 between reading scores at 
ages 6 and 9. The lines mark the means. The bottom right quadrant is almost empty.

Examine the 
scatterplot for any 
(X, Y) relationship 
you care about.
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investigated in a large meta- analysis by Richardson, Abraham, and Bond (2012), 
and found to average r = .40. Figure 11.14 shows what such a correlation might 
look like, for 300 college students. Suppose all 300 applied to enter a selective 
college, but the college accepted only students with a high school GPA in the 
top 20% of applicants— the solid blue points in Figure 11.14. For them, the 
correlation of high school and college GPA is r = .13. Inspecting those solid 
blue dots, does that look about right to you? The lower correlation reflects the 
restriction of the range of X, high school GPA.

In general, r can be strongly influenced by the ranges of possible X and Y 
values, especially for medium- sized r values, meaning values not close to 0, – 1, 
or 1. If either range is restricted, the correlation is likely to be smaller. The more 
a range is restricted, the smaller the correlation is likely to be. The key lesson is 
that selection in either X or Y that restricts the X or Y range can yield a sample 
that badly underestimates the correlation in the whole population.

One problem is that graphing software often zooms the ranges on the X 
and Y axes to fit the data points. Always examine the range of values shown 
on each axis: If this doesn’t cover the full range of possible values, perhaps the 
sample is range restricted and therefore r is misleadingly low? For example, a 
plot that showed high school GPA only from 3.0 to 4.0 would be suspect, and 
would need further investigation.

11.11 Suppose an elite college accepts only students with high school GPA in 
the top 10%. About what r would you expect for accepted students? 
Explain.

11.12 A survey found almost no correlation between IQ score and income, 
among college graduates. It concludes that a person’s IQ hardly matters 
in the modern world. Is the conclusion justified? Explain.

If the range of 
possible X or Y 
values is restricted, 
we have range 
restriction and r is 
likely to be reduced.

The X and Y axes 
should show the full 
ranges of possible X 
and Y values.

C
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le
ge

 G
PA

High School GPA

Overall r = .4

For solid blue
points, r = .13

Figure 11.14. Randomly generated scatterplot with N = 300 and r = .40, which might represent 
college and high school GPA scores for 300 college students. Solid blue dots show students having 
the top 20% of high school GPA scores. For these 60 students, r = .13, the lower correlation reflecting 
range restriction of high school GPA.
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11.13 In Figure 11.4, suppose you had data only for room temperature up to 
and including 18 °C.

a. Eyeball r.
b. Do the same if you had data only for 18 °C and above.
c. What can you conclude about range restriction?

What to Look for In a Scatterplot
I mentioned at the start that r is one of the most widely used and important 
effect size measures. That’s true, even if much of the discussion has been about 
limitations and things to watch out for. Here I’ll summarize by listing important 
things to bear in mind— or in eye— when inspecting a scatterplot.

 ■ Pearson correlation r is a measure of the strength of the linear component 
of the (X, Y) relationship.

 ■ Even for linear relationships, when |r| is around .3 or less, the scatterplot 
is close to a shotgun blast. Even for larger r there’s considerable scatter.

 ■ For large |r|, tightness to the line is helpful for eyeballing the value of r. For 
any r, eyeballing the balance of points in the matched and mismatched 
quadrants can help.

 ■ Look for signs of departure from linearity, perhaps a curvilinear relationship, 
or a ceiling or floor effect.

 ■ Outliers can have an enormous influence on r, which is especially sensitive 
to points far from the means of X and Y.

 ■ Examine the scales on the X and Y axes for any sign of a range restriction. 
Also consider the sample. A range restriction can cause a sample to under-
estimate the correlation in the whole population, perhaps severely.

 ■ Given r but no scatterplot, take care: Would the scatterplot reveal important 
aspects we’re not being told?

INFERENCE: CONFIDENCE INTERVALS AND p VALUES

As a descriptive statistic, r measures the strength of the linear component of the 
relation between X and Y in a sample. For inference to the population, we need 
the CI on r, and I’ll also mention p values. First comes the dance of the r values.

Dance of the r Values
Before discussing CIs on means back in Chapter 5, I used the dance of the means 
to illustrate the sampling variability that a CI describes. Let’s do the same for 
correlations. I’ll consider r for data sets that are random samples from a popu-
lation that we assume is a very large, even infinite, collection of (X, Y) points. 
We assume X and Y have correlation ρ (rho) in the population— remember, 
don’t confuse ρ with p as in p value.

With ρ = .5, I took 50 samples each of N = 10 and recorded the 50 r val-
ues. I did the same for N = 40 and N = 160. Table 11.1 reports some of my 
results: Because of sampling variability, the values in each column dance— this 
is the dance of the r values, or dance of the correlations.

We expect larger N to give less sampling variability and narrower dances, 
and the table shows that this happens for r. In the first column, with N = 10, 
r ranges from −.35 to .78, whereas in the last, with N = 160, the range is only 

Values of r in 
repeated random 
samples from a 
population with 
correlation ρ will 
vary because of 
sampling variability. 
This is the dance of 
the r values.
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from .34 to .61. There’s much more variation with smaller N. At the bottom 
are the means and SDs for my full sets of 50 r values. As we’d expect, the three 
means are all fairly close to ρ = .5. The SDs measure the amount of bouncing 
and indicate that, as expected, there’s more sampling variability (a larger SD) 
for smaller N. The SD decreases markedly as N goes from 10 to 40 to 160.

I used the See r page to take samples and obtain the r values in Table 11.1. 
You can see the dance for yourself.

11.14 At red 3, click the radio button on, to select Sample from population. Use 
the slider at red 3 to select ρ. Check the top checkbox at red 5 to display 
the value of r. Click the button at red 4 to take a random sample of N 
points. Keep clicking, and watch how r and the patterns of points dance.

11.15 Try various values of N and ρ.

a. For ρ = .5, compare N = 10 and N = 160. Can you see any difference 
in the amount of variability in r, meaning the width of the dance?

b. For N = 40, compare ρ = 0 and ρ = .9. Any difference in the width of 
the dance?

THE CONFIDENCE INTERVAL ON r

Just as we use sample mean, M, to estimate population mean μ, we can use r 
for our sample as an estimate of ρ, the correlation in the population it came 
from. So r is our point estimate of ρ, and we want a CI on r as our interval 
estimate of ρ. First, we need to consider the statistical model underlying the 
CI calculation— in other words, the assumptions that are required. The model 
is that our data set of N pairs of (X, Y) values is a random sample from a very 
large, even infinite, population of such (X, Y) data pairs in which X and Y have 
a bivariate normal distribution, with correlation ρ. “Bivariate” means, as you 
probably guessed, that there are two variables, X and Y.

Think of a bivariate normal distribution as a smooth hill, flattish on top, 
with contours that are roughly elliptical in shape— in the shape of an ellipse, or 
oval. Panel A in Figure 11.15 illustrates the idea by showing the scatterplot for 
a random sample of N = 5,000 points from a bivariate normal distribution. The 
correlation is r = .6. Overall, both X and Y are normally distributed. In addition, 
if we choose a single value of X, the distribution of Y at that X value will be 

Table 11.1 Values 
of r to Illustrate the 
Dance of the r Values

N 10 40 160

.78 .45 .59
−.13 .28 .46

.81 .59 .57

.48 .31 .54

.52 .71 .45

.53 .39 .34

.43 .53 .61

.19 .50 .44
−.35 .70 .47

.41 .36 .52
… … …

Mean of 50 r values .46 .44 .51
SD of 50 r values .30 .16 .06

In a bivariate normal 
distribution, X and 
Y are each normally 
distributed overall, 
each is normally 
distributed at any 
single value of 
the other, and the 
variance of each is 
homogeneous for all 
values of the other.
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normally distributed. Panel B illustrates such distributions of Y for two values 
of X. All such distributions are normal and, moreover, have the same standard 
deviation for every value of X. We say that the variance of Y is homogeneous for 
all X. The figure also shows one distribution of X values at a single value of Y.  
That’s also normal, and also has the same standard deviation for all Y, so the 
variance of X is homogeneous for all Y. Scatterplots for samples from bivariate 
normal distributions look like those in Figures 11.2, 11.3, 11.5, 11.7, 11.8, and 
11.9. The points are generally more closely clustered around the center, and 
become less close at positions farther from the center.

To calculate a CI on r we need to assume the data set is a random sample 
from a bivariate normal population. Is that a reasonable assumption? Often, but 
not always. It’s usually close enough to reality for practical purposes, unless:

1. We have prior reason to suspect a nonlinear relationship. For example, we 
surely would have expected a curvilinear relationship between comfort 
and room temperature; or:

2. There are strong signs in the scatterplot of a nonlinear relationship, as with 
the two Figure 11.4 examples; or:

3. It doesn’t make sense to think of our data set as a sample from a larger 
population. I’ll say a word about this next.

If our data set is, for example, the number of points scored this season (X) 
and the income this year (Y) of the players in a particular basketball team, we 
could certainly calculate r for X and Y. However, for any kind of inference, not 
only for CIs on r, it needs to make sense to think of our data as a sample from 
a population. In this example, would it make sense to calculate a CI on the r 
for our team? If our interest is specifically in that team, then no, it wouldn’t, 
because our data tell us about the whole team— the whole population we are 
interested in— and so we shouldn’t calculate a CI. Perhaps if we were inter-
ested in basketball players in general we might think of our team as a sample, 
although it’s hardly a random sample from that population.

B

Y

X

Distribution of Y
at one value of X

Distribution of X
at one value of Y

.6r =
A

Y

X

Figure 11.15. Random sample of N = 5,000 points from a bivariate normal distribution. Correlation is r = .6. Panel B shows the 
distributions of Y at two values of X, and the distribution of X at one value of Y.
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If we do make the assumption of a bivariate normal population, all we need 
is the values of N and r and we can calculate a CI on r as our interval estimate 
of population correlation ρ. The details are complicated, so we’ll simply let ESCI 
calculate the CI, and also the p value for any null hypothesis.

Figure 11.16 displays the 95% CI on r = .4 when N = 30, and near red 2 
reports that the CI is [.05, .66], rounded to two decimal places. Note the CI 
is asymmetric, with upper MoE smaller than lower— the values are reported 
near red 2. The cat’s- eye picture is also asymmetric— more bulge near the top, 
longer tail below. The null hypothesis value of ρ

0
 = 0, as specified by the small 

slider near red 4, is marked by the red horizontal line. The corresponding p 
value of .028 is shown near 4. Do you agree that this p value looks about right? 
It’s consistent with the lower limit of the CI being just a little above zero, so p 
is a little less than .05.

11.16 Open the One correlation page and start with the checkboxes at red 3 
and 4 not checked. Explore, using the spinner at red 1 to set N and the 
large vertical slider to set r.

a. For fixed N, try both positive and negative r.
b. Describe how the CI changes as you change r, with small N, then with 

large N. Any difference?

11.17 For fixed r, describe how the CI changes as you change N. Describe how 
the pattern of change differs for small and large r.

11.18 In Figure 11.1, N = 106 and r = .47. Find the CI on r and interpret.

Calculation of 
a CI on r, or a p 
value to test a null 
hypothesis about 
ρ, requires the 
assumption that the 
data are a random 
sample from a 
bivariate normal 
distribution.

Figure 11.16. The 95% CI on r = .4, with N = 30. The cat’s- eye picture is displayed, and the null hypothesis value ρ
0
 = 0 is 

marked by the red line. For this null hypothesis, p = .028, as shown near red 4. From One correlation.



312

C
or

re
la

ti
on

11.19 In See r click Sample from population at red 3. Set N = 75 and ρ = −.7.

a. Take a few samples and note down the values of r.
b. Use One correlation to find the CI for each, and note whether each 

captures ρ.
c. If you were to take many further samples, what can you say about the 

CIs for those samples? What can you say about the capture of ρ?

11.20 If you knew the CIs for all the r values in Table 11.1, how would the CI 
lengths compare for the three columns? For each column, what can you 
say about capture of ρ = .5?

11.21 For a particular type of hybrid plant, a genetic model predicts a correlation 
of .5 between leaf length and width. You measure leaf length and width 
of 100 such plants and calculate r = .36. What do the data tell you about 
the model? Consider both the CI and the p value. Hint: For the p value, 
use the small slider near red 4 to set ρ

0
.

11.22 A second genetic model predicts a correlation of .25.

a. What can you say about this second model?
b. Considering the two models, what would you recommend?

Figure 11.17 illustrates what you may have discovered in Exercise 11.16. 
With fixed N, when r = 0 the CI is long and symmetric. The CI gets shorter and 
more asymmetric as r moves farther from 0, especially as it approaches 1 or −1. 
Of course, no CI can extend beyond those boundaries. For values of r that are 
equally far above and below zero, the CIs are mirror images. The lines in the 
figure at 1 and −1 are “fences” that “squash” any CI that approaches, especially 
the MoE nearer the fence.

Figure 11.18 illustrates what you may have discovered in Exercise 11.17. 
With fixed r, when N is small the CI is long. Increase N and the CI gets shorter, 
as we’d expect. Figure 11.18 illustrates this change with N for r = 0, and also 

For fixed N, the CI 
on r gets shorter and 
more asymmetric as 
r moves farther from 
0, especially when r 
gets close to 1 or −1.

0.9
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.6

.8

1.0

r

Figure 11.17. Examples of 95% CIs for various values of r, all with N = 30. The value of r is shown 
next to each point.

For fixed r, if N is 
multiplied by four, 
the CI on r becomes 
roughly half as long.
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for r = −.5 (lower four points) and r = .8 (upper four points). Recall the gen-
eral guideline, which we first encountered in Chapter 1, that four times the 
sample size gives, approximately, a CI half as long. Does that hold for r? Does 
multiplying N by four give a CI on r that’s half as long?

Yes it does, although only roughly, as you may have concluded from 
Figure 11.18.

11.23 Consider the SD values in Table 11.1.

a. Note that from the first to the second column, N is multiplied by 4 and 
the SD changes from .30 to .16, which is about half.

b. There are similar changes from the second to third column. Is that 
reasonable? Explain.

11.24 The length of a CI on a sample mean, M, depends on N, but it doesn’t 
depend on M itself. What about a CI on r? Does it depend on N? Does it 
depend on r itself?

Now we’ve discussed CIs, I want to discuss planning a correlational study, 
then the interpretation of correlations and scatterplots. But first it’s quiz time.

Quiz 11.2

1. Before using Pearson’s r to describe a relationship, it is essential to first look at a scatterplot 
of the relationship. What should you be looking for?
a. Whether the relationship is linear; if not, r should probably not be used.
b. Whether there are outliers that are having a large influence on r.
c. Whether the range of either the X or the Y variable is restricted, which can produce 

misleading values for r.
d. All of the above.

10 40 160 640

10 40 160 640

10 40 160 640

–1.0

–.8

–.6

–.4

–.2

0

.2

.4

.6

.8

1.0

r

Figure 11.18. Examples of 95% CIs for various values of N and r. The value of N is shown next to each 
point. For the upper four points, r = .8, the middle four, r = 0, and the lower four, r = −.5.
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2. The larger the sample size, the longer /  shorter the CI on r. For a fixed N, the closer r is to 0, 
the longer /  shorter the CI.

3. A CI on r depends on the assumption that the data set is a(n) _ _ _ _ _ _ _ _  sample from a(n)  
_ _ _ _ _ _ _ _ _ _ _ _ _  distribution.

4. Jaime measures IQ in 10 students and also obtains an IQ measure for each student’s mother. 
He finds r = 0.6, 95% CI [−.05, .89]. This means that the population correlation could most 
likely be anywhere from _ _ _ _ _ _ _ _ _ _ _  to _ _ _ _ _ _ _ _ .

5. The CI Jaime obtained is quite long. To obtain a CI half as long he would need to test about  
_ _ _ _ _ _  participants.

6. As r gets closer to −1 or 1, the CI becomes _ _ _ _ _ _ _ _ _ _  and more _ _ _ _ _ _ _ _ _ _ .

Planning a Correlational Study
In Chapter 10 we discussed how to choose N so our planned study would give 
a CI with our chosen target MoE, either on average or with 99% assurance. 
Planning a correlational study is more complicated because, as you saw in 
Figures 11.17 and 11.18, for r the CI length depends not only on N, but also on 
r itself. Exercise 11.24 emphasized the same point. To use precision for planning 
to choose N, when r is our effect size, we would need to specify a target r as 
well as target MoE. An added complication is that, unless r = 0, the CI on r is 
asymmetric, so upper MoE and lower MoE are different.

Rather than attempting a detailed discussion, or making an ESCI page, 
I’ve included Figure 11.19 to give the general idea. Use this to see what CI you 
would obtain if r = .1 or .3 or .5, and you use one of the values of N shown in 
the figure. The relationship of r, N, and CI length is a bit complicated, but the 

N = 20
N = 40

N = 80
N = 160

N = 320 N = 640
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–.2
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Figure 11.19. Examples of 95% CIs for r = .1, .3, and .5, respectively, left to right, for each of various values of N, as indicated 
at the top.
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figure can help you choose N likely to give a sufficiently short CI, especially if 
you have some idea of the size of population correlation you are investigating.

There’s one important way in which the situation with r is less compli-
cated and less uncertain than for means. The CI depends only on r and N, and 
there’s no additional need to estimate σ or worry about assurance. For any 
particular r and N, the CI is determined, and any replication with the same 
N that happens to give the same r will give exactly the same CI. Any sample 
with N = 20, for example, which has r = .1 will give exactly the leftmost CI 
in the figure.

Studying Figure 11.19 suggests a few approximate guidelines. For corre-
lations between about −.5 and .5:

 ■ For N up to around 40, CIs are long, with MoE usually around .3 or more.
 ■ To achieve MoE of around .2 or less, in most cases N of about 100 or more 

is required.
 ■ To achieve MoE of around .1 or less, in most cases N of about 300 or more 

is required.

As Figure 11.17 illustrates, for larger correlations (|r| > .5) CIs are shorter, 
especially as |r| approaches 1.

11.25 a.  You are investigating a correlation you suspect is around .3 to .5, but 
can collect data only for a sample with N = 80. About what MoE can 
you expect?

b. You expect r around .1 to .2, and are keen for MoE not more than 0.1. 
With N = 200, are you likely to achieve that? About what N are you 
actually likely to need?

INTERPRETING CORRELATIONS AND SCATTERPLOTS

Correlation and Causation
“Can you believe, from 1999 to 2009 the correlation was r = .95 between 
annual U.S. oil imports from Norway and the annual number of drivers in 
the U.S. who died in collisions with trains!” At www.tylervigen.com/  you can 
see that and many other examples of bizarre correlations. They are good for a 
chuckle, but also alert us to the danger of seeing causation in a correlation. As 
I first mentioned when discussing Figure 11.1, if X and Y correlate, there may be 
interesting causal links, but the scatterplot can’t tell us what they are. We might 
even be seeing an accidental lump in randomness: Examine a large number of 
possibly totally unrelated variables and you’ll eventually find two that correlate, 
simply by chance. You would most likely be seeing a face in the clouds. We can’t 
be sure, but I suspect that r = .95 for oil imports and train collision deaths is 
such a blip, such a face in the clouds, with no instructive underlying causes to 
be found. For correlations we encounter in research, however, there are often 
causal links to be investigated— although there may not be.

If X and Y are uncorrelated, with r close to zero and a shotgun blast scat-
terplot, then most likely there are no interesting causal links between X and Y. 
However, if r and a scatterplot suggest there is some relationship between X 
and Y, there are several possibilities:

http://www.tylervigen.com/
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 ■ Simple causation: Either X causes Y, or Y causes X.
 ■ A more complex pattern of causation, possibly including one or more 

other variables.
 ■ There are no causal links, and we’re seeing a face in the clouds.

Correlations can give valuable guidance as we investigate causality, but even 
a large r cannot immediately tell us which of the above possibilities applies. 
Hence the slogan “Correlation does not necessarily imply causation”.

In Figure 11.4, the left scatterplot shows the curvilinear relation of Y (com-
fort) and X (room temperature). It’s natural to assume that X causes Y, although 
if low comfort leads you to adjust the thermostat, Y would be influencing X. In 
plots of Thomason 1 posttest (Y) against pretest (X) scores, like Figures 11.10 
and 11.11, we assume both X and Y are strongly influenced by a third varia-
ble, for example reasoning ability. Often we might consider various patterns 
of causation between X and Y, and perhaps other variables. Knowing just the 
correlation, however, cannot identify for us the pattern of causation. We need 
to be alert, because the slide from seeing correlation to assuming causation can 
be subtle and appealing, as the following example illustrates.

“Parental divorce leads to adolescent drug use.” News reports like that 
would, no doubt, be based on data, but would the data come from experiments, 
with participants randomly assigned to different conditions? Of course not— it’s 
impossible as well as totally unethical to assign families randomly to the Divorce 
or the Don’t divorce condition, then come back a year or two later and note their 
children’s drug use. Without that, however, it’s very difficult to draw confident 
conclusions about causality. The news report is almost certainly based on a cor-
relation: Researchers noted a tendency for children of divorced parents to use 
drugs more than those in intact families. Many causal links may be involved, 
or perhaps none at all— we may only be seeing a lump in the randomness. 
Perhaps cause runs in the opposite direction: Children’s drug use causes marital 
problems. Perhaps there’s an indirect link, with parental education, employment 
status, parenting skills, and housing situation all being important influences on 
both divorce and adolescent drug use. Researchers have developed advanced 
techniques to gather and analyze data to tease out such complex patterns of 
causation. These usually require investigation of many variables together, then 
analysis of a complex data set including many correlations.

The claim made by the news report may be highly plausible. However, it 
implies a direct causal link, but is based on a correlation. The causal link may or 
may not be correct, but most likely there are several, or many, underlying causal 
links that will be tricky to identify and untangle. Be alert to over- interpretation 
of correlations, a phenomenon which can be subtle and plausible.

11.26 “Eating vegetables linked to better progress in elementary school.” Discuss 
that news report.

a. Is it plausible? What’s it probably based on?
b. What causal links might there be? How might you investigate further?

11.27 Consider a couple whose marriage is violent and dysfunctional.

a. Does an overall strong correlation between divorce and adolescent 
drug use mean that the couple should necessarily avoid divorce for 
the sake of their adolescent children?

b. Explain how an overall strong correlation need not necessarily dictate 
what’s best in an individual case.

Correlation does not 
necessarily imply 
causation.

The slide from 
correlation to 
causation may be 
subtle and highly 
plausible, although 
unjustified. Be alert.
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Town Size and Walking Speed
Here’s another interesting correlation to think about. Figure 11.20 is a scat-
terplot of data reported by Bornstein and Bornstein (1976). The researchers 
unobtrusively recorded the walking speed of individuals walking in the cen-
tral city square, or main downtown street, in villages, towns, and cities in six 
countries. They found that, remarkably, walking speed tended to be more than 
twice as fast in large cities as in small villages. The correlation with population 
(expressed on a log scale) was r = .90, as Figure 11.20 reports.

11.28 How feasible would a close replication of 
the study reported in Figure 11.20 be? What 
would you expect it to find?

11.29 Find the CI and the p value for the r in 
Figure  11.20. Is it reasonable to calculate 
those? Explain.

11.30 Suggest causal links that might underlie the 
correlation in Figure 11.20. How could you 
investigate your suggestions?

11.31 a.  Search online for “walking speed and pop-
ulation size” or similar. I found several fas-
cinating discussions about the pace of life in different countries, and 
different- sized towns and cities. Bornstein and Bornstein (1976) was 
identified as the starting point, and many more recent studies were 
mentioned.

b. Suggest an interesting further study.
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Figure 11.20. A scatterplot of average walking speed in a central public area, and population on a 
log scale, for towns and cities. Several of the points are identified. Data from Bornstein and Bornstein 
(1976).
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11.32 My colleague Neil Thomason recalls chatting with a farmer from rural 
Bolivia amid the hubbub of New York City. The man asked: “Is everyone 
in New York important?” He explained that back home only impor-
tant people walk fast. What further investigation does that observation 
suggest?

Reference Values for Correlation
I’ve been referring to r = .1 or −.1 as a small correlation, and r = .9 or −.9 as large. 
In relation to the possible range from −1 to 1 that’s reasonable, but, just as with 
Cohen’s d, any interpretation of particular r values should be a knowledgeable 
judgment in context. That’s especially important here, because correlation is 
used in so many different ways, in so many different contexts, that it’s not 
possible to specify any reference values with universal applicability.

Considering psychology, Cohen did suggest r = .1, .3, and .5 (or, equiv-
alently, −.1, −.3, and −.5) as reference values for small, medium, and large 
correlations, but he emphasized that judgment in context should be preferred 
wherever possible. Others have suggested different reference values. Hinkle, 
Wiersma, and Jurs (2003), for example, labeled r values above .9 as “very high 
positive”, values between .7 and .9 as “high positive”, between .5 and .7 as 
“moderate positive”, between .3 and .5 as “low positive”, and between - .3 and 
.3 as “little if any correlation” (p. 109).

Bosco et al. (2015) collected more than 140,000 values of r reported in 
organizational psychology research. This broad field studies people’s attitudes, 
intentions, and performance, mostly in the context of employment. For that 
large set of r values, the first quartile was .07, the median was .16, and the 
third quartile .32. So researchers in this field study correlations most of whose 
scatterplots would fall between the two rightmost panels in Figure 11.2— they 
resemble shotgun blasts. Bosco et al. concluded that most research in organi-
zational psychology focuses on correlations smaller than r = .3, and that r = .2 
might often be a more realistic “medium” value. I conclude again that r, espe-
cially, needs to be interpreted in its particular context.

To interpret a value of r, consider also the CI, and any correlations reported 
by related past research. Also have in mind scatterplots like those in Figures 11.2 
and 11.3. I’m always struck by how widely scattered the points are, even for r 
as large as .6. It’s sobering to learn that many researchers are studying relation-
ships between variables that have small values of r with scatterplots that look 
like shotgun blasts. Such relationships may be interesting and important— or 
they might not be— but, either way, it’s still a shotgun blast.

Measuring Reliability and Validity
In Chapter 2 I introduced reliability and validity as two important features of 
any measure. You may recall that reliability is repeatability or consistency, and 
it’s often assessed by using r as a measure. To estimate the test- retest reliability 
of a new anxiety questionnaire, for example, you might calculate r for the 
anxiety scores of 100 people recorded on one day, with their scores on a second 
day, under conditions as similar as possible to those on the first day. I’m happy 
to report that many well- established psychological and educational tests give 
test– retest reliability correlations of .9 or even higher. That’s great news— our 
best measures are highly reliable.

Interpret values 
of r in context. 
Correlation is used 
in such a variety 
of situations that 
reference values 
usually don’t help.

Test- retest reliability 
is usually assessed 
by a value of r.
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Recall also that validity is the extent to which a measure actually meas-
ures what we want it to measure. Correlation is used in various ways to assess 
validity. I mentioned in Chapter 2 that we could, for example, correlate scores 
on the new anxiety questionnaire with scores on an already well- established 
measure of anxiety. A high correlation would suggest our measure of anxiety 
has reasonable validity. I also mentioned a test of job aptitude: The correla-
tion between test scores and later job performance would be an estimate of 
the validity of the test. It’s encouraging that many well- established psycho-
logical and educational tests often give validity correlations as high as .8 or 
.9. A good measure needs to have both good reliability and good validity. 
Assessing measures and developing new measures is likely to require much 
use of correlations.

With reliability and validity in mind, let’s revisit the interpretation of r 
values. For reliability and validity, we might judge r values of .8 and .9 as good 
rather than very large, and .6 or .7 as small and inadequate rather than large. 
Here’s an example. To study leadership, Chan (2007) obtained scores from 92 
Chinese students in Hong Kong on an established rating scale for leadership, 
the SRBCSS, and a self- rating scale he was investigating, the RRSL. He found a 
correlation of r = .38 and reported that correlation to be statistically significant, 
p < .01, “suggesting that the Chinese RRSL has … validity when compared with 
Chinese SRBCSS leadership scores” (p. 160).

A p value for r, reported without mention of a null hypothesis value, almost 
always refers to a null hypothesis of zero, although we should be told that 
explicitly. Chan’s conclusion was based on the p value indicating fairly strong 
evidence against the population value of the correlation being zero— absolutely 
no correlation whatsoever. But that’s not good evidence that the validity cor-
relation is usefully large. A correlation of only around .4 would usually be 
considered poor validity. For N = 92, the 95% CI on r = .38 is [.19, .54], so the 
validity correlation could plausibly have been as low as .2. It would have been 
more informative if Chan (2007) had reported r with its CI, then interpreted 
the point and interval estimates in terms of what they say about validity.

Correlation is used 
in various ways to 
assess validity.
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Figure 11.21. Scatterplots as in Figure 11.1, separately for women and men.
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This example reminds us that a p value relates to a particular null hypothesis 
value. To interpret p we need to know that value, and consider its appropri-
ateness as a reference point, in the context. Small p might lead us to reject the 
null hypothesis, but, for correlation, zero may be an inappropriate reference 
point, especially when assessing reliability or validity. Considering r and its CI 
is likely to lead to a better justified conclusion.

THE CI ON THE DIFFERENCE BETWEEN TWO 
INDEPENDENT CORRELATIONS

Now for some more inference. To compare two independent correlations we 
need the CI on the difference. By “independent” I mean the two correlations 
come from separate groups— for example the correlations for women and for 
men. The sample of 106 students whose data are shown in Figure 11.1 comprised 
59 women and 47 men. Figure 11.21 shows the separate scatterplots, and that 
r = .41 for women and r = .53 for men. Is that surprising? Isn’t body satisfaction 
considered more central to well- being by women? Before we get too excited by 
what may be an unexpected difference, we need to see the CI on that difference.

The CI on a difference between r values is tricky to calculate, but I use a good 
approximate method described by Zou (2007). Figure 11.22 displays r

1
 = .41 for 

women, and r
2
 = .53 for men, each with its CI. The difference between those 

correlations and the CI on the difference are displayed at right. The difference 
is shown at red 6 on the left to be (r

2
 –  r

1
) = 0.12 [−0.19, 0.42] to two decimal 

places. As usual, I was surprised how long the CIs are, even with groups as large 
as 59 and 47. The CI on the difference tells us there’s considerable uncertainty, 
because the population difference between the correlations for women and men 
could plausibly be as low as around −0.2 or as high as around 0.4. So there’s 
no evidence of a population difference.

11.33 In Figure 11.22, at red 7 on the left, the p value is reported. What’s the 
null hypothesis? Interpret and compare with the CI.

11.34 a.  At Two correlations, set the N values at red 1 and 2 and use the two 
large sliders to set the correlations for our example. Click at red 6 
for the difference axis and red 7 for the p value. Your screen should 
resemble Figure 11.22.

b. Suppose the two groups had been four times the size (236 women, 
188 men) and obtained the same r

1
 and r

2
 values. Find the CI on the 

difference and interpret.

11.35 Using the original group sizes and r
1
 value, how large would r

2
 need to 

be for the p value to be less than .05? How does that strike you?

CORRELATION r FOR META- ANALYSIS

Is genius born or made? Could any of us be Michael Jordan, or Mozart, if we 
worked sufficiently hard to develop the requisite skills? Meta- analysis of corre-
lations can help answer such questions. The issue here is the extent that practice 
and effort may be sufficient for achieving the highest levels of expertise. Ericsson, 
Krampe, and Tesch- Romer (1993) argued that years of effort is what matters 
most: “Many characteristics once believed to reflect innate talent are actually the 
result of intense practice extended for a minimum of 10 years” (p. 363). This view 

The CI on r is usually 
long, unless N is very 
large. The CI on the 
difference between 
two independent 
r values is usually 
especially long.

Beware any p value 
given with a value 
of r. What’s the 
null hypothesis 
value, and is that, 
in the context, 
an appropriate 
reference point?
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was enormously popularized by Malcolm Gladwell (2008), who argued in his book 
Outliers that 10,000 hours of focused practice is the key to achieving expertise.

However, this view is now being challenged, with one important contribution 
being a large meta- analysis of correlations between amount of intense practice 
and level of achievement: Macnamara et al. (2014) combined 157 correlations 
reported in a wide range of fields, from sports to music and education, and found 
r = .35 [.30, .39].

Figure 11.23 shows some of the data from Macnamara et al. (2014). As 
usual, to carry out meta- analysis we need to judge that all the studies are exam-
ining the same or sufficiently similar questions. The figure shows the random 
effects meta- analysis of the 16 main correlations for music. You can see at red 
7 that the overall result is r = .41 [.28, .53], which is consistent with the main 
conclusion of the larger meta- analysis. The example shows that r can be useful 
for meta- analysis. Indeed correlation r and Cohen’s d are probably the most 
widely used effect size measures for meta- analysis.

The researchers’ conclusion was that, in many fields, the correlation between 
amount of practice and achievement is only modest, a result that conflicts with 
the established position of Ericsson and others. Search online for “10,000 hours 
and expertise”, or “10,000 hours”, and you should easily find articles describing 
the Ericsson– Gladwell position. You should also find recent articles with titles like 
“Scientists debunk the myth…” of 10,000 hours. No- one doubts that long effort 
and persistent focused practice is needed to achieve expertise, but the question 
is the extent of the contribution of other factors, notably innate talent. Thanks 
partly to meta- analysis of correlations, it seems that once again we can believe 
that genius is to some extent born, and not only made.

It’s time for take- home messages. To write yours, you could think back to 
the pictures we’ve encountered. Scatterplots of course, but also quadrants and 
the battle, shotgun blasts, confidence intervals of course, and finally a forest 
plot. I couldn’t think of any good picture of causation— maybe an arrow?— but 
causation probably springs to mind anyway.

Quiz 11.3

1. For a particular N, the CI for r = .6 is longer /  shorter than the CI for r = .3. For a particular r, 
larger N gives a CI that is longer /  shorter.

2. Correlation does not necessarily imply _ _ _ _ _ _ _ _ _ _ .
3. Messerli (2012) reported that countries in which people eat lots of chocolate also tend to 

win lots of Nobel prizes (r = .79, 95% CI [.55, .91], N = 22). Does this mean eating chocolate 
will cause you to win a Nobel prize? Suggest some other explanations for this association.

4. For r, Cohen’s reference values are _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ , and _ _ _ _ _ _ _ _ _ _  for small, 
medium, and large, but interpretation of r should depend on the _ _ _ _ _ _ _ _ _ _ .

5. The CI on the difference between two independent correlations is
a. not helpful unless sample sizes are very large.
b. sure to include zero.
c. shorter than either of the CIs on the two separate correlations.
d. longer than either of the CIs on the two separate correlations.

6. Considering meta- analysis,
a. it’s a disadvantage that the CI on r is almost always asymmetric.
b. values of r need to be transformed to values of Cohen’s d.
c. it’s advisable to use the fixed effect model when using r.
d. None of the above.

r can be a useful 
effect size measure 
for meta- analysis.
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  11.36     Open the  Single r  page of  ESCI intro Meta- Analysis  and you should see 
the data shown in  Figure 11.23 .  

  a.     At red 8, click between fi xed effect and random effects meta- analysis, 
and note the diamond ratio.  

  b.     What can you say about heterogeneity? Is your response consistent 
with the appearance of the forest plot? Explain.    

  11.37     Which CIs in the forest plot are most asymmetric? Is that what you expect?  
  11.38      Click at red 4 to display  p  values for the individual studies and the result.  

  a.     What null hypothesis do the  p  values relate to? What could you 
conclude?  

  b.     Compare your conclusion with the conclusion of Macnamara et al. 
(2014).  

  c.     Which approach to data analysis, the one using  p  you have just looked 
at or that of Macnamara et al., should we prefer and why?    

  11.39     Revise your take- home messages if you wish.   

   Reporting Your Work  

 Correlation may not imply causation, but identifying and interpreting associations between 
variables still serves as one of the most important tools available for scientific research. 
When reporting correlations, you should usually include: 

 ■   whether examining the correlation is planned or exploratory, unless this is already 
clear— be sure your research plan is more thought out than just “examine all possible 
correlations” or you’ll likely be seeing faces in the clouds;  

 ■   basic descriptive statistics for both variables being correlated;  
 ■   a scatterplot if possible;  
 ■   the value of  r  and its CI. Remember that calculating a CI requires assuming the data are a 

sample from a bivariate normal population. If that seems problematic, make a comment 
and consider not reporting a CI;  

 ■   the sample size for calculating  r  (which, due to missing data, may not be the same as the 
sample size collected);  

 ■   if desired, the  p  value— be sure to state the null hypothesis, which is usually but not 
always that  ρ  = 0;  

 ■   an interpretation of the correlation that considers not only the point estimate but also 
the CI— consider what the full range of the CI means in terms of correlation strength, 
interpreted in the context, including any relevant past research; if range restriction is 
evident make your interpretation suitably tentative.   

  Typically, you will be reporting correlations for non- experimental research, where no 
 variables have been manipulated. In this case, an essential guideline for reporting is to avoid 
causal language. That is, avoid phrases like “the effect of  X  on  Y ” or “ X  produced a change in 
 Y ”. Instead, use language suggesting association without causation. For example:  

 ■   The relationship between  X  and  Y  was examined.  
 ■   Participants with high  X  also tended to have high  Y .  
 ■   This shows that  X  is weakly related to  Y .  
 ■   There was a strong association between  X  and  Y .   

  Finally, report  r  values without a zero before the decimal point (e.g.,  r  = .36). That’s due to 
the persnickety APA style rule you’ve read about in previous chapters that there is no leading 
zero for statistics that cannot exceed 1 (APA, 2010, p. 113) in absolute value. 

 Here are some text- only examples: 

 The correlation between well- being and self- esteem was  r  = .35, 
95% CI [.16, .53],  N  = 95. Relative to other correlates of 
well- being that have been reported, this is a fairly strong 

 For correlations, 
report  r , its CI, and 
sample size. Be 
sure to include a 
scatterplot and to 
discuss how well 
assumptions for 
correlation are met. 
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relationship. The CI, however, is somewhat long and consistent 
with anywhere from a weak positive to a very strong positive 
relationship. 

 The correlation between well- being and gratitude was  r  = .35, 
95% CI [−.11, .69],  N  = 20. The CI is quite long. These data 
are only suffi cient to rule out a strong negative relationship 
between these variables. 

 The correlation between well- being and GPA was  r  = .02, 95% CI 
[−.18, .22],  N  = 95. The CI suggests at most a weak positive 
or negative relationship between these variables. 

 It is popular in journal articles to report large numbers of correlations using a correlation 
matrix. This is a very efficient way of reporting correlations, but be sure to include confidence 
intervals. As you can see in  Table 11.2 , in a correlation matrix each variable is represented 
along both rows and columns. Each cell reports the  r  value between its row and column 
variables. The diagonal cells are not reported because these are cells where the row and 
column variables are the same. (What would the correlation be between a variable and itself? 
Think about it or use ESCI to try for yourself.) Note that a correlation matrix is symmetric 
above and below the diagonal, so usually only one or the other is filled in. Although that may 
sound complicated when written out, in practice correlation matrices are easy to use. For 
example, in the matrix of three variables below, what is the correlation between well- being 
and negative affect? Between negative and positive affect? If this is making sense, your 
answers should be −.34 and −.10.    

 Although you know that seeing a scatterplot is essential to interpreting the relationship 
between two variables, you’ll notice that many journal articles report  r  values without 
accompanying scatterplots. This is a convention left over from a time when preparing figures 
was time consuming and expensive. Nowadays, figures are cheaper and there is a stronger 
emphasis on showing the data. Therefore, try to include scatterplots for key correlations 
whenever possible. Some statistical software even allows the creation of scatterplot matrices, 
in which each correlation value in a correlation matrix is represented by its scatterplot. This is 
an extremely powerful way to summarize lots of relationships at once. Follow this link:  tiny.
cc/spmatrix  to an example of a scatterplot matrix. There are four variables, so six scatterplots, 
which are shown in the lower triangle of the matrix. The  r  values themselves are shown in 
the upper triangle.      

 Table 11.2      Correlation Matrix for Different Components of Happiness  

Well- being Positive Affect Negative Affect

Well- being — 
Positive Affect  .37 [.25, .47] — 
Negative Affect −.34 [−.44, - .22] −.10 [−.22, .02] — 

  Take- Home Messages  
 ■   Pearson correlation,  r , is a measure of the strength of the linear component of 
the relation between two interval variables,  X  and  Y . It can take values between 
−1 and 1.  

 ■   The scatterplot of  X  and  Y  is a picture of the  N  data points. The cross through the  X  
and  Y  means can be helpful for eyeballing:  r  reflects the balance between points in 
the matched (HH, LL) quadrants and in the mismatched (LH, HL) quadrants.  

 ■   The value of  r  is the sum of the  Z  
 X 
  Z  

 Y 
  values for the points, divided by ( N  –  1). It’s the 

outcome of a battle between the matched and mismatched quadrants.  

 ■   Seeing the scatterplot is essential for understanding aspects of the relation between 
 X  and  Y  beyond the linear component measured by  r . Watch for range restrictions, 
floor or ceiling effects, and curvilinear relationships.  
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 ■ To calculate the CI on r, the CI on the difference between two independent correlations, or 
a p value, we must assume a bivariate normal population of (X, Y) values, with population 
correlation ρ. CIs are usually asymmetric and CI length depends on both N and r.

 ■ The p value can be calculated using any ρ value as null hypothesis, but often ρ
0
 = 0 is used 

without sufficient thought as to whether it’s appropriate in the context.

 ■ Correlation does not necessarily imply causality. An r value may be merely a face in the 
clouds, or there may be complex causal links amongst X, Y, and perhaps other variables.

 ■ Values of r need to be interpreted in context. The Cohen reference values of .1, .3, and .5, and 
any other reference values, are only applicable in some contexts.

 ■ Correlation is often used to assess the reliability and validity of measures, but beware p 
values and prefer CIs. Good measures can have values of r = .8 or higher.

 ■ It can be useful to combine values of r by meta- analysis.

End- of- Chapter Exercises

1) For each of the scatterplots in Figure 11.24, eyeball an r value.

2) To what extent does initial performance in a class relate to performance on a final exam? 
Table 11.3 lists first exam and final exam scores for nine students enrolled in an introduc-
tory psychology course. Exam scores are percentages, where 0 = no answers correct and 
100 = all answers correct. You can load this data set (Exam_ Scores) from the book website.

A

Y

X

B

X

C

X

D

X

Figure 11.24. Four scatterplots for eyeballing practice.

Table 11.3 Initial and Final Exam Scores for Nine Students

StudentID Exam 1, X Final Exam, Y Z
X

Z
Y

Z
X

Z
Y

1177 85.0 72.0
1288 96.8 92.0
1327 100.0 96.0
1911 100.0 95.0
1862 84.3 91.0
1578 83.0 88.0
1022 96.8 77.0
1915 89.5 86.0
1116 54.0 75.0

Mean 87.71 85.78
SD 14.35 8.97

Total ∑Z ZX Y

(N –  1)

r
Z Z

N

X Y
=

−( )
∑

1
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a. Enter the first and final exam scores into ESCI to generate a scatterplot. Just looking 
at the scatterplot, what r value do you eyeball?

b. Are there any cautions with using r to describe this data set? Does the relationship seem 
strongly nonlinear, is there restriction of range or a ceiling effect, or are there extreme 
outliers? Remember that to assess restriction of range it’s best to set the scales of X and Y 
to show the full possible range of 0– 100. You could edit the two axes to show that range.

c. Fill the blanks in Table 11.3 to calculate r, using a calculator or spreadsheet. Fill the Z
X
 

and Z
Y
 columns, then multiply each student’s pair of z scores to fill the Z

X
Z

Y
 column. 

Then complete the calculations to fill the bottom right cells and find r.

d. Using ESCI, you should find the same value of Pearson’s r between Exam 1 and Final 
Exam scores.

3) Below are correlations reported in recent journal articles. For each, use the One corre-
lation page of ESCI to calculate the 95% CI for ρ (rho). Then interpret. Assume that the 
authors verified that the relationships are reasonably linear and otherwise appropriate for 
description using r.

a. To what extent does income inequality relate to academic dishonesty? To investigate, 
Neville (2012) measured income inequality for each U.S. state, then measured search 
traffic for each state related to academic dishonesty (e.g. “buy term papers”, “free col-
lege papers”). He found that states with higher income inequality also tend to have 
higher levels of search traffic related to academic dishonesty: r = .45, N = 50.

b. To what extent is early success in school related to income later in life? Ritchie et al. 
(2013) obtained annual income data for a large sample of British adults, then correlated 
these with reading scores from age 7. (For most participants, this was about 40 years 
prior to the income measurement.) Early reading scores were correlated with income, 
r = .21, N = 1000.

c. The full study of Ritchie et al. (2013) was much larger, with more than 14,000 par-
ticipants. Would the CI for the full study be shorter or longer than you just calculated 
using N = 1000? Would it be greatly or only slightly different in length?

d. To what extent is your weight related to your ideas about diet and exercise? McFerran 
et al. (2013) conducted an online study in which participants were asked to report 
their Body Mass Index (BMI). Participants also rated the degree to which they believed 
exercise is more important than diet for controlling weight. The belief in exercise to 
control weight was correlated with BMI: r = .25, N = 84.

4) For each of the findings in Exercise 3, give at least two different causal explanations that 
could underlie the observed correlation.

5) For each of the findings in Exercise 3, use Figure 11.19 to select a sample size you con-
sider reasonable for replicating the original study. Choosing N is a matter of judgment, but 
consider where a likely CI might fall in relation to 0. Also consider the CI on the original 
value or r that you found when answering Question 3 and remember that ρ could easily 
be anywhere within that interval, or even a little beyond it.

6) Is there really such a thing as beauty sleep? To investigate, researchers decided to examine 
the extent to which sleep relates to attractiveness. Each of 70 college students self- reported 
the amount of sleep they had the night before. In addition, a photograph was taken of each 
participant and rated for attractiveness on a scale from 1 to 10 by two judges of the opposite 
gender. The average rating score was used. You can load this data set (Sleep_ Beauty) from 
the book website.

a. What is r and the 95% CI for the relationship between sleep and attractiveness?
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b. Like you, the researchers obtained a negative correlation. They concluded that those 
who sleep more are somewhat less attractive. You can see, however, that these research-
ers have made at least one serious error. Explain.

7) Clinton conducted a survey of college students to determine the extent to which well- being 
is related to campus involvement (Campus_ Involvement data set on the book website). 
Participants completed a measure of subjective well- being (scale from 1 to 5) and a meas-
ure of campus involvement (scale from 1 to 5). Participants also reported gender (male or 
female) and commuter status (0 = resident, 1 = commuter).

a. What is the relationship between well- being and campus involvement for commut-
ers? For residents? To what extent is this relationship different for these two groups of 
students? Interpret.

b. What is the relationship between well- being and campus involvement for men? For 
women? To what extent is this relationship different for these two groups of students? 
Interpret.

8) To what extent is analytic thinking incompatible with religious faith? Gervais & Norenzayan 
(2012) asked participants to complete a test of analytic thinking and a scale of religious 
belief. Scores on the analytic thinking task were negatively related to religious belief, 
r = −.22, N = 179. Later, Sanchez, Sundermeier, Gray, and Calin- Jageman (2016) conducted 
a close replication of this study using an online sample. They found r = −.07, N = 454. Use 
the Single r page of ESCI intro Meta- Analysis to integrate these two findings. Interpret, 
considering the result and its CI, and also the diamond ratio. What can you conclude?

Answers to Quizzes

Quiz 11.1
1) linear; 2) decreases; 3) 1, −1, 0; 4) matched; 5) z scores; 6) positive, increase, negative, decrease.

Quiz 11.2
1) d; 2) shorter, longer; 3) random, bivariate normal; 4) very weakly negative to very strongly positive; 5) about four 

times as many participants: 4 × 10 = 40; 6) shorter, asymmetric.

Quiz 11.3
1) shorter, shorter; 2) causation; 3) No; wealth could be a common factor, enabling both larger chocolate consumption 

and larger expenditure on science education and research. Indeed Ortega (2013) pointed out that an indicator of 
wealth (GDP, or gross domestic product) is strongly correlated with both chocolate consumption and amount of 
Nobel prize success; 4) .1, .3, .5, context; 5) d; 6) d.

Answers to In- Chapter Exercises

11.1 .5, −.4, .8, .3. I prefer quadrants, except for .8, for which tightness to the line is useful.
11.2 b. .1: shotgun blast; −1: points exactly on a line sloping down to the right; Figure 11.9 illustrates r = .4; −.4: mirror 

image of r = .4.
11.5 They are all r = .4.
11.6 a. Participants 6 and 10, as marked in scatterplot; b. They are the farthest from the center of the cross, and from the 

two mean lines.
11.8 a. Z

X
Z

Y
 = 0.1238; r decreases to .88, only a small change because the extra point fits with the previous general 

pattern; b. r changes most when Z
X
Z

Y
 is large and negative, because that influences the battle most; points at top 

left or bottom right give that large negative contribution.
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11.9 It’s large and negative, so has an enormous influence in the battle of the quadrants, because other values tend to 
be small and mainly positive.

11.11 The range of X is even more restricted, so it is likely that r is even smaller than .13.
11.12  By selecting only college graduates, the range of IQ scores is probably restricted, meaning the correlation between 

IQ scores and income would be reduced. In the whole population, that correlation may be large, meaning IQ would 
matter for income.

11.13  a. Up to and including 18 °C: I eyeballed .8 (calculated r = .83); b. For 18 °C and above, I eyeballed −.8 (calculated 
r = −.85); c. The effect of range restriction on r depends greatly on the relationship, especially if nonlinear.

11.15 a. For ρ = .5, in fact for any fixed ρ, larger N gives less variation in r, meaning a narrower dance.
b.  For N = 40, in fact for any fixed N, the widest variation is for ρ = 0 and the dance becomes narrower for ρ 

approaching 1 or −1.
11.16 a. For a given N and r, the CI for – r is the mirror image of the CI for r.

b.  For any given N, the CI is long and symmetric when r = 0, and becomes shorter and more asymmetric as r 
becomes closer to 1 or −1. For larger N, the CI is generally shorter, but the pattern of change with r is similar. 
See Figure 11.17.

11.17 The CI gets shorter as N increases, whatever the r. See Figure 11.18.
11.18  [.31, .61], so the population correlation is most likely around .4 to .5 but may plausibly be as low as around .3 or as 

high as around .6. The long CI signals considerable uncertainty.
11.19 a, b, c. The r values and CIs bounce around. In the long run, 95% of the CIs should include ρ = −.7.
11.20 In each column the CIs would bounce around. For N = 10 the intervals would be generally longest, and most 

variable in length. For N = 160, shortest and least variable. N = 40 would be intermediate. Long run capture rate 
should be 95% in all columns.

11.21 CI is [.18, .52]. Set ρ
0
 = .5 and note that p = .09. Because p > .05, we can’t reject that model. Correspondingly, the CI 

includes .5, but tells us that a wide range of values of ρ, roughly from .2 to .5, are plausibly consistent with the data.
11.22 a. CI is still [.18, .52]. Set ρ

0
 = .25 and see p = .23. Because p > .05, we cannot reject the second model either, and 

.25 is within the CI; b. We need a more precise estimate of ρ to allow us to assess the two models better, so should 
collect a larger sample of data.

11.23 b. The SD values apply to the sampling distributions of r values, so they are standard errors. (Recall that SE is the 
standard deviation of a sampling distribution, e.g., the mean heap.) For means, SE = (population SD)/√N, which fits 
with the SD values in the table approximately halving as N is multiplied by 4. The pattern is reasonable, and the 
guideline seems to apply, at least roughly, for correlations as well as means.

11.24 The CI on r depends on N but also on r itself, as Figure 11.17 illustrates.
11.25 a. About 0.2; b. No, N = 200 gives MoE of roughly 0.15. Need N of over 300 (actually, more than 320) for MoE  

no more than 0.1.
11.26 a. The claim is almost certainly based on a correlation of reported vegetable consumption with school progress. 

It may be plausible, but quite likely reflects a number of causal relations; b. Perhaps a stable family, good parental 
education, and parental employment are all associated with both eating more vegetables and doing well at school. 
It may be possible to assign families randomly to low or high vegetable consumption conditions, then monitor 
school progress, but quite likely we couldn’t run that study long enough to reveal any changes in performance. 
More complex methods would be needed to tease out multiple causal links.

11.27 a. No, for such a couple, divorce might bring calm to their children’s lives and less pressure to use drugs; b. Any 
individual case is likely to have many aspects to consider, and an overall correlation is only one. Especially for a 
couple on the brink of divorce, the overall correlation may be of little relevance or even likely to mislead.

11.28 Very feasible; you could take further samples of towns and cities, and measure walking speeds. The results could 
easily be similar.

11.29 [.72, .97], p < .001 using ρ
0
 = 0. It’s reasonable to calculate those because it’s reasonable to regard the 15 towns 

and cities studied as a random sample from the bivariate normal distribution of all towns and cities. The scatterplot 
in Figure 11.20 shows no strong signs of departure from what would be expected from such a distribution.

11.30 Perhaps people’s general sense of urgency (the “pace of life”) is greater in cities and prompts faster walking. To 
investigate, we could seek measures— perhaps of people’s attitudes— that assessed the pace of life as directly as 
possible, and correlate those measures with log population.

11.31 b. We could ask people about their life goals, their immediate concerns, and their sense of urgency, and look for 
correlations with population size of town or city.

11.32 I would start by trying to understand what “important” might mean to the farmer. Wealthy? Powerful? Educated? 
From a Bolivian city rather than a village? Then think of correlations that might be informative to investigate.

11.33 Null hypothesis is no difference between the population correlations. The p of .44 means we can’t reject the null 
hypothesis at the .05 level, which is consistent with the CI easily including 0 and the conclusion of no evidence of 
a population difference.

11.34 b. Difference is 0.12 [−0.03, 0.27], shorter but still a fairly long CI. Still no evidence of a difference. The p value is 
.12, so again we can’t reject the null hypothesis.
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11.35 r
2
 = .681 for p = .05. That’s a large difference between .41 for women and .68 for men, before obtaining even the 

weak evidence of p = .05 of a population difference.
11.36 a. Diamond ratio = 2.0, which is large and matches how the diamond appears to change between the two models 

of meta- analysis; b. There is considerable heterogeneity, which is consistent with very large bouncing of the CIs in 
the forest plot, including a number of CIs that do not overlap at all.

11.37 The CIs closest to 1 are most asymmetric, as we expect.
11.38 a. The popouts explain that p refers to ρ

0
 = 0. Nine of 16 studies have p < .05, and the overall result is p < .001, 

so we confidently reject the null hypothesis that ρ
0
 = 0 and conclude there’s a statistically significant positive 

correlation of amount of practice with achievement; b. Macnamara et al. estimated the correlation quite precisely 
and interpreted the value as indicating a correlation considerably smaller than the theory of Ericsson predicts; 
c. The estimation approach is more informative, and was used by Macnamara et al. to arrive at a conclusion that 
corresponds closely with the research question they were investigating.



In Chapter 11 we saw that correlation is a measure of the relationship between 
X and Y. Like correlation, regression is based on a data set of (X, Y) pairs, but it’s 
different from correlation in that it gives an estimate of Y for a value of X that 
we choose. So correlation is a number that summarizes, overall, how X and 
Y relate, whereas regression takes a chosen single value of X and provides an 
estimate of Y for that X. Recall that Figure 11.1 was a scatterplot of Well- being 
(the Y variable) and Body Satisfaction (the X variable), for 106 college students. 
Figure 11.21 showed the separate scatterplots for women and men. Suppose 
Daniel scores X = 3.0 for Body Satisfaction: What Well- being score would 
we expect for him, assuming he comes from the same population of college 
students? We can use regression to estimate Y (Daniel’s Well- being score) for 
X = 3.0. There are two steps:

1. Calculate from the data the regression line for Y on X.
2. Use that line to calculate an estimate of Y for X = 3.0.

Regression focuses on what X can tell us about Y. Almost always, X can tell 
us part of the story of Y, but not all of it. Informally, the full story of Y divides 
into two parts:

 The story of Y = What X can tell us about Y + The remainder (12.1)

12
Regression

The informal 
story of Y.

Second part, what’s left over

Regression is thus different from correlation, but the two are intimately 
linked. We’ll see that X makes its contribution to the Y story (the first part) via 
the regression line, but it’s r that determines how large this contribution is. If 
the correlation is large, X and the regression line give considerable information 
about Y; if small, they tell only a small proportion of the Y story.

I said that correlation is an effect size measure that has long been routinely 
reported and interpreted by researchers, which is excellent. For regression the 
news is even better, because researchers not only report and interpret regres-
sion effect sizes, but quite often report regression CIs as well— meaning they 
are already largely using the new statistics.

Here’s the agenda for this chapter:

 ■ The regression line for Y on X: minimizing the standard deviation of 
residuals

 ■ Regression, correlation, and the slope of the regression line
 ■ The proportion of variance accounted for: r2

 ■ Regression reversed: the regression of X on Y
 ■ Assumptions underlying simple linear regression
 ■ Confidence intervals and the uncertainty of estimation of Y
 ■ A possibly strange natural phenomenon: regression to the mean

First part, uses regression
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THE REGRESSION LINE FOR Y ON X

Figure 12.1 shows the scatterplot of Well- being (Y) and Body Satisfaction (X), 
for N = 47 men, as in Figure 11.21. First, some regression jargon. The line in 
Figure 12.1 is the regression line. For correlation, as we discussed in Chapter 11, 
the two variables X and Y are interchangeable, meaning we can swap the 
labels X and Y and still calculate the same r. With regression, however, the 
two variables have different roles: X is the predictor variable and Y the predicted 
variable, also known as the criterion variable. Those terms reflect the frequent 
use of regression for prediction— we often regard the regression estimate of Y, 
for a particular value of X, as a prediction for Y. We speak of “the regression of 
Y on X” or “the regression of Y against X”. (Later we’ll consider the reverse, the 
regression of X on Y, for estimating X given a particular value of Y.)

For the regression of Y on X, X is the predictor variable and Y the predicted variable, also 
known as the criterion variable.

In Figure 12.1, the regression line of Y on X tells us that, if X = 3.0 for 
Daniel, then our best point estimate of Daniel’s Well- being score is Y = 4.44. 
We use Y, which we say as “Y- hat”, for the regression estimate— the estimated 
value of Y calculated from the regression line. Later we’ll find that there’s large 
uncertainty in that estimate, which is hardly surprising given only a medium 
number of data points (N = 47) and the considerable scatter that gives a corre-
lation of only medium size (r = .53).

The regression estimate is Y, which is the value of Y calculated from the regression line for 
a particular value of X.

3.00

4.44

X =

Ŷ  =

1
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7
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W
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)

Body Satisfaction (X)

= .53r

Regression line
Y on X

Figure 12.1. Same as Figure 11.21, left panel, for N = 47 men, with the addition of the regression 
line of Y on X. If Body Satisfaction is X = 3.0, the Well- being score calculated from the regression line 
is Y = 4.44 as the dashed lines indicate. The cross of horizontal and vertical lines marks (M

X
, M

Y
), the 

point at the two means.

We use the 
regression line of 
Y on X to calculate 
an estimate for the 
predicted variable 
Y from a value of 
predictor variable X.
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I’m talking about estimating Y for a particular value of X. That doesn’t mean 
I’m making any assumption about X causing Y. Just as with correlation, there 
might be any pattern of causation between X, Y, and other variables, or no 
causation at all. With regression, as with correlation, we are working with the 
relationship between X and Y in some data set. There may well be interesting 
causation to investigate, but perhaps not.

As you can see in Figure 12.1, the regression line goes through the point 
(M

X
, M

Y
), the means of X and Y, which is marked in the figure by the cross of 

horizontal and vertical lines. The regression line is designed to give the best 
estimate of Y for any particular value of X. How is its slope (sometimes called 
its gradient) determined? I’ll take two approaches to answering that central 
question. The first considers estimation error and how we can minimize it.

Minimizing the Standard Deviation of the Residuals
We want the best regression estimates we can get, meaning we want to 
minimize estimation error. By estimation error, I mean (Y –  Y ), which is the 
vertical distance between a data point and the line, as marked by the red 
vertical lines in Figure 12.2. The Y refers to the data point— one of the dots in 
Figure 12.2— and the Y  refers to the other end of its vertical line, which lies 
on the regression line. There are N data points and therefore N of the (Y –  Y ) 
values, which are also called residuals, the idea being that, while the Y estimates 
calculated from the line tell us the first part of the story of Y— the first part 
in informal Equation 12.1— the second part is told by the (Y –  Y ) values and 
is the remaining, or residual, part of the story. We’ll come back to this idea.

A residual is (Y –  Y), the difference between the value of Y for a data point (X, Y), and Y, the 
regression estimate for that value of X.

The regression line is selected to minimize estimation error. More precisely, it’s 
selected so that the standard deviation of the residuals is minimized. Imagine rotating 

Using regression 
to estimate Y 
from X makes no 
assumption about 
possible causal links 
between X, Y, and 
other variables.

(Y –  Y) is an 
estimation error, 
or residual, where 
Y is an observed 
value for some 
value of X, and Y 
is the estimated 
value given by the 
regression line for 
that value of X.
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Figure 12.2. Same as Figure 12.1, but with red vertical lines, from the data points to the regression 
line, to mark the (Y –  Y) residuals.
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the regression line in Figure 12.2 about the point (M
X
, M

Y
) and noting the changes 

to all the residuals. Rotate it a little clockwise or counterclockwise and some of the 
red vertical lines become a little longer, others a little shorter. Almost certainly, the 
standard deviation of the residuals changes. In fact, the regression line in the figure 
is positioned so that the SD is as small as possible. Rotate the line either way and the 
SD increases— we’ll see that happen in ESCI in a moment. Therefore, the regression 
line will, on average, give us better estimates than lines with larger or smaller slopes.

The SD of the residuals is written as s
Y.X

, which is a measure of the variation 
of the data points from the line. The equation is

 s
Y.X

 =  ∑ −( )
−

Y Y

N



2

2( )
 (12.2)

where the summation is over all N data points. The numerator under the square 
root is called the sum of squares of residuals, or SS(residuals). The denominator is 
the degrees of freedom, which is (N –  2). (Optional extra remark: The minus 2 
reflects the fact that two degrees of freedom are used up by estimating both the 
intercept and the slope of the regression line, which are the determining features 
of the line, as we’ll see in a moment.) I’ll talk about minimizing the SD of resid-
uals, on the left side in Equation 12.2. However, that’s equivalent to minimizing 
the SS(residuals), the sum of squares of residuals, on the right side, which is what 
many textbooks discuss. In summary, the slope of the regression line is chosen 
to give us the best regression estimates based on our data set, and it does this 
by minimizing s

Y.X
, the SD of residuals. Let’s see how the minimization works.

I’ll now shift to the small Thomason 1 data set, to keep things simple. 
Figure 12.3 shows the scatterplot for that data set, as in Figure 11.10, with the 
regression line and the red (Y – Y) residuals displayed. At red 12 below the 
scatterplot is the equation of the regression line for Y on X:

 Y = a + b × X (12.3)

SS(residuals)

df

SD of residuals.

Regression line, 
Y on X.

12.1 Fire up the Scatterplots page of ESCI intro  chapters 10– 16. If necessary, 
scroll right and click at red 16 to load the Thomason 1 data set. At the top, 
click at red 9 to reveal a panel with regression information. Click at red 
10 to display the regression line, and at red 13 to mark the residuals with 
vertical red lines. Your screen should resemble Figure 12.3.

As you may know, the intercept is the value of Y when X = 0, and, therefore, 
is where the line, extended if necessary, intersects the Y axis. For the Thomason 
1 data set, the estimates from the data— which are calculated by fitting the line 
so it goes through the means and minimizes s

Y.X
, the SD of residuals— are a = 4.22 

and b = 0.78. (As usual, I’m rounding the values displayed by ESCI.) That b value 
is the slope of the regression line. As you can see in Figure 12.3, the regression 
equation for predicting the posttest score (Y), given a pretest score (X), is:

 Y = 4.22 + 0.78 × X (12.4)

Now consider what we want to minimize— the SD of the residuals, which 
for the regression line is reported near red 13 to be s

Y.X
 = 1.37. Let’s investigate 

the minimization.

Intercept Slope

Regression line for 
Thomason 1.
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12.2 Click at red 14 to display a red adjustable line in place of the black regression 
line. Use the slider to change the slope of the red line, while still seeing 
the residuals marked by the fine vertical lines.

a. Over what range can you adjust the slope of the adjustable line?
b. Watch s

Y.X
 near red 13. How does it change as you rotate the 

adjustable line?
c. What happens when the slope of the adjustable line is, as close as pos-

sible, equal to b, whose value in the equation is displayed also below 
red 14?

I hope you found that the minimum value of s
Y.X

 was 1.37, and that this 
occurred when the slope of the adjustable line was equal (or very close to equal) 
to b = 0.78, at which moment the line changed from red to black. Rotating the line 

Figure 12.3. Scatterplot for the Thomason 1 data set, as in Figure 11.10, with the regression line and 
red (Y – Y) residuals displayed. For the data set, N = 12 and r = .89. From Scatterplots.

The regression line 
of Y on X minimizes 
s

Y.X
, the SD of 

residuals.
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either way increased s
Y.X

. Does the regression line look, roughly, as though it fits 
the pattern of points? Now for the second approach to thinking about the slope.

Regression Line Slope, and Correlation
I’ll discuss some thought experiments about predicting the GPA of a student 
I’ll call Robert. As in Chapter 4, I’ll use the international GPA scale that ranges 
from 1 to 7. If I gave you no information about Robert, what would be your 
best guess of his GPA?

 Thinking, thinking. Discussing, discussing.

It would be the mean GPA of all students, the mean usually being the 
best choice of a single value to represent a population. For your college, the 
mean may be, say, 4.5. Now suppose I told you that Robert is 176 cm tall. I also 
reported GPA and height data for a sample of 40 students, not including Robert, 
as pictured in Panel A of Figure 12.4. The correlation happens to be r = 0, so 
telling you Robert’s height gives you no information about his GPA. Therefore, 
the college mean of 4.5 is still your best GPA prediction. If you didn’t know that 
college mean of 4.5, you could use M

Y
, the mean of Y for the sample, which is 

4.4. That mean is marked by the heavy horizontal line, M
Y
 in the figure. In Panel 

A, because r = 0, whatever the value of X (a student’s height) the horizontal 
line at a GPA of M

Y
 = 4.4 is the best point estimate based on the data. In other 

words, the regression line is that horizontal line, Y = M
Y
 = 4.4, and its slope 

is zero. For any value of X, our regression estimate is Y = 4.4, but we expect 
great uncertainty in that estimate because there’s so much scatter in the data 
points, and r = 0. What I’m saying is that, if r = 0, height gives no information 
about GPA, so we can’t do better than use M

Y
 = 4.4 as our estimate of Robert’s 

GPA— but don’t expect it to be a good estimate.
Next you decide to investigate the Nifty test (no, I hadn’t heard of it before 

either) as a possible predictor variable. You test 20 students on the Nifty, and 
later record their GPA at the end of the year. Panel B presents the data, and 
shows that, remarkably, the correlation is r = 1.0. The line in Panel B goes 
through all the points and is the regression line that we’d use to estimate GPA. 
Its slope is (s

Y
/ s

X
), where, as you may recall, s

Y
 and s

X
 are the standard deviations 

of Y and X respectively. That slope is the ratio of the two standard deviations, 
and so its units are (GPA units)/ (Nifty scale units) or, in general, (units of Y)/ 
(units of X). It’s worth remembering that the slope of the r = 1 regression line 
is (s

Y
/ s

X
). We’ll be seeing it again.

Knowing a student’s Nifty score gives excellent information about that 
student’s GPA— sufficient information for us to make a fully accurate estimate 
of that student’s GPA. Therefore, in this case with r = 1 all the points lie on the 
regression line. If Robert, not in our sample of 20, scores X = 90 on the Nifty, Panel 
B illustrates that the GPA estimate given by the line is Y = 5.9. Assuming Robert 
is from the same population as our sample, we estimate his GPA will be 5.9.

Recall Equation 12.1, our informal expression for the story of Y. By “story 
of Y” I’m actually referring to the variability of Y about its mean, so, still infor-
mally, I can write:

 The story of Y =

 (What X tells us about the variability of Y) + The residuals (12.5)

The slope of the 
r = 1 line is (s

Y
/ s

X
),  

the ratio of the 
two SDs.

The informal 
story of Y.
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Consider the two extreme cases, r = 0 and r = 1, that we discussed above.

 ■ If r = 0, as in Panel A of Figure 12.4, we use M
Y
 as the estimate, for any X. 

The horizontal mean line is the regression line, with slope zero.
 ■ Also when r = 0, knowing X gives no information about Y, and so the 

first term on the right in Equation 12.5 is zero and the second term, the 
residuals, must be giving us the full story of Y. Typically, as in Panel A, the 
residuals are large.

 ■ If r = 1, as in Panel B, the line on which all points fall is the regression line, 
with slope (s

Y
/ s

X
).

 ■ Also when r = 1, knowing X gives complete information about Y, and so 
the first term on the right in Equation 12.5 tells the full story. The residuals 
are all zero, and they tell no part of the story of Y.

Panels A and B illustrate the two extreme cases for the slope of the regres-
sion line. What would you guess is the slope when 0 < r < 1, and so X gives 
some but not full information about Y? That’s worth pondering: Consider Panels 
A and B of Figure 12.4, and r close to 0, and r close to 1.

As r increases from 
0 to 1, X gives 
progressively better 
information about 
Y, and the slope 
of the regression 
line increases from 
0 toward (s

Y
/ s

X
); 

the line rotates 
counterclockwise 
from horizontal.

To obtain the 
regression line of Y 
on X, rotate from 
the horizontal mean 
line, M

Y
, until the 

slope is r times  
(s

Y
/ s

X
).

Take a break, discuss. Draw some sketches?

If your intuition suggests compromise between the two extreme cases, give 
yourself a pat on the back. For r = 0, knowing X gives us no information about Y, 
then for progressively larger r, knowing X gives us progressively more information 
about Y, until r = 1 and we have complete information about Y. Correspondingly, 
the regression line rotates smoothly between the horizontal mean line and a line 
with slope (s

Y
/ s

X
), as r changes from 0 to 1. (There’s a similar smooth change for 

negative correlations.) The smooth change in slope as r changes is a key point, 
so I’ll say it again: The regression line slope is somewhere between the zero slope 
of the horizontal mean line and the slope of the line through the points when 
r = 1, with correlation r determining where it lies between those two extremes.

Panel C of Figure 12.4 illustrates a case in which r = .2. I’m supposing that 
we rate our initial impression of a student, and assess how useful an estimate of 
GPA those ratings might provide. In a sample of N = 50 students, the correlation of 
those ratings with GPA at the end of the year was r = .2. The horizontal mean line 
at M

Y
 is shown and the regression line has rotated a small amount from horizontal.
The slope is actually r × (s

Y
/ s

X
), so it’s r that tells us how far to rotate from 

horizontal. When r = 1, the slope is 1 × (s
Y
/ s

X
), the slope in Panel B.

The dashed lines in Panel C show that, if the impression rating for Robert, 
who’s not in the sample of 50, is X = 24.0, our GPA regression estimate for him 
would be Y = 4.8. Because r is small, there’s much scatter in the figure and so 
the residuals are large, and, therefore, we expect considerable uncertainty in 
that estimate.

We’ve now taken two approaches to specifying the regression line:

1. The line that minimizes s
Y.X

, the SD of the estimation errors.
2. The line with a slope that’s a compromise, based on r, between horizontal 

and the line for r = 1. Its slope is r × (s
Y
/ s

X
).

The remarkable thing is that these two approaches give the same line. Our 
two approaches finish in the same place. We can now state the formula 
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for the regression line, and be happy that this is the line that minimizes 
estimation error.

The regression line passes through (M
X
, M

Y
), as illustrated in Figure 12.1, 

and has slope of r × (s
Y
/ s

X
). That information plus some algebra gives us for-

mulas for the intercept, a, and slope, b, in Equation 12.3, the equation of the 
regression line. The formulas are:

 b = r × 
s

s
Y

X







 (12.6) Slope, regression of 
Y on X.

Intercept, regression 
of Y on X.

Regression line, 
Y on X.

 a = M
Y
 –  b × M

X
 (12.7)

Substituting for a and b in Equation 12.3 gives an alternative form of the equa-
tion of the regression line of Y on X:

 Y =  M r
s

s
M r

s

s
XY

Y

X
X

Y

X

−


















+


















 (12.8)

That equation gives the regression line of Y on X, as displayed in Figures 12.1 
to 12.4. To use the equation to calculate the regression line, we need just the 
following summary information from a data set of N pairs of (X, Y) values: M

X
, 

M
Y
, s

X
, s

Y
, and r.

Quiz 12.1

1. In regression, the variable being predicted is X /  Y /  Y , the variable being used to make the 
prediction is X / Y / Y  and the prediction we make is X /  Y /  Y .

2. In the regression equation, b is the _ _ _ _ _ _ _ _ _ _ _ _ _  and a is the _ _ _ _ _ _ _ _ _ _ _ _ .
3. What is a residual? How is a residual calculated?
4. Which of the following r values would be the most useful for using with regression? Which 

would be the least useful?
a. r = 0
b. r = .3
c. r = −.6
d. r = .05

5. The _ _ _ _ _ _ _ _ _ _  of the regression line of Y on X is r × 
s

s
Y

X







.

6.  The regression line is chosen to minimize
a. the slope.
b. the intercept.
c. the correlation.
d. the sum of squares of residuals.

The Linear Component of a Relationship
In Chapter 11 we saw that r measures just the linear component of the rela-
tionship between two variables, X and Y, and that we need to see the scatter-
plot to be sure we have the full story. We can calculate a value of r whatever 
the scatterplot, but Figure 11.4 illustrated two cases in which r could easily 
mislead. The regression we’re discussing is called linear regression because it, 

Correlation
Slope of line for r = 1

Intercept, a Slope, b
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too, expresses the linear component of the relationship, by means of a straight 
line. Once again this may not be the full story and thoughtful inspection of the 
scatterplot is always necessary. Further, it’s called simple linear regression because 
there’s just one predictor, X.

Beyond that is multiple linear regression, which estimates Y from two or 
more predictors, X

1
, X

2
, …. That’s beyond the scope of this book, but sufficiently 

important to be worth a brief mention. If, for example, you use number of years 
of education (X) to predict annual income (Y), you are using simple regression 
as we discuss in this chapter. If, however, you use not only years of education 
(X

1
), but also, say, age (X

2
) and a measure of socioeconomic status (X

3
) to 

predict income, you would be using multiple regression. Multiple regression 
often, although not always, gives a better prediction of Y. It also provides esti-
mates of the relative contributions of the various predictors (X

1
, X

2
, …) to the 

prediction of Y. It can be highly valuable to have, for example, an indication 
that years of education makes a larger (or maybe smaller?) contribution than 
socioeconomic status to expected income. I need to warn you, however, that 
multiple regression is often misused and can be very tricky to interpret. One 
major issue is that the estimated contribution of, say, X

1
 depends on the full set 

of predictors (X
1
, X

2
, …). Drop one of those predictors— or add another— and 

the relative contributions of all the predictors to the prediction of Y may change 
drastically. I won’t try to explain in detail, but the take- home message— all you 
need to keep at the back of your mind— is that multiple regression can be highly 
useful, but using it properly requires a fair bit of knowledge. Be very cautious 
about any conclusion you read that’s based on multiple regression.

Now back to simple regression. Recall that one or two outliers can be very 
influential on the mean and standard deviation, and one or two points that don’t 
fit the general pattern can make a big difference to r, as Figure 11.12 illustrates. 
One or two such points can also make a big difference to the regression line. 
Figure 12.5 illustrates this by displaying the Thomason 1 data set, and the same 
with the addition of a point at (18, 7) for a student who did very well on the 
pretest, but terribly on the posttest. That single aberrant point drops r from .89 
to .40 and reduces the slope of the regression line from 0.78 to 0.36. The scat-
terplot on the right might lead us to doubt the usefulness of linear regression 
for these data, or we might consider calculating regression twice, once for the 
full data set, and once without the aberrant point. As always, examine the data 
carefully and make a reality check for anything statistical that you calculate.

You may be thinking that journal articles rarely include scatterplots, so how 
can we be sure that the correlation and regression analyses we read are appropri-
ate? That’s a good question. Unless the authors tell us that the scatterplots show 
no signs of departure from linearity, they are asking us to take their analyses 
and interpretation on trust. We should always, however, keep in mind possible 
limitations. For correlation and regression, always remember that it’s the linear 
component being assessed. Keep a sharp lookout for any indication of outliers.

12.3 Consider a data set with N = 12, M
X
 = 11.58, M

Y
 = 13.25, s

X
 = 3.32, s

Y
 = 2.90, 

and r = .89.

a. Use Equation 12.8 to calculate the regression equation of Y on X.
b. What Y would you estimate for X = 9? Would you expect small or large 

uncertainty in that estimate? Why?
c. What Y would you estimate for X = 0? Might there be some problem 

with that?

Simple regression 
uses a single 
predictor (X), and 
multiple regression 
more than one 
predictor (X

1
, X

2
, …), 

to predict Y. Use and 
interpret multiple 
regression with great 
caution.
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12.4 Open Scatterplots and, if necessary, scroll right and click at red 16 to load 
the Thomason 1 data set.

a. Reveal the regression panel and click the three checkboxes at red 10 to 
display the regression line and mark an X value and the corresponding Y.

b. Use the slider to set X = 9, as closely as possible. What is Y? Explain 
what that Y value tells us.

12.5 Examine the descriptive statistics reported at red 3 and compare with the 
values I stated for Exercise 12.3.

a. Compare your calculated regression equation with that shown at red 12.
b. Compare your calculated Y for X = 9 with your answer to Exercise 12.4.

12.6 Below red 2 find the two students who scored X = 9 on the pretest.

a. What posttest scores did they obtain?
b. Compare with our Y estimated value for X = 9. Is there a problem? 

Explain.

12.7 You discover that the results for one student were omitted from the data 
set. That student scored X = 12 on the pretest and Y = 7 on the posttest. 
Enter those additional data values below red 2 and watch what changes. 
Use Undo and Redo to note the changes as the additional point is removed 
and added.

a. What happens to r? Explain.
b. Does the slope of the regression line change much? Does the regression 

line seem to represent the points reasonably? Explain.
c. Compare the changes given by addition of (12, 7) with the changes 

illustrated in Figure 12.5 for the addition of the point (18, 7). Which 
point is more influential? Explain and draw a general conclusion.

Regression Using z Scores
A scatterplot of (X, Y) data pairs is usually displayed using the original units 
of X and Y. Figures 12.1 to 12.5 all show such scatterplots of data in original 
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Figure 12.5. Scatterplot at left is for the Thomason 1 data set, as in Figure 12.3. Scatterplot on the right is the same, but with 
the addition of an outlier data point at (18, 7).
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Regression line, 
Z

Y
 on Z

X
.

units. Alternatively, as we saw in Chapter 11, a scatterplot may display the cor-
responding standardized scores, Z

X
 and Z

Y
. Figure 12.6 shows both scatterplots 

for the Thomason 1 data set: original units on the left, as in Figure 12.3, and z 
scores on the right. The z scores are calculated so that the mean is zero and the 
SD is 1, for both Z

X
 and Z

Y
. Therefore, in the scatterplot of z scores the regression 

line passes through (0, 0), the means point. The slope of the line for r = 1 is (s
Y
/ 

s
X
), which here is (1/ 1) = 1, so that line would slope at 45° upward to the right. 

The slope of the regression line is r times that, or r × 1 = r. The equation of the 
standardized regression line of Z

Y
 on Z

X
 is therefore:

 Z
Y 
 = r × Z

X
 (12.9)

Figure 12.6. Scatterplots for the Thomason 1 data set. On the left is the scatterplot in original units, as in Figure 12.3, and on 
the right the same data transformed to z scores. In each figure, the regression line and cross through the means are displayed. 
From Scatterplots.

The standardized 
regression line of Z

Y
 

on Z
X
 has intercept 

zero, and slope r.

This equation (12.9) is the conversion of Equation 12.3 to standardized scores. 
It has no term for the intercept, because the line passes through (0, 0) and so 
the intercept is zero.

I need to mention a customary symbol that’s very poorly chosen, as if 
designed to make life confusing for all of us. In the regression world, the slope 
of the standardized regression line expressed by Equation 12.9 is almost always 
given the symbol β. It’s a highly valuable convention to use Greek letters for 
population parameters, but here β refers to a slope estimate calculated from a 
data set, using standardized scores, so β is a sample statistic, not a population 

Slope
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parameter. We could use it as our point estimate of the standardized regression 
slope in the population, but we would need to find some other symbol, perhaps 
β

population
, for that population parameter.

It’s crazy to use a Greek letter for a sample statistic, but in this case, 
unfortunately, it’s the norm. If you see reference to β in the context of simple 
linear regression, think of Equation 12.9 and remember that β = r. A regression 
slope is sometimes referred to as a regression weight, so β is often referred to 
as the standardized regression weight. Despite it being a Greek letter, we have 
to remember that it’s a sample statistic, not a population parameter. Sorry 
about that.

12.8 Observe the Thomason 1 data set in Scatterplots and click at red 15 to 
reveal the second scatterplot. Display the regression line and cross through 
the means. Compare with Figure 12.6.

a. Type in the additional data point (18, 7). Again use Undo and Redo, 
and note changes in both scatterplots.

b. What is β for the original 12 points? For 13 points? Explain.

12.9 Suppose that for this month in your city the daily maximum temperature 
is approximately normally distributed with mean 20 °C and standard 
deviation 4 °C. The correlation of maximum temperature from one day 
to the next is r = .6.

a. Suppose the maximum today is 14 °C, and we wish to estimate tomor-
row’s maximum. What would you choose as X and Y?

b. Find Z
X
, and use Equation 12.9 to calculate Z

Y 
. What is your prediction 

of tomorrow’s maximum?
c. If r = 0, what’s your prediction for tomorrow’s maximum?
d. For r larger than .6, would tomorrow’s prediction be closer to today’s 

maximum, or further away? Explain.

12.10 The height of adult women is approximately normally distributed with 
mean 162 cm and SD 6 cm.

a. Susan is X = 174 cm tall. Find Z
X
.

b. Suppose r = .5 for the heights of a woman (X) and her adult daughter 
(Y).Use Equation 12.9 to find Z

Y 
 for Susan’s daughter. Find her esti-

mated height, Y.
c. Find the estimated height of Susan’s granddaughter, when adult. And 

her great- granddaughter.

12.11 Now let Y be the height of Susan’s mother.

a. Find Z
Y
 and Y.

b. Explain what that Y is, and how it relates to the starting information 
that Susan is X = 174 cm tall.

The pattern of height of a woman, and estimated heights of her mother, 
daughter, granddaughter, and so on, is worth pondering and discussing. It was 
discussed extensively around a century ago when these statistical ideas were 
being developed, although then it was mainly about fathers and sons. Some 
people thought the regression analysis seems to imply that, after a few gener-
ations, all the descendants of Susan would have about the same height— the 
population mean. That’s tricky to think about, and was often described as a 
paradox. How does it strike you? We’ll discuss it further a little later.

The slope of the 
standardized 
regression line of 
Z

Y
 on Z

X
 is referred 

to as β, called 
the standardized 
regression weight.
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THE PROPORTION OF VARIANCE ACCOUNTED 
FOR: r2

I now want to discuss a useful interpretation of r2, the square of the correlation. 
Consider Figure 12.7, in which I’m imagining we wish to estimate Y, Maria’s 
height. Panel A reports data for N = 30 pairs of women who are identical twins, 
with r = .80. If Maria (not in that sample) has an identical twin, then the high 
correlation means that knowing the twin’s height, X, gives us good information 
about Maria’s height. The regression line is rotated most of the way toward  
(s

Y
/s

X
), the slope of the r = 1 line, and residuals are generally not large.
By contrast, Panel C reports heights for N = 30 pairs of women who are 

best friends, with r = .20. If we are told X, the height of Maria’s (female) best 
friend, the low correlation means that the regression line gives an estimate, 
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Figure 12.7. Scatterplots for fictitious data for three samples, each comprising N = 30 pairs of women, and each displaying 
the regression line for Y on X. Panel A displays women’s heights for pairs of identical twins, with r = .80. Panel B displays 
heights for pairs of sisters, with r = .50. Panel C displays heights for pairs of women who are best friends, with r = .20.
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Y, of Maria’s height that’s likely to be poor. The regression line is rotated only 
a small amount from horizontal and residuals are generally large. Panel B 
displays data for N = 30 pairs of sisters, with r = .50, so the regression slope is 
intermediate between those of Panels A and C.

Our informal idea, in Equations 12.1 and 12.5, is that the regression line 
provides Y estimates calculated from X that tell part of the story about Y, the 
remainder lying with the residuals. In Panel A, correlation is high, the regression 
line tells much of the story of Y, and residuals are small. In Panel C, correlation 
is low, the line tells only a small portion of the Y story, and residuals are large.

Slightly more formally, our story becomes:

Variance of Y =

 Variance of Y estimates + Variance of (Y –  Y) residuals (12.10)

Why use variance? You don’t need to know, but if you’re curious: As 
I mentioned in Chapter 4, variance has the valuable statistical property that 
variances add— as in Equation 12.10— when the different sources of variability 
are independent. Now to formulas. If these are becoming eye- glazing, think 
back to the informal account above.

Equation 12.2 gave the basic formula for s
Y.X

, the SD of the residuals:

 s
Y.X

 =  ∑ −( )
−

Y Y

N



2

2( )

 (12.2)

Here’s a second equation for s
Y.X

 that gives the same results as Equation 12.2, 
although I won’t try to explain why it’s true:

 s
Y.X = × −s rY 1 2  (12.11)

which is an equation involving two standard deviations. Square it to give an 
equation about variances:

 s s rY X Y. ( )2 2 21= × −  (12.12)

which can be rearranged to give:

 s r s sY Y Y X
2 2 2 2

.= ×



 +  (12.13)

The variance 
story of Y.

SD of residuals.

SD of residuals.

Variance of residuals.

Equation 12.13 is just a formalization of informal Equation 12.10. It tells 
us that the total variance of Y in our data set is the sum of two components: the 
variance of Y  values estimated from X, and the variance of the (Y –  Y) residuals. 
The first component is referred to as the variance of Y that’s attributable to X, or 
accounted for by X. Equation 12.13 also tells us that, in terms of variance, r2 is 
the proportion of the Y story that’s told by the regression line; the remaining 
(1 –  r2) is with the residuals.

As usual, we’re not making any assumptions about causation— we’re 
not, for example, claiming that X causes the regression component of the 
variance of Y.

Total variance 
of Y Variance of Y 

estimated from X 

Variance of (Y–Y) 
residuals 

The variance of Y is 
the sum of variance 
of Y estimated from 
X, and variance of 
the residuals.
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If |r| is zero or small, where |r| is the absolute value of r, does X account 
for much of the variance of Y? If |r| is large, does X account for much of the 
variance of Y?

Enter small or large values of r into Equation 12.13… Reflect, discuss…

If r = 0, the r sY
2 2×



 term in the equation is zero and the variance of the 

residuals equals the total variance of Y, as in Figure 12.4, Panel A. The regres-
sion line is horizontal and doesn’t help, and residuals are generally large. At 

the other extreme, if r = 1, the r sY
2 2×




 term is sY

2 , and so sYX.
2 0= , meaning 

there’s no variance in the residuals. As in Panel B, the estimates are perfectly 
accurate, and all residuals are zero.

As r increases from 0 to 1, the regression line rotates from horizontal toward 

(s
Y
/ s

X
), the slope of the r = 1 line. Also, the r sY

2 2×



  term increases, meaning that 

the regression line can use X to account for more and more of the variance in 
Y, and the variance of the residuals decreases. In a nutshell, r2 is the proportion 
of sY

2 , the total variance of Y, that can be attributed to X, or accounted for by X.
In Panel B of Figure 12.7, r = .5 for the heights of sisters. Therefore, a 

woman’s height (X) accounts for r2 = .52 = .25, or 25% of the variance in her 
sister’s height (Y).

12.12 a.  What percentage of the variance of a woman’s height is attributable to 
the height of her identical twin, based on the r value from Figure 12.7? 
What percentage is variance of the residuals? Considering Panel A of 
Figure 12.7, does that seem reasonable?

b. Answer the same questions for a woman’s best friend and Panel C.

I conclude that, when X and Y are strongly correlated, a regression line 
allows us to make better estimates of Y based on X, and the residuals are smaller. 
Large (in absolute magnitude) correlations are indeed useful.

REGRESSION REVERSED: THE REGRESSION 
OF X ON Y

It’s customary to arrange things so X is the predictor and Y the predicted 
variable, and to consider the regression of Y on X. I did say, however, that 
I’d mention regression the other way round: the regression of X on Y. This 
refers, of course, to estimating a value of X for a particular value of Y, so 
the roles of predictor and predicted variable are swapped. Let’s consider the 
Thomason 3 data set.

For that data set, Figure 12.8 displays the scatterplot for N = 39 students 
who gave HCTA scores before and after training in critical thinking. The corre-
lation is r = .60, and in each panel a regression line and the cross through the 
means are displayed. I’m not going to give formulas, but think of a regression 
line as a compromise between a mean line and the r = 1 line, with r determining 
the degree of compromise. The familiar regression line of Y on X is displayed on 
the left. It’s the heavy line that’s rotated counterclockwise from the horizontal 
mean line through M

Y
, with the amount of rotation determined by r = .60.

Now consider the right panel and estimation of X for a given value of Y. If 
r = 0, knowing Y gives us no information about X, so our best prediction is M

X
, 

which is the vertical mean line at about 67. For r > 0, the regression line will be 

r2 is the proportion 
of sY

2 , the variance of 
Y, that is accounted 
for by X.
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rotated clockwise, and the larger the r, the more the rotation from the vertical. 
The result is the heavy line labeled as “Regression, X on Y”.

It may seem weird to have two different lines for a single data set, as in 
Figure 12.8. Both lines give estimates with minimum SD of the residuals, but 
residuals are defined differently in the two cases, so the two lines are almost 
always different. For the regression line of Y on X, the (Y –  Y) residuals are 
the focus; these are the vertical distances of the data points from the line, as in 
Figures 12.2 and 12.3. One of these is displayed red in the left panel of Figure 12.8. 
The Y on X regression line minimizes s

Y.X
 , the SD of the vertical, Y residuals.

By contrast, for the regression line of X on Y, the (X –  X) residuals are the 
focus, and these are the horizontal distances of the data points from the X on 
Y regression line. One of these is displayed red in the right panel. The X on Y 
regression line minimizes s

X.Y
 , the SD of those horizontal, X residuals.

12.13 a. When do the two regression lines have similar slopes?
b. When are the two regression lines the same? What is their slope?
c. When are the two regression lines most different in slope? Explain.

Quiz 12.2

1. Before using regression it is important to see the scatterplot. What should you be asking as 
you inspect it?
a. Is the relationship linear, because otherwise linear regression should not be used?
b. Are there outliers, which can have a very strong influence on the regression equation?
c. Both a and b.

2. Regression is easy with standardized scores (z scores). Given a Z
X
, you can calculate the 

prediction Z
Y 
 by simply _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

3. By regression convention, β is the _ _ _ _ _ _ _ _ _ _ _ _ _  of the standardized regression line; it is 
equal to _ _ _ _ _ _ _ _ _ _ .
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Figure 12.8. Scatterplot for the Thomason 3 data set for N = 39 students who gave HCTA scores at pretest (X) and posttest 
(Y). In each panel, a regression line and the cross through the means are displayed. The left panel illustrates the regression 
line of Y on X, which is rotated counterclockwise from the horizontal mean line at M

Y
 . An example (Y –  Y) residual is displayed 

red. The panel at right illustrates how the regression line of X on Y is rotated clockwise from the vertical mean line at M
X
. An 

example ( )X X−   residual is displayed red.

The regression line 
of X on Y minimizes 
s

X.Y
, the SD of the X 

residuals.
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4. Which of the following is true about r2?
a. r2 is calculated simply by multiplying r by itself (r × r).
b. r2 reflects the strength of the correlation, and can vary from 0 to 1.
c. r2 represents the proportion of variance of Y accounted for by knowing X.
d. All of the above.

5. If X and Y are correlated, r = −.4, then X accounts for _ _ _ _ % of the variance of Y. If the 
correlation is r = .1, X accounts for only _ _ _ _ % of the variance of Y. If X accounts for 64% of 
the variance of Y, then r = _ _ _ _  or _ _ _ _ .

6.  The regression line for predicting Y from X minimizes the SD of the (Y –Y  ) /  (X – X ) residuals, 
whereas the regression line for predicting X from Y minimizes the SD of the (Y –Y  ) /  (X – X ) 
residuals.

ASSUMPTIONS UNDERLYING REGRESSION 
PREDICTIONS

For the simple linear regression we’re discussing, we’re assuming both X and 
Y have interval scaling. In addition, for Y  estimates to be usable as predictions 
for new cases, we need to assume random sampling of Y values at any par-
ticular value of X. For an example, recall the imaginary Hot Earth Awareness 
Test, the HEAT. Suppose we’re interested in the increase in HEAT scores 
for students in successive years at your college. Figure 12.9 is a scatterplot 
of a random sample with N = 20 at each year level. Because Y is randomly 
sampled at each X value, we are justified in using the regression line of Y 
on X, as shown in the figure, for making predictions. It’s not a problem that 
the X values— 1, 2, 3, and 4— were chosen for convenience and are not a 
random sample.

In addition, we should make predictions only for cases from the same 
population as the data set. Informally, we’re assuming that the relationship 
observed in the data set holds also for that particular case. For our example, we 
could use the regression line to make predictions for students at your college, 

For a Y estimate 
to make sense as a 
prediction, we need 
to assume random 
sampling of Y values 
at any particular 
value of X.
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Figure 12.9. Fictitious HEAT scores for samples of N = 20 students from years 1, 2, 3, and 4 in college. 
The predictor variable, X, is year, and the predicted, Y, is HEAT score. The regression line is calculated for 
the data set of 80 points.
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but not for other students— unless we made the additional assumption that 
students at your college are similar to some wider population of students, at 
least in relation to HEAT scores.

What if X for the individual case lies outside the range of X in the data set? 
That suggests that the individual case doesn’t comes from the same population— 
in other words, the assumption that the relationship in the data set applies to 
the individual case is likely to be suspect, or even silly. A regression line doesn’t 
necessarily apply beyond the range of X values in the original data. It’s easy 
to find crazy examples of regression estimates beyond the original range of X 
that make no sense. For example, if your friend proudly reports that, over the 
last two months he has lost 1 kg, you can helpfully say “Great, at that rate in 
about ten years you’ll weigh nothing!”

To discourage possibly unjustified extrapolation— trying to extend the 
relationship beyond the ranges of the data— ESCI doesn’t display the regres-
sion line or calculate a Y value for X beyond its range in the data set. When 
using regression, just as any other time we’re working with data, it’s essential 
to keep thinking about the meaning of what we’re doing. Does it make sense?

Now I’ll summarize this brief section on assumptions.
Regression prediction. For a Y estimate to make sense as a prediction for a 

new case, we need to assume:

1. random sampling of Y values at any particular value of X;
2. that the new case comes from the same population as the data. In particular, 

X for the new case should lie within or close to the range of X in the data; 
we should be very cautious if it lies much beyond that range.

INFERENCE, AND MEASURING THE UNCERTAINTY OF 
PREDICTION

At last some CIs, in fact two of them. In this section I’ll discuss, first, a CI on 
the regression slope, b, and second, CI curves for the whole regression line. 
Then I’ll discuss a prediction interval for individual values of Y. There will be 
cool pictures, with curvy lines.

A Confidence Interval on b, the Regression Slope
We use b, the slope of the regression line, to estimate the population slope, 
which I’ll call b

population
. (I’d like to call it β, but unfortunately β has another 

meaning.) Now I want a CI on b. Figure 12.3 shows at red 12 that the regres-
sion equation for Thomason 1 is Y = 4.22 + 0.78 × X. Therefore b = 0.78 is 
our estimate of the population slope, which tells us that one extra LSAT point 
at pretest (that’s X) is likely to be associated, on average, with an increase of 
around 0.8 points on the LSAT at posttest (which is Y).

Just below the equation is the CI on b, which is [0.50, 1.06], our interval 
estimate of b

population
. We can interpret that CI as we do any other CI: Most likely 

the slope of the regression line in the population lies in the interval, with values 
around 0.78 the most likely. Also, our interval is one from a dance, and may be 
red— it may miss the true value, although probably not by much. The CI is so 
far from zero that the p value for testing the null hypothesis that b

population
 = 0 

would be tiny. Figure 12.6 reports the regression analysis and shows near red 
12 that indeed p = 0, to three decimal places. If you wished to report a p value, 
you would report p < .001.

Any prediction 
from a regression 
line requires the 
assumption that 
the particular case 
comes from the 
same population as 
the data set.

Be especially 
cautious about 
any estimate for X 
beyond the range of 
X in the data set.

The CI on b, 
the slope of the 
regression line in 
the data set, is the 
interval estimate 
for b

population
, the 

regression slope in 
the population.
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For a given b, what would you expect to happen to the CI if N were much 
larger? Much smaller?

I hope you agree those are very easy questions. As usual, other things 
being the same, larger N gives us shorter CIs, and thus a more precise estimate 
of b

population
.

Now for a real example. Zaval et al. (2015) asked a sample of 244 U.S. online 
respondents about environmental issues, especially climate change, and their 
willingness to take action for the sake of future generations. Respondents rated 
agreement with statements like “I feel a sense of responsibility to future gen-
erations” and “It is important to me to leave a positive legacy.” Responses were 
combined to give a “Legacy Motivation” scale, range 1 to 6, where higher values 
indicate a greater concern about what legacy one leaves to future generations. 
Respondents were later offered $10, and asked to nominate some proportion to 
donate to an environmental cause; they would keep the remainder for them-
selves. To what extent did people who were more concerned about future gen-
erations choose to donate more? The regression of amount donated (Y) against 
Legacy Motivation score (X) had slope of b = $0.73 per Legacy Motivation scale 
unit [0.35, 1.12]. That value of b means an increase of one point on the Legacy 
Motivation scale, which ranges from 1 to 6, gives, on average, an increased dona-
tion of 73 cents from the $10, with CI from 35 to 112 cents. Yes, they donated 
more, but that doesn’t look like a large effect. Zaval et al. used that result to guide 
further research, including investigation of ways to increase legacy motivation.

12.14 In Scatterplots, scroll right and click at red 19 to load the BodyWellFM 
data, the full data set for N = 106 women and men as in Figure 11.1. 
(Note that the axes extend beyond the scale ranges of the two measures, 
which are 1– 5 and 1– 7. If you know about Excel you can click near the 
edge of the figure to select it, then edit the scale ranges for the X and Y 
axes.) Click at red 9 then 10 to display the regression line for Well- being 
(Y) on Body Satisfaction (X).

a. What is the regression equation? State b and explain what it tells us.
b. State and interpret the CI on b.
c. Click near red 12 to show the p value. Explain and interpret.
d. Click near red 7 to show the p value for testing the null hypothesis that 

the population correlation is zero. How do the two p values compare? 
Does this seem reasonable?

e. Is it reasonable to apply regression to this data set? What assumptions 
are we making, for what calculations?

Exercise 12.14 referred to the p values for b near red 12, and r near red 
7. The first assesses the null hypothesis that b

population
, the regression slope in 

the population, is zero. The second assesses the null hypothesis that ρ, the 
population correlation, is zero. The two p values are calculated using different 
formulas, but should be the same, or very close to the same. This makes sense 
because zero correlation, as in Panel A of Figure 12.4, corresponds to a hori-
zontal regression line, meaning the slope is zero. Regression slope is zero if, 
and only if, correlation is zero. Assessing the two null hypotheses should give 
the same answer, in particular the same p value.

Confidence Intervals for the Mean of Y, at every X
Our second CI is not a couple of values in square brackets, but two curves 
in the scatterplot. In Figure 12.10, the scatterplots are as in Figure 12.7, but 
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with the addition of dashed curves above and below the regression line. These 
curves are sometimes called “the CI on the regression line”, but that’s vague 
wording. Let’s focus on a particular value, X = 174, as marked in the scat-
terplots. Recall Figure 12.9, which illustrates a sample extending vertically 
above an X value, the sample coming from a population of Y values at that X. 
That’s also the case in Figure 12.10. We assume that vertically above X = 174 
on the graph (technically, above a very short interval close to 174) there’s an 
arbitrarily large population of Y values. There are such populations across the 
full range of X values.

The figure marks the Y values given by the regression lines in the three 
panels, all for X = 174 cm. In each panel, the heavy red vertical line between 
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Figure 12.10. Same as Figure 12.7, but with curved dashed lines indicating, at every value of X, the lower and upper limits 
of the CI for the population mean of Y. The Y value, as given by the regression line for X = 174, is marked in each scatterplot, 
and the heavy red vertical line is the CI on this Y value. This CI is the vertical extent between the dashed curves and is the CI 
for the population mean of Y at X = 174 cm.
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the two dashed curves is the CI on the Y value, meaning the CI for the mean 
of the Y population at that X value. In Panel A, for example, the regression line 
gives Y = 171.6 cm. The population is the heights (Y values) of an assumed very 
large number of women who have an identical twin with height very close 
to X = 174 cm. Our estimate of the mean of that population is our estimate 
of Maria’s height— given that her identical twin is 174 cm tall. When I used 
Scatterplots to make Panel A, I clicked at red 11 to display the dashed CI curves, 
and saw that the CI on Y, at X = 174, is [168.5, 174.7]. So we estimate Maria’s 
height as 171.6 cm [168.5, 174.7].

Why are the CI lines curved? Think of a dance of the regression lines. 
Imagine taking repeated samples of size N = 30 pairs of identical twin women. 
Display the regression line for each. Sampling variability would cause those 
lines to bounce around: up and down a bit, and also rotated either way a bit. 
The dashed CI lines give us a rough idea of the extent of bouncing around. 
Because the bouncing includes rotation, the dashed CI lines need to be further 
apart for more extreme values of X. Putting it another way, CIs will be longer 
at X values further away from M

X
.

Across the three panels in Figure 12.10, the regression line slopes decrease 
from A to C, because r decreases from .8 to .2. Now consider the dashed CI lines. 
Does it make sense that they are wider apart and more strongly curved in C 
than A? Given the greater scatter of points corresponding to r = .2 in Panel C, 
it’s reasonable that the dance of the regression lines would show more ener-
getic bouncing— larger jumps up and down, larger rotations— than for r = .8 in 
Panel A. So the CI lines need to be further apart and more curved in C than A.

12.15 If Maria’s best woman friend is 174 cm tall, Panel C estimates Maria’s 
height as Y = 164.4 cm [159.3, 169.5].

a. Explain what that CI refers to.
b. Compare that CI with [168.5, 174.7], the CI stated above for Panel 

A. Explain the difference.

12.16 a.  What proportion of the variance in a woman’s height (Y) is accounted 
for by the variance in her identical twin’s height? What proportion by 
her best woman friend’s height?

b. What are the corresponding proportions for variance of the residuals?
c. What aspects of the display in Panels A  and C reflect all those 

proportions?

Prediction Intervals for Individual Values of Y
We’ve been estimating the mean of Y for a particular X. If Maria’s identical twin 
is 174 cm tall, Panel A estimates Maria’s height as Y = 171.6 cm [168.5, 174.7]. 
The CI tells us that the mean of the population of women with a 174 cm tall 
identical twin is, most likely, between about 168 and 175 cm. However, indi-
vidual women have heights that are scattered below and above that mean. To 
get some idea of how widely scattered, we need the prediction interval for the 
height of an individual woman in that population.

This is our final uncertainty topic— considering the prediction of individual 
values of Y at a particular X. We need a prediction interval, not a CI, because 
CIs estimate population parameters such as means, but here we focus on indi-
vidual values, not a parameter. In other words, we are interested in individual 
Y values at X = 174 cm, not the mean of all such Y values, as we considered in 

The curved CI lines 
mark the lower and 
upper limits of the 
CI for the mean of 
the Y population at 
each X value.

The prediction 
interval for 
individual values of 
Y at a particular X 
value reflects both 
uncertainty in the 
estimate of mean 
Y, and the spread of 
individual Y values.
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the previous subsection. We can expect the prediction interval for an individual 
Y value at X = 174 cm to be long because it must reflect:

1. uncertainty in the population mean of Y at this X, as quantified by the CI 
we discussed in the previous subsection, plus also

2. the spread of individual values, as indicated by the SD of that population.

Figure 12.11 is the same as Figure 12.10, but with the addition of two more 
dashed lines in each panel, to mark the lower and upper limits of the prediction 
interval for individual values of Y, at each X value.

Figure 12.11 shows that the prediction intervals are indeed long. In each 
panel the prediction interval for individual values of Y, when X = 174 cm, is 
marked by the fine green vertical line between the two open diamonds. For 
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Figure 12.11. Same as Figure 12.10, but with display also of longer- dashed lines indicating, at every value of X, the lower 
and upper limits of the prediction interval for individual values of Y. The fine green vertical line between the two open green 
diamonds is the prediction interval on Y at the chosen value of X.

Prediction intervals 
for an individual case 
are often long, even 
when CIs on b and Y 
are short. Individual 
cases may be widely 
spread.
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Panel A, the prediction interval is (163.5, 179.7). Despite the large correla-
tion, r = .8, the heights of individual women who have an identical twin of 
height X = 174 cm are widely spread. We shouldn’t be surprised if Maria her-
self is, perhaps, 165 cm, or even 181 cm tall. That’s a sobering but important 
lesson: When considering regression, keep in mind that individual cases are 
likely to be widely spread, even if we get nice short CIs for slopes and means.

Do long prediction intervals mean that regression predictions are useless? 
In Panel A, eyeball the prediction intervals for X = 152 cm and X = 174 cm. 
Each is long, but they are very different, with only modest overlap. They 
could, therefore, give us useful predictions for individuals, even though the 
long intervals remind us that individual values are widely spread. However, 
doing the same for Panel C gives prediction intervals that are largely overlap-
ping, so, for small r, and, therefore, a regression line not far from horizontal, 
prediction intervals for individual Y values may be of limited practical value.

Here’s a thought experiment: Suppose Figure 12.11 was based on three 
samples of N = 1,000, rather than N = 30, and that r was, once again, .8, .5, and 
.2 for the three panels. Consider the CI curves for mean Y, as also displayed in 
Figure 12.10. How do you think those pairs of curves may be different with 
the much larger samples? Now consider the prediction interval curves. How 
do you think they may be different from those in Figure 12.11?

 Thinking, thinking, discussing…

Think about CIs for a population parameter, and the spread of individual 
values in a population, which is relevant for prediction intervals. I’ll discuss 
this thought experiment shortly.

12.17 In Exercise 12.15, I  stated that Panel C estimates Maria’s height as 
Y = 164.4 cm [159.3, 169.5]. The prediction interval is (151.1, 177.7). 
Interpret those two intervals and explain the difference.

12.18 In Scatterplots, load the Thomason 3 data and turn on the regression 
line and the CI curves for the mean of Y, the HCTA posttest.

a. Display a chosen X value and the corresponding Y value. Select X = 72. 
Note Y and its CI, for this X value. Interpret.

b. Display the prediction interval curves. Note the prediction interval for 
X = 72 and interpret.

Back to that thought experiment. With N = 1,000 the CI for mean Y at some 
X would be much shorter, and so the CI curves much closer to the regression 
line than in Figures 12.10 and 12.11. The prediction interval is shortened a little 
by that shortening of the CI— that’s component 1 I described above. However, 
the second component is the spread of individual values in the population of 
Y values at the particular X and this is not influenced by the size of the sample 
we take. Therefore, prediction intervals are only a little shorter with N = 1,000, 
and the longer- dashed prediction interval curves only a little closer to the 
regression line.
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ASSUMPTIONS UNDERLYING REGRESSION CIS AND 
PREDICTION INTERVALS

In an earlier section I said that regression predictions require the assumption of 
random sampling of Y values at any particular value of X. For regression CIs we 
need more. We need to assume, in addition, that Y is normally distributed in the 
population and that the variance of Y is homogeneous for all X. To illustrate, I’ll 
use Figure 12.12, which is the same as Figure 12.9 but displays also the population 
of Y (HEAT scores) at each X. We need to assume those populations are normally 
distributed, and that all have the same standard deviation, meaning that we need 
homogeneity of variance of Y for all X. I generated the data in the two figures 
by sampling randomly from the populations shown, which all do have the same 
standard deviation, so the assumptions needed for regression CIs are met.

Note that, for regression CIs, we need to make assumptions only for the 
predicted variable, Y. Just as for regression prediction, the X values can be 
chosen for convenience and need not be a sample. Contrast with the require-
ment for bivariate normality when we calculate CIs on correlation r, as we 
discussed in Chapter 11. For regression CIs, however, it’s not a problem if X 
and Y do come from a bivariate normal population, because that gives us what 
we need: Y that’s sampled from a normal population and variance of Y that’s 
homogeneous for all X.

To consider whether the assumptions needed for regression CIs are jus-
tified, consider the nature of Y: Is it reasonable to assume it’s sampled from a 
normally distributed population? We also need homogeneity of variance of Y 
for all X, but this can be difficult to assess. It’s common to make that assumption 
unless there are strong reasons against, or strong indications in the data that 
the standard deviation of Y changes across the range of X.

To calculate 
regression CIs, we 
need to assume 
Y is normally 
distributed in the 
population, and 
that the variance of 
Y is homogeneous 
for all X.
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Figure 12.12. Same as Figure 12.9, but showing also the population of Y (HEAT scores) at each year, 
assumed to be normally distributed. The short horizontal lines mark population means.
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I’ve said those assumptions are needed for “regression CIs”, but I should 
be more specific. They are needed for the CI on b, the CI for the mean of Y 
at a particular X, as in Figure 12.10, and also for the prediction interval for 
individual values of Y at a particular X, as in Figure 12.11. For the latter two 
intervals we also need the assumption that the case with the particular X value, 
for which we calculate the interval, is from the same population as the data.

Now I’ll summarize both the previous section on assumptions and this 
section.

Regression prediction, from previous section. For a Y estimate to make sense as 
a prediction for a new case, we need to assume:

1. random sampling of Y values at any particular value of X;
2. that the new case comes from the same population as the data. In particu-

lar, X for the new case should lie within or close to the range of X in the 
data— we should be very cautious if it lies much beyond that range.

CI on regression slope, b. To calculate such a CI, we need Assumption 1 above 
and also need to assume:

3. that the population of Y values at any particular value of X is normally 
distributed;

4. homogeneity of variance of Y across all values of X.

CI for the mean of Y at a particular X. To calculate such a CI, as in Figure 12.10, 
we need:

 ■ all of Assumptions 1, 2, 3, and 4 above.

Prediction interval for individual values of Y. To calculate such an interval for 
a particular value of X, as in Figure 12.11, we again need:

 ■ all of Assumptions 1, 2, 3, and 4 above.

THREE INTERVALS: WHICH SHOULD I USE?

At this point you are entitled to feel that there’s lots going on that’s different, 
but sufficiently similar to be confusing. I hope it helps if I use an example to 
summarize. It’s vital to know the range of options you have, and to be able to 
choose which you need. Let’s go back to Daniel, who scored X = 3.0 for Body 
Satisfaction. We have four main options. If you wish to follow along, go to 
Scatterplots, scroll right and click at red 21 to load the BodyWellM data set for 
the N = 47 males as in Figure 12.1.

1. Find the regression equation and use it to make a Y estimate. I’m interested in the 
research question of how X and Y relate, so I want the regression equation 
for Y on X. I’m willing to assume random sampling of Y, so I clicked at red 
9 and saw

 Y = 1.66 + 0.93 × X (12.14)Regression line, 
Y on X.
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The regression slope in the sample is b = 0.93, meaning that, on average, 
1 unit increase in Body Satisfaction corresponds to a 0.93 unit increase in 
Well- being. (Not necessarily causal!)

What’s our estimate of Daniel’s Well- being (Y) score? I’ll assume Daniel 
is from the same student population as the data. I could use Equation 12.14 
to calculate Y for Daniel’s X = 3.0, but instead I clicked three checkboxes 
at red 10 and used the slider to set X = 3.0 and find Y = 4.44 as our point 
estimate for Daniel.

2. Find the confidence interval on b. My research interest is in X and Y in the 
population, so the regression line is a good start, but as well as the point esti-
mate, b = 0.93, of the population slope, I want the interval estimate. This is 
shown near red 12 as [0.48, 1.38], a long interval because our sample isn’t 
large. This CI relies on the reasonable assumption that we have random 
sampling of Y from a normally distributed population with homogeneous 
variance across all X. We estimate b

population
 = 0.93 [0.48, 1.38].

3. Find the confidence interval for mean Y at a particular X. For X = 3.0, we found 
Y = 4.44, our point estimate of mean Y of the population of all students 
who have X = 3.0. I clicked at red 11 and saw two dotted curves and a ver-
tical red CI, as in Figure 12.10. The CI is [3.99, 4.89], which is our interval 
estimate of mean Y when X = 3.0. To conclude, our estimate of Daniel’s 
Well- being score is Y = 4.44 [3.99, 4.89].

4. Find the prediction interval for individual values of Y at a particular X. That CI 
might mislead us into thinking we have a fairly precise idea of Daniel’s 
Well- being score. A quick glance at the large scatter in Figure 12.1 should 
remind us that individual points are widely spread. For a more realistic 
idea of Daniel’s Y score we need the prediction interval for Y, when X = 3.0. 
I clicked lower below red 11 and saw that interval to be (2.60, 6.28). I also 
saw the curved, dashed lines and vertical green interval between diamonds, 
as in Figure 12.11. The long prediction interval reflects both the uncertainty 
in estimating mean Y at X = 3.0 (the CI we found in 3 above) and the large 
vertical spread of individual values of Y for students with X = 3.0. The Y 
score of our particular subject, Daniel, is most likely around 4 or 5, but 
could be anywhere in the prediction interval (2.60, 6.28), or even a small 
distance beyond.

So, which should you choose? That depends on what you want. To study 
the relationship of X and Y, you probably want the regression equation and CI 
on b (use 1 and 2 above). If you want to know about all students with X = 3.0, 
use 3. If you want the best guidance for one particular student, for example 
Daniel, use 4.

REGRESSION TO THE MEAN: A POSSIBLY STRANGE 
NATURAL PHENOMENON

Whenever a correlation is not 1 or −1, regression to the mean occurs. It’s a natu-
ral and inevitable phenomenon, so it’s worth discussing, although it can seem 
strange. Consider our estimates of Maria’s height. In Panel A of Figure 12.10, 
correlation is .8, the regression line is steep, and X = 174 cm gives an estimate 
of Y = 171.6 cm for Maria. In Panel C, correlation is .2, the regression line is 
not far from horizontal, and X = 174 cm gives an estimate of Y = 164.4 cm. 

The regression 
equation and CI 
on b tell about the 
relation of X and Y 
in the population. Y 
and its CI tell about 
all cases having a 
stated X value. The 
prediction interval 
tells about individual 
Y values for a stated 
X value.

Whenever the 
correlation of X and 
Y is not 1 or −1, a 
Y estimate is closer 
to the mean than 
the X value it was 
estimated from. 
This is regression to 
the mean.
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Both Y estimates have shifted, or regressed, closer to the mean than X, and the 
larger the correlation, the steeper the regression line and the smaller the shift 
toward the mean.

Figure 12.13 shows this in a different way, the curved red arrows indicat-
ing how the Y values are closer to the mean of 162 cm than the X values from 
which they were calculated. For r = .8, the shift is small— from 174 down to 
171.6 cm, but for r = .2 the shift is larger. The red arrow on the left shows a 
third case: If r = .5, X = 156 cm gives Y = 159 cm, which is also shifted closer to 
the mean, and by an intermediate amount.

Here’s an example we might consider strange: Recall Exercises 12.10 and 
12.11 about Susan and her female relatives. Here I’ll discuss the pattern without 
using formulas. The correlation is positive (and not 1) for the heights of Susan 
and her daughter. (Studies of women’s and daughters’ heights typically report 
correlations near .5, the value I stated earlier, but the pattern I’m discussing 
doesn’t depend on any particular value of r). Susan is 174 cm tall, well above 
the mean, so we expect her daughter’s height to regress downward toward 
the mean. We expect her granddaughter’s height when adult to regress even 
further down toward the mean, and so on for further generations. Might this 
suggest that, after a few generations, every woman is pretty much of average 
height? That’s why this phenomenon has sometimes been considered a paradox.

Now consider going backward in time, rather than forward. The correlation 
for the heights of Susan and her mother is also positive (and not 1). Therefore, 
we expect Susan’s mother’s height to regress down toward the mean, her 
grandmother’s height even further down, and so on. All those statements going 
forward and backward in time are actually true in the world. Regression to 
the mean may seem strange, but it captures something important about how 
correlation works in practice.

Note that causation plays no part in this discussion, which depends only 
on r. We used regression in Figure 12.10 to estimate Maria’s height without 

Small r indicates 
regression line near 
horizontal and 
much regression 
to the mean. Large 
r indicates steep 
regression line and 
little regression to 
the mean.

r =.5

r =.2

r =.8

144 150 156 162 168 174 180
X, Woman's Height (cm)

Ŷ=159
Ŷ=164.4

Ŷ=171.6

Figure 12.13. Normal distribution of women’s heights, with mean 162 cm and standard deviation 6 cm. 
The three curved red arrows illustrate regression predictions of height (Y values) for three different 
situations. The shortest arrow illustrates X = 174 cm and r = .8; the longest illustrates the same X and 
r = .2; and the arrow on the left illustrates X = 156 and r = .5. The red arrows highlight the extent to 
which the Y estimate regresses toward the mean in each case: Larger r gives less regression— as we’d 
expect.
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any mention of causation— only the correlations mattered. For a particular r, 
we’ll see the same pattern of regression to the mean, whatever X and Y are 
measuring and regardless of any causation or lack of causation.

Regression to the Mean and the Variability of Y
The key issue is that we’ve been discussing point estimates of the mean of Y, 
which don’t tell us anything about the variability of Y. Consider an extreme 
case: Suppose the correlation between the heights of women who are neigh-
bors is r = 0. If I tell you the height of Maria’s woman neighbor, what’s your 
estimate of Maria’s height? Yes, 162 cm, the mean, and the regression line is 
horizontal. What’s the extent of regression to the mean? It’s 100%. However, 
we expect the standard deviation of the heights of women neighbors (includ-
ing Maria) to be the same as that of all women, 6 cm. A large amount of 
regression to the mean doesn’t reduce the amount of variability of Y. Our 
particular Maria could be short or tall. Even if our best height estimate for 
Susan’s great- great- great- granddaughter is almost totally regressed to the 
mean, that doesn’t imply any reduction in the standard deviation for that 
younger generation of women. Same for her great- great- great- grandmother. 
There is no paradox.

In other words, regression estimates the mean, but individual cases are 
likely to show great variability. That’s why the prediction interval for individ-
ual values of Y is long, as in Figure 12.11. Our estimate for Susan’s daughter is 
168 cm, but a particular daughter may be shorter or taller than 168 cm, perhaps 
even taller than Susan. My family provides two examples: I’m 192 cm tall, well 
above average. Regression would lead me to expect sons who are shorter than 
me. However, both my sons are distinctly taller than me. Unlikely, but in our 
case true. And, in case you are wondering, my wife is not a giant!

Regression to the mean may be tricky to think about, but it happens in the 
world all the time. Let’s consider some examples.

Everyday Regression to the Mean
Suppose you are very pleased with your basketball (or golf, or favorite computer 
game) score today, one of the best you have achieved. What’s your prediction for 
next time you play? Your scores for two successive times you play are probably 
positively correlated, but there’s almost certainly some variability in how you 
perform, in which case r is less than 1. Therefore, if today’s score is high, your 
next score will, on average, be regressed toward the mean, and therefore lower 
than today’s. If you score a personal best one day, but do less well the next day, 
you don’t need to search for any complex reasons, because the decrease may 
have been caused by nothing more than the boring old natural phenomenon 
of regression to the mean. Conversely, after a really bad day, be encouraged 
that next time you are likely to do better, merely because of regression to the 
mean. But no guarantees.

When any variables X and Y are correlated less than perfectly, meaning r 
is not 1 or −1, then, given a value of X, the mean Y we expect is less extreme, 
less distant from the mean, somewhat regressed toward the mean, compared 
with that given value of X. The higher the correlation, the less the regression 
to the mean, but only if |r| = 1 is there no regression.

When learning to fly, one of the greatest challenges is achieving a smooth 
landing, and student pilots typically spend many hours making practice 

A Y estimate is 
regressed toward the 
mean (unless |r| = 1), 
but this does not 
imply any decrease 
in the variability of Y.

Regression to the 
mean occurs often in 
the world, whenever 
two variables are 
less than perfectly 
correlated and one 
is used to make 
an estimate for 
the other.
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landings. An instructor who had studied psychology and knew about positive 
reinforcement and punishment decided that, to help her students improve, she 
would systematically give a few words of praise whenever a student achieved 
a particularly smooth landing, and a few harsh words after any very bumpy 
landing. She kept careful records and was disappointed to find that, after 
a good landing and praise, a student would, on average, make a less good 
landing. However, after receiving harsh words for a poor landing, a student 
was likely to make a better landing. She concluded that praise didn’t work, 
but punishment— her harsh words— did. Were her conclusions justified? Does 
psychology have it wrong about praise and positive reinforcement?

That story is worth considering and discussing, especially if you have 
studied what psychology says about positive reinforcement. I’ll come back to 
it shortly, but take a break and call a friend to discuss the story. Is it plausible?

12.19 A large basketball club fields many teams. Each week they give a special 
mention to the three players scoring the most points that week. The 
committee observes that only rarely does a player receive a special men-
tion for two weeks in a row. They fear that receiving a special mention 
somehow puts players off their game, so the scheme is discontinued. Was 
that decision justified? Explain.

12.20 I dare not tell my friends, but I believe that a headache will go away if 
I wear a pink hat, face north, and wiggle my toes for one minute. I tried 
it secretly for my most recent five headaches, and every time my head-
ache was distinctly less severe an hour later. Can I expect my headache 
treatment to make me famous? Explain.

Back to the flying instructor. We hope that the student’s landings gradually 
improve, but, from landing to landing, there’s almost certainly considerable 
variation in quality. In other words, there’s less than a perfect correlation from 
one landing to the next. Therefore, a pattern, on average, of less good land-
ings after particularly smooth landings, can be explained by regression to the 
mean. Seeing improvement, on average, after particularly rocky landings can 
be explained the same way. In other words, because of variation in the quality 
of successive landings, the correlation is less than perfect and so regression to 
the mean occurs. We’d therefore expect the observed pattern, even if the praise 
and admonishment had no effect.

There’s an additional interesting twist 
to this story. Consider what the instructor 
experiences. Regression to the mean leads 
to the instructor being punished (student 
likely to land less well) for giving praise, 
but rewarded (a better landing) for giv-
ing punishment— the harsh words. It’s 
an unfortunate fact that we go through 
life tending to be punished after we give 
reward, but rewarded after we give admon-
ishment. How sad! Perhaps, to compensate, 
we should all try hard to limit our criticisms 
of other people, and find reasons for giving 
positive comments?
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Here’s a final point about regression to the mean. It always occurs, unless 
|r| = 1, but to know the direction of regression of the Y estimate we need to 
know whether the X value is below or above the mean. If you tell me your 
basketball score and I have no idea whether it’s below or above your typical 
or mean score, I can’t say whether your score tomorrow is likely to be higher 
or lower. Only if you tell me that it’s a particularly poor or good score— for 
you— can I say that tomorrow you are likely to do better, or worse, respectively, 
because of regression to the mean. Of course that’s an average estimate, and 
on a particular tomorrow your score could jump either way.

Always keep in mind regression to the mean as a possible explanation— it 
happens in all sorts of common situations and sometimes has surprising con-
sequences. Think of the everyday meaning of the word “regression”. Does our 
topic in this final section of the chapter suggest why the statistical technique 
we’ve been discussing was given that name?

It’s almost time, at last, for take- home messages. To help you write yours, 
you might think back to some of the pictures we’ve discussed: a scatterplot 
with a regression line, the short vertical lines that are the residuals, three scat-
terplots and regression lines for estimating Maria’s height, dashed CI curves, 
and even more widely spaced curves for prediction intervals. Reflect again on 
Susan and her relatives, and on the comments you might make to a student 
pilot practicing landings.

Quiz 12.3

1. When making a prediction about a new case,
a. the new case must be from the same population sampled to generate the regression equation.
b. it must make sense to assume random sampling of Y at any level of X.
c. we should be especially cautious of making predictions for any X value outside the range 

of the sample used to generate the regression equation.
d. All of the above.

2. Consider the assumption that X and Y have a bivariate normal distribution in the population. 
For each purpose below, state whether that assumption is or is not necessary.
a. To calculate r
b. To calculate the CI on r
c. To calculate prediction Y for a particular value of X
d. To calculate the CI on b
e. To calculate the prediction interval for Y at a particular value of X

3. Ange is using regression to use GRE scores to predict graduate school success. For each 
purpose listed below, which of the following intervals should she use?
(i) CI on b, (ii) CI for mean of Y at X, (iii) prediction interval for individual values of Y at a 
specific X.
a.  Ange wants to describe the typical level of success expected for students who score 160 

on the GRE.
b.  Ange is helping to evaluate a particular applicant who has scored 169 on the GRE; she 

wants to express the likely range of possibilities for this applicant.
c. Ange wants to express the degree to which GRE scores are related to graduate school 

success.
4. For the different intervals above, which will change the least as larger sample sizes are 

collected? Why?
5. If the absolute value of the correlation of two variables is less than _ _ _ _ , the estimate of the 

predicted variable will be closer to /  further from the mean than the value of the predictor 
variable used to make the estimate. This phenomenon is called _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ .
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  6.      The couple next door sometimes have loud arguments, which I find disturbing. Whenever 
they have an especially loud exchange I concentrate hard and try to send them a mental 
message of calm. It seems to work— usually, within half an hour they are much quieter. 
Does this show I have wonderful powers of the mind? Explain.     

  12.21     An advertisement encourages people to enroll for further training by 
declaring that every extra year of education increases annual income by 
an average of $7,000.  

  a.     Assuming that fi gure comes from a regression analysis, explain what 
it’s telling us.  

  b.     What assumptions are implicit in the encouragement of the ad? Are 
they reasonable?    

  12.22     I told you about my belief that wearing a pink hat, and so forth, fi xes any 
headache I have.  

  a.     Suppose I always follow that ritual whenever I have a headache. Is my 
belief in the effectiveness of the ritual likely to weaken or strengthen 
over time? Explain.  

  b.     You might regard my belief in that ritual as superstition. (Of course, 
I don’t.) Describe some other superstition that might be perpetuated 
in the same way.  

  c.     Tell me about a belief of yours that’s perpetuated in the same way. You 
don’t need to answer this publicly.    

  12.23     You have developed a computer game to help teach spelling. A group of 
children who scored more than one standard deviation below their age 
norm on a spelling test played your game for two sessions. They took the 
test again a week later and obtained a distinctly higher average score.  

  a.     Should you be encouraged? Explain.  
  b.     Suggest a better design of study to assess your game.    

  12.24     If you wish, revise your take- home messages.   

   Reporting Your Work  

 Regression provides a chance to quantitatively explore the relationship between two 
variables. Reporting it is similar to reporting correlation, but focuses on the regression 
equation. Your research report should typically include these elements: 

 ■   Whether the regression analysis is planned or exploratory, unless this is already clear  
 ■   Basic descriptive statistics for both the  X  and  Y  variables  
 ■   A scatterplot with the regression line  
 ■   The regression equation, including the CI for the slope  
 ■   If desired, the  p  value for the slope, usually against the null hypothesis that  b  

population
  = 0  

 ■   If desired, the standardized slope,  β , and its CI; For regression with only one predictor 
variable, this is the same as  r  and its CI, so you do not need to report both  

 ■   Discussion of the regression equation that focuses on the slope and its CI; specifically, 
consider how the slope informs thinking about how changes in the  X  variable relate to 
changes in the  Y  variable— but be careful to avoid causal language  

 ■    A discussion of the degree to which the assumptions for regression are met; when 
assumptions are violated, be sure your interpretation is suitably tentative     

 As planned, we used linear regression analysis to predict 
well- being scores from body satisfaction scores ( b  = 0.82, 
95% CI [0.51, 1.12],  a  = 2.10). This CI is fairly long but 

 Reporting regression 
is similar to 
reporting correlation 
but focuses on the 
regression equation. 
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indicates that each unit of additional body satisfaction is 
associated with a half up to a full unit of additional well- 
being (1– 7 scale). Relative to other predictors of well- being 
this is a strong relationship. One caution in this analysis is 
the restricted range of the body satisfaction scores, as all 
participants scored at least 2 on this 1– 5 scale. 

 Often regression analysis is reported simply to provide a quantitative sense of how the 
 X  and  Y  variables are related. Clearly, though, an additional benefit of regression analysis is 
the ability to make predictions about general trends or even specific individuals.  

 ■   If you are making predictions only about general trends in the  Y  variable (what mean  Y  is 
likely for various values of  X ), then include the CI for the mean of  Y  for each value of  X  of 
interest (and include these curves in the scatterplot).  

 ■   If you are making predictions about specific individuals, then include  Y  prediction intervals 
(and include the prediction interval lines in the scatterplot).   

 For example: 

 Based on this regression analysis, participants with a body 
image score of 2 would be predicted to have an average well- 
being of 3.74, 95% CI [3.21, 4.26]. This indicates that the 
average well- being in this group is likely to be moderate. 

 Based on this regression analysis, a participant with a body 
image score of 2 would be predicted to have a well- being score 
of 3.74, 95% PI (1.62, 5.85). This is a very long prediction 
interval, but it indicates that a participant at this low- 
end score for body satisfaction is very unlikely to be at the 
highest levels for well- being.       

  Take- Home Messages  
 ■   Like correlation, the regression line is an expression of the linear component of the 
relationship of  X  and  Y , but neither may provide the full story of that relationship. In 
neither case is there necessarily any causation.  

 ■   The regression line for  Y  on  X  minimizes the SD of the ( Y –   Y  ) residuals. It passes through 
the means point ( M  

 X 
 ,  M  

 Y 
 ) and has slope  b  =  r  × ( s  

 Y 
 /   s  

 X 
 ), which is  r  times the slope of the 

 r  = 1 line.  

 ■   The standardized regression line of  Z  
 Y 
  on  Z  

 X 
  passes through (0, 0) and has slope  r .  

 ■   The proportion of   sY
2   , the total variance of  Y , that can be accounted for by  X  is  r  2 ; the 

remaining proportion is (1 –   r  2 ), which is   sY X.
2   , the variance of the residuals.  

 ■   To use a   Y   estimate for a new case with a particular value of  X , we need to assume  Y  is 
randomly sampled and that the new case comes from the same population as the data 
set. Calculating any CI, or a prediction interval, requires in addition the assumptions that 
 Y  comes from a normal population and that the variance of  Y  is homogeneous for all  X .  

 ■   The CI on  b , the sample regression slope, is the interval estimate for  b  
population

 , the population 
regression slope.  

 ■   Curved CI lines mark the lower and upper limits of the CI for the mean of the  Y  population at 
each  X  value.  

 ■   The prediction interval for individual values of  Y  at a particular  X  value is usually long, 
because it reflects both uncertainty in the estimate of mean  Y  at that value of  X , and the 
spread of individual  Y  values.  

 ■   Unless two variables are perfectly correlated, an estimate for the predicted variable shows 
 regression to the mean , a natural phenomenon occurring frequently in the world.    
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End- of- Chapter Exercises

1) It probably comes as no surprise to learn that friendly people tend to have more close friends 
than unfriendly people. To what extent can you predict how many friends someone has 
just from knowing how friendly they are? To investigate, 64 psychology majors completed 
a questionnaire measuring their friendliness and their number of close friends. The two 
variables were moderately correlated, r = .34, 95% CI [.10, .54]. Table 12.1 shows descriptive 
statistics.

a. Think about those values. Does it seem reasonable to assume Y is normally distributed 
in the population?

b. Before using this information for regression, it would be best to see a scatterplot. What 
would you be looking for to confirm that regression is appropriate?

c. We’d like to use friendliness to predict number of close friends. What is the slope in 
the regression equation?

d. What is the intercept in the regression equation?

e. Using the regression equation, how many friends do you predict for someone who is 
fairly unfriendly (X = 2)?

f. Using the regression equation, how many friends do you predict for someone who is 
very friendly (X = 5)?

g. No mathematics, just think: How many friends do you predict for someone of exactly 
average friendliness (X = 3.6)? Why? Use the regression equation to check your 
intuition.

h. If you find out that your participant of average friendliness actually has 10 friends, 
what is the residual of prediction?

i. Calculate the regression equation going the other way: using number of close friends 
to predict friendliness.

j. What if someone reported having 300 close friends? What would their predicted level 
of friendliness be? Recall that friendliness was measured on a scale from 1 to 5. What’s 
gone wrong using regression?

k. The sample data came from undergraduate psychology majors in the United States. 
Would it be reasonable to use this data set to make predictions about European psy-
chology majors? About U.S. high school students? About Facebook users?

2) Maybe you’re thinking about buying a house after college? Regression can help you hunt 
for a bargain. Use the book website to download the Home_ Prices data set. This file con-
tains real- estate listings from 1997 to 2003 in a city in California. Let’s explore the extent 
to which the size of the home (in square meters) predicts the sale price.

a. Use ESCI to create a scatterplot of the relationship between home size (X) and asking 
price (Y). Does this data set seem suitable for use with regression?

Table 12.1 Summary Statistics for Friendliness and Numbers of Close Friends for N = 64 
Students

Friendliness (scale from 1−5), X Number of close friends (open ended), Y

M s M s
3.58 0.43 8.33 6.27
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b. To what extent is home size and asking price related in this sample? What is the 95% 
CI for the relationship between home size and asking price in the population of houses?

c. What is the regression equation for predicting asking price from home size?

d. Use ESCI to show the residuals for home prices— notice that some houses are listed at 
prices that fall above the regression line and others at prices that fall below. If you are 
hunting for a bargain, which type of house would you want to look at? Why? What 
is the house with the largest negative residual?

e. Does a large residual mean that the seller has made a mistake and should adjust the 
asking price? Why or why not?

f. If a house has a size of 185.8 m2, what is the predicted asking price?

g. How well can we predict the mean asking price for houses of 185 m2? Use ESCI to 
obtain the 95% CI for the mean of Y when X = 185.

h. How well would our predictions hold up with a new data set? To investigate, 10 further 
cases, not included in the regression analysis, were taken from the same population. 
These are listed in Table 12.2, which is partially completed. For each house, use ESCI 
to predict price from house size. Record the prediction (Y ), the 95% prediction interval 
(PI), and calculate the residual (Y –  Y). In the second column from the right, record 
whether or not the PI includes the asking price. For the first two houses, check you 
get the same values as shown. Fill in values for the last four houses. In how many of 
the 10 cases does the PI include Y, the asking price? Calculations to the nearest $1,000 
are fine.

i. For a given X, our 95% PIs are really long. Yet we can predict the mean of Y for a given 
X with a very short 95% CI (as in g above). Why the difference? Would an even larger 
sample size help shorten the PIs substantially? Explain.

j. The data for this regression analysis were collected from 1997 to 2003. In 2015, a realtor 
is asked to help sell a house in the same city that is 99.1 m2. What is the predicted price 
for this house using the regression equation you have from the 1997– 2003 data set? 
Would it be reasonable to use this prediction in setting a price for this house? Why or 
why not? Do regression equations have expiration dates? Should they?

3) Happiness may not be important just for the person feeling it; happiness may also promote 
kind, altruistic behavior. Brethel- Haurwitz et al. (2014) examined this idea by collecting 
data on U.S. states. A Gallup poll in 2010 was used to measure each state’s well- being index, 
a measure of mean happiness for the state’s residents on a scale from 0 to 100. Next, a 

Table 12.2 A Further Sample of 10 Houses In a Californian City

Case Size, X (m2) Y  ($1,000) 95% PI ($1,000) Asking Price, Y ($1,000) Within PI? (Y/ N) Residual ($1,000)

1 133.8 297 −56 650 149 Y −148
2 158.0 362 9 716 549 Y 187
3 142.7 321 −32 674 435 Y 114
4 121.7 264 - 89 617 299 Y 35
5 203.2 485 132 838 625 Y 140
6 195.1 463 110 817 399 Y −64
7 140.4 187
8 197.9 1,290
9 130.1 265

10 113.8 199
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kidney donation database for 1999– 2010 was used to figure out each state’s rate (number 
of donations per 1,000,000 people) of non- directed kidney donations— that’s giving one 
kidney to a stranger, an extremely generous and altruistic thing to do! You can download 
the data from the book website (Altruism_ Happiness).

a. Use ESCI to create a scatterplot of the relationship between a state’s 2010 well- being 
index (X) and rate of kidney donations (Y). Any comments on the scatterplot? Does 
this data set seem suitable for use with regression?

b. To what extent is a state’s well- being index and rate of kidney donation related in this 
sample? What is the 95% CI for the relationship in the population? What does “pop-
ulation” refer to?

c. What is the regression equation for predicting rate of kidney donation from 
well- being index?

d. In Table 12.3 record the predictions for four states, in the column labeled Y (2010).

e. The table includes updated well- being means, for 2013. Use those to make predictions, 
and record these in the column labeled Y (2013). Compare with the predictions based 
on the 2010 well- being data. Discuss which we should use.

f. To make predictions using the 2013 well- being means you used the regression equation 
generated using the 2010 well- being data. Discuss the extent that’s reasonable.

g. From 2008 to 2013 Gallup measured state- wide well- being based on six indicators: life 
evaluations, emotional health, work environment, physical health, healthy behavior, 
and access to services. In 2014, however, Gallup changed the way it measures state- 
wide well- being; it now bases scores on five somewhat different indicators: purpose, 
social life, financial satisfaction, community, and physical health. Can the regression 
equation you developed be used with 2014 well- being data? Discuss.

Answers to Quizzes

Quiz 12.1
1) Y, X, Y; 2) slope, intercept; 3) A residual is an error in prediction, calculated as (Y –  Y), which is the difference between 

the actual and predicted value of Y; 4) most useful is c., r = −.6; least useful is a., r = 0. The best predictions come 
from the strongest relationship, but the direction of the relationship does not matter for making good predictions; 
5) slope; 6) d.

Quiz 12.2
1) c; 2) multiplying Z

X
 by r (so Z

Y
 = r × Z

X
); 3) slope, r; 4) d; 5) 16, 1, .8, −.8; 6) (Y –  Y), (X –  X).

Table 12.3 Well- Being Means for Four States, for 2010 and 2013

State Well_ Being_ 2010 Y  (2010) Well_ Being_ 2013 Y  (2013)

WY 69.2 65.6
HI 71 68.4
ND 68 70.4
NV 64.2 66.6
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Quiz 12.3
1) d; 2) No, yes, no, no, no (for c– e, less restrictive assumptions are required); 3) a. needs (ii), b. needs (iii), c. needs 

(i); 4) The prediction interval for individual Y at a particular X will change least because this depends not only on 
uncertainty in the estimate of mean Y at that value of X, but also on the spread of individual Y values at that 
level of X, which doesn’t change for different N; 5) 1, closer to, regression to the mean; 6) I may have such powers  
(I suspect you do too), but this observation doesn’t give good supporting evidence. Most likely, the noise level is 
lower 30 minutes after a very loud exchange simply because of variation over time and regression to the mean.

Answers to In- Chapter Exercises

12.2 a. From 0 (horizontal) to 0.87; b. It’s large for slope 0 or 0.87 and smaller in between; c. When the slope is 0.78, 
the same (or almost the same) as the calculated value of b, then s

Y.X
 = 1.37, its minimum value, and the line 

and values change from red to black.
12.3 a. Y = 4.22 + 0.78 × X; b. 11.24, small, because r is large and therefore the points are not scattered widely; c. For 

X = 0, Y  = 4.22, but X = 0 is way outside the range of X for which we have data, and the relationship of X and 
Y might not be the same so far beyond that range. A pretest score of 0 might suggest an absent or delinquent 
student, so Y = 0 might be a better guess, but that’s a guess— not a regression estimate.

12.4 b. Y  = 11.24 is our best point estimate of Y when X = 9, based on the regression line.
12.5 a, b. All the same.
12.6  a. 12, 10; b. Those points do not lie on the regression line, and therefore their Y values do not equal Y = 11.24, 

which is no problem.
12.7 a. The point reduces r  from  .89 to  .74 because  it’s an outlier; b. Slope changes  from 0.78 to 0.76. The  line 

drops, because of the low outlier, but rotates only a little because the new point is close to the mean of X. The 
line represents the points less well with the outlier added; c. The point (18, 7) is much more influential than  
(12, 7), making a much larger change to r, because it’s more extreme, especially by being extreme on X as well 
as Y. Points that are outliers on both X and Y have much more influence on r and b.

12.8 a. In both scatterplots, r and the regression slope change greatly. In the left figure the means cross moves, 
but not in the right figure; b. β = r and is .89 for the original points and .40 with the additional point. Both 
regression slopes change accordingly.

12.9 a. Today’s temperature, X, and tomorrow’s, Y; b. Z
X
 = (14 –  20)/ 4 = −1.5. Z

Y 
 = .6 × (−1.5) = −0.90, so prediction 

is Y = 20 + (−0.90) × 4 = 16.4 °C, c. If r = 0, predict 20 °C, the mean; d. Closer because regression line is steeper.
12.10 a. 2; b. Z

Y 
 = .5 × 2 = 1. Y = 168 cm; c. For X = 168  for  the daughter, Y = 165 cm for  the granddaughter. 

Y = 163.5 cm for the great- granddaughter.
12.11 a. Z

Y 
 = .5 × 2 = 1; b. Y = 168 cm is the best estimate of a mother’s height, given her daughter  (Susan)  is 

X = 174 cm tall.
12.12  a. 64%, so 36% of variance in Y is the variance of the residuals, which no doubt fits with Panel A, although 

variance is hard to eyeball; b. For Panel C, 4% and 96%, again perhaps reasonable.
12.13 a. When r is close to 1 or −1; b. When r = 1 or −1, the two regression lines are the same, with slope (s

Y
/ s

X
) or 

−(s
Y
/ s

X
); c. They are most different when r = 0, in which case the Y on X line is horizontal at M

Y
, the mean of Y, 

and the X on Y line is vertical at M
X
.

12.14 a. Y = 2.10 + 0.82X; b = 0.82 is the regression slope in the data, meaning the slope of the regression line of 
Y on X; b. The CI on b is [0.52, 1.12], so the slope in the population could plausibly be anywhere in that fairly 
long interval; c. At red 12, ESCI shows p = 0 (which we’d report as p < .001) for the null hypothesis of zero 
regression slope in the population; d. At red 7, p = 0. The two p values are the same, as we’d expect, because 
if r = 0 the slope of the regression line is also 0; e. To calculate the regression line we’re assuming random 
sampling of Y (Well- being), which is probably reasonable. To calculate the CI on b, and the p value at red 12, we 
need to assume also that Y is normally distributed in the population, with variance that is homogeneous for all 
X. To calculate the p value at red 7, for correlation, we need the stronger assumption that the data are from a 
bivariate normal population. All those assumptions are probably reasonable.

12.15 a. The CI tells us that the mean height of all women who have a best woman friend who is 174 cm tall lies, most 
likely, in that interval; b. The CI for Panel A tells us the same, but for all women who have an identical twin who 
is 174 cm tall. It’s much shorter because the correlation is much higher, so we have much better information 
about Maria’s likely height.

12.16  a. 64%, 4%, and these values reflect the very different slopes of the two regression lines; b. 36%, 96%; c. The 
differing Y residuals in the two scatterplots— the differing amounts of scatter of the points around the 
regression line in A and C.
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12.17 The CI estimates the mean height of all women with a best woman friend who’s 174 cm tall, whereas the much 
longer prediction interval reflects that uncertainty and in addition the variation in height of all those individual 
women. It tells us about the spread in the distribution of heights of all women with a best woman friend who’s 
174 cm tall.

12.18 a. Y = 73.9 [72.1, 75.8], so 73.9 is the best point estimate of population mean posttest HCTA when the pretest 
is 72, and that CI is the interval estimate for that mean; b. The prediction interval is (64.2, 83.7) and tells us 
about the full distribution of individual posttest scores when pretest = 72.

12.19 Performance week to week no doubt shows some variability, so the correlation is less than 1, and therefore 
regression to the mean must occur: an extreme performance this week is likely to be followed by a less extreme 
performance next week. There is no need to invoke any extra reason, such as a player being put off their game. 
It may be worth bringing the awards back.

12.20 Headache usually varies over time, so regression to the mean could explain why a headache now is, on average, 
followed by lesser headache in an hour. My ritual could easily be having no effect, unless my belief is strong 
enough to produce a placebo effect. Alas, I can’t expect my headache treatment to make me famous.

12.21 a. The $7,000 is no doubt b for the regression line of annual income on years of education, probably based on 
data for a large sample of people. It implies that, on average, income increases by that amount for an additional 
year of education; b. The ad assumes causality of income by education, whereas no doubt there are many other 
variables involved. For example, intelligence, family background, and personal motivation may be, to some 
extent, causal for both years of education, and income.

12.22 a. By regression to the mean, quite often my headache reduces and so my belief in the ritual could be 
strengthened; b. Other superstitions that could be reinforced in the same way need to predict an event likely to 
happen because of regression to the mean. The superstition must relate to an extreme value on X leading to a 
less extreme value on Y, where X and Y are correlated. A belief that it rains more at weekends does not qualify, 
but a belief that shouting at the clouds on a very wet day causes the following day to be less wet does qualify.

12.23 a. Children selected for scoring poorly are likely to do less poorly, on average, at a second testing, by regression 
to the mean— so your game may have no effect; b. A better study would randomly allocate your poor spellers 
either to a group who work with your game, or another group who have some comparison activity, perhaps 
working with a textbook.



So far in this book we’ve mainly used effect size measures that rely on interval 
scaling—including means, Cohen’s d, and correlations. In this chapter we take 
a step back to require only nominal scaling and focus on the proportion, which 
is a highly useful ES measure based on frequencies, or simple counts. We’ll 
consider research questions for which a proportion provides the answer and, 
as we’ve done so many times with other ES measures, we’ll focus on the CI 
as well as the point estimate. Then we’ll discuss research questions where we 
need the difference between two proportions and the CI on that difference. My 
first example investigates the possibility of telepathy, which is communication 
with another person using a psychic power, through “the power of the mind”.

Do some people have psychic powers, powers that science doesn’t know 
about? Can some people bend spoons at a distance, or use telepathy to com-
municate with others? Some claimed psychics give highly convincing demon-
strations, which persuade many people that their psychic powers are real. 
However, stage magicians can also impress us with demonstrations of what 
look like psychic phenomena. Many people believe psychic powers exist, while 
many others are convinced that they don’t.

Some scientists investigate possible psychic powers, under the label of para
psychology. Some studies of telepathy are especially relevant here because they 
can be analyzed simply by calculating the proportion of trials that were correct. 
The proportion is a simple effect size measure that’s calculated from frequencies.

The agenda for this chapter is:

 ■ Psychic powers and research in parapsychology
 ■ Frequencies, nominal scaling, and proportions
 ■ The CI on a proportion
 ■ The difference between two proportions, and the CI on this difference
 ■ Frequency tables analyzed using proportions, and via an alternative 

approach: the chi- square statistic
 ■ Another application of proportions: risk, and the difference between risks

RESEARCH ON POSSIBLE PSYCHIC POWERS

Mentalists are stage magicians with a particular interest in using their skills to 
demonstrate what look like psychic phenomena. Many are both convincing and 
entertaining. Some magicians challenge psychics to demonstrate their claimed 
powers under conditions allowing scientific scrutiny. For a famous example, 
search online for “James Randi”—who has long had on offer a cash prize, now 
$1,000,000, for anyone who can demonstrate psychic powers under agreed 
scientific conditions. So far, he has not had to pay up. For an entertaining take 
on psychic powers, see the Woody Allen movie Magic in the Moonlight. You can 
find the plot on the Internet, but it may be more fun to watch the movie.

13
Frequencies, Proportions,  
and Risk
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Even impressive demonstrations by mentalists using their magic skills don’t 
prove that psychic powers don’t exist, but they set a challenge for scientists 
working in parapsychology: Experimental procedures must be sufficiently 
watertight to rule out the possibility that mentalist techniques, rather than 
psychic powers, can explain any positive results.

Before discussing frequencies, proportions, and then, at last, the exam-
ple, I want to mention a useful slogan for any scientist: “Extraordinary claims 
require extraordinary evidence”. The claim that telepathy exists (minds can 
communicate at a distance, as if by magic —really?) is extraordinary. We should 
therefore be looking for extraordinarily strong evidence before we are convinced 
that telepathy has been demonstrated. Researchers in this field thus have twin 
challenges: First, to design studies so that even expert mentalists agree that any 
positive results can’t be explained by stage magic techniques; and, second, to 
find very strong evidence. Even more than usual we’ll want replication, and 
cumulation of evidence over studies. Open Science requirements are especially 
relevant: We simply must have the full story.

PROPORTIONS

It’s almost time to meet proportions, but first I need to say a little about fre-
quencies, which we met back in Chapters 2 and 3.

Frequencies
Frequencies are simply counts of the number of data points in some interval or 
category. In Chapter 3, Figure 3.3 Panels C and D and Figure 3.4 show frequency 
histograms. In all those examples, the variable has interval scaling. Recall from 
Chapter 2 that interval scaling means the variable “has distance”: We assume 
each unit on the scale is equivalent, as for time or weight. In those histograms, a 
frequency is the number of data points within a bin. For example, in Figure 3.3 
D, six data points lie in the bin from 12 to 16 transcription percentage.

However, frequencies can also be used when our variable has ordinal, or 
even only nominal scaling. Figure 13.1 displays fictitious frequency data for a 
7- point rating scale. The response categories are ordered, so we have ordinal 
scaling. The full set of frequencies gives us a good overview of the data.
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Figure 13.1. Frequency histogram for responses to a 7- point rating scale, assumed to have ordinal 
scaling. Fictitious data.

Extraordinary claims 
require extraordinary 
evidence.

Frequencies are 
counts of the 
number of data 
points in an interval 
or category.
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Proportions

Figure 13.2 displays fictitious frequency data for a group of people’s prefer-
ences for flavors of ice cream. Again the figure showing the full set of frequencies 
gives us a good overview. We probably don’t have any good way to order the 
flavors, so our measurement scale is nominal—also referred to as categorical. 
All we can do is count the number of cases in each category. Those frequencies 
give us the full story, and the only summary descriptive statistic of note is the 
mode, which, as we saw in Chapter 3, is simply the category having the largest 
frequency—chocolate in our example.

Proportions for Frequencies
A proportion is simply a chosen frequency, say X, divided by N, the total number 
of cases. I’ll use upper- case P for proportion, to minimize confusion with p as 
in p value, so the basic formula for a proportion is

 P = X/ N (13.1)

If I get 17 of the 20 items on a test correct, my proportion correct is, of course, 
P = 17/ 20 = .85. The minimum value of X is 0, and the maximum is N, so pro-
portion, P, can range from 0 to 1.

I have defined proportion as the ratio of two frequencies, but it’s also 
 possible to calculate a proportion for quantities measured on an interval scale, 
like time, rather than for frequencies. We might, for example, record the total 
time asleep and express that as a proportion of the time spent in bed. That’s 
perfectly legitimate, although in this chapter I’ll discuss only proportions defined 
as the ratio of two frequencies, because my main interest is in how we can best 
analyze nominal data, and frequencies used with nominal data.

Now, at last, the example. It comes from Bem and Honorton (1994), which 
was published, after searching peer review, by Psychological Bulletin. Its accept-
ance for publication in what is psychology’s top review journal prompted much 
discussion and controversy.

The Ganzfeld Experiment
The most common recent procedure for investigating possible telepathy involves 
one person—the sender—in an isolated, soundproof room who seeks to send 
information by telepathy to a second person—the receiver—who is in a different 
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Figure 13.2. Frequency histogram for preferences for various flavors of ice cream, assumed to have only 
nominal scaling. Fictitious data.

Frequencies are 
needed for nominal 
scaling, and can be 
used with ordinal or 
interval scaling.

Proportion, P

Proportions are 
especially useful 
for analyzing 
frequency data.

In a ganzfeld 
experiment, a sender 
attempts telepathy 
to a receiver.
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isolated, soundproof room. A computer chooses randomly from a database 
a picture or short video clip to present to the sender, who concentrates hard 
on that picture, or repeated video clip, typically for 30 minutes. The receiver 
is reclining comfortably, with half ping- pong balls over the eyes, in a diffuse 
reddish light, hearing white noise over headphones. The receiver is thus in a 
ganzfeld (German for “entire field”)—receiving minimal perceptual stimulation. 
The receiver speaks aloud, reporting whatever thoughts happen to occur. Later 
the receiver is shown four pictures, or video clips, one of which was the target 
seen by the sender. The receiver chooses from the four, and records a hit if 
the target is chosen. By chance, if there is no telepathy, the proportion of hits 

should be around .25.
There are anecdotal claims that telepathy may 

be associated with meditation, hypnosis, or dreams. 
The ganzfeld is intended to encourage a meditative 
state, free of distraction, which may be conducive to 
telepathy. To read more about the procedure, search 
online for “Ganzfeld experiment”.

Daryl Bem was an experienced mentalist, as well 
as research psychologist, who, a decade earlier, had 
been one of several outside experts invited to scru-
tinize the laboratory and experimental procedures 
of parapsychology researcher Charles Honorton. 
Bem not only judged them adequate, but joined 
the research effort and became a coauthor with 

Honorton. Bem and Honorton (1994) first reviewed early ganzfeld studies 
and described how the experimental procedure had been improved to reduce 
the chance that results could be influenced by various possible biases, or leak-
ages of information from sender to receiver. For example, the randomization 
procedure was carried out automatically by computer, and all stimuli were 
presented under computer control. Bem and Honorton then presented data 
from studies conducted with the improved procedure.

Table 13.1 presents basic data from 10 studies reported by Bem and 
Honorton (1994). Three pilot studies helped refine the procedures, then four 
studies used novice receivers. Study 5 used 20 students of music, drama, or 
dance as receivers, in response to suggestions that creative people might be 
more likely to show telepathy. Studies 6 and 7 used receivers who had par-
ticipated in an earlier study. The proportion of hits expected by chance is .25 
and Table 13.1 shows that all but Study 1 found proportions higher than .25. 
The bottom row in the table is the result of a simple meta- analysis of the 10 
studies, which in this case is based on simply adding the frequencies for all 
studies. It shows that the overall proportion of hits was .32. This proportion, 
.32, is our point estimate of performance in the population of receivers from 
which the samples of participants were drawn. To go further, we need to 
consider CIs.

THE CONFIDENCE INTERVAL ON A PROPORTION

When working with means, our first step beyond the mean was to find the CI. 
We’ll do the same here, by finding the CI on a proportion. Let’s say that our 
proportion, P = X/ N, refers to X hits in N items or events. To calculate a CI on 

To calculate a CI on 
P = X/ N, assume 
the N events are 
independent and 
each has the same 
probability of 
being a hit.
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P, we need to assume that the N items or events are independent and that each 
has the same probability of being a hit. With these assumptions, we can obtain 
an excellent approximation to the CI, which is shown in Figure 13.3. For this 
figure I entered the result of Pilot 1 in One proportion, by using the spinners 
at red 1 to set X = 8 and N = 22. At red 1 you can see that the proportion is 
P = .364 and at red 3 that the 95% CI is [.197, .57], which is the CI that appears, 
rounded, for Pilot 1 in the final column of Table 13.1.

I’m not going to explain how that CI was calculated, because the method is 
a little complicated. Many books give formulas for an approximate method based 
on the normal distribution, but that approximation is poor for small frequencies. 
The method used by ESCI is the one recommended by statisticians, which works 
even for very small frequencies (P = 1/ 3, for example) and for P = 0 or 1. To read 
about this preferred method, and a comparison with the conventional normal 
distribution method, see Chapter 6 of a useful book about CIs with the lovely 
title of Statistics with Confidence (Altman, Machin, Bryant, & Gardner, 2000).

13.1 Open the One proportion page of ESCI intro  chapters 10– 16. Explore. 
Compare with Figure 13.3. Check a few of the other CIs reported in 
Table 13.1.

13.2 With a fixed N, perhaps N = 20, see how the CI changes as you change X 
from 0 to 20. Summarize.

13.3 Explain what the three values shown at red 3 just below the CI tell us. Do the 
values correspond reasonably with the CI that ESCI displays in the figure?

13.4 Set X = 14 and N = 22.

a. Compare the proportion and CI with that for X = 8 and N = 22 as shown 
in Figure 13.3. Explain.

b. Compare also the three lower values shown at red 3 for the two cases 
(X = 8 and 14). Explain.

13.5 a.  With a fixed P, perhaps P = .2, see how the CI changes for P = 1/ 5,  
8/ 40, and 32/ 160. Summarize. Note. To set N or X, use the spinner or 
type in a number, but make sure that X is no larger than N.

b. Do that again by using small, medium, and large values of X and N, all 
with some other fixed value of P. Summarize.

Table 13.1 Results of 
10 Ganzfeld Studies 
From Bem and 
Honorton (1994)

Study Participants
Number of  

trials
Number of  

hits
Proportion  

of hits 95% CI

Pilot 1 Novice 22 8 .36 [.2, .57]
Pilot 2 Novice 9 3 .33 [.12, .65]
Pilot 3 Novice 35 10 .29 [.16, .45]
Study 1 Novice 50 12 .24 [.14, .37]
Study 2 Novice 50 18 .36 [.24, .5]
Study 3 Novice 50 15 .3 [.19, .44]
Study 4 Novice 36 12 .33 [.2, .5]
Study 5 Julliard 20 10 .5 [.3, .7]
Study 6 Experienced 7 3 .43 [.16, .75]
Study 7 Experienced 50 15 .3 [.19, .44]

All novice Novice 252 78 .31 [.26, .37]

All experienced Experienced 57 18 .32 [.21, .44]

All 329 106 .32 [.27, .37]
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Figure 13.3. The proportion of hits for Pilot 1 in Table 13.1, with 95% CI. From One proportion.

13.6 Click at red 2 and see some lines. Vary X and N and explain what the 
lines tell us.

13.7  Describe the CI when X = 0. Vary N. Explain.
13.8 If we know only that P = .85, can we calculate the CI? Explain.
13.9 Recall the approximate guideline that a CI is about half as long when N 

is multiplied by 4. For a fixed P, does that guideline hold for proportions?
13.10 Noting the result reported in the bottom row of Table 13.1, interpret the 

overall result of the 10 studies.

The p Value for a Proportion
For the telepathy experiments, the sample ES is P, which is an estimate of the 
proportion in the population. I’ll refer to that population proportion as Π (Greek 
upper case pi), in accord with the convention of using the corresponding Greek 
letter for the population parameter. If no telepathy occurred and the receivers 
guessed, we expect the proportion of hits to be .25, so Π = .25, and we would 

To calculate a 
p value for a 
proportion, assume 
the N events are 
independent and 
each has the same 
probability of 
being a hit.
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choose Π
0
 = .25 as our null hypothesis value for calculating a p value. Figure 13.4 

shows that ESCI can do this for us. As for a CI, we need to have frequencies, 
and to make the assumption about independent events each with the same 
probability of being a hit.

13.11 Click at red 4 to turn on the p value, and use the small slider to set the 
null hypothesis value, which is marked by a red horizontal line in the 
figure. Note the p value. Considering the CI in the figure, is the p value 
as you expect? Explain.

13.12 For a few of the other studies reported in Table 13.1, consider the CI and 
make your estimate of the p value, then compare with the p value that 
ESCI reports.

13.13 Find the p value for the combination of all 10 studies. Interpret, and 
compare with your earlier interpretation of the CI.

Quiz 13.1

1. Frequencies are
a. especially useful with ordinal or interval scaling.
b. especially useful for calculation of the median.
c. counts that allow determination of the mode.
d. numbers that range from 0 to 1.

Figure 13.4. The same as Figure 13.3, but showing also the p value for a null hypothesis value of Π
0
 = .25 marked by the 

red line.
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2. A basic guideline in science is that extraordinary _ _ _ _ _ _ _ _ _ _  require extraordinary _ _ _ _ _ _ _ _ _ _ .
3. A proportion needs to be expressed in terms of _ _ _ _ _ _ _ _ _ _  if we are to calculate a CI.
4. To calculate a CI on proportion P = X/ N, we need to assume that _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  and that _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

5. The CI on proportion P = X/ N is typically symmetric /  asymmetric, and becomes shorter /  
longer as N increases.

6. To calculate a p value for a proportion P, the null hypothesis value has symbol _ _ _ _ _ _ _ _ _ _ , 
which refers to the proportion in the sample /  population IF the null hypothesis is true /  false.

Percentages and Proportions
Multiply any proportion by 100 to get the corresponding percentage, so my 
test performance of 17 of 20 items correct was .85 or 85% correct. Similarly, 
divide any percentage by 100 to express as a proportion. However, percentages 
can be tricky, so we need to take care.

A percentage may refer to frequencies (17 correct out of 20 items), or to 
interval or ratio measurements, such as time asleep as a percentage of the time 
spent in bed. However, I’m focusing on frequencies, proportions based on fre-
quencies, and the CI on such proportions. Therefore, if we have a percentage 
and want to find the CI, two conditions must be met:

1. The percentage must be based on frequencies, so there’s an equivalent 
P = X/ N.

2. We must be willing to assume the N items or events are independent, and 
that each has the same probability of being a hit.

If both conditions are met we can use ESCI to find the CI on P. I might feel that 
some of the 20 items on the test I completed were harder than others, so they 
don’t all have the same probability of being answered correctly. However, if 
I’m willing to assume the probability doesn’t vary much across the items, I can 
calculate a CI, at least approximately.

Consider for a moment the example I mentioned earlier of the proportion 
of time in bed that was sleep. That might, for example, be 7 hours out of a total 
8 in bed, or 420 minutes out of 480 in bed. Those times have ratio scaling, but 
we could regard the numbers as frequencies, and calculate the proportion 
P = 7/ 8 = .875, or percentage (87.5%), of time asleep. However, we can’t use 
the methods of this chapter to find a CI or a p value for that proportion. The 
8 hours or 480 minutes are not all separate, independent items or events, but 
are, of course, linked in a single sequence. They are not independent because 
whether you are asleep this minute is sure to be highly correlated with whether 
or not you were asleep in the minute just before. So Condition 2 above does not 
hold. In summary, you can say that you were asleep for a proportion P = 7/ 8 of 
the night, but that’s not a proportion that we can analyze using the methods 
of this chapter.

Going back to my test performance, P = 17/ 20 = .85, and ESCI tells 
me the CI is [.64, .95]. I could interpret those three proportions (the point 
estimate and the two limits of the CI), or convert to percentages and say 
that I scored 85% [64, 95] on the test. That’s a long CI, from 64% to 95%, 
which suggests the test of 20 items is not giving a very precise estimate 
of my ability. Testing me on a larger number of items should give a more 
precise estimate.
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The first caution when working with percentages is, therefore, that we 
can calculate a CI only if we can convert to frequencies—and we’re prepared 
to make the assumptions of Condition 2 above.

While discussing percentages I’d like to mention a second caution, even if 
this isn’t strictly a proportion issue. Suppose last year 20% of people were late 
paying their dues, and that, after the new payment system came in this year, 
30% of people were late. One report said “10% increase in late payments” (30 
is 10 more than 20), another said “50% increase” (30 is 50% more than 20), 
and a third said “late payment rate up by 10 percentage points” (an increase 
of 10, from 20 to 30). They are all more or less correct, so percentages give lots 
of scope for confusion—or being deliberately misleading. The most common 
problem is that “10% increase” leaves us in doubt between a change from 20% 
to 30%, and a change from 20% to 22%, which would indeed be an increase 
of 10% of the original number of late payers.

When reporting a change, referring to “an increase of 10 percentage points” 
is safest, but it’s better still to mention both the before and after percentages, so 
we can be sure. If you hear about a change reported using percentages, take care 
to bring to mind the different possibilities, and seek clarification if necessary.

There are other traps with percentages—sometimes it’s not clear what the 
percentage is of—but I’ll leave percentages now and return to proportions. The 
key point to remember is that proportions expressed in terms of frequencies 
are what we need for inference—to calculate a CI or a p value.

13.14 A test comprises 60 true/false items. Laura scores 80% correct.

a. Calculate a CI for her performance. What assumptions do you need 
to make? Interpret.

b. Express the CI in terms of proportions, and of percentages. Do you 
have a preference? Explain.

c. To calculate a p value for her result, what null hypothesis value would 
you choose?

d. Find the p value and interpret.

THE DIFFERENCE BETWEEN TWO INDEPENDENT 
PROPORTIONS

In Study 5, Bem and Honorton used Julliard students of music, drama, or 
dance to investigate whether such creative participants might be more likely 
than novices to show telepathy. Table 13.1 reports the proportions and CIs for 
Study 5 and for all studies using novices. Our research question asks about 
the difference between those two proportions, and so our ES is that difference 
and, as usual, we’ll want the CI on the difference. The two proportions are 
independent because they come from different studies that used different 
participants. ESCI can give us a CI on the difference between two such inde-
pendent proportions, as Figure 13.5 illustrates. I entered the hit proportions 
for novices (P

1
) and Julliard students (P

2
) at red 1 and 2 in Two proportions. 

The difference and its CI are reported at red 6 at left to be 0.19 [−0.02, 0.4], 
and are displayed on a difference axis at right. Note that proportions and the 
CIs on proportions always lie between 0 and 1, but that differences between 
proportions can be negative, and we can have CIs on differences that include 
both positive and negative values, as here.

Percentages require 
caution. Only if they 
can be expressed in 
terms of frequencies 
can we calculate a CI 
or p value.

We can calculate the 
CI on the difference 
between two 
proportions if they 
are independent.
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The p value for the difference is shown at red 7 at left to be p = .08, which 
corresponds with the CI on the difference just including 0, as the figure illus-
trates. The CI on the difference is long, mainly because there were only 20 
Julliard students, so their CI was long, extending from around .3 to around 
.7. The long CI on the difference, from around 0 to around .4, means we have 
very little, if any, evidence of a possible population difference in hit proportions 
between Julliard students and other novices.

13.15 Use the frequencies reported near the bottom in Table 13.1 to compare 
the hit proportions of novice and experienced participants. Interpret.

Bem and Honorton (1994) reported more data and analyses than I’ve 
described here, and concluded that they were presenting strong evidence for 
telepathy. The journal published a critique by Ray Hyman (1994), who dis-
agreed with their conclusions, and a reply by Bem (1994). Does the original 
article provide the extraordinary evidence required to support the extraordinary 
claim of telepathy? I noted earlier that Bem and Honorton made great efforts 
to improve on procedures used in earlier telepathy research, as they attempted 
to minimize the scope for any bias or conventional communication channel 
to account for any positive finding. However, they were working some two 
decades before Open Science ideas were recognized as important, especially 
preregistration. I invite you to consider, and discuss with your friends, what 
conclusion you feel is justified, and what further research might be useful. 
You might discuss what “extraordinary evidence” would look like: Evidence 
produced by especially well- conducted research? Results providing extremely 
strong evidence against the null hypothesis of guessing? Both?

THE RELATION BETWEEN TWO VARIABLES: 
FREQUENCY TABLES

A common research question asks about the relation between two classification 
variables, and a common data set obtained to try to answer such a question is a 
2 × 2 table of frequencies as in Table 13.2. Our approach to analyzing such a table 
and answering the question will be to calculate proportions and the difference 
between two proportions. My example is a landmark randomized control trial 
of diet. People living in Mediterranean countries have rather low rates of heart 
disease and some cancers. Is this because of genetics, or lifestyle, or diet, or 
what? The Lyon Diet Heart Study, reported by de Lorgeril et al. (1998) investi-
gated diet. The researchers randomly allocated 605 patients who had survived 
one heart attack to a diet similar to one recommended by the American Heart 
Association (the Control diet), or a Mediterranean (Med) diet, for four years. 
The Med diet included more cereals, vegetables, and fish, and less dairy and 
meat. The researchers monitored how well the patients kept to their allocated 
diet, and recorded numerous variables, including blood levels of various nutri-
ents, and many aspects of participants’ health. The two classification variables 
in Table 13.2 A are Control or Med diet (the column variable), and Cancer or 
No cancer during the four years (the row variable). The research question asks 
about the relation between those variables—more specifically, to what extent 
was the proportion of people with cancer different for the two diets?

Using proportions 
can often be a 
good strategy for 
examining the 
relation between 
two classification 
variables.
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Table 13.2 reports the frequencies for any cancer diagnosis, and for cardiac 
death—death from another heart attack—during the four years. Panel A shows 
there were 17/ 303 cancers in the Control group, and 7/ 302 in the Med group. 
I entered those frequencies into Two proportions and found the Control and 
Med proportions were .056 and .023, respectively. The research question here 
is “What difference does the Med diet make to the risk of getting cancer?” Our 
best answer is provided by the difference between those proportions—which 
come from separate groups of participants, and are thus independent. The dif-
ference between .023 and .056 was −0.033 [−0.067, −0.001]. The groups were 
large, but even so the CI on the difference indicates considerable uncertainty. 
Most likely the Med diet reduced the risk of cancer, but the reduction could be 
anywhere from tiny to considerable.

You may have wondered why I focused on the proportions of people with 
cancer, rather than the proportions without. That’s a good thought. I could 
just as easily have analyzed the complementary proportions, those for people 
with no cancer.

13.16 a.  Enter the proportions of people in each group with no cancer into 
Two proportions and find the difference with its CI.

b. Compare with the difference and CI we found above. Interpret.

13.17 What is the research question for Panel B of Table 13.2? Analyze the 
frequencies and interpret.

One striking aspect of the example is that the Control diet was similar to a 
diet recommended by the American Heart Association. It would hardly be news 
if Med were better than a junk food diet, but finding it substantially better than 
the chosen, already good Control diet is valuable news, even if the study can’t 
tell us how relevant its findings are for people who have not had heart attacks.

Are you already putting aside the soda and chocolate and reaching for an 
oatmeal cookie and an apple?

Whenever you see a table of frequencies as in Table 13.2, think of propor-
tions. ESCI can give you CIs on those proportions. Further, if your two propor-
tions are independent, Two proportions can give you the CI on the difference. 
Very often that difference is the ES of research interest, so the difference and 
its CI is what you need to best answer your research question.

Here’s another example to illustrate the usefulness of proportions. Imagine 
you have a bed partner. In the dead of night you hear your partner breathing, 
then the breathing stops for some time, and does so repeatedly. That’s sleep 
apnea, which can be incredibly scary for the person who is awake. Research 
has linked sleep apnea with heart disease, depression, and other bad out-
comes. Search for “sleep apnea” to learn more. Many people have it, but do 
not know: It’s an important issue that deserves more attention and research.

My example investigated a possible link between attention deficit 
and hyperactivity disorder (ADHD) in children and a syndrome known as 

Table 13.2 
Frequencies for 
Any Cancer, and 
for Cardiac Death, 
From de Lorgeril 
et al. (1998)

A Control Med Total B Control Med Total

Cancer 17 7 24 Cardiac death 19 6 25
No cancer 286 295 581 No cardiac death 284 296 580
Total 303 302 605 Total 303 302 605

Note. Control = conventional prudent diet. Med = Mediterranean diet.
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sleep- disordered breathing (SDB). SDB includes sleep apnea, snoring, and 
other breathing problems during sleep. Chervin et al. (2006) studied children 
who were about to have their tonsils removed to improve SDB. The researchers 
assessed the children’s sleep, and their cognitive and behavioral functioning, 
before the tonsillectomy and one year later. In the group of 77 children, 22 
were diagnosed with ADHD before the operation, but only 11 were given this 
diagnosis at follow up, one year later.

Those figures might suggest that we should simply find the difference 
between the proportions of children with ADHD at the two time points: What’s 
the decrease from 22/ 77 to 11/ 77? However, those two proportions refer to the 
same group of 77 children, so are not independent. We need to reorganize the 
frequencies to obtain independence, then we can calculate the CI on the differ-
ence between two independent proportions. Table 13.3 shows how: Consider 
two groups of children, the 55 who did not at first have ADHD and the 22 
who did. The groups are separate, so proportions from the two groups are 
independent. Our research question asks about the change in ADHD diagnosis 
from before to after the operation, so we need to focus on that change. In each 
group, find the proportion of children whose ADHD diagnosis changed: P

1
 = 

0/ 55 = 0 for those without ADHD initially, and P
2
 = 11/ 22 = .5 for those with 

an initial ADHD diagnosis.
I suspect that’s a bit tricky to follow, but I hope the table helps. Note that 

the four main cells in the table, not including the totals, contain frequencies 
that add to 77, the overall group size. In the top left cell, 0 with ADHD after 
but not before; top right, 11 with ADHD before but not after; bottom left, 
55 with no ADHD before or after; and bottom right, 11 with ADHD both 
before and after. Each child is counted in exactly one of those four main 
cells. That’s what we need for the proportions to be independent. Look back 
at Table 13.2, Panel A. The four main cells have frequencies that add to 605, 
the overall total. Each person in the study is counted in one and only one of 
those four cells. Therefore, the two proportions we calculate are independ-
ent because they refer to separate groups of people. Confirm that the same 
is true of Panel B. It’s always worth checking: We need a frequency table in 
which each person (or event, or whatever the frequencies are counting) is 
counted in one and only one of the main cells in the table. Once we have 
such a frequency table we can calculate two independent proportions, and 
find the CI on the difference.

Using the frequencies in Table 13.3, the Two proportions page tells me 
that the difference is (P

2
 –  P

1
) = 11/ 22 − 0/ 55 = .5 − 0 = 0.5, with 95% CI of 

[0.3, 0.69]. Note that all the changes in diagnoses were in the group initially 
diagnosed to have ADHD. This confirms what we can see clearly from the fre-
quencies themselves, that there was a very large and clear difference between 
the 50% reduction in ADHD diagnoses in the group who had ADHD at the start, 

Frequency data may 
need rearranging 
to give two 
proportions that are 
independent.

Table 13.3 
Frequencies of 
Children Whose 
Diagnosis of ADHD 
Changed From 
Before to After 
Surgery, From 
Chervin et al. (2006)

ADHD before surgery?

No Yes Total

Change from before to 
after surgery?

Yes 0 11 11

No 55 11 66

Total 55 22 77
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and the zero change in those who did not. This is a remarkable finding: Half the 
children with ADHD no longer received that diagnosis a year after the surgery.

You might be thinking that the reduction in ADHD diagnoses was obvious 
and large, so why did we bother with CIs at all? Yes, the difference of 0.5 is 
large, but it is the CI of [0.3, 0.69], which is far from zero, that tells us that we 
have strong evidence of a substantial effect. Even with a large effect we need 
the CI to tell us about strength of evidence.

Some of the symptoms of ADHD, including attention difficulties, are also 
symptoms of lack of sleep. Perhaps some children diagnosed as having ADHD 
mainly have a sleep problem caused by SDB? Further, if tonsillectomy fixes the 
sleep problem, perhaps the ADHD is fixed also? The results of Chervin et al. 
(2006) hint at that intriguing possibility, and a meta- analysis by Sedky et al. 
(2014) supported the idea.

Children with ADHD are often prescribed stimulant or other drugs. If, at 
least for some children, the primary problem is SDB, it would seem best to 
investigate a child’s sleep before taking the drastic step of prescribing drugs, 
which may manage symptoms but not fix the problem. Proportions are very 
simple measures, based on simple counts, but they can contribute to research 
on fascinating questions with the potential for enormous human benefit. Next 
I’ll introduce an alternative approach to frequency tables.

Quiz 13.2

1. Ten years ago, 6% of a trucking corporation’s drivers were women; now 9% are. The change is 
best expressed as
a. a 3% increase.
b. a 50% increase.
c. an increase of 3 percentage points.
d. Any of the above.

2. To calculate the CI on a percentage, it is necessary to
a. divide by 100.
b. express as a ratio of two frequencies.
c. ensure that it refers to independent events, each with the same probability of being a hit.
d. All of the above.

3. To calculate a CI on the difference between two proportions, each must be based on 
frequencies /  percentages /  means and the two must be equal /  independent /  correlated.

4. When calculating a p value for the difference between two proportions, the null 
hypothesis is usually that  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

5. Considering a 2 × 2 table of frequencies, the effect size of research interest is usually
a. the difference between two independent proportions.
b. the overall proportion.
c. the correlation between two proportions.
d. the extent of independence of the four main cells.

6. If proportions calculated from frequencies in a 2 × 2 table are not independent, it may be 
possible to rearrange /  condense /  expand the table so proportions are correlated /  identical 
/  independent and the frequencies in the four main cells add to 1 /  100 /  overall N, in which 
case we can calculate a CI /  a p value /  both a CI and p value.

CHI- SQUARE, AN ALTERNATIVE APPROACH TO 
EXAMINING THE RELATION IN FREQUENCY TABLES

This is an optional extra section that describes an alternative approach to 
investigating the relation between two classification variables when we have 
a frequency table. The approach is based on the χ2 statistic. That’s Greek 
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lower- case chi (“ky”, rhymes with sky), squared. Using chi- square is the 
most common way to calculate a p value for testing a null hypothesis for a 
frequency table. To explain, I’ll use Table 13.4, which presents data for Novice 
and Julliard participants from Table 13.1, as shown also in Figure 13.5. The 
2 × 2 table presents all four combinations of the column variable (Novice or 
Julliard) and row variable (Hit or Miss). The data are shown in the columns 
labeled Observed frequencies.

The null hypothesis is that there is no association in the population between 
the column and row variables. In other words, knowing whether a person is 
a novice or from Julliard gives us no information about whether they made 
a hit or a miss. This is just another way of saying that the proportion of Hits 
is the same for Novice and Julliard, which is exactly the null hypothesis we 
considered when using proportions to analyze these data. Yes, a chi- square 
analysis tests the same null hypothesis as the proportions analysis, but with 
chi- square the tradition is to express it as “no association between the column 
and row classification variables”.

Just a bit more jargon: In Table 13.4, the column totals are 252 and 20, and 
row totals are 88 and 184. The grand total is 272. As before, the four main cells 
are the data cells that contain 78, 174, 10, and 10. Now, there are three steps 
to using chi- square to find the p value:

1. Find the expected frequencies if the null hypothesis is true. We assume the 
grand total, and column and row totals are all fixed, and need to calculate 
the expected frequencies for the four main cells. These are what we’d expect 
if the null hypothesis is true. For each main cell, the formula is:

 Expected frequency = Row total × column total/ Grand total (13.2)

The table shows the calculations for the four main cells. For the top left 
cell (Novice, Hit), for example, the row total is 88 and column total is 252, 
so the expected frequency is 88 × 252/ 272 = 81.53.

2. Calculate chi- square from the observed and expected frequencies.

For each main cell calculate

 Contribution to χ2 = (Obs –  Exp)2/ Exp (13.3)

where “Obs” means observed frequency, and “Exp” means expected frequency. 
For the top left cell this is (78 − 81.53)2 /  81.53 = 0.153. The contribution is a 
measure of how far Obs departs from Exp, or how far the data differ from what 

The chi- square 
statistic, χ2, is used 
to test the null 
hypothesis of no 
association in the 
population between 
the column and 
row classification 
variables in a 
frequency table.

Table 13.4 Frequency 
Table of Hits and 
Misses for Novice and 
Julliard Participants, 
From Table 13.1

Novice Julliard Total

Observed 
frequencies
Obs

Expected 
frequencies
Exp

Observed 
frequencies
Obs

Expected 
frequencies
Exp

Hit 78 88 × 252/ 272
= 81.53

10 88 × 20/ 272
= 6.47

88

Miss 174 184 × 252/ 272
= 170.47

10 184 × 20/ 272
= 13.53

184

Total 252 252 20 20 272
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we’d expect if the null hypothesis is true. You could check that the contributions 
from the other cells are 0.073, 1.925, and 0.921.

Chi- square is simply the sum of those contributions for the four main cells:

 χ2 = 0.153 + 0.073 + 1.925 + 0.921 = 3.072 (13.4)

3. Find the p value corresponding to the calculated value of chi- square. We’ll 
use the fact that, for a 2 × 2 table, there is just one degree of freedom, so 
df = 1. Large values of χ2 mean Obs differs more from Exp, which means the 
data depart from what we’d expect if the null hypothesis is true. Therefore, 
large χ2 means stronger evidence against the null hypothesis, which indi-
cates smaller p. We’ll use ESCI to give us p.

Figure 13.6 is the same as Figure 13.5 except that I clicked at red 8 to reveal 
the chi- square analysis. The X and N values entered at red 1 and 2 to define 
the two proportions are copied down as the bold frequencies in the table at 
red 9. I typed in labels for the columns and rows. Check that the observed and 
expected frequencies match Table 13.4. At red 10 you can see χ2 = 3.072 and 
df = 1, as we expect, and p = .08. This p value is almost the same as p = .079 
given by the proportions analysis and shown above near red 7. These p values 
correspond to the CI on the difference in the figure overlapping just a little 
with zero on the difference axis. We conclude that we have no, or at most very 
weak, evidence of an association between the column and row variables. The 
NHST conclusion is that, at the .05 level, we cannot reject the null hypothesis 
of no association between the two variables. 

Assumptions for Chi- Square
The main assumption required for a chi- square analysis is the same as for a 
proportions analysis: The four main cells must contain counts of separate, 
independent people or things, and each person or thing must be counted in 
exactly one of the four main cells. The sum of these four frequencies must 
equal the grand total.

In addition, the chi- square analysis relies on approximations, which are 
less accurate when the expected frequencies are small. The guideline is that 
no expected frequency should be less than about 5. In our example, the smallest 
expected frequency is 6.47 for Julliard, Hit, so the chi- square approximation 
is acceptable. The proportions analysis also relies on approximations, but gen-
erally is close to accurate, and small frequencies are not a problem. Note that 
chi- square cannot be calculated if X

1
 = X

2
 = 0, or X

1
 = N

1
 and X

2
 = N

2
.

The Phi Coefficient, an Effect Size Measure
The null hypothesis states there is no association between column and row 
classification variables. The corresponding effect size is, therefore, a measure 
of the strength of any such association. If there is an association, the observed 
frequencies would differ from the expected, and the stronger the association, 
the larger the difference. Chi- square is a measure of the difference between 
observed and expected frequencies, but it’s not an effect size measure because 
it reflects also the total sample size, the grand total. Chi- square is what we 
need to obtain a p value, but an adjustment is needed to derive a measure of 
effect size.

χ2 is a measure 
of difference 
between observed 
and expected 
frequencies. Large 
χ2 means large 
difference, small  
p value, and strong 
evidence against  
the null hypothesis.

Chi- square analysis 
requires that all 
expected frequencies 
should be at least 
about 5.



Fi
gu

re
 1

3
.6

. S
am

e 
as

 F
ig

ur
e 

13
.5

, b
ut

 w
it

h 
ch

i-
 sq

ua
re

 a
na

ly
si

s 
re

ve
al

ed
, b

ot
to

m
 le

ft
.



386

Fr
eq

ue
nc

ie
s,

 P
ro

po
rt

io
ns

, a
nd

 R
is

k

The effect size measure is the phi coefficient, φ, (Greek lower case phi, “fie”, 
rhymes with sky) given by this formula:

 φ χ=
2

N
 (13.5)

where N is the grand total. For our example, φ = =3 072 272 11. / . , which is 
the value shown at red 10 in Figure 13.6. Think of phi as a type of correlation 
that can take values from 0 to 1, so .11 is a small correlation, a small degree 
of association between the two classification variables. Cohen’s reference val-
ues for phi are the same as for correlation r: .1, .3, and .5 for small, medium, 
and large, respectively. As usual, we should interpret phi in the context, with 
Cohen’s values a last resort.

13.18 Table 13.5 shows data from Panel A of Table 13.2.

a. I’ve calculated the expected frequency for the first main cell. Calculate 
the remaining three.

b. Are the assumptions required for chi- square analysis met? Explain.
c. Calculate the contribution to χ2 for each of the four cells, then find χ2.
d. Explain in words what the value of χ2 reflects.
e. Calculate the phi coefficient, φ, and explain what it tells us.

13.19 Enter the observed frequencies in Table 13.5 into Two proportions. 
Reveal the chi- square analysis. Check your calculated values of expected 
frequencies, χ2 and φ.

a. State the null hypothesis in two different ways.
b. Note the p value. Interpret.
c. Compare with the p value given by the proportions analysis. Compare 

p with the CIs in the figure.

13.20 In your completed Table 13.5, use the expected frequencies to calculate 
the proportion of Control participants expected to have cancer, and the 
same for Med participants. Compare the two proportions and explain.

13.21 A frequency must be an integer, so how can an expected frequency be 
a decimal like 12.02?

Proportions or Chi- Square?
Researchers most commonly use chi- square, rather than proportions, to ana-
lyze frequency tables, probably because their focus has been on NHST. The phi 
coefficient is only rarely reported alongside a chi- square analysis, although 

Phi coefficient, 
φ.

The phi coefficient, 
φ, is a measure 
of strength of 
association in a  
2 × 2 table. It’s a 
type of correlation.

Table 13.5 Observed 
and Expected 
Frequencies for Any 
Cancer From de 
Lorgeril et al. (1998)

Control Med Total

Obs Exp Obs Exp

Cancer 17 24 × 303/ 605 = 12.02 7 24
No cancer 286 295 581

Total 303 303 302 302 605
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it would certainly be best practice always to report phi with any chi- square 
analysis. A proportions analysis has several advantages:

1. Focus on effect size and estimation. The starting point of a proportions analysis 
is two proportions and the difference between them. A figure showing 
these, with their CIs, as in Figure 13.5, is informative about effect sizes 
and precision, and thus supports estimation thinking. A p value can be 
calculated if required.

2. Familiarity of effect size measure. Proportion and difference between two pro-
portions may be more familiar, more easily represented visually in figures, 
and more readily interpreted than the phi coefficient.

3. Fewer restrictions. Both approaches require frequencies of separate, inde-
pendent people or objects. Chi- square requires in addition that expected 
frequencies not be too small. A proportions analysis can be used with very 
small frequencies and is thus applicable in a wider variety of situations.

Why then do I include this section on chi- square? Because you are likely 
to see chi- square analyses reported in journal articles, and need to know what 
they tell us. See the box Reporting Your Work for more on chi- square.

Now for a quite different use of proportions.

RISK, AND THE DIFFERENCE BETWEEN RISKS

One of the most important uses of proportions is to estimate risk, which is 
simply a probability. Risk usually refers to bad outcomes, but can be applied 
to any outcome. It may sound a bit odd, but it’s quite acceptable to talk of the 
risk of winning the lottery.

Risk is the probability that a particular outcome will occur.

Being able to weigh up risks, and use them to help make decisions, is a 
vital part of modern life and of statistical thinking. One crucial issue turns out 
to be the way that risks are presented. Here’s an example from the work of 
Gerd Gigerenzer—of which more shortly.

In 1995, news media in Britain reported evidence that taking third- 
generation contraceptive pills increases the risk of a dangerous type of blood 
clot by 100%. This news led to panic, and many women stopped taking the new 
pills. Unwanted pregnancies increased and there were an estimated additional 
13,000 abortions in the following year. The increase in risk of the blood clots 
was actually from about 1 in 7,000 to about 2 in 7,000 women. Yes, that’s a 
100% increase, but had the result been expressed in terms of 1 or 2 in 7,000, 
perhaps women would have reacted differently. The harm of the extra abor-
tions probably greatly outweighed the harm of the small numbers of extra 
blood clots expected if women had continued with the new pills. However, a 
headline announcing a 100% increase in risk no doubt sells more newspapers 
than fiddly figures about so many in 7,000.

Consider Panel B of Table 13.2, and how we might present the results. For 
Exercise 13.17 you probably found that the proportions of cardiac deaths in the 
four year period was .063 and .020 for Control and Med, respectively. Let’s round 
those to .06 and .02. Here are three ways we might report the Control result:

A proportions 
analysis keeps the 
focus on effect sizes 
and estimation, 
and can be used 
with small expected 
frequencies.
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 ■ The probability of dying of a further heart attack is about .06.
 ■ The probability of dying of a further heart attack is about 6%.
 ■ On average, about 6 in 100 people will die of a further heart attack.

13.22 a. Express the Med result in those three ways.
b. Express the difference between the two results in several different 

ways. Which do you think would be must understandable to lay 
people?

It’s late in the chapter for my traditional reminder, but this is a particularly good spot to pause, reflect, and discuss. 
Perhaps while chomping another apple.

Thinking about the difference, you may have identified three questions:

1. Should we think of proportions (.06), percentages (6%), or frequencies (6 
in 100)?

2. Should we focus on the difference (.06 –  .02 = .04, for example) or the 
ratio (.02 is one- third of .06)?

3. Should we report just the difference or ratio, or also provide the two sep-
arate results?

The story about third- generation pills sug-
gests that it’s best to express the risks in terms of 
frequencies, and to provide both risks, instead 
of—or perhaps as well as—the difference or ratio. 
Taking this approach, we’d say that the Med diet 
reduces the risk of cardiac death from about 6 in 
100 to about 2 in 100. You could also say that the 
risk was reduced by two- thirds, or by 4 percent-
age points, or by a factor of 3, but I suspect that 
saying any of those hardly adds anything and 
may be confusing. Does that seem to you like a 
good strategy?

Gerd Gigerenzer and other researchers have 
studied various ways to present risks and risk differ-

ences. They report evidence that it’s usually best to express risks, and differences 
in risk, in terms of natural frequencies, which are simply integers expressing a risk 
in terms of so many per hundred, or thousand, or other convenient number. 
Saying that risk increases from 1 to 2 in 7,000 gives a clear message the risk is 
small, although not to be ignored. It also says doubling the risk gives a risk that’s 
still small. Reporting a comparison of two risks as a percentage difference (an 
increase of 100%), or a risk ratio (the risk is doubled), tends to exaggerate the 
difference, and also the risk itself, as it did for the third- generation pill example. 
There’s evidence that people, including doctors and other health professionals, 
often severely misunderstand risk reported in that way. In contrast, reporting 
risks and comparisons of risks in terms of natural frequencies generally gives 
more accurate understanding.

Search for “Harding Center for Health Literacy” (Gigerenzer is the director) 
for videos, podcasts, and articles about risk and how best to present it. There are 
many fascinating stories. Gigerenzer’s book Risk Savvy (2014) is entertaining, 

It’s usually best 
to express risks in 
terms of natural 
frequencies.

When comparing 
two risks, report 
both risks and not 
only the difference 
or ratio.
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with many examples and good advice about easy ways to understand risk 
better. Using natural frequencies is usually the best strategy. If you see risk or 
risk differences presented in other ways, mentally transform them to natural 
frequencies, and see whether that helps.

There’s a further twist to this tale. Sedrakyan and Shih (2007) investi-
gated how risks are expressed in medical journals. They found that about 
1 in 2 of the review articles they analyzed did not use natural frequencies 
to express any of the risks they reported. That’s bad news and a familiar 
lesson once again: Even with the best journals, we need to think care-
fully about what we read, which may not be presented in the most readily 
understood way.

A Risk Example: Breast Cancer
I searched online for “Breast cancer risk assessment tool” and found the risk 
calculator provided by the U.S. National Cancer Institute. You might find a 
similar calculator for your country, if you’re not American. Using the U.S. tool, 
I answered the questions for a 35- year- old white woman with no history of 
breast cancer and no first degree relative (mother, sister, or daughter) having 
had breast cancer. To all the other questions I answered “unknown”. The tool 
said that the risk such a woman would develop breast cancer in the next five 
years is 0.2%, and in her lifetime is 6.9%.

It’s nearly time for take- home messages. It’s a short chapter, so I’ll leave 
you to recall the various aspects of frequencies and proportions that we’ve 
discussed. Perhaps while you enjoy your favorite salad—with a Mediterranean 
dressing, of course.

13.23 Use an online tool for breast cancer risk to obtain estimated risks for the 
next five years, and for lifetime, for a woman of your choice.

a. Express the two risks in two other ways.
b. Try explaining those risks to a friend who hasn’t read this chapter. 

Ask them to explain the risks in their own words. What works best? 
Why?

13.24 Use the calculator again, giving the same answers except saying that the 
woman has one first degree relative who has had breast cancer.

a. What two risks do you get?
b. Express these two risks in whatever way you think best.
c. Express the increase in risk given by the family history of breast cancer 

as you choose, perhaps in more than one way.
d. Try explaining the risk increase to your friend. What works best, 

and why?

13.25 Read the advice at the website about using the tool and interpreting its 
results, and the limitations on what the tool can do. Would you suggest 
any revisions?

13.26 For any particular case and time period, the tool gives a single value 
of risk.

a. What would that value be based on?
b. Is giving a single value reasonable? What might be an alternative?
c. Do you think that would be better or worse? Why?
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   Quiz 13.3   
  1.     For a chi- square analysis of a 2 × 2 frequency table, the usual null hypothesis is that _ _ _ _ _ _ _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . This is  equivalent 
to /  rather different from  the null hypothesis when analyzing the table in terms of the 
difference between two proportions.  

  2.     The larger the value of chi- square, the  greater /  smaller  the differences between the observed 
and expected frequencies, the  smaller /  larger  the  p  value, and the  stronger /  weaker  the 
evidence against the null hypothesis.  

  3.     Chi- square analysis requires that every  observed /  expected  frequency should be at least 
about  1 /  5 /  10 .  

  4.     For a chi- square analysis of a 2 × 2 table, the effect size measure is    φ /      r    /   ρ  /     χ , which can 
take values from  −1	/		0	/		1	/		2  to  −1	/		0	/		1/		2  and is a type of  correlation /  regression /  
variance .  

  5.     A .15 risk may alternatively be expressed as (i) a probability of _ _ _ _ _ _ _ _ _ _ , or (ii) a probability 
of _ _ _ _ _ _ _ _ _ _ %, or (iii) 15 in _ _ _ _ _ _ _ _ _ . Usually, the best strategy is to express risk as 
 (i) /  (ii) /  (iii) .  

  6.     The change from a risk of .10 to a risk of .15 is usually best expressed as  
  a.     an increase of .05.  
  b.     an increase of 50%.  
  c.     an increase of 5%.  
  d.     an increase from 2 in 20 to 3 in 20.       

  13.27     Read over your take- home messages, swap with a friend, then revise if 
you wish.   

   Reporting Your Work  

 Proportions cannot exceed 1, so like  p  values and Pearson’s  r  they are reported in APA style 
without a leading zero (APA, 2010, p. 113). 

 Proportions are probably the most convenient way to summarize nominal variables, 
especially those related to the demographic characteristics of your participants: 

 Most of the 100 participants were science majors ( P  = .60), 
but some were humanities majors ( P  = .30) and a few were 
social- science majors ( P  = .10). 

 When it is clear that there are only two possible levels for a nominal variable you need 
report only one level: 

 Of the 120 participants who reported their gender, the 
proportion of female participants was  P  = .45. 

 If you are making inferences about a proportion, include: 

 ■   whether the estimate is planned or exploratory, unless this is already clear;  
 ■   the sample size that forms the denominator of the proportion, unless this is 

already clear;  
 ■   the proportion and its CI;  
 ■   an interpretation that considers the full range of the CI; and  
 ■   if desired, the  p  value for comparing to the proportion to a specified null 

hypothesis value.   

  For example: 

 For the 22 attempts at communication, the proportion of 
hits for Pilot 1 was  P  = .36 [.2, .57]. This is above 
chance performance of .25, but the CI is fairly long and 
does not exclude the possibility of merely random responding 
( p  = .20). 
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 See  Table 13.1  for an efficient way to summarize lots of individual proportions and 
their associated CIs in APA format. Remember that even for proportions some CIs are red, 
and that the more estimates you make the more likely you are to have at least some 
misleading CIs. 

  If you are making inferences about the differences between two independent 
proportions, you should typically report:  

 ■   whether the comparison is planned or exploratory, unless this is already clear;  
 ■   the sample sizes for the denominators of each proportion, unless this is already clear;  
 ■   the proportion for each group or condition;  
 ■   the difference between the proportions and the CI on the difference; and,  
 ■   if desired, you can also report the chi- square analysis. This should include the value 

of chi- square, its degrees of freedom, the  p  value, and (typically)  φ . Because  φ  values 
cannot exceed 1, do not use a leading 0 when reporting a value.   

  Here is an example from the de Lorgeril et al. (1998) study discussed in the text. 

 Of the 303 participants in the control diet condition, the 
proportion who were diagnosed with cancer by the end of the 
study was  P  

Control
  = .056. Of the 302 participants who ate 

the Mediterranean diet, the proportion who were diagnosed 
with cancer at the end of this study was  P  

Med
  = .023. Our 

planned comparison of these cancer rates indicates that 
the Mediterranean diet reduced the proportion of cancer 
diagnoses: ( P  

Med
  –   P  

Control
 ) = - .033, 95% CI [−.067, −.001], 

 χ  2  = 4.30,  p  = .04,  φ  = .08. This CI is fairly long and 
suggests the benefi ts of the diet could be anywhere from very 
large down to quite small. Given the ease with which the diet 
can be adopted, however, we judge the result to be meaningful 
and potentially life saving. 

 It can also be helpful to use tables to present the frequencies underlying comparisons 
between proportions.  Tables 13.2  through  13.5  are models you can use that follow APA 
formatting.    

  Take- Home Messages 

  Frequencies  

 ■   Frequencies are counts of data points in a category, or falling within a range of values. 
Frequencies can be used with interval or ordinal scaling, but are necessary for nominal 
variables—also called categorical variables.    

  Proportions  

 ■   Research questions about proportions or a difference between independent proportions, 
can be answered by proportions and differences estimated using frequency data, with 
their CIs.  

 ■   Proportion,  P , is the ratio  X /   N , where  N  is the total number of events or people,  X  of which 
are hits—meaning they fall in the category of interest;  P  lies between 0 and 1.  

 ■   Proportions can be transformed to percentages, and vice versa, but percentages can be tricky, 
especially when two percentages are compared.  

 ■   To calculate a CI or a  p  value for a proportion, using the methods of this chapter,  P  needs to 
be based on frequencies, and the  N  events or people must be independent and all have the 
same probability of being a hit.  

 ■   The CI on a proportion lies fully between 0 and 1. It is generally asymmetric, with its longer 
arm closer to .5.  

 When comparing 
independent 
proportions, focus 
on the difference 
and the CI on the 
difference. 
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 ■ The relation between two classification variables can be investigated by using the difference 
between two proportions, and its CI, based on the appropriate 2 × 2 frequency table. For the 
two proportions to be independent, each event or person must be counted in one and only 
one of the four main cells in the table.

Chi- Square

 ■ Chi- square, χ2, tests the null hypothesis of no association between the column and row 
classification variables in a 2 × 2 frequency table. It’s a measure of the difference between 
observed frequencies and the frequencies expected if the null hypothesis is true. Large χ2 
means small p and strong evidence against the null hypothesis.

 ■ Like a proportions analysis, a chi- square analysis requires independence of the events or 
persons counted in the frequency table. Chi- square analysis also requires that the minimum 
expected frequency is about 5.

 ■ The phi coefficient, φ, which lies between 0 and 1, is a type of correlation and also a measure 
of strength of association.

Risk

 ■ A proportion is often useful to estimate a risk, which is the probability that a particular event, 
usually a bad event, will occur.

 ■ Risks and differences between risks are usually best understood if expressed in terms of 
natural frequencies, such as 8 in 100, or 3 in 1,000.

End- of- Chapter Exercises

1) How long is the CI on a proportion (P = X/ N), and how does CI length vary with N? For 
the following cases, write down your guesses (discuss with a friend?) for the CI, then use 
One proportion or Two proportions to find the answer.

a. 15 heads in 20 tosses of a coin. Think of this in terms of frequencies and also as a pro-
portion P = 15/ 20 = .75. Express the CI both ways. It may help to click at red 2 in One 
proportion for lines that indicate P for each discrete number of heads.

b. 1 head in 20 tosses.

c. 8 heads in 20 tosses.

d. 40 heads in 100 tosses.

e. 400 heads in 1,000 tosses.

2) How different do two proportions need to be before the two CIs don’t overlap? In each case 
write down your guess, then check.

a. Tim hits 8 baskets out of 20. How many out of 20 does Meg need to hit to beat Tim, 
with the two CIs not overlapping? What is Meg’s proportion of hits?

b. Same question, but Tim and Meg each have 80 shots. Tim hits 32.

c. What do the CIs for Tim in a and b say about the guideline that N four times larger 
gives a CI about half as long. Does it apply to these proportions?

3) Rozin et al. (2014) were interested in the psychology of belonging to a prestigious group. 
They asked about the extent to which people in the group but near the border might be likely 
to emphasize their membership of the group, whereas people near the center would feel 
sufficiently confident about group membership not to mention it so often. The researchers 
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were at the University of Pennsylvania, which they described as a “marginal” Ivy League 
school. One of their studies compared students from that university with students from 
Harvard, which is at the center of the prestigious Ivy League group of universities. Students 
were asked to write “7 things you think of when you describe your university to other 
people”. None of the 30 Harvard students mentioned “Ivy League” in their responses, but 
9 of the 33 Penn students did.

a. Express the researchers’ aim as a question about proportions. Make a table of frequen-
cies, analyze these, and answer the research question.

b. What null hypothesis would a chi- square analysis test? Carry out that analysis and 
interpret. Is it appropriate to carry out that analysis? What is φ? Interpret.

c. In another of their studies, Rozin and colleagues found that small U.S. international 
airports use the word “international” to describe themselves on their websites more 
often than major airports do. Explain how this study addresses the same issue as the 
Ivy League study.

d. Can you suggest an alternative explanation for the Rozin et al. results?

e. Think of another prestigious group for which you could investigate the center vs. 
border question, and describe a study you could run.

f. Physics is at the center of science, but some people regard psychology as near the 
border. Suggest a study to investigate the extent that psychology might use the label 
“science” more often than physics does. Explain how you would analyze your study.

4) We tend to think that our political beliefs are held for deep- seated and logical reasons, 
but many experiments have shown that political opinions can be strongly influenced by 
seemingly trivial factors. One classic study by Rugg (1941) asked participants their opinion 
about speeches against democracy. A randomly chosen half of the participants were asked 
if such speeches should be allowed. The other half were asked if such speeches should be 
forbidden. Amazingly, this seemingly trivial change in wording seemed to radically alter 
the responses. This classic study was replicated at 36 sites as part of the Many Labs project 
(Klein et al., 2014a, 2014b). In Table 13.6, the left panel contains results from one site 
(Czech Republic) and the right panel contains results from all sites combined. The Permit 
column is the numbers who were willing to tolerate speeches against democracy (a “Yes” 
to the Allow question or a “No” to the Forbid question) and the Ban column is the numbers 
who were unwilling to tolerate such speeches (a “No” to the Allow question or a “Yes” to 
the Forbid question).

a. Will we be able to draw causal conclusions from this study? Explain.

b. For the overall data, what proportion is willing to tolerate speeches against democracy 
when asked if such speeches should be allowed? What proportion when asked if such 
speeches should be banned? Are those proportions independent? Explain.

c. Use Two proportions to obtain the CI for the difference between those proportions. 
Interpret.

Table 13.6 Attitudes About Speeches Against Democracy by Wording of Question

Czech Republic Permit Ban Total All Studies Permit Ban Total

“Allow” Phrasing 33 11 44 “Allow” Phrasing 2381 793 3174
“Forbid” Phrasing 34 6 40 “Forbid” Phrasing 2941 229 3170

Total 67 17 84 Total 5322 1022 6344
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d. For the sample from the Czech Republic, calculate the proportion permitting for both 
question forms and then calculate the difference and the CI on the difference. Interpret.

e. For the sample from the Czech Republic, find the p value for the difference between 
the two proportions, and also for the chi-square value. Using the NHST approach, how 
would the data from the Czech Republic be interpreted? Does this seem like a wise 
conclusion given what you know about the overall analysis? Does interpretation of 
the CI from the Czech Republic lead to a better conclusion?

5) My colleague Mark Burgman uses in his teaching an example of a trial of a proposed tree 
harvesting plan that assessed breeding success in a particular species of owl. The foresters 
wanted to demonstrate that their harvesting plan would not harm the owls. They studied 
owl breeding in an area of forest from which trees had been harvested in accord with the 
plan, and compared with a similar but untouched area of forest. This species of owl usually 
raises one fledgling each year, occasionally more than one. To simplify, let’s assume a pair 
of owls raises either 0 or 1 fledgling in a year. There were 3 breeding pairs in the harvested 
area and another 3 in the comparison area, and the foresters recorded the number of pairs in 
each area that raised a fledgling. The foresters used the NHST approach and interpreted lack 
of statistical significance as evidence that harvesting did not reduce owl breeding success.

a. Think back to Chapter 10 on precision and power. What strikes you about the study?

b. The foresters assumed that any difference had been caused by the harvesting. Is that 
assumption justified? Explain.

c. Suppose 3/ 3 pairs raised fledglings in the untouched area. Find the CI on the difference 
between proportions of pairs that raised a fledgling for X = 0 pairs in the harvested 
area. Do the same for X = 1 or 2 pairs raising fledglings in the harvested area.

d. In which of those cases was the difference statistically significant at the .05 level? How 
great could the difference have been with the foresters’ conclusion still being that 
harvesting did not reduce owl breeding?

e. Suppose breeding success could be tracked for 20 pairs in each area, and that 20/ 20 
pairs raised fledglings in the untouched area. Suppose X/ 20 pairs raised fledglings in 
the harvested area. What is the smallest value of X that would lead to a conclusion 
that harvesting did not reduce breeding?

f. What conclusions do you draw from this example? Alas, it really happened, with 3 pairs 
in each area, and the study was presented as evidence that the proposed harvesting 
plan would not harm the owls.

6) Choose some condition you find interesting, such as dyslexia, eating disorder, autism, 
disturbed sleep, or having a road crash. Search for “risk of…”, “prevalence of…”, “how 
common is … in males and females?”, or similar. Find information about the percentages 
of people, or of males and females separately, who have the condition.

a. How are the risks or percentages presented? Discuss the effectiveness of presentation.

b. Find cases where a range is suggested, such as “a 20% to 30% chance”, or “3 to 4 times 
more likely”. Why would such a range be given? Discuss.

Answers to Quizzes

Quiz 13.1
1) c; 2) claims, evidence; 3) frequencies; 4) the N items or events are independent, each has the same probability of 

being a hit; 5) asymmetric, shorter; 6) Π
0
, population, true.
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Quiz 13.2
1) c; 2) d; 3) frequencies, independent; 4) the two proportions do not differ in the population; 5) a; 6) rearrange, 

independent, overall N, both a CI and a p value.

Quiz 13.3
1) there is no association in the population between the column and row variables, equivalent to; 2) greater, smaller, 

stronger; 3) expected, 5; 4) φ, 0, 1, correlation; 5) .15, 15, 100, (iii); 6) d.

Answers to In- Chapter Exercises

13.2 The CI always lies fully between 0 and 1, and is asymmetric, with the longer arm toward .5. It is longest (and is 
almost always symmetric) for P = .5 and becomes shorter and more asymmetric as P approaches 0 or 1.

13.3 The lower and upper MoE values are the lengths of the lower and upper arms of the CI, respectively, and MoE
av

 
is the average of our two arms and the measure of precision.

13.4 a. The proportions are complementary, because they add to 1. The two CIs are mirror images. They are the 
same length and the two arms are the same length, but swapped; b. In other words, lower MoE of 8/ 22 equals 
upper MoE of 14/ 22, and MoE

av
 is the same, which illustrates that the two CIs give us essentially the same 

information, because they both refer to an 8– 14 split of 22 events.
13.5 a. The CI is at first very long and very asymmetric, then gets progressively shorter and less asymmetric; b. For a 

different fixed value of P the pattern is similar, but the CIs are longer and less asymmetric for a value of P closer 
to .5, and shorter and more asymmetric for a value of P closer to 0 or 1.

13.6 Gray horizontal lines mark the possible values of P, for a given N. For small N, there are few lines, widely spaced. 
As N increases there are more lines, closer together.

13.7 When X = 0, P must also be 0. The CI has only an upper arm, which becomes shorter or longer as N increases 
or decreases, as we expect.

13.8 No, we need to know the frequency X and total N, because the length of the CI on P = .85 will vary greatly, 
depending on X and N.

13.9 For a fixed P, larger N gives a shorter CI, but the guideline holds only very roughly and only in some cases, no 
doubt because CIs are constrained to lie between 0 and 1.

13.10 The population proportion is estimated to be .32 [.27, .37], so the true value is, most plausibly, in that range. If 
telepathy does not exist and receivers were guessing, we expect .25. This lies only a little outside the CI, so is 
rather implausible, but the strength of evidence that .25 is not the true value is not extraordinary.

13.11 The p value of .22 is consistent with the 95% CI extending a little distance past the null hypothesis value, as in 
the figure.

13.12 In every case, the p value corresponds with where the CI falls in relation to the null hypothesis value.
13.13 Use the spinners to set X = 106 and N = 329, and the small slider to set Π

0
 = .25, and see p = .002. This is quite 

strong evidence that the true value is greater than .25, but I would not regard it as extraordinary evidence.
13.14 a, b. 80% is 48/ 60 and the CI is [.68, .88] in terms of proportions and [68, 88] in terms of percentages. I’m 

assuming the questions are independent and all have the same probability of being answered correctly. Her 
true score, reflecting her true ability on the test, most likely lies around 80%, and plausibly anywhere in the 
range of the CI. We need to use a proportion to calculate the CI, but percentages are more commonly used for 
test results in education, so I would discuss the result using percentages; c. Guessing corresponds to Π

0
 = .5, 

so that’s the null hypothesis value; d. The CI is very far from .5, and p < .001, so we have very strong evidence 
that her performance was better than expected by chance.

13.15	 Assuming	the	two	sets	of	studies	are	independent,	the	CI	on	18/	57	−	78/	252	=	0.006	[−0.12,	0.15]	so	any	
population difference is zero or extremely small. There is no sign that experienced receivers do better. The 
experienced participants had participated as novices in one of the earlier studies and so, strictly, the two sets 
of studies were not fully independent. In practice they were probably sufficiently separate to be regarded as 
close to independent.

13.16	 a,	b.	The	difference	is	295/	302	−	286/	303	=	0.033	[0.001,	0.067],	which	is	the	mirror	image	of	the	CI	on	the	
difference between the proportions for cancer, so we come to the same conclusion as before.

13.17 What difference does the Med diet make to the risk of dying from another heart attack? The difference is 6/ 
302	−	19/	303	=	−0.043	[−0.078,	−0.011].	(You	may	have	reversed	the	subtraction	and	obtained	the	same	
result, but with the sign reversed.) The difference in favor of Med is slightly larger than for cancer, and more 
clearly different from zero because the CI is a little further from zero for cardiac death.

13.18 a. Control, No cancer = 290.98; Med, Cancer = 11.98; Med, No cancer = 290.02; b. Yes, because all expected 
frequencies are more than 5; c. χ2 = 2.063 + 0.085 + 2.070 + 0.086 = 4.304; d. χ2 is a measure of the difference 
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between the observed and expected frequencies, which is influenced by the strength of association and the 
grand total; e. φ = .08 is a type of correlation, or the strength of association between the (Control, Med) and 
the (Cancer, No cancer) classification variables; .08 suggests a small or very small association.

13.19 a. The null hypothesis is either that (i) there is zero association in the population between the column and row 
classification variables, or that (ii) the two population proportions are equal; b. For chi- square, p = .038, so there 
is some evidence against the null hypothesis; at the .05 level we can reject the null hypothesis and conclude 
there is some association; c. For proportions, p = .042, so the p for chi- square is very close to accurate. The CI 
on the difference in the figure has its upper limit very close to zero, consistent with p close to .05. (For a better 
figure	for	this	example,	if	you	know	Excel	you	could	format	the	vertical	axis	so	its	scale	runs	from	−.2	to	.3,	
rather	than	from	−.2	to	1.2.)

13.20 12.02/ 303 = .040, 11.98/ 302 = .040. The expected frequencies assume the null hypothesis is true, which is 
equivalent to assuming those two proportions are the same, as found here.

13.21 If I toss a fair coin 3 times, I expect on average to get 1.5 heads, even though no trial can give a fractional 
number of heads. An expected frequency is a long- term average, if the null hypothesis is true.

13.22 a. .02, 2%, and about 2 in 100 people, or 1 in 50 people; b. The Med diet reduces the risk from about .06 to .02, 
from about 6% to 2%, from about 6 to 2 people in 100, on average. For Med, the risk is one- third as great as 
for Control. I suspect people would understand best a reduction from 6 to 2 in 100, or 3 to 1 in 50, although 
I would also note that the Med risk is only one- third as great.

13.23 a. I found risks of .002 for the next 5 years and .069 lifetime risk, or about 1 woman in 500 and 1 in 14; b. My 
non- statistical friends say they strongly prefer 1 in 500 and 1 in 14, although there was discussion about 
whether 7 in 100 might be easier to understand than 1 in 14.

13.24 a, b. I found .5% and 16.8%, which are probabilities of .005 and .168; in natural frequencies, about 5 in 1,000 
and 17 in 100, or about 1 in 200 and 1 in 6; c. Having a first- degree relative who has had breast cancer increases 
the risks from about 2 to 5 in 1,000 for the next 5 years, and from about 7 to 17 in 100 for the lifetime; 
d. Again, my friends strongly preferred natural frequencies, and they also noted the ratio—having a close 
relative affected gives an increase of a factor of about 2.5 in risk.

13.25 The aims and limitations seem to me well described in accessible language. I would be interested to discover 
whether presenting all risks in natural frequencies would, in the context of the calculator, be more easily 
understood by general users. That’s an issue worth studying empirically.

13.26 a– c. The website has a link to an “About the Tool” page that explains the tool and the background to each 
question, and includes references to the research on which risk estimates are based. The risk estimates could be 
accompanied by a CI, whose length would probably vary widely for different cases, depending on the precision 
of the research on which particular estimates were based. Providing such CIs would give more complete 
evidence- based guidance to users, but would make understanding its results more complicated. It’s another 
empirical question worth investigation, but I suspect that for most users the simplicity of a single value is 
better.



In this chapter we consider designs that extend beyond the simple compari-
son of two conditions. Beyond pen and laptop, you could compare both with 
a third option, perhaps having full printed notes of the lecture. Considering 
critical thinking, you could assess not just pretest and posttest scores, but also 
scores a month and a year later—it’s a vital issue how long any gains endure. 
Such studies add one or more further conditions and, therefore, are taking 
a step beyond the two basic designs we discussed in Chapters 7 and 8. They 
have extended designs, but with still just one IV (independent variable). In 
Chapter 15 we’ll take a further step beyond, and consider extended designs 
that have more than one IV.

Extended designs often save time and money, because they let us ask mul-
tiple questions in a single study. They can also answer questions that simpler 
studies just can’t address. Even so, they are not much harder to understand, 
because the basic way to analyze them is to focus on selected differences and 
their CIs, as we’ve done many times before. Keep in mind that all the extended 
designs we’ll discuss in this and the next chapter are extensions of the independ-
ent groups and paired designs we discussed in Chapters 7 and 8.

There’s a danger: Extended designs usually offer so many potential com-
parisons that, after running the study, it’s tempting to explore the data and 
choose the big effects. However, this could easily be cherry  picking, merely 
seeing faces in the clouds. With extended designs it’s especially important to 
use good Open Science practice: First, where possible preregister your research 
plan, including a detailed plan for data analysis; second, follow that plan as 
you run the study and analyze the data; and finally, distinguish very clearly in 
your research report between the planned data analysis and any subsequent 
exploratory data analysis.

Here’s the agenda:

 ■ More than two independent groups: the one- way independent groups design
 ■ The key to analysis: comparisons and contrasts of means, with their CIs
 ■ Good Open Science practice: preregistration, planned analysis, and explora-

tory analysis
 ■ One group, but more conditions to compare:  the one- way repeated 

measure design
 ■ An alternative approach: the analysis of variance (ANOVA)

THE ONE- WAY INDEPENDENT GROUPS DESIGN

This design is an extension of two independent groups that’s made by simply 
adding one or more extra groups. Adding a full- printed- notes group to our pen–
laptop study would give a one- way independent groups design. “One- way” means 

14
Extended Designs: One  
Independent Variable

The one- way 
independent groups 
design has a single 
IV with more than 
two levels, and a 
group for each level 
of the IV.
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there’s one IV: the type of notes. This has three levels: pen, laptop, and printed. 
There are three independent groups, one for each level. As for two independent 
groups, each participant experiences just one level of the IV. If the IV has four or 
more levels, we would need four or more independent groups of participants.

The one- way independent groups design has a single IV with three or more levels. Each 
level is experienced by an independent group of participants.

This design is sometimes called the completely randomized design, but that’s 
a vague and unhelpful name.

My example investigates sex, violence, and TV ads.

VIOLENCE, SEX, AND ADVERTISING EFFECTIVENESS

“If it bleeds, it leads.” Many in the news business believe that violence and/ or 
sex attracts viewers and sells newspapers. Advertisers might therefore be keen to 
have their ads appear during shows with, say, violent content. However, Bushman 
and colleagues have made the provocative suggestion that viewers might become 
particularly absorbed by such content and therefore pay less attention to the ads. 
If so, television networks would have a financial reason to reduce violence in 
their programs, a change that would delight many parents and educators.

Bushman (2005) reported an investigation of people’s memory for ads 
that were presented during different types of television show. He wanted 
to estimate to what extent violent content, compared with neutral content, 
might lead to reduced memory for ads, and perhaps reduced purchasing 
intentions for advertised products. He investigated the same questions for 
shows with sexual content. He chose a three- group design as an efficient 
way to investigate both types of content. A sample of 252 typical TV viewers 
were randomly assigned to watch one of three types of show. Some watched 
a Neutral show (e.g., America’s Funniest Animals), some a show with Violent 
content (e.g., Cops), and others a show with Sexual content (e.g., Sex in 
the City). The viewers watched different shows, but all saw the same 12 
ads inserted into the shows. The ads were genuine advertisements, but for 
little- known products, so most viewers had never seen the ads before. To 
enhance realism, viewers watched the shows in easy chairs, with snacks 
and soda available.

After the viewing came a surprise memory test for the ads. I’ll discuss 
the data for memory recognition: Participants saw a list of 12 products, with 
four brand names for each type of product, just one of which had appeared 
in an ad. For each set of four brands, participants had to choose which one 
they felt they recognized from the ads they had just seen, so the maximum 
score was 12.

Bushman posed two research questions: relative to Neutral,

 ■ to what extent would Violent change memory performance, and
 ■ to what extent would Sexual change memory performance?

Examining those questions illustrates our main analysis strategy: We keep it 
simple by focusing on selected comparisons, which are differences that corre-
spond with the research questions.

In the one- way 
independent groups 
design, examine 
comparisons that 
correspond with the 
research questions.
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A comparison is the difference between two means.

Figure 14.1 reports group means for brand recognition, with CIs. After 
viewing a Neutral show, an average of only around half the brands in the ads 
recently viewed were recognized. Considering Bushman’s two questions, the 
mean for Violent was 24% lower than Neutral, and the mean for Sexual 39% 
lower than Neutral. These two comparisons 
suggest that, compared with a Neutral show, 
violent and sexual content reduced memory 
substantially.

Our general strategy is important 
enough to deserve bullet points. To analyze 
a one- way independent groups design:

 ■ select those few comparisons that corre-
spond with our main research questions;

 ■ focus on those selected comparisons and 
use CIs to guide interpretation of each.

We have two possible approaches for assessing a comparison:

1. Interpret the CI on a difference. Note the CI on the comparison—the CI on 
the difference between the two means being compared—and interpret the 
difference and its CI. This is our preferred approach. In a moment we’ll 
calculate that CI, but, if we have just the separate means with their CIs as in 
Figure 14.1, we can eyeball what we want because the CI on a comparison 
is a little longer than either of the CIs on the separate means.
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Figure 14.1. Means and 95% CIs for number of brands recognized, out of 12, for three independent 
groups, from Bushman (2005).
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2. Compare two independent CIs. Alternatively, because the means in Figure 14.1 
are independent, we can apply the overlap rule from Chapter 7 to the two 
means in a comparison.
2.1 If two independent CIs just touch end- to- end, or have a gap, we have 

moderate evidence of a population difference in the means. (And p 
< .01, approximately.)

2.2 If they overlap a little, no more than half of MoE, we have a small 
amount of evidence of a difference. (And p < .05, approximately.)

The CIs for Neutral and Violent, for example, have a gap, so we have strong 
evidence of a population difference. For the comparison of Neutral and Sexual, 
the CIs have an even larger gap, so we have even stronger evidence of a pop-
ulation difference. Now let’s calculate.

Calculating Comparisons of Two Means
A comparison is simply the difference between two means, (M

2
 –  M

1
), for exam-

ple. We want, first, the CI on each group mean, as in Figure 14.1, and then the 
CI on any selected comparison, for example Neutral and Violent.

Back in Chapter 7, to calculate MoE for the CI on the difference between 
independent means, we pooled s

1
 and s

2
 to calculate s

p
, the pooled SD, which 

is our best estimate of σ. We used this formula:

 s
n s n s

n np =
−( ) + −( )

+ −
1 1

2
2 2

2

1 2

1 1

2
 (7.2)

Using this formula relied on the assumption of homogeneity of variance for 
the independent groups. For two groups, I used N

1
 and N

2
 for the group sizes, 

but here I’m using n
1
, n

2
, …, in accord with the convention that, for extended 

designs, the size of Group i is referred to as n
i
, and N is used for the grand total, 

which is n
1
 + n

2
 + n

3
 + ….

Now we have three groups. An advantage of the one- way independent 
groups design is that we should be able to get an even better estimate of σ, 
the population SD, by pooling over all the groups. This requires us to assume 
homogeneity of variance across all the groups. I’ll say more about assumptions 
shortly, but researchers are often willing to make the assumption. Assuming 
homogeneity of variance for our three groups, an extension of Equation 7.2 
gives an estimate of σ that’s pooled over all three:

 s
n s n s n s

n n np =
−( ) + −( ) + −( )

+ + −
1 1

2
2 2

2
3 3

2

1 2 3

1 1 1

3
 (14.1)

As you’d expect, s
3
 is the SD of the third group. The degrees of freedom of 

that estimate, s
p
, is the denominator in Equation 14.1:

 df = (n
1
 − 1) + (n

2
 − 1) + (n

3
 − 1) = n

1
 + n

2
 + n

3
 − 3 = (N –  3) (14.2)

Including the third group increases the df, which is why the pooled estimate 
is more precise. For more than three groups, simply extend the formulas to 
include n

4
 and s

4
, n

5
 and s

5
, …, as needed to include all the groups. We can use 

this relatively precise estimate, s
p
, to calculate the CIs on individual means and 

on the differences corresponding to our selected comparisons.

For independent 
groups, we can 
use the overlap 
rule to eyeball any 
comparison.

Pooled SD for two 
independent groups.

Pooled SD for three 
independent groups.
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Calculating MoE for the CI on the mean of a single group, for example the 
first group, requires a small adaptation of Equation 5.9, which was our basic 
formula for MoE for a single mean:

 MoE = t
.95

(df) × s
p
 × (1/ n1 ) (14.3) MoE for the CI on a 

single mean.

where s
p
 is given by Equation 14.1 and df by Equation 14.2. For any other mean, 

simply replace n
1
 with the relevant group size, n

2
 or n

3
, for example.

To calculate MoE for the CI on a comparison, which is the difference 
between two means—say, the means for the first and second groups—we need 
a small adaptation of Equation 7.3, which was our basic formula for MoE for 
the difference between independent means:

 MoEdiff p= ( )× × +t df s
n n.95

1 2

1 1
 (14.4)

t component, which 
makes it a 95% CI

t component, which 
makes it a 95% CI

Variability 
component

Variability 
component

Sample size 
component

Sample size 
component

MoE for the CI on 
a comparison, one- 
way independent 
groups design.

where, once again, s
p
 is given by Equation 14.1 and df by Equation 14.2. For 

other comparisons, simply replace n
1
 and n

2
 with the sizes of the two groups 

in the comparison.
Table 14.1 presents summary descriptive statistics for brand recognition 

from Bushman (2005). We need to know only n, M, and s for each group to be 
able to apply the formulas above to calculate MoE for the individual means, as 
in Figure 14.1, and for any comparison.

14.1  For our example, calculate the pooled SD, df, and MoE and the CI for the 
Neutral mean. Compare with Figure 14.1.

14.2 Calculate the comparison of Neutral and Violent, including its CI.

I opened the Ind groups comparisons page of ESCI intro  chapters 10– 16 
and saw Figure 14.2, which presents the data in Table 14.1. The ESCI figure 
matches Figure 14.1, the summary statistics are shown at red 3 and the values 
calculated for the individual CIs at red 4. The grand total is the total number of 
participants and is shown near red 3 as N = 252. This ESCI page will calculate 
CIs and comparisons when given either summary statistics, as in Table 14.1, or 
the full data. At red 2, radio buttons let you select what you wish to enter. In 
Figure 14.2, the left button is selected, meaning that I entered the summary sta-
tistics at red 3, rather than the full data at red 5—the full data area is grayed out.

Table 14.1 Summary 
Descriptive 
Statistics for Brand 
Recognition, From 
Bushman (2005)

Group 1 Group 2 Group 3
Neutral Violent Sexual

Size n 84 84 84
Mean M 5.76 4.36 3.54
SD s 2.47 2.57 2.57
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This ESCI page displays data for up to six groups, which can be given brief 
names at red 3, and are also identified by the conventional labels A1, A2, …, 
A6. The corresponding means are labeled M1, M2, …, M6 on this page. In the 
table of values at red 3, below A1 are n, M, and s values for the first group, and 
similarly for other groups. (The formulas in the text above use the standard 
symbols n

1
, M

1
, and s

1
, but subscripts on the ESCI screen can get tiny and con-

fusing, so I use M1 instead of M
1
.)

The next step is to examine comparisons. In ESCI that’s a simple matter of 
clicking two radio buttons, one in each of the rows at red 8. I clicked above M1 
in the top row and M2 in the lower row, and saw Figure 14.3, which displays 
the (M1 –  M2) or (Neutral—Violent) comparison. The comparison and its CI are 
pictured at right on a floating difference axis. The values are reported above, at 
red 9, and show that the comparison is 1.40 [0.63, 2.17]. I clicked the checkbox 
at top right to see that p < .001.

Figure 14.2. Means and 95% CIs for the three groups in Bushman (2005), as in Figure 14.1. Summary statistics are at red 3 
and are the same as those in Table 14.1. Values for the individual CIs are at red 4. From Ind groups comparisons.
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14.3 Fire up Ind groups comparisons. If you don’t see the Bushman 2005 
data, as in Table 14.1 and Figure 14.2, you will need to type them in. If 
necessary, first click at red 7 to clear data, and red 2 to select Statistics 
above. If necessary, type labels at red 1, then brief group names at red 3, 
then the summary statistics.

14.4 Check your answer to Exercise 14.1 with the values that ESCI reports, as 
in Figure 14.2.

14.5 Click twice near red 8 to display the comparison of Neutral and Violent, 
compare with Figure 14.3, and check your answer to Exercise 14.2.

a. Explain what the triangle and its CI displayed on the difference axis is 
telling us.

b. If necessary, click at top right to display the p value. Explain what the 
p value is telling us. Compare with the CI on the difference axis.

c. Compare with the discussion above using the overlap rule for that 
comparison.

Figure 14.3. Data as in Figure 14.2, with the (M1 –  M2) comparison selected at red 8 for display on the difference axis. Values 
of the comparison and its CI, and the p value, are shown at red 9.
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14.6 Display the comparison of Neutral and Sexual.

a. Interpret the CI and p value.
b. Compare with the discussion above using the overlap rule for that 

comparison.

14.7 Explore what the ESCI page offers. Read the popouts. Find how to display 
the (M2 –  M1) comparison, rather than (M1 –  M2), and explain how the 
two compare.

14.8 a.  Think of a possible change to one or more values of n at red 3, predict 
what difference it would make to the figure, then make the change to 
test your prediction.

b. Do the same for values of s.
c. Make testing such predictions a game.

We selected the comparisons of Neutral and Violent, and Neutral and Sexual 
as corresponding to the research questions, so interpretation of these compari-
sons provides the basis for the study’s main conclusion that violent and sexual 
content lead to considerably reduced memory for brands presented in ads.

It’s often a good strategy to use multiple measures to obtain a fuller pic-
ture, and Bushman did this by using additional measures of memory. He also 
investigated consumer behavior by asking participants to choose which brands 
they would be most likely to buy, and which discount coupons they would 
prefer to have. The patterns of means were similar for all the measures, sug-
gesting that violent and sexual content not only reduces memory for ads, but 
may also influence purchasing behavior. Advertisers and TV networks may be 
wise to take note.

Finding that different measures give similar results may also allow us to 
draw a more confident conclusion. Additional measures to some extent pro-
vide converging evidence to support the conclusion. A single measure, or single 
comparison, may suggest an interesting conclusion, but with uncertainty. 
Rather than worrying too much about exactly how confident we can be in that 
conclusion, we could look for further relevant lines of evidence. Is there some 
other measure, or comparison that could help answer our research question? If 
so, that might greatly strengthen the conclusion, especially if the two measures 
are rather different—for example, brand recognition memory and purchasing 
behavior. Bushman’s range of measures provided a fuller picture and also rein-
forced his main conclusion that some types of content can influence viewers’ 
response to ads substantially.

ASSUMPTIONS FOR THE ONE- WAY INDEPENDENT 
GROUPS DESIGN

Having analyzed our first example, let’s step back and consider assumptions. 
The basic assumptions we are making in this chapter are that

 ■ the data for each group are sampled from a population that’s normally 
distributed, and

 ■ each sample is a random sample from its population.
For the one- way independent groups design we also assume that

Converging evidence 
can strengthen a 
conclusion.
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 ■ the samples are independent.

In addition, the analysis above assumes that

 ■ variance is homogeneous across all groups. In other words, the population 
underlying each sample has the same standard deviation, σ.

The assumption of homogeneity of variance across all groups is often, but 
not always, reasonable. Examining the standard deviations of the individual 
groups provides some guidance. As a rough rule, we would like the largest 
SD to be not more than about twice the smallest SD if we are to rely on the 
assumption. For the Bushman example, the standard deviations for the three 
groups are shown as the values of s at red 3 in Figure 14.2. The three happen 
to be very similar, and, therefore, it’s reasonable to assume homogeneity of 
variance.

If we are not willing to make the assumption, one option is to calculate each 
comparison using the standard deviations of only the groups being compared. 
To do this we could copy the summary statistics for those two groups to the 
Summary two sheet, which we discussed in Chapter 7, and choose whether or 
not to assume homogeneity of variance for just those two groups.

Quiz 14.1

1. The one- way independent groups design has one IV /  two IVs /  two or more IVs. The number 
of groups is equal to the number of IVs /  the number of levels of the IV /  N.

2. A comparison is the sum of /  difference between /  SD of two group means /  sample 
sizes /  SDs.

3. Planned analysis should specify comparisons that
a. appear largest, on examination of the data.
b. have SDs that are closest to homogeneous.
c. correspond most closely with the research questions.
d. cover all possible pairs of groups in the study.

4. The assumption of homogeneity /  heterogeneity of means /  variance permits us to pool 
over groups and thus calculate a more precise estimate of the mean /  SD of the sample /  
population.

5. A figure that displays the means and CIs for several independent groups allows us to
a. use the overlap rule to assess, approximately, any comparison.
b. do very little, without further targeted calculations.
c. use the overlap rule to assess, approximately, the overall effect size.
d. identify which comparisons had been planned and preregistered.

6. With several independent groups, if the largest group SD is no more than about twice the 
smallest group SD, it’s probably reasonable to assume _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

AN EXAMPLE WITH FULL DATA: STUDENT 
MOTIVATION

How do you think you would react to feedback that gave encouragement and 
reassurance, or, instead, encouragement and challenge? Carol Dweck and her 
colleagues have investigated many such questions about how people respond 
to different types of feedback—I mentioned some of that research in the Making 
the Most of This Book section at the start of the book. My next example comes 
from Dweck’s research group and illustrates data analysis that starts with the full 
data, rather than only summary statistics. Rattan et al. (2012) asked their college 

If the largest and 
smallest SDs 
differ by no more 
than a factor of 
about two, it’s 
probably reasonable 
to assume 
homogeneity of 
variance and use s

p
.
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student participants to imagine they were undertaking a mathematics course 
and had just received a low score (65%) on the first test of the year. Participants 
were assigned randomly into three groups, which received different feedback 
along with the low score. The Comfort group received positive encouragement 
and also reassurance, the Challenge group received positive encouragement and 
also challenge, and the Control group received just the positive encouragement. 
Participants then responded to a range of questions about how they felt about 
the course and their professor. I’ll discuss data for their ratings of their own 
motivation toward mathematics, made after they had received the feedback.

14.9 a.  State what you think may be the two main research questions.
b. State the two comparisons that correspond to these.

14.10 To load the data, scroll right in Ind groups comparisons and click at red 10 
to transfer left the Rattan data set. Any previous data are cleared and the 
radio button on the right at red 2 automatically selected to indicate that 
full data are available at red 5 for analysis. Your screen should resemble 
Figure 14.4. The Challenge group is labeled “Challng” because names 
must be short.

a. Could you change the values at red 3? At red 5? Read the popouts 
and explain.

b. Is it reasonable to assume homogeneity of variance? Explain.
c. Examine the two comparisons you chose, and interpret.

14.11 Have a further play at this page. You could, for example:

a. at red 5, change some of the data. Does the figure change as you 
expect?

b. type in some invented data for extra groups, perhaps A4 and A5. Give 
them short names at red 3. Does the figure change as you expect?

c. click in the two rows at red 8 to select a comparison to examine.
d. click at red 7 to clear the data. To enter data from your own study 

with a one- way independent groups design, at red 5 type the data in, 
or use Paste Special/ Values to copy data from the clipboard.

FROM COMPARISONS TO CONTRASTS

Suppose Rattan et al. (2012) were primarily interested in the effect of reassur-
ance feedback, and wished to compare Comfort with both other groups together, 
perhaps by comparing the Comfort mean with the combined mean of the 
Challenge and Control means. To do this we need to move from comparisons 
to contrasts of means. A contrast is a combination of means and may be com-
plicated—it may, for example, summarize the linear trend over many means. 
However, I’ll focus on the simplest and most widely used type of contrast, a 
subset contrast. Subset contrasts often provide the best approach to analyzing the 
one- way independent groups design. A subset of means is simply a selection of 
one or more group means, and a subset contrast is:

 Subset contrast  = (Mean of one subset of means) 
–  (Mean of another subset of means) (14.5)

Here’s a simple example: One subset is the single Comfort mean, and the 
other contains the Challenge and Control means. To see this contrast with its 

A subset contrast 
is the difference 
between the means 
of two subsets of 
group means.

Subset contrast.
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CI I moved to the next page in ESCI, Ind groups contrasts. I scrolled right and 
clicked at red 10 to load the Rattan data. Figure 14.5 illustrates what I did: At 
red 8, in the green area I clicked the checkboxes above M2 and M3 to define 
one subset, which is identified as green. In the blue area I clicked above M1 to 
define the other subset, which is blue. The figure displays, towards the right, 
the subset means as squares, which are green and blue, and their difference 
as the triangle, which is thus the contrast we want. This contrast with its CI is 
displayed on the difference axis.

The values for the subset means and their CIs are shown at red 8 to the 
right of the checkboxes. More importantly, at red 9 we can see that the contrast 
is 1.52 [0.59, 2.46], meaning that feedback that includes reassurance (Comfort 
group) prompts ratings of motivation towards mathematics that are an average 
of about 1.5 units lower than ratings after the feedback given in the other two 

Figure 14.4. Full data at red 5, from Rattan et al. (2012), and means and 95% CIs for ratings of motivation towards 
mathematics, after receiving one of three types of feedback. The Challenge group is labeled “Challng”. From Ind groups 
comparisons. The data are courtesy of Aneeta Rattan.



408

Ex
te

nd
ed

 D
es

ig
ns

: O
ne

 In
de

pe
nd

en
t V

ar
ia

bl
e

groups. That’s a very substantial difference on the 7- point motivation rating 
scale. The CI is long but indicates that it’s reasonable to expect at least a modest 
boost in motivation (a minimum of around 0.6 units on the 7- point scale) in 
the population.

14.12 Set up Ind groups contrasts so you can see the Rattan means as in 
Figure 14.5. Read the popouts and experiment with the two rows of 
checkboxes at red 8, then explain what a subset contrast is and how it 
is displayed.

Rattan et al. (2012) reported data for additional measures, and also three 
further studies, which showed how type of feedback and also teachers’ attitudes 
can strongly influence students’ motivation and expectations. Their general 
finding is important: Students are generally more motivated by challenge than 
comfort.

Now for an example with six groups—of mice.

Figure 14.5. Means and 95% CIs as in Figure 14.4. Checkboxes at red 8 define (M2 and M3) as the green subset of means, 
and M1 as the blue subset. Means of the subsets are displayed as squares, with CIs. The difference between the two subset 
means is the contrast and is displayed as the triangle, and shown with its CI on the difference axis. From Ind groups contrasts.
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Could eating much less delay Alzheimer’s? If so, that would be great news. 
Halagappa et al. (2007) investigated the possibility by using a mouse model, 
meaning they used Alzheimer- prone mice, which were genetically predis-
posed to develop neural degeneration typical of Alzheimer’s. The researchers 
used six independent groups of mice, three tested in mouse middle age when 
10 months old, and three in mouse old age when 17 months. At each age there 
was a control group of normal mice that ate freely (the NFree10 and NFree17 
groups), a group of Alzheimer- prone mice that also ate freely (the AFree10 and 
AFree17 groups), and another Alzheimer- prone group restricted to 40% less 
food than normal (the ADiet10 and ADiet17 groups). Table 14.2 lists the factors 
that define the groups, the group labels, and their means, M1, M2, … (as we’ll 
see them displayed in ESCI). I’ll discuss one measure of mouse cognition: the 
percent time spent near the target of a water maze, with higher values indicating 
better learning and memory.

Let’s consider some major research questions, and contrasts that match 
them. One basic question concerns age: Overall, how did the middle- aged 
groups compare with the old groups? A second question asks how, within the 
four Alzheimer- prone groups, food restricted groups (ADiet10 and ADiet17) 
compared with freely eating groups (AFree10 and AFree17).

14.13 a.  State which subsets of means you would choose for the middle- aged 
vs. old contrast.

b. State which subsets you would choose for the second contrast.

14.14 Close ESCI intro  chapters 10– 16 (don’t Save) and reopen it. At the 
Ind groups contrasts page you should see summary cognition data for 
Halagappa, as in Figure 14.6. If not, you will need to type in at red 3 the 
labels and values from red 3 in Figure 14.6. Is it reasonable to assume 
homogeneity of variance? Explain.

14.15 At red 8, click checkboxes to define the two subsets of means needed 
for the middle- aged vs. old contrast. Identify the value and CI for this 
contrast. Interpret.

14.16 Clear all checkboxes at red 8. (It’s easy to get confused when setting up 
contrasts. Note that no mean can be included in both subsets. It’s usually 
easiest to start by clearing all checkboxes.) Click checkboxes to display the 
second contrast: ADiet vs. AFree, for Alzheimer- prone groups. Identify 
the value and CI for this contrast. Interpret.

For the age of testing contrast, at red 8 (top in Figure 14.6) I clicked check-
boxes to specify M1, M2, and M3 as the green subset of middle- aged groups, and 
M4, M5, and M6 as the blue subset of old groups. Figure 14.7 shows how ESCI 

Table 14.2 Groups 
Used by Halagappa 
et al. (2007)

Type of mouse Normal Alz- prone Alz- prone Normal Alz- prone Alz- prone
Feeding Free Free Diet Free Free Diet
Age (months) 10 10 10 17 17 17
Group label NFree10 AFree10 ADiet10 NFree17 AFree17 ADiet17

A1 A2 A3 A4 A5 A6
Mean M1 M2 M3 M4 M5 M6

Note. Alz- prone = Alzheimer- prone; Diet = 40% less food than normal.
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displays that contrast. The M1, M2, and M3 means are green and their mean is 
displayed as the green square at right. The M4, M5, and M6 means are blue and 
their mean is the blue square. The triangle marks the contrast, and at red 9 its 
value is reported as 3.0 [−1.2, 7.2] percentage points. The small mean (only 
3 percentage points) and extent of the CI suggests there is little or no evidence 
of an overall age difference.

14.17 For Exercise 14.15 you might have chosen M1, M2, and M3 as the blue 
subset, and M4, M5, and M6 as the green. Set up that contrast and com-
pare with Figure 14.7. Explain.

The main research question concerns the extent that the restricted diet 
might slow cognitive decline in Alzheimer- prone mice. In other words, to what 
extent do ADiet groups perform better than AFree groups? First, consider that 
comparison at 10 months. We could go back to Ind groups comparisons, but 
a comparison is also a subset contrast with just one mean in each subset, so we 
can use Ind groups contrasts to examine a comparison.

14.18 a.  Clear all checkboxes at red 8. Click to select M3 (ADiet10) as the green 
and M2 (AFree10) as the blue subset. What’s the difference and what 
does this tell us?

b. Clear checkboxes and select two means to examine the ADiet vs. 
AFree comparison at 17 months. What’s the difference and your 
interpretation?

Figure 14.6. Means and 95% CIs for six independent groups, from Halagappa et al. (2007). Summary statistics are at red 3, 
top left. From Ind groups contrasts.
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14.19 a.  Combine those two comparisons to see a contrast of the two ADiet 
groups with the two AFree groups. What’s the difference and your 
interpretation?

b. Compare with your answer to Exercise 14.16.

14.20 Compare MoE for the contrast with MoE for the two separate compar-
isons. Explain.

The contrast you examined in Exercise 14.19 most fully addresses the main 
research question and is shown in Figure 14.8. The contrast is reported near red 
9 to be 8.8 percentage points [3.7, 14.0], with ADiet showing greater learning 
and memory than AFree. It provides strong evidence that the restricted diet 
improved cognitive performance in the Alzheimer- prone mice, although we 
would need to know more about the swimming maze task to judge how large 
or important the observed mean improvement of around 9 percentage points is.

Figure 14.7. Same as Figure 14.6 but with a contrast displayed to compare the three middle- aged groups (means M1, M2, and 
M3, indicated by checkboxes near red 8 as the green subset) with the three old groups (M4, M5, and M6, as the blue subset). 
The squares mark the subset means, and the triangle, with CI, marks the contrast on the difference axis. Values of the contrast 
and its CI are at red 9, at top.
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Figure 14.8. Same as Figure 14.7, but with a contrast displayed to compare the mean of the two ADiet groups (M6 and M3, 
the green subset) with the mean of the two AFree groups (M5 and M2, the blue subset). The squares mark the ADiet and AFree 
means, with 95% CIs, and the triangle, with CI, marks the difference between those means on the difference axis.

Halagappa et al. (2007) reported other analyses and 
data that supported a conclusion that a restricted diet 
overcame the Alzheimer’s cognitive decline. Of course, 
mice are not humans, but good animal models can give 
insight, and also help guide research with humans. 
Results like those of Halagappa et al. suggest that calorie- 
restriction diets and, perhaps, intermittent fasting as in 
the 5:2 diet (Mosley & Spencer, 2013), may have health 
benefits. Evidence that practically achievable changes to 
diet can delay Alzheimer’s in humans would be exciting 
news indeed.
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The one- way independent groups design is simple and flexible. The Ind 
groups comparisons and Ind groups contrasts pages are designed to allow 
you to see and interpret comparisons and subset contrasts of your choice. The 
key to analysis is to choose comparisons and contrasts that most closely relate 
to your research questions.

Now for more on the distinction between planned and exploratory analysis, 
which has particular relevance for analyses based on comparisons and contrasts.

PLANNED AND EXPLORATORY ANALYSIS

Planned Analysis
In Chapter 2, Figure 2.2 showed 10 means with CIs. The key point was that if 
we choose which of the 10 to focus on—probably the largest or most striking—
only after seeing the data, then we could very easily be responding to a lump in 
the randomness, seeing a face in the clouds. That’s why we should preregister 
a planned analysis that states which effects match our research questions. 
Figure 14.6 shows six means with CIs, so once again our planned analysis 
needs to be specified in advance. However, the issue is even larger here because 
we are interested in comparisons and there are 15 of them we could analyze. 
Other than comparisons, would you believe that, with six means, there’s an 
amazing 286 subset contrasts? So there’s massive scope for exploration and an 
enormous risk of faces in the clouds if we merely look around in the data for 
anything that might be interesting.

The risk of cherry picking, of capitalizing on chance, increases rapidly as 
the number of means or conditions increases: With 3 means there are 6 com-
parisons and subset contrasts, but with 6 means there are 15 comparisons + 
286 contrasts = 301 altogether. So, for the extended designs we are discussing 
in this and the following chapter, planned analysis is essential if we are to have 
confidence in any conclusion, and even more so as the number of means or 
conditions increases.

The key is to focus on the few comparisons and contrasts that relate most 
directly to our research questions, but what counts as “few”? How many effects 
should we include in our planned analysis? It’s a great strength of extended 
designs that they can address more than a single research question, but if we 
specify too many contrasts in our plan we might hardly reduce the risk of cherry 
picking. I’ll refer to a contrast specified in advance as a planned contrast, which 
could be a comparisons or a subset contrast. In choosing how many planned 
contrasts to specify, there are two aspects to consider.

A planned contrast is a comparison or subset contrast that is specified in advance, 
preferably as part of a preregistered data analysis plan.

First, we need to consider the number of conditions or groups. If a study 
has, for example, a one- way independent groups design with k groups, then 
there are df = (k –  1) degrees of freedom for the possible differences among 
group means. This implies that the group means could potentially answer a 
maximum of (k –  1) separate questions, and so, perhaps, we should examine a 

Examine 
comparisons and 
contrasts that relate 
most closely to the 
research questions.

The risk of merely 
seeing faces in the 
clouds increases 
rapidly with the 
number of means or 
conditions in a study.
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maximum of (k –  1) planned contrasts. If we consider more than (k –  1), there 
must be some redundancy among the questions we are asking.

For example, in our mouse study we compared M3 and M2, then M6 and 
M5, then the contrast that combined those two comparisons. Because the 
contrast combines the two comparisons, it cannot answer a question that’s 
independent of, or separate from, the questions answered by the two com-
parisons. If we did choose to include all three questions in a planned analysis, 
we should note that our conclusions about the three are not independent. We 
may feel that looking at all three gives us a full picture, but, for our planned 
analysis to be as informative as possible, it’s usually best to choose contrasts 
that are reasonably separate. My conclusion is that we should keep in mind 
the maximum of df separate questions we can ask, where df = (k –  1) for the 
one- way independent groups design, and we should choose contrasts with 
minimal redundancy.

The most important consideration is that the contrasts we examine make 
sense, and help us understand what the data tell us about our research ques-
tions. Usually our study is designed to ask a small number of questions, no more 
than df, and, therefore, choosing the best- matching contrast for each question 
is likely to give no more than df planned contrasts. However, I’m happy to 
examine a slightly larger number if that makes sense in the context—just be 
aware that we can’t answer more than df truly separate questions.

The second consideration is the risk that one or more of the planned 
contrasts merely reflects a lump in the randomness. This risk increases as we 
examine more contrasts. The more CIs we examine, the greater the risk that at 
least one is red. This should lead us to be more cautious with our conclusions 
if there are more than, say, two or three planned contrasts. The more contrasts 
there are in our planned analysis, the more cautious we should be, and the 
stronger the evidence we should require before drawing a confident conclusion.

In summary, for planned analysis:

1. Specify a limited number of contrasts in advance. These should corre-
spond with the research questions and, preferably, be reasonably sepa-
rate. The maximum number of genuinely separate questions that can be 
answered is df.

2. For more than two or three contrasts, interpret with some caution, and 
more cautiously as the number of contrasts increases.

Exploratory Analysis
Following planned analysis, it’s often valuable to explore—you may find the 
first hint of some exciting and completely unexpected effect. For exploratory 
analysis, the most important consideration is not the number of contrasts we 
examine, but the number of contrasts available for examination—the number 
we potentially could examine. If that number is large—for six means it’s 301—
and we focus on results that look impressive, we are at great risk of focusing 
on CIs that are red. Lumps in the randomness often include CIs that are red, 
and exploration is especially likely to focus on such CIs and therefore mislead 
us. We might be making a stunning discovery, or seeing faces in the clouds. 
That’s the risk of data exploration, and why exploratory analysis can give only 
tentative, speculative conclusions.

Planned contrasts 
can ask a maximum 
of df separate 
questions.

Choose planned 
contrasts that 
match the research 
questions and make 
most sense.

As the number of 
available contrasts 
increases, risk 
increases that 
exploration sees 
faces in the clouds.
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Planned and Exploratory A
nalysisWe should be especially cautious, and seek greater strength of evidence, 

as the number of groups or conditions increases—meaning there are many 
more effects we could examine. Table 14.3 shows how the number increases 
very rapidly with number of groups or conditions. The precise numbers don’t 
matter, but the message is important: Even with only three or four conditions 
there are many effects we could examine, and the number increases rapidly 
with more conditions.

In summary, for exploratory analysis:

1. Examine any contrasts that look interesting and draw tentative conclusions.
2. Seek greater strength of evidence, and draw conclusions that are increas-

ingly speculative and tentative, as the number of contrasts available for 
potential examination increases.

With designs like those in this chapter and the next, exploratory analysis is 
often referred to as examination of post hoc contrasts, meaning contrasts chosen 
after seeing the data. Many researchers working within an NHST framework 
calculate for post hoc contrasts a criterion, smaller than the conventional .05, 
for a p value to indicate statistical significance. As the number of contrasts avail-
able for examination increases, an even smaller p value is required. That’s a 
reasonable approach, but it assumes dichotomous decision making, which I’m 
keen to minimize. I’m also hesitant about giving much importance to precisely 
calculated p values, when Red Flag 5, the dance of the p values, reminds us 
that any p value may be very different on replication. I therefore prefer the 
less formal and more widely applicable approach to exploratory analysis that 
I’ve described above.

Planned and Exploratory Analysis: Closing Comments
I have three closing comments. First, looking back at our discussion of the three 
example studies, were the comparisons and contrasts we examined planned or 
exploratory? Considering the research questions those studies were designed to 
address, I expect that the researchers would regard them as planned, and would 
have chosen in advance at least most of the effects we examined. Of course, good 
Open Science practice would now be to have preregistered the planned analysis.

Second, for each of the examples in this chapter we analyzed only a single 
measure, but in each case the researchers had used other measures and reported 
additional analyses, and these supported their conclusions. As I mentioned 
earlier when discussing the Bushman example, it’s a good strategy to seek 
converging evidence to strengthen a conclusion. In general, we should not 
agonize too much about the exact size of a single estimated effect, or exactly 
how strong the evidence is, because a replication would give a different estimate 

Table 14.3 Numbers 
of Effects for 
Different Numbers 
of Groups or 
Conditions

Number of groups  
or conditions

Number of 
comparisons

Number of subset 
contrasts

Total

2 1 0 1
3 3 3 6
4 6 19 25
5 10 80 90
6 15 286 301

Post hoc contrasts 
are chosen after 
seeing the data. 
They are part of data 
exploration.

Seek converging 
evidence. It’s often 
better to have two 
or more separate 
indications of an 
effect than a single, 
even if stronger, 
indication.
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and different strength of evidence. Instead, we should, where possible, seek 
converging evidence, usually from additional measures or analyses. It’s often 
more persuasive and instructive to have two or three indications of an effect 
than a single, even if stronger, indication. Also, the closer those indications are 
to being fully independent, the better.

Third, I hardly need say it again, but whenever multiple measures or 
multiple analyses are mentioned we need to remind ourselves that everything 
must be reported in full detail. There must be no selection of the measure 
or analysis that happens to give results we like—all must be considered and 
reported, preferably in accord with the preregistered analysis plan. Do phrases 
like “if possible, preregistered” haunt your dreams yet?

In conclusion, the main points are these:

 ■ At every stage, distinguish clearly between planned and exploratory analy-
sis. Planned analysis must be specified in advance, preferably as part of a 
preregistered research plan.

 ■ We can have reasonable confidence in interpreting planned contrasts—the 
point estimates and CIs—as the answers to our research questions. These 
are our main findings.

 ■ Be aware of the great risk of cherry picking. Any conclusions based on 
exploration are only tentative, and more so when there were larger num-
bers of effects we could have examined.

 ■ Where possible, seek converging evidence to support major conclusions.

14.21 If for his 2005 ad- memory study Bushman had stated in advance three 
planned comparisons, what cautions would you advise?

14.22 In the Halagappa mouse study, consider the contrast of NFree10 and 
NFree17 vs. AFree10 and AFree17.

a. What question does that contrast ask?
b. Use ESCI to examine the contrast. Report it and interpret.

14.23 a.  In the Halagappa study, which is the highest mean? The lowest? 
Examine and interpret the comparison of the two.

b. Would it matter whether that comparison had been selected in 
advance, or chosen after inspecting the data? Explain.

Quiz 14.2

1. A subset comparison /  contrast is the difference between the means /  differences of two 
subsets of group means /  SDs.

2. Preregistration of the planned analysis is especially important for extended designs with 
many means because, in this case
a. exploratory analysis is especially likely to discover valuable unexpected findings.
b. there are many more comparisons to consider than subset contrasts.
c. the risk of cherry picking, seeing faces in the clouds, is especially large.
d. All of the above.

3. In a one- way independent groups design with k groups, the df is _ _ _ _ _ _  and the maximum 
number of separate research questions that can be addressed is _ _ _ _ _ _ .

4. Aim to choose a set of planned contrasts so that
a. the number of contrasts is not too large.
b. they make good sense in the research context.
c. they address the main research questions.
d. All of the above.
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5. Planned /  exploratory analysis may discover unexpected but important results, but it could 
easily be cherry picking /  preregistered and so any conclusion should be tentative /  confident.

6. Following planned analysis, then exploratory analysis, it may be valuable to
a. look for further variables or analyses that could provide converging evidence.
b. re- analyze the most interesting exploratory results as planned contrasts.
c. retrospectively preregister the most interesting of the exploratory results.
d. carry out additional analyses as planned contrasts that address additional research 

questions.

THE ONE- WAY REPEATED MEASURE DESIGN

If we start with a paired design, then add one or more additional levels to the 
independent variable, we get the one- way repeated measure design. As well as 
Pretest and Posttest, for example, we might collect critical thinking scores for 
the same group at Follow Up a month or a year later. The IV of testing time 
would then have three, rather than two levels. If you were a participant, you’d 
complete a critical thinking test three times.

Recalling definitions from Chapter 8, we can say that the one- way inde-
pendent groups design we discussed earlier is a between- groups design and its 
IV is a between- groups variable, because different levels of the IV are seen by 
different groups. By contrast, the one- way repeated measure design I’ve just 
introduced is a within- group design and its IV is a within- group variable, also 
called a repeated measure, because there’s a single group of participants who 
experience all the levels of the IV. Phew—recite those sentences a few times 
and I suspect you’ll be totally clear about between groups and within group—or 
perhaps making a couple of pictures is a better strategy. Either way, within vs. 
between was a vital distinction during our discussions in Chapters 7 and 8, and 
it’s a vital distinction again here.

My example of the one- way repeated measure design is a critical thinking 
study reported by Donohue et al. (2002) in which a group of 20 students pro-
vided Pretest scores on the California Critical Thinking Skills Test (Facione & 
Facione, 1992) at the start of a one- semester college freshman critical thinking 
course. They also provided Posttest scores at the end of the semester, then Follow 
Up scores around nine months later. Figure 14.9 displays the mean and CI at the 
three testing times. Like the Thomason studies we discussed in Chapter 8, the 
course was based on argument mapping. The mean improvement from Pretest 
to Posttest was an impressive d

unbiased
 = 0.95, using the published standard devi-

ation of the test as standardizer. The figure shows that the mean improvement 
was fully maintained nine months later, which is another impressive result.

Figure 14.9 includes a line joining the means to indicate a repeated meas-
ure. As I mentioned in Chapter 8, using a line to signal a repeated measure 
is a useful convention, which I recommend using where possible, although 
unfortunately it’s not universally followed. Why do we need to know? Recall 
the paired design in Chapter 8: One of the conclusions was that seeing only the 
two separate means (e.g., Pretest and Posttest) with their CIs is not sufficient 
information for us to eyeball or calculate the difference with its CI. That CI is 
calculated from the standard deviation of the (Posttest – Pretest) differences, so 
we need to know that SD as well. Similarly for the one- way repeated measure 
design: The separate CIs shown in Figure 14.9 cannot be used to assess any of the 
contrasts or comparisons of the three means, which are our primary research 
focus. From now on, read “contrasts” to mean “comparisons or subset contrasts”.

The one- way 
repeated measure 
design has a single 
independent variable 
with more than two 
levels, and one group 
that experiences 
every level of the IV.

When possible, use 
a line joining the 
means to indicate a 
repeated measure, as 
in Figure 14.9.
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Just as there can be no overlap rules for the two separate CIs in a paired 
design, we can’t use the CIs on the separate means in Figure 14.9 to calculate 
CIs on any contrasts of those means. We need additional information, which 
in practice means the full data. Figure 14.10 presents, as smaller colored dots, 
the full data underlying the means and CIs in Figure 14.9. The colored lines 
joining the data points are necessary to indicate the repeated measure for each 
individual student.

Analyzing the Repeated Measure Design
The main features of the data analysis strategy for the within-group design are 
the same as for the independent groups design. Once again we simplify things 
by focusing on contrasts of means:

 ■ Select in advance a small number of contrasts that most closely correspond 
to the research questions. If the IV has k levels, df = (k –  1) and so the study 
can address a maximum of (k –  1) separate questions. Preregister your 
planned contrasts if possible.

 ■ Calculate the mean and CI for each planned contrast, present them in 
figures, and report and interpret them as the main findings.

 ■ Explore further contrasts if you wish, but note that any findings are only 
speculative.

The earlier discussion about distinguishing clearly between planned and 
exploratory analysis is just as relevant here. It’s important to preregister the 
data analysis plan where possible, and to be sensitive to the number of planned 
contrasts examined, and, for exploratory analysis, the number that could be 
examined.

Carrying out calculations for the one- way repeated measure design is 
beyond the scope of this book and ESCI, but I will discuss some important 
aspects. First, consider the effect of having a repeated measure. Focus, for 
example, on the comparison of Posttest and Follow Up in Figure 14.10. If I enter 
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Figure 14.9. Mean and 95% CI for critical thinking scores at three times, for a single group of N = 20 
freshman. Data from Donohue et al. (2002).
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those 20 pairs of data points into ESCI’s Data paired page, the estimate of the 
difference between the Posttest and Follow Up means is 0 [−1.6, 1.6] points on 
the test. The correlation between the Posttest and Follow Up scores is r = .72, 
which accords with my statement in Chapter 10 that pretest–posttest designs 
often in practice have correlations around .6 to .9.

If I ignore the pairing of the scores, meaning I ignore the correlation and 
assume two independent groups, I can enter the same data into Data two. 
That page estimates the difference as 0 [−3.0, 3.0], a CI that’s almost twice 
as long and thus a much less precise estimate. Scores at the different levels 
of a repeated measure often, although not always, show substantial positive 
correlations. When they do, the correlations explain why repeated measure 
designs often give relatively precise estimates of contrasts—they are often 
sensitive designs.

The reason for positive correlations with repeated measures is that any 
contrast is being made within each participant, so the typically large variability 
from participant to participant is removed from the contrast. Compare with 
independent group designs, in which any contrast must be made between dif-
ferent participants.

Consider what ESCI pages for the one- way repeated measure design would 
look like. Both comparisons and contrasts pages would be very similar to those 
for the one- way independent groups design, except for these aspects:

 ■ There would be no option for entering only summary statistics, because 
these don’t provide sufficient information to calculate CIs on contrasts. 
Full data would be required.

 ■ The means would be joined by a line to signal the repeated measure, as 
in Figure 14.9.

 ■ The CIs on the selected comparison or contrast would usually be shorter 
than the separate CIs on the means. (For independent groups they are 
virtually always longer.)

 ■ The correlation would be reported for any selected comparison.
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Figure 14.10. Same as Figure 14.9, but also displaying data for the 20 individual students. The 
Pretest, Posttest, and Follow Up data points for any single student are joined by a thin colored line.

Repeated measure 
designs often give 
relatively precise 
estimates of 
comparisons and 
contrasts.
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Assumptions for Repeated Measure Analysis
The assumptions required for repeated measure analysis are similar to those for 
independent groups, but with one slightly complicated addition. Here they are:

 ■ The data at each level of the IV are a random sample from a population 
that’s normally distributed.

 ■ Variance is homogeneous across the different levels of the repeated meas-
ure. In other words, the population at each level of the IV has the same 
standard deviation, σ.

The slightly complicated additional assumption is satisfied if:

 ■ The population correlation is the same for every pair of levels of the IV. 
In other words, the correlation of the Pretest and Posttest populations is 
the same as that of the Pretest and Follow Up, and the Posttest and Follow 
Up populations. Think of this as a kind of “homogeneity of correlation” 
requirement.

For our example, the spread of the data points looks roughly similar at 
all three levels of the IV in Figure 14.10, suggesting it’s reasonable to assume 
homogeneity of variance. Considering the last assumption, we could calculate 
the correlation for each pair of levels of the IV, but with N as small as 20 the 
sample correlations can vary greatly because of sampling variability, so it would 
take extremely different correlations calculated for the different pairs of levels 
to persuade me not to make the final assumption.

Making all the assumptions, what comparisons or contrasts would we 
choose? Earlier I reported the comparison of Posttest and Follow Up, but 
Donohue et al. (2002) elected to focus on two planned comparisons: Pretest 
and Posttest, and Pretest and Follow Up. Reporting and interpreting those 
provided the main basis for their discussion and conclusions.

Choosing a Design
Should we choose independent groups or a repeated measure? In Chapter 8 
we compared the two independent groups and paired designs. Very similar 
considerations apply here:

 ■ Sometimes you have no choice. For example, our critical thinking study 
required repeated testing, which means a repeated measure design.

 ■ Often you could choose either. For example, comparing Pen, Laptop, and 
Printed Notes could work with either design.

 ■ Advantages of the independent groups design are that it’s simple, each 
person is tested only once, and, assuming you test everyone separately, 
the observations are all independent, as they need to be.

 ■ The main disadvantage of independent groups is that usually there’s large 
variability from person to person, so contrasts are estimated with low preci-
sion. You may need large groups to get reasonable precision.

 ■ The main advantage of a repeated measure is that, as we discussed earlier, 
it makes contrasts within each participant and so usually gives relatively 
precise estimates. A smaller group may suffice.

To analyze the 
repeated measure 
design, make the 
assumption that 
the correlations are 
homogeneous.
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 ■ A disadvantage of a repeated measure is that each participant sees all 
levels of the IV, so needs to be tested multiple times. Therefore, carryover 
effects can be a problem and causal conclusions can’t be drawn, unless, 
as we discussed in Chapter 8, we have a suitable randomization strategy 
to counterbalance order or compare with an appropriate control group.

Most textbooks describe the two one- way designs we’ve been discussing 
under the heading “analysis of variance”, so I’d better say something about 
that next.

14.24 In a memory study I present four types of stimuli, namely letters, digits, 
symbols, and pictures, to a single group of children.

a. What’s the IV, and how many levels does it have?
b. What type of IV is it? Give two answers.
c. What’s the design?
d. In this study, what does homogeneity of variance refer to?
e. What does homogeneity of correlation refer to?

14.25 What different design could I have used for that study? Compare the 
two designs and make a recommendation.

ANALYSIS OF VARIANCE

I’ve described the analysis of both one- way designs in terms of planned and 
exploratory contrasts. This approach is the simplest to understand and pic-
ture, most strongly tied to an estimation approach, and usually most closely 
matching what researchers wish to know. It has also been long advocated 
by leading scholars, including Rosenthal and Rosnow (1985) and Steiger 
(2004). In addition, many textbooks explain and recommend planned con-
trasts—with good reason. Despite all that, the most common approach to 
analyzing and reporting our one- way designs, and more complex designs, 
takes a different approach, called analysis of variance (ANOVA). Contrasts 
have many advantages, and can address the great majority, if not all, the 
questions that ANOVA can address, so it’s hard to know why ANOVA con-
tinues to dominate. But it does. I encourage you to work with contrasts 
where you can and, as usual, to make figures with CIs and then use these 
as the basis for interpretation. But I need to say something about ANOVA 
so you can understand older journal articles, and reports from researchers 
who still use this approach.

ANOVA for the One- Way Independent 
Groups Design
ANOVA focuses on testing hypotheses. For the one- way independent groups 
design the null hypothesis is that all group population means are the same:

 H
0
: μ

A1
 = μ

A2
 = μ

A3
 = … (14.6)

where the labels A1, A2, …, refer to the different levels of the IV, which is 
also referred to as Factor A. (In the next chapter we’ll have a second IV, called, 
would you believe, Factor B.) Another way of expressing that null hypothesis 
is that the main effect of A is zero, where “main effect” refers to all the A group 
population means.

Repeated measure 
designs are usually 
more sensitive, but 
carryover effects 
require attention.

Contrasts have 
many advantages 
over ANOVA.

ANOVA uses the 
F statistic to test 
the null hypothesis 
that the population 
group means 
are equal.
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ANOVA proceeds by calculating from the data a test statistic, F, then find-
ing the corresponding p value and using that to test the null hypothesis. If F is 
sufficiently large, p will be sufficiently small, for example < .05, to reject the 
null hypothesis and state that we have a statistically significant A main effect. This 
means that somewhere among the A group means there is, most likely, some 
difference, but it tells us nothing about where that difference might be. It also 
gives us no size estimates of any difference or differences.

Finding a statistically significant main effect is often followed by post hoc 
contrasts. These are chosen after seeing the means and are, therefore, explor-
atory. They are typically calculated using some method that adjusts downward 
the p value criterion for declaring a contrast statistically significant to allow 
for the number of contrasts that could have been examined. This procedure 
thus has two levels of protection: A post hoc contrast is declared statistically 
significant only after (i) there is a statistically significant main effect, and (ii) the 
contrast itself achieves the more exacting p value criterion—perhaps .02 rather 
than .05. As a result, this overall procedure is usually conservative, and only 
contrasts that are particularly large are likely to achieve statistical significance. 
As we discussed earlier, selecting planned contrasts in advance, where possible, 
is preferable to using ANOVA.

Now consider planning the next study. A post hoc contrast that looked 
interesting in the first study can be chosen as a planned contrast for the next 
study—just as any interesting result from exploratory analysis can be stated as 
one or more planned contrasts to be investigated in future studies.

The assumptions required for ANOVA are the same as required for contrasts 
analysis. In particular, we need to assume homogeneity of variance.

The F statistic is a ratio, which weighs the variability for some effect against 
some reference variability. For independent groups, F weighs the variability 
of the group means against the variability of the data within a group, pooled 
over all groups:

 Informally, F
variability of groupmeans

variability of dat
=

aawithina group pooled over all groups,
 (14.7)

A difference, or differences, between any of the group means will increase F, 
which means the p value is lower and the main effect more likely to achieve 
statistical significance.

In a journal article, you may read something like “the main effect of type 
of feedback was statistically significant, F(2, 38) = 4.41, p = .02.” The F statistic 
requires two df values, which are reported in the parentheses. The first, 2, refers 
to the numerator in Equation 14.7 and is one less than the number of groups, so 
here there were three groups. The second, 38, refers to the denominator in the 
equation. As usual, think of the p value in terms of strength of evidence—how 
strongly we should doubt the null hypothesis.

Along with a value of F for a main effect you may see reported an effect 
size estimate. The most common ANOVA effect size measures are η2 (lower case 
Greek eta, like “eat- uh”, squared), partial η2, and ω2 (lower case Greek omega, 
squared). These are all estimates of the proportion of variance attributable 
to the main effect—the proportion of overall variance accounted for by the 
extent the group means vary. Larger values reflect larger differences among 
group means and, because they are proportions, values must lie between 0 
and 1. Values are often small, such as .04 or .09, but sometimes can be .5 or .7 

Large F means 
low p, and p < .05 
means the main 
effect is statistically 
significant.

Following a 
statistically 
significant main 
effect, post hoc 
contrasts may be 
examined. Planned 
contrasts are usually 
preferable.
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or even larger. You may read something like “F(2, 38) = 4.41, p = .02, partial 
η2 = .13.” It’s hard to build intuitions about these effect size measures, or to 
give them convincing interpretation in a particular context. The mean and CI 
for a contrast are easier to include in a figure and, almost certainly, easier to 
interpret in context.

ANOVA for the One- Way Repeated Measure Design
Most of the discussion above applies here also. For the repeated measure design, 
the null hypothesis is, for example,

 H
0
: μ

Pretest
 = μ

Posttest
 = … (14.8)

for all the levels of the IV. As always, F is a ratio of effect variability to some ref-
erence variability. Here the numerator is the variability of the means at the dif-
ferent levels of the IV (Pretest, Posttest, …). The denominator is more complex, 
but for a good reason. Because we have a repeated measure and comparisons 
are made within participants, the person- to- person variability can be removed 
from the denominator, which is thus considerably smaller. Therefore, F is larger 
and the p value smaller and the A main effect more likely to achieve statistical 
significance. That’s another way of saying the design is sensitive.

The assumptions are the same as for contrasts analysis, including homo-
geneity of variance and what I called homogeneity of correlation. The same 
ANOVA effect size measures may be reported. However, I once again recom-
mend where possible an analysis strategy based on planned contrasts, then, 
optionally, exploration of additional contrasts.

It’s take- home messages time. To write yours, bring to mind ads during 
violent television shows, challenging feedback, calorie- restricted diets, and 
training in critical thinking. If that doesn’t help much, think of comparisons 
and contrasts, planned and exploratory analysis, and independent groups and 
a repeated measure. Also think of the Open Science themes, especially pre-
registration of an analysis plan. You’ll recognize that, following Rattan et al. 
(2012), I’m trying to give you challenging things to think about here, while, 
of course, also trying to be encouraging.

Quiz 14.3

1. In the one- way repeated measure design, there is (or are) one IV /  two IVs /  two or more IVs 
and one group /  two groups /  two or more groups. Each participant sees one level /  all levels 
of an IV.

2. Compared with a one- way independent groups design, the one- way repeated measure design 
is likely to
a. require more participants.
b. give longer CIs on effects of interest.
c. have fewer carryover effects.
d. None of the above.

3. In a figure displaying means and CIs for a repeated measure design, a line joining the CIs /  
means /  differences signals the nature of the IV /  DV.

4. Analysis of the one- way repeated measure design requires assumption of homogeneity of
a. variance.
b. correlation.
c. both variance and correlation.
d. neither variance nor correlation.
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  5.     ANOVA uses the   r  /   F  /   η  2  statistic to test the null hypothesis that the population group 
means are  the same /  different . When that statistic is sufficiently large, the  p  value is 
sufficiently  large /  small , and the null hypothesis is  rejected /  not rejected .  

  6.     Following a statistically significant ANOVA main effect, post hoc _ _ _ _ _ _ _ _ _ _  may be 
examined, although _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  are usually preferable to ANOVA.     

  14.26     a.  In the Halagappa mouse study, what null hypothesis would 
ANOVA test?  

  b.     If ANOVA gave  F (5, 108) = 3.82,  p  = .003, what would you conclude? 
Interpret.  

  c.     Could you follow with post hoc contrasts? Compare with a planned 
contrasts strategy.    

  14.27     a.  In the Donohue critical thinking study, what null hypothesis would 
ANOVA test?  

  b.     If ANOVA gave large  F  and  p  < .05, what would you conclude? 
Interpret.  

  c.     What post hoc contrasts might you examine? Compare with a planned 
contrasts strategy.    

  14.28     Wait, discuss, and refl ect, then revisit your take- home messages if 
you wish.   

   Reporting Your Work  

 Study designs can become quite complex, but the basic strategy for analyzing and  reporting 
your research remains straightforward: Focus on a limited number of contrasts to estimate 
effect sizes of interest, then interpret those estimates and their CIs. Preferably the contrasts 
analyzed will have been planned and preregistered. Although your analysis may be quite 
focused, be sure to tell the full story—provide details and basic descriptive statistics for  all  
groups and conditions, even if they are not essential for your main conclusions.  

 For each contrast your report will typically include: 

 ■   whether the contrast is planned or exploratory, unless this is already clear;  
 ■   basic descriptive statistics for the groups being compared;  
 ■   the group difference, ( M  

2
  –   M  

1
 ) and its CI;  

 ■   a standardized effect size estimate ( d  
unbiased

  is best), preferably with its CI. ESCI does not 
provide these in the complex design pages, but you can enter data from a specific contrast 
into the  Data two  or  Data paired  pages to obtain standardized effect size estimates and 
CIs. In the Method section make clear how your standardized effect size was calculated 
(which denominator was used);  

 ■   a figure if possible, preferably one like ESCI produces that emphasizes the estimated 
group difference and its CI. Use lines connecting the means for repeated measures 
designs but not for independent groups designs. State in the figure caption what error 
bars represent—95% CIs;  

 ■   if desired, ANOVA results, which should include  F , its degrees of freedom, and its 
associated  p  value; and  

 ■   an interpretation of the group difference that considers not only the point estimate but 
also the CI.   

  Here is an example using data from Bushman (2005): 

 Participants who watched a TV show with neutral content 
recognized nearly half of the 12 brands advertised during 
the show ( M  = 5.76,  s  = 2.47). Fewer brands were recognized 
by participants who watched a show with violent content 
( M  = 4.36,  s  = 2.57), and even fewer by those who watched a 
show with sexual content ( M  = 3.54,  s  = 2.57). 

 Break complex 
designs into simple 
contrasts. For each 
contrast, focus on 
the group difference 
and its CI. 
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 The planned contrast between the violent and neutral 
conditions indicates violence produces a mild impairment 
of brand recognition: ( M  

Violent
  –   M  

Neutral
 ) = - 1.40, 95% CI [- 

2.17, - 0.63],  d  
unbiased

  = - 0.55, 95% CI [- 0.86, - 0.25]. The 
CI is fairly long, but consistent with at least a quarter- 
point reduction in recognition. Given the money involved in 
advertising, we judge even a small difference in recognition 
to be of practical importance. 

 The planned contrast between the sexual and neutral conditions 
revealed that sexual content produces a large impairment in 
brand recognition: ( M  

Sexual
  –   M  

Neutral
 ) = - 2.22, 95% CI [- 2.99, 

- 1.45],  d  
unbiased

  = - 0.88, 95% CI [- 1.20, - 0.56]. The CI is 
consistent with a decline in advertising effectiveness that 
is anywhere from substantial up to very large. 

 We also explored the extent that violent and sexual content 
may lead to different brand recognition: ( M  

Sexual
  –   M  

Violent
 ) = - 

0.82, 95% CI [- 1.59, - 0.05],  d  
unbiased

  = - 0.32, 95% CI [- 0.62, 
- 0.01]. The CI is long and extends up to effectively no 
difference in recognition. But this comparison is suggestive 
and may warrant additional research to investigate the extent 
that sexual content is even more distracting than violent 
content, for brand recognition.    

  Take- Home Messages 
  General Analysis Strategy  

 ■   A  comparison  is the difference between two means. A  subset contrast  is the difference between 
the means of two subsets of means. Examining comparisons and contrasts, with their CIs, is the 
basic analysis strategy. A figure helps. (From here on, “contrasts” includes comparisons.)  

 ■   Distinguish carefully between planned and exploratory analysis. Where possible, preregister a 
data analysis plan, including specification of planned contrasts.  

 ■   Choose a small number of planned contrasts that make sense and most closely match the 
research questions. The maximum number of separate questions that contrasts can answer is 
 df , which is one less than the number of levels of the IV.  

 ■   Optionally, follow planned analysis with exploration, but beware cherry  picking: Any findings 
may be lumps in the randomness and are only speculative. The larger the number of potential 
contrasts, the more tentative is any conclusion.    

  One- Way Independent Groups Design  

 ■   The  one- way independent groups design  has a single IV with more than two levels, and a 
group for each level.  

 ■   Assuming homogeneity of variance across all groups permits CIs on contrasts to be calculated 
using a pooled estimate of  σ , the assumed common population SD.    

  One- Way Repeated Measure Design  

 ■   The  one- way repeated measure design  has a single IV with more than two levels, and one 
group that experiences every level of that IV.  

 ■   Assume homogeneity of variance across all levels of the IV, and also homogeneity of 
correlation.  

 ■   Contrasts are made within participants, so the repeated measure design is likely to give more 
precise estimates than an independent groups design, although carryover effects may be a 
problem.    
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Analysis of Variance

 ■ ANOVA tests the null hypothesis that the population means for all levels of the IV are 
equal. A sufficiently large F means a small p value, rejection of the null hypothesis, and the 
conclusion that there is a statistically significant main effect of the IV.

 ■ Finding a statistically significant main effect may be followed by examination of any post hoc 
contrasts of interest.

 ■ An analysis strategy based on contrasts has strong advantages over ANOVA.

End- of- Chapter Exercises

1) To what extent does study strategy influence learning? To investigate, psychology students 
were randomly assigned to three groups and asked to learn biology facts using one of three 
different strategies: a) Self- Explain (explaining for each fact what new knowledge is gained 
and how it relates to what is already known), b) Elab Interrogation (elaborative inter-
rogation: stating for each fact why it makes sense), or c) Repetition Control (stating each 
fact over and over). After studying, students took a 25- point fill- the- blank test (O’Reilly, 
Symons, & MacLatchy- Gaudet, 1998). Table 14.4 shows the results.

a. Will we be able to draw causal comparisons from this study? Explain.

b. Does it seem reasonable to assume homogeneity of variance? What other assumptions 
would need to be considered before examining contrasts between the groups?

c. Calculate s
p
 using Equation 14.1. It may be helpful to use a spreadsheet.

d. Calculate df for comparisons in this study using Equation 14.2. Use Normal and t to 
find the corresponding t

.95
(df).

e. To what extent is self- explaining a better strategy than repetition? First, calculate the 
95% MoE for this comparison using Equation 14.4, then find the 95% CI for the dif-
ference between the self- explanation and repetition control groups. Then interpret.

f. To what extent is elaborative interrogation a better strategy than repetition? Will you 
need to re- calculate the MoE? Explain. Find the CI and interpret.

g. Check your work using ESCI. The summary data in Table 14.4 are also available on the 
book website (Study_ Strategies). In Ind groups comparison, clear data if necessary, 
select Statistics above at red 2, then use copy and paste (as usual, use Paste Special/ 
Values) for the summary data at red 3. Type in names at red 1 and red 3. Select at red 8 
to choose a comparison to analyze. Does your work agree with what you find in ESCI? 
Hopefully!

h. We could also compare elaborative interrogation with self- explaining. And we could 
compare the two strategies together against basic repetition—a subset contrast. However, 
what issue do we need to be aware of if we conduct more and more comparisons?

i. As you analyzed the first and second comparisons, did you wonder whether they had 
been planned? What would be the best analysis strategy, and when would it be decided?

Table 14.4 Summary Statistics of Test Scores (out of 25) for Students Assigned Different 
Study Strategies

Self- Explain Elab Interrogation Repetition Control

N 18 18 19
M 17.06 12.44 12.34
s 5.42 5.89 5.13



427

End-of-C
hapter Exercises

j. Bonus: Before the experiment began, students were asked to rate their previous 
knowledge about the circulatory system on a scale from 5 to 20. Summary results 
for Previous Knowledge are available in the same data file (Study_Strategies). Using 
NHST the researchers found no statistically significant differences in prior knowledge 
between the groups and thus concluded that “groups did not differ in their perceived 
prior knowledge” (p. 439, O’Reilly et al., 1998). What red flag does this raise? Use 
ESCI to analyze two comparisons of prior knowledge between the three groups. Then 
interpret: Is there good evidence that prior knowledge was very similar at the start of 
the study? How might this influence your interpretation of the test results you just 
analyzed?

2) Continuing from the previous question on study strategy, students in this study were also 
asked to rate the ease of using their assigned study strategy on a scale from 1 to 5. Table 14.5 
shows the results (also in the Study_Strategies data set).

a. Does it seem reasonable to assume homogeneity of variance? Explain. What other 
assumptions would it be good to check?

b. Calculate s
p
 using Equation 14.1.

c. Calculate df for comparisons in this study using Equation 14.2. What is the correspond-
ing t

.95
(df) value?

d. To what extent is self- explaining perceived to be an easier strategy compared with 
repetition? Calculate the 95% MoE for this comparison, then the 95% CI, and then 
interpret. You can check your work with Ind groups comparisons.

e. To what extent is elaborative interrogation perceived to be an easier strategy than 
repetition?

f. The researchers who conducted this study were surprised that elaborative interroga-
tion was not very effective for learning. Do these results shed any light on why that 
might be?

3) To what extent is a religious upbringing related to prosocial behavior in childhood? To 
investigate, a large international sample of children was asked to play a game in which they 
were given 10 stickers but then asked if they would give some of these stickers away to 
another child who had not been able to be tested that day. The number of stickers donated 
was considered a measure of altruistic sharing. In addition, the parents of each child reported 
the family’s religion. Table 14.6 shows summary data, which are also available on the book 
website (Religion_ Sharing).

Table 14.6 Summary Statistics of Sharing Stickers for Families of Different Religious 
Orientation

Non- religious Christian Muslim

N 323 280 510
M 4.09 3.33 3.20
s 2.52 2.46 2.24

Table 14.5 Summary Statistics of Perceived Difficulty of Different Study Strategies

Self- Explain Elab Interrogation Repetition Control

N 18 18 19
M 2.94 0.87 2.58
s 1.16 1.94 0.84
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a. Will we be able to draw causal comparisons from this study? Explain.

b. One of the researcher’s primary research questions is the extent to which different 
types of religious upbringing relate to differences in children’s sharing. Use Ind groups 
comparisons to compare children of Christian and Muslim parents, then interpret.

c. A second research question posed by the researchers is the extent to which non- religious 
vs. religious upbringing relates to differences in sharing. Use Ind groups contrasts to 
compare children of non- religious parents with those of religious parents (Christian 
or Muslim), then interpret.

d. The results are consistent with the idea that religious upbringing decreases sharing. 
What are some alternative explanations?

4) To what extent might choosing organic foods make us morally smug? To investigate, Eskine 
(2013) asked participants to rate images of organic food, neutral (control) food, or comfort 
food. Next, under the guise of a different study, all participants completed a moral judgment 
scale in which they read different controversial scenarios and rated how morally wrong they 
judged them to be (scale of 1– 7). Table 14.7 shows summary data, which are also available 
in the Organic_ Moral data set on the book website.

a. To what extent did organic food exposure alter moral judgments relative to the 
control group?

b. To what extent did comfort food exposure alter moral judgments relative to the 
control group?

5) After the results of Eskine (2013) were published, Moery & Calin- Jageman (2016) con-
ducted a series of close replications. We obtained original materials from Eskine, piloted 
the procedure, and preregistered our sampling and analysis plan. The OSF page osf.io/atkn7 
has all the details. The data from one of these close replications are available on the book 
website (Organic_ Moral).

a. Based on the effect observed in the original study between organic and control, what 
sample size would you plan for a close replication?

b. In this close replication, to what extent did exposure to organic food alter moral judg-
ment? How does this compare with the original finding?

c. In the replication, to what extent did exposure to comfort food alter moral judgment? 
How does this compare with the original finding?

d. Overall, how does this replication attempt relate to the original finding? Does it under-
mine the original finding, support it, or leave the results ambiguous? Explain, and 
suggest what the next steps should be.

Table 14.7 Summary Statistics of Moral Judgments (1– 7 Scale) After Different Food Exposures

Organic Control Comfort

N 21 21 21
M 5.58 5.08 4.89
s 0.59 0.62 0.57
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Answers to Quizzes

Quiz 14.1
1) one IV, the number of levels of the IV; 2) difference between, means; 3) c; 4) homogeneity, variance, SD, 

population; 5) a; 6) homogeneity of variance.

Quiz 14.2
1) contrast, means, means; 2) c; 3) (k –  1), (k –  1); 4) d; 5) exploratory, cherry picking, tentative; 6) a.

Quiz 14.3
1) one IV, one group, all levels; 2) d; 3) means, IV; 4) c; 5) F, the same, small, rejected; 6) contrasts, planned contrasts.

Answers to In- Chapter Exercises

14.1 2.54, 249, 0.55, [5.21, 6.31]. CI looks compatible with Figure 14.1.
14.2	 The	(Neutral	−	Violent)	comparison	=	1.40	[0.63,	2.17].
14.4 Pooled SD not shown by ESCI, but others match.
14.5 a. Triangle marks the difference between Neutral and Violent means and the CI indicates the precision of 

estimation of that comparison; b. p < .001 indicates very strong evidence that comparison is greater than zero, 
which matches the CI being distant from zero; c. This accords with the overlap rule indicating strong evidence 
of a difference between Neutral and Violent means because of the distinct gap between the two CIs.

14.6	 a.	The	 (Neutral	 −	 Sexual)	 comparison	 =	 2.22	 [1.45,	 2.99],	 which	 is	 a	 very	 substantial	 decrease	 in	 brand	
recognition, from 5.76 to 3.54, when a show has sexual content. p < .001 indicates very strong evidence the 
comparison is greater than zero. Again, the very small p value corresponds to the CI being distant from zero; 
b. Result is consistent with the large gap between the two separate CIs.

14.7 (M1 –  M2) = 1.40 [0.63, 2.17]. For (M2 –  M1) click M2 in the top row at red 8 and M1 in the bottom, and find 
the	same	values	but	negative:	−1.40	[−2.17,	−0.63].

14.8 a. Larger n decreases CI length for that mean, smaller increases it. CI for comparison is always a little longer 
than the longer of the two separate CIs; b. Any larger s increases CI length for all means and comparisons, 
because of pooling; smaller decreases it. (Big change to any s might mean the assumption of homogeneity is 
not justified.)

14.9 a, b. Perhaps Comfort vs. Control, which is (M1 –  M3), and Challenge vs. Control, (M2 –  M3).
14.10 a. The right radio button at red 2 is selected because full data not summary statistics were loaded, so values at 

red 5 but not red 3 can be changed; b. It’s reasonable to assume homogeneity of variance because the values 
of s for the 3 groups, at red 3, don’t differ much; c. (M1 –  M3)	=	−1.11	[−2.18,	−0.05],	quite	a	large	difference	
on the 7- point rating scale, but the CI is so long that there’s only a little evidence the difference is non- zero. 
(M2 –  M3)	=	0.82	[−0.26,	1.90],	a	moderate	difference	in	rating	but	the	CI	is	so	long	there’s	no	evidence	the	
difference is non- zero.

14.12 Click one or more checkboxes in the green row at red 8 to see selected means shown green and their mean 
shown as a green square at right. Same for blue. No mean can be in both subsets. The subset contrast is the 
difference between the green and blue squares, and is shown as a triangle on the difference axis, with its CI.

14.13 a. Middle- aged vs. old: (M1, M2, M3), (M4, M5, M6); b. Diet vs. free for Alzheimer- prone mice: (M3, M6), (M2, M5)
14.14 Yes, largest and smallest s (near red 3) don’t differ by more than a factor of 2.
14.15	 3.00	[−1.22,	7.23],	small	mean,	only	3	percentage	points,	long	CI,	no	evidence	of	any	age	difference.
14.16 8.85 [3.68, 14.02], considerable effect, very strong evidence ADiet showed greater learning than AFree.
14.17	 −3.00	[−7.23,	1.22],	same	but	sign	changed.
14.18 a. 9.30 [1.98, 16.62]. In middle- aged Alzheimer mice, restricted diet considerably improves performance, 

although CI is long, around 2 to 17; b. Comparison of ADiet17 and AFree17 is 8.40 [1.08, 15.72]. Same result 
and interpretation for old as for middle- aged.

 



430

Ex
te

nd
ed

 D
es

ig
ns

: O
ne

 In
de

pe
nd

en
t V

ar
ia

bl
e

14.19 a, b. Same as 14.16.
14.20 5.18 for the contrast, but 7.32 for each comparison; MoE the same for each comparison because both based 

on pooled SD and n the same for all groups. Contrast MoE shorter because based on two groups in each subset 
and therefore larger total n.

14.21 3 groups so df = 2, so only 2 separate questions can be answered, and 3 comparisons must have some 
redundancy—not all separate.

14.22	 a.	Difference	between	normal	and	Alzheimer	mice	with	no	diet	restriction,	averaged	over	ages;	b.	4.55	[−0.62,	
9.72], merely hinting that Alzheimer mice may show a deficit, but the CI is quite long so no clear conclusion.

14.23 a. ADiet10, AFree17, difference = 11.30 [3.98, 18.62], a large difference. CI is quite long but shows strong 
evidence the comparison is non- zero; b. If planned we could be reasonably confident in that conclusion, 
although it doesn’t seem to correspond to a likely research question. If chosen after seeing the data it’s 
exploratory and we should probably disregard it.

14.24 a, b. The IV is stimulus type, with 4 levels, and is a within- group or repeated measure IV; c. The design is one- 
way repeated measure; d. Homogeneity of variance refers to equality of population variance at every level of 
the IV; e. Homogeneity of correlation refers to equality of population correlation between all pairs of levels of 
the IV.

14.25 One- way independent groups, which is probably less sensitive and would require many more children, 
although each would need to be tested on only one stimulus type. For the repeated measure design, carryover 
effects, for example practice or fatigue, may be large, so it would be important to counterbalance order of 
presentation, and also ensure that the testing sessions were not too long for the children. On balance, repeated 
measure is probably better.

14.26 a. That population means for all six groups are the same; b. Reject that null hypothesis and conclude there 
was very strong evidence of some difference or differences among the group means; c. Yes, but using post hoc 
contrasts is a less sensitive strategy. Any contrast would have to be larger to be convincing than if that same 
contrast had been stated in advance as a planned contrast. Using planned contrasts is a better strategy, where 
possible.

14.27 a. That population means at Pretest, Posttest, and Follow Up are all the same; b. Reject that null hypothesis and 
conclude there was a small amount of evidence of some difference or differences among those means; c. You 
might choose to examine the post hoc subset contrast—chosen after seeing the data—of Pretest vs. (Mean 
of Posttest and Follow Up). Using some post hoc technique, that contrast would have to be larger to achieve 
statistical significance than if it had been specified in advance as a planned contrast. As usual, a planned 
contrast approach is probably better than ANOVA.



In this chapter we’ll add a second independent variable. We could, for example, 
study pen and laptop in different disciplines, by investigating, say, the extent that 
note- taking in engineering works differently from note- taking in philosophy. 
Discipline would be the second IV and we would have a two- way design. We 
could use four independent groups, one for each combination of note taking 
method (Pen or Laptop) with discipline (Engineering or Philosophy). That 
would be a two- way independent groups design.

A two- way design is efficient, because it allows us to ask more questions in 
a single experiment—questions about each of the IVs. But there’s more: We can 
also ask about a possible interaction between the two IVs. If the effect of Pen vs. 
Laptop is different in different disciplines—perhaps pen is better in philosophy but 
laptop in engineering—then we say the two IVs interact. People are so complex 
and endlessly fascinating it’s not surprising that researchers who study people very 
often encounter interacting variables. For example, if you rate different styles of 
music as more enjoyable depending on whether you are at a party or in church, 
then, for you, music style interacts with the setting. If I ask “What music do you 
like?” you can’t give a full answer without mentioning parties and church, and 
perhaps other settings as well. There are two IVs—type of music, and setting—
and they interact. Two- way designs are an important addition to the researcher’s 
toolkit. They are used very often and the main focus is often the interaction.

Beyond independent groups, we can also consider repeated measure IVs. 
As usual, when they are appropriate they usually give sensitive designs and 
relatively precise estimates. We could also add a third IV, or a fourth or more, 
and get truly complicated designs capable of asking lots of questions. But simple 
is often good, and simpler designs can often tell a clearer and more convincing 
story. Our main focus will be on 2 × 2 examples, meaning there are two IVs each 
with two levels. That’s often a good size and complexity of design to aim for.

Here’s the agenda:

 ■ Adding a second IV to make the simplest factorial design: the two- way 
independent groups design

 ■ Main effects and interactions, with their CIs
 ■ Two- way factorial designs with one or two repeated measure IVs
 ■ IVs with more than two levels
 ■ A general strategy for analyzing one- way designs and two- way factorial 

designs

THE TWO- WAY INDEPENDENT GROUPS DESIGN

The two- way independent groups design is our first with more than a single IV. We’ll 
consider the simplest case, which has two between- groups IVs, each having two 

15
Extended Designs: Two  
Independent Variables

The two- way 
independent groups 
design has two IVs, 
and a group for 
every combination 
of levels of the 
two IVs.
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levels. The Pen– Laptop study compared two groups of students, one using Pen 
and the other Laptop. To add a second IV, with Engineering and Philosophy as 
its two levels, we would need four independent groups: Pen & Engineering, Pen 
& Philosophy, Laptop & Engineering, and Laptop & Philosophy. Any student 
in our study fits with just one of those four combinations. To make the groups 
we would obtain as close as possible to a random sample of engineering majors 
and randomly assign half of them to the Pen & Engineering group and the 
other half to the Laptop & Engineering group. We’d do the same for a sample 
of philosophy majors to make the other two groups.

The two- way independent groups design has two IVs. Every combination of the levels of the 
two IVs is experienced by an independent group of participants.

Now a little more jargon. We refer to any design that includes all com-
binations of the levels of two or more IVs as a factorial design. All the designs 
we’ll consider in this chapter are factorial designs. Our first example has two 
IVs each with two levels, and is therefore a 2 × 2 factorial design. The original 
Pen–Laptop study had one IV, referred to as “A”, with two levels: A1 (Pen) 
and A2 (Laptop). We now have a second IV, which I’ll label “B”, also with 
two levels: B1 (Engineering) and B2 (Philosophy). One of our four groups 
combines Pen (A1) and Engineering (B1), so is the A1B1 group, and so on 
for the other groups.

I’d like to know the findings of this example factorial design, but unfor-
tunately it’s fictional. So I’ll choose a different 2 × 2 factorial design example, 
which addresses another interesting question by bringing together two major 
research topics and investigating the extent that sleep deprivation might influ-
ence false memory.

AN EXAMPLE: SLEEP DEPRIVATION AND 
FALSE MEMORY

Suppose you witness a robbery in which a thief steals a purse and puts it in his 
pants pocket. Later you read a description of the event that includes a statement 
that he put it in his jacket pocket. That misinformation may prompt you to be 
convinced that you originally saw the thief put it in his jacket rather than his 
pants. Even the wording of a later question can distort memory for the original 
event. Such distorted or false memory is a troubling phenomenon with major 
consequences for the value of eyewitness testimony in court, the investigation 
of possible child abuse, and many other aspects of life. For example, eyewitness 
misidentifications are thought to be the leading cause of wrongful criminal 
convictions in the United States. Search for “false memory” or “false memory 
syndrome” for description and examples.

Frenda et al. (2014) used four groups of students and a 2 × 2 two- way 
independent groups design to investigate how sleep deprivation might influ-
ence false memory. Students came to the lab in the evening and either slept 
normally or were kept awake all night. They saw pictures that described a 
robbery—the critical event—either in the evening, or in the morning. Then 
in the morning all students read a description that included misinformation. 
A little later they completed several memory tasks that referred to the original 
event. A false memory score assessed the extent to which the misinformation 
distorted a participant’s memory for the event. The researchers designed the 
study to compare the extent of false memory when a person lacks sleep when 

A factorial design 
includes all 
combinations of the 
levels of all IVs.
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they witness a critical event (in the morning, after no sleep), compared with 
lacking sleep when they recall the event (witnessed the previous evening).

Table 15.1 describes the variables and groups. Seeing pictures that described 
the critical event in the evening or the morning was independent variable “A” 
with levels A1 (Evening) and A2 (Morning). Sleeping normally or not sleeping 
at all was independent variable “B” with levels B1 (Sleep) and B2 (Nosleep). 
Students were assigned randomly to the four groups described in the table. For 
example, the Evening Sleep group (A1B1) saw pictures of the critical event 
in the evening, then had normal sleep, whereas the Morning Nosleep group 
(A2B2) had no sleep overnight, then saw the pictures of the critical event only 
in the morning. Note that “Morning Sleep”, for example, doesn’t mean that 
the students slept in the morning, but that they slept overnight and then in the 
morning saw pictures of the critical event.

Our main strategy for analyzing factorial designs is the same as we used with 
the simpler designs in the previous chapter: Choose contrasts that correspond 
best to the research questions. Here we might consider this line of thinking:

1. Seeing the event in the evening meant it had to be remembered all night, so 
memory for the event might be weaker in the morning and, therefore, more 
susceptible to the misinformation. If so, Evening would show more false 
memory than Morning. Overall, what’s the effect of evening or morning 
presentation of the event? Compare the mean of the two Evening groups 
with the mean of the two Morning groups.

That question asks about the overall effect of Evening vs. Morning, after 
averaging over Sleep/ Nosleep, the other IV. That overall effect is the main effect 
of the Evening/ Morning IV, which we calculate as:

(mean of the two Morning group means –  mean of the two Evening group means)

I can also write that as:

(overall Morning mean –  overall Evening mean)

More briefly, I’ll refer to that Evening/ Morning main effect as the (Morning –  
Evening) difference, but remember that it’s the means we are subtracting.

2. Sleep deprivation degrades cognitive processing and therefore might enhance 
false memory. Overall, what’s the effect of sleeping or not? Compare the 
mean of the two Nosleep groups with the mean of the two Sleep groups. 
This is (Nosleep –  Sleep), the main effect of the Sleep/ Nosleep IV.

3. Perhaps sleep deprivation might be more disruptive for Evening, where 
the event must be remembered overnight, than for Morning? Consider the 
difference that sleeping or not might have on the Evening groups, and com-
pare with the difference that sleeping or not might have on the Morning 
groups. In other words, examine the difference of these differences.

Table 15.1 The 
Four Independent 
Groups in Frenda 
et al. (2014)

Between- groups independent variable (A)

Evening (A1) Morning (A2)

Between- groups  
independent variable (B)

Sleep (B1) Evening Sleep
Group A1B1

Morning Sleep
Group A2B1

Nosleep (B2) Evening Nosleep
Group A1B2

Morning Nosleep
Group A2B2

The main effect of 
an IV is its overall 
effect, based on 
means at each of its 
levels after averaging 
over all other IVs.
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This third question asks about the interaction of the two IVs: To what extent 
is the effect of the Sleep/ Nosleep IV different at the two levels of the Evening/ 
Morning IV? The difference of the differences is how we quantify that interac-
tion in a 2 × 2 design.

The interaction of two IVs is the extent to which the effect of one IV is different at different 
levels of the other IV.

In the 2 × 2 design we’re discussing, the interaction is a 2 × 2 interaction, 
because it refers to a 2 × 2 table of means, as in Table 15.1. Later we’ll see 3 × 
2 and other more complex interactions, which refer to larger tables of means.

It’s easier to think about particular contrasts while seeing a set of means, 
but I deliberately suggested those questions before referring to the results, to 
emphasize that we should consider our questions and planned contrasts in 
advance. Now for the data.

Main Effects
Figure 15.1 shows the mean false memory score and 95% CI, for each group. 
High scores indicate more false memories, with a maximum of 6. The groups 
and means are labeled as in Table 15.1. The Sleep/ Nosleep difference looks to 
be different—in fact going in the opposite direction—for Evening and Morning, 
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Evening                             MorningX
Sleep   Nosleep                  Sleep   NosleepX
A1B1    A1B2                     A2B1      A2B2X

Figure 15.1. Mean false memory scores (maximum 6) and 95% CIs for four independent groups, 
from Frenda et al. (2014). The study had a factorial design with independent variable “A” having 
levels A1 (Evening) and A2 (Morning), and independent variable “B” having levels B1 (Sleep) and B2 
(Nosleep). Labels are as in Table 15.1. The data are courtesy Steven Frenda.

In a 2 × 2 design, 
the difference of the 
differences is the 2 × 
2 interaction.



435

A
n Exam

ple: Sleep D
eprivation and False M

em
ory

which suggests an interaction. We’ll come to that in a moment, but let’s start 
by considering the first question, which asked about the main effect of evening 
or morning presentation of the critical event. We need to compare the mean 
of the two Evening groups with the mean of the two Morning groups. For the 
Evening groups, see the two means on the left in Figure 15.1. To my eyeball, 
the mean of those two means is about 1.3, so this is my eyeballed estimate of 
the overall Evening mean. The mean of the two means on the right looks to 
me about 1.8, which is my eyeballed estimate of the overall Morning mean. 
So the (Morning –  Evening) difference is about 1.8 − 1.3 = 0.5 and this is my 
rough estimate of the main effect of the A independent variable.

I should also note that the main effect of our IV has one degree of freedom. 
In general, the main effect of an IV with k levels has

 df = (k –  1) (15.1)

In our example, both IVs have two levels, so k = 2 and df = 1 for each main effect.
Figure 15.2 shows how the Ind groups 2 × 2 page in ESCI displays the 

main effect of Evening/ Morning. It displays the same four means and CIs, and 
labels, as in Figure 15.1. To see the main effect display, at red 8 in the Main 
effects panel (upper middle in the figure) I checked A: Evening/ Morning. 
That automatically selected at red 7 the two A2 (Morning) means as the green 
subset and the two A1 (Evening) means as the blue subset. As in the Ind 
groups contrasts page, the green and blue squares mark the means of those 
two subsets. The main effect is the difference between those means, and is 
marked by the triangle on the difference axis. The values are shown at red 10 
at the top: The main effect is 1.80 − 1.32 = 0.48 [−0.07, 1.03]. My eyeballed 
value of 0.5 from Figure 15.1 was close. The main effect of Evening/ Morning 
is a difference of around 0.5 out of 6 on the false memory scale, but the long 
CI extends from around 0 to 1, so there’s considerable uncertainty in the esti-
mate and little or no evidence of a positive difference. If anything, Morning 
shows more false memory than Evening, contrary to my initial speculation 
when stating Question 1.

 15.1 Open the Ind groups 2 × 2 page of ESCI intro  chapters 10– 16. You 
should see summary statistics for the Frenda data, as in Figure 15.3. If 
not, clear any data, make sure the upper radio button at red 2 is selected, 
then at red 1 and red 3 type in the summary statistics and labels from 
Figure 15.3. You need enter only n, M, and s for each group. Compare 
your displayed means and CIs with Figures 15.1 and 15.2. Note how the 
means entered near red 3 correspond with the means displayed in the 
figure.

15.2 Click at red 8 to show the Evening/ Morning main effect and compare with 
Figure 15.2. Note the p value near red 10, top right, and compare with the 
CI on the main effect.

15.3 Consider the Sleep/ Nosleep main effect.

a. Which group means are combined into subsets?
b. Eyeball the overall mean for Sleep, and the same for Nosleep. What is 

your eyeball estimate of the Sleep/ Nosleep main effect?
c. Click at red 8 to display that main effect and check your eyeballing.

15.4 Use that main effect and CI to answer our second research question, which 
asked about the effect of sleep deprivation.

The main effect of 
an IV with k levels 
has df = (k –  1).
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Figure 15.2. Means and 95% CIs as in Figure 15.1, with display of the main effect of A, the Evening/ Morning IV, as selected by 
the checkbox at red 8. The squares mark the means for Evening (blue square) and Morning (green square), and the (Morning –  
Evening) difference is marked by the triangle on the difference axis. The value of the difference, its CI, and the p value are 
shown near red 10 in the upper panel. From Ind groups 2 × 2.

The Interaction
Our third research question asked about the interaction—the difference of the 
differences. We wish to compare the effect of sleep disruption for Evening and 
Morning. Let’s eyeball, step by step:

1. Sleep disruption for Morning is the (Nosleep –  Sleep) difference for the 
two Morning groups, or the (A2B2 –  A2B1) difference between the two 
group means on the right in Figure 15.1. That looks to be about 0.8.

2. Sleep disruption for Evening is the (Nosleep –  Sleep) difference for the two 
Evening groups, or (A1B2 –  A1B1), the difference between the two means 
on the left in Figure 15.1. That looks like about −0.4.

3. The 2 × 2 interaction is the difference between those two differences, which 
is (Morning difference –  Evening difference), or about 0.8 –  (−0.4) = 1.2.
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You may have chosen to carry out the subtractions the other way round, 
in which case you should have found the same answer but with a minus sign. 
Either way is fine, but be consistent all through and take care to interpret 
correctly at the end.

Now click at red 9 to see how ESCI displays the interaction, as the difference 
of the two differences. Figure 15.4 shows what I saw. The two differences we are 
interested in are marked by the purple vertical lines ending in diamonds. Think 
of the diamonds as arrow heads indicating the sign of the difference: The differ-
ence on the right, for Morning, is positive (0.84) and the arrow points up; the 
difference on the left is negative (−0.36) and the arrow points down. The slanted 
dotted lines highlight how the two differences compare. The horizontal dotted 
lines show that the triangle marks the difference of the differences, with its CI, 
on the difference axis. As usual, all the values are shown near red 10 at the top.

15.5 Click at red 9 to see the interaction. Compare with Figure 15.4.

a. Identify the values of the two differences reported near red 10, and 
explain how these differences are calculated from the group means.

b. Explain how the two differences are displayed in the figure, and together 
give the value marked by the triangle on the difference axis.

c. Compare with our three steps of eyeballing.

Figure 15.3. Summary statistics and labels for the Frenda data. From Ind groups 2 × 2.
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The difference of the differences, which is our measure of the 2 × 2 inter-
action, is reported near red 10 to be 1.20 [0.10, 2.30]. It combines the two 
Sleep/ Nosleep differences that, as we noted earlier, go in opposite directions 
for Evening and Morning. The CI is long, but the effect size, 1.2 units out of 
6, is quite large, and there’s weak evidence that the true value is greater than 
zero. This suggests that sleep deprivation seemed to give increased false mem-
ory when the critical event was first presented in the morning, compared with 
the evening. In other words, sleep deprivation was, perhaps, relatively more 
disrupting for the initial entering of the critical event into memory (Morning 
condition) than when memory for the event had to be maintained overnight 
(Evening condition) before being retrieved in the morning. Interpreting that 
interaction was the main conclusion of the study, and the main contribution 
to understanding the nature of false memory and how it occurs: More false 

Figure 15.4. Means and 95% CIs as in Figure 15.2. The (Nosleep –  Sleep) differences between the right two means and the 
left two means are marked by the purple lines ending in diamonds, and the values of the differences are reported near red 
10 at the top. The slanted dotted lines make a comparison of the two differences. The difference between the differences is 
marked by the triangle on the difference axis, with its CI.



439

A
n Exam

ple: Sleep D
eprivation and False M

em
ory

memory is likely when a person lacks sleep when they witness the critical event, 
compared with lacking sleep while recalling the event and being questioned 
about it.

It can be tricky to express an interaction in words and work out what it’s 
telling us. The key is to refer back to the means in the figure, and focus on the 
differences, such as those indicated by the purple vertical lines with diamonds 
in Figure 15.4. Describe those differences in your own words, eyeball and note 
down their values, then do the same for the difference of differences, which is 
the interaction we want to understand.

Finally, I should note that the 2 × 2 interaction in a 2 × 2 design has one 
degree of freedom.

A Second Approach to the Interaction
Question 3 asked how (Nosleep –  Sleep) might differ at Morning and Evening. 
Instead, we could ask how (Morning –  Evening) might be different in the Sleep 
and Nosleep conditions. Fortunately, that turns out to be the same—there’s 
only a single interaction in a 2 × 2 design, but there are two different ways to 
look at it.

15.6 a.  Identify on your screen, or in Figure 15.4, the two relevant means, and 
eyeball the (Morning –  Evening) difference for the Nosleep condition.

b. Do the same for the Sleep condition.
c. Find the difference of your two eyeballed differences.
d. Explain what that tells us, and compare with the interaction we dis-

cussed just above.

I suspect you found that the two routes led to the same result. There are 
four means and just one 2 × 2 interaction, with df = 1, but we can get to the 
interaction in two ways, depending on which pairs of means we consider 
first. The two routes to the interaction suggest alternative descriptions. Above 
I concluded that sleep deprivation (i.e., Sleep/ Nosleep) seems to give increased 
false memory when the critical event is first presented in the morning, com-
pared with the Evening condition. Taking the second approach, I’d say that 
later presentation of the critical event (i.e. Morning rather than Evening) gives 
increased false memory to a greater extent when sleep deprived than after 
normal sleep. You could try making sense of that last statement by matching 
it up with your eyeballed estimates of the (Morning –  Evening) difference in 
the Sleep and Nosleep conditions.

Quiz 15.1

1. The 2 × 2 two- way independent groups design has two DVs /  IVs, each of which has 1 /  2 /  4 
levels, and the design has a total of 1 /  2 /  4 groups.

2. A factorial design includes all combinations of the means /  levels /  differences of all DVs /  IVs.
3. The main effect of independent variable A is

a. its effect at the main level of independent variable B.
b. the difference between the effect of A at the two levels of B.
c. the mean of its main level.
d. the overall effect of A, averaged over the two levels of B.
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4. In a 2 × 2 independent groups design, independent variable A has df = _ _ _ _ _ , independent 
variable B has df = _ _ _ _ _ , and the interaction has df = _ _ _ _ _ .

5. In a 2 × 2 independent groups design, the interaction is
a. the difference between the two main effects.
b. the extent that the effect of independent variable A is different at the two levels of 

independent variable B.
c. the average of the A difference and the B difference.
d. a nuisance, usually of no interest to the researcher.

6. Our general approach to analyzing the data from a study with an extended design is to 
choose _ _ _ _ _ _ _ _ _ _  that correspond with the research questions, and for each one to 
calculate the _ _ _ _ _ _ _ _ _ _  and its _ _ _ _ _ _ _ _ _ _  as the basis for interpretation.

ASSUMPTIONS FOR THE TWO- WAY INDEPENDENT 
GROUPS DESIGN

Throughout the book, a basic assumption of our statistical model is usually that

 ■ the data for each group are a random sample from a population that’s 
normally distributed.

In the previous chapter, for the one- way independent groups design, our model 
also assumed that

 ■ the samples are independent, and
 ■ variance is homogeneous across all groups. In other words, the population 

underlying each sample has the same standard deviation, σ.

Analysis of the two- way independent groups design requires all those 
assumptions, and the Ind groups 2 × 2 page makes them. The assumption of 
homogeneity of variance across all groups is often, but not always, reasonable. 
Examining the standard deviations of the individual groups provides some 
guidance. As a rough rule, we would like the largest SD to be not more than 
about twice the smallest SD if we are to rely on the assumption. For the Frenda 
example, the standard deviations for the four groups are shown as the values of 
s at red 3 in Figure 15.3. The four values are fairly similar, and so it’s reasonable 
to assume homogeneity of variance.

PATTERNS OF MEANS FOR A 2 × 2 
FACTORIAL DESIGN

Figures showing means are often revealing, and are especially useful for designs 
with more than one IV, and for understanding interactions. I’ll take a simple 
case, and discuss how we can eyeball the main effects and interaction from a 
figure of means for a 2 × 2 factorial design.

I’ll discuss a fictitious study of enjoyment ratings for different types of 
music in different settings. Suppose we have four independent groups who 
each rate their enjoyment of a single type of music (Rock or Classical) in a sin-
gle setting (Party or Church). Figure 15.5 shows a possible pattern of the four 
group mean enjoyment ratings. The two Party means are offset horizontally 
by a small amount, so the two CIs can be clearly seen; similarly for the two 
Church means. That’s good practice when designing figures, to avoid any risk 

If the largest and 
smallest SDs 
differ by no more 
than a factor of 
about two, it’s 
probably reasonable 
to assume 
homogeneity of 
variance and use s

p
.

Where necessary, 
slightly offset means 
in a figure so that all 
CIs are easily visible, 
as in Figure 15.5.
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Figure 15.5. Means and 95% CIs for fictitious results of a 2 × 2 two- way independent groups study. In 
Panel B, + marks the means of Party and Church and × marks the means of Rock and Classical.

of CIs overlaying one another. Compare the display of means in Panel A with 
the way ESCI displays four group means, as in Figures 15.2 and 15.4. The only 
difference is that ESCI displaces the means a little further horizontally, so there’s 
more space for clear labeling.

Main Effects
First, focus on Panel A and consider main effects. For the Party/ Church main 
effect, we need the Party mean, which is simply the mean of the two means 
on the left. I eyeball those means to be about 3 (for Party, Classical) and 9.5 
(Party, Rock), so the Party mean is about 6. I eyeball the Church mean also to 
be about 6. The Party/ Church main effect is (Church –  Party), which on my 
eyeballing is about 0.

15.7 Eyeball from Figure 15.5A the Rock and Classical means, and estimate the 
Rock/ Classical main effect.

In Panel B, the two red Rock means are joined by a dotted line, as are the 
two blue Classical means. I include those lines to help our eyeballing, but they 
are different from the lines joining means in the previous chapter, where solid 
lines indicated a repeated measure. Here the lines are dotted, and all groups 
are independent, so there’s no repeated measure. In Panel B, the Party and 
Church means are marked with a + symbol, and the Rock and Classical means 
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with a × symbol. Check that these match your eyeballing. Comparing the two +  
symbols gives the Party/ Church main effect, and the two × symbols the Rock/ 
Classical main effect.

The means in Panel A thus give us all we need to eyeball the two main 
effects. If it helps, first imagine Panel B and the + and × symbols, as an 
intermediate step.

The Interaction
For the 2 × 2 interaction of the Party/ Church and Rock/ Classical IVs, we need 
the difference of the differences. In Panel A, compare Rock and Classical for the 
two settings. For Party, the Rock mean is much larger than the Classical mean, 
but for Church it’s somewhat lower, so there’s a considerable difference between 
those two differences, which means a large interaction. Not surprisingly! The 
considerable difference of the differences corresponds to the crossing of the 
dotted lines, which is pictured most clearly in Panel C.

To estimate a value for the interaction, we can eyeball (Classical –  Rock) at 
Church as around 7 − 5 = 2, and that difference at Party as around 3 − 9 = −6, 
so the interaction is around 2 –  (−6) = 8, which is a very large distance on the 
enjoyment rating scale.

Figure 15.6 displays the same means again in Panel A, and two further 
possible patterns of means in Panels B and C.
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Figure 15.6. Patterns of means for the fictitious example shown in Figure 15.5. Panel A is the same as 
Panel C of Figure 15.5. Panels B and C show further possible patterns. Panel D is a different representation 
of the means in Panel A.
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15.8 In Panel B of Figure 15.6, eyeball and describe the two main effects. Also 
describe the interaction.

15.9 Do the same for Panel C.
15.10 a.  In Panel D, note the different labels. Compare the four means with 

those in Panel A.
b. Describe the two main effects and compare with our earlier discussion 

of Figure 15.5.
c. Describe the interaction, and compare with our discussion of the 

interaction in that figure.

I said that the considerable 2 × 2 interaction in Panel C of Figure 15.5 cor-
responds to the crossing of the dotted lines. In Figure 15.6, Panel B illustrates 
a smaller but still sizeable interaction, and the dotted lines don’t cross but they 
have very different slopes. In Panel C, by contrast, there’s little or no interaction 
and the lines are close to parallel. The general rule is that lines close to parallel 
signal little or no interaction, and lines far from parallel signal an interaction, 
whether or not the lines cross.

In Panel D, the IVs have been swapped, with Rock/ Classical on the hori-
zontal axis, rather than Party/ Church. Panels A and D picture the same means, 
just arranged differently. The simple choice of which IV to mark on the hori-
zontal axis can give a different picture, so might give a reader quite a different 
impression of the results. Because the four means are the same, if you eyeball 
the main effects and interaction in Panel D, you should reach the same con-
clusions as for Panel A.

As ever, think carefully about what any figure shows, and bring to mind 
other ways the same data could be represented. Transforming in your mind’s 
eye between Panel A and Panel D is a bit tricky, but it’s important when you see 
a figure like Panel A to remember that there is an alternative. A bit of practice 
and you’ll be able to see Panel A and sketch what Panel D would look like, 
even if creating it in your mind’s eye is a challenge.

15.11 a. Sketch the alternative version of Panel B of Figure 15.6.
b. Describe the main effects and interaction. Compare with your answer 

to Exercise 15.8.

In Figures 15.5 and 15.6, the CIs are in gray because here we’re focusing 
on patterns of means. In practice, of course, we need to consider CIs as well 
when we discuss or interpret any mean, main effect, or interaction.

In those two figures, the dotted lines help us see the 2 × 2 interaction, and 
their comparative slopes suggest whether the interaction is around zero, small, 
or large. Look back to Figure 15.1 and imagine a dotted line joining the Evening 
and Morning means for Sleep, and another joining Evening and Morning for 
Nosleep. Your mind’s eye should be seeing something like Figure 15.7. The very 
different slopes indicate a large interaction, agreeing with Figure 15.4, which 
displayed the interaction as the difference of differences.

Moderation
Here’s one more way to think about an interaction. Panel A of Figure 15.6 
shows the main effect of the Rock/ Classical IV, which is the overall effect of 
type of music on average enjoyment ratings. The second IV is Party/ Church, 
which we can think of as altering or moderating the effect of Rock/ Classical on 

Lines with quite 
different slopes 
indicate an 
interaction, as in 
Panels A, B, and D of 
Figure 15.6.
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enjoyment. Yes, setting alters, or moderates the effect that type of music has on 
enjoyment. Whatever wording we use, it’s the interaction that tells us about 
such moderation.

A moderator is simply a variable that alters the effect of another variable.

A moderating variable, or moderator, is an IV that alters the effect of another IV on the DV.

That’s a bit tricky, so it’s probably worth reading all that again, while refer-
ring back to the figure and the earlier wording we used when discussing the 
interaction of setting and type of music.

It’s vital to note that I’m not merely saying that the second IV also has 
an effect on the DV. Moderation refers to the influence the second IV has on 
the effect of the first IV on the DV. That’s the interaction. If there’s no interaction, 
there’s no moderation.

Here’s another example of a moderator: Greater affluence is generally 
associated with people eating more meat. Level of affluence is our first IV and 
the DV is amount of meat consumed. However, for vegetarians that relation 
does not hold at all. Of course! The moderator is a dichotomous IV, Vegetarian/ 
Nonvegetarian, and it’s a very strong moderator of the effect of affluence on the 
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Figure 15.7. Same as Figure 15.1, but with dotted lines joining the Evening and Morning means for 
the Sleep condition, and the same for Nosleep. The very different slopes of the lines indicate a large 
interaction.

Moderation refers 
to the influence the 
second IV has on the 
effect of the first IV 
on the DV.
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amount of meat eaten. The two IVs interact strongly: For non- vegetarians, there 
may be a large effect of affluence on meat consumption, but, for vegetarians, 
there’s no effect at all—meat consumption is zero, no matter how great the 
affluence. Strong interaction goes together with strong moderation.

Which variable is the moderator? Any time there’s an interaction, we can 
regard either variable as the moderator—just as we can think about the interac-
tion in either of two different ways. We could choose setting (Party/ Church) as 
the first IV and note its overall effect on enjoyment. Then type of music (Rock/ 
Classical), strongly moderates that effect of setting on enjoyment. Whenever we 
have an interaction, we can say that either variable moderates the effect of the 
other. Choose whichever way to state the moderation—and whichever way to 
look at the interaction—makes most sense in the particular case.

In Chapter 9 we discussed moderators in the context of meta- analysis. 
There is a parallel with moderators as we’re discussing here, but if this is con-
fusing, simply skip this paragraph. In meta- analysis, a moderator is a variable 
that accounts for heterogeneity, meaning effect size differences over studies. 
So a moderator is a variable that may account for differences in the effect of 
primary interest, which is the effect size displayed in the forest plot. Therefore, 
with meta- analysis, as in this chapter, a moderator is a variable associated with 
changes in some effect that is of primary research interest.

Can we say that a moderator causes the change in the effect of the first IV? 
As usual, that depends on our design. If we have random assignment of par-
ticipants to groups or conditions, most likely we can draw a causal conclusion. 
If not, we can’t. With moderators in meta- analysis no random assignment is 
possible, so we are noting an association and can’t justify any causal conclusion. 
Similarly, observing a 2 × 2 interaction in a study that lacks random assignment 
means that we have moderation but no grounds for a causal conclusion. I said 
above that moderation refers to the second IV altering the effect of the first IV. 
That sounds like the moderator causing the change in the effect. Being more 
careful, I should have said that moderation refers to an association between 
the moderator and a difference in the primary effect. However, that’s probably 
harder to understand when the idea is new.

Why did I include this section on moderators? First, because moderation 
and interaction are often talked about interchangeably, so you need to know 
that the two are closely related. Second, a common research strategy is to study 
some interesting main effect, for example that affluence is associated with eating 
more meat. Then the next step is to investigate that relationship further, espe-
cially by considering how other variables may change it. To what extent does 
that primary relationship of affluence and meat consumption perhaps differ 
in different cultures? In past centuries rather than now? In rural communities 
rather than urban? Among vegetarians! Those are all questions about possible 
moderators of the primary effect. After investigating interesting effects using 
the one- IV techniques of Chapters 7, 8, and 14, you can consider possible 
moderators of those effects, which means you need the two- IV techniques of 
this chapter and you need to consider interactions.

Whenever you read about some interesting effect and are wondering 
about what study comes next, your first thought should be a replication. After 
that, it’s often most useful to consider studies that examine possible modera-
tors of the effect. To what extent is the effect moderated by gender—perhaps 
it occurs more strongly with women than men? By level of stress—perhaps 
much less strong when a person is highly stressed? By age—perhaps the 

Given an interaction 
of two IVs, we can 
say that either IV 
moderates the effect 
of the other on 
the DV.

Moderation doesn’t 
necessarily imply 
causality.

After studying 
some effect, it 
can be a good 
research strategy to 
investigate possible 
moderators of that 
effect.
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effect is very different in children? What about underwater, or while riding 
a bicycle? Brainstorming about possible moderators can be great fun, as well 
as scientifically productive.

15.12 a. Consider the pen– laptop study. What is the primary effect?

b. Suggest a possible moderator of that effect and briefly say why.
15.13 a.  Consider the Thomason studies of critical thinking. What is the primary 

effect?
b. Suggest a possible moderator of that effect and briefly say why.

CHOOSING CONTRASTS

In Chapter 14, I discussed the following data analysis strategy:

1. Planned analysis. Specify a few chosen effects in advance. Analyze these 
and present the results with confidence.

2. Exploratory analysis. Following planned analysis, you may, if you wish, 
examine any effect; however, any conclusion is merely speculative.

3. When reporting research, distinguish clearly between the results of planned 
analysis and speculations based on exploration.

I recommend exactly the same strategy for the designs we discuss in this 
chapter.

For the 2 × 2 two- way independent groups design, as we’ve been discussing, 
there are four group means and therefore a total of df = 3 for any effects based 
on those means. We have been discussing two main effects, each with df = 1, 
and a 2 × 2 interaction, also with df = 1, for a total of three degrees of freedom. 
Often those two main effects and the interaction are the effects that correspond 
most closely with the research questions, and, therefore, we’ll nominate those as 
the three planned effects to “use up” our three degrees of freedom. That’s what 
I did for the Frenda study. A big advantage is that the three are independent, 
meaning that they answer three quite separate questions.

However, there are other options. We could examine any comparisons or 
contrasts of the four group means, either as planned or exploratory analysis. 
Suppose in the Frenda study you were especially interested in the effect of sleep 
deprivation, not as a main effect, but specifically for evening and, separately, 
for morning presentation of the critical event. You might specify:

1. A comparison of the Nosleep and Sleep means, for Evening.

That comparison is referred to as a simple main effect, because it examines the 
effect of one IV (Sleep/ Nosleep) at a single level of the other IV (the Evening 
level of the Evening/ Morning IV).

2. A comparison of the Nosleep and Sleep means, for Morning.

That’s another simple main effect. To examine it, I clicked twice at red 7 in 
Ind groups 2 × 2 to compare just those two group means. Figure 15.8 shows 
what I saw. The comparison we want is shown as the triangle on the difference 
axis, and the values are reported above, at red 10. Of course, you could display 
in a similar way the first simple main effect, which I specified just above.

For two- way designs, 
use planned and 
exploratory data 
analysis.

A simple main effect 
is the effect of one 
IV at a single level of 
another IV.
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3. The interaction, which we can think of as a comparison of those two simple 
main effects.

The three effects listed above—two simple main effects and the interaction—
are not separate, because, as Point 3 notes, the interaction is the difference between 
the two simple main effects. If that’s puzzling, identify those two simple main 
effects and the interaction in Figure 15.7. Maybe draw and label your own picture 
of means, and try to explain to a friend. Interactions can be tricky to think about, 
but pictures should help.

If you felt those three effects—two simple main effects and the interac-
tion—matched your research questions, you could nominate the three as your 
planned analysis, even though they are not independent. If, however, you 
nominated also one or two main effects, you would be asking more questions 
than there are degrees of freedom (total df = 3) and the questions would overlap 

Figure 15.8. Same as Figure 15.2, but displaying the simple main effect of Sleep/ Nosleep at the Morning level of the Evening/ 
Morning IV.
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even more. As usual, after collecting the data and carrying out the planned 
analysis, you could elect to explore further by examining any effects that seem  
interesting—but any conclusion would be only speculative.

So far I’ve emphasized the wide choice of contrasts you have, even with a 
2 × 2 design. Shortly we’ll consider larger designs and these, of course, offer even 
more choice. When choosing contrasts, the most important guideline is that the 
planned contrasts should reflect as closely as possible your research questions, 
which should have been chosen and stated early in the planning stage. However, 
I should highlight two sets of contrasts for 2 × 2 designs, because these probably 
cover the majority of studies with a 2 × 2 factorial design, whether the two IVs 
are both between-groups, both within-group, or one of each.

Main effects and interaction. This is probably the most common choice and 
was our first approach for the Frenda study. The contrasts are:

1. Main effect of A. The main effect of the Evening/ Morning IV.
2. Main effect of B. The main effect of the Sleep/ Nosleep IV.
3. Interaction of A and B. The difference of the differences. To what extent is 

the effect of the Sleep/ Nosleep IV different at the two levels of the Evening/ 
Morning IV? Equivalently, to what extent is the effect of the Evening/ 
Morning IV different at the two levels of the Sleep/ Nosleep IV?

Interaction and selected simple main effects. As I mentioned earlier, often the 
main reason for choosing a 2 × 2 design is that the interaction is of particular 
interest. One of our approaches to the Frenda study focused on the interaction. 
The contrasts could be:

1. The interaction of A and B—focus on the extent the (Nosleep –  Sleep) 
difference may differ between Morning and Evening

2. A selected simple main effect that throws light on the interaction—perhaps 
the (Nosleep –  Sleep) difference at Morning

3. A second simple main effect that does the same—the (Nosleep –  Sleep) 
difference at Evening

Even for the more complex designs that we’ll discuss later in this chapter, 
keep in mind those two common approaches to selecting planned contrasts, 
especially if you ever feel there are too many options and it’s hard to choose!

It’s time to step beyond the 2 × 2 independent groups design.

BEYOND THE TWO- WAY INDEPENDENT 
GROUPS DESIGN

We’ve been discussing the simplest factorial design, which has two between- 
groups IVs, each with just two levels. There are three ways to expand to more 
complex factorial designs:

 ■ Change one or two of the IVs from between- groups to within- group IVs. 
(Recall that a within- group IV is also referred to as a repeated measure.) 
Perhaps ask the same people about their enjoyment of Rock and Classical 
music, so Rock/ Classical is now a repeated measure.



449

2 ×
 2 D

esigns W
ith a Repeated M

easure

 ■ Increase the number of levels of one or more of the IVs to more than two. 
Perhaps consider Jazz as well as Rock and Classical, so there are now three 
levels of the IV of music type.

 ■ Add further IVs to give three- way, four- way, or even larger designs. 
Perhaps add participant age as a third IV, and collect music enjoyment 
ratings for different types of music, in different settings, from people in 
a number of different age groups. That’s a three- way design, which may 
be bordering on being too complicated to fully grasp, even for experi-
enced researchers.

I’ll discuss examples to illustrate various possibilities, although I won’t be 
carrying out much data analysis because that’s beyond the scope of this book 
and beyond what ESCI can do. Consult the workbooks available at the book’s 
website (tiny.cc/itns) for data analysis possibilities offered by other software.  
For all factorial designs, our analysis strategy remains the same: For the planned 
analysis, specify effects that correspond to the research questions, then, fol-
lowing data collection and planned analysis, optionally conduct exploratory 
analysis. Often the effects of most interest will be effects with one degree of 
freedom, like those we have examined in the previous chapter and earlier in 
this chapter. In other words, it’s often of most interest to focus on selected com-
parisons, contrasts, and 2 × 2 interactions that are the difference of differences. 
Any such effect has df = 1, and so we can find the mean and CI, and use these 
to interpret the effect.

2 × 2 DESIGNS WITH A REPEATED MEASURE

Mindfulness and the Brain: An Example RCT
If we change one of the between- groups IVs to a repeated measure, we get the 
simplest randomized control trial (RCT) design, which is a two- way factorial design 
with one repeated measure. This design is also referred to as a mixed design, 
because it includes at least one between- groups IV and one repeated measure.

A mixed design includes at least one between- groups IV and one repeated measure.

My example is a well- known study of mindfulness meditation by Hölzel 
et al. (2011). People who wanted to reduce stress, and were not experienced 
meditators, were assigned to a Meditation (N = 16) or a Control (N = 17) group. 
The Meditation group participated in eight weeks of intensive training and 
practice of mindfulness meditation. The researchers used a questionnaire to 
assess a range of emotional and cognitive variables both before (Pretest) and 
after (Posttest) the eight- week period. All assessment was conducted while the 
participants were not meditating. The study is notable for including brain imag-
ing to assess possible changes in participants’ brains from Pretest to Posttest. The 
researchers measured gray matter concentration, which increases in brain regions 
that experience higher and more frequent activation. The researchers expected 
that the hippocampus may be especially responsive to meditation because it 
has been implicated in the regulation of emotion, arousal, and general respon-
siveness. They therefore included in their planned analysis the assessment of 
any changes to gray matter concentration in the hippocampus.

Figure 15.9 reports means and 95% CIs for gray matter concentration in the 
hippocampus at Pretest and Posttest for the two groups. Control/ Meditation is, 

For any factorial 
design, carry out 
planned analysis, 
followed optionally 
by exploration.

A randomized 
control trial (RCT) 
has a two- way 
factorial design 
with one repeated 
measure.



450

Ex
te

nd
ed

 D
es

ig
ns

: T
w

o 
In

de
pe

nd
en

t V
ar

ia
bl

es

of course, a between- groups IV whereas Pretest/ Posttest is a repeated measure, 
as indicated by the solid lines in the figure.

Here are a couple of questions to think about and discuss, perhaps while 
you relax to whatever type of music earns your highest enjoyment ratings.

1. Which effects would you nominate for your planned analysis of these data? 
Or, rather, which would you have nominated at the start of the study, 
before collecting data or seeing Figure 15.9?

2. Which effects in Figure 15.9 can you assess by using the displayed CIs? 
Which require some other CI?
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Figure 15.9. Means and 95% CIs for gray matter concentration in the hippocampus, for the RCT of 
mindfulness meditation reported by Hölzel et al. (2011). Solid lines indicate that Pretest/ Posttest is 
a repeated measure. Data courtesy of Britta Hölzel.

In an RCT, the 
interaction is likely 
to be of most 
interest.

Pause here, as you enjoy the music and consider those questions. Perhaps meditate for a while.

Without looking at the results in Figure 15.9, it’s safe to say that the main 
interest is in the possible effect of the meditation training, estimated by the 
(Posttest –  Pretest) change. However, participants in the control group may 
also have shown change, simply because of the passage of time or because they 
were part of the study and undertook the Pretest and Posttest. We therefore 
want to compare the (Posttest –  Pretest) change in the Meditation group with 
that change in the Control group. That’s the interaction, which is, therefore, 
the first effect we nominate for planned analysis:

 ■ The 2 × 2 interaction of Pretest/ Posttest and Control/ Meditation. It’s prob-
ably most natural to think of this as the difference of the two (Posttest –  
Pretest) differences: To what extent—if at all—did the Meditation group 
show a greater increase in hippocampal gray matter concentration than 
the Control group?

In addition, we might choose the two simple main effects of Pretest/ Posttest:

 ■ The (Posttest –  Pretest) difference for the Meditation group, which estimates 
change attributable to the meditation training and practice, and any other 
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possible causes, including the passage of time and the experience of being 
in the study and undertaking the Pretest and Posttest.

 ■ The (Posttest –  Pretest) difference for the Control group, which esti-
mates change attributable to any of those possible causes other than the 
meditation.

Those three contrasts are not independent, so when making the inter-
pretation keep in mind that they are not asking three separate questions. In 
addition to the interaction, instead of those two simple main effects you might 
have selected the two main effects. Or perhaps you chose the two simple main 
effects of Control/ Meditation, meaning the (Meditation –  Control) difference 
at Pretest, and the same difference at Posttest. In any case it’s probably best to 
specify at most three effects for planned analysis, because in a 2 × 2 study we 
have df = 3 for effects based on the group means.

My second question asked about using the CIs displayed in Figure 15.9 
to assess effects. All the CIs in the figure are much longer than any difference 
between means, so we might at first think that the study cannot have estimated 
any effect with useful precision, which would be very disappointing. However, 
there’s hope—because we have a repeated measure. Remember from Chapter 8 
that with a repeated measure we can’t assess the difference by noting the over-
lap of the two CIs—the overlap rule is relevant only for independent means. 
This is good news, because with a repeated measure the CI on the difference 
may be usefully short.

Consider, for example, the (Meditation –  Control) difference at Posttest. 
That comparison involves two means that are independent because they refer 
to the separate Meditation and Control groups. We can therefore eyeball the 
difference between the means as about 1, and note that the CI on that differ-
ence would be a little longer than either of the separate CIs, indicating very low 
precision for estimating that difference. The overlap rule tells us that, because 

1

0

–1

–2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

    Control Meditation Difference

G
ra

y 
M

at
te

r C
on

ce
nt

ra
tio

n 
D

iff
er

en
ce

 

of differences

Figure 15.10. Means and 95% CIs for the (Posttest –  Pretest) difference in gray matter concentration 
in the hippocampus, for the Control and Meditation groups. The difference of those differences, which 
is the interaction, is displayed with its CI on the axis on the right. Data courtesy of Britta Hölzel.
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the two CIs overlap almost entirely, there’s no evidence of any population 
difference between the means.

What about the (Posttest –  Pretest) difference for Meditation? Those two 
means are not independent, because Pretest/ Posttest is a repeated measure. 
Therefore the long CIs displayed in the figure are not relevant for assessing 
that difference. As in Chapter 8 for the paired design, the overlap rule doesn’t 
apply and we need further information, beyond what Figure 15.9 presents, to 
calculate the CI we need. In the Meditation group, the correlation of Pretest 
and Posttest scores is very high, r = .99, and so the CI on the (Posttest –  Pretest) 
difference for Meditation is pleasingly short. That difference is 0.96 [0.56, 1.36]. 
In the Control group, the correlation is also high, r = .97, and the (Posttest –  
Pretest) difference is 0.12 [−0.61, 0.84]. Those two differences and their CIs 
are displayed in Figure 15.10. The especially high correlation for Meditation 
gave an especially short CI, with MoE of only 0.40.

The interaction of Control/ Meditation and Pretest/ Posttest is the effect of 
greatest interest. It’s the difference of those two differences, which is 0.84 [0.03, 
1.65]. That difference of differences is displayed with its CI on the axis on the 
right in the figure. The study thus estimates that gray matter concentration 
in the hippocampus increased by around 0.8 units more, after eight weeks of 
mindfulness meditation, than for the control participants. With knowledge of 
the gray matter measure and the research context we’d be able to comment 
about how large and important a change of around 0.8 might be, and perhaps 
how likely it is to endure. The CI was long, as Figure 15.10 illustrates, with 
the lower limit around zero, so the study provided just a little evidence the 
population increase was greater than zero. (The p value was .04.)

Hölzel et al. (2011) used ANOVA to analyze the data, and for the interaction 
reported F(1, 29) = 4.92, p = .04. The two approaches reported the same p value 
and therefore agreed in finding a little evidence of a non- zero interaction. If 
you read such an ANOVA report with p = .04 for an interaction, you could bring 
to mind a figure like Figure 15.10, with the CI on the difference of differences 
extending approximately to zero.

15.14 a.  Consider Figure 15.9. Identify an effect that can be assessed in that 
figure and explain why.

b. Identify an effect that can’t be assessed using the information in that 
figure, and explain why.

15.15 Consider the main effect of Pretest/ Posttest. Can it be assessed in that 
figure? Explain.

15.16 Consider Figure 15.10.

a. Explain what the first mean displayed, labeled “Control” represents 
and how it relates to what’s displayed in Figure 15.9.

b. Do the same for the second mean displayed, labeled “Meditation”.
c. Explain what the triangle represents. How does its CI relate to the two 

CIs at left in the figure?

Assumptions and calculations for an RCT. In Chapter 14, we first considered 
independent groups, and saw means and CIs for various contrasts. Then for 
the one- way repeated measure design we considered contrasts and their CIs, 
although the calculations involved the repeated measure and were, there-
fore, a little more complicated. We also needed the additional assumption that 
correlation is homogeneous. I noted that ESCI does not have a page for the 

In an RCT, the 
interaction and 
differences of most 
interest cannot be 
assessed in a figure 
of means and CIs like 
Figure 15.9. A figure 
of differences, like 
Figure 15.10, is 
needed.
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repeated measure design, although such a page would look similar to the Ind 
groups comparisons or Ind groups contrasts pages, but would require entry 
of the full data.

For two- way factorial designs the pattern is similar. With two between- 
groups IVs, Ind groups 2 × 2 calculates and displays contrasts and the interaction 
(the difference of differences), with CIs. With one or more repeated measures, 
calculations involving a repeated measure are more complicated and need 
additional assumptions like the homogeneity of correlation. Again, ESCI does 
not have a page for designs with a repeated measure, for example the RCT. 
However, here are two exercises that illustrate how you can use ESCI to carry 
out the analysis we saw above for the Hölzel 2 × 2 RCT.

15.17 Table 15.2 provides summary gray matter concentration data from the 
Hölzel study. For the Control data, enter the Pretest and Posttest means 
and SDs into the Summary paired page of ESCI intro  chapters 3– 8. 
Don’t forget that for paired data like these you also need to enter the SD 
of the differences, s

diff
.

a. Find the (Posttest –  Pretest) difference and its CI, and compare with 
what I stated above in the text.

b. Do the same for the Meditation data.

15.18 We would like to compare (Posttest –  Pretest) for Control with the same 
for Meditation.

a. Is this a between- groups or a within- group comparison? Do you have 
appropriate information in the table to calculate the comparison and 
its CI?

b. Use an appropriate ESCI page to calculate that comparison and its CI. 
Again compare with the values I stated above in the text.

Those two exercises illustrated how you could analyze a 2 × 2 RCT study, 
given appropriate summary data as in Table 15.2. The steps were:

1. Compare Pretest and Posttest for Control, using Summary paired.
2. Compare Pretest and Posttest for Meditation, using Summary paired again.
3. Compare the (Posttest –  Pretest) differences for Control with the same for 

Meditation, using Summary two.

If you had the full data you could, of course, use the same three steps, but 
using Data paired twice, then Data two. If in doubt, a good general approach 
is to sketch a picture of means and CIs, focus on whichever effect corresponds 
to your research question, then find a way to calculate the comparison and 
CI you need.

Conclusions from this RCT. Reflect for a moment on the RCT for mindfulness 
meditation that we’ve been discussing. What lessons about design and data 
analysis should we take from this example? Also, considering the main result 

Table 15.2 Summary 
Gray Matter 
Concentration 
Data, From Hölzel 
et al. (2011)

Control (n = 17) Meditation (n = 16)

Pretest Posttest (Posttest –  Pretest) Pretest Posttest (Posttest –  Pretest)

M 43.81 43.93 0.12 43.71 44.67 0.96
s 4.91 5.51 6.43 6.30
s

diff
1.41 0.76
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about brain changes resulting from meditation, what questions do you have? 
What further research would you like to see?

Considering the design and data analysis, the first lesson is that our gen-
eral strategy of examining effects having one degree of freedom applies here 
also. These effects include comparisons, simple main effects, and interactions 
(difference of differences). Prefer such contrasts, assuming of course that they 
address the research questions.

The Hölzel study also illustrates dramatically the lesson we’ve learned 
many times: A paired design—in fact any design with a repeated measure—can 
give increased precision, and greatly increased precision if the correlation of 
the levels of the repeated measure (e.g., Pretest and Posttest) is high. MoE for 
the CIs in Figure 15.9 ranges from 2.5 to 3.4, whereas MoE is much smaller 
for the CIs in Figure 15.10, with MoE for the interaction being 0.8. Seeing 
Figure 15.9 for the first time, you might be greatly discouraged by the long CIs, 
but then you’d remember that Pretest/ Posttest is a repeated measure and that 
the differences and interaction of most interest can’t be assessed in that figure. 
You’d be much encouraged to see Figure 15.10, which displays shorter CIs on 
the differences and the crucial interaction.

The evidence of brain changes in Figure 15.10 is not strong, but Hölzel 
et al. (2011) reported other measures and analyses as well. In other words, 
they used a strategy of finding converging approaches to support their main 
conclusion, which was that training and practice in mindfulness meditation 
not only leads to improvements in psychological well- being—indicated by 
their analysis of the questionnaire data—but also to measurable changes in 
the brain. Further, they speculated that the brain changes are likely to be, at 
least to some extent, enduring. We would now like one or more replications 
of these findings, and also investigation of how long and how fully the brain 
changes endure.

The Hölzel et al. (2011) findings provide further evidence that brain and 
behavior are tightly integrated, and that even the adult brain is plastic and can 
change in response to changed behavior. That’s a dramatically different view 
of the brain than was generally accepted as recently as a decade or two ago. 
It’s enormously exciting to think that what we work at, what we learn, and 
how we conduct our lives can change our brains, which may in turn influence 
what we can do in the future. As I mentioned in the Making the Most of This Book 
section, perhaps working at retrieval of tricky ideas does change your brain and 
make you smarter. It’s worth persisting!

Quiz 15.2

1. To analyze an independent groups design, we usually assume _ _ _ _ _ _ _ _ _ _  of variance across 
all _ _ _ _ _ _ _ _ _ _ .

2. That assumption is probably reasonable if
a. considering the group SDs, the largest SD is no more than about twice the smallest.
b. considering all pairs of groups, all the correlations are heterogeneous.
c. the group means are all related in a linear fashion.
d. the DV has interval scaling.

3. In a 2 × 2 factorial design, there is little or no interaction if the dotted lines joining means
a. differ in slope but don’t cross.
b. differ greatly in slope and cross.
c. are close to parallel.
d. meet, or almost meet, at a point.

For two- way designs, 
examine effects 
having one degree 
of freedom, where 
these match the 
research questions.

A repeated measure 
gives increased 
precision when its 
correlation is high.



455

2 ×
 2 D

esigns W
ith a Repeated M

easure

4. A simple main /  subsidiary effect is the correlation /  effect of one IV at a single level /  mean 
of another IV.

5. In a 2 × 2 RCT, the figure showing the 4 means and CIs allows us to assess comparisons that 
involve only the between- groups /  within- group IV, but not comparisons that involve the 
between- groups /  within- group IV.

6. In an RCT, the interaction is likely to be estimated with greater precision if the correlation /  
difference of the DV at different levels of the repeated measure is lower /  higher.

The Seductive Allure of Neuroscience: Two Repeated 
Measures
After all that discussion of gray matter in the brain, consider this question: Is 
the explanation of an interesting psychological phenomenon more convincing 
if it includes reference to neuroscience, even if the neuroscience information is 
irrelevant to the explanation? Weisberg et al. (2008) reported investigation of 
that question in an article with the arresting title: The seductive allure of neurosci-
ence explanations. One of their studies was a two- way design with two repeated 
measures, so once again we have two IVs, but this time they are both repeated 
measures. Once again we have a 2 × 2 factorial design, but this time only one 
group of participants. A single group of N = 22 students from a mid- level cog-
nitive neuroscience course read brief descriptions of psychological phenomena, 
each of which was followed by an explanation. The explanation was Good or 
Bad, and was presented either Without or With neuroscience information—
which, when provided, was irrelevant to the quality of the explanation. The 
IVs were thus Good/ Bad explanations, presented Without/ With neuroscience. 
Students rated how satisfactory they found each explanation, on a 7- point 
scale from −3 (very unsatisfying) to 3 (very satisfying). All students read and 
rated items with all four types of explanation, reflecting the fact that the two 
IVs were both repeated measures.

15.19 Before looking ahead at the results, recommend which effects should be 
nominated for the planned analysis.

Figure 15.11 shows the means and CIs for the four conditions. It would be 
logical to display solid lines joining the means to signal the two repeated meas-
ures, but adding four solid lines to the figure gives a visual mess, and I won’t 
even include it to illustrate. It’s a highly valuable convention to use solid lines 
to signal a repeated measure, but I can’t recall ever having seen a figure in 
which the convention has been used for more than a single repeated measure. 
As usual, when seeing a figure with means and CIs it’s vital to know the status  
of every IV: between-groups or repeated measure. For two repeated measures, 
as in Figure 15.11, solid lines joining means for both IVs are impractical, so 
the figure caption must tell us. Instead I’ve added two dotted lines to help us 
see the interaction.

15.20 a.  In Figure 15.11, make eyeball estimates of the two main effects and 
the interaction.

b. Is there any effect that can be assessed using the information in the 
figure? Explain.

c. Consider the CIs on the main effects and the interaction. How would 
you expect them to compare in length with the CIs in the figure? 
Why?

With more than one 
repeated measure 
IV, don’t join means 
in a figure with solid 
lines, but explain in 
the caption.
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I suspect you concluded that there’s no comparison of means that we can 
assess using the information in the figure. Because both IVs are repeated meas-
ures, we need to have the full data to be able to calculate CIs for any difference, 
including the main effects, simple main effects, and interaction.

Weisberg et al. (2008) applied ANOVA and reported:

Main effect of Good/ Bad explanations, F(1, 21) = 50.9, p < .001.
Main effect of Without/ With neuroscience, F(1, 21) = 47.1, p < .001.
Interaction, F(1, 21) = 8.7, p = .008.

In Exercise 15.20 you eyeballed point estimates of the main effects and 
interaction. The very small p values from the ANOVA tell us that the CIs on 
those point estimates would all be somewhat distant from zero—we have very 
strong evidence that all those effects are non- zero.

15.21 Using your eyeball estimates of the main effects and interaction, and the 
discussion above, interpret the set of results.

15.22 Describe the interaction in terms of one IV moderating the effect of 
the other.

15.23 a.  Discuss the appropriateness of using this design to investigate the 
questions addressed by Weisberg et al.

b. Compare with at least one alternative design, and make your 
recommendation.

Now we step beyond 2 × 2 designs.
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Figure 15.11. Means and 95% CIs for ratings, on a scale from −3 to 3, of satisfaction with explanations 
of psychological phenomena. One group of N = 22 students participated. The two repeated measure 
IVs were Good/ Bad explanations, and Without/ With neuroscience information. Data from Weisberg 
et al. (2008).

Use p values 
reported for ANOVA 
to help eyeball the 
CIs on effects of 
interest, and thus 
assist interpretation.



457

Extending Beyond 2 ×
 2 D

esigns

EXTENDING BEYOND 2 × 2 DESIGNS

Study Techniques: An Example of a 3 × 2 Design
As a first step beyond 2 × 2 designs, I’ll discuss a 3 × 2 example. One of the 
authors of Make It Stick (Brown et al., 2014), Mark McDaniel, and colleagues 
reported an investigation (McDaniel et al., 2009) of a study technique that 
emphasized retrieval: the 3R (read- recite- review) technique. In one of their 
studies they assigned students to three independent groups (n = 24 for each), 
which used 3R, or note- taking (Note), or rereading (Reread) strategies to study 
text passages that presented new information. In all conditions, students were 
allowed to spend as much time as they wished using the assigned technique to 
study each text. Students were later asked to recall as much as they could of 
the content of the passages, the measure being the number out of a possible 30 
idea units in each passage that the student could recall. For half the passages, 
recall was a few minutes after presentation (Immediate), and for the other half 
recall was one week later (Delayed). Every student undertook both Immediate 
and Delayed recall. Therefore, the 3R/ Note/ Reread IV was between-groups, and 
the Immediate/ Delayed IV was a repeated measure. The design was thus 3 × 2, 
with one repeated measure. Incidentally, why not call it a 2 × 3 design? There 
is a custom that between- groups IVs are listed first, followed by any repeated 
measures. However, the custom is not always followed, so be sure to make very 
clear the status (between-groups or repeated measure) of every IV. ESCI does 
not have a page for this design, but such a page would be an extension of Ind 
groups 2 × 2 that permitted one between- groups IV to have three levels, and 
recognized the other IV as a repeated measure.

Our analysis, first planned then perhaps exploratory, will focus on effects 
with one degree of freedom. These may include contrasts, main effects, simple 
main effects, and 2 × 2 interactions—such an interaction being a difference of 
differences.

Before looking ahead to see the results, we need to think about the aims 
of the study, identify the main research questions, and state the corresponding 
effects that we’d specify for the planned analysis—preregistered of course.

Note- taking and rereading are commonly used study strategies, so we 
can regard them as control or reference conditions. Our primary interest is 
probably in how 3R compares, so my first step is to combine Note and Reread. 
The + symbols in the figure mark the means of the Note and Reread means. 
I’ll refer to that combination as NoteReread, and I’ll focus first on the (3R –  
NoteReread) difference. I’ll examine that difference for Immediate, and for 
Delayed, and then I’ll examine the difference between those two differences, 
which is the interaction of NoteReread/ 3R and Immediate/ Delayed. All those 
effects have one degree of freedom, and so, given the full data, it would be 
possible to calculate a point estimate and CI for each. Those estimates and 
CIs would be the results of our planned analysis and the main basis for our 
conclusions from the study.

Combining means over levels, such as Note and Read to form NoteRead, 
is often a useful strategy for obtaining effects with one degree of freedom that 
are of research interest, and also readily interpretable. Subset contrasts, as we 
discussed in Chapter 14, are a simple example of such combination of means 
over levels.

For an IV with more 
than two levels, 
consider combining 
some levels to get 
effects of interest 
with one degree of 
freedom.
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Now examine Figure 15.12, which displays means and CIs. Identify our 
planned contrasts. Also identify which effects we could assess using the CIs dis-
played, and others for which we would need further information and other CIs.
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Figure 15.12. Means and 95% CIs for number of idea units recalled from a text passage, maximum 
30. Three groups each of n = 24 students participated, one group for each of the 3R, note- taking 
(Note), and rereading (Reread) study strategies. Recall was Immediate, or Delayed by one week, and 
Immediate/ Delayed was a repeated measure. The + symbols indicate the means of the Note and 
Reread means. Data from McDaniel et al. (2009), and courtesy Mark McDaniel.

That’s worth spending some time on. Find someone for a chat about it…

15.24 a.  Make an eyeball estimate from Figure 15.12 of the (3R –  NoteReread) 
difference at Immediate. Do the same for Delayed.

b. MoE for the CI on those differences is roughly 2. Interpret those 
differences and make conclusions about 3R compared with the other 
commonly used study techniques.

15.25 a.  Compare those two differences. Is there any sign of an interaction? 
Interpret.

b. What do the lines in the figure say about that interaction?

You might have chosen other effects, either in advance for planned analysis, 
or later as exploration. For example, if you wish to compare the two commonly 
used techniques, you could examine the (Note –  Reread) differences. If you 
feel that only the Delayed condition is important for student learning, you 
might examine some simple main effects at Delayed, perhaps (3R –  Note) and 
(3R –  Reread).

McDaniel et al. (2009) conducted a 3 × 2 ANOVA and reported:

 ■ For the 3R/ Note/ Reread main effect, F(2, 69) = 10.80, p < .001.
 ■ For the Immediate/ Delayed main effect, F(1, 69) =328.70, p < .001.
 ■ For the interaction of those two IVs, F < 1, which means p is large (actually 

p > .3 here).
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The 3R/ Note/ Reread main effect has three levels, so df = 2 for the differ-
ences among the three means. The very small p for that main effect allowed 
the researchers to reject the null hypothesis that all three population means 
are the same, and provides strong evidence for one or more differences 
among the three means. The researchers examined post hoc contrasts and 
found statistically significant differences between 3R and Note, and 3R and 
Reread, but not between Note and Reread. Bring to mind the overlap rule 
for independent CIs, and consider how well those post hoc contrast conclu-
sions correspond with the patterns of CIs for both Immediate and Delayed 
conditions. Do you agree that we could have drawn the same conclusions 
by applying the rule to what the figure displays?

The interaction examined by the ANOVA is the 3 × 2 interaction of 3R/ Note/ 
Reread and Immediate/ Delayed. This interaction, which has df = 2, refers to the 
extent that the (Delayed –  Immediate) difference might vary across the three 
study techniques. Equivalently, it refers to the extent that the pattern of the 
three study technique means is different at Immediate and Delayed. The three 
lines in the figure are very close to parallel, which indicates no such variation, 
and, therefore, that there is very little or no interaction. This is consistent with 
our earlier discussion of interaction, and the large p value—which indicates 
no evidence against the null hypothesis of no interaction in the population.

15.26 a.  Make an eyeball estimate of the (Delayed –  Immediate) difference, 
combined over the three study techniques.

b. Guess what MoE for the CI on that difference might be. Compare with 
the p value reported for the Immediate/ Delayed main effect.

All our analyses are based on means and differences, but it’s worth think-
ing about the values shown in Figure 15.12 in different ways as well. In fact 
it’s always worth thinking about alternative ways to read figures, and express 
results. In this case, think of the advantage of 3R over NoteReread as a percent-
age. At Immediate, the 3R mean is about 30% greater than the NoteReread 
mean marked by the + symbol. That sounds like a worthwhile improvement 
in learning. However, we are more interested in Delayed, because the whole 
point of studying is to remember as well as understand. One week later, at 
Delayed, 3R has a 78% advantage over NoteReread! That, surely, is a dramatic 
difference, well worth bearing in mind when next you are studying. It was 
results like this that prompted McDaniel and his coauthors to write Make It 
Stick and to emphasize that challenging retrieval is an effective study technique.

Partial Fasting and Obesity: An Example of a  
3 × 5 Design
In Chapter 14, I discussed evidence from Halagappa et al. (2007) suggesting that 
restricting calorie intake—reducing the total amount eaten in a day—might 
delay cognitive decline with aging, at least in mice and possibly also in humans. 
My last example here comes from Chaix et al. (2014), an article that’s become 
famous, which investigated the effect that time- restricted eating might have 
on health and fitness. There was no limitation on the amount eaten, only on 
the period that food was available each day. The article reported a large set of 
studies of mice, and analyses of numerous measures under numerous condi-
tions. The results are most easily grasped from the graphical abstract, which 
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you can see at tiny.cc/fastingfood, in which the main findings are summarized 
using humorous cartoons.

The main aim was to investigate the effect of restricted eating time on the 
health and fitness of mice fed the equivalent of a junk food diet. Mice in the 
Free condition could eat freely at any time, those in the 9Hour condition could 
eat as much as they wished but only during a 9- hr period each day, and those 
in the 12Hour condition only for a 12- hr period. The Free mice not surprisingly 
became obese and developed signs of diabetes and other illnesses. Remarkably, 
however, mice in the time- restricted eating conditions did not become obese and 
remained comparatively healthy—despite their junk food diet and no restriction 
on the amount they could eat, only on when they could eat.

One study examined glucose tolerance. Mice 
were given a big dose of glucose—the equivalent 
of a big sugar hit—then glucose levels in the blood 
were monitored over the following two hours. 
A blood glucose level that goes high and is slow 
to decrease suggests diabetes. The main planned 
comparisons would be the difference in overall 
blood glucose level during the two hours between 
Free and 9Hour, and between Free and 12Hour. 
Figure 15.13 shows the results.

15.27  Can we use information in the figure to assess 
the (Free –  9Hour) difference at a particular 
time point? The (Free –  12Hour) difference? 
Explain.

15.28 a.  Make your eyeball estimate of the overall mean for Free, averaging 
over all time points.

b. Do the same for 9Hour and 12Hour.
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Figure 15.13. Means and 95% CIs for blood glucose level for three groups of mice (each n = 8) given 
junk food and permitted to eat freely (Free) or with food available for only 12 hr (12Hour) or 9 hr 
(9Hour) each day. Results are reported for five time points following a big dose of glucose, with time as 
a repeated measure. Data from Chaix et al. (2014).
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c. Use those three estimated means to estimate the (Free –  9Hour) dif-
ference and the (Free –  12Hour) difference.

d. MoE for the CIs on those differences is roughly around 25. Interpret 
the two differences, which are our two main planned comparisons, 
and draw conclusions.

15.29 ANOVA of these data would examine two main effects and their 
interaction.

a. Name and describe the main effects and state how many levels 
each has.

b. About what p values would you expect to find for each main effect?

15.30 Describe the interaction in two ways. About what p value would you 
expect for the interaction?

15.31 A researcher wishes to estimate how much higher blood glucose is in 
Free mice than 9Hour mice at time 0, before the big glucose dose could 
have any effect.

a. Make an eyeball estimate of that difference and interpret.
b. Do the same for 30 min, when blood glucose is around its maximum.
c. Compare those two differences, and explain what that comparison 

tells us.

This example is a great illustration of the importance of simply looking at 
a figure and thinking, which may give us clear answers to our main research 
questions, perhaps even without any need for formal analysis. In response 
to Exercises 15.27 and 15.28 you probably stated that, because we have 
three independent groups, the CIs in the figure permit us to assess the main 
comparisons we’re interested in. More broadly, the three curves marked by 
the solid lines are very similar in shape, and the vertical separation between 
the curves is quite large compared with MoE of the CIs, and, therefore, we 
have clear evidence that blood glucose concentration follows a very similar 
time- course for each group, but with Free being always distinctly higher 
than 9Hour, and 12Hour always lying between. That may be all we need to 
justify the main conclusion that, following a big glucose dose, blood glucose 
reaches much higher levels in Free mice then mice with 9- hr time restricted 
eating. This pattern suggests diabetes in the Free mice, and it seems that 
time- restricted eating avoids or greatly reduces such signs of diabetes—despite 
even the 9Hour mice eating any amount of junk food during the nine eating 
hours each day!

In some of their studies, the researchers maintained the restricted eating 
time for five days each week, and allowed unrestricted eating at weekends. 
They found that often the benefits of restricted eating largely persisted, despite 
the weekend “holidays” from the restrictions.

These and many other converging results led Chaix et al. (2014) to con-
clude that restricting eating time, rather than the amount eaten, may be highly 
effective in reducing or avoiding obesity, diabetes, and other illnesses, despite 
a less than ideal diet. That’s a remarkable conclusion, definitely worth further 
research. Watch out for human studies, which may give further support for 
the health value of, for example, the popular 5:2 diet, in which food intake is 
greatly reduced on two days each week. Or perhaps, of eating only between, 
say, noon and 7 p.m. on at least several days every week.

Always examine 
figures carefully 
and think what 
messages may be 
gleaned from such 
inspection.
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ANALYZING ONE- WAY AND FACTORIAL DESIGNS: 
A SUMMARY

Here’s an outline of my recommended approach, both for the one- way designs 
we discussed in Chapter 14 and the factorial designs in this chapter:

1. Focus on selected effects with one degree of freedom, including com-
parisons, contrasts, simple main effects, and 2 × 2 interactions. Consider 
combining levels to get effects of interest that have one degree of 
freedom.

2. In advance of running the study, specify the small number of effects that 
correspond to the main research questions. It’s usually best if these effects 
are reasonably separate. If there are k means, no more than df = (k –  1) sep-
arate questions can be asked, so it’s usually best if the number of effects 
specified for planned analysis is no more than about df. Preregister your 
research plan if you can.

3. Note the assumptions required for analysis, including homogeneity of vari-
ance and, with one or more repeated measures, more complex assumptions 
including homogeneity of correlation.

4. After running the study, calculate means and CIs for all conditions and dis-
play in a figure. Make very clear whether each IV is between-groups or a 
repeated measure. If there’s one repeated measure, signal this with a solid 
line that joins the means for the different levels of that IV. Examine the 
figure. Lines joining means in the figure that cross or are far from parallel 
suggest a sizeable interaction.

5. Where possible, calculate the mean and CI for each of the effects selected 
for planned analysis. Interpret and draw conclusions.

6. Examine the figure some more, and consider alternative ways the results 
might be presented. If you wish, explore the data by examining any fur-
ther effects that may be of interest. The results are only speculative, and 
more speculative as the number of possible effects that could be examined 
increases.

An alternative, more traditional and widely used approach is ANOVA, 
which focuses on testing a null hypothesis for each main effect and interac-
tion. For a main effect, the null hypothesis states that the population means 
are the same for all levels of the IV. For an interaction of IV1 and IV2, the 
null hypothesis states that the pattern of means across all levels of IV1 is the 
same at each level of IV2. Equivalently, the pattern of means across all levels 
of IV2 is the same at each level of IV1. For each main effect and interaction, 
ANOVA provides a value of the F statistic and the corresponding p value, and 
may also provide an effect size, such as η2, which is the proportion of total 
variance attributable to the main effect or interaction. Large values of F mean 
small p values. As usual, the smaller the p, the stronger the evidence against 
the null hypothesis.

A main effect involving k means has df = (k –  1). If a main effect or inter-
action with df = 2 or more is declared statistically significant, because p is 
sufficiently small, post hoc tests may be used to examine any contrasts of the 
means involved.
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PLANNING MORE COMPLEX DESIGNS

In Chapter 10 we discussed the selection of N for studies with an independent 
groups or paired design. They are the two simple cases for which ESCI can 
provide guidance about N for a target MoE that you choose. Similar tools for 
more complex designs are not yet available, but will be highly valuable when 
they do appear, because then we can use the precision for planning approach 
for complex as well as simple designs.

Meanwhile, here are some general comments about planning a study with 
a more complex design.

 ■ The biggest lesson is one that we’ve learned many times: If possible and 
practical, and if carryover effects can be overcome, generally prefer a 
repeated measure.

 ■ For a chosen comparison of two means in a complex design, the Precision 
two or Precision paired pages can give approximate guidance about choice 
of n for the group or groups involved in the comparison.

 ■ For an interaction in a 2 × 2 independent groups design, we expect the CI 
on the interaction to be longer than the CIs on the relevant simple main 
effects, as in Figure 15.10. A particular target MoE for the interaction will 
need larger n than the same target MoE for one of the simple main effects, 
perhaps n around twice as large.

 ■ For more complex designs we need better software that supports precision 
for planning. Developing such software will be a wonderful contribution.

We’re almost at take- home messages. When writing yours, it may help to 
look back at the messages at the end of Chapter 14. Are you thinking of skipping 
breakfast tomorrow, or perhaps several days next week?

Quiz 15.3

1. A two- way design with just one group of participants has 1 IV /  2 IVs /  4 IVs, each of which is 
a between- groups /  within- group IV.

2. A solid line joining means in a figure indicates an IV that is between-groups /  a repeated 
measure, which is likely to give increased /  decreased precision for effects involving its means.

3. Where possible, it’s usually best to focus on effects for which df = _ _ _ _ . These may include 
simple _ _ _ _ _ _ _ _ _ _  effects and 1 × 1 /  2 × 2 /  3 × 2 interactions.

4. For an IV with more than 2 levels, consider
a. running a different study instead.
b. averaging over some levels to obtain contrasts with df = 1.
c. using comparisons of means that have df greater than 1.
d. None of the above.

5. With k means, no more than _ _ _ _ _ _ _  separate questions can be asked, so planned analysis 
should specify no more than about _ _ _ _ _ _ _  contrasts.

6. When ANOVA of a two- way study finds an interaction to have p = .004,
a. the main effects are likely to be large.
b. we have strong evidence that the effect of one IV is different at different levels of the 

other IV.
c. most likely, the effect of one IV is quite similar at all levels of the other IV.
d. the two IVs are likely to show the same, or close to the same, patterns of means.
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  15.32     The Halagappa et al. (2007) study we discussed in  Chapter 14  used six 
independent groups: NFree10, AFree10, ADiet10, NFree17, AFree17, 
ADiet17.  

  a.     Rather than a one- way design with six levels of a single between- groups 
IV, explain how it could be regarded as a 3 × 2 two- way design with 
two between- groups IVs. Identify the two IVs and the levels of each.  

  b.     For this 3 × 2 design, what effects would you choose for planned 
analysis? Explain.  

  c.     Describe one 2 × 2 interaction that may be of research interest and 
explain why.    

  15.33     Revisit your take- home messages if you wish.   

   Reporting Your Work  

 Estimating interactions provides a new level of sophistication to your research. It can be 
challenging at first to write a clear interpretation of an interaction. Fortunately, though, the 
basic pattern for reporting is familiar and straightforward. Focus on the specific main effects, 
interactions, or simple main effects that are relevant to answering your research questions. 
Ideally, you will have planned and preregistered a  limited  set of specific analyses (usually 
no more than degrees of freedom). For each, your research report should typically include: 

 ■   whether the analysis is planned or exploratory, unless this is already clear;  
 ■   basic descriptive statistics for each condition or cell (typically the mean, standard 

deviation, and sample size);  
 ■   the means of the groups being compared, the estimated effect, and its CI;  
 ■   a standardized effect size estimate ( d  

unbiased
  is best), preferably with its CI. In the Method 

section make clear how your standardized effect size was calculated (which denominator 
was used). ESCI doesn’t provide standardized effect sizes for complex designs, but 
you can obtain them for main effects and simple effects using the  Data two  or  Data 
paired  pages. See the final end- of- chapter exercise for steps to use ESCI to obtain a 
standardized effect size estimate and CI for an interaction in a randomized control trial;  

 ■   a figure if possible. Choose and edit your figure to best represent the effects of interest. 
Avoid clutter, but if possible use lines connecting the means for repeated measures 
designs. State in the figure caption what error bars represent—95% CIs;  

 ■   if desired, ANOVA results, which should include  F , its degrees of freedom, and 
its associated  p  value for each main effect, interaction, or simple main effect of 
interest; and  

 ■   an interpretation of the estimated effect that considers not only the point estimate but 
also the CI. For interactions, try to express as clearly as possible what the difference in 
effects actually means (see examples below).   

  Although you will focus on key analyses to answer your research questions, your  research 
report must still provide the full story: For  every  measure provide the mean, standard 
deviation, and sample size for  every  condition. You will almost certainly need tables and 
figures to effectively report complex designs.  

 Here is an example using data from Frenda et al. (2014): 

 Out of six possible points, false memory scores were 
somewhat higher in the morning ( M  = 1.80) than in the evening 
( M  = 1.32). Thus, our planned and preregistered analysis of 
the main effect of time of day indicated a small increase 
in false memory in the morning: ( M  

Morning
   − M  

Evening
 ) = 0.48, 95% 

CI[- 0.07, 1.03]. This CI is fairly long, and indicates that 
false memories could be anywhere from no more likely up to 
much more likely in the morning condition. 

 Next, we conducted a planned and preregistered analysis of 
the main effect of sleep deprivation. False memory scores 

 For interactions, 
report the difference 
of the differences 
and its CI. Interpret 
the full range of the 
CI and try to clearly 
express the practical 
meaning of the 
interaction. 
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were similar in sleep deprived ( M  = 1.68) and non- deprived 
conditions ( M  = 1.44). The main effect of sleep deprivation, 
then, was small, ( M  

Nosleep
   − M  

Sleep
 ) = 0.24, 95% CI[- 0.31, 0.79). 

The CI, however, indicates considerable uncertainty about 
the degree to which sleep deprivation, on its own, might 
infl uence false memories. 

 Finally, we planned and preregistered an examination of the 
interaction between sleep deprivation and time of day to 
estimate the degree to which time of day might moderate 
the effects of sleep deprivation. In the evening condition, 
false memory scores were similar but slightly lower for 
the sleep deprived group: ( M  

NoSleep
   − M  

Sleep
 ) = - 0.36. In the 

morning condition, however, sleep- deprived participants 
had substantially higher false memory scores relative to 
those who had slept: ( M  

NoSleep
   − M  

Sleep
 ) = 0.84. Thus, there 

was a large difference in how sleep deprivation infl uenced 
false memory for the different times of day: ( M  

MorningDifference
  

 − M  
EveningDifference

 ) = 1.2, 95% CI [0.10, 2.30]. This CI is long 
and consistent with a range of effect sizes from quite small 
up to very large. It seems likely from this interaction, 
however, that time of day moderates the effects of sleep 
deprivation on false memory, with a substantial impairment 
evident primarily in the morning condition. Additional 
research will be needed to estimate the degree of moderation 
more precisely.   

  Take- Home Messages  
 ■   A  factorial design  includes every combination of the levels of all IVs. The simplest is the 2 × 2 
two- way independent groups design, which has two between- groups IVs and four groups.  

 ■   A two- way factorial design may have one or two within- group IVs, also called repeated 
measures. A  randomized control trial  (RCT) has one repeated measure. Always make clear 
whether each IV is between-groups or a repeated measure, for example in figure captions.  

 ■   The  main effect  of an IV is its overall effect, after averaging over all other IVs, and has  df  = ( k  –  1) 
if the IV has  k  levels. A  simple main effect  is the effect of an IV at a single level of another IV.  

 ■   A 2 × 2  interaction  is the difference of two differences, and has  df  = 1. More generally, an 
interaction is the extent to which the pattern of means across the levels of an IV differs at 
the different levels of a second IV. Lines that cross, or are far from parallel, indicate sizeable 
interactions.  

 ■   A  moderator  is a second IV that is associated with a change in the effect of the first IV. In the 
presence of a 2 × 2 interaction, either IV can be said to be  moderating  the effect of the other 
IV on the DV.  

 ■   If possible, focus on effects with  df  = 1, including contrasts, main effects, simple main effects, 
and 2 × 2 interactions.  

 ■   In a figure, slightly offset the means so all CIs are easily visible. With one repeated measure, 
join the means at its different levels with solid lines.  

 ■   In a figure of means and CIs, the difference between two independent means can be assessed, 
but any effect involving a repeated measure requires full data for its CI to be calculated.  

 ■   Where possible, preregister a planned analysis of a limited number of contrasts. Optionally 
follow planned analysis with exploratory analysis.  

 ■   Assumptions usually required include homogeneity of variance across groups. With one or more 
repeated measures, further assumptions are needed, for example homogeneity of correlation.  

 ■   ANOVA tests null hypotheses for each main effect and interaction. For any effect, large  F  gives 
small  p , which may permit rejection of the null hypothesis. An effect found statistically significant 
may be explored further with post hoc tests of any contrasts of the means involved in the effect.    
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End- of- Chapter Exercises

1) For each of the following, identify the design, identify the types of IVs (between participants 
or within participants), state if the conclusions drawn relate to main effects or interactions, 
and state if causal conclusions can be drawn.

a. Male and female participants were recruited from a first- year college class (Park, 
Young, Troisi, & Pinkus, 2011). Participants first viewed images related to romance or 
intelligence. Next, participants rated their interest in different majors related to science 
and mathematics on a scale from 1 (not interested) to 7 (very interested). For females, 
interest in science and mathematics majors was less after viewing images related to 
romance; for men interest was similar regardless of images viewed.

b. Participants learned a list of words on land or underwater during a SCUBA dive (Godden 
& Baddeley, 1975). Later, memory was tested on land or underwater. Memory was 
best when the learning and recall locations were matched.

c. Alcohol- dependent participants were randomly assigned to treatment with either 
placebo or acamprosate, a drug thought to help reduce cravings for alcohol (Paille 
et al., 1995). Daily drinking was self- reported before treatment began and again 
six months into treatment. In the placebo- treated group self- reported drinking was 
largely unchanged, but in the acamprosate group there was a substantial decline.

d. Children in pre- school, kindergarten, or first grade were recruited who had either an 
older sibling or a younger sibling (Ruffman, Perner, Naito, Parkin, & Clements, 1998). 
Each child completed a set of false- belief tasks meant to measure that child’s theory of 
mind. It was found that theory of mind became more sophisticated with age, and that 
those with older siblings consistently outperformed those with younger siblings.

2) To what extent is maintaining gender norms important to our sense of identity? In one 
intriguing study, McCarty & Kelly (2015) noted that, on their college campus, doors were 
often held open for women but rarely for men. They wondered to what extent this practice 
might influence self- esteem, and if the influence would be different for women (for whom 
this behavior is consistent with gender norms) than for men (for whom this behavior may 
violate gender norms). To investigate, the researchers stationed a male confederate outside 
a busy academic building. When a male or female approached the building on their own, 
the confederate walked with them to the entrance and either held the door open or not. 
Next, a second confederate stationed inside the building approached the prospective par-
ticipant and asked them to complete a brief survey which measured (among other things) 
self- esteem on a scale from 1 to 10. Results are in the Table 15.3.

a. What type of design is this?

b. Will we be able to draw causal conclusions from this study? Explain.

Table 15.3 Self- Esteem by Gender and Door- Holding Condition, From McCarty & Kelly (2015)

Men Women

Door not held n 39 39
M 8.35 8.59
s 1.05 1.19

Door held n 28 37
M 7.42 8.77
s 1.34 1.02
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c. Given the research questions, what effects do you think the researchers planned to 
assess?

d. For men, to what extent does door holding impact self- esteem? Use Ind groups 2 × 2 
to create a figure and obtain a CI for this research question. Interpret.

e. For women, to what extent does door holding impact self- esteem? Obtain a CI for this 
research question. Interpret.

f. To what extent does door- holding and gender interact to determine self- esteem? Obtain 
a CI for this research question. Interpret.

g. Not all the participants who entered the academic building agreed to take the survey. 
What potential concerns does this raise for this study and what information would 
you want to know to help evaluate this concern?

3) Video games can be violent and they can also be challenging. To what extent might these 
factors cause aggressive behavior? To explore, Hilgard (2015) asked male participants to 
play one of four versions of a video game for 15 minutes. The game was customized so 
that it could vary in violence (shooting zombies or helping aliens) and difficulty (targets 
controlled by tough AI or dumb AI). After the game, players were provoked by being 
given an insulting evaluation by a confederate. Participants then got to decide how long 
the confederate should hold their hand in painfully cold ice water (between 0 and 80 
seconds), and this was taken as a measure of aggressive behavior. You can find the mate-
rials and analysis plan for this study on the Open Science Framework:  osf.io/cwenz  You 
can retrieve a simplified version of the data set from the book website (Videogame_   
Aggression).

a. What type of design is this?

b. Will we be able to draw causal conclusions from this study? Explain.

c. What effects would you plan to analyze for this study? Why?

d. Overall, to what extent does video game violence alter aggressive behavior? (What is 
the main effect of violence?) Use Ind groups 2 × 2 to create a figure and obtain a CI 
for this research question. Interpret.

e. Difficult games require lots of cognitive resources, and some have suggested that this 
can lead to a temporary lack of self- control that facilitates aggressive behavior. Overall, 
to what extent does game difficulty alter aggressive behavior? (What is the main effect 
of difficulty?) Obtain a CI for this research question. Interpret.

f. To what extent do video game violence and difficulty interact to determine aggression? 
Obtain a CI for this research question. Interpret, and be sure to try to put into words 
what this interaction means.

g. There has been considerable debate over links between video games and aggression. 
Some meta- analyses have supported a small effect of video game exposure on aggres-
sive behavior, but critics have argued these results could be skewed by publication 
bias. Several individual studies have found little to no effect of video game exposure 
on aggressive behavior, but critics on the other side have pointed out that some of 
these were too small to give precise estimates of effect sizes. How did Hilgard design 
this study to contribute to resolving these issues?

4) Self- explaining is a learning strategy where students write or say their own explanations of 
the material they are studying. Self- explaining has generally been found to be more effective 
than standard studying, but it may also take more time. This raises the question of whether 
it’s the study strategy or the extra time that benefits learning. To help explore this issue, 
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grade school children took a pretest of mathematics conceptual knowledge, studied math-
ematics problems, and then took a similar posttest (McEldoon, Durkin, & Rittle- Johnson, 
2013). Participants were randomly assigned to one of three study conditions: normal study 
(the control group), self- explaining, or normal study + additional practice. You can find 
the data from this study on the book website (Self- Explain_ Time). The scores in this file 
represent percent correct for each test taken.

a. What type of design is this?

b. Will we be able to draw causal conclusions? Explain.

c. To what extent did participants in the normal study group improve their math skills? 
Use the Data paired page to obtain the mean difference and its CI. Note that this analysis 
calculates a difference column representing each participant’s change from pretest to 
posttest. Check that your differences match the column of differences provided in the 
data file; we’ll use these differences again shortly.

d. To what extent did participants in the self- explain group improve their math skills? 
Again note the difference scores for each participant.

e. As an additional planned contrast of research interest, consider to what extent gains 
in the self- explain group differ from gains in the control group. Analyze the difference 
scores in the Ind groups comparison page. You will obtain the average difference of 
the difference scores and its CI. Interpret. What does this CI estimate: a main effect or 
an interaction?

f. Bonus: To what extent did gains in the normal+practice group differ from gains in the 
self- explain group? Again use the Data paired page to estimate gains in the normal+prac-
tice group, then compare these difference scores with the self- explain difference scores 
using the Ind groups comparison page. Does this study provide strong evidence that 
self- explaining provides benefits above and beyond time- on- task?

Answers to Quizzes

Quiz 15.1
1) IVs, 2, 4; 2) levels, IVs; 3) d; 4) 1, 1, 1; 5) b; 6) contrasts, mean, CI.

Quiz 15.2
1) homogeneity, groups; 2) a; 3) c; 4) main, effect, level; 5) between- groups, within- group; 6) correlation, higher.

Quiz 15.3
1) 2 IVs, within- group; 2) a repeated measure, increased; 3) 1, main, 2 × 2; 4) b; 5) (k –  1), (k –  1); 6) b.

Answers to In- Chapter Exercises

15.1 The CIs on the means in the figure have MoE values as shown near red 3.
15.2 p = .086, which corresponds with the CI on the main effect, displayed on the difference axis, extending a small 

distance past zero.
15.3 a. Evening and Morning means are combined for each of Sleep and Nosleep; b. About 1.4 for Sleep and 1.7 for 

Nosleep; c. Estimate (Nosleep –  Sleep) difference as around 0.3 (actually 0.24).
15.4 Main effect is 0.24 [−0.31, 0.79], so the effect is comparatively small and the CI long.
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15.5 a. 0.84 is the (Nosleep –  Sleep) difference for Morning, and −0.36 the same for Evening; b. These differences 
are pictured as purple lines ending in diamonds, combined as illustrated by the slanted dotted lines to give 
their difference of 1.20, which is marked by the triangle on the difference axis; c. Together, a. and b. give us the 
three steps.

15.6 a. Eyeball, but then find near red 3 the values of means, so for Nosleep, the (Morning –  Evening) difference is 
2.22 − 1.14 = 1.08; b. For Sleep, difference is 1.38 − 1.50 = −0.12; c. The interaction is the difference of those 
two differences, which is 1.08 –  (−0.12) = 1.20 as before; d. Here the interaction is the extent to which Morning 
and Evening differ for Nosleep, compared with Sleep. Before we considered the extent that Nosleep and Sleep 
differ for Evening, compared with Morning. Same answer.

15.7 Rock 7, Classical 5, main effect (Classical –  Rock) = −2 eyeballed.
15.8 Main effects: (Classical –  Rock) around 5 − 9 = − 4, so Rock overall rated 4 points above Classical, and (Church –  

Party) around 8 − 6 = 2, so Church overall rated 2 points above Party. For interaction, eyeball (Classical –  Rock) 
at Church is around 7 − 9 = −2, and at Party is around 2 − 9 = −7, so the interaction is around −2 –  (−7) = 5, 
which is large but not as large as in Panel A.

15.9 (Classical –  Rock) around 4 − 9 = −5, so Rock 5 above Classical, and (Church –  Party) around 6 − 7 = −1, so 
Church is 1 point below Party. For the interaction, lines are close to parallel, so there is close to zero interaction.

15.10 a– c. Same 4 means, same main effects, same interaction.
15.11 a. See Figure 15.14; b. Same main effects and interaction as before.

15.12  a. The effect of Pen/ Laptop, the first IV, on transcription %; b. A moderator may be type of test (Factual/ 
Conceptual), with laptop transcription perhaps better if factual knowledge is to be tested, but worse if 
understanding of concepts is required.

15.13 a. The effect of training in argument mapping, the first IV, on critical thinking score; b. A moderator may be level 
of visual thinking ability, with students who find visual thinking difficult perhaps not being helped as much by 
argument maps.

15.14 a. (Meditation –  Control) at Pretest or at Posttest can be assessed because Meditation and Control are 
independent groups, so those two means are independent; b. Any effects involving a Pretest and a Posttest 
mean cannot be assessed from the figure, because Pretest/ Posttest is a repeated measure, so those two means 
are not independent.

15.15 We can eyeball from the figure the overall means for Pretest and Posttest, averaged over Control and Meditation, 
and also the main effect, which is the difference between those two overall means. But we can’t eyeball the CI 
on the difference, so we can’t assess the main effect from the figure.

15.16 a. Mean labeled “Control” is the difference between the Posttest and Pretest means for Control displayed 
as two open circles in Figure 15.9; b. “Meditation” is the same for the two filled diamonds; c. The triangle 
is the (Meditation –  Control) difference between the two means just to its left, and is the difference of the 
differences, which is the interaction of Pretest/ Posttest and Control/ Meditation.

15.17 a. For Control, enter M and s for Pretest and Posttest, and s
diff

, and find the difference is 0.12 [−0.61, 0.84], as in 
the text; b. Similarly for Meditation.
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Figure 15.14. Same four means and 95% CIs as in Panel B of Figure 15.6, but with Rock/ Classical, 
rather than Party/ Church, on the horizontal axis.
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15.18 a. Between-groups, and we do have the information we need. Use Summary two and enter the mean of the 
differences for Control and Meditation, and the two s

diff
 values, because they are the SDs of the two groups of 

differences; b. The interaction is 0.84 [0.03, 1.65], as in the text.
15.19 Main effect of Without/ With. Interaction of Without/ With and Good/ Bad. Perhaps also the main effect of 

Good/ Bad to check that students do find Good explanations better.
15.20 a. Main effects: Good is about 0.4 –  (−0.4) = 0.8 higher than Bad. With is about 0.5 –  (−0.5) = 1.0 higher 

than Without. Interaction: (With –  Without) for Good is about 0.7 − 0.1 = 0.6, and for Bad is about 0.2 –  
(−1.0) = 1.2, so difference = 0.6 − 1.2 = −0.6; b. No effects can be assessed because both IVs are repeated 
measures, so there are no independent means; c. Each IV probably has a moderate or high correlation between 
scores at its two levels, so CIs on effects are very likely to be shorter than the CIs on means, although this is 
not guaranteed. The CI on the interaction is a little longer than CIs on simple main effects, but is still likely to 
be shorter than the CIs on means, although again this is not guaranteed.

15.21 Overall, explanations With neuroscience were rated about 1.0 scale units higher than those Without, which is 
a large difference on the 7- point scale. Good explanations were rated 0.8 higher than Bad, so the two main 
effects are similar in size. Having neuroscience increased the rating of Bad explanations by about 0.6 scale units 
more than that of Good explanations, which is quite a large difference—just over half a unit on the rating 
scale. Even for neuroscience students, seeing neuroscience information that was irrelevant to the soundness 
of the explanation led them to rate an explanation as more satisfying, and more so when the explanation was 
unsound (the Bad condition) than Good. “Seductive allure” indeed.

15.22 Neuroscience moderated the effect of Good/ Bad, because that effect was smaller for With than Without 
neuroscience. Or, Good/ Bad moderated the effect of Neuroscience, because the effect of With/ Without 
neuroscience was smaller for Good than Bad.

15.23 a. All students saw all four conditions, so the comparisons of interest were all made within participants and 
were thus likely to be estimated with high precision. The danger was carryover effects arising from a student 
reading and rating a series of items from different conditions. Possible carryover effects were judged unlikely to 
influence ratings greatly. If anything they might reduce differences, making the substantial differences found all 
the more striking; b. A study could be designed with either or both IVs as between- groups IVs, to avoid any risk 
of carryover effects, but the likely lower precision suggests that the original design was probably better.

15.24 a. 4.5, 4.5; b. MoE of about 2 means the differences are both around 4.5 [2.5, 6.5], which is a large number of 
idea units out of a maximum of 30, so we conclude 3R is considerably better than the other techniques, which 
don’t differ much.

15.25 a, b. Differences are very similar, no sign of an interaction, as also indicated by the three solid lines being very 
close to parallel. The 3R advantage is about the same at immediate testing and one week later, whichever study 
technique was used.

15.26 a. Overall, Immediate is around 16 − 7 = 9 higher than Delayed. b. Immediate/ Delayed is a repeated measure, 
so MoE is likely to be fairly short, maybe around 1 to 2, but we don’t know unless we can calculate from the 
full data. In any case, the difference of 9 is very much greater, so the p value will be tiny, as was reported.

15.27 Yes and yes, because those differences refer to means of independent groups.
15.28 a, b. Around 260 for Free, 180 for 9Hour, and 220 for 12Hour; c. So (Free –  9Hour) is around 80 and (Free –  

12Hour) around 40; d. These look to be very substantial differences in glucose level, each estimated within 
roughly ±25 of the population values. Time restriction made a substantial difference, more so when eating was 
restricted to 9 than 12 hours.

15.29 a. Main effect of the between- groups IV: Free/ 12Hour/ 9Hour, with three levels. Main effect of the repeated 
measure: 0/ 30/ 60/ 90/ 120 minutes after the glucose dose, with five levels; b. For Free/ 12Hour/ 9Hour, the 
differences are so large compared with MoE of the CIs that p for the main effect would be tiny. For the repeated 
measure there are very large differences over time. We don’t know MoE but can be confident the CIs would be 
short, so p for the main effect would be tiny.

15.30 The interaction is the extent to which the pattern of (i) Free/ 12Hour/ 9Hour group means differs at the different 
time points, or (ii) 0/ 30/ 60/ 90/ 120- min means differs for the different groups. The lines in the figure are all not 
far from parallel, suggesting little or no interaction and large p.

15.31 a. At time zero, Free is about 50 more than 9Hour, a substantially higher level; b. By 30 minutes Free is around 
100, or a little more, higher than 9Hour, an even larger difference; c. So Free starts off looking diabetic, then the 
glucose dose causes an even larger increase than for 9Hour, which is a further sign of diabetes.

15.32 a. Regard NFree/AFree/ADiet as one between- groups IV, with 3 levels, and 10/ 17, or MiddleAged/ Old, as a 
second between- groups IV, with 2 levels. There are six combinations of levels, each with a group; b. For planned 
analysis, choose the two effects we analyzed in Chapter 14: The main effect of 10/ 17 to assess the overall effect 
of age, and the contrast of the two ADiet groups with the two AFree groups, all those four groups being of 
Alzheimer- prone mice, to examine the effect of calorie restriction in such mice; c.The 2 × 2 interaction of 10/ 
17 and ADiet/AFree in Alzheimer- prone mice is probably of greatest research interest. It examines the extent 
to which the effect of calorie restriction in such mice might differ in middle and old ages. The four means are 
highlighted in Figure 14.8 and to my eyeball that interaction is near zero.



If you have made it this far, then well done indeed! My aim in this chapter is 
to recap and develop a little further our basic plan for conducting research, to 
outline some current developments in Open Science, then to look ahead to a 
few of the challenges that lie beyond the simple situations and analyses we’ve 
encountered so far in this book. The main conclusion is that all the fundamen-
tals that we’ve discussed, including experimental research, Open Science, and 
the estimation approach, are likely to be what’s needed, whatever the research 
questions, however complex the situation.

As illustrations of future challenges, I’ll discuss populations that are far 
from normally distributed, archival data available in a database, studies with 
thousands of variables rather than one or two and, finally, the current hot 
topic of big data.

Here’s the agenda:

 ■ A 10- step plan for doing good research
 ■ Advances in Open Science, including preregistered review and crowd- 

sourced research
 ■ Dealing with non- normal data: Robust statistical methods
 ■ Archival data, sometimes collected over decades
 ■ Dealing with thousands of variables: Pictures of the brain
 ■ Big data: Millions or billions of pieces of information

A STEP- BY- STEP RESEARCH PLAN

Here’s a development of the Chapter 1 plan that includes expanded attention 
to Open Science issues. We’re now up to 10 steps.

1. Use knowledge of past research, good ideas, and pilot testing to refine your 
research questions and develop the measures and procedures that seem best 
for answering these questions. Continue piloting, exploring, and refining 
as you wish. Use estimation thinking throughout.

2. State the research questions. Express them as “how much” or “to what 
extent” questions, and identify the effect size measure that’s most appropri-
ate for answering each question. Often the measure we want is a difference. 
Consider reliability and validity.

3. Design a study that uses the chosen measure(s) and is likely to give good 
point and interval estimates to answer your questions.

4. If possible, preregister a detailed plan for the study, including a detailed 
data analysis plan.

5. Follow the plan to run the study, make one or more figures, examine 
the data, and follow the data analysis plan to calculate point and interval 
estimates. Display confidence intervals in the figures.

16
Future Directions
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6. Interpret the point and interval estimates, using your judgment in the 
research context.

7. If you wish, explore the data further, to possibly suggest speculative con-
clusions that might guide future research.

8. Report the study, whatever the results. Even if not accepted by a journal, 
upload the report to a research archive, such as OSF. Make sure to state 
that there was no selective reporting of just some of the results, and give 
full details of every aspect of the study. Explain any departures from the 
preregistered plan.

9. If possible, make all the materials and the data openly available. If appro-
priate, include a video showing the running of the study, to make accurate 
replication easier.

10. Adopt meta- analytic thinking throughout. Consider conducting your own 
replication.

As before, this list is not meant to be a comprehensive guide to conduct-
ing good research, but it expresses the important steps. It’s a demanding list, 
and includes steps that in the past have usually not been followed. However, 
adopting Open Science means that it’s important to follow all those steps to the 
maximum extent we can. I keep mentioning Open Science, but how important 
is it really?

HOW IMPORTANT IS OPEN SCIENCE?

The three Ioannidis problems and the replicability crisis tell us that some pro-
portion of published research can’t be trusted, but how severe is the problem? 
Replication projects are beginning to answer this question. We have met some 
of these, but here I’ll give a brief overview of two.

Estimating the Replicability of Past Research
Many Labs 1 investigated to what extent a small sample of published 
results can be trusted. In Chapter 10, I suggested you visit osf.io/wx7ck 
and click on “final manuscript” to see the report of that project. Figure 1 
of the report summarizes a huge effort to run many replications of studies 
that had identified 16 interesting effects. Broadly speaking, in seven cases 
the replications found results similar to the original, in four cases effects 
at least twice as large, in three cases distinctly smaller effects, and in two 
cases effects very close to zero.

A second example is The Reproducibility Project: Psychology, which rep-
licated 100 notable studies in social and cognitive psychology (Open Science 
Collaboration, 2015). Each was replicated by one lab, with careful efforts to 
make the replication as similar as possible to the original, but, in most cases, 
with much larger samples. The replication studies obtained effects that were, on 
average, just half the size of the effects obtained in the original studies—that’s 
a striking and disturbing difference. Broadly speaking, around 40% of repli-
cations (about 25% in social and 50% in cognitive psychology) found results 
roughly similar to the original results, whereas 60% found somewhat smaller, 
or very much smaller effects.

The 100 original studies were all published in high- quality journals after 
scrutiny by peer reviewers, and in virtually all cases reported clear and statistically 

Many Labs 1 
conducted many 
replications of 
16 effects and in 
some cases found 
considerable 
disagreement with 
the original studies.

The Reproducibility 
Project: Psychology 
conducted close 
replications of 
100 studies and in 
roughly 60% found 
effects smaller or 
much smaller than 
the original studies 
had found.
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significant effects. They met all standards that were until recently regarded as 
adequate. However, the studies had not been preregistered and we can’t tell 
the extent to which there may have been selection of what was reported. The 
published results may, to some extent, have been cherry picked. Indeed, a recent 
study (Franco, Malhotra, & Simonovits, 2015) of a sample of psychology papers 
found that 40% failed to report all study conditions and 70% failed to report all 
dependent measures. These omissions were not random: The reported findings 
had much bigger effect sizes than the unreported ones. That’s classic cherry pick-
ing! In contrast, the replication projects just discussed followed the new standards 
of Open Science. All were preregistered and reported in full detail, so we can 
be confident we have the full story and that the results were not cherry picked.

It may be, then, that a disturbingly large proportion of published results 
would not hold up well on replication. In particular, published effect sizes are 
likely in many cases to be overestimates of population effects. Open Science is 
indeed necessary, and, in fact, very much needed.

16.1 Visit cos.io and click on the “See some examples” link under Metascience—
which means the science of doing science. You will probably see brief 
summaries of Many Labs 1, 2, 3, and perhaps more. Read about each and 
try to see how they fit together.

16.2 At cos.io, again click on the “See some examples” link under Metascience. If 
you can see Reproducibility Project: Psychology (RP:P), read the summary 
then click “Learn more”. Alternatively, at osf.io, search for “Estimating 
the Reproducibility of Psychological Science”, then click on the Wiki for 
the project with that name. Either way, under Contents click on “Science 
article” to see the summary article published in top journal Science. Read 
as much as you find interesting.

a. Scroll down to see Figure 3, which is a scatterplot of the replication 
effect sizes against the original effect sizes. Each dot marks the value 
of an original ES and the replication ES of that same effect. Dots below 
the diagonal line are cases where the replication ES was lower than the 
original ES; most dots are below the line.

b. What does the project say about the published research literature in 
social and cognitive psychology? Is it encouraging or disappointing?

ADVANCES IN OPEN SCIENCE

Open Science is a current frontier of research excitement—it’s probably the most 
important advance for many years in how to do good science. Some important 
Open Science practices are rapidly becoming the norm, including open materials 
and data, and even preregistration of research and analysis plans.

Many researchers find preregistration, in particular, a big challenge and a 
dramatic change from past practice. However, here’s a tiny, but remarkable, sign 
of its acceptance: In December 2015, D. Stephen Lindsay, editor of Psychological 
Science, declared in an editorial: “Personally, I aim never again to submit for publi-
cation a study that was not preregistered.” (Lindsay, 2015, p. 1828). And he says 
he is now “requiring my students to do it as well” (Lindsay, tiny.cc/Lindsayprereg).

Open Science is not yet fully evolved—there are additional frontiers being 
explored that may soon become widespread. I’ll describe two that seem espe-
cially promising.

Replication projects 
suggest that a 
considerable 
proportion of 
published effects, in 
psychology at least, 
are overestimates, 
perhaps severe 
overestimates, of 
true effects.
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Preregistered Review
Many journal editors are promoting Open Science practices by issuing new 
guidelines for conducting and reporting research, and by offering the Center 
for Open Science badges we met in Chapter 10. The novel policy of preregistered 
review is particularly interesting.

Journals have traditionally used peer review to scrutinize reports of com-
pleted research, so they have decided what to accept for publication only 
after seeing the final data, analysis, and interpretation. Preregistration opens 
up the possibility that peer reviewing could be applied to the preregistered 
research plan, before data collection commences. The replication studies in the 
Reproducibility Project: Psychology were all peer- reviewed in this way—their 
research plans were scrutinized and possibly revised before being preregistered, 
and before the studies themselves commenced.

Some journals are now experimenting with preregistered review, mean-
ing that they review the full research plan before it is preregistered. If the 
research question is judged sufficiently interesting and the study design 
sufficiently rigorous for answering the question, then the journal commits 
to publishing the final report, whatever the results, subject only to check-
ing that the plan has been accurately followed and that the report is fully 
detailed.

Preregistered review is peer reviewing of the full research plan before it is preregistered and 
before data collection commences.

Reflect on that for a moment: The journal is agreeing to publish a report 
of research before knowing the results! That’s a stunning change from past 
practice in which journals would publish only research that found new or 
surprising results. However, recall the Open Science principle that all research 
conducted to a reasonable standard must be made publicly available—to avoid 
selective publication, which has done so much damage. It’s great that some 
journals are using preregistered review to make publication decisions. You may 
also enjoy submitting to a journal using preregistered review because it helps 
you gain the input and advice of expert reviewers before running the study, a 
much more efficient way to do good work. Moreover, if your plan is accepted 
and you preregister it, perhaps after revision in response to reviewers’ advice, 
then you’ll have a great incentive to follow through with the study—your work 
will be published, whatever the results.

Beyond preregistered review, journal editors are considering a wide 
range of Open Science issues. Following discussions by many editors, Nosek 
et al. (2015) published in Science the Transparency and Openness Promotion 
(TOP) Guidelines. These describe policies that journal editors can adopt to 
encourage, or require, various Open Science practices for research they 
publish. More than 700 journals have already signed to indicate support, 
and possible adoption of some version of these policies.

Another initiative (see opennessinitiative.org) encourages researchers, 
in their role as reviewers for journals, to decline to give a full review of any 
manuscript that does not follow Open Science practices—or does not at least 
explain why these were not possible in the particular case. Open Science is 
advancing fast.

Preregistered review 
allows plans to 
be refined at the 
start, helps avoid 
publication bias, and 
emphasizes choice of 
worthwhile research 
questions over the 
cherry picking of 
results.

The TOP Guidelines 
are example policies 
that journals can 
adopt to encourage, 
or require, Open 
Science practices.

http://opennessinitiative.org
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Replication and Crowd- Sourced Research
Replication is at the heart of Open Science, and I’ve mentioned two large rep-
lication projects. In addition, funding bodies are beginning to fund systematic 
replications, which is a clear change from past practice in which only research 
likely to give a breakthrough would be funded.

One exciting aspect of these replication efforts is that many use crowd- 
sourcing to find research teams interested in participating. A researcher who 
wishes to initiate a replication project issues a call for expressions of interest, 
perhaps from research teams anywhere around the world. Anyone expressing 
interest then discusses with the originator and all other teams exactly how the 
project will proceed. They invite the researchers who conducted the original 
study being replicated to participate by providing any additional materials or 
information needed for the replications to be as close as possible to the origi-
nal study. The research plan will be refined, then scrutinized by others in the 
project and perhaps independent reviewers, then revised again. All materials 
and successive versions of the research plan will be 
uploaded to OSF. Agreement to publish may be sought 
from a journal offering preregistered review. When 
all is ready, the research and analysis plan is preregis-
tered and data collection commences, perhaps by sev-
eral teams in different countries. Excitement mounts 
as data come in and the teams post their results to 
OSF for all to see. Finally, everything is written up, 
including a meta- analysis to integrate all the results, 
including the result of the original study. All materials, 
analyses, and the full data are made available on OSF.

Crowd- sourced projects offer fantastic opportu-
nities for student groups, including undergraduate 
students, to participate. In many such projects stu-
dents are indeed playing a valuable role. For example, 
I mentioned in Chapter 10 the CREP project, which 
you can read about at osf.io/ wfc6u. You’ve also seen 
a number of other examples in the end- of- chapter 
exercises. Look out for opportunities to join a project 
in an area you find interesting. You could browse osf.
io for ideas and invitations to participate.

16.3 Go to cos.io/top, which describes the TOP Guidelines, and look around.

a. How many journal signatories are there, and what have they 
undertaken to do?

b. Near the top, click on “Summary worksheet of the TOP Guidelines”. 
Choose a row, perhaps “Data transparency” or “Preregistration of anal-
ysis plans”, and read the summary policies in the four columns. What 
changes as you shift from left to right?

c. Suggest an example project for which one of the Level 3 policies would 
be difficult or impossible.

d. Scroll down to the list of links at the bottom of the page and click on 
“The Preregistration Challenge” (or go to cos.io/prereg). How much 
money could you win? What do you need to do to get the money?

Crowd- sourced 
projects invite 
participation by 
interested research 
groups, often 
including student 
groups.
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16.4 Visit osf.io and search for “Many Lab”. Read about Many Lab, which is a 
site to support replication projects. Scroll and you will probably discover 
Many Labs 2 and 3 and 4 and perhaps more. Read as your interest leads. 
A good strategy can be to click on the Wiki of anything of interest, for 
further description.

16.5 At osf.io find at least one opportunity to join a crowd- sourced replication 
effort. CREP or Many Lab may be a useful starting point.

16.6 In Chapter 13, an end- of- chapter exercise discussed the finding by Rozin 
et al. (2014) that members near the periphery of a group are more likely 
to mention group membership than are members near the center. They 
presented data for three different groups: universities, international 
airports, and Ivy League universities. They also reported that they had 
investigated the periphery– center idea for various uses of the word 
“science”. Why did they tell us that? Should it change the message we 
take from the article?

16.7 Find an experienced researcher and ask them about the 10- step plan. 
Suppose they say that it looks fine in theory, but in practice it’s too demand-
ing of time and effort, and, anyway, some steps are not that important. 
What evidence could you present to justify using the full plan whenever 
possible?

The research world is indeed changing as Open Science advances. It’s a 
wonderful time to be learning about research and perhaps planning your first 
studies. What you choose to do is helping shape how science will be done. 
Reflect and enjoy!

Now for a few examples of the research challenges you might meet, beyond 
what we’ve discussed in this book. Just remember that in every case Open 
Science is relevant and that, usually, an estimation approach is best. My first 
example considers non- normal data. Just take this quiz first…

Quiz 16.1

1. The 10- step research plan emphasizes
a. preregistration of a detailed research plan.
b. choice of an effect size measure that corresponds with each research question.
c. consideration of replication and meta- analysis.
d. All of the above.

2. In what order should you do the following? Conduct a study, preregister a study, pilot testing, 
plan a study.

3. The Open Science Framework (OSF) is
a. a set of online facilities to help researchers practice Open Science.
b. a large collection of journals that have agreed to encourage Open Science.
c. a growing body of researchers who have taken the Open Science oath.
d. a format and template to help you write up your research reports.

4. The main Open Science slogan is the question: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ?
5. Preregistered review scrutinizes research before /  during /  after data collection, and may 

decide to publish research dependent on /  regardless of what results are obtained.
6. Crowd- sourced replication research may invite participation by teams of established 

researchers /  students /  both established researchers and students and is likely to focus on 
close /  more distant replication.
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DEALING WITH NON- NORMAL DATA

So far we’ve assumed that our samples are from normally distributed popula-
tions. Fortunately, the central limit theorem, which we explored in Chapter 4, 
tells us that the mean heap is close to normal, even for many non- normal 
populations. This means that our conventional statistical techniques are likely 
to give reasonable results, at least for moderately non- normal populations, and 
especially when N is not too small.

However, researchers quite often encounter data that seem to come from 
populations that depart greatly from normality. Perhaps they are highly skewed 
or there are extreme outliers. In such cases conventional statistical techniques 
often don’t give reasonable results, meaning, for example, that conventional 
95% CIs would not include μ on 95% of occasions. Robust statistical techniques 
are often an excellent choice in such situations. “Robust” means resistant, at 
least to some extent, to departures from one or more assumptions. At present, 
robust techniques are not widely used, but they deserve to be better known 
and used more often.

We’ve already encountered one robust technique: the Welch– Satterthwaite 
method for calculating a CI on the difference between two independent means. 
To use it, click No at red 8 in Data two or red 4 in Summary two of ESCI intro 
 chapters 3– 8. It’s robust to departures from homogeneity of variance, and so 
doesn’t need that assumption.

Here I’ll describe a robust technique that’s highly useful for non- normal 
data: CIs based on trimmed means, for the difference between two independent 
groups. This technique is robust against many departures from normality, 
but it still requires other assumptions, notably random sampling from the 
population.

Trimmed Means for Two Independent Groups

Consider the data set with N = 18 shown on the left in Figure 16.1. There are 
two extreme high outliers, which, as we discovered in Chapter 3, have great 
influence by increasing substantially both the conventional mean, M = 1.33, 
and standard deviation, s = 0.59. Why, then, don’t we simply remove the two 
obviously extreme points? The trouble is that there’s no good way to choose 
which, if any, points really are aberrant. The robust approach I’ll describe is 
a principled way to permit outliers to have some influence, without letting 
them dominate.

The first step is to trim a proportion of the points from both ends of 
the data set. Experts advise that usually the best choice is 20% trimming, 
meaning the lowest 20%, and highest 20% of data points are trimmed. 
Then the trimmed mean, M

t
, is simply the mean of the remaining central 

60% of points. The number of points to trim from each end is 20% of N, 
rounded down to the nearest integer. In the example we trim 0.20 × 18 = 3.6, 
rounded down to 3, points from each end. Figure 16.1, on the right, shows 
the trimmed points as crosses. The points not trimmed are shown as filled 
red dots, and the trimmed mean, M

t
, is simply the mean of those points. Its 

value of M
t
 = 1.20 is lower than M because the two high outliers are among 

the points trimmed.

Robust statistical 
techniques are 
resistant to 
departures from 
some assumptions.

The 20% trimmed 
mean, M

t
, is the 

mean of the points 
remaining after the 
top 20% and bottom 
20% of points are 
trimmed.
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The standard deviation for the trimmed analysis is s
t
 = 0.22, which is cal-

culated using a formula that recognizes the trimming but allows all 18 points 
to have an influence. The crossbars in the figure mark distances s and s

t
 above 

and below M and M
t
, and illustrate that s

t
 is much less than half the size of s. 

The small s
t
 reflects the much reduced influence of outliers on this measure of 

variability within a data set.
An illustration of the use of trimming is the scoring of international diving 

and figure skating. A panel of, for example, seven or nine judges each awards 
a score. The lowest and highest are dropped and 
the competitor awarded the mean of the remaining 
scores, which is thus a trimmed mean.

The next step is to use the trimmed mean and 
corresponding standard deviation to calculate a 
95% CI. The trimmed mean is our point estimate 
of the population trimmed mean, and the CI our 
interval estimate of that same parameter.

Figure 16.2 shows in the left figure the blue 
dot plots of data for independent samples of 21- 
year- old males and females who were asked to 
state their number of sexual partners. I excerpted 
the data from the British National Survey of 

The standard 
deviation for the 
trimmed analysis, s

t
, 

is calculated using 
all data points, but 
trimmed points 
have much reduced 
influence.
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Figure 16.1. At left: a dot plot of all N = 18 data points in a fictitious data set, with conventional 
mean, M, and standard deviation, s, reported. The upper and lower black crossbars are distance 
s above and below M. At right: 20% trimming, the top three and bottom three data points are 
trimmed (and displayed as crosses) and the trimmed mean, M

t
, for the remaining 12 red points, and 

corresponding standard deviation, s
t
, are reported. The upper and lower red crossbars are distance s

t
 

above and below M
t
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Sexual Attitudes and Lifestyles (NATSAL, 2005). The figure reports con-
ventional analysis, but at red 6 No is selected, so homogeneity of variance 
is not assumed and Welch– Satterthwaite is used to calculate the 95% CI on 
the difference. As usual, the difference between the group means is shown 
on a difference axis in the figure on the right. The results are the same as 
those given by the Data two page, as we used in Chapter 7, but the figure 
is from Robust two.

I then clicked the checkbox at red 8 to get the robust analysis based on 
trimmed means, which is shown in Figure 16.3. The conventional analysis is 
grayed out, and robust analysis with 20% trimming is shown at red 8, 9, and 
10. In the left figure, trimmed points are displayed as crosses and remaining 
data points as filled red circles, and the large red dots mark M

t
 for each group. 

The 95% CIs have been calculated using M
t
 and s

t
 for each group, and the 

figure on the right displays the difference between the two trimmed means, 
with its CI.

16.8 Suppose in Figure 16.1 that the two very high points came from Einstein 
and Darwin—two scientists who were in many ways extreme outliers. 
How would you feel about trimming?

16.9 a.  For Group 1, compare the mean in Figure 16.2 and trimmed mean in 
Figure 16.3. Do they differ much? Explain.

b. Do the same for the Group 1 standard deviations.
c. Do the same for Group 2, means and standard deviations.
d. Compare the values for males and females.

16.10 Compare the difference and its CI in the two figures. What conclusions 
would you make in the two cases? Explain.

16.11 If you haven’t already, fire up Robust two and see the analysis of the 
NATSAL21 data set. If you don’t see that, scroll right and click at red 13 
to load the data. Click at red 8 for robust analysis.

a. Use the spinner at red 8 to adjust the amount of trim. Describe how 
points in the dot plots change and explain what that indicates.

b. What is the trimmed mean with 0% trimming? With 50% trimming, 
or as close to 50% as you can get?

16.12 Scroll right and click at red 15 to load the PenLaptop 2 data set. Again 
compare conventional and robust approaches.

With 0% trimming, so all data points are included, the robust analysis 
gives exactly the same results as conventional Welch– Satterthwaite, as shown 
in Figure 16.2. Yes, the robust analysis does not require assumption of homo-
geneity of variance.

Just as the mean and median are two different ways to summarize the 
general location of a data set, the conventional and robust analyses are alter-
native ways to summarize the data and estimate a population parameter. 
Using mean or median is not a question of right and wrong, but of judging 
which is more appropriate in a particular situation. Similarly, we need to 
judge whether a robust analysis that estimates the population trimmed mean 
is more justifiable in the research situation, especially considering skew 
and outliers. For the NATSAL21 data set, the extreme outliers, especially 
for males, suggest we should prefer robust. Note that it’s not an alternative 
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way to estimate the population mean, but a good way to estimate a different 
parameter, the population trimmed mean. For a highly skewed population 
distribution, the trimmed mean may well give more insight about the sam-
ple and population. Choosing the most appropriate parameter to estimate 
requires careful thought in the research context. Here we’d probably prefer 
the trimmed mean.

Open Science Requirements
A preregistered data analysis plan should state what analysis will be used. 
However, it has been common practice to examine the data before choosing 
between conventional and robust approaches. That’s appropriate when we’re 
exploring, but, from the perspective of planned analysis and preregistration, 
choices made after seeing the data are questionable research practices, which 
could be influenced, perhaps unconsciously, by a desire to achieve p < .05, or a 
short CI. If, as usual in the past, the research plan was not preregistered and a 
robust analysis seems appropriate, good practice is to report both conventional 
and robust analyses.

If you preregistered with no mention of robust analysis, but, after seeing 
the data, that approach seems strongly indicated, then you can consider a 
departure from your plan, in which case it’s essential to report both analyses 
and full details of your reasoning.

In this section I’ve described a good way to deal with non- normal data. 
A general lesson is that, if you are concerned about any statistical assumption 
you need to make, then you should seek expert advice. There may be some 
robust technique that’s appropriate for your situation.

ARCHIVAL DATA

Not every research question requires collection of new data. It can be very 
efficient to find archival data, meaning data in an existing database, and use it 
to answer research questions beyond those considered by the researchers who 
originally collected the data. Moreover, the Open Science demand for open 
data wherever possible means that more and more data will be available for 
use by other researchers. However, there are challenges with using archival 
data. A major one is that it’s hard to specify a planned analysis—which must 
be fully independent of the data—when the data are already available. Yet 
we know that without planned analysis we are left only with exploratory 
analysis, which runs the risk of capitalizing on chance, of merely seeing faces 
in the clouds.

My example is the Australian Temperament Project (ATP), which has 
been collecting data for more than 30 years. It’s therefore also an example of 
longitudinal research, which is essential for studying how people develop over 
decades. However, longitudinal research is challenging to set up and maintain. 
For a start, it’s very hard to retain participants, because people move over-
seas, decide they no longer wish to participate, or simply can’t be contacted. 
In addition, most research careers and funding are based on achievement 
and publication in the short term, and so there are few projects around the 
world that have been collecting data for decades—and their databases are, 
correspondingly, precious.

If choosing robust 
after seeing the 
data, report both 
conventional and 
robust analyses.

Archival data are 
data in an existing 
database. They can 
be used to address 
additional questions.

Longitudinal 
research can be 
highly valuable, but 
is challenging to set 
up and maintain.
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The Australian Temperament Project
The project began in 1983 with a sample of 2,443 families with young infants from 
across the state of Victoria in Australia. In the following 30 years, there have been 
15 waves of data collection, always from the parents, and often also from teach-
ers and other professionals. From about 11 years old, the children themselves 
have provided information. Mailed questionnaires have been supplemented by 
observations and interviews with selected subsamples. A remarkable feature 
has been the project’s retention rate: After 30 years more than two- thirds of the 
original families are still involved. Many of the original infants are now raising 
their own children and so the project is continuing as a study of three generations.

Temperament refers to personality, especially behavioral aspects that are 
apparent in infancy. The central focus of the ATP has been on how temperament 
develops, and further issues of interest include educational progress, mental 
health, relationships, risky behaviors, and social competence. One major finding 
has been that temperament usually persists strongly, and the seeds of later anx-
ieties or problematic behavior can often be seen in difficult early temperament 
traits. Another conclusion is that early identification of children at risk, then early 
intervention, can be effective in reducing later problems. There’s more about the  
project at tiny.cc/atpwebsite, and Vassallo and Sanson (2013, tiny.cc/atp30) is 
an excellent summary. You might be interested in Chapters 5 and 6 on alcohol 
use and driving behavior—compare with your own country, if not Australia.

Longitudinal Analyses and Archival Data
At the start of a longitudinal project, sample selection is critical because the 
same sample will be providing data throughout the project and so it’s especially 
important that the sample is representative of the population. The ATP took 
advice from the Australian Bureau of Statistics to choose a sample representa-
tive of all Victorian infants and families. Conclusions from the project will thus 
apply broadly, at least across Victoria and, most likely, across all of Australia. 
The extent to which a conclusion applies in other countries is a matter for 
judgment and further research, and depends to some extent on similarity of 
relevant aspects of Australian and the other country’s culture.

In a large longitudinal project, many important questions require analyses 
of time series data, meaning data collected at a large number of time points. In 
Chapter 15, the Chaix et al. (2014) study on mouse fitness and obesity had 
five time points over 2 h, but the ATP has time series data extending over dec-
ades, which allow researchers to address questions about long- term change. 
Specialized statistical techniques are needed, often similar to the techniques used 
to analyze time series data in economics (e.g., GDP growth or the inflation rate 
over many years) or meteorology (e.g., average temperatures over many years).

Over time, the database of a large and well- run longitudinal project 
becomes more and more valuable, both because its time series extend for 
longer, and, usually, because additional researchers apply further analyses to 
selected archival data to address further questions. In addition, some studies 
collect new data to be integrated and compared with selected archival data.

Open Science Issues
All the statistical and Open Science issues we’ve discussed are relevant for the 
analysis of archival data.

Time series data can 
extend over many 
years, and be used 
to address questions 
of long- term change. 
Specialized analysis 
techniques may be 
needed.
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Preregistration, and Planned and Exploratory Analysis. Suppose you plan to 
analyze archival ATP data to investigate the relationship between infant tem-
perament and the commission of driving offenses 20+ years later. You could 
explore the data, by making scatterplots and tables of frequencies, and calculat-
ing various correlations and regressions. However, that would be exploration, 
and any relationships you discover could be lumps in the randomness. There’s 
only one database, so, once you’ve explored, you have lost the chance to con-
duct a planned analysis. Is there a better way?

One good approach is to choose a sample of the ATP participants. Explore 
their data, seeking an analysis strategy that’s most informative about your 
research questions, and preregister that as your data analysis plan. Then, for the 
first time, access the remainder of the database—which you haven’t previously 
examined—apply your planned analysis, obtain no doubt fascinating answers 
to your questions, and report your study in full detail.

This strategy means you need to be very careful about examining the whole 
database, because that amounts to exploration, and you lose the opportunity 
for planned analysis. The general principle of distinguishing carefully between 
exploratory and planned analysis is just as important in the archival context 
as elsewhere.

Open materials, open data. You may have no problem earning the open mate-
rials badge by making full details of your procedures and data analysis available. 
Open data is, however, more problematic. The ATP research leaders tell me that 
they are keen to establish collaborations with other researchers, but that they 
cannot release any original data, even after individual identifying information is 
removed. The project commenced long before open data became recognized as 
important, and the project’s ethical approval requires that the data be kept confi-
dential. One reason the project has achieved an impressively high retention rate 
over 30+ years is that participants have been repeatedly assured that their data 
will be kept completely confidential. Note that the database includes sensitive 
information, such as police records and DNA samples. If the project were being 
initiated today, the researchers would aim to make as much of the data openly 
available as possible, of course without any individually identifying information.

I conclude that analysis of archival data, and longitudinal research, can 
both be highly valuable and rewarding, even if challenging. The full range of 
Open Science considerations apply, but it may take careful consideration to 
decide how best to respond to each Open Science concern.

16.13 a.  Suppose a large longitudinal project on the development of gifted 
and talented children made its database open to all. You read a news 
report that analysis of that database shows that people who were 
musically talented as children are more likely to divorce later in life. 
What might you conclude? What questions would you ask about the 
analysis underlying the claim?

b. Are there any dangers in making a large data set openly available? 
What policy on data accessibility would you recommend?

Quiz 16.2

1. Robust statistical analysis requires more /  fewer assumptions than conventional analysis, for 
example by requiring /  not requiring the population to be normally distributed.

2. The trimmed mean of a sample is more /  less influenced by outliers than the conventional 
mean and is our point estimate of the conventional mean /  trimmed mean of the population.

Given a large 
existing database, 
explore a sample to 
develop an analysis 
strategy, then apply 
this as a planned 
analysis to the rest 
of the database.

Open Science 
issues apply when 
analyzing archival 
data and in 
longitudinal research, 
but thought is 
needed to find the 
best way to respond 
to each issue.
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3. If, after seeing your data, you observe that it is markedly non- normal and then decide to carry 
out a robust analysis, you should
a. report the robust analysis as exploratory analysis, which offers only tentative findings.
b. quickly register an analysis plan including robust analysis.
c. report both conventional and robust analyses, with no mention of exploratory analysis.
d. not in fact carry out a robust analysis, and simply report only the conventional analysis.

4. In longitudinal research, why is choosing the sample critical?
5. When using an existing large archival data set, a good strategy is to

a. use past research to plan the exploratory analysis to be applied to the whole data set.
b. explore half the data set, then explore the other half, and check how similar the results are.
c. explore a subset, then preregister an analysis plan to be applied to the remainder of the 

data set.
d. explore the full data set, then choose an analysis plan to apply to a large subset.

6. Open Science is likely to lead to more /  less research data being available to all, and to 
greater /  reduced opportunity for students and others to use archival data to answer their 
own research questions.

DEALING WITH NUMEROUS DEPENDENT VARIABLES

Beyond studies with one or two measures are those using techniques that give 
thousands or even millions of measures, for example various techniques for 
studying the brain. In Chapter 9, one of the meta- analysis examples involved 
brain pictures. Search online for “fMRI” (functional magnetic resonance imag-
ing) or “fMRI images” to see images of brain cross- sections with colors indicating 
regions of heightened neural activity. Development of wonderful brain imaging 
techniques, especially fMRI, has led to exciting research that investigates how 
brain activity relates to many types of cognition, and also to emotions, political 
attitudes, responses to advertising, and numerous other things. Brain imaging 
is a hot research area for good reason, but in 2009 it was challenged by a dead 
fish. More on that in a moment, but first a few words about fMRI.

Increased neural activity in the brain prompts increased local blood flow, 
which can be detected via changes in a magnetic field around the participant. 
Complex equipment and software gives an image on the screen of a selected 
slice through the brain, with colored regions. There are many steps of phys-
iological reasoning and assumptions between neural activity in some brain 
region and the color of the corresponding small area on the fMRI screen. Of 
most relevance for us is the statistical reasoning used to decide which areas 
should be colored.

fMRI analysis is usually based on 100,000 or more voxels, each a tiny volume 
in the brain, perhaps 1 mm across. Neural activity is measured for each voxel, 
so we have values for thousands of dependent variables, one for each voxel, 
and each is usually measured repeatedly in a series of trials. Complex statistical 
procedures are used to analyze the overall pattern of activity. Usually, patterns 
are compared for two conditions—perhaps the participant looks at an emotional 
or a neutral picture. When a small cluster of adjacent voxels shows markedly 
higher activity for the emotional than the neutral picture, the corresponding 
area in the brain image is colored. You might think that the brighter the color, 
the greater the neural activity, so activity level is the effect size. However, fMRI 
analysis has usually focused on p values, not effect sizes. Brightness of color indi-
cates how small p is in those regions—how strong the evidence is that activity 
level is greater for the emotional than the neutral picture. The analysis gives 
many thousands of p values, and areas with a cluster of very small p values are 
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colored. The smaller the p, the brighter the color. Are you thinking that having 
so many p values might raise a problem?

16.14 Recall the dance of the p values. Imagine fMRI replications—perhaps 
we record the colored fMRI image for the same stimuli and participant 
a number of times, with a one- minute break between recordings. Then 
we replay the images at, say, one every second. How might the colored 
areas in successive images appear? What would you conclude?

Recall our discussion in Chapter 14 of exploratory analysis and multiple 
comparisons: When there are many possible comparisons, exploratory analysis 
is at particular risk of finding false positive results—of identifying only lumps in 
the randomness, faces in the clouds. fMRI researchers recognized the problem 
by using a very low p value criterion, often p < .001, for a region to be colored.

Now comes the dead fish: Bennett et al. (2009, tiny.cc/ salmonposter) placed 
a dead salmon in their fMRI machine and compared patterns when a picture 
or no picture was shown to the fish. Of course there’s no neural activity in a 
dead fish, so any patterns given by the machine might reflect, for example, 
bone and muscle, but can’t be reflecting neural activity. Moreover, the fMRI 
patterns with and without the picture placed in front of the fish could differ 

only randomly, so any region earning color would 
have to be a false positive.

Using a p < .001 criterion the researchers 
identified a small region in the fish that met the 
criterion for heightened neural activity and was 
brightly colored. However, they suspected that the 
number of comparisons was so large that using a p < 
.001 criterion was insufficient protection from false 
positive results. Using knowledge of the number of 
voxels—in other words, the number of DVs—they 
calculated what stricter criterion would be appro-
priate for the number of possible comparisons in 
their study. They found that when they used this 
stricter criterion, this even smaller p value, all color 
disappeared. The best place to read about the dead 
salmon is at Ignobel (2012, tiny.cc/ deadsalmon). 
Since 2009, most fMRI reports have used the more 
appropriate, stricter criterion.

I tell the dead salmon story to illustrate how, even for the most complex 
and high- tech situation, our basic statistical and Open Science ideas—for exam-
ple the multiple comparisons problem—are still highly relevant. Expect those 
ideas to be relevant whenever there is a large number of DVs, for example in 
other new and complex fields such as genetic analysis. Remember the basics 
and never be blinded by media hype, complex equipment, or bright colors on 
a computer screen. In other words, this is not primarily a story about a dead 
fish, or even about brain images, but about how to deal with large numbers of 
DVs and potential comparisons.

The Open Science solution is, as usual, to specify in advance a limited 
number of planned comparisons. If you explore when there are very many DVs, 
there’s an enormous risk of capitalizing on chance, of obtaining false positives. 

The dead salmon 
reminds us that 
when there are 
many DVs, or 
many possible 
comparisons, 
exploring is 
dangerous, and 
invites false positive 
findings.
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It’s best to avoid this risk, but sometimes that’s impractical, as for the above 
type of fMRI study, in which case you need to set an extremely strict criterion—
perhaps an extremely small p value—for any effect that you wish to identify 
as possibly of interest. The dead fish tells us this, loud and clear. Then you’ll 
be especially keen to run a replication and use planned analysis to investigate 
further any tentative findings suggested by data exploration in the first study.

BIG DATA

Beyond studies with N = 20, or even 200, are studies with much larger N. When 
N is enormous, how long are CIs likely to be? Of course—they are likely to be 
extremely short, so we hardly need to worry about estimation error, and can 
focus on the sizes of effects and their practical meaning.

Before getting to an example, here’s a question: Can knowing about sta-
tistics make you rich and famous? Well, perhaps: In 2009, Hal Varian, then 
Google’s chief economist, famously stated (tiny.cc/Varianstats) that

The sexy job in the next ten years will be statisticians. The ability to take data—
to be able to understand it, to process it, … to visualize it, to communicate 
it—that’s going to be a hugely important skill in the next decades, not only at 
the professional level but even … for elementary school kids, for high school 
kids, for college kids. Because now we really do have essentially free and 
ubiquitous data.

“Free and ubiquitous data”—also referred to as big data—presents a dra-
matic contrast with earlier chapters in which the challenge was always to find 
N large enough to give reasonably precise estimates, and to find similar studies 
so meta- analysis can give more precise answers to our research questions. It’s 
a different world when we consider the vast databases of emails and other 
messages, purchases and payments, information about online searches, links 
between people, and information about people themselves. Such databases are 
held by governments, Google, LinkedIn, Facebook, Amazon, and many other 
companies. These databases are collecting big data and they are expanding by 
the hour.

Brain Points for Better Learning
Can big data be useful for researchers? If so, to what extent do our ideas of 
estimation and Open Science have relevance? My example is a computer 
game. Consider what you might say to a child who has just finished a painting. 
Perhaps “That’s lovely, you are great at art!” or “That’s lovely, I can see you’ve 
been trying really hard!” Which comes naturally to you? As a child, which did 
you hear more often? As I first mentioned in the Making the Most of This Book 
section, Carol Dweck and her colleagues have published many studies finding 
that mention of effort leads to better persistence and progress. The key issue 
is the extent to which the child (and parent and teacher) have a fixed mind-
set—the belief that “I’m just no good at mathematics”—or a growth mindset, 
which holds that there are no fixed limits, and that effort and application can 
lead to learning. Praising effort is effective because it encourages a child to have 
a growth mindset, to believe they can do better, and to persist. My example 
applies that idea to an educational computer game.
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O’Rourke et  al. (2014, tiny.cc/brainpoints) prepared two versions of 
Refraction, a game to help elementary school students learn fractions. The 
two versions were as similar as possible, but the control version awarded points 
for each level completed, whereas the experimental version aimed to develop 
a growth mindset as well as teach fractions. It awarded brain points for effort 
and use of strategy, as well as for improved understanding of fractions. The 
versions were made available through the BrainPOP website (www.brainpop.
com), which was being used by around 20% of elementary schools in the 
United States. Any child choosing to use Refraction was assigned randomly on 
first login to work with either the control or experimental version. The system 
collected detailed data about every child’s performance.

During just 10 days, the researchers obtained data from more than 7,000 
children with each version of the game. They found that children working 
with the experimental version played longer and completed more levels than 
those using the control version, and were also more likely to use the strate-
gies rewarded by the brain points system. Many of the effect sizes were small, 
around d = 0.1, but that’s hardly surprising considering that children used the 
game for only around 3 minutes on average. Another notable result was that 
the experimental version was better at retaining lower- performing children. 
These are important findings—it’s rare for anything in education to make a 
difference after only a few minutes. They suggest how educational games can 
be designed to be more effective and engaging, while also encouraging students 
towards a growth mindset—the belief that persistence and effort can lead to 
successful learning.

The study estimated effect sizes. Yes, the CIs were extremely short, but 
what about p values? Ponder that question for a moment.

With such large N, even small effect sizes had tiny p values. The researchers 
reported several cases of p < .0001, but the exact p values had several more 
zeroes. In other words, with very large N, any non- zero effect size is, for prac-
tical purposes, estimated with no error, and is almost certainly different from 
zero in the population. CIs and p values become virtually irrelevant, and our 
attention can be focused on the effect sizes themselves, which is great news. 
Even so, critical thought remains as important as ever. The effect sizes may be 
estimated very precisely, but what do they mean? Are they large enough to 
matter? Are they really answering our research questions?

Being able to run such online studies offers enormous potential for 
educational research. The Refraction study not only showed how learning 
can be improved, but allowed the researchers to study the performance of 
children at a range of skill levels, and also to investigate a higher- level edu-
cational aim, the development of a growth mindset. Developing and piloting 
the game, setting up the study, and analyzing the data were, no doubt, large 
tasks, but collecting the data required little more than waiting 10 days—to 
obtain data for more than 14,000 children! If you want even more, just wait 
a few more days.

Innovative online and big- data methods have huge potential to revolu-
tionize research in many fields. They can often sidestep some of the problems 
of traditional research, especially that of obtaining sufficiently large N. It may 
be easy to carry out pilot tests, even with quite large N, before finalizing mate-
rials and design, preregistration, then running a study with extremely large N. 
However, careful and critical thought remains essential. What do you want for 
your birthday? Perhaps a large online study?

Big data offers many 
exciting research 
opportunities. CIs 
are likely to be 
extremely short, and 
p values tiny. But 
careful thought is 
needed to interpret 
effect sizes.

http://www.brainpop.com
http://www.brainpop.com
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  16.15     a.  Choose a study or a research fi eld that you know about. In that context 
suggest an online study with big  N  that might be feasible.  

  b.     Compare your suggested study with a conventional small-   N  version.     

 Now, for one last time, please reach for the coffee or chocolate and write 
down your take- home messages. I suggest writing a list for this chapter, and 
another for the whole book. Maybe sleep on those lists before turning ahead 
and looking at mine. Are you dreaming about the dances yet? For this chapter, 
think of a 10- step plan, Open Science (of course), non- normal data, archival 
data, many DVs, and big data. For the whole book, I elected to write seven 
major messages, but you can write as many or as few as you like. 

 Now for the new- statistics way of wishing you well:

  “May all your confi dence intervals be short!”   

   Quiz 16.3   
  1.     The main point of the dead salmon study was to emphasize that  

  a.     fMRI is sufficiently sensitive to identify neural activity even in a dead fish.  
  b.     analyzing an enormous number of results and focusing on extreme ones is likely to 

mislead.  
  c.     effect size measures of critical brain processes cannot be analyzed using NHST.  
  d.      p  < .001 is typically a reasonable criterion for defining statistical significance.    

  2.     In the context of fMRI, what is a voxel?  
  3.     Brain regions discussed in reports of fMRI research should preferably be identified  in advance 

/  by exploration of the data , especially considering that a  small /  large /  very large  number of 
DVs is being recorded.  

  4.     While discussing “free and ubiquitous data”, Varian wished to emphasize that  
  a.     even children now need to be able to understand and deal with data.  
  b.     only a few highly trained statisticians will be needed.  
  c.     the study of statistics will steadily become less necessary.  
  d.     most statisticians are rich and famous.    

  5.     Dweck argues that a _ _ _ _ _ _ _ _ _ _ _  mindset is  more /  less  preferable than a fixed mindset, is 
best promoted by  challenge /  comfort , and is likely to lead to  less /  more  persistence by the 
student.  

  6.     Working with big data, precision of estimation is likely to be  very low /  low /  high /  very high , 
the CIs  very short /  short /  long /  very long , and  p  values  very small /  small /  not so small .     

  16.16     Do other things for a while, then come back and revise your two sets of 
take- home messages.   

   Reporting Your Work  

 You’ve made it this far!  Chapter 1  started with some basic principles for reporting your work. 
Here’s a recap of these principles supplemented with some of the most important specific 
points covered in the intervening chapters. 

  Tell the full story  
 Give a complete account of your research process and the data  you collected. Don’t 
selectively report results.   

 ■   Always make clear which analyses were planned and which are exploratory.  
 ■   Specify how you planned a sample size (or if you didn’t) and how you decided when to 

end data collection.  

 When reporting 
your work,  tell the 
full story  is still the 
guiding rule. When 
reading the work of 
others, make sure 
you are getting the 
full story. 
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 ■   Specify any data points that were excluded, transformed, or trimmed. Make clear when 
these decisions were made (hopefully in advance of seeing the data) and why.  

 ■   Report all Open Science practices you have adopted, especially if you preregistered your 
analysis or sampling plans. Give the link to the preregistered plan.  

 ■   Don’t omit measures or conditions from your research report, even if they end up not 
being essential to answering your research questions.  

 ■   Let your reader know that the report is complete.  
 ■   Seek to make your research report publically available, either in a peer- reviewed journal 

or an online repository.   

  Provide sufficient detail  
 Include all the details necessary for someone else to replicate your work. Include all the 
data necessary for someone else to incorporate your results into a meta- analysis. Share 
your data online, if possible.  

 ■   Share your materials in an online repository if possible. State the link.  
 ■   Share your data in an online repository if possible. Again, state the link.  
 ■   Provide basic descriptive statistics for all measures collected: a measure of location, a 

measure of spread, and sample size. The mean and standard deviation are often the best 
choice for measures of spread and location, but use your judgment. For nominal measures, 
frequencies and proportions are usually the most effective way to summarize the data.  

 ■   For comparisons between groups or conditions, report each group mean, standard 
deviation, and sample size. If the comparison is of a repeated measure, it is essential for 
future meta- analysis to report the correlation between measures and/ or the standard 
deviation of the differences.  

 ■   Provide standardized effect sizes and CIs when possible. For comparisons between two 
groups,  d  

unbiased
  is best, but other standardized effect sizes are available for other research 

designs.  
 ■   For correlations, be sure that the sample size for each correlation is clear, as these can be 

different for each correlation due to missing data.  
 ■   Focus any research report on point and interval estimates. It is ok, though, to supplement 

this with NHST information.   

  Show the data  
 Whenever possible, provide figures that show your key findings. Prefer figures that show all 
the data rather than just summary statistics.  

 ■   Select figures that emphasize the effect size and CI important for evaluating your 
research questions.  

 ■   Use lines to connect means across repeated measures designs but avoid these for 
independent group designs.  

 ■   State in the figure caption what error bars represent—95% CIs.  
 ■   Use a reasonable scale on your graphs. One good default is to use a scale that shows the 

entire possible range of the measure being depicted. If you have multiple graphs reporting 
the same variable, try to use the same scale for all of them so that your reader can easily 
make comparisons across figures.  

 ■   Edit your figures carefully and avoid visual clutter.   

  Interpret the point estimate and CI  
 Focus your conclusions and interpretation on the point estimate  and  confidence interval.  

 ■   Start with quantitative questions (e.g., “To what extent does  X  correlate with  Y ?”) and 
make quantitative interpretations (e.g., “ X  is only very weakly correlated with  Y .”).  

 ■   Give an interpretation that respects the full range of the CI, considering what the lower 
limit, point estimate, and upper limit might mean.  

 ■   Although some rough guidelines are available for evaluating effect sizes, use your 
judgment and make your interpretations within the context of previous research.  
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 ■   Match your conclusions to the research design. Only draw causal conclusions for 
experimental research. Use language that matches the design.  

 ■   Seek replication and use meta- analysis whenever appropriate.   

  Use APA style  
 Finally, let’s recap some of the specific APA style rules (APA, 2010) that are of special 
relevance for reporting results:  

 ■   Roman letters serving as statistical symbols are italicized (e.g.,  M ) but Greek letters 
serving as statistical symbols are not italicized (e.g.,  μ ).  

 ■   Statistics that cannot exceed 1 in absolute value are reported without a leading 0. These 

include  p, r , proportions, and  φ .  
 ■   APA style is a  pre - publication format. If your manuscript is going directly to readers, you 

should adapt accordingly.  
 ■   Report statistics using a reasonable number of decimal places (see  Chapter 3 ). For each 

measure, be consistent in the number of decimal places used to report its mean, CI, and 
standard deviation.  

 ■   If you  do  report NHST analyses, report  p  values with an exact ( p  = .03) rather than relative 
( p  < .05) value. Give two decimal places, or three for values less than .02. However, state 
 p  < .001 rather than stating exact very small values.   

 Remember that this is not a complete guide—you’ll probably also need to consult the 
APA  Manual  frequently as you write your initial manuscripts. Hopefully, though, you are 
on the way to becoming a good writer and reader of research reports. I can’t wait to see 
what you can accomplish!    

  Take- Home Messages for  Chapter 16  
  The 10- Step Plan and Open Science  

 ■   The step- by- step research plan based on estimation has now expanded to 10 steps, with extra 
attention to preregistration and other Open Science practices.  

 ■   Replication projects suggest that a disturbingly large proportion of published research may 
overestimate the sizes of effects, perhaps considerably. Open Science is vitally important.  

 ■   Some journals are offering preregistered review, which provides researchers with expert advice 
before data collection commences and guarantees publication, whatever results are obtained.  

 ■   Replications are increasingly being encouraged and funded, often as crowd- sourced research, 
which in many cases allows students to play a central role.    

  Some Further Research Challenges  

 ■   With clearly non- normal data, or when other statistical assumptions might not be met, 
consider robust techniques. CIs based on trimmed means are good interval estimates for 
population trimmed means, without needing to assume normality or homogeneity of variance.  

 ■   Analysis of archival data presents challenges, but can be highly valuable. Explore a subset, 
then preregister an analysis plan to be applied to the remainder of the database. Longitudinal 
research is also challenging, but necessary for many important questions.  

 ■   With very large numbers of DVs, for example from fMRI brain images, be very wary of 
the dangers of exploration and cherry picking. Our basic ideas of estimation, planned and 
exploratory data analysis, and replication still apply.  

 ■   The advent of big data offers many research possibilities. Very large  N  usually means that 
CIs and  p  values are not important, because estimates are for practical purposes accurate. 
However, critical thought about effects and their meaning is still necessary.  

 ■   Open Science issues are relevant in all research situations, whatever the design, measures, 
and statistical techniques. Careful thought may be needed to decide how best to meet Open 
Science goals.     
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Take- Home Messages for the Whole Book

 ■ It’s an exciting time to be learning about research and statistics. Open Science promises 
better research outcomes—it has recently burst on to the scene and is changing things for all 
researchers. Enjoy being at the forefront.

 ■ Adopt estimation thinking and, where possible, formulate research questions in estimation 
terms (“To what extent…?”). Design studies that give point and interval effect size estimates, 
and use these for interpretation. A short CI means a precise estimate, which is what we want.

 ■ Results vary with replication, often to a surprising extent. The dance of the means and dance 
of the CIs can be surprisingly wide—lots of bouncing around. CIs may be disappointingly 
long, but they give accurate information about uncertainty in data.

 ■ Recognize the five red flags that express cautions about p values and NHST. The dance of the 
p values is very wide indeed. Usually prefer estimation.

 ■ Building a cumulative quantitative discipline requires replication, and meta- analysis to 
combine evidence over studies and increase the precision of effect size estimates. Think of 
any study in the context of replication and meta- analysis.

 ■ The key Open Science question is “Do we have the full story?” Wherever possible, adopt 
Open Science practices: preregister studies, report research in full detail, and make materials 
and data openly available.

 ■ Careful critical thought is always needed. Keep practicalities and real- world meaning in mind. 
Be prepared to use your judgment. Enjoy the fascination of research.

End- of- Chapter Exercises

1) Follow the directions in Exercise 16.3 to see information about the TOP Guidelines. Follow 
the link to the Science article on transparency and openness (Nosek et al., 2015). Read the 
first few paragraphs, and note the reference to “null results”—results that don’t achieve 
statistical significance.

a. Explain the null result problem being referred to. Which red flag is relevant?

b. What is the solution being advocated in the article?

2) Go to opensourcemalaria.org and, at that home page, click “Read More”, then browse 
the FAQ.

a. Describe the aim of the project, and the main ways that it is different from most medical 
research. Could you join the project?

b. In the answer to the first question in the FAQ, click on “set of six laws”. Which do you 
think are the most important laws, and why?

c. What is your reaction to the project and how it is set up?

3) In Robust two, scroll right and click at red 14 to load the Dana data set reported by Wilcox 
(2009, p. 195).

a. Explore conventional and robust approaches. Discuss.

b. A possible strategy is to start with zero trimming, then use the spinner near red 8 to 
increase trimming until the data points that are clear outliers have been trimmed. Is 
this a wise strategy? Explain.

4) Download the ATP report by Vassallo and Sanson (2013, tiny.cc/atp30). Browse as you wish.

a. Read Chapters 5 and 6, especially the sections on alcohol use and driving. How do you 
think the results compare with those in your country, if not Australia?

http://opensourcemalaria.org
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b. Suppose you become fascinated by the possible relationships between different types 
of risky behavior, especially drinking alcohol and unsafe driving. Suppose you then 
arrange collaboration with ATP researchers and have access to the full database. Explain 
the steps you would take to run a study on the relation between drinking and driving.

5) You read a fascinating article that includes several brain pictures, which show small brain 
areas in a range of bright colors. State two questions you should ask and explain what 
information in the article you want to see for each of them.

6) The step- by- step research plans stated in Chapter 1, and at the start of this chapter, are 
written as guidelines for a researcher.

a. Consider instead the perspective of the reader of a journal article. Which of the 10 
steps in the plan at the start of this chapter should be identifiable in the article?

b. Could any be omitted? Explain.

7) In the Preface to this book we mentioned the tutorial article (Cumming, 2014, available 
from tiny.cc/tnswhyhow) published by Psychological Science when it introduced new Open 
Science requirements and strongly encouraged use of the new statistics. Download the 
article.

a. Read as your interest takes you. Do you recognize many of the figures? (Note that we 
now prefer to picture a CI without the little cross bars at the ends, so a CI is simply a 
line with a dot for the point estimate, as in this book.)

b. Read the 25 guidelines stated in Table 1 on p. 8. Are there any that you don’t recognize 
from this book? (In the first and last guidelines, replace “research integrity” with “Open 
Science”, which is the term that’s now in wide use and what we prefer.)

Answers to Quizzes

Quiz 16.1
1) d; 2) pilot testing, plan a study, preregister a study, conduct a study; 3) a; 4) Do we have the full story? 5) before, 

regardless of; 6) both established researchers and students, close.

Quiz 16.2
1) fewer, not requiring; 2) less, trimmed mean; 3) a; 4) That sample will be used for the duration of the study, so we 

need it to be representative of the population; 5) c; 6) more, greater.

Quiz 16.3
1) b; 2) A tiny region in the brain, typically about 1 mm across; 3) in advance, very large; 4) a; 5) growth, more, 

challenge, more; 6) very high, very short, very small.

Answers to In- Chapter Exercises

16.1 Many Labs 2 was like 1 but larger, studying more effects. Many Labs 3 ran studies at various times during 
a semester to investigate, with undergraduate participants, the extent to which results varied with time of 
semester.

16.2 a, b. It is disappointing that replication in so many cases finds smaller, or much smaller, effects, which suggests 
that selection or questionable research practices contributed to at least some of the original studies. However, 
it is hard to estimate how serious the problem is because for each effect there is only a single original study and 
one replication, both with CIs indicating uncertainty, and some being medium to long.
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16.3 a. When I visited, 714 journals and 62 organizations had signed to indicate support. The journals had also 
promised to undertake, within one year, a review of their policies to see to what extent they could adopt 
the TOP guidelines; b. In the TOP summary as you move from Level 0 to Level 3 the requirements become 
more exacting; c. Some studies cannot be preregistered because they are responsive to unpredicted events, 
such as Hurricane Katrina. Some data cannot be made open because of privacy or commercial issues; d. The 
Preregistration Challenge offers 1,000 researchers $1,000 each for planning and preregistering a study, then 
running it and reporting it fully. OSF offers an easy fill- the- blanks procedure for preregistration.

16.6 Open Science requires full disclosure, including details of variables and analyses not fully described in the 
report. If the researchers had examined many more groups and presented results only for a selected three, they 
may have been cherry picking, which would undermine our confidence in the results. Only one other group 
(science) had been investigated, so we are reassured.

16.7 Almost certainly it is the Open Science requirements that the researcher will question, especially preregistration 
and replication. Many Labs 1 and the Reproducibility Project: Psychology are just some of the sources of 
evidence we’ve met that justify the Open Science requirements.

16.8 Outliers may be irrelevant and a nuisance, or may be telling us something of crucial importance. Trim 
thoughtfully and consider what outliers may be saying.

16.9 a, b. For males, M = 11.5 is much greater than M
t
 = 5.1 and s = 24.4 is very much greater than s

t
 = 3.5, because 

of the influence of high outliers; c. For females, the data are less skewed and, in particular, do not have the two 
extreme high outliers of the male sample. For females, M = 7.1 is greater than M

t
 = 5.0, and s = 8.9 is much 

greater than s
t
 = 3.2; d. Looking at those values differently, the male mean (11.5) is considerably larger than the 

female (7.1), but the trimmed means are almost the same (5.1 and 5.0). The two s
t
 values (3.5 and 3.1) are also 

very similar. The trimmed analysis tells us that, overall, male and female responses were quite similar, except 
for two extreme male responses. Conventional analysis hides that fact.

16.10	 Conventional	difference	(Females–Males)	=	−4.5,	robust	difference	=	−0.1,	consistent	with	Exercise	16.9.	The	CI	
on the difference for conventional means has MoE = 7.3 and for trimmed means has MoE = 2.2. Therefore the 
difference between the population trimmed means is estimated much more precisely than for the conventional 
means, which is another big advantage of robust analysis for this data set.

16.11 a. With a higher trim percentage, more points are trimmed and displayed as crosses, and omitted from 
calculation of M

t
; b. With 0% trimming, robust mean and SD are the same as conventional. With 50% trimming, 

when N is even all points are removed, and when N is odd, only one point remains, which is at the median.
16.12 The small amount of skew in both groups means that M

t
 is a little lower than M for both. However the  

(Laptop–Pen) difference is similar for conventional (5.2) and robust (5.6) analyses, and the two CIs on the 
difference have almost the same MoE (1.6 in each case). There is little reason to carry out the robust analysis.

16.13 a. Before drawing any conclusion we would need more details of the analysis. If the result arose during 
exploration it’s only speculation and probably should not have been published. We’d ask especially whether the 
analysis had been planned before seeing the data; b. It’s a danger that openly available data can be analyzed 
by anyone, whether or not competent and scrupulous. The project would not want its good name associated 
with poor and possibly misleading analyses. One possibility is to make the data available only to qualified 
researchers, although that is not the Open Science ideal. As usual, any dramatic claim in the media must be 
scrutinized very carefully, even if based on a large and reputable database.

16.14 On replication the p value for each voxel is likely to be quite different, so colored areas could change 
considerably. I would expect to see colored blobs changing somewhat in position, size, and shape. Dancing 
amoebas?

16.15 a. Think of some large existing database you could access, for example open data on OSF, or some online 
system used by many people, like BrainPOP. Then you need to choose research questions that such a system 
could answer; b. Look forward to enjoying very short CIs!



ESCI (“ESS- key”) is Exploratory Software for Confidence Intervals. There are three 
sections to this appendix:

 ■ Guidance for downloading and using ESCI.
 ■ A summary of what each ESCI page offers, in the three ESCI files that 

accompany this book. The filenames of those files start with “ESCI intro”.
 ■ A guide for where in ESCI to look, if you have a particular data analysis 

requirement. For example, you may have data in original units from a 
paired design, or a 2 × 2 table of frequencies.

DOWNLOADING ESCI

ESCI runs under Microsoft Excel, and a licensed copy of Excel is required to 
run  ESCI. The three ESCI files that accompany this book can be downloaded 
freely from the book website at www.routledge.com/cw/cumming (Note that 
ESCI for my earlier book, Cumming 2012, is different. That earlier version of 
ESCI can be downloaded from www.thenewstatistics.com).

Make sure you save any ESCI file on your own local hard disk before you 
open and run it. At the book website you can find any news about updates to 
ESCI, and any errors that have been discovered in the book or software. The 
custom is that every file name includes the date of last modification, so, for 
example, ESCI intro  chapters 3– 8 Oct 1 2016 would be the October 1, 2016 
version. You can thus easily check that you are using the latest version. At the 
Intro page of any file, scroll down to see the license conditions for ESCI.

LOADING AND RUNNING ESCI

ESCI files are regular Excel workbooks, and should open immediately in Excel.

Macros
Many ESCI pages use small programs called “VBA macros” to carry out opera-
tions  triggered by your clicking of a button, or other actions. Therefore, those 
operations will not work unless macros are enabled, so make sure you enable 
macros before you start using ESCI. You should be able to nominate ESCI files 
as trusted, so you don’t need to enable macros every time you load an ESCI file.

Popout Comments
When you hover the mouse near any little red triangle you should see a popout 
comment. If you don’t, you need to adjust your Excel settings to specify that 
comments should be visible.

Appendix:
The ESCI Software

Make sure you save 
any ESCI file on your 
local hard disk before 
you open and run it.

Make sure macros 
are enabled before 
you start using ESCI.

http://www.thenewstatistics.com
http://www.routledge.com/cw/cumming
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Entering Your Own Data
To clear data, use the Clear data button, or select the cells with data and press 
the Delete key. Then type in your own data, using Enter (on Mac, return) or 
the down arrow key after each value. Or, usually better, copy a column of data 
values from some other file, then click to select the top empty data cell in ESCI 
and use Paste Special/ Values, or Paste Values—different versions of Excel 
offer slightly different options.

Screen Resolution and Display Size
ESCI is designed so the display conveniently fits the screen for screen resolution 
of about 1680 × 1050 or similar. It may help to use full screen display.

You may choose to change your screen resolution, but, if you do this, some 
aspects of the display may not appear so neat, for example the neat stacking of 
means in the mean heap. Alternatively, on any page you can adjust the zoom 
by changing it from the usual 100% or 120% but, if zoom is changed too far, 
labels and values may not fit so well in their cells.

Protection
Pages are protected, to reduce the chance of making inadvertent changes, but 
protection can be removed—no password is needed. Remove protection if you 
wish, but take care, and be sure not to save the workbook or, if you wish to 
save, give it a different name.

Using Figures Outside Excel
An ESCI figure can be transferred to a Word document. Click a little in from 
the edge of the figure, to select it: You’ll see the border of the figure high-
lighted. Copy, then paste. Paste Special/ Picture (Enhanced metafile) works 
well. Allowing copy and paste of figures requires that figures are not pro-
tected. Therefore they can be accidentally changed. If that happens, try Undo. 
Otherwise, exit from Excel—don’t Save—and restart ESCI.

An alternative is to use (in Windows) the Prnt Scrn key to transfer an 
image of the whole screen to the clipboard. Paste this into a Paint program (or 
similar), use the rectangle select tool to select an area of the image, then copy 
and paste this into your Word document. Paste Special/ Picture (Windows 
metafile) works well.

Editing of Figures
Figures can be changed as desired, using any Excel editing facilities: Change 
axis labels, change scaling on an axis, change chart format…. It’s usually 
best to edit a figure as you wish, before copying it from ESCI to your Word 
document.

To deselect a figure, after edit or copy, press the Esc key once or twice.

Number Formats
In most cases ESCI reports numbers to an appropriate number of decimal 
places. A p value, for example, may be reported as .0 or as .000, either of which 
actually means it’s zero when rounded to three decimal places. Exact values 
for p should not be reported if less than .001, so report such a value as p < .001. 
Don’t report p = 0.
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In some cases ESCI uses a general format for numbers, to accommodate 
a very wide range of possible values. In such cases, extremely small or large 
values may be reported in scientific format: 0.0000045 may appear as 4.5E- 06, 
meaning 4.5 × 10−6. Similarly, 26,800,000 may appear as 2.7E+07, meaning 
2.7 × 107.

ESCI Formulas and Calculations
Most formulas and arrays of data are visible if you scroll right or down, so if 
you like you can see how ESCI does its work. Some formulas need to be placed 
behind the figures. Similarly, you can examine the VBA code if you wish.

STRATEGY FOR GETTING STARTED WITH A NEW 
ESCI PAGE

 ■ Look for a suitable video at the book website; many of these demonstrate 
how to use one or more ESCI pages.

 ■ At the ESCI page you are interested in, scan the display, read the labels, 
and hover the mouse over any little red triangle to see a popout comment.

 ■ A new page may look confusing, but one way to start is to follow the bold 
red numbers 1, 2, …, in sequence, reading the popouts as you go. Note 
that when, in the ESCI exercises, I say something like “click near red 4”, 
I may be referring to clicking anywhere in the colored area that has red 
4 in the top left.

 ■ Experiment. See what happens when you click buttons, spinners, radio 
buttons, check boxes, or sliders. You won’t break anything, usually you 
can retreat, and if all else fails you can exit from Excel (don’t Save) and 
start again. Discuss what you see with a friend.

 ■ Discover how ESCI works, yes, but focus your thinking on the statistical 
ideas—they are the most interesting things, and what really matters.

 ■ In Chapter 3, just before the start of the first ESCI exercises, see the further 
hints about using ESCI for statistical learning.

Finally, here’s what may be the most useful strategy of all:

 ■ As you play around, keep thinking how you could use ESCI to explain the 
statistical ideas to someone else. Then have a go at doing that.

THE ESCI FILES AND THEIR PAGES

The ESCI files available on the book website at www.routledge.com/cw/ 
cumming are:
ESCI intro  chapters 3– 8
ESCI intro Meta- Analysis
ESCI intro  chapters 10– 16

ESCI intro  chapters 3– 8
The pages within this file are as named in bold below. I use the same format 
for the pages of the other files, which follow. In ESCI, to go to different pages, 
use the tabs at the bottom of the Excel screen.

Intro—Introductory page. Overview. License information.

http://www.routledge.com/cw/cumming
http://www.routledge.com/cw/cumming
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Describe—See Chapter 3. See a data set displayed in three ways, including a fre-
quency histogram and a dot plot. Calculate and see basic descriptive statistics.

Normal—See Chapters 3 and 4. See the normal distribution. Find tail areas, and 
critical values of z.

Normal and t—See Chapter 5. See the normal and t distributions. Find tail areas, 
and critical values of z and t.

CIjumping—See Chapters 4 and 5. See a population, samples, sample means, 
and CIs. Explore the mean heap, dance of the means, central limit theorem, 
and dance of the CIs.

CI and p—See Chapter 6. See sample mean, M, null hypothesis value, μ
0
, and 

the 95% CI. Explore how position of the 95% CI is related to the p value.
Data two—See Chapter 7. Type or use Paste Special/ Values to enter your own 

data, for the independent groups design. See one or two figures, with CIs, 
and d and d

unbiased
.

Summary two—See Chapter 7. Enter summary data for your own independent 
groups. Obtain calculated values of CIs, and d and d

unbiased
, and see CI figures.

d picture—See Chapters 7 and 8. See how two populations relate for a chosen 
value of Cohen’s d.

Data paired—See Chapter 8. Enter your own data, for the paired design. See a 
figure with a difference axis, with CIs, and d and d

unbiased
.

Summary paired—See Chapter 8. Enter summary data for your own paired 
design. Obtain calculated values of CIs, and d and d

unbiased
, and see a CI figure.

ESCI intro Meta- Analysis
Intro—Introductory page. Overview. License information.
Original two groups—See Chapter 9. Meta- analysis of the difference between 

independent means, in original units, for up to 30 studies.
Subsets—See Chapter 9. Meta- analysis of the difference between independent 

means, in original units, for up to 30 studies, plus analysis of two subsets 
of studies.

d two groups—See Chapter 9. Meta- analysis for independent groups, using d or 
d

unbiased
, for up to 30 studies.

d subsets—See Chapter 9. Meta- analysis for independent groups, using d or 
d

unbiased
, for up to 30 studies, plus analysis of two subsets of studies.

Single r—See Chapter 11. Meta- analysis of Pearson's correlation, r, for up to 
30 studies.

ESCI intro  chapters 10– 16
Intro—Introductory page. Overview. License information.
Precision two—See Chapter 10. See precision curves for independent groups. 

Find N for target MoE on average, and with assurance.
Precision paired—See Chapter 10. See precision curves for paired data. Find N 

for target MoE on average, and with assurance.
See r—See Chapter 11. See scatterplots with a chosen value of r, or for random 

samples from a population with chosen Pearson's ρ.
Scatterplots—See Chapters 11 and 12. See a scatterplot and correlation, r, for 

your own data set of two variables, X and Y. See also the scatterplot of z scores. 
Calculate and see regression in original and standardized units.

One correlation—See Chapter 11. See a figure showing a correlation, r, with its 
CI. See a cat’s- eye picture on the CI.
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Two correlations—See Chapter 11. See a figure showing two independent r 
values, with their CIs. See the CI on the difference.

One proportion—See Chapter 13. See a figure showing a proportion, P, with 
its CI. See the p value for testing a chosen null hypothesis.

Two proportions—See Chapter 13. See a figure showing two independent pro-
portions, with their CIs. See the CI on the difference, and the p value. See 
chi-square analysis of a 2 × 2 table of frequencies.

Ind groups comparisons—See Chapter 14. Enter either summary statistics or 
full data for up to six independent groups. See means and CIs, and investigate 
any comparison of two means.

Ind groups contrasts—See Chapter 14. Enter either summary statistics or full 
data for up to six independent groups. See means and CIs, and investigate 
any contrast of two subset means.

Ind groups 2 × 2—See Chapter 15. Enter either summary statistics or full data 
for a 2 × 2 two- way factorial design with two between- groups independent 
variables. See means and CIs, and the interaction.

Robust two—See Chapter 16. Enter data for two independent groups. See 
means and difference between the means, with CIs, for conventional and 
robust analyses.

ESCI FOR ANALYZING YOUR OWN DATA

Contents List for This Section
To use ESCI to analyze your own data, first choose from the numbered list of 
seven subsections below, considering your DV and the analysis task you have 
in mind. The subsection itself should guide you to the ESCI page most likely 
to provide what you need.

For further information about any ESCI page mentioned in this section, 
see the section immediately above.

Types of Dependent Variable

1. A variable, X, in original units
2. Cohen’s d
3. Pearson’s correlation, r
4. Frequencies

Types of Analysis Task

5. Areas and critical values for z or t
6. Meta- analysis
7. Precision for planning

1. A VARIABLE, X, IN ORIGINAL UNITS

Single Group Design, Full Data
At the Describe page of ESCI intro  chapters 3– 8, enter your data. See descrip-
tive statistics, a frequency histogram, and a dot plot. See Chapter 3.

At the Data two page of ESCI intro  chapters 3– 8, enter your data as 
Group 1 and leave Group 2 blank. See summary statistics, the CI on the mean, 
and a figure. See Chapter 5.
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Single Group Design, Summary Data
At the Summary two page of ESCI intro  chapters 3– 8, enter your data as 
Group 1 and leave Group 2 blank. See the CI on the mean, and a figure. See 
Chapter 5.

Independent Groups Design, Full Data
At the Data two page of ESCI intro  chapters 3– 8, enter your data. See sum-
mary statistics, the CIs on the means and the difference, and a figure. Click at 
red 10 for a second figure, and at red 11 and 12 to see d and d

unbiased
, and the 

CI for δ. See Chapter 7.
At the Robust two page of ESCI intro  chapters 10– 16, enter your data. 

See either conventional or robust analyses, with figures showing CIs. See 
Chapter 16.

Independent Groups Design, Summary Data
At the Summary two page of ESCI intro  chapters 3– 8, enter your data. See the 
CIs on the means and the difference, and a figure. Click at red 6 for a second 
figure, and at red 7 and 8 to see d and d

unbiased
, and the CI for δ. See Chapter 7.

Paired Design, Full Data
At the Data paired page of ESCI intro  chapters 3– 8, enter your data. See sum-
mary statistics, the CIs on the means and the difference, and a figure. Click at 
red 9 and 10 to see d and d

unbiased
, and the CI for δ. See Chapter 8.

Paired Design, Summary Data
At the Summary paired page of ESCI intro  chapters 3– 8, enter your data. See 
the CIs on the means and the difference, and a figure. Click at red 4 and 5 to 
see d and d

unbiased
, and the CI for δ. See Chapter 8.

More Than Two Independent Groups, One IV, 
Full Data
At the Ind groups comparisons page of ESCI intro  chapters 10– 16, click at 
red 2 to select Full data below. Enter your data. See summary statistics and 
a figure with CIs. Select a comparison of two means and see the comparison 
and its CI. See Chapter 14.

At the Ind groups contrasts page of ESCI intro  chapters 10– 16, click at 
red 2 to select Full data below. Enter your data. See summary statistics and 
a figure with CIs. Select two subsets of means and see the contrast of those 
subsets and its CI. See Chapter 14.

More Than Two Independent Groups, One IV, 
Summary Data
Use the same two pages as above for full data, but click at red 2 to select 
Statistics above. Select a comparison or contrast and see the results and 
CI. See Chapter 14.
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Independent Groups, 2 × 2 Factorial Design, Full Data
At the Ind groups 2 × 2 page of ESCI intro  chapters 10– 16, click at red 2 to 
select Full data at right. Enter your data and see summary statistics. Select a 
subsets contrast, main effect, or interaction, and see the calculated result and 
figure with CIs. See Chapter 15.

Independent Groups, 2 × 2 Factorial Design, 
Summary Data
At the Ind groups 2 × 2 page of ESCI intro  chapters 10– 16, click at red 2 to 
select Statistics above. Then proceed as for full data above. See Chapter 15.

2. COHEN’S d

To appreciate what your d implies for the overlap of two population normal 
distributions, use the d picture page of ESCI intro  chapters 3– 8. See Chapter 7.

To calculate d and d
unbiased

, and the CI for δ, for your data, see the appropri-
ate subsection above for X, for independent groups or the paired design. See 
Chapters 7 or 8.

If you have a value of d for independent groups, you can enter that d and 
N

1
 and N

2
 into the d two groups page of ESCI intro Meta- Analysis to calculate 

the corresponding d
unbiased

 and the Cl for δ. See Chapters 7 and 9.

3. PEARSON’S CORRELATION, r

Two Variables, X and Y, in Original Units, Full Data
At the Scatterplots page of ESCI intro  chapters 10– 16, enter your paired (X, 
Y) data. See summary statistics and the scatterplot. Click at red 15 for a second 
scatterplot, of standardized scores. Click at red 9 for regression calculations and 
display. See Chapters 11 and 12.

One or Two Values of Correlation, r
At the One correlation page of ESCI intro  chapters 10– 16, enter r and N to see 
the CI on r and the p value for testing a selected H

0
. See Chapter 11.

At the Two correlations page of ESCI intro  chapters 10– 16, enter r
1
, r

2
, 

N
1
, and N

2
 to see the CIs on r

1
, r

2
, and the difference, and the p value for the 

difference. See Chapter 11.

4. FREQUENCIES

One Proportion
At the One proportion page of ESCI intro  chapters 10– 16, enter integers X 
and N for proportion P = X/ N. See the CI on P and the p value for testing a 
selected H

0
. See Chapter 13.

Two Proportions or a 2 × 2 Frequency Table
At the Two proportions page of ESCI intro  chapters 10– 16, enter X

1
, N

1
, X

2
, 

and N
2
 for independent proportions P

1
 and P

2
. See CIs and the p value for the 

difference. Click at red 8 for the chi- square analysis and φ. See Chapter 13.
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5. AREAS AND CRITICAL VALUES FOR z OR t

To use ESCI to find critical values for z or t, use the Normal or Normal and t 
page of ESCI intro  chapters 3– 8.

6. META- ANALYSIS

Independent Groups Design, Data in Original Units
At the Original two groups page of ESCI intro Meta- Analysis, enter means, 
SDs, and sample sizes for two groups for each study, to see the forest plot and 
meta- analysis. See Chapter 9.

At the Subsets page, enter the same information, and labels to identify 
two subsets of studies, to see meta- analyses of the subsets and a comparison 
of the two. See Chapter 9.

Independent Groups Design, Cohen’s d
At the d two groups page, enter d and the two sample sizes for each study, to 
see d

unbiased
, and the forest plot and meta- analysis. See Chapter 9.

At the d subsets page, enter the same information, and labels to identify 
two subsets of studies, to see meta- analyses of the subsets and a comparison 
of the two. See Chapter 9.

Pearson’s Correlation, r
At the Single r page, enter r and N for each study to see the forest plot and 
meta- analysis. See Chapter 11.

7. PRECISION FOR PLANNING

Independent Groups Design
Use the Precision two page of ESCI intro  chapters 10– 16 to find N for target 
MoE on average, and with assurance. See Chapter 10.

Paired Design
Use the Precision paired page of ESCI intro  chapters 10– 16 to find N for target 
MoE on average, and with assurance. See Chapter 10.



Answers to End- of-Chapter Exercises

CHAPTER 1. ASKING AND ANSWERING RESEARCH QUESTIONS

1) Pain study:

a. The point estimate is 34%, the interval estimate is the 95% CI and is the interval from 
19% to 49%, and MoE is 34 − 19 = 15% or 49 − 34 = 15%.

b. We are 95% confident the population decrease in pain rating is in [19, 49], and any value 
in that interval is plausible as the population average decrease, whereas any value outside 
it is relatively implausible. Interpretation: I suspect a 34% reduction is enough to be clini-
cally valuable; perhaps any reduction in the range from 19% to 49% could be clinically 
useful.

c. The CI seems very long, and I would like to have a more precise estimate of the benefit 
of relaxation. I’m concerned that there may be other studies or other results that haven’t 
been reported, and also that we don’t have full details of how the study was conducted.

2) The main difference is that the point estimate of 13% is considerably lower. I suspect a decrease 
of 13% may not be of much clinical importance, although someone with more knowledge 
of the context may disagree. The CI is even a little longer, so I’m even keener to have a more 
precise estimate.

3) Pain study replication:

a. Use a sample size four times as large as in the original study. Otherwise the replication 
would be as similar to the original as possible.

b. The results might be 30% [23, 37]—a similar point estimate and MoE of 7, about half of 15.
c. The meta- analysis might give 31% [26, 36]. The point estimate lies between those of 

the two studies. The CI is shorter than those from the two studies, as we expect from a 
meta- analysis. The interpretation is as before, but now we have a more precise estimate. 
A replication giving similar results reassures us an original result was not an aberration.

d. Replication and meta- analysis usually give us precise, or much more precise, estimates, 
which is great.

CHAPTER 2. RESEARCH FUNDAMENTALS: DON’T FOOL YOURSELF

1) Random sampling of university students: Options a and e represent random sampling because 
both give every member of the population the same chance to be selected. Options b, c, and d 
are not random sampling—each involves some level of random behavior, but not the key step 
of random selection of participants from the whole population.

2) Scales of measurement:

a. Nominal—political orientation is simply categorized and the labels have no numerical, or 
even ordered, meaning.

b. Ordinal or Interval—a rating scale like this can be interpreted as either ordinal or interval, 
depending on whether it seems reasonable to assume that the participants perceived the 
scale as having equal spacing between the labels on successive numbers (interval) or not 
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(ordinal). This is not nominal measurement because scores can be at least ordered, and 
not a ratio scale because there is not a true 0 representing a complete lack of liberalness.

c. Ratio—participants can have a score of 0 which reflects a true absence of agreement with 
the set of opinions.

d. This can be interpreted as ordinal or interval.
e. Ordinal.

3) Educational DVDs and word knowledge:

a. This is a non- experimental study because there was no random assignment or manipu-
lation of different levels of DVD ownership.

b. As usual for non- experimental research, there are lots of possible explanations for the 
finding because the groups could differ in lots of ways beyond DVD ownership. For exam-
ple, wealthier families might both own lots of DVDs and also provide their children with 
more support for word learning.

c. Ratio, because there is a true 0: no DVDs owned.
d. Reliability, assessing the extent that the measurement is repeatable.
e. It is a bit difficult to specify the intended population, but the researchers would probably 

like to draw conclusions about all children in general, or at least about all children in the 
country where the research is conducted. Given that the intended population is large and 
poorly defined, it seems very unlikely that random sampling was used.

f. How far to generalize depends on your judgment of the degree to which the sample 
would resemble or differ from other groups. It’s a judgment call. One perspective might 
be to emphasize commonality across the human race and to assume that what works for 
one group of children would likely work for others. Cross- cultural psychologists, though, 
would probably point out that we tend to underestimate how profoundly culture influ-
ences behavior, and might wisely counsel us to be cautious about drawing conclusions 
far from the original research context.

4) Money exposure and egalitarian attitudes:

a. Experimental.
b. Open Science requires reporting the full story. There may have been good reasons for 

omitting the four other studies, but it appears the decision of what to report was based 
on the results obtained, with only the studies favoring the researchers’ hypothesis being 
reported. This seriously distorts our evaluation of the evidence. A meta- analysis of only 
the published studies is likely to show a clear and consistent effect of money exposure 
on egalitarian attitudes. Analysis of the whole set of studies, however, is likely to show a 
much smaller and/ or uncertain effect.

c. The authors most likely originally intended to analyze the scale average, so analyzing each 
item on its own would be an exploratory analysis. There is nothing wrong with explora-
tion, but research reports need to make clear which analyses were exploratory and must 
treat conclusions from exploratory analysis as very tentative.

CHAPTER 3. PICTURING AND DESCRIBING DATA

1) ACT Scores: Table 3.5 adds calculated values to Table 3.3. Note that the data have been sorted 
by ACT score to make it easier to identify the median (in bold) and IQR.

a. M = 24.1, Median = 24, Mode = 24.
b. s = 4.61, Range = 17 to 31. For IQR, the Excel function PERCENTILE gives 20.5 and 27.5 

for the 25th and 75th percentiles, respectively. An alternative approach is to take the median 
of the lower 6 scores, which is 20.5, and median of the upper 6, which is 27.5. Either way, 
IQR is from 20.5 to 27.5. Other methods may give slightly different values.
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2) Student Survey:

a. Positive affect is relatively normally distributed—there is a single, strong peak and the 
distribution is fairly symmetrical. The mean score of 3.43 is a little above the midpoint of 
the 1– 5 scale, indicating that students on average feel moderate levels of positive affect. 
There is wide spread, with s = 0.71 and scores ranging across almost the full range.

b. There is strong positive skew, with most students aged 18– 22, but a long upper tail of ages 
ranging up to nearly 60. The mean (21.8 years) is most affected by the outliers, and the 
median (20 years) is probably a more useful indicator of location. The skew causes the 
mean to be larger than the median. The college has mostly younger students, but also some 
older returning and non- traditional students. Removing outliers would misrepresent the 
sample, by omitting those older students. They should be removed only if there is reason 
to examine the subgroup of younger students, perhaps aged up to about 32.

c. There is considerable positive skew. Most students report relatively little exercise, but 
the right tail pulls the mean (54.7) way above the median (22). The extreme outlier of 
1,810 corresponds to engaging in strenuous  exercise 201 times per week, which is hardly 
credible. Most likely, the student didn’t understand the question, made an error, or gave 
a non- serious answer, so there is good reason to delete this outlier, which would decrease 
the SD. If it is deleted, s decreases from 135 to 64.7. As always, if you delete an outlier, 
report how, when, and why the decision was made to remove it.

d. Raven IQ Scores are relatively normally distributed. The mean is .377, median is .375, 
and standard deviation is .199. In contrast, GPA is very strongly negatively skewed, with 
scores stacked up near 4.0, the top of the GPA scale. A long tail extends down to very low 
values of GPA. The mean is 3.34, median is 3.40, and SD is 0.51. Different variables can 
have different distributions, even for the same sample. However, we expect IQ and GPA to 
be related, so it’s perhaps surprising that their two distributions are so different. The GPA 
distribution, with most of the scores concentrated in the 3.5– 4.0 range, suggests that the 
testing is not sufficiently challenging to distinguish among students in the upper parts of 
the distribution. You may have heard of grade inflation occurring in the last one or two 
decades. Search online for “college grade inflation”, or similar, and you should easily find 
statistics describing a dramatic increase in the proportion of A grades in recent years, and 
interesting discussion about likely causes and consequences.

Table 3.5 Completed Version of Table 3.3, With ACT 
Scores for Exercise 1

Student ACT (X
i
 − M) (X

i
 − M)2

8 17 −7.09 50.28
7 18 −6.09 37.10
5 20 −4.09 16.74
9 21 −3.09 9.55
2 24 −0.09 0.01

11 24 −0.09 0.01
1 26 1.91 3.64
6 27 2.91 8.46
3 28 3.91 15.28
10 29 4.91 24.10
4 31 6.91 47.74

Total 265.00 212.91
Denominator 11 10

M 24.09
s2 21.29
s 4.61
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e. No! It doesn’t make sense to calculate a mean for data on a nominal scale. It’s often con-
venient to represent nominal data with numerical codes, but it’s important to remember 
that these codes have no numerical meaning, and thus calculation of most descriptive 
statistics doesn’t make sense. Nominal data can be summarized with frequencies (175 
females and 68 males) and relative frequencies (72.0% females and 28.0% males).

3) Scores in context:

a. With X = .875, M = .377, s = .199 we calculate z = 2.50. This student is tied for top score 
in the sample.

b. With X = 3.9, M = 3.34, s = 0.508, we calculate z = 1.10. This participant stands out more 
on the IQ measure (z = 2.50) than on GPA (z = 1.10).

c. For positive affect: X = 2.0, M = 3.43, s = 0.71 and we calculate z = −2.01. For negative 
affect: X = 2.0, M = 2.32, s = 0.75 and we calculate z = −0.43. The positive affect score is 
more unusual than the negative affect score, within this sample.

d. For age, X = 59, M = 21.8, s = 5.56 and we calculate z = 6.69, which is an extreme outlier! 
For exercise, X = 1,810, M = 54.8, s = 135.3 and we calculate z = 12.97, which is a very 
extreme outlier!

4) Religious belief:

a. I predicted an approximately flat distribution, with similar frequencies of strong, moder-
ate, and non- believers.

b. The distribution is clearly bimodal: Most respondents answered 100 (strongly believe in 
God) or 0 (strongly disbelieve in God), and relatively few participants gave scores between 
the extremes. My prediction was quite wrong. This is a good illustration of multiple peaks 
(two in this case) indicating distinct groups of participants.

c. With such a strongly bimodal distribution, none of the three measures of location does a 
great job of representing the distribution. Both the mean (48.2) and median (50) repre-
sent an intermediate level of belief that is actually rare; reporting only one mode would 
be misleading. The best non- graphical strategy would be to describe the distribution in 
words and report the location of each mode: one at 0 level of belief, the other at 100.

CHAPTER 4. THE NORMAL DISTRIBUTION AND SAMPLING

1) z scores: a. z = 0; b. z = 2; c. z = −1; d. z = 3.
2) Percent better: a. 50%; b. 2.28%; c. 84.1%; d. 0.1%.
3) Gabriela and Sylvia:

a. Sylvia’s sample will have the smaller SE because she has collected a larger sample.
b. Combining the two samples will yield a smaller SE.
c. For Gabriela, SE = 1; For Sylvia, SE = 0.83; Combined, SE = 0.64.
d. What sample size is sufficient is a judgment call, which we’ll discuss further in Chapter 10. 

For now we can note that the combined data set provides SE = 0.64, meaning that many 
repeated samples would give sample mean satisfaction scores that would bounce around (i.e., 
form a mean heap) with standard deviation of 0.64. Given that satisfaction has a theoretical 
range from 1 to 20, this suggests that any one sample mean will provide a moderately precise 
estimate, reasonably close to the population mean. This analysis suggests we have sufficient 
data, although collecting more would of course most likely give us a better estimate.

4) Nursing home and random sampling: c and d represent random sampling because both give 
each member of the population an equal chance to be in the study, and members of the sample 
are selected independently.

5) Skew:
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a. Home prices tend to be positively skewed (longer tail to the right), because there is a lower 
boundary of zero, but in effect no maximum—typically a few houses have extremely high 
prices. These form the long upper tail of the distribution.

b. Scores on an easy test tend to be negatively skewed (longer tail to the left). If the test is 
very easy, most scores will be piled up near the maximum, but there can still be a tail to 
the left representing a few students who scored poorly.

c. Age at time of death tends to be negatively skewed (longer tail to the left). Death can strike 
at any time (☹), leading to a long lower tail; however, many people (in wealthy countries) 
die at around 70– 85 years old, and no one lives forever, so the distribution is truncated at 
the upper end. Search for “distribution of age at death”, or similar, to quickly find graphs 
showing strong negative skew.

d. Number of children in a family tends to be positively skewed (longer tail to the right) 
because 0 is a firm minimum, and then scores extend upward from there, with many 
families having, say, 1– 4 children and a small number of families having many children.

6) Anything that limits, filters, selects, or caps scores on the high or low end can lead to skew. 
Selection is not the only thing that can produce skew, but any time your participants have 
been subjected to some type of selection process you should be alert to the possibility of skew 
in the variables used to make the selection (and in any related variables). Also, if the mean and 
median differ by more than a small amount, most likely there is skew, with the mean being 
“pulled” in the direction of the longer tail.

CHAPTER 5. CONFIDENCE INTERVALS AND EFFECT SIZES

1) ACT with N = 9:

a. Using σ = 5 we obtain: M = 23.1, 95% CI [19.8, 26.4], MoE = 3.3.
b. Yes, the CI contains 22, the true mean. Of course, the sample size is small and the CI is 

quite long, so it was not a precise estimate of the population mean.
c. Using s = 5.44 we obtain: M = 23.1, 95% CI [18.9, 27.3], MoE = 4.18. This CI is longer 

than the CI based on σ. Using s, the t critical value is larger than the z critical value used 
with σ, which makes the CI based on s longer, and more so for small N. This assumes the 
observed s is close to the true σ.

d. The more data collected, the shorter the CI will become. To cut the CI length in half requires 
N approximately 4 times as large.

e. Data two is designed to analyze and present data from two independent groups, as we’ll 
discuss in Chapter 7. Here we’re using it to analyze and present data for a single group.

2) Large sample of ACT scores:

a. With N this large, we expect a short CI.
b. Figure 5.12 shows the data and statistics. I’ve named the data set ACT Large. Near red 6 

and 7: M = 24.2, 95% CI [23.6, 24.7], MoE = 0.55, so the entire range of uncertainty is 
barely over 1 point for an exam where scores range from 1 to 36. This seems precise!

c. Although quite precise, this sample does not provide an accurate estimate of mean ACT in 
the population—the true value of 22 is 1.6 points lower than the lower limit of the CI. Some 
CIs are red! Or perhaps there is bias in the data? A CI indicates uncertainty arising from 
sampling variability, but CIs cannot compensate for other factors that could distort or bias 
sample values. Our statistical model requires random sampling, as the best way to ensure 
the sample is representative of the population. Convenience samples may yield systematic 
differences from the population—for example, students with low ACT scores might have 
elected not to answer the ACT question. Also, self- report can introduce systematic bias—
some respondents may report an exaggerated ACT score.
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3) More variables from the student survey:

a. For GPA: M = 3.34, 95% CI [3.29, 3.41], MoE = 0.06. This indicates that the average GPA 
at this school is fairly high, likely around a 3.3, which is a B+.

b. For subjective well- being: M = 4.94, 95% CI [4.78, 5.10], MoE = 0.16. Given that this 
variable was measured on a scale from 1 to 7, it seems the average at this school is to be 
fairly happy, nearly a full point above the midpoint of the scale. This CI plus inspection of 
a stacked dot plot both seem to support the contention by Diener and Diener that most 
people are happy.

c. For wealth: M = 2.90, 95% CI[2.78, 3.02], MoE = 0.12. Note that this item asked partici-
pants to rate on a 1– 5 scale how wealthy they feel relative to others at their school, with 
a score of 3 indicating “average”. It’s interesting, then, that students on average feel about 
average in terms of wealth. This doesn’t have to be the case! For example, when asked to 
self- assess different academic skills, there is a tendency for most people to see themselves 
as above average.

4) Student survey replication:

a. We should expect most measures to give means within the original CI, but not necessarily 
all. An original 95% CI has about an 83% chance of capturing the mean of a close repli-
cation (see Figure 5.10 and Table 5.1).

Figure 5.12. ACT scores (N = 215) are shown near red 2 at left. The figure shows individual data points (open circles), mean, 
and 95% CI. (Because of limited space in the figure, only about the first third of the data points are displayed as open circles. 
See the popouts near red 4.) Values of a number of statistics are shown near red 6 and 7. From Data two.
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b. For GPA: M = 3.31, 95% CI [3.21, 3.40], so the mean is within the CI from the first study; for 
subjective well- being: M = 4.66 [4.46, 4.87], so the mean is a little below the lower bound of the 
CI from the original study. For wealth: M = 2.94 95% [2.79, 3.10], and so the mean is within 
the CI from the original study. Overall, two out of three of the variables we measured have 
replication values within the original CI, and one does not.

c. Yes, the two sets of results are quite similar, and sampling variation can easily account for 
the small differences. However, differences between the estimates in the two sets of results 
might also reflect real differences. For example, happiness might have changed between 
the first and second study. Any departure from a close replication could also cause differ-
ences, for example any change to the sampling procedure, or to the wording or ordering 
of the survey questions.

5) Anxiety in city dwellers:

a. No! Avoid any such probability statement about a CI.
b. No! A CI is an inferential statistic that estimates a population parameter, with length 

indicating precision of the estimate. It’s not a descriptive statistic that indicates spread in 
the population or sample. For that, use a standard deviation.

c. Yes, a reasonable statement, noting where the CI falls in the full 1– 5 range of the scale.
d. Probably too extreme. Shorter would be better, but the CI gives a moderately precise 

estimate.

6) Political attitudes in business majors:

a. The CI will indeed shorten, but M will almost certainly change, so the interval won’t remain 
centered on exactly 8.

b. M will most likely remain in the original CI, especially considering that’s long, so this 
statement is most likely correct.

c. There is a tiny chance that M will shift so far as to lie outside the original CI.
d. No!

CHAPTER 6. p VALUES, NULL HYPOTHESIS SIGNIFICANCE 
TESTING, AND CONFIDENCE INTERVALS

1) b, d, e, and h are statistically significant and would lead to rejecting the null hypothesis. Note that 
for e, the negative z value would occur if IQ scores after Neuroaid are lower than national norms.

2) b.
3) Online chemistry course study:

a. z because you know σ, the population SD, provided you think it reasonable to use this SD 
for your student population.

b. z
M

N
=

− µ
σ

0

/
 = 

82 80

12 36

−
/

 = 
2

12 6/
 = 

2

2
 = 1

c. p = .317, which we would report as p = .32.
d. This p value is not lower than .05, so we would not reject the null hypothesis. We do not 

have evidence that the online chemistry class leads to better or worse learning.
e. SE = 12 36/  = 12/ 6 = 2

MoE = 1.96 × 2 = 3.92
Difference (M

2
 –  M

1
) = 2 points, 95% CI [−1.92, 5.92]

The confidence interval shows the full range of plausible estimates for how the online 
course compares to the national average. It emphasizes thinking about the degree to which 
the class could be beneficial rather than a simple Yes/ No statement about its having any 
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benefit. The CI is quite long, indicating that the study estimated the effect of online delivery 
with relatively low precision.

f. No, a non- significant finding does not mean the null hypothesis is true (see Red Flag 
3: Beware Accepting the Null Hypothesis). The CI, which is [−1.92, 5.92], makes this 
clearer, as we can see that plausible differences range from online students doing slightly 
worse, through no difference, up to online students doing moderately better.

g. For the participants in the online chemistry course (N = 36), the average final exam score 
(M = 82, s = 12) was 2 points higher than the national norm, 95% CI [−1.9, 5.9], so the 
effect of online delivery could plausibly be anywhere in that interval. This was not a sta-
tistically significant difference (z = 1, p = 0.32).

4) Lauren’s study:

a. If the null is true, α is the risk of making a Type I error. In this case, Lauren has followed 
the convention of using .05, which means a 5% risk IF the null is true.

b. If the null is not true, the risk of Type II error is determined by α (significance level), 
sample size, the variability of the dependent variable (i.e., σ, the population SD), and the 
size of the effect (smaller effects, higher chance of Type II error). Of these, Lauren can 
most easily control sample size: the bigger the sample size, the less likely she is to make 
a Type II error, everything else being the same, IF the null is not true.

c. Lauren can reduce the risk of Type I error by selecting a lower α (e.g. α = .01), but this 
increases the risks of Type II error should the null actually be false.

d. The best way to reduce the risk of Type II error is to use a larger sample size. It’s also pos-
sible to use a higher α, but this has the drawback of increasing the risk of Type I error, IF 
the null is actually true.

5) Sleep and learning:
a. t because you do not know σ, the population SD.

b. t
M

s N
=

− µ0

/
= 

3 9 0

12 2 11

.

. /

−
 = 1.06

c. For t = 1.06 with df = 10: p = .31.
d. No, with a significance level (α) of .05, p > α so this is not a statistically significant result 

and using NHST we would decide not to reject the null hypothesis.
e. This interpretation seems to be based partly on accepting the null. Red Flag 3: A statistically 

non- significant difference does not mean that the null hypothesis (no learning) is true. 
In other words, “no significant improvement” does not imply zero improvement.

f. After sleep deprivation, average improvement is 3.9, 95% CI [−4.3, 12.1], so the results are 
consistent with a wide range of effects of sleep deprivation on learning—from causing skill 
deterioration (negative scores), to blocking learning (no change in scores), to substantial 
learning (positive scores). The effect was not estimated with high precision.

g. Answers above to c, d, and f include the major information to include.

CHAPTER 7. THE INDEPENDENT GROUPS DESIGN

1) Presentation style and predicted learning:

a. The two groups have similar standard deviations, so it’s reasonable to assume homogeneity 
of variance.

b. For independent groups, df = (N
1
 + N

2
 − 2) = 40

c. t
.95

(40) = 2.02
d. s

p
 = 22.02

e. sample size component = 0.3086
f. MoE

diff
 = 13.74
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g. The difference is −23 percentage points, 95% CI [–36.7, –9.3].
h. In this sample, a halting lecture style decreased students’ predicted learning substantially, 

from 48% to 25%, approximately half. The CI ranges from approximately 9 to 37 per-
centage points, which corresponds to a range from about one whole letter grade (10 per-
centage points) to almost four letter grades! The CI indicates that any value in that range 
is plausible for the decrease in the population.

2) Presentation style and actual learning:

a. df = 40; t
.95

(40) = 2.02; s
p
 = 24.08; sample size component = 0.3086; MoE

diff
 = 15.02. The 

difference is −4 percentage points, 95% CI [−19.0, 11.0].
b. In this sample, actual learning is similar in the two groups, with those given a halting lecture 

scoring only 4 percentage points worse than those given a fluent lecture. However, the CI 
is long, and is consistent with a wide range of impacts for halting lectures, from severely 
impaired (−19) up to strongly enhanced (11). Clearly, students’ pessimistic learning pre-
dictions in the halting condition were not fully confirmed, but these data don’t provide 
much clarity on the degree to which halting lectures impact actual learning.

3) Anchors and estimation:

a. The figure shows tremendous spread of estimated scores in both conditions, but most high- 
anchor participants gave estimates that are well above the mean for the low- anchor group.

b. The high- anchor group has a higher SD, but the values seem similar enough (within a 
factor of 2) to assume equal population variances.

c. Anchors had a strong influence on estimation. Low- anchor participants estimated fewer 
births/ day (M

1
 = 2799, s

1
 = 757, N

1
 = 37) than those given the high anchor (M

2
 = 3804, 

s
2
 = 995, N

2
 = 34). The high anchor increased estimates by a mean of 1,005 births/ day, 

95% CI [589, 1422], d
unbiased

 = 1.13 [0.64, 1.64]. The confidence intervals are quite long, 
but suggest that plausible differences in the population are also moderate to very large.

d. For estimates of the population of Chicago, the low anchor was 200,000 and the high 
5,000,000. Rounded to the nearest 1,000, the low- anchor participants gave much 
lower estimates (M

1
 = 577,000, s

1
 = 492,000, N

1
 = 45), than those given the high anchor 

(M
2
 = 2,989,000, s

2
 = 1,211,000, N

2
 = 35). The two SDs differ sufficiently for us to prefer 

to avoid the homogeneity assumption. The high anchor increased estimates by a mean 
2,411,000, 95% CI [1,972,000, 2,849,000], using the Welch method, which is a very large 
and clear difference. Note that we don’t calculate d

unbiased
 because we are not assuming 

homogeneity of variance. For estimates of the height of Mount Everest, the low anchor 
was 2,000 feet (1 foot = 0.3048 m) and the high 45,500 ft. The low- anchor participants 
gave very much lower estimates (M

1
 = 6,777 ft, s

1
 = 7,215, N

1
 = 40) than those given the 

high anchor (M
2
 = 36,427 ft, s

2
 = 7,451, N

2
 = 43). The SDs are similar, so we make the 

assumption of homogeneity of variance. The high anchor increased estimates by a mean 
29,650 ft, 95% CI [26,442, 32,857], d

unbiased
 = 4.00 [3.28, 4.79], which is an extremely 

large and clear difference.

4) Cleanliness and moral judgment:

a. The figure shows those in the neutral group (M
1
 = 5.81, s

1
 = 1.47, N

1
 = 20) made judgments 

that were more harsh than those in the clean group (M
2
 = 4.98, s

2
 = 1.26, N

2
 = 20). The 

(Clean –  Neutral) difference was −0.83, 95% CI [− 1.70, 0.05], d
unbiased

 = −0.59, 95% CI 
[−1.23, 0.04]. This is a large difference in the sample of nearly a full point on a scale from 
0−9. However, the CI is long and consistent with a large decrease, no change, or even a 
tiny increase in harshness of judgment.

b. The data are consistent with a wide range of possibilities. It is plausible, based on these 
data, to conclude that cleanliness may strongly reduce the harshness of moral judgments, 
but the data are also consistent with a weak effect, no effect, or even a tiny effect in the 
opposite direction.
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c. Given the long CI in the original study, you would probably be quite uncertain about what 
point estimate to expect. However, the larger sample sizes mean we can expect a shorter 
CI in the replication.

d. In the replication, those in the neutral condition (M
1
 = 6.48, s

1
 = 1.13, N

1
 = 102) gave 

judgements very similar to those in the clean condition (M
2
 = 6.47, s

2
 = 1.12, N

2
 = 106). 

The difference, which was in the same direction as in the original study, but tiny, was  
− 0.01, 95% CI [− 0.32, 0.29], d

unbiased
 = − 0.01. Moreover, the CI is fairly short, and suggests 

that the effect in the population is within a third of a point of zero.
e. This replication is consistent with the original study, in that its point estimate of −0.01 is 

within the CI of the original study. The shorter CI of the replication throws doubt on a 
large part of the long CI of the original, and suggests that the effect is at most fairly small.

f. It can be difficult to intuitively integrate findings that appear to differ. We often want to 
believe one study or the other. Meta- analysis can integrate evidence from the two, as we’ll 
discuss in Chapter 9. It would probably find that the effect is around zero to small.

5) Mathematics attitudes:

a. At the Ithaca lab, there was a wide variety of IAT scores, ranging from a considerably 
stronger implicit bias against mathematics than art, through to the reverse. Men showed 
less implicit bias against mathematics (M

1
 = 0.28, s

1
 = 0.56, N

1
 = 17) than women did 

(M
2
 = 0.56, s

2
 = 0.46, N

2
 = 71). The difference was moderately large, and was 0.28, 95% CI 

[0.03, 0.54], d
unbiased

 = 0.59, 95% CI [0.06, 1.13]. The CI is fairly long because the sample 
sizes were small, leaving considerable uncertainty about the size of the gender difference 
in implicit attitudes towards mathematics—the data are consistent with a difference any-
where from large down to around zero.

b. You were probably uncertain about your prediction for the replication, because of the 
long CI for the Ithaca data, although with larger sample sizes the CI from the second lab 
should be shorter.

c. The data from the SDSU lab show a similar pattern. Men showed less implicit bias against 
mathematics (M

1
 = 0.22, s

1
 = 0.49, N

1
 = 38) than women (M

2
 = 0.47, s

2
 = 0.55, N

2
 = 117). 

Again, this difference was fairly large, and was 0.24, 95% CI [0.05, 0.44], d
unbiased

 = 0.45 
95% CI [0.09, 0.82], again with a fairly long CI. Although both studies leave uncertainty 
about the size of the gender difference, they both found female college students have 
more negative implicit attitudes to mathematics than do males, by around an average 
0.25 units on the IAT scale. Meta- analysis of the two studies would probably also find an 
average difference of around 0.25, with a shorter CI.

d. These were non- experimental studies (gender was not manipulated!), so can only show a 
relationship between gender and implicit bias. We cannot make causal conclusions from 
non- experimental research.

CHAPTER 8. THE PAIRED DESIGN

1) Re- reading, with and without retrieval practice:

a. df = (N –  1) = 37
b. t

.95
(37) = 2.026

c. sample size component = 0.1622
d. MoE

diff
 = 8.94

e. M
diff

 = 15.0, 95% CI [6.1, 23.9]
f. The CI suggests that retrieval practice improves learning by around 15 percentage points. 

Considering that 10 percentage points corresponds to about one letter grade, plausible 
differences range from moderate (about half a letter- grade) to very large (more than 2 
letter grades).
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2) Re- reading, with and without retrieval practice, with strong motivation (i.e., high reward):

a. df, t
.95

, and the sample size component are the same as in (1), but s
diff

 = 24 is smaller, and 
this yields MoE

diff
 of 7.89. Therefore M

diff
 = 13.0, 95% CI [5.1, 20.9], which is very similar 

to the result of (1) and again suggests that retrieval practice produces somewhere between 
moderate and very large gains in learning.

b. The similarity of the effect and CI for the two levels of motivation suggests that the effect 
of retrieval practice is similar, regardless of motivation. This conclusion is based on the 
difference between re- reading and re- reading+retrieval for the two levels of motivation, 
not on the overall level of learning in either condition. Two additional points need con-
sideration. First, both CIs are long, so precision is low and there could easily be a non- zero 
effect of strength of motivation. Second, did the different payments really induce different 
levels of motivation? This needs investigation, especially considering evidence (e.g., Deci, 
Koestner, & Ryan, 1999) that financial incentives don’t always lead to better learning.

3) Emotion and heart rate:

a. Sample size was N = 68. Average heart rate at baseline, in beats per minute (BPM), was 
low to moderate (M

1
 = 64.6 BPM, s

1
 = 10.3) and during recall of an angry emotion it was 

higher (M
2
 = 72.1 BPM, s

2
 = 12.1), an increase of 7.5 BPM, 95% CI [5.4, 9.6]; d

unbiased
 = 0.66, 

95% CI [0.45, 0.88]. The CI on the difference is fairly short, and we can conclude that 
heart rate increases considerably during recall of memories of anger. Note, however, that 
the order of taking baseline and anger heart rate measures was not counterbalanced, so 
a carryover effect is possible.

b. We usually expect a lower precision estimate from independent groups, so can predict a 
longer CI on the difference.

c. When analyzed as a between subjects study we obtain: (M
2
 –  M

1
) = M

diff
 = 7.5, 95% CI [3.7, 

11.3]. This is the same effect size, but a CI almost twice as long. As you probably predicted, 
independent groups would give a considerably less precise estimate of the degree to which 
angry memories influence heart rate.

d. For the paired design, there was no mention of random assignment to counterbalanced 
orders of the rest and anger testing conditions, so we cannot make a causal conclusion. For 
independent groups, if we have random assignment of participants to groups, we could 
conclude that, most likely, the anger recall caused the heart rate increase.

4) Labels and product perceptions:

a. Sample size was N = 51. Average enjoyment rating with the generic label was moderately 
high on the 1−10 scale (M

1
 = 6.86, s

1
 = 2.13), and even higher with the organic label 

(M
2
 = 7.82, s

2
 = 2.09). The mean difference associated with the mere change in label was 

fairly large, almost one point, and was M
diff

 = 0.97, 95% CI [0.48, 1.44]; d
unbiased

 = 0.45, 
95% CI [0.22, 0.69].

b. With the suspicious participants removed, N = 46, and M
diff

 = 1.07, 95% CI [0.54, 1.59]; 
d

unbiased
 = 0.53, 95% CI [0.26, 0.81]. This is a slightly larger effect, because the suspicious 

participants rated the juice very similarly with both labels, consistent with their suspicion 
that the labels were a ruse. Their data therefore pulled the mean difference towards 0.

c. Including or excluding such participants is a judgment call. On one hand, the suspi-
cious participants saw through the experiment, so may not provide a good measure of 
how labels influence perceptions for most people. On the other hand, in real life some 
consumers probably do succeed in ignoring brand labels, so perhaps these participants 
really should be included. The biggest consideration in weighing this issue is to make 
the decision before seeing the data, so that the choice is not influenced by which esti-
mate you prefer. Pre- specifying such exclusion criteria can be difficult; Chapter 10 has 
more on this issue. You could choose to report two analyses: The first as you planned 
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in advance, perhaps including all participants, and the second an exploratory analysis 
that excludes the suspicious participants.

CHAPTER 9. META- ANALYSIS

1) Anchoring effect: Babies born per day in the U.S.:

a. (M
2
 –  M

1
) = 1,123, 95% CI [1,068, 1,178]. (This CI is shown to the right of the forest plot.) 

Wording has a big influence on judgment, and switching from a low to a high anchor 
increases estimated births/ day by more than 1,000. This is actually about a 40% increase 
from the low-  to the high- anchor condition.

b. 1.88, which suggests considerable heterogeneity. Switching to a random effects model 
will almost double the length of the CI.

c. (M
2
 –  M

1
) = 1,245, 95% CI [1,142, 1,348]. Even though the CI is now longer, it is still clear 

that anchoring has a very substantial influence on judgment.
d. Using subset analysis with a random effects model, (M

2
 –  M

1
) = 1,203, 95% CI [1,083, 

1,324] for studies conducted in the United States and 1,317, 95% CI [1,147, 1,487] for 
those outside the U.S. So studies conducted outside the U.S.A. had a slightly larger mean 
influence of anchor, the difference being 114, 95% CI [−95, 322], but the CI leaves con-
siderable uncertainty about this difference, which could plausibly be modestly smaller, 
the same, or somewhat bigger than for labs in the U.S. Also note that the diamond ratio 
was 1.99 for the U.S. and 1.36 for other labs, suggesting that considerable heterogeneity 
remains within the two subsets. Location of a lab in or beyond the U.S. does not seem to 
be an important moderator of the anchor effect.

2) Flag exposure and political attitudes:

a. In general, the random effects model is preferred because it more realistically assumes 
that the effect size could vary across labs, conditions, and studies.

b. Note that ESCI reports (M
No_ flag

 –  M
Flag

), given the way the data set is arranged. Reverse the 
sign, and random effects meta- analysis found (M

Flag
 –  M

No_ flag
) was = 0.004, 95% CI [−0.05, 

0.06], in units of the 1– 7 rating scale. This result suggests that exposure to the American 
flag has at most a very tiny effect on political attitudes.

c. The diamond ratio is 1.0, meaning that the fixed effect model gives the same CI. There is 
little variation of study ESs, and likely to be little or no heterogeneity of population ESs. 
Therefore subset analysis is unlikely be informative.

d. The replication results definitely do not provide support for the claim that flag exposure 
substantially influences political attitudes. The CI from the original study does overlap 
with the CI for the replication effect, but only because the CI from the original study is 
extremely long, meaning that the original study was uninformative. The very short CI 
very close to zero that Many Labs obtained throws great doubt on the original finding.

3) Gender and implicit bias against mathematics:

a. (M
Female

 –  M
Male

) = 0.27, 95% CI [0.23, 0.30] units on the IAT scale, using a random effects 
model, indicating that females have moderately higher bias against mathematics than 
do males.

b. A causal conclusion cannot be drawn because this is a non- experimental study. There could 
be lots of group differences beyond gender that could potentially explain this observation 
(e.g. simple level of exposure to or training in mathematics).

c. 1.29, which suggests a modest amount of variation in effect size among these studies.
d. Subset analysis indicates that the link between gender and math bias may be very modestly 

larger outside the United States (0.29, 95% CI [0.23, 0.35]) than within it (0.26, 95% 
CI [0.21, 0.30]). However, the CI on the difference is comparatively long (0.03, 95% CI 
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[−0.04, 0.11]) and so the difference could plausibly be anywhere from very small negative 
to small positive. Note also that the diamond ratio is 1.41 for U.S. labs and 1.13 for other 
labs, which are values similar to 1.29 for the whole data set. The U.S./ Non- U.S. variable 
does not seem to be a useful moderator.

4) Power and performance:

a. We need d or d
unbiased

 because the studies used different DVs—the raw scores were for 
performance at golf, darts, mirror tracing, and word production.

b. Across all seven studies, d
unbiased

 = 0.20, 95% CI [0.03, 0.36], which suggests that the effect 
of power on performance could be anywhere from tiny to around small- medium.

c. The diamond ratio is 1.19, which suggests that there may be some, but not very substantial 
variation in effect size over studies.

d. Task difficulty does not seem a promising moderator: The difference between the overall 
effect sizes for the normal and difficult tasks is very small, 0.01, 95% CI [−0.40, 0.42], and 
the diamond ratios are larger for the subsets than the whole set of studies. The CI for the 
difference is very long because there are so few studies, so we can say very little about the 
possible effect of difficulty. Participant pool seems a bit more promising, as online stud-
ies give a smaller overall effect size, the difference being −0.34, 95% CI [−0.63, −0.05], 
although the CI is again long. Country may be more promising, with studies conducted 
in the U.S. providing substantially weaker effect sizes, the difference being −0.60, 95% 
CI [−1.06, −0.13]. Again, the CI is long, but the results are consistent with power possibly 
having a much bigger effect on performance in Germany than in the U.S.

e. Moderator analysis is non- experimental and exploratory, and therefore we should con-
sider conclusions from moderator analysis as highly tentative and should, if we wish, 
seek ways to investigate any proposed moderator, if possible as a manipulated IV within 
a future study.

f. This is a matter for judgment, and would depend on what potential moderator you most 
suspect might account for the substantial differences in effect size observed across the 
7 experiments. If your hunch is with culture, it would be good to conduct one or more 
studies with both German and U.S. students. If you are interested in the possible effect of 
online administration, you could compare online and in- the- lab presentation within the 
one study. The results suggest that moderator effects may be small, so you should consider 
using large groups: In Chapter 10 there’s more on how to choose N. Remember also that 
any moderator analysis is exploratory—we may be seeing faces in the clouds rather than 
a real difference in effect size.

CHAPTER 10. OPEN SCIENCE AND PLANNING RESEARCH

1) Exploring the Open Science Framework:

a. Analysis plan. Lots of examples to explore, but here’s the analysis plan for a very interest-
ing project: osf.io/2senq Click “wiki” to read the whole plan, and click the link at the top 
to explore the whole project. As you’ll see, the project investigates the extent to which 
Open Science Badges work—the extent that rewarding the sharing of materials and data 
makes it more likely that these will actually be shared. So that’s an Open Science project 
about the effectiveness of a new Open Science practice!

b. Sample plan. Again, lots of examples to explore, but here’s an interesting one (McCarthy, 
2014) that explains very clearly how a target sample size was selected for a replication 
project: osf.io/g3kt6 Note that this link points to a registration of the project made on 
Dec 22, 2013, before data collection commenced. You’ll see a link at the top of the page 
to take you to the project’s overall homepage (osf.io/zqwa2), where you’ll see updated 
information that includes the final results.
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c. Open materials. Of the many you could explore, here’s a very interesting one, osf.io/ 
ct89g, the OSF page for the 3rd iteration of the Many Labs project. This project explores 
the extent that experimental results with psychology participant pools might vary over 
the course of a semester. You’ll find all the materials needed to replicate 10 famous psy-
chology experiments.

d. Open data. Try exploring this page (osf.io/ezcuj) which contains all the materials and data 
for the Reproducibility Project: Psychology (Open Science Collaboration, 2015).

2) Cleanliness and moral judgment:

a. About half the length of the CI, or about 0.6. Precision two tells us that two groups of 
N = 20 give MoE of 0.65 on average and N = 23 give 0.60 on average, so obtaining around 
0.6 with N = 20 is perfectly reasonable.

b. N = 87 for MoE = 0.3 on average, and N = 108 for that MoE with 99% assurance. Use at 
least 100 if possible.

c. With those N values around 100, MoE of about 0.3 is perfectly reasonable.
d. Using eyeball interpolation with the Precision two curves, N = 150 gives MoE of about 

0.23 on average and about 0.25 with assurance, so we expect MoE of around 0.23 and 
not more than 0.25.

3) Two- groups study:

a. .70
b. 30%.

4) Moral judgment, and statistical power calculations:

a. Using Figure 10.7, N = 60.
b. Interpolating, about N = 85.
c. Power = .99 and .95 for α = .05 and .01, respectively.
d. A little more than .56, because the sample sizes were a little more than 100.

5) Frogs and toe clipping:

a. Beware accepting the null hypothesis. Lack of statistical significance does not justify a 
conclusion of no effect.

b. If toe clipping actually caused a 40% decline in survival, the study had only a .2 (or up 
to .6) chance of finding a statistically significant effect. If there were a smaller, but still 
important, decline, the probability of detecting it would be even lower.

c. There was much uncertainty, so a long CI. If toe clipping caused a 40% decline and 
power = .2, the chance of obtaining statistical significance is .2, and therefore the chance 
of not obtaining it, meaning that the CI extends to zero decrease, is (1 –  .2) = .8.

d. Use larger N and, possibly, improved design or procedure. Planning would have alerted 
the researchers in advance to the insensitivity of their studies, allowing them to use larger 
N, or improve the studies in some other way.

e. First, that the studies they reviewed had low power, even for large effects, so finding non- 
statistically significant results was not surprising and certainly not evidence of zero decline. 
They also re- analyzed the data and combined results to find very strong evidence that 
toe clipping causes considerable decline in survival rate, and even stronger decline when 
increasing numbers of toes are clipped. These conclusions were justified and important. 
Opponents interpreted the Parris and McCarthy article as opposing toe clipping for reason 
of animal rights, whereas the researchers presented evidence that toe clipping was det-
rimental both to research and to the frog populations. Fidler reported the difficulty that 
Parris and McCarthy had in getting their analysis published, at least partly because several 
articles finding no statistically significant difference were believed to justify a conclusion 
that toe clipping causes no problem. If you understand the red flag and its importance 
you are ahead of a number of the contributors to the toe clipping wars! Incidentally, Fiona 
Fidler’s PhD thesis is a great read.
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6) You inquire whether the software had asked her to specify a target δ. If not, the software is 
probably reporting post hoc power, which, you explain, tells us little or nothing beyond the 
effect size found by the study, and should be ignored.

7) To be ethically acceptable, a study must be scientifically worthwhile, so N must be sufficient for 
the study to be likely to give usefully precise estimates, or have usefully high power. Second, 
participants’ likely inconvenience or discomfort should be minimized, and so no more partici-
pants should be used than can be justified by a planning analysis.

8) Precision vs. power for planning:

a. Power is widely understood by researchers, at least to some extent, even if not widely 
used. There is good, easily available software for calculating power.

b. Precision for planning works in an estimation framework, which is more informative than 
NHST and de- emphasizes dichotomous thinking. There need be less concern about red 
flags. Second, it keeps the focus on effect size estimates and precision, consistently all the 
way from planning a study, through interpretation, to consideration of replications and 
meta- analysis.

CHAPTER 11. CORRELATION

1) .9, 0, .33, −.6. An eyeballed value within ±.1 is great, and within ±.2 is good, except that for 
the first you obviously should not suggest a value of 1 or more!

2) First to final exam scores:

a. The scatterplot suggests a positive relationship, but with scatter. Guesstimates from roughly 
.4 to .7 would be reasonable for r. It can be harder to eyeball r with small data sets.

b. There don’t seem to be any strong cautions needed. The relationship does not seem strongly 
nonlinear. There’s one very low score on exam 1, but this doesn’t seem to be an invalid 
score or a strong outlier. Perhaps other students had low scores on exam 1 but then dropped 
the course. There may be some sign of a ceiling at 100. We should keep these possibilities 
in mind when interpreting r.

c. Table 11.4 is the filled- in version.
d. ESCI reports r = .57.

Table 11.4 Completed Table for Initial and Final Exam Scores for 10 Students

StudentID Exam 1, X Final Exam, Y Z
X

Z
Y

Z
X

Z
Y

1177 85.0 72.0 −0.19 −1.54 0.29
1288 96.8 92.0 0.63 0.69 0.44
1327 100.0 96.0 0.86 1.14 0.98
1911 100.0 95.0 0.86 1.03 0.88
1862 84.3 91.0 −0.24 0.58 −0.14
1578 83.0 88.0 −0.33 0.25 −0.08
1022 96.8 77.0 0.63 −0.98 −0.62
1915 89.5 86.0 0.12 0.02 0.00
1116 54.0 75.0 −2.35 −1.20 2.82

Mean 87.71 85.78
SD 14.35 8.97

Total   ∑Z ZX Y
4.57

(N –  1) 8

       

r
Z Z

N

X Y
=

−( )
∑

1

.57
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3) Correlations from journals:

a. r = .45, 95% CI [.20, .65], N = 50, which indicates that income inequality and academic 
dishonesty could have a weak to moderate positive relationship over U.S. states.

b. r = .21, 95% CI [.15, .27], N = 1,000, which indicates that there is likely a weak positive 
relationship between early reading ability and adult income.

c. With more than 14,000 participants, the CI would be very much shorter than you just 
calculated for N = 1,000.

d. r = .25, 95% CI [.04, .44], N = 84, which indicates considerable uncertainty about the 
relationship between BMI and belief in exercise to control weight; the relationship in the 
population could be moderate but could also be vanishingly weak.

4) There are usually lots of possible explanations for a correlation, so your suggestions may differ 
from mine. A good alternative explanation should explain why the two variables are corre-
lated. It may be reasonable to note that “the sample size was too small” or “the measurements 
may not have been valid”, but an alternative explanation proposes a causal pathway for the 
observed correlation.

a. Obvious possibility: Income inequality motivates dishonest behavior. However, perhaps 
population density might be a third variable that plays a role—densely populated states 
may have more income inequality and also more people able to generate search traffic 
about cheating. Or, perhaps, elite colleges with high pressure to cheat are primarily located 
in wealthy states that have higher levels of income inequality. When thinking of such 
possibilities, also think of what data would throw light on each.

b. Obvious possibility: Early reading skills cause higher adult earning. The temporal order of 
the measurements rules out the reverse—high adult income can’t be causing good early 
reading skills! There are many other possibilities. For example, high parental socioeco-
nomic status could encourage good early reading skills and also provide financial and 
social support that helps to get a high- paying job in adulthood. Even in developmental 
studies, correlation does not necessarily mean causation.

c. Larger N gives a shorter CI, but need not change any of the discussion about possible 
explanations.

d. Obvious possibility: An erroneous belief that weight control is all about exercise rather 
than diet leads to poor weight control and thus higher BMI. As usual, there are many 
other possibilities. Not to bang on this drum too much, but low socioeconomic status could 
prompt poor dietary knowledge as well as high BMI. Perhaps high BMI leads to the notion 
that weight control is all about exercise, as those with a high BMI may have already tried 
controlling weight through diet and failed. While speculating about this correlation is 
interesting, it’s important to note that the small sample size leaves considerable uncertainty 
about the strength of the relationship, which may be so weak as to be inconsequential. 
The original paper provides additional data.

5) Figure 11.19 can help guide choice of N, but, as always, you also need to consider practicali-
ties in your research context, including the ease or difficulty of recruiting N participants and 
actually running a study of that size. As we discussed in Chapter 10, you should aim for suf-
ficiently large N for your study to be usefully informative, but not more arduous and expensive 
than necessary. In each case, consider (i) that your replication is likely to find r somewhere 
within the original CI, or only a little outside it, (ii) the CI length that Figure 11.19 indicates 
for any r and N you are considering, and (iii) your desired precision, for example you may 
prefer to find evidence that the population correlation is nonzero and so you’d like a CI some 
distance from zero. All too often, these considerations suggest N that’s larger than practical, in 
which case you’ll need to compromise, or seek further similar results you can combine using 
meta- analysis.
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a. Given r = .45, 95% CI [.20, .65], replication N of around 80 would seem reasonable. There 
are only 50 U.S. states, so a replication would need to use data from other countries, or 
perhaps smaller units, such as counties, within the United States.

b. Given an original finding of r = .21, 95% CI [.15, .27], replication N should be at least 320, 
preferably more.

c. With such very large data sets, CI length is pleasingly short. If the replication will draw on 
a different population, we should consider whether there are any important differences 
between the two populations.

d. For an original finding of r = .25, 95% CI [.04, .44], replication N of more than 640 would 
probably be necessary. If the population correlation is around the upper end of that CI, a 
smaller replication N would suffice, but of course we don’t know that ρ value.

6) Beauty sleep:

a. r = −.31, 95% CI [−.51, −.08].
b. The scatterplot suggests a nonlinear, inverted- U shaped relationship, with attractiveness 

being highest with moderate sleep, and declining with either more or less sleep. Pearson’s 
r cannot adequately describe such a relationship and may mislead. These are fake data; 
nonlinear relationships don’t always show up as clearly in real data. As usual, it’s essential 
to examine the scatterplot before using r to summarize a relationship. In addition, if the 
author’s conclusion hinted at causation—amount of sleep causes attractiveness—then 
that’s a further problem with their interpretation.

7) Well- being and campus involvement:

a. For commuters, r = .68, 95% CI [.50, .80], N = 53. For residents, r = .16, 95% CI [−.11, 
.40], N = 59. It seems that the correlation between campus involvement and happiness is 
actually stronger for commuters than for residents. The difference between the two values 
of r is 0.52, 95% CI [.22, .81]. The student group who collected these data expected the 
opposite, and we’re still unclear why there seems to be a much strong relation between 
campus involvement and well-being among commuters than residents. Note that the mean 
and SD for the two variables are not very different for the two groups, which makes the 
observed difference in correlation even more puzzling. As usual, be prepared at any time 
during research to be surprised, and to think of what further study might be revealing.

b. For women, r = .31, 95% CI [.08, .50], N = 75. For men, r = .39, 95% CI [.07, .64], N = 36. 
The relationship is similar for women and men, with a difference of .08, 95% CI [−.29, 
.41]. This CI is fairly long, and includes the possibility that the relationship is moderately 
stronger in women, not at all different, and quite a bit stronger in men. More data would 
be needed to estimate any difference between the female and male correlations more 
precisely.

8) Using a random effects model to integrate the findings of Gervais et al. (2012) with Sanchez 
et al. (2016) we obtain r = −.13, 95% CI [−.28, .01], total N = 633, for the relationship between 
analytic thinking and religious belief. This suggests that the true relationship could be anywhere 
from moderately negative to around zero. The CI is long, indicating considerable uncertainty. 
Also, the diamond ratio is 1.89, a quite large value that suggests considerable heterogeneity. 
The two studies may disagree, and further studies are needed to give insight and a more precise 
estimate.

CHAPTER 12. REGRESSION

1) Friendliness and number of close friends:

a. Number of friends (Y) can’t be less than 0. With mean of 8.33 and SD as large as 6.27, we 
must have positive skew—a small number of people have large numbers of friends—which 
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suggests that Y in the population is not normally distributed. However, we’ll hope that it’s 
not too far from normal, and will make the assumption so we can use regression.

b. You should examine the scatterplot for any signs the relationship is nonlinear, and also 
look for outliers and restriction of range. The scatterplot would also probably show the 
positive skew in Y.

c. b = 4.96
d. a = −9.42
e. Y  = 0.50 friends
f. Y  =15.37 friends
g. Y  = 8.3. For someone of average friendliness, you would predict the average number of 

friends. The regression line always goes through the point (M
X
, M

Y
).

h. Residual = (Y –  Y ) = 10 − 8.3 = 1.7
i. X  = 0.023 + 3.39 × Y
j. If Y = 300, the prediction would be X  =10.38, which doesn’t make sense given that friendli-

ness was measured on a scale from 1−5. The problem is that we’ve used a number of close 
friends (Y = 300) that is far outside the range used to generate the regression equation. 
The mean number of close friends was 8.3, with SD = 6.3, and so someone who says they 
have 300 close friends is an extreme outlier (Z

Y
 = 47) relative to the original data set.

k. Applying regression beyond the original population is a matter of judgment—it depends on 
whether there are substantive differences between the new and the original populations 
in the way the two variables relate to each other. This can be especially tenuous across 
cultures. You can always use the regression equation to calculate a prediction, but the 
predictions may be completely inaccurate in a new context.

2) Home size and asking price:
a. The scatterplot shows a strong positive relationship between home size and asking price. 

The relationship seems linear. There are some outliers, but none seem to be drastically 
influencing the relationship. This data set seems suitable to use for linear regression.

b. r = 0.78, 95% CI [.73, .82].
c. Y  = −$66,024 + 2713X
d. If we consider just price per square meter, bargains are the houses that fall below the 

regression line. (In practice we’d also consider many other factors, including condition 
and location.) Eyeballing from the scatterplot, the biggest bargain seems to be a house of 
about 310 m2 at about $160,000. (Going back to the original data set, it is listing 149069, 
a 4- bedroom, 2- bathroom foreclosed home of 312.9 m2 being sold for $155,900.) Click 
near red 10 and use the slider to set the cursor as close as possible to passing through 
the low point that has the largest negative residual. You should find that a house of this 
size is predicted to sell for roughly about $780,000. Thus, the (Y –  Y ) residual is, roughly, 
$160,000 –  $780,000 = −$620,000.

e. Not necessarily. Many other factors help determine the sale price. This house is actually 
a foreclosure, so may be in terrible condition. To include other factors in making our pre-
dictions we could use multiple regression, a more advanced technique that’s beyond the 
scope of this book.

f. I set X = 185.7 as the closest available value in ESCI and found Y = $438,000, to the closest 
$1,000.

g. Click at red 11 and see that, for X = 185.7 m2, the mean of Y is predicted to be $438,000, 
95% CI [$417,000, $459,000], all to the closest $1,000.

h. Table 12.4 lists the predictions, the Y  and the PI, and the residual for each house, all to 
the closest $1,000. If your values approximately match these within about $1,000, that’s 
fine. The second column from the right indicates that the asking price (Y) was within the 
PI in 9 of the 10 cases. In the long run, if all assumptions of our statistical model are met, 
we expect that for 95% of cases the asking price will be within the PI. Note that some of 
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the PI limits are negative, which indicates that our statistical model does not fit reality 
perfectly, because in practice house prices are rarely if ever negative.

i. The prediction interval depends not only on our uncertainty about the regression rela-
tionship, but also on the variation in the variable being predicted. The larger the sample, 
the less uncertainty about the magnitude of the relationship between the predictor and 
predicted variables, but the natural variation in the predicted variable does not change. 
In contrast, the 95% CI for mean Y at a particular X depends primarily on sample size.

j. Using the 1993– 2003 data, Y  = $203,000 when X = 99.1 m2. However, we shouldn’t take 
this prediction seriously, as much has probably changed since the data set was collected, 
including inflation, changes to the housing market, and wider changes in the economy. 
A quick check in 2015 found that most houses of this size were actually selling for around 
$300,000. It’s a matter of judgment to decide when new cases are different enough that 
a regression equation should be abandoned or updated. This example shows that the 
difference may be in time, rather than the more obvious difference if we consider houses 
in a different city.

3) Happiness and kidney donations:

a. The scatterplot shows a reasonably strong linear relationship with no major outliers, and 
no strong signs of nonlinearity. There may be some restriction of range, as all states are 
within a 10 point range on the 100- point well- being index. However, we would not expect 
state averages to vary over anything like the range that individual people vary over, which 
is what the 100- point scale is designed to represent. We can proceed with the regression 
analysis, but take care to only make predictions within the range of the original data. One 
interesting point might be considered an outlier: Utah has well- being of 67.9, somewhat 
above average, but a donation rate of 29.4, almost double the overall mean for all states of 
15.3, and clearly above all other states and the regression line. That point is worth further 
investigation.

b. r = .52, 95% CI [.28, .70]. The population is a notional larger set of states, from which the 
50 U.S. states are our sample. We would probably hesitate to generalize the correlation 
and regression results for this data set to other countries, given that organ donation, in 
particular, may be seen differently in different countries and cultures.

c. Y X = +− 43 8 0 893. .
d. See Table 12.5.
e. For these four states, well- being means have changed considerably from 2010 to 2013, 

although we would need to know the CI on the difference before we would make too much 
of the apparent change. The different means give, of course, somewhat different predictions 
of donation rate. If there have been real changes in well- being, the predictions based on the 
more recent data are probably more useful now.

Table  12.4 Completed Version of Table 12.2

Case Size, X (m2) Y  ($1,000) 95% PI ($1,000)
Asking Price, Y 

($1,000)
Within PI? 

(Y/ N)
Residual 
($1,000)

1 133.8 297 −56 650 149 Y −148
2 158.0 362 9 716 549 Y 187
3 142.7 321 −32 674 435 Y 114
4 121.7 264 −89 617 299 Y 35
5 203.2 485 132 838 625 Y 140
6 195.1 463 110 817 399 Y −64
7 140.4 315 −38 668 187 Y −128
8 197.9 471 118 824 1,290 N 819
9 130.1 287 −66 640 265 Y −22
10 113.8 243 −111 596 199 Y −44
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f. The best assessment of the relationship between well- being and donation rate would be 
based on well- being and donation rate data that refer to the same period. The donation data 
are from 1999– 2010, and therefore the 2010 well- being data are likely to give a more valid 
regression equation. Unless we can find more recent donation data, using that regression 
equation with 2013 well- being data may be a reasonable way to make predictions now.

g. A change in the way a variable is measured can make a regression equation invalid—as 
usual, this depends on your judgment of the extent to which the change is substantive. In 
this case, it seems that Gallup has changed the measurement of its well- being index pretty 
dramatically, and we should be very cautious about using a regression equation developed 
from the old formulation to make predictions from the new index.

CHAPTER 13. FREQUENCIES, PROPORTIONS, AND RISK

1) Proportions and CIs:

a. P = .75, [.53, .89]. Counting the gray lines tells us that the CI extends approximately from 
11 to 18 out of 20.

b. P = .05, [.01, .24]. From 0 to 5 out of 20, approximately.
c. P = .40, [.22, .61]. From 4 to 12 out of 20, approximately.
d. P = .40, [.31, .50]. Multiply the CI limits by 100 to find the CI extends from 31 to 50 out 

of 100, approximately.
e. P = .40, [.37, .43]. From 370 to 430 out of 1,000, approximately.

2) Comparing two proportions:

a. 17, which is P = .85.
b. 50, which is P = .62.
c. For Tim, P = .40, and the CI is [.22, .61] for N = 20, and [.30, .51] for N = 80. Lengths are 

.39 and .21, so the second is about half as long as the first, as the rule states.

3) Belonging to a group
a. What is the difference between the proportion of Penn students and Harvard students 

mentioning Ivy League? Table 13.8 shows the frequencies. The difference was 9/ 33 − 0/ 
30 = 0.27 [0.11, 0.44] so Penn students are clearly more likely to mention Ivy League, by 
a substantial amount.

Table 12.5 Completed Version of Table 12.3

State Well_ Being_ 2010 Y  (2010) Well_ Being_ 2013 Y  (2013)

WY 69.2 18.0 65.6 14.8
HI 71 19.6 68.4 17.3
ND 68 16.9 70.4 19.0
NV 64.2 13.5 66.6 15.7

Table 13.8 Frequencies of Students Who Did or Did Not Mention 
Ive League (Rozin et al., 2014)

Harvard Penn  Total

Mention Ivy League? Yes 0 9 9
No 30 24 54

Total 30 33 63
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b. That the two classification variables (Mention/ No mention, and Harvard/ Penn) are not 
associated in the population. χ2 = 9.55, p = .002, so reject the null hypothesis and conclude 
there is strong evidence of an association, in agreement with the proportions analysis. Two 
expected frequencies are about 4.7 and 4.3, which are sufficiently small to suggest the 
chi- square approximation may not be very good. The p value for the difference between 
the two proportions is .004, different from .002, which also suggests that the chi- square 
approximation is not wonderful in this case—although the two p values send the same 
message of strong evidence against the null. The phi coefficient is φ = .39, perhaps a medium 
association.

c. Being classified as international is, presumably, prestigious for an airport. A major airport, 
such as John F. Kennedy in New York, is widely known as international so is central to 
the international category. In contrast, a smaller airport such as John Wayne, just south 
of Los Angeles, is international, but near the border of that category. Investigating how 
often they refer to themselves as international addresses the researchers’ question.

d. At least in the Ivy League and international airport examples, the mention of Ivy League 
or international may be prompted simply because the listener or reader is less likely to 
have the information, so mentioning it is informative, rather than an assertion of group 
membership. Rozin et al. (2014) came close to responding to that possibility in their dis-
cussion of further examples and possible theoretical models.

e. In another of their studies, Rozin et al. (2014) compared leading U.S. universities with 
smaller local colleges with no or few PhD programs, but which are still officially recognized 
as universities. They found that the latter institutions, close to the border of the prestigious 
category “university”, were considerably more likely to use the term “university” when 
making a self- reference on their websites.

f. You could examine the proportions of research journals in the two disciplines that include 
the word “science” in their title, or perhaps the proportions of university departments that 
include “science” in their title. Find the CI on the difference between the psychology and 
physics proportions, and interpret.

4) Question wording:

a. Yes, this is experimental research in which participants were randomly assigned to one of 
the two wording conditions.

b. P
Allow

 = .75, 95% CI [.74, .77], P
Forbid

 = .93, 95%CI [.92, .94]. They are independent because 
they refer to separate groups of participants—the groups given the differently worded 
questions.

c. (P
Forbid

 –  P
Allow

) = 0.18, 95%CI [0.16, 0.20]. This indicates that those given the Forbid ques-
tion were 18 percentage points more likely to permit speeches against democracy. The 
very short CI indicates that this is likely quite close to the true difference in proportions.

d. P
Allow

 = .75, 95% CI [.61, .85], P
Forbid

 = .85, 95%CI [.71, .93], (P
Forbid

 –  P
Allow

) = 0.10, 95%CI 
[−0.08, 0.27]. This indicates that those given the Forbid question were 10 percentage 
points more likely to permit speeches against democracy, but that there is considerable 
uncertainty about this difference. Specifically, the CI is consistent with anywhere from a 
slight decrease in tolerance up to a large increase in tolerance, and this includes the pos-
sibility of no change at all. The CI also includes the 18 percentage point increase observed 
for the overall data set, so we don’t have evidence that the Czech data disagree with the 
overall data.

e. p = .26; χ2(1) = 1.30, p = .26. Using NHST we would fail to reject the null, and conclude 
that the evidence does not sufficiently warrant the conclusion that wording influences 
attitude. Given the overall results, we have very strong evidence that wording does in fact 
influence the attitude reported. The data from this site do trend in the right direction, and 
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interpretation of the CI would focus on the fact that the CI leaves considerable uncertainty 
but does include the possibility of a wording effect. The NHST approach has the danger 
of being interpreted in a categorical manner (supports/ does not support).

5) Breeding success of owls:

a. N = 3 in each area is tiny, so any difference in breeding success between the two areas can 
be estimated only with very low precision. Alternatively, thinking of power, even a large 
difference is likely not to give a statistically significant result.

b. The IV is Harvested or Not harvested, but there is no mention that the levels of that IV 
were randomly allocated—ideally each to not just one, but to a considerable number of 
patches of forest. We are told that the harvested and untouched areas were similar, but 
there is no guarantee that they were the same in all ways relevant to owl breeding, except 
for harvesting, and so any claim that harvesting caused an observed difference would be 
dubious. On the other hand, if we had strong evidence of little or no difference (lots of 
data and a short CI very close to 0), we would have grounds for concluding that, most 
likely, harvesting together with any other differences between the areas had little or no 
influence on owl breeding success.

c. For X = 0, the difference is 1.0 [0.21, 1.0] so the CI does not include 0 and there is some 
evidence of a difference. For X = 1, the difference is 0.67 [−0.06, 0.94] and for X = 2 the 
difference is 0.33 [−0.29, 0.79]. In both cases the CI is long and includes 0.

d. Only for X = 0 is the null hypothesis of no difference rejected. Even with 3 in the untouched 
area and 1 in the harvested area there is no statistically significant difference, so the forest-
ers running the study would claim there was no decrease in owl breeding.

e. For X = 15, 16, and 17, the p value is, respectively, .025, .05, and .10, so X = 15 in the 
harvested area is only borderline statistically significant.

f. Even a decrease from 20 in the untouched area to X = 15 in the harvested area (a 25% 
decrease) might lead to a conclusion of no reduction in breeding. With the crazily small 
samples of 3, even a 67% reduction was taken as supporting that conclusion. It’s unfortu-
nate that anyone wishing to find no effect, in particular polluters and those wanting to do 
other potentially damaging things to the environment, or human health, are encouraged 
by traditional NHST practices to run small, insensitive studies, likely to lead to a conclusion 
of “no statistically significant damage” even when substantial damage is being caused. The 
red flag about not accepting the null hypothesis is highly important!

6) I searched for “road crash risk for males and females” and easily found a factsheet from the U.S. 
Centers for Disease Control and Prevention with a wide range of terrible messages. It seemed 
well- written for a general audience, and used a variety of what seemed to me effective ways 
to express and highlight risks.

a. Here are a few quotes: “In 2011, about 2,650 teens in the United States aged 16– 19 were 
killed… in motor- vehicle crashes. That means that seven teens ages 16 to 19 died every 
day from motor vehicle injuries.” “Teen drivers ages 16 to 19 are nearly three times more 
likely than drivers aged 20 and older to be in a fatal crash.” “The motor vehicle death rate 
for male drivers and passengers ages 16 to 19 was almost two times that of their female 
counterparts.”

b. No ranges (“a 20% to 30% chance”) were given to indicate uncertainty in the estimates, 
but I suspect they would just have complicated the stark messages. For making a decision 
about whether to undergo a particular cancer treatment, the value of the risk and the 
uncertainty of the estimate may be important, but for road crashes the message is scarily 
high risk, rather than any nuance about whether the risk is, for example, “nearly 3 times 
more likely” or only 2 times.
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CHAPTER 14. EXTENDED DESIGNS: ONE INDEPENDENT VARIABLE

1) Study strategy and learning:

a. Yes. This is experimental research with manipulation of study strategy, and random assign-
ment to groups. We can draw conclusions about the causal effect of study strategy on learn-
ing, although we also need to assume that our statistical model applies, the manipulation 
worked as intended, and the measure of learning is valid. Our statistical model includes 
random sampling, which is probably unrealistic, so we would need to rely on judgment 
to generalize the conclusion to other students, for example with different majors or in 
another college. Would the students in the study be reasonably representative of those 
different populations?

b. Yes, s is similar across the three groups. We also need to judge that the distribution of 
learning scores in each group is not very different from normal.

c. s
p
 = 5.48

d. df = 52; t
.95

(52) = 2.007
e. 95% MoE = 3.62. (M

self- explain
 –  M

control
) = 4.72, 95% CI [1.10, 8.34]. This indicates a clear 

benefit for self- explaining, but with considerable uncertainty as to how much it helps. 
The CI is consistent with anywhere from a smallish gain (1 question out of 25) to a very 
large gain (8 questions out of 25).

f. MoE = 3.62, as before, because in both cases MoE is based on same df and same s
p
. The 

difference is (M
elab int

 –  M
control

) = 0.10. 95% CI [−3.52, 3.72]. This indicates no clear benefit 
for this strategy, but with considerable uncertainty: There could be any effect from elabora-
tive interrogation somewhat impairing learning, having no effect, to somewhat fostering 
learning.

g. You should find the same answers in ESCI within rounding error.
h. The more comparisons and contrasts we make, the greater the risk of capitalizing on chance 

and finding a “difference” that is merely sampling variability, a lump in the randomness.
i. Ideally a small number of planned contrasts would have been stated as part of a prereg-

istered data analysis plan. The first two you analyzed could easily have been chosen as 
corresponding closely with the main research questions, and stated in advance as planned 
contrasts. Any further contrasts would then be exploratory, and giving only tentative 
conclusions.

j. The red flag is leaping from statistical non- significance to accepting the null hypothesis. Just 
because the differences found were not large enough to reach statistical significance does 
not mean the group means were all equal at the start of the study. Random assignment 
and sampling variability can easily give group means that differ somewhat. For perceived 
Previous Knowledge, comparing the self- explain with the control group shows (M

self- 

explain
 –  M

control
) = 0.10, 95% CI [−1.81, 2.01]. You could calculate that d = 0.04, although 

ESCI does not report d for comparisons. This indicates prior knowledge was probably fairly 
similar between groups, but could have been different by a moderate amount. Comparing 
the elaborative interrogation and control groups shows (M

elab int
 –  M

control
) = −1.07, 95% 

CI [−2.98, 0.84], and d = −0.37. (Again, I calculated that d separately). This hints that the 
elaborative interrogation group may have had somewhat lower perceived prior knowl-
edge, although the CI is long. These comparisons are relevant because we would like to 
conclude that differences in learning after studying are caused by the study strategy alone, 
not by a combination of study strategy and prior knowledge. For the elaborative inter-
rogation group, possibly lower prior knowledge could be part of why this group ended up 
showing little learning benefit from the strategy. One good strategy to consider would be 
to use learning gain scores for each participant, so the data point for each would be that 
participant’s (posttest –  pretest) score. More generally, as usual, we need replication!
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2) Study strategy and perceived ease of use:

a. The ratio of the largest to smallest SD (1.94/ 0.84) is a little greater than 2, which suggests 
this assumption is a bit tenuous. We might consider comparing these groups without pool-
ing variance using Data two and switching to not assuming homogeneity of variance. We 
should also check that scores for each group are relatively normally distributed.

b. s
p
 = 1.38

c. df = 52. t
.95

(52) = 2.007
d. 95% MoE = 0.91. (M

self- explain
 –  M

control
) = 0.36, 95% CI [−0.55, 1.27]. This hints that par-

ticipants may found self- explaining a little easier than those in the control condition, but 
there is considerable uncertainty: It would be plausible for self- explaining to be somewhat 
harder, no different, all the way up to considerably easier. Remember that this is a 5- point 
scale, so the CI is quite long relative to the scale.

e. 95% MoE = 0.91. (M
elab int

 –  M
control

) = −1.71. 95% CI [−2.62, −0.80], which indicates that 
elaborative interrogation is considered substantially harder than repetition, anywhere 
from nearly 1 to more than 2 points on the 5 point scale.

f. Possibly—it seems that participants found the elaborative interrogation strategy to be 
difficult to apply. This could be a reason why these students didn’t get much benefit from 
this strategy.

3) Religious upbringing and altruism/ sharing:

a. No, there cannot be random assignment and so this is non- experimental research and we 
cannot draw causal conclusions. We should be careful to use only language suggesting 
association and not suggesting cause.

b. Comparing children raised in Christian vs. Muslim countries for stickers shared we 
obtain: (M

Christian
 –  M

Muslim
) = 0.13, 95% CI [−0.22, 0.48]. The CI is fairly short and suggests 

there is little, if any, difference in altruism/ sharing between children raised in these dif-
ferent faiths.

c. Comparing children raised in Non- religious vs. Religious (Christian or Muslim) families for 
stickers shared we obtain: (M

Non- religious
 –  M

Religious
) = 0.83, 95% CI [0.51, 1.14]. This indicate 

that, out of 10 stickers, it is plausible that children raised in non- religious households share 
around 0.5 to 1 sticker more than children raised in religious households.

d. These groups probably differ in lots of ways beyond religion—they could differ in socio-
economic status, city/ rural setting, parental age, parental education, literacy level, and 
so much more. Any of these additional group differences could relate to the difference in 
sticker sharing, especially given that the actual difference is fairly modest.

4) Organic food and moral reasoning—original study:

a. Comparing moral reasoning scores for the group exposed to organic food and the control 
group, we find (M

organic
 –  M

control
) = 0.50, 95% CI [0.13, 0.87]. I also calculated that d = 0.82. 

The CI suggests an increase in the harshness of moral judgments with organic food expo-
sure of around half a point on the 1– 7 scale, although the change could be anywhere from 
very small to quite large.

b. Comparing moral reasoning scores for the group exposed to comfort food and the control 
group, we find (M

comfort
 –  M

control
) = −0.19, 95% CI [−0.56, 0.18]. I calculated that d = −0.32. 

The CI leaves considerable uncertainty—comfort food exposure may decrease moral 
judgments a little, but the data are also consistent with no effect or a small increase.

5) Organic food and moral reasoning—replication study:

a. The original study found d of 0.82 for the difference in moral reasoning between the 
organic and control groups. We would like MoE of less than half that size, and perhaps 
even less, in case the original study overestimated the population effect size. A possible 
target MoE, then, might be 0.3, in which case Precision two tells us we’d need N = 108 in 
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each group to have 99% assurance of an MoE of 0.3 or less. That was impractical, so we 
noted that target MoE of 0.5 with assurance requires N = 44. In practice we could achieve 
groups approaching that size.

b. Comparing the group exposed to organic food and the control group, we find (M
organic

 –  
M

control
) = 0.19, 95% CI [−0.21, 0.59]. This does not indicate a strong effect of organic food 

on moral reasoning, but the CI is quite long, and includes 0.50, the original estimate of 
the effect.

c. Comparing the comfort and control groups, we find (M
comfort

 –  M
control

) = −0.05, 95% CI 
[−0.45, 0.35], suggesting a small or zero effect, but with the CI again moderately long and 
extending to a moderate change in either direction. It also includes −0.19, the original 
estimate of the effect.

d. Overall, these results are somewhat ambiguous. The strong effect reported in the original study 
was not observed, yet the CIs from the replication study included the point estimates found 
in the original study. So this replication study does not contradict the original findings, but it 
would probably cause us to lower our estimate for how big an effect organic food exposure 
might have on moral reasoning. At this stage, it would be best to a) conduct additional rep-
lications, and b) use meta- analysis to integrate results together to produce overall estimates 
incorporating all the available data. Moery took both of these steps; you can find out what 
happened by checking osf.io/atkn7  for the Open Science Page for the project.

CHAPTER 15. EXTENDED DESIGNS: TWO INDEPENDENT 
VARIABLES

1) Research designs

a. This is a 2 × 2 independent groups design. The IVs (gender and type of image) are both 
between-groups variables. Causal conclusions can be drawn related to type of image, 
assuming the two types of images were randomly assigned to different participants. 
However, causal conclusions may not be drawn related to gender nor the interaction of 
gender and image, because gender is not a manipulated variable. The main research finding 
is an interaction.

b. This is a 2 × 2 independent groups design. The IVs (learning location, recall location) 
are both between-groups variables. Causal conclusions can be drawn for both variables, 
assuming participants were randomly assigned to the four conditions. The main research 
finding is an interaction.

c. This is a 2 × 2 mixed design, also referred to as an RCT. Treatment is a between-groups 
variable, time of measurement is a within-group variable. Causal conclusions can be drawn. 
The main research finding is an interaction.

d. This is a 3 × 2 independent groups design. The IVs (grade level, sibling) are both between-
groups variables. Causal conclusions are not justified because neither variable was created 
with random assignment. The research findings are both main effects.

2) Door holding and self- esteem:

a. This is a 2 × 2 independent groups design.
b. Causal conclusions cannot be drawn for the gender variable nor for the interaction involv-

ing gender because participants could not be randomly assigned to levels of this variable. 
Assuming participants were randomly assigned to the door held or not held conditions, a 
causal conclusion could be drawn about the main effect of this IV.

c. The researchers specifically predicted that door- holding would have a negative impact 
on men’s self- esteem, but not on women’s. This is a predicted interaction, so this was 
one of their planned analyses. They also planned to analyze the effect of door holding for 
men only and for women only. These additional effects are not fully independent of the 
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interaction, but when there is evidence for an interaction these simple effects analyses 
can help make sense of it.

d. Men who had the door held for them reported lower self- esteem than men who did not, 
(M

Doorheld
 –  M

Notheld
) = −0.93, 95% CI [−1.49, −0.37]. Given the scale of measurement is 

from 1 to 10, this indicates that door- holding could lower male self- esteem by a moderate 
to substantial amount.

e. Women who had the door held for them reported slightly higher self- esteem than women 
who did not, (M

Doorheld
 –  M

Notheld
) = 0.18, 95% CI [−0.34, 0.70]. The CI indicates consider-

able uncertainty about the effect of door- holding on women’s self- esteem, with a small 
decline, no difference, up to a moderate increase all being plausible.

f. M
FemaleDifference − MaleDifference

 = 1.11, 95% CI [0.35, 1.87]. There is considerable uncertainty 
here, but the CI indicates anywhere from a small to large difference in how door- holding 
impacts male and female self- esteem.

g. Three concerns would be 1) if a large proportion declined to participate, meaning the data 
are not particularly representative, 2) if declining to participate was not equal across the 
groups, introducing a potential confound, and/ or 3) if the types of students who declined 
to participate were systematically different from those who did, a threat to generalizability. 
We’d like to know more about all of these issues, though the last one is not easy to investigate 
because we have no further information about participants who declined to participate. The 
researchers reported that 73% of potential participants did agree to be part of the study, but 
did not indicate if the proportion varied across groups.

3) Video games and aggression:

a. This is a 2 × 2 independent groups design.
b. Causal conclusions can be drawn because participants were randomly assigned to groups.
c. There are several options here. Hilgard chose to look at the main effect of violence, the 

main effect of challenge, and for a possible interaction between the two.
d. The SDs in all groups were large, around 22 to 26 s and therefore, despite the fairly large 

groups (around 56), the CIs were long. The main effect of violence was (M
Violent

 –  M
Non- 

violent
) = 2.3 s, 95% CI [−4.2, 8.8]. Acute exposure to video game violence produced at most 

only a very small increase in aggression, and the CI indicates the effect could plausibly be 
anywhere from around 4 s shorter to 9 s longer in the ice water.

e. (M
Challenging

 –  M
Easy

) = 2.9 s, 95% CI [−3.6, 9.4]. The main effect of difficulty was a small 
increase in aggression, and the CI indicates the effect is likely to be anywhere from around 
4 s shorter to 9 s longer in the ice water.

f. For violent games, making the game more difficult produced a small 
decrease in aggression (−4.4 s). For non- violent games, making the 
game more difficult produce a moderate increase in aggression (+10.2 s).  
The interaction, which is the difference of those two differences, is M

ViolentDifference − Non- 

ViolentDifference
 = −14.5 s, 95% CI [−27.5, −1.6]. This suggests that difficulty may have a dif-

ferent effect in violent vs. non- violent games, although there is considerable uncertainty, 
and the interaction could be anywhere from quite large to very small—considering that 
aggression was measured on a scale from 0 to 80 s.

g. To help prevent publication bias, Hilgard publically preregistered his design and posted his 
completed thesis online. To help ensure negative results would be informative, Hilgard 
used a relatively large sample size, which was planned based on considerations of previous 
effect sizes observed.

4) Self- explaining vs. Time on task:

a. This is a 3 × 2 mixed design. The first variable is study strategy; it has 3 levels (control, 
self- explain, normal+additional practice); it is a between-groups variable. The second 
variable is test; it has 2 levels (pretest, posttest); it is a within-group variable.
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b. Yes. Participants were randomly assigned to study condition, so this is an experiment that 
can support causal conclusions.

c. M
diff

 = 6.27%, 95% CI [−1.44, 13.98]. On average, children in the control group, who 
studied normally, improved by over half a letter grade (1 letter grade corresponds to 10% 
improvement), but with the small sample size this leaves considerable uncertainty about 
the mean amount of learning in the population. The data are consistent with a very 
small decrease in scores, no change in scores, all the way up to more than a letter- grade 
improvement.

d. M
diff

 = 17.14%, 95% CI [8.53, 25.76]. On average, children who used self- explaining 
improved by nearly two letter grades. The CI is again long, but only consistent with large 
to very large improvements in mathematics skill (possibly up to 2.5 letter grades!).

e. Note that the two standard deviations are similar, so it’s reasonable to assume homogeneity 
of variance. M

Self- ExplainDifference –  NormalDifference
 = 10.87%, 95% CI [−0.57, 22.31]. This indicates 

that improvements in the self- explain group were on average considerably higher than in 
the control group. The CI is very long—the advantage for self- explaining could be around 
zero up to very large (2 whole letter grades!). There is only weak evidence that self- explain 
strategy does lead to greater improvements in mathematics skills than normal studying. 
This effect is an interaction of type of studying (normal or self- explain) and time of testing 
(pretest or posttest).

f. M
Self- ExplainDifference –  AdditionalPracticeDifference

 = 11.77%, 95% CI [3.20, 20.33]. This indicates that the 
gains found in the self- explain group are also on average larger than in the additional prac-
tice group. The CI is again long, so the data are consistent with self- explaining being very 
modestly better up to very much better. This is a notable finding, as the additional practice 
group did improve (M

diff
 = 5.38%, 95% CI [1.03, 9.72]), but the self- explain group improved 

by even more. For this measure of conceptual understanding, then, self- explaining seems 
to provide benefits above and beyond extra time on task. The original study, however, 
included other measures of learning, and not all showed such a clear advantage. Note in 
this example how we have used a number of planned contrasts, each with one degree of 
freedom, to find our best estimation answers to the research questions central to the study.

CHAPTER 16. FUTURE DIRECTIONS

1) Reproducibility Project: Psychology:

a. The problem is selected publication of results that reach statistical significance, also known 
as the file drawer problem. The red flag is “beware accepting the null hypothesis”, because 
selective publication may suggest that lack of statistical significance implies no effect.

b. The aim is to assist journals to encourage or require authors to use Open Science practices. 
Specifically, note the bottom right hand cell of the summary table (p. 1424) that refers to 
“peer review before observing the study outcomes”, meaning that an article describing 
a good study is accepted for publication whatever results it obtains. This, together with 
pre-registration and full reporting, should overcome the file drawer problem.

2) Open Source Malaria (OSM):

a. OSM is taking a novel approach to finding a cure for malaria. All aspects of the project 
are open to all, and anyone can join, providing they agree to make all their work and 
data open to all. This is in stark contrast with most medical research, in which discoveries 
are often kept confidential, at least until patents are secured, and full data are often not 
made open.

b. All are important to the project, but perhaps numbers 1, 2, and 6 are particularly impor-
tant, and defining of the project.
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c. My reaction when I heard of this project was delight that researchers had found a practical 
way to pursue research that may have immense benefit for humanity but was unlikely to 
attract large commercial support, by following Open Science principles so fully.

3) Robust analysis of the Dana data set:

a. High outliers in both groups mean that M
t
 is lower than M, and by about the same amount 

in the two groups. All robust CIs are less than half the length of conventional CIs, so the 
robust analysis gives more precise estimates. This, together with the strong skew in both 
groups, suggests that the robust analysis is probably more useful.

b. This is an exploration strategy, in which the analysis chosen depends on the data. Planned 
is much preferable. Also, it’s often not clear which points should be regarded as clear 
outliers.

4) The Australian Temperament Project:

a. An important consideration is the minimum legal drinking age—in Australia it’s 18. See 
“Legal drinking age” in Wikipedia.

b. It’s difficult to plan a study fully independently from the data, because you have already 
read some ATP results. You could explore a subset of the database to help you plan. Decide 
on questions and an analysis strategy, preregister, then apply that to the full database. You 
might follow with exploration.

5) Brain pictures. Were the brain areas examined nominated in advance, or selected by data explo-
ration? Planned analysis is much preferable. Second, is any effect size information provided, 
or are you seeing areas of low p values? If, as usual, p values are pictured, you should also ask 
the dead fish question: Was an arbitrary criterion like p < .001 used to select highlighted areas, 
or an appropriate more stringent criterion?

6) The 10- step research plan

a. Steps 2 to 6, and 8, must all be reported, with full details in the article, or in an online 
supplement. Data exploration (Step 7) is usually worth doing, but may not reveal any-
thing worth reporting as speculation. The materials and data should be provided (Step 9), 
usually online, or there should be explanation of why they cannot be released.

b. Pilot testing (Step 1) need not be reported, although often it’s mentioned to help justify 
aspects of the study. Step 10 need not be mentioned, although comments about possible 
replication and meta- analysis might be included.

7) The Psychological Science tutorial article:

a. Most of the figures should be familiar.
b. We’ve discussed all 25, although Guidelines 10 and 11 are rather stronger than most of the 

NHST statements in this book. If you recognized all, or even close to all, you have done 
wonderfully well and deserve an enormous pat on the back. The article and guidelines 
were published for accomplished and successful researchers, not only for students, so if 
you grasp the main issues your understanding is, at least in some ways, right up there. 
Well done!



Glossary

This is not a complete glossary of statistical terms. It focuses on selected terms that are important in this book, 
and includes expressions of my invention. Use the Subject Index to find where in the book a term is explained 
or pictured. For symbols and abbreviations, see the summary pages at the very start of the book.

Alternative hypothesis (H
1
) A statement about a population parameter that is alternative to the 

null hypothesis in NHST. It often states that there is a non- zero effect of a stated exact size, for 
example H

1
: μ = 50.

Analysis of variance (ANOVA) NHST approach to the analysis of more complex designs, which is 
based on F tests.

Archival data Data in an existing database.

Assurance When using precision for planning, assurance is the probability, expressed as a percent-
age, that our obtained MoE is no more than target MoE. We generally use assurance = 99%.

Bars Short for error bars.

Between- groups design Design, such as the independent groups design, in which the IV is a between- 
groups variable.

Between- groups variable A variable whose different levels are seen by independent groups of 
participants.

Big data Very large data sets, which in some cases are “Free and ubiquitous data”.

Bimodal distribution A distribution with two overall peaks.

Bin An interval on the X axis, as used in a frequency histogram.

Bivariate normal distribution X and Y have this distribution if they are each normally distributed 
overall, each is normally distributed at any single value of the other, and the variance of each is 
homogeneous for all values of the other.

Campbell Collaboration A worldwide collaboration of researchers that supports evidence- based 
practice in a range of social sciences.

Campbell Library Online database of more than 100 systematic reviews in the fields of social welfare, 
crime and justice, and education.

Capitalizing on chance Cherry picking. Focusing on effects identified in exploratory analysis that may 
merely reflect sampling variability.

Carryover effect In a paired design, any influence of the first measurement on the second.

Cat’s- eye picture My name for the two curves, as in Figures 5.1 and 5.9, that depict how plausibility 
or likelihood varies across and beyond a CI.

Ceiling effect Crowding of data points in a scatterplot caused by an upper limit to the values a variable 
can take. A ceiling effect can reduce correlation r.
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Center for Open Science (COS, cos.io) Center that promotes Open Science practices and encourages 
replication.

Central limit theorem A piece of magic: A theorem in statistics that states that the sampling distribu-
tion of a variable that’s the sum, or mean, of many independent influences almost always has, 
approximately, a normal distribution.

Central tendency Location.

Chasing noise Cherry picking. Capitalizing on chance.

Cherry picking Exploratory analysis that identifies results that may easily be mere sampling variability, 
lumps in the randomness, faces in the clouds. Capitalizing on chance. Chasing noise.

Clinical significance Often used in the sense of “clinical importance”.

Close replication A replication that uses a new sample, but otherwise is as similar as possible to the 
original study. Also called an exact or literal replication.

Cochrane A worldwide collaboration of healthcare professionals and policy makers that supports 
evidence- based practice in healthcare. Also referred to as the Cochrane Collaboration.

Cochrane Library An online database of thousands of systematic reviews that supports evidence- 
based practice in healthcare.

Cohen’s d A standardized ES expressed in units of some appropriate SD. It can often be considered 
a kind of z score.

Comparison The difference between two means.

Conceptual replication More distant replication of a study.

Condition A value that can be taken by the independent variable. Conditions are also called levels 
or treatments.

Confidence interval (CI) An interval estimate calculated from sample data that indicates the precision 
of a point estimate.

Confidence level (C) Same as level of confidence. Most often 95, as for a 95% CI.

Confound An unwanted difference between groups, which is likely to limit the conclusions we can 
draw from a study.

Control condition The condition that provides a baseline or starting point for a comparison.

Control group A group that experiences the control condition.

Construct The underlying characteristic we wish to study, for example anxiety, well- being, or 
self- confidence.

Continuous variable A variable that can take any of the unlimited number of values in some range.

Contrast A linear combination of the means of different groups or conditions.

Convenience sample A practically achievable—rather than random—sample from a population.

Correlation (r) See Pearson’s correlation.

Counterbalancing Random assignment of participants in a study with a paired design to different 
testing orders, or other conditions, to reduce any carryover effects.

Criterion variable See Predictor variable.
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Curve SE The SE of a sampling distribution. In ESCI it refers to the theoretical sampling distribution 
of the mean. See Figure 4.8.

Dance of the confidence intervals My name for a sequence of CIs, from successive samples, falling down 
the screen in ESCI as in Figures 5.4 and 5.6.

Dance of the means My name for a sequence of sample means falling down the screen in ESCI, as 
in Figure 4.6.

Dance of the p values My name for the sequence of bouncing- around p values for successive studies, 
as in Figure 7.14.

Dance of the r values My name for the sequence of r values given by repeated sampling, as in 
Table 11.1.

Data analysis plan Detailed plan of intended data analysis, ideally to be preregistered before data 
collection commences.

Degrees of freedom (df) Number of separate, independent pieces of information we have that relate 
to the question at hand.

Dependent variable The variable that’s measured in a study and provides the data to be analyzed.

Descriptive statistic A summary number, such as the mean, that tells us about a set of data.

Deviation The distance of a data point from the mean.

Diamond ratio The random effects diamond length divided by the fixed effect diamond length. An 
estimate of heterogeneity. Values greater than 1 suggest greater heterogeneity.

Dichotomous thinking Thinking that focuses on two mutually exclusive alternatives, notably the 
NHST decisions to reject or not reject a null hypothesis.

Difference axis My name for an axis in a figure that has its zero aligned with one sample mean so 
it can display the difference between two sample means, and the CI on that difference, as in 
Figures 7.2 and 8.2.

Discrete variable A variable that can take only distinct or separated values.

Distribution The way the data points in a data set are distributed along the X axis.

Don’t fool yourself (DFY) A warning statement. See Chapter 2.

Dot plot Figure in which every data point is represented as a dot that marks its value on the X axis, 
as in Figure 3.3A.

Effect Anything that’s of research interest.

Effect size (ES) The amount of anything that might be of interest. The size of an effect.

Effect size measure A measure used to express an ES.

Empirical sampling distribution The distribution of a number of values of a sample statistic. For 
example, the mean heap.

Equal- intervals assumption The assumption that one unit on the measurement scale is the same at 
all points on the scale. This assumption is required for interval measurement.

Error bars (also bars) Two line segments that mark an interval either side of a mean or other point 
estimate in a figure, preferably representing a 95% CI.

Error of estimation Same as estimation error.
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ES estimate (also sample ES) ES calculated from data and used as an estimate of the population ES.

Estimation An approach to statistical inference that uses sample data to calculate point and interval 
estimates of population parameters.

Estimation error (or error of estimation) Difference, for example (M –  μ), between a point estimate 
calculated from sample data, and the population parameter it estimates. See also residual.

Estimation language Language that focuses on ESs, and on “How much?” questions, rather than 
dichotomous “Is there an effect?” questions.

Estimation thinking Thinking that focuses on the sizes of effects. Contrast with dichotomous 
thinking.

Exact replication Close replication of a study.

Experimental research Research that uses random assignment of participants to groups or condi-
tions—to the different levels of the IV that is being manipulated. It can justify a causal conclusion.

Exploratory analysis Data analysis that was not specified in advance. It can discover unexpected and 
valuable findings, but these are only speculations, possibly for further investigation. Exploratory 
analysis can easily be cherry picking, merely seeing faces in the clouds. Also called post hoc 
analysis.

Evidence- based practice Practice, in medicine, statistics, or another profession, that is based on research 
evidence.

Faces in the clouds Spurious apparent patterns in sampling variability, lumps in the randomness. 
Interpreting such patterns is cherry picking.

Factorial design Design that includes all combinations of the levels of all IVs.

False negative A Type II error, a miss. Non- rejection of the null hypothesis, IF it is false.

False positive A Type I error. Rejection of the null hypothesis, IF it is true.

File drawer effect Tendency for results that are not statistically significant to remain unpublished, 
thus potentially biasing the availability of studies for meta- analysis.

First quartile The 25th percentile.

Fixed effect model Simplest model of meta- analysis, which assumes each included study estimates a 
single fixed population parameter, for example μ or δ.

Floor effect Crowding of data points in a scatterplot caused by a lower limit to the values a variable 
can take. A floor effect can reduce correlation r.

Forest plot A CI figure that shows point and interval estimates for individual studies, and displays 
the meta- analysis result as a diamond, as in Figure 1.4 and Chapter 9.

Frequency The number of cases or data points in a category or bin.

Frequency histogram Figure showing the number of data points in each of a number of bins along 
the X axis, as in Figures 3.3C and D.

Grand total (N) The sum of sizes of all groups.

Heterogeneity The extent to which population ESs vary among the studies included in a meta- analysis.

Heterogeneous The studies in a meta- analysis are heterogeneous if they estimate different 
population ESs.
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Homogeneity of variance Assumption that population variance is the same for each of the groups in 
an independent groups design.

Homogeneous The studies in a meta- analysis are homogeneous if they all estimate the same popu-
lation ES, meaning that the fixed effect model is applicable.

Independent groups design A design comprising two independent groups of participants, of sizes N
1
 

and N
2
, possibly different.

Independent groups t test NHST that uses a p value to test the null hypothesis of zero difference in a 
study with an independent groups design.

Independent variable (IV) The variable whose values are chosen or manipulated by the researcher. 
The IV can take a number of levels.

Inference See statistical inference.

Inferential statistic A statistic, such as a CI, that’s calculated from sample data and tells us about the 
underlying population.

Interaction The extent to which the effect of one IV is different at different levels of another IV. An 
interaction is often attributable to a moderator.

Intercept (a) In regression, the value of Y when X = 0. The Y value where the line, extended if nec-
essary, intersects the Y axis.

Interquartile range (IQR) Interval from the first to the third quartile.

Interval estimate A CI, which is a range of plausible values for a population parameter.

Interval measurement Same as interval level of measurement and interval scaling. The third of the 
four NOIR levels, which requires the equal- intervals assumption. It has distance but no true zero. 
The mean and SD can be calculated, but not ratios or percentages. Examples: longitude, birth year.

Inverse probability fallacy Incorrect belief that the p value is the probability the null hypothesis is true.

Law of large numbers A law of statistics, which states that, when random samples are sufficiently 
large, they match the population closely.

“Law” of small numbers A widespread misconception that even small samples match the population 
closely.

Left skew Asymmetry of a distribution, with the left tail longer and larger than the right. Also called 
negative skew.

Level A value that can be taken by the independent variable. Levels are also called conditions or 
treatments.

Level of confidence (C, also confidence level) The 95 in “95% CI”, where 95% CIs are those that, in 
the long run, will include the population parameter for 95% of replications.

Level of measurement One of the NOIR levels of measurement. See nominal, ordinal, interval, ratio.

Likelihood The cat’s- eye picture of a CI shows how plausibility or likelihood varies across and 
beyond the CI, as in Figures 5.1 and 5.9.

Likert scale A scale comprising items that ask for ratings, often with 7 points, of a respondent’s 
strength of agreement or disagreement with a number of statements.

Limit Either end of a CI.
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Linear regression See regression.

Literal replication Close replication of a study.

Location The region of the X axis where, generally, a data set is found.

Longitudinal research Research that collects data over an extended period of time.

Lower limit (LL) Lower end of a CI.

Lumps in the randomness Spurious apparent patterns in sampling variability, faces in the clouds. 
Interpreting such patterns is cherry picking.

Main effect The overall effect of an IV, based on means at each of its levels after averaging over any 
other IVs.

Margin of error (MoE) The length of one arm of a CI. The maximum likely estimation error.

Mean Average.

Mean heap My name for the empirical sampling distribution of the sample mean. In ESCI it’s a pile 
of green dots that represent sample means. See Figure 4.7.

Measure The DV, often represented by X.

Measurement A process of assigning numbers or other labels to express the values that a variable takes.

Measurement error Difference between an observed data value and what is, in some sense, the true 
underlying value.

Median The X value below and above which half the data points in a data set lie. The 50th percentile.

Meta- analysis A set of techniques for the quantitative integration of results from two or more studies 
on the same or similar issues.

Meta- analytic thinking Estimation thinking that keeps meta- analysis in mind, and considers any 
result in the context of past and potential future results on the same issue.

Mixed design A design that includes at least one between- groups IV and one repeated measure.

Mode The most frequent data value.

Moderating variable Same as moderator.

Moderator (also moderating variable) An IV that alters the effect of another IV on the DV. A moder-
ator often gives rise to an interaction. In the context of meta-analysis, a moderator is a variable 
that influences the ES being studied in the meta-analysis.

Moderator analysis Analysis within meta- analysis that seeks to identify moderator variables that can 
account for some of the ES variability between studies.

Modified replication More distant replication of a study.

More distant replication A replication that’s somewhat different from the original study. It’s also called 
a modified or conceptual replication.

Multiple regression Regression with a single predicted, or criterion, variable and more than one 
predictor variable.

Natural frequencies A risk expressed in natural frequencies is stated as so many cases per hundred, 
or thousand, or other convenient number.
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Negative skew Asymmetry of a distribution, with the left hand tail longer and larger than the right. 
Also called left skew.

New statistics See the new statistics.

NOIR Nominal, ordinal, interval, ratio. The four levels of measurement, from least detailed to most 
detailed.

Nominal measurement Same as nominal (or categorical) level of measurement and nominal (or categorical) 
scaling. The lowest of the 4 NOIR levels, which uses labels to distinguish categories but doesn’t 
have order. Frequencies can be found, but not, for example, the median or mean. Example: ice 
cream flavors.

Non- experimental research Research that uses pre- existing groups, not formed by random assignment 
or manipulation of the IV. It cannot justify a causal conclusion.

Normal distribution Continuous symmetric bell- shaped distribution with two parameters, μ and σ, 
as in Figure 3.5.

Null hypothesis (H
0
) A statement about a population parameter, often H

0
: μ = 0, that is tested by NHST.

Null hypothesis significance testing (NHST) An approach to statistical inference that uses a p value to 
either reject, or not reject, a null hypothesis.

Observed power See post hoc power.

One- sided alternative hypothesis An H
1
 that includes values that differ in only one direction from the 

null hypothesis value. For example, H
1
: μ > 50. Also called a directional alternative hypothesis.

One- tailed p value The p value calculated by including only values more extreme than the obtained 
result in the direction specified by the one- sided, or directional, alternative hypothesis, H

1
.

One- way independent groups design Design with a single IV and more than two independent groups.

One- way repeated measure design Design with a single IV with more than two levels, and one group 
that experiences every level of the IV.

Open data Making full data openly available from an enduring website.

Open materials Making the full materials used in a study openly available from an enduring website.

Open Science A set of evolving strategies designed to make science more open, replicable, and 
trustworthy.

Open Science Framework (OSF, osf.io) An online resource provided by the Center for Open Science 
to help researchers use Open Science practices.

Operationalization A practical way to measure a construct. For example, the State- Trait Anxiety 
Inventory (STAI) score operationalizes anxiety.

Ordinal measurement Same as ordinal level of measurement and ordinal scaling. The second of 
the four NOIR levels, which has order but not the equal- intervals assumption. The median 
and percentiles can be calculated, but not the mean or SD. Example: ranking of performance 
as 1st, 2nd, 3rd, ….

Original units Units, such as milliseconds (ms), centimeters (cm), or dollars ($), in which a data 
value or ES was first measured.

Outlier A data point that is extreme, relative to others in a data set.
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Overlap rule If independent 95% CIs just touch, there is moderate evidence of a difference (and 
p is about .01); if they overlap moderately, there is a small amount of evidence of a difference 
(and p is about .05).

Paired design A design comprising one group of N participants, each of whom supplies a pair of data 
values, one on each of two measures; for example pretest and posttest.

Paired t test NHST that uses a p value to test the null hypothesis of zero difference in a study with 
a paired design.

Parallel forms Two versions of a test that use different questions, but measure the same characteristic 
and are of similar difficulty.

Pearson’s correlation, r Measure of the linear component of the relationship between two variables, 
usually X and Y.

Percentile The value of X below which the stated percentage of data points lie.

p- hacking The use of questionable research practices to achieve p < .05.

Phi coefficient (φ) Measure of strength of association in a 2 × 2 frequency table, which is a type of 
correlation.

Pilot testing Small exploration studies that guide selection of all aspects of a planned study. Where 
possible, it should lead to preregistration.

Planned analysis Data analysis that is specified in advance, preferably as a preregistered data analysis 
plan. It provides the best basis for conclusions.

Planned contrast A comparison or subset contrast that is specified in advance, preferably as part of 
a preregistered data analysis plan.

Plausibility The cat’s- eye picture of a CI shows how plausibility or likelihood varies across and 
beyond the CI, as in Figures 5.1 and 5.9.

Point estimate A single value that is our best estimate of a population parameter.

Pooled SD SD calculated from the standard deviations of two or more independent groups as a 
combined estimate of the population SD, which is assumed the same for all groups.

Population A set of values, usually assumed large or infinite, about which we wish to draw 
conclusions.

Population ES ES in the population, usually unknown and to be estimated.

Population parameter A value, for example μ or σ, of a characteristic of a population. It’s usually 
fixed but unknown.

Positive skew Asymmetry of a distribution, with the right- hand tail longer and larger than the left. 
Also called right skew.

Post hoc analysis See exploratory analysis.

Post hoc contrast Contrast chosen after seeing the data, which is part of data exploration.

Post hoc power (also observed power) Power calculated after completing the study, using as target 
δ the effect size d obtained in the study. It can easily mislead, so never use it.

Power See Statistical power.

Practical significance Often used in the sense of “practical importance”.
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Precision Largest likely estimation error, measured by MoE of a 95% CI.

Precision for planning Planning by choosing N so a study is likely to obtain MoE no longer than some 
chosen target MoE.

Predicted variable Regression provides an estimate for the predicted variable Y (also known as the 
criterion variable) from a value of predictor variable X.

Prediction interval (PI) Interval in which a future value, for example a replication mean, is likely to fall.

Predictor variable Regression provides an estimate for the predicted variable Y from a value of pre-
dictor variable X.

Preregistered review Peer reviewing by a journal of a full research plan before it is preregistered and 
before data collection commences.

Preregistration The lodging in advance, at a secure and enduring website and with a date stamp, of 
a detailed research plan including a data analysis plan. Also known as registration in advance.

Probability distribution A graph showing how probability is distributed over the possible values of 
a variable.

Proportion (P) Fraction of a number of discrete things that have a property of interest. It lies between 
0 and 1.

Publication bias Selection of which studies to publish according to the results they obtain. Typically, 
studies finding statistically significant results are more likely to be published.

p value Probability of obtaining our observed results, or results that are more extreme, IF the null 
hypothesis is true.

Quartile One of the 25th (first quartile), 50th (median), and 75th (third quartile) percentiles.

Questionable research practices Choices about data analysis or about what to report that are made 
after seeing the data.

Random assignment Assignment of participants to groups or conditions by means of a random process. 
It gives the best grounds for a conclusion of causality.

Random effects model Model for meta- analysis that assumes different studies estimate somewhat 
different values of the population parameter being investigated, for example μ or δ.

Randomized control trial (RCT) A two- way factorial design with one repeated measure. Participants 
are randomized to treatment and control groups, and data are collected at a number of times, 
perhaps pretest, posttest, and follow up.

Random sample A sample produced by random sampling from a population.

Random sampling A sampling process in which every data value in the population has an equal 
chance of being sampled, and values are sampled independently.

Range Interval from the lowest to the highest data point in a data set.

Range restriction If the range of X or Y values in a data set is restricted to less than the full range of 
X or Y, the correlation of points in the data set is likely to be reduced.

Ratio measurement Same as ratio level of measurement and ratio scaling. The fourth of the four 
NOIR levels, which has all the properties of interval measurement and also a true zero. Ratios 
and percentages can be calculated, as well as the mean and SD. Examples: height, time taken 
to complete a task.



540

G
lo

ss
ar

y

Rectangular distribution Probability distribution that has the shape of—would you believe—a rec-
tangle, as in Figure 4.9.

Red flag A vital caution about NHST, as described in Chapters 6 and 7.

Reference values Values used to assist interpretation of an ES, when they are judged to be relevant. 
Cohen, for example, suggested reference values for d. Effect sizes should always be interpreted 
in context.

Registration in advance See Preregistration.

Regression The fitting of a regression line of Y on X to calculate an estimate for the predicted variable 
Y from a value of predictor variable X.

Regression estimate Y, which is the value of Y calculated from the regression line for a particular 
value of X.

Regression line See regression.

Regression weight (b) Slope of a regression line.

Repeated measure (also within- group variable) An IV all of whose levels are seen by the same group 
of participants.

Repeated measure design Within-group design, such as the paired design.

Relative risk Risk ratio.

Reliability The repeatability or consistency of a measure. High is good.

The replicability crisis The troubling discovery that a number of published research findings cannot 
be replicated.

Replication study A study that is a replication of an initial study, usually a close replication.

Replication mean The mean of a close replication study.

Replication p My name for the p value given by a replication study.

Research synthesis (also systematic review) Review that integrates research evidence, usually by 
meta- analysis.

Residual In regression, (Y –  Y ) is a residual, the difference between the value of Y for a data point 
(X, Y ), and Y, the regression estimate for that value of X. It’s also known as an estimation error.

Right skew Asymmetry of a distribution, with the right hand tail longer and larger than the left. 
Also called positive skew.

Risk Probability, usually but not always of an unwanted event.

Robust techniques Robust statistical techniques are resistant to departures from some assumptions, 
for example normality of the population.

Sample A set of N data values chosen (often at random) from a population.

Sample ES (also ES estimate) ES calculated from data, and usually used as an estimate of the 
population ES.

Sample statistic A descriptive statistic, for example M or s, that is calculated from sample data and 
tells us about that data set.

Sampling distribution (also theoretical sampling distribution) The distribution of all possible values 
of a sample statistic.
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Sampling variability Extent to which results vary over repeated sampling, or close replications.

Scatterplot Picture of the relation between X and Y, in which each data pair is represented by a dot.

Selective publication Studies not achieving statistical significance are less likely to be published.

Significance Ambiguous term, the “S” word. Write “statistical significance”, or avoid it altogether.

Significance level A criterion p value, often .05, .01, or .001, against which an obtained p value is 
compared.

Simple main effect The effect of one IV at a single level of another IV.

Skew Asymmetry of a distribution, with one tail longer and larger than the other.

Slippery slope of nonsignificance My name for the fallacy that finding a result to be not statistically 
significant is sufficient to justify interpreting it, perhaps in a later section of a report, as zero.

Slippery slope of significance My name for the fallacy that finding a result to be statistically signif-
icant is sufficient to justify interpreting it, perhaps in a later section of a report, as important 
or large.

Slope (b) Gradient of a regression line.

Spread The dispersion or variability within a data set.

Stacked dot plot Dot plot in which the dots representing data points are, where necessary, stacked 
so all are easily visible. Dots are also moved by tiny amounts along the X axis so they line up 
neatly in columns, as in Figure 3.3B.

Standard deviation (SD) A measure of the spread of data points.

Standard error (SE) SD of a sampling distribution.

Standardized mean difference (SMD) A term used in medicine for Cohen’s d for a difference.

Standardized regression line Regression line of Z
Y
 on Z

X
, which has intercept zero and slope r.

Standardized regression weight (β) Slope of the standardized regression line of Z
Y
 on Z

X
.

Standardized units Units with some generality, such as number of SDs.

Standardizer The SD chosen as the unit of measurement for Cohen’s d.

Standard normal distribution Normal distribution with mean of 0 and SD of 1, which is usually dis-
played on a z axis.

Statistical cognition The empirical study of how people understand and misunderstand statistical 
concepts and presentations.

Statistical inference A method that uses sample data to draw conclusions about a population.

Statistical model A set of assumptions we make in order to be able to calculate sample or inferential 
statistics. For example, random sampling is usually one assumption in the statistical model we 
use to calculate CIs.

Statistical power (also power) Probability of rejecting the null hypothesis when the alternative 
hypothesis is true.

Statistical significance Rejection of the null hypothesis.

Strict NHST NHST with statement in advance of α, the significance level to be used.

Subset contrast The difference between the means of two subsets of group means.
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Sum of squares A quantity like ∑ −( )Y Y
2
, which is the sum of squares of residuals in regression.

Systematic review (also research synthesis) Review that integrates all the available research evidence 
on a topic, almost always by meta- analysis.

Take- home picture A picture that’s sufficiently vivid and important to haunt your dreams.

Take- home movie A running simulation that’s sufficiently vivid and important to haunt your dreams.

Target effect size, δ Value of δ, the population ES, used in a power calculation.

Target MoE Value of precision specified for calculations of what N we need, when using precision 
for planning. Target MoE is expressed in units of σ, the population SD.

Test- retest reliability The extent that a measure gives the same result when repeated in the same 
situation.

Test statistic A statistic with a known distribution, when H
0
 is true, that allows calculation of a p 

value. For example, z and t are often used as test statistics.

The new statistics Statistical techniques, including especially estimation and meta- analysis, that usually 
provide a better basis for statistical inference than NHST.

Third quartile The 75th percentile.

Time series Data collected at a number of time points, often a large number of time points.

Tragedy of the error bar My name for the unfortunate fact that error bars don’t automatically announce 
what they represent. We need to be told.

Treatment A value that can be taken by the IV. Treatments are also called levels or conditions.

Trimmed mean Mean calculated after trimming of a data set, often by 20% at each end.

Trimming Removal of a stated percentage, often 20%, of the data points from each end of the 
distribution.

t test NHST using t as the test statistic.

Two- sided alternative hypothesis An H
1
 that includes values that differ in either direction from the null 

hypothesis value. For example, H
1
: μ ≠ 50.

Two- tailed p value The p value calculated by including the obtained result and values more extreme 
in both directions.

Two- way independent groups design Design with two IVs, and a group of participants for every com-
bination of levels of the two IVs.

Type I error Rejection of the null hypothesis WHEN it’s true. A false positive.

Type I error rate (α) Probability of rejecting the null hypothesis WHEN it’s true.

Type II error Non- rejection of the null hypothesis WHEN it’s false. A false negative, a miss.

Type II error rate (β) Probability of not rejecting the null hypothesis WHEN it’s false.

Unbiased estimate An estimate of a parameter is unbiased if, on average, it equals the parameter. 
On average it neither underestimates nor overestimates the parameter.

Unimodal distribution A distribution with only one overall peak.

Upper limit (UL) Upper end of a CI.
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Validity The extent that a measure actually measures what it’s designed to measure. High is good.

Variance The square of the SD.

Weights Relative contributions of different studies in a meta- analysis.

Welch method (or Welch– Satterthwaite method) A method for analyzing the independent groups 
design without needing to assume homogeneity of variance.

Within- group design Design, such as the paired design, in which the IV is a within-group variable.

Within- group variable A variable whose different levels are all seen by a single group of participants. 
Also known as a repeated measure.

z score The distance of a data point or an X value from the mean, in standard deviation units.
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mismatched quadrants, see eyeballing correlation
miss, see Type II error
mixed design 449
mode 54
moderating variable, see moderator
moderation, see moderator
moderator 231– 5, 443– 5
modified replication, see distant replication
MoE, see margin of error
MoE distribution 269
MoE lines 99
moral judgment 190– 1, 428
motivation xxv, 405– 6
mouse model 409
Mozart, W. A. 320
Multidimensional Body Self- Relations Questionnaire 

(MBSRQ) 293
multiple regression 340
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natural frequencies 388
negative skew, see left skew
the new statistics xvii– xix, 260, 331, 489
next mean, see replication mean
Neyman, J. 128
NHST, see null hypothesis significance testing
NOIR (nominal, ordinal, interval, ratio) 27– 31
nominal level of measurement, see nominal scaling
nominal scaling 27, 371
non- experimental research 22– 4, 186
non- normal data 477
non- normal population 88– 90
Normal and t (ESCI page) 106, 136, 164, 181, 210, 498
normal distribution 50, 73– 7, 90– 1; see also bivariate 

normal distribution, standard normal distribution
Normal (ESCI page) 77– 8, 134, 498
null hypothesis (H

0
) 129– 33, 137– 42, 144– 9, 319, 

383, 421– 3
null hypothesis significance testing (NHST) xviii, 

xix, 128– 32, 134– 6: courtroom analogy 150; 
decision making 147– 9; tradition 151; see also null 
hypothesis, p values, red flags, Type I error, Type II 
error

numerous dependent variables 485– 6

observed power, see post hoc power
omega- squared (ω2) 422
One correlation (ESCI page) 311– 12, 498
one from the dance 113; see also confidence interval, 

dance of the CIs
One proportion (ESCI page) 373– 5, 499
one- sided alternative hypothesis 152
one- way independent groups design 397– 406, 421– 3
one- way repeated measure design 417– 20, 423
open data 36, 484
Open Data badge 260, 264
open materials 36, 484
Open Materials badge 260, 264
Open Science xvii– xix, 9– 12, 35– 6, 259– 61, 472– 6, 484
Open Science Framework (OSF) 36, 259– 60, 263, 287
operationalization 25
ordinal level of measurement, see ordinal scaling
ordinal scaling 28, 30
Original two groups (ESCI meta- analysis page) 224– 

5, 236– 8, 498
original units 170– 5, 178, 341– 2
OSF, see Open Science Framework
outlier 58, 304 
overlap rule 182– 4, 200, 400, 451

paired design 195– 9, 209– 10: and independent 
groups design 200, 213– 14; see also carryover 
effect, Cohen’s d, counterbalancing, precision for 
planning, t test

parallel forms 212
parameter 18– 9, 75, 106, 268, 482
parapsychology 369– 72
partial eta- squared (η2) 422
Pearson, E. 128
Pearson’s correlation (r) 293– 9, 304, 306– 7, 315– 16, 

320– 2: assumptions 309– 11; calculation 299– 303; 

CI 309– 13, 320; dance of the r values 308– 9; p 
value 311; planning 314– 15; reference  
values 318; see also causation, correlation matrix, 
paired design, precision for planning, reliability, 
validity

pen- laptop 17– 18, 37, 43– 4, 160– 5
PenLaptop 1 study 163– 6, 173– 4, 181
PenLaptop 2 study 167– 9
percentage 376– 7
percentiles 61– 2
p- hacking 258– 9
phi coefficient (φ) 384– 6
phonics 246– 7
pictographs 65
pie chart 66
pilot testing 261– 2, 471, 484
planned analysis 34– 5, 413– 14, 446
planned contrast 413– 14, 421– 3, 448
planning complex designs 463
planning of research 257; see also precision for 

planning
plausibility, see likelihood
point estimate 2– 6
poll example 1– 7, 11, 97– 8, 128– 32
pooled SD (s

p
) 163, 172, 208, 400– 1

popout comment (in ESCI) 48
population 3, 18– 9, 50: correlation (ρ) 274– 5; mean 

(μ) 18, 79; proportion (Π) 374; standard deviation 
(σ) 79

positive skew, see right skew
post hoc analysis, see exploratory analysis
post hoc contrast 415
post hoc power 284
post- traumatic stress disorder (PTSD) 243– 7
power 279– 84: compared with precision  

for planning 285– 6; target effect size  
(δ) 279, 284

precision 4– 7, 116, 226; see also confidence interval, 
MoE

precision for planning 265– 9, 272– 5: assurance  
269– 72; strategy for using 275– 8

Precision paired (ESCI page) 273– 5, 498
Precision two (ESCI page) 269, 275, 277, 498
predicted variable (Y) 332
prediction interval (PI) 116– 17, 352– 7
predictor variable (X) 332
Preregistered badge 260
preregistered review 474
preregistration 36, 262– 3, 287, 473, 482, 484
pretest– posttest design 196, 272– 3
probability 73
probability density 73
probability distribution 73
proportion 370– 1, 373– 9
proportion of variance accounted for (r2) 344– 6
protocol video 262, 472
psychic powers 369– 70
Psychological Science (journal) xviii, 260, 473, 493
PTSD, see post- traumatic stress disorder
publication bias 32– 3, 236– 8, 247
p values 129– 37: APA style 154; and correlation 311, 
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319; independent groups 180– 1; one- tailed  
152– 3; paired design 209– 10; and regression  
349– 50; relation with a 95% CI 137– 42;  
star convention 185; two- tailed 152; see also 
analysis of variance, dance of the p values, 
Ioannidis problems, null hypothesis  
significance testing, publication bias, Red Flag 4, 
Red Flag 5

quadrants, see eyeballing correlation
quartile 62
questionable research practices 258– 9
Quick Inventory of Depressive Symptomology 

(QUIDS) 60
QUIDS, see Quick Inventory of Depressive 

Symptomology

Randi, J. 369
random assignment 23, 186, 213
randomized control trial (RCT) 244, 449– 53, 462
randomness 110– 11
random number generator 111
random sample 19– 20
random sampling 19– 20
range 62
ratio level of measurement, see ratio scaling
ratio scaling 29
RCT, see randomized control trial
rectangular distribution 88
Red Flag 1, dichotomous thinking 143, 285
Red Flag 2, ambiguous S word 143– 4
Red Flag 3, don’t accept H

0
 144

Red Flag 4, p not probability of chance 145– 6
Red Flag 5, variability of p 185, 415
red flags 143– 6
reference values, see Cohen’s d, Hattie’s reference 

values, Pearson’s correlation
registration in advance, see preregistration
regression 295– 6, 331– 9: assumptions 348– 9,  

355– 6; CIs 349– 52, 356– 7; prediction interval  
352– 4, 356– 7; reversed 346– 7; standardized 
342– 3; see also intercept, linear component (of a 
relationship), predicted variable, predictor  
variable, proportion of variance accounted for, 
regression to the mean, residuals, slope

regression to the mean 357– 61
rejection 129– 30, 148– 50, 279; see also null 

hypothesis significance testing
reliability 25– 6, 318– 20; see also test– retest  

reliability
religious faith 171, 328
religious upbringing 427
repeated measure, see within- group IV
repeated measure design, see within- group design
replicability 263, 472– 3; see also replication
replicability crisis 9– 10, 257– 9; see also Ioannidis 

problems, Open Science
replication 9– 10, 32, 116– 18, 262– 3, 272, 475
replication crisis, see replicability crisis
replication mean 116– 17
reporting your work 14

Reproducibility Project:  Psychology 472– 3
research 17
research questions 5, 37, 143, 471
residuals 333– 5, 345– 7
retrieval xxvi
RevMan (software) 248
right skew 45
risk 387– 9
robust statistical techniques 477– 82
Robust two (ESCI page) 479– 80, 492, 499
Roman letters (for statistical symbols) 67

sample 3, 19: mean (M) 18, 79; standard deviation (s) 
79; statistic 18

sample size component 163– 4, 181, 198– 9,  
209– 10, 401

sampling 80; see also random sampling
sampling distribution of the mean 80, 84; see also 

mean heap
sampling variability 6, 34– 5; see also dance of the 

means, mean heap, standard error
scatterplot 295– 9
Scatterplots (ESCI page) 301– 2, 334, 498
SD, see standard deviation
SE, see standard error
seductive allure of neuroscience 455
seeing a face in the clouds 35; see also  

cherry picking
See r (ESCI page) 299– 300, 498
selection 9, 32– 5; see also Ioannidis problems
selective publication 236, 247, 258
self- efficacy 171
self- explaining 467– 8
shape (of a distribution) 44
SIDS, see Sudden Infant Death Syndrome
significance level 129– 30
significant, meaning of 143– 4
simple linear regression, see regression
simple main effect 446
simulation 79– 80
Single r (ESCI meta- analysis page)  

323– 4, 498
skew 45, 88, 477
sleep apnea 380– 1
sleep deprivation 157, 432– 3
slippery slope of nonsignificance 144– 5; see also  

Red Flag 3
slippery slope of significance 143– 4; see also  

Red Flag 2
slope 334, 339
SMD, see standardized mean difference
speed cameras 248
spinner (in ESCI) 48
Spock, Dr 246
spread (of a distribution) 44, 55– 7
stacked dot plot, see dot plot
Stait- Trait Anxiety Inventory (STAI) 25
STAI, see Stait- Trait Anxiety Inventory
standard deviation (SD, s) 55– 8
standard error (SE) 84– 7: SE lines 84
standard normal distribution 73
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standardized effect size measure 170– 1; see also 
Cohen’s d

standardized mean difference (SMD) 171; see also 
Cohen’s d

statistical inference 18
statistical judgment xx
statistical model 20– 1, 78– 9, 133– 7, 162, 198, 440
statistical power, see power
statistical significance 129; see also null hypothesis 

significance testing
statistics confidence xxv
step- by- step research plan 12, 471– 2
strength of evidence 130; see also p values
strict NHST 129, 147; see also null hypothesis 

significance testing, power
Student’s t distribution, see t distribution
study skills xxiv– xxvii
study strategy 426
Subjective Well- Being Scale 124
subset contrast, see contrast
Subsets (ESCI meta- analysis page) 231, 498
Sudden Infant Death Syndrome (SIDS) 246
Summary paired (ESCI page) 203, 206– 7,  

210, 500
Summary two (ESCI page) 168, 172, 500
superstition 171
the S word, “significant” 143– 4; see also Red Flag 2
symmetric distribution 44– 5
systematic review 243

take- home messages 14
target MoE 265– 6, 275– 8
t component 163– 4, 198, 401
t distribution 105– 7: and p values 135– 7
teaching of reading 246– 7
telepathy 371
temperament 483
test– retest reliability 26, 318– 20
test statistic 135
third quartile (Q3) 62
Thomason 1 study 196– 8, 201– 8, 273– 6, 299– 301, 

334– 5, 340– 3

Thomason 2 study 201, 203, 206, 275
Thomason 3 study 206– 7, 273, 275, 346– 7
Thomason 4 study 207
tightness to the line, see eyeballing correlation
time series data 483
time- restricted eating 459
TOP Guidelines 474; see also Open Science
town size and walking speed 317
tragedy of the error bar 118
treatment (of an IV), see level (of an IV)
trimmed mean 477– 82; see also trimming
trimming 63
t test 181, 209– 10
Two correlations (ESCI page) 320– 1, 499
Two proportions (ESCI page) 377, 499
two repeated measures 455– 6
two- way independent groups design 431– 9: 

assumptions 440
Type I error 148: rate (α) 149– 51, 279– 84
Type II error 148: rate (β) 149– 51, 279– 84

unbiased estimate 57, 176– 7
uncertainty 4, 8– 9
uniform distribution, see rectangular distribution
unimodal distribution 44

validity 26, 318– 20
variability component 163– 4, 181, 198, 208– 10, 401
variability of p values, see dance of the p values
Varian, H. 487
variance (V) 55; see also additivity of variance
video games 467

Welch- Satterthwaite 167, 477, 480
well- being 293– 4, 319– 20, 331– 3
within- group design 196, 214, 417– 20: and 

independent groups 420– 1
within- group IV 196, 448

z lines 59– 60, 73– 4
z scores 59– 60, 74– 8, 133– 5, 301– 5, 341– 3; see also 

normal distribution



Selected Formulas

CHAPTER 3. PICTURING AND DESCRIBING DATA

Mean: M
X

N

i
= ∑

 (3.1)

SD and variance: s
X M

N

i
=

−( )
−

∑ 2

1
 and V = s2 (3.3)

z and X: z
X M

s
=

−
 and X M zs= +  (3.4, 3.5)

CHAPTER 4. THE NORMAL DISTRIBUTION AND SAMPLING

For a normal distribution, approximately:

 ■ 95% of the area lies between z = −2 and z = 2.
 ■ 34% of the area lies between z = −1 and z = 0, and 34% between z = 0 and z = 1.
 ■ 2.5% of the area lies above z = 2, and 2.5% below z = −2.

z and X: z
X

=
− µ
σ

 and  X z= +µ σ  (4.1, 4.2)

SE: SE = σ/ N  (4.3)

CHAPTER 5. CONFIDENCE INTERVALS AND EFFECT SIZES

To halve the length of a CI, we need N approximately 4 times as large.
The CI is [M –  MoE, M + MoE].

MoE for 95% CI on M, σ known: MoE = 1.96 × σ/ N  (5.1)
Two numbers for statistics groupies: z

.95
 = 1.96, and z

.99
 = 2.58.

z for sample mean M: z
M

N
= − µ

σ /
 (5.5)

t for sample mean M: t N
M

s N
( )

/
− = −

1
µ

  (5.6)

MoE for 95% CI on M, σ not known: MoE = t
.95

(df) × s/  N  (5.9)
For a single group: df = (N –  1)

CHAPTER 6. p VALUES, NHST, AND CONFIDENCE INTERVALS

z assuming H
0
 is true: z

M

N
=

−( )µ
σ

0

/
 (6.1)

t assuming H
0
 is true: t N

M

s N
( )

/
− =

−( )
1 0µ

 (6.2)



CHAPTER 7. THE INDEPENDENT GROUPS DESIGN

For two groups: df = (N
1
 + N

2
 − 2) (7.1)

Pooled SD for independent groups: s
N s N s

N Np =
−( ) + −( )

+ −
1 1

2
2 2

2

1 2

1 1

2
 (7.2)

MoE for the difference between independent means:

MoEdiff p= + −( ) × × +t N N s
N N.95 1 2

1 2

2
1 1

 (7.3)

Cohen’s d: d =
Effect size in original units

An appropriate standard deviiation

ES

SD
=  (7.4)

Cohen’s d for independent groups: d
M M

s
=

( )2 1−

p

 (7.5)

t for independent groups: t N N
M M

s
N N

1 2
2 1

1 2

2
1 1

+ −( ) =
−

× +

( )

p

 (7.6)

CHAPTER 8. THE PAIRED DESIGN

MoE for the difference: MoE
diff

 = t
.95

(df) × s
diff

 × (1/  N ) (8.2)

Standardizer for paired design: s
s s

av =
+1

2
2
2

2
 (8.3)

with df = (N –  1).

d for the paired design: d = M
diff

 /  s
av

 (8.4)

t for the paired design: t N
M

s
N

( )− =
×







1
1

diff

diff

 (8.5)

CHAPTER 11. CORRELATION

z scores for X and Y: Z
X M

sX
X

X

=
−  and Z

Y M

sY
Y

Y

=
−

 (11.1)

Pearson correlation: r
Z Z

N

X Y
=

−( )
∑

1
 (11.2)

CHAPTER 12. REGRESSION

SD of residuals: s
Y.X

 =  ∑ −( )
−

Y Y

N



2

2( )

 (12.2)

Regression line, Y on X: Y  = a + b × X (12.3)

Slope, regression of Y on X: b = r × 
s

s
Y

X







 (12.6)

Intercept, regression of Y on X: a = M
Y
 –  b × M

X
 (12.7)



Regression line, Y on X: Y  =  M r
s

s
M r

s

s
XY

Y

X
X

Y

X

−


















+


















 (12.8)

Regression line, Z
Y
 on Z

X
: Z

Y 
 = r × Z

X
 (12.9)

Variance of residuals: s s rY X Y. ( )2 2 21= × −  (12.12)

and s r s sY Y Y X
2 2 2 2

.= ×



 +  (12.13)

CHAPTER 13. FREQUENCIES, PROPORTIONS, AND RISK

Proportion: P = X /  N (13.1)
Frequency table:

Expected frequency = Row total × Column total /  Grand total (13.2)

For each main cell: Contribution to χ2 = (Obs –  Exp)2/ Exp (13.3)
Chi- square is the sum of contributions for the four main cells.

Phi coefficient: φ χ=
2

N
 (13.5)

CHAPTER 14. EXTENDED DESIGNS: ONE INDEPENDENT VARIABLE

Pooled SD for three independent groups: s
n s n s n s

n n np =
−( ) + −( ) + −( )

+ + −
1 1

2
2 2

2
3 3

2

1 2 3

1 1 1

3
 (14.1)

df = (n
1
 − 1) + (n

2
 − 1) + (n

3
 − 1) = (N –  3) (14.2)

MoE for a single mean: MoE = t
.95

(df) × s
p
 × (1/ n1 ) (14.3)

MoE for a comparison, one- way independent groups design:

MoEdiff p= ( ) × × +t df s
n n.95

1 2

1 1
 (14.4)

CHAPTERS 14 AND 15. ANOVA

ANOVA: F = 
variability of group means

variability of data within a grouup pooled over all groups,
 (14.7)

For the main effect of an IV with k levels: df = (k –  1) (15.1)
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