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Preface 

The first edition ofthis book was published in 1996. Since then, powerful computers 
have come into wide use, and it became clear that our text should be revised and 
material on computer-intensive methods of statistical inference should be added. To 
my delight, Steve Quigley, Executive Editor of John Wiley and Sons, agreed with 
the idea, and work on the second edition began. 

Unfortunately, Robert Bartoszynski passed away in 1998, so I was left to carry 
out this revision by myself. I revised the content by creating a new chapter on 
random samples, adding sections on Monte Carlo methods, bootstrap estimators 
and tests, and permutation tests. More problems were added, and existing ones were 
reorganized. Hopefully nothing was lost of the “spirit” of the book which Robert 
liked so much and of which he was very proud. 

This book is intended for seniors or first-year graduate students in statistics, math- 
ematics, natural sciences, engineering, and any other major where an intensive ex- 
posure to statistics is necessary. The prerequisite is a calculus sequence that includes 
multivariate calculus. We provide the material for a two-semester course that starts 
with the necessary background in probability theory, followed by the theory of statis- 
tics. 

What distinguishes our book from other texts is the way the material is presented 
and the aspects that are stressed. To put it succinctly, understanding “why” is pri- 
oritized over the skill of “how to.” Today, in an era of undreamed-of computational 
facilities, a reflection in an attempt to understand is not a luxury but a necessity. 

Probability theory and statistics are presented as self-contained conceptual struc- 
tures. Their value as a means of description and inference about real-life situations 
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lies precisely in their level of abstraction-the more abstract a concept is, the wider 
is its applicability. The methodology of statistics comes out most clearly if it is in- 
troduced as an abstract system illustrated by a variety of real-life applications, not 
confined to any single domain. 

Depending on the level of the course, the instructor can select topics and exam- 
ples, both in the theory and in applications. These can range from simple illustrations 
of concepts, to introductions of whole theories typically not included in comparable 
textbooks (e.g., prediction, extrapolation, and filtration in time series as examples 
of use of the concepts of covariance and correlation). Such additional, more ad- 
vanced, material (e.g., Chapter 5 on Markov Chains) is marked with asterisks. Other 
examples are: the proof of the extension theorem (Theorem 6.2.4), showing that 
the cumulative distribution function determines the measure on the line; the con- 
struction of Lebesgue, Riemann-Stieltjes and Lebesgue-Stieltjes integrals; and the 
explanation of the difference between double integral and iterated integrals (Section 
8.3). 

In the material that is seldom included in other textbooks on mathematical statis- 
tics, we stress the consequences of nonuniqueness of a sample space and illustrate, 
by examples, how the choice of a sample space can facilitate the formulation of 
some problems (e.g., issues of selection or randomized response). We introduce 
the concept of conditioning with respect to partition (Section 4.4); we explain the 
Borel-Kolmogorov paradox by way of the underlying measurement process that pro- 
vides information on the occurrence of the condition (Example 7.22); we present the 
Neyman-Scott theory of outliers (Example 10.4); we give a new version of the proof 
of the relation between mean, median, and standard deviation (Theorem 8.7.3); we 
show another way of conditioningin the secretary problem (Example 4.10). Among 
examples of applications, we discuss the strategies of serves in tennis (Problem 
4.2.12), and a series of problems (3.2.14-3.2.20) concerning combinatorial analy- 
sis of voting power. In Chapter 11 we discuss the renewal paradox, the effects of 
importance sampling (Example 1 1.6), and the relevance of measurement theory for 
statistics (Section 11.6). Chapter 14 provides a discussion of true regression ver- 
sus linear regression and concentrates mostly on explaining why certain procedures 
(in regression analysis and ANOVA) work, rather than on computational details. In 
Chapter 15 we provide a taste of rank methods-one line ofresearch starting with the 
Glivenko-CantelliTheorem and leading to Kolmogorov-Smirnov tests, and the other 
line leading to Mann-Whitney and Wilcoxon tests. In this chapter we also show the 
traps associated with multiple tests of the same hypothesis (Example 15.3). Finally, 
Chapter 16 contains information on partitioning contingency tables-the method 
that provides insight into the dependence structure. We also introduce McNemar’s 
test and various indices of association for tables with ordered categories. 

The backbone of the book is the examples used to illustrate concepts, theorems, 
and methods. Some examples raise the possibilities of extensions and generaliza- 
tions, and some simply point out the relevant subtleties. 

Another feature that distinguishes our book from most other texts is the choice 
of problems. Our strategy was to integrate the knowledge students acquired thus 
far, rather than to train them in a single skill or concept. The solution to a problem 
in a given section may require using knowledge from some preceding sections, that 
is, reaching back into material already covered. Most of the problems are intended 
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to make the students aware of facts they might otherwise overlook. Many of the 
problems were inspired by our teaching experience and familiarity with students’ 
typical errors and misconceptions. 

Finally, we hope that our book will be “friendly” for students at all levels. We 
provide (hopefully) lucid and convincing explanations and motivations, pointing out 
the difficulties and pitfalls of arguments. We also do not want good students to be 
left alone. The material in starred chapters, sections, and examples can be skipped 
in the main part of the course, but used at will by interested students to complement 
and enhance their knowledge. The book can also be a usefd reference, or source of 
examples and problems, for instructors who teach courses from other texts. 

I am indebted to many people without whom this book would not have reached 
its current form. First, thank you to many colleagues who contributed to the first 
edition and whose names are listed there. Comments of many instructors and stu- 
dents who used the first edition were influential in this revision. I wish to express my 
gratitude to Samuel Kotz for refemng me to Stigler’s (1 996) article about the “right 
and lawful rood,” which we previously used in the book without reference (Example 
8.40). My sincere thanks are due to Jung Chao Wang for his help in creating the 
R-code for computer-intensive procedures that, together with additional examples, 
can be found on the book’s ftp site 

Particular thanks are due to Katarzyna Bugaj for careful proofreading of the entire 
manuscript, Lukasz Bugaj for meticulously creating all figures with the Mathemat- 
ica software, and Agata Bugaj for her help in compiling the index. Changing all 
those diapers has finally paid off. 

Rp://ftp.wiley.com/public/sci_tech_me~probabili~_statistica~ 

I wish to express my appreciation to the anonymous reviewers for supporting the 
book and providing valuable suggestions, and to Steve Quigley, Executive Editor of 
John Wiley & Sons, for all his help and guidance in carrying out the revision. 

Finally, 1 would like to thank my family, especially my husband Jerzy, for their 
encouragement and support during the years this book was being written. 

Magdalena Niewiadomska-Bugaj 

October 2007 



CHAPTER 1 

EXPERIMENTS, SAMPLE SPACES, AND 
EVENTS 

1.1 INTRODUCTION 

The consequences of making a decision today often depend on what will happen 
in the hture, or at least on that limited part of the world and of the future that is 
relevant to the decision. The main purpose of using statistical methods is to help in 
making better decisions under uncertainty. 

Judging from the failures of weather forecasts, to more spectacular prediction 
failures, such as bankruptcies of large companies and stock market crashes, it would 
appear that statistical methods do not perform very well. However, with a possible 
exception of weather forecasting, these examples are, at best, only partially statis- 
tical predictions. Moreover, failures tend to be better remembered than successes. 
Whatever the case, statistical methods are at present, and are likely to remain indef- 
initely, our best and most reliable prediction tools. 

To analyze a given fragment of reality relevant for the specific purpose at hand, 
one usually needs to collect some data. Data may come from past experiences and 
observations, or may result from some controlled processes, such as laboratory or 
field experiments. The data are then used to hypothesize about the laws (often called 
mechanisms) that govern the fragment of reality of interest. In our book we are 
interested in laws expressed in probabilistic terms: They specify directly, or allow 
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2 EXPERIMENTS, SAMPLE SPACES, A N D  EVENTS 

us to compute, the chances of some events to occur. Knowledge of these chances is, 
in most cases, the best one can get with regard to prediction and decisions. 

Probability theory is a domain of pure mathematics and as such, it has its own 
conceptual structure. To enable a variety of applications (typically comprising of 
all areas of human endeavor, ranging from biological, medical, social and physical 
sciences, to engineering, humanities, business, etc.), such structure must be kept on 
an abstract level. An application of probability to the particular situation analyzed 
requires a number of initial steps, in which the elements of the real situation are 
interpreted as abstract concepts of probability theory. Such interpretation is often 
referred to as building a probabilistic model of the situation at hand. How well this 
is done is crucial to the success of application. 

One of the main concepts here is that of an experiment-a term used in a sense 
somewhat broader than usual. It means any process, possibly under partial control, 
that we may observe and whose behavior in the future is not totally determined 
because it is influenced, at least in part, by chance. 

1.2 SAMPLE SPACE 

In analyzing an experiment, one is primarily interested in its outcome-the concept 
that is not defined (i.e., a primitive concept) but has to be specified in every partic- 
ular application. This specification may be done in different ways, with the only 
requirements being that (1) outcomes exclude one another and ( 2 )  they exhaust the 
set of all logical possibilities. 

EXAMPLE 1.1 

Consider an experiment consisting of two tosses of a regular die. An outcome 
is most naturally represented by a pair of numbers that turn up on the upper 
faces of the die so that they form a pair (2, y), with 5, y = 1 , 2 ,  . . . , 6  (see 
Table 1.1). 

Table 1.1 Outcomes on a Pair of Dice 

In the case of an experiment of tossing a die three times, the outcomes will be 
triplets ( 2 ,  y, z ) ,  with 2 ,  y, and z being integers between 1 and 6. 
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Since the outcome of an experiment is not known in advance, it is important to 
determine the set of all possible outcomes. This set, called the sample space, forms 
the conceptual framework for all further considerations of probability. 

Definition 1.2.1 The sample space, denoted by S, is the set of all outcomes of an 
experiment. The elements of the sample space are called elementary outcomes, or 
sample points. 0 

rn EXAMPLEl.2 

In Example 1.1 the sample space S has 62 = 36 sample points in the case 
of two tosses, and 63 = 216 points in the case of three tosses of a die. The 
first statement can be verified by direct counting of the elements of the sample 
space. Similar verification of the second claim, although possible in princi- 
ple, would be cumbersome. In Chapter 3 we will introduce some methods of 
determining the sizes of sets without actually counting sample points. 

EXAMPLE 1.3 

Suppose that the only available information about the numbers, those that turn 
up on the upper faces of the die, is their sum. In such a case as outcomes we 
take 11 possible values of the sum so that 

S = {2,3,4,5,6,7,8,9,10,11,12}. 

For instance, all outcomes on the diagonal of Table 1.1--(6, l), ( 5 , 2 ) ,  (4, 3), 
(3,4), (2 ,  5), and (1, 6)-are represented by the same value 7. 

rn EXAMPLE1.4 

Ifwe are interested in the number of accidents that occur at a given intersection 
within a month, the sample space might be taken as the set S = { 0 , 1 , 2 , .  . .} 
consisting of all nonnegative integers. Realistically, there is a practical limit, 
say 1000, of the monthly numbers of accidents at this particular intersec- 
tion. Although one may think that it is simpler to take the sample space 
S = {0 ,1 ,2 , .  . . , lOOO}, it turns out that it is often much simpler to take 
the infinite sample space if the “practical bound” is not very precise. 

Since outcomes can be specified in various ways (as illustrated by Examples 1.1 
and 1.3), it follows that the same experiment can be described in terms of different 
sample spaces S. The choice of a sample space depends on the goal of description. 
Moreover, certain sample spaces for the same experiment lead to easier and simpler 
analysis. The choice of a “better” sample space requires some skill, which is usually 
gained through experience. The following two examples illustrate this point. 

rn EXAMPLE1.5 

Let the experiment consist of recording the lifetime of a piece of equipment, 
say a light bulb. An outcome here is the time until the bulb bums out. An 
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outcome typically will be represented by a number t 2 0 (t = 0 if the bulb 
is not working at the start), and therefore S is the nonnegative part of the real 
axis. In practice, t is measured with some precision (in hours, days, etc.), so 
one might instead take S = { 0 , 1 , 2 , .  . .}. Which of these choices is better 
depends on the type of subsequent analysis. 

EXAMPLE 1.6 

Two persons enter a cafeteria and sit at a square table, with one chair on each 
of its sides. Suppose we are interested in the event “they sit at a corner” (as 
opposed to sitting across from one another). To construct the sample space, 
we let A and B denote the two persons, and then take as S the set of outcomes 
represented by 12 ideograms in Figure 1.1. 

Figure 1.1 Possible seatings of persons A and B at  a square table 

One could argue, however, that such a sample space is unnecessarily large. 
If we are interested only in the event “they sit at a corner,” then there is no 
need to label the persons as A and B. Accordingly the sample space S may be 
reduced to the set of six outcomes depicted in Figure 1.2. 

X 

Figure 1.2 Possible seatings of any two persons at a square table 

But even this sample space can be simplified. Indeed, one could use the 
rotational symmetry of the table and argue that once the first person selects 
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a chair (it does not matter which one), then the sample space consists of just 
three chairs remaining for the second person (see Figure 1.3). 

0 

Figure 1.3 Possible seatings of one person if the place of the other person is fixed 

Sample spaces can be classified according to the number of sample points they 
contain. Finite sample spaces contain finitely many outcomes, and elements of in- 
finitely countable sample spaces can be arranged into an infinite sequence; other 
sample spaces are called uncountabie. 

The next concept to be introduced is that of an event. Intuitively, an event is 
anything about which we can tell whether or not it has occurred, as soon as we know 
the outcome of the experiment. This leads to the following definition: 

Definition 1.2.2 An event is a subset of the sample space S. 0 

EX AMP LEI.^ 

In Example 1.1, concerning two tosses of a die, an event such as “the sum 
equals 7”containingsix outcomes (1, 6 ) ,  (2,5), (3 ,4) ,  (4,3),  (5, %),and ( 6 , l )  
is a subset ofthe sample space S. In Example 1.3, the same event consists of 
one outcome, 7. 

When an experiment is performed, we observe its outcome. In the interpretation 
developed in this chapter, this means that we observe a point chosen randomly from 
the sample space. If this point belongs to the subset representing the event A, we 
say that the event A has occurred. 

We will let events be denoted either by letters A ,  B, C, . . . , possibly with iden- 
tifiers, such as A l l  Bk, . . . , or by more descriptive means, such as { X  = 1) and 
{ u  < 2 < b} ,  where X and 2 are some numerical attributes of the sample points 
(formally: random variables, to be discussed in Chapter 6). Events can also be de- 
scribed through verbal phrases, such as “two heads in a row occur before the third 
tail” in the experiment of repeated tosses of a coin. 

In all cases considered thus far, we assumed that an outcome (a point in the sam- 
ple space) can be observed. To put it more precisely, all sample spaces S considered 
so far were constructed in such a way that their points were observable. Thus, for 
any event A,  we were always able to tell whether it occurred or not. 

The following examples show experiments and corresponding sample spaces 
with sample points that are only partially observable: 
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EXAMPLE 1.8 Selection 

Candidates for a certain job are characterized by their level z of skills required 
for the job. The actual value o f t  is not observable, though; what we observe 
is the candidate’s score z on a certain test. Thus, the sample point in S is a 
pair s = (2: x), and only one coordinate of s, x, is observable. 

The objective might be to find selection thresholds zo and 20, such that the 
rule: “accept all candidates whose score z exceeds XO” would lead to max- 
imizing the (unobservable) number of persons accepted whose true level of 
skill z exceeds 20. Naturally, to find such a solution, one needs to understand 
statistical relation between observable z and unobservable z .  

Another example when the points in the sample space are only partially observ- 
able concerns studies of incidence of activities about which one may not wish to 
respond truthfully, or even to respond at all. These are typically studies related to 
sexual habits or preferences, abortion, law and tax violation, drug use, and so on. 

H EXAMPLE 1.9 Randomized Response 

Let Q generally be the activity analyzed, and assume that the researcher is 
interested in the frequency of persons who ever participated in activity Q (for 
simplicity, we will call them Q-persons). It ought to be stressed that the ob- 
jective is not to identify the Q-persons, but only to find the proportion of such 
persons in the population. 

The direct question reduced to something like “Are you a Q-person?” is not 
likely to be answered truthhlly, if at all. It is therefore necessary to make the 
respondent safe, guaranteeing that their responses will reveal nothing about 
them as regards Q. This can be accomplished as follows: The respondent is 
given a pair of distinguishable dice, for example, one green and one white. 
She throws them both at the same time, in such a way that the experimenter 
does not know the results of the toss (e.g., the dice are in a box and only the 
respondent looks into the box after it is shaken). The instruction is: If the 
green die shows an odd face (1,3, or 5), then respond to the question “Are you 
a Q-person?” If the green die shows an even face (2,4, or 61, then respond to 
the question “Does the white die show an ace?” The scheme of this response 
is summarized by the flowchart in Figure 1.4. 

The interviewer knows the answer “yes” or “no” but does not know whether 
it is the answer to the question about Q or the question about the white die. 
Here a natural sample space consists of points s = ( i , ~ ,  y), where z and y 
are outcomes on green and white die, respectively, while i is 1 or 0 depending 
on whether or not the respondent is a Q-person. We have $(s) = $(i, 5, y)= 
“yes” if i = 1 and x = 1 , 3 ,  or 5 for any y, or if x = 2,4,6, and y = 1 for any 
i. In all other cases +(s) = ‘‘no.’’ 

One could wonder what is a possible advantage, if any, of not knowing the 
question asked and observing only the answer. This does not make sense if 
we need to know the truth about each individual respondent. However, one 
should remember that we are only after the overall frequency of Q-persons. 
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71 White die 

Figure 1.4 Scheme of a randomized response 

We are in fact “contaminating” the question by making the respondent 
answer either a Q-question or some other auxiliary question. But this is a 
“controlled contamination”: we know how often (on average) the respondents 
answer the auxiliary question, and how often their answer is “yes.” Conse- 
quently, as we will see in Chapter 12, we can still make an inference about the 
proportion of Q-persons from the observed responses. 

PROBLEMS 

1.2.1 List all sample points in sample spaces for the following experiments: (i) We 
toss a coin. If heads come up, we toss a die. Otherwise, we toss the coin two more 
times. (ii) A coin is tossed until the total of two tails occurs, but no more than four 
times (i.e., a coin is tossed until the second tail or fourth toss, whichever comes first). 

1.2.2 Alice, Bob, Carl, and Diana enter the elevator on the first floor of a four-story 
building. Each of them leaves the elevator on either the second, third, or fourth floor. 
(i) Find a simple way of describing the sample space (do not list all sample points). 
(ii) List all sample points such that Carl and Diana leave the elevator on the third 
floor. (iii) List all sample points if Carl and Diana leave the elevator at the same 
floor. 

1.2.3 An urn contains five chips, labeled 1, . . . , 5 .  Three chips are drawn. List all 
outcomes included in the event “the second largest number drawn was 3.” 

1.2.4 In a game of craps, the player rolls a pair of dice. If he gets a total of 7 or 1 1, 
he wins at once; if the total is 2, 3, or 12, he loses at once. Otherwise, the sum, say 
5, is his “point,” and he keeps rolling dice until either he rolls another 3: (in which 
case he wins) or he rolls a 7 in which case he loses. Describe the event “the player 
wins with a point of  5.” 
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1.2.5 The experiment consists of placing six balls in three boxes. List all outcomes 
in the sample space if  (i) The balls are indistinguishable, but the boxes are distin- 
guishable. (Hint: There are 28 different placements.) (ii) Neither the balls nor the 
boxes are distinguishable. (iii) Two balls are white and four are red; the boxes are 
distinguishable. 

1.2.6 John and Mary plan to meet each other. Each of them is to arrive at the meeting 
place at some time between 5 p.m. and 6 p.m. John is to wait 20 minutes (or until 
6 p.m., whichever comes first), and then leave if Mary does not show up. Mary 
will wait only 5 minutes (or until 6 p.m., whichever comes first), and then leave if 
John does not show up. Letting x and y denote the arrival times of John and Mary, 
determine the sample space and describe events (i)-(viii) by drawing pictures, or by 
appropriate inequalities for x and y. If you think that the description is impossible, 
say so. (i) John arrives before Mary does. (ii) John and Mary meet. (iii) Either Mary 
comes first or they do not meet. (iv) Mary comes first but they do not meet. (v) John 
comes very late. (vi) They arrive less than 15 minutes apart and they do not meet. 
(vii) Mary arrives at 5:15 p.m, and meets John, who is already there. (viii) They 
almost miss one another. 

Problems 1.2.7-1.2.8 concern the possibility of expressing some events, depending 
on the choice of the sample space. 

1.2.7 Let & be the experiment consisting of tossing a coin three times, with H and T 
standing for heads and tails, respectively. 
(i) The following set of outcomes is an incomplete list of the points of the sample 
space S of the experiment E :  { HHH, HTT, TTT, HHT, TTH, HTH, THH}. Find the 
missing outcome. 
(ii) An alternative sample space S' for the same experiment & consists of the follow- 
ing four outcomes: no heads (0), one head ( l ) ,  two heads (2), and three heads (3). 
Which of the following events can be described as subsets of S but not as subsets of 
S' = {0,1,2,3}? 

A1 = More than two heads. 
A2 = Head on the second toss. 
A3 = More tails than heads. 
A4 = At least one tail, with head on the last toss. 
A5 = At least two faces the same. 
A6 = Head and tail alternate. 

(iii) Still another sample space S" for the experiment & consists of the four out- 
comes (0, 0), (0, l),  (1,0), and (1 , l ) .  The first coordinate is 1 if the first two tosses 
show the same face and 0 otherwise; the second coordinate is 1 if the last two tosses 
show the same face, and 0 otherwise. For instance, if we observe HHT, the outcome 
is (1,O). List the outcomes of S that belong to the event A = { (1, l ) ,  ( 0 , l ) )  of S". 
(iv) Which of the following events can be represented as subsets of S, but cannot be 
represented as subsets of S"? 

B1 = First and third tosses show the same face. 
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B2 = Heads on all tosses. 
B3 = All faces the same. 
B4 = Each face appears at least once. 
B5 = More heads than tails. 

1.2.8 Let E be the experiment consisting of tossing a die twice. Let S be the sample 
space with sample points (2, j ) ,  i, j = 1 , 2 ,  . . .6, with i and j being the numbers of 
dots that appear in the first and second toss, respectively. 
(i) Let S’ be the sample space for the experiment E consisting of all possible sums 
i + j so that S’ = {2 ,3 ,  . . . , 12). Which of the following events can be defined as 
subsets of S but not of S‘? 

A1 = One face odd, the other even. 
A2 = Both faces even. 
A3 = Faces different. 
A4 = Result on the first toss less than the result on the second. 
A5 = Product greater than 10. 
As = Product greater than 30. 

(ii) Let S” be the sample space for the experiment & consisting of all possible ab- 
solute values of the difference Ii - j l  so that S” = { 0 , 1 , 2 , 3 , 4 , 5 } .  Which of the 
following events can be defined as subsets of S but not of S”? 

B1 = One face shows twice as many dots as the other, 
B2 = Faces the same, 
B3 = One face shows six times as many dots as the other, 
B4 = One face odd, the other even, 
B5 = The ratio of the numbers of dots on the faces is different from 1. 

1.2.9 Referring to Example 1.9, suppose that we modify it as follows: The respon- 
dent tosses a green die (with the outcome unknown to the interviewer). If the out- 
come is odd, he responds to the Q-question; otherwise, he responds to the question 
“Were you born in April?” Again, the interviewer observes only the answer “yes” 
or “no.” Apart from the obvious difference in frequency of the answer “yes” to the 
auxiliary question (on the average one in 12 instead of one in 6), are there any essen- 
tial differences between this scheme and the scheme in Example 1.9? Explain your 
answer. 

1.3 ALGEBRA OF EVENTS 

Next we introduce some concepts that will allow us to form composite events out of 
simpler ones. We begin with the relations of inclusion and equality. 

Definition 1.3.1 The event A is contained in the event B,  or B contains A,  if every 
sample point of A is also a sample point of B. Whenever this is true, we will write 

0 A c B, or equivalently, B 2 A. 

An alternative terminology here is that A implies (or entails) B. 
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Definition 1.3.2 Two events A and B are said to be equal, A = B, if A C B and 
B c A. 0 

It follows that two events are equal if they consist of exactly the same sample points. 

EXAMPLE 1.10 

Consider two tosses of a coin, and the corresponding sample space S consist- 
ing of four outcomes: HH, HT, TH, and TT. The event A = “heads in the first 
toss” = {HH, HT} is contained in the event B = “at least one head” = {HH, 
HT, TH}. The events “the results alternate” and “at least one head and one 
tail” imply one another, and hence are equal. 

Definition 1.3.3 The set containing no elements is called the empty set and is de- 
noted by 0. The event corresponding to 0 is called a null (impossible) event. 0 

EXAMPLE 1.11 * 

’ The reader may wonder whether it is correct to use the definite article in the 
definition above and speak of “the empty set,” since it would appear that there 
may be many different empty sets. For instance, the set of all kings of the 
United States and the set of all real numbers 5 such that z2 + 1 = 0 are both 
empty, but one consists of people and the other of numbers, so they cannot be 
equal. This is not so, however, as is shown by the following formal argument 
(to appreciate this argument, one needs some training in logic). Suppose that 
81 and 02 are two empty sets. To prove that they are equal, one needs to prove 
that 01 c 0 2  and 02 C 01. Formally, the first inclusion is the implication: 
“if s belongs to 01, then s belongs to 02.” This implication is true, because 
its premise is false: there is no s that belongs to 01. The same holds for the 
second implication, so 01 = 02. 

We now give the definitions ofthree principal operations on events: complemen- 
tation, union, and intersection. 

Definition 1.3.4 The set that contains all sample points that are not in the event A 
will be called the complement of A and denoted AC, to be read also as “not A.” 0 

Definition 1.3.5 The set that contains all sample points belonging either to A or to 
B (so possibly to both of them) is called the union of A and B and denoted A U B, 
to be read as “ A  or B.” 0 

Definition 1.3.6 The set that contains all sample points belonging to both A and B 
is called the intersection of A and B, and denoted A f l  B, to be read as “ A  and B.” 

0 

An alternative notation for a complement is A’ or x, whereas in the case of an 
intersection one often writes AB instead of A n B. 

‘Asterisks denote more advanced material, as explained in the Preface. 
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The operations above have the following interpretations in terms of occurrences 
of events: 

1. Event A“ occurs if event A does not occur. 

2. Event A U B occurs when either A or B or both events occur. 

3. Event A n B occurs when both A and B occur. 

EXAMPLE 1.12 

Consider the experiment of tossing a coin three times, with the sample space 
consisting of outcomes described as HHH, HHT, and so on. Let A be the 
event “heads and tails alternate,” and let B be “heads on the last toss.” The 
event AC occurs if either heads or tails occur at least twice in a row so that 
AC = {HHH, HHT, THH, HTT, TTT, TTH} while BC is “tails on the last 
toss,” hence BC = {HHT, THT, HTT, TTT}. The union A U B is the event 
“either the results alternate or it is heads on the last toss,” meaning A U B = 
{ HTH, THT,  HHH, THH, TTH}. Observe that while A has two outcomes 
and B has four outcomes, their union has only five outcomes, since the out- 
come HTH appears in both events. This common part is the intersection A n  B. 

Some formulas can be simplified by introducing the operation of the difference 
of two events. 

Definition 1.3.7 The dzference A \ B of events A and B contains all sample points 
that belong to A but not to B 

A \  B = A n  B“. 

The symmetric diference, A + B, contains sample points that belong to A or to B, 
but not to both of them: 

A + B = (A  n BC) U (A“ n B) = ( A  U B) \ (A n B). 0 

4 EXAMPLE 1.13 

In Example 1.12, the difference B“ \ A is described as “at least two identical 
outcomes in a row and tails on the last toss,” which means the event {HHT, 
HTT, TTT}. 

Next we have the following important concept: 

Definition 1.3.8 If A n B = 0, then the events A and B are called disjoint, or 
mutually exclusive. 0 
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EXAMPLE 1.14 

Based on Example 1.12 we know that the following two events are disjoint: 
C = “more heads than tails” and the intersection A n BC = “the results alter- 
nate, ending with tails.” 

Example 1.14 shows that to determine whether or not events are disjoint, it is not 
necessary to list the outcomes in both events and check whether there exist common 
outcomes. Apart from the fact that such listing is not feasible when sample spaces 
are large, it is often simpler to employ some logical reasoning, for instance, that one 
of the events is contained in the complement of the other (Le., if one of them occurs, 
the other does not). In the case above, if the results alternate and end with tails, then 
the outcome must be THT. Since there are more tails than heads, C does not occur. 

The definitions of union and intersection can be extended to the case of a finite 
and even infinite number of events (discussed in the Section 1.4). Thus 

n 

A1 U Az U . . .  U A, = IJ Ai (1.1) 

is the event that contains the sample points belonging to A1 or A2 or . . .or  A,. 
Consequently, (1.1) is the event “ at least one Ai occurs.” Similarly 

i=l 

n 

Al n A z  n . . . n A n  = n Ai 
i=l 

is the event that contains the sample points belonging to A1 and A2 and . . . and A,. 
Consequently, the event (1.2) is “ all Ai’s occur.’’ 

EXAMPLE 1.15 

Suppose that n shots are fired at a target, and let A,, i = 1 , 2 ,  . . . , n denote 
the event “the target is hit on the ith shot.” Then the union A1 U . . . U A, is 
the event “the target is hit” (at least once). Its complement (A1 U . . . U A,)C 
is the event “the target is missed” (on every shot), which is the same as the 
intersection A; n . . . n A;. 

A perceptive reader may note that the unions A1 U ’ . U A ,  and intersections 
A1 n . . .n A, do not require an extension of the definition of union and intersection 
for two events. Indeed, we could consider unions such as 

A1 U (Az U (. ’ (An-2 U (&-I  U A,)) ’ ’ I ) ,  
where the union of only two events is formed in each set of parentheses. The prop- 
erty of associativity (below) shows that parentheses can be omitted so that the ex- 
pression A1 U. . .U An is unambiguous. The same argument applies to intersections. 

The operations on events defined in this section obey some laws. The most im- 
portant ones are listed below. 
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Idempotence: 

Double Complementation: 

Absorption: 

In particular, 

A U A = A ,  A n A = A .  

(AC)" = A .  

A u B = B  iff A n B = A  iff A c B .  

A u @ = A ,  A U S = S ,  A n 0 = 0 ,  A n S = A ,  

(1.3) 

which in view of (1.3) means that 0 c A c S. 

Commutativity: 

A U B = B U A ,  A n B = B n A .  

Associativity: 

A U ( B  U C )  = ( A  U B )  U C, 

A n ( B n C ) = ( A n B ) n C .  

Distributivity : 

A n ( B u C )  = ( A n B ) u ( A n c ) ,  

A U ( B n C ) = ( A U B ) n ( A U C ) .  

De Morgan's Laws: 

When studying mutual relations between composite events in the same sample 
space, it is often helpfid to use Venn diagrams, where the sample space S is repre- 
sented by a rectangle, while its subsets represent events (see Figure 1.5). 

Figure 1.5 Complement, union and intersection 
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Figure 1.6 The first De Morgan's law 

The complement of event A is represented in Figure 1.5(a), the union and inter- 
section of the events A and B are represented in Figure 1.5(b) and (c), respectively. 

Venn diagrams can also be used to check the validity of formulas. For example, 
consider the first De Morgan's law (1.4) for the case of two events: 

( A  U B)' = AC n B". (1.5) 

Venn diagrams made separately for the left-hand side and the right-hand side of (1 S) 
(see Figure 1.6) indicate that both regions are the same. Although a picture does not 
constitute a proof, it may provide convincing evidence that the statement is true, and 
sometimes may even suggest a method of proving the statement. 

PROBLEMS 

For the problems below, remember that a statement (expressed as a sentence or for- 
mula) is true if it is true under all circumstances, and it is false if there is at least one 
case where it does not hold. 

1.3.1 Answer true or false. Justify your answer. 
(i) If A and B are distinct events (i,e., A # B)  such that A and BC are disjoint, then 
AC and B are also disjoint. 
(ii) If A and B are disjoint, then AC and BC are also disjoint. 
(iii) If A and B are disjoint, and also B and C are disjoint, then A and C are disjoint. 
(iv) If A and B are both contained in C, then Cc c AC n B". 
(v) If A is contained in B, C is contained in D ,  and B is disjoint from D,  then A is 
disjoint from C. 
(vi) If A U BC = BC, then B c AC. 

1.3.2 In the statements below A ,  B, C and D ,  are events. Find those statements or 
formulas that are true. 
(i) If A n B = A n C then B = C.  
(ii) A U ( A  n B )  U ( A  n BC) = A. 
(iii) A u ( A n  €3) U ( A n  BC) = B. 
(iv) If A \ B = C, then A = B u C. 
(v) ( A  u B )  n (C u D )  = ( A  n C) u ( A  n D )  U ( B  n C )  u (B n D ) .  
(vi) ( A n  B) u (C n D) = ( A  U C) n ( A  U D )  n ( B  u C) n ( B  U D). 
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(vii) (AC u BC u CC), = AC n B" n C". 
(viii) If A c B, and B n C = 0, then C" n A n Be = 0. 
(ix) If A n B, A n C and B n C are not empty, then A n B n C is not empty 
(x) Showthat ( A  + B )  t C = A t ( B  t C) .  

1.3.3 Find X i f  (i) A t X  = 0. (ii) A+X = A. (iii) A + X  = S. (iv) A t X  = B. 

1.3.4 In a group of 1000 students of a certain college, 60 take French, 417 take 
calculus, and 509 take statistics. Moreover, 20 take French and calculus, 17 take 
French and statistics, and 147 take statistics and calculus. However, 196 students 
do not take any of these three subjects. Determine the number of students who take 
French, calculus, and statistics. 

1.3.5 Let A, B ,  and C be three events. Match, where possible, events D1 through 
Dlo with events El through Ell. Matching means that the events are exactly the 
same; that is, if one occurs, so must the other and conversely (see the Definition 
1.3.2). (Hint: Draw a Venn diagram for each event D1,.  . . , D10, do the same for 
events El , .  . . ,Ell ,  and then compare the diagrams.) 

Among events A, B, C:  
D1 = two or more occur. 
D2 = exactly one occurs. 
0 3  = only A occurs. 
0 4  = all occur. 
D5 = none occurs. 
D6 = at most one occurs. 
D7 = at least one occurs. 
0 8  = exactly two occur. 
Dg = no more than two occur. 
Dlo = B occurs. 

E l = A U B U C .  

E3 = ( A n  B)" n ( A  n C)" n ( B  n C)", 
E4 = ( A  U B U C)". 

& = A n B n c .  
E7 = B. 
E8 = A f l  BC n C". 

Ez = ( A n  BC n Cc) u ( A C n  B nCc) u ( A c n  BC nC). 

E~ = A" n B" n cc. 

E9 = ( A n  B n Cc)  u ( A n  BC n c) u (AC n B n C ) .  
El0 = ( A  n B n C)". 
El1 = ( A  n B)  u ( A  n C )  u (B n C ) .  

1.3.6 A standard deck of cards is dealt among players N ,  S, E, and W. Let Nk, k = 
1 , 2 , 3 , 4  be the event "N has at least k aces," and let S k ,  Ek and wk be defined 
similarly. For each of the events below, determine the number of aces that N has. 
(i) NI n S1 n El n Wl.  (ii) EZ n (WZ u SZ). (iii) N3 \ N4. (iv) 5'3 n W I .  (v) 
Sf n Wf n E;. (vi) Nz n E2. 
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1.3.7 Five burglars, A ,  B ,  C, D ,  and E,  divide the loot, consisting of 5 identical 
gold bars and 4 identical diamonds. Let A j k  be the event that A got at least j gold 
bars and at most k diamonds. Let Bjkl c j k  denote analogous events for burglars 
B, C (e.g., B21 is the event that B got 2, 3, 4, or 5 gold bars and 0 or 1 diamond). 
Determine the number z of gold bars and the number y of diamonds received by E 
if the following events occur (if determination of z andor  y is impossible, give the 
range of values): (i) (A20 U B20 U CZO) n 0 3 0 .  (ii) E;2. (iii) A23 n B13 nC13 nD13. 

(iv) A23 u B13 U c13 U 0 1 3 .  

1.3.8 Let Anc be defined inductively by Aoc = A ,  
AnC and AmC U AnC for m, n > 0. 

= (Anc) , .  Find Am‘ n 

1.4 INFINITE OPERATIONS ON EVENTS 

As already mentioned, the operations of union and intersection can be extended to 
infinitely many events. Let A1 A2, . . . be an infinite sequence of events. Then 

CC m 

A ~ u A ~ u . . . = U A ~  and ~ ~ n ~ , n . . . = r ) ~ ~  
i= l  i = l  

are events “ at least one Ai occurs” and “all Ai’s occur.” 
If at least one event Ai occurs, then there is one that occurs first. This remark 

leads to the following useful decomposition of a union of events into a union of 
disjoint events: 

m 

U Ai = A1 U (A:  n A2) U (A: n A; n A3) U . . .  , (1.6) 
i=l 

where A: n . . n 
occurs.” 

n Ak is the event “ A k  is the first event in the sequence that 

For an infinite sequence A l l  Az ,  . . . one can define two events: 

0 3 0 0  

limsupA, = n U A~ (1.7) 
k = l  i=k  

and 
m m  

liminf A,  = u n A i ,  
k = l  i = k  

these being, respectively, the event that “infinitely many Ai’s occur” and the event 
that “all except finitely many Ai’s occur.” Here the inner union in the event (1.7) 
is the event “at least one event Ai with z 2 k will occur”; call this event B k .  The 
intersection over k means that the event Bk occurs for every k .  No matter how large 
k we take, there will be at least one event Ai with i 2 k that will occur. But this is 
possible only if infinitely many Ai’s occur. 

For the event lim inf A ,  the argument is similar. The intersection Ak n Ak+l fl 
- c k  occurs if all events Ai with i 2 k occur. The union C1 U C2 U . . means 
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that at least one of the events c k  will occur, and that means that all Ai will occur, 
except possibly finitely many. 

If all events (except possibly finitely many) occur, then infinitely many of them 
must occur, so that lim sup A, 3 lim inf A,. If lim sup A, c lim inf A, , then (see 
the definition of equality of events) we say that the sequence {A,} converges, and 
lim sup A, = lim inf A,. 

The most important class of convergent sequences of events consists of monotone 
sequences, when A1 c A2 c . . . (increasing sequence) or when A1 3 A2 3 . . . 
(decreasing sequence). We have the following theorem: 

Theorem 1.4.1 Zfthe sequence A1, Azl . . . is increasing, then 

m 

lim A, = u A,, 
n=l 

and in case of a decreasing sequence, we have 

W 

lim A, = A,. 
n=l 

Proof. If the sequence is increasing, then the inner union ( uzl Ai)  in lirn sup A, 
remains the same independently of k so that lim sup A, = uz*=, Ai. On the other 
hand, the inner intersection in lim inf A, equals Ak so that lim inf A, = uT=l Ak, 

which is the same as limsup A,, as was to be shown. A similar argument holds for 
decreasing sequences. 0 

The following two examples illustrate the concept of convergence of events. 

EXAMPLE 1.16 

Let B(r)  and C(r )  be the sets of points on the plane (z, y) satisfying the 
conditions x2 +y2 < r2  and z2 + y2 5 r 2 ,  respectively. If A, = B(1+ l/n), 
then {A,} is a decreasing sequence, and therefore lim A ,  = n,"==, B(l + 
l/n). Since z2 + y2 < (1 + 1/n)2 for all n if and only if x 2  + y2 5 1, we 
have n,"=t"=, B(1+ l /n)  = C( 1). On the other hand, if A, = C( 1 - l/n), then 
{A,} is an increasing sequence, and lim A, = U:.'=, C(l - l / n )  = B(1). 
We leave a justification of the last equality to the reader. 

EXAMPLE 1.17 

Let A, = B(l + l /n)  for n odd and A ,  = B(1/3 - 1/2n) for n even. 
Thesequence { A , }  isnow 8(2) ,8(1/12) ,B(4/3) ,8(5/24) ,  . . . , so i t i snot  
monotone. We have here limsup A, = C(1),  since every point (z, y) with 
z2 + y2 5 1 belongs to infinitely many A,. On the other hand, lim inf A ,  = 
B(1/3). For z2 + y2 < l / g l  we have z2 + y2 < (1/3 - 1 / 2 ~ t ) ~  if n is large 
enough (and also z2 +y2 < 1 + l /n for all n). However, if s 2 + y 2  2 1/3, then 
( 5 ,  y) does not belong to any A, with even n. Thus lim sup A, # lim inf A,, 
and the sequence {A,} does not converge. 
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Infinite operations on events play a very important role in the development of the 
theory, especially in determining limiting probabilities. 

The definitions below will prepare the ground for the considerations in the fol- 
lowing chapters. In Chapter 2 we will introduce probability as a number assigned to 
an event. Formally, we will be considering numerical functions defined on events, 
that is, on subsets of the sample space S. As long as S is finite or countably infinite, 
we can take the class of all subsets of S as the domain of definition of probability. 
In case of infinite but not countable S ( e g ,  where S is an interval, the real line, or 
a plane) it may not be possible to define probability on the class of all subsets of S. 
Although the explanation lies beyond the scope of this book, we will show how the 
difficulties can be avoided by suitable restriction of the class of subsets of S that are 
taken as events. We begin with the concept of closure under some operation. 

Definition 1.4.1 We say that the class A of subsets of S is closed under a given 
operation if the sets resulting from performing this operation on elements of A are 
also elements of A. 0 

Complementation A', finite union A1 U ' ' U A,, infinite union A1 U A2 U . . . , 
limits of sequences lim A,, are few examples of such operations. 

H EXAMPLE 1.18 

Let S = {0,1,2, . . .}, and let A consist of all subsets of S that are finite. 
A is closed under finite unions and all intersections, finite or not. Indeed, if 
A l ,  . . . , A ,  are finite sets, then A = A1 U . . . U A ,  is also finite. Similarly, 
if A l ,  Az ,  . . . are finite, then n i A i  c A l ,  and hence n i A i  is also finite. How- 
ever, A is not closed under complementation: if A is finite ( A  E A), then A' 
is not finite, and hence A" 6 A. On the other hand, if A is the class of all 
subsets of S that contain some fixed element, say 0, then A is closed under all 
intersections and unions, but it is not closed under complementation. 

H EXAMPLE 1.19 

Let S be the real line, and let A be the class of all intervals closed on the 
right and open on the left-meaning intervals of the form ( a ,  b] = {z : a < 
z 5 b } .  Assume that we allow here b 5 a, in which case (a ,  b] is empty. 
Then A is closed under the operation of intersection with ( a ,  b] n (c, d ]  = 
(max(a, c), min(b, d ) ] .  

The following three concepts play a central role in the construction of the proba- 
bility theory: 

Definition 1.4.2 A nonempty class A of subsets of S that is closed under comple- 
mentation and all finite operations (Lee, finite union, finite intersection) is called a 
Jield. If A is closed under complementation and all countable operations, it is called 
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a a-jield. Finally, if A is closed under monotone passage to the limit,* it is called a 
monotone class. 0 

Let us observe that Definition 1.4.2 can be formulated in a more efficient way. For 
A to be a field, it suffices to require that if A ,  B E A then A" E A and A n B E A 
(or A" E A and A U B E A). Any of these two conditions implies (by induction and 
De Morgan's laws) the closure of A under all finite operations. Consequently, for A 
to be a a-field, it suffices to require that whenever A1, A 2 , .  . . E A, then Af E A 
and n,"=, Ai E A (or A f  E A and U r Z l  Ai E A); this follows again from De 
Morgan's laws.3 

It is important to realize that closure under countable operations is stronger than 
closure under any finite operations. This means that there exist classes of sets that 
are fields but not a-fields. This is illustrated by the following example: 

EXAMPLE 1.20 

Let S = { 1,2,3,  . . .}, and let A be the class of all subsets A of S such that 
either A or A" is finite. Then A is a field but not a a-field. First, if A E 
A, then A" E A because the definition of A is symmetric with respect to 
complementation. Next, if A and B are both in A, so is their union. If A and 
B are both finite, then A U B is finite and hence belongs to A. On the other 
hand, if either A" or B" (or both) are finite, then ( A  U B)" = A" n BC is also 
finite because it is contained in A" and also in BC. 

Thus A is a field. However, A is not a a-field. Let A ,  be the set consist- 
ing only of the element n (i.e., A ,  = {n}). Clearly, A, E A. Take now 

A2, = (2: 4 , 6 ,  . . .}. This is a countable union of sets in A that is not 
in A (since the set of all even numbers is not finite, nor does it have a finite 
complement). 

Typically it is easy to determine that a class of sets is a field, while direct ver- 
ification that it is a a-field can be difficult. On the other hand, it is occasionally 
easy to verify that a class of sets is a monotone class. Thus the following theorem is 
sometimes useful: 

Theorem 1.4.2 A a-jield is a monotone class. Conversely, a$eld that is a monotone 
class is a a-jield 

Proof. To prove this theorem, assume first that A is a a-field, and let A l ,  A2, . . . 
be a monotone sequence of elements of A. If A1 c A2 c . . . , then lim A,  = 
U,"==, A ,  E A, whereas if A1 3 A2 3 . I , then lim A,  = n,"==, A ,  E A. So A is 
a monotone class. On the other hand, let A be a monotone class and a field, and let 
A1, A 2 , .  . . beanarbitrary sequence ofelements o f d .  Put B, = A1U. .UA,,. Then 
since A is a field, and also B1 c BZ c . . . , B,, E A for every n. Further, since A 

21n view of the fact proved earlier that all monotone sequences converge, this condition means that (a) if 
A1 C Az C . ' is an increasing sequence of sets in A, then UiA, E A, and (b) if A1 2 A2 2 . . . is 
a decreasing sequence of sets in A, then ntA,  E A. 
3 F ~ r  various relations among classes of sets defined through closure properties under operations, for 
example, see Chow and Teicher (1997) and Chung (2001). 
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is a monotone class, lim B, E A. However, lim B, = U,"==, B, = u;==, A,, SO A 
is a a-field, as asserted. 0 

The last in this series of concepts is that of the minimal field (or a-field, or 
monotone class) containing a given set or collection of sets. We begin with some 
examples. 

EXAMPLE 1.21 

Let S be any set. On one extreme, the class consisting of two sets, 0 and S, 
is closed under any operation so that A = { 0, S} is a field, a a-field, and a 
monotone class. On the other extreme, the class of all subsets of S is also 
closed under any operations, finite or not, and hence is a field, a a-field, and a 
monotone class. These two classes of subsets of S form the smallest and the 
largest fields (a-field, monotone class). 

For any event A it is easy to check that the class A, consisting of the four 
events (0, A ,  A", S}, is closed under any operations: unions, intersections, 
and complements of members of A are again members of A. This class is an 
example of a field (a-field, monotone class) that contains the events A and A", 
and it is the smallest such field (u-field, monotone class). 

On the other hand, the class A, consisting of events {0, A ,  S}, is a mono- 
tone class, but neither a field nor a-field. If A and B are two events, then 
the smallest field A containing A and B must contain also the sets A", BC, 
the intersections A n B, A n BC, A" n B ,  A" n B", as well as their unions 
A U B, A U BC, A" U B,  and A" U Bc. The closure property implies that 
unions such as ( A  n B )  U ( A  U BC), must also belong to A. 

We are ready to present the final step in our construction. 

Theorem 1.4.3 For any nonempty class K of subsets of S there exists a unique 
smallest j e l d  (u-jeld, monotone class) containing all sets in K. It is called the j e l d  
(a-jield, monotone class) generated by K. 

ProoJ: We will prove the assertion for fields. Observe first that if A1 and A2 are 
fields, then their intersection A1 n A2 (i.e., the class of sets that belong to both dl  
and d2) is also a field. For instance, if A,  B E Ai (i = 1,2) ,  then A U B E Ai 
because each Ai is a field, and consequently A U B E A1 fl d2. A similar argument 
holds for intersections and complements. 

Note that if A=, and A2 contain the class K, then the intersection A1 n A2 also 
contains K. The foregoing property extends to any intersection of fields containing 
K: (not only the intersections of two such fields). 

Now let C be the intersection of all fields containing K .  We claim that C is the 
minimal unique field containing K. We have to show that (1) C exists, (2) C is a field 
containing K, (3) C is unique, and (4) C is minimal. 

For property (1) it is enough to show that there exists at least one field containing 
K. We may take here the class of all subsets of S: it is a field (as well as a a-field 
and monotone class), and it contains all sets in K. Property (2) follows from the fact 
that the intersection of fields containing K is a field containing K. Property (3) (i.e., 
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uniqueness of C) follows from the fact that the result of the operation of intersection 
is unique. 

Finally, suppose that there exists a field C’ containing K such that C’ c C. Then 
C’ must appear as one of the factors in the intersection defining C so that C c C’. 
Consequently C’ = C. This completes the proof for the case of fields. The proofs for 
a-fields and monotone classes are exactly the same, since an intersection of a-fields 
(or monotone classes) containing K is again a a-field (monotone class) containing 
K. O 

One may find it disturbing that Theorem 1.4.3 asserts the existence and unique- 
ness of some objects without giving a clue as to how to find them in practical sit- 
uations. In fact the nonconstructive character of the theorem, combined with its 
generality, is instead a great help. As we will see in Chapter 2, the natural objects 
of our interest (the domains of definition of probability) will be u-fields of events. 
Beyond the trivial situations of finite or countably infinite sample spaces S, where 
one can always consider the maximal a-field consisting of all subsets of S, one is 
forced to restrict consideration to classes of events that form a-fields generated by 
some “simple” events. The events in these a-fields are typically of a very rich struc- 
ture, and one seldom has useful criteria for distinguishing events (elements of the 
u-field in question) from “non-events,” that is, subsets of S to which probabilities 
are not assigned. However, as shown by the two examples below, the smallest a- 
field generated by some class is richer than the smallest field generated by the same 
class. 

EXAMPLE 1.22 

A point moves randomly on the plane, and its location is recorded at some 
time t .  The outcome of this experiment is the pair (zl y) of coordinates of 
the observed location of the point (e.g., imagine here the location of a par- 
ticle of dust in a liquid, tossed about by random hits from molecules of the 
medium, and performing Brownian motion; or imagine a location of a previ- 
ously marked bird at the time of its capture in a bird migration study or the 
ages of both husband and wife at the time one of them dies). 

In any study of this kind (regardless its ultimate purpose), the “natural” 
sample space S is a plane or part of the plane, (the positive quadrant, etc.). The 
“simple” events here are of the form a < z 5 b,  c < z 5 d,  that is, rectangles 
with sides parallel to the axes. The reason for distinguishing these events as 
“simple” is that, as will be explained in later chapters, it is often easy to assign 
probabilities to these events. The reason for the particular configuration of 
strict and non-strict inequalities (i.e., north and east side included, south and 
west side excluded) will also become apparent from the analysis below. To 
simplify the language, we will call such events Rectangles, and use a capital 
letter to signify the specific assumption about which sides are included and 
which are not. Naturally we will allow for infinite Rectangles, such as { a  < 

It is easy to determine the field generated by all Rectangles: These are 
events that result from finite operations on Rectangles. Clearly, the comple- 

z 5 M,-M < y 5 b } .  
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ment of a Rectangle is a union of at most eight disjoint (infinite) Rectangles 
(see Figure 1.7), whereas the intersection of Rectangles is again a Rectangle 
(or is empty). 

Figure 1.7 Complement of a Rectangle 

Since unions are reduced to intersections of complements by De Morgan’s 
laws, every element of the smallest field containing all Rectangles is the union 
of a finite number of disjoint Rectangles. On the other hand, there exist events 
that do not belong to this field of events. As a simple example, one might be 
interested in the event that the point (2, y) lies within distance T from some 
fixed point (from the initial location of the particle, the point of release of the 
bird, etc.). This event is a circle on the plane, and hence a subset of S, which 
is not decomposable into a finite number of Rectangles. On the other hand, a 
circle does belong to the a-field spanned by Rectangles: it is representable as 
a countable union of Rectangles, or equivalently, as an infinite intersection of 
sets built up of Rectangles. 

Similarly in this example there are other events, which are not in the field 
generated by Rectangles and which could be considered, such as triangles, 
rectangles with sides not parallel to the axes, and ellipses. 

EXAMPLE 1.23 

Take an experiment consisting of tossing a coin infinitely many times. The 
“natural” sample space S is the space of all infinite sequences 2 = ((1 , E 2 ,  . . .), 
where Et  = 0 or 1 (or any other two distinct symbols representing heads and 
tails). The “simple” events here are of the form “heads on the nth toss,” that is, 
sets of all infinite sequences 2 = ([I , (2, . . .) with the nth coordinate En satis- 
fying Jn = 0. The events in the field generated by the simple events are of the 
form “heads on tosses k l ,  . . . , kn and tails on tosses T I ,  . . . , T ~ , ”  with both m 
and n finite and the outcomes of all other tosses remaining unspecified. 

An event that does not belong to this field, but does belong to the 0-field 
generated by the simple events, is the event that “as the number of tosses 
increases, the frequency of heads approaches a limit.” Clearly, to determine 



INFINITE OPERATIONS ON EVENTS 23 

whether or not this event occurs, it does not suffice to know any finite number 
of coordinates f,. 

To generalize this example, replace the outcome of the coin tosses by the 
result of some experiment repeated infinitely many times. This way the coordi- 
nate J, carries more information than it does for the outcome of nth coin toss. 
The “simple” events are now of the form of sets of sequences 5 = ((1, (1, . . .) 
with (i E At for i = 1, . . . , n, while the ti’s for i > n are unconstrained. 
Here A1 , . . . , A, are events that occur at the first n times of observations. The 
“simple” events described above, of an obvious interest and importance both 
in applications and in building the theory, are called “cylinder” events. The 
smallest a-field containing all cylinder events comprises all events that may 
be of interest, including those that are obtained through limits of sequences of 
cylinder events. 

PROBLEMS 

1.4.1 Let B1,  B2, . . . be a countable partition of S; that is, Bin  Bj = 0 for all i # j, 
and Ui Bi = S. Let A ,  = B, U B,+1 U . . . Find lim A,.  

1.4.2 Assume that John will live forever. He plays a certain game each day. Let Ai 
be the event that he wins the game on the ith day. 
(i) Let B be the event that John will win every game starting on January 1, 2015. 
Label the following statements as true or false: (a) B = liminf A,. (b) B C 
liminf A,. (c) B 2 l imsup A,. (d) B = l imsup An. 
(ii) Assume now that John starts playing on a Monday. Match the following events 
C1 through C g  with events D1 through Dll:  

C1 = John loses infinitely many games. 
C2 = When John loses on a Thursday, he wins on the following Sunday. 
C3 = John never wins on three consecutive days. 
C, = John wins every Wednesday. 
Cs = John wins on infinitely many Wednesdays. 
c6 = John wins on a Wednesday. 
C7 = John never wins on a weekend. 
C, = John wins infinitely many games and loses infinitely many games. 
C g  = If John wins on some day, he never loses on the next day. 



24 EXPERIMENTS, SAMPLE SPACES, AND EVENTS 

Ds = U A 7 j + 3 .  
j = O  

m 

Dio = [Ai n Ai+i n Ai+z]" 
i = O  

1.4.3 Let A l ,  . . . , A ,  be distinct subsets of S. (i) Find the maximum number of 
sets (including S and 0) of the smallest field containing A l l  . . . A,. (ii) Find the 
maximum number of sets in this field if A,-1 c A,. (iii) Answer (ii) if A1 c A2 c 
. . c A,. (iv) Answer (ii) if A1 = . . . = A ,  = 0. (v) Answer (i)-(iv) for a a-field. 

1.4.4 For 0 < Q < 1, let I ( a )  = {z : 1 - a < z < 1 + a} .  Consider a sequence 
~ 1 ,  ~ 2 ,  . . . ofnumbers satisfying 0 < a,  < 1 for all n, and let A, = I(a,). (i) Find 
lim sup A ,  and lim inf A,. (ii) Find conditions, expressed in terms of a,, under 
which lim A ,  exists, and find this limit. (iii) Define J ( a )  = {z : 1-0 5 z 5 l+a} 
and B, = J(a,). Answer questions (i) and (ii) for sequence {B,}. 

1.4.5 Let S = {0 ,1 ,2 , .  . .} be the set of all integers. For A c S, let f n ( A )  be the 
number of elements in the intersection A n { 0 , l  , . . . n}. Let A be the class of all 
sets A for which the limit 

fn(A) q ( A )  = lim - 

exists. Show that A is not a field. [Hint: Let A1 = { 1,3,5, . . .} and A2 ={ all odd 
integers between 22n and 22n+1 and all even integers between 22n+1 and 22n+2 for 
n = 0, 1, . . . }. Show that both A1 and A2 are in A but A1 n A2 $ A.] 

1.4.6 Let S = (-co, +m). Show that the class of all finite unions of intervals of 
the form [a, b ] ,  (a,  b ) ,  [a ,  b ) ,  and (a,  b], with possibly infinite a or b (intervals of the 
form [a, co); etc.) forms a field. 

n-w n 



CHAPTER 2 

PROBABILITY 

2.1 INTRODUCTION 

The concept of probability has been an object of debate among philosophers, logi- 
cians, mathematicians, statisticians, physicists, and psychologists for the last couple 
of centuries, and this debate is not likely to be over in the foreseeable future. As ad- 
vocated by Bertrand Russell in his essay on scepticism, when experts disagree, the 
layman would do best by refraining from forming a strong opinion. Accordingly, 
we will not enter into the discussion about the nature of probability; rather, we will 
start from the issues and principles that are commonly agreed upon. 

Probability is a number associated with an event that is intended to represent its 
“likelihood,” “chance of occurring,” “degree of certainty,” and so on. The phrases 
above have to be explicated so as to obtain workable principles. This can be done 
in several ways, the most common being (1) the frequency (or objective) interpre- 
tation of probability, (2) the classical (sometimes called logical) interpretation of 
probability, and (3) the subjective or personal interpretation of probability. 

2.2 PROBABILITY AS A FREQUENCY 

According to the common interpretation, probability is the “long-run” relative fre- 
quency of an event. Before attempting to provide a more formal explication, let us 
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observe that the idea connecting probability and frequency is (and had been for a 
long time) very well grounded in everyday intuition. For instance, loaded dice were 
on several occasions found in the graves of ancient Romans. That indicates that they 
were aware of the possibility of modifying long-run frequencies of outcomes, and 
perhaps making some profit in such a way. 

Today the intuition regarding relationship between probabilities and frequencies 
is even more firmly established. For instance, the phrases “there is 3% chance that 
an orange picked at random from this shipment will be rotten” and “the fraction 
of rotten oranges in this shipment is a 3%” appear almost synonymous. But on 
closer reflection one realizes that the first phrase refers to the probability of an event 
“randomly selected orange will be rotten,” while the second phrase refers to the 
population of oranges. 

The precise nature of the relation between probability and frequency is hard to 
formulate. But the usual explanation is as follows: Consider an experiment that 
can be repeated under identical conditions, potentially an infinite number of times. 
In each of these repetitions, some event, say A, may occur or not. Let N ( A )  be 
the number of occurrences of A in the first N repetitions. The frequency principle 
states that the ratio N ( A ) / N  approximates the probability P ( A )  of event A, with 
the accuracy of the approximation increasing as N increases. 

Let us observe that this principle serves as a basis for estimating probabilities 
of various events in the real world, especially those probabilities that might not be 
attainable by any other means (e.g., the probability of heads in tossing a biased coin). 

We start this chapter by putting a formal framework (axiom system) on a prob- 
ability regarded as a function on the class of all events. That is, we impose some 
general conditions on a set of individual probabilities. This axiom system, due to 
Kolmogorov (1933), will be followed by the derivation of some of its immediate 
consequences. The latter will allow us to compute probabilities of some composite 
events given the probabilities of some other (“simpler”) events. 

2.3 AXIOMS OF PROBABILITY 

Let S be the sample space, namely the set of all outcomes of an experiment. For- 
mally, probability, to be denoted by P, is a function defined on the class of all 
events4, satisfying the following conditions (usually referred to as axioms): 

Axiom 1 (Nonnegativity) : 

P ( A )  2 0 for every event A .  

Axiom 2 (Norming) : 

Axiom 3 (Countable Additivity) : 

P ( S )  = 1. 

m 

i=l  

4The nature of the class of all events will be (to a certain extent) explicated in Section 2.6. See also 
Section 1.4. 
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for every sequence ofpairwise disjoint events A1 , Az, . . . , so that Ai n Aj = 0 for 

If the sample space S is finite or countable, one can define a probability function 
P as follows: Let f be a nonnegative function defined on S, satisfying the condition 
~ , E s f ( ~ )  = 1. Then P may be defined for every subset A of S as P ( A )  = zsEA f(s).  One can easily check that P satisfies all three axioms. 

Indeed, P ( A )  2 0 because f is nonnegative, and P ( S )  = CsES f(s)  = 1. 
Finally, let Al ,  A2, . . . be a sequence of disjoint subsets of S. Then 

all i # j .  

s E A I U A ~ U . . ,  i=l 

Passing from the first to the second line is allowed because A l ,  Az ,  . . . are disjoint, 
so each term appears only once. The sum in the second line is well defined (i.e., it 
does not depend on the order of summation because the terms are nonnegative). 

However, if S is not countable, one usually needs to replace summation by in- 
tegration, P ( A )  = sA f ( s ) d s .  This imposes some conditions on hnctions f and 
on the class of events A. For a detailed discussion the reader is referred to more 
advanced probability texts (e.g., Chung, 2001). 

Figure 2.1 Hitting a target 

H EXAMPLE 2.1 Geometric Probability 

One of the first examples of an uncountable sample space is associated with 
“the random choice of a point from a set.” This phrase is usually taken to 
mean the following: a point is selected at random from a certain set S in a 
finite-dimensional space (line, plane, etc.), where S has finite measure (length, 
area, etc.), denoted generally by JSI. The choice is such that if A ( A  C S )  
has measure IAl, then the probability of the chosen point falling into A is 
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proportional to IAl. Identifying S with the sample space, we can then write 

To better see this, suppose that in shooting at a circular target S,  one is 
certain to score a hit, and that the point where one hits S is assumed to be 
chosen at random in the way described above. What is the probability that the 
point of hit is farther from the center than half of the radius of the target? 

From Figure 2.1 it is clear that the point of hit must lie somewhere in 
the shaded annulus A. Its area is IAl = .rrR2 - T ( R / ~ ) ~  so that P(A)  = 
jAJ/lrR2 = 3/4. Of course, the assumption under which this solution is ob- 
tained is not very realistic: typically sets closer to the center are more likely to 
be hit than sets of the same area located closer to the perimeter. 

P ( A )  = lAI/ISl. 

The concept of “random choice” from an uncountable set is sometimes ambigu- 
ous. This is illustrated by the next example. 

EXAMPLE 2.2 Bertrand’s Paradox 

A chord is chosen at random in a circle. What is the probability that the 
length of the chord will exceed the length of the side of an equilateral triangle 
inscribed in the circle? 

This problem was originally posed by Joseph Bertrand, a French math- 
ematician, who provided three solutions, all valid, but yielding inconsistent 
results. 

SOLUTION 1, Choose point A as one of the ends of the chord. The chord is 
uniquely determined by the angle Q (see Figure 2.2). These angles are chosen 

Figure 2.2 First solution of Bertrand’s problem 

at random from the interval (0, T ) .  It is clear that the length of the chord ex- 
ceeds the side of the equilateral triangle if cy lies between n/3 and 2 ~ / 3 ,  so 
the answer to the question is 1 / 3 .  

SOLUTION 2 .  Let us draw a diameter QQ‘ (see Figure 2.3) perpendicular 
to the chord P .  Then the length of the chord exceeds the side of the equilat- 
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P 

Figure 2.3 Second solution of Bertrand’s problem 

Figure 2.4 Third solution of Bertrand’s problem 

era1 triangle if it intersects the line QQ’ between points B and B’ . Elementary 
calculations give IBB’I = 1QQ’1/2, so the answer is 1/2. 

SOLUTION 3. The location of the chord is uniquely determined by the lo- 
cation of its center (except when the center coincides with the center of the 
circle, which is an event with probability zero). For the chord to be longer 
than the side of the equilateral triangle inscribed in the circle, its center must 
fall somewhere inside the shaded circle in Figure 2.4. Again, by elementary 
calculations we obtain probability 1/4. 

The discovery of Bertrand’s paradox was one of the impulses that made re- 
searchers in probability and statistics acutely aware of the need to clarify the foun- 
dations of the theory, and ultimately led to the publication of Kolmogorov’s book 
(1933). In the particular instance of the Bertrand “paradoxes,” they are explained 
simply by the fact that each of the solutions refers to a different sample scheme: 
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A 

Figure 2.5 Explanation of Bertrand's Paradox 

(1) choosing a point on the circumference and then choosing the angle between the 
chord and the tangent at the point selected, (2) choosing a diameter perpendicular to 
the chord and then selecting the point of intersection of the chord with this diameter, 
and (3) choosing a center of the chord. Random choice according to one of these 
schemes is not equivalent to a random choice according to the other two schemes. 

To see why it is so, we will show that the first and second scheme are not equiv- 
alent. The analogous arguments for the other two possible pairs of schemes are left 
as an exercise. 

EXAMPLE2.3 

Imagine different devices (physical mechanisms, computer programs, etc.) 
built for sampling random chords. One scheme chooses a point on the cir- 
cumference, and then the angle a between the chord and the tangent to the 
circle at the point chosen (Figure 2.2). The second scheme chooses first the 
direction of the diameter and then the point B on the diameter, at which the 
chord perpendicular to this diameter intersects it (Figure 2.3). From Figure 
2.5 it is seen that the angle AOB is a, and therefore y = IOB/ = cos a. 
Thus dy = (sin a )  d a ,  which means that equal changes of a do not produce 
equal changes of y. In fact, these changes are smaller when a is small. Con- 
sequently, a device that chooses angles a at random will tend to produce more 
intersections of the diameter that are farther from the center (i.e,, more chords 
will be shorter). 

PROBLEMS 

2.3.1 Label all statements below as true or false. 
(i) If A is more likely to occur than A", then P ( A )  > 0.5. 
(ii) If A occurs whenever B does, then P ( B )  5 P ( A ) .  
(iii) If P ( A )  5 P ( B ) ,  then whenever B occurs, A does also. 
(iv) If P ( A )  = 0.75, then A must occur three times out of every four. 
(v) The sum of probabilities of disjoint events A and B cannot exceed 1. 
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(vi) If A and B are not disjoint, the sum of their probabilities exceeds 1. 
(vii) If P ( A  fl B ) ,  P ( A  n C), and P(B n C) are all positive, then P ( A  fl B f l  C) is 
also positive. 
(viii) If sample spaces for two experiments are identical, then the probability of the 
same event A must be the same for both experiments. 

2.3.2 A bathroom floor is covered by square tiles with side length a. You drop a 
coin with diameter b, where b < a. Find: 
(i) The probability that the coin will rest entirely within one tile. 
(ii) The probability that the coin will partially cover four different tiles. 

2.3.3 (i) A point (a, b) is selected at random from the square [-ll 112. Find the 
probability that the equation ax2  + b s  + 1 = 0 has two distinct real solutions. (ii) 
Answer the same question if the point (a, b)  is selected at random from the rectangle 
A1 5 a 5 A2, B1 5 b 5 B2. Discuss all possible choices of A l l  Azl B1, B2. 

2.3.4 Show that first and third, as well as second and third, schemes of sampling 
chords (see Bertrand’s paradox) are not equivalent. 

2.4 CONSEQUENCES OF THE AXIOMS 

The simplest consequences of the axioms of probability are as follows: 

1. The probability of the impossible event is zero: 

P(0)  = 0. (2.1) 

This follows from the fact that the sequence S, 0,0, . . . satisfies conditions of Axiom 
3 so that 1 = P ( S )  = P ( S  u 0 U 0 u ’ ’ )  = P ( S )  + P(0)  + P(0)  + . ’ which 
is possible only if P(0) = 0. It is important to realize that the converse is not true: 
the condition P ( A )  = 0 does not imply that A = 0. This is shown by the following 
example: 

1 EXAMPLE2.4 

Consider an experiment consisting oftossing a coin infinitely many times. The 
outcomes may be represented as infinite sequences of the form HHTHTTHT 
. . . so that the sample space S contains infinitely many of such sequences. The 
event “heads only,” that is, the set consisting ofjust one sequence HHHH . . . , 
is not empty. However, the chance of such an outcome is, at least intuitively, 
zero: tails should come up sooner or later. 

2 .  Probability is finitely additive: 

P(A1 U .  ’ .  U A,)  = P(A1)  + . . . + ( A , )  

for any n = 1 , 2 ,  . , . , if the events Ai are painvise disjoint. 
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In an infinite sequence Al ,  . . . , A,, 0,0, . . . , events are painvise disjoint only if 
Al ,  . . . , A, are, so Axiom 3 applies. Therefore, using (2. l), we have 

P(A1 U '  . .UAn  U 0 U  ' '  , )  = P(A1) + . . .  + P(A,) + P(0) + ' . .  
= 

while the left-hand side is P(A1 U . . U A,). 

P(A1) + .  . , + P(A,), 

3. Monotonicity: If A c B then P ( A )  5 P(B) .  This follows from the fact that 
B = A U ( B  f l  A"). The events on the right-hand side are disjoint, so we have 
P ( B )  = P(A)  + P ( B  n A") 2 P(A)  by Axiom 1 .  Since B n A" = B \ A, the 
equality part gives a useful consequence: if A c B, then 

P ( B  \ A)  = P ( B )  - P(A) .  (2.2) 

Since A c S for every event A,  we have 0 5 P ( A )  5 1. 

4. Probability is countably subadditive: 

(2.3) 

for every sequence of events A1, Az, . , , , This follows from representation (1.6) as 
a union of disjoint events, and then from monotonicity. We have 

= P(A1) + P(Ay n A2)  + P(A7 n A; n A3) + 
5 P(A1) + P(A2) + P(A3) + .  . . . 

5 .  Complementation: 

P(AC) = 1 - P(A) .  (2.4) 

This follows from Axiom 2, by the fact that A and A" are disjoint and A U A" = S. 

6. Probability of a union of events; 

P ( A  U B )  = P(A)  + P ( B )  - P ( A  n B) .  (2.5) 

Indeed, we can recast AUB = AU(A"nB) so that P(AUB) = P(A)+P(A"nB) .  
On the other hand, B = ( A  n B)  u (A" n B),  and hence P(B) = P ( A  n B )  + 
P(AC n B ) .  Solving for P(AC n B )  in one equation and substituting into the other, 
we obtain (2 .5 ) .  

A more intuitive argument may be made by using Venn diagrams (see Figure 
2.6). In the sum P(A)  + P ( B )  each sample point from the intersection A n B is 
included twice, so to obtain the probability of the union A U B ,  we must subtract the 
probability P ( A  n B) .  
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Figure 2.6 Union of two events 

EXAMPLE2.5 

Supposethat P ( A )  = 0.4,P(BC) = 0 . 6 , P ( A C n B )  = 0.1. F i n d P ( A U B C ) .  

SOLUTION. The best strategy for solving this kind of problem is usually 
to start by finding the probabilities of all the intersections (in this case, A n 
B, A n BC, AC n B, AC n BC). The probability P ( A C  n B) = 0.1 is given. 
Next, (A n B) U (AC n B) = B, and the events on the left are disjoint. 
So P ( A  n B) + P(AC n B) = P ( B )  = 1 - P(Bc) ,  which means that 
P ( A  n B )  + 0.1 = 1 - 0.6, and hence P ( A  r l  B )  = 0.3. Then using 
A = (A n B) U (A n BC) we have 0.4 = P ( A )  + P ( A  n B )  + P ( A  n BC) = 
0.3 + P ( A  n BC); hence P ( A  i l  BC) = 0.1. Finally, in the same way we 
obtain P(AC n BC) = 0.5. Applying formula (2.4), we have P ( A  U BC) = 
P ( A )  + P(BC)  - P ( A  n B") = 0.3 + 0.6 - 0.1 = 0.8. 

For the case of three events: A,  B, and C, the same argument based on 
Venn diagrams gives the formula 

P ( A  U B U C) = P ( A )  + P ( B )  + P(C)  
- P ( A  n B) - P ( A  n C) - P(B n C) 

+ P ( A  n B n C ) .  (2.6) 

It can be checked at Figure 2.7 that the formula (2.6) includes each part of the 
union A U B U C exactly once. 

Formula (2.6) may be generalized to the case of the union of any finite number 
of events. 

Theorem 2.4.1 For any events A1, . . . , A, 

+ P(AI,  n Ai, n AiS) + . . 
l< i l< iz<is<n 

f(-1)"+'P(A1 n . .n An). (2.7) 
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Figure 2.7 Union of three events 

Proof: We will proceed by induction. The theorem is true for n = 1. Assume 
now that formula (2.7) holds and write 

we have 

Applying formula (2.7) to P(U: A,) and to P [UY(A, n An+l)],  and then combin- 
0 ing the corresponding terms, we obtain (2.7) with n replaced by n + 1. 

EXAMPLE2.6 

Suppose 101 events A l , .  . . A101 are such that P(A1) = . . = P(A1ol) = 
0.01, P(A1 n A2) = P(A1 n As)  = . . = P(A1oo n A101) = r ,  while every 
triple intersection is empty. What is the smallest possible value of the proba- 
bility of intersection r? 

SOLUTION. Observe that 1 2 P(A1U.. uAlo1) = P(Al )+ . .  .+P(Alol)- 

The number of intersections Ai n Aj with i < j is (100 x 101)/2 (to see 
this, we can arrange all pairs into a square table 101 x 101. The pairs with 
i < j lie on one side of the diagonal, so their number is (10l2 - 101)/2) = 
(100 x 101)/2). There are only two kinds of terms in the sum. Because 
triple intersections are empty, so are any higher intersections. Thus we have 
1 2 101/100 - r(101 x 100)/2; hence r 2 1/505,000. 

P(A1 n Az) - ' . .  - P(A1oo n Alol) = 101/100 - ~ ( 1 0 0  x 101)/2 = . 
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PROBLEMS 

2.4.1 Let events A, B, and C be such that A contains B and is disjoint from C. 
Moreover, A is twice as likely as B, three times as likely as C, and half as likely as 
its complement A". Find P ( B  U C). 

2.4.2 Events A, B ,  and C are such that A n B = A n C = 0 while B n C is not 
empty. Determine P ( A  U B U C )  as a function of z if P ( A )  = P(B) = P ( C )  = 
3P(B n c) = 5 .  

2.4.3 Find P ( A  U B") for events A and B such that P ( A )  = P ( B )  = 1/2,  and 
P(AC n B") = 1/3. 

2.4.4 To make the formula P [ ( A C n  B")"] = 2 - P(AC)  - P ( B C )  - x valid, x must 
equal: (1) P ( A  U B) .  ( 2 )  P ( A  n B) .  ( 3 )  P(AC U B"). (4) None ofthe above. 

2.4.5 Three events A, B, and C are such that C is contained in the intersection 
A" n B, P(A)  = 0.6, P ( A  n B)  = 0.3, and P(C)  = P(AC n B") = 0.1. Find: 
(i) P(B) .  (ii) The probability that exactly two of the events A,  B ,  C will occur. (iii) 
The probability that exactly one of the events A,  B ,  C will occur. 

2.4.6 Let A,  B ,  C, D ,  and E be five events such that P ( A )  = P ( B )  = . ' '  = 
P ( E )  = k and P ( A  n B )  = P ( A  n C )  = ' . .  = P ( D  f l  E) = p .  Moreover at 
least one of the events A,  . . . , E must occur, and the intersection of any three events 
among A, B ,  . . . , E is empty. (i) Find p if k = 0.3. (ii) Omit the assumption that 
at least one of the events must occur and determine all possible values of k if it is 
known that p = 0.01. 

2.4.7 Four events A,  B, C, and D are such that A and B are disjoint and D is con- 
tained in ( A  U B U C)". Moreover, B n C is twice as likely as A n C, while 
P(AnCc)  = P(BnCc)  = 0 .2 ,P(D)  = P[(AUBUCUD)"] = P(CnACnBC)  = 
0.1. Find the probability that out of the events A, B ,  C, D: (i) None will occur. (ii) 
Exactly two will not occur. (iii) At most two will occur. (iv) Exactly one will occur. 

2.4.8 John and Mary have to take a certain statistics course. John attends 40% of 
the classes, while Mary misses 20% of the classes. They are both present in class 
only 32% of the time. Find the probability that: (i) Only one of them is present in 
class. (ii) They are both absent. 

2.4.9 A faulty public phone is such that it returns the coin with probability 60%, it 
gives you the number you dial with probability 20%, and it takes your coin and does 
not give you the required connection with probability 30%. Find the probability that 
you will talk with the number you dial for free. 

2.4.10 A certain public phone is such that it returns the coin with probability a, 
connects you with the number you dial with probability b, and it gives you the con- 
nection for free with probability c. Let us agree to say that the phone is individually 
honest if it takes your money if and only if it provides you with the required con- 
nection, and that it is socially honest if it takes, on average, as many coins as it gives 
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correct connections (but perhaps from different customers). (i) Find conditions for 
a, b and c under which the phone is individually honest. (ii) Find conditions under 
which the phone is socially honest. 

2.4.1 1 A survey is conducted in a certain city to determine the number of households 
having electric appliances. It is found that 67% have washing machines (W), 52% 
have microwave ovens (M), and 48% have dishwashers (D). Furthermore, 32% have 
(WM), 30% have (MD), 30% have (WD), and 20% have all three. What is the 
probability that a family has at least one of these appliances? 

2.4.12 A regular die and a die with 2, 3, 5 ,  6, 7, and 8 dots are tossed together, and 
the total number of dots is noted. What is the probability that the sum is greater than 
or equal to lo? 

2.4.13 A die is loaded in such a way that the probability of j dots on the top face is 
proportional to j, for j = 1, 2, . . . , 6. What is the probability that in one roll of the 
die an odd number of dots will turn up? 

2.5 CLASSICAL PROBABILITY 

For the so-called classical or logical interpretation of probability we will assume 
that the sample space S contains a jn i te  number N of outcomes and all of these 
outcomes are equally probable. 

Obviously in this case each of the outcomes has the same probability 1/N, and 
for every event A ,  

(2.8) 

In many real situations the outcomes in the sample space reveal a certain symme- 
try, derived from physical laws, from logical considerations, or simply from the 
sampling scheme used. In such cases one can often assume that the outcomes are 
equiprobable and use (2.8) as a rule for computing probabilities. Obviously the 
function P in (2.8) satisfies the axioms of probability. 

To use some very simple examples, in tossing a regular die each face has the 
same probability 1/6. Then the probability of the event A = “outcome odd” is 
P ( A )  = 3/6 = 1/2,  since there are three odd outcomes among the possible six. 

The case above is rather trivial, but considerations of symmetry can sometimes 
lead to unexpectedly simple solutions of various problems. 

number of outcomes in A 
N 

P ( A )  = 

EXAMPLE2.7 

Peter tosses a fair coin n times, and Paul tosses it n + 1 times. What is the 
probability that Paul tosses more heads than Peter? 

SOLUTION. Either Paul tosses more heads than Peter (event A )  or he tosses 
more tails than Peter (event B). These two events exclude one another and 
exhaust all possibilities (since one cannot have ties in number of heads and 
number of tails). Switching the role of heads and tails transforms one of 
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these events into the other. Thus sample space becomes partitioned into two 
equiprobable events, and we must have P ( A )  = 1/2. 

The use of (2.8) requires techniques for counting the numbers of elements in 
some sets. These topics, known under the name combinatorics, will be discussed in 
Chapter 3. 

PROBLEMS 

2.5.1 A coin is tossed 7 times. Assume that each of the 27 = 128 possible outcomes 
(sequences like HTTHHTH of length 7) is equally likely. Relate each outcome to a 
binary number by replacing H by 1 and T by 0, for example, THHHTTH is 0 1 1 1001 
= 57. Find the probability that a number generated in this way lies between 64 and 
95 (inclusive on both sides). 

2.5.2 A die is tossed three times, with outcomes X1 , X2,  and X3.  Assuming that all 
216 possible outcomes (z1,22,53) are equally likely, find following probabilities: 
(i) P(X1 > X2 = X 3 ) .  (ii) P(X1 < X2 < X3) .  (iii) P[max(Xl, X2,  X 3 )  = 31. 
(iv) P[min(X1, Xp,  X 3 )  = 21. 

2.5.3 Use formula (2.7) to find the number of primes not exceeding 100. [Hint: 
Assume that you sample one of the numbers 1,2,  . . , , 100. Let Ai be the event “the 
number sampled is divisible by a,” Determine p = P(A2 U A3 U A5 U AT).  Then 
the answer to the problem is lOO(1 - p )  + 3 (why?).] 

2.5.4 A number X is chosen at random from the series 4 ,9 ,  14, 19, . . . , and another 
number Y is chosen from the series 1, 5 ,9 ,  13, . . . . Each series has 100 terms. Find 
P ( X  = Y). 

2.6 NECESSITY OF THE AXIOMS* 

Looking at Axiom 3, one may wonder why do we need it for the case of countable 
(and not just finite) sequences of events. Indeed, the necessity of all three axioms, 
with only finite additivity in Axiom 3, can be easily justified simply by using prob- 
ability to represent the limiting relative frequency of occurrences of events. Recall 
the symbol N ( A )  from Section 2.1 for the number of occurrences of the event A in 
the first N experiments. The nonnegativity axiom is simply a reflection of the fact 
that the count N ( A )  cannot be negative. The norming axiom reflects the fact that 
event S is certain and must occur in every experiment so that N ( S )  = N, and hence 
N ( S ) / N  = 1. Finally (taking the case of two disjoint events A and B),  we have 
N ( A  U B )  = N ( A )  + N ( B ) ,  since whenever A occurs, B does not, and conversely. 
Thus, ifprobability is to reflect the limitingrelative frequency, then P(AUB) should 
be equal to P(A)  + P ( B ) ,  since the frequencies satisfy the analogous condition 
N ( A  U B ) / N  = N ( A ) / N  + N ( B ) / N .  

The need for countable additivity, however, cannot be explained so simply. This 
need is related to the fact that to build a sufficiently powerful theory, one needs to 
take limits. If A1, A2, . . . is a monotone sequence of events (increasing or decreas- 
ing, i.e., A1 c A2 c ’ .  . or A1 2 A2 ’ . . )  then limP(A,) = P(limA,), where 
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the event lim A,  has been defined in Section 1.4. Upon a little reflection, one can 
see that such continuity is a very natural requirement. In fact the same requirement 
has been taken for granted for over 2000 years in a somewhat different context: in 
computing the area of a circle, one uses a sequence of polygons with an increasing 
number of sides, all inscribed in the circle. This leads to an increasing sequence 
of sets “converging” to the circle, and therefore the area of the circle is taken to 
be the limit of the areas of approximating polygons. The validity of this idea (i.e., 
the assumption of the continuity of the function f ( A )  = area of A)  was not really 
questioned until the beginning of the twentieth century. Research on the subject 
culminated with the results of Lebesgue. 

To quote the relevant theorem, let us say that a function P ,  defined on a class of 
sets (events), is continuousfrom below at the set A if the conditions A1 c A2 c 
. . . and A = UA, imply that lim P(An)  = P(A) .  Similarly, P is continuous 

from above at the set A if the conditions A1 3 A2 3 . . . and A = nA,  imply 
lim P(A,) = P(A) .  A function that is continuous at every set from above or from 
below is simply called continuous (above or below). Continuity from below and 
from above is simply referred to as continuity. 

We may characterize countable additivity as follows: 

Theorem 2.6.1 I f the probability P satisfies Axiom 3 of countable additiviw, then 
P is continuous from above andfrom below. Conversely, f a  function P satisfies Ax- 
ioms I and 2, is finitely additive, and is either continuous from below or continuous 
from above at the empty set 0, then P is countably additive. 

Proof: Assume that P satisfies Axiom 3,  and let A1 c A2 c . . be a monotone 
increasing sequence. We have 

m 

U A, 
n=l  

= A1 U (A2 n A:) U (A3 n AS) U ’ .  

= A1 U (A2 \ Al )  U (A3 \ A2) U . . .  (2.9) 

the events on the right-hand side being disjoint. Since UA, = lim A, (see Section 
1 . 9 ,  using (2.9), and the assumption of countable additivity, we obtain 

m 

P(limA,) = P(UAn) = P(A1) + C [ P ( A , )  - P(Ai- I ) ]  
2=2 

n 

= P ( A 1 )  + lim C [ P ( A , )  - P(Ai- l )]  
n-m 

2=2 

= P(A1)  + lim [ P ( A n )  - P(A1)] = lim P(An) 
n - w  n-cc 

(passing from the first to the second line we used the fact that the infinite series is 
defined as the limit of its partial sums). This proves continuity of P from below. To 
prove continuity from above, we pass to the complements, and proceed as above. 

Let us now assume that P is finitely additive and continuous from below, and let 
A1 , A2, . . . be a sequence of mutually disjoint events. Put B, = A1 U 8 . . u A, so 
that B1 c 8 2  c . . . is a monotone increasing sequence with UA, = UB,. We 
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have then, using continuity from below and finite additivity, 

P(UA,) = P(UB,) = P( lim B,) = lim P(Bn)  
n-+w n-m 

M _ _  
= lim [P(A1) + . + P(An)]  = C P ( A n ) .  

n -w  n=l 

again by definition of a numerical series being the limit of its partial sums. This 
shows that P is countably additive. 

Finally, let us assume that P is finitely additive and continuous from above at 
the empty set 0 (impossible event). Taking again a sequence of disjoint events 
A l ,  A2 , .  . . , let C, = A,+1 U An+2 u . . . We have C1 3 C, 2 . . . and lim Cn = 
n, C, = 8. By finite additivity we obtain 

Since (2.10) holds for every n, we can write 

P(UAi) = lim[P(Al) + .  ’ + P(An)  + P(Cn)] 
W 

= lim[P(Al) + .  . . + P(A, ) ]  + limP(C,) = P ( A i ) .  
n=l 

Again, by the definition of series and the assumption that limP(C,) = 0, P is 
0 countably additive, and the proof is complete. 

As an illustration we now prove the following theorem: 

Theorem 2.6.2 (First Borel-Cantelli Lemma) rfA1, A2, . . . is asequence of events 

n=l 

then 
P(1imsup A,) = 0. 

Proof: Recall (1.7) from Chapter 1) where limsup A, = “infinitely many events 
Aj  occur” = n,“==, U E k  Ai = lirnk-, U E k  Ai (because the unions Uzk Ai, k = 
1,2, , , , form a decreasing sequence). Consequently, using the continuity of P,  sub- 
additivityproperty (2.3), and assumption (2.1 l), we have 

m m .. .. 

P(1imsup A,) = lim P( u A i )  _< lim P ( A i )  = 0. 
k - w  k - m  

i=k  i=k 

Paraphrasing the assertion of the lemma, if probabilities of events Aj decrease to 
zero fast enough to make the series converge, then with probability 1 only finitely 
many among events Aj will occur. We will prove the converse (under an additional 
assumption), known as the second Borel-Cantelli lemma, in Chapter 4. 
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In the remainder of this section we will discuss some theoretical issues related to 
defining probability in practical situations. Let us start with the observation that the 
analysis above should leave some more perceptive readers disturbed. Clearly, one 
should not write a formula without being certain that it is well defined. In particular, 
when writing P ( ,  . . ) two things ought to be certain: (1) that what appears in the 
parentheses is a legitimate object of probability, that is, an event, and (2) that the 
function P is defined unambiguously at this event. 

With regard to the first point, the situation is rather simple. All reasonable ques- 
tions concern events such as lim A,  and lim sup A,, and hence events obtained 
by taking countable unions, countable intersections, and complementations of the 
events A l ,  A2, . . . Thus the events whose probabilities are discussed belong to the 
smallest a-field containing all the events A l l  A2, . . . (see Definition 1.4.2 and The- 
orem 1.4.3). Consequently, to make the formulas at least apparently legitimate, it is 
sufficient to assume that the class of all the events under considerations is a a-field, 
and that probability is a function satisfying the probability axioms defined on this 
a-field. 

This assumption alone, however, is not enough to safeguard us from possible 
trouble. To explain the nature of the “danger,” let us consider the following hypo- 
thetical situation: Suppose that we do not know how to calculate the area of a circle. 
We could start from the beginning and define the areas of simple figures: first rect- 
angles, then pass to right triangle, and then to arbitrary triangles, which could be 
reduced to sums and differences of right triangles. From there, the concept of area 
could be extended to figures that could be triangulated. It is a simple matter to show 
that the area of such a figure does not depend on how it is triangulated. 

From here, we may pass to areas of more complicated figures, the first of these 
being the circle. The area of the latter could be calculated by inscribing a square in 
it, and then taking areas of regular polygons with 8,16,32, . . . sides and passing to 
the limit. The result is nr2. The same result is obtained if we start by inscribing 
an equilateral triangle, and then take limits of the areas of regular polygons with 
6,12 ,24 ,  . . . sides. The same procedure could be tried with an approximation from 
above, that is, starting with a square or equilateral triangle circumscribed on the 
circle. Still the limit is m2. We could then be tempted to conclude that the area of 
the circle is 7rr2. The result is, of course, true, but how do we know that we will 
obtain the limit always equal to m2, regardless of the way of approximating the 
circle? What if we start, say, from an irregular seven-sided polygon, and then triple 
the number of sides in each step? 

A similar situation occurs very often in probability: Typically we can define prob- 
abilities on “simple” events, corresponding to rectangles in geometry, and we can 
extend this definition without ambiguity to finite unions of the simple events (“rect- 
angles”). The existence and uniqueness of a probability of all the events from the 
minimal a-field containing the “rectangles” is ensured by the following theorem, 
which we state here without proof. 

Theorem 2.6.3 I f P  is a function defined on afield of events A satisfying theprob- 
ability axioms (including countable additivify), then P can be extended in a unique 
way to a function satisfying the probability axioms, defined on the minimal a-field 
containing A. 
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This means that if the function P is defined on a field A of events and satisfies 
all the axioms of probability, and if o(A) is the smallest a-field containing all sets 
in A, then there exists exactly one function P* defined on a(A) that satisfies the 
probabilityaxioms, and P * ( A )  = P ( A )  if A E A. 

A comment that is necessary here concerns the question: What does it mean that 
a function P defined on a field A satisfies the axioms of probability? Specifically, 
the problem concerns the axiom of countable additivity, which asserts that if events 
A l ,  Az,  . , . are disjoint, then 

(2.12) 
n = l  n=l  

However, if P is defined on a field, then there is no guarantee that the left-hand side 
of formula (2.12) makes sense, since Ur=l A ,  need not belong to the field of events 
on which P is defined. The meaning of the assumption of Theorem 2.6.3 is that 
formula (2.12) is true whenever the union Ur=l A,  belongs to the field on which P 
is defined. 

The way of finding the probability of some complicated event A is to represent 
A as a limit of some sequence of events whose probabilities can be computed, and 
then pass to the limit. Theorem 2.6.3 asserts that this procedure will give the same 
result, regardless of the choice of sequence of events approximating the event A.  

H EXAMPLE 2.8 Densities 

A very common situation in probability theory occurs when S = (-m, i m ) .  
A probability measure P on S can be defined as follows: let f be a function 
such that f(z) 1 0 for all 2 and s-'," f(z)dz = 1. We will assume in 
addition that f is continuous and bounded, although those conditions can be 
greatly relaxed in general theory. 

We now define probability on S by putting 

P(A)  = f(z)dz 
I A  

(2.13) 

(in this case f is referred to as a density of P). The full justification of this 
construction lies beyond the scope of this book, but we will give the main 
points. First, the definition (2.13) is applicable for all intervals A of the form 
( a ,  b ) ,  [a, b ] ,  (--03, b) ,  ( a ,  m), [a,  m), and so on. Then we can extend P to fi- 
nite unions of disjoint intervals by additivity (the class of all such finite unions 
forms a field). We can easily check that such an extension is unique; that is, 

does not depend on the way interval (a ,  b )  is partitioned into the finite union of 
nonoverlapping intervals I j .  This provides an extension of P to the smallest 
field of sets containing all intervals. If we show that P defined this way is 
continuous on the empty set, then we can claim that there exists an extension 
of P to the smallest a-field of sets containing all intervals. 
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Now, the decreasing sequences of intervals converging to the empty set are 
built of two kinds of sequences: “shrinking open sets” and “escaping sets,” 
exemplified as 

11 3 12 3 ’ .  with I ,  = (a,  a + en), c1 > c2 > . . . + 0 

and 

J1 3 52 3 ’ .  . with J ,  = (an ,  m), a1 < a2. .  . 4 00. 

We have here lim In = n 1, = 0 and lirn J ,  = n Jn = 0. In the first case 
P ( I n )  = SaafLn f(z)dz 5 cnM .--) 0, where M is a bound for function 
f. In the second case, P ( J n )  = JOT f(z)da: = 1 - J:; j ( z ) d z  + 1 - 

J-’,” f(z)dz = 0. 

2.7 SUBJECTIVE PROBABILITY* 

Let us finally consider briefly the third interpretation of probability, namely as a 
degree of certainty, or belief, about the occurrence of an event. Most often this 
probability is associated not so much with an event as with the truth of a proposition 
asserting the occurrence of this event. 

The material of this section assumes some degree of familiarity with the concept 
of expectation, formally defined only in later chapters. For the sake of completeness, 
in the simple form needed here, this concept is defined below. In the presentation, 
we follow more or less the historical development, refining gradually the conceptual 
structures introduced. The basic concept here is that of a lottery, defined by an event, 
say A, and two objects, say a and b. Such a lottery, written simply aAb, will mean 
that the participant (X) in the lottery receives object a if the event A occurs, and 
receives object b if the event AC occurs. 

The second concept is that of expectation associated with the lottery aAb, defined 
as 

4 a ) P ( A )  + 4 b ) P ( A C ) ,  (2.14) 

where .(a) and u(b) are measures of how much the objects a and b are “worth” 
to the participant. When a and b are sums of money (or prices of objects a and 
b), and we put u ( z )  = z, the quantity (2.14) is sometimes called expected value. 
In cases where .(a,) and u(b) are values that person X attaches to a and b (at a 
given moment), these values do not necessarily coincide with prices. We then refer 
to u(a)  and u(b) as utilities of a and b, and the quantity (2.14) is called expected 
utility ( E U ) .  Finally, when in the latter case the probability P ( A )  is the subjective 
assessment of likelihood of the event A by X, the quantity (2.14) is called subjective 
expected utility (SEU).  

First, it has been shown by Ramsay (1926) that the degree of certainty about the 
occurrence of an event (of a given person) can be measured. Consider an event A, 
and the following choice suggested to X (whose subjective probability we want to 
determine). X is namely given a choice between the following two options: 

1. Sure option: receive some fixed amount $u, which is the same as lottery 
($u)B($u) ,  for any event B. 
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2. A lotteiy option. Receive some fixed amount, say $100, if A occurs, and 
receive nothing if A does not occur, which is lottery ($100)A($O). One should 
expect that if u is very small, X will probably prefer the lottery. On the other hand, 
if u is close to $100, X may prefer the sure option. 

Therefore there should exist an amount u* such that X will be indifferent between 
the sure option with u8 and the lottery option, With the amount of money as a 
representation of its value (or utility), the expected return from the lottery equals 

0(1 - P ( A ) )  + 100P(A) = 100P(A), 

which, in turn, equals u*.  Consequently, we have P ( A )  = u*/lOO. Obviously, un- 
der the stated assumption that utility of money is proportional to the dollar amount, 
the choice of $100 is not relevant here, and the same value for P(A)  would be 
obtained if we chose another “base value” in the lottery option (this can be tested 
empirically). 

This scheme of measurement may provide an assessment of the values of the 
(subjective) probabilities of a given person, for a class of events. It is of consid- 
erable interest that the same scheme was suggested in 1944 by von Neumann and 
Morgenstern (1944) as a tool for measuring utilities. They assumed that probabili- 
ties are known (i.e., the person whose utility is being assessed knows the objective 
probabilities of events, and his subjective and objective probabilities coincide). If a 
person is now indifferent between the lottery as above, and the sure option of receiv- 
ing an object, say q, then the utility u(q) of object q must equal the expected value of 
the lottery, which is 100P(A). This allows one to measure utilities on the scale that 
has a zero set on nothing (status quo) and “unit” as the utility of $100. The scheme 
of von Neumann and Morgenstern was later improved by some authors, culminating 
with the theorem of Blackwell and Girshick (1954). 

Still the disadvantages of both approaches were due to the fact that to determine 
utilities, one needed to assume knowledge of probabilities by the subject, while con- 
versely, to determine subjective probabilities, one needed to assume knowledge of 
utilities. The discovery that one can determine both utilities and subjective prob- 
abilities of the same person is due to Savage (1954). We present here the basic 
idea of the experiment rather than formal axioms (to avoid obscuring the issue by 
technicalities). 

Let A ,  B ,  C , .  . . denote events, and let a ,  b, c, . . . denote some objects, whose 
probabilitiesP(A),P(B), . . .andutilitiesu(a),u(b), . . .aretobedetermined(keep 
in mind that both P and u refer to a particular person X, the subject of the experi- 
ment). We now accept the main postulate of the theory, that of the two lotteries, X 
will prefer the one that has higher SEW. 

Suppose that we find an event A with subjective probability 1/2, so that P ( A )  = 
P ( A “ )  = 1/2.  If X prefers lottery a,Ab to lottery cAd, then 

u(a)P(A)  + u(b)P(AC) > u ( c ) P ( A )  + u(d)P(A“), 

which means that 
.(a) - .(c) > ~ ( d )  - u(b). 

A number of experiments on selected objects will allow us to estimate the utilities, 
potentially with an arbitrary accuracy (taking two particular objects as zero and a 



44 PROBABILITY 

unit of the utility scale). In turn, if we know the utilities, we can determine the 
subjective probability of any event B. That is, if X is indifferent between lotteries 
uBb and cBd,  we have 

u(a )P(B)  + u(b)(l - P ( B ) )  = u(c)P(B)  +u(d)( l  - P ( B ) ) ,  

which gives 

44 - 4 b )  P ( B )  = 
U ( U )  - u(b) + ~ ( d )  - u ( c ) '  

The only problem lies in finding an event A with subjective probability 1/2. Empiri- 
cally, an event A has subjective probability 1/2 if, for any objects a and b, the person 
is indifferent between lotteries aAb and bAa. Such an event was found experimen- 
tally (Davidson et al., 1957). It is related to a toss of a die with three of the faces 
marked with the nonsense combination ZO J ,  and the other three with the nonsense 
combination Z E  J (these combinations evoked the least number of associations). 

Let us remark at this point that the system of Savage involves determining first 
an event with probability 1/2, then the utilities, and then the subjective probabili- 
ties. Luce and Krantz (1971) suggested an axiom system (leading to an appropriate 
scheme) that allows simultaneous determination of utilities and probabilities. The 
reader interested in these topics is referred to the monograph by Krantz et al. (197 1). 

A natural question arises: Are the three axioms of probability theory satisfied 
here (at least in their finite versions, without countable additivity)? On the one hand, 
this is the empirical question: The probabilities of various events can be determined 
numerically (for a given person), and then used to check whether the axioms hold. 
On the other hand, a superficial glance could lead one to conclude that there is no 
reason why person X's probabilities should obey any axioms: After all, subjective 
probabilities that do not satisfy probability axioms are not logically inconsistent. 

However, there is a reason why a person's subjective probabilities should satisfy 
the axioms. For any axiom violated by the subjective probability of X (and X accepts 
the principle of SEU),  one could design a bet that appears favorable to X (hence a 
bet that he will accept), but yet the bet is such that X is sure to lose. 

Indeed, suppose first that the probability of some event A is negative. Consider 
the bet (lottery) (-c)A(-b), (i.e., a lottery in which X pays the sum c if A occurs, 
and pays the sum b if A does not occur). We have here (identifying, for simplicity, 
the amounts of money with their utilities) 

SEU = -cP(A) - bP(AC), 

so that SEU is positive for a large enough c if P ( A )  < 0. Thus, following the 
principle of maximizing SEU, X should accept this lottery over the status quo (no 
bet) but he will lose in any case-the amount c or the amount b. 

Suppose now that P ( S )  < 1. Consider the bet (-c)Sb whose SEU is -cP(S)  + 
bP(SC).  Since P(Sc )  > 0, making b large enough, the bet appears favorable to X, 
yet he is bound to lose the amount c on every trial. 

If P ( S )  > 1 or if the additivity axiom is not satisfied, one can also design bets 
that will formally be favorable for X (SEU will be positive) but that X will be bound 
to lose, Determination of these bets is left to the reader. 
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PROBLEMS 

2.7.1 Peter and Tom attend the same college. One day Tom buys a ticket for a rock 
concert. Tickets are already sold out and are in great demand. Peter, who does not 
have a ticket, agrees to play the following game with Tom. For a fee of $25, Peter 
will toss a coin three times, and receive the ticket if all tosses show up heads. Other- 
wise, for an additional fee of $50, Peter will toss a coin two more times and receive 
the ticket if both tosses show up heads. If not, then for an additional fee of $100, 
Peter will toss a coin and receive the ticket if the toss shows up heads. Otherwise, 
all money will be given to Tom, and he also will keep the ticket. Assuming that 
the coin is fair, subjective probabilities of various outcomes coincide with objective 
probabilities, and that Peter’s utility is linear in money, show that Peter’s utility of 
the ticket exceeds $200. 

2.7.2 Refer to Problem 2.7.1. Tom would agree on the following conditions: Peter 
pays him $50 and tosses a coin, winning the ticket if it comes up heads, and other- 
wise losing $50. In such situation, should they both agree that Peter buys the ticket 
from Tom for S 150? 

2.7.3 Suppose that Tom is confronted with the choice between two options: 01, 

which is simply to receive $1,000,000, or 0 2 ,  which is to receive $5,000,000 with 
probability 0.1, receive $1,000,000 with probability 0.89, and receive $0 with the 
remaining probability 0.01, After some deliberation Tom decides that 01 is better, 
mostly because the outcome $0, unlikely as it may be, is very unattractive. 

Tom is also confronted with a choice between two other options, O3 and 04. In 
0 3  he would receive $5,000,000 with probability 0.1 and $0 with probability 0.9. In 
O4 he would receive $1,000,000 with probability 0.1 1 and $0 with probability0.89. 
Here Tom prefers 0 3 :  the “unattractive” option $0 has about the same probability in 
both O3 and 04, while the positive outcome, although slightly less probable under 
0 3 ,  is much more desirable in O3 that in 04. 

Show that these preferences of Tom are not compatible with the assumption that 
he has utilities A ,  B,  and C of$5,000,000, $1,000,000 and $0, such that A > B > C 
(This is known as Allais’ paradox; Allais, 1953). 
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CHAPTER 3 

COUNTING 

3.1 INTRODUCTION 

In the classical interpretation of probability all outcomes of the experiment are 
equally likely, and the probability of an event is obtained as the relative frequency 
of outcomes that favor this event (imply its occurrence). Simple enumeration of el- 
ements in these sets is often not feasible, and therefore practical implementation of 
this principle requires developing techniques for counting elements of certain sets 
(e.g., sets of all possible outcomes of an experiment). The branch of mathematics 
dealing with such methods is called combinatorics, or combinatorial analysis. In 
this chapter we introduce some combinatorial principles and illustrate their use in 
computing probabilities. 

While we give here more than the typical material covered by textbooks on prob- 
ability and statistics, a much more complete presentation of combinatorial methods 
and their applications to probability can be found in Feller (1968), a textbook thus 
far unsurpassed in its depth, elegance, and diversity of applications. 

3.2 PRODUCT SETS, ORDERINGS, AND PERMUTATIONS 

Consider two operations of some sort, that can be performed one after another. Leav- 
ing the notion of “operation” vague at the moment, we can make two assumptions: 

47 
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1. The first operation can be performed in k l  different ways. 
2. For each of the ways of performing the first operation, the second operation can 
be performed in k2 ways. 

We have the following theorem: 

Theorem 3.2.1 Under assumptions 1 and 2, a two-step procedure consisting of a 
first operation followed by the second operation can be performed in k l  k2 distinct 
ways. 

ProoJ: Observe that each way of performing the two operations can be repre- 
sented as a pair (a i ,  b i j )  with i = 1, . . . , kl and j = 1, . . . , k2, where ai is the ith 
way of performing the first operation and bij is the j th way of performing the sec- 
ond operation if the first operation was performed in ith way. All such pairs can be 

0 arranged in a rectangular array with k l  rows and k2 columns. 

We will now show some applications of Theorem 3.2.1. 

EXAMPLE 3.1 Cartesian Products 

One of the most common operations on sets is the Cartesian product. If A 
and B are two sets, their Cartesian product A x B is defined as the set of all 
ordered pairs (a, b )  where a E A and b E B. For instance, if A consists of 
elements z and y while B consists of the digits 1, 2, and 3, then the Cartesian 
product A x B = { z, y} x { 1 , 2 , 3 }  contains the six pairs 

{(x, I), (xl 2) ,  ( x , 3 ) ,  (Y, I ) ,  (Y, 21, (Y, 3)) .  (3.1) 

Observe that the Cartesian product A x B is an operation quite distinct from 
the set-theoretical product A n B. For instance, in the above case, A f l  B = 8, 
since A and B have no elements in common. Also, while A n B = B n A, 
for Cartesian products A x B # B x A in general. Indeed, B x A contains, 
for example, the pair (1, z), which does not belong to the set (3.1). Observe 
also that we may have A = B. The idempotence law A n A = A does not 
hold for Cartesian products. Since the set A x A consists ofpairs (z, y) with 
z, y E A, elements of a different nature than elements of A, then A x A # A. 
In cases when there is no danger of confusion, we will use the term product 
for Cartesian product. 

Identifying now the first and second operation with “choice of an element from 
set A” and “choice of an element from set B,” we obtain the following consequence 
of Theorem 3.2.1 : 

Theorem 3.2.2 (Multiplication Rule) If A1 and A2 are finite sets consisting, re- 
spectively, of k l  and Ic2 elements, then the Cartesianproduct Al x A2 consists of 
kl  kz elements. 

Theorem 3.2.2 allows for an immediate generalization. Namely, we can define 
Cartesian products of more than two sets. Thus, if A1, . . . , A, are some sets, then 
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their Cartesian product A1 x A2 x . . . x A ,  is the set of all n-tuples ( a l ,  a2, . . . , a,) 
with a, E Ai ,  i = 1, . . . , n. By easy induction, Theorem 3.2.2 can now be general- 
ized as follows: 

Theorem 3.2.3 If A1, . . . , A ,  are finite, with Ai consisting of ki elements (i = 
1 ,  . . . , n), then A1 x ’ , . x A ,  contains k1 . . k ,  elements. 

EXAMPLE3.2 

The total number of possible initials consisting of three letters (name, middle 
name, family name) is 263. Each three-letter initial is an element of the set 
A x A x A ,  where A is the alphabet, so kl = k2 = k3 = 26. The total number 
of possible two- or three- letter initials is the number of the elements in the 
union ( A  x A )  U ( A  x A x A ) ,  equal to 262 + 263 = 18,252. 

EXAMPLE 3.3 License Plates 

Most states now use the system where a license plate has six symbols. One 
type (call it A) of such licenses has a prefix of three letters followed by a 
three-digit number (e.g., CQX 786) .  Other states use system (call it B) with a 
two-letter prefix, followed by a four-digit number (e.g., KN 7207). Still other 
states use system C, a digit and two letters, followed by a three digit number 
(e.g., 2CP 412). In addition the states try to augment their revenues by allow- 
ing (for a special fee) “personalized” plates CATHY3, MYCAR, and the like. 
Disregarding the personalized plates, which type of the license plate system 
can register most cars? 

SOLUTION. Let A and D stand for the alphabet and for the set of 10 dig- 
its: 0,1, . . . ,9.  Then a license plate from system A can be regarded as an 
element of A x A x A x D x D x D, while a license plate in system B is an 
element of the set A x A x D x D x D x D. The numbers of elements in these 
Cartesian products are 263 x lo3 and 262 x lo4. The ratio is 26/10 = 2.6, 
so in the state using an A system 2.6 times more cars can be registered than in 
the state with a B system. 

Regarding system C, the answer depends whether or not 0 is allowed in the 
prefix. If the plate such as OHY 314 is not allowed (e.g., because the digit 0 
can be confhed with the letter 0), then the number of possible license plates 
is only 9 x 26 x 26 x 10 x 10 x 10, which is 10% less than the number of 
plates possible in states using system B. If 0 is allowed as the first character, 
then the numbers of plates of types B and C are the same. 

In Examples 3.1 through 3.3 the set of ways of performing the second operations 
is the same regardless of which option was selected for the first operation. However, 
Theorem 3.2.1 remains true if the sets of ways of performing the second operation 
depend on the choice of the first operation. In particular, we can think of the first 
and second operation as two consecutive choices of an element from the same set, 
without returning the chosen elements. If the set, say A ,  has n elements, then the 
first operation (choice of an element) can be performed in n ways. If the chosen 
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element is not returned, then the second choice can be performed in n - 1 ways 
only, and we have the following: 

Corollary 3.2.4 The number of orderedpairs (5 ,  y) with x # y that can be formed 
out of n distinct elements of a set of size n is n(n - 1 ) .  

Instead of thinking in terms of operations, we can still use Cartesian products here. 
Thus A x A has n2 elements by Theorem 3.2.3, of which n are of the form (z, z). 
The number of pairs with elements distinct is n2 - n = n(n - 1). 

We can generalize these considerations as follows. 

Definition 3.2.1 An ordered sequence of k elements selected without replacement 
from a set of n distinct elements (n 2 k )  is called a permutation of k out of n 
elements. 0 

Theorem 3.2.5 The number ofpermutations of k out of n, denoted P,“, equals 

P: = n(n - 1) ’ .  . (n  - k + 1). 

Proofi The argument here repeatedly uses the “operation” principle: the first 
choice can be made in n ways, the second in n - 1 ways, the kth in n - (k - 1) = 
n - k + 1 ways. 0 

(3.2) 

If k = n, consecutive choices form an ordering of the entire set of size n. We 
obtain the following: 

Corollary 3.2.6 The set ofn elements can be ordered in 

P,” = n(n - 1) . . . 2  x 1 

distinct ways. 

The product (3.2) occurs often and has a special symbol: 

n! = 1 x 2 x . . .  x (n  - 1)n 

to be read ‘‘n factorial.” We have therefore 

n! 
k-- 

pn - (n  - k)! (3.3) 

For a reason that will become apparent later, we adopt the convention 

O! = 1. (3.4) 

EXAMPLE3.4 

The letters I, I, I, I, M, P, P, S, S, S, S are arranged at random. What is the 
probability that the arrangement will spell MISSISSIPPI? 
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SOLUTION. We can solve this problem treating the choices of consecutive 
letters as “operations.” The first operation must give the letter M; hence there 
is only one way of choosing it. The next letter (out of the remaining 10) must 
be an I, and it can be selected in 4 ways. Proceeding in this way, the sequence 
of consecutive 1 1 choices leading to the word MISSISSIPPI can be performed 
in 1 x 4 x 4 x 3 x 3 x 2 x 1 x 2 x 2 x 1 x 1 ways, which equals 4!4!2!1!. 
On the other hand, the total number of ways one can perform the operations of 
consecutively choosing letters from the set is ll!. Consequently, the required 
probability equals 

( 3 . 5 )  
4!4!2!1! 

p =  - 
11! ’ 

In this solution the letters are regarded as distinguishable, as if we had four 
letters S, labeled S1 , 5’2, S3, and S4, and similarly for the other letters. In this 
case, the numerator and denominator are, respectively, the number of ways 
one can order the set of distinguishable letters so as to form the word MIS- 
SISSIPPI and the total number of orderings. Alternatively, one can regard the 
identical letters as indistinguishable, and in this case we have only one way of 
ordering them so as to spell the required word, and a total of 11!/(4!4!2!1!) 
distinguishable ways of ordering these letters. Indeed, the denominator here 
represents the number of ways of permuting letters so as to leave the arrange- 
ment invariant. Now 

11! -l 

p=(m) , 

which is the same as ( 3 . 5 ) .  

W EXAMPLE 3.5 Birthday Problem 

The following problem has a long tradition and appears in most probability 
textbooks. If T randomly chosen persons attend a party, what is the probability 
p r  that none of them will have a birthday on the same day? 

SOLUTION. Here we make the following assumption: (1) all years have 365 
days (i.e., leap years are disregarded), ( 2 )  each day is equally likely to be a 
birthday of a person (i-e., births occur uniformly throughout the year), and ( 3 )  
no twins attend the party. To compute p,., we must find the number of all pos- 
sible ways in which birthdays can be allocated to T people, and the number of 
such allocations in which birthdays do not repeat. The first number is 365‘ by 
virtue of Theorem 3.2 .3 ,  while the second number is pi65 (assuming T 5 365; 
if T > 365, we must have at least one birthday repeating, so p ,  = 0). Thus for 
T 5 365 we have 

365 - T + 1 
365 

x . . .  x 
365 365 - 1 ‘365 - ~ 

365’ 365 365 Pr = - 

= (1-A) ( l - & ) . . . ( l - % )  
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As first approximation, neglecting all products which have denominators of 
order 3652 or higher, we can take 

(3.6) 
1 + 2 + . . . + ( r - l )  - ( r  - 1). - I - -  

365 730 ‘ 

p , = 3 1 -  

This approximation works quite well for small r .  To get a better approxima- 
tion, we can use the formula log(1 - z) =: -z so that 

It is interesting that for r = 23 a repeated birthday is about as likely as no 
repetition. The smallest r for which p ,  is less than 0.01 is 56. 

PROBLEMS 

3.2.1 A certain set contains n distinct elements. Find n if the number of: (i) All 
possible permutations of length 2 equals 90. (ii) Permutations of length 3 is 10 
times larger than the number of permutations of length 2. 

3.2.2 A skyscraper is 40 stories tall. Five people enter the elevator on the first floor. 
Assuming each person is equally likely to get off at any ofthe 39 floors 2 , 3 ,  . . . ,40 ,  
what is the probability that all people will get off at different floors? Find the exact 
value, and then derive and compute the approximations analogous to (3.6) and (3.7). 

3.2.3 A two letter code is to be formed by selecting (without replacement) the letters 
from a given word. Find the number of possible codes if the word is: (i) CHART. 
(ii) ALOHA. (iii) STREET. 

3.2.4 Determine the number of 0’s at the end of 16! and 27!. 

3.2.5 Seated at random in a row of n seats are n people, among them John and Mary. 
Find the probability that: (i) John sits next to Mary. (ii) John sits next to Mary on her 
right. (iii) John sits somewhere to the right of Mary. (iv) John and Mary sit exactly 
two seats apart. 

3.2.6 Seated at random at a round table with n seats are n people, among them John 
and Mary. (i) Answer questions (iHiv) of Problem 3.2.5. Anything peculiar about 
the answer to (iii)? (ii) Assume that n = 2k. Find the probability that John and 
Mary sit facing each other ( e g ,  numbers 1 and 7 on the clock). 

3.2.7 Five men and five women are to be seated in a row of ten chairs. Find the 
number of possible arrangements if: (i) The men are required to sit in alternating 
seats. (ii) No two men are to be seated next to each other. 



PRODUCT SETS, ORDERINGS. AN0 PERMUTATIONS 53 

3.2.8 12 girls and 17 boys go to a dance. (i) How many possible dancing pairs (boy- 
girl) may be formed? (ii) The dance floor can accommodate at most 1 1  pairs at a 
time. If each dance lasts 10 minutes and is followed by a 2 minute break, how much 
time, at least, will elapse before each boy will have danced with each girl at least 
once? (iii) Answer the same question as in (ii) if the dance floor can accommodate 
15 pairs at a time. 

3.2.9 Susan has five dresses, three skirts, four blouses, three pairs of shoes, and two 
hats. She always wears shoes, and either a dress or a blouse and a skirt. She may 
or may not wear a hat. (i) How many different combinations can she wear? (ii) 
Suppose Susan can afford buying either a dress or a hat (but not both). What should 
she buy to maximize the number of different combinations that she can wear? (iii) 
Suppose that Susan’s brown shoes do not match her pink or blue dress, and that the 
blue hat does not match her yellow blouse. How many matching combinations can 
she wear? 

3.2.10 A restaurant menu has five appetizers, three soups, 15 entrees, and three 
desserts. (i) Assuming you are going to order one item from each group, how many 
possible dinners can you order? (ii) Assume you come to the restaurant with a friend 
who is as hungry as you are. How many different orders for two full dinners can you 
place if your friend’s choice is not necessarily the same as yours? (iii) Answer the 
question in part (ii) under the constraint that you do not order the same entree and 
the same dessert as your friend (but the soup and/or appetizer may be the same). 

3.2.11 Express the product of odd integers 1 x 3 x . . x (272 + 1) using factorials. 
This product is sometimes denoted (2n + l)!!. [Hint: Start with an easier task of 
using factorials to express the product of even integers 2 x 4 x . . x (2n).] 

3.2.12 Let e, be the probability that exactly two people in a group of T have the same 
birthday, and let p ,  be the probability that everybody in the group has a different 
birthday. (i) Show that 

r ( r  - 1) 
e, = ~ 730 Pr-1.  

(ii) Use the multiplication rule (Theorem 3.2.2) to show that 

r ( ~  - 1) 
2 

365 x 364 x ’ ’ x (365 - T + 2) 
X 

365’ 
e, = - 

3.2.13 Find the number of three-digit integers (i.e., integers between 100 and 999) 
that have all digits distinct. How many of them are odd? 

Problems 3.2.14 through 3.2.20 concern the concept of voting power, as intro- 
duced by Shapley and Shubik (19541, Alhmgh this concept is not direcllyrelated to 
probability, it provides a good practice in combinatorial analysis. Consider a voting 
body (a committee, executive board of a company, the US Congress, etc.). Assume, 
for simplicity, that each member must vote “yes” or “no” (none abstaining). The 
voting rule specifies whether or not the issue passes, for any configuration of votes 
of the members (some members will have more than one vote, some will have veto 
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power, etc.). To define the voting power of various members of the voting body, 
consider a specific permutation of voting members, and imagine that they all cast a 
“yes” vote in the order specified by this permutation. There will then be a moment 
when the issue will pass, regardless of the votes of the remaining members. The last 
person casting his or her vote before this moment occurs is called a pivot. This way 
in each permutation of voters, exactly one member is a pivot, and the voting power 
of member z is defined as 

number of permutations in which z is a pivot 
number of all permutations 

.(x) = 

Take the example of a committee that consists of four people A, B, C, and D. A 
has two votes, and the others have one vote each. A simple majority (at least three 
votes) is needed to pass the issue. In this case the pivot is the person who (in a given 
permutation) casts the third vote. Thus A will be the pivot in all permutations in 
which he is in second or third place, such as BACD or DBAC. There are 12 such 
permutations, that is T ( A )  = 12/4! = 1/2. Nevertheless, B will be the pivot if he 
either appears on the third place in a permutation, provided that A appears in a later 
place (i.e., in fourth place), or if he appears in second place following A. There are 
four such permutations: CDBA, DCBA, ABCD, and ABDC, that is T ( B )  = 4/24 = 
1/6.  By symmetry, T(C) =.(D) = 1/6,  and we see that (in this case) having twice as 
many votes as the others gives three times as much power in making a decision. 

3.2.14 Find the power of A in a committee of n persons with A having two votes 
and every other member having one vote. Assume that simple majority is needed to 
carry the issue. 

3.2.15 Generalize the situationofProblem 3.2.14 assuming that A has k votes (other 
conditions being the same). What is the smallest k for which A is a dictator (i.e., 
every other member has zero power)? 

3.2.16 Determine the voting powers in a committee consisting of six persons, with 
A having three votes, B having two votes, all others having one vote, and again, a 
simple majority being required to pass the issue. 

3.2.17 (i) Determine the voting power in a committee of five persons, each having 
one vote, with a simple majority needed to pass the issue, under the additional con- 
dition that A has veto power (i.e., positive vote of A is necessary to pass the issue). 
(ii) Assume, in addition, that B has two votes. Is it better to have one vote and veto 
power or two votes without it? 

3.2.18 Find the voting powers in a voting body of 2 n  members, among them the 
chairperson. Everyone (including the chairperson) has one vote, and the majority 
carries the issue. In case of a tie, the chair’s vote prevails. 

3.2.19 The United Nations Security Council consists of five permanent members 
(China, France, the Russian Federation, the United Kingdom, and the United States) 
and 10 nonpermanent members. For an issue to  pass, it must receive a unanimous 
vote of all five permanent members (each has veto power) and of at least four nonper- 
manent members. Disregard the possibility of abstaining from a vote, and determine 
the voting power of each member of the UN Security Council. 
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3.2.20 Assume that in a corporation the number of votes of a shareholder equals the 
number of his shares. If a simple majority is required, determine the voting powers 
in a corporation in which there are three shareholders, A with 500,000 shares, B 
with 499,999 shares, and C with 1 share. 

3.3 BINOMIAL COEFFICIENTS 

The permutations considered in Section 3.2 concerned the ordered choices from 
a certain set. Often the order in which the elements are selected is not relevant, 
and we are interested only in the total number of possible choices, regardless of 
the particular order in which they are obtained. Such choices are referred to as 
combinations. We have the following definition. 

Definition 3.3.1 A subset of size k selected from a set of size n (regardless of the 
order in which this subset was selected) is called a combination of k out of n. 

Theorem 3.3.1 The number of combinations of k out of n, C,", is given by 

Proof: By Theorem 3.2.5 we have P," different permutations of k out of n elements. 
Each permutation determines the set of k elements selected and their order. Conse- 

0 quently, k! permutations lead to the same combination, which proves (3.9). 

The ratio P,/k! appears in various contexts, and it is convenient to have a special 
symbol for it. 

Definition 3.3.2 The ratio 

(3.10) 

is called a binomial coefficient and is denoted by (I), to be read as ''n choose k." 

P," 
k !  k! 

n(n - l)...(n - k +  1) _ -  - 

Using (3.3), we have 
n! (:) = k ! ( n -  k)! '  

(3.11) 

Observe, however, that (3.1 1) requires n to be an integer, whereas in definition (3.10) 
n can be any real number ( k  has to be an integer in both cases). We will make use of 
this distinction later; in this section we will tacitly assume that n is an integer with 
n 2 k. 

Observe also that the symbol (I) makes sense fork = 0 and k = n, in view of 
the convention that O! = 1. Thus we have 

(3.12) 

for all integers k, n such that n 2 k. For k = 0 we have C: = 1, since there is only 
one empty set, and C: = 1, since only one set of size n can be selected out of a set 
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of size n. Formula (3.12) gives correct values, namely 

(3 = (fi) = 
(3.13) 

We will proceed now to study some properties of the binomial coefficients (i). 
First. note that 

(3 = (n: k ) ’  
(3.14) 

which follows at once from the symmetry in formula (3.11). One can also prove 
(3.14) by observing that choosing a set of size k is equivalent to “leaving out” a set 
of size TL - k .  The number of different sets of size k chosen must be equal to the 
number of different sets of size n - k “chosen” by leaving them out. 

Theorem 3.3.2 (Pascal’s Triangle) The binomial coeficients satis& the relation 

We will now prove the following theorem: 

(3.15) 

Proof. The formula can be easily proved by “brute force,” expressing the left- 
hand side using (3.9) and reducing it algebraically to get the right-hand side. It is, 
however, much more instructive to use the following argument, relying on the princi- 
pal interpretation ofthe coefficients (E) as C,“. The right-hand side of (3.15) counts 
the number of sets of size k that can be chosen out of a set of size n + 1. Let us 
take one element of the latter set and label it somehow. We have then a set of n un- 
labeled and 1 labeled element. Each subset of size k is of one of the following two 
categories: (1) subsets that contain only Ic unlabeled elements, or (2) subsets that 
contain k - 1 unlabeled elements and one labeled element. Clearly, the two terms 
on the left-hand side of (3.15) count the numbers of subsets of the first category and 
of the second category. 0 

The name Pascal’s triangle is connected with a way of computing the coefficients 
(F), which are useful for small values of n. We build Pascal’s triangle starting with 
the top row (counted as the zeroth row), which consists of the single number 1 (see 
Figure 3.1). Then we obtain each number in the subsequent rows as a sum of two 
numbers directly above it (as marked with arrows in the fifth row). The consecutive 
numbers in the nth row are, reading from the left, the values of 

( ; ) 1 ( ; ) ;  (:)y 

so that, for example, (:) = 20, as marked on the triangle in Figure 3.1. 

Theorem 3.3.3 (Newton’s Binomial Formula) For any positive integer n and real 
x, y we have 

The name binomial coeficient is connected to the following formula: 

(. + y)” = 2 (;)&‘. 
k=O 

(3.16) 
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1 

1 1  

1 2 1  

1 3 3 1  

1 4 6 4 1  

5 1  '92° 
1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 . . . . . . . . .  
Figure 3.1 Pascal's triangle 

Proof. We will prove the theorem by induction. For n = 1 the right-hand side 
equals ( i ) x  + ( k ) y  = z + y. Assume now the assertion holds for some n, and 
multiply both sides of (3.16) by (x + y). Then 

Separating the term for k = 0 in the first sum, and the term for k = n + 1 in the last 
sum, we may write 

(x + y)n+' = z n + l  + 2 1 (;) + ( 1>3 . ( n + l ) - k y k  + yn+l 

k=1  

= (" ' ) z ( " + 1 ) - k y k ,  

k = 0  

where the last equality is due to Theorem 3.3.2. 

We will now prove the following theorem: 

Theorem 3.3.4 The binomial coeficients satis& the identities 

and 

(a) + (I) + . . ' +  (3 = 2 n  

(a) - (7) + (;) - .  . . f (3 = 0. 

0 

(3.17) 

(3.18) 
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Prooj: It suffices to consider the expansion (3.16) of (1 + 1)" and (1 - l)", 
leading directly to (3.17) and (3.18). Observe that (3.17) can be shownusing Ch as 
a number of distinct subsets of size k that can be chosen out of a set of n elements. 
The left-hand side of (3.17) equals the total number of all subsets that can be chosen 
out of a set of size n, including the empty subset and the whole set. The number of all 
subsets can also be computed differently: we may visualize the process of forming 
a subset as a process of deciding about each of the elements of the set whether or 
not to include it in the subset being formed. Each decision here can be made in two 
ways, and there are n decisions altogether. So the total number of distinct ways of 

0 making the string of n decisions is 2" by Theorem 3.2.3. 
We also have the following theorem: 

Theorem 3.3.5 For every n = 1 , 2 , .  . . and every k = 0 , 1 , .  . . , n the binomial 
coeficients satisjj the relation 

ProoJ: Consider the product (1 + x)"(l + 2)" = (1 + z ) ~ " .  Expanding the 
right-hand side, we obtain 

while the left-hand side equals 

(3.20) 

(3.21) 

For k 5 n, comparison ofthe coefficients of x k  in (3.20) and (3.21) gives (3.19). 0 

As a consequence of (3.19) we obtain a corollary to the theorem. 

Corollarv 3.3.6 

j=O 2 (:)2 = (?) 
ProoJ: Take k = n in (3.19) and use the fact that 

( n l  i) = (:) 0 

Below we present some examples of the use of binomial coefficient in solving 
various probability problems, some with a long history. 

EXAMPLE3.6 

In probability theory one often considers a choice without replacement from 
a finite set containing two categories of objects. If n balls are to be selected 
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from an urn containing r red and b blue balls, one might want to know the 
probability that there will be exactly k red balls chosen. 

SOLUTION. We apply here the “classical” definition of probability. The 
choice of n objects without replacement is the same as choosing a subset of 
n objects from the set of total of T + b objects. This can be done in (‘Lb) 
different ways. Since we must have k red balls, this choice can be made in (L) 
ways. Similarly, n - k blue balls can be selected in ways. Clearly, each 

choice of k red balls can be combined with each of the ( n b k )  choices of blue 
balls so that, by Theorem 3.2.2, the total number of choices is the product 

Consequently the probability in question is 

(‘I( ) 
(‘Lb) 

P(exactly k red balls) = E. (3 .22 )  

The next example shows an interesting application of formula (3 .22 ) .  

EXAMPLE3.7 

Consider the problem of estimating the number of fish in a lake (the method 
described below is also used to estimate the sizes of bird or wildlife popula- 
tions). The lake contains an unknown number N of fish. To estimate N, we 
first catch c fish, label them, and release them back into the lake. We assume 
here that labeling does not harm fish in any way, that the labeled fish mix with 
unlabeled ones in a random manner, and that N remains constant (in practice, 
these assumptions may be debatable). We now catch k fish, and observe the 
number, say 2,  of labeled ones among them. The values c and k are, at least 
partially, under the control of the experimenter. The unknown parameter is N, 
while 5 is the value occuring at random, and providing the key to estimating 
N. Let us compute the probability PN = PN(z) of observing 2 labeled fish 
in the second catch if there are N fish in the lake. We may interpret fish as 
balls in an urn, with labeled and unlabeled fish taking on the roles of red and 
blue balls. Formula (3 .22 )  gives 

(3 .23)  

To estimate N, we can use the principle of maximum likelihood, to be explored 
in detail in Chapter 12. At present, it suffices to say that this principle suggests 
using as N, an estimator of N ,  the value of N that maximizes (3 .23) .  Let 
us call this value fi. It depends on the observed value 5 and hence is itself 
random. Thus is defined by the condition 

Pfi 2 PN for all N 
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and our objective is to find the maximizer of PN. Since N is a discrete vari- 
able, we cannot use methods of finding a maximum based on derivatives. In- 
stead, the method that works in this case is based on the observation that if the 
function PN has a maximum (possibly local) at N' ,  then PN. /PN.-l > 1 
and pN*+l /PN.  < 1. If at two neighboring arguments the values are equal, 
the ratio equals 1. Consequently, we should study the ratio PNIPN-1  and find 
all arguments at which this ratio crosses the threshold 1. After some reduction 
we have 

(A' - c ) ( N  - k )  
N ( N  - c - k + x ) '  P N I P N - 1  = 

The above ratio always exceeds 1 if x = 0, so in this case the maximum is not 
attained. Assume now that x > 0. The inequality 

P N I P N - 1  2. 1 

is equivalent to 
kc  

N 5 - 3  
X 

(3.24) 

with the equality occuring if and only if P N I P N - 1  = 1. Thus, the maximum 
is attained at5 

N =  [;I, 
and also at kc /x  - 1 if the latter value is an integer. Let us observe that the 
result above is consistent with common intuition: The proportion of labeled 
fish in the whole lake is c / N ,  and it should be close to the proportion x / k  of 
labeled fish in the second catch. This gives the approximate equation c /N  zz 
x / k ,  with the solution N zz kc/x .  

EXAMPLE3.8 

To supplement their revenues, many states are sponsoring number games, or 
lotteries. The details vary slightly from state to state, but generally, a player 
who buys a lottery ticket chooses several numbers from a specified set ofnum- 
bers. We will carry the calculations for the choice of 6 out of 50 numbers 
1 , 2 ,  . . . , 50, which is quite typical. After the sales of tickets close, six win- 
ning numbers are chosen at random from the set 1 , 2 ,  . . . ,50. All those (if 
any) who chose six winning numbers share the Big Prize; if there are no such 
winners, the Big Prize is added to the next week's Big Prize. Those who have 
five winning numbers share a smaller prize, and so on. Let P ( z )  be the proba- 
bility that a player has exactly x winning numbers. We will compute P ( x )  for 
x = 6,5,4, and 3. The calculations would be the same if the winning num- 
bers were chosen in advance but remained secret to the players. We can now 
represent the situation in a familiar scheme of an urn with 6 winning numbers 
and 44 losing numbers, and the choice of 6 numbers from the urn (without re- 
placement). This is the same problem as that of labeled fish. The total number 

'The integerpart of a,  [a] ,  is the largest integer not exceeding a (13.211 = 3, [-1.711 = -2, etc.) 



BINOMIAL COEFFICIENTS 61 

of choices that can be made is ( y ) ,  while ( z )  (,“_“,) is the number of choices 
with exactly x winning numbers. Thus, 

For x = 6 we have 

= 6.29 x 
1 

15,890,700 
- - 1 6! 

P (6 )  = - = 
( y )  50 x 49 x 48 x 47 x 46 x 45 

Similarly P(5)  = 1.66 x P(4) = 8.93 x lov4  and P ( 3 )  = 0.016669. 
Thus the chances of winning a share in the Big Prize are about one in 16 

million. It would therefore appear that there should be, on average, one big 
winner in every 16 million tickets sold. The weekly numbers of tickets sold 
are well known, and it turns out that the weekly numbers of winners (of the 
Big Prize) vary much more than one would expect. For example, in weeks 
where the number of tickets sold is about 16 million, one could expect no 
winner, one winner, or two winners; three winners is unlikely. In reality, it is 
not at all uncommon to have five or more winning tickets in a week with 16 
million tickets sold. These observations made some people suspicious about 
the honesty of the process of drawing the numbers, to the extent that there have 
been attempts to bring suit against the lottery (e.g., accusing the organizers of 
biasing the lottery balls with certain numbers so as to decrease their chance of 
being selected, thus favoring some other numbers). 

Actually, the big variability of weekly numbers ofwinners is to be expected 
if one realizes that these numbers depend on two chance processes: the choice 
of winning numbers from the urn (which may be, and probably is, quite fair) 
and the choice of numbers by the players. This choice is definitely not uni- 
form. It favors certain combinations, which seem more “random” to the naive 
persons than other choices. For instance, the combination 1 , 2 , 3 , 4 , 5 , 6  ap- 
pears less likely than (say) 5,7,19,20,31, and 45. As a consequence some 
combinations are selected more often by the players than others. Each com- 
bination has the same chance of being the winning one, but some may have 
higher numbers of winners associated with them. This point can be illustrated 
by the following analogy: Imagine that each week a first name (Mary, Susan, 
George, etc.) is chosen at random from the set of all names used, and all per- 
sons in the state with the selected name share the prize. The chances of being 
chosen are the same for John as for Sebastian, as they depend on the process 
of sampling names of winners. But if the name Sebastian is chosen, each Se- 
bastian will share the prize with many fewer other winners than if the name 
John were selected. Here the numbers of winners to share the prize depend on 
another process, namely that of parents selecting names for their children. 

EXAMPLE3.9 

We have k urns, labeled 1, . . . , k, and n identical (indistinguishable) balls. In 
how many ways can these balls be distributed in k urns? 
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SOLUTION. There are no restrictions here on the number of balls in an urn, 
or the number of empty urns. To get the answer, let us identify each possible 
allocation with a string of k + 1 bars and n circles, of the form 

I 00 I /  0 0 00 1 0 I . .  

with the only condition being that the string should start and end with a bar. 
The spaces between bars represent urns. Thus in the arrangement above the 
first urn contains 2 balls, the second none, the third 4 balls, and so on. Clearly, 
the number of distinct arrangements equals ( n+:-l)-the number of distinct 
arrangements of k - 1 bars and n circles. Indeed, we have a string of n + 
k - 1 symbols (not counting the two extreme bars), and each arrangement is 
obtained by specifying n places for the symbol 0. 

Example 3.9 shows that the binomial coefficient can be interpreted in two ways. 
On the one hand, ( “ ; f b )  is the number C:+, of distinct sets of size u that can be 
chosen out of a set of size a + b. On the other hand, (“ib) is also the number of 
distinct strings of a indistinguishable elements of one kind and b indistinguishable 
elements of another kind. To see this, it suffices to think of the string as being 
determined by the choice of “ u  out of total of a + b” slots into which we assign 
elements of the first kind. 

EXAMPLE 3.10 Matching Problem 

A secretary typed n letters and addressed n envelopes. For some reason the 
letters were put into envelopes at random. What is the probability of at least 
one match, that is, of at least one letter being put into the correct envelope? 

SOLUTION. This problem appears in almost every textbook on probability 
under various formulations (e.g., of guests receiving their hats at random). 
One could expect the probability of at least one match to vary greatly with n. 
However, the contrary is true: this probability is almost independent of n. Let 
A* be the event that ith letter is placed in the correct envelope. Using formula 
(2.7), we have 

P(a t  least one Ai) = P(A1 u ’ .  . u A,) 

= P ( A i )  - P(Ai n A j )  
i < j  

+ C P ( A ~  n A~ n Ak) - . . . * P ( A ~  n . .  . n A*) .  
i < j < k  

By symmetry, the probability of each intersection depends only on the number 
of events in the intersection,6 so we let p ,  denote the probability of the inter- 
section of r events, p ,  = P ( A i ,  n Ai ,  n . ’ . n A i F ) .  Clearly, the numbers of 

6This property, called exchangeabilityof events, will be discussed in more detail in Section 4.6. 
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terms in the consecutive sums are 

and 

P(a t leas toneAi)=  ( ‘ 1 ) ~ ~ -  ( i ) p , +  ( : ) p 3 - . . . &  ( i ) p n .  (3.25) 

To evaluate p,, we can argue as follows: Assume that the envelopes are or- 
dered in some way. The total number of ways one can order n letters is n!. If 
specific r events, say A i l ,  . . . , Ai, ,  are to occur (perhaps in conjunction with 
other events), then the letters number i l l  . . . , i, must be at their appropriate 
places in the ordering (to match their envelopes). The remaining n - r letters 
can appear in any of the (n  - r)! orders. Thus 

(n - r)! 
Pr = 7’ 

Consequently, the rth term in the sum (3.25) equals (up to the sign) 

n ( n - r ) !  1 
( r ) - i - = -  r!  ’ 

and we obtain 
1 1 1  1 

P(at least one match) = - - - + - - . . . f - 
l! 2! 3! n! 

Since 
O0 (-Qk C - 

k=O 
k !  ’ 

we have 
1 

P(at least one match) = 1 - -, 
e 

with the accuracy increasing as R co. The approximation is actually quite 
good for small n. The limiting value is 0.63212056, while the exact values of 
the probability zn of at least one match for selected values of n are: 

7T1 = 1 
1 
2 

7T2 = 1 - - = 0.5 

1 1  
7 ~ 3  = 1 - - + - = 0.6666667 

2 6  
1 1 1  

2 6 24 
T4 = 1 - - +  - - - =0.625 

1 1 1  1 
2 6 24 120 
1 1 1  1 1  
2 6 24 120 720 

~5 = 1 - - + - - - + - = 0.6333333 

7Tf3 = 1 - - f - - - + - - - = 0.6319444 

1 1 1 1  1 1 
2 6 24 120 720 5040 7 ~ 7  = 1 - - + - - - + - - - + - = 0.6321429 

= 0.6321181. 
1 1 1  1 1  1 
2 6 24 120 720 5040 40320 

7T8 = I - - + - - - + - - - + - - -  
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C(k)  t 

-1 L 

Figure 3.2 Process of counting votes 

1 EXAMPLE 3.11 Ballot Problem 

Suppose that in an election, candidate A receives a votes while candidate B 
receives b votes, where a > b. Assuming that votes are counted in random 
order, what is the probability that during the whole process of counting A will 
be ahead of B? 

SOLUTION. Note that other votes, if any, do not matter, and we may assume 
that a + b is the total number of votes. The process of counting votes is deter- 
mined by the arrangement of the votes, that is, the arrangement of a symbols 
A, and b symbols B. Clearly, such an arrangement is uniquely determined by 
specifying the locations of the A’s (or, equivalently, B’s). It might be helpfil 
to use a graphical representation: define the function C ( k )  as the net count for 
candidate A after inspection of k votes. Thus, if in the first k votes we had T 

votes for A and k - T votes for B, then C ( k )  = r - ( k  - Cr) = 27- - k .  We 
can then represent the process of counting as a polygonal line that starts at the 
origin and has vertices (k, C ( k ) ) ,  k = 1,. . . ,a + b (see Figure 3.2). 

In Figure 3.2 we have the beginning of counting, when the first five votes 
inspected are AABAB. The problem can now be formulated as finding the 
probability that the counting function C(z )  lies above the z-axis for all z = 
1 , 2 ,  . . . , a + b. Observe that the first vote counted must be for A (as in Figure 
3.2); this occurs with probability a/(. + b).  

The remaining votes will give a polygonal line leading from (1 , 1) to ( a  + 
b, a - b) ,  and we must find the number of such lines that will never touch 
or cross the z-axis. The number of such lines is equal to the total number 
of lines from (1 , 1) to ( a  + b, a - b) minus the number of lines from (1,l) 
to (a + b, a - b )  which touch or cross the z-axis. The total number of lines 
leading from (1, 1) to (a + b, a - b )  is (“L”;’), since each such line has a - 1 
steps “up” and b steps “down,” which can be ordered in any manner. Thus it 
remains to count the number of lines from (1,l) to ( a  + b ,  a - b )  that touch or 
cross the x-axis. Let V be the set of all such lines. Each line in V must touch 
the z-axis for the first time at some point, say t (see Figure 3.3). If we reflect 
the part of this line that lies to the left of t with respect to z-axis, we obtain a 
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Figure 3.3 Reflection principle 

line leading from (1, -1) to ( a  + b, a - b). Moreover, different lines in V will 
correspond to different lines leading from (1, -1) to ( a  + b, a - b) ,  and each 
line in the latter set will be obtained from some line in V. This means that the 
set V has the same number of lines as the set of lines leading from (1, -1) to 
( a  + b, a - b).  But the latter set contains lines, since each such line 
must have a steps “up” and b - 1 steps “down.” Consequently, the required 
probability equals 

a+b-1 a+b-1 
p = -  a ( a - 1 ) - (  a ) - a - b  -- 

a + b  (“:by l )  a + b ‘  

EXAMPLE3.12 Poker 

We now consider the probabilities of several poker hands (some students will 
probably say that finally the book gives some useful information). 

In poker, five cards are dealt to a player from a standard deck of 52 cards. 
The number of possible hands is therefore ( y )  = 2,598,960. The lowest 
type of hand is that containing one pair (two cards of the same denomination, 
plus three unmatched cards). To find the number of possible hands containing 
one pair, one can think in terms of consecutive choices leading to such hand: 

(a) The denomination of the cards in a pair can be chosen in (’:) ways. 

(b) The suits of the pair can be chosen in (i) ways. 

(c) The choice of denominations of the remaining three cards can be made in ( y )  

(d) The suits of those three cards may be chosen in 43 ways. Altogether, combining 

ways. 

(aHd) ,  we have 
13 4 12 43 

P(one pair) = ( 1  ) ( 2 )  (3 1 
(3 
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The next kind of hand is the one containing two pairs. Here the argument is as 
follows: 

(a) The denominations of the two pairs can be selected in ( y )  ways. 

(b) The suits of cards in these two pairs can be selected in (4) x (4) ways. 

(c) The remaining card may be chosen in (':) x 4 ways (two denominations are 
eliminated). 

Combining (a)-(c), we have 

Finally, we calculate the probability of a straight (probabilities of remaining 
hands are left as exercise). A straight is defined as a hand containing five cards 
in consecutive denominations but not ofthe same suit (e.g., 9, 10, jack, queen, 
and king). An ace can appear at either end, so we could have a straight of the 
form ace, 2, 3,4, 5, as well as 10, jack, queen, king, ace. 

The number ofhands with a straight can be computed as follows: Each such 
hand is uniquely determined by the lowest denomination (ace, 2 , 3 ,  . . . , 10) in 
10 ways. Then, the suits of five cards are chosen in 45 - 4 ways: 45 is the total 
number of choices of suits, and we subtract 4 selections in which all cards are 
of the same suit. Thus 

10(45 - 4) 
P(straight) = 

(3 . 
PROBLEMS 

3.3.1 Whichislarger: (i)('::') or ('g:'). (ii) (y!:) or (y!:). (iii) ('g:') or (';:I). 

3.3.2 A committee of size 12 is to be formed out of the US Senate. Find the proba- 
bility that: (i) Both senators from Ohio will be represented. (ii) Exactly one senator 
from Ohio will be represented. (iii) No senator from Ohio will be represented. 

3.3.3 A committee of size k is to be formed out of the US Senate. How large must 
k be in order for the probability of at least one senator from Ohio being included to 
exceed the probability of no senator from Ohio being included? 

3.3.4 What is the probability that a randomly chosen committee of 50 senators con- 
tains one senator from each of the 50 states? 

3.3.5 How many ways can one order the deck of 52 cards so that all four kings are 
next to each other? 

3.3.6 Peter lives at the corner of 2nd Avenue and 72nd Street. His office is in the 
building at a corner of 7th Avenue and 78th Street. The streets and avenues in the city 
form a perpendicular grid, with no streets or passages in the middle of the blocks. 
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Peter walks to work along either street or avenue, always in the direction that gets 
him closer to his office. He always returns home by subway, so he walks across town 
only once a day. (i) How many different paths can Peter choose to go to work? (ii) 
If Peter makes a list of all possible paths and chooses one of them randomly every 
morning, how likely it is that he will not walk 4th Avenue between 75th and 76th 
streets during the next five working days? 

3.3.7 (Poker Hands) Find the probability of each of the following hands: 
(i) Royal flush (ace, king, queen, jack, and 10 in one suit), 
(ii) Straight flush (five cards of one suit in a sequence, but not a royal flush), 
(iii) Flush (five cards in one suit, but not a straight flush nor a royal flush), 
(iv) Four-of-a-kind (four cards of the same denomination), 
(v) Full house (one pair and one triple of the same denomination), 
(vi) Three-of-a-kind (three cards of the same denomination plus two cards unmatched). 

3.3.8 Find the probability that a poker hand will contain two pairs, one red and the 
other black. 

3.3.9 A poker player has 3 0 , 7 0 ,  84, 9 0 ,  Qi. He discards 3 0  and Qa and obtains 
2 cards.' (i) What is the probability that he will have a straight? (ii) Answer the same 
question if Q 1  is replaced by 5 1  (i.e., he discards 30 and 51). 
3.3.10 A poker player has 3 0 , 7 ~ , 8 0 , 9 0 ,  Q& She discards 3 0  and QC and 
obtains 2 cards. What is the probability that she will have: (i) A straight flush. (ii) 
A flush, but not a straight flush. (iii) A straight, but not a straight flush. 

3.3.11 A poker player has three-of-a-kind. He discards the two unmatched cards, 
and obtains two new cards. Find the probability that he will have: (i) Three-of-a- 
kind. (ii) Four-of-a-kind. (iii) A full house. 

3.3.12 (i) If n balls are put at random into n boxes, what is the probability of exactly 
one box remaining empty? (ii) Suppose that we distribute n balls in k boxes (n  2 k ) ,  
labeled 1, . . . , k .  Show that the number of different ways this can be done, so that 
there is at least one ball in each box, is (:I;). 
3.3.13 Suppose that n balls are distributed in k boxes (n  2 k ) .  Find the probability 
that there are no empty boxes. [Hint: Let A(n,  k )  be the number of allocations of 
balls such that no box is empty. Show that A(n ,  k )  = ( i ) A ( n  - i, k - 1). 
Use boundary condition A(n, 1) = 1 to find A(n, k ) . ]  

3.3.14 Compute probabilities P ( z )  of winning z numbers in lotteries, where the 
player chooses: (i) 5 out of 44 numbers. (ii) 6 out of 55 numbers. 

3.3.15 Find the number ofpolygonal lines with vertices (z, C(z)), where C(z) is as 
inExample 3.11 andwithpossibleedges leading from (5, C(z)) to ( z f l ,  C(z)+l) 
or (z + 1, C(z) - l), connecting the points: (i) (0,O) and (10,O). (ii) (0,O) and 
(10,5). (iii) (3, -2) and (8 , l ) .  

3.3.16 Find the number ofpolygonal lines (as in Problem 3.3.15) that join the points 
(2,3) and (16,5) and: (i) Never touch the z-axis. (ii) Never touch the line y = 7. 

n - k + l  n 

'The discarded cards are not mixed with the deck. Assume that the player receives the replacement of 
the discarded cards from the unused remainder of the deck. 
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3.4 EXTENSION OF NEWTON'S FORMULA 

As already remarked, in Definition 3.2.1, in the formula 

(1) = n(n - 1) ' .  . (n  - k + 1) 
k !  1 

the upper number n need not be an integer. 

(3.26) 

EXAMPLE 3.13 

As an illustration, let us evaluate (-:I*), which we will use later. We have 

( - f ) ( - f  - I)(-; - 2 ) ' .  . (-f - k + 1) 
k !  

(-i)(-~)(-~)...(-u) - - 2 2 2  2 =  
(- l)kl x 3 x 5 x ( 2 k -  1) 

k !  2"! 

Multiplying the numerator and denominator by 2 x 4 x . . . x ( 2 k )  = 2'k!, we 
get 

(3.27) 
(-l)k 2k 

( - ; I2)  = F (  k ) '  

Newton's binomial formula extends to the following theorem, which can be found 
in most calculus texts: 

Theorem 3.4.1 For any a we have 

(1 + s)a = 2 ( ;> .I - .  

k =O 

(3.28) 

ProoJ: I t  suffices to observe that the right hand side of (3.28) is the Taylor expansion 
0 of the left-hand side, (E) equals 1 d C k )  (1 + z ) ~  for 5 = 0. 

EXAMPLE 3.14 

For a = -1 /2  and 1x1 < 1 we have 

Using (3.27), we obtain, after some algebra, 
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EXAMPLE 3.15 

Several well-known formulas for sums of geometric series can be obtained 
as special cases of (3.28). For instance, upon noting that (;I) = (-l)k, we 
obtain, for 1x1 < 1, 

2 - 1 - x + z  - and - - 1 -- - 1 $ z + 2 2 + . . '  
1-x 1 + 2  

PROBLEMS 

3.4.1 (i) Show that 

(?) = ( - l ) k ( k  + 1). 

(ii) Show that for every z > 0 (integer or not) 

3.4.2 Show that 

3.4.3 Show that 

3.4.4 By integrating the series in Example 3.15, show that 

22 2 3  5 4  

2 3 4  
l o g ( l + x ) = z - - + - - -  t 

3.4.5 Use formula (3.29) to show that 

1 l + z  2 3  2 5  
-log- = 2 +  - + - +. . '  . 
2 1 - 2  3 5  

(3.29) 

3.5 MULTINOMIAL COEFFICIENTS 

Choosing a subset of size k out of a set of size n is logically equivalent to partitioning 
the set of size n into two subsets, one of size k and the other of size n - k. The 
number of such partitions is, by definition, 

n! (r) = k!(n - k ) ! '  

The theorem below generalizes this scheme. 
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Theorem 3.5.1 Let k l ,  . . . , k ,  be positive integers such that kl + . . . + k ,  = n. 
The number of ways a set of n elements can be partitioned into r subsets of sizes 
k l ,  k2, . . . , k ,  equals 

n! 
k l !  k2! . . , k,! ' 

(3.30) 

Proof: We can think of a partition above being accomplished in steps: First, 
we choose kl out of n elements, to form the first class of the partition. Next, we 
choose k2 elements out of the remaining n - kl elements, and so on, until we have 
n - kl - k2 - .  . . - k,-2 = kr- l  + k ,  elements, from which we choose k , - l  to 
form the next-to-last class. The remaining k ,  elements form the last class. This can 
be accomplished, in view of Theorem 3.2.2, in 

(;) ( n  l 2 k l )  ( n  - k ~ ~ -  k 2 )  . , , ( n  - h - kr-1 . . . - k'-2) (3.31) 

ways. Simple algebra shows that formula (3.31) is the same as formula (3.30). 0 

The ratio (3.30) is called multinomial coeficient and is denoted by 

> .  (k1, k 2 , .  . . ,  kr 

n 

As a generalization of Newton's binomial formula, we have 

Theorem 3.5.2 For every integer n, 

where the summation is extended over all r-tuples ( k l ,  . . . , k,) of nonnegative inte- 
gers with kl  + . . + k ,  = n. 

Proof: In the product ( 2 1  + ' . + z,)~, one term is taken from each factor so that 
the general term of the sum is of the form zCz1 . . 2,". with kl  + . ' + k ,  = n. From 
Theorem 3.5.1 it follows that the number of times the product x f l  . . . z,". appears 
equals (3.30). 0 

In analogy with formula (3.17), the sum of all multinomial coefficients equals rn, 
which follows by substituting 51 = . . . = x, = 1 in (3.32). 

The theorem is illustrated by the following example: 

EXAMPLE 3.16 

Suppose that one needs the value of the coefficient of z2y3z4w in the ex- 
pression (. + y + z + w)l0,  One could argue that in the multiplication 
(x + y + z + w) x . . .  x (x + y + z + w) there are 10 factors, and each 
term will contain one component from each set of parentheses. Thus choos- 
ing x from 2 out of 10 pairs of parentheses, y from 3 out of 10, and so on, 
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amounts to partitioning 10 pairs of parentheses into four classes, with sizes 
kl = 2, kz = 3, k3 = 4, and k4 = 1. The total number of ways such 
a partition can be accomplished is the coefficient of z2y3z4w,  and equals 

10 
(2,3,4,1) = - = 12,600. 

An approximation to n! is given by the so-called Stirling’s formula. 

Theorem 3.5.3 (Stirling’s Formula) We have 

where the sign - means that the ratio ofthe two sides tends to 1 as n -+ co. 

We shall not give the proof here, but interested readers can find it in more advanced 
texts, for example, in Chow and Teicher (1997). 

EXAMPLE 3.17 

A group of 2n boys and 2n girls is divided at random into two equal parts. 
What is the probability p ,  and its approximation for large n, that boys and 
girls are divided evenly between the two groups? 

SOLUTION. Clearly, the number of ways a group can be divided into two 
equal parts is (i:), The number of ways 2n boys can be divided evenly is 
(2) and the same holds for girls. Thus 

(3.34) 

which, based on (3.33), can be approximated by 

For example, in the case of 16 boys and 16 girls 
chances of dividing both sexes evenly are about 
exact value is 0.2756. 

EXAMPLE 3.18 

Let us find the percentage of seven-digit numbers that have all digits dis- 
tinct. Clearly, the smallest number that has seven digits is 1,000,000 and 
the largest is 9,999,999. So there are 9, OOO? 000 distinct seven-digit inte- 
gers. The number of such integers that have all digits distinct can be com- 
puted as follows: The first digit can be selected in nine ways (since 0 is not 
allowed). The subsequent six digits, if no digits are to repeat, can be selected 
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in 9 x 8 x 7 x 6 x 5 x 4 = 9!/3! ways. Altogether the percentage of all 
seven-digit integers with all digits distinct is 

9! 
6 x lo4 

x 100% = - % = 6.048%. p = -  
9 x 9!/3! 
9 x 106 

Stirling’s formula gives the approximation 

% = 5.992%. 
6 x g9 x &i x e-9 

6 x lo4 P Z  

In this case we could calculate the exact value. However, when the formulas 
involve factorials of larger numbers, Stirling’s approximation may be our only 
access to numerical values. 

PROBLEMS 

3.5.1 Show that if a 5 b 5 c 5 n, then 

(i) Use the definition of binomial coefficients as ratios of the factorials. (ii) Use 
directly the interpretation of the binomial coefficients as the number of subsets of 
a given size. (iii) How many ways can one choose an a-element subset from a b- 
element subset from a c-element subset from a d-element subset from a n element 
set? (where a 5 b 5 c 5 d 5 n). 

3.5.2 Find the coefficient of the term z4y5z3 in the expansion of (z - 2y + 3 ~ ) ’ ~ .  

3.5.3 Use the argument analogous to that in Theorem 3.3.2 to show that if i 2 1, j 2 
1, and k 2 1, then 

n (Z) = ( i - l n j , k )  + ( i , j - l , k )  + ( i , j ,L- l ) .  

3.5.4 Show that 

3.5.5 A committee of 50 is to be chosen from the US Senate. Estimate the numerical 
value of the probability that every state will be represented. 

3.5.6 Use Stirling’s formula to approximate the number of ways: (i) A set of size 
2n can be partitioned into two equal parts. (ii) A set of size 3n can be partitioned 
into three equal parts. 



CHAPTER 4 

CONDITIONAL PROBABILITY; 
INDEPENDENCE 

4.1 INTRODUCTION 

The formulas in Chapter 2 allow us to handle probabilities of unions of events, ex- 
pressing them through probabilities of intersections. In this chapter we develop 
methods useful for computations that are based on a concept of conditionalproba- 
bility. 

Consider a situation where we want to evaluate the probability P ( A )  of some 
event A. Suppose that after finding P(A) ,  we learn that some other event, B, oc- 
curred. In many cases such information leads to a change in the assessment of 
the probability of the event A. The symbol used for this new probability will be 
P(AIB), to be read “conditional probability of A, given B,” or “probability of event 
A,  given that B occurred.” 

EXAMPLE4.1 

Conditional probabilities are most easily interpreted as probabilities in sub- 
populations. Consider an attribute such as color blindness, known to occur 
much more often among men than among women. If D is the event “a ran- 
domly selected person is color blind,” then P ( D )  refers to the chance of color 
blindness in the whole population. Suppose now that the person selected is 

73 
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known to be a woman (event W ) .  This information changes the assessment 
of probability of color blindness to P( DI W ) ,  which is now the probability of 
color blindness in the subpopulation of women. 

Questions that might arise here are: 

1. How to use data on probabilities of color blindness separately among men 
and among women to find the overall chance of color blindness, that is, to find 
P ( D )  i fwe  know P(DIW) and P(DIM)?  

2. How to find the probability that a randomly selected color blind person 
is a woman, that is, P(WID)? 

The first of these questions requires using the weighted average, usually 
referred to as the formula for total probability (Section 4.3). To answer the 
second question one has to use the Bayes’ formula (Section 4.4). 

The examples and exercises in this chapter are designed to provide practice in 
recognizing, from the description of the problem, which probabilities are condi- 
tional and which are not. The key phrases here for indicating conditional proba- 
bilities would be “the proportion (frequency, percentage) o f . .  . among . . . ;” and “if 
. . .occurs, then the probability o f . .  . is.” 

PROBLEMS 

4.1.1 A computer file contains data on households in a certain city. Each entry 
line in this file contains various information about one household: income, socioe- 
conomic status, number of children, their ages, and so on. The computer is pro- 
grammed so that it selects one entry at random, each with the same probability of 
being selected. Consequently, probabilities of various events are interpretable as 
relative frequencies of entries in the data file with the corresponding property. 

Let X ,  Y, and 2 be, respectively, the numbers of boys, girls, and cars in the 
households sampled. Let A be the event that a household has a TV set, and let B be 
the event that it has a swimming pool. 
(i) Interpret the probabilities below as relative frequencies of occurrence of some 
attributes in certain subpopulations. (a) P ( A ) .  (b) P(AIZ > 0). (c) P(Z > OIA). 
(d) P ( X  = OIX + Y = 3). (e) P(BIAC). (f) P [ ( X  + Y = 0)‘IA n B].  (g) 

(ii) Use symbols to express probabilities corresponding to the following relative fre- 
quencies: (a) Relative frequency of households with two cars. (b) Relative frequency 
of households with no children among households with at least one car. (c) Relative 
frequency of households that have both a swimming pool and a TV set, among those 
who have either a swimming pool or a TV set and have at least one car. 

P ( X Y  = OIX + Y > 1). 

4.2 CON D IT1 ON AL PRO B ABI L l  TY 

The conditional probability of event A given event B is be defined as 

B,  provided P( B )  > 0. 
P ( B )  ’ 

P(A1B) = (4.1) 
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The definition of conditional probability in cases when the conditioning event B has 
probability zero will discussed in later chapters. In this chapter it is always assumed, 
even if not stated explicitly, that the event appearing in the condition has a positive 
probability. 

A motivation of the definition (4.1), based on the frequential interpretation of 
probability, is the following. As in Chapter 2, let N ( . )  denote the number of occur- 
rences of the event in parentheses in initial N repetitions of the experiment. Then 
P(A1B) is to be approximated by the frequency of occurrence of A among those 
cases where B occurred. Now B occurred in N ( B )  cases, and the number of oc- 
currences of A among them is N ( A  n B). Consequently, P(AIB)  should be the 
limit of N ( A  n B ) / N ( B )  = “ ( A  n B ) / N ] / [ N ( B ) / N ] ,  and the latter converges 

For a fixed event B the conditional probabilities P(A1B) can be regarded as a 
function of event A.  Observe that these conditional probabilities satisfy the axioms 
of probability from Chapter 2. Indeed, nonnegativity holds because P(AIB)  is a 
ratio of two nonnegative numbers, P ( A  n B )  and P(B) .  Next P(S1B) = P(S n 
B ) / P ( B )  = P ( B ) / P ( B )  = 1. Finally, if the events A l ,  A2 , .  . . are mutually 
exclusive, the same is true for the events A1 n B, A2 n B,  . . . so that 

to P ( A  n B ) / P ( B ) .  

A simple consequence of (4.1) is the formula 

P ( A  n B )  = P ( A / B ) P ( B )  = P ( B I A ) P ( A ) .  (4.2) 

Notice that the first equality is equivalent to (4.1). The second equality follows 
from the observation that the left-hand side of (4.2) remains the same when we 
interchange the roles of A and B. Such an interchange applied to the middle term 
gives the right-hand side term. 

Formula (4.1) shows how to find conditional probability if we have the corre- 
sponding unconditional probabilities. Formula (4.2), on the other hand, shows that 
one may find the probability of an intersection of two events as the product of the 
conditional probability of one event given the second, and the unconditional proba- 
bility of the second event. These two ways of using conditional probability will now 
be illustrated by simple examples. 

EXAMPLE4.2 

Consider families with two children. Assuming that each of the four combina- 
tions of sexes, BB,  BG, GB,  and GG, is equally likely, find the probability 
that a family has two boys, given that at least one child is a boy. 

SOLUTION. We have 

P([two boys] n [at least one boy]) 
P(at  least one boy) 

P(two boys I at least one boy) = . (4.3) 

Since the event “two boys” implies (is contained in) the event “at least one 
boy,” their intersection is the event “two boys.” Hence the probability in the 
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numerator equals 1/4. In the denominatorwe have the event { BB, BG, GB}, 
and its probability is 3/4. Thus, the answer is 1/3. Notice that 

(4.4) 
P ( B B )  = -  1 

P ( B G o r B B )  2 ‘  
P(two boys I older child is a boy) = 

The answers in (4.3) and (4.4) are not the same. To grasp the reason why they 
are not, observe that the two probabilities refer to families with two boys in 
different subpopulations. In the first case we consider all families that have at 
least one boy, so we eliminate families with two girls. In the second case we 
are interested in all families whose older child is a boy, so we again eliminate 
families with two girls, but also families with boy being the younger child 
(combination GB).  

EXAMPLE4.3 

Assume that in some population the ratio of the number of men to the number 
of women is r .  Assume also that color blindness occurs among men with fre- 
quency p ,  while among women with frequency p 2 .  If you choose a person at 
random, what is the probability of selecting a woman who is not color blind? 
(Incidentally, color blindness is a sex-linked attribute, and this is why the fre- 
quency of its occurrence among females is the square of the frequency of its 
occurrence among males; see Example 4.9.) 

SOLUTION. Observe first that the answer is not 1 - p 2 ,  the latter being the 
conditional probability of a selected person not being color blind if it is known 
that this person is a woman. Let M ,  W, and D denote the events “man se- 
lected,” “woman selected,’’ and “selected person is color blind.” Our objective 
is to find the probability P(W n D“). Using (4.2), we write P(W n D c )  = 
P ( D c / W ) P ( W )  = P(WIDc)P(Dc) .  The third term is useless, since the 
data provide directly neither P ( D c )  nor P(WIDc). Now, using the mid- 
dle term, we have P(DcIW) = 1 - p 2 .  To determine P ( W ) ,  we note that 
P ( M ) / P ( W )  = [l - P ( W ) ] / P ( W )  = r ,  whichgives the solution P ( W )  = 
1/(1 + 7). ConsequentlyP(W n D“) = (1 - p 2 ) / ( 1  + T ) .  

As an immediate consequence of the definition of conditional probability, we 
have the following theorem, often called the chain rule: 

Theorem 4.2.1 (Chain Rule) For any events A1, A2, . . . , A ,  we have 

P(A1 n A2 n . .  n A,) (4.5) 
= P(A1)P(A21Ai)P(A3lAl  n A 2 ) .  . . P(A,IA1 n A2 n . . . n A n - l ) ,  

provided P(A1 n . . . n A n - l )  > 0 (which implies that all conditionalprobabilities 
appearing in (4.5) are well dejned). 

ProoJ It suffices to write each of the conditional probabilities on the right-hand 
side as the corresponding ratio of unconditional probabilities according to (4.1). The 

0 product cancels then to the probability on the left-hand side. 
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It might be helpful to observe that the chain rule is closely related to the counting 
formula in sampling without replacement in Section 3.2. 

EXAMPLE4.4 

A man has N keys of which only one opens the door. For some reason he tries 
them at random (eliminating the keys that have already been tried). What is 
the probability that he opens the door on kth attempt? 

SOLUTION. Let Ai be the event “ith attempt unsuccessful.” The problem 
is then to find P(A1 n A2 n . . . n Alc-l n A;). Applying the chain rule, we 
obtain 

We have here P(A1) = ( N  - l ) / N .  Next, P(A21A1) = ( N  - 2 ) / ( N  - l), 
since after A1 occurs there are N - 1 keys to try, of which N - 2 do not open 
the door. Generally, if A1 n A2 n . . n Aj - occurs, then j - 1 keys have been 
tried and eliminated. This means that there are N - ( j  - 1) = N - j + 1 keys 
to be tried, of which one fits the door; hence 

P(AjIAlnA2n...nAj-l) = ( N  - j ) / ( N - j +  1). 

Substitution to (4.6) gives the answer 1 / N .  It may be surprising that the an- 
swer does not depend on lc. A success close to the beginning or to the end of 
the search is as likely as a success closer to the middle. Let us see another 
solution of the problem. Trying the keys at random without repetition is the 
same as ordering the keys into a sequence, and trying them in this order. The 
chances that the correct key will appear at the lcth place are the same as for any 
other place; hence the probability must be the same for success at any trial. 

A convenient way of using the chain rule is related to computing probabilities 
through event trees. This technique is applicable when the outcomes in the sample 
space S are sequences of events, typically with the preceding events affecting the 
probabilities of the subsequent ones. The set of such outcomes can then be depicted 
as a tree, and probabilities of the outcomes (“branches” of a tree) are calculated 
according to the chain rule as products of probabilities assigned to consecutive seg- 
ments of the branch. This general description will be illustrated by an example of an 
urn scheme, a convenient device for analyzing many real-life problems. 

EXAMPLE4.5 

An urn initially contains T red balls and g green balls. A ball is selected at 
random and returned to the urn. If the chosen ball is red, then a red and b 
green balls are added. If the chosen ball is green, then c red and d green balls 
are added. Next, a second ball is drawn, returned, and the process of adding 
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b + g  

a + b + g + r  

c+r red 

- dtg green 
g t r  

d + K  

c t d t g + r  

Figure 4.1 Possible results of the two first draws in Example 4.2.4 

balls is repeated. Finally, the third ball is drawn. Find the probabilities for 
each possible sequence of colors on three draws: (red, green, green), (red, red, 
red), and so on. 

SOLUTION. Let us use the notation R1, GI, R2, G2, R3: and G3 for the events 
that occur at the first, second, and third drawings. The "natural" choice of the 
sample space S is 

'= { G1 n R2 n R3, G1 n R2 n G3, GI n G2 n R3, ~ 1 ~ ~ " G z , " n ~  } ' 
We need to find the probabilities such as P(R1 n G2 n G3). Using the chain 
rule, we obtain P(R1 n G2 n G3) = P(R1)P(G21R1)P(G3/Rl n G2). The 
outcomes are represented as branches of the tree in Figure 4.1, labeled with the 
corresponding probabilities. By the chain rule, each branch has a probability 
equal to the product of the probabilities assigned to its segments, for example, 

R1 n R2 n R3, R1 n R2 n G3, R1 n G2 n R3, 

g + b + d  
X 

T g + b  P(R1 n G2 n G3) = - X 
r + g  r + g + a + b  r + g + a + b + c + d '  

Observe that we do not make any assumptions about the signs of a ,  b, c ,  and 
d ,  which makes this scheme quite flexible. Therefore, if we want to consider 
the scheme where the balls sampled are not returned, and no other balls are 
added, we can put a = -1, b = c = 0, and d = -1. 

PROBLEMS 

4.2.1 Let events A ,  B,  and C be such that P ( A )  > 0, P ( B )  > 0, and P ( C )  > 
0. Label the following statements as true or false: (i) The conditional probability 
P(AIB) can never exceed the unconditional probability P(A) .  (ii) If P(AIB) = 
P ( A J C )  then P ( B )  = P ( C ) .  (iii) If A and B are disjoint then P(AIA U B )  = 
P ( A ) / [ P ( A ) + P ( B ) ] .  (iv) P(AIB)+P(A"IB) = 1. (v) P(AIB)+P(AIB") = 1. 
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4.2.2 Assume that A and B are disjoint. Find P(A”1B) and P(AU BIA‘). 

4.2.3 Assume that P ( A n B )  > 0 and determine P(A) / [P(A)+P(B)]  as a function 
of a, where a = P(BIA) /P(A /B) .  

4.2.4 Find P ( A  r l  B )  if P ( A )  = 3/4, P ( B )  = 1/2, P (AIB) - P(B1A) = 2/9. 

4.2.5 P ( A )  = P ( B )  = 1/2, P(AIB) = 1/3. Find P ( A  n BC). 

4.2.6 Find P (AIB),  if P (A“) = 2P ( A )  and P (BIA“) = 2 P  ( B I A )  = 0.2. 

4.2.7 Find P [ A  n B n CI ( A  n B )  u ( A  n C)]  if P(A)  = 0.8, P ( B )  = 0.4, P ( C )  = 
0.4, P ( A  U B )  = 1, P ( A  U C )  = 0.9, and P ( B  U C) = 0.6. 

4.2.8 Events A,  B ,  Care such that at least one ofthem occurs. Moreover, P(A1B) = 

2P(A n B n C ) .  Find the probability that: (i) Exactly one of events A ,  B,  and 
C occurs. (ii) Only B occurs. 

4.2.9 Three distinct integers are chosen at random from the set { 1 , 2 ,  . . . , 15). Find 
the probability that: (i) Their sum is odd. (ii) Their product is odd. (iii)) The sum is 
odd if it is known that product is odd. (iv) The product is odd if it is known that the 
sum is odd. 
(v) Answer questions (i)-(iv) if three integers are selected from { 1, . . . ,20}. 
(vi) Generalize answers to (i)-(iv) in the case of selection from { 1, . . . , n}. 
(vii) Answer questions (i)-(iv) by drawing from { 1, . . . , n}, and passing to the limit 
with n + m. 

P ( B J C )  = P ( C / A )  = 1 / 2 , P ( B  n c) = 2P(A n B)  = 4P(c n A) /3  = 

4.2.10 A deck of eight cards contains four jacks and four queens. A pair of cards is 
drawn at random. Find the probability that both cards are jacks if: (i) At least one of 
the cards is jack? (ii) At least one of the cards is a red jack? (iii) One of the cards is 
a jack of hearts? 

4.2.11 A fair coin is tossed until a head appears. Given that the first head appeared 
on an even-numbered toss, what is the probability that it appeared on the 2nth toss? 

4.2.12 A tennis player has the right to two attempts at a serve: If he misses his first 
serve, he can try again. A serve can be played “fast” or “slow.” If a serve is played 
fast, the probability that it is good (the ball hits opponent’s court) is A; the same 
probability for a slow serve is B. Assume that 0 < A < B; that is, the fast serve is 
more difficult (but not impossible) to make. 

If a serve is good, the ball is played, and eventually one of the players wins a 
point. Let a be the probability that the server wins the point if the serve is fast (and 
good), and let b be the same probability for a slow serve. Assume that 0 < b < a;  
that is, a fast serve gives a certain advantage to the server (the ball is harder to return, 
etc.). 

The server has four possible strategies: FF,  F S ,  SF,  and SS,  where F F  is “play 
first serve fast; if missed, play second serve fast,” F S  is “play first serve fast; if 
missed play second serve slow,” and so on. 
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(i) Determine the probabilities PFF, PFS,  PSF,  and PSS of winning the point by 
the server under the four strategies. (ii) Show that the strategy S F  is always inferior 
to the strategy F S .  (Hint: Consider the difference PFS - PsF.) (iii) Show that if 
Aa, > Bb, then strategy F F  is better than FS.  (iv) Show, by choosing appropriate 
numbers A ,  B,  a, and b (with A < B and a > b), that each of the strategies F F  and 
SS may be best among the four. Explain why such cases do not occur among top 
players, for whom the best strategy is FS.  

4.2.13 Three cards are drawn without replacement from an ordinary deck of cards. 
Find the probability that: (i) The first heart occurs on the third draw. (ii) There will 
be more red than black cards drawn. (iii) No two consecutive cards will be of the 
same value. 

4.2.14 An urn contains three red and two green balls. If a red ball is drawn, it is 
not returned, and one green ball is added to the urn. If a green ball is drawn, it is 
returned, and two blue balls are added. If a blue ball is drawn, it is simply returned 
to the urn. Find the probability that in three consecutive draws from the urn, there 
will be exactly one blue ball drawn. 

4.3 PARTITIONS; TOTAL PROBABILITY FORMULA 

In this section we introduce some formulas, important and useful in computing cer- 
tain probabilities. We begin with the concept of partition (used already in Section 
1.4). 

Definition 4.3.1 We say that a class of events 3-1 = { H I ,  H2, . . .} forms apartition 
(of the sample space S) if these events exclude one another and one of them must 
occur. Formally, this means that 

Hi n H j  = 0 for all i # j (4.7) 

0 

We say that a partition is Jinite or countable, depending on whether it contains 
a finite or a countably infinite number of events. In later chapters we also consider 
uncountable partitions. 

Definition 4.3.2 Given two partitions 

‘H = { H 1 , H 2 , .  . .} and K = { K l r K 2 , .  . .}, 

we say that ‘H isjiner than K (or: 3.1 is a rejinement of K, or sometimes, 3.1 is 
contained in K) if for every event Hi in ‘H there exists an event Kj in K: such that 
Hi c Kj .  0 



PARTITIONS: TOTAL PROBABILITY FORMULA 81 

EXAMPLE4.6 

For any event B, K = { B,  BC} is always a partition of S. A pair of events A 
and B allows us to define a partition 'H into four sets: H I  = A n B,  H2 = 
A n B", H3 = A" n B, and H4 = A" n BC. We have here 'H c K, as one 
can easily verify. Generally, if 3-1 = { H I ,  H2, .  . .} and K = { K I ,  K2,. . .} 
are two partitions, then the class of all sets Hi n Kj for Hi in 'H and Kj in K 
is a partition, called the intersection of 'H and K and denoted 'H x K. It is a 
refinement of both 'H and K. 

Finer partitions correspond to more detailed (richer) information, whereas larger 
partitions are used to represent general information. 

1 EXAMPLE4.7 

Consider a data file on employees of some company. Let 'H = { H o ,  H I ,  . . .} 
be the partition of data by level of education, and let K = { K O ,  K1, . . .} be the 
partition of data corresponding to the number of full years of employment in 
the company. Knowledge of the category in 'H to which a data entry belongs 
gives information about the education level of the employee. Knowledge of 
the category in the intersection 'H x K gives information about both education 
level and number of years of employment, hence gives more information than 
either of 3-1 or K alone. 

Since in the following theorems, sets in partitions will appear as conditions in 
conditional probabilities, it will be convenient to introduce the following definition: 

Definition 4.3.3 A partition 'H = { H i ,  H2, . . .} is calledpositive, if P(Hi)  > 0 for 
all Hi in 3.1. 0 

We can now formulate the following simple theorem, called the formula for total 
probabilily. This formula will provide a valuable tool for computing probabilities. 

Theorem 4.3.1 Let 31 = { H i ,  j = 1 , 2 ,  . . .} be apositive Cfinite or infinite) parti- 
tion and let A be an arbitrary event. Then 

P(A)  = P ( A / H i ) P ( H l )  + P ( A I H 2 ) P ( H 2 )  + . . . + P(AIH,)P(H,)  (4.9) 

in the case of afinite partition 'H, or 

P ( A )  = P ( A I H i ) P ( H i )  + P ( A I H 2 ) P ( H 2 )  + .  . . (4.10) 

in the case of apartition 'H into a countable number of sets (infinite). 

Proof: We can write, using (4.7) and (4.8), as well as (4.1), 

P ( A )  = 
= 

= P ( A / H i ) P ( H i )  + P ( A I H 2 ) P ( H 2 )  + 

P( ( A  n H i )  u ( A  n H 2 )  u . . . )  
P ( A  n H i )  + P ( A  n H2) + . . .  
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The summation may be finite or not, depending on whether the partition is finite. 0 

One may think of the conditional probability P(AIHk) as the relative frequency 
of attribute A in the subpopulation corresponding to event H k .  Then formulas (4.9) 
and (4.10) give simply the overall frequency of attribute A in the whole population, 
expressed as the weighted average, with weights P ( H k ) ,  k = 1 , 2 ,  . . . being the 
contributions of the kth subpopulation to the whole population. 

In the simplest case of a positive partition into two sets ( { B, BC}), formula (4.9) 
reduces to 

P(A)  = P(AIB)P(B)  + P(AIBC)P(BC) 
= P ( A / B ) P ( B )  + P ( A ( B C ) ( l  - P(B) ) .  

EXAMPLE43 

Recall Example 4.3. In a certain group of people the ratio of the number of 
men to the number ofwomen is T .  It is known that the incidence of color blind- 
ness among men is p ,  and the incidence of color blindness among women is 
p2. What is the probability that a person randomly chosen from this group is 
color blind? 

SOLUTION. We use the formula for total probability, with events M and 
W (choice of man and choice of woman) as a partition. The probability of the 
event D (the person selected is color blind) is then P ( D )  = P(D/A4)P(M)+ 
P ( D ( W ) P ( W ) .  Since P ( M )  = r / ( l  + T )  and P ( W )  = 1 / ( 1  + T )  (see Ex- 
ample 4.3), the answer is P( D )  = p r / (  1 +.) + p 2 /  (1 +.) = p ( p +  .)/( 1 + .). 
EXAMPLE4.9 

The reason why the frequency of color blindness among females is the square 
of the corresponding frequency among males is that the gene responsible for 
color blindness (as well as the gene responsible for other sex-linked attributes, 
e.g., hemophilia) is located on the X chromosome, There are two sex chro- 
mosomes, X and Y ,  and every person has a pair of such chromosomes, with 
individuals of the type X X  being females and X Y  being males. 

The color blindness gene has two forms (alleles), say C and c, with form 
c being recessive and causing color blindness. Because every man has one 
X chromosome, he therefore is either of category C or c, the latter being 
color blind. Women, having a pair of X chromosomes, are of one of three 
categories: (1) CC, which we will call “normal;” (2) Cc, the so-called carriers 
(i.e., persons who are not color blind but are capable of transmitting the color 
blindness gene c to their offspring), and (3) cc, women who are color blind. 

Let p be the relative frequency of the form c in the population of genes in 
question. Then p is also the relative frequency of color blind men (since each 
man carries one color blindness gene, either C or c). Now let u and 2, denote 
the relative frequency of carriers and of color blind women, respectively. To 
find u and u,  we proceed as follows: So far we know that a woman is color 



PARTITIONS; TOTAL PROBABILITY FORMULA 83 

blind if her father is color blind and either (1) her mother is color blind, or (2) 
her mother is a carrier and transmits the gene c to the daughter. This gives, 
using the formula for total probability, the relation 

v = p (. + a.> (4.1 1) 

On the other hand, a woman is a carrier if either (1) her father is color blind 
and her mother is “normal,” (2) her father is color blind and her mother is a 
carrier who transmits to her the gene C, (3) her father is “normal” and her 
mother is a carrier who transmits gene c, or (4) her father is “normal” and her 
mother is color blind. 

This gives the relation 

u , = p  ( l - u - v ) + - u  + ( l - p )  -u+w . [ 2 I 1  [: 1 (4.12) 

The solution of the pair of equations (4.1 1) and (4.12) gives v = p 2 ,  u = 
2p(l - p ) .  The relative frequency of women who are “normal” (i.e., neither 
color blind nor a carrier) is 1 - u - v = (1 - P)~, while the relative frequency 
of color blind women is p 2 ,  as asserted. 

EXAMPLE 4.10 Secretary Problem 

The following problem, also known in the literature as the marriageproblem, 
or dowryproblem, provides a nice illustration of the use of conditioning with 
respect to a partition. 

In response to an announcement about a vacant secretarial position, n can- 
didates appear. They are interviewed successively in random order (all permu- 
tations assumed equally likely). Each candidate may be ranked with respect to 
those interviewed before her, but not with respect to the others. After the in- 
terview the candidate may be accepted or rejected, and no change of decision 
is allowed later. In particular, a rejected candidate cannot be offered a job after 
any subsequent candidates have been interviewed. The problem is to devise a 
policy that would maximize the probability of employing the best candidate. 

To put it formally, let 1 , 2 ,  . . . , n be the true ranks of the candidates (no 
ties), with 1 standing for the best candidate and n for the worst. Let x1,22,  . . . z, 
be a permutation of ranks 1 , 2 ,  . . . , n, and for j = 1 , 2 ,  . . . , n let y j  be the rela- 
tive rank of jth candidate xj with respect to candidates who appeared at places 
1,2, . . . , j in a given permutation. For instance, if n = 6 and the permutation 
of true ranks is 3, 6, 2, 4, 1, 5, then the relative ranks yi are 1, 2, 1, 3, 1, 5. 
Indeed the first candidate is always “best so far,” so y1 = 1. Next, 6 is inferior 
to 3, so y2 = 2 (second best in the set (3, 6)). Then y3 = 1, since 2 is best 
among {3,6,2}, and so forth. 

We may observe y1, y2, . . . (but not ~ 1 ~ 5 2 ,  . . .), and the objective is to find 
a policy (i.e., a rule that tells us whether or not to hire the j th candidate know- 
ing only y1, . . , , yj)  that would maximize the probability of stopping at j such 
that zj = 1. 
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One can show (e.g., see Chow et al., 1971) that the optimal policy belongs 
to the class of policies of the following form: Interview r - 1 candidates with- 
out employing any of them, and then employ thejrst candidate superior to all 
the preceding ones (i.e., stop at the first k 2 r with yk = 1). Let us call such a 
policy xT,  and let p ,  be the probability of employing the best candidate under 
policy rT. The problem is then reduced to finding an r that maximizes p , .  

SOLUTION 1. For T = 1 the policy x1 leads to employing the first candi- 
date and p l  = l / n .  Assume now that r > 1. 

In order for policy x, to be successful, the true rank 1 must appear in a 
permutation at one of the places T ,  r + I , .  . . , n; otherwise, there will be no 
Y k  = 1 with k 2 r .  This observation, incidentally, shows that the probability 
of policy xT leading to nobody getting employed is ( r  - l)/n, since 1 is equally 
likely to appear at any of n places. 

If 1 appears at place k 2 r ,  then the policy x, leads to winning, provided 
that there is no y j  = 1 for j = r ,  r + 1,. . . , k - 1. In other words, the 
minimum in the sequence 21,. . . , zT- l ,  z,, . . . , zk-1 must occur at one of 
the places 1 , .  . . , r - 1. The chances of that are ( r  - l ) / ( k  - 1). Summing 
over k ,  we obtain 

k = r  k - 1  n 
(4.13) 

Observe that we used formula (4.9) for partition into events B1,. . . , B,, 
where Bk is the event {zk = 1). Moreover, P(WIBk) = 0 for k < r and 
P(WIBk) = ( r  - l ) / ( k  - 1) otherwise, where W denotes winning. To find 
the optimal r for a given (large) n, we let r / n  = z and use the fact that 

1 
2 

1 + - +  
1 
n 

+ - = logn. 

Then 

We look for the maximum of this function for 0 < z 5 1. Easy differentiation 
gives z = l / e ,  which means that the optimal policy, for a large n, is as fol- 
lows: Interview r = [n/e], which is about 37% candidates, without employing 
any of them. Then stop thejrst candidate that appears better than any of the 
preceding ones. 

The probability that this optimal policy will not lead to employing anybody 
is ( r  - l ) / n  - l / e  = 0.3678. Thus the probability of a correct decision is 
approximately equal the probability of no decision. Consequently, the proba- 
bility of a wrong decision (employing an inferior candidate) is about 0.2644. 
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SOLUTION 2. We can use another partition (Bartoszynski, 1974) to arrive 
at an alternative formula for p , .  Let T = rnin(s1, . . . , ~ ~ - 1 )  be the lowest 
true rank among the first r - 1 candidates. Then 

t = 1 , 2 , .  . .,?l - T $ 2  (3 P(T = t )  = - 
( r y 1 )  ' 

Here the total number of choices of true ranks for the first r - 1 candidates is 
(,"). For the rank t to be the lowest, the remaining T - 2 ranks should be 
selected out of ranks t + 1, t + 2, . . . , n. This can be done in (:I;) ways. 

Now, if T = t ,  the true ranks 1 , 2 ,  . . . , t - 1 will appear among candidates 
at places T ,  r + 1, . . . , n. TheJirst among them will be employed, and therefore 
the chances of winning are l / ( t  - 1). Adding for t 2 2 (for T = 1 nobody 
will be employed!), we obtain 

The maximum in this formula occurs at the same T as in the formula (4.13), 
but the calculations are now much more complicated. 

The formula for total probability can be extended to conditional probabilities as 
follows: 

Theorem 4.3.2 Let 7-L = { H I ,  H2, . . .} be apositivepartition of the sample space, 
andlet A, B be two events with P( B )  > 0. Then 

P ( A I B )  = x P ( A / B n  H,)P(H,IB). (4.14) 
i 

Proof: The right-hand side can be written as8 

As was mentioned earlier, partitions can be used to represent information, with 
event Hi E 7-L signifying the situation where we know that the outcome is in Hi, but 
do not have any more specific information. 

'Formally, the summation in (4.14) extends only over those j for which P ( B n  H j )  > 0, since otherwise 
the conditional probability is not defined. This does not matter, however, since P ( B  n H 3 )  = 0 implies 
P(H, IB) = 0. 
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The conditional probability of an event can be treated as a function defined on a 
partition. In such a function, call it P x ( A I . ) ,  the arguments are sets of the partition. 
Then P ( A I H k )  is a random quantify whose value depends on Hk.  

It is natural to consider next the situation of “coarsening” a partition 3-1’ by group- 
ing its sets, thus forming a new partition Z. This corresponds to less precise infor- 
mation, represented by the partition 3-1’. 

Theorem 4.3.3 Let 3-1, ‘FI‘ be twopartitions, with 3-1 beinga coarsening of 3-1‘. Then 
for any event A ,  the conditionalprobabilities with respect topartitions 3-1 and ‘Ft’ 
are related as follows: i f H ,  = Hil U . , , U HIk,  with H ,  E 3-1, HI, E ‘Ft‘, then 

k 

P d A I H , )  = c P x 4 w J ) P ( H : , I H 2 ) .  
J=1  

Thus the conditional probability with respect to a coarser partition is the weighted 
average of probabilities with respect to the finer partition. 

Proof: The proof is obtained by simple algebra. If {HI,, . . . . H t k }  is a partition 
of H,, then 

k 

P(AIH,) = P ( A n H , I H , )  = P ( A n  U H:,IHi) 
3=1 

PROBLEMS 

4.3.1 An event W occurs with probability 0.4. If A occurs, then the probability of 
W is 0.6; if A does not occur but B occurs, the probability of W is 0.1. However, 
if neither A nor B occurs, the probability of W is 0.5. Finally, if A does not occur, 
the probability of B is 0.3. Find P(A) .  

4.3.2 Suppose that initially the urn contains one red and two green balls. We draw 
a ball and return it to the urn, adding three red, one green, and two blue balls if a red 
ball was drawn, and three green and one blue ball if a green ball was drawn. Then 
a ball is drawn from the urn. Find probability that both selected balls are: (i) Blue. 
(ii) Red. (iii) Green. (iv) Of the same color. 

4.3.3 Suppose that in Problem 4.3.2 we return the second ball to the urn, and add 
new balls as described, with the condition that if the second ball is blue, we add one 
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ball of each color. Then we draw the third ball. What is the probability that the third 
ball is: (i) Blue. (ii) Blue if the first ball was red. (iii) Blue if the second ball was 
red. (iv) Blue if no blue ball was drawn on any of the preceding draws? 

4.3.4 Let A and B be two events with P ( B )  > 0, and let C1, C2, . . . be a possible 
partition of a sample space. Prove or disprove the following formulas: 

P ( A I B )  = C P ( A ~ B  n ci)p(ci), 
z 

P(AIB) = C P(AIB n Ci)P(BICi)P(Ci). 
i 

4.3.5 (Tom Sawyer Problem) You are given a task, say painting a fence. The prob- 
ability that the task will be completed if k friends are helping you is pk ( k  = 
0 , 1 , .  . .). If j friends already helped you, the probability that the ( j  + 1)st will 
also help is 7-rj (j = 0 , 1 , .  . .). On the other hand, if the j th friend did not help, 
then the ( j  + 1)st will not help either. (i) Find the probability that the task will be 
completed. (ii) Solve part (i) if p k  = 1 - A k ,  7-rj = p for all j .  

4.3.6 Recall Example 4.9. Find the probability that the mother is a carrier if: (i) 
Both father and son are color blind, and the mother is not. (ii) It is known only that 
the son is color blind. (iii) The son is color blind, but the parents are not. 

4.4 BAYES' FORMULA 

Let us consider now a following question: If it is known that a certain event A 
occurred, and its conditional probabilities P(AIH1), P(AIH2), . . . for partition HI, 
H2, . . . are known, can we determine the probability ofthe event Hk of the partition? 
The answer is contained in the following time-honored theorem, dating back to the 
eighteenth century. 

Theorem 4.4.1 (Bayes' Formula) Let 7-i = {HI, H2, . . .} be a positive partition 
of S, and A be an event with P ( A )  > 0. Then for any event H k  of thepartition X, 

in the case of ajnite partition U ,  and 

when partition 7-i is countably injnite. 

ProoJ Using formula (4.1) twice, we write 
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The theorem follows if one replaces the denominator on the right-hand side by the 
formulas (4.9) and (4.10). 0 

In the case of a partition (positive) into two events, 32 = { B,  B“}, and any event A 
with P ( A )  > 0, we have 

One of the interpretations of Bayes’ theorem is when the partition 32 represents all 
possible mutually exclusive conditions (states of nature, hypotheses, etc.) that are 
logically possible. The probabilities P(H1),  P (H2) ,  . . . represent the prior knowl- 
edge, experience, or belief about the likelihood of H I ,  Hz ,  , . . . An event A is 
then observed, and this fact usually modifies the probabilities of Hi’s. Accordingly 
P ( H i )  and P(HilA) are often calledprior andposterior probabilities of Hi. 

EXAMPLE 4.11 

Returning to Example 4.8, suppose that the person that we randomly selected 
is color blind. Intuitively, this should increase the chance that this person is a 
man. Indeed, we have here 

a quantity close to 1 if p is small. 

As mentioned above, Bayes’ theorem can be used to reassess the probabilities 
of “states of nature” or “hypotheses” based on the additional evidence. How should 
one reassess the probabilities when the evidence comes sequentially? Specifically, if 
the evidence comes in two portions, say A’ followed by A”, should one modify the 
prior probabilities given A’ n A”, or should one first obtain posterior probabilities 
given A/ and then use these posteriors as new priors, to be modified given A”? 

The answer, as might be expected, is that it does not matter. We have the follow- 
ing theorem: 

Theorem 4.4.2 (Updating the Evidence) Let 32 = { H I ,  H2,  . . .} be a partition, 
and let A’ and A” be two events. IfP(A’ n A”) > 0, then for every event Hk in 
partition X, we have 

(4.15) 

- P(A”IHk  n A’)P(HkIA’) - 
C P(A”IHj n A’)P(HjlA’) ’ 

ProoJ The middle term is Bayes’ formula applied to the left-hand side. We write 

P(A’ n A”IHi)P(Hi) = P(A’ n A” n H i )  

= P(A”1A’n  H , ) P ( A ’ n  Hi) 
= P(A”IHi n A’)P(HiIA’)P(A’) 

to show the equality of the middle and right-hand-side terms. 
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1 EXAMPLE 4.12 

An urn contains two coins: One is a regular coin, with heads and tails, while 
the other has heads on both sides. One coin is chosen at random from the urn 
and tossed n times. The results are all heads. What is the probability that the 
coin tossed is a two-headed one? 

SOLUTION. Intuitively, for a large n we expect the probability that the coin 
selected has two heads to be close to 1, since it is increasingly unlikely to get n 
heads in a row with a regular coin. Let H1 and H2 be the events “regular coin 
was chosen” and “coin with two heads was chosen.” Clearly, H I  and H2 form 
a partition. Let the prior probabilities be P(H1) = P(H2) = 1 / 2 ,  and let 
A, be the event “n heads in a row”; our objective is to find P(H21An). Since 
P(A,IH2) = 1 for all n (this coin will only give heads), and P(AnIH1) = 
1/2,, by Bayes’ theorem we have 

As expected, the probability (4.16) does approach 1 as n increases. 
Suppose now that after A, was observed, an additional m tosses again pro- 

duced only heads (event &). Because A,nBm is the same as A,+m, the pos- 
terior probability ofthe two-headed coin (H2)  given An+,,, is 2n+m/(2n+m+ 
l), after we replace n + m for n in (4.16). Using the second part of formula 
(4.15), and the fact that P(B,]Hi n A,) = P(B,IHi), i = 1 , 2 ,  we obtain 

which agrees with the result of updating “all at once.” 
It might seem at first that this problem is purely artificial, invented for the 

sole purpose of providing practice for students. This is not so; the problem 
is of importance in breeding and selection. Consider a gene with two forms 
(alleles) A and a. Assume that A is dominant and a is recessive. so that we 
have two phenotypes: Individuals aa can be distinguished from the others, but 
individuals AA and Aa cannot be told apart. Moreover, assume that allele a 
is undesirable and we want to eliminate it, ultimately producing a pure strain 
of individuals of type AA only. The problem then lies in eliminating individ- 
uals Aa. One of the ways to do it is to allow crossbreeding between a tested 
individual (of type AA or Aa) with an individual of type aa (you may think 
here of plants that can easily be cross-pollinated). If the tested individual is of 
the type AA (“coin with two heads”), all offsprings will be of type Aa. How- 
ever, if the tested individual is of the type Aa (“regular coin”), about half of 
the offspring will be of type Aa and half of type aa (corresponding to results 
of tosses being heads or tails with probability 1 /2 ) .  Now, if n offspring are 
of type Aa, the posterior probability that the tested individual is AA can be 
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computed as above, except that the prior probability need not be 1 / 2  (it may 
be assessed from genetic theory and other information about the tested indi- 
vidual). Usually the breeder will accept an individual as a pure strain AA if 
the posterior probability that it is A A  exceeds a threshold such as 0.99 or so, 
hence, if sufficiently many offspring of type Aa have been observed. 

EXAMPLE 4.13 

In a Monty Hall TV game there are three curtains, say A ,  B, and C, of which 
two hide nothing while behind the third there is a Big Prize. The Big Prize is 
won if it is guessed correctly which curtain hides it. You choose one of the 
curtains, say A .  Before curtain A is pulled to reveal what is behind it, the game 
host pulls one of the two other curtains, say B, and shows that there is nothing 
behind it. He then offers you the option to change your decision (from curtain 
A to curtain C).  Should you stick to your original choice ( A )  or change to 
C (or does it matter)? The answer to this question is counterintuitive and has 
stirred a lot of controversy. The common conviction is that it does not matter: 
There are two closed curtains, and the chances of the Big Prize being behind 
either of them must be fifty-fifty, so it is irrelevant whether or not you change 
your choice. 

Actually, the answer is that you should switch to C; this way you double 
your chance of winning, 

We assume that (1) the game host pulls one of the two curtains (B or C) 
that does not hide the Big Prize (this implies that the host knows where the 
Big Prize is), and (2) if both curtains B and C have nothing behind them, the 
host selects one at random. 

Let A ,  B, and C be the events “Big Prize is behind curtain A” (respec- 
tively, B and C). We assume the original choice was curtain A,  and let B’ 
be the event “host shows that there is nothing behind curtain B.” We want 
P(AIB*) .  By Bayes’ formula, taking A ,  B ,  C as a partition and assuming 
P ( A )  = P ( B )  = P ( C )  = 1/3, 

P(AIB*)  = P(B*IA)P(A)  
P(B*IA)P(A)  + P(B*IB)P(B)  + P ( B * / C ) P ( c )  

Since P(BIB*) = 0, we must have P(CIB*) = 2/3, so the chances of 
finding the Big Prize behind curtain C (i.e., winning if one changes the original 
choice) is 2/3 and not 1/2.  

Here is an argument that might help convince people who claimed origi- 
nally that the chances were 1/2. Imagine that John and Peter are going to play 
the game a large number of times, say 300 times each. Each originally chooses 
A, and after being given a choice to switch, John never switches while Peter 
always switches. 

John wins only if his original choice was correct, which happens in about 
33% times (we assume that the Big Prize is each time randomly located behind 
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one of the curtains A,  B, and C). He may expect to win about 100 times out 
of 300. 

On the other hand, Peter wins whenever his original choice was wrong 
(because then switching is a correct choice). Consequently he wins in about 
200 cases out of 300. 

PROBLEMS 

4.4.1 Suppose that medical science has developed a test for a certain disease that 
is 95% accurate, on both those who do and those who do not have the disease. If 
the incidence rate of this disease in the population is 5%, find the probability that a 
person: (i) Has the disease when the test is positive. (ii) Does not have the disease 
when the test is negative. 

4.4.2 Two different suppliers, A and B, provide the manufacturer with the same part. 
All supplies of this part are kept in a large bin. In the past 2% of all parts supplied 
by A and 4% of parts supplied by B have been defective. Moreover, A supplies three 
times as many parts as B. Suppose that you reach into the bin and select a part. (i) 
Find the probability that this part is defective. (ii) If the part is nondefective, find the 
probability that it was supplied by B? 

4.4.3 An urn originally contains three blue and two green chips. A chip is chosen at 
random from the urn, returned, and four chips of the opposite color are added to the 
urn. Then a second chip is drawn. Find the probability that: (i) The second chip is 
blue. (ii) Both chips are of the same color. (iii) The first chip was green if the second 
chip is blue. 

4.4.4 One box contains six red and three green balls. The second box has six red and 
four green balls. A box is chosen at random. From this box two balls are selected 
and found to be green. Find the probability that the pair was drawn from the first 
box if the draws are: (i) Without replacement. (ii) With replacement. 

4.4.5 Suppose that box A contains four red and five green chips and box B contains 
six red and three green chips. A chip is chosen at random from box A and placed 
in box B. Finally, a chip is chosen at random from those now in box B. What is the 
probability that a green chip was transfered given that a red chip was drawn from 
box B? 

4.4.6 We have three dice, each with numbers z = 1, . . . , 6 ,  and with probabilities 
as follows: die 1: p ( z )  = 1/6, die 2: p ( z )  = (7 - z)/21, die 3: p ( z )  = z2/91. A 
die is selected, tossed, and the number 4 appears. What is the probability that it is 
die 2 that was tossed? 

4.4.7 Players A and B draw balls in turn, without replacement, from an urn con- 
taining three red and four green balls. A draws first. The winner is the person who 
draws the first red ball. Given that A won, what is the probability that A drew a red 
ball on the first draw? 

4.4.8 A prisoner is sentenced to life in prison. One day the warden comes to him 
and offers to toss a fair coin for either getting free or being put to death. After some 
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deliberation the prisoner refuses, on the ground that it is too much risk: He argues 
that he may escape, or be pardoned, and so on. The warden asks him if he would 
agree to play such a game if the odds for death were 1 :9 or less. The prisoner agrees. 

Here is the game: An urn contains coins, labeled with digits on both sides. There 
is one coin labeled 1 and 2 .  There are nine coins labeled 2 and 3, and there are 81 
coins labeled 3 and 4. A coin is to be selected at random by the warden and tossed. 
The prisoner can see the upper face and has to guess correctly the other face of the 
coin. 

The prisoner decides to use the following guessing strategy: if 1 shows up, he 
would guess that the other side is 2 (and win). Similarly, if 4 shows up, he would 
guess that the other side is 3, and win. If 2 shows up, he would guess that the other 
side is 3, since there is one coin with 1 against nine coins with 3 on the other side. 
Similarly, if 3 shows up, he would guess 4, since there are nine coins with 2 ,  against 
81 coins with 4. 

A coin was chosen, tossed and 2 appeared. The prisoner was about to say “3,” 
when the following doubts occurred to him: “Suppose that this coin has indeed 3 
on the other side. It is therefore a 2-3 coin. But this coin, before it was tossed, had 
equal chances of showing 2 and showing 3. But if it had shown 3, I would have 
guessed 4, and be put to death. So I played a game with fifty-fifty chances for death, 
which I decided not to play at the start.” 

As the story goes, the prisoner decided not to play. So he spent the rest of his life 
in prison contemplating whether or not he did the right thing. Find the probability 
that the prisoner would go free computed: (i) Before a coin is selected. (ii) After a 
coin of a given kind is selected. (iii) After a given face shows up. 

4.4.9 One of three prisoners, A, B, and C, is to be executed the next morning. They 
all know about it, but they do not know who is going to die. The warden knows, but 
he is not allowed to tell them until just before the execution. 

In the evening, one of the prisoners, say A, goes to the warden and asks him: 
“Please, tell me the name of one of the two prisoners, B and C, who is not going to 
die. If both are not to die, tell me one oftheir names at random. Since I know anyway 
that one of them is not going to die, you will not be giving me any information.” 

The warden thought about it for a while, and replied: “I cannot tell you who is not 
going to die. The reason is that now you think you have only 1/3 chance of dying. 
Suppose I told you that B is not to be executed. You would then think that you have 
a 112 chance of dying, so, in effect, I would have given you some information.” 

Was the warden right or was the prisoner right? 

4.5 INDEPENDENCE 

The notion of the conditional probability P(A1B) introduced in Section 4.4 con- 
cerned the modification of the probability of an event A in light of the information 
that some other event B has occurred. Obviously an important special case here 
when is such information is irrelevant: Whether or not B has occurred, the chances 
of A remain the same. In such a case we say that the event A is independent of 
the event B. As we will see, the relation of independence defined in this way is 
symmetric: when A is independent of B,  then B is also independent of A.  



INDEPENDENCE 93 

The essence of the idea above is that A is independent of B whenever P( AIB) = 
P(A) .  Using (4.1), this implies that P ( A  n B ) / P ( B )  = P ( A ) ,  and multiplyingby 
P(B)-which we may to do, since P ( B )  > 0 by assumption-we obtain P ( A  n 
B )  = P ( A ) P ( B ) .  This relation is symmetric in A and in B, as asserted; moreover 
it holds also if one or both events have probability zero. 

Consequently, we introduce the following definition: 

Definition 4.5.1 We say that two events, A and B,  are independent if their proba- 
bilities satisfy the multiplication rule: 

P ( A  n B )  = P ( A ) P ( B ) .  (4.17) 

13 

In practice, (4.17) is used in two ways. First, we can compute both sides sepa- 
rately and compare them to check whether or not the two events are independent. 
More often, however, we assume that A and B are independent and use (4.17) for 
determining the probability of their intersection (joint occurrence). Typically the 
assumption of independence is justified on intuitive grounds (e.g., when the events 
A and B do not influence each other). 

EXAMPLE 4.14 

A box contains r red and g green balls. We draw a ball at random from the 
box, and then we draw another ball. Let R1 and R2 be the events “red ball on 
the first (second) draw.” The question now is whether the events R1 and R2 
are independent. 

SOLUTION. The answer depends crucially on what happens after the first 
draw: Is the first ball returned to the box before the second draw or not? More 
generally, is the content of the box modified in any way by the first draw? 

Suppose first that the ball drawn is returned to the box (the scheme known 
under the name samplingwith replacement). Then P(R1) = P(R2) = r / ( r +  
9 ) ;  hence P(Rl)P(R2) = [ T / ( T  + g)I2, To check the independence, we have 
to compute P(R1 n R2). Recall that the two draws with replacement may 
produce ( r  + g ) 2  distinct results, by the product rule of the preceding chapter. 
The number of ways one can draw two red balls is-again, by the product 
rule-equal to r2 .  Consequently P(R1 n R2) = r2 / ( r  + g ) 2 ,  which is the 
same as P(Rl)P(R2). This shows that events R1 and R2 are independent. 

If we do not return the ball to the box (sampling without replacement), 
we can proceed as follows: We have P(R1 n R2) = P(Rl)P(R2/R1) by 
(4.2), and P(R21R1) = (T  - l ) / ( r  + g - l), since if R1 occurs, there remain 
T + g - 1 balls in the box, of which T - 1 are red. Consequently, P(R1 n 
R2)  = r ( r  - l ) / ( r  + g)(r + g - 1). To verify whether or not this last 
quantity equals P(Rl)P(R2),  we need to evaluate P(R2). Observe that the 
probability of a red ball on the second draw is a random quantity depending 
on the outcome of the first draw. Taking events R1 and G1 as a partition and 
using the totalprobabilityformula, we can write P(R2) = P(R2/R1)P(R1)+ 
P(R2IGl)P(Gl), which equals T / ( r + g ) ,  so that P(R1 n R 2 )  is not the same 
as P(Rl)P(R2).  Therefore the events in question are dependent. 
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We will prove next an important property of independent events that will facilitate 
many calculations. 

Theorem 4.5.1 If the events A and B are independent, so are the events A and 
B", A", and B, as well as A' and B". 

Pro05 It is sufficient to prove only the independence of A and B". Indeed, the 
independence of the second pair will follow by symmetry, and the independence 
of the third pair will follow by successive application of the two already proved 
statements. 

Thus assume that P ( A n B )  = P(A)P(B) ,  and consider the event AnB".  Since 
A = ( A n  B )  U ( A  n B"),  we have P ( A )  = P ( A  n B )  + P ( A  n BC) so that 

P ( A  n B") = P ( A )  - P ( A  n B )  = P(A)  - P ( A ) P ( B )  
= 

which had to be shown. 

P ( A ) ( l  - P ( B ) )  = P(A)P(BC) ,  

0 

As shown in Example 4.14, the difference between sampling with and without 
replacement lies in the fact that the first leads to independent outcomes, while the 
second does not. However, when the populationis large, this difference is negligible. 

Specifically, we may regard two events A and B as "almost independent" if the 
difference between P ( A  n B )  and P(A)P(B)  is small. Let us compute the differ- 
ence 

Q = IP(RI n Rz) - f'(Ri)P(Rz)l 

in the case of sampling without replacement (obviously, for sampling with replace- 
ment this difference is zero). We have here 

'r - 1 'rg Q = I ( & )  [ ( r + g - l )  - ($)] I= ( T + g ) 2 ( T + g - l ) '  

a quantity that is small when either T or g is large (or both are). 
It appears that we might take I P( A n B )  - P(  A)  P( B )  1 as a measure of degree of 

dependence between events A and B. This is indeed the case, except that we have 
to take into account the fact that this difference may be small simply because one of 
the events A or B has small probability. Consequently we need to "standardize" the 
difference. This leads to the following definition: 

Definition 4.5.2 Assume that 0 < P(A)  < 1 and 0 < P ( B )  < 1. The quantity 

will be called the coeflcient of correlation between events A and B. 0 

The coefficient of correlation is a measure of dependence in the sense specified 
by the following theorem: 

Theorem 4.5.2 The coefficient ofcorrelation r (A ,  B )  iszero ifandonly i f A  and B 
are independent. Moreover: we have Ir(A, B)I 5 1, with T ( A ,  B )  = 1 ifandonly i f  
A = B, and T ( A ,  B )  = -1 ifandonly i f A  = B". 
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Proof The proof is by elementary checking, except for the “only i f ’  parts of 
the last two statements. These parts follow from the general theorem on the prop- 
erties of correlation coefficients for random variables, to be discussed in Chapter 7. 

0 

We can extend the concept of independence to the case of more than two events. 

Definition 4.5.3 We say that the events A1, A2, . . . , A, are independent if for any 
set of indices 2 1 ,  2 2 ,  . . . ik with 1 5 zl < iz < . . . < ik 5 n we have the following 
multiplication rule: 

P(Ai, n Ai, n . . . n Ai,.) = P(Ai , )P(Ai , ) .  . ,P (A ik ) .  (4.19) 

The events in an infinite sequence A1, A2 , . . . are called independent if for every n, 
0 

Thus in the case of n events we have one condition for every subset of the size k 2 2, 
that is, for k = 1, condition (4.19) is satisfied. Since the number of all subsets of a 
set with n elements is 2”, the number of conditions in (4.19) is 2” - n - 1. 

In the case of three events, A ,  B, C, the definition (4.19) represents four condi- 
tions: P(AnBnC) = P(A)P(B)P(C) ,  and three conditions forpairs, P(AnB) = 
P ( A ) P ( B ) , P ( A n C )  = P(A)P(C)  a n d P ( B n C )  = P(B)P(C) .  Incaseoffour 
events A, B ,  C, and D, the multiplication rule (4.19) must hold for the quadruplet 
( A ,  B ,  C, D), for four triplets ( A ,  B,  C), ( A ,  B,  D ) ,  (A ,  C, D ) ,  and ( B ,  C, D), and 
for six pairs ( A ,  B ) ,  ( A ,  C ) ,  ( A ,  D ) ,  ( B ,  C), ( B ,  D ) ,  and (C, D) .  

The question arises: Do we really need so many conditions? Taking the simplest 
case of n = 3 events, it might seem that independence of all three possible pairs, 
namely ( A ,  B ) ,  (A ,  C )  and ( B ,  C), should imply the condition P ( A  f l  B f l  C )  = 
P(A)P(B)P(C) ,  a direct analogue of the defining condition for pairs of events. 

Conversely, one might expect that the multiplication rule P ( A  n B n C) = 
P ( A ) P ( B ) P ( C )  impliesindependence ofpairs ( A ,  B ) ,  ( A ,  C ) ,  and ( B ,  C), as well 
as conditionsof the kind P ( A n  B C n  C“) = P(A)P(BC)P(CC) ,  and so on. In fact, 
none of these implications is true, as will be shown by examples. 

the first n events of the sequence are independent. 

EXAMPLE 4.15 

Independence in pairs does not imply the multiplication rule for more 
events. We will use the case of three events A ,  B ,  and C, and show that the 
condition P ( A  n B n C )  = P(A)P(B)P(C)  need not hold, even if all three 
pairs of events are independent. 

Suppose that we toss a die twice and let A = “odd outcome on the first 
toss,” B = “odd outcome on the second toss,” and C = “sum odd.” We have 
P ( A )  = P ( B )  = P ( C )  = 1/2. By simple counting, we obtain P ( A  n B )  = 
P ( A  n C )  = P ( B  n C) = 1/4, so each of the possible pairs is independent. 
However, P(A)P(B)P(C)  = 1/8, while P ( A  n B n C) = 0, since the 
events A ,  B ,  and C are mutually exclusive. If A and B hold, then the sum of 
outcomes must be even so that C does not occur. 
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EXAMPLE 4.16 

Multiplication rule does not imply pairwise independence. We will now 
show that independence in pairs is not implied by the condition 

P ( A  n B n C )  = P ( A ) P ( B ) P ( C )  

We take two events A and B that are dependent, and then take C with P ( C )  = 
0. Let the sample space be S = { a ,  b, c ,  d ,  . . .}, and let A = { a ,  d } ,  B = 
{ b , d } ,  and C = { c , d } .  Moreover, let P ( a )  = P(b) = P(c)  = p - p 3 ,  
and P ( d )  = p 3 ,  where p > 0 satisfies the inequality 3 ( p  - p 3 )  + p 3  5 1. 
The remaining points (if any) have arbitrary probabilities, subject to the usual 
constrain that the sum of probabilities is 1. We have here P ( A )  = P(B) = 
P ( C )  = ( p - p 3 ) + p 3  = p ;  h e n c e P ( A n B n C )  = P ( A ) P ( B ) P ( C )  = p 3 .  
However, since A n B  = A n C  = BnC = A n B n C , w e  have P(AnB)  = p 3  
while P ( A ) P ( B )  = p 2 ,  and similarly for other pairs. 

The possibility of events being pairwise independent, but not totally (mutually) 
independent, is mainly of theoretical interest. Unless explicitly stated otherwise, 
whenever we speak of independent events, we will always mean mutual indepen- 
dence in the sense of Definition 4.5.3. 

Let us state here the following analogue ofTheorem 4.5.1 for the case of n events. 

Theorem 4.5.3 Ifthe events All  A2, . . . , A, are independent, the same is true for 
events A’, A;, . . . , A; , where for each k the event A; stands for either Ak or its 
complement A;. 

The following theorem provides one of the most commonly used “tricks of the 
trade” in probability theory: 

Theorem 4.5.4 rfthe events A1, A2, . . . , A, are independent, then 

P ( A I U . . . U A n ) =  1 -  [1-P(A1)][l-P(A2)]...[1-P(An)] . 
ProoJ: The proof uses the fact that can be summarized as P(a t  least one) = 

1 - P(none). By De Morgan’s law, (Al u A2 U . . . U An)‘ = A; n A!j n . . . A:. 
Using Theorem 4.5.3, we write 

l - P ( A I U . . . U A n )  = P ( A ; n A ; n . . . n A ; )  
= P ( A ; ) P ( A ; ) .  . . P ( A i )  
= [1 - P(A1)][1 - ~ ( A z ) ]  . ’ ’  [I - P(An)] ,  

as was to be shown. 0 

EXAMPLE 4.17 

Consider a sequence of independent experiments such that in each of them 
an event A (usually labeled “success”) may or not occur. Let P ( A )  = p for 
every experiment, and let Ak be the event “success at the kth trial.” Then 
A1 u . ’ u A, is the event “at least one success in n trials,” and consequently 

P(at  least one success in n trials) = 1 - (1 - p ) “ .  
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At the end of this section we will prove the theorem complementing Theorem 
2.6.2 of Chapter 2. 

Theorem 4.5.5 (Second Borel-Cantelli Lemma) rfA1, A2, . . . is a sequence of in- 
dependent events such that Cr=l P ( A n )  = co, then 

P(1imsup A,) = 1. 

ProoJ We have limsup A ,  = lJ;P=n Ak = {infinitely many Ai's will 
occur}. By De Morgan's Law, [limsup A,]' = u r = l  n:="=, A i .  Since the intersec- 
tions nr=, A: increase with n, we have 

/ N  \ 

If Ak are independent, so are A;.  Then, using the inequality 1 - z 5 e-', we 
obtain 

lim P ( h  A ; )  = lim [l - P(An) ]  . , [I  -  AN)] 
N-CC N-CC 

k=n 

in view of the assumption that the series C P( A,) diverges. Consequently, 

P([limsup A,]') = 0, 

as was to be shown. 0 

PROBLEMS 

4.5.1 Label the statements true or false. 
(i) The target is to be hit at least once. In three independent shots at the target 
(instead of one shot) you triple the chances of attaining the goal (assume each shot 
has the same positive chance of hitting the target). 
(ii) If A and B are independent, then P ( A C ( B C )  = 1 - P(A) .  
(iii) If A and B are independent, then they must be disjoint. (iv) If A and B are 
independent, P ( A )  = P ( B ) ,  and P ( A  U B) = 1/2 ,  then P ( A )  > 1/4. 

4.5.2 Suppose that A and B are independent events such that P ( A  fl Bc) = 1/3 and 
P(AC n B )  = 1/6. Find P ( A  n B) .  

4.5.3 Events A and B are independent, P ( A )  = kP(B) ,  and at least one of them 
must occur. Find P(A' i l  B).  

4.5.4 Events A and B are independent, A and C are mutually exclusive, and B 
and C are independent. Find P ( A  U B U C )  if P ( A )  = 0.5, P ( B )  = 0.25, and 
P ( C )  = 0.125. 
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4.5.5 If disjoint events A and B have positive probabilities, check independence of 
events in the following pairs : 0 and A, A and B,  A and S ,  A and A n B,  0 and A'. 

4.5.6 Let X be the number on the ball randomly selected from a box containing 12 
balls, labeled 1 through 12. Check pairwise independence of events A,  B ,  and C, 
defined as: X is even, X 2 7, and X < 4, respectively. 

4.5.7 The probability that a certain event A occurs at least once in three independent 
trials exceeds the probability that A occurs twice in two independent trials. Find 
possible values of P( A ) .  

4.5.8 Suppose that a point is picked at random from the unit square 0 5 z 5 1,0 5 
y 5 1. Let A be the event that it falls in the triangle bounded by the lines y = 
0,z = 1, and z = y, and let B be the event that it falls into the rectangle with 
vertices (O,O), ( l , O ) ,  (1,1/2) and (0,1/2). Find all statements that are true: (i) 
P ( A  U B )  = P ( A  n B ) .  (ii) P(A1B) = 1/8. (iii) A and B are independent. (iv) 
P ( A )  = P(B) .  (v) P ( A  n B )  = 318. 

4.5.9 Events A and B are such that 3P(A)  = P ( B )  = p ,  where 0 < p < 1. Find 
the correct answers in parts (i) and (ii). 
(i) The relation P(B1A) = 3P(A/B)  is: (a) True. (b) True only if A and B are 
disjoint. (c) True only if A and B are independent. (d) False. 
(ii) The relation P ( A  n B C )  5 min(p/3,1 - p )  is: (a) True. (b) False. 

4.5.10 A coin is tossed six times. Find the probability that the number of heads in 
the first three trials is the same as the number of heads in the last three trials. 

4.5.11 Two people take turns rolling a die. Peter rolls first, then Paul, then Peter 
again, and so on. The winner is the first to roll a six. What is the probability that 
Peter wins? 

4.5.12 A coin with probability p of turning up heads is tossed until it comes up 
tails. Let X be the number of tosses required. You bet that X will be odd, and your 
opponent bets that X will be even. For what p is the bet advantageous to you? Is 
there a p such that the bet is fair? 

4.5.13 Find the probability that in repeated tossing of a pair of dice, a sum of 7 will 
occur before a sum of 8. 

4.5.14 Three people, A, B, and C, take turns rolling a die. The first one to roll 5 or 
6 wins, and the game is ended. Find the probability that A will win. 

4.5.15 Consider a die in which the probabilityof a face is proportional to the number 
of dots on this face. What is the probability that in six independent throws of this 
die each face appears exactly once? 

4.5.16 A machine has three independent components, two that fail with probability 
p and one that fails with probability 0.5. The machine operates as long as at least 
two parts work. Find the probability that the machine will fail. 
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4.5.17 The French mathematician Jean D’Alembert claimed that in tossing a coin 
twice, we have only three possible outcomes: “two heads,” “one head,” and “no 
heads.” This is a legitimate sample space, of course. However, D’Alembert also 
claimed that each outcome in this space has the same probability 1/3. (i) Is it pos- 
sible to have a coin biased in such a way so as to make D’Alembert’s claim true? 
(ii) Is it possible to make two coins with different probabilities of heads, confirm 
D’ Alembert’s claim? 

4.5.18 Is it possible to bias a die in such a way that in tossing the die twice, each 
sum 2 , 3 , .  . . , 12 has the same probability? 

4.5.19 An athlete in a high jump competition has the right of three attempts at each 
height. Suppose that his chance of clearing the bar at height h is equal to p(h) ,  
independently of the results of previous attempts. The heights to be attempted are 
set by the judges to be hl < h2 < . . . . An athlete has the right to skip trying a given 
height. Let Y be his final result, that is, the highest h that he actually cleared. Let 
A stand for the strategy “try all heights,” and let B stand for the strategy “skip the 
first height and then try every second height.” Find probability P ( Y  = h 2 k )  under 
strategies A and B. 

4.6 EXCHAN G EABl L I TY: CON D IT1 0 N AL INDEPENDENCE 

At the end of this chapter we introduce an important type of dependence between 
events. 

Definition 4.6.1 Let A,  B ,  and H be three events, and let P ( H )  > 0. We say that 
events A and B are conditionally independent given H ,  if 

P(AnBIH)  = P(A/H)P(BIH) .  0 

Definition 4.6.2 Let 71 = { H I ,  H2,  . . .} be a positive partition (finite or countably 
infinite). We say that events A and B are conditionally independent given Fl, if A 
and B are conditionally independent given any set Hi in partition 71. 

EXAMPLE 4.18 

In order to understand why events that are conditionally independent with re- 
spect to every set of the partition may be dependent, consider the following 
simple situation: Let the partition consist of two events, H and H“, with 
P ( H )  = 0.6. Suppose that if H occurs, then both A and B are likely, say 
P(AIH) = 0.8, P(B1H) = 0.9, and conditional independence requires that 
P ( A  n BIH) = 0.8 x 0.9 = 0.72. On the other hand, if H“ occurs, then 
both A and B are rather unlikely, say P(AIHC) = P ( B / H C )  = 0.1. Again, 
conditional independence requires that P ( A  n BI HC) = (0.1)2 = 0.01 

It is easy to check that the events A and B are dependent. Indeed, P ( A )  = 
P(AIH)P(H)  + P(AIHC)P(HC) = 0.8 x 0.6 + 0.1 x 0.4 = 0.52, P ( B )  = 
P(BIH)P(H)  + P ( B I H C ) P ( H C )  = 0.9 x 0.6 + 0.1 x 0.4 = 0.58. On 
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the other hand, P ( A  n B )  = P ( A  n BIH)P(H)  + P ( A  n BIHC)P(HC) = 
0.72 x 0.6 + 0.01 x 0.4 = 0.436, which is not equal to P(A)P(B)  = 0.3016. 

What is happening here is that the occurrence or nonoccurrence of one of 
the events allows us to make rather reliable predictions about the other event. 
In the case under considerations, the events A and B are positively correlated: 
If one occurs, the other is likely to occur also, and vice versa. By Definition 
4.5.2 we have 

0.436 - 0.3016 
r ( A ,  B )  = = 0.545. 

d0.52 x 0.48 x 0.58 x 0.42 

The nature of dependence that we have here might better be visualized by a 
real-life situation. Imagine some animals, such as birds, that raise their young 
every year. If the conditions in a given year are hard (a draught, severe winter, 
etc.), often all the young die, and typically very few survive. If the conditions 
are favorable, the number of young that make it to next year is typically higher. 
The fates of different families in any given year are independent, in the sense 
that survival of offspring in one family does not depend on the survival of off- 
spring in the other. If A and B are events occurring in two different families, 
and Hi’s are events describing possible types of conditions in any given year, 
then A and B are conditionally independent with respect to any given events 
Ha. 

Unconditionally, however, events A and B are dependent, the dependence 
arising from the fact that all families are subject to the same conditions. Thus, 
if one family fares badly, then we can expect that others will also, simply 
because the conditions are likely to be hard for them all. 

The definition of conditional independence given an event, and therefore also 
definition of conditional independence given a partition, extends naturally to the case 
of n events. The extension consists of first defining the conditional independence of 
events A l ,  A2, . . . , A ,  given an event Hi. We will not give the definition here. It 
is a repetition of Definition 4.5.3, the only difference being that the unconditional 
probabilities in formula (4.19) are replaced by conditional probabilities given Hi.  
Definition 4.6.2 remains unchanged. 

Now let A l ,  A2, . . . , A ,  be a set of events, and let N = { 1 , 2 ,  . . .n} be the set of 
their indices. We introduce the following definition: 

Definition 4.6.3 The events A l ,  A2, . . . , A ,  are called exchangeable if for any sub- 
set K of { 1,2, . . . , n}  the probability 

P(  n n n A:) 
IEK j$ZK 

of joint occurrence of all events with indices in K and nonoccurrence of all events 
0 

This means that for exchangeable events, the probability of occurrence of exactly 
m of the events does not depend on which events are to occur and which are not. For 
instance, in the case of three events A ,  B, and C, their exchangeability means that 

with indices not in K depends only on the size of the set K .  



EXCHANGEABILITY CONDITIONAL INDEPENDENCE 101 

P(AnBcnCc) = P ( A C n B n C C )  = P(ACnBCnC)andalsoP(AnBnCC) = 
P ( A n B c n C ) = P ( A c n B n c ) .  

We have the following theorem: 

Theorem 4.6.1 Ifthe events Al l  A*, , . . , A, are conditionally independentgiven a 
partition ‘FI = { H I ,  H2, . . .}, and P(AilHk) = P(AjlHk)for all i , j ,  k, then thqv 
are exchangeable. 

Pro05 Let P(Ai I H k )  = W k  (by assumption, this probability does not depend on 
i). The probability that, say, the first T events will occur and the remaining ones will 
not (by the law of total probability and conditional independence) is 

P(A1 n A2 n ~. . A ,  n A:,, n . I n A:) 

= P(A1 n A2 f l ’ .  . il A, f l  A:+, fl. ’ fl A:,IHk)P(Hk) 

= x W i ( 1  - Wk)n-rP(Hk). (4.20) 

Clearly, (4.20) is also the probability of occurrence of any T among the events 
0 

As can be expected, in case of conditional independence of A’ and A’‘ with re- 
spect to the partition ‘H, Theorem 4.4.2 on updating the evidence will take a simpler 
form. We have 

Theorem 4.6.2 Let Fl = { H I ,  H2, . . .} be apartition and let A’ A“ be two events 
conditionally independent with respect to ‘FI. I fP(A’ n A”) > 0, then for every 
event Hk in partition N we have 

k 

k 

A1, . . . , A, and nonoccurrence of the remaining ones. 

(4.21) 

ProoJ The middle part shows how the conditional probability of Hk is computed 
if the “evidence” A’ n A’’ is taken jointly, The last part shows how the updating is 
done successively, if first one updates probabilities using A’ and then one uses A” 
for further modification of posterior probabilities. 

For the first equation, observe that the middle part of (4.21) is just the middle part 
of (4.15) in the case of conditional independence. 

To prove the second equation, observe that the factor P(A”IHk n A’) in the right- 
hand side of (4.15) can be written as 
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PROBLEMS 

4.6.1 A subset S of size t ,  1 5 t 5 N ,  is selected at random from the set { I ,  . . . , N }  
and event Ai, i = 1,. . . , n, is defined as: “Element i was among the elements 
selected.” If S = { i l ,  . . . , it} is chosen, we say that events A i l ,  . . . , Ai, occur, while 
the remaining events do not. (i) Show that events A1 , . . . , A N  are exchangeable. (ii) 
Find the correlation coefficient T = r ( A i ,  Aj),i # j between two events. Give an 
intuitive explanation why r < 0. 

4.6.2 Generalizing the scheme of Problem 4.6.1, let p t  be the probability of choos- 
ing size t for subset St c { 1, . . . , N } ,  1 5 t 5 N .  After choosing t ,  subset S, is 
selected at random, and all events with indices in S, occur while other events do not. 
(i) Argue that events A l ,  . . . , A N  are exchangeable. (ii) Find probabilities P ( A : )  
and P ( A 1  n A z ) .  



CHAPTER 5 

MARKOV CHAINS* 

5.1  INTRODUCTION AND BASIC DEFINITIONS 

Thus far we have learned only a mere beginning of the conceptual structure of proba- 
bility theory, namely: sample spaces in Chapter 1, axioms and the simplest laws that 
can be deduced from them in Chapter 2, and the concept of conditional probability 
with accompanying law of total probability and Bayes’ rule in Chapter 4. Addi- 
tionally, in Chapter 3, we learned how to compute or assign probabilities in discrete 
setup. It may therefore come as a surprise that even with such limited tools, it is al- 
ready possible to develop an extensive and powerful theory with numerous practical 
applications and cognitive consequences, namely the theory of Markov chains. 

Generally, the term chain will denote a sequence of events, typically dependent 
one on another in some way. It will be convenient to use the terminology referring to 
time: we can think of events as occuring one after another, so that the event whose 
occurrence is actually observed is the “present” event, while the events following it 
belong to the “future” and the remaining ones to the “past.” This way we obtain a 
description of a process of dynamic changes (of something that we generally call a 
system). Quite naturally the main problem will be to develop tools for making some 
inference (prediction, etc.) of the future on the basis of the knowledge of the past. 

Specifically, consider a system that evolves in a random manner. The observa- 
tions are taken at some fixed times t o  < tl < t 2  < . . . , so in effect we record 
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a sequence of states at which we find the system at the times of the observations. 
Without loss of generality, we let t, = n so that the observations are taken every 
unit of time starting at t = 0. 

The notions of “system” and “state” in the description above are left unspecified 
in order to have flexibility in applying the theory to various situations. Before pro- 
ceeding any further, it is worthwhile to consider some examples that will later guide 
our intuition. 

EXAMPLE51 

Imagine a gambler who plays a sequence of games. In each game she may 
win or lose some amount of money. Let w, denote his net winnings in nth 
game (loss, if w, is negative). If we are interested only in the financial aspects 
of the situation, we can regard the gambler as a “system,” with the state of the 
system identified with the gambler’s fortune. Thus the state in this case is a 
number. Letting s(n) be the state at the time immediately after nth game, and 
letting s(0) be the initial fortune, we have s (n )  = s(0) + w1 + w2 +. . . + wn. 

This scheme has to be made specific by adding appropriate assumptions. 
First, we need assumptions about the nature of the winnings Wk. In the sim- 
plest case, the gambler may play for the same fixed amount, say $1, so that 
s (n )  either increases or decreases by 1 with each game, and the outcomes 
of consecutive games are independent. Another kind of assumption is that 
of “boundary” conditions, which specify what happens when the gambler be- 
comes ruined, that is, when s ( n )  reaches the value 0. For example, the game 
may end, with s(n) remaining 0 forever, or it may continue from the state 
s (n )  = 1 if the gambler borrows a dollar to continue playing, and so forth. 

Such an evolving scheme is often called a “random walk” because one can 
interpret the state s(n) as a position of a pawn that moves randomly along the 
z-axis, being shifted at the nth move by the amount wn. 

The interesting question is: What is the probability that after the nth move 
at time t ,  the distance s (n )  - s(0) from the initial location will satisfy the 
inequality a < s (n )  - s(0) < b? We will return to this problem in later chap- 
ters (especially Chapter 10) as we develop tools for analyzing the properties 
of random sums of the form w1 + . . + wn, representing total displacement 
after n hits. 

EXAMPLE5.2 

Consider the following scheme aimed at describing the evolution of an epi- 
demic. Imagine a group of subjects, of whom some may be infected with 
the disease and therefore capable of spreading it to others (even though they 
may not yet be aware of being infectious), and some other persons may be 
susceptible. The spread of the disease is generated by the process of contact 
whereby proximity between an infective and a susceptible subject can lead to 
an infection. The state of the system can be described by a pair of numbers 
s(n)  = [z(n), y(n)], where ~ ( n )  is the number of infectives at time t = n, 
and y(n) is the number of susceptibles at time t = n. 
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By taking a sufficiently small time between observations, one can assume 
that the onlypossible changes from [ z (n ) ,  y ( n ) ]  to [z(n + l),  y ( n  + l)] are as 
follows: 

1. z(n+ 1) = z ( n )  + k ,  y ( n +  1) = y ( n )  - k (infection ofa  group of k susceptibles, 
k =  1 , 2 ,  ...). 

2. s(n + 1) = z (n)  - 1, y ( n  + 1) = y ( n )  (“removal” of an infective, which may 
correspond to death, isolation in the hospital, recovery with immunity, etc.). 

3. “Status quo,” that is, z ( n  + 1) = z (n) ,  y ( n  + 1) = y ( n ) .  

The probabilities of these three types of transitions depend on the nature of 
the contact process and the mode of transmission of the given disease (in par- 
ticular, the process simplifies somewhat if we assume that k is always 1). By 
specifying these probabilities, one may obtain models of spread of various 
infectious diseases. 

Examples 5.1 and 5.2 show that the notions of the system and state are rather flex- 
ible and can be interpreted in a number of ways. Basically, system here means any 
fragment of reality that we want to model and analyze, while sfate is the information 
about the system that is relevant for the purpose of the study. 

In this chapter we will regard time as discrete. In general theory one also consid- 
ers systems evolving in continuous time, when changes can occur and be observed at 
any time. The theory designed to describe and analyze randomly evolving systems 
is called the theory of stochusticprocesses. While such theory lies beyond the scope 
of the present book, we will occasionally introduce some elements of it. 

PROBLEMS 

5.1.1 Customers arrive at a service station (a taxi stand, a cable car lift at a skiing 
resort, etc.) and form a queue. At times t = 1 , 2 , .  . . the first rn customers (rn 2 1) 
in the queue are served (if there are that many). Let Yl, Yz, . . . denote the numbers 
of customers arriving during the time intervals between services, and let X, denote 
the number of customers in the system at the time immediately preceding the nth 
service. Argue that Xn+l = ( X ,  - m)+ + Y,, where U+ = max(U, 0). Assuming 
that the events { Y,, = k l } ,  . . . , { Y,, = k j }  are independent for any j, k l ,  . . . , k j  
and any distinct n1, . . . , nj , and that P{ Y, = k }  = pk, are independent of n, find 
P(X,+1 = jlX, = i) for all possible i, j = 0,1,2,. . . . 

5.1.2 After some time spent in a bar, Peter starts to walk home. Suppose that the 
streets form a rectangular grid. Peter always walks to the nearest comer and then 
decides on the direction of the next segment of his walk (so that he never changes 
direction in the middle of the block). Define the “state of the system” in such a way 
as to accommodate conveniently the assumption that Peter never goes directly back 
to the comer he just left. 
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5.2 DEFINITION OF A MARKOV CHAIN 

It ought to be clear from the examples in Section 5.1 that a sample space that may 
be useful for describing the evolution of a system consists of all possible sequences 
of states at the observation times. Each such sequence represents a possible his- 
tory of the process. Formally, let & be the set of all possible states of the sys- 
tem, with elements of & denoted by letter e, possibly with identifying subscripts 
or superscripts, such as e l ,  e’, The sample space SN, which will represent the his- 
tory of the system at times t = 0,1,  . . . , N, will consist of all possible sequences 
SN = [s(O), . . . , s ( N ) ] ,  where s(i) is the element of & describing the state of the 
system at time t = i. 

In this chapter we will assume that the set & is either finite or countably infi- 
nite. We may then label the states by integers so that & = {el, ez ,  . . . , en} or 
& = {el,  ez ,  . . .}. Under this assumption each of the sample spaces SN is also ei- 
ther finite or countably infinite, and we will define the probabilities on individual 
sample points of SN by explicit formulas. At the same time, however, we will con- 
sider certain limiting passages, with the lengths of the sequences of states increasing 
to infinity. The space of all infinite sequences of states in & is uncountable whether 
or not & is finite. The details of the construction of probability of such spaces (al- 
though sketched in Chapter 2) lie beyond the scope of this book. However, we will 
use simple limiting passages with the lengths of sequences increasing to infinity, ba- 
sically treating each space SN as a space of all beginnings of length N of infinite 
sequences. 

The main types of events that we will consider are of the form “state e at time 
t = n ”. In Chapter 1, events were identified with subsets of the sample space. 
Accordingly, the event above can be defined as 

“state e at time t = n ” = { s(n) = e }  
= set of all sequences[s(O), . . . , s ( N ) ]  

with s(n)  equal e. 

Typically the probability of the next state depends in some way on the preceding 
states. So, by the chain formula (4.5), for all n 5 N we have 

P[s(O) = ei,, s(1) = e i , ,  . . . , s(n) = ei,] = P[s(O) = e,,] (5.1) 
x P [ s ( l )  = ei, Is(O) = ei,] x . . . x P[s (n )  = e , ,  Is(n - 1) = ein-,,. . . , s(O) = ei,]. 

The commas in formula (5.1) signify the operation of an intersection of events, thus 
replacing a rather clumsy notation P[s(O) = ei, n s(1) = ei,  n . . n s (n )  = ei,]. 
For convenience, the events in the conditions are written in the order that starts 
from the most recent one. Formula (5.1) expresses the probability of a sequence of 
consecutive states through the probability of the “initial” state s(O), and conditional 
probabilities involving all preceding states, and thus encompasses longer and longer 
fragments of the past. By the definition below, such conditional probabilities for 
Markov chains can be simplified by reaching only to the most recent state. 

Definition 5.2.1 The evolution of a system is said to form a Murkov chain if for 
every n and every vector (ei,, ei, ,  . . . , ein-l ,  ein) of states, the conditional proba- 
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bilities satisfy the following relation, called the Markovproperty: 

P [ s ( n ) = e i n I s ( n - l )  = e i , _ , , s ( n - 2 )  =e i ,  -,,..., s(O)=ei,]  
(5.2) 

= P[s(n)  = ei, / s ( n  - 1) = e .  Z n - l l .  

We have therefore the next theorem. 

Theorem 5.2.1 rfthe sequence oftransitions between states constitutes a Markov 
chain, then 

P[s(O) = ei,, . . . , s(n)  = ei,] 
(5.3) 

= P[s(o)  = ei,] nj”=, P [ s ( j )  = eij / s ( j  - 1) = eiJ-l] .  

Generally, the transition probabilityP[s(j) = eijIs(j  - 1) = eij-,] from state 
eij-l to state ei, at time t = j depends on j. If this is not the case, the situation 
can be greatly simplified, and this special case is the starting point of a theory. This 
theory is practically and cognitively useful, leads to rather deep mathematical re- 
sults and fruitful generalizations, and is pleasantly elegant as well. Accordingly we 
introduce the following definition: 

Definition 5.2.2 A Markov chain will be said to have stationary fransitionproba- 
bilities, or be time homogeneous, if for all states ei, ej  the probability 

P [ s ( t )  = ejls(t - 1) = ei] 

does not depend on t .  

From now on, all Markov chains under consideration in this chapter will have 
stationarytransitionpmbabilities . Writing pij = P[s ( t )  = e j l s ( t  - 1) = ei] and 
ri = P[s(O) = ei], we may recast (5.3) as 

P[s(O) = ei,, s(1) = ei, , . .  . , s (n )  = ei,] = r(ei,)piail . . .pin-,in. 

Clearly, {ri ,  i = 1,2 ,  }, called the initial probability distribution , and the set of 
probabilities p i j ,  called the transition probability matrix, must satisfy the following 
conditions: 

i 

and 

T . .  - 1 for every i. c v -  
j 

The last condition means simply that if the system is in some state ei, it must pass 
to one of the states e, (possibly remaining in the same state ei) in the next step. 

Since square matrices (finite or not) with nonnegative entries and row sums equal 
to 1 are called stochastic matrices, we see-in view of ( 5 . 5 t t h a t  every transition 
probability matrix of a Markov chain is a stochastic matrix. 
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W EXAMPLE 5.3 Gambler’s Ruin 

Continuing Example 5.1 about the gambler, assume that each game is played 
for a unit stake, with the gambler’s probability of winning a game being p .  
Moreover, assume that the games are independent. In such a case the sequence 
s(O), s( l) ,  . . . of the gambler’s fortunes after consecutive games is a Markov 
chain. Indeed, letting P[s(n + 1) = j i s (n )  = i] = p i j ,  we have for all k > 0, 

and pkj  = 0 for all j other than k + 1 or k - 1. These probabilities do 
not depend on the history s(n - l), s(n - 2), . . . preceding the nth game. 
The transition probabilities for k = 0 depend on the assumption about what 
happens when the gambler becomes ruined. For instance, if upon reaching 
k = 0 the game stops, we can put poj  equal to 1 for j = 0 and equal to 0 for 
all other j .  If the process starts with the gambler having initial capital M ,  then 
rj equals 1 for j = M and equals 0 for all other j .  It seems plausible (and 
in fact it is true) that if p < 1/2 (the games are unfavorable for the gambler), 
then regardless of the initial state, the state 0 (gambler’s ruin) will sooner or 
later be reached. Less obvious, but still true, is that the same holds for the 
fair games (p = 1/2) no matter what the initial fortune is. An interesting 
question is to determine the probability of the gambler ever reaching 0 (i.e., 
of becoming eventually ruined) if she plays favorable games, that is, if p > 
1/2. This probability depends on the initial state M ,  and may be shown to be 
[(I - P)/PI‘. 

W EXAMPLE 5.4 Division of Stake in Gambler’s Ruin 

Two players, A and B, play a sequence of games, each game for a unit stake, 
until one of them loses all his or her money. Games are independent; in each 
the probability of A winning is p (and the probability of A losing is 1 - p ,  
which means that there are no ties). For some reason the contest is interrupted 
(and is not going to be resumed) when A has z dollars and B has M - z 
dollars (so that the total stake is M ) .  The question is: How can the stake M 
be divided between the players in a fair way? One of the ways (arguably just) 
is to divide the stake in proportion to the chances of eventually winning the 
contest if it was to continue. Consequently, the problem lies in determining 
the probabilities of eventually winning the contest for each of the two players. 
We can interpret the situation in terms of the gambler’s problem as follows: 
Let a = 0,1,  . . . , M represent the state of the system, defined as the capital of 
A. Then the changes of states constitute a Markov chain, as in Example 5.3, 
the only difference being that now poo = ~ M M  = 1 (Le., one cannot leave 
states 0 and M ) .  The objective is to determine u(z ) ,  equal to the probability 
of A ultimately winning the contest if the starting state is z. We will study this 
kind of problem in more generality in the next sections. To see the technique, 
observe that for 0 < z < A4 the probabilities u ( z )  must satisfy the equations 

u ( z )  = pu(z + 1) + (1 - p)u(z  - l), (5.6) 
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with boundary conditions u(0) = 0, u ( M )  = 1. Actually, (5.6) is a special 
case of the total probability formula (4.9) for the event “ultimate winning by 
A” and the partition into the two events “next game won by A” and “next game 
lost by A.” This technique of using the partition obtained by considering the 
possible results of the next transition will be used again and again in the anal- 
ysis of Markov chains. In the present case a linear combination of solutions of 
(5.6) is also a solution of (5.6). Consequently, we need two linearly indepen- 
dent solutions to determine the constants in their linear combinations using the 
two boundary conditions. 

Obviously u ( z )  = 1 is always a solution of (5.6). To find another solution, 
let u,(z) = s”. This gives s = ps2 + q, where we let q = 1 - p .  The solutions 
ofthequadratic equationare [If (1 - 4 ~ q ) ’ / ~ ] / 2 p  = [l f Ip-  q1]/2p,which 
equal 1 and q / p .  Thus, i fp  # q (hence p # 1/2), a general solution of (5.6) is 
u(x) = A + B ( q / p ) ” .  Using the boundary conditions, we obtain 

If p = q = 1/2, the solutions u(x) = ( q / p ) ”  and u(z )  = 1 coincide. In 
this case as another (linearly independent) solution we can take u(x) = x, 
and the general solution of (5.6) will be u(x) = A + Bx. Using again the 
boundary conditions, we obtain u ( z )  = z / M  as the probability of winning in 
the case of fair games. 

EXAMPLE55 

Let us now return to Example 5.2 of an epidemic. The state of the system 
is represented by a pair of integers (z, y), with z being the number of in- 
fectives and y being the number of susceptibles. As was argued, by taking 
sufficiently small time intervals between transitions, we can assume that apart 
from remaining in the same state, the only possible transitions from (x, y) 
are to (z - 1, y), representing removal (death, isolation, recovery with im- 
munity, etc.) of one infective, and to (z + 1, y - l ) ,  representing infection 
of one susceptible. These transitions are depicted in Figure 5.1 as a random 
walk over the integer lattice on the plane, with the two types of transitions 
being steps in the western and southeastern directions. We now have to de- 
fine the transition probabilities for the two kinds of transitions above (removal 
and infection) so as to obtain a meaningful approximation to the real condi- 
tions of an epidemic. Here one could argue that it is reasonable to assume 
that the probability of the first transition (removal) is proportional to z, while 
the probability of the second transition (infection) is proportional to both x 
and y. Thus the transition probabilities between states will be of the form 
p [ ( x  - 1, y)l(z, y)] = a x , p [ ( z  + 1, y - l)I(x, y)] = bxy for suitably chosen 
a, and b. 

The nonlinear term (proportional to the product xy) is largely responsible 
for the fact that the analysis of an epidemic process is extremely difficult. 
From the point of view of applications, two characteristics of epidemics are 
of major interest: first, the time until1 the termination of the epidemic, and 
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y-susceptibles 

f 

3 
x-infectives 

Figure 5.1 Transitions in model of epidemic 

second, its total size, that is, the total number of persons who will become 
infected (and subsequently removed). 

The first characteristic may be defined formally as 

N = first n such that z(n)  = 0. 

Here the event N = k corresponds to z(0) > 0, z(1) > 0 , .  . . , z(k - 1) > 
0, and z ( k )  = 0. Graphically, N is the first time when the walk depicted in 
Figure 5.1 reaches the vertical axis. 

The second characteristic cannot be expressed in terms of the variables 
introduced thus far. The handling of the case is an illustration of the point 
made repeatedly in Chapter 1 about the nonuniqueness of the choice of the 
sample space. One could simply enrich the state space by including another 
count that keeps track of the removals. Thus one could consider the states as 
being described by three variables, z (n ) ,  y(n), and z(n) ,  where 2 and y are 
the numbers of infectives and susceptibles as before, while t is the number 
of removals. The two kinds of transitions considered so far are replaced by 
transitions from ( 5 ,  y, z )  to (z - 1, y, z + l), representing the removal of an 
infective, and from (z, y, t )  to (z + 1, y - 1, z ) ,  representing a new infection. 
Assuming that the epidemic starts with z = 0, the total size 2 of epidemic is 
defined as Z = z ( N ) ,  where N = the first n with ~ ( n )  = 0. 

As mentioned above, finding the probabilities P { N  = n}  and P { Z  = k} 
for given initial conditions of the Markov chain is extremely difficult, and we 
will not deal with this problem here. 

The examples above illustrate the problem of absorption that will be analyzed in 
Section 5.5. 

PROBLEMS 

5.2.1 (i) Modify Example 5.3 by assuming that in each game the player may win 
with probability p ,  lose with probability q, or draw (so that his fortune does not 
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change) with probability T ,  where p + q + T = 1. Find the transition probability 
matrix in this case. (ii) Modify Example 5.4 same way as in (i). Write the analogue 
to the equation (5.6) for the probability of ruin and solve it. 

5.2.2 Suppose the results of an election in a certain city are found to depend only on 
the results of the last two elections. Specifically, letting R and D denote Republican 
and Democratic victories, the state before any election may be RR, RD, DR, DD, 
the letters signifying respectively the outcomes of the next-to-last and last elections. 
Generally, assume that a, b, c, and d are the probabilities of a Republican victory 
in each of the four states listed above. Find the transition probability matrix of the 
resulting Markov chain. 

5.2.3 A college professor teaches a certain course year after year. He has three 
favorite questions, and he always uses one of them in the final exam. He never uses 
the same question twice in a row. If he uses question A in one year, then the next 
year he tosses a coin to choose between question B and C. If he uses question B, he 
tosses a pair of coins, and chooses question A if both coins show tails. Finally, if he 
uses question C, then he tosses three coins and uses question A if all of them show 
heads. Find the transition probability matrix for the resulting Markov chain. 

5.2.4 (Dog Fleas, or the Ehrenfest Model of Diffusion) Consider two urns (or 
dogs), and N balls (or fleas), labeled 1, . . . , N, allocated between the urns. At times 
t = 1 , 2 , .  . . , a number 1 through N is chosen at random, and the ball with the 
selected number is moved to the other urn. Let s ( n )  be the number of balls in the 
first urn at time n. Find the transition probability matrix for the Markov chain s(n). 

5.2.5 Consider a specific kind of part needed for the operation of a certain machine 
(e.g., the water pump of a car). When the part breaks down, it is replaced by a new 
one. The probability that a new part will last for exactly n days is rnr n = 1 , 2 ,  . . . . 
Let the state of the system be defined as the age of the part currently in the machine. 
Find the transition probability matrix of the resulting chain. 

5.3 N - S T E P  TRANSITION PROBABILITIES 

We will now find the probability 

p$)  = ~ { s ( t  + n) = ejls(t) = ei) (5.7) 

ofpassing from ei at time t to e j  at time t+n, called the n-step transitionprobability. 
Obviously, for Markov chains with stationary transition probabilities, the quantity 
(5.7) does not depend on t .  We have the following theorem: 

Theorem 5.3.1 The n-step transition Probabilities satisb the relations 

pig) = 1 or 0, depending whether or not j = i, 
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Proof: We proceed by induction: Formula (5.8) covers the case m = n = 0. 
In zero steps the system cannot change so it must remain, with probability 1, in 
state ei. We prove formula (5.9) for n = 1. If the system passes from ei to ej  in 
m + 1 steps, then in step m it must be in some state ek. The events “state ek after 
m steps” form a partition, and the total probability formula (4.9) gives in this case 

= ~ k p ~ ~ ) p k j ,  as was to be shown, since p i j  = p $ )  by definition. The 
0 

In matrix notation Theorem 5.3.1 states simply that P(m+n) = Pm+“, with 
Po = I, the identitymatrix. 

One can expect that as the number of transitions increases, the system “forgets” 
the initial state; that is, the effect of the initial state on the probability of a state 

( at time n gradually wears out. Formally, we can expect that the probabilities pi:) 
converge, as n increases, to some limits independent of the starting state ei. In 
Section 5.4 we explore conditions under which this is true, and we also find the 
limits of the probabilities p i p ) .  At present let us consider the following example. 

extension to the case of arbitrary n is immediate. 

EXAMPLE56 

The weather on Markov Island is governed by the following laws. There are 
only three types of days: sunny, rainy, and cloudy, with the weather on a given 
day depending only on the weather on the preceding day. There are never two 
rainy days in row, and after a rainy day, a cloudy day is twice as likely as a 
sunny day. Fifty percent of days following a cloudy day are also cloudy, while 
25% are rainy. Finally, after a sunny day each type ofweather is equally likely. 
How often, on average, is it cloudy on Markov Island? 

SOLUTION. The fact that the tomorrow’s weather depends only on the weather 
today makes the process of the weather change a Markov process. Using the 
obvious notation R, S, and C for the three types ofweather, we have ~ R R  = 0, 
PRC = 213, PRS = 113, p c c  = 112, and PCR = p c s  = 114. Finally, 
pss = p s c  = p s ~  = 113, so the transition matrix is 

0 3 ’  

P = [  a 1 1 1  f ; I  
5 5 .  

(5.10) 

Let us assume that the limits of the n-step transition probabilities exist and 
do not depend on the starting state. Thus we have three limits, U R ,  us, and 
uc, where 

U R  = l i m p t i  = l i m p t i  = l i m p g i ,  

and similarly for us and uc. We can then write, using (5.9) for n = 1, 

(5.1 1) 
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Passing to the limit in (5.1 l), we obtain therefore a system of three linear 
equations: 

UR = URPRR + U C P C R  + U S P S R  

uc = URPRC + UCPCC + USPSC 

us = URPRS f UCPCS f USPSS.  

Using the probabilities from the matrix (5.10), we obtain 

(5.12) 

This is a homogeneous system, so an additional equation is needed to deter- 
mine the solution. We have here the identity 

(5.13) 

and passing to the limit with n, we get 

UR f u C  + us = 1. 

The solution of (5.12) and (5.14) is U R  = 9/41,uc = 20/41, and U S  = 
12/41,  which means that almost 50% of days on Markov Island are cloudy. 

(5.14) 

The equations of this example are derived under the assumption 
that (1) the limits pi;) exist and are independent of the starting state i, and (2) the 
number of states is finite. The latter assumption allowed us to pass to the limit in the 
sums in (5.1 1) and (5.13), obtaining (5.12) and (5.14). The first assumption here is 
true under some conditions. Basically we have to exclude two obvious cases when 
the probabilities pi;)  either cannot converge, or if they do, the limits depend on the 
starting state i. 

EXAMPLE57 

Consider a Markov chain with two states, el and e2, such that p l z  = pp1 = 1 
(so that p l l  = p22 = 0). Clearly, the system must alternate between states 1 
and 2 in a deterministic way. Consequently, p i ; )  = 0 or 1, depending whether 
n is even or odd, and the sequence p c )  does not converge. 

EXAMPLE53 

Consider again a Markov chain with two states el and e2. Assume now that 
the transition probabilities are p l l  = p22 = 1 (so that p12 = p21 = 0). In this 
case the system must forever remain in the initial state, and we have pi:)  = 1 
and p g )  = 0 for all n. The limits p ly )  exist but depend on the initial state i .  
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These two examples, in essence, exhaust all possibilities that may prevent the 
existence of the limits pi;’ and their independence of the initial state a .  One may 
summarize them as periodicity (in Example 5.7), and the impossibility of reaching 
a certain state from some other state or states (in Example 5.8). In the next section 
we introduce definitions pertaining to the classification of states in a Markov chain. 
These definitions will allow us to formulate the conditions under which the n-step 
transition probabilities converge to certain limits, regardless of the starting state. 

PROBLEMS 

5.3.1 Find all two-step transition probabilities for: (i) The Markov chain described 
in Problem 5.2.2. (ii) The dog flea model of Problem 5.2.4. 

5.3.2 Assume that a man’s occupation can be classified as professional, skilled la- 
borer, or unskilled laborer. Assume that of the sons of professional men, a percent 
are professional, the rest being equally likely to be skilled laborers as unskilled la- 
borers. In the case of sons of skilled laborers, b percent are skilled laborers, the 
rest being equally likely to be professional men or unskilled laborers. Finally, in the 
case of unskilled laborers, c percent of the sons are unskilled laborers, the rest again 
divided evenly between the other two categories. Assume that every man has one 
son. Form a Markov chain by following a given family through several generations. 
Set up the matrix of transition probabilities, and find: (i) The probability that the 
grandson of an unskilled laborer is a professional man. (ii) The probability that a 
grandson of a professional man is an unskilled laborer. 

5.3.3 In Problem 5.3.2 it was assumed that every man has one son. Assume now that 
the probability that a man has a son is T .  Define a Markov chain with four states, 
where the first three states are as in Problem 5.3.2, and the fourth state is entered 
when a man has no son. This state cannot be left (it corresponds to a male line of 
the family dying out). Find the probability that an unskilled laborer has a grandson 
who is a professional man. 

5.4 T H E  ERGODIC THEOREM 

The main objective of this section is to formulate and sketch the proof of the er- 
godic theorem, which asserts that the nth-step transition probabilities converge in 
the manner described in the Section 5.3. We begin with some definitions. 

Definition 5.4.1 We say that a set C of states is closed if for every state ei in C we 
have 

c P i j  = 1 0 

e j  E C  

The condition means that a one-step transition from a state in C leads always to a 
state in C. By induction, the same must be true for any number of steps. So, if C is 
closed, then for every state ei in C and every n = 1,2, . . . w e  have CejEC p$)  = 1 
(it is not possible to leave a closed set of states). 
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- 
el + O + O O O  
e2 O + 0 0 + 0  
e3 + O + O O O  
e4 O + O O + O  
e5 O + O O O O  
eg - 0 0 + + O f 4  

Figure 5.2 Scheme of transitions 

EXAMPLE5.9 
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Conversely, suppose that the states ei and ej do not communicate. This means that 
at least one of them is not accessible from the other. Assume, for instance, that ej is 
not accessible from ei. For every k ,  if state k is accessible from ei, then e j  cannot 
be accessible from e k .  Indeed, if it were not so, we would have pi:) > 0 for some n, 
and also PLY) > 0 for some m. But then pi;’”’ 2 pi:)pLy’ > 0; hence e j  would 
be accessible from ei, contrary to the assumption. It follows that the class C of sets 
accessible from ei (closed by definition) does not contain state e j ,  and the chain is 
not irreducible. 0 

We will say that state ei is periodic if there exists d > 1 such that whenever p i n )  > 0, 
then n is divisible by d.  This means that a return to state ei is possible only in a num- 
ber of steps that is a multiple of d.  The smallest d with this property is called the 
period of state ei .  If no such d exists, then state ei is called aperiodic. One can show 
that in an irreducible chain all states must have the same period, or all be aperiodic. 
In this case we simply say that the chain is aperiodic. 

We can now formulate the following theorem: 

Theorem 5.4.2 Let P = [pij], i, j = 1,.  . . , M be the transitionpmbabilitymatrix 
ofan aperiodic irreducible Markov chain with ajnite number M ofstates. Then the 
limits 

lim pi;’ = uj  (5.15) 
n-m 

exist for  every j = 1, . . . , M ,  and are independent ofthe initial state ei. Moreovel; 

(5.16) 

k 

ProoJ Assume first that the limits (5.15) exist. As in Example 5.6 we have 

M 

k = l  

Passing to the limit on both sides, we obtain 

M M M 

k = l  k = l  k = l  

which proves (5.16). Next, since C j  p $ )  = 1 for every n, we again pass to the 
limit on both sides, obtaining equation (5.17). In both cases the interchange of 
order of summation and limiting passage is allowed in view of the finiteness of  the 
number of terms in the sum. It remains to prove the existence of the limits. While 
the original proof was purely algebraic (based on an analysis of the powers of a 
stochastic matrix), we will outline here a proof based on the concept of coupling, 
a surprisingly powerhl probabilistic technique for analyzing Markov processes of 
various kinds. Let u k ,  k = 1, . . . , M ,  be a solution of the system (5.16>-(5.17). If a 
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Markov chain starts with initial probabilities ~i = ui, i = 1, . . . , M ,  then the chain 
is stationary in the sense that P[s(n)  = ej] = uj for every j = 1, . . . , A4 and for 
every n. Indeed, the statement is true for n = 0 by definition. If it holds for some n, 
then (taking the possible states at the nth step as a partition) we obtain, using (5.16), 

i=l i=l 

Consider now two chains running independently in parallel, both with transition 
probability matrix P. One chain starts from state i and the other starts from the 
initial state chosen at random according to the distribution { u j } .  Let s ( n )  and ~ ’ ( n )  
be the states at the nth transition of the two chains. We let T denote the first time 
when the two chains are in the same state, that is, s (T)  = s’(T). We say that T is 
the time of coupling of the two chains. 

The following argument is a good example of making use of conditioning with 
respect to events from a partition: As the partition we take the class of events {T = 
m} for 0 5 m 5 n, together with the event {T > n}. These events are clearly 
disjoint and cover all possibilities. We have 

pi;)  = P{s (n )  = ejls(0) = e i }  (5.18) 
n 

= C ~ { s ( n )  = ejIs(0) = e i , ~  = m} x P{T = m i s ( ~ )  = ei} 

+P{s (n )  = ejls(0) = ei,T > n}  x P{T > nls(0) = ei}. 
m=O 

However, 

P{s (n )  = ejIs(0) = ei,T = m} 
= P{s(n)  = ej)s(O) = ei ,  s’(k) # s ( k ) ,  k 5 m - 1, ~ ’ ( m )  = s ( m ) }  

= P{s’(n) = ejls(0) = e i ,  s’(lC) # s ( k ) ,  k 5 m - 1, s‘(m) = s(m)} 
= P{s’(n) = e j / s ’ (m)  = s(m)} = P{s’(n) = e j }  = uj 

(5.19) 

(by stationarity of the chain s’). Substituting (5.19) into (5.18), we obtain 

+P{s(n)  = ejlT > n, s(0) = ei} x P{T > nls(0) = e i }  

+P{s(n)  = ejlT > n, s(0) = ei} x P{T  > nls(O) = ei}. 

= UjP{T I nls(0) = ez} 

To show that the sum of the last two terms converges to uj as asserted, it suffices 
to show that for every i, the term P{T > nls(0) = e i }  converges to zero as n 
increases. We will not give a formal proof here, but intuitively it ought to be clear 
that the probability that T exceeds n, that is, the probability of no coupling of the 
two processes during the first n transitions, tends to zero. The only two ways in 
which the coupling could be avoided indefinitely is (1) if the two chains are periodic 
and “out of phase” or (2) if the chain is reducible, with two disjoint closed sets of 

0 states. Both possibilities are excluded by the assumption. 
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w EXAMPLE 5.10 

Consider a Markov chain with two states, el and e2. Let the transition matrix 
be 

1 1 - b  b 1 '  
where 0 < a < 1,0 < b < 1. Then the chain is irreducible (all states 
communicate) and aperiodic. The probabilities u1 , u2 satisfy the system of 
equations 

u1 = aul + (1 - b)u2, u2 = (1 - a)ul + bu2, u1 + u2 = 1. 

The first two equations are the same. The solution is easily found to be 

1 - b  1 - a  
2 - a - b '  2 - a - b '  

211 = 212 = (5.20) 

If both a and b are close to zero, then the probability of remaining in ei- 
ther of the states is small; hence a typical sequence of states will look like 
12121212212121211212121211 . . . , with the states alternating most of the 
time. The probability of finding the system in state 1 after a large number of 
steps is close to 1/2,  so that we can expect u~.j to be close to 1/2 for i = 1 , 2 ,  
as follows from (5.20). 

Next, if a is close to 0 and b is close to 1, then the system tends to leave 
state 1 fast, and tends to remain in state 2. Thus a typical sequence of states 
would be like 1222221222222211222222221 . . . . Consequently, u1 should be 
close to 0 and u2 should be close to 1, which agrees with (5.20). 

Finally, if a and b are both close to 1, the system tends to remain in its 
present state, and consequently a typical sequence of states would be like 
1112222111222..  . . The average durations of this series of identical terms 
depend on (1 - a) / ( l  - b ) ,  which is the ratio of the probabilities of change. 

EXAMPLE 5.11 Quality Inspection Scheme 

Consider a machine (production line, etc.) that produces some items. Each of 
these items may be good or defective, the latter event occurring with probabil- 
ity p and independently of the quality of other items. 

The items are inspected according to the scheme (see Taylor and Karlin, 
1984) described below, and every item found defective is replaced by a good 
one. The inspection scheme is described by two positive integers, say A and 
B. For brevity, we will be using the term ( A ,  B) scheme. Inspection in the 
( A ,  B )  scheme is of two kinds:full inspection (where every item is inspected), 
and random inspection, where one item is chosen for inspection at random 
from a group of B items. The rules are as follows: 

1. The process starts with a full inspection. 

2. Each full inspection period continues until one encounters a sequence of A good 
items. Then a period of random inspection starts. 
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3. Each period of random inspection lasts until one finds a defective item. In this 
case one starts the next period of full inspection. 

Thus the periods of full inspection alternate with the periods of random 
inspection. The first type of periods are costly but result in full elimination of 
defective items. The second type of periods are less expensive but leave some 
defective items. 

To apply the theory of Markov chains to the analysis of the inspection 
scheme described above, let us define state i (i = 0, 1 ,  . . . , A  - 1 )  as the 
state when system is in a period of full inspection and the last item inspected 
was the ith in a string of consecutive good items. Thus we are in state 0 if the 
last item was defective, in state 1, if the last item was good, but the preceeding 
was defective, and so on. Moreover, let A be the state when the system is in a 
period of random inspection. 

While in practical implementation the ( A ,  B )  inspection scheme may in- 
volve collecting B items and sampling one of them at random for inspection, 
such a procedure is not very convenient to analyze analytically. We will there- 
fore approximate the random sampling scheme used in real situations by an- 
other scheme, which leads to a Markov chain. We will carry out the analysis 
assuming that while in state A every item is inspected, but the probability of 
it being defective is p / B ,  not p .  The probability of finding no defective item 
among B items inspected is (1 - p / B ) B  z 1 - p ,  which is the same as the 
probability of finding a good item if the choice is random from a set of B 
items. 

Thus we obtain the transition matrix: for i = 0,1, . . . , A - 1, 

z,3 { : - - p  f o r j  = i s 1  
p .  , = f o r j  = 0 

0 for all other j ,  

while for i = A ,  

l - p / B  f o r j  = A  
P A ? j  = p / B  for j = 0 L for all other j. 

Clearly, since all states communicate, the chain is irreducible. Also we have 
P A , A  > 0, which means that (see the remarks preceeding Theorem 5.4.2) the 
chain is aperiodic. Thus the limits ui exist and satisfy the system of equations 

UO = PUO + pU1 + ' ' ' + PUA-1 f ( ~ / B ) u A ,  
~i = ( l - p ) ~ i - i ,  i = l , 2  , . . . ,  A - 1 ,  (5.21) 

?J,A = ( l - P ) U A - l + ( l - P / B ) U A ,  
1 = U O + U l + " ' + U A .  

The second of equations (5.21) gives, by induction, the formula 

~ i = ( l - p ) ~ ~ o ,  i = l ,  . . . ,  A - 1 .  (5.22) 
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The third equation of (5.21) gives U A  = ( B / p ) ( l  - p ) U A - l ;  hence 

(5.23) B 

P 
u A  = -(I -p)A?h) .  

Using equation in (5.21), we obtain 

1 + (1 - p )  + (1 - p ) 2  + .  . ' + (1 - p y - 1  + -(I - P I A  = 1; 4 " 1  P 

hence uo = p {  1 + ( B  - 1)(1 - P)~}-' , and generally, 

i = 0 , 1 , .  . . , A  - 1, P ( 1  - PIi 
1 + ( B  - 1)(1 - p ) A '  

Ua = 

Since we inspect all items as long as the system is in states 0, . . . , A - 1 and 
only one item out of B is inspected in state A,  the average fraction of inspected 
items is 

This fraction is the major component in the cost (per item produced) of in- 
spection. I f p  = 1, the cost is 1 (all items inspected). If p = 0, the cost is 1/B 
because only one in each B items is then inspected. 

On the other hand, a fraction of noninspected items is 1 - f, and out of 
those, a fraction p is defective. Since all other defective items are detected and 
replaced by good ones, the average quality of product (measured by fraction 
of defectives) resulting from ( A ,  B )  scheme is (1 - f)p, which is equal to 

( B  - - d A P  
= 1 + ( B  - 1)(1 - P ) ~ '  

In practice, p may be not known (or may be subject to change). Then find- 
ing ( A ,  B) optimal against some specific p (with optimality suitably defined 
through costs and the final quality) is not practicable. One can, however, de- 
termine the maximum of the quality Q (i.e., Q' = max{Q : 0 5 p 5 1)). 
This value depends on the constants A and B of the inspection plan. Similarly 
one can find the maximum inspection cost f' = max{f : 0 5 p 5 1). The 
knowledge of Q' and f', as hnctions of ( A ,  B ) ,  allows finding the optimal 
sampling scheme, as an acceptable compromise between cost of inspection 
and loss due to the resulting quality of the product. The values Q' and f' are 
conservative in the sense that they provide guaranteed quality and guaranteed 
cost, not to be exceeded, on average, in real situations characterized by an 
unknown p .  

Since u, is the limiting frequency of visits in state e j ,  one can expect that 
the reciprocal 1/u j  should be equal to the average number of steps between 
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two consecutive visits in state e j .  We will return to this problem in subsequent 
chapters. 
Theorem 5.4.2 covers the case of an irreducible chain. We also have the following 

theorem which we present without proof 

Theorem 5.4.3 lfthe chain has ajnite number of states, and there exist m and j 
such that p { y )  > 0 for all i, then the assertions of Theorem 5.4.2 hold: the limits 
(5.15) exist andsatisJS/thesystem ofequations (5.16X5.17).  

Observe that in this case the chain need not be irreducible, in the sense that some 
states may be transient (if ej  is transient, then limp$) = 0 for all 2). 

EXAMPLE 5.12 

Suppose that the transition matrix is 

1; l o p ] ’  

where 0 < p < 1. Clearly, state 1 is absorbing and state 2 is transient. 
The chain has two closed sets of states { 1)  and { 1,2}. The assumptions 
of Theorem 5.4.3 (there must be a positive column in some power of the 
transition matrix) hold for j = 1 and m = 1. The system of equations 
is 211 = u1 + ~ ~ 2 , 2 1 2  = (1 - p)u2,u1 + 212 = 1, and the solution is 
u1 = 1, u2 = 0, as expected. State 1 will eventually be reached. 

PROBLEMS 

5.4.1 Determine the period of the dog flea model of Problem 5.2.4. 

5.4.2 Argue that if the number of states is M ,  and state ej is accessible from state 
ei, then it is accessible in no more than M - 1 steps. 

5.4.3 A stochastic matrix P = [pij] is called doubly stochastic if the sums of its 
columns are 1. Show that if an irreducible and aperiodic Markov chain with M 
states has a doubly stochastic transitionmatrix, then uj = 1/M for all j .  

5.4.4 Show that the probabilities uj for the dog flea model of diffusion are given by 
the formula 

uj = ( y ) 2 - N ,  j = 0 , 1 , .  . . , N .  

5.4.5 Another model of diffusion, intended to represent the diffusion of noncom- 
pressible substances (e.g., liquids) is as follows. There are N red and N green balls, 
distributed evenly between urns A and B, so that each urn contains exactly N balls. 
At each step one ball is selected from each urn at random, and the balls are inter- 
changed. The state of the system is defined as the number of red balls in urn A .  Find 
the transition probability matrix, show that the limiting probability distribution uj 
exists, and find it. 
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5.4.6 Let s(n) be a stationary Markov chain with transition probability matrix P = 
[pij] and P(s(n)  = j ]  = u j .  Moreover, let q i j  = P[s(n - 1) = jls(n) = i] so that 
Q = [qij] is also a transition probability matrix (why?). The chain with matrix Q is 
obtained from the chain with matrix P by reversing time. If P = Q, we say that the 
chain is time reversible. (i) Determine the matrix Q in terms of P. (ii) Check if any 
of the two diffusion models in Problems 5.2.4 and 5.4.5 is time reversible. 

5.5 ABSO RPTlO N PRO BABl L IT1 ES 

Let T be the set of all transient states, and assume that the remaining states may be 
partitioned into disjoint closed classes CI, Cp, . . . , C,. with T > 1. 

For ej E T ,  let qj (Ck) be the probability of eventual absorption by the class ck, 
that is, 

q j ( c k )  = P{s(n)  E ck for some n(s(0)  = e j } .  

Once the system reaches one of the states in Ck, it will remain there forever, and 
consequently 

Here 1 - [ q j ( C l )  + . . . + qj(Cr)] is the probability of the system remaining forever 
in transient states (this probability is zero if the number of states is finite; however, 
in case of an infinite number of states, it may be possible that the system will never 
leave the class T of transient states). We are interested in determining the probabil- 
ities q j ( C k )  for any ej in T and k = 1, . . . , T. As it turns out, one can find these 
probabilities for each class separately. To simplify the notation, we can therefore 
omit the index k and look for generic values qj(C) for some closed class C. We 
have the following theorem: 

Theorem 5.5.1 The probabilities qj(C) satisfv the system of linear equations: 

qjjcl) + Qj(C2) + .  ' .  + 4 j ( C r )  I 1. 

(5.24) 

Proof: The proof is immediate. This equation states that from a state ei in T 
one can pass in one step to another state ej in T and then the absorption probability 
becomes qj(C), or one can pass to C, the probability of this being the second sum in 
(5.24). All other transitions lead to closed sets different than C, and then transition 
to C becomes impossible. 0 

EXAMPLE 5.13 

Let us consider a basic unit of a tennis match, namely a game. During the game 
the same player always serves, and the winner of the game is the first player to 
win four points and to be at least two points ahead of the other player. Suppose 
that the players are A and B, and that A (e.g., the server) has a probability p 
of winning each point (i.e., the probability of B winning a point is 1 - p ) .  
Moreover, assume that the points are played independently. By tradition, the 
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Figure 5.3 Scheme of a game in tennis 

first two points are worth 15 each, and the third one is worth 10. So the tennis 
game may be regarded as a process of transitions over the partial scores, as 
depicted in Figure 5.3. The score corresponding to each of the players having 
won two points is (30 - -30), and it is equivalent to the score corresponding 
to three points won by each (40 - -40), or to any number k > 3 of balls 
won by each (called deuce). Equivalence here means that from this score it 
is necessary to win two points more than the opponent in order to win the 
game. One can regard the game of tennis as a random walk on the set of 
states listed in Figure 5.3.  The possible transitions and their probabilities are 
as marked, with the probability of going “up” being p and the probability of 
going “down” being 1 - p .  There are two closed sets, one consisting of the 
state labeled “A wins” and the other consisting of the state labeled “B wins.” 
All the remaining states are transient. We want to find the probabilities qj(A) 
of player A winning the game if the score is j .  In particular, we are interested 
in the value qo-o(A). For C consisting of the single state A, the system of 
equations (5.24) takes the following form: For states (scores) from which an 
immediate victory or loss is not yet possible, we have 

q30-30(A) = pq40-30(A) + (1 - p)q30-40(A).  (5.25) 

Next, for states from which an immediate win by A is possible, 

q40-O(A) = P + (1 -p )q40-15(A) ,  

q40-15(A) = p f (1 -p )q40-30(A) ,  

q40-30(A) = P + (1 - P)q30-30(A).  (5.26) 

Finally, for states from which an immediate loss by A is possible, we have 

(5.27) 
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Figure 5.4 Probability qo-o(A) of winning a game by A as a function of p 

To solve this system, we have to first solve the set of equations (5.25),  (5.26), 
and (5.27) and then proceed recursively backward, finally to obtain the for- 
mula 

po-o (A)  = (15p4 - 34p5 + 28p6 - 8p7)/(1 - 2p  + 2 p 2 )  

(see Bartoszynski and Puri, 1981). The graph of this probability, regarded as a 
function of probability p of player A winning a single point, is given in Figure 
5.4. Several observations here may be of some interest. First, the graph is 
fairly close to being linear for p between 0.35 and 0 .65 ,  with values qo-o(A) 
close to 0 or 1 outside this range. This means that tennis is really interesting if 
it is played by similar players. If one of them is much stronger than the other 
(e.g., the probability p of winning a point is above 70%), then the opponent has 
very little chance of winning a game, let alone a set or a match. Second, the 
derivative ofthe function qo-o(A) at p = 1/2 is 5/2, so the slope of qo-o(A) 
in the nearly linear (middle) part of the graph is about 2.5.  This shows the 
role of practice training: for evenly matched players, every 1% increase in the 
probability of winning a point pays off in about a 2.5% increase in probability 
of winning a game. This is a substantial increase if one considers that a match 
(between men) consists of at least 18 games. 

PROBLEMS 

5.5.1 Find the probability of winning a game in tennis directly, using the fact that 
when the deuce (or 30-30) is attained, the probability ofwinning is x F = 0 ( 2 p q ) n p 2 .  

5.5.2 Consider the following simple model of evolution: On a small island there is 
room for 1000 members of a certain species. One year a favorable mutant appears. 
We assume that in each subsequent generation either the mutants take one place 
from the regular members of the species with probability 0.6, or the opposite hap- 
pens. Thus, for example, the mutation disappears in the very first generation with 
a probability of 0.4. What is the probability that the mutants will eventually take 
over? 



CHAPTER 6 

RANDOM VARIABLES: UNIVARIATE 
CASE 

6.1 INTRODUCTION 

In Chapter 1 probability theory was presented as techniques to describe, analyze, 
and predict random phenomena. We then introduced the concept of sample space, 
identified events with subsets of this space, and developed some techniques of eval- 
uating probabilities of events. 

Random variables, each defined as numerical function on some sample space S, 
will initially be regarded merely as useful tools for describing events. Then, if X 
stands for a random variable, inequality such as X < t determines a set of all out- 
comes s in S satisfying the condition X ( s )  < t .  We will postulate’ that {X < t }  
is an event for each t .  This way we gain a powerful tool for describing events in 
addition to the techniques used thus far, such as specifying subsets of sample space 

9The reader may wonder why we use the term postulate here: the set {s E S : X ( s )  5 t }  is a subset 
of S and consequently, is an event. However, as explained in Section 2.4, in the case of nondenumerable 
sample spaces S we may be unable to define probability P on the class of all subsets of S. We must 
therefore restrict considerations to some class of subsets of S, forming a a-field, say& of events. In 
defining random variables, we postulate that {s E S : X ( s )  5 t }  E A for every t. In accepted 
terminology, we say that random variables X are functions on S that are measurable with respect to the 
a-field A. From now on we will always tacitly assume that each set of the form { X 5 t }  is an event, 
and therefore it is permissible to speak of its probability. 

125 
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S by listing their elements or by providing a verbal description. 

(*) However, in Chapter 1, it was repeatedly stressed that the concept of sample 
space is, to a large extent, a mathematical construction, and that one can have several 
sample spaces, all of them equally acceptable for the same phenomenon. The prob- 
lem then is how to reconcile the inherent lack of uniqueness of the sample space used 
to describe a given phenomenon with the idea of a random variable being a function 
defined on the sample space. At first glance it would appear that the concept of a 
random variable, being based on another concept (sample space S) that allows sub- 
jective freedom of choice, must itself be tainted by subjectivity and therefore be of 
limited use. 

Specifically, suppose that there are several sample spaces, say S, S’, . . ., with the 
associated probability measures P, P’, . . . that are equally acceptable for describing 
a given phenomenon of interest, and let X, X’, . . . be random variables defined, 
respectively, on S, S’, . . . . 

As we will explain, the random variables that are useful for analyzing a given 
phenomenon must satisfy some “invariance” principle that make them largely inde- 
pendent of the choice of the sample space. The general idea is that a random variable 
is exactly what the name suggests: a number depending on chance. Phrases of this 
sort were commonly used as “definitions” of the concept of random variable before 
the probability theory was built on the notion of sample space. What we want to 
achieve is to define random variables in a way that makes them associated with the 
phenomenon studied rather than with a specific sample space, hence invariant under 
the choice of sample space. This is accomplished by introducing the following prin- 
ciple: (*) 

Invariance Principle for Random Variables 
Suppose that X’ and X” are two random variables defined on two sample spaces 
S’ and S” used to describe the same phenomenon. We say that these two random 
variables are equivalent if for every t the event { X’ 5 t }  occurs if and only if the 
event { X” 5 t }  occurs, and moreover if these events have the same probability. 

Clearly, the equivalence of random variables defined above satisfies the logical 
requirements for relation of equivalence: reflexivity, symmetry, and transitivity. We 
can therefore consider equivalence classes of random variables and speak of repre- 
sentatives of these classes. Random variables are particularly useful in describing 
and analyzing random phenomena: they do not depend on a particular choice of a 
sample space; hence they are free of the subjectivity and arbitrariness involved in 
the selection of S. 

6.2 DISTRIBUTIONS OF RANDOM VARIABLES 

Although formally each random variable is a numerical function on some sample 
space S, we usually suppress the dependence on elements of S in notation, referring 
to it only when needed to avoid confusion. As symbols for random variables, we will 
use capital letters from the end of the alphabet, X ,  Y, 2, possibly with subscripts. 
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With every random variable we will associate its probability distribution, or sim- 
ply distribution. 

Definition 6.2.1 By a distribution of the random variable X we mean the assign- 
ment of probabilities to all events defined in terms of this random variable, that is, 

0 events of the form { X E A } ,  where A is a set of real numbers. 

Formally, the event above is a subset of the sample space S. We have 

{ X  E A }  = {s  E S : X ( s )  E A }  c S. 

The basic type of events that we will consider is an interval, that is, 

{ a  < X < b } ,  { u  5 X < b } ,  { a  5 X 5 b} ,  { a  < X 5 b} ,  (6.1) 

where -03 5 a 5 b 5 03. 

If we can compute probability of each of the events (6.1) for all a 5 b, then using 
the rules from Chapter 2, we can compute probabilities of more complex events. For 
example, 

P [ { ,  < X 5 b}'] = P { X  5 a or X > b }  = P{X 5 a }  + P { X  > b }  
= P { X  5 a }  + 1 - P { X  5 b} .  

Similarly, for the probability of the intersection { a  < X 5 b }  n { c  < X 5 d } ,  
the answer depends on the mutual relationship between a,  b,  c, and d (in addition to 
assumptions u 5 b and c _< d). If, for instance, a < c < b < d ,  then the event in 
question reduces to {c < X 5 b} ,  and so on. 

Actually, it turns out that it is sufficient to know the probabilities ofonly one type 
of event (6.1) in order to determine the probabilities of remaining types. We will 
prove one such relation; the proofs of others are similar. 

Theorem 6.2.1 The probabilities of the events of the form { a  < X 5 b }  for  all 
-ffi 5 a 5 b 5 03 uniquely determine the probabilities of events of the form 
{ a  < X < b } ,  {a,  5 X 5 b } ,  and { a  5 X < b} .  

PmoJ We have 

{ a  < X < b} = u { a < X < b - ' } ,  n 
n 

We will prove the last of these identities. Let s be a sample point belonging to the 
left-hand side so that a 5 X ( s )  < b. Then for every n we have a - 1/n < X ( s ) .  
Also, if X ( s )  < b, then X ( s )  5 b - l / m  for some m (actually for all m sufficiently 
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large). Thus s belongs to the set n, &,{a - 1/n < X 5 b - l/m}. On the other 
hand, if s belongs to the right-hand side of the last equality in (6.2),  then we have 

1 1 
a -  - < X(S) 5 b -  - 

n m 

for all n and for some m. Passing to the limit with n -+ 03, we obtain a 5 X(s) 5 
0 

T h u s e a c h o f t h e s e t s { a < X < b } , { a < X <  b } a n d { a < X <  b}canbe 
represented as union or intersection (or both) of a sequence of events of the form 
{a, < X 5 b,}." 

b - l / m  < b, which means that s belongs to the set {a 5 X < b}. 

Let us observe that { a  < X 5 b} = { X 5 b} \ { X 5 a}. Consequently, 

P{u < X 5 b} = P{X 5 b} - P{X 5 a} 

and the probabilities of all events of the form {a < X 5 b }  are determined by 
probabilities of events of the form {X 5 t }  for -co < t < co. This justifies the 
following important definition: 

Definition 6.2.2 For any random variable X, the function of real variable t defined 
as 

(6.3) F x ( t )  = P{X 5 t }  

is called the cumulative probability distribution function, I '  or simply cumulative 
0 distribution function (cdf) of X. 

The following two examples will illustrate the concept of a cdf: 

EXAMPLE6.1 

The experiment consists of shooting once at a circular target T of radius R. 
Assume that it is certain that the target will be hit, and that the probability of 
hitting a particular section A contained in T is given bylAl/JTI, where I . 1 
is the area of the section. We will determine the cdf of a random variable X 
defined as the distance between the point of hitting and the center of the target. 

SOLUTION. A natural sample space in this case is just T.  Without loss of 
generality, we can put the center of coordinate system in the center of T so 
that sample points s = (z, y) satisfy x 2  + y2 5 R2.  If the target is hit at point 
s = (z, y), then X = X ( s )  = d m  is the distance of the point of hit 
from the origin. Clearly, we have 0 5 X 5 R. 

' O h  terminology introduced in Chapter I ,  we could say that each of the three types of events above be- 
longs to the smallest a-field generated by the class of all events of the form {a < X < b}.  Equivalently, 
we could say that the intervals on the real line of the kinds (a, b) ,  [a, b ) ,  and [a, b] belong to the smallest 
u-field ofsets of real numbers that contains all intervals of the form (a, b]. 
"According to the fooinote at the beginning of this chapter, the right-hand side of (6.3) is well defined 
for each t ( i t , ,  { X  < t }  is an event). 
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Figure 6.1 Cdf of the distance from the center of the target 

Now let F x ( t )  = P { X  5 t } .  Obviously, if t > R, then F x ( t )  = 1, and if 
t < 0 ,  then F x  ( t )  = 0. For t with 0 5 t 5 R, we have 

F x ( t )  = P { X  5 t }  
= P{point s falls in the circle ofradius t centered at the origin} 

7T R2 

Thus 

0 t < O  

(8)' 0 5 t 5  R 

1 t > R .  

(6.4) 

The graph of FX ( t )  is given in Figure 6.1. 

Remark A simple fact, usehl in determining cdf's of random variables, is that if the 
random variable X is bounded from above, then Fx(t)  = 1 for all t > M ,  where 
M is the upper bound for X. Indeed, if t > M ,  then 

F x ( t )  = P { X  5 t }  

= P { X  5 M }  + P { M  < X 5 t }  = P { X  5 M }  = 1. 

Similarly, if X is bounded from below, then F x ( t )  = 0 for t < m, where m is the 
lower bound for X. 



130 RANDOM VARIABLES: UNIVARIATE CASE 

HHH 3 
HHT 2 
HTH 2 
THH 2 

EXAMPLE62 

T T H  1 
T H T  1 
H T T  1 
TTT 0 

Let the experiment consist of three tosses of a coin, and let X be total number 
of heads obtained. The sample space consists of the eight sample points listed 
below, together with their associated values of X: 

S X I  s X 

The random variable X satisfies the condition 0 5 X 5 3 so that F x ( t )  = 
0 if t < 0 and F x ( t )  = 1 if t > 3. Moreover, since X can take on only 
values 0 ,1 ,2 ,  and 3, we have P{X E A }  = 0 for every set A that does 
not contain any of the possible values of X. Finally, simple counting gives 
P{X = 0) = P{X = 3) = 1/8 and P{X = 1) = P{X = 2) = 3/8. Thus 
for 0 2 t < 1 we write 

F x ( t )  = P{X 5 t )  = P{X < 0) + P{X = 0) + P{O < x L t }  
= P{X=O)=-. 1 

8 

Similarly, if 1 5 t < 2, then 

F x ( t )  = P{X 5 t }  
= P { X  < 0 )  + P { X  = 0 )  + P{O < x < 1) 

+ P { X  = 1) + P{1< x 5 t }  

P{X = 0) + P{X = 1) = -. 
1 
2 

= 

Proceeding in a similar way with 2 5 t < 3, we get 

0 for t  < 0 I 1 for 3 5 t .  

f o r O < t < I  

F x ( t ) =  f o r l < t < 2  

f o r 2 5 t < 3  

The graph of Fx(t) is given in Figure 6.2 .  

We will next investigate general properties of cd f s  in some detail. 

Theorem 6.2.2 Evely cdf F has the followingproperties: 
(a) F is nondecreasing. 
(b) limt,-, F ( t )  = 0, 
(c) F is continuous on the right. 

lirnt+oa F ( t )  = 1. 
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I -  

?. 

* 
t I 2 3 4 

Figure 6.2 Cdf of the number of heads in 3 tosses of a coin 

Prooj Let F be the cdf of random variable X. To prove (a), let t l  < t 2 .  Then 

F ( t 2 )  - F ( t 1 )  = P { X  5 t 2 }  - P { X  5 t l }  = P{ t l  < x 5 t 2 }  1 0 .  

Consequently, F ( t l )  5 F ( t 2 ) ,  as was to be shown. 
To prove the second relation in (b), we have to show that limn-+az F(t,) = 1 for 

any sequence { t n }  such that t ,  + 00. Without a loss of generality, we can assume 
that tl  < t 2  < . . .  + 00. The events {X 5 t l } , { t l  < X L: t 2 } , { t 2  < X 5 
t s } ,  . . . are disjoint, and their union is the whole sample space S. By the second 
and third axioms of probability, we have 

00 

1 = P ( S )  = P { x  6 t l }  + P { t k - 1  < x 5 t k }  

k=2  
05 n 

= ~ ( t l )  + C [ F ( t k )  - ~ ( t l e - l ) ]  = F(t1) + lim C[~(tlc) - F ( t k - l ) ]  
n-a, 

k=2 k = 2  

= 

= lim F ( t n ) ,  

Iim { F ( t i )  + [ F ( t 2 )  - F(ti)] + . . . + [ F ( L )  - F(tn-1)]} 
7L-w 

n - w  

as was to be shown. The proof that lirnt,-,,= F ( t )  = 0 is analogous. 

show that limn.+m F ( t n )  = F ( t * ) .  

t n }  = {X 5 t*} .  So, by Theorem 2.6.1, we have 

To prove (c), let { t n }  be a sequence such that t l  > t 2  > . . --t t'. We have to 

The events { X  5 tn}  form a monotonically decreasing sequence, with { X  5 

~ ( t * )  = P { X ~  t * }  = P n{x st,} [ _ ,  1 
= P[ lim {X _< t n } ]  = lim P { X  5 t,} = lim F(t,). 

n-az n - w  n - w  

One of the consequences of the foregoing properties of cdf's is the following fact: 
for every x 

P { X  = x} = F ( z )  - F ( x  - O), (6.5) 
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where F ( z  - 0) = limhlo F ( z  - h)  is the left-hand-side limit of F at z. Indeed, we 
have 

n=l  

for every decreasing sequence of positive numbers h, with hn + 0. Since the sets 
in the product (6.6) are decreasing, by the continuity property of probability, 

P { X  = z}  = 

= 

lim P { z  - h, < X I z} = lim [ F ( z )  - F ( z  - h,)] 

F ( z )  - lim F ( z  - hn) = F ( z )  - F ( z  - 0 ) .  
n-cc n-cc 

n-cc 

Sometimes it is necessary to identify values of a random variable corresponding 
to a given value of cdf. These values are called quantiles. 

Definition 6.2.3 Let X be a random variable with cdf F ,  and let 0 < p < 1. The 
pth quantile <p  of X is defined as any solution ofthe simultaneous inequalities 

P{X 5 z} 2 p ,  P { X  2 z} 2 1 - p .  (6.7) 

The inequalities (6.7) are equivalent to 

F ( z )  2 p ,  F(z - 0 )  I P.  0 

To illustrate this definition, we assume now that X is a random variable with 
continuous cdf F ( z ) .  For any p with 0 < p < 1 there exists1* a point tp satisfying 
the relation F ( t P )  = p .  This means that P { X  5 <} = p .  If F is continuous, then 
P { X  2 EP} = P { X  > ep}  = 1 - F ( t p )  = 1 - p .  So tp satisfies (6.7). The point 
tp  need not be unique though; F can satisfy the relation F ( x )  = p for an interval of 
values z, and each of them can serve as tp.  For the case of random variables with 
continuous cdf, the condition (6.7) would then reduce to 

with each of the relations (6.8) implying the other. 

EXAMPLE6.3 

For the random variable X in Example 6.1, the quantiles can be determined 
from the relation (<p/R)2 = p ;  hence tP = R@. For instance, i f p  = 0.25, 
then E0.25 = R/2: chances of hitting the target at a distance less than 1/2 of 
the radius are 0.25. 

The reason for using inequalities in condition (6.7) instead of the simpler con- 
dition (6.8) lies in the fact that the equation F ( z )  = p may have no solution, as 
illustrated by the following example: 

12The existence of such a point follows from the continuity (hence also the Darboux property) of function 
F ;  it must assume every value between its lower bound 0 and upper bound 1. 
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EXAMPLE6.4 

Let X assume values 1, 2, and 3 with probabilities 0.2, 0.6, and 0.2, respec- 
tively. Then F ( z )  = 0.8 for 2 5 z < 3, and F ( z )  = 1 for z 2 3. Thus 
the equation F ( z )  = p is solvable only for p = 0.2 and p = 0.8. To 
find, for example, a J 0 . 5 ,  we need to use (6.7), looking for points such that 
P{X I: x} 2 0.5 and P{X 2 z} 2 0.5. The first inequality gives z 2 2, 
while the second gives 1 - F ( z  - 0) 2 0.5.  Hence z 5 2, and both inequalities 
are satisfied only for z = 2. So we have Jo.5 = 2. 

Certain quantiles have special names. For example, ( 0 . 5  is called the median, 
(0 .25  and (0.75 are called lower and upper quartiles, respectively. Quantiles may 
also be called percentiles, pth quantile being the same as lOOpth percentile. 

We have the following theorem: 

Theorem 6.2.3 I f X  is a random variable with continuous cdfand 0 < Q < P < 1, 
then 

P{Ea I: x 5 Jp} = P - Q, (6.9) 

where Ja and .$p are any quantiles of order a and P, respectively 

ProoJ: The left-hand side of (6.9) equals F(Jp)  - F ( J a  - 0), which equals 
F ( ( p )  - F(Jcr) by continuity of F ,  and hence equals p - a by the definition of 
quantiles. 0 

1 EXAMPLE6.5 

For example, if F is continuous, there is always 50% probability that a random 
variable with cdf F will assume a value between its upper and lower quartile. 

Some comments about the concept of cdf are now in order. First, we defined the 
cdf of a random variable X using nonstrict inequality, that is, F ( t )  = P{X L t } .  
It is equally permissible to define cdf by the formula F * ( t )  = P{X < t } .  The only 
difference between F and F’ is that the latter is left continuous. Such a definition 
of the cdf actually appears throughout in Russian and Eastern European statistical 
literature. 

The second comment concerns the sufficiency of conditions ( aHc)  in Theorem 
6.2.2. To put it differently, if a function F satisfies conditions (axe), does there 
exist a random variable X such that F is the cdf of X, that is, F ( t )  = P{X 5 t }  ? 

The following theorem provides the answer. We give it here without proof. Inter- 
ested readers can see advanced texts on probability, for example, Chow and Teicher 
(1 997). 

Theorem 6.2.4 Any function F that satisfies conditions (a)-(c) of Theorem 6.2.2 is 
a cdf of some random variable. 

The importance of this theorem (as in the case of Theorem 2.6.3) is that it guar- 
antees that some phrases, such as “let F be a cdf,” make sense, with no additional 
assumptions about F besides (aHc)  of Theorem 6.2.2. 
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HHH 3 0 
HHT 2 1 
HTH 2 1 
THH 2 1 

The next question, quite naturally, is: Do cdf's determine uniquely the random 
variables associated with them? The answer here is negative: there are many random 
variables (associated with different phenomena, or even associated with the same 
phenomenon) that have the same cdf. Thus it is a random variable that determines 
its cdf, and not conversely. To see why this is so, let us consider the following 
example: 

TTH 1 2 
THT 1 2 
HTT 1 2 
TTT 0 3 

EXAMPLE6.6 

Continuing Example 6.2, let us consider the experiment consisting of three 
tosses of a coin, and two random variables: X = total number of heads and 
Y = total number of tails. We have here, as before, 

S x Y I  s X Y  

On the cumulative distribution function of a random variable X, recall from Def- 
inition 6.2.1 that the distribution of random variable X is defined as an assignment 
of probabilities P { X  E A} ,  where A is a set of real numbers. The cumulative dis- 
tribution function FX then provides probabilities of intervals open on the left and 
closed on the right: 

P { X  E (a,  b ] }  = P { a  < x 5 b }  = Fx(b)  - F x ( a ) .  (6.10) 

The question now is: Does FX also determine the probabilities P { X  E A }  for 
sets A other then intervals (a ,  b ] ,  and if so, what is the class of these sets? Before 
answering, let us observe that the leftmost member of (6.10) can be written as P{ s E 
S : X ( s )  E (a ,  b ] } ,  so that the symbol P refers to the subsets of sample space S, as 
it should according to the definition of probability. On the other hand, the rightmost 
member depends only on a and b, and assigns a number to an interval ( a ,  b] .  We 
may therefore say that we are dealing with probability on sets of real numbers (at 
least on intervals). According to the footnote at the beginning of this chapter, the 
left-hand side is well defined: We know that events (sets on which P is defined) 
form a a-field, and we also know that sets { X 5 t }  are events so that 

{ a  < X 5 b }  = {X 5 b} \ {X  5 a }  

is also an event. 
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The proof of the following extension theorem can be skipped in the first reading. 

Theorem 6.2.5 If F is a cumulative distribution function, then the function m F  

dejned on the class BO ofall intervals ( a ,  b], -03 5 a 5 b 5 $03, by the formula 

m F ( a ,  b] = F ( b )  - F ( a )  (6.11) 

can be atended uniquely to a probability measure mF on the smallest azfield B 
containing DO. 

(*) ProoJ: According to Theorem 2.6.3 any a-additive function on a field E has 
a unique extention to a a-additive function on the smallest a-field containing 9. 
Therefore, to prove the theorem, it suffices to show that (1 )  m F  can be extended 
uniquely to the smallestjeld containing all intervals (a ,  b],  (i.e., to the smallest field, 
say B1, containing Bo), and that (2) the hnction m F  extended to B1 is a-additive 
on Bl .  

To prove (l), observe that the complement of ( a ,  b] is the union of (-m, a]  and 
( b ,  031 , while the intersection ( a ,  b] n (c, d] is empty if b 5 c and otherwise equals 
(max(a, c ) ,  min(b, d ) ] .  Consequently, each set in B1 can be represented as a finite 
union of disjoint intervals (a, b] from Bo. Using generally the symbol I for sets in 
Bo, we can write each set A E 171 as 

m 

A =  (J I j ,  
j=1 

where I j  fl I k  = 0, if j # k.  We then define 

m 

(6.12) 

(6.13) 
j=1  

with m ~ ( I j )  as defined in (6.1 1). We only need to show that definition (6.13) is 
unambiguous; that is, it does not depend on the choice of representation (6.12). 
Indeed, suppose that 

A =  U I j =  U I ; ,  (6.14) 
m n 

j = 1  k = l  

where I j  n I ,  = I; i l  I,' = 0 if j # r,  k # s. We have to show that 
m n 

C m F ( I j )  = C m F ( I i ) .  (6.15) 
j = 1  k = l  

We may write, using (6.14) 
n n 

I~ = I~ n A = I~ n U I; = U (rj n I;) 
k = l  k = l  

and similarly 
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Consequently, 

m 

j=1 
m n  n m  

n / m  \ n  

which shows (6.15). 
It remains now to show that the function m F  is o-additive on B1. In fact, argu- 

ment in (6.15) remains valid for infinite unions, provided that we show m F  to be 
a-additive on Bo, that is, that for all a 5 b the condition 

00 

( a ,  b] = u I k ,  I k  II Ij = 8 for k # j 
k=l  

implies 

For every fixed n we have 
n u I k  c (a,  b1 

k=l  

Rearranging, if necessary, the intervals I k  = ( U k ,  b k ]  , we can assume that for every 
n, 

Consequently, 

a I a1 I bl 

n 

m F ( U  I k )  = 
k=l  

I 

n n 

n n - 1  

I b. (6.17) 

Letting 7~ + cu, we write 

00 

c m F ( 4 )  I m ( a , b I .  
k=l  

It remains to prove the reverse inequality. At this point it may be appropriate to 
make the following comment, without which the proof below might appear incom- 
prehensible. In fact, one could say that the proof is “obvious.” Since ( a ,  b] is parti- 
tioned into a countable number of disjoint intervals, their measures r n ~  can simply 
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be added by canceling negative and positive terms in expressions for contiguous 
intervals, according to the formula, valid for a < b < c, 

[F(b)  - F ( u ) ]  + [ F ( c )  - F(b)]  = F ( c )  - F(u) .  

The trouble is that sometimes intervals Ik cannot be arranged into a sequence of 
contiguous intervals. 

To visualize such a possibility, consider the partition of interval (- 1 , 11 by points 

00 m 
so that 

n=l 

so that 
00 m 

n=l 
There is no rightmost term in the first union, and no leftmost term in the second 
union. So no cancelation occurs in passing from one sum to the other. The situ- 
ation can be much more complicated because there could be infinitely many such 
accumulation points as 0 in the example above. 

To continue with this proof, let us exclude the trivial case a = b and choose t 
such that 0 < t < b - a. Let the sets Ik in (6.16) be Ik = (ak ,  b k ]  (observe that no 
monotonicity of sequences { ak} and { b k }  is assumed). 

Since function F is continuous on the right, for every n there exists Pn > 0 such 
that 

F(bn +On) - F(bn) < 

Let I; = (a,n, b, + Pn) .  We have then 

00 

[a + t ,  b] C u 1;. 

By the Heine-Bore1 lemma,13 there exists a finite N 

n=l 

N 

(6.18) 
t - 

2n ' 

such that 

(6.19) 

Let n~ I N be such that b E I&.  If a + t < a,,, choose n2 I N such that 
a,, E I&. We continue in this way until k such that ank 5 a + t .  Such a k must 
exist in view of (6.19). Renumbering the chosen intervals, if necessary, we have 
[a + E ,  b] c I; and 

~ , i  < b < bi +Pi l  

ai+l < a i < b i + l + & + l ,  i = l 1 2 , . . . l k - l ,  

a,k 5 U + E < bk -k P k .  

'3Heine-Borel lemma asserts that from any covering of a compact set by open sets one can choose a 
finite covering. In the present case the closed interval [a + e ,  b] is compact, and covering is by open sets 
(an, bn + Pn). 
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- ‘ t  

I , ,  
.l .$ .I 0 I 1 1 

* 

Figure 6.3 Cdf of random variable X 

m m 

j=1 j=1 

which completes the proof. (*) 

PROBLEMS 

6.2.1 In the statements below, F and G stand for cdf‘s of random variables X and 
Y, respectively. Classify each of the statements below as true or false: 
(i) If X is always strictly positive, then F ( t )  is strictly positive for all t .  
(ii) If F ( 3 7 )  = F(45), then P(40 < X < 42) = P(43 < X < 44). 
(iii) If Y = X + 3, then G ( t )  5 F ( t )  for all t .  
(iv) If G(17) - F(17) = 1, then both X and Y are always less than 17. 
(v) If G(17) - F(17) = 1, then P(Y > X) = 0. 
(vi) If G(17) x F(17) = 1, then P(max(X, Y )  5 17) = 1. 
(vii) If G(17) x F(17) = 0, then P(min(X, Y )  5 17) = 1. 
(viii) If IF@) - G(t)I < E for all t ,  then IX - YI < 6 .  

(ix) If P ( X  5 Y )  = 1, then F ( t )  2 G(t) for all t .  

6.2.2 Figure 6.3 shows the cdf of a random variable X. Find: (i) P(X = -2), 
P ( X  = 0 ) .  (ii) P ( X  5 3), P(X < 3), P ( X  < 0.13). (iii) P ( X  > 2), P ( X  > 
2.79). (iv) P(-1 < X 5 0.7), P(-2  5 X < 1). (v) P(l 5 1x1 5 2) .  

6.2.3 Let X be a random variable with cdf given by Fx(z) = 0 for 5 < 0 and 
F x ( z )  = 1 - 0.3e-’” for z 2 0. Determine: (i) P(X = 0). (ii) X if P ( X  5 3) = 
3/4. (iii) P(jXl 5 5) using results of (ii). 
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6.2.4 Determine the medians and lower and upper quartiles for random variables 
with the following cdf's: 

for x < 0 
for 0 5 x 5 1/Gl 
for x > 1/G, 

k > 0 

6.2.5 A point is chosen at random from a square with side a. Let X be the distance 
from the selected point to the nearest corner of the square. Find and graph FX (x). 

6.2.6 A coin of diameter d is dropped on a floor covered with square tiles with side 
length D > d. Let X be the number of tiles which intersect with the coin. (i) Find 
the distribution of X. (ii) Determine the median of X as a hnction of D and d.  

6.2.7 Prove the first part of assertion (b) of Theorem 6.2.2. 

6.3 DISCRETE A N D  CONTINUOUS R A N D O M  VARIABLES 

Although the cdf of a random variable X provides all the information necessary 
to determine probabilities P{ X E A }  for a large class of sets A,  there exist wide 
and practically important classes of random variables whose distributions may be 
described in simpler ways. Two such classes will be discussed in this section. Ac- 
cordingly we introduce the following definition: 

Definition 6.3.1 A random variable X will be called discrete, if there exists a finite 
or countably infinite set of real numbers U = {XI, 22, . . .} such that 

P { X  E U }  = C P { X  = 2,)  = 1. (6.20) 
n 

EXAMPLE6.7 

Let U = { 1 , 2 , .  . . n} for some n, and let P { X  = j }  = 1/n for j E U. 
Condition (6.20) clearly holds, so the values of X are restricted to U .  This 
example describes the selection (assumed fair) of the number of the winning 
lottery ticket, where n is the total number of tickets. 

A discrete random variable with a finite set U of values, all of them having the 
same probability of occurrence, is called (discrete) ungorm. We will later analyze 
this distribution in more detail. 

EXAMPLE 6.8 Binomial Distribution 

The binomial distribution plays a central role in probability theory and statis- 
tical modeling, and it will often be used throughout this book. Here we just 
introduce a definition and basic formulas. 
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Definition 6.3.2 The binomial random variable is defined as a total number of suc- 
cesses i n n  independent experiments, each experiment leading to success with prob- 
ability p. 0 

We have encountered special cases of binomial random variable in the preceding 
chapters (e.g., in analyzing the distribution of the "total number of heads in 3 tosses 
of a coin"). The set of possible values of X is {0,1, , . . , n}, since the number of 
successes is an integer, and at best equals n (the number of trials) and at worst equals 
0 (if all repetitions lead to failure). The probability of k successes and n - k failures 
in any specific order S F F S . .  . S equals p( l  - p)( l  - p ) p . .  . p  = pk(l - P ) , - ~ .  
Since the probability of this string does not depend on its order, we obtain P{ S, = 
k }  by taking pk( l  - P ) " - ~  as many times as there are different orders of k letters 
S and n - k letters F .  This number is (:), since each such order is completely 
specified by selecting the set of locations for letter S among n slots. Thus 

P { X  = k }  = pk( l  -p)n-k, k = 0 , 1 , .  . . ,n ,  (6.21) (3 
and the Newton binomial formula (3.16) shows that, as expected, 

k=O k=O 

In the sequel, we shall use the symbol BIN(n, p) to denote binomial distribution 
with parameters n and p. This way we say that X has distribution BTN (n ,  p) or sim- 
ply X - BIN(n, p). We also let the individualprobabilitiesin distributionBIN( TZ, p) 
be denoted by b ( k ;  n, p )  so that 

(6.22) 

In the examples above, the set U was finite, with U = { 1 . . . , n}  in Example 6.7 
and U = ( 0 ,  1, . . . , n} in Example 6.8. In the example below, the set U is infinite. 

EXAMPLE6.9 

Consider a sequence of independent tosses of a die. Let X be the number of 
tosses until the first ace. Clearly, X can assume values 1 , 2 ,3 ,  . . . , and the 
event { X = k }  occurs if the kth toss gives an ace (chances are 1/6) and the 
first k - 1 tosses are all different from an ace [chances are (5/6)"-']. Thus 

(6.23) 

We can easily check that 

1 1  00 

k = l  k = l  

so condition (6.20) is satisfied. 
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This random variable is generally described as “waiting time for first suc- 
cess” (in this case success being an ace). Distribution (6.23) is an example of 
geometric distribution, denoted GEO(p), which will be discussed in detail in 
Chapter 9. 

EXAMPLE 6.10 Poisson Distribution 

We say that the random variable X has Poisson distribution with parameter 
X > 0, denoted POI(X), if the possible values of X are nonnegative integers 
0,1,2,. . .and 

(6.24) 
Xk 

k! 
P{X = I C }  = --e-’, k = 0,1,2,. . . .  

The Poisson distribution is often applied in practice, so we will study its prop- 
erties in some detail in following sections. At present, observe that (6.24) is 
correctly defined, since 

In the examples above the set U of possible values of X consisted of integers. 
This is the most frequent case, since typically discrete random variables represent 
counts involved in observing random phenomena. In other words, discrete random 
variables are typically obtained as “the number o f . .  . ” One should remember, how- 
ever, that the definition allows any values in the set U, and not necessarily integers. 

The distribution of a discrete random variable X is determined by the set U = 
{XI, 2 2 ,  . . . } of its possible values, and the assignment ofprobabilities P{X = xi} 
to all xi E U, the only condition being (6.20) (i.e., the sum of all probabilities must 
be 1). The function p x ,  defined by the formula 

P { X = x }  i f x E U  
if x # u, 

is often called the probability mass Jirnction, or the probabilityfunction of random 
variable X ,  or (in engineering-oriented texts) a probability density function. We 
will often use the first two of these terms. The term density can be confusing in this 
context, so we will reserve it for continuous random variables, discussed later in this 
section. 

The cdf of a discrete random variable can now be easily determined. We have 

F ( t )  = P { X  5 t }  = C P{X = xt}. (6.25) 
z,<t 

EXAMPLE 6.11 

In the simplest cases it is convenient to represent the distribution of a discrete 
random variable X as a double array of elements of U with corresponding 
probabilities, such as 
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1 
Values 2 5 - 

1 1 
Probability j ; 5 B 

We have here U = {-3,1/2,5} and P{X = -3) = 112, P{X = 1/2} = 
1/3, P{X = 5 )  = 116. 

According to (6.25), F ( t )  = 0 for all t < -3, and for -3 5 t < 112, 

1 
2 

F ( t )  = P{X 5 t }  = P{X = -3) = -. 

For 112 5 t < 5, we have 

1 1 5  { 1 } 2 3 6  
P{X 5 t }  = P{X = -3) + p x = - = - + - = _ .  

Finally, for t 2 5, we have P{X 5 t }  = P{X 5 5) = 1. 
It is worthwhile to point out that the cdf is defined for all real arguments, and 

not only for the possible values of the random variable. For example, one can find 
Fx(2.27) if X is the result of a single toss of a regular die. 

EXAMPLE 6.12 

The random variable X in Example 6.9 was defined as the number of tosses of 
a die, up to and including the first ace. Here the cdf is as follows: First, since 
X 2 1, we have F ( t )  = 0 for all t < 1. Second, if k 5 t < k + 1, where 
k = 1 , 2 , .  . ., then we have 

In both examples the cumulative distribution function is a step function, with cdf 
increasing at every point of the set U and constant between the steps. Although 
this is the property characterizing most discrete random variables, there also exist 
discrete random variables such that their cdf's are not constant on any interval, as 
shown in the example below. 

EXAMPLE 6.13 

Let U be the set of all rational numbers. It is well known that U is countable, 
that is, all elements of U can be arranged into a sequence ~ 1 ~ x 2 ,  . . . (but U 
cannot be arranged in a sequence 2 1 ,  2 2 , .  . . with z, < zn+1 for all n). Let 
X be a random variable such that P{X = z,} = 1/2,, n = 1 , 2 , .  . ., Then 
the cdf of X is not constant on any interval. Indeed, for t l  < t 2  we have 

F ( t z )  - F(t1) = c P { X  = Zn}, (6.26) 
t 1 < x n < t z  

and the right-hand side is positive, since there exists a rational number Z, 

between any two distinct real numbers tl and t 2 .  Consequently, F increases 
between any two points. 
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Formula (6.26) shows how to calculate the probability of any interval ( t l  , t z ] .  
Generally, for any set A we have 

EXAMPLE 6.14 

The random variable X has the following distribution: 

-2 0 1 2 I -3 
Value 

1 2 
Probability 1 5 P 9 P2 - 

and we want to find P(JX + 11 > 1). 

SOLUTION. First, we use (6.20) to find the value of p .  We have here 

2 1  2 
9 9  9 
- + - + p + p 2  + - = 1, 

which gives the equation p 2  + p - 419 = 0. The solutions are p = 113 and 
p = -4/3, of which only the first is admissible as a probability. Consequently 
P{X = 0) = 113, P{X = 1) = 119 and 

P ( I X +  11 > 1) = P { X  = -3) + P { X  = 1) + P{X = 2)  
2 2 1 5  
9 9 9 9  

- - - + - + - = - .  

Let us now introduce another large class of random variables. 

Definition 6.3.3 The random variable X will be called continuous if there exists a 
nonnegative function f, called the density of X ,  such that 

for -co < t < co. 

EXAMPLE 6.15 Uniform Distribution 

Let A < B,  and let the density f ( x )  have the form: 

0 i f x < A  

0 if z > B. 
c if A 5 5 5 B 

(6.27) 

0 

(6.28) 
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Figure 6.4 Cdf of distribution uniform on [A,  B] 

If t < A ,  then the integrand in (6.27) is 0, so F ( t )  = 0. For A I t 5 B we 
have 

A t 

F ( t )  = f(z)dz + f(x)dx = lm Odx + cdx = c ( t  - A )  L 
Finally, if t > B,  then 

This means that F ( t )  is of the form presented in Figure 6.4. Clearly, since 
limt,m F ( t )  = 1 by Theorem 6.2.2, we must have c(B - A )  = 1; hence 
c = 1/(B - A ) .  In other words, if function (6.28) is a density of a random 
variable, then c is uniquely determined by the length of the interval [ A ,  B]. 
Thus the density of the distribution (continuous) uniform on [ A ,  El, denoted 
U [ A ,  B], is 

if x < A  
if A S x S  B (6.29) 
if z > B.  

In general, by letting t --t 00 in (6.27), we see that every density function f must 

1, f(x)dx = 1. (6.30) 

Also, it follows from (6.27) that F ( t )  is a continuous function, and consequently for 
every 2, 

P ( X  = x) = F ( x )  - F ( s  - 0) = 0. (6.31) 

Formula (6.27) combined with (6.3 1) leads to the following theorem: 

Theorem 6.3.1 lfrandom variable X has densig f, then for  all u < b we have 

satisfy the relation 
+W 

P { a  5 X 5 b )  = P{u < X 5 b )  = P{u ,  < X < b)  
b 

= P { a  I X < b}  = F ( b )  - F ( a )  = 1 f(z)drc. 
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This formula implies that in dealing with continuous random variables one can 
afford the luxury of being sloppy in handling inequalities. In particular, one can treat 
an event such as { X 5 u }  as (equivalent to) the complement of the event { X 2 a}, 
and so on. This is in sharp contrast with discrete random variables, where the events 
{ X 5 u }  and { X < a }  may have different probabilities. 

A question arises as to the extent to which the cdf of a continuous random variable 
determines its density. Formula (6.27) suggests that we have 

F’(4 = f(t), (6.32) 

and consequently, since F is a nondecreasing function (by Theorem 6.2.2), we must 
have 

f ( t )  2 0. (6.33) 

In fact formulas (6.32) and (6.33) need not be valid for all points t .  The reason is 
that the density f determines the probabilities of intervals through integration. This 
means that f is not defined uniquely. Indeed, the two densities f1 and f2-which 
differ only at a single point or on a finite set of points-will satisfy the condition 

b 

fl b) dz = J, f 2  (z) dz 

for all u and b. The same will be true if f l  and fi differ on some set of measure zero. 
Consequently, we may only claim that formulas (6.32) and (6.33) are valid almost 

everywhere, that is, except on a set of measure zero. 

EXAMPLE 6.16 

The random variable X ,  with density given in Example 6.15, is called uniform 
on interval [A,  B].  It is clear, however, that if we modify the definition of f at 
boundaries A and B (e.g., by putting f ( A )  = f ( B )  = 0), the cdf will remain 
unchanged. A particular consequence of this observation is as follows: in 
real situations we often deal with discontinuous densities defined by “broken 
formulas,” that is, functions given by different formulas in different intervals. 
In such cases it does not matter how the density is defined at the endpoints. 

The last remark is true in regard to calculating probabilities. One should never- 
theless be careful with the interpretation of density. For example, since for Ax > 0, 
we have 

x+Ax 

P { z <  X < z +  As} = J, f ( W ,  

we can approximate the last integral, for continuous densities f, by f(z)Az.  This 
leads to an “engineer’s” interpretation, according to which f ( s ) d z  is the “prob- 
ability that random variable X will assume the value in the infinitesimal inter- 
val (z, z + dz).” Here one has to be careful not to apply such an interpretation 
at points where f is not continuous. For instance, in the Example 6.15 we had 
f(B) = 1/(B - A);  hence the probability of X assuming a value in the interval 
[B ,  B + h] for some small h > 0 may be taken as h / ( B  - A). But this value is 
positive, whereas in fact the probability of X exceeding B by any amount is zero. 
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Let us now introduce an important !ype of continuous distributions called an ex- 
ponential distribution. 

Definition 6.3.4 (Exponential Distribution) The distribution with the density 

for x > 0 
for x 5 0 f(x)  = { AeiAX (6.34) 

where X > 0, will be called exponential with parameter A, denoted EXP(X). 

To check that (6.34) is indeed a density, we write 
+W 

f(z)dz = fm 0 dx + 1'" Xe-"dx = -e-'" = 1. 1" 
According to the remark made in Example 6.16, the value of the density at x = 0 
plays no role. Thus we could have defined f ( x )  in Definition 6.3.4 as Xe-'" for 
x 2 0 and 0 for x < 0. 

EXAMPLE 6.17 

Let us compute P{ (X- 1/21 > 1/4} for a random variable X that has EXP(2) 
distribution. 

SOLUTION. Since the density determines probabilities through integration, 

Example 6.17 should serve as a warning. It happens often that density is defined 
by a formula consisting of several parts, like (6.34). In calculating probabilities, one 
has to integrate f over some set, and special care should be taken to use the proper 
part of the formula for f on appropriate parts of the domain of integration. 

We will always choose a version of density that is "most regular." In particular, 
this means choosing a continuous or piecewise continuous version if possible. When 
density is discontinuous, the choice of values at breakpoints is irrelevant. 

EXAMPLE 6.18 Normal Distribution 

One of the most common distributions encountered in both probability theory 
and statistics, useful in modeling real-life phenomena, is the normal distribu- 
tion, with density defined by 

(6.35) 
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where p and ~7 > 0 are two parameters whose interpretation will be given later. 
The distribution(6.35) is usually denoted N ( p ,  a2). The distributionN(0, l), 
with density 

1 - x2 /2  (p(x) = -e 
& 

(6.36) 

is called standard normal. 

Indeed, letting z = (z - p) /u ,  so that crdz = dx, we have 
We will show that the function (6.35) is a density; that is, it integrates to 1. 

Next we need to prove that a standard normal density (6.36) integrates to 1. 

a closed form. Thus, to compute the integral 
The function e - x 2 / 2  does not have an antiderivative that can be written in 

I=- 1 J +m e-x2/2dx ,  
-m 

we apply a trick and compute 12: 

(6.37) 

Using polar coordinates ( r ,  e) ,  with z = T cos 0, y = 'r sin 0, we write the 
Jacobian of the transformation as 

ax ax  
cos6' - r s in0  - 
sin0 rcos6' 

1 - r .  
2 %  

Then we change the variables in (6.37) to obtain 

O 0 2  

I 2  = & 1 2 T d 6 ' l  r e - T  /' dr = 1; 

hence I = 1, as was to be shown. 

As already mentioned, the density function ~ ( x )  of standard normal distribution 
(as well as any other normal density function f ( z ;  p,  0)) does not have an antideriva- 
tive expressible in closed form. Therefore to find probabilities for normal random 
variables, one needs to use either statistical tables or the available statistical soft- 
ware. 

Suppose that we have to find 

(6.38) 
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for random variable X -N(p, a?). As we see, in many families of distributions that 
depend on parameters, one needs an extensive set of tables. Fortunately, in the case 
of any normal distribution, one table-that of the standard normal distribution-is 
sufficient. To see why, consider the probability (6.38) and use the change of variable 
z = (z - p ) / o  in the integral. We have dx = adz; hence after substitution to (6.38) 
we obtain 

where z1 = ( a  - p ) / o ,  22 = ( b  - p) /u ,  and Q is the cdf of the standard normal 
distribution (Table A.2). This table is prepared for z > 0, but for z < 0 one may use 
the fact that p(z) is symmetric about 0 so that 

Q ( - 2 )  = 1 - Q ( z ) .  (6.39) 

The procedure is illustrated by the following example: 

EXAMPLE 6.19 

Suppose that X -N(-0.7,4) and that U is defined as an integer nearest to X .  
Find P(V = -1). 

SOLUTION. In this case p = -0.7 and a2 = 4; hence o = 2. Consequently, 

P(U = -1) = P(-1.5 < X < 0.5) 
-0.5 - (-0.7)) - (-1.5 - (-0.7) 

= Q (  2 2 
= Q(O.l) - @(-0.4) 

Using (6.39) to reduce to positive arguments of Q, we have 

P ( U  = -1) = 

= 
Q ( O . 1 )  - (1 - Q(0.4)) = Q ( O . l )  + Q(0.4) - 1 

0.5398 + 0.6554 - 1 = 0.1952, 

where the numerical values are found in Table A2. 

At the end of this section it is necessary to point out that discrete and continu- 
ous random variables do not exhaust all possibilities. First, we may have practical 
situations of random variables of mixed type, partially discrete and partially contin- 
uous, Second, we may also have random variables that are neither continuous nor 
discrete. This second possibility may appear at first as a mathematical pathology of 
some sort; nevertheless, there are random variables occuring in practice that have 
such pathological distributions. 

EXAMPLE 6.20 

An example of a random variable of mixed type may be as follows. We pur- 
chase a piece of equipment (e.g., a light bulb). We denote its lifetime by T .  
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The lifetime is typically a continuous random variable in the sense that T can 
assume any value from some interval; thus any particular value T = t from 
this interval has probability zero. In addition the value T = 0 can be assumed 
with positive probability. In other words, the bulb may either be broken at the 
time of purchase (in which case T = 0), or it may break at some future time 
t > 0, at which time the event { T = t }  has probability zero. Consequently, 
the cdf of T is a function that equals 0 for all negative t ,  and is continuously 
increasing to 1 for positive t .  At t = 0 the cdf is discontinuous, with F ( 0 )  > 0 
being the probability of purchasing a broken light bulb. 

Such mixtures of continuous and discrete distributions still do not exhaust all 
possibilities. This is illustrated by the following example, which is of theoretical 
interest: 

EXAMPLE 6.21 

We will now construct a cdf F ( t )  that is continuous, increases from 0 to 1, 
and is such that F’(t) = 0, except on a set of measure 0. The latter condition 
excludes the existence of density; that is, if the density exists, then it equals 
F’(t)  almost everywhere. Thus we have f ( t )  = 0 almost everywhere; hence 
s-’,” f(t)  dt  = 0. which means that F’ is not a density. 

The construction is based on the Cunforser. We let F ( t )  E 0 for t 5 0 
and F ( t )  = 1 for t 2 1. Next we let F ( t )  = 1/2 for 1/3 5 t < 2/3. 
On middle parts of intervals [0,1/3] and [2/3,1] ,  that is, for 1/9 5 t < 2/9 
and for 7/9 5 t < 8/9, we let F ( t )  z 1/4 and F ( t )  = 3/4, respectively. 
This process is continued, and at each step, F ( t )  is the average of values on 
neighboring intervals in the middle one-third of the “gap.” The total length of 
intervals in [0, 11 where F is constant (hence where F’ = 0) is 

- 1. 1 1 1 0 0 2 n  1 1 L =  - + 2  x - + 4 x - + . . . =  
n=O 3 9 27 

Moreover, one can easily show that F is continuous at each point. Thus we 
have constructed a cdf of a random variable which is neither discrete nor con- 
tinuous (it is called singular). 

PROBLEMS 

6.3.1 A die is biased in such a way that the probability of obtaining k dots ( k  = 
1, . . . ,6 )  is proportional to I c 2 .  Which number of dots is more likely: odd or even? 

6.3.2 You have 5 coins in your pocket: 2 pennies, 2 nickels, and a dime. Three 
coins are drawn at random. Let X be the total amount drawn (in cents). Find: (i) 
The distribution of X. (ii) P ( X  5 lOlX 5 15). (iii) The probabilities that two 
pennies are drawn, if it is known that X 5 11. 

6.3.3 Let X have the density f(z) = Ce-0.4151, -cc < z < +m (such distribution 
is called Lupluce or double exponential). Find C and then obtain: (i) P(X > -2). 
(ii) P(IX + 0.51 < 1). 
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6.3.4 Let X have EXP( 1) distribution. Moreover, let Y = [XI be the integer part of 
X ,  and let Z be the integer nearest to X .  Find: (i) The distributions of Y and 2. (ii) 
P ( Y  = 2). (iii) P ( Y  = 312 = 4) .  (iv) P ( Z  = 4 ( Y  = 3 ) .  (v) P ( Y  = 412 = 3 ) .  
(vi) P ( Z  = 3 / Y  = 4) .  

6.3.5 Let X have EXP(X) distribution, and let Y and Z be defined as in Problem 
6.3.4. (i) Find P ( Y  = 2). (ii) Show that P ( Y  = klZ = k + 1) = P ( Y  = 2) for 
all k = 0 ,1 , .  . . . (iii) Find P ( Z  = k + IIY = k )  fork = 0,1,. . .. 

6.3.6 Let X have EXP(X) distribution. Show that for s, t > 0 the following memo- 
rylessproperty holds: P { X  > s + t lX > s} = P { X  > t } .  

6.3.7 Let X ,  be the difference (possibly negative) between the number of heads and 
the number of tails in n tosses of a coin. Find: (i) The distribution of Xq. (ii) The 
cdf of X, at point z = -0.6. (iii) The probability that X, is positive given that it is 
nonnegative for (a) n = 4 and (b) n = 5. 

6.3.8 Let X have the density f(z) = C x  for 0 <_ z 5 1, f (x )  = C ( 2  - x)/2 for 
1 < x 5 2 ,  and f(z) = 0 otherwise. Find C and F ( z ) .  Compute the following 
probabilities and show them on the graphs of f (x )  and F ( z ) :  (i) P ( X  1 3 /2 ) .  (ii) 
P ( J X  - 11 5 1/2). (Hint. The problem can be solved without integration, just using 
simple geometry.) 

6.3.9 Let random variable X with the cdf F be uniformly distributed over the union 
of intervals (0, a)  and ( a  + 2, b ) .  Assuming that F ( 4 )  = 0.2 and F ( a  + 1) = 0.25, 
find: (i) a and b. (ii) F(8.39). (iii) P(3.01 5 X 5 9.14). 

6.3.10 An oscillator sends the wave X ( t )  = A cos(27rt), where A = 1 or 2 with 
equal probabilities. We observe the value of X( t )  at the point chosen at random from 
theU[n,n+l] distributionforsome n. Find: (i) P ( X ( t )  5 1). (ii) P ( J X ( t ) I  > 3 / 2 ) .  
(iii) P ( X ( t )  > 0). 

6.4 FUNCTIONS OF RANDOM VARIABLES 

In practical situations we often deal with functions (or transformations) of random 
variables. Given the original distributions, we face the problem of determining the 
distributions of transformed random variables. The examples abound, starting from 
the simplest cases, such as a change of unit of measurement or a representation on 
the logarithmic scale. More complicated cases, discussed in Chapter 7, involve pairs 
of random variables such as conversion of a pair of Cartesian coordinates of a ran- 
dom point on the plane to polar coordinates of this point, or ratios of coordinates. 
The latter case occurs, for instance, in determining the distribution of velocity, cal- 
culated as the ratio of distance to time, both subject to variability (either in the actual 
measured velocity or due to errors of measurements). 

Another compelling reason to study transformations of random variables could 
be the generation of random numbers that follow a specific distribution. A typical 
method here involves transformations. A computer (and often even pocket calcu- 
lators) can generate random numbers from distribution uniform on [0, 11. Then the 
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Value 

desired random variables are obtained as suitable transformations of uniform random 
variables. Obviously to apply such a method, it is necessary to develop techniques 
of determining the distributions of functions of random variables, at least of those 
uniformly distributed. 

Finally, the third reason is related to statistics. Observations such as experimental 
results and values recorded in the sample are regarded as values of random variables. 
These are often summarized into global indices, such as the average. Each such 
index (generally referred to as a statistic) is a function of the sample values, hence 
a function of random variables, and for statistical inference it is vital to know the 
distributions of such indices. 

We begin with the conceptually and technically simplest case of transformations 
of one discrete random variable. 

Let X assume values in the set U = { . 1 , 5 2 ,  . . .}, with corresponding probabili- 
ties 

pi  = P { X  = Xi}, 

such that cpi = 1. Then Y = cp(X), where cp is a real-valued function, also 
has a discrete distribution. The following example illustrates how the distribution of 
Y = cp(X) can be obtained: 

- 2 - 1  0 1 2  3 4 

1 EXAMPLE 6.22 

Let us consider a simple numerical example. Suppose that X has the distribu- 
tion 

Probability I $j $ & & $ $ $ 

If cp(z) = x2, then Y = X 2 ,  and the distribution of Y is 

Value 1 4 9 16 

2 - - Probability j &+i% & + $  3 10 

Function cp is not one to one, and therefore 

1 1  
10 10 

P{Y  = 4) = P { X 2  = 4) = P { X  = 2)  + P { X  = -2) = - + -. 

P{ Y = 1) can be obtained similarly. 

In general, we have 

P{Y = y} = P{cp(X) = y} = P{. : p(5) = y} = c P { X  = Xi). 
z,:v(z,)=Y 
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z 

An analogous formula can be used for functions of two variables, that is, random 
variables of the form Z = p(X, Y ) ,  where the distribution of Z is expressed in 
terms of the distribution of X and Y. The principle here is extremely simple, so it is 
usually best to start “from scratch,” as in the next example. 

1 2 3 4 5 6  

H EXAMPLE 6.23 

Let the experiment consist of two tosses of a regular die, and let X and Y 
be the result on the first and second toss, respectively. We want to find the 
distributionof Z = max(X, Y). Thus the value of the function p(z, y) equals 
z or y depending on whether z 2 y or y 2 z, and the random variable Z may 
be described as “the best out of two tosses.” 

Clearly, Z may be 1 ,2 ,  . . . , 6, and it is simplest to find the distribution of 2 by 
listing all of the outcomes associated with each specific value of 2. Thus Z = 1 
only if (X, Y )  = (1, 1); hence P { Z  = 1) = 1/36. Next 2 = 2 if the outcome is 
(2, l), (1,2),  or (2 ,2)  so that P{ Z = 2) = 3/36. Proceeding in this way, we get 

Probability 1 % 9 2 
It can be seen how “giving the second chance” improves the score. Larger values 

are much more likely than smaller values. 

EXAMPLE 6.24 

Let us continue Example 6.23, generalizing it to the case of n random vari- 
ables (to be considered formally in Chapter 7). Let us imagine that an adult 
plays some game with a child, and in order to give the child some advantage 
the adult allows the child to use the “best of n tosses” of a die. How large 
should n be to give the child a 99% or higher chance to score at least 4? 

SOLUTION. Let XI, X2, . . . , X, denote the result of consecutive tosses, and 
let 2 = max(X1 , . . . , Xn). We want the smallest n with P{ 2 2 4)  2 0.99. 
Let us therefore determine the distribution of 2, exhibiting its dependence of 
n. Direct enumeration was feasible for n = 2, as in the preceding example, 
but it is cumbersome for a larger n. However, it is easy to find P{ Z 5 k }  
for k = 1, . . . , 6. Indeed, P{ Z 5 1) = P{ Z = 1) = 1/6,, since only one 
outcome among the total of 6“ outcomes gives the maximum score of 1. Next 

{ Z  5 2) = (max(X1,. . . ,Xn) 5 2) = {XI  5 2,X2 5 2 , .  . .,X, 5 2), 

and we have 
2, 
6” 

P { Z  5 2) = -. 
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hence 

Since P{  2 2 4) 2. 0.99 means that 

we have to solve the inequality (1/2)n I 0.01. Taking n log(1/2) 5 logO.01, 
we obtain 

log 0.01 log 100 
ln(l/2) log2 

n>-=-- - 6.64. 

Thus n = 7 tosses “practically guarantees” that at least one toss will lead 
to 4,5, or 6. 

We now consider the case of transformation of a single continuous random vari- 
able. Let F and f denote the cdf and density of X and let Y = cp(X), where cp is 
assumed to be at least piecewise differentiable. 

Regardless of whether we want the cdf or the density, the best strategy is to start 
by finding the cdf of Y .  This method, occasionally referred to as the cdftechnique, 
will be illustrated by some examples. 

We begin with the simplest case, when cp is a strictly monotone function. If cp is 
increasing, we write for the cdf of Y :  

FY(Y) = P{Y i Y} = P{cp(X) i Y) = P { X  I +(Y)) = FX(+(Y))l 

where 4) is the function inverse to cp. 
The density is obtained by differentiating cdf, and consequently 

(6.40) 

If cp is monotonically decreasing, $ must be a decreasing function too, and 

Therefore 

fY(Y) = -fx(+(y))+’(y)1 (6.41) 

a quantity that is positive, since now $’(y) < 0. Together, (6.40) and (6.41) lead to 
the following theorem: 

Theorem 6.4.1 If9 is a continuous direrentiable function with inverse + and X is 
a continuous random variable with density fx, then the density of Y = cp(X) is 
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EXAMPLE 6.25 Linear Transformations 

Let Y = aX + b. If a > 0, we can write 

F y ( y )  = P { a X  + b 5 y} = P { X 5 - y i  ‘ }  = FX (9) 
and 

1 y - b  
f Y ( Y )  = ;fx (--) 

If a < 0, we have 

F ~ ( y ) = P { a X + b s y } = P  

and 
1 y - b  

f Y ( Y )  = -,fx (e) 
So for any a # 0, 

1 y - b  
fY (Y) = - f x  la1 (--) 

The following transformation is important, both theoretically and practically. Let 
X have cdf F and density f, and let F be strictly increasing, so that F-l exists. We 
consider the transformation Y = F ( X ) .  Obviously, 0 < Y < 1,  so the distribution 
of Y is concentrated on [0,1]. We therefore have FY (y) = 0 for y 5 0 and FY ( y )  = 
1 for y 2 1, while for 0 < y < 1 we write 

F y ( y )  = P { F ( X )  5 y} = P { X  5 F-’(y)} = F(F- ’ (y ) )  = y .  

Consequently, f ~ ( y )  = & F y ( y )  = 1 on [0 ,1] ,  and we proved the next theorem. 

Theorem 6.4.2 (Probability Integral Transform) ZfX has continuous strictly in- 
creasing cd fF,  then the distribution of Y = F ( X )  is uniform on [0 ,1] .  

This theorem may be formulated as follows: ZfY has U[O, lldistribution, then 
X = F-l  ( Y )  has a distribution with the cdf F .  Thus we have obtained a method of 
generating random variables with given continuous invertible cdf F ,  using random 
variables uniform on [0,1]. 

EXAMPLE 6.26 

The assumption of monotonicity of cp (and hence also 41) is crucial for the 
validity of (6.42), except for the obvious remark that what is really needed is 
monotonicity “in the domain where it really matters.” Specifically, if C is the 
set of all points 2 at which f(z) > 0 (called the support of X ) ,  then it suffices 
that cp is monotone only on C. 
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Consider the distribution with density 

(ye-"% fo rz  > 0 
for 2 5 0, fx(x) = { 0 

and let p(z) = z2. Then p is not monotone for all IC, but it is monotone on the 
support of X ,  C = [0,03). Thus $(z) = A, $'(s)  = 1/(2&), and the density of 
Y = X2 is 

for y > 0 

for y L 0, 
f Y ( Y )  = 

In the case where cp is not monotone, we still have 

but this time cp has no inverse, and the inequality p( X) I y is usually not equivalent 
to a single inequality for X .  Still the right-hand side can, in most cases, be repre- 
sented through the cdf FX evaluated at some points dependent on y. Differentiating, 
we can recover the density fy of Y. 

This principle will now be illustrated by few examples. 

EXAMPLE 6.27 

Let X be a random variable with the density 

for 1x1 I 1 
otherwise. fx(2) = { p4 (6.43) 

Let cp(z) = z2, so that now p is not monotone, and consider Y = p(X) 
Since Y 2 0, we have Fy(y)  = 0 for y 5 0, while for y > 0 we write 

FY(Y) = P { X 2  I Y} = P{-& 5 X I f i }  
= F x ( m  - Fx(-Jij). 

Differentiating, we get for y > 0, 

1 
fY(Y)  = &Y) = [fx(fi) + fx(-fi)1 x - 

2 f i 1  

so that (remembering that fx = 0 if 5 < -1 or IC > 1) 

EXAMPLE 6.28 Square of a Normal Random Variable 

Let X have a normal distribution with the density 
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and let 'p(z) = z2 so that now 'p is not monotone. We have Fy(y) = 0 for 
y I 0, while for y > 0 we write 

Differentiating, we obtain 

This is a special case of agamma density, given by the formula Cya-'e-by(y > 
0), where a > 0, b > 0, and C is the normalizing constant. Density (6.44) has 
a = 112, b = 112. Gamma distributions with b = 112 and a such that 2a is a pos- 
itive integer form a family of chi-square distributions-very important in statistical 
inference. Both gamma and chi-square distributions will be discussed in more detail 
in following chapters. 

EXAMPLE 6.29 Folded Normal Distribution 

Let X be as in Example 6.28, and let now p(x) = 1x1. Then for y > 0, 

FY(Y) = P{lXl I Y) = P{-Y I x 5 Y) = FX(Y) - Fx(-y), 

and 

f y ( y )  = fx(y) + jx(-y) = f ie -u ' /z ,  

and f y ( y )  = 0 for y 5 0. This distribution is sometimes also called half- 
normal. 

PROBLEMS 

(6.45) 

6.4.1 If X is the result of tossing a balanced die, find the distribution of: (i) Y = 
( X  - 1)2 .  (ii) 2 = /X - 2.51. 

6.4.2 Let X have the Poisson distribution with parameter A, and let Y = 2 X .  Find 
the distribution of Y .  

6.4.3 Let X have a continuous distribution with cdf Fx and density fx, such that 
FX (0) = 0. Find the cdf and density of random variables: (i) 0. (ii) log X .  (iii) 
1 / X .  (iv) ex. 

6.4.4 Let X be U[O, 11. Find p such that Y = p(X) has EXP(X) distribution. 

6.4.5 Let X have EXP(A) distribution, and let Y = n. Find: 
(i) The cdf and density of Y .  (ii) The lower quartile of Y ,  

6.4.6 Assume that X has the standard normal distribution. Find the density of: (i) 
Y = X 3 .  (ii) Y = ( X  - (iii) Y = ex. 
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6.4.7 Find the density of Y = X ( l  - X) if X has U[O, I] distribution. 

6.4.8 Random variable X has density fx(z) = Cx4 for -2 5 5 5 1 and 0 other- 
wise. Find the density of Y = X2 (follow Example 6.27). 

6.4.9 Let X have U[-1, 11 distribution. Find the distribution of  (i) Y = 1x1. (ii) 
2 = 21x1 - 1. 

6.4.10 The duration (in days) of the hospital stay following a certain treatment is a 
random variable Y = 4 + X, where X has a density f(z) = 32/(z + 4)3 for z > 0. 
Find: (i) The density of Y .  (ii) The probability that a randomly selected patient will 
stay in the hospital for more than 10 days following the treatment. 

6.4.11 Let X have density f(z) = 2(1 - z) for 0 5 z 5 1. Find the density of  (i) 
Y = X(l  - X). (ii) W = max(X, 1 - X). 

6.4.12 Suppose that the measured radius R is a random variable with density 

fR(X) = { 0 otherwise, 
12x2(1 - 2 )  for O 5 z 5 1 

In a circle with radius R find the cdf of: (i) The diameter. (iii) The area. 

6.4.13 The speed of a molecule of gas at equilibrium is a random variable X with 
density 

kx2e-bxa for x > 0 
f (x )  = { 0 otherwise, 

where k is a normalizing constant and b depends on the temperature of the gas and 
the mass of the molecule. Find the probability density of the kinetic energy E = 
m X 2 / 2  of the molecule. 

6.5 SURVIVAL AND HAZARD FUNCTIONS 

In this section we consider a special class of random variables that can serve as 
possible models for lifetimes, of living organisms or of some equipment. They may 
denote the actual lifetime (i,e., time until death or equipment failure) or time until 
some event (e.g., recovery from a disease). Such random variables, denoted usually 
by T ,  are continuous and nonnegative. 

Let F and f denote the cdf and density of T so that for t 2 0, 

r t  

(6.46) 

[the integration starts at 0, since nonnegativity of T implies that P{T 5 0) = 0, 
and hence f ( t )  = 0 for t < 01. Moreover, let 

S( t )  = 1 - F ( t )  = P{T > t }  = f(u)d~. (6.47) 
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be the survival distribution function (or survivaljhction) of the random variable T .  
We introduce the following definition: 

Definition 6.5.1 The hnction 

d In S(t )  
h( t )  = -~ 

dt  ’ (6.48) 

defined for t > 0 and S( t )  > 0, is called the hazard rate (or intensity rate) function 
of random variable T.  0 

By differentiating - ln(1 - F ( t ) ) ,  it follows from (6.48) that at almost all points 
t we have 

(6.49) 

Consequently, we have the following theorem expressing the cdf through the hazard 
function: 

Theorem 6.5.1 Ij h( t )  is a hazard function of a random variable T,  then its cdf 
equals 

- J,’ h(u)du F ( t )  = 1 - e 

ProoJ The proof is immediate, by integrating (6.49) between 0 and t .  0 

The interpretation of hazard functions is as follows: h(t)St can be approximated 
by 

f ( t )& P { t  < T 5 t + 6 t }  
S ( t )  - P { T > t }  ’ 
-- 

hence, by the definition of conditional probability, 

h(t)bt  - P{ t  < T 5 t + 6tJT > t }  

= P{ lifetime ends before t + btl lifetime longer than t } .  

In other words, h( t )  is the death rate at t of those who survived until t (are “at risk” 
at t). Thus the hazard function describes the process of aging in terms of changes of 
risk of death with current age. 

EXAMPLE 6.30 

Let the random variable X have EXP(a) distribution. Then F ( t )  = 1 - e-at ,  
S( t )  = e-a t ,  and 

Thus the exponential distribution describes the lifetime distribution in the case 
of lack of aging, when the risk of death does not change with age. 
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EXAMPLE 6.31 

Suppose that you buy a new car, and let T be the time of the first breakdown. 
Typically h(t)  is initially high, and then declines to a constant. It remains at 
this level for several years, eventually beginning to increase. 

The reason is that early failures are typically caused by hidden faults of 
material, undetected in factory control. If they do not show up immediately, 
then there are probably no faults, and risk of failure remains constant for some 
time. The later increase is due to the wearing out of various parts. 

In an engineering context, especially in problems of reliability of equipment, the 

Assuming that F ( t )  < 1 for all t (which is the most important case of interest), 

F ( t )  = 1 - e - H ( t ) ,  (6.50) 

where H ( t )  = - log[l - F ( t ) ] .  On the other hand, in view of Theorem 6.5.1, we 
also have H ( t )  = h(u)du, which gives (6.32). Since F ( t )  i 1 as t + 03, we 
must have 

h(u)dll= co. (6.51) 

Example 6.30 shows that the exponential distribution has a constant hazard, inter- 
preted as lack of aging. If hazard is increasing, we have the phenomenon of aging 
(“new better than old”), while the opposite is true in case of decreasing hazard (“old 
better than new”). A flexible model of both situations is given by the following 
definition: 

Definition 6.5.2 A nonnegative random variable T with the hazard rate 

hazard function is often called failure rate function. 

we can write 

Im 

h( t )  = KtY, t > 0, K > 0,y  > -1 (6.52) 

Observe first that the condition y > - 1 ensures that the relation (6.5 1) holds so 

is said to have a WeibuN distribution. 

that T is a genuine random variable in the sense that 

lim P { T  5 t }  = 1 
t-m 

(i.e., T = M is excluded). For reasons of tradition and convenience, one usually 
puts cy = K / ( y  + l), p = y + 1, so that the hazard rate of Weibull distribution takes 
the form 

(6.53) h ( t )  = cyptfl-l, cy > 0, p > 0 ,  t > 0. 

PROBLEMS 

6.5.1 Find the hazard function of the U[O, 13 distribution. Explain why h( t )  is 
unbounded. 

6.5.2 Find the density and survival function of the distribution with hazard rate 
h( t )  = a + bt for t > 0, a > 0 ,  b > 0. 
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6.5.3 Let X be a random variable with density 

x < o  
f(z) = 0.5 0 5 2 < 1  { qe-az O x>l. 

(i) Find q if a: is known. (ii) Find hazard h(t)  and survival function S(t).  

6.5.4 Find the cdf and density of Weibull distribution with the hazard function 
(6.53). 

6.5.5 Assume that the fuel pumps in a certain make of cars have lifetimes with a 
Weibull hazard rate 2 / f i  (t  measured in years). Find the probability that a fuel 
pump is still working after 5 months. 

6.5.6 The series system is built in such a way that it operates only when all its 
components operate (so it fails when at least one component fails). Assuming that 
the lifetime of each component has EXP( 1) distribution and that the components 
operate independently, find the distribution and survival function of the system’s 
lifetime T .  

6.5.7 A cancer specialist claims that the hazard function of random variable T, = 
“age at death due to cancer” is a bounded function which for large t has the form 
h,(t) = k / t 2  (where t is the age in years and k is some constant). 

Assume that h(t)  is the hazard of the time of death due to other reasons than 
cancer (other diseases, accidents, old age, etc.). IfT, and T are times of death with 
hazards h,(t) and h(t) ,  assume that the observed time of death is T’ = rnin(T,, T ) ,  
with max(T,, 5”) being unobservable. To get an insight into the feasibility of the 
assumption of the cancer specialist in question, imagine that all reasons of death 
other than cancer have been eliminated (i.e., H (  t )  I 0) and find the probability that 
a person will live forever. 



CHAPTER 7 

HHH 3 0 
HHT 2 1 
HTH 2 1 
THH 2 0 

RANDOM VARIABLES: MULTIVARIATE 
CASE 

T T H  1 2 
T H T  1 1 
H T T  1 1 
TTT 0 2 

7.1 BlVARlATE DISTRIBUTIONS 

The considerations of Section 6.2 can be extended to the case of several random 
variables analyzed at once, or equivalently, to the analysis of vector-valued random 
variables. 

In the simplest case we have a pair of random variables (X, Y ) ,  that is, a pair of 
functions on the sample space S. 

EXAMPLE7.1 

Let the experiment consist of three tosses of a coin, and let X = number of 
heads in all three tosses and Y = number of tails in the last two tosses. The 
sample space S and corresponding values of X and Y are then 

S x Y I  s X Y  

161 
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We can summarize all possible values of (X, Y) and their probabilities in the 
following table: 

1 

2 1 
1 0 8 B 

0 0 0 I 

2 I 8 0 

3 I 

- 
1 2 

1 

- 

0 0 

The entries in the table represent the corresponding probabilities. For instance, 
P{X = 2 ,  Y = 1) = 114 was obtained by counting the number of points s 
of the sample space such that X(s) = 2 and Y(s) = 1 (there are two such 
points: HHT and HTH). To simplify the notation, we will be using commas to 
denote the intersection of events. Thus we write P { X  = z, Y = y} instead 
of rather clumsy P [  { X = z} n { Y = y}] . 

In a natural way this example leads to a definition of a discrete bivariate random 
variable. 

Definition 7.1.1 We say that the pair (X, Y) of random variables has a discrete 
distribution if there exist finite or countable sets A and B such that 

P{(X,Y) E A x B }  = P { X = z , Y  = y }  = 1. 0 

zEA,yEB 

In Example 7.1 we have A = {0,1,2,3} and B = {0,1,2}. Obviously P { X  = 
x, Y = y} = 0 if any of the values z or y lie outside the set A (respectively, B), 
but it is also possible that P { X  = z, Y = y} = 0 for some z E A and y E B. 
For instance, in Example 7.1 we have P{X = 0, Y = 1) = 0. In other words, the 
values (x, y) that have positive probabilitycan form a proper subset of A x B. 

The continuous bivariate distributions, as may be expected, are defined through 
their densities. 

Definition 7.1.2 Random variables (X, Y) arejointly continuous (or havejointcon- 
tinuous distribution) if there exists a function f (z ,  y) such that for every rectangle 

C = { (z , y) : a 5 z 5 b, c 5 y 5 d }  

with -m 5 a < b 5 m, -m 5 c < d 5 m we have 

The hnction f is calledjoint or bivariate density of (X, Y). 

Some comments are in order here. First, as in the univariate case the density is 
defined only up to sets of measure zero (e.g., single points or arcs on the plane). 
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Second, the obvious consequences of Definition 7.1.2 are 

where R2 is the plane, and 

f ( x l  y)  2 0 almost everywhere. (7.3) 

These relations are obvious analogues of (6.30) and (6.33) for univariate densities. 
The third comment is as follows: Formula (7.1) only covers rectangles. In the 

analogy with Theorem 6.2.5, it can be shown that probability P defined on the class 
of rectangles by (7.1) determines its unique extension to all sets in the plane that 
can be approximated through countable operations on rectangles, in particular to all 
figures that can be triangulated, as well as to circles, ellipses, and so on. In other 
words, formula (7.1) holds for a much wider class of sets C on the plane. 

Conditions (7.2) and (7.3) allow us to use the Fubini theorem and replace the 
double integral (7.1) by the iterated integral, thus making actual integration possible. 
In particular, if C is the rectangle specified in Definition 7.1.2, then 

P { ( X ,  Y )  E C }  = 

In general, we have 

Here C1 and C2 are “shadows” of C on the x-axis and y-axis, that is, C1 = {x : 
(x, y) E C} for some y and C2 = {y : (5 ,  y) E C} for some s. Also 

with C, = {y : (2, y) E C} and C, = {x : ( s l y )  E C} being sections of C 
at points x and y, respectively (see Figure 7.1). To understand well the difference 
between the double integral 

and iterated integrals 

interpreted as 
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Figure 7.1 Shadows and sections of domain C of integration 

the readers are advised to consult a good calculus text for the respective definitions. 
The Fubini theorem gives conditions under which all three integrals are equal (we 
will discuss these topics in Chapter 8). It is both easy and worthwhile to explain 
the issues involved here, using a simplified situation of a series (instead of inte- 
grals). Thus CT=l a, is defined as C;=, a k ,  provided that this limit (of 
a well-defined numerical sequence) exists. By the same argument, the double sum 
Cz=, CrZl am, is defined unambiguously (this sum is an analogue of the iterated 
integral). However, the symbol C:,n=l am, (the analogue of a double integral) is 
not well defined, since it does not specify the order in which the two-dimensional 
array { am,} is to be added. The point here is that the sum of an infinite sequence 
of numbers may depend on the order of summation. Thus some assumptions about 
{ am,} are needed to make the last sum independent of the order of summation. Un- 
der these assumptions (e.g., nonnegativity) the double sum and both iterated sums 
are either all infinite or all equal to the same finite number. 

A similar kind of difficulty appears in the case of double and iterated integrals 
and is resolved by the Fubini theorem. 

We will now illustrate the calculation of probabilities by some examples. 

 EXAMPLE^.^ 

The density f ( 5 ,  y) is given by the formula 

c z ( z + y )  if z l O , y > O , z + y < l  
otherwise. (7.4) 

Find P{ X < 1/2}. 
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Figure 7.2 Support of density f and the set { X  5 1/2} 

SOLUTION. The first objective is to determine the constant c in formula (7.4). 
As usual, the normalizing condition (7.2) provides the key here: 

SO c = 8. 

in Figure 7.2. This time it is simpler to integrate over y first, 
Now, P { X  5 1/2} is the integral of the density f(x,  y) over the dark area 

P { X  5 1/2} = 8 ~ ( z + y ) d z d y = 8  L1” [I”(.’ + xy) dy] dx 

= 8 1 i 2  ( X ’ ~ + Z ~ ~ ~ - ~ )  2 d~ 

7 
= 811/’ [x2(1 - z) + -x(l  2 - x ) 2  dx = -. ] 16 

Although used not as often as in the univariate case, the cumulative distribution 
function (cdf) is still the most general way of specifying probabilities in the bivariate 
case, regardless of whether the distribution is discrete, continuous, or neither. We 
introduce the following definition: 

Definition 7.1.3 The function of two real variables, defined as 

F(z ,? / )  = P { X  i x ,Y  I y} 

is called the cumulative distribution function (cdf) of the pair (X, Y )  of random 
variables. 0 
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The relation between cdf and the probability mass function in the discrete case, or 
the density function in the continuous case, is similar to those for univariate random 
variables: c P { X  = xi, Y = yj} 

in the discrete case, and 

F ( x , y )  = / x  I” f(21,w)dwdu (7.5) 
J-w J - w  

in the continuous case. In particular, from (7.5) it follows that for almost all (x, y) 
we have 

This brings us to the following analogue of Theorem 6.2.2: 

Theorem 7.1.1 Every bivariate cumulative distribution function F ( z ,  y) has the 
following properties: 

(b) For every y, the function F ( x ,  y) is nondecreasing and continuousfrom the right 
in x. 
(c) For every x, the function F (2, y) is nondecreasing and continuousfrom the right 
in y. 
( d )  limx--m F ( z ,  y) = 0 for  every y, andlimy-,-w F ( z ,  y) = 0 for  every x. 
(e )For all x1 < 2 2  andyl  < y2, 

(a) limx,y++w F ( x ,  Y) = 1. 

F(x2, Yz) - q x z ,  Y1) - Fbl, YZ)  + Fbl, Y1) 1 0. (7.6) 

We omit the proof here, leaving proofs of some of the properties as exercises. The 
following comments, however, are important. While conditions (a)-(d) are direct 
analogue of the properties of univariate cdf‘s, condition (e) has no counterpart. 
The question therefore arises whether conditions (a)-(d) alone characterize bivariate 
cdf‘s. In other words, is every function satisfying ( a x d )  a cdf of some pair (XI Y) 
of random variables? The answer is negative, as shown by the following example: 

EXAMPLE7.3 

Let F ( x ,  y) be defined by the formula 

1 i f z + y > O  
0 i f z + y < O .  (7.7) 

It is easy to check that function (7.7) satisfies conditions ( a x d )  given 
above. Suppose that F ( x ,  y) is the cdf of a pair of random variables, and let 
us compute the probability(see Figure 7.3), P{-1 < X 5 2, -1 < Y 5 2 ) .  
Since F ( x ,  y) is the probability of the pair (X, Y) taking a value “southwest” 
of (x i  y) [i.e., to the left and below (2, y)], we have 

F ( 2 , 2 )  - F(-1,2) - F ( 2 ,  -1) + F(-l, -1) = 1 - 1 - 1 + 0 = -1, 
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Figure 7.3 A function that is not a cdf but satisfies (a)-(d) 

so that F ( z ,  y) cannot be a cdf. 

Condition (e) is necessary, since the left-hand side of (7.6) equals P{z l  < X 5 
x2, y1 < Y 2 y2) and hence must be nonnegative. 

It turns out (we omit the proof here) that ( a x e )  characterize a bivariate cdf. This 
means that any function satisfying ( a x e )  is a cdf of some pair of random variables. 

PROBLEMS 

7.1.1 A regular die is tossed twice. Find: (i) The joint distribution of variables X = 
the total of outcomes and Y= the best ofthe two outcomes. (ii) P ( X  I 8, Y 5 5 ) ;  
P ( X  = 9, Y 5 2), P(4 5 X 5 7 , l  5 Y 5 3). (iii) P(Y = 31X = 4) ,  P ( Y  < 
6 ( X  = 7), P(4 < Y 5 61X 5 8 ) .  

7.1.2 Let X ,  Y have the joint distribution given by the following table: 

X I Y  2 3 4 

b - 0 4l8 0 

O 48 
8 

48 
11 

- 5 - 

a 

1 

2 
3 

- 0 48 

48 O 
5 12 
48 

- - 

(i) Find a and b if it is known that P ( X  = Y )  = 1/3. (ii) Find P ( X Y  = 0). 
(iii) If F is the cdf of ( X ,  Y ) ,  find F(-1 .5 ,3) ,  F(0.7,2.11),and F(1.5,18). 

7.1.3 A regular die is tossed twice. Let X be the number of times that 1 came up, 
and Y be the number of times 2 came up. Find: (i) The joint distribution of X and 
Y .  (ii) The correlation coefficient between events { X  = 1) and {Y = 2). [Hint: 
See formula (4.18) in Definition 4.5.2.1 
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7.1.4 Let the joint cdf of random variables X, Y be F ( z ,  y) = (1/48)zy(z + 2y) 
for 0 5 z 5 2,O 5 y 5 3. Find the density f(z, y). 

7.1.5 The joint density of X and Y is f ( z , y )  = y2(zy3 + 1) on the rectangle 
0 5 2 5 k ,  0 5 y 5 1. Find: (i) k .  (ii) P ( X  5 Y ) .  

7.1.6 Assume that X, Y have density f (z ,  y) = s + y  for 0 5 z 5 1 and 0 5 y 5 1, 
and f(z, y) = 0 otherwise. Find P{Y 5 m} . 
7.1.7 Assume that (X, Y) have the joint density f(s, y) = czy2 for 0 5 s 5 1 , 0  5 
y 5 1, and f (z ,  y) = 0 otherwise. Find: (i) c. (ii) P { X 2  5 Y 5 X}. (iii) The cdf 

7.1.8 Let the joint density of random variables X ,  Y be f (z ,  y) = cz3y2 for 0 5 
z 5 1,z2 5 y 5 1 and f (z ,  y) = 0 otherwise. Find P ( X  < Y ) .  

7.1.9 Variables X and Y have the joint density f(z, y) = l / y  for 0 < z < y < 1 
and f(z, y) = 0 otherwise. Find: (i) P ( X  + Y > 0.5). (ii) P(Y > 2 X ) .  

of (X, Y ) .  

7.2 MARGINAL DISTRIBUTIONS: INDEPENDENCE 

One can naturally expect that the bivariate distribution (in the form of cdf, joint den- 
sity, or probability mass function, as the case might be) contains more information 
than the univariate distributions of X and Y separately. Given a bivariate distri- 
bution, we are able to recover both univariate distributions of X and of Y ,  but not 
conversely. 

We begin with the case of discrete bivariate distributions. Let A = {s1,sz,  . . .} 
and B = {yl ,  y2, . . .} be the sets of possible values of X and Y,  respectively, and 
let 

(7.8) 

Our objective is to express the distributions of X and of Y through pij. Since the 
events {Y = yl}, {Y = yz}, . . . form a partition (i.e., in the sense defined in Chap- 
ter 4, these events are mutually exclusive and one of them has to occur), we may 
write for every i, 

p i j  = P { X  = 52, Y = Yj}.  

{x = xi} = U [{x = si} n {Y = yi}] = U{x = Z ~ , Y  = yj}. 
i j 

Since the events on the right-hand side are disjoint, we have 

P { X  = Xi} = C P { X  = xi, Y = yj} = cpii. 
j j 

In a similar way P{  Y = yj} = xi pij I We now introduce: 

Definition 7.2.1 Given the joint distribution (7.8), the distributions of X alone and 
Y alone, calculated from the formulas 

P { X  = Xi} = cpij = p i + ,  P { Y  = yj} = c p i j  = p+j, 
i i 
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will be referred to as marginal distributions. 0 

If we think of numbers p i j  as arranged into a matrix, then P { X  = xi) and 
P{Y = y j }  are sums of its corresponding rows (or columns). Since the sum of all 
p i j  equals 1, both marginal distributions satisfy the condition that the sum of their 
probabilities equals 1. 

EXAMPLE7.4 

In Example 7.1 we considered three tosses of a coin, with X being the number 
of heads in all three tosses, and Y being the number of tails in the last two 
tosses. The joint distribution of X and Y is summarized by the following 
table: 

X I  Y 0 1 2 X 

0 0 0 ;  - 8 1 

1 o i  B B 
2 8 3 0  B 
3 i o  0 - a 1 

1 3 

1 3 - 

Y 1 

In the margins we have the row sums and column sums. The distribution 
of X is 

1 3 
P { X  = 1) = P { X  = 2)  = - 

8’  8 ’  
P { X  =O} = P { X  = 3 )  = - 

while the distribution of Y is 

1 1 
P{Y = 0 )  = P{Y = 2)  = -, P{Y = 1) = - 

4 2 

The adjective marginal refers to the way in which the distribution was obtained; 
it implies nothing about the properties of the distribution. The definition ofmarginal 
distribution for continuous random variables is analogous, with summation replaced 
by integration: 

Definition 7.2.2 If ( X ,  Y )  is a pair of continuous random variables with bivariate 
density f(z, y), then the functions 

+m 

fb, Y) dY and f2 (Y)  = fk’ Y) dz 
--oo 

fib) = 1, 
are called the matginal densities of variables X and Y, respectively. 0 

The justification of Definition 7.2.2 consists of two parts. First, we need to show 
that f l  and f2 are densities, meaning that they are nonnegative for almost all argu- 
ments (i-e,, for all arguments, except a set of arguments of measure zero) and that 
fl and f2 integrate to 1. These properties are immediate consequences of the fact 



170 RANDOM VARIABLES: MULTIVARIATE CASE 

that f(x, y) 2 0 except possibly on a set of measure zero. Consequently, using the 
Fubini theorem, we can write 

1 = J / i ( r . y ) d r d y = L r  [1:/(2.y)dx]dy 

+m 
- - 1, fi(Y)dY, 

and similarly for f1. 
The second part of justification of Definition 7.2.2 consists in showing that, for 

instance, 
b 

P { a  I X I b} = 1 fl(x) dz. 

= P{a I x I b , - c o  < Y < +m} = P { a I  x 5 b}  

EXAMPLE7.5 

A man shoots at a circular target. Assume that his skills are such that he is 
certain to hit the target. However, he is unable to aim with any more precision, 
so that the probability of hitting a particular part of the target is proportional 
to the area of this part. Let X and Y be the horizontal and vertical distances 
from the center of the target to the point of impact. We want to find the distri- 
bution of X .  SOLUTION. Without a loss of generality, we can introduce the 
coordinate system with the origin in the center of the target. Let us assume 
that its radius is R. Then the target is described as x 2  + y2 I R2.  From the 
conditions of the problem it is seen that the density of the point of impact is 
constant on the target so that 

if x2 + y2 5 R2 
y, = { otherwise. 

Next the condition ssR2 f(x, y) dx dy = 1 implies that c must be the recipro- 
cal ofthe area ofthe target; hence c = l/.rrR2. If 1x1 > R, then j(x, y) = 0 for 
all y (see Figure 7.4). For (51 5 R, we have f(z,  y) = 0 when r2 + y2 > R2 
(hence if Iyl > v ‘ m ) ,  and f(x, y) = l/.rrR2 when z2 + y2 I R2 (so 
lyl 5 d m - ) .  Consequently, for 1x1 5 R, 

2 J P  
dy = fl(z) = J- -- - x R ~  

1 
irR2 ‘ 

The density fl(z) has the shape given in Figure 7.4. 
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Figure 7.4 Marginal density 

At this point we need to comment on notation. The symbols fl (z) and f 2 ( y )  for 
marginal densities of X and Y are used in the literature together with more readable 
symbols such as fx(z) and fy(y) ,  with the name of the variable appearing as a 
subscript. This latter system becomes cumbersome when the variables are labeled 
XI and X2 instead of X and Y ,  since logically one should then use fx, (z) and 
fx, (y). We will deliberately avoid keeping rigidly to any fixed system of notation, 
and use whichever notation appears most natural in a given instance. Another prob- 
lem concerns the use of an argument in the density or cdf. It appears natural to label 
the argument z in density or cdf of X ,  label it y in density of Y, and so on. However, 
it is notpossible to use such notation consistently: Indeed, if F ( z )  and f(z) are to 
be used as the cdf and density of X ,  then we have F ( z )  = s_”, f(u) du, and in the 
integrand we can use almost any symbol except z, since the symbol s_“, f (z) dz is 
unacceptably ambiguous. 

We will now define the concept of independence of two random variables. We 
recall, from Chapter 4 that the independence of two events A and B is defined by 
the product rule P(An B )  = P ( A )  P ( B ) .  A random variable X allows us to define 
events of the form { X  E A } ,  where A is some set of real numbers, and the same 
is true for the random variable Y. It seems natural to require that these events be 
independent for independent random variables X and Y .  Thus we have 

Definition 7.2.3 (Intention of the Concept) We say that random variables X and 
Y are independent if events { X E A }  and { Y E B }  are independent for all sets 
A ,  B, that is, if 

(7.9) P { X  E A ,  Y E B }  = P { X  E A } P { Y  E B} .  

0 

This definition, as spelled out in its label, concerns the “final effect” of the con- 
cept: independence of everypair ofevents in a very large class of such pairs. Clearly, 
using this definition to check independence would be very difficult if we were to ver- 
ify the product rule (7.9) for every pair A ,  B. Consequently, it becomes necessary 
to find a condition that is verifiable and strong enough to imply independence in the 
sense of Definition 7.2.3. It turns out that it is sufficient to require only a seemingly 
weaker condition. 
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HHH 2 0 
HHT 2 1 
HTH 1 0 
THH 1 0 

Definition 7.2.4 (Verifiable Definition of Independence) The random variables X 
and Y are said to be independent if their joint and marginal cdf's satisfy the follow- 
ing condition: For every x, y we have 

H T T  1 1 
T H T  1 1 
T T H  0 0 
TTT 0 1 

where Fl(z) and Fz(y) are marginal cdf's of X and Y, respectively. 0 

In the case of discrete random variables with p i j  being the probability P{ X = 
xi, Y = yj), condition (7.10) is implied by 

p i j  = pi+ p + j  for every i, j .  (7.1 1) 

For continuous random variables the condition implying (7.10) calls for marginal 
densities fl and fz to be such that 

for all x, y, except possibly for a set of points (2 ,  y) of measure zero. 
The intuition behind the concept of independence of random variables (analogous 

to the intuition behind the concept of independence of events) is that the information 
about the value of one of them provides no information about the value of the other. 
Random variables for which independence conditions are not satisfied will be called 
dependent. 

EXAMPLE7.6 

Let us go back to Example 7.1. In the table of joint and marginal distribution 
w e h a d P { X  = 3,Y = 2) = OwhileP{X = 3 )  x P{Y = 2)  = x a # 0. 
This means that X and Y are dependent random variables. 

EXAMPLE7.7 

Let us consider again the case of three tosses of a coin. Let CJ be the number 
of heads in the first two tosses, and let V = be the number of tails in the last 
toss. The sample points are 

S u V I  s u v  

The joint and marginal probability distributions are 
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1 1 1 
8 8 4 
2 2 1 

1 1 
8 8 4 

- - - 0 

1 B B 5 
- 1 - 2 - 

V 1 1 
2 2 
- - 1 

A direct check shows that we have 

P { u = Z , v = y } = P { u = z } x P { v = y }  

for every cell ( 2 ,  y) in the table above. This shows that U and V are indepen- 
dent. 

Verification that two random variables are independent requires checking the 
multiplicative property (7.11) or (7.12) for all z and y. In the last example this 
required comparing joint probabilities with the products of probabilities in marginal 
distributions for all six cells in the joint distribution table. Such a direct verifica- 
tion is not feasible except for discrete variables with small sets of possible values. 
To handle more complicated cases, we typically must have some algebraic formula 
for the joint distribution from which we can calculate the marginal distributions and 
verify the product rule algebraically. On the other hand, to show that two variables 
are dependent (i.e., that they are not independent), it is enough to find one pair (2, y) 
for which the product rule does not hold. 

A practical consequence here is that it is generally worthwhile to try to determine 
based on the meaning of the variables in question, whether or not we can expect 
them to be independent. This determines the strategy: Do we aim at checking that 
variables are independent, or do we aim at showing that they are dependent? These 
two goals may require somewhat different types of technique. 

To illustrate the point, in Example 7.6 we could have expected the variables to 
be dependent: the more tails in the last two tosses ( Y ) ,  the lower one can expect 
the total number of heads (X) to be. In particular, we may be able to find a “pure 
exclusion,” such as the fact that one cannot have X = 3 and Y = 2 simultaneously, 
while separately each of these events has positive probability. 

On the other hand, in Example 7.7 we could have expected U and V to be in- 
dependent, since the values of U and V were determined by nonoverlapping sets of 
tosses. In particular, the following criterion is useful in showing that two variables 
are not independent. 

Theorem 7.2.1 Ifthe table ofjointprobabilities for  ( X ,  Y )  contains a zem entry, 
then X and Y are dependent. 

Proof: Suppose that P{ X = 20, Y = yo} = 0. Since zo and yo are the possible 
values of X and Y, respectively, the row sum and column sum at (20, yo) must be 
positive. Hence P ( X  = ZO) x P(Y = yo) is positive and (7.1 1) is not satisfied. 0 

This criterion provides a quick “visual” test for lack of independence. Of course, 
it works only in one direction: if there are no zeros in the table ofjoint distribution, 
the variables may or may not be dependent, and further checking is necessary. 
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We will now consider some examples of applications of Definition 7.2.4 for the 
case of continuous random variables. 

EXAMPLE73 

The joint density of random variables X and Y is 

csne-ax-PY for x > 0, y > O 
otherwise. 

The question is whether these random variables are independent. 

SOLUTION. It is interesting that the answer here does not require any calcu- 
lations. In particular, we do not need to calculate c. We can simply represent 
the joint density on the positive quadrant as 

(7.13) n -ax f ( z , y )  = c1x e x cze-PY 

with c1 and cz such that 

(then automatically c = clcz). The two factors on the right of (7.13) must be 
marginal densities (why?) and we showed independence of X and Y. How- 
ever, for the joint density f (x ,  y) to factor into the product of two functions, 
each depending on one variable only, is not enough to warrant the indepen- 
dence of variables X and Y, since the marginal densities depend on the shape 
of the support of the joint density (i.e., the set of points where f(z, y) is posi- 
tive). To see it, consider the following example. 

EXAMPLE7.9 

Let the joint density be 

At first glance the situation here is similar to that in Example 7.8, but it is not. 
The marginal distributions are not c1x and czyZ for any c1 and CZ. Indeed, 
(see Figure 7 .2  for limits of integration): 

+co 

f(o, y) dy = so Ody + l-' coy2 dy + lyz Ody 
-03 

f l b )  = 1, 
- cx(1 - x ) 3  - 

3 

for 0 < 2 < 1, and f l(z) = 0 for x > 1 and z < 0. Similarly f2(y) = 0 if 
y > 1 o r y  < 0,andforO < y < 1, 
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Since f(s, y) # f l (s)f2(y) ,  the random variables are dependent. 

We can now formulate 

Theorem 7.2.2 Assume thatthejointdensity f (x, y) iscontinuous, andlet f (x, y) > 
0 for (5, y) E A. I fA is not a Cartesianproduct A = A x  x A y ,  then variables X 
and Y are dependent. 

Prooj: The marginal densities fl and f 2  are strictlypositive in the “shadows” A X  
and A y  of the set A on the z-axis and y-axis (see Figure 7.5). If A is not equal to the 
Cartesian product A x  x A Y ,  then there exists a point (so, yo) with 50 E A X ,  yo E 
A y ,  and (so, yo) $ A. If so E A x ,  then there exists y’ such that (ZO, y*) E A ,  
and therefore f(x0, y*) > 0. Since f is continuous, it must be positive in some 
neighborhood of (20, y*), and therefore fi(x0) = J f(z0, y) dy > 0. Similarly 
fi(y0) > 0. Consequently, 0 = f(z0, yo) # f l (s0)f2(y0)  > 0. The continuity of 
f ( z , y ) ,  and hence of f l (z ) f i (y) ,  implies now that f(s, y) # f l ( z ) f i ( y )  on a set 
of a positive probability. 0 

’t 

A ,  Xo X 

Figure 7.5 Condition for dependence 

While the continuity of f(s, y) is sufficient for the criterion given by Theorem 
7.2.2, it is not necessary. However, it ought to be mentioned here that this criterion 
should be applied with some caution if f is not continuous, since f(x, y) is defined 
only up sets of measure zero. 

EXAMPLE 7.10 

In Example 7.9 the set A is a triangle with vertices (0, 0), (1, 0), and (0, l), so 
it can be inferred without any calculations that X and Y are dependent. 

At the end of this section let us make the following important remark. The formu- 
las (7.9) through (7.12) from Definitions 7.2.3 and 7.2.4 can be used in two ways. 
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The first is as illustrated so far: to determine whether or not two variables are in- 
dependent. However, a more frequent use of these formulas is to find the joint 
distribution (joint density, joint cdf, etc.) of independent variables X and Y. 

Figure 7.6 Probability of better of two attempts exceeding 0.75 

EXAMPLE7.11 

A man makes two attempts at some goal. His performance X at the first at- 
tempt, measured on the scale from 0 to 1, is a random variable with density 
fl (z) = 12z2( 1 -z). His performance Y at the second attempt is independent 
of X, and generally tends to be lower; its density is f2(y) = 6y( l  - y), 0 5 
y 2 1. What is the probability that the man exceeds level 0.75 in the better of 
the two attempts? 

SOLUTION. The joint density of (X, Y )  is 

72z2(1 - z)y( l  - y) for 0 5 z 5 1, 0 5 y 5 I 
otherwise. 

The required probability is obtained as the integral of f(z, y) over the shaded 
area in Figure 7.6 hence equals 

PROBLEMS 

7.2.1 The joint probability function of variables X and Y is f(z, y) = cIz - yI for 
5 = 0 , 1 , 2 , 3 ,  and y = 0 ,1 ,2 .  Find: (i) c. (ii) P ( X  = Y ) .  (iii) P(X > Y ) .  (iv) 
P(IX - 11 5 1). (v) P(X + Y 5 3). 
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7.2.2 Two cards are drawn at random from the ordinary deck of cards. Let X be 
the number of aces and let Y be the number of hearts obtained. (i) Find the joint 
probability function of (X, Y ) ,  (ii) Find the marginal distribution of X and Y .  (iii) 
Are X and Y independent? 

7.2.3 An urn contains five balls, two of them red and three green. Three balls are 
drawn without replacement. Let X and Y denote the number of red (X) and green 
( Y )  balls drawn. (i) Find the joint distribution of (X, Y ) .  (ii) Find the marginal 
distributions of X and Y ,  (iii) Are X and Y independent? (iv) Find the joint distri- 
bution of X and Z = Y - X. 

7.2.4 A box contains three coconut candies, five hazelnut chocolates, and two peanut 
butter chocolates. A sample of four sweets is chosen from the box. Let X, Y, and 2 
be the number of coconut candies, hazelnut chocolates, and peanut butter chocolates 
in the sample, respectively. (i) Find the joint distribution of (X, Y) .  (ii) Find the 
marginal distributions of X, Y, and Z. (iii) Are X and Y independent? Are X and 
Z independent? 

7.2.5 Let X and Y have the joint distribution P { X  = z, Y = y} = cX"+Y/(z!y!) 
for z = 0 , 1 , .  . . , y = 0 ,1 , .  . . , and X > 0. (i) Find c. (ii) Find the marginal 
distribution of X. (iii) Are X and Y independent? 

7.2.6 Random variables X and Y have joint distribution given by the following 
table: 

X I Y  1 2 3 

1 

2 b : c  

Show that X and Y are dependent, regardless of values a, b, and c. 

7.2.7 Random variables have joint distribution given by the table 

X I Y  1 2 3 

1 a 2a 3a 

2 b C d 

Find a, b, c, d if X, Y are independent, and P ( X  = 2) = 2 P ( X  = 1). 

7.2.8 Consider a system consisting of three components connected as in Figure 7.7. 
Let Y1, Y2, Y3 be independent lifetimes of components 1,2, and 3, respectively, each 
with EXP(a) distribution. If T is the lifetime of the whole system, find: (i) The cdf 
of T.  (ii) The hazard function of T .  

7.2.9 Let TI, T2 be independent random variables with hazard functions hl ( t )  and 
hZ(t), respectively. (i) Show that the variable with the hazard function h( t )  = 
h l ( t )  + hz(t )  has the same distribution as min(T1, T2). (ii) Express P(T1 < Tz)  
through hl and ha. 
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Figure 7.7 Three-component system 

7.2.10 Let (XI Y )  have the distributiongiven by the table 

X I Y  3 4 5 6 

Find the probability distribution of independent random variables (X' , Y') such that 
X' and Y' have the same marginals as X and Y .  

7.2.11 Let X and Y be the lifetimes of two components of a machine. Their joint 
distribution is given by the density f (z ,  y) = ~ e - " ( ~ + y )  for z 2 0, y 2 0 and zero 
otherwise. (i) Find P ( X  1 5). (ii) Find the probability that max(X, Y )  > 2. (iii) 
Check the independence of X and Y using their marginal densities. 

7.2.12 Random variables X and Y have joint density 

k(ao  +by) 0 < z < 1, 0 < y < 2 
otherwise, 

where a > 0, b > 0. Find: (i) Ic (as a function of a and b). (ii) The marginal 
distributionsof X and Y. (iii) The cdf of (X, Y). 

7.2.13 Assume that in shooting in a target, the coordinates (XI Y) of the point of 
impact are independent random variables, each with a N(0, a2)  distribution. Find 
the density of D, the distance of the point of impact from the center of the target. 

7.2.14 An ecologist has to randomly select a point inside a circular region with 
radius R. She first samples the direction from the center of the region according to 
a uniform distribution on [ O", 360'1, and then samples the distance from the center 
according to U[O, R]. Find: (i) The density f(z,  y) of the chosen points in ( 5 ,  y) 
coordinates. (ii) The marginal distribution of X. 

7.2.15 Assume that X and Y are independent random variables with EXP(a) and 
EXP(b) distributions, respectively. Assume that it is not possible to observe both X 
and Y but that one can observe 

1 i f X < Y  
0 otherwise. 

U = min(X, Y )  and 2 = 



MARGINAL DISTRIBUTIONS; INDEPENDENCE 179 

Figure 7.8 Joint distribution of X and Y 

v 
1 

. .  * .  

4c-x 

- 
I -  

/ 
2 3 

. .  . .  . .  + +  A A  
5 6 

?? . .  . .  . .  . .  / \  
7 8 

Figure 7.9 Options for marginal densities of X and Y 

This kind of situation, called censoring, occurs often in medicine and engineering. 
For instance, X and Y may be the times of death due to heart failure (X) and death 
due to other causes (Y ) .  Then U is the observed lifetime, and 2 is the indicator of 
the cause of death. (i) Find the joint distribution of (U, 2). (ii) Prove that U and 2 
are independent. (Hint: Note that U is continuous, 2 is discrete. It suffices to show 
that P{U 5 2112 = i} is independent of i, i = 0 , l . )  

7.2.16 Let X, Y be independent, continuous random variables with a symmetric 
(but possibly different) distribution around 0. Show that Y/X and Y/lXl have the 
same distribution. (Hint: Compare the cdf's of W = X/ Y and V = X/ I Y 1 .> 
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7.2.17 Let X and Y have distributionuniform in the shape of the letter Y (see Figure 
7.8). Identify the shapes of the marginal densities of X and Y in Figure 7.9. 

7.3 CONDITIONAL DISTRIBUTIONS 

A natural question concerning two random variables is how to handle situations 
where the information about the value of one of the variables affects the distribution 
of the other. 

In symbols, the objective now is to determine the probabilities of the form 

P ( X  E Q,lY = y) or P ( Y  E QzlX = x) (7.14) 

for various Q I ,  Q2, z, and y. 
We begin with the case of discrete random variables. 
Let V = {yl, y2;  . . .} be the set of all possible values of Y. Then the event 

{ Y = y} appearing as the condition in (7.14) has positive probability only if y E V ;  
otherwise, P { Y  = y} = 0. Here we can use the theory developed in Chapter 4, 
where we defined the conditional probability P(A1B) of event A given that the event 
BoccurredasP(A1B) = P(AnB)/P(B),providedthat P ( B )  > 0. I f P ( B )  = 0, 
the probability P(A1B) was left undefined. It is clear that to evaluate (7.14) in 
the case of discrete random variables, we do not need any new concepts. If the 
condition has probability zero (i.e., if P{ Y = y} = 0), we leave P{ X E QIY = y} 
undefined. For y j  E V, we have P { Y  = yj }  > 0, and 

(7.15) 

Let U = {XI, 22,. . .} be the set of possible values of X .  If we write p(xz, y3) 
or p, ,  for P{  X = z,, Y = y3}, the denominator in (7.15) is simply the marginal 
probability P { Y  = y,} = x z p E ,  = p+, , and therefore 

xt X , E Q I  
P { X  E QiIy = I/,} = 

p+3 

An analogous formula with the role of X and Y interchanged is 

EXAMPLE 7.12 

Let the experiment consist of two tosses of a die. We want to find conditional 
probabilities of the result of the first toss given the absolute difference of two 
tosses, and conversely, the conditional probabilities for the absolute difference 
given the results of the first toss. Accordingly, we let XI and Xz denote the 
result of the first and the second toss, respectively, and put 2 = 1x1 - X21. 

The sample space S is naturally represented by the cells of the following 
table (where the values of 2 are written in the cells): 
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X l l X 2  1 2 3 4 5 6  

1 0 1 2 3 4 5  
2 1 0 1 2 3 4  
3 2 1 0 1 2 3  
4 3 2 1  0 1 2  
5 4 3 2 1 0 1  
6 5 4 3 2 1 0  

The joint distribution of X I  and 2 is obtained by simple counting: 

X l l Z  0 1 2 3 4 5 x1 
1 1 1 1 1 1 1 
36 36 36 36 36 36 6 
1 2 1 1 1 1 
36 36 36 36 36 

1 2 
i6 

2 1 
36 36 36 6 
1 2 2 1 

i6 36 36 36 
1 2 1 1 1 
36 36 36 36 
1 1 1 1 1 1 1 
36 36 36 36 36 36 6 

- - - - - - - 1 

0 

0 

- - - - - - 2 6 

0 E 

- - - - - 3 
4 

5 

6 

- - - - 

G 
- 
i6 

- - - - 
- - - - - - - 

6 8 6 4 2 
36 

10 
36 36 36 36 36 1 - - - - - - z 

We can now answer various questions concerning conditional probabilities. 
For instance, 

while 

In the case of continuous random variables, determining a quantity such as P{ X E 
AIY = y) cannot rely upon the concepts of Chapter 4, since the conditioningevent 
{ Y = y)  has probability zero. We therefore define the conditional density and then 
verify that it has all the necessary properties. 

Definition 7.3.1 The conditional densities g12 and g21 are defined by 

provided that f~(y) > 0, and 

(7.16) 

(7.17) 

provided that f1 (z) > 0, where f (z l  y) is the joint density of ( X ,  Y )  and fl  and fz 
0 are the marginal densities of X and Y ,  respectively. 
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If the denominators in (7.16) or (7.17) are zero, the left-hand sides remain un- 
defined. To check that formulas (7.16) and (7.17) define densities, observe first 
that both functions, which are regarded as functions of the first variable (i.e., 2 in 
g12(zIy) and y in g21(yIx)), are nonnegative. Moreover, we have 

and similarly for 921. To justify the definition on “semantic” grounds, assume for 
simplicity that f(z, y), and hence also f2(y), are continuous, and let us consider, for 
some h > 0, the probability P { X  E AJy 5 Y 5 y + h}. For small 12 we have 

= s, gl2(4Y) dz. 

This shows that g12(zIy) is a well-defined density of X given that Y = y. 

EXAMPLE 7.13 

Let the joint density of (X, Y )  be given by 

Thus the density is positive on the triangle with the vertices (1, l), (1 0), and 
( 0 , l ) ;  hence X and Y are dependent (by the criterion for dependence of con- 
tinuous random variables from Section 7.2). The marginal densities are as 
follows (we do not need to determine the numerical value of c; it will cancel 
in densities g12 and 921): If 0 < z < 1, then 

f m  1 

fl(.) = 1, f (z1 Y) dY = CZY2 dY = cz- 
C : i:. 

= - ( 3 2  - 323 + x4). 
3 

Similarly, for 0 < y < 1, 
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0.5 I X  0,5 I Y  

Figure 7.10 Conditional densities. 

hence 

for 1 - y < z < 1,0 < y < 1 
otherwise. 

For instance, if Y = 0.5, then for 0.5 < x < 1, 

8 
3 

912 (Z 10.5) = g12 (z IY = 0.5) = -x. 

Similarly, for 1 - x < y < 1 ,  

- 3Y2 g12(yb) = - f (x7 Y) - - XY2 - 
fl(.) (c/3)(3x2 - 3x3 + x4) s ( 3  - 3 s  + x2) 

and equals 0 otherwise. Thus, if X = 0.5, for 0.5 < y < 1 the density 
g21 (y10.5) = 24y2/7 (see Figure 7.10). 

In Chapter 4 we repeatedly stressed the fact that the formula P (  A /  B )  = P( A n 
B ) / P ( B )  can be used to determine the probability P(AnB) of two events occurring 
jointly, given the probability of one of those events and the appropriate conditional 
probability, such as P ( B )  and P(A1B). The same situation is true in the case of 
conditional distributions in a continuous, discrete, or mixed case; given one marginal 
distribution and one conditional distribution, one can determine the joint distribution 
and hence also the marginal distribution of the other variable. We will illustrate this 
technique by three examples. 

EXAMPLE 7.14 

An animal lays a certain number X of eggs, where X is random and has the 
Poisson distribution 

A" 
n! 

P { X  = n )  = --e-', n = 0,1,2, 
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(see Example 6.10). Each egg hatches with a probability p ,  independent of the 
hatching of other eggs. Determine the distribution of Y = the number of eggs 
that hatch. 

SOLUTION. Here the randomness of Y has two sources: first, the number 
X of eggs laid is random (varies from animal to animal), and second, even for 
animals that laid the same number of eggs, the randomness in the process of 
hatching may make the numbers of offspring different. 

Our solution strategy is as follows: We are given the distribution of X. The 
two assumptions of the problem will allow us to determine the conditional 
distribution of Y given X. These assumptions allow us to determine the joint 
distribution of (X, Y), and the distribution of Y will be obtained as marginal 
from the joint distribution of (X, Y ) .  

We now need to determine the conditional distribution of Y given X, that 
is, P{Y = j l X  = n}. First, it is clear that 0 _< Y _< X (the number of eggs 
that hatch is nonnegative and cannot exceed the number of eggs laid). We 
assume that eggs hatch with the same probability and independently. Thus Y 
must have binomial distribution if we regard the process of incubation as an 
“experiment over an egg” with “success” identified with hatching. Therefore, 

P{Y = j/x = n} = . p J ( 1 -  p ) ” - j ,  j = 0, I , .  . . ,n. (3 
By formula (7.15) the joint distribution of (X, Y )  is 

P { X  = n,Y =j}  = P{Y = j lX  = n} x P { X  = n}  

where n = 0,1,2, . . . and j = 0,1,  . . . , n (for all other values of n and j, the 
joint probability is zero). 

We will next find the marginal probability P{Y = j} for j = 0 ,1 ,2 ,  . . . . 
Clearly, for X 2 Y ,  we have n 2 j. Hence 

n! p’ (1 - p ) ” - j  

n=j 

The marginal distribution of Y is again Poisson, except that the parameter has 
changed from X to Ap. 
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The process that leads from X to Y in this example is sometimes called 
binomial thinning. One can visualize it, in general, as a random process that 
gives the value of X (by assumption, an integer), with some distribution. We 
can think of X as the number of objects of some kind that are produced, a 
number of elements sampled, a number of events of some kind that occur, and 
so on. The process of thinning causes some of the X objects (events, etc.) 
to disappear (not be counted), due to a certain random process of selection. 
For instance, some of the X objects produced are defective, some of the X 
elements sampled are not acceptable or have certain other characteristic, some 
of the events are unobservable, and so on. Such process of elimination of some 
X’s and the selection of others is called thinning. We say that the process 
of thinning is binomial if the inclusions of X-elements as Y-elements are 
independent and occur with the same probability. The present example shows 
that binomial thinning of Poisson random variables leads again to Poisson 
random variables, with appropriately modified parameters. 

We will now consider similar situation for continuous distributions. 

EXAMPLE 7.15 

A point X is chosen at random from the interval [A, B] according to the uni- 
form distribution (see Example 6.19, and then a point Y is chosen at random, 
again with uniform distribution, from the interval [X, B]. Find the marginal 
distribution of Y. 

SOLUTION. Since 
1 B - A  f o r A I x 5  B 

otherwise 

- f o r x I y 5 B  
B - x  

0 otherwise. 

1 
m x &  f o r A l z l y 5 ~  

0 otherwise. 

Consequently, for fixed y ( A  5 y 5 B),  

1 B - A  
B - A  B - x  B - A  B - y  

dx = -log-. 
1 

x -  

The values close to B are more likely than those close to A; the density of Y 
is in fact unbounded as we approach the upper boundary B of the range of Y. 

EXAMPLE 7.16 

Finally, we will consider the case of a mixed distribution, with X being con- 
tinuous and Y being discrete. 
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Assume that Y takes one of n 2 2 integer values with P{Y = i} = pi and 
pl + p2 + . ' + pn = 1. In the simplest case, n = 2, we have 

p1=  P{Y = 1) = p ,  p2 = P{Y  = 2)  = 1 - p .  

Next assume that for a given Y = i, the random variable X has a continuous 
distribution with density pi( . ) .  Thus we have 

P { a  5 X 5 b, Y = i} = pi  

b 

cpi(z) dz. 

To find the marginal distribution of X, we can use the formula for total prob- 
ability (4.9) from Chapter 4, with events { Y = i} as the partition. Then 

n 

P{a 5 x 5 b }  = C P { a  5 x 5 blY = i} x P{Y = 2 )  

i=l 

It follows that X is a continuous random variable with the density 

n 

called the mixture of densities cpi with mixing coeficients pi. 

9 2  of X, then 
If we have only two values of Y, and therefore only two densities cp1 and 

f x b )  = PCpl(Z1 + (1 -p )Cpz ( z ) .  

The formulas above remain valid if Y assumes one of infinitely many val- 
ues 1 , 2 ,  . . . , with probabilities p l ,  p 2 ,  . . . such that we have cpi = 1. The 
only potential source of trouble is the interchange of integration and summa- 
tion in the last step in (7.18). But this interchange is permissible because the 
terms of the sum are all nonnegative. 

PROBLEMS 

7.3.1 Suppose that three cards are drawn without replacement from an ordinary 
deck. Let X be the number of aces among the cards drawn and Y be the number 
of red cards among them. Find: (i) The joint distribution of ( X ,  Y ) .  (ii) The condi- 
tional distribution of the number of aces if it is known that all three cards selected 
are red. 

7.3.2 Let X and Y have the joint density f(z, y) = X2e-'Y for 0 5 z 5 y and 
f(z, y) = 0 otherwise. Find: (i) The joint cdf of (XI Y ) .  (ii) The marginal densities 
of X and Y .  (iii) The conditional density of Y given X. 

7.3.3 Two parts of a document are typed by two typists. Let X and Y be the num- 
bers of typing errors in the two parts of the paper. Assuming that X and Y are 
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independent and have Poisson distributions with parameters A1 and A2 , respectively, 
find the probability that: (i) The paper (i.e., two combined parts) has at least two 
typing errors. (ii) The total number of typing errors is m. (iii) The first part of the 
paper has k typing errors given that there are n typing errors altogether. 

7.3.4 Let variables X and Y be independent, each with U[O, 11 distribution. Find: 
(i) P(X + Y 5 0.5 I X = 0.25). (ii) P(X + Y 5 0.5 1 X 1 0.25). (iii) P ( X  2 
Y 1 Y 2 0.5). 

7.3.5 Let X and Y have joint density of the form 

A(y - z)O 

f b 1 Y )  = { 0 otherwise. 
for 0 5 5 < y 5 1 

Find: (i) The values of a such that f can be a density function. (ii) The value of 
A for n specified in part (i). (iii) The marginal densities of X and Y .  (iv) The 
conditional densities glp(zIy) and g21(y1~). 

7.3.6 The phrase “A stick is broken at random into three pieces” can be interpreted 
in several ways. Let us identify the stick with interval [0,1] and let 0 < X < Y < 1 
be the breaking points. Some of the possible ways of generating X, Y are as follows: 
(i) A point (U, V) is chosen from the unit square with uniform distribution, and we 
let X = min(U, V) and Y = max(U, V). (ii) The point U is chosen from [0,1] 
with uniform distribution. If U < 1/2, then V is chosen with uniform distribution 
from [U, 11, whereas if U 2 1/2, then V is chosen with uniform distribution on 
[0, U]. Then (X, Y) are defined as in (i). (iii) X is chosen from [0,1] according to 
the uniform distribution, and then Y is chosen with uniform distribution on [X, 11. 
(iv) U is chosen with uniform distributionon [O,  11. Next, one of the intervals [0, U ]  
or [U, 11 is chosen at random, with probability U and 1 - U,  respectively. Then 
V is chosen with uniform distribution from the chosen interval, and again, X = 
min(U, V )  and Y = max(U, V). 

In each of the cases ( i x i v )  find the joint density of (X, Y )  and the marginal 
densities of X and Y .  Which of the ways (i)-(iv) are equivalent? 

7.3.7 A fast-food restaurant has a dining room and a drive-thru window. Let X 
and Y be the fractions of time (during a working day) when the dining room (X) 
and the drive-thru window (Y) are busy. The joint density of (X, Y )  is f (z ,  y) = 
k ( 2 z 2  + y2) for 0 5 z 5 1 , 0  5 y 5 1 and f(z, y) = 0 otherwise. Find: (i) k. (ii) 
The marginal densities of X and Y .  (iii) The probability that the drive-thru window 
will be busy more than 75% of the time on a day when the dining room is empty less 
than 10% of the time. (iv) Do you find anything disturbing in this problem? If so, 
explain. 

7.4 B I VA R I ATE TRANSFORM AT1 0 N S 

In Chapter 6 we considered transformations of single random variables. Here we 
will consider functions of two continuous random variables X and Y with the joint 
density f(x, y) with support C (so that f (z ,  y) > 0 on C and f(x, y) = 0 outside 
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C). The objective is to find the density of Z = p(X, Y ) ,  where cp is a differen- 
tiable function of two real arguments. By far the simplest here is the cdf technique, 
introduced in Section 6.4 for the case of a single variable. It may also be applied 
in the multivariate case if we can obtain P { Z  5 z }  = P{p(X, Y )  5 z }  in a 
closed form as a function of z .  Density can then be obtained by differentiation. 
This methods works especially well for p(X, Y )  = max(X, Y )  and p(X, Y )  = 

min(X, Y ) ,  when X and Y are independent. For example, P{max(X, Y) 5 z ) }  = 
P { X  5 z,Y I z }  = Fx(z)Fy(r); hence the density of Z = max(X, Y )  is 

Now we will present a technique that may be applied to a wider class of cases. It 
will be given in the form of an algorithm, and its use will be illustrated by several of 
examples. A formal proof will not be given, since the algorithm is in fact based on a 
change of variables in two-dimensional integrals, which can be found in advanced- 
level calculus texts. 

Determination of densities of bivariate (and multivariate) transformations is typ- 
ically regarded by students as challenging. We hope that by presenting it as a purely 
mechanical procedure-which it largely is-we will alleviate, or perhaps eliminate, 
the terror. It is true that the procedure requires attention and some level of algebraic 
skills, but the difficulties are closer to those of proofreading a telephone directory 
then to those of playing a game of chess. 

1. Choose a “companion” function, say w = q(s, y), such that the pair of equations 

fx (ZPY ( 2 )  + FX(Z>fY (2). 

The algorithm is as follows: 

z = P ( X ,  Y) and w = 77(2, Y) (7.19) 

can be solved, leading to 

s = a(z ,  w) and y = P(z,  w). (7.20) 

2. Determine the image ofthe support C ofdensity f(s, y) in the ( z ,  w) plane under 

3. Find the Jacobian of transformation (7.19), that is, the determinant 

transformation (7.19). Let this image be D. 

(7.21) 

4. Determine the joint density g(z,  w), of random variables 
Z = p(X, Y ) ,  W = v ( X ,  Y ) ,  given by the formula 

5. Compute the density of Z = cp( X, Y )  as the marginal density of the joint density 
dz, w): 

+m 

g z ( z )  = J f(.h w), P k ,  .w))lJI dw, 
-m 
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where D, = {w : ( z ,  w) E D}.  

Out of these five steps, only step 1 requires some moderate amount of thinking 
(or, at least some experience). The reason is that the choice of the companion trans- 
formation q affects all subsequent steps, making the calculations easy, difficult, or 
perhaps even impossible. 

w EXAMPLE 7.17 Sum of Random Variables 

The operation of addition of random variables appears so often that it is worth- 
while to derive general formulas here. For z = p(x ,  y) = x + y we have a 
possible choice of a companion transformation, w = ~ ( x ,  y) = x. Hence the 
inverse transformation (7.20) is 

x = w  and y = z - w ,  

so that a ( z ,  w) = w, and p(z, w) = z - w. Thus 

and JJI = 1. If ( X ,  Y )  have joint density f ( x ,  y), then the joint density of 
(2, W )  is f (w,  z - w). The density of 2 is 

(7.22) 

Now we have only to determine the effective limits of integration, that is, the 
set of values w (for given z )  at which the integrand is positive. 

H EXAMPLE 7.18 Sum of Exponential Random Variables 

When X and Y are independent, and both have exponential distributions with 
the same parameter A, their joint density is 

(7.23) 

Consequently, the density g z ( z ) ,  as given by (7.22), is 

f (w,  z - w) dw = 

where D, is the set {w : w 2 0, z - w 2 0}, since both arguments must be 
positive for f ,  given by (7.23), to be positive. Since we must then have z > 0 
and 0 5 w 5 z ,  

a2e-O" dw J,. g z b )  = 
-m 

(7.24) 

and g z ( z )  = 0 for z < 0. We recognize the density (7.24) as a gamma density 
with parameters 2 and a (see Example 6.28). 
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Figure 7.11 Triangular density 

EXAMPLE 7.19 Sum of Two Uniform Random Variables 

Suppose 
now that two independent variables each have U(0, 1) distribution. Their joint 
density is then 

1 i f O < s < l ,  O < y < l  
f h Y )  = { 0 otherwise. 

Formula (7.22) gives the density of variable 2 = X + Y as 

(7.25) 

where D, = {w : 0 < w < 1 , 0  5 z - w 5 1). The pair of inequalities 
defining D,, namely 0 < w < 1 and z - 1 5 w 5 z ,  can be written as 

max(0, z - 1) 5 w 5 min(z, I), 

and 0 5 2 5 2, since 0 5 X 5 1 and 0 5 Y 5 1. For 0 5 z 5 1, the 
set D, is the interval 0 5 w 5 z ,  while for 1 5 z 5 2 we have the interval 
z - 1 5 w 5 1. Consequently (7.25) gives (see Figure 7.1 1) 

for 0 5 z 5 1 
for 1 5 z 5  2 
otherwise. 

This distribution is called triangular. 

EXAMPLE 7.20 

Formula (7.22) was obtained by taking a specific companion transformation 
w = ~ ( 2 ,  y) = 5 .  There is no compelling reason for this choice. We could, 
of course, have chosen w = q(s, y) = y, getting a very similar formula. 
However, we could also have chosen something more fancy, for example, w = 

V ( 2 ,  Y) = ./(. + 5Y). 
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The system of equations 

z = x + y ,  
.L w=- 

x + 5y’  

Consequently, the Jacobian equals 

5w 
1+4ur(1+4w)l 5z J = l  - 1-w (1 + 4w)2 ’ 
1+4w 

Thus the density of the sum 2 = X + Y can be obtained as the integral 

5wz 52 

where again the effective range of integration depends on the support C of the joint 
density f. 

This example is given here to show that there is no such thing as “the” formula 
for density of sum of random variables: Once the integration is carried out, (7.22) 
and (7.26) will both lead to the same final form of gz(z ) .  We cannot even say that 
(7.22) is simpler than (7.26), since the simplicity of integration depends here on the 
form o f f  and of its support C. 

EXAMPLE 7.21 Product of Two Random Variables 

We have cp(z, y) = zy,  and we want to find the density ofthe random variable 
2 = XY. 

Let us again choose the companion function ~ ( x ,  y) = x so that the system 
of equations (7.19) is 2 = zy, w = z, and its solution (7.20) is 

2 

W 
z=a(z,w)=w, y=P(z,w)=-. 

The Jacobian of this transformation is 

hence I JI = 1/ I w 1 .  The joint density of (2, W )  is now 

and the density of Z is given by 
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Again, the effective limits of integration depend on the support C of density 
f(z, y) and, consequently, the sets D,. 

We will now give an example that provides an algorithm of generating random 
variables with normal distribution. 

Theorem 7.4.1 If X and Y are independent, uniformly distributed on (0 ,  l), then 
the random variables Z and W 

z = d w s i n ( 2 . i r ~ ) ,  w = JZi-&Xcos(27~~),  

are independent, and each has the standard normal distribution. 

Proof: Variables X and Y are independent, each with U(0, 1) distribution. Their 
joint density is 

1 i f O < z < l , O < y < l  
’(” ’) = { 0 otherwise. 

For z = d-sin(2.n~) and w = ~‘*cos(2iry) we have z2 + w2 = 
-2 logs, and s = e-(za+w2)/2.  On the other hand, z/w = tan(2iry), which gives 

1 
2ir 

y = - arctan 

The Jacobian equals 

-z/wz 
J = /  2*(1+7?/wZ) l / w  2X(l+ZZ/W~) 

(7.27) 

which, after some algebra, reduces to 

The unit square, equal to the support of f (z ,  y), is mapped into the whole plane 
( z ,  w). It follows that the joint density of (2, W ) ,  equal in this case to the Jacobian 

0 (7.27), is a product of two normal densities. 

As already mentioned, the conditional densities given a specific value of a ran- 
dom variable cannot be calculated according to the principles of Chapter 4, since 
the conditioning event has probability zero. As a warning we present an example, 
seemingly paradoxical, where by following the rules as explained in this chapter, 
one obtains two different answers to the same question. 

EXAMPLE 7.22 Borel-Kolmogorov Paradox 

Assume that X and Y have joint density 
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Figure 7.12 Supports of (U, V )  and (U, W )  

so X and Y are independent, with the same marginal densities 

f x ( t )  = f y ( t )  = 2 t ,  0 I t L 1. 

We will try to determine the conditional density of X given the event X = Y .  
As we will see, the answer will depend on the representation of event X = Y ,  
as Y - X = Ooras Y / X  = 1. 

SOLUTION 1. We introduce new variables, U = X, V = Y - X .  Then 
our problem becomes equivalent to finding the density of U given V = 0. 
Thus we have to find the joint density h(u, u )  of (V ,  V )  and determine the 
marginal density hv(u). Our answer will be 

The transformation u = z, v = y - z, has the inverse z = u, y = u + v, so 
the Jacobian is 

ax ax 
J =  

Consequently, the joint density of (U, V )  is h(u, v) = 4u(u + v) for 0 5 
u 5 1, -u 5 w 5 1 - u (see Figure 7.12). The marginal density of V is 

hv(v) = 11-' 
for 0 I u 5 1, while for -1 5 u I 0 we have 

1 

hv(v )  = 1 , 4 u ( u  + v) du = 4 
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Both formulas give hv(0) = 413. Thus, as the conditional density of U at 
V = 0, we obtain 

SOLUTION 2 .  We introduce the transformation U = X, W = Y/X. Then 
the conditional density of X, given X = Y, is the same as the conditional 
density of U, given W = 1. 

The transformation u = x,  w = y/x has an inverse x = u ,  y = uw, and 
the Jacobian equals 

Consequently, the joint density of ( U ,  W )  is g(u, w) = 4u3w for 0 5 u 5 
1 , 0  5 w 5 1/11 (see Figure 7.12). The marginal density gw(w) is 

1 

gw(w) = 4u3wdu = w for 0 5 w 5 1, 

while for w 2 1 we have 

For w = 1 we have gw (1) = 1, and therefore the conditional density equals 

Thus we obtained two different solutions, and we may ask: Which of them-if 
either-is correct? 

The formal answer is that both solutions are correct, and we can choose, 
for the density of X given X = Y, any other function as well. This is simply 
because the conditional densities of a variable, given conditions with proba- 
bility zero, can be modified arbitrarily on any set of conditions whose total 
probability is zero (in particular, on a single condition, or on finitely many 
conditions). This answer is, however, not quite satisfactory. We also want 
to understand why the techniques of transformation lead to different answers. 
To explain this phenomenon, let us assume that we need the density of X 
given X = Y, but we cannot observe exactly whether the conditions holds. 
Specifically, consider two situations: (1) we can observe the difference X - Y ,  
within some small error E; ( 2 )  we can observe the ratio the ratio Y/X, again 
within small error E .  In such cases the “natural” approach is to use limiting 
passage, with E --t 0. For any fixed E the conditioning events 1 X - Y 1 < E and 
IY/X - 11 < E are different (see Figure 7.13), and it is not surprising that the 
ratio Y/X favors larger values of u. 
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Figure 7.13 Approximations of two conditioning events 

PROBLEMS 

7.4.1 Let XI Y be independent, each with a standard normal distribution. Find the 
distributionof (i) V = X / Y .  (ii) U = ( X  - Y)2/2. (iii) W = X/lYI. 

7.4.2 Let random variables X I ,  X2 be independent and have both EXP(X) distribu- 
tion. (i) Find the cdf and the density of XI - X2. (ii) Find the cdf and the density of 
X1/X2.  (iii) Show that 21 = X I  + X2 and 2 2  = X I / ( X l  + X 2 )  are independent. 

7.4.3 Let X and Y be independent random variables with densities 

fx(z) = clza-le-zI fy(y) = czyp- le -~  

for z > 0, y > 0, a > 0, p > 0, and normalizing constants c l ,  c2. Find the density 
of W = X / ( X  + Y ) .  

7.4.4 Independent random variables X and Y are uniformly distributed over in- 
tervals (-1, 1), and (0, l),  respectively. Find the joint distribution of variables 
U = X Y  and V = Y. Determine the support of the density function. 

7.4.5 Random variables (XI Y )  have a joint density 

Ic(az+by) i f O < z < 2 2 ,  O < y < 2  
f(X1Y) = { 0 otherwise, 

where a > 0, b > 0 are given constants. Find: (i) The value of k as a function 
of a and b. (ii) The density of random variable 2 = 1/(Y + 1)2. (Hint: Express 
F ( t )  = P{  2 5 t }  in terms of the cdf of Y.) 

7.4.6 Random variables X and Y have joint density f(z,  y) = cz for -z < y < 
x ,  0 < x < 1, and zero otherwise. Find the density and the cdf of W = X - Y .  

7.4.7 Let f be the joint density of a pair ( X ,  Y) of random variables, and let a and 
b be two constants. Find the densities of: (i) a X  + by. (ii) X Y .  (iii) X / Y .  (iv) 
(V ,  V ) ,  where U = aX + b,V = cY + d ,  andac#  0 .  
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7.4.8 Let R be a nonnegative random variable with density f ( r ) .  Let ( X ,  Y )  be a 
bivariate distribution obtained as follows: First randomly choose a value of R, and 
then chose a value of U according to its U(0, 1) distribution. Now put 

X = Rcos(2~U) ,  Y = Rsin(2rU). (7.28) 

Find: (i) The joint density of ( X ,  Y ) .  (ii) P { X Y  > 0). (iii) P { X  > 0). (iv) 
P { X 2  + Y 2  5 t } .  [Hint: For (i) find the joint density of (R ,  U )  first and then use 
transformation (7.28).] 

7.4.9 A current of I amperes following through a resistance of R ohms varies ac- 
cording to the probability distribution with density 

f(. 2)  = { y - i )  O < i < l  
otherwise. 

Find the density of the power W = I2 R watts, if the resistance R varies indepen- 
dently of the current according to probability distributionwith the density g ( r )  = 2r 
for 0 < T < 1, and zero otherwise. 

7.5 M U LTI D 1 M E N S I 0 N A L D I ST R I BUT I 0 N S 

We will now extend the concepts introduced in the case of bivariate distributions to 
the case of multivariate (or multidimensional) distributions. The motivation for these 
concepts lies in the frequency of practical situations when the analysis concerns 
many random variables simultaneously. 

The examples here are easy to find. First, often a description of the phenomenon 
studied (sampled objects, some process, effects of treatment, etc.) uses several at- 
tributes at once. Formally, we have several random variables, XI, . . . , X,, defined 
on a sample space, with Xi being the value of the ith attribute recorded for a given 
object. In such situations a natural choice of sample space is to take the population 
of the objects under consideration, with probability P being generated by a specific 
scheme of selecting elements from the population. 

In another context, we may think of repeated measurements of the same attribute 
so that X i  is the result of the ith measurement. Now the probability P reflects 
possible dependence (or lack of it) in the measurement process. 

Whatever the interpretation, formally we have a vector of random variables 

X=X(") = (XI, . . . ,  X,). 

Px(x) = P { X  = x} = P{X1  = 21,. . .,x, = a,} 

In the discrete case, the joint distribution of X consists of all probabilities of the 
form 

where x = (XI,. . . , s,). Clearly, we must have C, &(x) = 1, the summation 
extended over all possible values x = (21, . . . , a,) of vector X. 

In the continuous case, we have the joint density of the vector X, in the form of 
a nonnegative function f(x) = f(a1,. . . , a,) of n variables such that 

P{X E Q }  = . , f(s1,. . . , a,) dsl . I . da, 
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with 

J .  . . J f ( 5 1 , .  . . ,En) d q  . . . ds, = 1. - 
R" 

The notions of marginal and conditional distributions and densities remain very 
much the same as in the bivariate case, except that the marginal distributions may 
now be themselves multivariate, and the same applies to conditional distribution, 
with the additional feature that the conditioning event may involve several random 
variables. 

The simplicity of concepts can easily be obscured by confusing notation. While 
in any special case there is seldom any danger of confusion (we know the meaning 
of the variables and it is usually clear what is needed and what has to be done), the 
formulas covering the general cases may be confusing. We will use the following 
notation only presenting the theory; in examples we will try to simplify the notation, 
whenever possible. 

First, in the case of marginal distribution, we need to specify the variables of 
interest. They form a subset of the variables X I ,  . . . , X, .  Thus we let X = (Y ,  Z), 
where Y are the variables of interest and Z are the remaining variables. The question 
of ordering is irrelevant. For instance, if X = (XI, X2, X3, X4,  X 5 )  and we are 
interested in the joint distribution of X2 and X5,  then Y = (X2, Xg)  and Z = 
(XI, X3, X4) .  We let y and z denote the values ofvectors Y and Z so that x = ( y ,  z )  
is the partitioning of x into the corresponding two subsets of coordinates. We now 
introduce the following definition: 

Definition 7.5.1 In the discrete case, the marginal distribution of Y is given by 

p y ( y )  = P { Y  = y }  = c P{Y = y ,  z = z } .  
z 

In the continuous case, the marginal density of Y is given by 

f Y ( Y )  = J + Y , z ) d z >  

where the integrals represent the multiple integration over all variables Xi that are 
in vector Z. 

Before considering examples, let us look at the corresponding definitions for 
the case of conditional distributions. As in the bivariate case, the discrete dis- 
tributions present no difficulty, and we will simply state that all formulas can be 
deduced starting from the definition of conditional probability for events, namely 
P(AIB) = P ( A  n B ) / P ( B )  if P(B) > 0. In the continuous case, we have to 
partition X into three components So we write 

x = (Y, z, W), 

where Y is the set of variables of interest, Z is the set of variables that will appear in 
the condition (whose values are assumed known), and W is the set (possibly empty) 
of variables that are neither in the condition nor of interest in the given instance. We 
need to define the conditional density of Y given Z = z. 
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Definition 7.5.2 The conditional density of Y given Z = z is defined as 

where the integral symbols represent multiple integration over the variables in vec- 
tors w and y. 0 

We illustrate that by several examples. 

EXAMPLE 7.23 Trinomial Distribution 

Let us consider an experiment in which the outcome can be classified into one 
of three exclusive and exhaustive categories. We let these categories be A, B, 
and C, and let a, p, and y be their respective probabilities. Outcomes A ,  B ,  
and C form a partition of all outcomes so that a + ,B + y = 1. 

In the case of experiment on treatment effectiveness A, B, and C could rep- 
resent “improvement,” “relapse,” and “no change”; in cases of quality testing 
the categories may be “acceptable,” “repairable, ” “unacceptable and beyond 
repair,” and so on. 

We can perform the experiment n times assuming that the repetitions are inde- 
pendent. Let X I ,  X2 stand for the counts of A and B among n repetitions (the count 
of C is n - X1 - X 2 ) .  We then have the following theorem: 

Theorem 7.5.1 The joint distribution of X = ( X I ,  X 2 )  dejined above is given by 

where 21 , 22 are nonnegative integers such that 21 + 2 2  5 n. 

Proof The probability of x1 outcomes A, 22 outcomes B, and n - 21 - 5 2  

outcomes C in a specific order equals 

P(A)xlP(B)xaP(C)n-xl-xa - - a x i p x a y n - x ~  -xz 
> 

by assumption of independence. Considering all possible 

n n! ( 21, 22, n - 21 - 52 > =  z l ! z z ! ( n  - 21 - 2 2 ) !  

orders (see Theorem 3.5.1), we obtain (7.5.1). 0 

EXAMPLE 7.24 

Continuing Example 7.23, let us find the marginal distribution of X2.  For- 
mally, for 5 2  = 0,1,  . . . , n,  we have 

p x 2 ( 2 2 )  = P(X2  = 2 2 )  = c P ( X 1  = 51, x2 = 5 2 ,  x3 = 2 3 ) .  

21 9x3 
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However, 2 3  = n - 2 1  - 2 2 ,  so 

P{X1  = ~ ~ , X ~ = Z ~ , X ~ = ~ - Z ~ - ~ ~ } = P ( X ~  = q , X 2 = z 2 } .  

Therefore, using (7.29), we write 

x,=o 

= (;z)pyl - p ) " - " 2 ,  

since the last sum above reduces to 

where 7r = a/(l - 0). 

Thus the marginal distribution of a variable in a trinomial distribution is binomial, 
as could have been expected. It is enough to interpret an occurrence of B as a success 
and the occurrence of anything else ( A  or C) as failure. So the probabilities of 
success and failure are p and 0: + y = 1 - p, respectively. The number of successes, 
Xz, has a binomial distribution, as it should. In the general case, suppose that the 
outcomes of each experiment are categorized into rn + 1 classes, their probabilities 
being XI, 7rz, . . . , 7rm+lI with 7r1 + 7r2 + . . . + 7rm+l = 1. If the experiment is 
repeated independently n times, and Xi (i = 1,. . . , m) is the number of outcomes 
of category i among n outcomes, then for nonnegative integers 21, . . . , 2, with 
2 1  + . . . + 2 ,  5 n we have 

where Zm+1 = n - (21 + . . . + 2,) and 7rm+1 = 1 - (7r1 +. . . + n,). This is the 
multinomial distribution. 

Let now Y = (Xi, , . . . , Xi,) be a subset of variables X = (XI,. . . , X,) with 
a multinomial distribution. Proceeding in the same way as in Example 7.24, we can 
show that for y = (yi, , . . . , yi, ) with coordinates yij being nonnegative integers 
with yil + . + yi, 5 n, we have 

n! 
P{K1 = yil,. . . , K k  = Yi,} = 
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Figure 7.14 First two generations in the process of grinding 

where yiktl = n - yil - . . ’  - yik and 7 ~ i ~ + ~  = 1 - x. 2 1  - . . . - xilr. Thus a 
marginal distribution in a multinomial distribution is again multinomial with lower 
dimensionality. 

EXAMPLE 7.25 Model of Grinding 

The basic model suggested for the process of grinding rock begins with a piece 
of rock that is randomly divided into two parts. Each of these two parts is again 
divided randomly, and so on, until in the nth “generation” we have 2” pieces 
of rock. Assume that this process continues for a large number of generations. 

With the model one can obtain a distribution, as n + co, of sizes of rock. 
Naturally, with each generation of grinding the actual sizes of rock will tend 
to zero, so that the sizes of 2” pieces in the nth generation will have to be 
multiplied by the approximate scaling factor. 

The results allow us to predict what fraction of the initial mass of rock will 
be ground into gravel with sizes contained between specific limits a and b, and 
so on. 

Instead of the whole process, we will study only the first two divisions 
and the resulting sizes. For simplicity, we assume that the initial size is 1, 
represented as interval [0, 11. In the first division, a point X-with uniform 
distribution-partitions the unit interval into two pieces of length X and 1 -X. 
In the next partition, length X is divided by point Y (with Y distributed uni- 
formly between 0 and X ) ,  and the remainder is divided by point 2, distributed 
uniformly on [X, 11. We therefore have four fragments (see Figure 7.14) of 
length 

We will start by deriving the joint trivariate density of ( X ,  Y ,  2). By assump- 
tion, X has density 

1 f o r O < z < l  
fx(2) = { 0 otherwise. 
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J =  

Given X = 2,  variables Y and 2 are independent with densities 

ax1 axz ass 1 0 0  
az az az = 1 1 0  axl ax2 ax3 

axl azl ass - 0% a2 a z  /1 1 1  

1 z l z l l  ; O L y l z  
otherwise . and gzlx( t ls)  = { 7 9YlX(YlX) = { 0 otherwise 

Thus gy,zlx(y, 21.) = gylx(ylz)gzlx(z)z), and the joint density is 

for O l y l z l z l l  
otherwise. 

1 

(7.30) 

The marginal joint density of Y and 2, for 0 5 y 5 z 5 1 will now be 

so the marginal density of Y will be 

2 
f Y  (Y) = 1' (log - + log - - ') dz = - logy 

1 - 2  Y 

for 0 < y < 1. Finally, we obtain the conditional density of X given Y = y 
and 2 = z :  
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PROBLEMS 

7.5.1 Two cards are drawn without replacement from an ordinary deck. Let X be 
the number of aces, Y be the number of red cards, and 2 be the number of hearts. 
Find: (i) The joint distribution of ( X ,  Y,  2). (ii) P{Y = 2). (iii) The conditional 
distribution of 2 given Y = y .  

7.5.2 Suppose that X I ,  X 2 ,  X3  have joint density 

Find: (i) c. (ii) The joint density of ( YI , Y2 , Y3), where YI = XI, Y2 = XI X 2 ,  and 
Y3 = X1X2X3.  

7.5.3 Let random variables X, Y ,  and 2 have joint density f (z ,  y ,  z )  = c(z + y + z )  
for 0 < z < y < z < 1. Find: (i) c.  (ii) P ( X  + 2 > 1). (iii) P ( X  + 2 > 1IY = 
0.5). 

7.5.4 Acan ofThree-Bean-Salad contains beans ofvarieties A ,  B, and C (plus other 
ingredients which are of no concern for the problem). Let X ,  Y ,  and 2 denote the 
relative weights of varieties A ,  B,  and C in a randomly selected can (so that X + Y  + 
2 = 1). Moreover, let the joint distribution of (X, Y )  have the density f(z, y) = 
k z 2 y  for z > 0,y > 0,z + y < 1, and f(x, y )  = 0 otherwise. Find: (i) Ic.  (ii) 
Probability P ( X  > 0.5) that beans A take more than half of the total weight. (iii) 
P(  2 > 0.5). (iv) Probability that none of the three varieties of beans will take more 
than half of the weight. (v) The marginal density of (X, 2) and of 2. 



CHAPTER 8 

EXP E CTATI 0 N 

8.1 INTRODUCTION 

The probabilistic concepts discussed in Chapters 6 and 7 could have also been de- 
veloped without using random variables but in a clumsy and awkward way. Random 
variables were used there as a convenient tool of describing large classes of events. 
Indeed, once we considered events of the form {u < X 5 b } ,  it was quite natural 
to reduce the analysis to even simpler events { X 5 t } .  Then the probability of such 
an event, regarded as a function of the argument t (i.e., the cdf of X) turned out 
to c a m  all information about the distribution of X. And once the notion of the cdf 
was introduced, it was natural to look for classes of cdf's that allow especially simple 
description (hence the definition of discrete and continuous random variables). 

In this chapter we introduce the notion of expectation. Expectation, .or the ex- 
pected value of a random variable, cannot be formulated without the concept of 
random variables. 

The intuitive content of the notion of expectation is as follows: Consider a ran- 
dom variable X, defined on some sample space S. An experiment consists of a 
random selection of a point s of S, and X ( s )  is interpreted as the gain (loss, if 
X ( s )  < 0) of a hypothetical gambler. 

If the experiment is repeated n times, the sample space becomes S" = S x . . . x S 
(n times). An outcome is dn) = (q,. . . , sn), with si E S, i = 1,. . . , 'n. The 

203 
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gambler’s accumulated gain becomes X(s1)  + X(s2)  + . . . + X(s , ) ,  traditionally 
written as X I  + X2 +. . . + X,, with Xi = X ( s i )  being the outcome of the ith trial. 

The average gain per gamble now becomes (XI + . . . + X,) /n .  As n becomes 
larger, this average fluctuates less and less, tending to stabilize at some value, which 
we call the expectation of X and denote by E ( X ) .  

It is not difficult to calculate this value in case of a discrete random variable. In- 
deed, if X assumes values zl, 2 2 ,  . . . , z, with probabilities pi = P { X  = zi}, i = 
1,2 ,  . . .m-and if the experiment is to be repeated n times, then {X = xi} will 
occur ni times (i = 1, . . . , rn) and n1 + n2 + . . . + n, = n. According to the fre- 
quency interpretation of probability, the ratio ni/n tends to p i  = P { X  = xi} as the 
number n of repetitions of the experiments increases. The total gain XI + . . + X, 
equals z1n1 + 22n2 + . . . + z,n,, and the average gain per experiment, 

tends to 
Z l P l +  5 2 p 2  + ’ ’ .  + %Lp, 

We will use the last quantity, that is, 

E ( X )  = 21P{X = 5 1 )  + .  . . + x,P{X = z,} (8.1) 

as a formal definition of an expected value E ( X )  of a discrete random variable X. 
The definition will later be extended to also cover random variables that are not 
discrete. 

8.2 EXPECTED VALUE 

For simplicity, the definition of an expected value of a random variable X is now 
formulated separately for the discrete and continuous random variables. 

Definition 8.2.1 If X is a discrete random variable that assumes values ~ 1 ~ x 2 ,  . . . 
with probabilities P{ X = xi}, i = 1,2 ,  . . ., then the expected value of X is defined 
as 

E ( X )  = C 2 , P { X  = Zi}, (8.2) 
i 

provided that c I.ilP{X = Zi} < 03. (8.3) 
i 

If X is a continuous random variable with the density f(z), then the expected value 
of X is defined as 

+m 

(8.4) 

provided that 

(8.5) 

0 
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Definition 8.2.1 covers formula (8.1) as a special case, since if X assumes only 
finitely many values, condition (8.3) is always satisfied. Conditions (8.3) and (8.5) 
are necessary to eliminate the situation where the value of an infinite sum depends 
on the order of summation (or integration). The absolute convergence (or absolute 
integrability) guarantees that the expected value is unambiguously defined. 

The other symbols used for the expected value E ( X )  in probabilistic and statis- 
tical literature may be E X ,  p x ,  m ~ ,  or simply p ,  m, if it is clear which random 
variable is being studied. In physics, the symbol used is < X >. Regarding ter- 
minology, the expected value is also called the expectation, or the mean. Moreover, 
the expected value is often associated not with X, but with its distribution. Conse- 
quently, one sometimes uses symbols such as p~ or m ~ ,  where F is a cumulative 
distribution function. 

We begin with a series of examples of expectations for discrete random variables. 

H EXAMPLE8.1 

Let A be some event, and let p = P(A) .  Imagine that you are to receive $1 
if A occurs and nothing if A does not occur (i.e., if A“ occurs). Let X be the 
random variable defined as “the amount you receive.” In this case X assumes 
only two values, and its distribution is given by the array 

Value --F Probability 1 - p p 

According to formula (8.2), 

E ( X )  = 0 x (1 - p )  + 1 x p = p .  

The result is quite intuitive: if you play such a game over and over, then your 
average outcome per game will equal the probability of winning, p .  

Observe that X can also be described as “the number of occurrences of A 
in a single experiment.” We will use this interpretation later. 

EXAMPLE8.2 

Suppose now that you are to win $1 if A occurs, but lose $1 (i.e., “win” - 1) if 
A does not occur. Then the distribution of Y, the random variable describing 
your winnings, is 

Value I -1 1 ---+--- 
Probability I 1 - p p 

and E ( Y )  = -1 x (1 - p )  + 1 x p = 2p  - 1. Thus E ( Y )  > 0 if and 
only if p > 0.5, which agrees with our intuition: the game is favorable if the 
probability p of winning exceeds 0.5. 

EXAMPLE 8.3 Expected Value of Binomial Distribution 
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The binomial random variable was defined in Example 6.8 as the total num- 
ber of successes in n independent Bernoulli trials, where the probability of a 
success in any single trial is p .  The possible values of the binomial random 
variable are 0, 1 ,  . . . , n with probabilities given by (6.21). Consequently, 

n n! p k ( 1  - p)"-k 
x k k ! ( n -  k = l  k ) !  

P 
n (n  - I ) !  k - l ( l  - p ) n - l - ( k - l )  

- 
- "PI (k - l ) ! (n  - 1 - (k - l ) ) !  

k=l 

where in the last sum we introduced the new index of summation j = k - 1. 
The last sum turns out to be a Newtonian expansion of [ p  + ( 1  - p)]"-'  = 1. 

EXAMPLE 8.4 Expectation of Geometric Distribution 

Let an event A ("success") have probability p .  We keep repeating indepen- 
dently the experiments until A occurs for the first time, with X being the 
number of trials up to and including the first success. As already mentioned 
(see Example 6.9), X is a random variable with geometric distribution and 
P { X  = k }  = ( 1  - p)"-'p for k = 1 , 2 , .  . . . Find E ( X ) .  

SOLUTION. Letting q = 1 - p ,  we write 

O " d  00 03 

E ( X )  = x k P { X  = k }  = kqk- 'p  = p c  - ( q k )  
k=1 k=l  k = l  dq 

d w  1 1 
= 

The answer is intuitive. If, for example, the probability of success is p = 0.2, 
then on average, every fifth trial is a success, and therefore the average number 
of trials until the next success is 5, which agrees with formula (8.6). 

The following theorem provides a very useful interpretation of the expected value 
of a random variable: 

Theorem 8.2.1 Let X be a random variable which assumes only nonnegative inte- 
ger values. Then 

00 
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ProoJ For p ,  = P{ X = n} we have 

E ( X )  = Pl + 2p2 + 3p3 + . . , 
= P l  + p2 + p3  + . . '  

+ P2 + p3  + . ' .  
+ p3 + ' . '  

= P { X  > 0) + P { X  > 1) + P { X  > 2)  + " ' , 
where a change of order of summation is allowed, since all terms are nonnegative. 

O 

EXAMPLE8.5 

Let us use formula (8 .6)  to find the expectation of the geometric distribution 
from Example 8.4. We have 

P{X > n} = P{only failures in the first n trials} = qn, 

or, if this reasoning appears suspiciously simple and one puts more trust in 
algebra, 

9, 
00 00 

P { X  > n} = c P { X  = k }  = c qk-'p = p -  = q n  
k=n+l 1 - q  k=n+l 

Consequently, 

The expected value in Example 8.5 was finite. Such situations are most common 
in practice, as otherwise the very concept of expected value would make no sense. 
However, there are cases of both practical and theoretical significance, when the 
condition (8.3) or (8.5) is not met. 

To be more precise, one should distinguish between two cases. We will illus- 
trate the possibilities of condition (8.3) involving the series; the situation with an 
integral is analogous. Let us consider separately sums C z i P { X  = zi} involv- 
ing positive and negative terms, that is, U+ = C[max(zi, O ) ]  x P { X  = zi} and 
U -  = - C[min(zi, O)] x P { X  = xi}. It is clear that if the series (8.3) diverges, 
then U + ,  U - ,  or both must be infinite, for otherwise the series of absolute values 
(8.3), equal U+ + U - ,  would be finite. If only U+ is infinite, we can say that 
E ( X )  = +co; similarly, if only U- is infinite, we can say that E ( X )  = -m. It 
is only when both U +  and U- are infinite that we have the expression of the form 
00 - 00, to which we cannot assign any value. In the last case we say that E ( X )  
does not exist. 

In the following example random variable will have infinite expectation: 
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EXAMPLE 8.6 Petersburg Paradox 

Suppose that you have the possibility of participating in the following game. 
A fair coin is tossed repeatedly until a head occurs. If the first head occurs at 
the kth toss, you win 2k dollars. Clearly, this is a game in which you cannot 
lose, so the question is: What is the amount you should be willing to pay to 
participate in such game? 

SOLUTION. The most common argument offered in such cases is that one 
should be willing to pay the fee as long as the expected winnings exceed or 
equal the fee for participation in the game. Then, “in the long run,” one should 
come even or ahead. 

Let X denote the winnings in the game (not counting the fee for participa- 
tion in the game). Then the event { X  = 2 k }  occurs if the first k - 1 tosses are 
tails, and the kth toss is heads; chances of this event are 1 / 2 k ,  Consequently, 
we have 

1 1 1 
E ( X )  = 2 x - $ 2 2  - + 2 3  - + .  . . = oo. 

2 2 2  23 
Because the expected winnings in this game are infinite, one should be willing 
to pay an infinite fee for the right to play. However, in any particular game, 
the winnings will always be finite, so one is certain to lose. 

This phenomenon, discovered in eighteen century, was named the Peters- 
burg paradox. Attempts to solve it led to the introduction of the concept of 
utility. Without going into detail, it is postulated that the utility of money- 
the value a person attaches to a given amount of money-is not constant but 
depends on how much money the person already has. This appears intuitively 
acceptable: $20 may seem to be a lot for someone who has nothing but does 
not seem like very much to a millionaire. 

If u(z)  is the utility of $5, then the above postulate implies that u(x) is not 
proportional to z. The expected utility from participating in the game is 

1 
2 k  

00 

E [ u ( X ) ]  = x ~ ( 2 ~ )  x -, 
k = l  

a quantity that may be finite for some “plausible” choices of utility function 
u(z) .  In particular, Bernoulli suggested u(z)  = clog z. 

EXAMPLE 8.7 Bad Luck 

This example is due to Feller (1971). Consider an event that can happen to 
Peter and some other (perhaps all) peop le4ne  may think of a specific illness, 
breakdown of a newly bought car, and so on. Let TO denote the time until this 
event happens to Peter. Occasionally Peter learns about other people who were 
in the situation analogous to his, and for whom the event in question already 
occured. Let their waiting times be T I ,  Tz, . . . . Assume symmetry and lack 
of interference here so that the random variables TO, T I , .  . . have the same 
distribution and are independent. To avoid the necessity of considering ties, 
we assume that Ti, i = 0,1, . . . , have a continuous distribution. This means 
that an equality Ti = Tj has probability zero and hence can be disregarded. 
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Figure 8.1 Interpretation of expected value of a discrete random variable 

We can measure the “bad luck” of Peter in terms of a number of people, N, 
he has to encounter before finding one “worse off’ (i.e., with Ti < TO). Thus 
N = n i f T o < T l , T o < T z  , . . .  , T o < T n - l , T o > T n , a n d N  > n i f T o i s  
the smallest among TO, TI , . . . , Tn, that is, 

P{N > n} = P{To = min(T0,. . . , T,)}. 

But by symmetry, TO is as likely to be the smallest of n+l variables TO, . . . , T, 
as any other. Hence we must have 

1 
P{N > n} = - 

n +  1‘ 

and consequently, 

1 1  1 
P{N = n} = P{N > n - 1) - P{N > n}  = - - - = - 

R. n + 1  n ( n + 1 )  

It follows that 

1 

n S 1  

03 00 

E(N) = E n  x P(N = n) = C - = 03, 

n=l n = l  

So the expected bad luck of Peter (and of everyone else!) is infinite. 

Before going further, it may be worthwhile to give the following “mechanical” 
interpretation of E ( X ) .  Consider a discrete random variable, with possible values 
xi and the corresponding probabilities pi = P{ X = xi}, i = 1,2 ,  . . . . 

Let us construct a mechanical device corresponding to the distributionof X. Con- 
sider an infinitely thin and infinitely rigid wire extended from -03 to 03 (this is an 
abstraction that physicists use: an ideal void, a perfectly black body, etc.). At points 
with coordinates z1,22, . . . we attach weights that are proportional to probabilities 
pi (see Figure 8.1 where the sizes of the dots symbolize the variability in weight). 
Then E ( X )  is the coordinate of the point at which the whole device would balance, 
or its center of gravity. 

A similar interpretation also holds for continuous random variables. In this case 
we have to imagine that an infinitely rigid metal sheet of uniform weight is cut into 
the shape of density f(z). Then E ( X )  is the coordinate of the point at which the 
figure will balance if laid flat (see Figure 8.2). 

We will now give some examples of expectations of continuous type random 
variables. 
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Figure 8.2 Interpretation of expected value of a continuous random variable 

EXAMPLE8.8 

Let X have a distribution uniform on interval [A, B] so that (see Example 
6.15) 

B-A f o r A s x 5  B 

otherwise. 

According to the interpretation given above, the metal sheet figure is just a 
rectangle. Hence it will balance if supported in the middle between A and B.  
Thus we can expect that E ( X )  = ( A  + B ) / 2 .  Indeed the computations give 

w EXAMPLE8.9 

We will now find the expected value of random variable X with exponential 
distributionwith density f(x) = Xe-xz for z 2 0 and 0 otherwise. 

SOLUTION. Integrating by parts, we obtain 

E ( X )  = iW sxe-xzdz = 

Thus, if the lifetime (in hours) of a certain type of electric bulb has a density 
O.OO1e-O~OO1t for t > 0, then the expected lifetime equals (O.OO1)-l = 1000 
hours. 

EXAMPLE 8.10 

Find the expectation of a normal random variable with the density 
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SOLUTION. We substitute z = (x - p) /a ,  dx = adz, obtaining 

The first integral in the last line equals p (since the standard normal density 
integrates to I), while the second integral is 0 because the integrand is an odd 
function. So the integrals over the positive and negative parts of the z-axis 
(each being finite) cancel each other. Thus j i  is the expected value of the 
random variable with distribution N ( p ,  a2).  

We will next derive an analogue of formula (8.6) for an expected value of a non- 
negative continuous random variable. 

Theorem 8.2.2 Let T be a nonnegative random variable of continuous type, with 
density f ( t )  andcdfF( t ) ,  so that f ( t )  = F ( t )  = 0 f o r t  < 0. Then 

E ( T )  = J, [l - F ( t ) ] d t .  

Proof: Replacing t with dx and changing the order of integration, we have 

xf(z)  dx = im ( lz d t )  f(z) dx = lw 1- f(x) dx dt  

0 

1- E ( T )  = 

= lm[l - F ( t ) ]  dt.  

EXAMPLE 8.11 

Let us compute again the expectation of a random variable with EXP(X) dis- 
tribution. We have here F ( z )  = 1 - e-XZ for 2 > 0. Using Theorem 8.2.2, 
we obtain E ( X )  = sow e-X2dx = 1/X.  

EXAMPLE 8.12 

Finally, let us consider the Cauchy distribution with the density given by 

It is easy to check that the function f(s) is a density of a random variable: 

dx 1 _t /+- - = -arctanz 
7r -- 1 + 2 2  7r 
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Regarding expectation, the positive part of the defining integral equals 

+W zdz 1 1 +W 

- - x - log(1 + 2)  = +m. :i K 2 - T  2 lo 
In a similar fashion we check that s!, zf(z)dz = -m. Hence the expected 
value of Cauchy distribution does not exist. 

PROBLEMS 

8.2.1 Variable X assumes values 0, 1, 2, and 3 with probabilities 0.3, a, 0.1, and b, 
respectively. Find a and b if: (i) E ( X )  = 1.5. (ii) E ( X )  = m. First determine all 
possible values of m. 

8.2.2 The density of the lifetime T of some part of electronic equipment is f ( t )  = 
X2te-xt l  t > 0. Find E(T) .  

8.2.3 Suppose there are k = 10 types of toys (plastic animals, etc.) to be found 
in boxes of some cereal. Assume that each type occurs with equal frequency. (i) 
Find E ( X ) ,  where X is the number of boxes you must buy until you collect three 
different types of toys. (ii) Suppose that your little sister is collecting the cereal toys 
and would be happy to get the whole set of 10 different types. Find E ( X ) ,  where X 
is the number of boxes you must buy until she gets a complete collection. 

8.2.4 Find the expected value E( lX l ) ,  where X is a normal random variable with 
parameters p = 0 and a2 (the distribution of 1x1 is sometimes calledfolded normal 
or halfnormal). 

8.2.5 Let X I  X 2 ,  . . . , X ,  be independent, each with the same distribution. Find 
E[min(XI,. . . , X,)] if the distribution of variables is: (i) EXP(X). (ii) U[a, b]. 
[Hint: First find the cdf (or density) of the random variable whose expectation is 
being computed.] 

8.2.6 Let X be a nonnegative continuous random variable with hazard rate h( t )  = t .  
Find E ( X ) .  

8.2.7 Show that if the expectation of a continuous type random variable X exists, 
and the density f ( z )  of X satisfies the condition f (z)  = f ( 2 a  - z) for all z 2 0, 
then E ( X )  = a. 

8.2.8 Let X be a continuous random variable with density f ,  and let Y be the area 
under f between -a and X. Find E ( Y ) .  (Hint: Start by determining the cdf and 
the density of Y .) 

8.3 EXPECTATION AS A N  INTEGRAL* 

Definition 8.2.1 of expected value in the discrete and continuous cases covers most 
situations occurring in practice. Many textbooks do not provide the general defini- 
tion, and some do not even mention the fact that a general definition exists. 
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One of the consequences of such an omission is that one could come to the con- 
clusion that the symbol E ( X  + Y )  makes no sense if X is discrete and Y is contin- 
uous (since X + Y is neither a continuous nor discrete random variable). In fact the 
expectation of a random variable is generally defined as an integral of a random vari- 
able, treated as a function on the sample space S. We will now sketch this definition. 

Riemann Integral 

Let us start by briefly recalling the definition of an “ordinary” (Lea, Riemann) in- 
tegral s,” g(z)dz. For the moment assume that the function g is continuous on [a ,  b ] .  
We first choose a sequence of partitions of the interval [a,  b] .  To simplify the presen- 
tation, suppose that the nth partition divides the interval [a,  b] into 2n equal parts, so 
that the kth point of the nth partition is 

k 
2 n  

Let gA:i be the minimum of function g in the kth interval, that is, 

X n , k  = a +  - ( b - a ) ,  k = 0, 1,.  . . , 2 n .  

We now form the (lower) sum approximating the integral 

The upper sum 3, is defined in the same way, with the minimum in (8.7) replaced 

It is not difficult to show that 2, 5 Tn for all TI, and that the sequences (3,) and 
{Tn} are monotone, the first increasing and the second decreasing. If they converge 
to the same limit, say S, then this limit is called the Riemann integral of g ,  and it is 
denoted by J,” g ( z ) d z .  

This is the essence of the definition; the details may vary in two respects. First, 
instead of dividing the interval [u,, b] into 2n equal parts in the nth partition, we can 
take any points 

by the maximum, say g n , k .  (+) 

a = X n , o  < Xn,1  < . . < Z n , k ,  = b 

as long as 

(this implies that we must have k, - 00). 

Second, instead of taking the minimum and the maximum of g over the subinter- 
vals of partitions (which need not exist if g is not continuous), we can take the value 
of hnction g at a selected point in each subinterval. We then have one partial sum 
(instead of lower and upper sums), and the requirement is that the limits of these 
partial sums exist and are the same regardless of the choice of the partitions and of 
the intermediate points. 
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The main results of the theory built on this definition are very well known: con- 
tinuous functions are integrable on closed finite intervals and if g has antiderivative 
G (i.e., G' = g), then 

l g ( z ) d z  = G(b) - G(a). 

The Riemann integral over an infinite range, J-'," g(z)dz,  is defined in the usual 
manner through a limitingpassage; we omit the details, which can be found in most 
calculus texts. 

We recall the definition of the Riemann integral in order to better stress the dif- 
ferences and also the analogy between the principles of definition of the Lebesgue 
and Riemann integrals. The difference between the two definitions seems small and, 
at first, not essential. Yet the concept of the Lebesgue integral is of tremendous 
consequence, allowing us at once to free the concept of integral of all inessential 
constraints, and to stress its most crucial and significant features. 

Lebesque Integral 

Again, assume at first that the function g, defined on the interval [a, b] ,  is contin- 
uous, and let A < g(z) < B. Instead of partitioning the interval [a, b] on the z-axis, 
let us partition the interval [ A ,  B] on the y-axis. For simplicity, let us again take the 
partitions into 2n equal parts, 

where 

The lower sum approximating the integral can now be written as 

2"- 1 

where 1 stands for length and C n , k  is the set of points x where the function g lies 
between Y n , k  and y n , k + l ;  more precisely, 

C n , k  = {z : Y n , k  5 g(z) < Y n , k + l } r  = 071,. ' , 2" - 1. 

The upper sum 3; is defined in a similar way, with yn,k in (8.8) replaced by Y n , k + l .  

The lower sums 2, and 3,: for Riemann and Lebesgue integrals of the same 
functions are illustrated as parts (R) and (L) in Figure 8.3. The Lebesgue integral is 
now defined in the same way as the Riemann integral, namely as the common limit 
(if it exists) of the upper and lower sums. Again, we omit the details of the extension 
of the definition to an infinite range. 

We may capture the difference in two definitions as follows: In the Riemann 
integral, when we partition the z-axis, we control the intervals on the x-axis, while 
the maxima and minima over these intervals depend on function g .  In the Lebesgue 
integral, when we partition the y-axis, we control the values, but corresponding sets 
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Figure 8.3 Approximating sums for Riemann and Lebesgue integrals 

on the x-axis are determined by the function g,  The distinction was summarized by 
Lebesgue, as a comparison of two cashiers who, at the end of the day, have to count 
the cash in their drawers. The “Riemann” cashier takes the money out in the order 
it came in. She counts: “A five-dollar bill, and a penny makes 5.01; then I have a 
quarter, which makes 5.26; then.. . ,” and so on. On the other hand, the “Lebesgue” 
cashier proceeds systematically: “I have 721 twenty-dollar bills, which makes 20nl 
dollars. Then I have 722 ten-dollar bills, which together makes 20nl + 10722 dollars 
. . . , ” and so on. 

One of the main results in the theory of the Lebesgue integral is that if a function 
is Riemann integrable, then it is also Lebesgue integrable, and both integrals are 
equal. Thus we may use standard calculus to compute Lebesgue integrals, whenever 
it is applicable. However, it is important to point out that the class of functions that 
are Lebesgue integrable is substantially wider than the class of functions that are 
Riemann integrable. To see that it is so, consider the following example: 

EXAMPLE 8.13 

Let g be a function continuous on a closed finite interval [u, b] so that g is 
Riemann integrable. It is clear that if we modify g at a single point 20 by 
defining 

if x # xo 
if x = XO,  

where c is any number such that c # g(rco), then the function g*(x) is Rie- 
mann integrable and J,” g(z)dz  = s, g*(x)dx. We can modify in this way 
the function g at any5nite set of points, and we will still have a Riemann in- 
tegrable function, with the same integral as the original function g. However, 
if we modify g in such a way at a countable set of points, then the resulting 
function may not be Riemann integrable. This is because for a modification at 
finitely many points, say N, the sums approximating an integral of g and an 
integral of g* differ in, at most, N terms. The difference tends to zero, since 
the sum of lengths of intervals on which the functions g and g* differ tends to 

b 
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zero. But this is not necessarily the case where g and g* differ at countably 
many points. Thus g* may be not integrable in the Riemann sense. 

However, g* is integrable in Lebesgue sense, because two sets that differ 
by a countable set of points have the same length. So the sums approximating 
the Lebesgue integral are the same for g and g* .  

We will now present two generalizations of the concept of integral introduced 
thus far. The first generalization concerns both the Riemann and Lebesgue inte- 
grals, leading in a natural way to the corresponding concepts of Riemann-Stieltjes 
and Lebesgue-Stieltjes integrals. The second generalization, more important for our 
purposes, will concern specifically the Lebesgue integral. 

Riemann-Stieltjes Integral 

Regarding the first generalization, let us observe that in the approximating sums 2, 
in the Riemann integral given by (8.7), we can write the terms gL:i(z,,k - Xn,k-l) 
as g:~i)1([2,,k-1,zn,k]), where 1( . )  stands for the length of the set (in this case, 
of a single interval). This is similar to the sums (8.8) approximating the Lebesgue 
integral. 

Now, instead of the length being the difference between the coordinates of end- 
points, one can take a “length-like” function, defined as the differences between 
values of some function, F ,  of coordinates. Thus the terms of the approximating 
sums are now g::: [F(z,,k) - F(z,,k-l)]. Naturally function F has to satisfy some 
conditions if such an extension is to lead to a meaningful concept of an integral. 

Without striving for a general definition (which can be found in most books 
on advanced calculus), we will simply consider the case where F is a cdf, mean- 
ing a nondecreasing function, continuous on the right, satisfying the conditions 
limz-,.-m F ( z )  = 0 and limz-,w F(x) = 1. 

The common limit (if it exists) of the two sequences 

and 

will be denoted J,” g(z)dF(z) ,  and called the Riemann-Stieltjes (R-S) integral of 
function y with respect to function F .  Again, we omit the details of an extension of 
the concept to the improper integral 

+W 

EXAMPLE 8.14 

Let us consider a special case where FX is a cdf of a discrete random variable 
with the set of possible values z1,52, . . . and the corresponding probabilities 
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P{ X = xi}  = p i .  As we know from Chapter 6,  the cdf of X is a step function 
that is constant between points xi, and its steps equal pi at points xi. 

The approximating (lower) sum 2, equals 

Here the difference Fx(xn,k)  - Fx(xn ,k - l )  of values o f  F x  at two consec- 
utive points of the nth partition is zero if the interval (x,,k-l, x,,k] does not 
contain any point xi of the increase of Fx. When the partition becomes finer 
as n -+ cu, the only terms in 2, that remain will be those corresponding to 
intervals covering the points xi, and the differences Fx(Zn,k) - Fx(x,,k-1) 

for intervals covering point xi will converge to p i .  Under some regularity as- 
sumptions (e.g., continuity of g )  the values gA:i correspond ing to nonzero 
terms will converge to corresponding values g(xi), and the limit will be 

From formula (8.9) for the special case g(z) = 2,  we see that 

provided that C IxilP{X = xi}  < cu (which turns out to be the condition 
for existence of the improper integral J-'," zdFx (x)). 

We have the following theorem: 

Theorem 8.3.1 rfX is a discrete variable with cdf FX and $ E ( X )  exists, then 

+W 

EXAMPLE 8.15 

Consider the R-S integral in the case where the function F is a cdf of a contin- 
uous random variable so that F ' ( z )  = f(z), where f is the density of random 
variable X. In this case the lower approximating sum can be written, using 
the mean value theorem, as 

2, = C g ; T i [ F ( x n , k )  - F(zn,k-l)] = CgLTi f (%,k ) (xn , k  - xn,k-l) ,  
k k 

where Un,k is a point between xn,k-1 and Zn,k. Again, if g is continuous, the 
limiting value of S,  (and also 3,) will be the integral of g ( x ) f ( z )  between 
appropriate finite or infinite limits. Thus in this case the R-S integral becomes 



218 EXPECTATION 

Again, taking g(x) = x, we obtain 

Theorem 8.3.2 I f X  is a continuous random variable with cdf F x ,  and i f  E ( X )  
exists, then 

+a2 

E ( X )  = s_, Z d F X ( 2 ) .  

We therefore have a single expression for an expected value of a random variable, 
which reduces to formulas (8.2) and (8.4) in the case of discrete and continuous ran- 
dom variables. 

Lebesque-Stieltj es Integr a1 

The Lebesgue-Stieltjes integral is defined in very much the same way as the Lebesgue 
integral. If g is bounded (e.g., on interval [a, b ] )  so that A 5 g(z) 5 B for some A 
and B, we use the sequence of partitions 

A = Yn,O < Y ~ , I  < . '  < ~ n , 2 n  = B 

and take the (lower) approximating sum as 

k=O 

where c n , k  = {Z : Yn,k 5 g(Z) < y n , k + l } , k  = 0 , 1 , .  . . , 2 n  - 1,cn,zn = {Z : 
g(z) = B } ,  and 1~ is the generalized length of a set. This length is induced by the 
cdf F ,  in the sense explained above (see the construction of the Riemann-Stieltjes 
integral). The upper sum x,, is defined similarly, and the common limit (if it exists) 
of these two sequences of sums is the Lebesgue-Stieltjes integral 

i" g ( x ) d F ( x ) .  

Again, we omit the details of the extension to integrals over an infinite interval. 
As before, if the function g is R-S integrable with respect to F ,  then it is also L-S 

integrable, and the integrals are equal. If F corresponds to a discrete distribution 
with masses pi at points zi, then 

provided that C Ig(xi) lpi  < m. If F is a cdf of continuous distribution with density 
f, then 

+W +W 

provided that I-'," Ig(zi)lf(s)ds < m. 
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Lebesque Integral: General Case 

We now outline the second direction of generalization, applicable only to the case 
of the Lebesgue (or Lebesgue-Stieltjes) integral. 

This generalization, by far the most important and profound extension of the 
concept of the Lebesgue integral, is based on the observation that approximating 
sums (8.8) make sense also for functions g that are defined on sets other than the 
real line. In fact we can consider real-valued functions g defined on an arbitrary set 
(in particular, the sample space S). The sets c n , k  are then subsets of  sample space 
(hence events), and we let probability P play the role of length 1. 

In more familiar notation, let X be a random variable defined on sample space S. 
Assume first that X 2 0. Similarly to (8.8), we define the approximating sums as 

2" 

n2"-1 

(8.10) 

Observe that as n increases, the partitions become finer and also their range in- 
creases. Observe also that according to the comment made in the footnote on the 
opening page of Chapter 6, the probabilities in the sum (8.10) are well defined (i.e., 
arguments of probabilities are events, if X is a random variable). 

We will omit the details of construction, which can be found in any advanced text 
on probability. Roughly, two properties are shown: 

1. For every random variable X 2 0, the sums S, converge to a finite or infinite 
limit. 

2. This limit exists and is the same if instead of y,,k = k/2n we take any other 
sequence of partitions, provided that these partitions become finer and even- 
tually cover the whole set [0, co). 

Consequently, we define the integral as the limit of sums (8.10): 

X d P  = lim S,. 

The extension to arbitrary random variables (not necessarily nonnegative) now con- 
sists in defining 

X+ = max(X, 0) and X- = max(-X, 0) 

so that X = X+ - X- is represented as a difference of two nonnegative functions. 
One then puts 

provided that at least one of the integrals on the right-hand side is finite (so that only 
indeterminate case co - 00 is ruled out). 

We now have, more formally, the following definition: 
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Definition 8.3.1 The expectation E ( X )  of a random variable X is defined as the 
Lebesgue integral of X :  

E ( X ) =  X d P ,  

provided E ( X I  = Ss IXldP < 03. If Ss X + d P  = 03 while we have Ss X - d P  < 
03, we define E ( X )  = 0;) (and similarly for E ( X )  = -m). If J s X + d P  = 

0 

The expectation of a function of two (or more than two) random variables is 
defined in a similar way. To sketch the construction, consider a nonnegative function 
g ( X ,  Y )  of a pair of random variables ( X ,  Y). The sums approximating the integral 
E [ g ( X ,  Y ) ]  are of the following form, similar to (8. lo), 

J ,  

$, X - d P  = 03, we say that expectation of X does not exist. 

The rest of the construction is analogous to the case of a single random variable, 
leading to the definition of the expectation E [ g ( X ,  Y)]. 

8.4 PROPERTIES OF EXPECTATION 

The identification of the expected value of a random variable X with Lebesgue in- 
tegral of X allows us to formulate the properties of the latter as the properties of the 
expectation. Again, for the proofs we refer the reader to any advanced textbook on 
probability. 

Theorem 8.4.1 The expectation of random variables has the followingproperties: 
(a) Lineariv. Z f E ( X )  exists, then for all CY, p, 

E ( a X  + p) = CYE(X) + p. (8.11) 

(b) Nonnegativity r f X  2 0, then E ( X )  2 0. 

(c) Modulus inequaliv. For any random variable X ,  

We list here two of the most important consequences of this theorem. By putting 
p = 0 in (8.1 l), we have E ( a X )  = a E ( X ) .  This means, in particular, that if 
we change the units of measurement of X ,  then the expectation of X changes in 
the same way as X .  On the other hand, by putting CY = 0, we obtain the property 
E(P) = p. So the expectation of a random variable equal to a constant /3 is equal to 
the same constant. 

In the future, we will often use the following theorem, which gives a sufficient 
condition for the existence of an expected value. 

Theorem 8.4.2 ZfIXl 5 Y ,  where E ( Y )  < m, then E ( X )  exists andisjnite. 



PROPERTIES OF EXPECTATION 221 

Thus, to prove that the expectation of a random variable exists, it suffices to find 
another random variable Y that dominates it, and whose expectation exists. The 
domination 1x1 5 Y means that I X ( s ) /  5 Y ( s )  for every point s in sample space 
S. Similarly, the symbol limn-m X ,  = X is understood as a pointwise limit 
of random variables as functions on S, that is, limn+m X , ( s )  = X ( s )  for every 
s E s. 

Next we give two principal theorems that connect expectation with convergence, 
allowing passing to the limit under the integral (expectation) sign. 

Theorem 8.4.3 (Monotone Convergence Theorem) r f  XI, X 2 ,  . . . is a sequence 
of random variables such that 0 5 X I  5 X2 5 . ' . and 

lim X ,  = X, 
71-03 

then 
lirn E(X , )  = E ( X )  

Theorem 8.4.4 (Dominated Convergence Theorem) Let XI, X2, . . . be a sequence 
of random variables satisjjting the condition 

n-m 

lim X, = X .  

Moreover assume that there exists a random variable Y with E ( Y )  < m such that 
(XI 5 Y and(X,J  5 Y f o r n  = 1,2,. . . .  Then 

n-m 

lim E(X, )  = E ( X ) .  
n+m 

In both theorems the assertion is that lim E(X,) = E(lim X , ) ,  which means 

Instead of presenting formal proofs, we will show the necessity of the assump- 
that we may interchange the order of integration and passage to the limit. 

tions with examples. 

EXAMPLE 8.16 

We will now show by an example that the monotonicity alone is not enough for 
the assertion in the monotone convergence theorem; nonnegativity is essential. 
We let S = (0, 1) and let s be chosen according to the uniform distribution. We 
let X ,  be defined as 

For each fixed s, the sequence { X ,  (s)} is o f  the form 

-l/s, -113,. . . , -l/s,O,O,. . ., 

hence is monotone, and limX, = 0. However, E X ,  = J;'"(-l/s)ds = 
-co, while the integral of the limit random variable X = 0 is E X  = 0. 
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EXAMPLE 8.17 

We will show that the existence of the bound Y with finite expectation is 
essential in the dominated convergence theorem. Again, let S = (0, l), with P 
being uniform on S. Now 

for 0 < s < 1/2n 
for 1/2n 5 s < 1/n 
for 1/n 5 s < 1. 

X,(s) = 4n(l  - ns) i 7 
For every fixed s, the sequence of numbers { X,(s )}  converges to 0. Again, 
the limitingrandom variable is X I 0, and E ( X )  = 0. But it is easy to check 
that E(X, )  = 1 for every n so that the assertion of the theorem does not hold. 
This time each random variable X ,  is bounded, but there is no integrable 
common bound for all of them. 

It is now necessary to connect two definitions of expectation of a random variable 
X :  as a Lebesgue integral of X ,  and as a Riemann-Stieltjes integral of function 
g(z)  E z with respect to cdf of X .  

One may raise a doubt: Starting with Chapter 1, we stress the fact that for the 
same phenomenon (for the same random variable), the sample space S can be cho- 
sen in a number of different ways. But if we choose different sample spaces for 
describing the same random variable X ,  how can we guarantee that the integral of 
X is the same, regardless of the choice of S? 

The answer lies in the next theorem, which provides methods of computing 
Lebesgue integrals by reducing them to Lebesgue-Stieltjes and Riemann-Stieltjes 
integrals. 

Theorem 8.4.5 Let X be a random variable dejned on probability space S, and let 
F ( z )  be its cd$ If$, ( X l d P  < m, then 

1 X d P  = 1: z d F ( z )  (8.12) 

More generalb, f g  is a real function such that ss Ig(X)IdP < co, then 

+m 

E[g(X)I  = 1 g ( X ) d P  = 1, g ( z ) d F ( s ) .  (8.13) 

The right-hand sides of formulas (8.12) and (8.13) provide means of computing 
the expectations. In the case of discrete and continuous random variables, formula 
(8.12) reduces to (8.2) or (8.4). Similarly formula (8.13) reduces to 

S 

(8.14) 

and 

(8.15) 
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f t 

Figure 8.4 Graph of X = max(s, 1 - s) and its cdf 

EXAMPLE 8.18 

Formulas (8.12) and (8.13) are sometimes referred to as “theorems of the un- 
conscious statistician.” The reason for the name is that in calculating expec- 
tations of some random variables, a statistician chooses either the left or right 
side of these formulas, often without being aware that using the other side 
may occasionally be simpler. We illustrate the situation by cawing out the 
calculations for both sides of (8.15). 

Imagine that we have a stick of length 1, and we break it at a random point 
(ie.,  the breaking point is chosen accordingly to the uniform distribution). 
What is the expected length of the longer of the two parts? 

If we take the interval [0, 11 as the sample space, with measure P being 
uniform (i.e., probabilities are proportional to lengths), then the length of the 
longer part of the stick, if the break occurs at s, is 

X = max(s, 1 - s). 

The graph of X is presented at Figure 8.4(a). It is clear that E(X) = ss X d P  = 

1; max(s, 1 - s)ds = 3/4. This can be obtained by actually computing the 
integral or by observing that the area under the curve in Figure 8.4(a) is three 
quarters of the square of side 1. 

We can also find the cdf of X and, realizing that X is a continuous random 
variable, use the right-hand side of (8.15). Since 1 / 2  5 X 5 1, we can write 

P { X  5 x} = P{max(s, 1 - s) 5 z} = P { s  5 z,1-  s 5 z} 

P{1 - z  5 s 5 z} = 2 -  (1 -.) = 22 - 1. = 

Consequently, 
X I %  

F ( z ) =  2s-1 3 5 2 5 1  { :  x 2 l  
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[see Figure 8.4(b)], and 

3 +W 

E ( X )  = 

Let us now consider functions of two random variables-we will only discuss 
discrete and continuous bivariate distributions as the two most important cases. 
Let g(z ,  y) be a real function such that E ( g ( X ,  Y)I < co. Suppose first that the 
distribution of ( X ,  Y )  is concentrated on A x B,  where A = (51, zz,.. .} and 
B = (y1,yz1.. .}. Letpij = P { X  = zi,Y = yj } .  Then 

Since EIg(X ,  Y)I = C /g (s i ,  yj)lpij < co, the sum (8.16) does not depend on the 
order of summation. So one can choose the order that leads to simpler calculations: 

k = l  r=l 

and so on. The choice depends on the function g and probabilities p i j .  

Let ( X ,  Y )  have the joint density f (z l  y). We then have 

Theorem 8.4.6 I f E I g ( X ,  Y)I < co, then 

The last two expressions provide the computational formulas that can be used in 
practice, since they reduce the computation of a double (two-dimensional) integral 
to an iteration of two single (one-dimensional) integrals. 

As an illustrationof applicability of Theorem 8.4.6, we give the proof (in the case 
of continuous random variables) of the following theorem: 

Theorem 8.4.7 Assume that ElXl  < co and ElYl < 03. Then 

E ( X  + Y )  = E ( X )  + E ( Y ) .  
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Proof: Let f(z, y)  be the density of ( X I  Y ) ,  and let fx and fy  be the marginal 
densities of X and Y ,  respectively. Letting g(s l  y )  = z + y in (8.17), we have 

+W 

- - 1, Z f X ( Z ) d Z  + YfY (Y) = E ( X )  + w - ) .  
--m 

The order ofintegration can be changed because of the assumption that s-’,” I z l f x ( ~ ) d s  < 
+W 

O0, s-, IYlfY ( Y W Y  < co. 

The property of additivity extends immediately to any finite number of random 
variables with finite expectations: 

E(X1 + ‘ ’ + Xn)  = E(X1) + ’ ‘ + E(Xn)j 

or, combining it with Theorem 8.4.l(a), we have 

n 

E (a lX1+.  . . + anXn + p) = C aiE(Xi)  + j3. 
i=l 

Finally, the nonnegativity property (b) in Theorem 8.4.1 implies that expectation 
is monotone: ff X and Z have finite expectations, then Y 5 2 implies E ( Y )  5 
E ( 2 ) .  To see this, we write 2 = Y + (2 - Y ) ,  where now 2 - Y 2 0. We have 

E ( Z )  = E ( Y )  + E ( Z  - Y )  2 E ( Y ) .  

We have also the following important theorem: 

Theorem 8.4.8 r f X  and Y are independent random variables such that ElXY 1 < 
00, then 

E ( X Y )  = E ( X ) E ( Y ) .  

Proof: We give the proof only for the case of continuous random variables. 

Z f X ( 4 d Z )  x ( - W  YfY (Y)dY) = E ( X ) E ( Y ) .  0 

Replacing the double integral by the iterated integrals, as well as the change of 
the order of integration (or summation), is very often taken for granted. Actually, the 
fact that iterated integrals are equal to one another is not a “law of nature,” as some 
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Y 

I Function f (x,v) 

Figure 8.5 Nonintegrable function whose iterated integrals exist and are not equal 

are inclined to believe. It is a fact that is true under specific assumptions, namely 
under the existence of the double integral. 

We will not provide here the precise statement of the relevant theorem (see the 
Fubini theorem or Lebesgue integration in any advanced textbook on probability). 
Instead, we will give a simple example that shows that the iterated integrals need not 
be equal. 

EXAMPLE 8.19 

Consider f(z, y) described in Figure 8.5. Obviously here sow f(z, y)dz = 0 
for every y, so JT f(z, y)dzdy = 0. On the other hand, J; f(z, y)dy is 
1 for 0 5 z 5 1 and 0 otherwise, so 

It ought to be clear that the reason why there is a difference between the 
values oftwo iterated integrals is that the double integral (the sum of infinitely 
many “volumes” + 1 and infinitely many “volumes” -1) does not exist. 

f (z ,  y)dzdy = 1. 

EXAMPLE 8.20 

Consider now a function h ( z ,  y) similar to that of Example 8.19 given in Fig- 
ure 8.6. In this case we have sow h(z ,  y)dz = Som h(z ,  y)dy = 0, so both 
iterated integrals exist and are equal zero. Still the double integral does not 
exist, for the same reason as in Example 8.19. 

Examples 8.19 and 8.20 show that if the double integral does not exist, we cannot 
say anything about equality of iterated integrals. 

PROBLEMS 

8.4.1 Show that E ( X  - E ( X ) )  = 0. 

8.4.2 Assume that X has density f(z) = az + bz3 for 0 5 z 5 2 and f ( z )  = 0 
otherwise. Find a and b if E ( X 2 )  = 2 .5 .  
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Y 

I Function h (x , y ) 

Figure 8.6 Nonintegrable function whose iterated integrals exist and are equal 

8.4.3 Find E ( X ) ,  E ( l / X ) ,  and E(2x)  if X = 1 , 2 , .  . . , 8  with equal probabilities 
1/8. 

8.4.4 Let X be a random variable with density f(z) = 1/2 for -1  5 z 5 1 and 
f(x) = 0 otherwise. Find: (i) E ( X ) .  (ii) E ( X 2 ) .  (iii) E ( 2 X  - 3)2. 

8.4.5 Let X have the density 

0 5 z l l  
f(x) = c(2 - z) 15 5 5 2 {: otherwise. 

Find: (i) c. ( i i )E(X).  (iii) E(2  - X ) 3 .  (iv) E[1/(2 - X ) ] .  

8.4.6 An urn contains w white and T red balls. We draw TI 5 T balls from the urn 
without replacement, and we let X be the number of red balls drawn. Find E ( X ) ,  
by defining indicator variables: (i) X I  , . . . , X ,  such that X = X I  + . . . + X,. (ii) 
Yl, . . . , Y, such that X = Y1 + . . . + Yr. 

8.4.7 A cereal company puts a plastic bear in each box of cereal. Every fifth bear is 
red. If you have three red bears, you get a free box of the cereal. If you decide to keep 
buying this cereal until you get one box free, how many boxes would you expect to 
buy before getting a free one? [Hint: Represent the answer as E(X1 + Xz + X 3 )  
where X i  is the number of boxes you buy after getting the (i - 1)st red bear and 
until getting ith red bear.] 

8.4.8 Show that if X is such that P ( u  5 X 5 b)  = 1, then E ( X )  exists and 

8.4.9 We say that X is stochastically smaller than Y ( X  sst Y) if P{ 5 t }  1 
P { Y  5 t }  for all t .  Show that if X and Y have finite expectations and X sst Y ,  
then E ( X )  5 E ( Y ) .  (Hint: Start with nonnegative X and Yand use Theorem 
8.2.2. Then use the decomposition into a positive and negative part.) Show also 
that the converse gssertion is false: there exist random variables X and Y such that 
E ( X )  < E ( Y )  and X is not stochastically smaller than Y. 

a 5 E ( X )  5 b. 
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8.5 MOMENTS 

We begin with the following definition. 

Definition 8.5.1 For any random variable X ,  the expectation of X" ,  ifit exists, will 
be called the nth ordinary moment (or the moment of the order n)  of X and denoted 

m, = E ( X n ) .  0 

The nth moment, m,, exists if EIXI" < 03. The moment of the order 0 always 
exists and equals 1, while ml is simply the expectation of X. If the nth moment 
exists, it may be computed from the formula 

where F is the cdf of X; this formula is obtained by substituting g(x)  = xn in 
(8.13). Observe that any bounded random variable X ,  that is, a random variable 
such that P(lXl 5 M )  = 1 for some M < 03, has finite moments of any order. 
This follows at once from Theorem 8.4.2, and in this case we have m, 5 M".  

EXAMPLE 8.21 

Let X have POI(A) distribution. Then 

00 00 Ak-1 
- A. ml = E ( X )  = c k-e ' = Xe-' c n - A k  - 

k = l  
k !  

k=O 

00 00 Ak-1 
- A. ml = E ( X )  = c k-e ' = Xe-' c n - A k  - 

L-l 
k = l  

On the other hand, 

A k  - O5 ~ k - 2  O0 

= A2e-' c + c kk?e ' = A2 + A, 
k = 2  k = l  

since the second sum equals ml = A. 

1 EXAMPLE 8.22 

Let X have the U [ a ,  b] distribution. Then its density is f(z) = l / ( b  - a )  for 
a 5 x 5 b and f(z) = 0 otherwise so that 

1 bn+l -an+l 
X - dx b m , = l  x n x - - -  

b - a  n + l  b - a  ' 

When the distribution is symmetric around 0, then a = -b, and we have 
m2k = b2k/ (2k  + 1) while m2k+l = 0. 
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Before introducing the concepts which will illustrate the usefulness of the notion 
of moments, let us introduce some definitions pertaining to a variety of types of 
moments. 

Definition 8.5.2 An absolute moment of order n is defined as 

Pn = E(lX1"). 0 

The existence of an absolute moment of a given order implies the existence of an 
"ordinary" moment m, of the same order. Note that the order of an absolute mo- 
ments need not be an integer. The same applies to ordinary moments of positive 
random variables. 

Definition 8.5.3 Ordinary moments of the random variable Y = X - E(X), where 
E(X) = ml are called central moments of X so that 

77% = E [ ( X  - m1)"I. 0 

Clearly, the first central moment y1 is always equal to 0. 

Definition 8.5.4 A factorial moment of X of order n is defined as 

7rn = E [ X ( X  - 1).  . . (X - n + I)]. 0 

We will now prove the following: 

Theorem 8.5.1 If an absolute moment of order a > 0 exists, then all moments 
(ordinary, absolute, central, andfactorial) of orders T 5 a exist. 

Proof: We will prove first that if E(lXl*)  < 03, then E(IX1') < m for all 
r < a. Clearly, if 1x1 2 1, then 1x1' 5 [XIu ,  while if 1x1 < 1, then 1x1' 5 1. 
Consequently, 

1x1' 5 m w ,  IXl"), (8.18) 

and (see Theorem 8.4.2) it remains to be proved that the right-hand side of (8.18) 
has finite expectation. 

Now, if EIXla < 03, then 

r 

and it follows that s,z,21 IzJadF(z) < 00 as a difference of two finite quantities. 
Thus we can write 

It remains to prove that if EIXla < m, then all other types of moments of order 
a exist. This is true for ordinary moments (by definition). Regarding central and 
factorial moments of order n, they are linear combinations of ordinary moments of 

0 order k 5 n, which proves the theorem. 
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The following theorem will be given without proof: 

Theorem 8.5.2 (Liapunov Inequality) Z f O  < 01 < p < co, then 

{~(lXl"))"* 5 {~(IXIp))"p. 

Note that the first part of the proof of Theorem 8.5.1 is an immediate consequence 

We will now introduce a function that will be a valuable tool in analyzing random 
of the Liapunov inequality. 

variables and limiting behavior of their sums. 

Definition 8.5.5 The function of real variable t defined as 

mx(t )  = E ( e t x )  

is called the moment generatingfirnction (mgf) of a random variable X. 0 

For any random variable, its mgf exists for t = 0. If X is a positive random 
variable, and the mgf of X exists for some to ,  then mx(t)  exists for all t 5 to .  This 
fact follows from Theorem 8.4.2. 

EXAMPLE 8.23 

If X has the BIN(n, p )  distribution, then 

so that mx ( t )  exists for all t .  

EXAMPLE 8.24 

If X has EXP(X) distribution, then we can write 

provided that t < X. For t 1 X the integral in (8.19) diverges. 

Let us explore some of the properties of moment generating functions. First, 
observe that the concept of the mgf is connected with a distribution rather than with 
a random variable: two different random variables with the same distribution will 
have the same mgf. 

The name "moment generating function" is related to the following theorem: 

Theorem 8.5.3 Let X be a random variable with the mgf mx ( t ) ,  assumed to exist 
in some neighborhoodof t = 0. ZfE(1Xl") < 03, then for  k = 1,.  . . ,n, the kth 
moment of X is given by the formula 
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Proof Differentiating formally the expression for the mgf under the sign of expec- 
tation (i.e., under the integral or summation sign), we obtain 

for Ic = 1 , 2 ,  . . . n. Substitutionof t = 0 gives the required result. 
The validity of this argument depends crucially on whether or not formal differen- 

tiationunder the integral sign is allowed. The answer is positive ifthe corresponding 
derivatives are absolutely integrable for t = 0, which is ensured by the existence of 
the nth absolute moment. 0 

H EXAMPLE 8.25 

Since the mgf of random variable with BIN(n,p) distribution is mx( t )  = 
(pet  + q),, we have m;((t) = n(pet + q),-lpet while m i ( t )  = n(n - 
l ) ( p e t  + q ) n - 2 ( p e t ) 2  + n(et + q)n-lpet .  Thus E ( X )  = mx(0) = np and 
E(X2)  = mE(0) = n(n - l)p2 + np. 

4 EXAMPLE 8.26 

The moment generating function of the U[ a ,  b] distribution is 

(8.20) 

Determination of the values of derivatives of mx ( t )  at t = 0 requires re- 
peated usage of the de L'Hospital rule. We can, however, expand exponentials 
into power series, and after some algebra we obtain 

1 b2 - a2 

2! b - a  3! b - a  
1 b3 - a3 

*mx(t) = 1 + -- t+--  t2  + .  

This is a Taylor expansion of mx ( t )  about t = 0. So we must have 

Next we will prove 

Theorem 8.5.4 I f X  is a random variable with mgf mx ( t ) ,  then the random vari- 
able Y = ax + has the mgf 

my(t)  = ePtmx(at). (8.21) 

Proof From the properties of the expectation, 

my( t )  = E(etY) = E(et(ax+P)) = E(e(at)x x e P t )  = ePtmx(at). 
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fl EXAMPLE 8.27 

Let us find the mgf's of random variables U and V ,  with distributions U[ 0, 11 
and U[ - 1 13, respectively. 

If X has a U[al b] distribution, and hence has the mgf (8.20), then U = 
(X - a ) / ( b  - a) has a distribution uniform on [0, 11. Using formulas (8.20) 
and (8.21) for ~1 = l / ( b  - a)  and /3 = - a / ( b  - a),  we obtain 

(8.22) 

Next, if V has a U[-1, 11 distribution, then V = 2U - 1. Taking a = 2 and 
p = -1 and using (8.22), we get 

e2t - 1 et - e-t sinht 
2t 2 t  t 

mv(t)  = e-t x - --=-. - 

Obviously the expressions for these mgf's can be obtained directly from the 
definition. 

fl EXAMPLE 8.28 

The moment generating function of a N(p, 02)  distribution can be found by 
first finding the mgf of a standard normal random variable Z N N(0, 1) as 

Then, for any X - N(p, 02), X = p + 02, and based on Theorem 8.5.4 we 
obtain 

mx ( t )  = e P t + a z t z / 2 .  (8.23) 

We now prove 

Theorem 8.5.5 IfX and Y are independent random variables with moment gener- 
ating functions mx ( t )  and my ( t ) ,  respectively, then the mgfof X + Y is 

~ X + Y  ( t )  = mx(t)my(t) .  

ProoJ Observe that random variables e tx  and etY are independent for each t ,  so 
by Theorem 8.4.8 we have 

7 n X + y ( t )  = (e t (X+Y)  ) = E(etx)E(etY) = mx(t)my(t) .  0 

Before proceeding with examples, we state one more important theorem. Its 
proof is beyond the scope of this book. 

Theorem 8.5.6 If X and Y are two random variables such that their momentgen- 
erating functions mx( t )  and my(t)  coincide in some neighborhood of the point 
t = 0, then X and Y have the same distribution. 

Theorem 8.5.6 asserts that if two mgf's agree in some neighborhood of t = 0, 
then they agree for all t (for which they are defined), and that an mgf determines 
uniquely the distribution. In other words, random variables with different distribu- 
tions must have different mgf's. 
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EXAMPLE 8.29 

Let X and Y be independent and have Poisson distributions with means XI 
and X2, respectively. Let us first determine the mgf's of X and of Y. We have 

Similarly rny ( t )  = eAs(e'-l) , and by Theorem 8.5.6, 

mx+y(t) = mx(t)rny(t) = e(X1+Xz)(et-l). (8.24) 

We recognize (8.24) as the mgf of the Poisson distribution. In view of 
Theorem 8.5.6, X + Y has a Poisson distribution with mean XI + X2. 

The main disadvantage of moment generating functions is that they may not exist 
for any t # 0. There exist random variables X such that the random variable etX 
has no expectation for any t # 0. This restricts the usefulness of mgf's as a tool 
(to be explored in Chapter 10) for obtaining limit theorems. For proofs using mgf's 
to be valid, they have to be confined to classes of random variables for which the 
mgf's exist in some neighborhood of t = 0. The corresponding theorems, however, 
are typically valid without this assumption, and the proofs usually require nothing 
more than replacing the mgf's with so-called characteristic functions. Although 
we will not use characteristic functions in this book, it is worthwhile to provide 
their definition and simplest properties. The concepts below require a rudimentary 
knowledge of complex numbers. 

Definition 8.5.6 Let X be a random variable with the cdf F .  The function ipx of 
real argument t ( -m < t < +m ) defined as 

cpx(t) = E(ei tx)  = / eit"dF(z) (8.25) 

0 is called the characteristicfunction (chf) of X (or of the cdf F) .  

In the definition above i is the imaginary unit (Le., i2 = -1). From the formula 
e2t  = cos E + a sin E ,  we obtain 

cpx(t) = E{cos(tX)} + iE{sin(tX)}, (8.26) 

so cpx ( t )  is a complex-valued function of a real argument. Since 1 eitX I = cos2 (tX)+ 
sin2(tX) = 1, the expectation in (8.25) exists for all t ,  so the characteristic functions 
always exist. 

Below we list some basic properties of characteristic functions; the proofs are left 
as exercises. In particular, Theorems 8.5.3, 8.5.4, and 8.5.5 carry over to the case 
of characteristic functions almost without any change. In the following theorems, 
cpx, cpy, . . . are chf's of random variables X ,  Y,  . . . : 

Theorem 8.5.7 For every random variable X, its chf cpx ( t )  is uniformly continuous 
and satisjes the conditions 
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for every real t. Moreovec for any real a ,  b, 

cpax+b(t) = cPx(at)eibt. 

cp-x(t) = 4 - 4  =a1 
Inparticulacfor a = -1, b = 0,  using (8.26,) we obtain 

where 2 stands for the complex conjugate of z. 

(8.28) 

(8.29) 

EXAMPLE 8.30 

If X - BIN(n, p), then 

In this case cpx ( t )  is a periodic function. 

EXAMPLE 8.31 

If X is uniform on [0, 11, then 

1 
e i t Z  1 it dx= - (e  -1) 

zt 

If Y = 2X - 1, then Y has uniform distributionon [-1, 11 and (8.28) gives 

EXAMPLE 8.32 

If X "(O1 l), then 

The addition of independent random variables corresponds to multiplications of 
their chf's. 

Theorem 8.5.8 Ifrandom variables X and Y are independent, then 

PX+Y ( t )  = cpx (t)cpY ( t ) .  

As in the case of mgf's, characteristic functions uniquely determine the distribu- 
tions: 
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Theorem 8.5.9 If two cdfs F and G have the same characteristic function, then 
F = G. 

Finally, the relationship between moments of X and behavior of characteristic 
function in the neighborhood of t = 0 is given by the following theorem: 

Theorem 8.5.10 I f X  is a random variablesuch that E ( l X l k )  < 0;) forsome inte- 
ger k 2 1, then 

in some neighborhood of t = 0. Here mj = E ( X j ) ,  and o ( x )  is such that 
lim,jo o ( z ) / x  = 0. 

PROBLEMS 

8.5.1 Find the moment generating function of a discrete random variable X with 
distribution P{ X = k }  = l/n, k = 0,1, . . . , n - 1. 

8.5.2 Let X be a nonnegative integer-valuedrandom variable. The function gx (s) = 
E s X ,  defined for Is1 5 1, is called a probabilifygenerating function, or simply a 
generating function, of X .  Find g x ( s )  for random variables with: (i) Geometric 
distribution. (ii) Binomial distribution. (iii) Poisson distribution. 

8.5.3 Find the fourth factorial moment of the random variable X with a POI(X) 
distribution. 

8.5.4 Find the moment generating function for a random variable with a density: (i) 
f(z) = ze-5 for z > 0. (ii) f(z;  0') = f i e - x 2 / 2 g 2  for z > 0. 

8.5.5 Let X I ,  . . . , X ,  be independent random variables with the common distribu- 
tion N(p, a). Find constants a ,  and ,& such that U = ( X I  + . . + X ,  - a,)//3, 
and XI have the same distribution. 

8.5.6 A continuous random variable X is called symmetric about c if its density f 
satisfies the condition f ( c - z )  = f (c+z)  forall z. Showthat: (i) I f X  issymmetric 
about c and E ( X )  exists, then E ( X )  = c. (ii) If X is symmetric about 0, then all 
moments of odd order (if they exist) are equal 0. 

8.5.7 Let X be a random variable with E ( X )  = p,Var(X)  = a' and such that 
the third central moment 7 3  = E ( X  - p)3 exists. The ratio 73/a3 is called the 
coeficient of skewness. Find skewness of the following distributions: (i) U[O, 11. (ii) 
f(x) = aza-' for 0 5 z 5 1 and f (z)  = 0 otherwise (a  > 1). (iii) BIN(1, p ) .  (iv) 
POI(X). 

8.5.8 Let X be a random variable with E ( X )  = p , V a r ( X )  = a' and such that 
7 4  = E ( X  - p)4 exists. Then "y4/a4 is called the coefficient of kurtosis. Find 
kurtosis of the following distributions: (i) N(0, 1). (ii) N(p, a'). (iii) BIN(1, p ) .  (iv) 
POI(X). 
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8.5.9 Find the characteristic function of the following distributions: (i) POI(X). (ii) 
GEO(p). (iii) EXP(X). (iv) N(p, a2). 

8.5.10 A family 0 of distributions is said to be closed under convolution, if when- 
ever independent random variables X and Y have distributions in 0; the same is true 
for the random variable X + Y .  Show closeness under convolution in families of: 
(i) Poisson distributions. (ii) Normal distributions. 

8.5.11 Show that if p(t) is achf, then Iq(t)I2 is also a chf. 

8.5.12 Show that the distribution of X is symmetric around 0 if and only if qx ( t )  
is real. 

8.6 VARIANCE 

We will now introduce a concept that plays an extremely important role in statistical 
analysis. 

Definition 8.6.1 If E ( X 2 )  < m, then the second central moment of X ,  

V a r ( X )  = E [ ( X  - m ~ ) ~ ] ,  

is called the variance of X .  Its positive square root is called the standarddeviation 
of x.  0 

The other symbols used for the variance are V ( X )  and a$. 

nary examples. First, observe that 
We begin by listing some basic properties of the variance and providing prelimi- 

V a r ( X )  = 

= E ( X 2 )  - [ E ( X ) I 2 .  (8.30) 
E ( X 2  - 2 m l X  + m f )  = E ( X 2 )  - 2 m l E ( X )  + mf 

Formula (8.30) gives an alternative way of calculating the variance. Note that 
variance is always nonnegative, as the expectation of a nonnegative random variable 
( X  - m 1 ) 2 .  Consequently E ( X 2 )  2 [ E ( X ) ] ' ;  that is, E ( X 2 ) ' / 2  2 IE(X) I ,  which 
is a special case of the Liapunov inequality given in Theorem 8.5.2. 

Theorem 8.6.1 r f V a r ( X )  exists, then 

Var(aX + b )  = a2Var(X) .  (8.31) 

Proof: Using the fact that E ( a X  + b )  = a E ( X )  + b, we write 

Var(aX + 6 )  = E [ ( a X  + b)2] - [ a E ( X )  + bI2 
= E [ a 2 X 2  + 2abX + b2] - a 2 [ E ( X ) I 2  - 2abE(X)  - b2 

= a 2 [ E ( X 2 )  - ( E ( X ) ) 2 ]  = a2Var(X) .  0 
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1 EXAMPLE 8.33 

Let X have the Poisson distribution with mean A. Then the mgf of X is 
mx(t)  = (see Example 8.29). After some algebra we obtain 

m i ( t )  = X(Xet + l)ex(et-l)+t 

so that E ( X 2 )  = m i ( 0 )  = X2 + A. Since E ( X )  = A, we obtain Var(X) = 
(A2 + A) - X2 = A. Thus for the Poisson distribution the mean and variance 
coincide. 

1 EXAMPLE 8.34 

From Example 8.25 we know that if X has BIN(n, p )  distribution, then E ( X )  = 
n p ,  E ( X 2 )  = n(n - l)p2 + np. Consequently, using (8.30), we obtain 

Var(X) = n(n - l)p2 + np - ( n ~ ) ~  = np(1 - p )  = npq. (8.32) 

EXAMPLE 8.35 

Let us find the variance of random variable X with a U[a, b] distribution. We 
have f (z)  = l / ( b  - a)  for a 5 z 5 b, E(X) = (a  + b ) / 2 ,  and 

1 b3 - a3 1 
3 b - a  3 

E ( X 2 )  = - x - = - [ b 2 + a b + a 2 ] ,  

so Var(X) = ( b  - c ~ ) ~ / 1 2 .  

EXAMPLE 8.36 

In Example 8.24 we found that the mgf of the EXP(X) distribution is m(t)  = 
X(X - t ) - l .  Consequently m'(t)  = X(X - t ) - 2 ,  m"(t) = 2X(X - t ) - 3 .  Then 
E ( X )  = 1 / X ,  E ( X 2 )  = 2/X2 and Var(X) = 1/X2,  so in the exponential 
distribution the mean and standard deviation coincide. 

To interpret the variance, let us now consider the case of a discrete random vari- 
able. The variance equals 

Var(X) = C(zi - W L ~ ) ~ P ( X  = zi). (8.33) 

For the variance to be small, all terms of the sum (8.33) must be small. Hence the 
values xi with the large difference 1zi - mil must have a low probability. Qualita- 
tively speaking, a small variance means that the values of X are concentrated closely 
to the mean of X, so large deviations are unlikely. The following theorem provides 
another interpretation of the variance: 

Theorem 8.6.2 The mean square deviationfrom (', namely E ( X  - < ) 2 ,  is minimized 
at < = E ( X ) ,  andthe minimal value equals Var(X). 

i 
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Proof: Since f (<)  = E ( X 2 )  - 2 < E ( X )  + E2 represents a parabola with branches 
directed upward, the minimum occurs at the point [* at which f’(<*) = 0, SO <* = 
E ( X ) .  0 

The function f(<) corresponds to the case where, qualitatively speaking, “small 
errors are almost negligible, large errors are very serious.” The function g ( [ )  in 
Example 8.37 treats the seriousness of an error as proportional to its size. 

EXAMPLE 8.37 

A natural question that arises from problem posed in Theorem 8.6.2 is to de- 
termine < that minimizes 

s(<) = EIX - El. 

The minimization of g(<)  is not as simple as that of f ( E ) .  We have to turn here 
to the following result: 

Theorem 8.6.3 The mean absolute deviation from [, namely EIX - (1, is minimized 
at < = m ,  where m is the median of X 

Proof: We will present the proof in the case of the continuous random variable X 
with density f .  It suffices to show that E(IX - mi) 5 E(IX - a / )  for every a. 
Assume now that m < a. Then 

which simplifies to 

m 

(*m - a ) f ( x ) d z  + (22 - m - a ) f ( x ) d x  + ( a  - m ) f ( x ) d x .  L J L  Lrn 
Since 22 - m - a 5 2a - m - a = a - m for m 5 x 5 a, combining the second 
and third integral, we obtain the inequality 

E(IX - mi) - E ( / X  - a,I) 5 (nz - a ) [ P ( X  5 m) - P ( X  L m)] 

Since m - a < 0 and P ( X  5 m) - P ( X  2 m) 2 112 - 112 = 0,  we have 
0 E(IX - ml) - E ( / X  - a / )  5 0 .  The prooffor a < m is analogous. 

We now explore the behavior of the variance of sums of random variables. This 
will naturally lead us to certain new important concepts. 
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To make the notation more readable, we let mx = E ( X )  and m y  = E ( Y ) .  
Then 

Var(X  + Y )  = E ( X  + Y ) ~  - [ E ( X  + Y ) ] ~  
= E ( X ~  + ~ X Y  + y 2 )  - (mx + my)2  

= E ( X 2 )  - m$ + E ( Y 2 )  - m$ + 2 [ E ( X Y )  - mxmy] 
= V a r ( X )  + V a r ( Y )  + 2 [ E ( X Y )  - m x m y ] .  

The last quantity appears sufficiently often to deserve a separate name. 

Definition 8.6.2 The quantity 

COV(X,  Y )  = E ( X Y )  - E ( X ) E ( Y )  = E [ ( X  - mx)(Y  - my)] (8.34) 

is called the covariance of random variables X and Y .  0 

We shall show that Cov(X ,  Y )  exists whenever X and Y have finite second or- 
dinary moments. Indeed, 0 < ( X  - Y ) 2  = X 2  - 2 X Y  + Y 2 ,  and this gives 
~ X Y  5 X 2  + Y 2 .  Consequently 

Thus, if E ( X 2 )  < M and E ( Y 2 )  < 03, then expectations are finite, and E ( I X Y  I )  < 
M. So Cov(X ,  Y )  exists. 

We have therefore 

Theorem 8.6.4 I f E ( X ? )  and E ( X i )  exist, then 

Var(X1 + X2)  = Var(X1)  + Var(X2)  + 2Cov(X1, X 2 ) ,  

andmore generally, i f E ( X P )  < M for i = 1,.  . . , n then 

Var(X1 + . . . +  x,) = C v a r ( x j ) + 2 C ~ o v ( ~ i , ~ j ) .  

Definition 8.6.3 The random variables X ,  Y for which C o v ( X ,  Y )  = 0 are called 

j=1 i<j 

uncorrelated or orthogonal. 0 

Observe that in view of Theorem 8.4.8, independent random variables with finite 
variances are uncorrelated. Consequently, we have 

Theorem 8.6.5 Ifrandom variables XI, . . . , X ,  are painvise uncorrelated, then 

Var(X1 + ' .  + X,) = Var(X1)  + . ' + Var(X,). (8.35) 

Inparticulal; (8.35) holds i f X 1 ,  . . . , X ,  are independent. 

Let us find the variance of a linear combination of random variables, that is, a 
variance of the sum 

Y = U l X l  + a2X2 + .  . ' + a,X,. 
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Using Theorem 8.6.4, we have 

n 

By Theorem 8.6.1, Var(aiXi) = a:Var(Xi), while 

Cov(azXi, U j X j )  = E(a& x a j x j )  - E(aiXi)E(ajXj) 
= azaj[E(XiXj) - E(X&qXj)] = aiajCov(Xi, Xj). 

Consequently, 

In particular, if XI, . . . , X, are uncorrelated, then 
n. 

(8.36) 
i=l 

EXAMPLE 8.38 

For the variance of a difference of two random variables, XI - Xz, we take 
a1 = 1, uz = -1, and obtain 

Var(X1 - Xz) = Var(X1) + Var(X2) - ZCov(X1, X2); 

hence for uncorrelated random variables 

Var(X1 - Xz) = Var(X1) + Var(Xz). (8.37) 

EXAMPLE 8.39 Averaging 

If XI, . . . , X, are independent, with the same distribution, then in statistics 
we call them a random sample and their average 

- X 1 + . . . + X n  
X, = 

n 

is referred to as a sample mean. IfVar(Xi) = u2,  then using ai = l / n ,  z = 
1, . . . , n in formula (8.36), we obtain 

U2 
Var(X,) = -. 

n 

Thus averaging decreases the variability (as measured by the variance) by the 
factor l /n .  The standard deviation of the sample mean is therefore decreased 
(as compared to the standard deviation of a single observation) by the factor 
11 J;;. 
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Figure 8.7 Length of 16 feet (Drawing by S. Niewiadomski) 

I EXAMPLE8.40 AFoot 

The effect of averaging on variability, computed in Example 8.39, appears to 
have been understood long before the beginning of probability and statistics. 
This is illustrated by the following law from the Middle Ages that defined 
the length of one foot (before you read any further, think for awhile: How 
could a measure of length be defined centuries ago so as to be-as much as 
possible-uniform throughout a country?). 

The law specified the following procedure (apparently, the standard of one 
foot was necessary only on market days-in this case on Sundays after Mass). 
The shoes of the first 16 men leaving the church (this was an attempt to get a 
random sample!) lined up, toe to heel, gave the “right and lawful rood” (e.g., 
see Stigler, 1996). Then 1/16 of it was to be used as measure of 1 foot. The 
number 16 was clearly chosen because it was easy to divide a string into 16 
equal parts, by folding it four times into halves. 

This procedure cuts down the variability of the length of feet, as measured 
by the standard deviation, by the factor of 4. 

EXAMPLE 8.41 Problem of Design 

Suppose that you have a scale and a set ofweights at your disposal. The weight 
of two objects, A and B, has to be determined as precisely as possible, with 
the scale used only twice. 

SOLUTION. If you put an object on a scale and balance it with weights, you 
obtain a measurement of the true weight of the object, w, with an error. One 
of the possible assumptions here, met in many practical situations, is that what 
one observes is a value of a random variable, X, such that E ( X )  = w and 
Var(X) = u2, with different measurements (even of the same object) being 
independent. In other words, we have X = w + E ,  where E ( E )  = 0, Var(6) = 
uz,  with u being the standard deviation of the error of measurement. 

In our situation, it would seem that all one has to do is to put object A 
on the scale, balance it with weights, and then do the same with object B, 
observing two random variables, X and Y, with E ( X )  = W A ,  E ( Y )  = W B ,  

and Var(X) = Var(Y) = c2. 
One can, however, proceed differently. Suppose that on the first weight- 

ing, one puts both objects A and B on one scale, and then balances the scales, 
observing random variable XA+B = W A  + W B  + €1, where €1 is the measure- 
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Figure 8.8 Two weightings of A and B 

ment error. On the second weighting, one puts A and B on opposite sides of 
the scale and adds weights as needed for balance (see Figure 8.8). Thus on 
the second measurement we observe XA-B = UJA - 'wg + €2, where €2 is 
independent of €1, with E(c1) = E(Q)  = 0, Var(c1) = Var (~2)  = u2. We 
easily find that 

XA+B + XA-B = wA I €1 + €2 

2 2 
and 

€1 - €2 
= W E + -  

XA+B - X A - B  
2 2 

We have now Var[(el + ~ ) / 2 ]  = (1/4)Var(tl + Q) = a2/2,  and Var[(cl - 
~ ) / 2 ]  = a2/2.  Using the scale twice, we obtained the measurements of WA 

and W B ,  each with standard deviation of the error equal u/fi = 0.7070. This 
means an error reduction by about 30% obtained at no additional cost (i.e., 
with the same number of observations). This is one of the simplest examples 
of the effects of choosing a proper design of experiment. 

Let us now investigate the concept of covariance more closely. First, observe that 
according to formula (8.34), 

COV(X, X) = E [ ( X  - m x ) 2 ]  = Var(X). (8.38) 

So, in some sense, covariance is a generalization of variance. 

bination of random variables. 

Theorem 8.6.6 If X I ,  . . . , X ,  and Y1, . . . , Ym are two sets (not necessarily dis- 
joint) of random variables withfinite second moments, then for any constants a1 , . . . , 
an,  61, . . . , bm and c,  d ,  

Next we have the identity describing the behavior of covariance for a linear com- 

n m n m  

The proof involves straightforward checking and will be omitted. 

The fact that Cov(X, Y )  = 0, if X and Y are independent, suggests using the 
covariance as a measure of dependence. However, to achieve comparability across 
various measurements it needs to be standardized. Accordingly we introduce the 
following definition: 
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Definition 8.6.4 Let X and Y be two random variables with finite second moments. 
Then 

is called the coefficient of correlation between X and Y 

EXAMPLE 8.42 

Let U ,  V, W be independent random variables such that Var( U )  = ch, Var( V) = 
o$, and Var(W) = oh. Compute the coefficient of correlation between 
X = U + W a n d Y  = V +  W. 

SOLUTION. We have o$ = ob + o& and o$ = o$ + o&, whereby 

Cov(W, W )  = o& by (8.38). Consequently 
COV(X, Y) = Cov(U+W, V+W) = Cov(U, V)+Cov(U, W)+Cov(W, V)+ 

(8.40) 

Situations like this are quite common; variables often are related because they 
are influenced by a common other variable (W).  One can think about the 
prices of two items X and Y that depend on the price W of some components, 
which are used in both X and Y. To see the effect of o&, let us write (8.40) 
as 

1 

If o& is large compared with both oh and o$, then px,y is close to 1. On the 
other hand, if o& is small compared to one (or both) of oh and o$, then px,y 
is close to 0. These results are expected of px,y as a measure of dependence 
of random variables X and Y. 

H EXAMPLE 8.43 

Let X, Y have a joint density uniform on the square with vertices (-1,0), 
( 0 ,  l), ( 1 , O )  and (0 ,  -1) (see Figure 8.9). 

Clearly, E(X) = E(Y)  = 0 by the symmetry of marginal distributions. 
Also E ( X Y )  = 0, since in the integral s s z y f ( s ,  y) dx dy the contribution 
arising from domains with sy > 0 and sy < 0 cancel one another. Thus 
Cov(X,Y) = 0, and therefore px,y = 0. Yet the random variables are 
dependent. This can be seen immediately from Theorem 7.2.2, as well as 
from the fact that if one knows, for example, that X is close to 1, then one can 
infer that Y must be close to zero. 

This example shows that correlation, as a measure of dependence, is not 
perfect. There are dependent random variables for which px,y = 0. To 
analyze the properties of the correlation coefficient, we need to introduce the 
following inequality: 
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Figure 8.9 Dependent but uncorrelated random variables 

Theorem 8.6.7 (Schwarz Inequality) For any variables X and Y,  

[ E ( X Y ) ] 2  5 E ( X 2 )  x E ( Y 2 ) .  (8.41) 

Prooj If E ( X 2 )  or E ( Y 2 )  is infinite, the inequality (8.41) holds. On the other hand, 
if E ( X 2 )  = 0, then P ( X  = 0) = 1, P ( X Y  = 0 )  = 1, and E ( X Y )  = 0. Hence, 
again, inequality (8.41) holds. The same argument applies if E ( Y 2 )  = 0. So we can 
assume that 0 < E ( X 2 )  < 00 and 0 < E ( Y 2 )  < 03. 

Consider now the random variable 2, = t X  + Y .  For every t we have 

0 5 E(2:)  = E(t2X2 + 2tXY + Y 2 )  

= t 2 E ( X 2 )  + 2 t E ( X Y )  + E ( Y 2 ) .  (8.42) 

The right-hand side is a quadratic function of t ,  which is nonnegative for all t .  Thus 
its discriminant must satisfy the condition 

4 [ E ( X Y ) I 2  - 4 E ( X 2 ) E ( Y 2 )  5 0 

which is the same as (8.41). 0 

We can now prove the following theorem, asserting the basic properties of the 
correlation coefficient: 

Theorem 8.6.8 The coeflcient of correlation p x y  satisfies the inequality 

-1 5 PX,Y 5 1 (8.43) 

there exist constants a (a # 0) and b such that 

Moreover; IpI is invariant under linear transformation of random variables; more 

with /px,yI = 1 $ and only 
P { Y  = aX + b }  = 1. 

precisely, for any a ,  b, c, d with ac # 0 ,  

PaX+b,cY+d = fPX,Y (8.44) 
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with6 = $1 ifac > Oandc = -1 ifac < 0. 

the other hand, Var(aX + b)  = a2Var(X), Var(cY + d )  = c2Var(Y), so that 
Proof By formula (8.39), we have Cov(aX + b,  CY + d )  = acCov(X, Y). On 

a c  

JaWar(X) x c2Var(Y) lac1 
-- acCov(X, Y) 

PaX+b,cY+d = - x PX,Y, 

which proves (8.44). We can now prove (8.43). By what is already shown in (8.39), 
we can assume that EX = E Y  = 0, so 

PX,Y = E(XY)/JE(X2)E(Y2) .  

The condition Ipx , ~  1 5 1 is equivalent to the Schwarz inequality (8.41). 
It remains to prove that p2 = 1 is equivalent to the existence of a linear rela- 

tionship between X and Y. Again, we can assume that E ( X )  = E(Y)  = 0. If 
Y = aX with a # 0, then E ( X Y )  = E[X(aX) ]  = aE(X2) and E ( X ) E ( Y )  = 
u[E(X)I2. Consequently, Cov(X, Y) = a{E(X2) - [E(X)I2} = aVar(X), and 
since Var(Y) = a2Var(X), we get 

Conversely, assume that ~ 5 , ~  = 1. Then (assuming E(X) = E ( Y )  = 0) we 
have [E(XY)]2  = E(X2)E(Y2) ,  meaning X and Y such that we have equality in 
(8.42). The proof of Theorem 8.6.7 shows that this occurs if the discriminant of the 
right-hand side of (8.42) is 0, hence if there exists t* such that E ( t * X  + Y)2 = 0. 
But the expectation of a nonnegative random variable is 0 if, and only if, this variable 
assumes only the value zero, so that P( t 'X + Y = 0) = 1. If we had t' = 0, then 
we would have P ( Y  = 0) = 1, and hence E(Y2)  = 0, a case that we eliminated. 
This shows that t' # 0, and hence that there is a linear relationship between X and 
Y. 0 

EXAMPLE 8.44 

Consider the situation where the value of some random variable 2 has to be 
predicted based on the values of two other variables X and Y. 

The optimal solution to this problem is well known. Adapting Theorem 
8.6.2 to the case of conditional prediction, we see that given X = x and Y = 
y, one should predict the conditional expectation E = E(ZIX = 5, Y = y). 
However, the practical implementation of this solution presupposes the knowl- 
edge of the joint distribution of (X, Y, Z),  and-which may be analytically 
difficult-the conditional expectation of 2 given (X, Y). 

Quite often we simply do not have this information. If appropriate, one can 
then use here the best linear prediction, which requires the knowledge of the 
first two moments of the joint distribution of (X, Y, 2) only, that is, expecta- 
tions, variances, and covariances (or equivalently, correlations). 

SOLUTION. Without loss ofgenerality, we can assume that E(X) = E ( Y )  = 
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E( 2)  = 0 (since if we know the mean, predicting the random variable is 
equivalent to predicting its deviation from the mean). We will be looking for a 
predictor of the form [ = a X  + PY that minimizes the expected square error 

E ( Z  - [ ) 2  = E ( Z  - ax - P Y ) 2 .  (8.45) 

Condition (8.45) can be expanded to 

E(Z - ax -BY)’ = E(2’) + a 2 E ( X 2 )  + p2E(Y2)  
- 2 a E ( X Z )  - 2PE(YZ)  + ~ ( I : P E ( X Y )  

= a; + a%; + p a +  

-2wxzazax  - 2PPYzazaY + 2ffPpxuaxfly. 

Differentiating with respect to (I: and P and setting the derivatives equal to 
zero, we obtain the system of linear equations: 

a a x + P p X Y a Y  = P X Z ~ Z ,  

(I:pxvax + p a y  = P Y Z f f Z .  

The solution exists if p’XU # 1: 

P Y Z  - P X Y P X Z  pz 
O Y  

2 and /3 = pxz - P X Y P Y Z  a =  
1 - P’XY C X  1- P X Y  

(if p’XY ,= 1, then X = Y or X = -Y,  so X and Y provide the same 
information). This solution is not very important by itself. More important 
is the fact that this method can easily be applied to determine the best linear 
predictor of one or more random variables. All that we need are the means 
and second order moments of all variables in question-those to be predicted 
and those serving as predictors. The next example will illustrate the class of 
situations in which such a prediction method can be usefully applied. 

EXAMPLE 8.45 Moving Averages 

Consider the process {Xt} of prices of some commodity. In many cases the 
process {Xt} is subject to seasonal variations. For example, if t is measured 
in months, and Xt  represents the (average) monthly price of tomatoes, then 
Xt varies with the period of 12. One of the methods of detecting trends (or 
prediction), which takes such periodic seasonal variation into account, is based 
on taking the averages of Xt over the most recent complete period. Thus we 
can define 

xt + xt-1+ ’ .  ’ + xt-11 
12 

Y t  = 

Here a possible assumption about X t  may be Xt = f t  + & ,  where f t  is some 
nonrandom function with period 12 (i.e., ft = f t - 1 2  for every t )  and I t ’ s  are 
independent random variables with the same distribution (sometimes referred 
to as “shocks”) representing random effects. Under these assumptions 

Y t = C +  It f Et-1 + . . . +  I t -11  

12 1 
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where C = &(ft + ft-1 + . . . + ft- l l) ,  which is a constant independent of 
t .  Clearly, we can assume, without loss of generality, that E(&)  = 0 for all t .  
Let Var(&) = E([:) = a2 > 0. Then E ( K )  = C,  Var(K) = a2/2 and 

where K is the number of overlapping terms in sums Et + t t-1 + . . . + t t -11  

and{t-m+...+<t-m-ll. Obviouslythenumberofsuchtermsis Oif m 2 12 
and equals 12 - m otherwise. 

Consequently, we have 

Cov(Y,,Yt-,) = max ( 0, - 121;:a2> 

so that 

(8.46) 
1-  f o r m = 0 , 1 ,  . . . ,  12 

fo rm 2 12. 

PROBLEMS 

8.6.1 The random variable X has binomial distribution with mean 5 and standard 
deviation 2. Find P{X = S}. 

8.6.2 Find the variance of X if its first ordinary moment is 3 and the second factorial 
moment is 52. 

8.6.3 For random variables X and Y such that E ( X )  = 2 ,  E(Y)  = 1, E ( X 2 )  = 
10, E(Y2)  = 3 and E ( X Y )  = c, find: (i) Var(3X - 5Y). (ii) p x , ~ .  (iii) The range 
of values of c for which the assumptions of the problem are consistent. 

8.6.4 Find the variance of a random variable X with a cdf 

for 5 < 0 ie for z > 1. 
F ( z )  = fi for O 5 5 5 I 

8.6.5 Let variables X and Y be such that E(X) = E ( Y )  = 0, Var(X) = Var(Y) = 
1, and px,y = p. Find E(W) ,Var (W) ,  and pw,y if W = X - pY. 

8.6.6 Find the correlation of random variables X and Y jointly uniformly dis- 
tributed on: (i) The triangle with vertices (0,O): (1,0), (1,2). (ii) The quadrangle 
with vertices (0 ,  0), (a,  0), (a,  2),  and (2a, 2), where a > 0. 

8.6.7 Let X, Y be independent, with means px , py and variances D$, 06. Show 
that Var(XY) = a$.$ + a$& + a$&. 
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8.6.8 Let XI, . . . X ,  be independent random variables having the same distribu- 
tion with a mean p and variance u2,  Let 5? = (XI + * + X n ) / n .  Show that 
E { C ~ = ~ ( X ~  - 7)’) = (n  - 1)2. [Hint: Since xi - X = (xi - p )  - (X - p ) ,  
we have C:=, ( X i  - x)’ = Cy=,((Xi - p)’ - n(x - pl2.1 

8.7 CONDITIONAL EXPECTATION 

The concept of conditional probability was introduced in Chapter 4 and then ex- 
tended to the concept of conditional distribution of a random variable in Chapters 
6 and 7. Now we will introduce the expectation of this distribution as a number, 
E ( X I Y  = y), determined for every particular value Y = y, provided that it exists. 

Definition 8.7.1 For two random variables X and Y ,  the conditional expectation 
E ( X I Y )  is defined as the random variable that assumes the value E ( X I Y  = y) 
when Y = y. 0 

H EXAMPLE 8.46 

Let Y have POI(X) distribution, and given Y = n, let X have BIN(n, p )  dis- 
tribution. We can think here (recall Example 7.14) of Y being the number of 
eggs laid by a bird and of X as the number of those eggs that hatch (assuming 
that the eggs hatch independently, each with probability p) .  This means that 
the expected number of eggs that hatch, if Y = n, is E ( X I Y  = n) = n p .  

EXAMPLE 8.47 

Let (X, Y )  have a distribution uniform on the triangle with vertices (0, 0), (0, 
1) and (1, 1). Given Y ,  the distribution of X is uniform on the intersection 
of the line Y = y and the support of the density. Since the expectation of the 
uniform distribution on an interval is its midpoint, we have E ( X I Y  = y) = 
y / 2 , a n d s i m i l a r l y E ( Y ~ X = s ) = ( 1 + 2 ) / 2 , w h e r e O 5 X 5 1 , 0 5 Y  5 1. 

EXAMPLE 8.48 

Consider now a case where one variable is discrete and the other is continuous. 
Let P{Y = 1) = a and P{Y  = 2) = 1 - a, and given Y ,  let X have the 
density 

f ( z ( Y  = y) = yzy-1, 0 5 z 5 1. 

In this case, if Y = 1, then X is uniform on [0, 11; hence E(XIY = 1) = 1/2.  
If Y = 2, then X has density f(zIY = 2) = 2 2  on [0, 13; hence E ( X ( Y  = 
2) = 2/3. On the other hand, given X = x, we have 

a 
P { Y =  1 / X = s }  = 

P { Y = 2 1 X = s }  = 

a + 2 4 1  - a) ’  
2 4 1  - a )  

cv + 2 4 1  - a ) ’  
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This is a consequence of Bayes' formula, interpreting the values of the density 
f ( z \ Y )  as infinitesimal probability P{X = zlY}da. Thus 

E ( Y I X  = x )  = 1 x P ( Y  = 1IX = x )  + 2 x P ( Y  = 21x = x )  
- a + 4 ~ ( 1 - ~ r )  - 

CY + Zx(1- a ) '  

We will now prove 

Theorem 8.7.1 For any random variables X ,  Y,  we have 

~ [ E ( X I Y ) I  = E(X), 

provided that E ( X )  exists. 

(8.47) 

PmoJ We will present the proof only in the case of continuous random variables. 
Letting fi(z) and f i ( y )  denote the marginal densities of the joint density f(z, y), 
we have 

E(XIY = y) = ag(x1Y = y ) d s  = J 2- :>$)dx. J 
Hence, taking expectation with respect to Y = y, we obtain 

E [ E ( X I Y ) ]  = J [J S f o d x  
f 2 ( Y )  

= 1 2f1(z)dz = E ( X ) .  

The interchange of the order of integration is legitimate in view of the assumption 
that E ( X )  exists. 0 

EXAMPLE 8.49 

In Example 8.46 we had E ( X ) Y )  = Y p .  Since Y has Poisson distribution 
with mean A, we obtain E ( X )  = E ( Y )  x p = Ap. This result also follows 
from the fact (see Example 7.14) that X has Poisson distribution with mean 
AP. 

EXAMPLE 8.50 

In Example 8.47 we have E ( X )  = E [ E ( X ( Y ) ]  = E ( Y / 2 )  and E ( Y )  = 
E [ E ( Y / X ) ]  = E [ ( l + X ) / Z ] ,  whichgives E ( X )  = E ( Y ) / 2 ,  E ( Y )  = 1 / 2 +  
E ( X ) / 2 .  This system of two equations can easily be solved, leading to p x  = 
113 and py = 213. 

EXAMPLE 8.51 

Finally, in Example 8.48 we have 

1 2  
2 3  E ( X )  = E [ E ( X I Y ) ]  = aE(XIY = 1) + (1 - cY)E(XIY = 2) = -a + -(1 - a ) .  



250 EXPECTATION 

On the other hand, since f l  (z) = a + 2z(1 - a ) ,  we have 

a + 4z(1 - a )  
E ( Y )  = E [ E ( Y J X ) ]  = J  f l  ( x ) d x  

0 a+2z(1  - a )  
1 

= i [ a + 4 z ( l - a ) ] d z = 2 - a  

Theorem 8.7.1 can be very helpful in determining the expectation of a random 
variable X by conditioning it with respect to some other variable ( Y ) .  The choice 
of Y is crucial here if a simplification is to be achieved. 

The following theorem is an analogue of Theorem 8.7.1: 

Theorem 8.7.2 For any random variables X ,  Y ,  i f E ( X 2 )  exists, then 

Var(X) = E[Var(XIY)] + Var[E(XIY)]. (8.48) 

Proof: Let px = E ( X ) .  We have 

Using Theorem 8.7.1, we obtain 

A = E { E [ X  - E(XjY) l2 lY)  = E[Var(XIY)], 

C = E[E(XIY)  - px12 = V ~ ~ [ E ( X ~ Y ) ] ,  

where the last equality follows from the fact that p x  = E[E(XIY)]  (see (8.47)). It 
remains to prove that B = 0. 

As before, we have 

where V ( X ,  Y )  = X - E(X1Y) and V ( Y )  = E(XIY)  - px is constant for every 
fixed value of Y .  Consequently, V ( Y )  can be factored out, leaving 

B = E { V ( Y ) E [ U ( X ,  Y ) / Y ] } .  

But E [ U ( X , Y ) / Y ]  = E[X - E(XIY)IY] = E(XIY)  - E(XIY)  = 0. Thus 
0 B = E [ V ( Y )  x 01 = 0 ,  which completes the proof. 
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EXAMPLE 8.52 

For an application of Theorem 8.7.2, let us return again to the Example 8.46. 
We have there X - BIN(Y,p) ,  so E ( X / Y )  = Y p ,  and V a r ( X 1 Y )  = Y p q .  
Consequently, since Y has POI(X) distribution with E ( Y )  = V a r ( Y )  = A, 
we obtain 

V a r ( X )  = EVar(X1Y)  + V a r [ E ( X I Y ) ]  = E(Ypq) + V a r ( Y p )  
= pqx + p2x = x p ,  

again, in agreement with our finding from Example 7.14 that the marginal 
distribution of X is Poisson with a parameter Xp. 

Finally, as another example of an application, we will prove the theorem due 
to Hotelling and Solomons (1932) that connects the mean, median, and standard 
deviation of any random variable. The present proof is a slight modification of the 
proof by O’Cinneide (1 990). 

Theorem 8.7.3 Let X be a random variable with E ( X 2 )  < m, and let p and u be 
its mean and standard deviation. Moreovel; let m be any median of X ,  that is, a 
number such that P ( X  2 m )  2 0.5 and P ( X  5 m )  2 0.5. Then for any random 
variable X ,  

that is, the mean is within one standard deviation of any median. 

Pmoj Let T -  = P ( X  < m ) , n +  = P ( X  > m),  and = P ( X  = m) so 
that n- + no 2 0.5 and no + 7r+ 2 0.5. Let Y be the random variable defined as 
follows: 

lp - ml 50; 

(a) If K O  = 0, then 
1 i f X < m  

Y = {  2 i f X > m .  
(8.49) 

(b) If no > 0, then in addition to (8.49), we let 

P{Y = 1IX = m} = 0.5 - T -  

Clearly, P { Y  = 1) = P { Y  = 2)  = 0.5. 
For simplicity, put pi = E ( X / Y  = i), for i = 1,2 .  Then p = E ( X )  = 

E [ E ( X I Y ) ]  = 0 . 5 E ( X I Y  = 1) + 0 . 5 E ( X / Y  = 2), that is, 

and P{Y = 2 / X  = m} = 0.5 - K+ 

p = 0.5p1 + 0.5p2. (8.50) 

Assume that m 5 p (the argument in the case of opposite inequality is analogous). 
Clearly, we have 1-11 5 m, which in view of (8.50) gives the inequality 

P - m 5 P - pi = 0.5(p2 + pi) - pi = O.s(p2 - pi). (8.51) 

Using Theorem 8.7.2 we can now write 

u2 = V a r ( X )  = E [ V a r ( X / Y ) ]  + V a r [ E ( X / Y ) ]  1 V a r [ E ( X I Y ) ]  
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So u 2 lp - ml, as asserted. 

PROBLEMS 

8.7.1 Variables X and Y are jointlydistributedwith the density f(x, y) = Cx(32 + 
2y) for 0 < z < y < 1, and f ( x ,  y) = 0 otherwise. Find: (i) C. (ii) E ( Y I X  = x). 

8.7.2 Let X and Y have the joint density uniform on the triangle with vertices 
( O , O ) ,  (2,O)and (3, l ) .  Find: ( i )E(XIY)  andE(Y1X). ( i i )Var(X/Y) andVar(Y1X). 
(iii) The expectations and variances of X and Y using formulas (8.47) and (8.48). 

8.7.3 Let X, Y be continuous random variables with a joint density f .  Assume that 
E ( Y  IX = x) = p for all 2. Show that 

Var(Y) = Var(Y1X = z ) fx (x )  dx. .I 
8.7.4 The number of traffic accidents that occur in a certain city in a week is a 
random variable with mean p and variance u2. The numbers of people injured in 
an accident are independent random variables, each with mean m and variance k 2 .  
Find the mean and variance of the number of people injured in a week. 

8.8 INEQUALITIES 

In this section we will introduce three important inequalities, all involving expecta- 
tions that will be used in the following chapters. 

Theorem 8.8.1 IfV is a random variable such that E ( V )  = 0 and Var(V) = 1, 
then for  every t > 0 ,  

P{IV\ 2 t }  5 l / t ?  (8.52) 

ProoJ We will give the proof in the case of continuous random variables; the 
proof in the discrete case (as well as in the general case) will require only notational 
changes. Letting f denote the density of V, we have 

t o o  
1 = V a r ( V ) = E ( V  ) -  -L 

which was to be shown. 0 

Clearly, inequality (8.52) is not informative for t 5 1. 
If X is a random variable with finite positive variance Var(X) = o2 > 0 and 

p = E ( X ) ,  we can always standardize X by defining 

(8.53) 
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Obviously E ( V )  = 0 and Var(V) = 1; transformation of X into V amounts to in- 
troducing a new scale of expressing values of X ,  with the origin of the scale located 
at E ( X ) ,  and the unit of measurement being the standard deviation o. Applying 
formula (8.52) to random variable (8.53), we obtain the Chebyshev inequality: 

Theorem 8.8.2 (Chebyshev Inequality) r fVar(X)  = c? < 00, then for  every 
t > 0, 

(8.54) 
1 

P{IX - PI 2 to} I: p 

(8.55) 

Both (8.55) and (8.54) show the role of the standard deviation and variance. We 
obtain the bounds on probabilities of random variable X deviating from its mean p 
by more than a certain amount, which can be expressed as a multiple of c in (8.54) 
or in original units in (8.55). 

H EXAMPLE 8.53 

For any random variable, the probability that it will deviate from its mean by 
more than three standard deviations is, at most, 1/9. This probability, however, 
can be much less than 1/9 for some random variables. For instance it equals 
0.0026 for a normal distribution; see (9.59). 

Consequently, the three-sigma rule (which says that we can practically dis- 
regard the probability that a random variable will deviate from its mean by 
more than three standard deviations) should be used with caution. It may 
safely be used for random variables with either a normal distribution, or close 
to normal, but in the general case, the probability 1/9 can hardly be disre- 
garded. 

We will now find the bounds given by the Chebyshev inequality in the case of 
few selected distributions. 

H EXAMPLE 8.54 

Suppose that we toss a coin 20 times. Let us estimate the probability that the 
number of heads will deviate from 10 by 3 or more (then we will have at most 
7 or at least 13 heads). Here p = np = 10, u2 = npq = 5 (see Examples 8.3 
and 8.34). We have 

0 2  5 
32 9 

P{ (X - 101 2 3) 5 - = - = 0.555. 

The exact probability (see Table A. 1) equals 0.2632. 
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EXAMPLE 8.55 

Let X have exponential distribution with density f(z) = Xe-”, z > 0. We 
have here p = ~7 = 1 / X  (see Example 8.36). Consequently 

For instance, if t = 1 we obtain a noninfonnative bound 1, while the proba- 
bility that X will deviate from 1 / X  by more than 1 / X  is (remember that expo- 
nential random variable can assume only positive values) 

As can be seen from these examples, the quality of bounds given by the Cheby- 
shev inequality is not impressive. However, the most important thing here is that the 
Chebyshev inequality gives a universal bound, valid for all random variables with 
finite variance. In fact the bound as such cannot be improved. 

Among the most important consequences of the Chebyshev inequality are the so- 
called laws of large numbers. We explore this topic in some detail in Chapter 10. 
Here we illustrate the situation by the following example: 

EXAMPLE 8.56 Binomial Distribution 

Consider the binomial random variable Sn = number of successes in n trials. 
We have then E(Sn)  = n p  and Var(S,) = n p ( 1  - p )  when p is the proba- 
bility of success. Consequently, E ( S n / n )  = p ,  Var(S,/n) = p g / n ,  and the 
Chebyshev inequality gives 

Letting n --$ 03 we obtain the following theorem: 

Theorem 8.8.3 If S, has binomial distribution with parameter p ,  then for  every 
€ > O  

lim P{ I- - pl 2 E }  = 0. S n  
n-m n 

This theorem appears to explain why the empirical frequency of an event, namely 
Sn/n ,  approaches, as the number of trials n increases, the probability p of the event. 
It tells us that for any positive number E it becomes increasingly unlikely that the 
empirical frequency will deviate from theoretical probability by more than E .  The 
Chebyshev inequality assumes that the random variable has finite second moment. 
One occasionally needs a bound for a tail of the distributionwithout this assumption. 
In such cases we have the following theorem: 
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Theorem 8.8.4 (Markov Inequality) r f X  is a nonnegative random variable with 
E ( X )  < 00, thenfor every t > 0, 

E ( X )  P { X  > t }  2 -. 
t 

(8.56) 

Proof We give the proof for the discrete case. Let 21, z2, . . . be possible values 
of X .  Then 

E ( X )  = & P ( X  = Xi) 1 1 q P ( X  = 2,) 

a xc,>t 

L t c P ( X  = zz) = t P ( X  > t ) .  0 

Xi>t 

The last inequality will be given without proof: 

Theorem 8.8.5 (Kolmogorov Inequality) Let independent random variables X I ,  X 2 ,  
have E ( X i )  = 0 andjnite variances a;, j = 1 , 2 ,  . . . (in the case of nonzero means 

we can always consider new variables X i  = X j  - E ( X j )  with means that equal 
zero). I f S j  = X1 + X2 + . . . + X j ,  then for every t > 0 ,  

(8.57) 

PROBLEMS 

8.8.1 Show that E ( X )  2 0.2 if P ( X  2 0) = 1 and P ( X  2 2 )  = 0.1. 

8.8.2 Assume that E ( X )  = 12, P ( X  2 14) = 0.12, and P ( X  5 10) = 0.18. 
Show that the standard deviation of X is at least 1.2. 

8.8.3 Prove the Markov inequality when X is a continuous random variable. 

8.8.4 Derive the Chebyshev inequality from the Markov inequality. 

8.8.5 Show that if X has a mgf bounded by the mgf of exponential distribution(i.e., 
X/(X - t )  for t < A), then for X E > 1 we have 

P { X  > €} 2 X€e-(XL-l).  

(Hint: Use the mgf of exponential distribution to obtain the bound for P { X  > E } ,  

then determine its minimum.) 

8.8.6 Let X have the Poisson distribution with mean A. Show that 

1 
and P { X > 2 X } I - .  X 

8.8.7 Let X be a random variable such that a mgf mx(t )  exists for all t .  Use the 
same argument as in the proof of the Chebyshev inequality to show that P{ X 2 
y} I e - t Y m X  ( t ) ,  t 2 0. 

8.8.8 Show that if X has the Poissondistributionwith mean A, then P ( X  5 X / 2 )  5 
(2/e)’I2 and P ( X  2 2X) I (e/4)’. (Hint: Use the inequality in Problem 8.8.7, 
and find minimum of the right-hand sides for t.) 
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CHAPTER 9 

SELECTED FAMILIES OF 
DISTRIBUTIONS 

In this chapter we will review the most commonly used distributions. Almost all 
of them were introduced in the preceding chapters, mostly as examples. We will 
now present them in a systematic way, adding new information while also providing 
references to the examples in the preceding chapters. 

9.1 BERNOULLI TRIALS AND RELATED DISTRIBUTIONS 

Bernoulli trials refer to independent repetitions of some experiment in which we are 
interested in an event A that occurs in each trial with the same probability p .  We 
refer to event A as “success,” and the event A“ as a “failure.” The decision about 
which of the two events of interest, A and AC, is labeled success is arbitrary and 
usually implies nothing about the nature of event A in any practical applications. 

The Bernoulli random variable, a building block of the theory, is just a count of 
the number of successes in a single trial. Thus X is 1 or 0, depending on whether A 
or AC occurred, and consequently the distribution of X is given by 

P { X  = O }  = 1 - p ,  P { X  = 1) = p .  (9.1) 

It will be convenient to let q = 1 - p .  The expectation and variance are then 

E ( X )  = p ,  Var(X) = p (1 - p )  = p q .  

257 
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Moreover, since On = 0 and In = 1, the Bernoulli random variable is the only 
(nondegenerate) random variable X that satisfies the relations X n  = X for all n 2 
1. Consequently the moments of X are 

m, = E ( X n )  = E(X) = p  

for all n 2 1. Then, by the fact tha t&nx( t ) l t=o  = p for all n 2 1, the Taylor 
expansion of the moment generating function of X is 

This result, of course, could have been obtained in a much simpler way using the 
distribution (9.1) of X. 

Binomial Distribution 

The binomial distribution plays the central role in probability theory and statis- 
tics, as a model of a total count of the total number of successes in n Bernoulli 
trials. In this chapter we let S, denote the binomial random variable, and we use the 
representation 

sn = x1 + , . . + x,, 
where X I  ~ . . . , X, are the Bernoulli random variables describing the outcomes of 
successive trials (i.e., Xi = 1 or 0, depending on whether the ith trial results in 
success or in failure). 

We have encountered binomial random variables in the preceding chapters (e.g., 
in Examples 6.8, 7.14, 8.3, and 8.34). We also know that 

(9.2) 

(9.3) 

and from (8.32), that 

E(S,) = n p ,  Var(S,) = n p ( 1 -  p ) .  

The symbol BIN(n,p) denotes binomial a distribution with parameters n and p ,  
so we can say that Sn has distributionBIN(n,p) or simply Sn N BIN(n,p). The 
Bernoulli random variable has the distribution BIN (1, p ) .  

To find the most likely number of successes (the mode), we proceed as follows: 
We have 

Since 9 x 2 > 1 if and only if k < (n+ l)p, the probabilities b( lc; n, p )  initially 
increase and then decrease. If (n  + 1)p is not an integer, the unique maximum of 
probabilities b ( k ;  n ,p )  is attained at lc' = [(n + l)p] (an integer part of (n  + l)p), 
while if ( n  + l )p  is an integer, the maximum is attained at two values, (n  + 1)p and 

P 

(n  + 1)p - 1. 
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The moment generating function of binomial distribution was obtained in Exam- 
ple 8.23: 

The same result can be obtained using Theorem 8.5.5 and formula (9.2) by observing 
that ms, ( t )  = [mx(t)],, where rnx(t) is the moment generating function of the 
Bernoulli random variable. 

Calculating the numerical values of binomial probabilities is simple, in principle, 
but can be cumbersome, especially when-as is often the case-we need to know 
probabilities of the form P{u 5 S, 5 b} ,  which require calculating the individual 
probabilities P{ S,, = k }  for all k between a and b. 

For small and moderate n, the situation is somewhat remedied by tables (see 
Table A.l in the Appendix). This table, as most of the binomial tables found in 
the literature, gives the cdf values of S,, that is, of probabilities P{S ,  5 k }  for 
selected n, k ,  andp. Then, P { u  5 S, 5 b} = P{S ,  5 b} - P{S,  5 u - l}, and 
the required probabilities are obtained by subtraction of the two terms (rather than 
adding b - a + 1 terms). 

EXAMPLE9.1 

Assume that it is known (from past experience, research surveys, etc.) that 
40% of buyers of FATCOW butter buy unsalted butter, and the remaining 60% 
buy salted butter. The store expects to sell no more than 20 packages of FAT- 
COW butter per day, so they put on the shelf 8 packs of unsalted, and 12 packs 
of salted FATCOW butter. It happened that only 15 persons bought FATCOW 
butter on a given day, each person buying one package. What is the probability 
that all buyers found the kind of butter they wanted? 

SOLUTION. We assume that the choices made by different people are in- 
dependent (which may be a reasonable assumption, but we advise the reader 
to think of a situation where assumption of independence is not valid). If we 
let S15 denote the number of persons (out of 15 buyers) who bought unsalted 
FATCOW butter, then S15 has binomial distribution BIN (15,0.4). If all cus- 
tomers are to find the kind of butter they want, we must have S15 5 8 and also 
15 - 515 5 12, that is S15 2 3. Thus we need P{3 5 S15 5 8). Rather 
than computing the sum x:=3 ( y )  (0.4)k(0.6)15-k, it is more convenient to 
get the required probability as P(S1.5 5 8} - P{S15 5 2}, and read the two 
values from Table A.l for n = 15 and p = 0.4. 

Table A.l gives the binomial probabilities for selected values of p only up to 
p = 0.5. To use binomial tables whenp > 0.5, it suffices to observe the following: i f  
S,, has distribution BIN(n,p), then SL = n - S, has the distribution BIN(n, 1 - p ) .  
To put it simply, the role of “successes” and “failures” need to be reversed. 
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EXAMPLE 9.2 A Warning 

The probability that a Montesuma rose will blossom during the first year af- 
ter planting is 80%. Mrs. Smith bought 20 bushes of Montesuma roses and 
planted them in her garden. What is the probability that less than 75% of her 
roses will blossom the first year? 

SOLUTION. We regard the number S20 of rose bushes that will blossom 
in the first year as a random variable with distribution BIN(20,0.8). The 
probability P(S20 < 15) = P{S20 5 14) cannot be obtained directly 
from the Table A.l, since p = 0.8 exceeds 0.5. Therefore we introduce 
Sio = 20 - Szo-the number of roses that do not blossom. Sio has bino- 
mial distribution BIN (20,0.2), and P(Sp0 < 15) = P(20 - S,, < 15) = 
P(Sio > 5) = 1 - P{Sio _< 4) = 1 - 0.630 = 0.370, the latter value 
obtained from Table A. 1. 

The truth is, however, that the real answer to this problem simply cannot 
be computed. Indeed, the probability 0.8 of blossoming in the first year after 
planting presumably represents some kind of overall success average, obtained 
from data for various years, soil conditions, gardening techniques, and so on. 
The roses of Mrs. Smith are likely to be subjected to the specific conditions, 
such as same type of care. Consequently, the probability of success for Mrs. 
Smith garden need not be 0.8, and-more important-blossomingof her roses 
is unlikely to be independent of one another. 

A more realistic assumption here might be that probability of blossoming 
p is random. Keeping the assumption of independence for every p ,  this will 
make the blossoming of Mrs. Smith’s roses exchangeable (but not indepen- 
dent) events (see Chapter 4). Thus the solution above is obtained only at the 
cost of accepting the assumption of independence and p = 0.8. 

This example is placed here to make the reader aware that modeling real 
situations requires accepting some assumptions. Justification of these assump- 
tions can sometimes be a rather delicate issue. 

A difficulty with tabulating binomial distribution lies in the fact that it is neces- 
sary to have a separate table for each pair n and p ,  for 0 < p 5 0.5. Moreover, 
the tables become increasingly cumbersome when n increases. As we will show in 
subsequent sections, the situation can be remedied substantially for large n. As a 
preparation for the approximation introduced later in this chapter, let us consider an 
example. 

EXAMPLE9.3 

Assume that about one birth in 80 is a twin birth. What is the probability that 
there will be no twin births among the next 200 births in the maternity ward 
of a given hospital? 

SOLUTION. Clearly, we have here a binomial situation. If S200 denotes the 
number of twin births among the next 200 births, we need P(S200 = 0), 



BERNOULLI TRIALS AND RELATED DISTRIBUTIONS 261 

where SZOO N BIN(200,1/80). Thus, remembering that limn.+m(l - 5)" = 
e -c ,  we write: 

200 200 

P{s200=0} = (2;) (i)";) = (1-h) 

The approximation works well if the probability of success p is small and number 
of trials n is large. Specifically, the error, equal to IP{& = 0} - e-n*l, depends 
on the value of the product np. As we will see, (9.4) is an example of the Poisson 
approximation to the binomial distribution, which we will discuss later. 

Geometric Distribution 
Another random variable related to Bernoulli trials is the number X of failures 

preceding the first success. We earlier encountered this variable in Examples 6.9 and 
8.4. Clearly, 

Since the tails of the distribution of X, that is, 
P { X = k } = q k p ,  k = O , l , 2  , . . . .  (9.5) 

(9.6) 
Q k  k P { X  2 k }  = q k p  + qk+lp  + .  . . = p -  = q , 

1 - q  

are obtained by summing the geometric series, the distribution (9.5) is often called 
geometric. Based on formula (9.6), one immediately obtains the cdf formula, since 

F x ( k )  = P ( X  5 k )  = 1 - q"1. 

A distribution closely associated with (9.5) is that of the number Y of trials up to 
and including the first success, which we write as 

P{Y = n} = P { X  = n - l} = qn- lp ,  n = 1 , 2 , .  . .. (9.7) 

Actually, both distributions, (9.5) and (9.7), are called geometric in the literature. 
Since Y = X + 1, these distributions are closely related, and most results are valid 
under either definition. In this book we will use both definitions, specifying (in 
cases where it makes a difference) whether (9.5) or (9.7) is used. We use both 
definitions deliberately, not in order to confuse readers but to make them flexible in 
using terminology that is not well established. We will also use the same symbol for 
both distributions, (9.5) and (9.7). In other words, we will use the notation GEO ( p )  
to denote the geometric distribution with probability of success being p .  

The expected value of the geometric distribution was found in Example 8.2.4. 
For the distribution (9.7), we have 

(9.8) 
1 

P 
E ( Y )  = -, 

so for the distribution(9.5), we obtain 

(9.9) 
1 

P P 
E ( X )  = E(Y - 1) = - - 1 = 2. 
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The variance of the geometric distribution is the same for both X and Y (see Theo- 
rem 8.6.1) and is easily found to be 

4 Var(X) = Var(Y) = -. 
P2 

(9.10) 

Finally, the mgf of the geometric distribution equals 

P 
1 - qet 

mx( t )  = - 

for qet < 1; hence for t < - log 4. Consequently, by Theorem 8.5.4, 

Let us observe that for all m, n = 0 , 1 , 2 , .  . . we have 

P{X L m f n J X  L m }  = P { X  2 n}. (9.1 1) 

Indeed, since X 2 m + n implies that X 2 m, we can write 

P { X  2 m + n} qm+n 
P{ x 2 m + n jX 2 m }  = =-- - qn = P { X  2 n}. 

P { X  2 m} qm 

Formula (9.11) is said to express the memorylessproperty of geometric distribution: 
if waiting time for the first success is at least m, then the probability that it will be at 
least m + n is the same as the probability that the waiting time for the first success 
will be at least n. 

Formula (9.11) is valid for random variable X. For the random variable Y (num- 
ber of trials up to and including the first success) we have a formula with the strict 
inequalities 

P{Y > m + n/Y > m} = P{Y > n}. (9.12) 

Formula (9.1 1) characterizes geometric distribution (9.5); equivalently, (9.12) 
characterizes distribution (9.7). We will prove 

Theorem 9.1.1 I f  Y is a discrete random variable that may assume values 1 , 2 ,  . . . 
and satisfies (9.12), then Y has the distribution (9.7) for  some p and q = 1 - p .  

Then (9.12) means that we must have q,+,/r], = qn for all m, n = 1 , 2 ,  . . . . In 
particular, q 2  = qy, and by induction, q k  = qf .  Consequently, 7'rk = q k  - q k + l  = 
17:: - 7;" = q f ( 1  - q l )  for all k ,  which means that Y has geometric distribution 
with q = q 1  = P{Y > 1). 0 

Proof: Let 7'rk = P{Y = k }  and 7]k = 7'rk+l f 7'rk+2 + " .  = P{Y > k } .  

It is sufficient to require that (9.12) holds for rn = 1 and all n or for n = 1 and 
for all m. Also the Theorem 9.1,l holds if m is replaced by a random variable (see 
Srivastava, 1981). 

Theorem 9.1.2 Let U be a random variable which assumes only positive integer 
values. I f  

P { Y  > U+njY > V }  = P{Y > n}, (9.13) 

then Y has geometric distribution (9.7) for some p and q = 1 - p .  
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EXAMPLE9.4 

In Chapter 5 we discussed Markov chains, these being processes that describe 
the evolution of a system that may at any time be in one of a specified set of 
states and may change its state at times t = 1 , 2 ,  . . . . The main assumption is 
that if at some time t the system is in state i, then the probability that it will 
pass to state j at time t + 1 is p i j ,  regardless of the history of transitions prior 
to time t .  This means that given the present (state at time t ) ,  the future and the 
past are independent. Suppose now that at some time t the system enters state 
i, and let T i  be the duration of the current visit to state i. More precisely, we 
define T i  = k if the state at times t ,  t + 1, t + 2, . . . , t + k is i, but the state at 
time t + k + 1 is different from i. We have then 

and we see that the duration of a visit in state i has geometric distribution with 
q = p,i andp = 1 - pii. 

The memoryless property of geometric distribution is in fact the Markov 
property. Indeed, suppose that the system stayed in state i for m units of time 
prior to time t .  Then the probability of staying there for at least n additional 
units is the same as the probability of staying in state i for at least m + n 
units of time. Given the present state, the future (in particular, the duration of 
remaining stay in the present state) is independent of the past (in particular, of 
how long the system has already stayed in its present state). 

Theorem 9.1.2 asserts a seemingly identical property, but a moment of re- 
flection shows that the condition is now much stronger: the “present” is not 
some fixed time, but it is a time that may be random. In particular, this ran- 
domness may be affected by the process itself. 

To give an example, let X = Ti, the time of remaining in the state i just 
entered, and let U be the longest visit in state i recorded thus far (so that 
U depends on the history of the process up to the present time). Theorem 
9.1.2 asserts, in particular, the following: given that the duration of the present 
state in state i will break the record (Ti > V ) ,  the probability of breaking the 
record by at least 3 units (i.e., T i  > U + 3) is the same as the probability of 
a visit lasting longer than 3 units ( T i  > 3). This property stands in contrast 
with what one observes in sport records: the consecutive improvements of the 
world record in any discipline tend to be smaller. 

The property asserted in Theorem 9.1.2 is generally called strong Markov 
property. It means that given the present, the future is independent of the past, 
even if the “present” is selected at random, as long as this randomness depends 
only on the past, and not on the future. 

Theorems 9.1.1 and 9.1.2 are examples ofcharacterizations of probability distri- 
butions. This kind of theorem singles out a certain property of a type of distribution 
and shows that this property is valid only for distributions of this type (in the case 
above, the memoryless property for the geometric distribution). 

The characterization theorems are of a great practical value. As we will see in the 
later chapters, if one is interested in more than merely summarizing and presenting 
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the statistical data, it is useful to regard the data (results of observations, experi- 
ments, surveys, etc.) as values of some random variables. Roughly speaking, the 
more we know about the distributions of these random variables, the better is our 
understanding of the phenomenon studied, as well as the better are our possibilities 
of prediction and control. 

To fix the idea, imagine that a statistician’s data can be regarded as independent 
observations of some random variable X .  It happens quite often that identification 
of the distribution of X is accomplished in two steps. The first step consists of 
identifying a class of distributions that contains the distribution of X .  The second 
step is the identification of the particular distribution in this class. 

Now, sometimes the first step is easy. The statistician often knows the type of 
distribution of X because he makes it belong to a given type by appropriate sam- 
pling. For instance, in independent sampling, each element sampled is classified 
to one of two categories: defectivehondefective, treatment successfuVunsuccessfu1, 
and so on. The total number X of elements of a given type is binomial, as long as the 
sample is really random. Out of two parameters, n is controlled by the experimenter, 
and p (the fraction of elements of a given kind in the population) is unknown and is 
to be estimated. 

In many cases, however, determining the class of distributions that contains dis- 
tribution of X is not so simple. In such situations one can sometimes use a character- 
ization theorem: if one knows that the distribution has some property that turns out 
to be characteristic for a given class, then the distribution must be in that class (e.g., 
if one knows that the distribution of X is memoryless, then it must be geometric). 

We will now give one more example connected with the geometric distribution. 

EXAMPLE 9.5 Family Planning 

Assume that the sexes of consecutive children born to the same parents are 
independent, with the probability of a child being a girl equal to 7r .  We will 
disregard twin births, and consider family sizes under various plans. 
Plan I .  The couple decides to stop having children as soon as their first girl 
is born. Let <1 be the number of children according to this plan. Then <1 
is a geometric random variable with P{<l = n}  = (1 - T ) ~ - ~ T  so that 
E ( & )  = l / x .  If the chances of a child being a boy are the same as those of 
being a girl, we have 7r = 0.5 and E(<1) = 2. 
Plan 2. The couple decides to have children until they have a boy and a girl 
and then stop. Let (2 be the number of children under this plan. To determine 
P(& = n),  let G and B denote the event “first child is a girl (boy).” Then, by 
the total probability formula (4.9), for n 2 2 we have 

Here Y E  and Y G  are the numbers of children (excluding the first) that a 
family will have until the first boy (girl) is born. Clearly, Y E  and Y G  have 
the distribution given by (9.6), with probability of success being 1 - T for Y 
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and 77 for Y G .  Thus, for n = 2 ,3 ,  . . . , 

P { S ~  = n }  = T [ ~ P - ~ ( I  - 77)] + (1 - ~ ) [ ( l -  7 ~ ) ~ - ~ 7 7 ]  

7 7 y 1 -  77) + (1 - 77)n-l77. - - 

To find the expected number of children under plan 2, we write 

03 m 

~ ( t 2 )  = a C n P { Y B  = n - 1) + (1 - 77) C ~ P { Y G  = n -  11, 
n=2 n=2 

and, putting k = n - 1,  obtain 

m m 

00 m 
= C k P { Y B  = k }  + x P { Y B  = k }  

k = l  k=l 

1 
= -  + 1. 

1 - 7 7  

By symmetry, Cr=2 nP{YG = n - 1)  = 1/77 + 1, so 

1 77 1-77 
E ( t 2 )  = 7 7 ( G + l ) + ( 1 - T ) ( : + l )  ==+7 + 1  

= -- 1. 
7r(l - 77) 

Again, if 77 = 1/2, then E(&) = 3. 

Negative Binomial Distribution 

The geometric distributionallows us to make an immediate and natural extension. 
Rather than to consider the number of Bernoulli trials up to the first success, we can 
consider the number Y of Bernoulli trials up to and including the rth success. In 
analogy with the geometric distribution, we will also consider the random variable 
X defined as the number of failures preceding the r th  success. 

We will start by deriving the probability distribution of the random variables X 
and Y .  Clearly, the possible values of Y are integers r ,  r + 1, r + 2, . . . . The event 
{ Y = n }  occurs if: 

1. The nth trial results in success. 

2. The first n - 1 trials give exactly r - 1 successes (and n - 'r failures). 

Indeed, the conjunction of 1 and 2 ensures that the rth success occurs at trial n. 
The events 1 and 2 are independent (since their occurrence is determined by dis- 
joint sets of trials), and their probabilities are p and ( ~ ~ ~ ) p r - l q n - r ,  respectively. 
Consequently, 

(9.14) 
r - 1  

P{Y = n} = 
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for n = r ,  T + 1, r + 2, . . . . The number X of failures preceding the rth success is 
such that X + r = Y. So for k = 0 , 1 , 2 , .  . . , we have 

(9.15) 

Both random variables X and Y are referred to as having a negative binomial 
distributions. In either case, the distribution depends on two parameters, r and p .  
We will use the symbol NBIN(r,p) to denote the negative binomial distribution, 
whether (9.14) or (9.15). 

Let us verify that (9.15) and (9.14) are probability distributions. We must show 
that 

k + r - 1  
P { X  = k} = P{Y = k + r }  = ( r - 1  ) P T 4 k .  

(9.16) 

Let us observe first that by formulas (3.14) and (3.26), 

k t r - 1  r - l + k  

( r  - 1 + k)(r - 1 + k - l ) . . . ( r  - 1 + k - k +  1) 
k !  

T ( T  + 1). . .  (r + k - 1) 
k !  

(-l)k(-r)(-r - ~)...(-r - k +  1) 
k! 

- - 

- - 

- - 

Thus, using Newton's formula (3.28), we have 

Obviously the proof that 

is similar, and we can omit the details. 
To determine the mean and variance of a random variable with negative binomial 

distribution, one can proceed in several ways, of which we will demonstrate two. 
The first uses direct calculations while the second uses a representation as a sum of 
simpler random variables. 

Observe that since Y + T = X, we have E ( Y )  + r = E ( X )  and Var(Y) = 
Var(X) (the latter property being a consequence ofTheorem 8.6.1). Thus it suffices 
to study one of the random variables X and Y. 

We begin by finding the mgf of X. Proceeding as in the proof of (9.16), we have 
W 

k + r - 1  mx(t )  = E e X t  = ekt (' + = p r  2 ( ) ( q e t ) k  
- 

r - 1  r - 1  
k=O k=O 

W 

PT 
(1 - qet )r '  

k=O 
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provided that I - qetl < 1, or equivalently t < log(l/q). 
Consequently, E ( X )  = rnk (0 )  = rq/p, and 

(9.17) 
r 

E ( Y )  = r + E ( X )  = -. 
P 

After some algebra, we also obtain 

(9.18) 

EXAMPLE9.6 

A salesman calls prospective buyers to make a sales pitch. Assume that the 
outcomes of consecutive calls are independent, and that on each call he has 
15% chance of making a sale. His daily goal is to make 3 sales, and he can 
make only 20 calls in a day. What is the probability that he achieves his goal 
in 18 trials? What is the probability that he does not achieve his daily goal? 

SOLUTION. The “strategy” of solving a problem like this is to identify the 
type of distribution to be analyzed. Assuming that we identify the situation 
as Bernoulli trials (i.e., repeated independent trials with the same probability 
p of success), the problem most typically concerns either a binomial or neg- 
ative binomial distribution. The crucial question here is: Is the number of 
trials fixed (and then the number of successes is random), or is the number 
of successes fixed (and the number of trials is random)? In the first case we 
have the binomial distribution, and in the second case, the negative binomial 
distribution. 

For our salesman, we want the probability that his third sale (success) come 
at trial 18. Thus the number of successes T = 3 is fixed (this is the salesman’s 
goal), and it is the number of calls that is random. We have p = 0.15 and we 
ask for P { X  = 18), where X is the number of trials up to and including the 
third success. Substitution to formula (9.14) gives 

P { X  = 18) = (0.15)3(0.85)’5 = 0.0401. (‘2’) 
The second question is about the probability of the salesman not attaining his 
daily goal. Here the number of trials is fixed (n = 20,) and we can treat the 
problem as involving the binomial distribution. Thus, if 5’20 is the number of 
successes in 20 trials, the salesman does not achieve his goal if S20 5 2 .  The 
answer is therefore 

P{ s 2 0  5 2 )  = P{S20 = 0) + P{ s*o = 1) + P{ s20 = 2 )  

= (:) (0.15)k(0.85)20-k = 0.4049. 
k=O 

We can also use the negative binomial distribution here. If X is the number of 
trials up to and including the third success, then the salesman does not attain 
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his goal when X > 20. So the answer is 

m m 

P { X  > 20) = C P { X  = n)  = C ') (0.15)3(0.85)"-3, 
n=2l n=21 

a quantity that is much harder to evaluate numerically than P{ ,920 5 2). 

The example above suggests that the probabilities in binomial and negative bino- 
mial distributions with the same probability p of success are related. The following 
theorem provides a usehl identity: 

Theorem 9.1.3 Let Sn N BIN(n, p )  (the number of successes in n trials) and let 
Y(') N NB(r, p )  (the number of trials up to and including the rth success). Then, 
forevery k = 0 ,1 , .  . . ,  

P{Y( ' )  > k} = P { s k  < r ) .  (9.19) 

Prooj Observe that both sides of (9.19) refer to the probability of the same event: 
the waiting time for the rth success exceeds k if and only if fewer than r successes 
occur in the first k trials. 0 

A word of warning: Since Y(,) and sk are both discrete random variables, it 
matters whether or not the inequalities are strict. Thus (9.19) can be written in any 
of the forms, such as 

p{y(') > k} = P{Sk 5 r - I), P{Y(,)  < k + 1) = P{& 2 , r )  

An inspection of the proof of the formula (9.16) shows that the fact that r was an 
integer was never used. Formally, a negative binomial distribution is defined for any 
r > 0 and 0 < p < 1 (although the interpretation of the probabilities in terms of 
Bernoulli trials is no longer valid). 

Let us also note that the mgf of the negative binomial distribution is the rth power 
of the mgf of the geometric distribution. For integer values of r this fact shows that 
the random variable X(') (respectively, Y"))  is a sum of r independent geometric 
random variables (of the form X or Y ,  depending on whether we represent X(') or 
Y(,)) .  This representation (e.g., in the case of X")) means that 

x(,) = x1 + ' ' ' + x,, 
where Xi is interpreted as the number of failures falling between the (i - 1)st and ith 
success (e.g., in case o f r  = 3, ifthe consecutive trials are FFFSSFFFFS, then X ( 3 ) =  
7 = number of failures preceding the third success, with XI = 3, X2 = 0 ,  X3 = 4 
being the numbers of failures between the three consecutive successes). 

Consequently, 
E ( X ( 7 ) )  = E ( X 1 )  + ' .  ' + E(X , )  

Var (X( , ) )  = v a r ( x l )  + .  . . + var(x,), 

and (because of independence) 
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which in view of (9.8) and (9.10) gives formulas (9.17) and (9.18). The representa- 
tion of random variables YCT) is analogous and will be omitted. 

PROBLEMS 

9.1.1 Label statements below as true or false: 
(i) Suppose that 6% of all cars in a given city are Toyotas. Then the probability 
that there are 4 Toyotas in a row of 12 cars parked in the municipal parking is 
( y )  ( 0.06)4 (0 .94)8. 
(ii) Suppose that 6% of all Europeans are French. Then the probability that in a 
random sample of 12 inhabitants of a major European capital there are 4 Frenchmen 
is ( i2) (0.06)4 (0.94)8. 

9.1.2 Assume that we score Y = 1 for a success and Y = -1 for a failure. Express 
Y as a function of the number X of successes in a single Bernoulli trial, and find 
moments E(Yn) ,  n =1,2, . . . . 
9.1.3 Suppose that random variables XI, . . . , X, are independent, each with the 
same Bernoulli distribution. Given that El”=, X i  = T ,  find: (i) The probability that 
X1 = 1. (ii) The covariance between Xi and Xj, 1 5 i < j 5 n. 

9.1.4 Assume that X1 and X Z  are independent random variables, with binomial dis- 
tributions with parameters n1, p and n2, p respectively. Find a correlation coefficient 
between XI and X1 + XZ. 

9.1.5 An experiment consists of tossing a fair coin 13 times. Such an experiment 
is repeated 17 times. Find the probability that in a majority of repetitions of the 
experiment the tails will be in minority. 

9.1.6 Two players (or two teams) are negotiating the rules for determining the cham- 
pionship. The two possibilities are “best of five” or “best of seven.” This means that 
whoever wins three (respectively four) games is the champion. Assume that games 
are independent, and that the probability of winning a game by the first player (there 
are no ties) is p .  For what values of p ,  should the first player favor the scheme “best 
out of five”? 

9.1.7 Show that if S,, is a binomial random variable, then for k = 1 , 2 ,  . . . , n, 

(n  - k + l )p  

k ( 1  - P) 
P{S ,  = k }  = P{S ,  = k - 1). 

9.1.8 Show that for the binomial distribution we have 

9.1.9 Six dice are tossed simultaneously until, for the first time, all of them show 
the same face. Find E ( U )  and Var(U), where U is the number of tosses until this 
happens. 
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9.1.10 Assume that the probability of twins being identical is p, and that the sexes 
of children are determined independently, with probability of a boy being b (possibly 
h # 1/2). Find the expected number of twin births recorded in the hospital before 
the first pair of: (i) Boys. (ii) Girls. (iii) Different genders. Note that identical twins 
must be of the same sex. 

9.1.11 Assume that the probability that a birth is a multiple one (twins, triplets, etc.) 
is 7-r. Given that a birth is a multiple one, probabilities 0 2 ,  03, . . . of twins, triplets, 
, . .satisfy the condition f f k + l  = y a k .  Find x ,  0 2  and y if it is known that the 
expected number of children born in 100 births is 100 + c, and the expected number 
of single births observed before recording a multiple birth is M (assume that M and 
c given). 

9.1.12 A hospital needs 20 volunteers for the control group in testing the efficiency 
of some treatment. The candidates are subject to psychological and medical screen- 
ing, and on average, only 1 in 15 candidates is found acceptable for the experiment. 
The cost of screening, whether or not a candidate is found acceptable, is $50 per 
person. The granting agency argues that one needs about 50 x 15 dollars to find one 
acceptable candidate, and therefore allows 20 x50 x 15 = 15,000 dollars for the 
cost of screening. (i) Write the formula for the probability that the allocated sum 
will be enough to find 20 acceptable candidates. (ii) Use the Chebyshev inequality 
to find the sum that gives at least a 90% chance of finding 20 acceptable candidates 
before the testing money runs out. 

9.1.13 Assume that in a tennis match between A and B, the probability of winning a 
tennis set by player A is p ,  and that the results of sets are independent. Let T be the 
number of sets played in a match. Find the distribution of T and E ( T )  as a function 
of p ,  assuming that the match is played by: (i) Men. (ii) Women (Note that men play 
“best out of five,” while women play “best out of three” sets.) 

9.1.14 In the flowchart in Figure 9.1, m > 0 is an integer and 0 < p < 1. The block 
“sample U” means that a value of a random variable U is sampled from the U[O, 11 
distribution, with consecutive samplings being independent. Find the distribution of 
X, and then calculate its mean and variance. 

9.1.15 Show that if X has a negative binomial distributionNBIN( T ,  p ) ,  then 

E[(T - l ) / ( T  + x - l)] = p 

9.2 HYPERGEOMETRIC DISTRIBUTION 

The distributions discussed in the previous section were based on the notion of a 
Bernoulli trial-an event that results in a “success” or a “failure.” One of the nec- 
essary assumptions of Bernoulli trials is that the probabilities of a “success” (or 
equivalently “failure”) are the same in each trial. That requires either sampling from 
an infinite (practically very large) population or returning an element after it was 
selected (sampling with replacement). There are, however, situations where neither 
the population is large nor the replacing can be done. We then have sampling with- 
out replacement, with the probabilities changing after every selection and each time 
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x: = o  c:=o I 

c 
YES 

l ,-, 
Figure 9.1 Flowchart 

depending on the type of the element recovery as often used for statistical model- 
ing (e.g., in zoology to study small animal or plant populations). We have already 
encountered hypergeometric distribution in Examples 3.6 and 3.7. 

To proceed systematically, we assume that initially the population has N ele- 
ments of which a are of one kind (“successes”) and b = N - a are of another kind 
(“failures”). We sample n elements without replacement, and we let X denote the 
number of successes in the sample. Let us first determine the range of the random 
variable X. Clearly, 0 5 X 5 a, but we must also have a similar inequality for the 
number of failures, namely 0 5 n - X 5 N - a. This yields 

max(0, n - (N - a))  _< X _< min(n, a) .  (9.20) 

If k satisfies the constraint (9.20), then 

P { X = k } =  (“) “-“I n-k  , (9.21) 

To check that the probabilities in (9.21) add up to 1, we will use a trick. Let us 
consider the identity 

(3 

(1 + z ) N  = (1 + z)”(l + x ) N - ”  

and compare the coefficients of zn on both sides. On the left-hand side the coeffi- 
cient is (:). On the right-hand side the coefficient equals the sum of all possible 
terms of the form (E) (:It), where k must satisfy the constraint (9.20). This shows 
that the sum of all terms (9.21) is 1, as asserted. 

EXAMPLE9.7 

A class consists of 10 boys and 12 girls. The teacher selects 6 children at ran- 
dom for some task. Is it more likely that she chooses 3 boys and 3 girls or that 
she chooses 2 boys and 4 girls? 
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SOLUTION. If X is the number of boys in the selected set of children, then 

10 12 10 12 

P { X  = 3) = o(3) = 0.3538, P { X  = 2) = o(4) = 0.2985. (3 ( 6 )  

So the first probability is higher than the second. 

As expected, for large populations it does not matter too much whether we sample 
with or without replacement, We shall now formulate the corresponding approxima- 
tion theorem: 

Theorem 9.2.1 Let N -+ 00 and a -+ 00 in such a way that a / N  -+ p ,  where 
0 < p < 1. Then for evetyjked n and k = 0 ,  1, . . . n we have 

(9.22) 

as N 4 m. Here P { X  = k} is theprobability (9.21) for hypergeometric distribu- 
tion, while b ( k ;  n, p )  is the binomialprobabilitygiven by (9.3). 

Proof Letting J N  denote the ratio in (9.22), we write 

- a ! ( N  - a ) ! ( N  - n)! 
( a  - k ) ! ( N  - a - n + k ) ! N ! p k ( l  - P ) " - ~ '  

- 

which cancels to 

[a(. - 1) I . ( a  - k + l ) j [ ( N  - a ) ( N  - a - 1) . . . ( N  - a - n + k + l)] 
N(N - 1). . . (N - n + l)pk(l - P ) " - ~  

Multiplying and dividing by N n ,  we obtain JN = AN BNICN, where 

a (a-L)..,(;+ k - 1  
N N N  

AN = 

Since n and I; are fixed and a / N  + p ,  AN -+ p k ,  BN .+ (1 - p)n-k, and (1 - 
1 / N )  . . ( 1  - (n - 1)/N) + 1, we have J N  + 1. This proves the theorem. 0 

The practical use of Theorem 9.2.1 consists mostly of replacing probabilities 
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12 by their approximations (t) (fi) (1 - #)n-k ,  which are much easier to compute. 
The relative error of such approximation depends on all four factors, N ,  n, a, and k. 

Let us now find the expectation and variance of the hypergeometric random vari- 
able X with distribution (9.21). We will use the method that we already used in the 
case of binomial and negative binomial random variables, by representing X as a 
sum of simpler random variables. We let 

X = [I + [2 + ‘ ’ + En, (9.23) 

equals 1 or 0, depending on whether the ith draw results in success or 

Observe that [I ,  . . . , En are dependent random variables. This fact will affect our 

where 
failure. 

calculation of the variance of X. Generally, we will use the formulas 

E(X) = E(E1) + ’ ’ .  + E(5n)I 

v a r ( x )  = Var(<l) + . . + Var(<,) + 2 C ~ o v ( < i ,  ( 3 ) .  
i< j  

Note that ti’s are Bernoulli random variables (i,e,, they assume only values 0 and 1). 
So letting p i  = P{Ei = l) ,  we have 

Observe that 
1, [ j  = 1) we have 

is also a Bernoulli random variable. So letting p i j  = P{& = 

cov( t i i t j )  =E(< iCj ) -E( t i )E ( t j )  =p{titj = 1 } - p i ~ j  zpi j -pipj .  (9.25) 

To determine the probabilities p i j ,  we need the joint distributionof (ti, ( j ) .  Gener- 
ally, one of the ways of visualizing the distribution of the ([I . . . , &) is as follows: 
The elements of the population (of a successes and N - a failures) are ordered at 
random. This gives the sample space of N !  permutations, all of them being equally 
likely. The random vector (<I, . . . , &) is then defined at any sampled point (permu- 
tation) as the initial n elements of this permutation. 

It is now clear that the joint distribution of (ti, 0 )  does not depend on ( 2 ,  j ) ,  
meaning it is the same as the joint distribution of ( (1,  &). Indeed, the probability 
that (ti = z, & = y) depends on the number of permutations in the sample space 
that have specific elements 17: and y at places i and j .  By symmetry, this number is 
the same as the number of permutations that have elements 5 and y in the first two 
places (or in any other designated pair of places). 

Consequently, the marginal distributions of are the same, and for all i we must 
have 

a 

N 
pi  = P{ t i  = 1) = -. 

Similarly 

a a - 1  
N N - 1 ’  P i j  = P{El = 1 , E z  = 1) = P{& = 1) x P{& = 1151 = 1) = - x - 



274 SELECTED FAMILIES OF DISTRIBUTIONS 

From (9.24) and (9.25) we get E(Ei) = a / N ,  Var(&) = ( a / N ) (  1 - a / N ) .  Therefore 

cov(Ei ,Ej )  = E(EiEj) - E(Ei)E(Ej) = pij - E(Ei)E(Ej) 

Thus E(X) = n ( a / N ) .  For variance, observe that the number of pairs (i, j )  with 
i < j is (i) = n(n - 1 ) / 2 .  Consequently 

a N - a  n (n-  1) 1 a ( N  - a )  
N N  

2x- x - x  Var(X) = n x  - x -- 
2 N N ( N - 1 )  

n x - x -  - - 
N N  

Letting a / N  = p denote the probability of success prior to selecting the first ele- 
ment, we have the following theorem: 

Theorem 9.2.2 f lX has the hypergeometric distribution (9.21), then 

a 
N 

E ( X )  = n x  - = n p ,  

0 
a N - n  N - n  
N N N - 1  N - 1 '  

Var(X) = n x - x ( 1 - - " )  - = np(1 - p ) -  

Thus the expected number of successes in a sample of size n is n p  regardless 
of whether we sample with or without replacement. The variance in the case of 
sampling without replacement is smaller than the corresponding binomial variance 
by the factor ( N  - n)/  ( N  - 1) (sometimes referred to asjnite population correction 
factor). 

The behavior of the variances of binomial and hypergeometric distributions is 
different as the sample size, n, increases. In a binomial distribution, each new el- 
ement of the sample contributes the same amount to variance, so the latter grows 
linearly with n. In sampling without replacement, variance changes in proportion to 
the product n( N - n); hence it initially grows to reach a maximum when sampling 
exhausts half of the population, and then declines to zero when n = N (at n = N 
we exhaust the whole population, so there is no longer variability in the sample). 
Variance for n = 1 is the same as for n = N - 1. This is clear, since variability 
involved in sampling one element is the same as variability involved with leaving 
just one element unsampled. 

The next theorem connects the binomial and hypergeometric distributions in the 
situation when the successes come from two sources, each following the binomial 
distribution, and the total number of successes is fixed. Thus we will prove 

Theorem 9.2.3 Let X and Y be independent random variables with binomial dis- 
tributions X - BM(m, p )  and Y - BIN(n, p ) .  Then 

(9.26) 
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Proof Since X + Y -BIN(m + n, p ) ,  we have 

P { X  = k , X  + Y = T }  

P { X + Y  = T }  
P { X = k l X + Y = r )  = 

- - P { X  = k}P{Y  = T - k }  
P { X + Y = r }  ' 

and substitution of binomial probabilities gives (9.26). 0 

The right-hand side of (9.26) is the hypergeometric probability of k successes in 
sampling T elements from a population with a total of m + n elements, of which m 
are successes. 

The scheme of sampling without replacement can be generalized as follows: As- 
sume that the population consists initially of a elements of one kind (successes) and 
b = N - a elements of the second kind (failures). Each time an element is sampled, 
it is returned, and c elements of the same kind as just sampled are added to the urn. 
This process continues for n samplings. Let X be the number of successes in the 
sample. This random variable X is said to have Pdlya distribution, and the sampling 
described above is called the Pdlya scheme. 

The reason for designing this scheme was as follows. Adding elements of the 
same kind to the population increases the probability of selecting elements of the 
kind most recently sampled. Such effect is known to occur when one samples from 
a population to determine the fraction of persons infected with a disease. Typically, 
if one finds one person with the disease, then the chances of finding others with 
the same disease increase. P6lya introduced this scheme of sampling to model such 
effects. 

Observe that we can formally put c = -1 (elements are simply not returned). 
Thus the special case c = -1 yields random variable X with a hypergeometric 
distribution. To find P { X  = k }  in the general case, let us first find the probability 
of sampling the elements in a specific order, for example, first k successes and then 
n - k failures. This probability, by the chain rule (4.5), is 

a a + c  a + ( k - 1 ) c  b b + c  b +  (TI - k - 1). . . .  -- . . .  
N N + c  N + ( k - l ) c  N + k c  N $ ( k + l ) c  N + ( n - l ) c  ' 

(9.27) 
Let us observe that the probability (9.27) remains the same regardless of the order of 
k successes and n - k failures. Each time the number of elements in the population 
increases by c, the product of all denominators is N ( N +  1) . . . ( N  + ( n  - 1)c).  Simi- 
larly the numerators corresponding to sampling successes are a ,  a+c, a+2c, . . . , a+ 
( k  - 1)c regardless ofwhen the successes are to occur, and the same holds for fail- 
ures. Consequently, we have 

Theorem 9.2.4 In Pdlya scheme, for  k = 0 ,1 ,  . . . ,n 

n!pb + Y) ' ' ' ( P  + ( k  - l)y)q(q + 7 )  ' . ' ( 4  + (n  - k - P { X  = k }  = 
k ! ( n - k ) ! ( l + y ) ( 1 + 2 y ) " ' ( l + ( n - l ) y )  

wherep = a / N ,  q = b/N = 1 - a / N  andy  = c /N .  
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At the end, it is worth mentioning that the Pblya scheme can be modified in the 
following way: Again, we have an urn, containing initially a balls of one color 
(“successes”) and b balls of another color (“failures”). Balls are drawn successively. 
After a ball is drawn, it is returned. If it was a success, c.1 balls representingfailure 
are added; if it was a failure, c2 balls representing success are added. Thus a success 
causes an increase of probability of failure in the next trial, and conversely, a failure 
causes an increase of probability of success in the next trial. This scheme has been 
used to model accidents at work. Here the situation is such that an accident causes 
an increase in observing safety measures, awareness of danger, and so on. On the 
other hand, the longer the time without an accident, the more laxity in observing 
safety regulations, and so on. Under the appropriate choice of a,  b, c1, and c2, it is 
possible to model the “after-effects of accidents” as described above, thus modeling 
the distribution of times between accidents, number of accidents in a given period, 
and so on. 

Unfortunately, the formulas are much more complicated than those for the Polya 
scheme, and we will not pursue this topic here. 

PROBLEMS 

9.2.1 An urn contains nine chips, five of them red and four blue. Three chips are 
drawn without replacement. Find the distribution of X = number of red chips 
drawn. 

9.2.2 An urn contains six chips, three red and three green. Four chips aye selected 
without replacement. Find E ( X )  and Var(X) where X = number of red chips in 
the sample. 

9.2.3 Instead of (9.23), write X = 71 + 772 + ’ ’ + qa, where qj = 1 or 0 depending 
on whether or not the j th element representing success was selected. Use this rep- 
resentation to derive formulas for the mean and variance of X as given in Theorem 
9.2.2. 

9.3 POISSON DISTRIBUTION AND POISSON PROCESS 

We start from the following definition: 

Definition 9.3.1 A random variable X is said to have a Poisson distribution, POI( A), 
if for some X > 0, 

(9.28) 
An 
n! 

P { X = n } =  -e-’: n = 0 , 1 ,  . . . .  

First we want to check that the terms in (9.28) add to 1. We have 

00 m \ n  
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To determine the moments of the Poisson distribution, let us compute the mgf: 

n=O 

Thus a moment generating function of the Poisson distribution is defined for all t 
and is differentiable an arbitrary number of times. We have 

I t=O = A .  E ( X )  = mi( t ) l t=o = Xe t e x(e'-1) 

An easy differentiation yields E ( X 2 )  = mL(t)lt,o = X2 + A, and therefore 

Var(X) = A. 

The next theorem shows that the family of Poisson distributions is closed under 
addition of independent random variables: 

Theorem 9.3.1 r fX  andY are independent, with distributions POI(X1) andPOI(Xz), 
respectiveb, then X + Y has a POI(X1 + Xz) distribution. 

Proof. We will present a direct proof, to show the kind of calculations involved in 
evaluating the distributionof the sum. The proof using moment generating functions 
can be found in Example 8.29. 

J 

(by Newton's formula), 

which completes the proof. 0 

Finally, we introduce an analogue of Theorem 9.2.3. 

Theorem 9.3.2 r f X  and Y are independent and X - POI(X1), Y - POI(X2), then 
for k = 0 ,1 , .  . . , n, 

P { X =  k l X + Y  = n }  = (3 (-)n-k . (9.29) 

Thus the conditional distribution of X given X + Y is binomial, with the number of 
trials X + Y andtheprobabilityofsuccess p = X l / ( X l  + A2). 
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PmoJ Using Theorem 9.3.1, we have 

P { X  = k, X + Y = n}  
P{X+Y = n }  

P { X  = klX + Y = n }  = 

P { X  = k} P{Y = n - k }  - - 
P { X + Y  = n }  

which reduces to the right-hand side of (9.29). 0 

The following theorem explains a very important application of the Poisson dis- 
tribution: 

Theorem 9.3.3 I f p  + 0 and n -+ 03 in such a way that lim np = X > 0, then for 
k = 0,1, . . . , 

(9.30) 

PmoJ We will prove (9.30) under simplifying assumption np = X for all n. The 
proof in the general case is based on the same idea but obscured by some technical 
points. Replacing p by Xln, we have 

n(n - 1) " . ( n  - k + 1) ( f ) k  (1 - ; ) n - k  
(;).y1 - p)"-k = k !  

x k  (1 - A))" (1 - L) . . . (1 - "') - n n n - 
k!  (1 - $ ) k  

The factor (1 - X/n)n converges to e-X, while each of the remaining factors in- 
volving n converges to 1. Since the number of such factors does not depend on n, 

0 their product also tends to 1, which proves the theorem. 

To see the applicability of Theorem 9.3.3, observe that it can be used as an ap- 
proximation of binomial probability of k successes in n trials, valid for small p and 
large n: 

k !  

EXAMPLE9.8 

(9.31) 

Continuing Example 9.3, we assume that on average, one birth in 80 is a mul- 
tiple birth. What is the probability that among 400 births that occurred in the 
maternity ward of a given hospital during the first three months of a year there 
were fewer than 4 multiple births? 
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SOLUTION. If X stands for the number of multiple births during the period 
analyzed, then X - BM(400,1/80). We have 

3 3 k 79 400-k 

P { X  < 4) = C P { X  = k )  = c ( 4 3  (&) (80) 
k=O k=O 

This sum can be computed directly, and the value is 

0.0065 + 0.0331 + 0.0835 + 0.1402 = 0.2633. 

We have here np = 400 x & = 5, so the approximation (9.31) by Poisson 
distribution gives 

The relative errors of consecutive approximating terms are, respectively, 3.08%, 
1.31%, 0.34% and 0.14%, while the relative error ofthe final answer is 0.55%. 
Whether or not this may be regarded as a good approximation depends on the 
goal of finding the probability in question. For most purposes, a relative error 
below 1% is quite acceptable. One can imagine, however, situations where it 
need not be so. For instance, an insurance company that is to cover the cost 
of delivery and hospital care for multiple births might conceivably want to 
know the probability of fewer than 4 multiple births with precision better than 
second decimal in order to decide on the premium. 

EXAMPLE9.9 

Suppose that on average, one in every 100 passengers does not show up for a 
flight. An airline sold 250 tickets for a flight serviced by an airplane that has 
247 seats. What is the probability that every person who shows up for flight 
will get a seat? 

SOLUTION. Let X be the number of passengers who do not show up for 
the flight in question, and let us treat X as a binomial random variable with 
n = 250, p = 0.01, so that np = 2.5. The probability of the event X 2 3, 
using Poisson approximation, is 

P { X  23)  = 1 - P { X  < 3) = 1 - P { X  = 0) - P { X  = l} - P { X  = 2) 

while directly from the binomial distribution we have 

This time the approximation by a Poisson distribution to binomial probabilities 
(9.32) has a relative error of 1.3%. 
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It has to be pointed out that whereas in Example 9.8 the claim that X has 
a binomial distribution was fully justified (whether or not a birth is a multiple 
birth is independent on the multiplicity of other births in the same period), the 
situation is not so clear in case of passengers missing an airline flight. The 
point is that people often fly together (typically in families or other groups). 
In these cases the fact that one person misses the flight may affect the chances 
of some other persons missing the same flight. Consequently X is at best 
approximately binomial. Our calculations therefore give a relative error of 
an approximation to a number that is already an approximation (to the actual 
probability). 

We will now try to capture features responsible for the fact that the number of 
occurrences of some event in a given interval of time follows a Poisson distribution. 

We consider the class of situations in which a certain event occurs at random 
points in time. Examples are quite common: arrivals of customers at service sta- 
tions, twin births in a hospital, earthquakes of specified intensity occurring in a given 
region, fire alarms in a given town, and so on. To increase practical applicability, the 
theory focuses only on the times of their occurrence, disregarding other specific fea- 
tures of the events under consideration. The random variable one needs to analyze 
here is the number N[t,,t,l ofevents that occur between times tl and t 2 .  The theory 
built for analyzing such processes in the most general case is called the theory of 
pointpmcesses. We will analyze only a special case of point processes, the Poisson 
process. 

The assumptions underlying the Poisson processes attempt to capture the intuitive 
notion of “complete randomness.” In particular, in the Poisson process knowledge 
of the past provides no clue in regard to the future. 

To express the properties that will imply that a given stream of events is a Poisson 
process, it will be convenient to introduce a mathematical notation, which will later 
be useful also in other contexts: The symbol o(z) denotes any function f(z) such 
that 

lim - = 0. f 
I -0  z 

EXAMPLE 9.10 

A power function xa is o(z) if a > 1, and so is every function of the form 
zalz(z) if a > 1 and h is continuous at 0 (hence bounded in the neighbor- 
hood of 0). For instance, if S, is a binomial random variable, then P{ s,, = 
k} = o(p)  for k > 1. Indeed, P{S,  = k } / p  = ( : )pk - ’ ( l  - which 
converges to 0 when p + 0 if k > 1. 

We will often use the following facts: 

I. Iflirn,,o = c + 0, then h(z )  = cz + o(z). 

2. rthefunctions f l ,  f 2 , .  . . ! f~ are o(z), then f1 + . . + fN is also o(z). 

We can now formulate the postulates of the Poisson process. 
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Postulate 1 .  The numbers of events occurring in two nonoverlapping time intervals 
are independent. 
Postulate 2. The probability of at least one event occurring in an interval of length 
At is XAt + o(At) for some constant X > 0. 
Postulate 3. Theprobabilityof two or more events occurring in an interval of length 
At is o(At). 

The first postulate is the one that asserts that knowledge of the past is of no help 
in predicting the future. The second postulate asserts stationarity, in the sense that 
probability of an event occurring in a short time interval is (roughly) proportional 
to the length of this interval, but does not depend on the location of this interval. 
Finally, the third postulate asserts that events occur one at a time. That is chances of 
two events occurring within an interval of length At become negligible as At + 0. 

Let us now fix the zero on time scale, and let P,(t) denote the probability of 
exactly n events prior to t ,  so that P,(t) = P ( N p t )  = n}. We will prove 

Theorem 9.3.4 Under all three postulates 

P,(t) = - e-xt, n = 0,1, . . . 
n! 

Proof. By postulates 2 and 3, for every t and At > 0, 

(9.33) 

(9.34) 

For n = 0 we write, using postulate 1 and (9.34), 

which gives the difference ratio 

Po(t + + At) - Po(t) = -Apo(t) + --02(At)Po(t). 1 (9.35) 
At 

Passing to the limit with At + 0, we obtain14 

PA(t) = -APo(t). (9.36) 

The initial condition is Po(0) = 1, and the relation of (9.36) gives 

I4The limit of the right-hand side exists, and is equal to the right derivative of PO at t .  To justify the 
existence of the left derivative in (9.35), observe that one can replace t by t - At in (9.35). Since 02 ( A t )  
does not depend on t ,  we see that PO is continuous, and that the left derivative is equal to the right 
derivative. 
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Now, if n 2 1, we write 
n 

n 

= c Pn-j(t)PW[t,t+At) = j )  
j =O 

Pn(t)[l  - XAt + ~ z ( A t ) ]  + Pn-l(t)[AAt + o l ( t ) ]  + 03(t), = 

where 03 ( t )  is the term obtained from combining together all terms involving two or 
more events occurring between t and t + At. 

Forming the difference ratio and passing to the limit with At --* 0, we obtain the 
equations, valid for n = 1 ,2 ,  . . ., 

PA(t) = -XPn(t) + ~ ~ n - l ( t ) ,  (9.38) 

which can be solved recursively using (9.37), with the initial conditions now being 
Pn(0) = 0, n = 1,2,  . . . . Alternatively, we could use induction to check that prob- 

0 abilities (9.33) satisfy (9.37) and (9.38). 

We will now discuss some examples of Poisson processes. 

EXAMPLE 9.11 

The maternity ward in a certain hospital has, on average, 30 births per week. 
Given that there were 6 births on a specific day, find the probability of: (a) 
Three births on each of the following two days. (b) A total of six births during 
the following two days. (c) The expected number of days with exactly one 
birth during the month of May. 

SOLUTION. We assume here that the births in the maternity ward in ques- 
tion form a Poisson process. Consequently, the number of births on a given 
day does not affect the number of births in future intervals. To answer all 
these questions, we must first choose the unit of time. This is a totally arbi- 
trary choice, but the important point is that once this choice is made, we must 
express the parameter X in the chosen units. Then X is the expected number of 
events in the unit of time. 

Let a time unit equal one day. Then X = 30/week = 4.286Iday. Conse- 
quently, the probabilityofthree births in a given day is (X3/3!)e-’ = 0.1806, 
and probability of such event on two consecutive days is [(X3/3!)e-’I2 = 
0.0326. As regards (b), theprobabilityof6 births in2 days is [(2X)6/6!]e-2’ = 
0.1043. For (c), the number of days in May when there is exactly one birth 
is has binomial distribution with n = 31 and p = Xe-’ = 0.0590, so the 
expectation equals 31p = 1.83. 

As mentioned, the postulates of Poisson process attempt to capture the idea of 
“complete randomness.” The theorems below indicate to which extent this attempt 
is successful. 
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To facilitate formulation of the theorems, we let X t  = N(o,t) denote the number 
of events occurring in (0, t ) ,  and also let TI , T2, . . . denote the times of occurrence 
of successive events. Thus 

Tk = inf{t : X t  2 k } .  

In the analogy with (9.19), we have the following identity: 

Tk 5 t if and only if X t  2 k 

and consequently P { T ,  5 t }  = P { X t  2 k } .  Since X t  has Poisson distribution 
with parameter At, we have 

Then the cdf of Tk is 

Now let U1 = T I ,  V2 = T2 - 2’1, U3 = T3 - Tz, . . . be the time to the first event 
(V1) and consecutive times between events (V2, U3, . . .). From (9.39) for k = l w e  
have P{U1 5 t }  = P{T1 5 t }  = 1 - e-At ,  so U1 has an exponential distribution 
with mean 1 /A .  Next 

P{u2 > t/Ti = r }  = P{u2 > tlU1 = 7 )  

= P{ no events in (7,  t + .r)lTl = T )  

= P{ no events in (r ,  t + T ) }  = e-x t ,  

which means that U2 also has exponential distribution with mean 1 / X  and is inde- 
pendent of U1. Since the argument can be repeated for all other Uis,  we have proved 
the following theorem: 

Theorem 9.3.5 In a Poisson process the time U1 until the j r s t  event and the times 
U2 , Us,  . . . between subsequent events are independent random variables, each with 
the same exponential distribution with mean 1 / A .  

Since the origin of time scale t = 0 was chosen arbitrarily, this theorem asserts 
that if we start observing a Poisson process at an arbitrarily selected time, fixed or 
randomly chosen,15 then the waiting time for the first event has the same distribution 
as the times between subsequent events. This property is connected closely with the 
memoryless property of geometric distribution, specified in Theorem 9.1.2. 

I5The phrase “randomly chosen” ought to be qualified here. Suppose that the “random choice” is to start 
observing Poisson process 5 minutes before the next event. Technically such a choice gives a random 
moment of beginning of observation (since the time of event is random), and for this choice Ul = 5 
minutes. Here the qualification of “random choice” is that the decision depends on the past but not on the 
future of the process. 
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Theorem 9.3.6 I f X  is a random variable with exponential distribution, then for  all 
s ,  t > 0 ,  

P { X > s + t ~ X > s ) = P { X > t ) .  (9.40) 

Conversely, i f X  may assume onlypositive values and satisfies (9.40) for all s, t > 0, 
then X has exponential distribution. 

Proof. Let X have exponential distribution. The left-hand side of (9.40) is the 
ratio 

- P { X  > s + t )  e-A(s+t) 
= - - e-At = P { X  > t ) .  P { X  > s) e - A S  

Conversely, (9.40) implies that the tail of the cdf of X, that is, the function 
$(z) = P { X  > z}, satisfies the equation ,$(s + t )  = ,$(s)$(t) .  One then shows 
(e.g., see Feller, 1968) that any bounded solution of this equation must be of the 

0 form $( t )  = e-At for some A > 0. 

The property of a Poisson process discussed above is one of the arguments for the 
claim that assumptions of a Poisson process capture “maximal randomness.” While 
in the Poisson process, knowledge of the past does not give a clue to the future; it is 
not so for other streams of events. For instance, if one arrives at a bus stop just after 
a bus has left (knowledge of the past), one may expect a longer wait for the next bus. 

The following theorem shows that in Poisson processes, knowledge ofthe number 
of events in the past gives us, in a sense, no additional information not only about 
the future but also about the past. We have the following: 

Theorem 9.3.7 The events in Poisson process satisfy the following property: for 
every 0 < u < t ,  

P(T1 < U l X t  = 1) = -. (9.41) 
U 

t 

Proof. We have 

Conditioning on T I ,  the time of occurrence of the first event, and using the fact that 
TI has exponential distribution, the numerator in (9.42) becomes 

If TI = z, the event Xt = 1 occurs if the time U2 between the first and second event 
exceeds t - z.  So 

P { X t  = 1ITl = 2) = P(U2 > t - z )  = e-A(-. 

Substituting (9.40), we obtain formula (9.41). 0 

This theorem asserts that if we know that only one event occurred between 0 and 
t ,  then the conditional distribution of the time of occurrence of this event is uniform 
on (0, t). In a sense, then, we have no information as to when the event occurred. 
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Finally, let us observe that we can obtain the unconditional density of Tk by 
differentiating the cdf given by formula (9.39). 

Theorem 9.3.8 The dens@ fT, ( t )  of the time Tk of the kth event in Poissonprocess 
is 

(9.43) 

The distribution of Tk is sometimes called the Erlang distribution. As we will see 
later, (9.43) is a special case of the gamma density. 

H EXAMPLE 9.12 

Fires in a certain town occur according to a Poisson process. If there were 10 
fires in a given week, what is the probability that at least one of them occurred 
on Friday? 

SOLUTION. What is of interest here is that we do not need to know the 
intensity X of the Poisson process in question. We know that given that the 
number of fires was 10, their times of occurrence fall within a week according 
to the uniform distribution. The probability that a single fire does not fall on 
Friday is 6/7; hence chances of at least one of 10 fires falling on Friday is 
1 - (6/7)'O = 0.7859. 

H EXAMPLE 9.13 

Suppose that traffic accidents on a given intersection occur according to a 
Poisson process, with the rate on Saturdays being twice the rate on weekdays 
and the rate on Sundays being double the rate on Saturdays. The total rate is 
about five accidents per week. What is more likely: two accidents on each of 
two consecutive weekends (Saturday + Sunday), or a total of four accidents 
on weekdays in a given week? 

SOLUTION. If X is the average number of accidents on a weekday, then it is 
2X on a Saturday and 4X on a Sunday. Consequently, we have 5X + 2X + 4X = 
5, which gives X = 5/11. The number of accidents on a weekend is the sum 
of the numbers of accidents on Saturday and Sunday. These are independent 
Poisson random variables; hence their sum (see Theorem 9.3.1) also has Pois- 
son distribution, with the mean 2X+4X = 30/11. Consequently, the first prob- 
ability is P { X  = 2}2, where X - POI(30/11), or [(30/11)2e-30/11/2!]2 = 
(0.2432)2 = 0.0592. The second probability is P{Y = 4}, where now Y - 
POI(5A) = POI(25/11), which equals (25/11)4e-25/'1/4! = 0.1145. 

To continue, suppose that on a Friday (which happened to be Friday the 
13th) the number of accidents was as high as the number of accidents on the 
following weekend. Is such an event unusual? 

Let us evaluate the chances of such an occurrence without reference to any 
magic connected with Friday the 13th, that is, probability P { X  = Y } ,  where 
X and Y are independent, X N POI(X) and Y - POI(6X) for X = 5/11. 
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00 

P { X  = Y }  = c P { X  = j } P { Y  = j} 
j =O 

= 0.0415 + 0.0515 + 0.0159+ 0.0022 + ’ .  . = 0.1111. 

As we see, the chances here are slightly over 10%; hence such an event 
need not necessarily be regarded as highly unusual. However, as one may 
note, almost all of this probability is due to the “unattractive” possibility that 
X = Y = 0 or X = Y = 1. 

Similarly the probability that there are more accidents on Friday the 13th 
than on the whole following weekend is still not negligible: 

00 k - 1  

P ( X  > Y )  = x P { X  = k }  1 P{Y = j} = 0.0406. 
k=l j=O 

This time most of the probability is contributed by the terms P { X  = 1) x 
P { Y  = 0 )  and P { X  = 2) x [P{Y = 0 )  + P { Y  = l}]. 

The concept of a Poisson process allows a number of generalizations. First of all, 
note that the symbol t need not be interpreted as time: it may be some other attribute 
interpretable as a linear dimension. Thus one can regard faults on a magnetic tape or 
misprints in a text (regarded as a continuous string of letters) as Poisson processes, 
provided that one can reasonably expect that the postulates of the Poisson process 
hold. 

One of generalizations of the Poisson process concerns the extension to a higher 
dimension. Instead of events occurring in time (i.e., random points on a line), one 
can consider the case of points allocated at random on a plane or in space. The 
postulates of the Poisson process in such cases are analogous to the postulates in 
one dimension. The basic random variable is X ( A )  = number of points falling into 
A, where A is a set on the plane or in space. The main postulate asserts that the 
numbers of points falling into disjoint sets are independent. The second postulate 
asserts that the probability that X ( A )  = 1 depends on the size of the set A, not on 
its location, and equals X(AI + o((AI), where [ A (  stands for the area or volume of 
the set A. Finally, the third postulate asserts that the probability that X ( A )  2 2 is 
of the order o( / A / ) .  Under these postulates one can show that 

, k = 0,1,  (XIAl)k ,-A,A( P { X ( A )  = k} = - 
k! 

(9.44) 

As in a one-dimensional case, X is the expected number of points falling into a region 
of unit size. 
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EXAMPLE 9.14 

The data below are taken from Feller (1968) who lists them among examples 
of phenomena fitting the Poisson distribution. The observations concerned 
points of hits in south London by flying bombs during World War 11. The entire 
area under study was divided into N = 576 small areas of 0.25 square kilome- 
ter each, and the numbers Nk of areas that were hit k times were counted. The 
total number of hits is T = kNk = 537, so the average number of hits per 
area is X = T / N  = 0.9323. The fit of the Poisson distribution is excellent, as 
can be seen from comparison of the actual numbers Nk and expected numbers 
N P ( X  = k }  = N $ e P X  for X = 0.9323. 

k I 0  1 2 3 4 5 ormore 

Nk I 229 211 93 35 7 1 

N P { X  = k} I 226.74 211.39 98.54 30.62 7.14 1.57 

The chi-square goodness-of-fit criterion (to be discussed in further chap- 
ters) shows that in about 88% of cases one should expect worse agreement. 

This example has become sort of a “classic” in the sense of being reproduced 
in numerous textbooks on statistics, invariably without any comments (other than 
remarks that the fit is very good). The readers may therefore get the impression 
that statisticians have somewhat ghoulish interests. In fact, however, the fit to the 
Poisson distribution was a piece of information of considerable value as military 
intelligence: it showed the state of German technology in regard to the precision of 
their aiming devices. Perfect randomness of hits in a given large area indicated that 
it was not possible to select any specific target within this area. 

Feller writes: “It is interesting to note that most people believed in a tendency of 
the points of impact to cluster. If this were true, there would be a higher frequency 
of areas with either many hits or no hit, and a deficiency in the intermediate classes. 
The data indicates perfect randomness and homogeneity of the area; we have here an 
instructive illustration of the established fact that, to the untrained eye, randomness 
appears as regularity or tendency to cluster.” It appears that Feller fully knew the 
reason for collecting and analyzing the data in question but could only make a veiled 
allusion: his book was first published in 1950, just five years after the end of World 
War 11, when many things were still secret. 

At the end, we will give an example involving the Poisson process in three di- 
mensions. 

EXAMPLE 9.15 

The Poisson Bakery makes a special kind of cookies, called Four-Raisin cook- 
ies. Raisins (10,000) are added to the dough for 2500 cookies, and after thor- 
ough mixing, the dough is divided into equal parts of which 2500 cookies are 
formed and baked. What is the proportion of Four-Raisin cookies that have no 
raisins at all? What proportion will have exactly four raisins? 
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SOLUTION. Here we have a spatial Poisson process, with raisins playing 
the role of points located randomly in space. If we take a cookie as a unit 
of volume, then X = 4, as there are, on average, four raisins per cookie. If 
we let X denote the number of raisins in a randomly selected cookie, then 
P{ X = 0) = e-4 = 0.0183, so slightly below 2% of all Four-Raisin cookies 
are raisin-less. On the other hand, P{X = 4) = (44/4!)e-4 = 0.1954. 

Now suppose that you buy a box of 200 Four-Raisin cookies. What is the 
probability that no more than two of them have no raisins? We have here 
in a situation of a Poisson approximation to the binomial distribution, with 
“success” being a cookie with no raisins so that np = 200e-4 = 3.66. The 
number Y of raisinless cookies in the box has a binomial distributionBIN(200, 
0.0183), which is approximated by the Poisson distribution with X = np = 
3.66. Thus P { X  5 2) = P{Y = 0 )  + P{Y = 1) + P{Y = 2) =: 

(1 + 3.66 + 3.662/2)e-3.66 = 0.29; hence P{Y 2 3) is about 0.71, which 
means that 71% of all boxes will contain three or more Four-Raisin cookies 
with no raisins at all. 

PROBLEMS 

9.3.1 Let X have the POI(X) distribution. Find: (i) The mode of X (i.e., the most 
likely value of X). (ii) P ( X  is even). (Hint. Write the Taylor expansions for ex and 
e-’. Any ideas?) 

9.3.2 A book with 500 pages contains, on average, three misprints per ten pages. 
What is the probability that there will be more than one page containing at least 
three misprints? 

9.3.3 Accidents in a given plant occur at a rate of 1.5 per month. The numbers of 
accidents in different months are independent and follow the Poisson distribution. 
Find the probability of (i) Five accidents in a period of five consecutive months. (ii) 
One accident in each of five consecutive months. 

9.3.4 Suppose that the daily numbers of ships arriving to a certain port are indepen- 
dent, each with POI(3) distribution. Find: (i) The expected number of days in April 
when there are no arrivals. (ii) The expected number and variance of days during the 
summer months (June, July, August) with the number of arrivals equal to the mean 
daily arrival rate. 

9.3.5 A certain store makes, on average, two sales per hour between 9:00 a.m. and 
2:OO p.m., and three sales per hour between 2:OO p.m. and 9:OO p.m. The numbers 
of sales in different time periods are independent and have a Poisson distribution. 
Find: (i) The probability of more than three sales between 1O:OO a.m. and noon, 
and also between 1:00 p.m. and 3:OO p.m. (ii) The probability that the number 
of sales between 1O:OO a.m. and 11:OO a.m. will be the same as number of sales 
between 6:OO p.m. and 7:OO p.m. 

9.3.6 Weekly numbers of traffic accidents at intersections A, B, and C are indepen- 
dent, each with a Poisson distribution. It is known that, on the average, the number 
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of accidents at intersection A is the same as the number of accidents at intersections 
B and C combined, while the average number of accidents at intersection B is half of 
that at intersection C. (i) If there were, in a given week, 16 accidents at intersections 
A, B, and C, what is the probability that exactly four of them were at intersection C? 
(ii) What is the probability that there were more accidents at intersection C than at 
intersection A? 

9.3.7 Find the approximate probability that in 1000 randomly chosen persons there 
are exactly: (i) Two born on New Year and two born on Christmas. (ii) Four born on 
either Christmas or New Year. 

9.3.8 (Does Nature Prefer Even Numbers?) Generalizing Problem ??, let X be 
an integer-valued random variable such that X = X I  + X2,  where X I ,  X2 are 
independent, identically distributed integer-valued random variables. Show that 
P { X  is even } 2 0.5 (this property has been pointed out to us by Steve MacEach- 
em, personal communication). 

9.3.9 Let X be the number of failures preceding the rth success in a sequence of 
Bernoulli trials with probability of success p .  Show that if q + 0, r + co in such a 
way that rq = X > 0, then 

Xk - A  P { X  = k} + -e 
k! 

for every k = 0, 1, 2, . . . . This shows that the negative binomial distribution can 
be, for large r and small q, approximated by a Poisson distribution. (Hint: Use an 
argument similar to that in the proof of Theorem 9.3.3.) 

9.3.10 Suppose that the number of eggs X laid by a bird has a Poisson distribution. 
Each egg hatches with probability p ,  independently of what happens to other eggs. 
Let VI and V,, V1f V2 = X ,  denote the numbers of eggs that hatch, and the number 
of eggs that do not hatch, respectively. Show that V1 and V2 are independent. 

9.3.11 Traffic accidents at a given intersection occur following a Poisson process. 
(i) Given that 10 accidents occurred in June, what is the probability that the seventh 
accident occurred before June lo? (ii) If it is known that n accidents occurred in 
April, what is the expected number of accidents that occurred during the second 
week of that month? 

9.3.12 Consider two independent Poisson processes with the same parameter A. Let 
Ni ( t )  , i=l ,  2 be the number of events in i-th process which occurred up to time t ,  
and let UT be the set of all those times t with 0 5  t 5 T at which Nl( t )  = N2(t). 
Find E(&)  given that: (i) N l ( T )  = N2(T) = 2. (ii) N l ( T )  = 2 , N 2 ( T )  = 3. 
(Hint. Use the fact that the sum of two independent Poisson processes is a Poisson 
process and Theorem 9.8.5.) 

9.3.13 Assume that chocolate chips are distributed within a cake according to a 
Poisson process with parameter A. A cake is divided into two parts of equal vol- 
ume (disregard the possibility of cutting through a chocolate chip). Show that the 
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probability that each part of the cake has the same number of chips is 

O0 (X/2)’k 
e-’ C - 

(k!)’ 
k=O 

9.4 EXPONENTIAL, GAMMA AND RELATED DISTRIBUTIONS 

We have encountered the exponential distribution on a number of occasions, notably, 
as the distribution of times between events in Poisson process in one dimension. To 
repeat the definition, a random variable X has exponential distributionEXP( A) if for 
some X > 0 and x 2 0, 

~ ( x )  = P { X  I z} = 1 - e-”, x 2 0, 

so that for x 2 0 the density of X is f(z) = Xe-XZl x 2 0. We know that 

1 
x E ( X )  = -, 1 

A2 
Var(X) = 

and the mgf of X is 

for s < A .  
X 

A - S  
,mx(s) = - 

The hazard hnction (see Section 6.5) of exponential random variable is constant: 

f(z) Xe-XZ 
I -F(z)  e-Xr 

_-- - XI h(x) = - - 

a property closely related to the memoryless property of an exponential distribution 
asserted in Theorem 9.3.6. 

Readers should be aware of the fact that the phrase “exponential distribution with 
parameter A” is ambiguous, since an exponential distribution is sometimes intro- 
duced in the form f(z) = (l /X)e-Z/X, z > 0. In this notation E ( X )  = X and 
Var( X )  = A*. Consequently, unless it is clear whether the parameter appears in the 
numerator or denominator of the exponent, one could use phrases that convey the 
information about the mean. Thus “exponential distribution with mean 13’’ will have 
density (l/e)e-Z/e, and so on. 

Next, the sums of independent and exponentially distributed random variables 
also appeared in the Poisson process, as times T I ,  T2, . . . of consecutive events. The 
cdf‘s of these random variables were obtained using the identity 

The density of T,. follows now by the differentiation, 

An t r - l  e - A t  , t > 0 .  f r ( t )  = ~ 

(T  - l)! (9.45) 
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Since T, is the sum of T independent waiting times, each with the same exponen- 
tial distribution, the mgf of T, exists for s < X and equals 

The definition of distribution of Tr as the sum of waiting times involves using 
an integer value of T .  We have a complete analogy with the binomial distribution 
(count of successes in fixed number of trials) and negative binomial distribution 
(count of number of trials up to a fixed number of successes), on one hand, and the 
Poisson distribution (number of events until fixed time) and distribution (9.45) (time 
till fixed number of events occurs), on the other hand. However, unlikely as in the 
case of a negative binomial distribution, T need not be an integer, and we can define 
the class of distributions comprising densities (9.45) as a special case. To this end 
let us introduce the following definition: 

Definition 9.4.1 For t 2 0 we define the gamma function as 

(9.46) 

0 

We can show that this function is well defined for all t 2 0. Integration by parts 
gives 

Since I?( 1) = 1, by induction, for any integer n 2 1, we obtain 

r(t)  = ( t  - i ) q t  - 1). 

r (n )  = (n  - I)! 

(9.47) 

Consequently, a gamma function can be seen as an extension of the factorial func- 
tion, which it “fills in” for noninteger values of n. 

Let us now show that I”( 3) = fi. Indeed, 

(9.48) 

where we used substitution x = y2/2 and the fact that the last integral equals 1/2 as 
a half of the integral of the standard normal density. 

We can now introduce the following definition: 

Definition 9.4.2 A random variable with density of the form 

for x > 0 
for x < 0 

for some Q > 0 and X > 0 is said to have a gamma distribution with shape parameter 
0 Q and scale parameter A, GAM(cu, A). C is the normalizing constant. 
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Since 

e d x =  1, la xa-l 

by substituting Ax = z ,  we easily obtain from (9.46) that 

(9.49) 

We can now compute the moments of gamma distribution. That is, 

E ( X )  = l m x f ( x ) d x  = - xoLe-xs dx (9.50) 
r(ff) '" Jm 0 

in view of (9.47). Similarly 

x 2 f ( x ) d x  = - Jm x'2+1e-Xdx 
E ( X 2 )  = im 

r (a )  0 

so 
Q 

Var(X) = E ( X 2 )  - [E(X)I2 = - 
A2 

(9.51) 

The moment generating function of gamma distribution can be evaluated as fol- 
lows: 

provided that t < A. It is easy to show that the kth ordinary moment is 

(9.52) 

The following closure property of gamma distributions is a consequence of Theorem 
8.5.2: 

Theorem 9.4.1 r f X  andY are independentwith X - GAM(a1, A), Y - GAM(a2, A), 
then X + Y N CAM( a1 + a2, A). 

Since the waiting time Tk for the kth event in a Poisson process has a distribution 
GAM(k, A), Theorem 9.4.1 (in the case of integers a1 and 02) expresses the simple 
fact that the waiting time T,,+,2 is the sum of two independent waiting times, T,, 
and T,, . 

Let us note that exponential distributionwith parameter A is the same as CAM( 1, 
A). Also let us recall that in Example 6.28 we found the density of the square of 
standard normal variable [i.e., of Y = Z 2 ,  where 2 - N(O,l)]. This density equals 
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f(Y) = &Y- 1/2e-Y/2, which we recognize as GAM(1/2, 112). The sums of 
squares of independent standard normal variables appear so often in statistics, that 
the distribution of such sum bears its own name: 

Definition 9.4.3 For integer v, the distribution GAM ( ~ 1 2 , 1 1 2 )  is called the chi- 
square distribution with v degrees offieedom. A random variable with such distri- 

0 

The following theorem will be very important in statistical inference; its proof is an 
immediate consequence of Theorem 9.4.1. 

Theorem 9.4.2 V Z l ,  . . . , Z,, are independent, each with standard normal distribu- 
tion, then 

bution is typically denoted by xz. 

x = zl” + .  . . + 2; 

has chi-square distribution with n degrees of freedom. 
Moreovec if X1 , . . . , XI, are independent, chi-square distributed random vari- 

ables, Xi - x;,, then Y = XI + ’ .  . + Xk has chi-square distribution with u 
degrees of freedom, where Y = v1 + . . . + vk. 

Another property that will be useful in further chapters devoted to statistical in- 
ference is provided by the next theorem: 

Theorem 9.4.3 qrandom variable X has GAM(a, A) distribution, then Y = 2XX 
has GAM(a, 112) distribution. 2a additionally is a positive integel; rhen Y has 
xia distribution. 

Proof: Let Y = ax, where a > 0. Then x = y / a  = +(y) and I+!J’(~) = l / a .  
Consequently, based on (9.4.2), 

(9.53) 

The density fy (y) has a GAM(a, X/a) distribution, which is the same as xp,, when 
0 

With wide availability of statistical packages today, the values of cdf as well as 
percentiles of chi-square distributions for various numbers of degrees of freedom 
can be easily obtained. For given n and x, we can obtain P{x: 5 z}, as well as for 
given n and p ,  we can obtain x such that P { x i  5 x} = p .  Selected quantiles and 
upper percentiles can also be found in Table A.4. at the end of the book. 

At the end of this section we will introduce two families of distributions some- 
what related to the exponential family. 

Definition 9.4.4 The distribution with the density function 

a = 2X and 2 a  is a positive integer. 

(9.54) 
1 
2 

f(x; A) = -Ae-x’z ’  

for -co < x < co, X > 0, is called Laplace or a double exponential. 0 
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The Laplace distribution is symmetric, and it has higher values of a kurtosis than 
the normal distributions. The double exponential distribution can be generalized in 
many ways. For example, the distribution with density 

will be skewed if XI # X2. The Laplace distribution is very useful for modeling in 
the biological sciences, economics, and finance. Interested readers can find more 
information in Kotz et al. (2001). 

The moment generating function of the Laplace distribution is 

(9.55) 

The density (9.54) of the Laplace distributionis symmetric around 0; therefore its 
expected value is 0. The computation of other moments will be left as an exercise. 

The last family of distributions to be introduced in this section is named after 
Waloddi Weibull, a Swedish engineer, scientist, and mathematician. The family of 
distributions that he introduced has a lot of flexibility and, as such, is widely used in 
industrial and engineering applications, such as reliability analysis, determination of 
wind spread distribution, or to model the dispersion of the received signals in radar 
systems. 

Definition 9.4.5 The random variable with density of the form 

f(z; k ,  6 )  = k6 ( x B ) ~ - ’  e-(se)k (9.56) 

for x > 0,O > 0, k > 0 is said to have a Weibull distribution, denoted WEI( k ,  6); k 
0 and O are called its shape and scale parameters, respectively. 

The cdf of a Weibull distribution is 

F ( z )  = 1 - &o)k ,  

and consequently its hazard function equals M (zO)’-~ . For k < 1, the hazard 
function is decreasing, and it is increasing for k > 1. If k = 1, the hazard function 
is constant and WEI( 1,6) distribution becomes exponential. 

It can be shown (we leave this for the readers as an exercise) that ordinary mo- 
ments, m, of Weibull distribution equal 

m, = 6-r (1 + t) , (9.57) 

and that the mean and the variance are V1r( 1 + i) and6-2[I ’ (1+%)- l?2(1+~)] ,  
respectively. 



EXPONENTIAL, GAMMA AND RELATED DISTRIBUTIONS 295 

Figure 9.2 Series system 

Figure 9.3 Parallel system 

Figure 9.4 Series-parallel system 

PROBLEMS 

9.4.1 Show that if variable X has a GAM(n, 1) distribution, where n is a positive 
integer, then its cdf is given by the following formula: 

n-1 

Fx(2) = - 
j = O  

(Hint: Integrate by parts and use induction.) 

9.4.2 A system consists of five components. Suppose that the lifetimes of the com- 
ponents are independent, with exponential distributions EXP( XI), . . . , EXP(X5). 
Find the cdf and density of variable T = time to failure of the system if the compo- 
nents are connected: (i) In series (see Figure 9.2), so that the system fails as soon as 
one of its components fails. (ii) In parallel (see Figure 9.3), so that the system works 
as long as at least one component is operating. (iii) As in Figure 9.4. 

9.4.3 In the flowchart of Figure 9.5, the block denoted “sample U” means that the 
computer samples a value of random variable U with a distribution uniform on (0, 
l), the samplings being independent each time the program executes this instruction. 
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C:=O T:=O v 
c := c+1 rc;3 

.) NO 
Sample U 

I 
T := T-(l/k)logU 

Figure 9.5 Flowchart 

Assume that m is a positive integer and X > 0. Find: (i) P{T 5 2)  if X = 2 and m 
= 3. (ii) The cdf and density of T ,  E ( T ) ,  and Var(T) in the general case. 

9.4.4 For a random variable X that has a Laplace distribution with X = 1, find: (i) 
Survival and hazard functions. (ii) Variance. (iii) Kurtosis. 

9.4.5 Find the distribution of X = O ( -  log U ) ' l k ,  if U - U(0,l). 

9.4.6 (i) Find the median and the mode of the Weibull distribution with a density 
(9.56). (ii) Prove the formula (9.57). 

9.4.7 It was found that the survival time (in years) in a group of patients who had 
a certain medical treatment and are in the similar risk group follows WEI( 2,1/3)  
distribution. Find: (i) The median survival time for such patients. (ii) The proba- 
bility that a randomly selected patient will live at least five more years if he already 
survived one year after the treatment. 

9.5 NORMAL DISTRIBUTION 

We have already encountered the normal distribution in Chapter 6. Let us recall that 
the univariate normal distribution with parameters p and a2, denoted N(p, a2), has 
density 

It has been shown in Example 6.18 that f is indeed a density. Moreover, if X 
has distribution N(p, a2), then E ( X )  = p ,  Var(X) = a2, which gives a direct 
interpretation of the parameters. 
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The moment generating function of the normal distribution was obtained in EX- 
ample 8.28 as 

z a  
m(t) = e+t+" t 12. 

We have the following closure properties of the normal distribution: 

Theorem 9.5.1 A linear transformation of a normally distributed random variable 
again has a normal distribution. In particular; if random variable X has a normal 
distribution N(pl U' ), then the random variable 

z=- x-P 
U 

has the standardnormal distribution N(0, 1). 

Proof We have, using (8.21), 

m d t )  = r n l / u X - ( p / u )  ( t )  = mx( t /o )  e-plut  = etz /2 .  

The right-hand side is the mgf of a standard normal random variable. 0 

The property asserted in Theorem 9.5.1 has important practical consequences. It 
shows that to determine probabilities for any normally distributed random variable, 
it suffices to have access to the probabilities for a standard normal random variable. 

This property is especially important in view of the fact that the cdf of a normal 
distribution 

cannot be integrated in closed form. Thus it is necessary to use the tables, and 
Theorem 9.5.1 implies that one table is sufficient to calculate probabilities for all 
normal distributions. We will let Z denote the standard normal random variable, 
with density 

and cdf 
@(x) = - /' e-"'/'dx. 

V G  --oo 
(9.58) 

Theorem 9.5.1 asserts, in effect, that given the tables of function (9.58), we have, for 
any x - N(k, a2), 

U 
P { a < X < b }  = P 

Since $(x) is symmetric around 0, we have P { Z  2 z }  = P { Z  2 - z } ;  hence 
the cdf of standard normal distribution satisfies the relation 

@ ( z )  = 1 - a(-.). 
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Consequently, many statistical tables give the values of @ ( z )  only for z 2 0. 
An inspection of Table A.2. shows that @(3) = 0.9987. Since for z > 0 we have 

P { l Z l >  2 )  = P { Z  > 2 )  + P { Z  < -2) 
= 1 - @ ( z )  + @ ( - z )  = 2@(--z) = 2[1 - @(2)], 

we see that P{lZl > 3) = 0.0026. Using Theorem 95.1, we see that if X - 
N(p,, D ~ ) ,  then 

P { l X - p l  > 3 ~ ) = P { I Z I > 3 ) = 0 . 0 0 2 6 .  (9.59) 

This explains the origin of the three-sigma rule, according to which one is al- 
lowed to disregard the possibility of a random variable deviating from its mean more 
than three standard deviations. 

Most tables of standard normal distribution do not give the values of @ ( z )  for 
z > 3. If such values are needed, we have 

Theorem 9.5.2 For z > 0 the function a(.) satisfies the inequality 

and consequentlj, as z + 03, 

1 
1 - a(.) = -$ (z )  

Z 

(9.60) 

(9.61) 

ProoJ We have here the obvious inequality 

A simple check shows that this inequality is equivalent to 

d d 
-- dx [ (: - f) $(.)I 5 -z[l - @(x)] 5 

Integrating (9.62) between z and co, we obtain (9.60). 0 

Numerically the relation (9.61) gives 1 - a(4) =: 3.36 x lo-‘, 1 - a(5) =: 
2.97 x lo-’, 1 - a(6) = 1.01 x Such small probabilitiescould be of interest 
in estimating the chances of, say, an accident in a nuclear power plant. 

From a practical viewpoint, the knowledge of these probabilities allows us to as- 
sume the normality of distribution in many cases where “logically” the distribution 
cannot possibly be normal. To illustrate the point, it is often assumed that an attribute 
as, say, height in human population is normally distributed (e.g., among men, we 
have mean p about 70 inches and standard deviation D of about 2 inches). But since 
a normally distributed random variable may always assume both positive and nega- 
tive values, one could argue that height-which cannot be negative---cannot have a 
normal distribution. The chances of a random variable X with normal distribution 
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N(70,4) being negative are of the order @(-35) = 1- @(35) FZ 0.0069 x eb612 
So events with such a probability can be safely disregarded, and it turns out that it is 
much easier to work with the assumption of normality than invent a distribution for 
height that does not allow negative values. 

We will now prove a very useful and important property of normal distribution 
and illustrate its use. 

Theorem 9.5.3 Let X and Y be independent random variables with distributions 
X N N(p1, of) and Y - N(p2, oi). Then the random variable U = crX + PY has 
the distribution N(ap1 + Pp2, a2uf + ,02ui). 

Proof. Sincemx(t)  = ezp{p1t+ol$},my(t)  = ezp{p2t+ai$},  a n d a x ,  PY 
are independent, we have 

mu ( t )  = mCKx+py ( t )  = max ( t )  mpy ( t )  = mx (4 m y  ( P i )  

= exp 

We recognize the right-hand side as an mgf ofN(p1a  + p ~ p ,  o?a2 + oi,02) distri- 
buti on. 0 

EXAMPLE 9.16 

Assume that the height of men in a certain population is normal with mean 
p~ = 70 inches and standard deviation UM = 2 inches. The height of women 
is also normal, with mean pw = 68 inches and ow = 1.5 inches. 

One man and one woman are selected at random. What is the probability 
that the woman selected is taller than the man selected? 

SOLUTION. Let X and Y be the heights of the randomly selected man (X)  
and woman (Y) .  We need P{Y > X } .  

Without Theorem 9.5.3, we could proceed as follows (this solution is appli- 
cable to any distribution of X and Y, and is therefore of some general interest): 
If F and G are cdf's for X and Y ,  respectively, and f and g are their densities, 
then conditioning on values of Y,  we have 

= / F ( Y )  dY) dY. 

We also condition on values of X, obtaining 

(9.63) 

P{Y > X} = P{Y > XIX = x} f(z) dz = P{Y > z} f (z)  dz J s 
= /[I - G ( x ) ]  f(z) dx. 



300 SELECTED FAMILIES OF DISTRIBUTIONS 

Using now the assumption of normality of X and Y, based on (9.63), we 
have 

However, by Theorem 9.5.3, we have 

P{Y  > X} = P{Y - x > 0) = P{U > 0) 

where U = Y - X has normal distribution with mean p = pw - /LM = 
68 - 70 = -2 and a; = a& + aL = (3/2)2 + 22 = 2514, hence ‘TU = 2.5 
inches (we use here Theorem 9.5.3 witha = -1, p = 1). Consequently, since 
U is normally distributed, 

0 - (-2) 
P{Y > X} = P { Z  > -} = P { Z  > 0.8) 

2.5 
= 1 - a(0 .8)  = 1 - 0.7881 = 0.2119. 

Before we discuss the multivariate normal distribution we will introduce two dis- 
tributions that are related to normal: lognormal and folded normal distributions. 

Definition 9.5.1 Random variable X is said to have a lognormal distribution if the 
variable Y = log X has a normal distribution. The density of a random variable X 

where N(p, a2) is the distribution of X. 

The mean and the variance of the lognormal distribution are 

E ( X )  = e-IL+02/2 and V(X) = e2-IL+u2 x (eu2 - l) ,  

and the general formula for m k ,  the kth ordinary moment, which we give without 
proof, is 

mk = e x p { k p + T } .  k2U2 

The lognormal distribution has one very unique property: Even though it has finite 
moments of all orders, the moment generating function is infinite at any positive 
number. 

The lognormal distribution is widely applicable in modeling, for example, where 
there is a multiplicative product of many small independent factors. A typical exam- 
ple is the long-term return rate on a stock investment that can be considered as the 
product of the daily return rates. 
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In many experiments, measurements such as dimensions (as well as time and 
angles) are often recorded with respect to certain expected standards, where the 
magnitude of the difference, not the direction, is important. Consequently, the ac- 
tual distribution of the measurement, X, is replaced by a distribution of absolute 
measurements, Y = 1x1. When the underlying distribution is normal, the resulting 
distribution is called the folded normal, or half-normal. 

Any normal distributionN( p ,  a2) can be “folded” at zero, but we will discuss here 
only the simplest case with p = 0. So for X N N(0, u2), the density of Y = 1x1 is 

for x > 0, and 0 otherwise. We will now find the expected value E ( Y )  and the 
variance Var(Y). Notice that a2 is no longer is a variance of the distribution. 

where we used substitution t = y2/2a2. For Var(Y) we need 

since X - N(0, a2). Finally, we obtain 

Derivation of the moment generating function will be left to the reader as an exercise. 
Let us now consider the multivariate normal distribution. We will start from the 

case of two dimensions. Some situations with more than two dimensions will be 
considered in later chapters. 

Definition 9.5.2 The pair (X, Y )  of random variables is said to have a bivariate 
normal distribution, N(p1, ~ 2 ,  a:, a;, p), if the joint density is of the form 

- 1 [ (=-$ 2 p 3 x m  ; ( v - $  

< 03, -m < p2 < f c o ,  a1 > 0,02 > 0, and lpJ < 1. 

“2 3 , (9.64) 20 “1 6 2  
1 

where -m < 0 

To find marginal distributions of X and Y and determine the interpretation of 
parameters, let us change the variables into 

y - P2 , v=- u=- X - P 1  
0 1  6 2  
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This amounts to substitution 

2 = U l U  + 1-11, y = 022, + p2 
with the Jacobian J = 0 1 ~ 2 .  Consequently, the joint density of (V ,  V) is 

Since u2 - 2pupI + v2 = (u - p ~ ) ~  + (1 - p2) v2, we write 

where 

JZ;;JW 1 
I i V e x p  - w  { -: (z)2} d u =  1 

for every v. Hence the second factor is the marginal density of V, while the first 
factor is the conditional density of U given V = v. Thus V is standard normal, 
while U ( V  N N(pV, 1 - p2). By symmetry, U must also be standard normal and 
V1 U -N(pU, 1 - p2). Therefore we have proved 

Theorem 9.5.4 I f  ( X ,  Y )  have bivariate normal distribution given by (9.64), then 
both X and Y have normal distributions, N(p1 , D:) and N(p2, u;), respectively. 
Moreover; the conditional distributions are also normal: 

(9.65) 1 
) 

X I Y  - N p%(Y - p2) + p1,0?(1 - p 2 )  ( 0 2  

Y I X  - N(+Y - Pl) + p 2 ,  &l - P 2 )  (9.66) 

ProoJ: Only the last two statements require some proof. The normality of the con- 
ditional distribution is obvious in view of the normality of conditional distributions 
of U given V. We have 

and 

E(XIY) = E ( U l U  + p1IfJ2V + p2) = f J l ~ ( U J f J 2 V  + p2) + p1 
a i E ( U ( V )  + p i  = UipV +pi = nip- + 11. y - p2 = 

fJ2 

Similarly 

Var(X1Y) = Var(a1U + p l ) a 2 ~  + p2) = oTVar(U)V) = C?(I - p 2 ) ,  

which proves (9.65). The proof of (9.66) is analogous. 0 

Theorem 9.5.5 If X ,  Y have the bivariate normal distribution (9.64), then p is the 
coeflcient of the correlation between X and Y .  
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Proof. Clearly, p x , ~  = Cov(U, V )  = E(UV) ,  and we may write 

E ( U V )  = 11 uwg(u, w) du. dw 

EXAMPLE 9.17 

Assume, as in Example 9.16, that the height of men X and the height of 
women Y in a population have N( 70,4) and N(68,2.25) distributions, respec- 
tively. Assume also that the heights of siblings are correlated with p = 0.6. If 
we sample a brother and a sister, what is the probability that the sister is taller 
than her brother? 

SOLUTION. Proceeding as in Example 9.16, P{ Y > X }  = P{ Y - X > 0}, 
and we know that Y - X is normal, with E ( Y  - X )  = E ( Y )  - E ( X )  = 
68 - 70 = -2 inches. For the variance we have 

Var(Y  - X )  = V a r ( Y )  - SCOV(X,  Y) + V a r ( X )  = a$ - 2 p a x a y  + a$ 
= (1.5)2 - 2 x 0.6 x 2 x 1.5 + 22 = 2.65. 

Consequently, 

0 - (-2) 

m -} = 1 - Q(1.23) = 0.1093. P ( Y  > X }  = P { Z  > 

To develop the intuition concerning the bivariate normal distribution and corre- 
lation coefficient, let us consider some possible schemes that lead to the appearance 
of bivariate normal distribution with correlated variables. 

EXAMPLE 9.18 Sequential Formation 

It is possible that one of the values, X ,  is formed at random, following the 
normal distribution N( PI,  a:). This means that some random process leads 
to the creation of an element of the population with a specific value x of an 
attribute X .  Subsequently the value of attribute Y is formed by some other 
random process that generates Y according to the normal distribution with 
mean p(a2/al)(x - 111) + p~p and standard deviation a2 d w .  

Examples of such “sequential” generation of attributes are quite common: We 
could think here of X and Y being the temperatures at noon at a specific place today 
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I 
5 X 

Figure 9.6 Two regression lines 

and tomorrow, water levels on the same river at two specific times, or in two places, 
one downstream from another, the height of a father and a son, and so on. In a sense, 
we have a “natural” ordering, with X being the first variable, whose value affects 
the second variable Y. 

To enable a clear geometrical representation, let 01 = 02 = 1 and let p l ,  p2 
be removed sufficiently far from the origin, to have clear plots of marginals, say 
11 = p2 = 5 (see Figure 9.6). The conditional expectation of Y, given X (the 
regression of Y on X, discussed in detail in Chapter 14), is now, by formula (9.66), 

E ( Y I X )  = p ( X  - 5) + 5 ,  

which is the line y = pz+5(1-p) with slope p, passing through the point ( P I ,  p2) = 
(5,5). Observe that regression of X on Y is the line E(XIY)  = p(Y - 5) + 5; that 
is, y = (1p)a: - 5[(1 - p ) / p ] ,  which also passes through the point (5, 5) but has the 
slope l / p .  

After the value of X = a: is sampled, the value of Y is sampled from the nor- 
mal distribution centered at the appropriate point on the regression line, and having 
variance 1 - p2. Remembering that the total variance of Y is 1, we have the de- 
composition of Var(Y) into a sum of the form p2 + (1 - p2) ,  the second term being 
the variance of the deviation Y - [pX - 5(1 - p)]  of Y from the regression line. 
The first term, p2, is therefore the contribution to the variability of Y coming from 
the variability of X. In generally accepted terminology, loop2 is the “percentage of 
variance of Y explained by the variability of X.” 

A glance at Figure 9.6 reveals that if p were larger, the line would be more steep, 
and this would increase the contribution of X to the variability of Y. (Remember 
that X and Y are standardized, so their variances remain equal to 1. This explains 
why the regression line E(Y1X)-in the case of standardized variables-+annot be 
steeper than the diagonal. So, when p increases, to keep Var(Y) = 1, one has to 
decrease the variance of deviations from the regression line.) 

H EXAMPLE 9.19 

Another interpretation of the correlation coefficient p, not related to any tem- 
poral or casual ordering of X and Y, is connected with the following situa- 
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tion: Suppose that we have a population of objects of some kind, and that an 
attribute ( of objects in this population has a normal distribution N( p, a2). El- 
ements of this population are sampled and their attribute ( is measured twice. 
The measurements are subject to error, and the errors €1 and €2 ofthe two mea- 
surements are independent of ( and from one another, with the same normal 
distribution €1 -N(O, a:), € 2  “(0, 0:). The observed results of measure- 
ment are X = ( + €1 , Y = ( + €2. In this case X and Y are normal with the 
same means and variances p1 = p2 = p ,  u; = a: = o2 + 0:. The covariance 
between X and Y equals E(XY) - p2 = E(( + e l ) ( (  + €2)  - pz = uz, in 
view of the assumed independence and E ( Q )  = 0, we have 

Cov(X,Y) up 
p =  

a;+uq 
=- 

Here p > 0, which means that the results of measurements of the same (ran- 
dom) quantity, subject to independent errors, are always positively correlated. 

It should be pointed out here that-as opposed to Example 9.1 8--p (not p 2 )  
represents the fraction of variance of X (or Y) “explained” by the variability of 
E .  The situation is different from that in Example 9.18, since now we “explain” 
the variance of one variable (X), not through the variability of the second 
variable of the pair (Y), but through the variability of some other variable ( t )  
that affects both X and Y. 

PROBLEMS 

In all problems of this section, Z stands for a standard normal variable, and @ is 
its cdf. 

9.5.1 Use the tables of normal distribution to determine the probabilities: 
(i) P(0 5 Z 5 1.34). (ii) P(0.14 5 Z 5 2.01). (iii) P(-0.21 5 Z 5 -0.04). (iv) 
P(-0.87 5 Z 5 1.14). (v) P(IZ1 1. 1.02). (vi) P ( Z  2 1.11). 

9.5.2 Determine z in the following cases (interpolate, ifnecessary): (i) @(z) = 0.62. 
(ii) @(z) = 0.45. (iii) P(lZ(  5 z) = 0.98. (iv) P(1.4 5 Z 5 z)=0.12. 

9.5.3 Find P(IX - 21 5 0.5) if X - N(1,4). 

9.5.4 Let random variable X have a N(p, a2) distribution. Find: (i) p if a2 = 2 and 
P ( X  5 12) = 0.72. (ii) a2 if p = 2 and P ( X  25) = 0.39. 

9.5.5 A “100-year water,” or flood, is the water level that is exceeded once in a 
hundred years (on average). Suppose that the threatening water levels occur once a 
year and have a normal distribution. Suppose also that at some location the 100-year 
water means the level of 30 feet above average. What is the 10,000-year water level? 

9.5.6 Find rs-the skewness of a lognormal distributionwith parameters p and a’. 

9.5.7 Assume that XI and X2 are independent, with N(3,6) and N(- 1,2) distribu- 
tions, respectively. Find: (i) P(3X1 - 2x2 114). (ii) P ( X 1  < XZ). 

9.5.8 Assume that XI and X2 have a bivariate normal distribution with E(X1) = 
3,E(X2) = 2,Var(X1) = 4,Var(Xz) = 1 and p = -0.6. Find: (i) P ( X 1  5 
41x2 = 3). (ii) P(JX2 - 11 2 1.51X1 = 2). 
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9.6 BETA DISTRIBUTION 

The family of beta distributions defined below is known for its usefulness in model- 
ing the researcher's uncertainty about the unknown probability p of some event. 

Definition 9.6.1 A random variable X has beta distribution 
and P > 0, X - BETA(0, p), if the density of X equals 

with parameters a > 0 

(9.67) 

for 0 5 z 5 1 and f(z) = 0 outside interval [0,1]. Here is the function defined 
by (9.46). 0 

First, we will check that (9.67) is indeed a density: 

udw. (9.68) 

Introducing 
U 

z = u + u  and x=- 
u + w 3  

we have 0 5 2 5 1 , 0  5 z 5 00. Since u = z z  and w = z(1 - z), the Jacobian 
equals z .  Consequently, after substitution to (9.68) the variables separate, and we 
obtain 

1 
r(ck)r(P) = lw p - 1  z p-1 e -2 z d z  zap1 (1 - ~ ) ~ - ' d z  

as was to be shown. 
Once we know that 

we can easily compute the moments of the beta distribution. Indeed, if X - BETA 
(0, PI, then 

In particular, using formula (9.47), for k = 1 and k = 2, we obtain 

ck a(. + 1) E ( X )  = - and E ( X z )  = 
a+P (. + P) (O + P + 1)' 
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i f 

Figure 9.7 Shapes of beta distributions 

respectively, so that 

(9.69) QP 
(a + P)2(a  + p + 1) ' 

Var(X) = 

The various shapes of the beta distribution are illustrated in Figure 9.7. If a > 
1, P > 1, the distribution is bell-shaped, with the peak becoming more narrow for 
larger a and/or P. For a = P = 1, the distribution is uniform. If a < 1 and 
p < 1, the distribution is U-shaped, whereas if a < 1, P 2 1 or a 2 1, ,f3 < 1, the 
distribution is J-shaped. 

As mentioned, the most typical application of a beta distribution is when we 
consider a binomial distribution with an unknown p ,  and represent knowledge (or 
uncertainty) about p by assuming that p is random with a beta distribution. The 
examples below illustrate this approach. 

EXAMPLE 9.20 

One of the questions posed by Laplace is: What is the probability that the sun 
will rise tomorrow? 

SOLUTION. The question may sound silly in the phrasing above. But in a 
slight reformulation, it is: Suppose that some event A occurred in all of a 
large number N of trials. What is the probability that it will occur again on 
the next trial? 

We assume the Bernoulli model of independent trials, and let A ,  and A(") 
stand for the events " A  occurs on n consecutive trials" and " A occurs on nth 
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trial.” Following Laplace, we take the uniform distribution, which is BETA( 1, 
l), as the distribution of p (presumably, such a choice suggests total impartial- 

We want the expected value of the conditional probability P ( A N + ~  IAN) ,  
the expectation taken with respect to the conditional distribution of p given the 
data. According to Theorem 4.4.2, on combining evidence, we can proceed in 
either of two ways: 

1. Find the expected probability ofjoint occurrence of evidence so far and the event 
in question (hence A n A N  =  AN+^) with respect to the unconditional distri- 
bution of p .  

with respect to 

ity). 

2. Find the expected probability of the event in question ( 
the conditional probability of p given the evidence ( A N ) .  

Using the first approach, we have the probability of the conjunction A n AN 
equal p N + ’ ,  so the answer is, assuming p N BETA( 1, I), 

A rather conservative estimate of the time when we know that the sun was 
rising every day is about 7000 years. Much as we may be convinced that 
it is not the case, it is possible that before the first written records, the sun 
did not rise but was (say) switched on suddenly in the sky or operated under 
some other principles (after all, why would Laplace bother to calculate the 
probability of the sun rising tomorrow if he did not allow for the possibility 
of some other mechanism?). Thus, letting N = 365 x 7000, we have ( N  + 
I ) / ( N  + 2) = 1 - 4 x 10-7. 

EXAMPLE 9.21 

Continuing the Laplace problem in a more realistic setup, we observe Bernoulli 
trials where we know that p is random with distribution BETA( a,  P). So far 
we know that there were 3 successes in 4 trials. What is the probability of 2 
successes in the next 3 trials? 

Reasoning in exactly the same way as in the preceding example, the com- 
bined data and event in question is “3 successes in 4 trials and 2 successes in 
the next 3 trials” (which is not the same as 5 successes in 7 trials. Why?). 
Conditioning on p ,  we obtain the probability 

Taking expectation with respect to p - BETA(a, p), we have, for the expected 
probability E(2,3) of 2 successes in 3 trials 
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Using formula (9.47), which asserts that r(t) = ( t  - l ) T ( t  - l),  we obtain, 
after some algebra, 

a(a + 1) ' . . ( a  + 4)P(P + 1) 
E(2 ,3 )  = 12 x 

(a  +p) (a  + p + 1) . . . ( a  + p +  6)' 

EXAMPLE 9.22 

To make the situation still more realistic, consider a client who comes to a 
statistical consulting center for help. It turns out that she is currently nego- 
tiating the purchase of a large shipment of some merchandise. Some of the 
items conform to the specification, and some do not (let us call them defec- 
tive). Suppose that testing the quality of all items in the lot is not possible 
because of the prohibitive cost of such an operation, or because the process 
of testing is destructive. Some tests have been made, though, and the data are 
such that among 25 tested items 3 were found to be defective. What can one 
reasonably say about the fraction of defective items in the whole lot? 

SOLUTION. Suppose that the lot in question is not the first lot purchased 
by the client. It turns out that she has been buying the same kinds of merchan- 
dise from the same company (or from other companies). In her experience, as 
judged by tests, data on returns, customer complaints, and so on, she estimates 
that on average, the percentages of items below specification (defectives) in 
various lots purchased were about 12%, with variability of about 2% in either 
direction. 

The problem of the client at the statistical consulting center can be formu- 
lated as follows: First we determine the chances that the fraction p of defective 
items in the lot whose purchase is presently being negotiated is below 10%. 
Then we evaluate P { p  < 0.1) in light of the tests of the lot under consider- 
ation (3 out of 25 below specification), using the experience accumulated in 
the past. If we accept the assumption that the fractions in various lots follow a 
beta distribution, we have for the mean 

a -- 
a +P - 0.12. 

(9.70) 

Next the relatively small variability (&2%) suggests that we have a > 1 and 
0 > 1. Consequently the density of beta distribution is bell-shaped. Using 
the three-sigma rule, we take 30 M 0.02, and using (9.69), we obtain another 
equation for a and ,B: 

(9.71) 

The solution of (9.70) and (9.71) is a' = 285, P' = 2090. 
We have assumed here that the fraction p of defective items is a random 

variable whose distribution is BETA( a*, p*). If no testing of the currently 
negotiated lot was made, the answer would be 

0.1 r(a* + p*) 
P { p  < 0.1) = r(a*)r(P*)  J, z"'-l(l - z)P'-ldz. 
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However, we have additional information, namely that event A = “three 
defective in a sample of 25” occurred. Consequently, we should integrate the 
conditional density of p given A .  We have 

The conditional density is obtained from Bayes’ formula, with the summa- 
tion replaced by integration. Schematically 

(9.72) 

where (pp(x) and cp,(slA) are the unconditional and conditional densities of 
p at x. 

Typical reasoning is that the denominator in (9.72) is independent of x, and 
both sides represent densities in x. Collecting the terms that depend on x, and 
representing all other factors as a constant, the right-hand side of (9.72) is of 
the form 

so it is a beta density with parameters a* + 3 and p’ + 22. This gives 

cx3(1 - x)22z=*-1(1 - z)o*-l! (9.73) 

r(a* + p* + 25) 
qa* + 3)r(p* + 22)’ 

C =  

and we get the answer to the original question by integrating (9.73) between 0 
and 0.1. 

Observe that the analysis above has some interesting consequences. We know 
that if the distribution of p is BETA(a, p) and we observe k successes in n trials 
(event A),  then the conditional distributionof p given A is BETA(a+k, p+n- k)- 
the family of beta distributions that constitutes the conjugate priors for binomial 
data. We will return to those problems in Chapter 12. 

PROBLEMS 

9.6.1 Let X have a distribution BETA(a, p). Find: (i) The distribution of Y = 
1 - X .  (ii) E{X‘(I  - x ) ~ } .  
9.6.2 Let X I ,  . . . , X ,  be independent variables with a U[O, 11 distribution. The 
joint density of the X = min(X1, . . . , X,) and Y = max(X1, . . . , X,) has density 
f (x ,  y) = n(n - l ) ( y  - x)n-2 for 0 5 x 5 y 5 1 and f (x ,  y) = 0 otherwise. Find: 
(i) E ( X m ) ,  E ( Y m ) ,  and p ( X ,  Y ) .  (ii) E ( Y 1 X ) .  

9.6.3 Let X have a symmetric beta distribution. Find a and /3 if the coefficient of 
variation (ratio of standard deviation and the mean) is k .  Does a solution exist for 
all k? 

9.6.4 Let X I ,  X z ,  . . . be iid with an exponential distribution. For any positive m 
and n find the distribution of the ratio 

XI + ’ ’  ’ + X m  
Tm3n = 

XI + ’ ’ + Xm+n ’ 



CHAPTER 10 

RANDOM SAMPLES 

10.1 STATISTICS AND THEIR DISTRIBUTIONS 

In the previous chapters we referred to independent random variables XI, . . . , Xn 
having the same distribution, as iid (independent, identically distributed) variables. 
In statistics we say that such variables constitute a random sample, since they can 
be thought of as observations (measurements) independently selected from the same 
population, or resulting from analogous statistical experiments. A random sample 
provides an important link between the observed data and the distributionin the pop- 
ulation from which it has been selected. Most techniques of statistical inference that 
will be discussed in later chapters will be based on certain functions of random sam- 
ples. Such functions are called statistics if they depend on observations XI, . . . , X,, , 
but not on parameter(s) of the distribution. We will discuss the properties of the dis- 
tributions of statistics (called sampling distributions). 

Before we start, it should be mentioned that there are several important issues 
related to the properties of a selection process so that it does yield a random sample. 
There are also other, and sometimes more appropriate, sampling schemes besides 
the random sample. That will be discussed in more detail in Chapter 1 1. 

Among various statistics meaningful for the purpose of statistical inference is a 
sample mean 

- X1 +.'.+Xn 
X =  I 

n 
311 
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an arithmetic average of all measurements, or equivalently their sum 

T, =x1 +**.+x, .  
Among other important statistic are: sample variance 

1 ,  s2 = - X(Xi - X)2,  
n - 1 all 

(10.1) 

sample standard deviation S = Js?, min(X1,. . . , X,) and max(X1,.  . . , Xn)- 
the smallest and the largest values in the data, respectively. 

The following example illustrates an interesting distributional property: 

EXAMPLE 10.1 

We will determine the distribution of T, = X 1  + + . . + X, and of 7 = 
(l/n)Tn in a random sample XI, . . . , X, selected from an EXP(A) distribu- 
tion. 

SOLUTION. Based on Theorems 8.5.4 and 8.5.5, the moment generating 
function for the sample mean x is 

From Theorem 8.5.6 it is clear that distributions of T, and 51 are GAM(n, A )  
and GAM(n, A/n), respectively. 

A similar property for the family of normal distributions will be shown in Section 
10.2. 

Regardless of the distribution in the sample, one can obtain expectations of some 
sampling distributions as functions of the moments of original distributions as given 
in the following theorem: 

Theorem 10.1.1 Let XI, . . . , X, be a random samplefiom a distributionwith E(Xi)  = 
p andVar(Xi) = u2. Then 

( 1  0.3) 

and similarly 

~ ( ~ 1 + . " + X , ) = n p ,  Var(X1 + . . . +  x , ) = n u 2 .  (1 0.4) 

Moreovel; E (S2)  = 02. 

Pro05 Formulas (10.3) and (10.4) can be found in Sections 8.4 and 8.7. The 
proof that E ( S 2 )  = o2 is very simple. Since E ( W 2 )  = Var(W) + [E(W)I2 for 
any random variable W,  and C(Xi - x)2 = Xp - n(x)2, we have 

E (c X:) - T L E ( ~ ) ~  = ,n[E(X:) - E ( x ) 2 ]  

= n[u2 + p2 - (u2/n  + p2) ]  = (n - 1)u2. 
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PROBLEMS 

10.1.1 Statistic Gk, defined fork = 1 , 2  as 

n n  

was proposed as a measure of variation by Jordan (1869). Show that G2 = 2S2,  
where S2 is given by formula (10.1). 

10.1.2 Let X I ,  . . . , X n  and Y1, . . . , Y, be two random samples from distributions 
with means p1 and p2, respectively, and the same variance u2. (i) Find E ( x  - y)  
and Var(X - y).  (ii) Assuming that p1 = p2 and both samples are of equal size, 
find n = m such that P( lX  - 71 > u / 4 )  5 0.05. 

- - -  
10.1.3 Let X 1 , X 2 , X 3  be sample means in three independent samples of sizes 
n1, n2, " 3 ,  respectively. Each sample was obtained from the N(p, 02)  distribution. 
Find the distribution of V1 = (1/3) (XI + x2 + Y3) and fi = w l x l  + ~ 2 x 2  + 
w3T3, where wi = ni(n1 + 722 + 123). 

10.2 DISTRIBUTIONS RELATED TO NORMAL 

The distributions that will be introduced in this section are of special importance 
in statistical inference. Their applications as sampling distributions of statistics ob- 
tained in random samples selected from the normal distribution will be discussed in 
later chapters. We start from the following theorem: 

Theorem 10.2.1 Let X1 , . . . , X n  be a random sample from the normal distribution 
N(p, u2).  Then 

(10.5) 
- X1 + . '  + Xn 
X =  

n 

and 

(10.6) 

are independent random variables with distributions N(p, u 2 / n )  and X Z - . ~ ,  respec- 
tively. 

Prooj There exist several ways of proving this theorem. We will use a multi- 
dimensional version of the method of finding the density of a function of random 
variables. 

Let us observe that 

n n n 
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since 2 C;."=,xi - Z)(Z - p )  = 2 ( 2  - p )  c:=,(xi - Z) = 0. Consequently, the 
joint density of (XI . . . , X,) can be written as 

(10.7) 

Using transformation 

xj  = z + v j J ; I ,  j = 1 , 2 1 . . . l n ,  (10.8) 

we obtain 

(10.9) 
j=1 j=1 

which means that two of the vj's are functions of the remaining ones. We therefore 
solve (10.9) for vn-l  and vn, obtaining two solutions: 

or 

where 

n-2 n-2 n-2n-2 112 
A = - C v k ,  B =  ( 2 n - 2 ~ v : - ~ ~ v ~ v j )  . (10.10) 

k = l  \ k=l k=l  1=1 / 

- Thus, to each vector (211,. . . , vn-2,x1 u)  with 
systems (XI, . . . , xn): 

> 0, there are two corresponding 

x j  = z+vjJ;I, j = 1 ,  . . . ,  n - 2  (10.11) 

and 

xj = ~ + v j & ,  j = I ,  . . . ,  n - 2  (10.12) 
A + B & ,  xn=z+-&. A - B  

2 
zn-l = T +  
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The Jacobian of transformation (10.1 1) is 

bil au 

bil 
avl 

2 . . .  

% . . .  
J =  

1 I 1  1 " ' 1  
1 

Since for transformation (10.12) the Jacobian is the same, but with the last two 
columns interchanged, the absolute value of the Jacobian for transformation (10.12) 
is the same as for transformation (1 0.1 1). We have here 

I J l  = u(n-3 ) /2h  ( u1 1 . .  . l  vn-21, (10.13) 

where Iz is some function whose exact form is not needed for our purposes. 
Substitution of new variables into (10.7), and multiplication by (10.13) gives the 

same joint density of vector (51, U, V,, . . . Vn-2) for transformations (10.1 1) and 
(10.1 l), namely 

u ( n - 3 ) / 2 , - 2 1 / 2 8 a e - ( n / 2 ~ 2 ) ( ~ - ~ ) a h ( 2 1 1  . . , 21n-2), 

(ff &)a 
9(% u1 2111 ' ' .  , vn-2)  = 

(10.14) 
Since the density (10.14) can be written as the product of densities 

ClU (n- 1)/2 - 1 e -21/2u2 x C2e-(7+u2)(-)a x c 3 h ( q 1 .  . . 7 1 n 4  

it  is now clear that the random variables U, x and (V, , . . . , Vn-2) are independent. 
An inspection of terms involving Z and u shows that after we adjust the constants, 
X has a N(pl a2/n)  distribution and U/a2 has a chi-square distributionwith n - 1 
- 

degrees of freedom. 0 

The most remarkable fact here is that x and U are independent, even though 
X appears explicitly in the definition of U .  This independence is characteristic for 
a normal distribution. We have the following theorem, which we leave without a 
proof: 

Theorem 10.2.2 Ij in a random sample XI . . . X ,  variables ? and U are inde- 
pendent, then the distribution of Xi ,  a = 1 . . . n, is normal. 

- 

We will now introduce the following definition: 
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Definition 10.2.1 Let 2 be a standard normal random variable, and let U be a chi- 
square distributed random variable independent of 2, with v degrees of freedom. 

Then the random variable n 

(10.15) 

is said to have Student’s t distribution with v degrees offreedom. 

The density of X will be derived following the steps outlined in Chapter 7. Start- 
ing from the joint density of Z and U ,  we add a “companion” variable Y to X ,  find 
the Jacobian of the transformation (2, u)  + ( x ,  y), and finally, find the density of X 
as the marginal in the joint density of X and Y .  

By the assumption of independence, the joint density of Z and U is 

u > 0. (10.16) 

Selecting Y = U as a companion variable to X, we have z = x- and u = y. 
The Jacobian equals J = m, hence the joint density of X and Y is 

The density (10.17), except for a constant, is a gamma density with parameters 
(m  + 1)/2 and (1/2)(1 + x 2 / m ) .  Thus, the marginal density of X is obtained 
by integration as 

(10.19) 

It is evident that the density (10.19) of the t, distribution is symmetric around 
IC = 0. When v = 1, we have cp(x) = K(l  + x 2 ) - l ,  which is the density of the 
Cauchy distribution (see Example 8.12). Observe that for u = 1, the Student’s t 
distribution has no mean (hence no higher moments either). For v > 1 and k < v, 
the kth ordinary moment of t ,  can be obtained as (see Problem 10.2.6): 

(10.20) 

where 2 has N(0,l) distribution. Consequently, we have E ( X )  = 0 and Var(X) = 
v / ( v  - 2)  for variable X with t, distribution ( v  > 2). 

When the number of degrees of freedom, v, increases, t ,  distribution approaches 
the standard normal distribution. 

Theorem 10.2.3 Student S t, distribution approaches the standard normal distri- 
bution N(0,l) when the number of degrees offreedom n increases. 
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Prooj The density of a t distribution with v degrees of freedom is proportional 
to the Droduct 

u -1/2 

[(I+$) ] x [ ( 1 + 3 ] - 1 / 2 .  

When v + 03, the first term converges to ( e z 2 ) - 1 / 2  = e - x z / 2  while the second 
term converges to 1. To preserve the integrability to 1, the constants must converge 

0 to l/&, and the limiting density is standard normal. 

Let XI, . . . , X, be a random sample from N ( p ,  a2) distribution. By Theorem 
- 10.2.1,xand cy=l(Xi-s?)2 areindependent,with f i ( s?-p) /o  andEy=’=,(Xi- 
X ) 2 / 0 2  having standard normal and chi-square distribution with n - 1 degrees of 
freedom, respectively. Consequently, the ratio 

- 
X - P  
WJSi 

=- (X - P ) / ( a / v w  - - d w  - P I  

dc:=,(xZ - X)2/(n - l)a2 JC:=,cxi - X)Z/(n  - 1) 
(10.21) 

has a Student’s t distribution with n - 1 degrees of freedom. As we will see in 
Chapters 12 and 13, the random variable (10.21) plays an important role in building 
schemes for inference on p. 

Table A3. gives upper quantiles for t distribution for selected numbers of degrees 
offreedom, where the upper quantile t a , ,  is defined by the relation P { X  2 to,,} = 
a ,  with X having the Student’s t distributionwith Y degrees of freedom (so that the 
upper a-quantile is a (1 - a)-quantile). 

The following definition introduces yet another distribution important in statisti- 
cal inference: 

Definition 10.2.2 If U and V are independent random variables with distributions 
x:, and &, respectively, then the random variable 

(10.22) 

is said to have Snedecor’s Fdistribution with u1 and u2 degrees offeedom, to be 

Let us derive the density of the random variable X. The joint density of U and 

denoted F,,,,, . 0 

V ,  in view of their independence, is 

for u > 0, u > 0. With Y = V as a companion variable, the inverse transformation 
(sly) + (u,u) is u = (v1/v2)zy, and = y so that the Jacobian equals J = 
(v1/u2)y. Thus, after substitutionto (10.23), the joint density of X and Y is 

Y”’ /2  
x ” l / 2 - 1  ( V l + V z ) / 2 - 1  e -(1/2)[~ls/vz+llY 3 

1 
* ( x ,  Y) = 

.;1/2 2 ( ~ 1  +vz r ( Y l  12 r ( Y 2 / 2 )  
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The marginal density of X equals, again using the fact that we can separate a 
gamma-type integral for y, 

- 
v1 v1/2x"l /2- 1 r ((v1 + .,)/2)2(V'+"2)/2 

u;1/22(u1 + v z ) / z r  (ul /2)r(v2/2) [Y1z/u2 + i p  +,2)/2 
- 

p / 2  4 2  xvl /2-1  - - r ( ( Y  +v2)/2)) 1 v2 
r (4 /2 )r (v2 /2) (ulx + y 2 ) ( , 1 + W 2  ' 

The upper quantiles of the F distribution can be found in Table A6. Since the 
distribution depends on a pair (u1,  v2) of degrees of freedom (see the margins of the 
table), each entry gives just one quantile for the corresponding numbers of degrees 
of freedom-the 5% upper quantile in Table A6a. and the 1% quantile in Table A6b. 
Quantiles of order 1% and 5% can also be obtained from these tables (see Problem 
10.2.2). 

PROBLEMS 

10.2.1 Let X - t,. Show that X2  has Fl,, distribution. 

10.2.2 Show that if x, is the a-quantile of a random variable X with an F,,,,, 
distribution, then l/xa is the (1 - a)-quantile of a random variable with an FvZlvl 
distribution. 

10.2.3 Let X, Y,  W be independent random variables such that X -N(O, I), Y -N( 1, 
l), and W -N(2,4), respectively. Use Table A6. to find k such that 

x2 + (Y - 1 ) 2  { X2 + (Y - 1)2 + (W - 2)2/4 

10.2.4 Let X1 - GAM(1, A), X2 - GAM(2, A), X3 N GAM(3, A) be independent 
random variables. Find constant a such that variable Y = aX1/(X2 + X3) has an 
F distribution. 

10.2.5 Show that variable a X / ( l  +ax), where X - F(u1,u2) and a = u1/v2, has 
a BETA(u1/2,~2/2) distribution. 

10.2.6 Derive formula (10.20). [Hint: Use formula (9.52) for the kth moment of a 
GAM(a, A) distribution and the fact that variables X and U in (10.15) are indepen- 
dent.] 

10.2.7 Derive the formula for E ( X k ) ,  where X - F(v1, vg). (Hint: Use similar 
approach as in Problem 10.2.6). 
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10.3 ORDER STATISTICS 

Let XI, X 2 , .  . . , X ,  be a random sample from continuous distribution with a cdf 
F and density f. We will consider random variables XI:,, X2:,, . . . , Xn:,, where 
Xi : ,  is the ith in magnitude among X I ,  X 2 , .  . . , X,. Thus 

X1:n I X2:n 5 ' '  5 Xn:n .  (10.24) 

Since variables Xi's are continuous, the probability of two observations being equal 
is zero, and therefore we can assume that all inequalities in (10.24) are strict. 

Definition 10.3.1 The random variables (10.24) are called order statistics of the 
sample X I ,  X z ,  . . . , X,, and for lc = 1, . . . , n, X k : ,  will be referred to as the lcth 
order statistic. 0 

In particular, the first order statistic, XI:,, is the minimum of the sample, while the 
nth order statistic, Xn:n , is the maximum. We will derive the joint distribution of all 
n order statistics, of two selected order statistics, and also the marginal distribution 
of any order statistic. We will start from the latter. Let Gk be the cdf of order statistic 
X k : n .  Then X k : n  5 t if at least k variables in the sample XI, X2,  . . . , X n  satisfy 
the inequality Xi 5 t .  The number of observations in the sample that satisfy Xi 5 t 
has a binomial distribution with probability of success p = F ( t )  = P ( X i  5 t ) ,  and 
therefore 

G k ( t )  = P { x k : ,  5 t }  = 2 ( y )  [ F ( t ) l r [ 1  - F(t)ln-'.  (10.25) 
r=k 

Two particular cases deserve attention here. If k = 1, we obtain 

G l ( t )  = P{X1: ,  5 t }  = 1 - P ( X 1  > t , .  . . ,  X ,  > t }  = 1 - [l - F(t) ln ,  

and if k = n, then 

Gn(t)  = P(X,: ,  5 t }  = P { X 1  5 t ,  . . . , X ,  5 t }  = [F(t)]"  

Differentiating with respect to t ,  we obtain densities 

g1(t) = n[l - F( t ) ln - ' f ( t )  and g n ( t )  = n[F( t ) ] " - ' f ( t )  (10.26) 

To find the density g k ( t ) ,  we differentiate (10.25) obtaining 
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All terms except one cancel in the last two sums. 

Theorem 10.3.1 The density of the kth order statistic is given by 

[F(t)]"'[l  - F(t )]" -k  f ( t ) .  
n! 

g b ( t )  = ( k  - l)!(n - k ) !  
(10.27) 

To find distributions of more complex functions of order statistics, one should 
start from the joint distribution of all order statistics given in the following theorem: 

Theorem 10.3.2 The joint density of  XI:,^ X P : , ~  . . . X,:, is given by 

The proof is very simple and will be omitted. The reader is urged neverthe- 
less to consider the case n = 3, draw a picture, and determine the partition of the 
three-dimensional space that accounts for the appearance of the factor 3! = 6 in the 
density. If n = 3 is too hard, we suggest to start with the case n = 2. 

The next theorem gives the density of a joint distribution of any two order statis- 
tics. 

Theorem 10.3.3 Let XI, . . . X ,  be a random samplefrom a continuous distribu- 
tion with density f and cdf F .  For any k < 1 and s < t. the joint distribution of 
Xk:n and X':, is given by the formula 

x - wn-9 (s)f(t) (10.29) 

and gk ,l ( s  , t )  = 0 otherwise. 

ProoJ: The density (10.29) is obtained by direct integration of the joint density 
0 (10.28) with respect to all yi such that i < k ,  k < i < 1, and i > 1. 

EXAMPLE 10.2 Distribution of the Range 

We present two different ways of deriving the distribution of a range R = 
Xn: ,  - XI:, of a random sample X I ,  . . . , X,. 

SOLUTION 1. The first solution consists of finding the joint distribution of 
XI:, and X,:,, and then determining the distribution of Xn:, - XI:, using 
techniques for transformations of random variables discussed in Chapter 7. 

For s < t ,  the direct application of (10.29) gives 

= n(n - l ) [ F ( t )  - F ( ~ ) ] " - ~ f ( ~ ) f ( t ) ,  

Since R = X,:, - XI:,, we can take the transformation r = t - s and its 
"companion" w = t .  Solving for t and s, we obtain s = w - r and t = w with 
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1 JI = 1. Thus the density of R is the marginal density for T > 0, 
05 

~ R ( T )  = Iw S~ , , (W - T ,  w)dw (10.30) 

+oo 
- n(n - l ) [ F ( w )  - F ( w  - ~ ) ] " - ~ f ( w  - r ) f ( w )  dw. 
- L 

SOLUTION 2. A more direct solution is to condition on one of the variables, 
say  XI:^. If X I : ,  = s, then the probability that the range is less than T is 
{ [ F ( s  + r )  - F ( s ) ] / [ l  - F ( s ) ] } " - l ,  since all remaining observations must 
fall between s and s + T .  The density of X I : ,  is given by (1 0.26) and therefore 

n-1 } x n[l - F(s ) ln - ' f ( s )ds  
[ F ( s  + 7,) - F(s)]"-' 

[l - F(sln-1 P { R S r }  = /:{ 
+oo 

n [ F ( s  + T )  - F(s)]"- ' f ( s )ds .  

Differentiation with respect to r gives the density of R, in a somewhat different 
form. 

= 1, 

It is clear that unlike variables X 1  . . . , X ,  in a random sample, order statistics 
 XI:,^. . . , X,:n are dependent variables. For example, Xi, ,  5 X j : n  for any 1 5 
a < j < n .  

EXAMPLE 10.3 

We will obtain correlation p of two extreme order statistics, X I : ,  and X,:,, 
in a random sample from U[O, 01 distribution. 

SOLUTION. To find p, we need the first and second moments of both variables 
X I : ,  and X,:,, and their covariance. Based on Example 6.15 and densities 
(10.26) we have 

E(Xi:,) = let (1 - i ) n - ' d t  = no (1  - w)w"-ldw 
e I' 

= -  ' e  
n + l  

(10.31) 

and 

n-1 

E(X,:,) = l e t  (:) dt = n0 undu = - n 0. (10.32) I' n + l  

Similarly the second moments are 

e 
E(X::,) = I t2g1 ( t ) d t  = 2 e t2  (1 - j) n-l d t  

(1 0.33) 
2e2 1 

= no2 (1 - w)2wn-1dw = 
(n  + l ) (n  + 2) 
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and 

(10.34) 
n-1 

0 

Consequently, 

no2 - O2 

(n  + 
--- 202 

(n  + l ) ( n  + 2) 
Var(Xl,,) = 

(n  + 1)2(n + 2 )  

and 

no2 
= Var(X1:,). no2 n2O2 - Var(X,,,) = - - - - 

n + 2 (n  + (n  + 1)2(n + 2 )  

The equality of variances should not be surprising. Since g1 (t)  = gn (6 - t )  
for 0 5 t 5 6, the variability in distributions of XI:, and Xn:, is the same. 
To find COV(X1:n, X,,,), we first obtain E ( X I : ~ X ~ : ~ )  using the joint density 

Based on formula (10.29), 

and consequently 

(10.35) 
6 2  e n6 6 2  

COV(X1:,, X,:,) = - - - x - - 
n+2 (n+1)  (n+1)  - (n+1)2(n+2)'  

Finally, 

(10.36) 
(n  + 1)2(n + 2) 1 

(n  + 1)2(n + 2 )  no2 n 
= -  

e2 - - 

The obtained result is intuitive. The correlation of XI:, and Xn:n decreases 
when the number of observations in the sample (sample size) increases. 

EXAMPLE 10.4 Theory of Outliers 

As another illustration of the use of order statistics, we will present basic def- 
initions and results of the theory of outliers proposed by Neyman and Scott 
(1971). 

An outlier is an observation that is sufficiently far away from the remain- 
ing observations to justify the suspicion that it results from an observational 
or recording error, or perhaps from a sudden undetected change of conditions 
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that made this particular observation obey different probability distributions 
than those obeyed by the remaining observations. What we present here is a 
theory of right outliers. The results for left outliers may be obtained by ob- 
vious modification. Thus we have a sample, 51, . . . , x,, with values of order 
statistics q:,, . . . , x,:, where x,:, is, in some sense, “too far away” from the 
rest of observations. The intuition of “being too far away” has been formal- 
ized in a number of ways in various approaches to the detection of outliers, 
typically in terms of relation of x,:, to the average and standard deviation of 
the sample. 

Neyman and Scott (1 971) proposed the definition based on order statistics. 
In what follows, we will always assume that n 2 3 and r > 0. 

Definition 10.3.2 The sample 21, . . . , xn contains an ( r ,  n)  right outlier, if 

5n:n - Zn-l:n > r(xn-1:n - x1:n). (10.37) 

0 

It is clear that if only x,:, # xn-1:,, the sample contains an ( r ,  n) outlier for all 

We will simply use the term outlier for the right outlier. 

T satisfying the condition 
Xn:n - xn-1:n 

5n-1:n - 51:n 

Intuitively the outlier in the usual sense is an ( r ,  n) outlier for ‘r large enough. 

Theorem 10.3.4 A random sample XI, . . . , X ,  from a continuous distribution with 
cdf F and dens@ f will contain an ( T ,  n)  outlier withprobability 

ProoJ Indeed, if we condition on XI:, = z and x,:, = y > x, then the sample 
will contain an ( r ,  n )  outlier if (10.37) holds, hence if 

y + r x  
r + 1  

x < X,-l:, < -, 

This event, in turn, occurs if n - 2 remaining observations lie between x and (y + 
r x ) / ( r + l ) ,  which occurs withprobability [F ((y + r x ) / ( r  + 1)) - F(x)]”-’. Mul- 
tiplying by the joint density of  XI:^, X,,,) and integrating, we obtain (10.38). 

Formula (10.38) allows one to compute the probability that an ( T ,  n) outlier will 
appear for a given F and n. One of the essential features that characterize situations 
in statistics is that the distribution F that governs the selection of the sample is 
not known. Typically we know only that the true F belongs to a certain family 
F of distributions. For example, the experimenter may know that the sample she 
observes was obtained from a normal distribution but not know the value(s) of the 
parameter(s). 

Accordingly we introduce the following definitions: 
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Definition 10.3.3 The family 3 of distributions is ( r ,  n) outlier resistant if 

sup n(r ,  71; F )  < 1 
F E 3  

(10.39) 

and is ( r ,  n) outlierprone if 

sup ~ ( r ,  n; F )  = 1. (10.40) 
F E 3  

Moreover, a family 3 of distributions is totally outlier resistant if condition (10.39) 
holds for all r > 0 and ‘n 2 3; it is called totally outlierprone, if condition (10.40) 
holds for all r > 0 and n 2 3. 0 

Among other results proved by Neyman and Scott (Neyman and Scott, 1971), 
we mention two theorems. One of them asserts that the family of all normal dis- 
tributions is totally outlier resistant. The other asserts that the family of all gamma 
distributions is totally outlierprone. ’‘ The practical consequences of these two theo- 
rems are as follows: On the one hand, if we have a sample 51, . . . , z,, from a normal 
distribution, we can find the largest r for which this sample contains an ( r ,  n) outlier. 
This r is equal to the ratio rf = - Z~-I:~) / (X, , - I : , ,  - ~ 1 : ~ ) .  We can then find 
the quantity (10.38) for 3 being a family of the normal distribution and r = r*.  If 
this quantity is sufficiently small, we have good reason to suspect that the element 
xnZn in the sample is a genuine outlier, in the sense of representing observations 
from a distribution other than that of the rest of the sample. This gives a practical 
procedure for the rejection of outliers. 

On the other hand, if we have a sample 21, . . . , xn from a gamma distribution, 
we can never reject the largest element as an outlier if our decision is to be based 
on the observed values only. To see this, suppose that we have data such as ~ 1 ~ 4  = 
0 . 5 ,  ~ 2 ~ 4  = 0 . 5 5 , 5 3 : 4  = 1, and 5 4 : 4  = 1,000,001. We cannot reject the observation 
1,000,001 as an outlier, since the probability of a configuration with the ratio 

= 2,000,000 5 4 : 4  - 5 3 : 4  

x 3 : 4  - 2 1 : 4  

or more has a probability arbitrarily close to 1 for some gamma distribution. More 
precisely, for every E > 0 there is a gamma distribution such that the probability of 
the configuration above exceeds 1 - E .  

Our conclusion that in practice one should never reject any sample element as an 
outlier if the sample is known to come from some gamma distribution is actually 
counterintuitive. Such a conclusion does unexpectedly provide a powerful argument 
for the Bayesian approach to statistics, but the point is that it seldom, if ever, happens 
that the statistician knows only that the sample comes from a gamma distribution. 
He usually has some idea about the parameters, based on his experience, imagina- 
tion, understanding of the situation, and so on. Such knowledge, vague as it may 
be, allows the statistician to regard some gamma distributions in the family 3 as 
“more plausible” than others, and perhaps even eliminate some members of 3 as 
impossible in the given situation. Now, if we restrict the family 3 to some gamma 

I6For further development of the suggested theory of outliers, see Green (1974,1976). 
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distributions only (by putting a bound on parameter a), then 3 is no longer totally 
outlier prone, and rejection of outliers becomes justifiable. 

PROBLEMS 

10.3.1 Determine the distribution of X I : ,  in a random sample selected from the 
EXP(X) distribution. 

10.3.2 Let X I ,  . . . , X ,  be a random sample selected from the U[O, 11 distribution. 
(i) Show that the distribution of X j , ,  is BETA(j, n - j + 1) for j = 1, . . . , n. (ii) 
Find the distribution of a sample median Xk+l:,, and obtain its variance if n = 
3,7 ,15 ,2k  + 1. Do you see any trend? 

10.3.3 Let X I ,  X2 be a random sample of size 2 from a continuous distribution 
with a median 6. (i) Find P(X1:z < 6 < X Z : ~ ) .  (ii) Generalize part (i) finding 
P(X1, ,  < 6 < X,,,) in a random sample of size n. 

10.3.4 Use results from Example 10.3 to determine Var(Xl:, - Xk:,, 1 > k,) in a 
random sample X I ,  . . . , X ,  from the U[O, 61 distribution. 

10.3.5 Let X I ,  . . . , X ,  be a random sample from the U[O, 11 distribution. Find 
sample size n such that E ( R )  = 0.75, where R = X,:, - XI:, .  

10.3.6 Let X I ,  . . . , X5 be a random sample from the BETA(2, 1) distribution. Find: 
(i) The density of a joint distribution of x1:5, X2:5, X45. (ii) E(Xz:51X4:5). (iii) 
The distribution of Y = x2:5/x1:5. 

10.3.7 Let X I , .  . . , X ,  and Yi, . . . , Y, be two independent random samples from 
the same continuous distribution with a density f. Show that P { X i , ,  5 t }  2 
P{ q:, 5 t }  for every t if and only if i 5 j .  

10.3.8 Find ~ ( r ,  n; Fo) when Fe is the U[O, 6'1 distribution. Find ~ ( r ,  n; 3) for the 
family 3 = {&}, 6' > 0. 

10.4 GENERATING R A N D O M  SAMPLES 

In various quantitative problems that are too complex to be studied mathematically, 
one can often use simulations to find an approximate solution. Such techniques of 
statistical sampling, known today as Monte Carlo methods, *' have been used in a 
very simple form (e.g., tossing dice) for centuries, but became a widely applicable 
formal methodology only with the invention of electronic computers in the middle 
of the 20th century. 

"Stanisiaw Ulam, a Polish born mathematician working with John von Neuman and Nicholas Metropolis 
on the Manhattan Project during World War 11, developed computer algorithms for statistical sampling. 
He also worked on transforming deterministic problems into random ones that could be solved by simu- 
lations. In his spare time Ulam investigated probabilities of winning a card game of solitaire, and that is 
how the new methodology got named after a famous casino. 
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Since then, with increasing computing power and easy access to technology, sim- 
ulations have become an important and powerful tool of modem statistics. Today 
complex statistical problems are often investigated based on generated random sam- 
ples from specific distributions that are easy to obtain even using available statistical 
software packages. We now introduce related concepts and explain the theory be- 
hind the Monte Carlo simulation process. 

To generate a random sample from any distribution, we first need to generate in- 
dependent observations from the U[O, 11 distribution. Over the last 40 years, several 
algorithms have been proposed and extensively tested, so the ones that we use today 
are of really good quality. However, “random number generators” are not really gen- 
erators of random numbers. They produce numbers that can be periodical but with 
periods much larger than we are able to detect, and therefore not affecting the qual- 
ity of our simulation process. The interested readers should consult some additional 
literature, such as Ross (2006). 

We will now discuss the random sample generation process, assuming that a good 
random generator of a U[O, 13 distribution is available. 

The following example will show how one can generate a random sample from a 
simple discrete distribution: 

EXAMPLE 10.5 

Let X be a Bernoulli random variable such that 

P ( X  = 1) = 1 - P ( X  = 0 )  = p = 0.2. 

To generate a single observation from this distribution we must first generate 
U ,  a single observation from the U[O, 11 distribution, and then transform it into 
x observation in a following way: 

1 if U 5 0.2 
x={ 0 otherwise. (10.41) 

To generate a random sample of size n, we simply need to generate a random 
sample U1, . . . , V,  from the U[O, 11 distribution and then transform each Ui 
into Xi in the way explained above. The transformation given by (10.41) is 
not the only one possible here. Other possibilities could, for example, be 

1 i f U > 0 . 8  or x={o 1 if 0.3 < U 5 0.5 
= { 0 otherwise otherwise, 

as long as P ( X  = 1) = 0.2. 
To generate a random sample Y1, . . . , Yn from the binomial distribution 

BIN(k,p), we will need k x n observations from the U[O, 13 distribution. 
Then we will transform each of them into the BIN(1, p )  according to (10.41) 
and obtain YI , . . . , Yn as 

i x n  

y ,= c xj 

j = ( z - l ) x n + l  
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for i = 1, . . . , k. Random samples from any distribution related to Bernoulli 
trials can be generated in a similar way. 

The next example shows how to generate values from other discrete distributions. 

1 EXAMPLE 10.6 

Let X be a random variable with a POI(X) distribution, in which P ( X  = x) = 
e-’XX/z!. After a value of random variable U is generated from U[O, 11, the 
value x of X is determined in a following way: z equals 0 when U 5 e-’, 
otherwise x is the only positive integer for which the inequality 

holds. 

To generate observations from continuous distributions with a cdf F such that 
F- l  has a closed form, we can apply Theorem 6.4.2, as illustrated by the following 
example: 

EXAMPLE 10.7 

To obtain a random sample XI,. , . , X, from the EXP(X) distribution, we 
have to generate a random sample U l ,  , . . , U, from U[O, 11 and for any i = 
1,. . . , n, take 

1 

x xz = -- log(1 - U ) ,  

since F;l(u) = -: log(1 - u)  is an inverse of the cdf Fx(z)  = 1 - e-’” 
for x 2 0. 

The generation that we just presented can also serve as a first step in gen- 
erating some distributions from a gamma family. By Theorem 9.4.1, variable 
Y = XI + ’ . + Xk, where variables Xi’s are independent and have the same 
EXP(X) distribution, will have a GAM( k, A) distribution. Therefore, to gener- 
ate Y1, . . . , Y,, we could start by generating a random sample Ui,  . . . , Unxk 

from U[O, 11 and then transform it into a sample X I ,  . . . , X n x k  to finally ob- 
tain a random sample Y1, . . . , Y,, where for any i = 1, . . . , n, 

i x k  

Unfortunately, this approach can be used only if the shape parameter in a 
gamma distribution is a positive integer. 

In general, there exist methods that can be used to generate all probability distri- 
butions with an invertible cdf that is not in a closed form. One of these techniques, 
called the Accept-Reject algorithm, is presented below. 
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The idea here is that the two observations are generated independently. One ob- 
servation, U,  is from the U[O, 11 distribution, and the other, Y,  is from a selected 
continuous distribution, which is easy to generate. If a certain condition is satisfied, 
the Y observation is ”accepted” as an X observation and included in a random sam- 
ple X I ,  . . . , X,. Otherwise, it is “rejected,” and the next pair (U,  Y) is generated. 
Pairs (U,  Y) continue to be generated until there are n observations X I  , . . . , X ,  in 
our random sample. 

To introduce the condition that makes some of the Y observations become X 
observations and to explain why the process is really valid, we start with a constant 
C, such that 

f b )  5 C!4Y)l (10.42) 

where f is the density of a distribution we are interested in (a “target” distribution), 
and g is a density of a “companion” distribution. The generated Y observation is 
“accepted” as an X observation if 

(10.43) 

otherwise, it is “rejected.” To validate the algorithm, we have to show that the dis- 
tribution of X is the same as a conditional distribution of Y under the condition 

Since 

we have 

(10.44) 

as was to be shown. 
Two questions still need to be answered here: Does it matter how the constant 

C is selected? And how many (U,  Y) pairs will have to be generated before we 
get XI, . . . , X,? From (10.44) it is clear that although any C < M that satisfies 
(10.42) can be used, the optimal choice is C = sup, fy(y)/g(y). Unfortunately, 
such C < M cannot be found for all distributions. In these cases one could use 
more advanced methods. The interested reader is referred to Ross (2006). 
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PROBLEMS 

10.4.1 Obtain a sample of size 6 from a POI(2) distribution based on following six 
independent observations from U[O, 11 distribution: 0.090907,O. 185040,O. 124341, 
0.299086,0.428996, 0.927245. 

10.4.2 Obtain a random sample of size 4 from a Pareto distribution with a density 
j ( z )  = (1 + E ) - ~  for z > 0 and 0 otherwise. Use the following random sample 
from U[O, 11: 0.187724,0.386997,0.182338,0.028113. 

10.4.3 The double exponential (or Laplace) distribution has a density given by the 
formula j ( z )  = (X/2)e-’IzI for -co < E < co, A > 0. Obtain a random sample 
from the Laplace distribution with X = 2 based on a random sample 0.744921, 
0.464001 from the U[O, 11 distribution. 

10.4.4 A generalized Laplace distribution has a density given by the formula 

(1 0.45) 

where X 1  > 0, A 2  > 0 .  Generate two independent observations from a generalized 
Laplace distributionwith p = 1/4, X 1  = 3 and X 2  = 1/2, based on a random sample 
0.647921,0.049055 from U[O, 11 distribution. 

10.4.5 Generate a random sample from the Gompertz distribution with survival 
function S( t )  = exp{ 1 - exp(2t)) using the following random sample from the 
U[O,l] distribution: 0.289365,0.228349,0.732889. 

10.4.6 Apply an Accepmeject method to the Laplace distribution with density 
(1.5)e-31zl to generate observations from a standard normal distribution. List the 
obtained values and specify how many of them you were able to obtain using the 
random sample of size 5 from U[O, 11: 0.222795, 0.516174, 0.847152, 0.466449, 
0.914370. Use the optimal choice of C. 

10.4.7 The Box-Muller transformation of two independent, uniform variables into 
two independent standard normal variables was presented in Theorem 7.4.1. An- 
other algorithm, proposed by Marsaglia and Bray (1964), is to generate U1 and U2 
as two independent observations from U[ -1,1]. If V = Uf + U; 5 1, then define 

otherwise, start the procedure again. Show that Z 1  and Z2 are independent and have 
an N(0 , l )  distribution. 

10.4.8 Kennedy and Gentle (1980) provide the following algorithm for generating a 
beta distribution: Generate U1 and Uz-two independent observations from the U[O, 
13 distribution. For a > 0 and p > 0 denote V1 = U p  and V2 = U!. According 
to the AcceptReject algorithm, let X = V I / ( V ~  + V2) if V1 + VZ 5 1; otherwise, 
start the procedure again. (i) Determine the distributionof a random variable X. (ii) 
Use this algorithm to generate a random sample of size 3 from BETA(0.732, 1.281). 
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10.4.9 Genest (1987) provides the following algorithm for generating random Sam- 
ples from the so-called Frank family of bivariate distributions: (a) Generate two in- 
dependent observations U, and U2 from U[O, 11. (b) Obtain T = aul +(a-au1)U2.  
(c) Let X = U, and Y = log,[T/(T + (1 - a)&)],  where a > 0, a # 1. (i) Show 
that the bivariate cdf of Frank’s distribution has the following form: 

(ii) Generate one observation of ( X ,  Y )  based on two independent observations from 
U[O, 11: 0.548291 and 0.179112. Use a = 4. 

10.5 CONVERGENCE 

Several limit theorems were already encountered in past chapters. Before proceeding 
with a systematic exploration of the topic, we recall them briefly. First, on several 
occasions we looked at the differences between sampling with and without replace- 
ment, and noted that these two schemes of sampling become closer one to another 
“as the population becomes larger.” Second, we proved the Poisson approximation 
theorem, which asserts that as n becomes larger and p becomes smaller, the bino- 
mial and Poisson probabilities of the same events become close. Finally, in Chapter 
5 we showed that (under some conditions) as the number of transitions of a Markov 
chain increases, the probability of finding the system in a given state approaches a 
limiting value. 

The common feature of these theorems was that in each case the probabilities 
of certain events-or, more generally, distributions of certain random variables- 
approached some limits with the appropriate change of one or more parameters. 
Typically the parameter is an index of some sequence, such as sample size n, but the 
case of Poisson approximation shows that it can also be a simultaneous change of 
two parameters that drives the probabilities to their limiting values. 

In addition to the limit theorem mentioned above, we have encountered a different 
kind of limit theorem, exemplified by the law of large numbers (Example 8.56). 
There we had convergence not only of the distributions but of the random variables 
themselves. 

To grasp the difference between those two classes of situations, observe that one 
can study convergence of a sequence of distributions { F,} without considering any 
random variables. On the other hand, if X I ,  X 2 ,  . . . is a sequence of independent 
random variables with the same distribution F ,  then the sequence { F,} of their 
distributions clearly converges to F, but we cannot expect any regularity in behavior 
of the sequence { X n } .  

In what follows, we consider a sequence &, (2,  . . . of random variables defined 
on the same sample space S with 0-field 3 of events, and probability measure P 
on S. Our first objective will be to distinguish various possible modes in which 
sequence { E n }  can converge, and discuss their interrelationships. To connect the 
analysis with subsequent statistical concepts, it is worthwhile to start from some 
examples of sequences {C} that arise in statistical research and practice. 
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EXAMPLE 10.8 

One of the most common situations in statistics is when we have simple ran- 
dom samples. This means that we observe the beginning of a sequence of 
independent and identically distributed (iid) random variables XI, X 2 ,  . . . . 
Depending on the goal of analysis, given the observations XI, . . . , X n ,  the 
statistician computes the value of some statistic tn = H(X1, . . . , X,) and 
uses In as means of inference. The behavior of the sequence { E n }  as n in- 
creases tells the statistician to which extent it would be worthwhile to increase 
the sample size n. 

We begin with the definition that captures the type of convergence encountered 
in the law of large numbers (Theorem 8.8.3). 

Definition 10.5.1 The sequence {t,} converges in probability to a constant c if for 
every c > 0, 

lim P{ Itn - cI 2 E} = 0. (1 0.46) 

More generally, we say that { tn} converges in probability to a random variable [ if 
for every c > 0, 

lim P{ Itn - <[ 2 c }  = 0. (10.47) 

Convergence in probability, especially to a constant, is often called a stochastic con- 

n-w 

n-w 

vergence. 0 

The meaning of (10.46) is that as R increases, it becomes less and less likely that 
En will deviate from c by more than E .  In (10.47) the interpretation is the same, ex- 
cept that the constant c is replaced by a random quantity. So written more explicity, 
(1 0.47) reads 

lim P { s  : [tn(s) - t(s)l 2 c }  = 0. 
n 4 w  

P We will use the symbol --+ to denote convergence in probability. 

EXAMPLE 10.9 

The law of large numbers proved in Section 8.8 asserts convergence in proba- 
bility of empirical frequencies of an event. Such theorems (asserting conver- 
gence in probability of averages of random variables) are called weak laws of 
large numbers (WLLNs), to distinguish them from strong laws of large num- 
bers. discussed later. 

Laws of Large Numbers 

For instance, in the case of a Bernoulli distribution we have the followingrephras- 
ing of Theorem 8.8.3: 

Theorem 10.5.1 rfSn has binomialdistribution BIN(n, p ) ,  then 

s n  P - + p .  
n 
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A stronger type of convergence of sequences of random variables is given in the 
following definition: 

Definition 10.5.2 Let El,  &, . . . be a sequence of random variables defined on some 
probability space (S, F, P). If lim[,(s) = [(s) exists for all points s E U where 
P ( U )  = 1, then we say that (, converges to almost everywhem (a.e.), almost 

0 surely (as.), or withprobability 1. 

The following theorem is given without proof: 

P Theorem 10.5.2 If[,, -+ E a.s.,  then En --t E .  

The converse to Theorem 10.5.2 is not true, as illustrated by the next example. 

EXAMPLE 10.10 

Let (1, [ 2 , .  . . be independent random variables, such that P{(, = 1) = 
l / n ,P{E ,  = 0) = 1 - l / n .  Thus, if 0 < E < 1, then P{1{,l 1 c} = 
P{( ,  = 1) = 1/n -+ 0, which shows that the sequence {&} converges 
to 0 in probability. For any sample point, the sequence { E , ( s ) }  is simply a 
sequence of 0’s and l’s, and in order to converge to 0, there must be only a 
finite number ofterms equal l(i.e., all terms must be 0, starting from some N ) .  
But letting A,, = {En = l}, we have c P(A, )  = c 1/n = 00, and by the 
second Borel-Cantelli lemma (Theorem 4.5.5) we know that with probability 
1 infinitely many events A,  will occur. Thus P{<, converges} = 0, which 
shows that convergence in probability does not imply a s .  convergence. 

Theorem 10.5.3 The sequence {En} of random variables 5 converges a.s. to a ran- 
dom variable ( i f  and only iff r every k = 1,2,  . . . , 

1 
N + W  k 
lim P{ I& - [ I  2 - f o r  some n 1 N }  = 0, (1 0.48) 

or equivalently, 
1 

N+W n>N k 
lim P{ sup itn - [ I  2 - }  = 0. 

We will now use (10.48), together with the Kolmogorov inequality (Theorem 8.8.5), 
to prove the sufficiency part of Kolmogorov’s three series theorem. This theorem 
provides conditions for the a s .  convergence of the series c,”=, Xj of independent 
random variables X I ,  Xp,  . . . . 

We will also introduce the method of truncation, a powerful technique of handling 
limits of sequences of random variables. If X is a random variable and c > 0, we 
define the truncation of X at c as a random variable Y = Y c ,  defined by 

Observe that Y is a bounded random variable, so E ( Y )  and (Y) both exist. We have 
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Theorem 10.5.4 (Kolmogorov Three Series Theorem) Let X I  , X Z ,  . . . be a sequence 
of independent random variables, and let Y, be the truncation of X ,  at level c > 0. 
Then Crzl X ,  converges a s .  ifand only iffor some c > 0 ,  

(a) Cr='=, P{IXnI > C} < 00. 

(b) CT=p=, E(Yn) < 00 

(c) C,"==, Var(Yn) < 03. 

Proof. As mentioned, only the sufficiency of conditions ( a x c )  will be shown; 
the proof of necessity is beyond the scope of this book. 

Let us fix N ,  k, and n > N ,  and consider the sums 

j = N  

for T = N ,  . . . , n. By the Kolmogorov inequality (8.57), we have 

Letting n - 03, we have 

In view of (c), the right-hand side converges to 0 as N - 00 for every fixed k. 
By Theorem 10.5.3, the sequence CZl (5 - E(  Y,.)) ,  n = 1 , 2, . . . , converges a s .  
Since EL='=, E(Y,) converges (condition b), we infer that Czl converges a s .  
To complete the proof, observe that P{lX,l > c }  = P { X ,  # Y,}. In view of 
condition (a) and the first Borel-CanteIli lemma (Theorem 2.6.2), with probability 1 
only finitely many terms Y, will differ from terms X,. Consequently, C X, and 
Y, will a.s. differ only by a finite quantity, and since C Y, converges, so does 

C Xn. 0 

EXAMPLE 10.11 

For the harmonic series we have 1 + 3 + 4 f .  . = 03. With alternating signs, 
we have 1 - f + 5 - a + . . . = 4. What if the signs are allocated at random, 
by a flip of a fair coin? In other words, we ask about convergence of the series 

x1 + x2 + x3 + ' ' '  1 

where X, assumes values *l/n with probability 1/2 and X,'S are indepen- 
dent. Taking c = 2, say, we have Y, = X, for all n, and all terms of 
the series (a) in Theorem 10.5.4 are zero. Next we have E(Yn) = 0 and 
Var(Y,) = E(Y,) = l/n2. Thus all three series (a)-(c) converge; hence 
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C X, converges a s .  In other words, the probability is zero that random signs 
+ and - in the harmonic series will come out so unbalanced as to make the 
series diverge. 

Observe that this in not only the question of “balancing” the numbers of 
positive and negative signs. Indeed, the series C l / f i  diverges, and the se- 
ries x en/&, where en’s are independent and 6, = 51 withprobability 1/2, 
also diverges a.s.-since in this case the series (c) of variances diverges. 

The third important type of convergence is the following: 

Definition 10.5.3 Let t o ,  E l ,  (2, . . . be a sequence ofrandom variables, and let F,(t) = 
P{J ,  5 t } ,  n = 0,1,2, .  . . , be their cdf‘s. The sequence {t,} converges in distri- 
bution to t o  if 

lim Fn( t )  = Fo(t) 

for every t at which Fo(t) is continuous. In this case we can write En -+ t o .  Alter- 

n+m 

d 

natively, we will use the symbol F, Fo. 0 

Before presenting the theorems characterizing convergence in distribution, we 
will make some comments, that can help clarify the motivation and intention of this 
concept. 

First, observe that convergence in a distribution does not imply anything about 
the behavior of random variables. For instance, if the variables t o ,  (1, . . . are inde- 
pendent and identically distributed (iid), then & ( t )  = Fo(t) ,  so Sn -+ t o ,  but we 
cannot expect any regularity in behavior of the observed values of random variables. 
Since we require only convergence of the distribution functions, we do not need to 
have any specific random variables In in mind. This is the reason behind the dual 
notation in Definition 10.5.3. 

The second question concerns the reasons for requiring the convergence of Fn ( t )  
to Fo(t) only at points of continuity of FO (and not at all points). The explanation has 
to do with the special role played by discontinuities of cdf‘s. Consider a sequence 
of degenerate random variables (i.e., constants), defined as En = 1/71; n = 1,2, . . . , 
and Jo = 0. Obviously here lim& = ( 0  in the “usual” sense (of convergence of 
observed values of Jn to t o ) ,  and we can choose to cover this case by the definition 
of convergence in the distribution. 

d 

We have here 

and 

For any t # 0 (where FO is continuous), we have l imFn(t)  = Fo(t) .  However, 
at t = 0 we have Fo(0) = 1, while F,(O) = 0 for all n. Observe that if we put 
Jn = -l/n, then Fn(t)  will converge to Fo(t) at all points t ,  including t = 0. 

We now present some theorems that connect the three types of convergence in- 
troduced above, and also some criteria for convergence in a distribution. 
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Theorem 10.5.5 (Slutsky) I fEn and qn are the sequences of random variables such 
that En - qn + 0 and vn + (, then En + t. P d d 

Proof: Let F be the cdf of 6, and let F, be the cdf of E n .  Let t be a continuity 
point of F ,  and let E > 0 be such that t + E and t - E are also continuity points of F .  
We write 

FnO) = 

I 
P{En i t }  = P { t n  I t ,  ltn - qnl < E }  + P{tn  I t ,  /En - qn/ 2 E }  

P{qn i t + E }  + P{ I En - qn / 2 E } .  

By similar reasoning we obtain 

P{qn i t - E }  i Fn(t)  + P{IEn - qnl 2 E } .  

As 12 + W, P{qn 5 t * E }  + F ( t  z t  E ) ,  and P{IEn - qnl 2 c }  -+ 0 by the 
assumption of the theorem. Consequently, 

F ( t  - E )  5 liminf Fn(t)  5 limsup Fn(t)  5 F ( t  + E ) .  

Since E > 0 is arbitrary (subject only to the condition that F is continuous at &E),  
we must have 

lim Fn(t)  = F ( t ) ,  
n-+m 

as was to be shown. 0 

Taking qn = (', n = 1 , 2 ,  . . ., we obtain the following: 

P Theorem 10.5.6 gEn + t, then En 3 E.  

we also have 

Theorem 10.5.7 If&, -+ (a.s., then En + <. 
Although, as already explained, convergence in distribution does not imply con- 

vergence in probability, such implication holds in the case where the convergence is 
to a constant. We have 

Theorem 10.5.8 If&, -+ c, then En + c. 

Since we already know that convergence a s .  implies convergence in probability, 

d 

d P 

d Proof: The condition En -+ c means that { E n }  converges in distribution to a 
random variable such that P{[  = c} = 1. Consequently, letting again Fn(t)  = 
P{En 5 t } ,  we have Fn(s )  -+ 0 for all s < c and Fn(z)  -+ 1 for all z > c. 
But this means that P { / t n  - c/ > E }  = P{& < c - E }  + P{En > c + E }  = 
Fn(c - E - 0 )  + [l - Fn(c + E ) ]  + 0 for every E > 0, which is what was to be 
proved. 

We shall state now a theorem that shows the extent to which one is allowed to 
carry the algebraic manipulations on sequences converging in distribution and in 
probability. 
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Theorem 10.5.9 If[,, a,, and p,, are sequences of random variables such that 

[n -+ [, a n  -+ (Y, pn -+ p, where (Y and p arejnite constants, then 
d P P 

a n t ,  + pn 4 a{+ P ,  
In particular, we have here the following corollary: 

Corollary 10.5.10 r f E n  -+ <, anda, b, a,, b, are constantssuch that a ,  -+ a,, b, + 

b, then 
an[, + bn ---t a[ + b. 

d 

d 

The following theorem, which we state without proof, will serve as one of the 
main tools in proving convergence in distribution to normally distributed random 
variables: 

Theorem 10.5.11 Let En, n = 1 , 2 , .  . . , and [ be random variables, such that their 
moment generating functions m,(t) and m(t)  exist. Then [, -+ [ gand only if 
m,(t) -+ m(t) for every t in some intervalaroundthe point t = 0. 

The actual use of Theorem 10.5.11 will be based, in most cases, on the assump- 
tion of the existence of moments and the corresponding Taylor expansion of the 
mgf's. 

Theorem 10.5.12 Let the random variable X have moment generating function 
m(t). Assume that E(IXik)  < 00 for some k, and let mj = E ( X j )  for j = 
0,1, .  . . , k. Then 

d 

(10.49) 

where o( l t lk)  issomefirnctionsuch that o(ltlk)/ltlk -+ Oas t -+ 0. 

Taylor expansions. Recalling from Theorem 8.5.3 that 
Pmoj The proof consists of using the well-known theorem from calculus on 

0 

The following theorem states another fact known from calculus: 

Theorem 10.5.13 If{cn} is a sequence of numbers such that limn+w cn = c, then 

lim (1 + F), = ec.  

As an illustration of applicability of Theorem 10.5.11, we sketch a proof of The- 
orem 8.8.3 (law of large numbers in the Bernoulli case). We know from (8.23) that 
the mgf of the binomial random variable S, is mS, ( t )  = Eetsn = ( 4  + pet),. 
Using the fact that mS, ,, (t)  = m ~ ,  ( t l n ) ,  we have 

n-a, 
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The last step consists ofusing Theorem 10.5.13 with 

cn = p t  + P t 2  - + . ‘ .  + p t .  
2n 

We showed that the moment generating hnction of S,/n converges to the moment 
generating function of random variable equal identically to p for every t (hence also 
in some neighborhoodof t = 0). Theorem 10.5.1 1 allows us to infer that Sn/n  -+ p ,  

and by Theorem 10.5.7, we have Sn/n + p .  

d 

P 

Weak Laws of Large Numbers 

We will now prove some of weak laws of large numbers using the Chebyshev in- 
equality (Theorem 8.8.1). 

Theorem 10.5.14 Let X I ,  X2 ,  . . . be a sequence of iid random variables. Assume 
that E ( X i )  = p andVar(Xi) = u2 > 0. Then for every 6 > 0, 

lim P = 0. 
n+m n 

(10.50) 

Proof: Based on the Theorem 10.1.1 

n n 

Applying the Chebyshev inequality to variable ( X I  + . . + X n ) / n ,  we obtain 

(10.51) 

which converges to 0 as n - w. 0 

This theorem confirms, in some sense, our belief in the “law of averages”: for- 
mula (10.51) tells us that if we take the averages ( X I  + . . . + X n ) / n  of larger and 
larger numbers of observations (of some phenomenon, described by random vari- 
able X ,  whose “copies” XI, X2,  . . . are being observed), then it becomes less and 
less likely that the average ( X I  + . . . + X n ) / n  deviates by more than E from the 
“true average” p = E ( X ) .  

This assertion of Theorem 10.5.14 constitutes, to a large extent, the basis of the 
common understanding why “statistics works,” that is, why increasing the number 
of observations pays off in the form of being able to make a better inference about 
some quantities. 

The generality of the assertion of Theorem 10.5.14 is in stark contrast with nar- 
rowness of the assumptions specifying that X I ,  X2 ,  . . . are iid random variables. 
The importance-practical and cognitive-of assertion (1 0.50) makes it worthwhile 
to analyze to which extent that assumption of Theorem 10.5.14 can be relaxed. 

The hll answer lies beyond the scope of this book. We will, however, analyze the 
question of to which extent the assumptions can be relaxed under the present proof, 
based on the Chebyshev inequality. 
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First, let us observe that we did not h l ly  utilize the assumption that Xi's have the 
same distribution. In fact we used only a special consequence of this assumption, 
namely the fact that E(Xi) = p and Var(Xi) = up are the same for all i. Thus we 
can drop the requirement that Xi's be identically distributed, as long as we retain the 
stationarity of the mean and variance. To use the example ofmeasurement, we could 
take measurements of the same quantity p with different measuring instruments or 
methods, provided that E(Xi)  = p and Var(Xi) = g2 (such measurements are 
called unbiased and having the same precision). 

But even the requirement that E ( X i )  = p is not necessary: when E(Xi )  = pi, 
relation (10.50) can be replaced by 

(10.52) 

which is the same as 

where Vi = Xi - pi is the deviation of the ith random variable from its own mean. 
Next, an inspection of the proof of Theorem 10.5.14 shows that it is not necessary 

that variances all be equal. What is required is that the variance of the average 
(XI + . . . + Xn)/n decreases to 0 as n increases. We can therefore formulate the 
following version of the law of large numbers: 

Theorem 10.5.15 Let X I ,  X2,. . . be iidrandom variables, with E(Xi) = pi and 
Var(Xi) = CT?. r f  

1 "  
lim - x u ?  = 0, 

n--tm n2 i=l 

> 0. then relation (10.52) holds for every 

(10.53) 

Let us now see to what extent it is possible to relax the assumption of inde- 
pendence. Again, an inspection of the proof of Theorem 10.5.14 shows that the 
property which was used is the additivity of variance, specifically the fact that 
Var(XI+ . . . + Xn) = r ~ f  +. ' + 0:. But this property holds under the assumption 
that the random variables are uncorrelated. 

Finally, let us observe that even the latter condition can be relaxed: what we really 
need to make the proof valid is that (l/n2)Var(X1 + . . . + X,) -+ 0. This in turn 
is implied by the assumption (10.53) in the case where all covariances are zero or 
negative. We therefore have 

Theorem 10.5.16 Let X1 , Xp, . . . be random variables with E(Xi) = pi and a; = 
Var(Xj), andsuch that Cov(Xi, Xj) 5 0 for i # j ,  satisfying (10.53) as n + 03. 

Then for every c > 0 ,  

as n -+ 03. 
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This is as far as we will go using the techniques of proofbased on the Chebyshev 
inequality. It is of some interest that in the case of identical distributions one can 
prove a weak law of large numbers without the assumption of existence of variance. 

Theorem 10.5.17 Let X I ,  X2 ,  . . . be asequence of iidrandom variables with E ( X i )  = 
pl andsuch that their common mgfexists in some neighborhoodof t = 0. Then the 
relation (10.50) holds. 

Proof From Theorem 10.5.7 it follows that it is enough to show that ( X I  + 
. . + X n ) / n  --+ p,, and therefore (Theorem 10.5.1 1) that rns,/,(t) --+ ePLt in some 
neighborhood of t = 0. 

Letting m(t) = EetX,  we have ms,ln = [m(t/n)]",  since Xi's are iid. The 
existence of p = E ( X )  implies the existence of the derivative m', and the relation 
m'(0) = p. Then the Taylor expansion of m(t) is m(t) = 1 + pt + o(It1) (see 
Theorem 10.5.12) so that 

d 

Tocomplete the proof, it suffices touse Theorem 10.5.13 for cn = p t+no( ) t l / n )  + 

Pt .  0 

Comment. Observe that the assumption of existence of an mgf is not necessary 
for the validity of the theorem. The proof of this strengthened version requires noth- 
ing more than replacing moment generating functions with characteristic functions. 
All the steps of the proof remain unchanged. 

Strong Laws of Large Numbers 

The strong laws of large numbers (SLLNs) are theorems that assert almost sure 
convergence of sequences of random variables obtained by averaging some under- 
lying sequences of random variables. We will prove here two such theorems, both 
due to Kolmogorov. 

Theorem 10.5.18 Let X I  X 2 , .  . . be independent, with E X i  = pi ,  X i  = 0,". If 

then 
. n  

(10.54) 

Proof: To simplify notation, let S, = c;==, X i  and mn = cy=l pi .  For a fixed 
c > 0 let 

1 
2 " - ' ~ n < 2 ~  n 

c ~ C =  { max -1Sn-mnl 2 6 
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To prove the theorem, it suffices to show that c P ( c k )  < 00, since then, by the 
Borel-Cantelli lemma (Theorem 2.6.2), only finitely many events c k  will occur as . ,  
which implies (10.54). 

If c k  occurs, then at least one of the inequalities 

IS, - E(S,) l  2 en 2 ~ 2 ' - l ,  n = 2k-l  + 1, .  . . , 2 k ,  

occurs. By the Kolmogorov inequality (Theorem US), we obtain 

We can therefore write 

since 

We will now prove another strong law of large numbers, also due to Kolmogorov, 
that covers the iid case. 

Theorem 10.5.19 Let X I ,  X 2 , .  , ,be iidrandom variables, andlet S, = X I + .  .+ 
X , .  r f p  = E ( X i )  exists, then S,/n + p a.s. 

Proof: Let us truncate the random variables { X , } ,  by letting 

We have 

W W 

by the assumption that E ( X 1 )  < cc and since x k  has the same distribution as X I .  
Thus the inequality x k  # Yk will occur a.s. only a finite number of times, and it 
suffices to prove that ( l l n )  Yk -+ p a s .  To this end, we will use Theorem 
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10.5.19, proved above. We let ~2 = Var(Yk) I E(Y:). Therefore we can write 

W 

I C ~ J  (x ldF(x )  = c s_, ( x ldF(z )  < 00. 
j=1 j - l < l z / < j  

We use the estimate 1/j2 + l/(j + 1)2 +. . < C/j  valid for some C. It follows that 
( l /n)  c;=l[Y, - E(Y,)] + 0 a s .  But E(Yj)  + E ( X 1 )  = p as j + 00; hence 
also (l/n)[E(Yl) + . . . + E(Y,)] + p. Then we must have 

1 ,  - xq + p as. ,  
j=1 

which completes the proof. 0 

PROBLEMS 

10.5.1 Let X1 . . . X, be a random sample from a POI(X) distribution. Show that 
- 

e-xn 5 P ( X 1 =  0). 

10.5.2 Let 21 . . . 2, be a random sample from N(0,l)  distribution. Find the lim- 
itingdistributionof Y, = c Z l ( Z i  + l/n)/J?I. 

10.5.3 Let XI, . . . X, be a random sample from distribution with cdf F ( z )  = 
1 - x F 2  for 1 I z < 00, and 0 otherwise. Find the limitingdistributionof: (i) XI:,. 
(ii) X;,. (iii) X,:,/J?I. 

10.5.4 Let X1 I . . . X, be a random sample from continuous distribution with a cdf 
F .  Find the limitingdistributionof: (i) U, = nF(X1:,). (ii) W, = n[l-F(X,:,)]. 
(iii) V, = nF(Xs:,) .  

10.5.5 Let X1 , . . . , X, be a random sample from a logistic distribution with a cdf 

F ( z )  = 1/(1 + e-z)l and let V, = X,:,, Then V, --f 00, but V, - logn converge 
to a limiting distribution. Find P{ (V, - 

P 

P{ V, - log n 5 0) and 
logn/ 5 1). 

10.5.6 A random variable has a Pareto distributionwith parameters a ,  b (a  > 0, b > 
0) if its density is 

a 
,x > 0. f (x; a1 b) = b ( l  + x/b)a+l 
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Let XI, . . . X, be a random sample from the Pareto distributionwith density f(z; 1,l). 
(i) Find the limiting distribution of random variable U, = n X l Z n .  [Hint: Find cdf 
F(x) of X i ,  and then determine cdf of U, in terms of F(x).] (ii) Show that V, = 
Xn: ,  does not have a proper limiting distribution; specifically, limn-m P{ V, 5 
t }  = 0 for every t .  (iii) Find the limiting distribution of V,/n. 

10.6 CENTRAL LIMIT THEOREM 

The term central limit theorem (CLT) is a generic name used to designate any the- 
orem that asserts that the sums of large numbers of random variables, after stan- 
dardization (i.e., subtraction of the mean and division by standard deviation), have 
approximately a standard normal distribution. 

As suggested by the adjective central, the search for conditions under which sums 
of a large number of components have an approximate normal distribution has been 
(and to a large extent still is) one of the leading research topics in probability theory 
for the last 200 years or so. We begin with the simplest case of iid sequences. 

Theorem 10.6.1 (Lindeberg and Levy) Let X I ,  X2 ,  . . . be a sequence of iid ran- 
dom variables with E ( X i )  = p andVar(Xi) = u2? where 0 < u2 < m. Then, 
letting S, = XI  + . , , + X,, for  every x 

ProoJ: Observe that E(S,) = n p  and Var(S,) = nu2, so the left-hand side of 
(10.55) is simply the limit of the cdf's of the standardized sums 

The right-hand side is the cdf of a standard normal random variable, denoted @(x). 
Thus the theorem asserts that the cdf's of S; converge to @(x) for every x, hence 
at every point of continuity of a(.). Letting 2 denote the standard normal random 

variable, Theorem 10.6.1 asserts that SG + 2. 
When an the assertion is phrased in this way, it should be clear that a possible 

strategy of the proof is to use a moment generating function and Theorem 10.5.11. 
Let mx(t )  be the common rngf of random variables X i  (assumed to exist). The 
existence of the first two moments suggests applying a Taylor expansion. We have 

d 

so that 

Now 
2 

E ( y ) = O ,  E ( y )  = 1  

(10.56) 

(10.57) 
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so that 
t2 

m(x+lo ( t )  = 1 + - + o( t2) .  
2 

Consequently, using (10.56), we obtain 

t2 t 2 / 2  + n o ( t 2 / n ) ]  
ms; = [ l + m + O ( ; ) ] n =  [ I +  n 

By Theorem 10.5.13, for c, = $ + n o ( $ )  + $ we obtain 

which completes the proof in the special case where the underlying random vari- 
ables Xi have mgf's. For the general case, see the comment following the proof of 
Theorem 10.5.17. 

EXAMPLE 10.12 

Suppose that you buy a supply of 20 household batteries to be used for some 
specific purpose, one after another. Assume that the lifetime of each such bat- 
tery is a random variable with a mean of 2 weeks and a standard deviation of 
3 days. The batteries are replaced as needed, and the batteries that are unused 
do not keep on aging. What is the (approximate) probability that the supply 
ofbatteries will last more than 9 but less than 10 months? (i.e., more than 270 
and fewer than 300 days?). 

SOLUTION. The question here is about the probability that ,920 = XI + . + 
X20 satisfies the inequality 270 < S20 < 300. We have n p  = 20 x 14 = 280 
and o f i  = 3 x = 13.4. Thus 270 < S20 < 300 occurs if and only if 
(270 - 280)/13.4 < S,lo < (300 - 280)/13.4, (i.e., if -0.75 < Sio < 1.49). 

For 2 - N(0, l )  we have 

P(270 < S20 < 300) N 

= 

P{-0.75 < 2 < 1.49) = a(1.49) - @(-0.75) 

0.9319 - 0.2266 = 0.7053. 

Theorem 10.6.1 is a generalization of the oldest central limit theorem, due to 
Laplace, covering the binomial distribution. 

Theorem 10.6.2 (Laplace) r f  S, has a binomial distribution B M ( n ,  p ) ,  then for 
any 21 2 2 ,  

= Q(22)  - @(z1), (10.59) 

where A,  = n p  + z l m ,  B, = n p  + z 2 m .  
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ProoJ If Sn is the number of successes in n independent trials, each with proba- 
bility of success p ,  then S, = XI + - . . + X,, where P{ Xi = 1) = 1 - P{ Xi = 
0 }  = p ,  z = 1,2,. . . , n. Consequently, E(Sn) = n p  and Var(Sn) = n p q  so that 

Suppose now that we want to find P { a  5 Sn 5 b}. According to Theorem 
10.6.2, for large n we have 

(10.60) 

a - n p  

b - n p  

P { U <  Sn 5 a} = P - { m -  
a - n p  

However, approximation (10.60) can be improved somewhat if we observe that in 
the present case S, is an integer-valued random variable, and for integers a and b 
the exact expression is 

b 

P{a 5 sn 5 a} = C P { S n  = j } .  (10.61) 

Each term on the right-hand side of (10.61) can be approximated by an area under 
the normal curve between ( j  - 0.5 - n p ) / m  and ( j  + 0.5 - n p ) / m .  

Adding such approximations, the terms for neighboring j cancel, and we obtain 
the following formula: 

j =a  

P{" 5 s, 5 b }  = @ ( b  +& n p )  - @ ( a  - 0.5 - n p  ) (10.62) m 
for any integers a 5 b. 

EXAMPLE 10.13 

A fair coin is tossed n = 15 times. Find the approximate probability that the 
number S15 of heads will satisfy the inequality 8 5 S15 < 10. 

SOLUTION. Observe first that the inequality 8 5 S15 < 10 is the same as 
8 5 S15 5 9. Since n p  = 15 x 0.5 = 7.5, = J15 x 0.5 x 0.5 = 1.94, 
the approximation (1 0.58) gives 

(9 + 0.5 - 7.5) - (8 - 0.5 - 7.5 
P { 8 5  5'15 5 9} = @ 

1.94 1.94 
= Q(1.03) - @(O) = 0.8485 - 0.5 = 0.3485. 

The exact value is 

= 0.1964+ 0.1527= 0.3491. 
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Generally, the quality of approximation improves as n increases, and-for the 
same n-decreases a sp  moves away from 1/2 in either direction. Also, observe that 
use of the continuity correction-addition and subtraction of 112 from the limits a 
and bin formula (10 .58tmakes  sense only if 0 . 5 / m  exceeds the difference be- 
tween the consecutive arguments in the tables of normal distribution that are actually 
being used. 

EXAMPLE 10.14 Decision Problem 

S q p e  &a we &2igr. a & ? r  wi& ~~ .&s.. The &&!e€ b&s me 62- 

trances, A and B, situated with respect to a parking lot, public transportation, 
and so on, so that the patrons have equal chances of choosing any of the en- 
trances. 

Suppose also that our theater is to be located in a city where the climate 
calls for patrons to wear overcoats, which they can leave in a coatroom. There 
are to be two coatrooms, each located near one of the entrances, and while it is 
not impossible to enter through one entrance and leave the coat in a coatroom 
near to the other entrance, it is inconvenient to do so. How many coat hangers 
should each coatroom have? 

SOLUTION. Clearly, the problem is not precise enough as stated: We have 
to specify the criterion which we want to attain. One of the objectives is min- 
imization of the cost of equipping the coatroom in hangers, racks, and so on. 
We do not want to staff a coatroom that will remain empty. On the other hand, 
we do not want to inconvenience patrons by making them go to a distant coat- 
room. The two extremes, each satisfying one of the foregoing objectives, is to 
equip each coatroom with 1000 coat hangers, and to equip each with exactly 
500 coat hangers. 

A possible objective may be: We want to equip each coatroom with 500 + z 
hangers, where x is the smallest number such that (say) on 95% of nights 
when the theater is sold out, everyone will be able to leave his or her coat at 
the coatroom nearest to the entrance used. 

To solve the problem, we have to make some assumptions about indepen- 
dence of choice of entrances A and B by the patrons. As the first approxima- 
tion, assume that the patrons arrive one at a time and each chooses the entrance 
independent of other patrons. Let S~OOO be the number of patrons (among 
n = 1000) who choose entrance A. We want to have S~OOO 5 500+z (thenev- 
eryone who enters through A is not inconvenienced), and also 1000 - SIOOO I 
500 + z (which is the analogous condition for those who choose entrance B). 
Thus we would like the event 500 - z 5 S ~ O O O  I 500 + x to occur with 
probability 0.95 or more. Since p = 0.5, n p  = 1000 x 0.5 = 500, and 
@Zj = J lOOO x 0.5 x 0.5 = 15.8, we have 

= @ (*) - @ (--) x + 0.5 2 0.95. 
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An inspection of Table A2. shows that O(1.96) - @(-1.96) = 0.95. We 
must therefore take x as the smallest integer for which (z + 0.5)/15.8 2 1.96, 
which gives x = 31. Thus, to achieve our objective, we should install 532 
coat hangers in each coatroom. 

EXAMPLE 10.15 

Continuing Example 10.14, a more realistic assumption is that people at- 
tend the theater in pairs, and both members of a pair come through the same 
entrance. We have now n = 500 pairs, and letting S ~ O O  denote the num- 
ber of pairs who choose entrance A, we must have 2S500 5 500 + x and 
1000 - 2S500 5 500 + x. NOW E(  S500) = 500 x 0.5 = 250 and Var( S500) = 
500 x 0.5 x 0.5 = 125. The objective therefore becomes 250 -x/2 5 ,9500 5 
250 + x/2. Using formula (10.58), we get 

x + 1  x + l  
= @(ZT)-@(-zT). 

Again, x is the smallest integer for which (x + 1)/22.3 2 1.96, so x = 43. 
We see that grouping (in this case into pairs, but the effect is the same for other 
groupings) a set of persons, with groups choosing the entrance independently, 
increases the variability: we now need to supply 543 hangers in each coatroom 
to meet the requirement. 

The central limit theorem proved thus far concerns the rather narrow case of inde- 
pendent and identically distributed components. In this case the sum has asymptoti- 
cally normal distribution, provided only that variance is finite. This theorem is often 
utilized to explain the frequent appearance of a normal distribution in nature. The 
argument typically goes along the lines of attribute, such as the height of a person, 
or an error of measurement of some quantity, (such as the speed of light). What- 
ever the case, the observed value is influenced by a large number of factors, some 
having a negative and some having a positive effect. Some such factors are known, 
but their effect cannot be predicted exactly, whereas other factors may not even be 
named. What matters is that all these factors operate largely independently of one 
another and each in isolation is small as compared with the total effect of all factors 
(i.e., factors that are known to have large effects are treated differently and are not 
included in these considerations). The central limit theorem therefore asserts that 
the total effect of such “small” factors is random and has approximately a normal 
distribution. We already know this to be true in case of factors that are iid. However, 
independence and identical distribution can hardly be justified in every real situa- 
tion, and can at best be regarded as approximations to reality. Consequently, one 
can expect central limit theorems to be valid in wider classes of situations where the 
iid assumption does not hold. We state below a number of theorems that provide 
conditions for asymptotic normality in case of independent random variables that 
are not identically distributed. 
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Theorem 10.6.3 (Liapunov) Let X I  Xz, . . . be a sequence of random variables 
such that E ( X i )  = pil Var(Xi) = u;, andyi = ElXi  - Moreovel; put 

j=1 j=l j=1 

and let Sn = X1 + X2 + . . I + X n  be the corresponding sequence ofpartial sums. 
Ifadditionally X I ,  Xz, . . . have finite third moments, then the condition 

r n  lim - = 0 
n-m 

(10.63) 

is suflcient for convergence 

S n - m n  d 
+ N ( 0 , l ) .  

Sn 

The proof of this theorem lies beyond the scope of this book. 
As an illustration of the application of the Liapunov theorem, consider a sequence 

of independent trials, such that in nth trial the probability of success is p , .  We let 
S, denote the number of successes in the n first trials so that S, = XI + . . + X,, 
where Xi  = 1 or 0 depending on whether or not the ith trial leads to a success. We 
then have E(&) = p i ,  Var(Xi) = piqi,  while the third absolute central moment yi 
is 

= E ~ X ~  - 4 3  = 1 1  - p i / 3 ~ ( ~ i  = 1) + 1 0  - p i 1 3 ~ ( ~ i  = 0) = q;pi + p;qi .  

Thus yi = piqi(p: + 4 ; )  I p i q i ,  and 

Consequently, the Liapunov condition (10.63) holds if C:=, piqi = m, and we 
have 

Theorem 10.6.4 Consider a sequence of independent trials, with the probability of 
success in the ith trial being p i .  If S, is the number of successes in the n j r s t  trials, 
then 

s n  - cy==,Pi d 
-+ N(Ol1) 

We close this chapter by stating a theorem that completed the long search for 
conditions implying limitingnormality in case of independent random variables (the 
cases of dependent random variables are still the object of intense research). 

Theorem 10.6.5 (Lindeberg and Feller) Let X i ,  X z ,  . . . be a sequence of inde- 
pendent random variables with finite second moments. Assume that s’, + m and 
rnaxlsjs, uj”??/s; + 0 as n + CQ. Then 
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ifand only ijfor every c > 0, 

where Fj is the cdfof Xj 

The “if” part was proved by Lindeberg, so (10.64) is called the Lindeberg condition. 
The “only i f ’  part is due to Feller. 

We will now introduce a generalization of a central limit theorem that is very 
useful when only the first two moments, and not the entire probability distribution, 
are known. The theorem provides an approximate distribution of the transformed 
random variables obtained in random samples. 

Theorem 10.6.6 (Delta Method) Let X I ,  X2, . . . be a sequence of random vari- 
ables such that 

f i ( X n  - 0 )  + N O ,  a2), (10.65) 

and let g be a function with a nonzem derivative g’(0). Then 

(10.66) 

ProoJ: The Taylor expansion of g(X,) around X, = 0 gives 

dx,) = g(e) + d(e)(xn - 0)  + 0p(lxn - el), (10.67) 

where o p  was defined in Theorem 10.5.12. Rearranging (10.67) and multiplying by 
fi, we obtain 

J;l(g(xn) - d o ) )  = g’(e)J;(x, - 6) + OP(J;EIX, - el). 

obtain (10.66). 0 
Based on (10.65), convergence of X, to 6 in probability, and Theorem 10.5.5, we 

Let us now illustrate the Delta method by an example. 

EXAMPLE 10.16 

Let X, be a relative frequency of a success in n Bernoulli trials. Find the 
asymptotic distribution of g(Xn) = l /Xn. 

SOLUTION. Let p be the probabilityof success in a single trial. Then g’(p) = 
-l/p2. Consequently, based on Theorems 10.6.5, 10.5.6, and the fact that 

&(Xn - P )  + N(OlP(1 - P)), 

we immediately obtain 
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Last we would like to mention two possible extensions of the Delta method. If 
g’(8) = 0, then one can take one more term in the Taylor expansion (10.67). Such 
approach will yield a second-order Delta method (for details see e.g., Casella and 
Berger, 2002). Also, the Delta method can be easily extended to a multivariate set- 
ting (see Oehlert, 1992). 

PROBLEMS 

10.6.1 Let XI, . . . , X, be a random sample from the distributionwith density f(x) = 
ze-”, x > 0. Find c if it is known that P { X ,  > c }  = 0.75 for n = 250. 

10.6.2 Assume that 500 students at a certain college will graduate on a given day. 
Because of space limitations the college offers each student two tickets for the com- 
mencement ceremony. From past experience it is known that 50% of the students 
will invite two guests to attend the ceremony, 20% students will invite one guest, and 
the remaining 30% will not attend at all, so they will invite no guests. How many 
chairs should the college order to have at least 95% chance that all attending guests 
will have seats? 

10.6.3 Passengers on an international flight have a luggage weight limit B. The 
actual weight W of the passenger’s luggage is such that W / B  has a BETA(a, b) 
distribution where a/(. + b) = 0.9. Assume that the weights of luggage of different 
passengers are independent and that the plane has 220 seats. Find a and b if it is 
known that when the plane is fully booked, then there is a 5% chance that the total 
weight of baggage will exceed 200B. 

10.6.4 Let X I ,  . . . , X, be a random sample from the BETA(2,3) distribution. Let 
S, = X1 + . . . + X,. Find the smallest n for which P{ S, 2 0.75n) 5 0.01. 

10.6.5 A regular dodecahedron (12-sided Platonian solid) has six red and six white 
faces, with the faces of each color labeled 1, . . . , 6. If you toss a face with label k you 
pay or win $k ,  depending on whether the color is red or white. Find the probability 
that after 50 tosses you are ahead by more than $10. 

10.6.6 Let XI, . . . , X 3 6 0  represent the outcomes of 360 tosses of a fair die. Let S360 

be the total score X 1  + . . . + x 3 6 0 ,  and for j = 1, . . . ,6,  let Y j  be the total number 
of tosses that give outcome j .  Use a normal approximation to obtain: (i) P(55 < 
f i  < 62). (ii) P(1200 < ,9360 < 1300). (iii) P(1200 < ,9360 < 1300/Y1 = 55). 
(iv) P(1200 < s 3 6 0  < 1300)Y4 = 55). (v) P(1200 < S360 < 13001x1 = X2 = 
. . .  = x  - 55 - 4). 

10.6.7 A fair coin is tossed 2n times. How large must n be if it is known that the 
probability of the equal number of heads and tails is less than 0.1? 

10.6.8 Referring to Example 8.40, assume that a man’s shoe has an average length 
of 1 foot and 0 = 0.1 foot. Find the (approximate) probability that the mean of I6 
lengths of men’s shoes exceed 1 foot by more than 1 inch. 
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10.6.9 A die is unbalanced in such a way that the probability of tossing k ( k  = 
1, . . . , 6 )  is proportional to k .  You pay $4 for a toss, and win $ k  if you toss k. Find 
the approximate probability that you are ahead after 100 tosses. 

10.6.10 Let x, be a sample mean in a random sample of size n from POI(X). Use 
the Delta method to find the limiting distribution of g(x) = &z(X - A). 

10.6.11 Let X ,  be a relative frequency of success in n Bernoulli trials. Use the 
Delta method to find the limiting distributionof g(X,)  = X,(1 - X,). 



CHAPTER 11 

INTRODUCTION T O  STATISTICAL 
INFERENCE 

11.1 OVERVIEW 

The role of this chapter is to provide an introduction to statistical inference covered 
in the remaining chapters. In the first part of the book, we introduced and developed 
techniques that lead to predicting the form of future observations (data). Given 
certain general information (e.g., about independence of some events), we could 
deduce the distributions of observed random variables. In practice, we answered 
questions such as: How many future observations will fall into a certain set? What 
will be the average of those observations? 

As opposed to that, in statistics (more precisely, in inferential statistics), which 
will be now our main object of study, the question is: Given the data, what can we 
say about specific aspects of the stochastic mechanisms that govern the occurrence 
of those data? The actual data are regarded as a result of a random process, in the 
sense that if the data collection were to be repeated, the outcome would most likely 
be different, possibly even leading to a different conclusion. Consequently, whatever 
inference we make from the actual data, it is subject to error. This error-the central 
concept of statistics-is not meant to be a “mistake” of any kind (i.e., something 
that can be avoided). 

At first one might think that this randomness will be eliminated if we increase 
the precision of measurement. Actually, the opposite is true. For instance, if we 
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measure the length of a table in integer number of feet, the result will be the same 
under repetition. When we increase the precision, to an inch, then to half of an inch, 
and so on, the variability of the results under repetition will become more and more 
pronounced. 

The question then arises: What inference about the underlying phenomenon can 
be drawn from premises (data) which may differ from occasion to occasion? Viewed 
in this way, statistics is a part of theory of inductive inference. But this does not 
mean that the theory of statistics is itself inductive. As a theory, inferential statistics 
is a fragment of mathematics, in the same way as probability theory. Thus math- 
ematical statistics has its own structure of specific concepts (motivated mostly by 
applications), and its own theorems. 

Each theorem in mathematics asserts that some conclusions hold, provided that 
certain assumptions are satisfied, and theorems in statistics are no exception in this 
respect. Some of the assumptions refer to the process of data collection, or the prop- 
erties of underlying random variables. The applicability of statistical methods (i.e., 
the empirical validity of the consequences of the appropriate theorems) depends cru- 
cially on the degree to which the assumptions are met in real situations. Sometimes 
this degree of validity is under the control of the experimenter (see Example 1 1.1); in 
some other cases, possibly after performing appropriate tests, we simply may have 
no conclusive evidence that the assumptions are violated; in particular situations (see 
Example 1 1.2) we may feel justified in disregarding the fact that the assumptions are 
false. 

EXAMPLE 11.1 

Suppose that we want to apply a method of statistical inference, for which 
we need an assumption that a certain random variable X is binomial. Often 
X represents the number of elements of some kind in the sample (number 
of defective items, number of patients who recovered after specific treatment, 
etc.). The assumption that the process of collecting observations is really a 
sequence of Bernoulli trials depends on various factors, some of which the 
experimenter can control. Of these, the principal factor is the independence in 
selecting the sample. In case of defective items, it may require sampling with 
replacement; in case of patients, it may require checking that the sample does 
not have identical twins or other persons whose reaction to the treatment in 
question may be similar because of some genetic reasons. 

EXAMPLE 11.2 

Imagine that we observe freshmen scores X on an aptitude test. Assuming 
that X has a normal distribution leads to sufficiently good approximations of 
the relevant probabilities. The fact remains, however, that test scores cannot 
be normally distributed, since X must be an integer, and it also cannot assume 
negative values. 

In cases such as above, we typically feel justified in using the consequences of 
theorems that rely on the assumption that X has a normal distribution, even if we 
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know that this assumption is not satisfied. But there may be some “more serious” 
violations of the assumptions. Checking the validity of an assumption may involve 
using some elaborate statistical techniques. Often, however, it is sufficient to just 
have a glance at some preliminary graphical presentation of the data, or at the values 
of some crude statistics. In either case we deal with a summary or reduction of the 
data. 

The methods of such initial reduction of the data belong properly to what is called 
descriptive statistics. Although the main object of the book is inferential (rather than 
descriptive) statistics, we present some basic ideas of descriptive statistics in the next 
section. 

11.2 DESCRIPTIVE STATISTICS 

A simple summary presentation of the data can lead to the discovery of surpris- 
ing and important consequences. Descriptive statistics, available in most statistical 
packages, help one to better understand the data structure and therefore to avoid 
making incorrect assumptions, consequently choosing the appropriate method of 
data analysis. In our overview of descriptive statistics we do not attempt to be com- 
plete, since the field grows as more and more methods are being developed. 

Let us begin with two examples, both concerning World War 11. 

w EXAMPLE 11.3 

The main route for supplying the Allied armies fighting Nazi Germany in Eu- 
rope during World War I1 was through the Atlantic Ocean. The convoys were 
attacked regularly, mostly by German U-boats. As the war progressed, more 
and more data accumulated. It turned out that the average number of ships lost 
in an attack was relatively constant; in particular, it did not depend on the size 
of the convoy. This observation led to a simple conclusion: to decrease losses, 
make convoys as big as possible. Indeed, two separate convoys might expect 
to be detected and attacked about twice as many times as a convoy obtained 
by combining them. Since the average losses per attack are independent of the 
convoy size, such joining of two convoys cuts losses by half. This simple idea 
contributed substantially to winning the war. 

EXAMPLE 11.4 

Bombers were sent on missions over Germany. On route to and from, as well 
as over the target, they were subject to antiaircraft fire. The direct hits were 
not very frequent, but the AA shells were set to explode at specific altitudes, 
spraying the planes with shrapnel. The planes that returned from the mis- 
sion were examined for locations of shrapnel hits, and all these locations were 
recorded on a silhouette of the plane. As more and more data became avail- 
able, the silhouette was more densely covered with recorded locations of hits. 
There were, however, some areas that were hit less often than others. 

A surprising order was then given: strengthen (by putting armor plates, etc.) 
those areas that were hit seldom. Here the argument is that the locations of 
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Figure 11.1 Dot diagram 

shrapnel hits on bombers must have a uniform distribution over the silhouette 
of the plane. Any “white areas” in the data therefore indicate the locations of 
hits for the planes that did not return from missions. 

We present these two examples not only because of their combination of sim- 
plicity of premises and unexpectedness of conclusion but also because they are both 
based on elementary ways of representing the data: plotting average losses per at- 
tack against convoy size, or making a scatter diagram of shrapnel hits. Certainly it is 
not often that one gets a chance of contributing to victory in war by a visual inspec- 
tion of some descriptive statistics. Nevertheless, it is worth knowing some simple 
“tricks of the trade” in presenting the data so as to exhibit certain aspects of interest, 
or in making certain patterns visible. The ones mentioned in this section concern 
univariate data. 

Dot Diagram 

First, if the number of data points is small, one can often get good insight into the 
structure of the data by drawing a dot diagram. This is accomplished by marking 
the data values as dots on the horizontal axis, with repeated data represented by dots 
piled up on one another. For instance, the data points 

28,36,37,52,36,45,39,45,38,35,36 

would be represented as in the diagram of Figure 1 1.1. If the data are to be grouped 
into classes, with class boundaries and class counts replacing individual data values, 
then the dot diagram is a good device to help to choose class boundaries. 

Stem-and-Leaf Display 

This is another method of quick presentation of the data. Again, it is best explained 
by an example. Suppose that the data are 

9.5 10.8 8.8 11.2 10.2 10.3 10.2 11.3 10.0 8.8 
10.7 9.9 11.4 9.8 10.5 9.8 9.9 10.9 8.1 10.5 
10.6 8.2 8.6 9.2 9.9 10.0 11.0 9.2 10.7 10.9. 

We then choose “stems” and data values are presented as follows: 



DESCRIPTIVE STATISTICS 355 

8 8 8 1 2 6  
9 5 9 8 8 9 2  

I 0 8 2 3 2 0 7 5 9 5 6 0 7 9  
1 1 2 3 4 0  

Stem I Leaves 

Box Plot 

This is a very simple but informative representation of data sets (see Figure 1 1.2). 
The box plot is based on five values, and it provides a graphical presentation that 

A B C  D E b  

Figure 11.2 Box plot 

allows us not only to visualize them, but also to gather information about skewness 
and outliers. 

Thus, A and E are the smallest and largest data, respectively, so the difference 
E - A is the range of the data. Next B and D are the lower and upper quartiles 
of the data, so the box (whose height is irrelevant) contains the central 50% of data 
points. Finally, C is the median of the data. 

The median, as well as upper and lower quartiles, are the sample counterparts of 
the corresponding quantiles of the distribution. Let y1, . . . , yn be the data points, and 
let ~ 1 : ~  5 ~ 2 : ~  5 . . _< yn:n be the ordered sample. There are several definitions of 
the sample pth quantile. Some texts define it as y[npl+l:n, where [z] stands for the 
largest integer not exceeding z. Another definition of the pth sample quantile is 

The method based on formula (1 1.1) uses the most obvious linear approximation. 
Rather than contemplating this formula, consider a simple example with n = 4 data 
points, which (arranged in increasing order) are 

Y I : ~  = 5 ,  Y2:4 = 8, y3:4 = 15, y4:4 = 20. (11.2) 

Suppose that we want to compute the 37% sample quantile for the data. The four 
data points partition the range into five classes, determined by quantiles for 20%, 
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Figure 11.3 Normal quantile plots 

40%, 60%, and 80%. The 37% quantile lies between the 20% and 40% quantile, 
hence between y1:4 = 5 and y2:4 = 8, at a point whose distance from 5 is (37 - 
20)/(40 - 20) = 0.85 of the distance between 5 and 8. Thus the 37% quantile 
equals 5 + 0.85(8 - 5 )  = 7.55. 

Observe that formula (1 1.1) does not apply if p is close to either 0 or 1. The 
reason is that if p < l / ( n  + l), then [(n+ l)p] = 0 and yo:,, is not defined, whereas 
if p > n / (n  + l), then ~ [ ( ~ + l ) ~ l + l : ~  does not exist. 

For p = 1/2, formula (1 1.1) gives the sample median as 

n + 1  n + 1  
Y[(n+l)/Z]:n + { 2 - [ 21 } x (Y[(n+l)/Zl+l:n - Y[(n+l)/2]:n) . 

The formula for the median when n is odd simplifies to ~ ( ~ + l ) / z : , , ,  since in that case 
[ ( n + l ) / 2 ]  = (n+1) /2 .  Ifniseven,wehave [(n+1)/2] = n/2andconsequently 
the median is equal to (Y(,,~Z):,, + ~ ( ~ / 2 ) + 1 : ~ ) / 2 .  

Sample quantiles are also used in a normal quantileplot, also known as Q-Q 
plot-a graphical method for checking the assumption that the data come from a 
normal population. The graph is obtained by plotting quantiles of standard normal 
distributions against corresponding (with the same p )  sample quantiles obtained by 
formula (1 1.1). If the sample comes from a normal population, the Q-Q plot should 
form a straight line. Figure 11.3(a) and (b) shows Q-Q plots for data from expo- 
nential and normal distributions for small samples. As can easily be seen, random 
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fluctuations obscure the picture, so it is hard to decide which plot, if any, forms a 
straight line. Figure 1 1.3 (c) and (d) was obtained for large sample sizes (n = 300). 
Now the situation is obvious. A large sample represents the population adequately, 
and looking at the graphs one can readily conclude which data come from the nor- 
mal distribution and which do not. The final conclusion about normality of the data 
is based on a subjective judgment resulting from a visual inspection. In Chapters 13, 
15, and 16 we will show other methods of testing normality. 

Grouping 

Large sets of data can be unmanageable in their original form, so typically the 
data points are grouped into classes. One then gives the class boundaries (or equiv- 
alently, class midpoints and class widths) and the class counts (also called class 
frequencies). The only formal requirement here is that the classes be disjoint and 
cover all (actual, and also potentially possible) data values, so each data point falls 
into exactly one class. 

Histograms 

Graphical representation of the grouped data usually has the form of a histogram. 
These are formed as follows: The horizontal axis is divided into intervals centered 
at class midpoints and extending in either direction by one-half of the class width. 
Then rectangles are built on these intervals in such a way that the areas of rectangles 
(not heights) are proportionalto the class frequencies. This distinction is vital in the 
case of unequal class widths. 

What then is the “proper” number of classes? Should all classes be of the same 
width? How does grouping affect the values of summary indices, such as the mean? 

Class Width and Number of Classes 
There is no unique answer as to the proper class width (or number of classes). When 
the data are divided into too many classes (assume equal class widths), the his- 
togram looks jagged. When there are too few classes, one loses too many details 
in the data. The appropriate number of classes depends not only on sample size 
but also on the shape of the distribution. One can formulate the criteria in different 
ways. For instance, Scott (1979) formulates the problem of the choice of class width 
as a problem of optimization of certain criteria and shows that the optimal width 
is of the order of 3.498/m, where N is the number of data points and b is the 
estimate of a standard deviation. Thus for N = 100 data points with the shape of 
the histogram close to normal, the range’’ R is about 46, and the best class width 
is about 3.49( R / 4 ) /  = R / 5 ,  so that the histogram should have 5 classes. For 
N = 1,000, the range R is about 66, and the best class width is about R/16 (so 16 
classes). 

“The distribution of the range R = X N : N  - X ~ : N  is given by (10.30). The exact formula for E ( R )  
is not available in the case of sampling from normal distribution. Crude approximations are E(R) = 40 
for N = 100 and E(  R) ez 6a for N = 1,000. For exact values one needs to inspect the appropriate 
statistical tables. 
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Objective : Choose the best action among a l ,  a2, ... 

Situation : 

Observation X with distribution f(x, Oi )  

Based on X, selectthe appropriate8 (identifythe “world’) and thenchoosethe best action for it 

Figure 11.4 Decision scheme 

Effect on Indices 
Indices such as the mean are calculated for grouped data by replacing each data value 
within a class with the class midpoint. Consequently, the values of the same index, 
calculated from the raw data and from the grouped data, differ. Under the assump- 
tion of equal widths of classes, it is typically a relatively simple task to estimate the 
upper bound for an error of a given index due to grouping. 

For instance, in case of the mean, the bound is as follows: Each of the N data 
points is off from its class midpoint by at most L/2 ,  where L is the class width. If 
all these deviations are the largest possible and in the same direction, the difference 
between the exact and approximate mean is N ( L I 2 ) I N  = L/2 .  Thus the error due 
to grouping is at most L/2 .  

11.3 BASIC MODEL 

A typical user of statistical methods is someone who must choose an action in a sit- 
uation of partial uncertainty with regard to the factors that affect the consequences 
of this action. The uncertainty may be alleviated to some extent by the fact that our 
decision maker can “spy on nature” by taking some observations that may help iden- 
tify the relevant factors. The formal representation of this rather general description 
is actually the cornerstone of most of the theory of mathematical statistics. Figure 
11.4 presents a general scheme of making decisions in a situation of uncertainty. 
Statistical inference constitutes only a part of this scheme. 

First, with the exception of some special cases, the nature of the action to be se- 
lected is of no concern for statistics and will not be included in the formal structure 
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of the theory. Now let us imagine ourselves as decision makers. Using the terminol- 
ogy accepted in general decision theory, we say that we are in one of the situations 
labeled as “world 01,” . . . , “world On,” but we do not know which one. It is usually 
assumed that there is one action appropriate for each “world” (although this assump- 
tion is not really necessary). Thus, if we knew the “world” we are in (i.e., knew the 
value O j ) ,  we would know which action is the best to take. 

The only way to identify the actual “world 6j”  is to perform some experiments. 
Let X be a generic symbol for the results of such experiments. It may be a single 
observation of some variable, a sequence of observations, a result of some compli- 
cated physical experiment, a score on a battery of tests, and so on, depending on the 
context. Naturally, to make the entire setup meaningful, there must be some relation 
between X and 0,. This is expressed by the assumption that the observation X, 
while being random, comes from a distribution that depends on 6 j .  The randomness 
here is the crucial part of the entire setup. It may be due to sampling variability or 
be inherent in the phenomenon, or both. 

It may happen, of course, that observation X will allow us to identify the value 
0, without ambiguity. This occurs when the sets of possible values of X are disjoint 
for different B j ’ s .  Such cases, however, are rare in real life. Most often we face a 
challenging case when the same outcome X is possible under several (or even all) 
6, but occurs with different probabilities, depending on 0,. 

1 EXAMPLE 11.5 

The examples of situations falling under this scheme abound in science, en- 
gineering, management, and in everyday life. A doctor faces a patient who 
has a headache and high fever. Particular “worlds” are possible illnesses of 
the patient. The doctor orders some tests, and on the basis of their results 
X makes a diagnosis (identifies the illness, perhaps incorrectly) and chooses 
the best action in view of the illness diagnosed. As another example, take a 
pharmaceutical company that has developed a drug against a specific disease, 
hopefully superior to drugs used thus far. The “worlds” may be numbers 6, 

describing the relative advantage of the new drug versus the best drug avail- 
able so far, with 0 > 1 indicating that the new drug is better, and 6 < 1 
indicating that it is no better (or even inferior) to the drug used thus far. Here 
the observation X is a series of studies, specified in great detail by the FDA 
standards. 

Example 1 1.5 concerns medicine, but it is obvious that any new method is subject 
to the same scheme of tests before it is established whether or not (and to what 
extent) it is superior to some other method. 

As seen in Figure 11.4, statistical theory is concerned with the problem of infer- 
ence about 6, on the basis of X. In the case where there is a choice of the variable 
that we may observe, the statistical theory is also Concerned with choosing the “best” 
variable (these are called problems of design of experiment). 
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11.4 BAYESIAN STATISTICS 

An inspection of Figure 11.4 reveals that one level is missing, representing the pos- 
sibility that the user may have some knowledge, previous experience, or perhaps 
other reasons (including prejudice or superstition) that make some “worlds” appear 
more likely to him than others, before any observations X are taken. 

There is a general agreement among statisticians that in cases where the “world” 
is chosen randomly from the set of possible worlds, with probabilities having fre- 
quential interpretation, those probabilities should be taken into account in the pro- 
cess of deciding about 0, on the basis of observation x (one can then simply compute 
the conditional probability of Oj  given X = x). For example, in the case of a physi- 
cian seeing a patient with a headache and high fever, the possible “worlds” (in this 
case illnesses causing this particular set of symptoms) include initial stages of flu as 
well as the initial stages of the plague (Bubonic plaque). The incidence of the latter 
disease is so rare, however, that the doctor may feel perfectly justified in not order- 
ing any test to check the possibility of the disease being the plaque. Here the doctor 
relies simply on his own and his colleagues’ experience about the incidence of vari- 
ous diseases that might start with fever and headache at a given time and geographic 
location. 

Statisticians differ in their opinion ofwhether the probabilities of various “worlds” 
reflecting the researcher’s experience, intuition, “hunches,” and so on, should be 
used in statistical methodologies. Those who allow such probabilities to be used 
are called Bayesians, and the resulting statistical methodology is called Bayesian 
statistics. 

A rather strong argument for the Bayesian approach is provided by the theory of 
outliers (see Section 10.3). In a non-Bayesian setup, where 0 = (a, A) is the param- 
eter in the family of all gamma distributions, no configuration of data values can be 
rejected as containing an outlier, even if (say) n - 1 observations fall into interval 
( 0 , l )  and the nth observationexceeds lo6. This is because there exists a B = (a ,  A), 
for which such a configuration of data points is very likely to occur. This counter- 
intuitive example suggests that a statistician should eliminate some domains of the 
parameter space as “unlikely,” using whatever information or experience he or she 
has. We will provide Bayesian solutions to various problems under consideration. 
This means that we will show how the problem is, or may be, solved if the prior 
probabilities of various 0,’s are available. A systematic presentation of the theory of 
Bayesian statistics lies, however, beyond the scope of this book. 

11.5 SAMPLING 

In the theory of statistics it is typically assumed that the data are observations of 
some random variable. The applicability of statistical methods depends therefore on 
how well the assumption of randomness and the assumption about the distribution 
are satisfied. In this section we will show some of the possible “traps” one may 
encounter in implementing statistical methods in practice. 

Let us start with an example. 
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EXAMPLE 11.6 

Suppose that the objective is to estimate an unknown parameter 0 that is the 
average of some attribute in a population. It may be, for instance, the average 
yearly income of a family in a given region, the average age of a patient receiv- 
ing certain treatment, and so on. In such cases one typically takes a sample of 
elements from the population and measures the values of the attribute being 
studied. Thus X = ( X l , .  . . , X n ) ,  where E(Xi )  = 8 for i = 1, .  . . , n. 

The following story illustrates some of the potential problems that one may 
encounter. 

Three social science students, Jim, Joe, and Susan, were each assigned a 
task of estimating the average size of a class (number of students) in a given 
school district. Jim decided to make a card for each class in each school, 
shuffle the cards, sample one or more of them and then find the number of 
children in each class sampled. 

Joe found a somewhat simpler scheme: He decided to prepare cards with 
names of schools and first sample a school (or several schools). Then for each 
school chosen, he decided to make cards with labels of classes and take a 
sample of those cards, at the end determining the numbers of children in each 
class sampled. 

Susan applied a still simpler scheme: She decided to take a sample of chil- 
dren from the school district and ask each child about the size of the class 
that he or she attends. The question is: Which of the three students, if any, 
measured the parameter “average size of the class in a given school district”? 

Since an increase of sample size affects only the precision of the estimator, 
not the parameter that is being estimated, we will consider only the cases 
where Jim, Joe, and Susan each take a single observation. 

Suppose that there are k schools in the district in question, with the ith 
school having ni classes, of sizes Cij, i = 1,. . . , k ,  j = 1, . . . , ni. Then the 
total number of classes is N = k ni, and the average class size is 

The objective is to estimate 0. If X, Y, and Z denote the random variables 
observed, respectively, by Jim, Joe, and Susan, then it is clear that X = Cij 
with probability 1/N (sampling is from the set of all classes). Thus E ( X )  = 
0. 

Regarding random variable Y ,  we have Y = Cij if Joe selects ith school 
(probability l / k )  and jth class in the ith school (probability l /n i ) .  Conse- 
quently 

We have E ( Y )  # 6 except in a special case when all ni’s are equal, meaning 
each school has the same number of classes. 

Finally, for the random variable Z, observed by Susan, the situation is as 
follows: Let C = xf=l EyL, Cij be the total number of children in all 
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classes. With probability Cij /C a child from the j th class of the ith school 
will be selected, and then the value of 2 will be Cij. We have therefore 

Again, E ( 2 )  # 0 unless all classes are of the same size. 
Thus it is only Jim whose method provides an estimate of the parame- 

ter 0. For random variables suggested by Joe and Susan, we generally have 
E ( Y )  # 0 and E ( Z )  # 0. The method suggested by Joe is known as stratified 
sampling: The population is divided into strata, and one first samples strata, 
and then takes a sample from each stratum (in this case the role of strata is 
played by schools). 

It is worth mentioning here that if Joe decided to take a sample of schools, 
and then collect the data about all class sizes in selected schools, he would use 
what is known as cluster sampling. 

With some prior information available (e.g., about relative sizes of the 
strata), one can easily adjust Joe’s estimator (by taking appropriate weighted 
averages) to build random variable Y with E ( Y )  = 0 (called an unbiased 
estimator of 0). 

The situation with the Susan’s method is not so straightforward, and cannot 
be easily remedied. It is related to importancesampling, where the probability 
of choosing an element with a larger value of the attribute is higher than the 
probability of the element with a smaller value. 

The bias due to the phenomenon of importance sampling occurs quite often and 
evades notice. The following example (suggested by R. F. Green, personal commu- 
nication) provides some surprising insight into the issue. 

EXAMPLE 11.7 Siblings 

Suppose that in a certain society, the distribution of the number of children in 
a family is Poisson with mean 4. What is the average number of siblings of a 
child in this society? 

SOLUTION. An almost automatic response of most persons (including some 
statisticians) is 3. Actually, the answer is 4 in the special case of the Poisson 
distribution. In general, it is more than 3, except when all families have ex- 
actly 4 children. The situation is very much the same as with Susan’s sampling 
Example 1 1.6. 

Before proceeding to the solution, we should note that the distributiongiven 
in the problem concerns the population offamilies, but the question concerns 
the average in the population of children. Let p o ,  p l  , . . . be the distribution of 
the number of children in the family, so that in the special case under analysis 
we have p k  = ( X k / k ! ) e c x  for X = 4. Then p = p l  + 2p2 + . . and o2 = 

k 2 p k  - p2 are the mean and variance of the distribution { p k } .  Suppose that 
the population consists of a large number N of families. Clearly, Npo families 
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have no children, Npl families have one child, and so on. The total size of the 
population of children is therefore 

M = N p l  + 2Np2  + 3Np3 + .  . . = N p .  

The probability of choosing a child from a family with k children is 

for k = 1 , 2 ,  . . . and such a child has k - 1 siblings. Then the average number 
of siblings is 

As can be seen, we have Q 2 p - 1 with Q = p - 1 in the case where a2 = 0 
(i.e., when all families have the same number p of children). For the Poisson 
distribution u2 = p = A, so we have Q = p = 4. 

A sampling bias closely related to the bias from importance sampling is con- 
nected with the following phenomenon, which caused some controversy before it 
became properly understood. To explain it, we will again use an anecdotal example. 

4 EXAMPLE 11.8 Renewal Paradox 

A statistical objective is to estimate the average lifetime of electric bulbs of 
a particular type, all produced by the same company. We assume that the 
distribution of the lifetime T is exponential with mean E ( T )  = 1/X.  

The usual procedure is to take a random sample of bulbs and observe their 
lifetimes T I ,  T2, . . . , T N .  Such data can be used to estimate E(T) .  If testing 
is run in parallel, it takes time TN:N = max(T1, . . . , T N }  to collect the data. 
One could speed up the procedure by observing only the k shortest lifetimes 
T ~ : N  < T ~ : N  < . . . < Tk:N and then interrupt the data collection, recording 
only that Tk+1:N > T',  where T' is some threshold (so that N - k lifetimes 
are not fully observed, but they are all known to exceed T*) .  This is called 
censoring of the data. 

In some cases another way can be used to collect data, that does not in- 
volve waiting. Suppose that there is a large building (e.g., an office skyscraper 
downtown) where the maintenance personnel use only bulbs of the type of in- 
terest for us. Whenever a bulb fails, it is immediately replaced by a new bulb, 
and this change is recorded. As a consequence we have access to the records, 
reaching into the past, of the time of replacement of every bulb. We might 
then select some time t* (preferably in the past) and use all lifetimes of the 
bulbs that were operating at time t' as the sample. Clearly, if t* is sufficiently 
far back in the past, each of the bulbs that operated at t' has already been 
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Figure 11.5 Sampling interreplacement times 

Figure 11.6 Renewal process 

replaced, and its lifetime T(t ' )  is known. Otherwise, we would have to wait 
for some time to observe the value of T(t*)  for that bulb. The situation is best 
explained in Figure 11.5. 

In general, T: is the spent lifetime at t' for the ith bulb, and similarly Tt:' is 
the residual lifetime at t'. It is clear that if t ,  - t' is large enough, all residual 
times will be observable. For bulbs 1 and2, the lifetimes are TI ( t ' )  = Ti +Ti' 
and T2(t*) = Tk + T i .  The value T3 is not observable at present but is at least 
Ti + ( t p  - t*) ,  The sample T I ,  T2, . . . , TN of all N bulbs that were operating 
at t' can be observed and the average (l/N) CE1 Ti(t*) can serve as an 
estimator E(T) .  

The obvious question is: Is such a method of collecting data correct? It 
should be stressed that we are not concerned here with the practical imple- 
mentation of the scheme. We assume that the time ti is chosen without the 
knowledge of the replacement records (a condition preventing conscious or 
unconscious bias) and disregard the fact that in reality light bulbs are used 
only part of the time, and that at some locations lights are used more often or 
are subject to different conditions (outdoor and indoor lights, etc.). Since the 
problem concerns theory, we deliberately idealize the situation and assume 
that the data concern only bulbs that operate constantly and under the same 
conditions. This way the interreplacement times along each time axis in Fig- 
ure 1 1.5 are sampled independently from the same exponential distribution. 

To find the answer, consider a single process of changing of bulbs in one 
place (see Figure 11.6). The process starts at time t = 0; the consecutive 
lifetimes are 11, 12,  . . . , and the times of replacements are SO = 0, S,, = 
Sn-l + tn for n 1 1. The lifetime recorded in the sample, T(t*) ,  is the value 
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<n = Sn - Sn-1 such that Sn-l 5 t* < S,,. We assume that <I ,&,  . . . are 
iid with exponential distribution. 

The distribution of the time S,, of the nth replacement was derived in Sec- 
tion 9.3. It is a gamma distributionwith parameters n and X so that the density 
of S,, is 

For further use, observe that we have 

(11.3) 

(11.4) 

To find E[T( t*)] ,  we must first find FT(~.)(z) = P{T( t*)  I x}, the cdf of 
T(t*).  Assume that z < t'. Then a replacement would have occurred before 
time t', since otherwise the original bulb would still be working at t', and we 
wouldhave T( t*)  = 

Thus, for some n = 2 , 3 , .  . . we must have Sn-1 = z I t' < Sn = 
Sn-l + tn. In this case [,, > t' - z so that t' - z < Jn 5 z. The condition 
<,, 5 z implies t' - z 5 z, which means that the time z of the (n  - 1)st 
replacement satisfies t' - z 5 z 5 t'. Partitioning with respect to n = 
2 ,3 ,  . . . , conditioning on time z (time of the (n - 1)st replacement), and using 
(1 1.4), we obtain 

> t* > x. 

t o  
[e--X(t*--Z) - e-x"]dz = 1 - e - X x  - Xze-Xz, 

= Lz 
If x > t', the derivation above has to be modified in two ways. First, we 
have to add the probability that the first bulb is still working at t', and that its 
lifetime satisfies t' < (1 5 x (see Figure 11.7). Second, if a replacement 
occurred before t', the time S,-l = z of last replacement before t' satisfies 
the inequality 0 < z 5 t' . Consequently we have 

w "t' 

(11.5) 
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Figure 11.7 

An easy integration gives the formula for E[T( t ' ) ] ,  and we can show that 

Therefore, on average, the lifetime of the bulb that is in operation at time t' 
is about twice us long as the average lifetime of other bulbs. So the described 
method of sampling is biased. 

The conclusion above about: sampling procedure being biased remains valid 
as long as the lifetimes E l ,  E2 ,  , . . are iid. The specific assumption of exponen- 
tiality of distribution implies the form (1 1 S) of the density, but the fact that 
limt*-+m E[T( t*)]  > E(E) is valid for any nondegenerate distribution of [i's 
(e.g., see Karlin and Taylor, 1975). 

Since T( t* )  = T' + T",  meaning T( t* )  is the spent lifetime at t' plus the 
residual lifetime at t ' ,  we can try to derive our result as follows: The residual 
time T" is exponential, in view of the memoryless pryperty of exponential 
distribution, so E(T")  = 1/X. For the spent lifetime T , it cannot exceed ti, 
and it exceeds x (where IC < t') if there are no replacements between t' - IC 
and t*.  Since replacements form a Poisson process, the latter probability is 
e - x ( t * - 5 ) ,  Consequently 

Thus, by Theorem, 8.2.2 

and therefore E[T( t*)]  = E ( T ' )  + E(T")  = 2/X - (l/X)e-'"'. This cal- 
culation, however, relies on the assumption that the memoryless property of 
the exponential distribution is valid for residual waiting time counted from a 
randomly selected moment (and not only from a fixed moment). 

For example, suppose that we observe the waiting time for nearest replace- 
ment from the momentpreceding a given replacement by some fixed constant, 
say 5 hours. Such a moment is random, and yet the waiting time is at most 5 
hours by definition, and therefore does not have exponential distribution. This 
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simple example shows that the notion of a “random moment” has to be quali- 
fied: We are not allowed to know the future at the time we select our moment 
to start the observations. 

11.6 MEASUREMENT SCALES 

To explain the motivation for the topics of the last three chapters, it is necessary 
to introduce some concepts related to the level of measurements. Consider a set of 
objects of some kind. Typically, for the purpose of analysis, statistical description, 
and so on, each of these objects can be represented by a number b(z)  assigned to 
object z. Often that number represents the result of measurement in some units, but 
sometimes it identifies only the class to which the object belongs. 

If b(z)  > b(y), then z has “more , . , ” than y (is heavier, longer, warmer, older, 
etc.). The question we want to address is which type of statements expressed through 
the values of b are meaningful and which are not. To take an example, if b repre- 
sents length, and b(z) = 10, b(y) = 5, we say that z is twice as long as y, since 
b(z)/b(y) = 2. This statement will remain valid whether we express the length in 
inches, centimeters, or miles: the values b(z)  and b(y) will change, but their ratio 
will remain 2. However, if b represents temperature and b(z) = 10, b(y) = 5 ,  it 
makes no sense to say that z is “twice as warm” as y. Indeed, it is enough to ex- 
press temperature on a different scale (e.g., change from Fahrenheit to Celsius): The 
ratio of temperatures will change as the scale changes. The question therefore is: 
Why are the ratios of scale values meaningful for length, duration, or weight, but 
not meaningfu1lg for temperature? 

The full impact of such questions became apparent only when physical, mathe- 
matical, and statistical methods started to be used in the social sciences. Here the 
attributes that one considers are typically “soft,” and the use of certain methods can 
lead to conclusions that are illegitimate, but have the deceptive appearance of being 
very precise (the statement that a new brand of instant coffee “tastes 1 1.3% better” 
may be effective in commercials, mainly because of a deceptive use of a decimal 
point, but its meaning, if any, is obscure). 

It is clear that the decision which statements expressed through the values b(z)  
are allowed and which are not must lie in the analysis of the nature of a measured 
attribute. Such an analysis has the following general form: The starting point is 
an empirical relationalsystem, consisting of a set, A,  of objects under consideration 
and a number of relations on A,  say R1 , R2, . . . , R k .  These relations represent some 
empirically observable relationships between the objects in A: pairs, triplets, and so 
on. 

The measurement is an assignment of numbers to objects in A (hence it is a 
function on A).  This function must satisfy conditions that “mimic” the empirical 
relations R1, R2, . . . . If such a function exists, we say that measurement exists. The 

190bserve that the precision of measurements has nothing to do with the answer. Ratios of lengths make 
sense even if the lengths are determined imprecisely; the ratios then are simply subject to bigger errors. 
But the ratios ofthe temperatures make no sense even if the temperature is measured with the most precise 
devices available. 
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level of freedom of choice of such a function (if it exists) determines the type of the 
measurement scale. 

We will now illustrate the description above by examples. 

EXAMPLE 11.9 Scale of Hardness 

Let the objects under consideration be minerals, and let the empirical relation 
t be defined as z t y if mineral z scratches mineral y. We will assign num- 
bers h(z )  to objects z in A (minerals) to represent their hardness, in the sense 
that h(a) > h(y) whenever z + y. One such assignment gives the value 10 
to diamonds and lower values to other minerals. This choice of assignment of 
numbers to minerals is arbitrary, except that the relation + between values of 
function h must mimic the relation t between arguments of h (i.e., minerals). 
It is precisely this degree of arbitrariness of h that makes it meaningless to 
claim that “z is twice as hard as y” if h(z) /h(y)  = 2. 

But even in such a simple case as above, the possibility of assigning numer- 
ical scale values h ( z )  to minerals z in A results from the fact that the relation 
+ (of scratching) is transitive: if z + y and y t z, then z + z. Still the exis- 
tence of a function h that mimics the relation + is not obvious. Imagine that 
infinitely many new minerals, each of different hardness, are suddenly discov- 
ered. Could one still find enough distinct numbers to label those minerals? 
The answer is positive, but we will not provide the proof here. 

EXAMPLE 11.10 

Relations that order pairs do not have to be transitive. Consider the set A 
consisting of versions of the state budget, with the relation of preference t 
among them defined as z t y if majority (of some voting body) prefers z to 
y. We can then have a disturbing possibility that z + y, y t z but z t z. To 
see this, take the simplest case, where there are three voters a, b, and c, such 
that a prefers z to y to z, b prefers z to z to y, while c prefers y to z to z. Then 
a and b (hence a majority) prefer z to y; a and c prefer y to z, while b and c 
prefer z to z. We have therefore z + y t z + x and there is no numerical 
assignment of scale values to z, y, and z that mimics the relation +. 

EXAMPLE 11.11 

Consider now an attribute such as length and a possible measurement sys- 
tem for it. We have here the relation of comparisons with respect to length, 
accomplished empirically by putting the objects parallel to each other, with 
one end lined up (like pencils). We then obtain a relation, k, interpreted as 
“not shorter than.” The ultimate goal is to show the existence of a function b 
(length) defined on A,  such that z ? y if, and only if, b(z) 2 b(y). Clearly, 
we must require that k satisfies some conditions (axioms), such as transitivity: 
ifa t y and y ? z ,  then 2 k z ,  and so on. 
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However, one relation is not sufficient to define length as we know it, since 
there may be many functions b satisfying the requirement that k agrees with the 
order induced by the values of b. Clearly, something more is needed to force all 
functions b to differ one from another only by the unit of measurement (Le., such 
that if b and b’ are two assignments of lengths, then b’ = Qb for some ty > 0). 

In this case we need a ternary relation describing the operation of concatenation, 
that is, putting the objects end to end. Letting o denote such an operation, we obtain 
new objects, such as x o y ,  corresponding to x and y aligned one after another. 
This operation can be identified with a relation that holds between x ,  y ,  and z ,  if 
x o y - z, where - is defined by a - b if a k b and b k a. Clearly, we want 
b ( z  o y )  = b ( x )  + b(y ) ,  and to achieve that, the relations k and o jointlymust satisfy 
a number of conditions, such as the most obvious ones: i f x  k y, then x o z k y o z 
for every z ,  and ( x o y ) o z  - ( z o x ) o y ,  for all x ,  y, z .  Less obvious is the requirement 
of the Archimedean property: 

For every x and y there exists n such that xon 2 y, 

where xon = x o . . o 5 (n times). 
A measurement theory of length is then a relational system consisting of set A,  

relations 2 and 0, a set of conditions for >- and o (referred to as axioms), and a 
theorem asserting that if these axioms are satisfied, then: 

1. There exists a real-valued strictlypositive function b on A such that 

b ( x  o y) = b ( z )  + b ( y )  and x y ifandonly if b ( x )  2 b ( y ) .  

2. If b’ is any otherfirnction satisfiing condition 1 , then b* = crb for some Q > 0. 

The first part of the assertion provides the existence of measurement b, and the 
second part provides information about its uniqueness. In the case of length, the 
measurement is unique up to the choice of unit of measurement, so that the ratios of 
lengths are invariant. This means that for any objects x ,  y the ratio b ( x ) / b ( y )  does 
not depend on the choice of function b. 

To “purists” every attribute that one wants to measure (e.g., represent numeri- 
cally) ought to be analyzed in this way (for a discussion of the topic, see Valleman 
and Wilkinson, 1993). The systems vary in two respects: (1) the nature of relations 
in the relational systems and the axioms that they must satisfy depend on what is 
being observed and how, and (2) the uniqueness part of the conclusion about mea- 
surement scale varies depending on what is being measured. 

Each scale has its own level of “uniqueness,” described by a condition corre- 
sponding to condition (2) in Example 1 1.1 1. Although theoretically there may be 
infinitely many types of scales, in practical situations one encounters only four major 
types of scales, as specified in Definition 1 1.6.1. 

Consider a relational system, where b and b’ are any two assignments of numbers 
to objects in the set A-measurement scales specified by the axioms ofthe relational 
system, 
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Definition 11.6.1 

(i) If there exists a > 0 such that b’ (x) = ab(z), then the measurement is on the 
ratio scale. 

(ii) If there exists a > 0 and such that b*(x) = ab(x)+P, then the measurement 
is on the interval scale. 

(iii) If there exists a monotone increasing function u such that b’(z) = u[b(z)],  
then the measurement is on the ordinal scale 

(iv) If there exists a one-to-one function z1 such that b‘(z) = u[b( z ) ] ,  then the 
measurement is on the nominal scale. 

In other words, for ratio scales (see Example 1 1.1 l), the measurement is unique up 
to a choice of unit (examples are length, duration, etc.). For interval scales, one can 
choose not only the unit but also the zero of the scale (e.g., temperature). For ordinal 
scales only the order matters. For instance, if b(z)  = 10 and b(y) = 2, then all that 
we can say is that x is “more . . . ” than y, on an attribute designated by . . . . We 
cannot meaningfully say that the “difference” between z and y is 8, or that r is “five 
times . . . ” as y. The reason is that b(x )  = 10 and b(y) = 2 can be replaced by 
b*(x) = 100, b*(y) = -3, or b*(x) = 1, b’(y) = 0.99, or any other two values, as 
long as the first exceeds the second. 

In physical measurement, the best such scale known is that of hardness (see Ex- 
ample 11.9) when the main empirical relation is x ? y if “5 scratches y.” In the 
social sciences, the situation is not so clear. The relations between stimuli elicited 
by asking subjects to evaluate them “on the scale of 1 to 10” or by marking responses 
such as “strongly agree,” “agree,” and so on, are of the ordinal nature but often are 
treated as if they are expressed on an interval or ratio scale. 

The same concerns education, where grades are averaged and compared as if they 
were measured on an interval scale. Thus a student who takes six classes and gets 
one A and five B’s as the semester grades has a GPA of 3.16. Another student, 
who also takes six courses, gets four A’s, and two C’s, has a GPA that is higher 
(3.33). If the scoring (function b defined on grades A ,  B,  C,  etc.) were changed to 
b(A) = 4, b(B) = 3, b(C) = 1, that student’s GPA would be 3.00 and his grades 
would be judged as worse than these of the first student. 

There is nothing unique or objective in assigning the values 4 , 3 ,  and 2 to grades 
A ,  B,  and C, considering that the process of averaging grades usually includes dif- 
ferent subjects, grades by different teachers, and with criteria often formulated rather 
vaguely. Nevertheless, tradition and the practical need to assess students’ perfor- 
mance force one to fix the scoring system for grades, and regard them as a measure- 
ment on an interval scale. 

Finally, the nominal scale-the weakest of the four -can  hardly be regarded as 
measurement, since the numbers serve only for the purpose of identification (e.g., 
numbers on jerseys of football players). 

The four scales mentioned above form an order: any transformation b * ( s )  = 
ab(x ) ,  a > 0 allowed for the ratio scale is a particular case of a transformation 
b*(z) = ab(z) + p, a > 0 that defines the interval scale. This transformation is 
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monotone, hence allowed for the ordinal scale, and in turn, each monotone transfor- 
mation is one to one, allowed for the nominal scale. One can always lower the level 
of measurement, while to use a higher measurement level is incorrect. 

The theory of measurement scales, as outlined above, was introduced by Stevens 
(1 946). It rapidly gained popularity in psychology and the social sciences and was 
developed into a highly sophisticated theory (e.g., see Krantz et al., 197 1, or Roberts, 
1979). The four types of scales, as defined above, are most commonly encountered 
and popularly known. Unfortunately, this knowledge also contributed to the popular 
belief that all possible scale types (as defined by classes of allowed transformations) 
are ordered from “stronger” to “weaker.” In fact the order is only partial, with some 
scales being noncomparable. The noncomparable scales correspond to classes of 
transformations that are not contained one in another. 

The types of statistics that one can sensibly use depend on the type of the scale. 
While the mean p and standard deviation u are defined in both cases, one should 
not use the coefficient of variation u / p  in the case of data values measured on the 
interval (but not ratio) scale. This is because under transformation y = ax + p 
(a  > 0) the standard deviation becomes multiplied by a, while the mean becomes 
multiplied by a and shifted by p. Therefore the value o / p  depends on the choice of 
zero of the scale. 

On the other hand, for data measured on the ordinal scale only, the mean and 
standard deviation are not invariant, and only statistics expressed through ranks (e.g., 
median and other quantiles) should be used. Finally, for data on the nominal scale, 
one is allowed to use only class frequencies. 

In most of what follows (Chapters 12-14), it is assumed that the data represent 
measurements on the interval scale. This allows us to use such characteristics as the 
mean and standard deviation, and to assume that the data follow a normal distribu- 
tiomZ0 Chapter 15 concerns methods of handling the data measured on ordinal scales 
only (more precisely, only when ordinal relations are taken into account). Finally, in 
Chapter 16 we discuss the case of categorical data, expressed on the nominal andor 
ordinal scale with data grouped into classes. 

*‘Strictly speaking, if X is measured on a ratio scale, it cannot have normal distribution (since negative 
values are ruled out for ratio scales). Such level of adherence to the rules, imposed by scale types, would 
drastically impoverish the scope of statistical applications by absurdly disallowing to treat attributes such 
as height, weight, size, duration, etc., in certain populations as normally distributed, merely because these 
attributes cannot be represented by a negative number. 
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CHAPTER 12 

ESTIMATION 

12.1 INTRODUCTION 

Estimation is the process of extracting information about the value of a certain pop- 
ulation parameter 0 from the data. Consecutive observations (data points) x1 22, . . . 
are selected at random from the population being studied and are considered values 
of some random variables XI Xz, . . . . So if the same experiment of taking n obser- 
vations were to be repeated, the new data points would most likely be different. The 
statistical laws that govern the variability of data under repetition (actual or hypo- 
thetical) can be used to build the theory of statistical inference. In estimation theory 
it is usually assumed that the distribution of each observation Xi is known, except 
for the value of some parameter 0. An estimator of 0 is then a rule that allows us to 
calculate an approximation of 0, based on sample XI, . . . , X,. 

EXAMPLE 12.1 

Let XI, X2,  . . . represent the weights of successive trout caught at a certain 
location. We are interested in a parameter such as 0 = P{Xi  > WO}, where 
wo is some fixed weight, so that 0 is the fraction of trout whose weight exceeds 
a given threshold wo. 

373 
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Given the observed weights XI , . . . X,, we want to estimate 8 as 

number of i such that Xi 2 wo 
n 

T, = T ( X 1 , .  . . , X,) = 

The formula above gives an obvious, and rather unsophisticated estimator of 
8 as a relative frequency. 

There is another method of estimating the same parameter. Assume that 
the weights of trout follow a normal distribution N( p ,  g2) .  Given the sample 
X1 . . . , X,, we then calculate the sample mean x = ( l /n )  ( X I  + . . + X,) 
and sample variance S2 = [ l / (n  - l)] C ( X i  - x)2.  Both x and S2 can 
be regarded as approximations of p and 02,  respectively. Consequently, we 
estimate 8 as 

(12.1) 

where Q, is the cdf of a standard normal variable. Here the rationale is that 

which is approximated by (12.1). 

The example above shows that there can be several estimators of the same pa- 
rameter (i.e., several distinct rules of calculating an approximation of 8, given the 
sample). Since every estimator, such as T, and U, in Example 12.1, is a random 
variable, the obvious questions are: 

1. How to assess the performance of estimators and to choose the best one? 

2. Are there methods for obtaining estimators other than “ad hoc” methods, used to 
obtain estimators T, and U, in Example 12.1? 

A systematic attempt to answer these two questions resulted in a theory with a clear 
conceptual structure, supported by powerful theorems. The empirical situation is 
such that we observe values of independent random variables X I ,  X Z ,  . . ., sampled 
from the same distribution f (z l  B ) ,  where f is a density or a probability function, 
depending on whether the Xi’s are continuous or discrete. This distribution depends 
on a parameter that assumes some value 8 (unknown to the observer) from a pa- 
rameter space 0. The examples abound: the Xi’s can be Bernoulli observations for 
an unknown probability of success 8, or normally distributed observations with an 
unknown mean 8 and a known standard deviation, or with a known mean and an 
unknown standard deviation 8, and so on. 

To answer question 1: How to judge estimators? Let T, = T,(X1 , . . . X,) be 
the estimator for a random sample of size n, namely some function of observations 
X1 . . . X,, selected to approximate 8. The first requirement for a “good” estimator 
is its consistency, defined by the requirement that T, + 8. Since Tn’s are random 
variables, we must specify the type of convergence (e.g., in probability or almost 
surely). The need of consistency is obvious: estimators that are not consistent do 
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not guarantee that one gets closer to the true value of the parameter by increasing 
the sample size. 

If E(Tn) = 6‘ for every n, then estimator Tn is called unbiased. This means 
that if the estimation were to be repeated several times for different samples (but 
with the use of the same estimator), the results would be, on average, “on target.” 
The “quality” of an unbiased estimator may then be defined as its variance. This 
corresponds to taking ( t ,  -8)2 as the “penalty” or “loss” due to the error of accepting 
the value t, of Tn as the approximation of 0. While the squared error is not the only 
loss function possible, it is realistic in many problems. 

To sketch this development: First, one has a powerful Rao-Cramer inequality, 
which states that there exists a lower bound for variances of all unbiased estimators 
of 8 (for any fixed sample size n). This bound shows therefore the best that can 
be achieved in estimating a given parameter, in a sense of providing a yardstick by 
which one can tell how close a given estimator is to the “ideal” (i.e., to the estimator 
with the smallest possible variance). 

To answer question 2: How to construct estimators? There are methods (maxi- 
mum likelihood, moments, etc.) of finding an estimator, and there are also methods 
of modifying an estimator in order to improve it (e.g., to make its variance closer 
to the possible minimum value). One such improvement method is based on the 
concept of a sufficient statistic that retains information in the data that is relevant 
for estimating parameter 0. The Rao-Blackwell theorem says that if T is an unbi- 
ased estimator of 8, and S is a sufficient statistic for 8, then T* = E ( T / S )  is an 
estimator of 8 that is better (or not worse) than T.  Therefore one gets a powerhl 
tool of improving estimators: start with any unbiased estimator T ,  and find its con- 
ditional expectation T’ with respect to a sufficient statistic. If this new estimator T’ 
is not the best, then continue the process, conditioning with respect to another suffi- 
cient statistic, and so on. Instead of such conditioning “one step at a time,” one can 
condition T with respect to the so-called minimal sufficient statistic (i-e., maximal 
reduction of the data that preserves information about 0). The estimator T” obtained 
by such conditioning cannot be improved any further. This raises the obvious ques- 
tions: Is T’ the best possible estimator? Does the estimator T’ depend on the initial 
starting estimator T? These two questions turn out to be closely related. If the fam- 
ily of distributions {f(z, e), 0 E e} is complete, then T* attains the lower bound 
given by the Rao-Cramer theorem, and also, T’ can be obtained by conditioningany 
unbiased estimator of 0 with respect to the minimal sufficient statistic. 

As already mentioned, the sketch above gives a “success story with a happy end- 
ing” in statistical methodology. Presented in this manner it may appear easy and 
effortless. But one should remember that bringing the theory to its present form 
required analysis of countless examples, proving or disproving various conjectures, 
formulating weaker and weaker sets of assumptions under which such or other as- 
sertion is true, and this took about half a century of effort on the part of many statis- 
ticians. 

In this chapter we will also present some other topics and results in estimation: 
asymptotic properties of maximum likelihood estimators, Bayesian estimation, the 
bootstrap approach, and so on. 
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Let us begin with a simple estimation problem and a number of possible solutions. 
This will allow us to formulate various questions, as well as to suggest some natural 
generalizations to be discussed later in this chapter. 

In many situations where statistical methods apply, one observes a simple ran- 
dom sample XI, . . . , X, from a distribution whose functional form is known, ex- 
cept for the value of a certain parameter @. This means that the actual observations 
51,. . . ,z, are the values of iid random variables X I , .  . . , X,, each with a distri- 
bution that will be denoted f(x, @), where f stands either for the density or for the 
probability function depending on whether Xi’s are continuous or discrete. 

We also assume that 0 is an element of some parameter space 8. In a simple 
scenario 6 is a single number, so 8 is a subset of the real line, but in general, 0 may 
be a multidimensional space, or even a space with a more complicated structure. 

In what follows, we often assume that 8 is an interval of the real line, so that we 
can employ standard optimization techniques, e.g., involving the differentiation of 
various quantities with respect to 8. 

EXAMPLE 12.2 

A politician needs to estimate the proportion of voters who favor a certain 
issue. In a public opinion poll, n persons are sampled from the population and 
their responses XI, . . . , X ,  are noted, where Xi = 1 or 0, depending whether 
or not the ith person polled favors the issue in question. Letting 8 denote the 
proportion of voters in favor of the issue, we have 

Here 0 5 0 5 1 (i.e., 8 = [0, l]), and f (x ,6)  can be written as: 

f ( 5 , e )  = e y i  - q1-=, = o , i .  

EXAMPLE 12.3 

Measurement with error is often represented as an estimation problem. We 
are to measure the value of an attribute of an object (its weight, dimension, 
temperature, content of some substance, etc.). The true value of this attribute is 
6, but the measurements are subject to error. For instance, it is often assumed 
that the ith measurement is Xi  = 0 + E , ,  where € 1 ,  €2 ,  . . . are iid random 
variables. I fwe  assume that ~i -N(O, a2), then Xi - N ( @ ,  a2),  and 

where a is the standard deviation of measurements (assumed known). In this 
case the parameter space 8 is the subset of a real line representing the possible 
values of the measured attribute. 

If the standard deviation of measurement, a, is unknown, then 6 is a two- 
dimensional parameter 6 = ( p ,  a), and we may be interested in estimating 
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one or both components of 8. In this case the parameter space 8 is a subset of 
the half-plane { ( p ,  u) : u > 0). 

Before proceeding further, a few comments about notation and terminology are 
in order. First, we will typically use a symbol such as T ,  to denote a statistic, even 
if it refers to various possible sample sizes. For instance, we may consider a sample 
mean = (l/n)(Xl + . . . + X,,). In fact, however, we are considering here a 
sequence of statistics, each being a function of a different number of arguments. To 
formulate this properly, it will sometimes be convenient to use the notation involving 
the sample size. We will write T,, for the estimator based on a sample of size n so 
that T,, = T, , (X1, .  . . , X,,). 

Second, we will call a statistic an estimator (of e), when this statistic is used 
to estimate 8. Thus, formally, when sample size n is not specified, an estimator is 
a sequence of statistics, the nth one depending on observations X1 , . . . , X,. The 
value of an estimator, obtained for a particular sample, will be called an estimate of 

Finally, in presenting the general theory, we will use the symbol 8 for the un- 
known parameter. However, we will also be using traditional notation, such as p for 
probability of success and u for standard deviation. 

e. 

The following example will show several estimators of the same parameter: 

EXAMPLE 12.4 

Suppose that we take a random sample X1, . . . , X,, from the U[O, 81 distribu- 
tion so that 

if O l z g l  
otherwise. 

The objective is to estimate the range 0. 

SOLUTION. We will suggest several estimators of 0. First, we get some in- 
formation about 0 from the largest element of the sample. We feel (and will 
justify it later) that as the sample size increases, the largest value should get 
closer and closer to 0. This suggests taking 

Tl = X7lm (12.2) 

as an estimator of 8. A disadvantage of TI is that it always underestimates 
8. We can remedy this in a number of ways. For instance, we can argue 
as follows: In the sample of size n, observed values X I ,  . . . , X,, partition 
the interval [0,0] into n + 1 intervals. Since X I ,  . . . , X,, tend to be “evenly 
dispersed” over [ 0 ,6 ] ,  each of these n + 1 intervals will have, on average, the 
same length 8/ (n  + 1). Thus we should “push” TI to the right by (l/n)T1, 
which suggests using the estimator 

(12.3) 

Another way of “adjusting” TI may be based on the fact that by symmetry, 
the maximal observation is, on average, at the same distance from the upper 
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bound 8 as the minimal observation is from the lower bound 0. Thus we can 
use the estimator 

T3 = XI:, + Xn:n.  

We will also argue that the minimum of the sample allows us to estimate 8. 
The same argument as above, with a partition of the range [0, 01 into n + 1 
parts of about equal length, suggests the estimator 

(12.4) 

T4 = (n  + 1)Xl:n. 

This estimator does not seem very reliable. In particular, it may happen that 
T4 < X,:,, in which case using T4 would make no sense. Moreover, max- 
imum and minimum of the sample have-by symmetry-the same variance. 
The estimator T4 magnifies this variance by the factor (n + 1)2. We will show 
later how this fact affects the precision of the estimators. 

(12.5) 

Finally, we take 
T5 = 2X, (12.6) 

arguing that the average x should be close to the midpoint 812.  

Example 12.4 shows that one can have several estimators for the same parameter. 
This poses a natural question of establishing criteria for a choice. The next few 
sections give criteria to evaluate the performance of estimators. 

Another question concerns the methods of finding estimators, especially “good” 
ones: Rather than rely on intuition and common sense, it is desirable to have a 
scheme that can produce estimators in an “automatic” fashion. We will also present 
some modem generalizations and extensions of estimation procedures, especially 
computer-intensive techniques called resampling methods. 

12.2 CO NSl STE N CY 

One of the basic properties of a good estimator is that it provides more precise infor- 
mation about 8 with the increase of the sample size n. We introduce the following 
definition: 

Definition 12.2.1 The estimator T = {Tn, n = 1,2, . . .} of parameter 8 is called 
consistent, if Tn converges to 8 in probability, that is, 

lim P{ITn - 81 5 E }  = 1 
n-w 

(12.7) 

for every E > 0. The estimator T, will be called strongly consistent if T, converges 
to 0 almost surely, 

P{ lim T, = B }  = 1. (12.8) 

When both kinds of consistency are considered at the same time, estimators satisfy- 
0 

We will now analyze the consistency of the five estimators TI-TS introduced in 

n-w 

ing (12.7) are called weakly consistent. 

Example 12.4. 
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EXAMPLE 12.5 

The distribution of TI = X,:, is easy to obtain. Indeed, since Xi's are uni- 
form on [0, el, we have 

if t < O  
P { X i  5 t }  = F ( t )  = 

We are interested only in probabilities for t between 0 and 8. Since X,:, 5 t 
if and only if X i  I t for all i, by independence, we have 

(i)" P{Tl  2 t }  = P { X 1  5 t ,  . . . ; x, 5 t }  = (12.9) 

For0 < E < 0, 

p{p1 - el I €1 = P { T ~  2 e - €1 = 1 - (Y)". 
Since [ ( e  - €)/eln + 0 as n + 00, estimator TI is consistent. Using notation 
from Chapter 10, we may write 

P T~ -+ e. 

EXAMPLE 12.6 

P 
Next, T2 = [(n + l)/n] 7''; and since (n  + l ) /n  + 1, we have T2 + 8.  

EXAMPLE 12.7 

Regarding the consistency of estimator T3, observe first that for 0 < E < 0, 

P { X I : ,  > E }  = f i P { X i  > E }  = fi[l - F(E)] = (1 - f)" -+ 0; (12.10) 
i=l i=l 

P which means that X I : ,  + 0. Consequently, since 

T3 = 2'1 + Xi:, -+ 8, 
P 

T3 is also consistent. 

EXAMPLE 12.8 

Estimator T4 seems inferior to the others, as remarked in Example 12.4. We 
will show that T4 is not consistent. For 0 < E < 0, we have 
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The cdf of X I : ,  can be obtained from formula (12.10). Using the fact that 
(1 + z/n)" -+ e", we then have 

e(n + 1) 
P { j T 4 - 6 ' / < t }  = 1- 

e - t  e + t  
e(n + 1) 

-+ , - ( e - w  - , - ( e + w  < 1, 

Thus 
estimator of 8. 

P {  IT4 - 81 > c }  > 0, which shows that T4 is not a consistent 

EXAMPLE 12.9 

By the law of large numbers, we have 

- P  e 
X -+ E ( X i )  = -, 

2 
so 

- P  e T 5 = 2 X - + 2 x - = O 1  
2 

which shows that the estimator T5 is also consistent. 

(12.1 1) 

(12.12) 

From the strong law of large numbers in the iid case (Theorem 10.5.19) it imme- 
diately follows that the estimator T5 is strongly consistent. Showing strong consis- 
tency of estimators T I ,  T2 and T3 will be left as exercises. 

PROBLEMS 

12.2.1 Show that the estimators 2'1, T2, and T3 in Example 12.4 are strongly con- 
sistent. 

12.2.2 Let X1 , . . . , X ,  be a random sample from the distributionwith density f(z; 6') 
= e--(3-e)  for z 2 0, and f (z ,  0) = 0 otherwise. Check if T = X I : ,  is a consistent 
estimator of 0. 

12.2.3 The density of a Pareto distribution is f(z, a ,  0) = aB'2z-('2'+1) for z 2 6' 
and equals 0 otherwise. Show that T = X I : ,  is a consistent estimator of 8. 

12.2.4 Assume that the observations are taken from the U[O, e]  distribution, and let 
U, be the number of observations (out of first n) that are less than 5. Show that if 
6 > 5 ,  then Tn = 5 n / U ,  is a consistent estimator of 8. 

12.2.5 Observations are randomly sampled from the U[O, e]  distribution. After the 
sample size reaches n, the experimenter starts recording the minimum observations 
XI: , ,  X1:,+1 , . . . . He will continue until he gets X,+N such that 

x1:n = Xl:n+l = ' ' ' = Xl:n+N-l > Xl:n+N.  

Suggest an estimator of 0 based on observing  XI:^, . . . , XI: ,+N. [Hint: Find the 
probability distribution of N and express E ( N )  as a hnction of 6.1 
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12.3 LOSS, RISK, AND ADMISSIBILITY 

Assume again that n independent observations XI , . . . , X ,  of a random variable 
with distribution2’ f(z, 8 )  are taken in order to estimate 0. The closer 8* and 8 will 
be, the more successfully will 8’ subsequently serve some specific purpose. 

In the simplest case this degree of success may be a decreasing function of the 
error IS* - 81 so that the smaller the error, the better. One can easily imagine, how- 
ever, situations where the error of overestimating 8 (i.e., 8’ > 0) is less serious 
than the error of underestimating it (8’ < 0). To build a general theory, we assume 
that such a situation can be adequately represented by specifying the loss function 
L(8*, 8) ,  which describes the negative consequences of proceeding as if the value of 
the parameter were 8’ while in reality it is 8 (we consider “loss” and negative con- 
sequences, but by changing the sign, we can convert the considerations to “rewards” 
and positive consequences). 

with the loss equal to L(T, 0). The performance of estimator T can be evaluated as 
the average loss 

R T ( ~ )  = Ee{L(T(Xi,. . . , Xn)l Q ) } ,  (12.13) 

where Ee stands for expected value with respect to the distribution fn(z, 19). The 
function R given by formula (1 2.13) above is called a riskfinction. 

Suppose now that the experimenter decides to use the estimator T = T(X1, . . . , X,) 

We now need to introduce two important concepts: 

Definition 12.3.1 The estimator 2’1 is R-dominating estimator T2, or is R-better 
than T2, if for all 8 E 8 we have 

and the inequality is strict for at least one value of 8. 

that is R-better that T .  Otherwise, T will be called R-admissible. 
Moreover, an estimator T is called R-inadmissible if there exists an estimator T‘ 

0 

The basis for evaluation of an estimator is the risk function R, which depends 
on the unknown parameter 8. Clearly, if we have two estimators, and their risk 
functions are such that one of them is below the other (or equal to it) regardless of 
the value of 8,  we can decide that the corresponding estimator is better. Quite often, 
however, the two risk functions cross each other (i.e., one is below the other for some 
8, and above it for some other 8). In such a case the estimators are not comparable: 
Because we do hot know 8, and we do not know which risk function is smaller at 
the actual (true) value of 8, we cannot decide which estimator is better. Thus we 
obtain only a partial order of estimators; estimators that are not dominated by any 
other are admissible. Within the class of admissible estimators, by definition, none 
dominates the others, and therefore we still need other criteria for choice. But at 
least the problem becomes reduced in the sense that all inadmissible estimators are 
ruled out. In practice, the search for the class of admissible estimators for a specific 
loss function can be difficult. 

2 ’  We remind the reader that f(z, 0) is either the density or the probability function. 
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To build a general theory, it is necessary to choose a loss function that could is 
acceptable. One such a loss function is the squared error, that is, 

q e * , e )  = (e* - o)? ( 1 2.14) 

The use of this loss function2* makes sense only for estimators with finite second 
moment (i,e., finite variance). We shall tacitly make this assumption. The risk of an 
estimator T for loss (12.14) is therefore E e [ T ( X I ,  , . . , X,) - el2. This risk appears 
so frequently that it has acquired its own name. 

Definition 12.3.2 The risk of an estimator T computed for the loss function (12.14) 
is called the mean squared ermr o f  T ,  and is typically denoted as 

MSEe(T) = E e [ T ( X I , . .  . , X,) - el2. (12.15) 

Also, when no risk function is specified, admissibility will always mean admissibil- 
0 

The following definition and theorem show the important role of the first two 

ity with respect to the mean squared error. 

moments of T in the theory based on mean squared error. 

Definition 12.3.3 An estimator T such that 

(12.16) 

for every 0 will be called unbiased, and the difference 

&(T)  = &(T)  - 0 (12.17) 

0 will be called the bias of estimator T .  

Clearly, &(T)  = 0 if and only if T is unbiased. The estimator T will be called 
positively (or negatively) biased, depending on whether &(T) > 0 or &(T) < 0. 
More generally, if 

lim E e [ T ( X 1 , .  . . , X,)] = 0, ( 12.1 8) 
n+ca 

then T will be called asymptotically unbiased. 

We have the following theorem: 

Theorem 12.3.1 The mean squared error ( M S E )  of an estimator is the sum of its 
variance and square of the bias. 

22Another appealing loss function is .C(0*, 0) = 10’ - 01. This function, suggested by Laplace at the 
beginning of the nineteenth century, leads to a theory that is much less tractable mathematically, and 
has begun to be developed only recently. One could argue, however, that an adequate loss function 
should reflect consequences of errors made aJer the parameter has been estimated (see Gafrikova and 
Niewiadomska-Bugaj, 1992). The starting point in the latter approach is that we use the distrihtion 
f(z,@) for some purpose, such as prediction, calculation of some probabilities, and so on. Thus the 
loss L(@*, 0) should depend on how much the (estimated) distribution f(r, 0.) differs from the true 
distrihtion f(r, 0). Such “difference” between distributions can be expressed through a measure of 
difficulty in discriminating between the two distrihtions. 
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Pro05 

MSE~(T)  = E@(T - q2 = E @ { [ T -  E ~ ( T ) ]  + [Ee(T) - 
= 

= Vare(T) + [B~(T)] ’ .  0 

E ~ [ T  - E ~ ( T ) ] ~  + [ E ~ ( T )  - el2 
+ 2 ~ e { [ T  - Ee(T)] x [ W T )  - 01) 

Consequently the MSE of an unbiased estimator is equal to its variance. 
We will now find bias and MSE for the estimators 2’1 - T5 introduced in Example 

12.4. 
Observe first that for n=l we have 7’1 = XI,  T2 = T3 = T4 = T5 = 2 x 1 .  Next 

Ee(T1) = 0/2, whereas the remaining estimators are unbiased. Finally, Var(T1) = 
Var(X1) = 02 /12;  hence the mean squared errors of all of those estimators are the 
same, e2/3. They are either all admissible or all inadmissible if there exists a better 
estimator. In the examples below we assume that n > 1. 

EXAMPLE 12.10 

Let us begin with the estimator 7’1 = Xn:n. Clearly, since 7’1 < 0, the estima- 
tor is biased. The cdf of Tl is given by (12.9), so the density of TI is 

(1 2.19) 
ntn- l  

fTl( t )  = - en  ’ o i t se ,  

and f ~ ,  ( t )  = 0 otherwise. Thus 

(12.20) 

a result that we derived in Example 10.3 and used to justify the need to “adjust” 
TI to obtain unbiased estimators T2 and T3 

The bias of TI is negative: 

Using the formula for Var(T1) obtained in Example 10.3, we obtain 

EXAMPLE 12.11 

Estimator T2 = [(n + l ) /n]Tl  is unbiased. Therefore 

$2 
Vare(T1) = - ( n  + 1)2 

MSEe(T2) = Vare(T2) = 7 n(n + 2 )  

Comparing with MSEo (TI), we have 

(12.21) 

(12.22) 

(12.23) 

MSEe(T2) n +  1 
MSEe(T1) 2n 

1, =- 
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which means that the risk of T2 is, for large n, about half of the risk of TI .  This 
result shows that the estimator 2'1 is not admissible: There exists an estimator 
that is better for all 0, namely T2 (this does not imply that T2 is admissible!). 

EXAMPLE 12.12 

Let us now consider the estimator T3 = XI:, + X,:, . This modification of Ti 
is again intended to remove the bias so that Be(T3) = 0. Indeed, E(X,,,) = 
[n / (n  + l ) ] O ,  and by symmetry, E(X1:,) = [ l / (n  + l)]O. It was shown in 
Section 10.3 that 

Vare(X1:,) = Vare(X,:,) = Vare(T1). 

Based on formula (10.39, we obtain 

(12.24) 

Thus MSEo(T3) > MSEe(T2); again, T3 is not admissible. 

EXAMPLE 12.13 

Estimator T4 = (n + l)Xl:, is unbiased so that 

no2 
MSEe(T4) = Vare(T4) = (n  + 1)2Varo(X1,,) = - 

n + 2 '  

Compared with T2, we see that T4 is inadmissible-observe that the variance 
of T4 does not even tend to 0. 

EXAMPLE 12.14 

For the estimator T5, since Var(Xi)= 02/12, we have 

This time, MSEe(T2)/MSEe(T5) = 3/(n + 2), which for 'n > 1 is less than 
1, and therefore T5 is not admissible. 

It follows from the examples above that for n > 1,  the best out of the five sug- 
gested estimators is T2: In each case the risk is a parabola k02, with the coefficient 
k smallest for estimator T2. As we concluded, T I ,  T3, T4, and T5 are inadmissible. 
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This, however, does not imply automatically that T2 is admissible. There may exist 
an estimator with a smaller risk than the risk of T2. To determine the admissibility 
of T2, let us simply find the coefficient a such that T = ax,,, = aT1 has the M S E  
smaller than T2. We have 

an 
n+ 1 Ee(T) = aE(T1) = - 01 

and therefore 

Since 

we have 

MSEe(T) 

an an - (n  + 1) 

n + l  
&(T)  = =e - e = e. 

e2 1 

a2n 
(n  + 1)2(n + 2 )  

Vare(T) = a'Vars(T1) = 

I e2 

= [  (n  + 1)2(n + 2) I e .  
a2n a2n2 - 2an(n + 1) + (n  + 1)2 

= [ (n  + 1)2(n + 2) + (n  + 
a2n + (n  + 2)(a2n2 - 2an(n + 1) + (n  + I ) ~ )  

Differentiating the numerator with respect to a, we obtain cy = (n  + 2)/(n + 1) as 
the value that minimizes MSEe(T). For such a, the estimator 

n+2 
n + l  

T = -  Xn:n (12.25) 

has the risk 

- MSEo(T2). MSEo(T) = - < ~ - e2 e2 
(,n + n(n + 2 )  

Thus T2 is also inadmissible, and the best estimator (of those considered) is the es- 
timator T given by (12.25). 

PROBLEMS 

12.3.1 Let TI and T2 be two unbiased estimators of 0 with variances of,  a;, re- 
spectively. Find values a and b such that: (i) Estimator aT1 + bT2 is unbiased. (ii) 
Unbiased estimator aT1 + bT2 has a minimum variance assuming that TI and T2 
are independent. (iii) Unbiased estimator aT1 + bT2 has a minimum variance if 
COV(T~ ,  2'2) = C.  

12.3.2 Let XI, . . . , X ,  be a random sample from a N(B, a2) distribution with g2 

known. Show that the estimator T of 8, defined as T(X1: . . . , X,) = 3 (T = 3 
regardless of the observations), is admissible. 

12.3.3 Let X I ,  . . . , X, be a random sample from EXP(l/e) distribution. Compare 
the mean squared errors of two estimators of 8: TI = x and T2 = [n/(n + l)]y. 
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12.3.4 Let XI,  . . . , X ,  be n Bernoulli trials with probability of success 0, and let 
S = Cy=l Xi. Compare the mean squared errors of two estimators of 8: TI = S/n 
and T2 = (S + l)/(n + 2). 

12.3.5 Let X - 1, . . . , X, be a random sample of size n from the discrete distri- 
bution with probability function f ( z ,  O )  = O(1 - 0). , z = 0,1, . . .. Compare the 
MSE's of two estimators of 8: TI = x and T2 = [n/(n + l)]x. 
12.3.6 Let X1 , . . . , X, be a random sample from a N(p, a2) distribution ( p  and a2 
are unknown), and let 

be two estimators of a2, (i) Compare the MSE's of S2 and ST. (ii) Consider 

n 

i=l 

as estimators of u2 and find k for which Sz has smallest MSE. Explain why, in 
practice, the only values of k used are (suboptimal): k = 1/n and k = l/(n - 1). 

12.3.7 Let U = XI:,, and let V = X,:" in a random sample from UIO - 1,B + 11 
distribution. (i) Show that x and (V + V)/2 are both unbiased estimators of 8. (ii) 
Determine the MSE's of estimators in (i). 

12.3.8 Let X I ,  . . . , X4 be a random sample from U[O, 81 distribution. Compare 
the mean squared errors of four estimators of 8: TI = 5X1:4, T2 = (5/2)x2,4, 
T3 = (5/3)X3:4, andT4 = (5/4)X4:4. 

12.4 EFFICIENCY 

We assume that the observations XI, X2, . . . are iid random variables, with E( Xi) = 
8 and Var(Xi) = a2 < IXI, the latter assumed known. 

The obvious choice of estimator of the mean O is T = (XI + ' ' + X,)/n, 
traditionally denoted by I? or I?n, if we need to stress the dependence on the sample 
size. Since 

(12.26) 

X, is always an unbiased estimator of the mean 6. Furthermore, by the Chebyshev 
inequality and the fact that Var(x,) = u2/n  for every > 0, 

1 
n 

E(X,) = -E(x~ + . . . + x,) = 8, 
- 

(12.27) 

and therefore x, is a consistent estimator of 8 if only Var(Xi) < 03. In view of 
unbiasedness, the risk of X, is equal to its variance, that is, 

(12.28) 
a 2  

M S E ~  (X,) = - . 
n 
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Let us now compare the situation with that of estimating the range I9 of uniform 
distribution, by using estimators such as Tl or T2 given by (12.2) and (12.3). There 
are two main points of difference here. The first is that in the case of estimating the 
mean by x,, the risk for a fixed n is constant-it does not depend on the estimated 
parameter 0. In the case of estimators TI and T2, the risk given by (12.22) and 
(12.23) is a quadratic finction of 0: the larger the value estimated is, the larger is the 
variance of the results. 

The second difference-and much more important-is the rate at which the risk 
changes with the sample size n. In the case of estimating the mean by the sample 
average x,, the risk changes inversely with n, whereas in estimating the range of 
uniform distribution by TI ,  or T2, it changes (approximately) inversely with n2. 
Naturally the latter case is more desirable practically: increasing the sample size by 
the factor of 10 reduces the mean squared error by factor of 100-that is, to about 
1% of the mean squared error for the original sample size. As opposed to that, in 
estimating the mean by F,, an increase of sample size by the factor of 10 decreases 
the mean squared error by the factor of 10 only-that is, to about 10% of the mean 
squared error for the original sample size. 

So why do statisticians use the sample average as an estimator, if there are other 
estimators that are so much better? 

The answer is that a situation such as the one with the sample mean-when the 
mean squared error decreases inversely with n-is much more common than the 
situation where the mean squared error decreases with n2. In most cases the best 
estimators that one can obtain have a mean squared error that decreases in proportion 
to l /n .  

The concept that we will attempt to formalize is that of the average “amount of 
information about O contained in a single observation of X.” Let X I ,  X2,  . . . be a 
random sample, selected from the distribution f (5,  0), where O takes values in some 
open domain, and the set of points z at which f(z, 0) > 0 does not depend on 8. 
(The last assumption rules out the case of observations from the U[ 0,191 distribution, 
where the set of points at which f(z, 0) is positive depends on 0.) The reason for 
distinguishing such “regular” case is that if this assumption were violated, a single 
observation may eliminate some values of 0 with certainty (e.g., in the case of uni- 
form distribution on (0, 01, observation X = 3 rules out all I9 < 3). Such elimination 
is typically unattainable in practical situations; hence we concentrate the theory on 
“regular” cases. 

Let us start from some intuitions. Suppose one gets a message that some event A 
occurred. The amount of information in this message depends, in an obvious way, on 
what event A is and who receives the message (think here of a message that Delta 
flight 503 will arrive 2 hours late). Apart from such semantic and personal infor- 
mation, there is also some information contained in the message (that A occurred) 
depending only on how likely is the event A.  If P ( A )  is close to 1, the amount of 
information is close to 0, while for P ( A )  close to 0, the amount of information is 
high. 

This interpretation agrees with common intuition, as well as with practice (e.g., 
in newspaper publishing). The fact that Mr. Smith found a dead roach in the can 
of beer he drank is of interest and worth reporting precisely because such an event 
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is rare; hence its occurrence carries lots of information. If, on the other hand, dead 
roaches were commonly found in cans of beer, no one would care to report it. 

An interesting and coherent theory is obtained if the amount of information in the 
occurrence of an event with probability p is log( l/p) = - logp. 

The situation in the case of estimation is somewhat more complicated, since we 
want to define the amount of information about 0 in the event X = z, where X is 
a random variable with distribution (density or pdf) f(z, 6) .  Here f(z, 0) plays the 
role of probability p of the event X = z. Since we are interested in information 
about 0, it appears natural to consider the rate of change of log(l/[f(z,e)])  = 
- log f (z ,  0) under varying 0 at the point z, that is, the derivative 

(12.29) 

We eliminate the effect of the sign by considering the square of quantity (12.29), 
and take the expectation to avoid the restriction to specific value z. 

These considerations lead to the following definition: 

Definition 12.4.1 Let X be a random variable with distribution f(z, e) ,  such that 
the set of points x at which f(z, 0) > 0 is the same for all 0. We assume that the 
function f(z, 6 )  is twice differentiable with respect to 0 for every z. Then the Fisher 
information about 0 in a single observation X is defined as 

q e )  = a J ( X , e ) I 2 ,  (12.30) 

where 
(12.3 1) 

0 

a 
4x1 0) = [log f (X, e)l, 

provided that the expectation (12.30) exists. 

Thus, in the case of a continuous random variable X ,  the quantity (12.30) is 

while in the discrete case integration is replaced by summation. 

EXAMPLE 12.15 

Let X have normal distributionN( 0,  u2). Then 

(. - q2 - - 
2a2 

iogf(z, e) = - 

and 

Thus 

(12.32) 
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EXAMPLE 12.16 

Consider now a single Bernoulli trial with probability 8. We have P { X  = 
110) = 6 and P { X  = O l e }  = 1 - 0 so that 

j (Z ,  e)  = ez( i  - e ) l y  z = 0 ,  1. (12.33) 

Thus log j ( z ,  e)  = z log 0 + (1 - Z) log( 1 - 0 )  and 

i f x = O  
(12.34) 

Taking the expectation, we obtain 

(12.35) 

EXAMPLE 12.17 

Let us slightly modify Example 12.16: Suppose now that P { X  = 110) = O2 
and P { X  = O l e }  = 1 - 02; thus we have a single Bernoulli trial, but now 
the probability of success is e2. However, we are still interested in the amount 
of information about 0 (not 02). A practical example here may be found in 
genetics, where 0 is a frequency of a recessive gene (e.g., a gene causing a 
person to have blue eyes) so that X = 1 corresponds to finding a person with 
some features caused by a recessive gene (requiring both parents to transmit 
this gene). We now have 

j(., e) = (02)"(i - 02)l-"; 

hence 

Consequently 

Comparison of this result with the result in Example 12.16 is quite instructive. 
In a single Bernoulli trial with probability of success 8, the average amount of 
information in a trial is a function that assumes its minimal value 4 at e = 1/2. 
As 6 moves away from 1/2 towards either 0 FZ 0 (success very rare) or 6 = 1 
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(failure very rare), the average amount of information about 0 increases to 
infinity. 

On the other hand, if we can only observe whether or not an event with 
probability e2 has occurred, then the average amount of information about 0 
is close to 4 if 0 zz 0, and increases to infinity when 0 + 1. The symmetry 
of the preceding example is lost. Indeed, only when 0 is close to 1 is O2 also 
close to 1 ,  so successes that are sufficiently frequent provide a good estimator 
of d 2 ,  and hence also of 6. For small 0, we have a poor estimate of 02, and 
hence also a poor estimate of 0. 

Alternative formulas for I ( 0 )  can also be derived. Observe first that 

(12.37) 

This is valid under the conditions that allow to interchange differentiation with re- 
spect to 0 and integration with respect to 2 .  Thus, in view of (12.37), 

Vars[J(X,  0)] = E o [ J ( X ,  0)J2 - { E [ J ( X ,  0)]}2 = I ( 0 ) .  (12.38) 

Still another formula for Z(0) can be obtained by noting that 

Taking expectations of both sides, we get 

since, assuming one can interchange integration and differentiation, 

We have therefore the following theorem: 

Theorem 12.4.1 rfthe density f(x, 0) is twice dixerentiable in 0 and the equalify 
$ f(x, 6)dx = 1 can be differentiatedtwice under the integral sign, we have 

Z(0) = E e [ J ( X ,  0)12 = Vare[J(X,  0)] = -Ee 
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0 

The following theorem determines the average information contained in a random 
sample of size n: 

Theorem 12.4.2 The information In(0 ) ,  in a random sample of n observations, is 
n times the information of a single observation: 

rn (q  = nqe) .  (12.40) 

Proox The density o f  X is f (X,  0) = f ( X 1 , B )  . . . f ( X , ,  0) so that 

Differentiating both sides, we have 

(12.41) 

The next theorem connects the amount of information about 0 contained in a 
single observation, with the variance of an estimator of 0. 

Theorem 12.4.3 (Rao-Crambr Inequality) For any estimator T, of 0, such that 
Ee(Tn) = m(O), we have 

(12.42) 

Inparticulal; ifT is unbiased, then m(0) = 0 ,  m'(Q) = 1, and 

ProoJ Let T ( X )  = T ( X 1 ,  . . . , X,) be an arbitrary estimator of 0, assumed to 
have a finite variance. Letting x = (21,. . . , zn), we have 

Consequently, assuming again that we can differentiate under the integral sign, we 
obtain 

= / . ' . /T(x)J(x: O)f(X, 0 ) d q  . . . ds, 

= Es{T(X)J(X,O)} = Cove(T(X), J ( X ,  0)) .  (12.44) 
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The last equality follows from the fact that E [ J ( X ,  e)] = 0, which can be estab- 
lished in the same way as for a single random variable X, in view of the relation 

n 

i=l 

Now, by the Schwarz inequality (8.6.7) and (12.44), we may write 

[m’(6)I2 = [Cove(T(X), J(X,8)I2 5 Vare(T) x Var~[J(X,8)1 .  (12.45) 

0 

Observe that we have equality in (12.42) if and only if we have equality in 
(12.45), which means that the correlation coefficient between T(X) and J ( X ,  6) 
satisfies the condition IpT(x),j(x,e,l = 1. By Theorem 8.5.6, this is equivalent to 
linear relationship between T(X) and J ( X ,  e), that is, 

T ( X )  = 71 ( W X ,  0) + 72(8) (12.46) 

for some functions yl(8) and 7 2  (8). 
An important point here is that T is an estimator of 8, so the left-hand side does 

not depend on 8. Consequently, the right-hand side does not depend on 8 either; 
that is, functions 71 and 7 2  cancel the dependence of J ( X ,  6) on the parameter 8. 
The set of conditions that allow all differentiations under the integral sign, combined 
with the condition of independence of 8 of the set of 2 for which f(2, 6) > 0, will 
be called the regularity conditions. 

We have the following definition: 

Definition 12.4.2 Any unbiased estimator T that satisfies the regularity conditions 
and whose variance attains the minimum equal to the right-hand side of (12.43) is 
called eficient. The ratio nI(e)/Vare(T) is called the efJiciency of T. 

More generally, given two unbiased estimators Ti and T2 of 8, the ratio of their 
variances Varg(Tl)/Vare(T2) is called the relative eficiency of Tz with respect to 
Ti. 0 

EXAMPLE 12.18 

Consider the problem of estimating the mean 6 of normal distributionN( 8, g2). 
From Example 12.15 we have I ( 0 )  = 1/c2. The most obvious estimator for 
8, x,, is unbiased, and Var(x,) = g 2 / n .  The lower bound of variances of 
all unbiased estimators of 8, based on samples of size n, is l /[nI(8)] = a2 /n ,  
which shows that x,, is efficient. 

EXAMPLE 12.19 

Continuing Example 12.16, suppose that we want to estimate probability of 
success 6’ on the basis of n Bernoulli trials. Since I ( 8 )  = l/[Q(l - O)],  the 
information in the sample of size n is n/[O(l - 81. For S, = XI + ’ .  . + 



EFFICIENCY 393 

X, being the total number of successes, T = S,/n will be an estimator of 
0. S has binomial distribution; E ( T )  = (l /n)E(S,)  = 0, and Var(T) = 
(1/n2)Var(S,) = e(l - B)/n, which shows that T is efficient. 

EXAMPLE 12.20 

In Section 12.2 we studied five estimators of 0 in U[O, 01 distribution. We 
found that variances of estimators T I ,  Tz, and T3 decrease to zero like llnZ 
(and not at the rate lln, as for efficient estimators). Thus those estimators are 
superefficient. This is possible since f(z,  0) does not satisfy the regularity 
conditions. The set of points z at which the density f(s, 0) is positive is [0, 
01; hence it depends on 0. 

Under the regularity conditions, the right-hand side of the Rao-Cram 'er inequality 
(12.43) gives the lower bound for variances of unbiased estimators, and therefore, 
if an efficient estimator of 0 is found, it is known that a better unbiased estimator 
does not exist. It is necessary to point out, however, that the Rao-Cramtr bound is 
not always attainable. It may happen that the best possible unbiased estimator has 
a variance larger than the Rao-Cram6r bound. For a thorough discussion of these 
topics see, for example, Mood et al. (1974). 

PROBLEMS 

12.4.1 Let x 2 k  be the sample mean of 2k independent observations from a normal 
distribution with mean 0 and known variance r2.  Find the efficiency of 7, (i.e., of 
estimator that uses only half of the sample). 

12.4.2 Let X have EXP(X) distribution. Find the Fisher information I ( X )  

12.4.3 Let XI, . . . , X ,  be a random sample from EXP(X) distribution. Propose an 
efficient estimator of 1 / X  and determine its variance. 

12.4.4 Find Fisher information I ( 0 )  in a random sample of size n from the Cauchy 
distributionwithdensity f ( s , 0 )  = {.[I + (z - 0)2]}-1. 

12.4.5 Let X I ,  XZ be a random sample of size 2 from N(p, a2) distribution. Deter- 
mine the amount of information about p and about c2 contained in: (i) X1 + X2. 

(ii) X1 - X2. 

12.4.6 Let X I ,  . . . , X ,  be a random sample from a Bernoulli distribution with an 
unknown p .  Show that the variance of any unbiased estimator of (1 - p ) 2  must be 
at least 4p( 1 - ~ ) ~ / n .  

12.4.7 Show that the estimator T = x satisfies relation (12.46) and determine func- 
tions y1 and 7 2  if a random sample XI, Xz, . . . , X, is selected from: (i) N(0, a') 
distribution with D known. (ii) BIN(1,O) distribution. 
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12.5 METHODS OF OBTAINING ESTIMATORS 

Before introducing further criteria for evaluating performance of estimators (besides 
consistency, unbiasedness and efficiency), we shall now present methods of con- 
structing estimators. 

Method of Moments Estimators 
In this approach estimators are obtained by equating sample quantities to the corre- 
sponding population quantities as functions of the parameter to be estimated. The 
estimator is then found as a solution of the resulting equation with respect to the 
parameter, and the general approach is also known as a plug-in principle 

Since the most commonly taken quantity is a moment of the random variable, 
this method of constructing estimators is generally known as method of moments. 

EXAMPLE 12.21 

Let XI, . . . , X, be a random sample from the EXP(8) distribution. Then 
E ( X i )  = l / 0 .  The sample counterpart ofthe first moment is the sample mean 
X, = (l/n)(X1 + . . . + Xn). Equating the empirical and theoretical mean, 
we obtain the equation x, = 1/6, which gives the estimator TI = 1/Tn of 
the parameter 8. 

We could, however, use the second moment as well. Then we have E ( X 2 )  = 
Var(X) + [ J ! ~ ( X ) ] ~  = 2/02. The empirical counterpart of the second moment 
is ( l /n)  xy=l Xf  . We therefore obtain the equation 

- 

which, solved for 9, gives an estimator 

(12.47) 

Still another possibility would be to use the median m, the point at which 
cdf equals 1/2, so F ( m )  = 1 - e-"" = 1/2,  implying m = (log 2)/8. The 
empirical counterpart of the median m is the sample median. We will assume 
for simplicity, that the sample size is odd ( n  = 2 k  + 1). Then the sample 
median is the ( k  + 1)st order statistic X ~ + I : ~ .  We therefore have still another 
estimator of 0, 

(12.48) 
log 2 

T3 = -. 
X k + l : n  

Finally, suppose that we want to estimate the probability 

p = P { X  2 3)  = e-38 

The method of moments suggests using the estimator e-3T,  where T is any 
estimator of 8. Estimators T I ,  T2, and T3 now give three estimators of p ,  
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namely 

EXAMPLE 12.22 

Let us observe that the estimator T5 = 2x, from Example 12.4 is also an 
example of estimator obtained by the method of moments. Since E ( X )  = 
8/2, doubling the sample mean gives a moment estimator of 8. 

The method of moments can also be applied in the case of estimating several 
parameters at once, as illustrated by the following example: 

w EXAMPLE 12.23 

Suppose that we want to estimate both y and u2 based on a random sample 
X I ,  . . . , X, from some distribution with mean p and variance u2. 

SOLUTION. We could choose the following two expressions: 

E ( X )  = p ,  E ( X 2 )  = u2 + p? (12.49) 

This suggests that we compare the first and second empirical moment with p 
and u2 + p2  by obtaining the equations 

Solving for il and d 2 ,  we obtain 

Thus the sample mean and the sample variance (with divisor n) are method-of- 
moment estimators of the population mean and variance in the general case. 

EXAMPLE 12.24 

As the last example of the method-of-moment estimator, consider the problem 
of the randomized response, discussed in Section 1.2. Generally, the empiri- 
cal problem concerns some attribute, call it Q, that a person might be reluctant 
to admit having. The objective is to estimate the frequency 0 of persons in a 
given population whose true reply to a question “Are you a Q-person?” is 
“yes.” To collect the data on such questions one can use a questionnaire with 
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a randomized response (see Example 1.9). The respondent activates two ran- 
dom mechanisms, one generating the event A or its complement A‘, the other 
generating the event B or its complement BC. These two mechanisms oper- 
ate independently. The probabilities P ( A )  = a and P(B) = p are known; 
however, only the respondent knows which of the events A and B occurred 
in a given instance. He is instructed to respond to the question “Are you a Q- 
person?” if A occurs, and otherwise respond to the question “Did B occur?” 
The answer “yes” or “not” is recorded by the experimenter who does not know 
which question was actually answered. 

Conditioning on the occurrence or nonoccurrence of event A, we have 

P( “yes”) = P (  “yes”lA)P(A) + P( “yes”IAc)P(AC) 

= ea+p( i  -.I. 
If now X respondents out of N tested replied “yes,” then X/N is an estimator 
of P(“yes”), and we have an approximate equality 

which suggests using as an estimator of 8 the random variable 

X / N  - /3(l - a )  
T =  

a 

A problem with the estimators obtained by method of moments is that they are not 
unique, since one can take moments of various orders, or even different quantities. 
However, as a rule, one should take the moments of lowest orders that depend on 8, 
as illustrated by the following example: 

EXAMPLE 12.25 

Suppose that the observations are known to have U[ -8,8] distribution. Then 
E ( X )  = 0, and the first moment contains no information about 8. One may 
use here the fact that 

which gives the estimator 

The moment estimators are consistent under some very mild conditions. Indeed, 
the strong law of large numbers for the iid case asserts that (l/n)(X,k + X$ +. . . + 



METHODS OF OBTAINING ESTIMATORS 397 

Xk) converges withprobability 1 to E e ( X k )  ifonly Ee( lXlk)  < co. Consequently, 
the empirical moments converge also in probability to the corresponding theoretical 
moments, and if only the parameter 6’ is a continuous function of moments (as is 
usually the case), the consistency of method-of-moment estimators follows. 

The situation is not so straightforward for estimators built on quantities other 
than the moments. Consistency has to be studied separately in each such case, by 
establishing whether or not the sample analogue of a given quantity converges in 
probability (or almost surely) to the corresponding theoretical quantity. However, 
the main issue with method-of-moment estimators is that they either coincide with 
estimators obtained by the maximum likelihood method (discussed below), or they 
are inferior to them. 

Maximum Likelihood Estimators 

Let XI, . . . , Xn be a random sample from distribution f(z, O), where f(z, 8) may 
stand for the density or for the probability function. If the actual observations are 
X1 = z1, . . . , X n  = z,, then the probability of this sample (or the joint density) is 

The product (12.5 l), regarded as a function of parameter 8, is called the likelihood 
function of the sample, or simply the likelihood function. We will use the symbol 

n 

-w) = L(Q; ~ 1 , .  . . ,zn) = n j ( z i ,  0) = jn (x ,  81, (12.52) 
i=l 

where x = ( 2 1 ,  . . . , zn). 

Definition 12.5.1 Given the sample x = (51,. . . , zn), the value 6 = 6(x) that 
maximizes the likelihood function (12.52), is called the maximum likelihood esti- 
mate (MLE) of 8. 0 

Let us begin with some examples: 

EXAMPLE 12.26 

We will find MLE of the probability of success 8, if in five independent 
Bernoulli trials with probability of success 8, three successes and two failures 
were observed. 

We have here f (z ,  8 )  = P(1  - 8)1--s where z = 0 or 1 represent failure 
and success, respectively. Thus the likelihood is 

5 

L(O)  = nez*(i - e)l-”’ = e3(1 - q2,  (12.53) 
i= l  

where 0 5 8 5 1. The information as to which trials led to successes and 
which to failures does not affect the likelihoodand is irrelevant for the estima- 
tion of 8. 
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To find the maximum of function (12.53) we differentiate, obtaining the 
equation 

L ' (e )  = 3e2( i  - el2 - 2e3(1 - e)  = e2(i  - e)[3( i  - e )  - 201 
= e2(i  - e)(3 - 50) = 0. 

The solutions are: 0 = 0,O = 1, and 0 = 315. An inspection of L(0) 
shows that this function attains its maximum at the last solution, while 0 = 0 
and 0 = 1 give the minima. Thus the maximum likelihood estimate of B is 
e = 315. 

H EXAMPLE 12.27 

Suppose that we take n=3 observations from POI(0) distribution, obtaining 
values 2 1  = 2 , ~  = 0,23  = 5. The likelihoodis 

The derivative now is 

and L' (0) = 0 for 6 = 0 and for 0 = 713. An inspection of L shows that the 
maximum occurs at the second solution, so the MLE of B is now 713. 

EXAMPLE 12.28 

Suppose that we observe values 5 1  = 3 and z2 = -2 from a N(0,e2) distri- 
bution. The likelihood now is 

Since L(B) is maximized at the same point at which its logarithm is maxi- 
mized, we will take the logarithm first and then differentiate. Taking natural 
logarithms, we have 

Hence 
d 2 13 

dB 0 83 
- iogqe)  = -- + -, 

and we obtain the equation 

with solution 6' = m. After checking that the likelihood is maximized at m, we obtain 4 = m a s  the MLE of 8. 
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Figure 12.1 Likelihood function for the range R in uniform distribution 

Some obvious questions arise here. First, the statistical questions concerning the 
properties of the suggested procedure. The point is that the maximum likelihood 
estimate depends on the sample, so it is a random quantity. Our procedure there- 
fore defines an estimator. What are its properties, such, as consistency, bias and 
efficiency? 

Second, the mathematical questions: Does MLE always exist? If so, is the maxi- 
mum of the likelihood function unique? Can it always be obtained by differentiation 
of likelihood or of its logarithm and solving the resulting equation? 

There are cases when, formally speaking, MLE does not exist, but these cases 
can often be modified in a natural way so as to remedy the situation. 

EXAMPLE 12.29 

Consider the problem of estimating 8 based on observations from the U(0, 8) 
distribution, with density 

for O < X < O  
otherwise. 

Given the sample z1, . . . , zn,  the likelihood is 

Thus the likelihood function is discontinuous: it is the function depicted 
in Figure 12.1, with discontinuity at the point t = max(z1, . . . , zn), and de- 
creasing for 8 > t .  However, for 8 = t we have L( t )  = 0, so there is no point 
at which this function attains its maximum, and MLE does not exist. 

The cause of the trouble here is the choice of the definition of the density. 
If we define f(z, 8) to be l /8  in the closed interval 0 5 z 5 8, the likelihood 
would actually reach its maximum at 8 = max(z1 . . . , zn).  

The example above shows a type of situation where MLE does not exist because 
of the choice of the density function. Since the density function can be modified at 
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a single point (or at any finite or countable set of points), such a modification can 
affect the likelihood function. Consequently, we may (and will) always assume that 
the densities are defined in such a way that the maximum of the likelihood exists. 

w EXAMPLE 12.30 

Assume that we are estimating 0 based on a random sample X I ,  . . . , X,, with 
Xi’s being distributed uniformly on the interval [ 0 - 1 / 2 , 0  + 1/21, We have 

Consequently, L(0) = 1 if X n : ,  5 9 + 1/2 and XI:, 1 0 - 1/2, and is 
equal 0 otherwise. All values of L(6)  in a certain interval are equal 1, and the 
maximum is not unique. All values between Xntn  - 1/2 and XI:, + 1/2 are 
MLE’s of 0. 

Despite the above-mentioned shortcomings, maximum likelihood estimates are 
reasonable in most cases appearing in practice. We will continue with the example 
of the MLE in the case of a fixed number of Bernoulli trials. 

EXAMPLE 12.31 

Let us consider, as in Example 12.26, five Bernoulli trials with probability of 
success 0. The information on which trials led to success and which led to 
failures is not essential: what matters is the total number S of successes. The 
likelihood function for S = s is 

q e ,  S) = es( i  - e ) V  

For 0 5 0 5 1, the function L(0 , s )  is maximized at s/5 if s = 1 , 2 , 3 ,  or 
4, as can be seen by taking derivatives and solving the equation L’(0 )  = 0. 
For s = 0, we have L(6,O) = (1 - 0)5, and the maximum occurs at 0 = 0. 
Similarly, for s = 5, we have L ( 0 , 5 )  = 0 5 ,  and the maximum occurs at 
0 = 1. Thus the MLE of 0, for given s, is s / 5  (although for s = 0 and s = 5 
the maximum occurs at the boundary and therefore cannot be established by 
taking derivatives). 

Graphically the six likelihood functions corresponding to various numbers 
s of successes are presented in Figure 12.2. If we now regard s as a value 
of random variable S, then the likelihood function L(0,  S) becomes random. 
The corresponding point at which L ( e , 5 )  attains its maximum equal to S/5, 
is also random. Thus the MLE becomes a random variable, dependent on the 
sample (XI , . . . , Xn) through the statistic S = XI + . . . + Xg.  

We will regard the likelihood function as a random function of 0, the randomness 
being induced by the sample XI, . . . , X,. The value 6 that maximizes the likelihood 
will be called a maximum likelihoodestimator of 0. Following tradition, we will use 
the same MLE symbol for both the maximum likelihoodestimator (random variable) 
and for the maximum likelihood estimate (its value for a particular sample). 
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Figure 12.2 Likelihood function for five Bernoulli trials 

Let us begin by stating some properties of maximum likelihood estimators. The 
property that makes these estimators quite convenient is known as invariance. 

Invariance Principle If6 is the MLE ofparameter 0, then h(6) is the MLE of 
parameter h(6’). 

Let us begin with the case where the mapping h is one-to-one. Then there exists 
the inverse mapping g of 0’ onto 0 such that 0’ = h(0)  whenever 0 = g(0’). If the 
likelihood L(0,  x) is maximized at the point 8 = 8(x), then the function L(g(6“),  x) 
is maximized when g(0’) = e*(x), and hence when 6’’ = h[J(x ) ] .  Perhaps the most 
common application of the invariance principle is the fact that if 6 is the MLE of the 
variance u2, then 4 is the MLE of the standard deviation u. 

The invariance principle is valid in the case of multidimensional parameters, and 
one-dimensional functions of such parameters. Consider the following example: 

EXAMPLE 12.32 

Suppose that the sample is taken from a distribution f(x; p ,  a ) ,  where p and 
a are the mean and standard deviation (we may consider f as normal, but it 
is not necessary). Thus 6’ = ( p ,  U )  is a two-dimensional parameter. Assume 
that the parameter space is 0 = {,u > 0,  o > O}. Suppose that we want to 
estimate the coefficient of variation Y = u / p .  

The invariance principle asserts that if 2 and 6 are MLE’s of p and u, then 
fi = 6/ f i  is the MLE of the coefficient of variation. It should be recognized, 
however, that this conclusion does not follow from previous reasoning, since 
the function that maps 6’ = ( p ,  u )  into h(0)  = u / p  is not one-to-one. 
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The argument showing that the invariance principle for the MLE’s is also valid 
in the multidimensional case is as follows: Assume that 8 = (71, 772, . . . , 7,) is 
an m-dimensional parameter, and let h(8) = h ( q ,  772, . . . ,v,) be a function of 
8 to be estimated. Then find m - 1 functions h2(8) = h2(771, 772,. . . , vm), . . ., 
hm(0) = hm(ql,  772,. . . , qn) such that the vector 

w e )  = (w), h 2 ( 0 ) , .  . . , hm(e))  

is a one-to-one mapping of m-dimensional parameter space 0 into a subset 0’ of 
the m-dimensional space. By the preceding argument, if 8 = (41, . . . , em) is the 
MLE of 8, then 

H ( 6 )  = “41,. . . , in) ,  h 2 ( i l , ‘  . ’ , in), . . ’ 1 hrn(411. ’ ’ , in)) 

is the MLE of H ( 0 ) .  It follows therefore that h(41, . . . , ijm) = h(6) is the MLE of 

The second important property of maximum likelihood estimators is that they do 
not depend on the design of the experiment. To explain the issues involved here, we 
start by formulating the likelihood principle. 

h(0). 

Likelihood Principle Consider two sets of data, x and y, obtainedfrom the same 
population, although possibly according to diferent samplingplans. rfthe ratio of 
their likelihoods, L l ( 0 ,  x) /L2(0,  y ) ,  does not depend on 0, then both data setspro- 
vide the same information about the parameter 6 and consequently should lead to 
the same conclusion about 8. 

Consequently, what matters are the ratios of likelihoods rather than the likeli- 
hoods themselves. We will explain by some examples how this principle makes the 
MLE’s independent on the design of experiment. 

EXAMPLE 12.33 

Assume that we want to estimate 8, the probability of success in Bernoulli 
trials. One experimental design consists of fixing the number n of observa- 
tions and recording the number of successes. If we observe x successes, the 
likelihoodis L1(O,z) = (Z)Oz(1  - 8 ) n - z .  

Suppose now that one decides to fix x and take observations until x suc- 
cesses are recorded. Now the probability that the observations will end on the 
nth trial is given by negative binomial distribution, so the likelihood is 

Observe that in the first case z was random and n fixed; in the second it 
is the other way around. Nevertheless, the ratio of these two likelihoods is ( z )  / (;I:), which does not depend on 8. The MLE of 8 is 6 = x/n in either 
case. Therefore the additional information that in the second case the last 
experiment led to success does not affect our estimate of 8. 
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1 EXAMPLE 12.34 

Consider tennis players A and B who from time to time play a match against 
each other. Let us assume that the probability of A winning a set against B is 
p ,  and the results of sets are independent (This is a somewhat oversimplified 
assumption; probability p may change over time, and results of sets within a 
match may be dependent. We will, however, take this assumption as a starting 
point for analysis.) We want to estimate the probability p ,  which reflects the 
relative strengths of players A and B. 

SOLUTION. Assume that A and B are menF3 Therefore the probability that 
A will win in 3 sets is a3 = p 3 .  The probability that he will win in 4 sets is 
0 4  = 3p3(1  - p ) ,  since he must win the last set (probability p )  and two of the 
first three sets [probability ( i ) p 2 (  1 - p ) ] .  Similarly the probability of winning 
in 5 sets is a 5  = 6p3(1 - P ) ~ ,  The analogous probabilities of winning by 
player B in 3, 4, and 5 sets are p3, p4 and p 5  , obtained by interchanging the 
roles of p and 1 - p .  

Now assume that the sport section of a newspaper provides data for the 
last year, in the form of six numbers ( a s ,  a4, a 5 ,  b31 b q l  b5), where ai is the 
number ofmatches won by A (against B )  in i sets, and similarly for bi. Letting 
q = 1 - p ,  the likelihood of the data is 

L(p;  ~ 3 , .  . . b5) = 

= ( P ~ ) ” ~  (3p3q)a4  ( 6 p 3 q 2 y 5  (q3 )b3  (3q3p)b4 (6q3p2)b5  
= cp3a3+3a4+3ag +b4+2b5 363+3b4+3bs+ar +2a5 

4 
= c p a q b ,  

where C is a constant independent of p ,  while a and b are the total numbers of 
sets won only by A and by B, respectively. We obtain 

lOgL= l o g C + a l o g p +  blog(1 - p ) ,  

and the MLE of p can be easily found as 

a 

a + b 
number of sets won by A 

number of sets played 
p = - -  - 

Observe that the number of matches, equal to a3 + a4 + a5 + b3 + bq + b5, 
does not appear in the estimator of p .  The fact that the last set in each match 
must be won by the winner of the match is not relevant here: the estimator is 
the same whether or not we fix in advance the number of sets (not matches!) 
to be played, and record the number of sets won by A.  

Still another important property of maximum likelihood estimators is that they 
can be obtained from samples in which some data are only partially observable. To 
illustrate this property, we will find the MLE from a censored sample. 

23This assumption is important since men play “best out of five sets,” whereas women play “best out of 
three sets.” 
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EXAMPLE 12.35 

Suppose that we want to estimate parameter X in the EXP(X) distribution. 
For convenience of terminology, let us interpret the observations as lifetimes 
of some pieces of equipment. A typical experiment consists here of putting 
n pieces of the equipment to test and observing the lifetimes XI, X2, . . . . 
Suppose that the experiment is interrupted after some time T ,  and some tested 
items are still working. The data then have the form of a certain number of 
values XI, . . . , X ,  of observed lifetimes, while about the remaining n - m 
items we know only that Xm+l > T ,  . . . , X,, > T.  

The likelihood of such a sample is obtained by multiplying the values of 
density function at points XI,  . , . X, and the probabilities P{  X i  > T} = 

for i = m + 1, . . . , a. Therefore the likelihood is 

~ ( x )  = x ~ - X X ~  . . . ~ ~ - x X m  (e-XT)n-m = ~n~-X[Xl+. . .+X,+(n- rn)T]  

Since 
lOgL(X) = mlogX - X[Xl+ . . .  + X, + (TI - m)T], 

the MLE of X is easily found to be 

(12.54) 

Finally, we will discuss consistency, asymptotic unbiasedness, and asymptotic 
efficiency of MLE's. We will not prove, or even formulate, the theorem, as it lies 
beyond the scope of this book. It is not difficult, however, to provide an informal 
explanation why MLE's, under some regularity assumptions, have the properties 
asserted. 

The main idea is as follows: In Section 12.4 we introduced the hnction J ( X ,  0) = 
$[logf(X, S)], used to define the information I ( S )  and the concept ofefficient esti- 
mators. If X(n) = (XI,  . , . , X,) is a random vector from distribution f(z, S), then 
J(X("), 0) = Cy=l J(Xi, S), with components J(Xi, 0) being iid random vari- 
ables. We know from Section 12.4 that E [ J ( X i ,  S)] = 0 and VarJ(Xi,  0) = I ( O ) .  
Consequently E [ J ( X ( , ) ,  S)] = 0 and Var[J(Xcn), O ) ]  = nI(S). By the central 
limit theorem of Lindeberg-Levy (Theorem 10.6. I) ,  we have 

(12.55) 

where 2 is the standard normal random variable. 

Vare(T) = l / n I ( S ) .  We know also by (12.46) that 
Let T = T(X(,,)) be an unbiased efficient estimator of S so that Eo(T) = O and 

so 
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and 

Consequently, we must have 

which implies that n ( 0 )  = &l/d(Q).  It follows now that 

which means that 

J ( X ( n )  e ,  = * m ( T  - 0) .  m (12.56) 

The left-hand side of (12.56) has an asymptotic standard normal distribution by 
(12.55), and the same must be true for the right-hand side (under any choice of 
sign). 

Theorem 12.5.1 IfT = T ( X 1 , .  . . , X,) is an eficient estimator of 0 based on a 
random sample from the distribution f (x, e), then the random variable 

Consequently, we proved the following theorem: 

r n ( T  - 0) 

asymptotically has the standard normal distribution. 

Actually, the same theorem holds if efficient estimators T are replaced by max- 
imum likelihood estimators i, of 0, provided that these estimators are obtained by 
solving the equation 

= J(x(~) ,  e )  = o dL(0 ,  X'"') 
d9 

so that 
J(X("), en)  = 0. (12.57) 

The proof requires imposing a number of technical assumptions, and is quite 
complicated, but the main idea is simple. We first expand the function J(X(,) , 0) 
about the point in so that 

We want to show that the second order term converges to 0 in probability so that it 
can be neglected in the limit, and the same is true for the sum of all higher order 
terms. Using (12.57), we then write 
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The left-hand side is now a sum of iid components, as in the proof of Theorem 
12.5.1, and it obeys the central limit theorem. Finally, studying the behavior of the 
derivatives 

a~(x(,), e )  1 . , 
86' e=e, 

we establish that Theorem 12.5.1 holds also with T replaced by estimators (with 
the same norming constants). This shows that 6, are asymptotically unbiased, 
asymptotically efficient, and have an asymptotic normal distribution with mean 6' 
and variance l /d(&).  These properties make maximum likelihood estimators a 
preferred choice. 

Bayesian Estimators 
In both methods of constructing estimators presented thus far, there was no provision 
for using any information about 6' that could be available prior to taking the sample. 
We will now describe a possible setup that is a special case of the setup considered 
thus far. 

As before, the observations XI, . . . , X, are assumed to be a random sample from 
the distribution f(z, Q), and the objective is to estimate the value of 8. This time, 
however, assume that 6' is an element of some parameter space 0, sampled accord- 
ing to probability distribution .(@). For instance, if 0 is the real line, and E is a 
continuous random variable with density K ( 6 ' ) ,  then P { Z  E A }  = J, ~ ( 6 ' ) d O .  

These assumptions describe the situation where the considered statistical problem 
of estimation is just one of a series of analogous estimation problems that differ 
by the value of the estimated parameter 8, and the variability of the parameter over 
similar estimation problems is described by density K ,  referred to as theprior density 
of 6'. 

EXAMPLE 12.36 

A grocery store receives shipments of some merchandise, (e.g., oranges). The 
quality of each shipment can be described by a certain parameter 6'. 

The examples of such parameters may be the percentage of spoiled fruits, 
the average diameter of a fruit in shipment, the average sugar content in the 
juice, and so on. Typically it is not practical to determine the value of f? for 
a given shipment exactly, because of cost, or because sampling is destructive. 
In such cases one takes a sample from a given shipment and uses it to estimate 
6' for this shipment. 

If the store has been buying the shipments from the same company for 
some time, it usually accumulated some data about variability of values of 6' 
from different shipments. It is natural, therefore, that such historical data, in 
addition to the actual sample, should be used in assessment of the parameter 6' 
for a given shipment. 

EXAMPLE 12.37 

To some, the example of purchasing oranges may appear not serious enough 
to justify introducing a new concept (in fact, a new branch of statistics!). Con- 
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sider therefore the case of a physician who has to diagnose a patient. The 
data are various symptoms (or their lack), results of tests, and so on. The val- 
ues of the parameter 6 are different possible diagnoses, such as 61= common 
cold, 62 = tuberculosis, and 63 = AIDS. The physician knows the distribu- 
tions f(x,  0) of the results x = ( 5 1 ,  22,. . . , 2,) of n specific tests for every 
0 (here z1 may be temperature, 5 2  and z3 may be systolic and diastolic blood 
pressure, 2 4  may be glucose level, etc.). At some time the physician reaches 
a diagnosis (i.e., reaches the decision, perhaps tentative, about 6 and begins 
treatment). He may also order further tests. Estimation problems considered 
thus far vary only by the nature of the parameter space and the character of 
data q , x 2 ,  . . . , zn, which may be qualitative. Observe at this point how the 
discrete and qualitative nature of the parameter space affects the problem in 
the sense of definition of error: while in estimation the error can be quantified 
as the difference T ( x )  - 8, in medical diagnosis such quantification is not 
possible (e.g., consider the “error” of treating a patient with TB as having a 
common cold, and vice versa, treating common cold as TB). 

It is clear, however, that the experience and intuition of the diagnosing 
physician play a crucial role here. In particular, the physician may have some 
idea as to the prior probabilities r(6) of various diseases. 

The information from the sample, x = (21, . . . , xn), and prior information about 
the distribution of 0 can be combined into the conditional density of 6 given x, 
referred to as theposterior density. We have here 

P{E E A(X = X} = x(B)x)dB, 

where 

(12.58) 

Actually, the integral in the denominator of (12.58) is the reciprocal of the nor- 
malizing constant, and we often do not need to determine its value. What really 
matters is the fact that the posterior density of the parameter given the data is pro- 
portional to the likelihood of the data multiplied by the prior density: 

f n b ;  8) 4 8 )  
J@ f n b ;  .) 4.1 d.’ 

n(elx) = 

~ ( B I X )  = c j n ( x ,  e) .(el = cqe, x) r(e). 

EXAMPLE 12.38 

Suppose that we take observations from independent Bernoulli trials with the 
same probability of success 8, while 6 follows a beta distribution with param- 
eters cy and p, that is, 

r(e) = C P - ~ ( I  - o ) P - l ,  o I 6 I 1, (12.59) 

where C is the normalizing constant, given in (9.67). Letting s = C zi, we 
have 

n 

fn(x, e )  = eZt(i  - O ) ~ - ~ Z  = e=( i  - e y .  
i = l  
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Consequently, the posterior density of 6, given x, is 

.rr(elx) K p ( 1  - q n - s g a - l ( i  - 0 ) P - l  = Kp+s-1(1 - 0)n+P-s-1  

which we recognize as a BETA(a + s, /3 + n - s) distribution. 

EXAMPLE 12.39 

Assume that the observations XI ,  X2, . . . , X, are independent, each with 
POI(X) distribution, while 6 has a GAM(a, A) distribution so that 

n(e) = cea-'e-Xe, e > 0, (12.60) 

where C is the normalizing constant given in (9.49). Letting s = 
posterior density of 8 is 

zi, the 

Here the constant K also incorporates the factorials zl! . . . z,! (in general, we 
need to keep track of only the terms involving 6). We recognize (12.61) as a 
gamma distribution with a shape parameter QI + s and a scale parameter X + n. 

H EXAMPLE 12.40 

Suppose that XI ,  . . . , X, is a random sample from N(6, u2) distribution, with 
u2 known. Regarding 6, it has a prior normal distribution N( p, T ~ ) .  We will 
find the posterior distribution of 8, given the sample. 

SOLUTION. The likelihood fimction can be transformed as follows: 

Here the sign N means proportionality up to constants that do not depend 
on any unknown parameters-such dropped constants are u - " ( ~ T ) - " / ~  in 
the first proportionality sign, and exp{-(n/2u2)(zi - 2,)2} in the second 
proportionality sign. The posterior density x ( 0 l X )  is therefore proportional to 

Now we need to separate the terms involving 6; all other terms will be ab- 
sorbed in the proportionality constant. Expanding the squares and leaving 
only terms with 0, we obtain, after some algebra, 
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W 

where 

and 

(12.62) 

(12.63) 

This means that the posterior density of 8 is again normal with mean m and 
variance q2 given by (12.62) and (12.63), respectively. 

EXAMPLE 12.41 

Suppose finally that the observations XI , .  . . , X, are independent normal 
N(0, e2) ,  with 8 again having a gamma distribution as in Example 12.39. We 
have 

This time the density (12.64) is not a member of any known family of distri- 
butions. 

The following definition is related to the situationin Examples 12.38 throughl2.40 
(as opposed to that in Example 12.41): 

Definition 12.5.2 A family F of distributions of parameter 8 is said to provide con- 
jugate priors for the distribution f(s, 8) of observations if, whenever the prior dis- 
tribution of 8 is in F, the posterior density r(8lx) also belongs to 3 for any sample 
X. 0 

The essence of Examples 12.38 through 12.40 is formulated in the following 
theorems: 

Theorem 12.5.2 Beta densities are conjugate priors for the binomial distribution. 

Theorem 12.5.3 Gamma densities are conjugatepriors for the Poisson distribution. 

Theorem 12.5.4 Normal densities are conjugate priors for normal distribution. 

We are now in a position to define Bayes estimators. The choice of the estimator 
depends, naturally, on the loss function. We will present the general theory, and then 
focus on the special case of the squared loss function. 

In general, as in Section 12.3, the penalty for accepting the value of the parameter 
as 8* ,  while in fact it is 8, is expressed by the loss function L(8*, 8 ) .  In the present 
case we know the distribution of 8, given the observed sample x. Thus we should 
choose the value 8' so as to minimize the expected loss 

q . q e * ,  qX) = S, q e * ,  e )  .rr(olx) de. (12.65) 
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Note that the left-hand side of (12.65) does not depend on 8. It is a function of 
0* and x. For each x we can therefore try to minimize it, that is, find a value O*(x) 
such that 

E { q e * ( x ) , q l x )  5 q q e * + ,  S ) I X )  

for every 0** in 8. Such a value O*(x) is the best choice of estimate given the 
sample x. When x varies according to the distribution f(x, e), we obtain a statistic 
0* (X). We will now introduce the following definition: 

Definition 12.5.3 The statistic 0 * ( X )  minimizing the left-hand side of (12.65) is 
0 called the Bayes estimator of 0 for the loss function L(0*,  0). 

Minimizing (1 2.65) in the general case may not be easy. However, when C(0*, 0) = 
(0. - S)', the minimizing value 0' is well known. It is the mean of the posterior 
distribution of 0 given x. As in the case of other estimators, we will tacitly take 
the squared error as the loss hnction (unless we explicitly specify some other loss 
function). This is the customary choice. It is motivated primarily by the fact that 
the quadratic loss function allows further development of the theory. Therefore, if 
the lossfunction is not explicitly specijed as other than quadratic, then the Bayes 
estimator ofparameter 0 is understoodas the mean ofposterior distribution: 

EXAMPLE 12.42 

If the observations X = ( X I ,  . . . , X,) form a random sample from a Bernoulli 
distribution (so that S = CZ, Xi is BIN(n, e)), and 6 varies according to 
BETA(a, @), then the Bayes estimator of 0 is 

N + S  

cr+P+n 
T ( X 1 , .  . . , X,) = (12.67) 

This follows from the fact, established in Example 12.38, that the posterior 
distributionof 0 isBETA((r+S, P+n-S) with the mean (a:+S)/(cr+P+n). 

EXAMPLE 12.43 

Recall from Example 9.20 that Laplace estimated the probability that the sun 
will rise tomorrow if it is known to have done so on the past n consecutive 
days. The observations form a binomial random variable S, with all trials 
resulting in success, so S = n. The Laplace estimate (n  + l) /(n + 2) of 0 is 
the Bayes estimate for the uniform prior distribution, which is BETA( 1,l) .  

EXAMPLE 12.44 

In a similar way we can use Theorem 12.4.1, which asserts that gamma den- 
sities are conjugate priors for Poisson distribution. If XI, . . . , X, is a sample 
from POI(6) distribution, and 0 has prior density gamma with parameters a: 
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and A, then the Bayes estimator of 6' is 

a + S  
T ( X 1  ,...,X,)=- 

A + n '  
(12.68) 

This follows from the fact that the mean of a gamma distribution is the ratio 
of the shape parameter to the scale parameter. 

EXAMPLE 12.45 

From (12.62) in Example 12.40 it follows that the Bayes estimator in case of 
the normal distributionN( 8, a2), with known u2 and normal prior N(p, T ~ ) ,  is 

nr' - 
X n  

a2 + nr2' + 6 2  + nr2 
T =  (12.69) 

Thus T is a weighted average of prior mean p and sample mean y,. With 
the increase of the sample size n, the estimator puts more and more weight to 
the sample size yn, and in the limit we have T = 57,. In other words, ulti- 
mately the empirical evidence always prevails over prior convictions. Finally, 
the same limiting conclusion is obtained if T~ -+ co, that is, when the prior 
information is more vague (the prior variance r2 is interpretable as a measure 
of uncertainty of the prior information). Going toward the opposite extreme, 
where u2 + 03 or r2 -+ 0 (observations are subject to large errors, or prior 
knowledge has high certainty), the Bayes estimator of 6' attaches more and 
more weight to the prior information that the mean of 8 is p. 

The last three examples illustrate the convenience of using conjugate prior distri- 
butions. This convenience lies basically in the fact that we have a simple formula 
for the Bayes estimator, and therefore we can quickly adjust our estimates when 
new observations become available. To illustrate this point, we consider the follow- 
ing example: 

EXAMPLE 12.46 

1 

Continuing Example 12.44, assume that we first take m observations, with the 
total number of successes S = XI + . .,. + X ,  , and,then n observations, with 
the total number of successes S = X, + . . . + X,. The prior density of 8, 
before taking the first set of observations, is BETA(&, p). 

The situation at the end of second series of observations can be regarded in 
two ways: 

We have the total of S + S' successes in rn + n trials, so the Bayes estimator is 

cy + ( S  + S ' )  
cy + P + (m  + n)  ' 

(12.70) 

2. We have the total of S' successes in the last n trials, where the new prior distri- 
bution becomes a posterior distribution after we take the first series of obser- 
vations. That is, the posterior density is beta with parameters a1 = cy + S and 
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p1 = p + m - S.  The Bayes estimator is now 

Q 1 +  s‘ 
a1 +p1 + n ’  

the same as (12.70). 

Essentially what we observed here is an instance of a general theorem on updating 
evidence (Theorem 4.4.2), which says that if we have two independent (sets of)  
observations x and x‘, we can use them either “at once,” to determine the posterior 
distribution of 8 given (x, x’), or we can do it in steps. That is, we find the posterior 
density of 8, given one data set (e.g., x), and use it as a new prior to find the posterior 
density of 8 given x’. The results will still be the same. Moreover, the order of 
choice between x and x’ is irrelevant, and does not need to coincide with the order 
in which the data x and x’ were collected. 

All the examples above concern estimators for the squared error loss function. If 
the loss function is L(8*, 8 )  = 18. -81, then the Bayes estimator is the median ofthe 
posterior distribution (see Theorem 8.6.3). For the normal case (Example 12.45), the 
mean and median coincide; hence (12.69) is also the Bayes estimator for the absolute 
error loss. For Examples 12.42, 12.43, and 12.44, the posterior distributions are beta 
or gamma, and their medians are not expressible by simple formulas in term of the 
parameters. 

It is clear that the class of all distributions on the parameter space 8 is always a 
set of conjugate priors for any distributions. Such a statement, however, is totally 
pointless. In fact, a class of conjugate priors is useful only if it leads to a simple 
formula for the posterior density, allowing explicit formulas for the means, hence 
for Bayesian estimators against mean squared loss. In this perspective the fact that 
a given class of distributions is a class of conjugate priors is just a mathematical 
curiosity without much significance. Indeed, referring again to Example 12.46, we 
consider there a situation where observations S = C Xi are binomial with param- 
eter 8, while 8 has a beta distribution. The first assumption is defensible: we often 
can make S have a binomial distribution by using an appropriate sampling scheme. 
But the law that governs the variability of 8 from case to case is beyond our control, 
and the class of situations described above, where the parameter 0 is a value of a 
random variable E with distribution x ,  is rather restricted. Most often, the situation 
that a statistician faces is “one of a kind,” characterized by an unknown value of 6’ 
and it does not make sense to think of a prior distribution 7r of 8 as telling us “how 
often” we had analogous statistical problems in which the value of the parameter 
satisfied the inequality of the form a 5 8 5 b. 

There is a view, accepted by some statisticians, that even in such “one of a kind” 
situations it makes sense to consider and use the prior distribution of the parameter. 
Actually, the issue of whether one allows using prior distributions-even if they do 
not represent frequencies of occurrence of situations characterized by some values 
of 8 4 s  the issue dividing statisticians into Bayesians and non-Bayesians. 

The philosophical points of this division are beyond the scope of this book. One 
could, however, consider the following two competing principles. 
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1. Statistical conclusions should depend on data only. When two statisticians ana- 
lyze the same data using the same method, they should reach the same con- 
clusion. 

2. Statistical conclusions may depend on the experience, intuition, and insight of 
the statistician who analyzes a given set of data. 

Very roughly, statisticians who adhere strictly to principle 1 are non-Bayesians, 
and those who favor 2 are Bayesians. The latter use the prior distribution T as a 
means to express their knowledge, intuition, and so forth. In this respect, having 
a class of conjugate priors is usually of great help, primarily to express one’s own 
prior experience or convictions, or to elicit information about the analyzed problem 
from the practitioners whom they advise. However, the first of the examples below 
shows something more fundamental, namely that the concept of prior distribution, 
reflecting one’s personal judgments about a “one-of-a-kind’’ case, is sometimes un- 
avoidable. Consider the following situation, which without this concept appears 
paradoxical: 

EXAMPLE 12.47 

Imagine yourself playing the following game: There are two envelopes, each 
containing a check. The amount on one check is twice as big as the amount 
on the other. You choose an envelope and inspect the check. At this moment 
you are offered an option to choose the other envelope. What should you do? 

SOLUTION. The standard reasoning is as follows: Let a be the amount on 
the check that was in the first envelope you selected. The other envelope then 
contains a check for either 2a or a / 2 ,  each with the same probability. Thus, if 
you change your decision, the expected outcome is 

(12.71) 

which means that you should always change the envelope. 
This may seem paradoxical, since money appears to be created out of 

nowhere, just by changing the decision. The explanation lies in the fact that 
calculation (12.71) of the expected value uses probabilities 0.5 that the other 
envelope contains checks for 2a or a / 2 .  In fact, one should use here the condi- 
tional probabilities, given the observed value a,  and these calculations involve 
prior probabilities. 

Indeed, suppose that ~ ( x )  is the prior probability that the envelopes con- 
tain checks for the amounts x and 2 s .  Assuming that one has no clairvoyant 
abilities, and therefore always has the chance 0.5 of selecting an envelope with 
the lesser amount on a check, the unconditional probability of observing the 
amount a. is 0 . 5 ~ ( a / 2 )  + O . ~ T ( U ) .  Given the observed amount a, the proba- 
bility that the check in the other envelope is for the amount a / 2  equals 

- T ( 4 2 )  - 0 . 5 ~  ( a / 2 )  
0 . 5 ~  ( a / 2 )  + 0 . 5 ~ ( a )  T (a , /2 )  + .(a,) ’ 
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The analogous probability for the amount 2a is 

0.5. (a) - (a )  
0 . 5 ~  (a /2 )  + 0.5n(a) - 7~ (a /2 )  + .(a) ‘ 

But the condition 

implies .ir(a/2) = .(a), which cannot be satisfied for all a (regardless of 
whether T represents a density or a discrete probability distribution). 

This argument refers to some prior distribution T on the possible amount on 
the lesser check. Whether this distribution has any frequential interpretation 
(referring to analogous games played before), or not (if such a game is played 
only once) is irrelevant here. The only way to escape the paradox is to realize 
that everyone has some idea as to the probable range of values that may appear 
on the checks in the game. If the check in hand shows a very “small” value, 
then the other is probably for a higher value. If the check in hand shows a very 
“high” value, the other is probably smaller. The concepts “very small,” “very 
large,” and “probably” are subjective here and refer to the player’s idea about 
the distribution T .  

This example provides a rather powerful argument for the need of the 
Bayesian approach to statistical problems. 

EXAMPLE 12.48 

A piece of rock (e.g., taken from the moon) is sent to a laboratory to determine 
its radioactivity level. Assume that the measurement is simply Geiger count 
Nt ,  recorded for certain time t .  The role of the number of observations n is 
now played by observation time t .  (If this feature should be confusing to the 
reader, assume simply that the experiment is run in such a way that Geiger 
counts XI, X,, . . . are recorded, where Xi is the total count in ith hour of 
observation. Then Nt = X1 + . . + Xt  if t is an integer number of hours.) 

We know that Nt has a Poisson distribution with mean B t ,  where 0 is the ra- 
diation intensity expressed in average number of emissions per hour. Suppose 
that the initial estimate of B is needed urgently, so that observations can be 
carried out only for a limited time T. In other words, we have at our disposal 
a single observation of Nt. The likelihoodhnction here is 

so 
log L ( B )  = c + NT loge - eT, 

and the MLE is easily seen to be 
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(note that this result concerns the MLE in the case of observations running 
continuously in time; we no longer have sample of size n). To fix the ideas, 
assume that a total of 50 counts was recorded in T = 100 hours of observa- 
tions so that the MLE of 0 is 0.5. 

Suppose now that there are two physicists in the laboratory, and each has his 
or her own ideas about what the radioactivity level 0 of the specimen tested 
might be. Dr. Brown favors a certain theory of how the moon was formed, 
and how and when its rocks became initiallyradioactive. She thinks that moon 
rocks of the kind she analyzes should have their level of radioactivity 0 about 1, 
but she is willing to incorporate a fair amount of uncertainty in her judgment, 
allowing the standard deviation of 6 to be as much as 50% of the mean. 

On the contrary, Dr. Smith favors a theory which predicts that the moon 
should have uniformly low radioactivity, say 0 = 0.4 on average, with stan- 
dard deviation not exceeding 5% of the mean. 

Let us see how these prior convictions will affect the estimates of 0 for 
the specimen in question. We assume that the prior densities belong to the 
gamma family. If the parameters of a gamma distribution are a (shape) and X 
(scale), then the mean is a/X, and the variance is a/X2; see (9.50) and (9.51). 
Consequently, the ratio of the standard deviation to the mean (the so-called 
coefficient of variation) is 

Thus, for Dr. Brown, we have 

a - = 1, 
X 

1 
CV = - = 0.5, 
6 

which gives a = X = 4. 
For Dr. Smith, we have 

a - = 0.4, 
X 

1 
CV = - = 0.05, 
6 

SO a = 400, X = 1000. 
The Bayes estimator is (see Example 12.44) (0 + NT)/(X + T ) ,  so that 

.. 4 + 5 0  - 400+50 
= 0.409 

1000 + 100 
BE = ~ =0.519 and 0s = 

4 + 100 

for Dr. Brown and Dr. Smith, respectively. 
We can see the effects of two factors. One is that the MLE (in this case 

equal 0.5) is being “pulled” toward the mean of the prior distribution. The 
amount of pull depends on the variance of the prior distribution, reflecting 
the strength of conviction in the prior distribution: Dr. Smith, whose prior 
has much smaller variance, ends up with an estimate much closer to his prior 
mean than does Dr. Brown. 
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W EXAMPLE 12.49 Are Birds Bayesians? 

The example below concerns the behavior of certain species of birds in their 
search for food. The complete theory, including optimization aspects, has 
been developed by Green (1980). We present here only a fragment concerning 
assessment (estimation) by a bird. 

Assume that the species in question can find food only in “patches,” each 
consisting of a certain number of places where prey can be found. To fix the 
ideas, we will think of birds that prey on worms living in pine cones. We 
assume that a pine cone has n “holes,” each of them containing a prey with 
probability 8, independently of other holes. Thus, given 8, the number of prey 
in a cone has BIN(n, 6) distribution. The bird has a fixed search pattern, so 
it does not search the same hole twice, and we assume that the prey cannot 
hide or escape to another hole during the search. Finally, we assume that 6, 
the rate of infestation of cones, varies between cones in such a way that 8 has 
beta distribution with parameters a and p. 

Let us consider now what could be the best strategy for a bird. First, it 
is reasonable to assume that the bird is trying to optimize24 the rate of food 
intake per unit of time. Specifically, a strategy will tell the bird when to leave 
a cone and start searching the next one. The bird will optimize the rate of food 
intake, taking into account the average catch at a cone, average time spent on 
it, and the average time of flying to another cone. 

Intuitively, if a and /3 are large, the variability of 8 is small: the variance of 
the beta distributionis @/(a  + ,B)2(a + /3 + 1). In such cases, all cones are 
about the same: the variability between the cones is due mainly to variability 
in the binomial distribution with parameters n and 6 = cr(a + /3). In such 
cases there is very little incentive to fly to the next cone before the current one 
is searched to the end. 

However, if a and /3 are small, in particular, if a < 1 and p < 1, the 
variability of 8 is large. Actually, in the latter case, the distribution of 8 has 
density unbounded at 8 = 0 and at 8 = I .  This means that most cones will be of 
two categories only: very rich in prey, when 6’ is close to 1, and very poor in 
prey, when 8 is close to 0. The optimal strategy is then to assess-as quickly 
as possible-whether 6’ is close to 1 or to 0, and behave accordingly, leaving 
the cone in the second case, 

Now, if after searching k holes the bird found 2 worms, its assessment of 8 
is ( a  +.)/(a + p + k) (Le., equals the Bayes estimate of 8 given 5 successes 
in k trials). Without going into detail, the optimal strategy specifies, for each 
k, the threshold for 5, below which the bird ought to leave the cone. 

There is an empirical problem to determine whether or not the birds follow 
the optimal strategy. The experiments involve the use of artificial cones and 
observation of birds’ behavior depending on the findings in the holes searched 
previously. The preliminary results indicate that birds follow some kind of 

24 We are using here a convenient terminology based on an analogy with humans. In reality, birds cannot 
be expected to solve optimization problems, which require computers for humans (see Green, 1980). 
What we mean here is that in the process of evolution, any mutation toward a better search strategy is 
likely to become established, and it is possible that birds use a strategy that is close to optimal. 
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strategy of breaking or continuing the search of a cone depending on the out- 
come of the search so far. Whether or not this is an optimal strategy is un- 
clear. But the truly fascinating problem here is that if the birds use a Bayesian 
strategy, whether they are capable of changing the prior distribution. In other 
words, are birds born with knowledge of a search strategy that is optimal 
against some fixed a: and /3 characterizing infestation of cones prevalent in 
the last hundred years (say), or can an individual bird change its search strat- 
egy in years of higher infestation of its habitat? 

Let us investigate briefly the problem of consistency of Bayes estimators. First, 
let us observe that in the cases of estimators analyzed (of 6‘ in the binomial case with 
a beta prior, of 6’ in the Poisson case with a gamma prior, and of p in the normal 
distribution with a normal prior), as the sample size increases, the effect of prior 
distribution decreases to zero. Indeed, if S, denotes the binomial random variable 
with probability of success 8, the Bayes estimator of 6’ for beta prior satisfies 

a + S n  - a:/n+S,/n p 
--+ 6 ,  e =  - 

rY+p+n ( a + P ) / n + l  

since Sn/n  converges to 6’ in probability (and also almost surely). 
Similarly, if XI, . . . , X, is a random sample from the Poisson distribution with 

mean 0, and 0 has a gamma distribution with parameters a: and A, then the Bayes 
estimator of 0 satisfies 

by the law of large numbers, which asserts that the sample average x, converges to 
6’ in probability (and also almost surely). 

Finally, an analogous conclusion for the normal case has already been obtained. 
We see therefore that Bayes estimators are consistent; in fact they become increas- 
ingly closer to MLE’s of the same parameters, regardless of the prior distribution. 
This property is true for Bayes estimators under some very general conditions, which 
we will not state here. 

One of the problems that a statistician faces quite often is the determination of 
the sample size: “How big should n be in order that . . . .” Various conditions may 
appear in place of dots; in the case of estimation, these conditions typically state the 
precision of the estimate, in the sense of the probability of errors of a given size. 
In case of Bayes estimators the situation is relatively simple. One of the criteria 
for determining the sample size may be expressed through the posterior distribution. 
In the most typical case, one may wish to have a sample size that ensures that the 
posterior variance is below a certain minimum (of course, such criteria make sense 
only if the estimator used is unbiased or has a small bias). 

Least Squares Estimators 

This method of estimation is dating back to Lagrange and Gauss-for an interesting 
account of its discovery see Stigler (1986). The basic setup is now different-the 
data are independent but they are not coming from the same distribution. For a 
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given value u of some independent variable (random or not) U ,  observations (one or 
perhaps more) of some random variable Y, are taken. It is assumed that 

Yu = Q(u)  + E, 
where Q(u) is some function of u, and c is a random variable (usually called error), 
such that E(6) = 0 and Var(c) = cr2 < 00. It follows that 

E(Y,) = Q(u)  and Var(Y,) = 02. 

The hnction Q ( u )  is usually called the regression of Y on u. 

1 EXAMPLE 12.50 

One of the common situations falling under the scheme above arises when we 
analyze some system that changes in time. Thus, u is the time of taking the 
observation of some attribute of the system, and Q(u)  is the expected value 
of the observed random variable Y,, interpreted also as the “true” state of the 
system. 

In some cases, we may take only one observation at any given time u; in 
other cases, we may have a number of observations made at the same time. 

EXAMPLE 12.51 

In some cases variable U can be controlled by the experimenter. For example, 
a chemist may study the rate of a certain reaction in different temperatures. 
He then chooses the temperature level u1 and observes the reaction rate one 
or more times. Then he changes the level to 212, repeats the observations, and 
so on. The numbers of observations need not be the same for different values 
u. In general, the choice of distinct values u l ,  . . . , uk (as well as the choice 
of k )  and the choice of numbers of observations 721,712, . . . ,72k to be made at 
selected points u1, . . . , uk, belongs to the design of the experiment. 

Assume now that we have the experimental data for the design that can be de- 
scribed by the set of pairs 

( U i , T i i ) ,  2 = 1 , .  . . , k ,  (12.72) 

where ui’s are distinct values of variable U and ni’s are positive integers. 
The data have form of the array {yij ,  i = 1, . . . , k, j = 1, . . . , ni}, where yij is 

the value of random variable yij, representing the jth observation for the value ui 
of variable U .  We assume that all yZj’s are independent, with 

E ( x j )  = Q(u i )  and Var (x j )  = 02. (12.73) 

In most typical cases, the functional form of Q is postulated and assumed to 
depend on some parameters. For instance, in the case of a linear regression model, 
we assume that 

Q(u)  = Pu + a, (12.74) 
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where P and Q are the slope and intercept of the regression line. In more complicated 
setups, we may postulate a quadratic regression 

Q(u) = P2u2 + Piu + a, 
or some other functional form of Q. Generally, 

Q(u) = ( ~ ( 2 1 ;  0 1 , 0 2 1 . .  16 'T) l  

where cp is a known function and 01, . . . Or are some parameters to be estimated. 
The method of least squares is based on the quadratic form 

i = l  j=1 

The values 81 . . . ir that minimize S given by (12.75) are called least squares (LS) 
estimates of 6'1, . . . O r .  As usual, those estimators, regarded as functions of the 
random variables { y Z j }  are called LS-estimators. 

The usual way of finding 61, . . . ,6,. is by solving the set of simultaneous equa- 
tions 

as 
- = 0 1  l = l ,  . . . ,  I-, 
801 

(12.76) 

which in the present case take the form 

EXAMPLE 12.52 Linear Regression 

Suppose that Q(u) = Pu + a. In this case the algebra will simplify somewhat 
if we order all Kj's into a single sequence y1 . . . gn, where n = Ci=l nil 
and relabel the corresponding values as u1 . . . u,, (n  values ui of variable U ,  
not necessarily all distinct). The quantity to be minimized is 

k 

n 

pui - a) 2 . (12.78) 
i=l 

Differentiating with respect to a and P and setting the derivatives equal to 0, 
we obtain 

n n n n n 

p C u : + a C u i  =Cuiyi and PCui+na=ZYi. 
i=l i = l  i=l i=l i = l  

The solution can be written as 

(12.79) 
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provided that C(u i  - 7Q2 > 0. The latter condition is ensured if there are at 
least two distinct values of u used in the experiment, that is, if not all observa- 
tions are made for the same value of 5’. 

An easy check shows that (12.79) does minimize function U .  

Robust Estimators 
An important issue in estimation problems is to obtain estimators, generally termed 
robust, that would be relatively unaffected by deviations from the assumed model. 
We will now briefly sketch two such approaches. 

To grasp the main issues involved here, consider the problem of estimating the 
mean p of a distribution. Then the sample mean is an estimator of p,  and we know 
that fzF has a number of desirable properties, such as consistency, unbiasedness, and 
efficiency. These properties, however, are valid under specific assumptions about 
the underlying distribution. If  the actual distribution differs in some way from the 
assumed one, x may no longer have the same properties. We say that x is sensitive 
to the deviation from the model, or contamination. This concept is intended to 
describe the occurrence of outliers, that is, observations that follow a distribution 
different from the one assumed in the model. Most of the outlier distribution is 
usually concentrated around much larger (or smaller) values than those typically 
encountered in the model. Formally, the model assumes the distribution f (2, e), 
where B is (say) the mean, while the actual sample is taken from the distribution 

CP(Z, 0) = (1 - ~ z ,  0) + Cg(Zc), (12.81) 

where most of the mass of g(z) is far away from the range of “typical” values under 

The two important approaches to robust estimation are L-estimators and M -  
f (x,@). 

estimators. 

L-Estimators 
L-estimators, linear functions of order statistics, provide good estimators of location 
and scale parameters. 

Formally, 0 will be called a locationparameter if 

f(Z, e)  = iz(z - e )  
for some probability density (or probability mass function) h. 

Similarly 19 is called a scale parameter if 

for some probability density (or probability mass function) h. 
The mean of a distributionmay or may not be its location parameter. For instance, 

it is so in the case of nonnal distribution. However, in the case of exponential distri- 
bution, the mean is a scale parameter, while in the case of a gamma distribution, the 
mean is neither a scale or a location parameter. 

Let X I ,  . . . , X n  be a random sample from the distribution f(2, B ) ,  and let 

X1:n i X2:n i ’ ’  5 Xn:n 
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denote the order statistics of the sample. The L-estimator will be any statistic T of 
the form 

n 

T = x ^ l n , k Y k : n ,  

k=1 

where yn,k for k = 1,.  . . , n is a double array of coefficients. The class of L- 
estimators contains many well-known estimators: Choosing ?;l,k = 1/n for k = 
1,.  . . , n  gives T = X .  The choice ~ ~ , l  = l , ~ n , k  = 0 for k 1 2, or Yn,n = 
1, Tn,k = 0 for k < n, gives two extreme order statistics Y1:n and Yn,,. In a similar 
way one can obtain any sample quantile. Choosing Yn,[3n/4]+1 = 1, ~ ~ , [ ~ / 4 ] + 1  = 
- 1, yn,k = 0 for remaining k, one obtains a sample interquartile range, and so on. 

Perhaps the most important L-estimators are the trimmed and Winsorized means, 
defined as follows: 

Definition 12.5.4 Let 0 < a < 1 / 2 .  Then the a-trimmedmean is 

- 

n-lnal 

un = ’ yk:nl n - 2[ncu] 
k=[na]+l 

(12.82) 

while the a- Winsorized mean is 

(12.83) 

0 

On the one hand, a-trimming consists of removing the 1OOa% of lowest and 
highest observations from the sample, and taking an average of the remaining ones 
(the middle l O O ( 1  - 2a)% of observations). On the other hand, a-Winsorizing 
consists of replacing each observation in the lower 100a% and in the upper 10Ocu% 
of the sample by the sample quantile of order Q and 1 - a, respectively, so that the 
sample size will stay unchanged. The Winsorized mean is then calculated as the 
mean of the Winsorized sample. 

It is clear that the purpose of trimming (or Winsorizing) is to eliminate (or de- 
crease) the effect of outliers in the sample. An important issue is to define the notion 
of optimality and then to determine the optimal level (Y at which the mean should be 
trimmed or Winsorized. 

Among the main advantages of L-estimators is their asymptotic normality when 
the weights yn,k are reasonably smooth or if they are nonzero for a certain number 
of central order statistics. For more details, see Serfling (1980) and Arnold et al. 
(1 993). 

1 n-[na] 

= - [nQ]yna]+l:n  f yk:n + [na]Yn-[na]:n . 
k = [nm] + 1 

n 
l (  

M-Estimators 
Another class of estimators is obtained as follows: Let h(z ,  u) be a function of two 
arguments. Given a sample q , x2,. . . , zn from the distribution f(z, Q), take as an 
estimator of 0 the solution of the equation 

n 

(12.84) 
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Such estimators are most often obtained by solving an approximate minimization 
problem. Suppose that we have a “distance” of some sort (not necessarily satisfying 
any conditions for metric), say H ( z ,  u) .  As an estimator of 6’ we choose a point u* 
that minimizes the sum 

n 

(12.85) 
k = l  

interpreted as the sum of distances from u to all sample points. In a sense, u* is 
the point closest to the sample, with closeness being expressed by the function H .  
Differentiating (12.85) with respect to u and setting the derivative equal to 0, we 
obtain equation (12.84) with h(z ,  u)  = & H ( z ,  u). 

This formulation comprises two important classes of estimators, namely MLE’s 
and LS-estimators. Indeed, if we define the function H ( z ,  u)  as - log f(z; u), then 
h(z ,  u,) = - & log f(z, u)  and the M-estimator corresponding to this choice is the 
maximum likelihood estimator (the minus sign is implied by the fact that now the 
problem is formulated as a minimization problem). 

By taking appropriate functions H and 11, we can obtain different variants of 
least square estimators. Similarly, trimmed or Winsorized means can be obtained by 
appropriate choices of the functions H and h. For example, we may take H ( z ,  u) = 
H (z - u) for some function H of one argument. The M-estimator then minimizes 
the sum Cr=, H ( X i  - u). For H ( z )  = x2 we have the simplest least square 
estimator. If H ( z )  = z2 for 1x1 5 k and H ( z )  = k Z  for 1x1 > k ,  we obtain a form 
of the Winsorized mean. 

As with L-estimators, the main direction of research is to study the asymptotic 
properties (e.g., normality) of M-estimators under some general assumptions on 
functions H or h, and distributions of X i .  

PROBLEMS 

12.5.1 Let X 1  , . . . , X ,  be a random sample from GAM(a, A) distribution. Find: (i) 
The MME of 0 = (a, A), using the first two moments. (ii) The MME of a when A 
is known, and the MME of X when a is known. 

12.5.2 Find the MME of parameter 0 in the distribution with density f(z, 0) = 
(e + i ) ~ - ( ~ + ~ ) ,  for 5 > 1, e > 0. 

12.5.3 Let XI, . . . , X, be a random sample from the distribution uniform on the 
union of the two intervals: [ -2,  -11 and [0, 01. Find: (i) The MME of 0. (ii) The 
MLE of 0. (iii) The MLE of 0 if positive Xi’s are recorded exactly, and negative 
Xi’s can only be counted. (iv) The MLE of 6 if Xi’s cannot be observed, and one 
can only count the numbers of positive and negative ones. 

12.5.4 Let X I  , . . . , X, be a random sample from Poisson distribution with mean A. 
Find the MLE of P ( X  = 0) .  

12.5.5 (Bragging Tennis Player) As in Example 12.34, consider tennis players A 
and B who from time to time play matches against each other. The probability that 
A wins a set against B is p .  
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Suppose now that we do not have complete data on all matches between A and 
B; we learn only of A's victories, so we know numbers as, a4, and a5 of matches 
won in 3,4,  and 5 sets (we do not even know whether he lost any matches with B). 

Show that one can find the MLE of p ,  and find the MLE of the total number of 
matches and of the number of sets that A lost against B (do not attempt the algebraic 
solution). 

12.5.6 Some phenomena (e.g., headway in traffic) are modeled to be a distribution 
of a sum of a constant and an exponential random variable. Then the density of X 

where a > 0 and b > 0 are two parameters. Find: (i) The MME of 6' = (a;  b) .  (ii) 
The MLE of 0. 

12.5.7 A single observation of a random variable X with a geometric distribution 
results in X = I ; .  Find the MLE of the probability of success 0 if: (i) X is the 
number of failures preceding the first success. (ii) X is the number of trials up to 
and including the first success. 

12.5.8 Find the distributionof the MLE ofthe probability of success 6' based on two 
Bernoulli trials. 

12.5.9 Show that the family of gamma distributions provides conjugate priors for 
the exponential distribution. Determine the the posterior distribution. 

12.5.10 Let XI, . . . , X, be a random sample from the EXP(6') distribution, and let 
the prior distribution of 6' be EXP(,B). Find Bayes estimator of 6' and p = l/6' using: 
(i) Squared error loss. (ii) Absolute error loss. 

12.5.11 Suppose that there were 15 successes in 24 trials. Find the MLE of the 
probability of success 0 if it is known that 6' 5 1/2. 

12.5.12 Two independent Bernoulli trials resulted in one failure and one success. 
What is the MLE of the probability of success 0 if it is known that: (i) 6' is at most 
1/4. (ii) 0 exceeds 1/4. 

12.5.13 Let XI, . . . , X, be a random sample from POI(X) distribution. Find the 
MLE of X assuming that: (i) XI + . . + X, > 0. (ii) X1 + . . . + X, = 0. 

12.5.14 Find the MME and MLE of the standard deviation of a Poisson distribution. 

12.5.15 Let XI, . . . , X, be a random sample from N ( p ,  a') distribution, p is known. 
Find the MLE of a: (i) Directly. (ii) First finding the MLE of variance a2 and then 
using the invariance property. 

12.5.16 Let XI, X2 be a random sample from a N ( p ,  a2) distribution with p and a' 
unknown. Find the MLE of a2 if the only available information is that the difference 
between observations equals 3. 
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12.5.17 Find the MLE of the mean of a U[&, 6'21 distribution based on a random 
sample of size n. 

12.5.18 For R. observations taken from the U[O, 6'1 distribution, let U, be the number 
of the ones that are less than 3. Find the MLE of 0. 

12.5.19 Suppose that the median of 20 observations, taken from a normal distribu- 
tion with an unknown mean and variance, is 5 and that only one observation differs 
from the median by more than 3. Suggest an estimate of the probability that the next 
two observations will both be between 4 and 5. 

12.5.20 Let X I ,  . . . , X, be a random sample from a log-normal distribution with a 
parameters p and u2 [this means that log X i  " ( p ,  a2)]. Find the MLE of p and 
6 2 .  

12.5.21 Let XI, . . . , X, be a random sample from the N(p1,uT)  distribution and 
let Y1, . . . , Y, be a random sample from the N(p2,og)  distribution, with Xi ' s  being 
independent from 5 ' s .  Find the MLE of: (i) p1,p2,u2 if 01 = 02 = u. (ii) 
p ,  u:, ug where p1 = p2 = p. 

12.5.22 Y 1 , .  . . , Y, are independent variables. Assuming that 2 1 , .  . . ,s, are such 
that c(zi - T ) 2  > 0, compare the MSE's of the MLE and LS-estimators ofparam- 
eter 8, if: (i) Y,  - EXP(6'zi). (ii) yi - POI(6'si). 

12.5.23 For independent variables Y1, . . . , Y, with distribution N (  a + psi, a2), 
where zl1 . . . , 5, are fixed, show that the LS-estimator and ML-estimator of 0 = 
(a, p)  coincide. 

12.5.24 Let XI, . . . , X, be a random sample from U[O, 8s 13 distribution. (i) Show 
that T = c( X,:, - 1) + (1 - c)X1, ,  0 < c < 1, is the MLE of 0, and find the value 
of c that minimizes its MSE. (ii) Determine the asymptotic distribution of T .  

12.6 SUFFICIENCY 

The considerations of this section are motivated by the following observation: each 
of the estimators analyzed in this chapter is dependent on the random sample XI, . . . , X, 
through some statistic (e.g., 7 or X,:,), that reduces the data to a single number. 
From a purely formal viewpoint, any such reduction involves some loss of informa- 
tion. 

The concept of a sufficient statistic is intended to cover situations where the infor- 
mation lost in reducing data to the value of a statistic is not relevant for the purpose 
of estimating parameter 6'. Thus the definition of sufficiency of a statistic is relative 
to a given parameter 6'. 

where 6' belongs to some parameter space 8. Again, f can be either a density or a 
probability function of a discrete distribution. 

The definition below introduces a statistic that conveys the same information 
about 6' as the whole sample ( X I , .  . . , X,). 

As before, we consider arandom sample X I ,  . . . , X ,  from the distribution f(z,  O), 
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Definition 12.6.1 The statistic T is said to be sujicient for 6 if the conditional dis- 
tribution of X1 , . . . , X,, given T = t ,  does not depend on 6 for any value t .  0 

Before exploring the consequences of the definition let us analyze some exam- 
ples. 

EXAMPLE 12.53 

Consider two independent Bernoulli trials XI, X2, with probability of success 
p ,  and let T = X1 + X2 I The conditional distribution of (XI, X2) given T is 

P{X1=O,Xp=OIT=O)  = 1,  

Since P(T = 1) = P ( X 1  = 1, XZ = 0) + P ( X 1  = 0 ,  X2 = 1) = 2p(l- p ) ,  
for T = 1 we have 

P { X 1  = 1 , X z  = 1IT = 2)  = 1. 

Thus, whatever the value of T (0, 1 ,  or 2), the conditional distribution of 
( X I ,  X 2 )  does not depend on p .  

EXAMPLE 12.54 

Let X t  and X ,  be the numbers of events in a Poisson process with intensity 
A, observed between 0 and t ,  and between t and t + s. We will show that 
U = Xt + X ,  is a sufficient statistic for A. 

Indeed, since X t  and X ,  are independent, we have for k = 0,1, .  . . , n, 

&&-At (Xs)n-ke-As 

P(t+;)l- e-x(t+s) 

- k !  ( n - k ) !  - 
n. 

Thus X t ,  given U = n, is binomial with parameters n and t / ( t  + s), and does 
not depend on A. 

If the conditional distribution of observations X I ,  . . . , X n ,  given the statistic T = 
t ,  does not depend on the parameter 0 that we want to estimate, then (once we know 
that T = t )  the additional knowledge of a particular configuration of XI, . . . , X ,  
observed in the data is irrelevant in estimating 6. For instance, in Example 12.53, 
T = 1 means that we had one success and one failure. The fact that the first trial 
was a failure and the second was a success is of no additional help in estimating p .  

Since the process of determining the conditional distribution of observations 
given the value of statistic T is sometimes cumbersome, it is desirable to have an- 
other method for verifying that a statistic is sufficient. Such a method is given by the 
following theorem, due to Neyman: 
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Theorem 12.6.1 (Factorization Criterion) Let XI, . . . , X n  be a random sample 
from the distribution j(x, O), with 0 E 0. A statistic T = T(X1,. . . , X,) is a 
suflcient statistic for e ifandonly iffor all x = (21, . . . , 5 , )  andall 0 E 0 thejoint 
distribution 

fn(x,e) = f ( x l , e ) " ' f ( x n > e )  

can be written as 
f n b ,  0) = u[T(x), e I v ( 4 ,  (12.86) 

where u is a nonnegative function that depends on both 0 and x = (21, . . . , xn),  
but dependence on x is only through the function T, and v is a function of x = 
(21, . . . , 2,) that does not depend on 0. 

Proof: We will give the proof in the discrete case; the proof for the continuous 
case requires careful consideration because densities are defined only up to sets of 
probability zero. Thus we have now f(s, 0) = Pe{Xi = s } ,  a = 1,.  . . , n. 

Let Q ( t )  be the set of all x = (21,. . . , xn) such that T(x) = t. Then 

Pe(T = t )  = C fn(x, 0). 
X € Q ( t )  

Suppose first that T is a sufficient statistic. Let T = t ,  and consider any point 
x E Q ( t ) .  The conditional probability Pe{X = xlT = t }  does not depend on 0; let 
us call it v(x). Letting u(t ,  0) = Pe{T = t } ,  we obtain, for any fixed x E Q ( t ) ,  

jn(x,  0) = Pe{X = X} = Po{X = x ~ T  = t}Pe{T = t }  = u ( x ) u ( ~ ,  O ) ,  

which is the factorization (12.86). 
Conversely, suppose that fn(x, 0) satisfies formula (12.86) for some functions u 

and v. Let us fix t and O E 0 and compute the conditional probability of a point x 
given T = t .  Clearly, for x # Q ( t ) ,  we have Pe{X = xlT = t} = 0. For x E Q(t) ,  
we have 

v (XI 0 - u(t,Q)v(x) - - 
C y c Q ( t )  u( t ,  e )v (Y)  - C y E Q ( t )  '(Y) ' 

We will now apply Theorem 12.6.1 to find sufficient statistics in various families 
of distributions. 

EXAMPLE 12.55 

Consider again the Bernoulli trials with probability p of success. We have 
here, letting t = C xi, 

n 

fn(s l  , . . . ,  z n , p )  = n p y 1  - p ) 1 - Z %  = p t ( l  -p )" - t  
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In this case a sufficient statistic is the total number of successes T = 
while the function u(z1 . . . , 5,)  = 1. 

Xi, 

EXAMPLE 12.56 

In a Poisson distribution, we have, letting t = c z i ,  

which again shows that T = 
Ate-,', while u(z1,.  . . ,z,) = (TI!. . .z,!)-l. 

Xi is a sufficient statistic. Here w.(t, A) = 

H EXAMPLE 12.57 

Now let ($1, . . . , z,) be observations from a normal distribution N( p, a2) 
where u2 is known. Then the joint density of the sample can be written as 

Thus c X i  is a sufficient statistic for p,  with 

exp{-1/2a2 Cz?} 
on (2.)"/2 

v(z, ,  . . . z,) = 

If now p is known, but u2 is the unknown parameter, we take ~ ( 2 1 ,  . . . , 2,) = 
1, and the sufficient statistic is C ( X i  - ~ 1 ) ~ .  

EXAMPLE 12.58 

Consider finally the case of sampling from a U[O, e]  distribution. The joint 
density of the sample is 

or equivalently 

1 
f(z1 l .  . . zn, 0 )  = - I (@,  max(z1, . . . ,z,)), 

e n  

where I ( 0 ,  c) = 1 if 0 2 c and 0 if 0 < c. This shows the function .(el T )  
(with u(z1,  . . . , z,) = 1) and that X,:,, is a sufficient statistic. 
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Sufficient statistics are not unique. Every one-to-one transformation of a suf- 
ficient statistic is again a sufficient statistic. For instance, in Example 12.57, an 
alternative sufficient statistic to C xi is X = ( l / n )  C Xi. 

The concept of sufficient statistic can be generalized in an obvious way to a set 
of jointly sufficient statistics to cover a multidimensional case. The intuitions moti- 
vating the concept are the same as in a one-dimensional case. 

We will now formulate the definition using the factorization theorem, that is, use 
the assertion of the theorem as a basis for the definition. 

Definition 12.6.2 The statistics T1 . . . T k  are jointly suficient for 0 if the distri- 
bution fn(xl 0) satisfies the following condition: for every x = (21,. . . , 2,) and 
0 E 0 we have 

fn(xl 0) = u[Ti(x), . . . , Tk(x), Q]v(x), 

where the nonnegative function v ( x )  does not depend on 0 while the function u 
depends on 8, and depends on x only through the values of statistics 2'1, . . . Tk. 0 

EXAMPLE 12.59 

In a random sample X1 . . . , XI, from a N(p, a') distribution, where both p 
and a2 are unknown so that 0 = ( p ,  a2), we have 

statistics TI = C:=, Xi T2 = C:=l X: are jointly sufficient for 8. 

If TI , . . . , Tk are jointly sufficient for 0, and Ti, . . . T i  are obtained from TI . . . , Tk 
by a one-to-one transformation, then Ti , .  . . ,Ti are also jointly sufficient for 0. 
Thus another pair of jointly sufficient statistics in Example 12.59 is x and S2 = 
( l /n)  ( X i  - x)2. This can also be seen from the representation 

- - (27?)-"/2(2)-+exp { -"[S2 - (X - p ) 2 ] }  
2a2 

Obviously the sample (XI] .  . . , X,) is always jointly sufficient. It suffices to 
write formally Ti(X1, . . . , X,) = Xi for i = 0,1, . . . , n. This is true but useless. 
It is also true that the order statistics (XI,,, XzZn ,  . . . X,,,) are jointly sufficient, 
since 

n n 

fn(x,O) = n f ( x j 1 0 )  = n f ( ~ i : n l ~ ) >  
j=1 i=l 
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where the factors of the last product are a permutation of the factors of the middle 
product. 

Thus a set ofjointly sufficient statistics always exists, and it is natural to look for 
the maximal reduction of data that retains sufficiency. Here reduction is meant both 
in the sense of reducing the dimensionality, and in the sense of using transformations 
that are not one-to-one, such as squaring. 

The definition of maximal reduction, hence minimality of sufficient statistic, is 
as follows: 

Definition 12.6.3 A sufficient statistic T is called minimal if T is a function of any 
other sufficient statistic. 0 

The definition covers the idea of maximal reduction of the data, still leaving suf- 
ficiency intact. Indeed, suppose that T is minimal in the sense of Definition 12.6.3 
and still can be reduced. This means that there exists a function h which is not 
one-to-one such that U = h(T)  is a sufficient statistic. Then T is not a function of 
U ,  which gives a contradiction. 

Definition 12.6.3 extends to the case of a minimal sufficient set of statistics. 

Definition 12.6.4 A set {Ti, . , . , T k }  of sufficient statistics is called minimal if 
TI, . . . , Tk are jointly sufficient and they are functions of any other set of jointly 
sufficient statistics. 0 

The intuition here is as follows: if {Ti,  . . . , Tm} and {T;l . . . , TA} are both 
jointly sufficient, and the second set is a function of the first, that is, if Ti‘ = 
pi (TI . . . Tm) for i = 1, . . . k and for some functions pi,  . . . , Cpk, then 

(Ti, . . . , Tm) >_ (Ti, . . . TL), 

where is an ordering among jointly sufficient sets of statistics. The minimal 
jointly sufficient statistics are at the “base” of this ordering, while the fact that 
(Xi:,, . . . , X,,,) is always a set of jointly sufficient statistics means that the set 
of statistics being ordered by relation >_ is not empty. Example 12.59 shows that the 
minimal sufficient set of statistics is not unique; however, all these minimal sufficient 
sets are obtained as one-to-one functions of other minimal sufficient sets. 

EXAMPLE 12.60 

Let X1 . . . X, be random sample from the distribution uniform on [ -8,8] 
so that 

i f - e s z s e  
f(z;O) = 28 { -  0 otherwise. 

Proceeding as in Example 12.58, we can easily show that the pair of extreme 
order statistics (Xi:,, X,,,) is jointly sufficient for 8. However, this is not a 
minimal set: the statistic T(Xl,,, X,,,) = max(lX1,,1, IXn:nl) is a single 
sufficient statistic for 8. 

Typically the dimensionality of the minimal set of jointly sufficient statistics 
equals the number of dimensions of the parameter 8. Thus, in the case of a normal 
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distribution with the parameter being the pair ( p ,  oz), the minimal sets of jointly 
sufficient statistics consist of two statistics (e.g., Xi and X:). However, there 
exist distributions that depend on a single parameter, and yet the only jointly suffi- 
cient statistics (hence the minimal sets of jointly sufficient statistics) are the order 
statistics  XI:^, . . . , Xn:n) .  This is true, for instance, for the Cauchy distribution 
with density 

Consider now the role that sufficient statistics play in estimation. Observe first 
that the likelihood function is 

w x )  = v(x)u[Tl(x),' ..,Tk(X),e], (12.87) 

where {TI, . . . , Tk} is a set ofjointly sufficient statistics (minimal or not). Since the 
factor W(X) plays no role in the determination of 8 at which the likelihood attains 
its maximum, we can expect that the MLE 4 of 8 will be a function of TI, . . . , Tk. 
Since the same kind of representation of the likelihood is valid if TI, . . . , Tk form a 
minimal sufficient set, we can expect that 8 will be a function of a minimal sufficient 
set of statistics. 

This argument is valid provided that the MLE is unique (which is usually the 
case). When the MLE is not unique (for such situations, see Example 12.30), one 
cannot claim that they are all functions of sufficient statistics, but one of them will 
be. 

We can therefore state the following theorem: 

Theorem 12.6.2 Ifthe MLE of 8 exists and is unique, then it is a function of minimal 
suflcient set of statistics. Ifthe MLE is not unique, then there exists an MLE that is 
a function of a minimal suflcient set of statistics. 

A very similar situationexists in the case of Bayes estimators. Indeed, if T I ,  . . . , Tk 
are jointly sufficient for 8, then the posterior density of 8 given x is, for prior density 
4 4 9  

- u(T1, . . I Tk, e)T(O) - 
H (Tl, . . . > Tk ) ' 

since the factor ~ ( x )  cancels; here H is some function of statistics T I ,  . . . , Tk. Con- 
sequently, the Bayes estimator, equal to the mean of posterior distribution, depends 
on x only through statistics T I ,  . . . , Tk. This proves the following theorem: 

Theorem 12.6.3 The Bayes estimator of 8 is a function of the minimal suficient set 
of statistics for  8. 

The main importance of sufficient statistics is, to a large extent, related to the next 
theorem, according to which any estimator that is not based on sufficient statistic 
can be improved, and hence is not admissible (see Definition 12.3.1). The theorem 
is formulated in the case of a single sufficient statistic T .  However, it can be easily 
generalized to the case of the minimal sufficient set of statistics. 



SUFFICIENCY 431 

Theorem 12.6.4 (Rao-Blackwell) Assume that in a familyofdistributions { f(x, 8 ) ,  8 E 
Q} a suficient statistic T mists, and let W be an estimator of g(8). Then 

W * ( T )  = Eo(WIT) (12.88) 

is also an estimator of g(8), such that E ( W )  = E ( W * ) ,  and its risk R ( W * ,  6) = 
E{ [ W *  - g(8)]2} satisfies the condition 

R ( W * , 8 )  5 R(W,8) (12.89) 

for all 8 E 9. Moreover; the inequalify in (1 2.89) is strict for some 8 unless W Is a 
function of T and is an unbiased estimator of g(8). 

Proof: We need to show first that formula (1 2.88) indeed defines an estimator of 
g(O), that is, that the left-hand side does not depend on 8 but only on the sample 
X I ,  . . . , X,. We will also show that this dependence is through the value of T only 
so that the obtained estimator is a function of the sufficient statistic T .  The second 
part of the proof will consist of showing that inequality (12.89) holds for every 8. 

To show that formula (12.88) defines an estimator, we will carry the argument in 
the discrete case, with f (z ,  8 )  = P { X  = ~ 1 8 ) .  Let t be a possible value of T ,  and 
let Q ( t )  = { x  : T ( x )  = t } .  

For any fixed t and x E Q ( t ) ,  the conditional distribution of X given T = t is, 
by the factorization theorem, 

- 44 - 
&Q(t)  ' ( y )  ' 

which is independent of 8. On the other hand, P{X = xlT = t ,  8 )  = 0 if x @ Q ( t ) ,  
which is also independent of 8. Consequently we have 

which is independent of 8, as asserted. 
The estimator Ee(WIT) depends on the actual sample observed in the following 

sense: after observing the sample X = x*, compute T ( x * )  = t ,  and use (12.90) to 
obtain Es(WIT) .  

Clearly, if T ( x * )  = T(x**)  = t ,  then the value of the estimator Ee(WIT) is 
the same for samples x* and x**. This means that this value depends on the sample 
only through the value of the sufficient statistic T .  

It remains now to prove the inequality (12.89). Based on Theorem 8.7.2, 

V a r ( X )  = E y { V a r ( X I Y ) )  + V a r Y { E ( X / Y ) } .  (12.90) 

Letting Eo(W) = k ( 8 ) ,  the risk of estimator W is 

q w ,  8) = E{[W - 9(e)l2> = E{([w - w9i+ [ k ( e )  - g ~ l ) ~ >  

E{[W - W12) + [k(O) - = 

= V a r ( w )  + [ k ( ~ )  - g(e)i2, (12.91) 
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since the cross product is easily seen to vanish. The second term is simply the square 
of the bias [recall that W is used to estimate g(B), rather than 01. 

We will now use the formula (12.90), taking X = W and Y = T .  Thus for every 
B we have: 

Var(W) = ET(Var(W1T)) + VarT{E(WIT)} 
2 VarT(E(W1T)) = Var(W*). (12.92) 

Now, by the fact that 

,qe) = E(W) = E~{E(WIT))  = E ( w * ) ,  (12.93) 

we can write, using (12.91), (12.92), and (12.93), 

R(W, 8 )  2 Var(W*) + [ q e )  - g(e)]2 = var(W*)  + [E(w*)  - g(e)12 
= E[W* - g ( e ) ] 2  = qw*,e) .  

It remains to determine the conditions for equality in (12.89). It is clear that the 
equality occurs if and only if k ( 0 )  = g(B) and ET{Var(WIT)} = 0. The first 
condition means that W is an unbiased estimator of g(B). The second condition 
means that Var(W1T) E 0. That is, for every value t of T ,  the random variable W 
is constant; hence W is a function of T. 0 

What the Rao-Blackwell theorem says is that in order to decrease the risk of an 
estimator V ,  one should decrease its bias. Then, if the estimator is not a function of 
sufficient statistic (or statistics), replace it by the estimator defined as the conditional 
expectation of V given sufficient statistics. 

We will now illustrate the second part of this principle. Thus, in the examples be- 
low we will start from some unbiased estimators and improve them by conditioning 
with respect to sufficient statistics. 

EXAMPLE 12.61 

Let X I ,  , . . , X ,  be a random sample from POI(X) distribution. Suppose that 
we want to estimate P {  X = 0) = e-X. 

We know (see Example 12.56) that the sufficient statistic for X is x, or 
equivalently, T = xal Xi, which has POI(nX) distribution. Let us estimate 
P { X i  = 0) = e-' = g(X) by W = U/n-a relative frequency of Xi 's  in the 
sample that are equal to 0. To compare the risks of W and W' = E(WIT), it 
is enough to compare their variances, since it will be shown that W and W * 
are both unbiased estimators for g(X). 

g(X). Thus W is unbiased for g(X), and its risk equals 
Clearly, U is binomialwithparameters n andg(X), so E ( W )  = ( l / n ) E ( U )  = 

e-'(1- e- ' )  

n 
R(W, A) = Var(U/n) = 

Now let W' be defined as 

(12.94) 

(12.95) 
1 
n 

W" = E(W1T) = -E(U/T) .  
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Clearly, the number of Xi 's  which are equal to 0 cannot exceed n. If T = 1, 
then U = n - 1, so it remains to consider cases where T = t > 1. 

Let us start by determining the conditional distribution of one of the obser- 
vations, say X I ,  given T = t .  We have, for j 5 t ,  

which shows that given C Xi = t ,  the variable X1 is binomial with parame- 
ters t and l /n .  

Now let 

so that for each y3 we have 

Since U = Y1 + . ' + Y,, we obtain 

1 1 
n n 
1 "  

W* = - E ( U ( T )  = -E(Yi + ' .  + Y,IT) 

(12.96) ( = - ) :E(Yj jT)= 1 - -  , 
j=1 

a result that is somewhat unexpected. 
Finding the risk of W *  (in order to compare it with the risk of W )  requires 

some work. We know that W' must be unbiased because W = U/n was 
unbiased, and therefore we need to compare only variances of W' and W .  
Recalling that T = C:=, X i  has POI(nX) distribution, we have 

W W 

EtT = ) : z t x P { T = l } = C z t ~  e-nx 

t =o t=O " 
M 

- - e-nxeznx  c ( Z " X ) t e - z n X  = enX(r- l )  

t !  
t=o 

On the other hand, E[zTI2  = E[( t2) IT  = e"X(zz-l). Consequently 
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To compare the risks (variances) of the original estimator W = U/n and the 
improved estimator W',  observe that the risk of W ,  given by (12.94), can be 
written as 

e-X(1 - e-X) Xe-2X e-'X 
- -- + -(eX - x - 1). 

n n n 
On the other hand, for the risk of W' we have 

x2 X3 e -2X ( e  Xfn - 1) = e-2' (A +-+-+ . . .  
n 2n2 6n3 

which is smaller if n is sufficiently large. 

EXAMPLE 12.62 

Consider now estimators Tl-T5 of 0 in the U[O, 01 distribution introduced in 
Example 12.5. Three of them, T3,T4, and T5, are not functions of a statistic 
TI = X n z n  sufficient for 0 (see Example 12.58). Theorem 12.6.4 will be ap- 
plied to improve estimators T3, T4, and T5. 

SOLUTION. The improved estimator T3 is 

Ti = Ee(T31Ti) = &{TI + XI:n)ITI} = TI + Ee{X,:n}. 

Given TI, other n - 1 observations are iid, each with a U[O, TI]  distribution. 
Conditional expectation E(X1:,JTl) is the same as the expectation of a min- 
imum of x; , .  . . , XA-l, each X i  being uniform on [0, TI] .  This conditional 
expectation equals (l /n)Tl.  Consequently, 

which is equal to the estimator T2 considered in Example 12.5. 
Next 

1 
n 

Ti = Eo{(n + l)X1:nlT1} = (n  + l)-Tl, 

where we used the results obtained in determining T;. Finally, for T5 we have 

In this case, given TI, the sum XI + . . + X n  must have one term equal to T I ,  
while the others have a uniform distribution on [O,T1]. So again, letting Xl be 
uniform on (0, T I ) ,  we have 

E(X1  + . . , + XnITi) = 7'1 + E ( X ;  + . , + X:-1) 

TI n + l  TI, = 2'1 + ( n -  1 ) -  2 = - 2 
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and therefore 

Observe that improving three different estimators (T3, T4, and T5) by condition- 
ing with respect to sufficient statistic 7’1 led in each case to the same unbiased es- 
timator Tz = [(n + l) /n]Tl.  The natural question arises: Was it a coincidence, or 
a rule? If such a result occurs as a rule, we could always select an unbiased esti- 
mator for which the conditioning would be especially simple. Thus we would find 
the unique unbiased estimator that could not be improved any hrther, hence with 
minimal risk. We will now introduce one more concept that connects all the pieces 
together. 

The situation at present may be summarized as follows: On the one hand, we 
have the Rao-CramCr inequality, which tells us how much reduction of the variance 
(hence of the risk for unbiased estimators) is possible. This bound may be effectively 
calculated in textbook cases, but in real-life situations it can be hard or impossible 
to determine. 

On the other hand, we have the Rao-Blackwell theorem, which tells us that un- 
biased estimators that are not based on sufficient statistics can be improved; to be 
more specific, their variance can be reduced by conditioning on sufficient statistics. 

Again, the technical difficulties of such conditioning can be formidable. But here 
the situation can often be simplified. Rather than try to improve an estimator by 
finding its conditional expectation on a sufficient statistic, we can simply abandon 
the effort and refrain from using estimators that are not functions of sufficient statis- 
tics. Instead, we can try to find an unbiased estimator that is built only on sufficient 
statistics. This may still be technically difficult but often easier than determining 
conditional expectations. 

Once we find an unbiased estimator that is a function of a sufficient statistic (or a 
minimal sufficient set of statistics), the Rao-Blackwell theorem tells us that it cannot 
be improved any further (at least by conditioning). We therefore are tempted to con- 
clude that we found the minimum variance unbiased estimator. Such a conclusion 
is justified if the estimator in question has variance equal to the right-hand side of 
the Rao-Cramer inequality. Otherwise, the reasoning on which it is based still has 
a flaw and has to be amended. Indeed, this reasoning works if there is only one 
unbiased estimator based on a minimal sufficient statistic (or minimal sufficient set 
of statistics). But what if there are several such estimators? We know that none of 
the estimators can be improved by hrther conditioning, but this does not guarantee 
that their risks are all minimal. 

cannot occur, that is, situations where an unbiased estimator based on a sufficient 
statistic is unique. 

Definition 12.6.5 A family of distributions { f ( t ;  0 ) ,  0 E 0 )  of variable T is called 
complete if for all O E 8 the condition E@[u(T)] = 0 implies that u(T)  = 0 with 
probability 1. A sufficient statistic with a distribution in a complete family is said to 
be a complete suficient statistic. 0 

This observation makes it necessary to single out the cases where such an “anomaly” 

Accordingly we introduce the following definition: 
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We have the following theorem: 

Theorem 12.6.5 y t h e  family of distributions { f ( t ;  0), 0 E Q} is complete, then 
any unbiased estimator u(T)  ofparameter g(0) is unique. 

Proof If ul(T)  and u2(T) are unbiased estimators of g(O), then 

Ee[21i(T)I = Ee[u2(T)1 = g(e),  

and Eo{ul(T) - uz(T)} = 0 for all 0 E 0. Hence Po{ul(T) - u2(T) = 0 }  = 1 
0 

Theorem 12.6.6 (Lehmann and Scheffk) Let X I ,  . . . X,, be arandom samplefiom 
a distribution {f(z; 0), 0 E Q}, and let { T I ,  . . . Tk} be jointly complete suficient 
statistics for 0. Ifthe statistic U’ = U*(Tl,. . . Tk) is an unbiased estimator of 
g ( 0 ) ,  then U’ is the minimum variance unbiasedestimator (MVUE) of g(0). 

ProoJ: By completeness, any statistic U = U (TI ,  . . . , Tk) that is unbiased for 
g ( 0 )  must satisfy the condition U = U’ with probability 1 (for every 0). On the 
other hand, for any statistic W = “(XI, . . . , X,) that is unbiased for g(0) and 
is not a function of . . . , Tk, U = E{ WIT1, . . . , Tk} will also be unbiased and 
will be a function of T I , .  . . Tk such that Vare(U) 5 Vare(W), which shows that 
variance of U* is minimal for each 6. 0 

for all 0, which means that the functions u1 and 212 coincide. 

The concept of completeness pertains to a family of distributions. It is usually 
stated in a phrase appealing to intuition and easy to remember: A family is complete 
if “there are no nontrivial unbiased estimators of zero” (a trivial unbiased estimator 
of zero is a random variable identically equal to zero). We will now give some 
examples of complete families. 

EXAMPLE 12.63 

Consider random sampling from a POI(A) distribution. A sufficient statistic 
for A, T = cZl Xi, has POI(nX) distribution. Let u(T)  be a statistic, and 
suppose that Eo[u(T)] = 0 for all 0. This means that 

en Cc on 
n=O n! 

Es[u(T)] = u(n)Te-’  = e-’ u(n)- = 0. 
n. 

n=O 

Since e-e # 0, we obtain g ( 0 )  = u(n)P/n!  = 0 for all 0. However, the 
Taylor expansion of g ( 0 )  is C[g(n)(0)/n!]On, we have u(n) = s(~)(O). But 
the latter quantity is zero for all n. 

Observe here that we used the fact that the family contains all Poisson dis- 
tributions as indexed by 0 (or at least sufficiently many of them). If we con- 
sider the family of some selected Poisson distributions, say for 01, 02 ,  . . . ] Or, 
we can choose some negative and some positive values of u.(t) so as to ob- 
tain appropriate cancelations. The simplest example here is to take a family 
consisting ofjust one Poisson distribution, with mean 0 = 5 (say). Then the 
function u(T)  = T - 5 is not identically zero, yet its expectation is zero for 
all members of the family (since there is only one distribution in the family, 
and the expectation of this distribution is 5 ) .  
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EXAMPLE 12.64 

In a U[O, 01 distribution, the sufficient statistic for 6 is TI = X,:,, and its 
density f ( t ,  6') is 

O l t l 6  

otherwise. 
f ( t ;  6 )  = 

Suppose that we have a function u that satisfies the condition 

This means that le tn-'u(t)dt = 0 ,  

and by differentiation with respect to 6 we get P-lu(6)  = 0 for all 6' > 0. 
Consequently, we must have u( t )  5 0, and therefore the class of all distribu- 
tions uniform on [0 ,6 ] ,  6 > 0, is complete. 

This explains why in Example 12.62, by conditioning the unbiased estima- 
tors T3 , T4, and T5 on sufficient statistic T I ,  we obtain the (unique, in view of 
completeness) unbiased estimator [ (n  + l)/n]Tl of 6. 

Proving completeness of a family starting directly from the definition may not 
be easy. We will therefore present a rather general and easily verifiable sufficient 
condition for completeness: 

Definition 12.6.6 The distribution f(x, 6) is in an exponential class, if 

(12.97) c(6)b(x) exp[CEl qi(O)ki(x)] if x E A 
otherwise, 

where 6 = (61 , . . . , O m )  and c(6) ,  b(z) are strictly positive functions. It is assumed 
here that the parameter space is a generalized rectangle (possibly infinite in some 
dimensions) of the form 8 = (6' : ai I 6i I b,, i = 1, . . . , m}.  

1. The set A where f (x; 0) is positive does not depend on 6 .  

2. The functions q1 ( O ) ,  . . . , qm(6)  are continuous and functionally independent (i.e., 

3. The functions k l ( z ) ,  . . . , k m ( x )  are linearly independent (Le., no linear combi- 
nation of them is identically zero unless all coefficients are zero), and when 
f(s; 6) is a density of a continuous random variable, they are differentiable. 

Moreover: 

none is a function of others). 

0 

We have the following theorem: 
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Theorem 12.6.7 Let X I , .  . . , X ,  be a random sample from a {f(x, O ) ,  6' E Q} 
distribution that belongs to the exponential class (12.97). Then the set of statistics 
{TI . . . , T,} such that 

n 

T ~ ( x ~ , .  . .,x,) = C k j ( X i ) , f o r j  = I,. . . , m  
i=l 

is a minimal set ofcomplete suficient statistics for 6 = (6'1, . . . , 6,). 

The joint sufficiency of statistics Tl1 . . . , T,,, follows immediately from (12.97). For 
the proof of completeness see Lehmann and Romano (2005). 

Distributions from most common families (e.g., binomial, Poisson, normal, or 
gamma) belong to the exponential class. We will show it for the binomial and normal 
distributions, leaving the proofs for the remaining families as exercises. 

EXAMPLE 12.65 

For the Bernoulli distribution we have for z = 0, I 

1 - P  

Thus A = (0, l}, m = l ,q l (p)  = log[p/(l - p ) ] ,  and h ( z )  = 2. The 
sufficient statistic is T = kl  (Xi) = Xi. 

EXAMPLE 12.66 

For a normal distribution we have, after letting 6 = ( p ,  a), 

so we have c(6)  = (l/m.&)e-~z/20z, b(z)  = 1, q l ( 6 )  = -1/2a2, qz (6 )  = 
p / $ ,  kl(z) = z2, kz(x) = x. A minimal sufficient set of statistics is there- 
fore Tl = CZ, X: and Tz = Cy=l Xi. 

We end this section with one more concept whose notion is complementary to the 
notion of a sufficient statistic. 

Definition 12.6.7 Let X I ,  . . . , X ,  be a random sample from a distribution f(z, 6). 
Statistic T = T ( X 1 ,  . . . , X,) is ancillary for parameter 8, if its distribution does 
not depend on 0. 0 
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EXAMPLE 12.67 

In a random sample of size n obtained from the N(0, l )  distribution, statistic 
T = xZ1 (Xi - x)2 has a chi-square distribution with n - 1 degrees of 
freedom, so it is ancillary for 0. 

The following theorem, due to Basu, establishes the independence of complete 
sufficient and ancillary statistics: 

Theorem 12.6.8 (Basu) Let XI , . . . , X, be a random sample from the distribution 
{ f (5 ,  0) ,  0 E @}. r f {  TI , . . . , T,) are jointly complete sujicient statistics for 0, then 
{TI, . . . , T,} and any ancillary statistic V = V (  X I ,  . . . , Xn) are independent. 

PROBLEMS 

12.6.1 Find sufficient statistic(s) for parameter 0 in the following distributions: (i) 
f(z,0) = (z/02)e-s2/2e2 for z > 0 (Rayleigh). (ii) f (z ,0)  = (1/20).~-1~1' 
(double exponential). (iii) BETA(0,20). (iv) U[0, 201. 

12.6.2 Generalizing Example 12.53, let X1 , . . . , X, be n independent Bernoulli 
trials. Show that T = xyZl Xi is sufficient for probability of success p by finding 
the joint distribution of (XI , . . . X,) given T = t .  Find the marginal distribution 

12.6.3 Find a sufficient statistic for 0 if observations are uniformly distributed on 
the set of integers 0, 1, . . . , 0. 

12.6.4 Show that the N(O,0) family is not complete. 

12.6.5 Let X I ,  . . . , X ,  be a random sample from the distribution with a density 
f(z; A, 0) = Ae-'("-@) for z 2 0 and 0 otherwise. Determine a pair of jointly 
sufficient statistics for parameters X and 0. 

12.6.6 Show that the following families of distributions are in the exponential class: 
(i) POI(X). (ii) EXP(X). (iii) NBIN(T, 0), T known. (iv) BETA(&, 02). (v) WEI(0, A), 
X known. 

12.6.7 Show that the family of GAM(a, A) distributions is in an exponential class, 
and find the minimal jointly sufficient statistics. 

12.6.8 Suppose that a random sample is taken from a distribution with density 
f(z; 0) = 2z/02 for 0 5 5 5 0 and f(z; 0) = 0 otherwise. Find the MLE of 
the median of this distribution, and show that this estimator is a minimal sufficient 
statistic. 

12.6.9 Let XI,  . . . , X, be a random sample from the EXP(X) distributions. Sup- 
pose that only first k order statistics XI:,,. . . , XkZn are observed. Find a minimal 
sufficient statistic for A. 

12.6.10 Let X1 , Xz be a random sample of size n = 2 from the EXP(X) distribution. 
Show that statistic T = X1/X2 is ancillary for A. 

12.6.11 Let XI , . . . , X, be a random sample from the U[0, 0+ l ]  distribution. Show 
that statistic T = X,:, - XI:, is ancillary for 0. 

P{X1 = 1IT = t } .  
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12.7 INTERVAL ESTIMATION 

Thus far we have dealt with point estimation. An estimator was used to produce 
a single number, hopefully close to an unknown parameter. The natural question 
arises: What can be said about the distance between the value produced by the 
estimator and the true value of the parameter? 

Here again the approaches are different, depending on whether or not one can 
regard the value of 8 as a realization of some random variable. 

Bayesian Intervals 

In the Bayesian scheme the true value 6’ in a given situation is regarded as the ob- 
served value of a random variable Z with prior distribution (e.g., density) T .  Given 
the observation x, the posterior density of 9 is r(Olx), and we can assess the prob- 
ability that E lies between two values a and b as 

(12.98) 

EXAMPLE 12.68 

Suppose that we observe n = 3 Bernoulli trials with unknown probability 
of success 8, where 6’ has the prior distribution BETA( 2,2) .  Assume that we 
record z = 2 successes. Then the posterior distribution of the parameter is 
again beta, with parameters Q + 2 = 4 and n + p - z = 3. So the posterior 
density is 

r(7) e3(1 - 8)2 = 6003 - 12004 + 6005, 0 < 8 < 1. 
r ( 4 N 3 )  

The expected value of the posterior distribution is 4/7 = 0.57, which is the 
Bayes estimate of 8. The probability that the true value of 8 lies below 0.2 
eauals 

The probability that the true value of 0 lies above 0.8 equals 

1:(6003 - 12004 + 60e5)de = 0.099. 

Consequently, with probability 1 - 0.017 - 0.099 = 0.884 the true value of 8 
lies between 0.2 and 0.8. 

Confidence Intervals 
In many cases the value of 8 cannot be regarded as a value of a random variable with 
a prior distribution that can be assigned a frequential interpretation. In such cases 
non-Bayesian statisticians do not consider it meaningfd to speak of “the probabil- 
ity that the value of parameter 8 belongs to some set.” According to this point of 
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view, all randomness is in the process of selection of the sample. The relevant state- 
ments on interval estimation are now expressed through the concept of confidence 
intervals. 

Let X = (XI,. . . , X,) be a random sample from the distribution f(z, 6). Let a 
be a fixed number with 0 < a < 1 (typically a is a small number such as a = 0.05 
or a = 0.01). 

Definition 12.7.1 A pair of statistics L = L ( X )  and U = U ( X )  is an (1 - a)-level 
confidence interval (Cr) for 8 if for all 8 E 8,  

P@{L(x)  I e 5 u(x)) = 1 - a.  (12.99) 

Similarly, a statistic L ( X )  is a (1 - cu)-level lower confidence boundif 

P{ L ( X )  5 0) = 1 - a.  (12.100) 

0 

The upper confidence bound V(X) is defined in a similar way. It is important to 
notice that the meaning of formula (12.99) is quite different from the meaning of the 
left-hand side of formula (12.98). 

To point out the difference in the most concise way, observe that the left-hand 
side of (12.98) refers to posterior probability given x. This means that the sample 
has already been taken, and the probability statement refers to the mechanisms of 
sampling the particular value of 8. However, according to non-Bayesian philosophy 
this sampling does not take place, and therefore probability statements after x has 
been observed make no sense. 

On the other hand, formula (12.99) refers to randomness in the sample (for a 
given fixed 6’). The interval [ L ( X ) ,  U(X)] varies from sample to sample and is 
therefore random. By definition, the probability that it covers the unknown (fixed) 
value of 8 is 1 - a.  This probability, however, refers to the process of taking the 
sample only. After a specific sample x has been observed, the observed interval 
[L(x), U(x)] either covers or does not cover 0. All randomness is gone, and it makes 
no sense to speak of “the probability that B belongs to the interval [L(x), U(x)]” be- 
cause this probability is now either 0 or 1. Since we do not know which is the case, 
the term confidence is used. We say that the (1 - a)-level confidence interval for 6’ is 
[L(x), U(x)]. In frequential terms, the last statements means “the confidence inter- 
val L [ ( x ) ,  U ( x ) ]  has been obtained by a method that produces randomly generated 
intervals, of which, on average, l O O ( 1  - a)% cover the unknown value 8.” 

It is perhaps regrettable that the terminology here, as it developed historically, is a 
little ambiguous. The term confidence interval refers to interval L[(X), V(X)] with 
random endpoints as well as to the interval L[(x), U(x)] with endpoints obtained 
from the sample observed. Sometimes the first interval is called the probability 
interval, and the second is called the sample confidence interval. We will follow 
a more common tradition, referring to confidence intervals and sample confidence 
intervals. 

In constructing confidence intervals, we use quantiles of some known distribu- 
tions, such as standard normal, Student’s t ,  and chi-square. For typographical rea- 
sons, as well as to follow the tradition, we use different notation for distributions 
symmetric about 0 (N(0; 1) and Student’s t ) .  
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Thus, if 2 is a standard normal random variable, then za will denote the (1 - a)-  
quantile of 2 (or, upper a-percentile), that is, 

P { Z  5 2,) = 1 - a .  (12.101) 

Then zl-,, = - z a ,  and P{(ZI 5 z , / ~ )  = 1 - a. Similarly the (1 - a)-quantile of 
Student’s t distribution with v degrees of freedom will be denoted by ta,u. 

For asymmetric distributions, such as chi-square, the subscript a will be used for 
upper quantiles of order a so that denotes the quantile of order 1 - a of a 
chi-square distribution with u degrees of freedom. 

rn EXAMPLE 12.69 

Consider the random sample XI,  . . . , X, from the distributionN( 0, a2), where 
6 is the unknown parameter while cr2 is known. Then the interval 

“ 1  (K - 2 4 2 3 ,  x + z 4 2 -  
0 -  

f i  
is a (1 - a)-level confidence interval for 8. Indeed, the inequality 

so both inequalities have the same probabilities. Since Var(X) = a2/n,  we 
have 

P { X -  2 4 2 5  < 0 < x+ 2 4 2 5  1 - 
= P { - 2 4 2  < < Za,2) = 1 - a,  

which was to be shown. 

rn EXAMPLE 12.70 

Let XI ,  . . . , X, be a random sample from a continuous distribution with den- 
sity f(x, @) depending on a one-dimensional parameter 0. Furthermore, let 
F ( z ,  0) be the cdf of X, and let G = 1 - F .  Then each of the random vari- 
ables -2 log F(X, 0 )  and -2 logG(X, @) has an exponential distributionwith 
parameter 1 / 2 .  Indeed 

~ i - 2  l o g F ( X ,  0) > t )  = P{F(X, 6)  < e - t / 2 )  = e - t / 2 ,  

since F ( X ,  0) is uniform on [0,1]. The argument for G(X, 0) is analogous. 
Consequently, the sums 

n n 

U = -2)10gF(X2,0)  and W = -2)logG(X,,0) (12.102) 
2 = 1  t= l  
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have GAM(n, 1/2) distribution, which is the same as chi-square distribution 
with 2n degrees of freedom. We can therefore write 

and 
n 1 P ~ 1 - = / 2 , 2 n  < - 2 C l o g G ( X i , Q )  < x : / 2 , Z n  = 1-a.  (12.104) 

{ 2  i=l 

If the inequality that defines the event in either (12.103) or (12.104) can be 
solved to the form L ( X 1 , .  . . , X n )  < 0 < U ( X 1 , .  . . , X n ) ,  we obtain, by 
definition, a confidence interval for 0 at level 1 - a. 

EXAMPLE 12.71 

Continuing Example 12.70, if X I ,  . . . , X ,  have an exponential distribution 
with density 0e-'=, then F ( z ,  0) = 1 - e-e2 and G(z, 0) = e-es. Formula 
(12.104) gives 

and we obtain the (1 - a)-level confidence interval 

(12.105) 

Note that if we used F instead of G, we would obtain the inequality 

n 
2 2 

~ 1 - a / 2 , 2 n  < -2):log(l- < ~ a / z , z n r  
i=l  

which cannot easily be solved for 0. Thus, even when we have an explicit 
formula for F (and hence for G), use of one of these functions often leads to 
simpler results than use of the other. 

In general, how are confidence intervals obtained? For large n, the answer lies in 
the limit theorem 12.5.1 about the asymptotic distributions of MLE's obtained from 
setting the derivative of the likelihood equal to 0 and solving the resulting equa- 
tion. Indeed, since m(& - 0) with I(0) defined by (12.27) is asymptotically 
standard normal (as in Example 12.69), we have 

with probability close to 1 - a. This inequality is equivalent to the inequality 

(12.106) 
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The latter is not a confidence interval, since the bounds depend on the unknown 
value of 0. However, for large n we can replace B by 6, in I ( $ ) .  Consequently, we 
can state the following theorem: 

Theorem 12.7.1 Let i,, be the MLE estimator of 0 in a problem for  which MLE's 
satisfy assumption of Theorem 12.5.1. Then for  large n ,  

is an approximate (1 - a)-level conjidence interval for parameter 0. 

EXAMPLE 12.72 

As an illustration we consider the problem of estimating probability p in Bernoulli 
distribution. The observations X I ,  X2 ,  . . . , X ,  are iid random variables indi- 
cating whether consecutive trials lead to success or failure (i.e., X i  = 1 or 0 
with probabilities p and 1 - p ) .  The sum S,, = X I  + . . . + X, is the total 
number of successes in n trials. The MLE o fp  is lj = S,/n, and (12.35) gives 
I ( p )  = l /p ( l  - p )  so that 

By the central limit theorem for the binomial distribution, the random variable 

is asymptotically standard normal. Consequently, we have the approximate 
relation 

P{-G/2 < m(P - P) < & / 2 )  = 1 - a.  

The inequality on the left-hand side of (12.107) is equivalent to 

(12.107) 

or ( 1+- ""n / )  p 2 -  ( 2@+- z?2) p + l j 2 < 0 .  (12.108) 

The solution of the quadratic inequality (12.108), 

?j 4- Z:I2/2n - 2 4 2  4- 
1 + 4 , 2 / n  

pT=mp 
, (12.109) 

6 + Z:/2/2n + 2 4 2  4n 
< P <  

1 + z & / n  
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gives an approximate (1 - a)-level confidence interval for probability p .  

commonly used fkrther approximation, namely 
If we disregard the terms of the order higher than 1/&, we obtain a more 

( 12.1 10) 

which coincides with the confidence interval given in Theorem 12.7.1 

The method of obtaining confidence intervals for any n is based on the pivotal 
variables defined as follows. 

Definition 12.7.2 A random variable W is calledpivotul for 8 if it depends only on 
the sample X and on unknown parameter 8, while its distribution does not depend 

0 

This means that in principle one should be able to calculate the numerical values 
of probabilities for W. It is not enough to know that W has a normal distribution 
(say) with one or more parameters unspecified. 

If W = W(X, 8) is a pivotal random variable, then the (1 - &)-level confidence 
interval can be obtained as follows: First, for given 0, one determines the values q: 
and qy such that 

on any unknown parameters (including 8). 

P{q:  I w ( x ,  8) I qy) = 1 - a ,  (12.1 11) 

which is possible since W is pivotal. 
It now remains to convert the inequality q: F; W ( X ,  8) F; qy into the form 

or, more generally, into the form 

where S is some set (not necessarily an interval). But as is often the case, if the 
pivotal quantity W is monotone in 8 for every value of X ,  a solution of the form 
(12.1 12) is attainable, and then the statistics L and U provide the lower and upper 
endpoints of the ( I  - a)-level confidence interval for 8. 

EXAMPLE 12.73 

The random variables (12.102) from Example 12.70 are pivotal, which shows 
that in a continuous case with a one-dimensional parameter there always exist 
at least two pivotal variables. 

The next example shows that pivotal variables can also exist in the case of multi- 
dimensional parameters. 

1 EXAMPLE 12.74 
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As in Example 12.69, assume that X I ,  . . . , X n  is a random sample from the 
distribution N(0, u2), but u2 is now unknown. We are still interested in es- 
timating the mean 8. In such cases the statisticians use the term nuisance 
parameter for u2. 

In Example 12.69 the random variable (5? - e)/(a/fi) waspivotal, since 
u was known. However, if u is unknown, we have to proceed differently. The 
idea is to cancel u in the denominator of (x - O)/(a/fi). 

Recall that when X i  - N ( 0 ,  02) and S2 = ( l / n )  ~ ~ = l ( X i  - x)2,  the 
random variable nS2/u2  has a chi-square distribution with n - 1 degrees of 
freedom (Theorem 10.2.1). Moreover, S2 is independent of x. Consequently, 
the ratio 

- 
( X - W W f i )  - x - 0 -  T =  
JnS2/02(n - 1) s 

- Jmm 
- 

(1 2.1 14) 
x -e  - 

has the Student’s t distributionwith n- 1 degrees of freedom. Thus (12.1 14) is 
a pivotal random variable (observe that u is canceled). If now t u p , n - l  is the 
(1 - cr/2)-quantile of Student’s t distribution with n - 1 degrees of freedom 
(see Table A3.), then we have 

which gives 

(12.1 15) 

as a (1 - @)-level confidence interval for 0. 

EXAMPLE 12.75 Confidence Intervals for Variance 

Consider again a random sample with normal distribution N( p, u2), this time 
assuming that the parameter to be estimated is u2. We distinguish two cases: 
when p is known, and when p is unknown. To provide some motivation for 
considering these cases, consider the problem of assessing the quality of some 
measuring device. A typical procedure here consists of repeating the measure- 
ments of the same object. Assuming that the measurement errors are normal, 
the two cases above correspond to measurements of an object whose true value 
p of the measured attribute is otherwise known, and measurements of an ob- 
ject whose true value y of the measured attribute is unknown. 

The pivotal random variables are respectively, 

n n 

U = c ( X i  - pj2/a2 and V = x ( X i  - 5?)2/02. 
i=l i= l  
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Since U is a sum of n independent squares of standard normal random vari- 
ables, it has a chi-square distribution with n degrees of freedom. We know also 
from Theorem 10.2.1 that V has a chi-square distribution with n - 1 degrees 
of freedom. Thus 

and 

We obtain therefore the (1 - cy)-level confidence intervals 

(12.116) 

and 

(12.1 

Two obvious questions arise that concern the intervals (12.1 16) and (12,117). 
First, when p is unknown, one must use the interval (12.1 17). But when p i: 
known, one can either utilize this knowledge and use interval (12.1 16) or not 
utilize it and use interval (12.1 17). Which is the proper procedure? The an- 
swer is that a shorter interval is obtained, on average, if one uses the available 
information about the expectation p. 

Second, to get the probability 1 - a of covering the unknown value of u2, 
it is not necessary to choose values ~ f - ~ ~ ~ , ~  and 2,n ,  which cut equal 
probabilities at both tails of the chi-square distribution. 6 n e  could choose two 
other points a and b such that the probability of a chi-square random variable 
assuming a value between u and b is 1-0. There are infinitely many such pairs 
(a, b), the pair ( X q - a 1 2 , n ,  xz12,n)  being just one of them. An obvious criterion 
would be to choose a pair a, b that minimizes the length of the confidence 
interval. It is easy to see that this length is proportional to 1/u - l / b .  We have 
a similar discussion when /I is unknown. 

To solve this optimization problem, let gm be the density of the chi-square 
distribution with m degrees of freedom (in our case, we use either m = n or 
m = n - 1). Then the problem can be formulated as 

C b l ( X i  - X)2 
< a 2 <  

Xa/2 ,n - l  XI  -a/2,n- 1 

c ; = l ( X i  - X)2 
2 

This problem can be solved by using Lagrange multipliers: Differentiating the 
function 

7) 

J 1 - ; + x 11 g,(z)dz - (1 - a) 
b 

a 
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with respect to a ,  b, and A, we obtain three equations: 

and 

g m ( z ) d z  = 1 - a.  il 

(12.1 18) 

(12.119) 

As asolutionchoose a ,  bsatisfyingconstraint(l2.119)andsuch that a2g,(a) = 
b2gm(b).  These can be solvednumerically for each m (see Table A5.). The so- 
lution, for large m, is close to the “symmetric” solution, where a = ~ f - ~ , ~ , ~ ,  
b = x & ~ .  For small sample sizes it is better to use an exact solution of the 
optimization problem above, as it gives the shortest possible confidence inter- 
val. 

Table A5. gives the optimal left cutoff probability a, and the correspond- 
ing upper quantiles a = xi , , ,  and b = xi,,,, where a2 = (1 - a) - a l ,  
for a = 0.1 and a = 0.05 and various numbers of degrees of freedom. The 
table also gives the relative gain resulting from using the shortest confidence 
intervals (with length proportional to 1 / a  - l/b), as compared to the confi- 
dence interval with equal cutoff probabilities, hence with length proportional 
to 1 I X: - a /2  ,m - 1 I ~ : / 2 ,  m ’ 

EXAMPLE 12.76 

Suppose that five observations from a normal distribution with unknown p 
and u2 are such that c ( X i  - x)’ = c. To obtain a 95%CI for 02, the usual 
procedure based on cutting off 2.5% at both ends of the chi-square distribution 
with 4 degrees of freedom uses thresholds xi,975,4 = 0.484 and ~ 8 , 0 2 5 , ~  = 
11.143 (see Table A4.). This leads to the confidence interval c/11.143 < 
o2 < c/0.484, or (O.O9Oc, 2.066c), of length 1 . 9 7 6 ~ .  

The shortest 95% confidence interval involves the upper quantiles a = 

now 0 . 0 4 7 5 ~  = ~ 1 2 1 . 0 4 7  < u < ~ 1 0 . 7 0 8  = 1 . 4 1 2 ~ .  The length is 1.3649c, 
which is 69% of the length of the interval based on quantiles corresponding to 
2.5% probability on each end. 

x0,0497,4 2 = 0.708 and b = xi,9003,4 = 21.047. The confidence interval is 

Two natural questions arise: Do pivotal random variables always exist, and if 
not, can one construct confidence intervals in some other way? Regarding the first 
question, the criteria for existence of pivotal random variables were given by Antle 
and Bain (1969). In analogy with examples concerning the normal distribution, we 
have the following theorem: 

Theorem 12.7.2 

(a) I f 8  is a location parameter and 8 is MLE of 8, then 8 - 8 is pivotal. 

(b) I f 8  is a scale parameter; and 8 is MLE of 8, then e l 8  is pivotal. 
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(c) Let 81 be a locationparameter and 62 be a scale parameter so that f (x, 01 , 192) = 
(1/02)h[(x - 01)/02] for some density h. r f &  and 6 2  are MLE S of 81 and 
02, respectively, then (61 - e l ) /& ispivotal. 

The answer to the second question is that even if pivotal random variables do 
not exist, we can construct confidence intervals. We will give here examples of 
confidence intervals for quantiles. 

4 EXAMPLE 12.77 

Let XI, . . . , X, be a random sample from a distribution with cdf F ( t ) ,  and 
let XI:,, 5 X2:, 5 . . - 5 X,:, be the order statistics of the sample. To sim- 
plify, assume that F is continuous and strictly increasing, and let <112 be the 
median of the distribution F .  Thus El/2 is the unique solution of the equation 
F ( t )  = 1/2.  We will construct confidence intervals for <1/2. More precisely, 
we will consider (random) intervals of the form [ X,:,, Xb:,] for integers a ,  b 
satisfying the condition 1 5 a < b 5 n and assess, for each of such intervals, 
the probability that it covers the parameter E 1 p .  

The event Xa:,, 5 5112 occurs if and only if at least a elements in the 
sample are below the median. Similarly the event 5112 5 Xb:n occurs if and 
only if at least n - b elements in the sample are above the median. If we 
call an observation below the median a success and let S denote the number 
of successes in the sample, then the event Xn,4 5 , 5 1 2  5 Xn,b occurs if 
and only if we have at least a successes and at least n - b failures so that 
a 5 S 5 b. Since S has distributionBIN(n, 1/2) ,  we obtain 

For instance, if n = 10, then the interval [X3:10, X7:10] between the third 
and seventh order statistic is a confidence interval for the median with the 
confidence level 

10 1 1 7 ( k )  210 = 1 - 2 [ ('0") + ( y )  + (:)I x 210 = 0.891. 
k=3 

On the other hand, the interval [X2:10, X6:10] is a confidence interval for J l p  

with confidence level c;=, (?)(1/2)" = 0.709. 
One-sided confidence bounds for 5112 are obtained in the same way: for 

instance, the order statistic Y,,, is a lower bound for E l p  with the confidence 
level C;=, (E) ( 1/2),. 

4 EXAMPLE 12.78 

Continuing Example 12.77, let us now f ix  p and let EP be the pth quantile of 
the population distribution. Again letting S be the number of successes, where 
now "success" is an observation below &, S has a BIN(n, p) distribution. The 
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interval [X,,,, &,:,I is a confidence interval for &, with the confidence level 

Again, taking n = 10, the same interval [X3:10, X7:10] can serve as a confi- 
dence interval for the first quartile (1/4, except that now the confidence level 
will be 

5 ( y )  (a) (:) = 0.526. 
k=3 

However, in this case it is better to take confidence intervals based on the order 
statistics where the indices are not equidistant from the extremes. 

We complete this chapter with the critique of the concept of confidence intervals. 
The point is that while a pair of statistics L = L ( X ) ,  U = V(X) may satisfy the 
condition 

P{U < 0 < L }  = 1 - a ,  

there are cases where the sample X may provide additional information, allowing 
one to claim higher probability of coverage than 1 - a. This is illustrated by the 
following example from De Groot (1986). 

4 EXAMPLE 12.79 

Suppose that two independent observations XI, X2 are taken from the distri- 
bution uniform on [0 - 1/2 ,0  + 1/21. Then order statistics X1,z and X2:2 

provide a 50% confidence interval for 0. Indeed, the interval [Xl,z, X2:2] cov- 
ers 0 if and only if one of the observations is below 0 and the other is above 
8, an event with probability 1/2. However, if X2:2 - X1:2 > 1/2, then the 
interval [X1:2,  X2:2] covers 0 with probability 1. Still, strict adherence to the 
definition of confidence interval requires reporting such an interval as a 50% 
confidence interval rather than as a 100% confidence interval. 

This example (as well as other examples of this type, e.g., Example 12.47) 
gives some weight to the Bayesian approach to statistical inference. 

Bootstrap Intervals 

The bootstrap approach is a robust alternative to inference based on assumptions 
that may be either not valid or impossible to verify (e.g., the sample size is too small), 
or where calculations of standard errors are very complex. Bootstrap intervals can 
be obtained for the mean, median, proportion, correlation coefficient, regression 
coefficient-practically any population parameter. The quality of the procedure is 
not always the same, and therefore the effectiveness of the bootstrap approach has 
been extensively studied by carefully designed simulations for different parameters, 
types of population distributions, and sample sizes. 

The idea under!ying the bootstrap approach is that the sampling distribution of 
an estimator 6 = O(X1, . , . , X , )  can be “imitated” by the sampling distribution of 
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the analogous estimator 8* = 8 ( X i B ) ,  . . . , X i B ) )  applied to so-called bootstrap 
samples. 

Let us assume that x = ( 5 1 ,  x2, . . . , 2,) is the original sample consisting of n 
values randomly selected from f (x, 0)  distributioqand let 8 = 8(x), be an estimator 
selected to estimate unknown parameter 8. 

The bootstrap random variable, X ( B ) ,  is defined as 

(12.120) 
1 
n’ 

and each bootstrap sample, xj’, j = 1, . . . , B, will be a random sample from the 
distribution (12.120) (in practice, this means that we are sampling the elements of 
the original sample with replacement). Next for each of the B bootstrap samples we 
obtain the estimate 

P { X ( B )  = xi} = - 2 = 1, . . . ,n, 

e; = e(xj’), j = I , .  . .,B. 

It has to be mentioned that the number B of bootstrap samples needs to be rather 
large, usually at least a thousand. 

We introduce two kinds of bootstrap interval estimation. 

Bootstrap t Confidence Interval 

This interval is especially recommended when the distribution of 8* is close to 
normal, which can be verified by a Q-Q plot or any test for normality. The bootstrap 
standard ermr is estimated as 

where 8 ~ 0 0 ~  = 
dence interval has the form 

c,”=, 6; ,  and consequently the (1 - a )  100% bootstrap t confi- 

Bootstrap Percentile Interval 

This interval does not require normality of bootstrap estimator 8.. Its endpoints 
are sample quantiles of order a12 and 1 - 0112 obtained from O I ,  . . . , Oh. 

The natural question now is: Is there any difference in these procedures, and if 
yes, then how to decide which one to use? We recommend that you obtain both the 
bootstrap t confidence interval and the bootstrap percentile interval, and compare 
them. If they are not close, then probably neither of them should be used. If the 
bootstrap estimate of bias, 8 -8hOOT, is small, then a bootstrap percentile interval is 
recommended. Also, since almost all variation in the bootstrap sample is caused by 
the selection of the original sample (resampling adds very little variation), bootstrap 
intervals based on small samples can be unreliable. For statistics such as the median 
or quartiles they should be used with caution even for moderate samples. On the 
other hand, bootstrap t confidence intervals for the population mean 8, based on a 
trimmed mean as an estimator 8, can be a good choice. 

In Example 12.80 we illustrate both types of bootstrap intervals. 
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EXAMPLE 12.80 

We compare different confidence intervals for an unknown population mean 6 
in the EXP( l /6) distribution. Initially we assume a certain value of 6 and use 
it to generate a random sample of size n (we select n = 20, and 6 = 1). A 
generated random sample will later be used to generate bootstrapsamples. As 
an estimator 6 of a population mean 6 we take the sample mean 6 =, x. 
Assuming that the information about the population distribution (exponential) 
is available, we apply formula (12.105) from Example 12.71 and obtain 

The generated random sample 51, . . . , 520 yields a sample mean 6 = 1.1167. 

2 1 x0.025,40 x0.975,40 < - < 
2 

2 x 20 x 1.1167 6 2 x 20 x 1.1167’ 

or equivalently 0.7527 < 6 < 1.828. After generating B = 1000 boot- 
strap samples, we obtain QOoT = 1.1083 and SEBOOT = 0.2038. The 
distribution of the bootstrap estimator 6* does not indicate lack of normal- 
ity. Consequently we obtain 95% bootstrap t confidence interval as 1.1167 i 
2.093 x 0.238, or (0.6901, 1.5433), and the 95% bootstrap percentile interval 
as (0.7478, 1.5551). All three confidence intervals cover the true value 6 = 1, 
and their widths are 1.0753, 0.8532, and 0.8073, respectively. Bootstrap per- 
centile interval seems to work very well here, but this should not be surprising, 
since, as mentioned, the bootstrap percentjle iqterval should be recommended 
when the estimated bias is small. Here 6 - 6LOoT = 1.1167 - 1.1083 = 
0.0084-less than 1 % of a true value of the parameter. 

Several methods to make bootstrap intervals more accurate are proposed in the 
literature. We will not discuss them here, but interested readers can see Efron and 
Tibshirani (1993). In Chapter 13 we will use bootstrap techniques for testing hy- 
potheses. 

PROBLEMS 

12.7.1 Six randomly selected adults are asked if they favor additional taxes to help 
fund more affordable health care. Four of them respond “yes.” Assuming that the 
prior distribution is BETA( 1, l), determine the posterior density and obtain the prob- 
ability that in the population the proportion of people favoring a tax increase is be- 
tween 60% and 70%. 

12.7.2 Continuing Problem 12.5.10, obtain the 90% Bayesian interval for 6 and for 
/I = 1 / 6 i f n =  6 , 2 =  4 , a n d p  = 2. 

12.7.3 Let X I ,  . . . , X ,  be a random sample selected from the Pareto distribution 
with density f(s; 6) = 62es-(e+1), Find: (i) The sufficient statistic for 6. (ii) A 
95% CI for 6. 

12.7.4 Based on a random sample 1.23, 0.36, 2.13, 0.91, 0.16, 0.12 selected from 
the GAM(2.5,6) distribution, find an exact 95% CI for parameter 6. 
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12.7.5 Seven measurements of the concentration of some chemical in cans of tomato 
juice are 1.12, 1.18,1.08, 1.13,1.14,1.10,1.07. Assume that these numbers repre- 
sent a random sample from the distribution N(0, a’). (i) Find the shortest 95% and 
99% CI’s for 8, if u’ is unknown. (ii) Answer part (i) if u’ = 0.0004. (iii) Use the 
data to obtain a 90% CI for cr’ and for u. 

12.7.6 A large company wants to estimate the fraction p of its employees who par- 
ticipate in a certain health program. It has been decided that if p is below 25%, a 
special promotion campaign will be launched. In a random sample of 85 employees 
the number of those who participated in the program was 16. (i) Find a 95% CI 
for p using formulas (12.109) and (12.1 10). Should the campaign be launched? (ii) 
Answer the same question if the data are 340 and 64, respectively. 

12.7.7 Let XI , . . . , X, be a random sample from N(p, a’) distribution with both 
parameters unknown. Let L,  be the length of the shortest confidence interval for p 
on confidence level 1 - a. (i) Find E ( L t )  as a function of n, u’ and a. (ii) Find the 
smallest n such that E(L:) 5 u2/2 for a given a. 

12.7.8 Obtain a (1 - a) 100% CI for 8 if XI, . . . , X ,  is a random sample from a: 
(i) N(p, 8) distribution with p and 8 unknown. (ii) BETA(1, 8) distribution. 

12.7.9 Find the probability that the length of a 95% confidence interval for the mean 
of normal distribution with unknown u is less than u, n = 25. 

12.7.10 Suppose that the largest observation recorded in a sample of size n = 35 
from a distributionuniform on [0,8] is 5.17. Find a 90% CI for 8. 

12.7.11 (i) Use the large sample distribution of MLE of mean A in Poisson distri- 
bution to construct an approximate (1 - a)-level CI for A. (ii) Assuming that the 
numbers of new cars of a given make sold per week in 15 consecutive weeks-5, 5, 
6 , 3 ,  5,8, 1,4 ,  7, 7, 5,4 ,3 ,  0,9-form a random sample from a POI(X) distribution, 
find a 90% CI for A. 

12.7.12 Based on a random sample of size n selected from the WEI(0,4) distribu- 
tion, derive a 95% confidence interval for 0 based on XI:,. 

12.7.13 Suppose that the lifetime T of a certain kind of device (e.g., a fuel pump in 
a car) has an EXP(X) distribution. The observed lifetimes of a sample of the devices 
are 350,727,615,155,962 (in days). Find a 95% CI’s for: (i) A. (ii) E(T) .  (iii) The 
standard deviation of the lifetime of the device. (iv) The probability that the two 
copies of the device that you bought will each last more than two years. 

12.7.14 Based on a random sample X I , .  . . , X, from the U[O, 81 distribution find: 
(i) P{X,:, < 0 < 2X,,,}. (ii) Such k that the interval (X,,,, kX,:,) is a (1 - 
a) 100% CI for 8. 

12.7.15 Suppose that the arrivals at a checkout counter in a supermarket (i.e., times 
of arriving at the counter or joining the queue, whichever is earlier) form a Poisson 
process with arrival rate A. Counting from noon, the thirteenth customer arrived at 
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12: 18 p.m. Find a 90% CI for: (i) A. (ii) The variance of interarrival times behveen 
consecutive customers. 

12.7.16 A sample of 200 trees in a forest has been inspected for a presence of some 
bugs, out of which 37 trees were found to be infested. (i) Assuming a binomial 
model, give a 90% confidence interval for the probability p of a tree being infested. 
Use the exact and the approximated formulas. (ii) Usually, if a tree is infested, one 
might expect some of the neighboring trees to be infested too. Thus whether the 
binomial model is adequate depends on the way the sample was selected. Describe 
a way of selecting 200 trees so that the binomial model is realistic. 



CHAPTER 13 

TESTING STATISTICAL HYPOTHESES 

13.1 INTRODUCTION 

In this chapter we present the basic concepts and results of the theory of testing 
statistical hypotheses. 

Assume that a random sample X I ,  Xz . . X ,  was selected from distribution 
f (z ,  O ) ,  where 6' is an element of a parameter space 0. Unlike in the estimation 
problems, we are now not interested in approximating the true value of 6'. What 
we need to know is only whether 6' belongs to some specific subset 00 c 0. A 
procedure that allows us to decide whether or not 6' is in 80 c 0 is called a test of 
the hypothesis that 6' E 80. 

The problem is trivial in the case where the sets of possible values of X are 
disjoint for B E 80 and 6' $! 00 (6' E el). However, in the more realistic cases some 
(or even all) values of X can occur for both 6 E 00 and for 6' @ 00, and there is 
no procedure that will always allow us to reach the correct decision. Indeed, it may 
happen that while 6' is in 80, we will observe a value of X that will lead us to the 
conclusion that 6' 6 80. On the other hand, it may happen that 6' is not in 80, and 
we will reach the conclusion that 6' E 80. These two possibilities are called errors of 
type I and type 11, and the objective is to choose the decision rule that will minimize 
their probabilities. 

455 
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EXAMPLE 13.1 

A consumer protection agency decides to investigate complaints that some 
boxes contain less of a product (e.g., cereal) than the amount printed on the box 
indicates. The boxes are filled and then sealed by a machine. Even with the 
most sophisticated equipment available, the weight of the cereal put into boxes 
will vary. Suppose that it is established that these amounts follow a normal 
distribution with some mean p (which can be set in the packing plant) and a 
standard deviation u (which is the attribute of the machine). For example, let 
p = 20 oz and u = 1.5 oz. 

If the mean 1-1. is set at 20 oz, then about 50% of the boxes will contain less 
than the nominal amount, and at least for buyers of these boxes, the fact that 
the other 50% of boxes contain more than the nominal amount may be of no 
relevance. Consequently, the packing company must set the average p at a 
value above the nominal weight 20 02. Since no value p will guarantee that 
the content of a box will always be above 20 oz, a reasonable requirement may 
be that 99% of boxes must contain at least 20 oz of cereal. If X denotes the 
weight of the cereal in a randomly chosen box, then 

0.99 = P(X 2 20) = P ( z 2 - "q3") = 1 - (%) , 

and p = 23.5 oz. Thus, in order to satisfy the requirement, the company 
should set the average weight of the content of the box at least at a value 23.5 

The agency that investigates the customers' complaints has to determine 
whether or not the average weight content is at least 23.5 02. Since opening 
all boxes and weighting their content is not feasible, the agency must decide 
how to do it in a more practical way. For example, one may agree (and such a 
decision should be made in advance, prior to any sampling) that n = 16 boxes 
of the cereal in question will be bought; the stores will be sampled, and in 
each store one box will be chosen at random from the shelf. Then the content 
of all 16 boxes will be weighed and the average ?E will be calculated. Next 
some threshold has to be established (e.g., Z = 23) so that if Z 5 23 oz, the 
hypothesis p 2 23.5 will be rejected; otherwise, it will be accepted. 

The probabilities of two types of errors can be calculated as follows: It may 
happen that p 2: 23.5, but the sample average ?E falls below 23 02. We then 
declare the company to be at fault (of not putting, on average, at least 23.5 oz 
of cereal in boxes), although in fact the company is not at fault. 

It may also happen that we observe Z > 23 (hence we declare the company 
as not being at fault), whereas in fact p < 23.5. To compute the chance of 
these two kinds of errors, we will find the probability that the company is 
declared at fault while the true mean is p, 

02. 

which is a decreasing function of b. 
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Declaring the company at fault is an error if in fact p 2 23.5 (otherwise, 
it is a correct decision). The probability of such an error attains the smallest 
value for p = 23.5 : 

Qr (:”,%) = 0.09. 

The chances of the other type of error-declaring the company as not at fault, 
when in fact p < 23.5-for any specific p are equal to 

For instance, if p = 22, then the probability above is less than 0.004. 

To make a decision “0 E 80” or “0 # @o,” we specify a set C of points in the 
space of values of X with the instruction: if the actual observation x is in C, then 
decide that 6’ # 80; otherwise, decide that 6’ E 00. Such a set C is called a critical 
(or rejection) region for the hypothesis that 0 E 80. 

In Example 13.1 we have X = (XI, . . . , XI€,), and the critical region C consist- 
ing of all points (51,. . . ,216) is such that ( l / l6 ) (21  + ’ . . + Z16) I 23. 

Ideally the best critical region C would minimize the probabilities of errors of 
type I and type 11, but this principle is too general. One has to realize the following 
two points: 

1. If 6’ E Q o ,  then deciding that 6’ # 80 is the error of type I. This error occurs 
whenever the observation X falls into the critical region C. So the probability 
of an error of type I is 

a(0) = Po{X E C } .  (13.1) 

On the other hand, if 6’ # 80, then deciding that 6’ E 80 is the error of type 
11; this occurs whenever X # C. So the probability of an error of type I1 is 

Probabilities of errors are not single numbers but functions of the parameter 
8, both expressible in terms of r ( 0 )  = Pe{X E C}, called thepowerfunction 
of the test C. The minimization principle requires that power function be 
“as small as possible” for 6’ E 80 and “as large as possible” for 0 # 80. 
Obviously the best test is such that Po{X E C} = 0 if 0 E 80 and Pe{X E 
C} = 1 if 0 # 80. However, in most cases of practical importance and 
interest, Po{ X E C} is a continuous function of 0, and such a “best” test does 
not exist. 

2. Looking at formulas (13.1) and (13.2), we see that any modification of C has 
opposite effects on the probabilities of errors of type I and type 11: if one of 
them decreases, then the other increases. 

Example 13.2, which is a continuation of Example 13.1, provides more explanation. 
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EXAMPLE 13.2 

The properties of the decision procedure as to whether the cereal-producing 
company should be declared at fault depend on the choice of the threshold 
(23 oz), and the sample size n. Changing the threshold up or down changes 
the probabilities of the two types of errors, with the changes always going in 
opposite directions. The only way to decrease probabilities of both types of 
errors at the same time is to increase the sample size n. The “best” test must 
result from a compromise between the cost of sampling, and the consequences 
of the two types of errors. In the case of boxes of cereal, the cost of increasing 
n from 16 to 100 is of a little concern. Of course, increasing the sample 
size in other experiments might be more expensive, time-consuming, or even 
impossible. 

The consequences of declaring the company at fault, when it is not, can 
again be expressed by the cost (the company may have to pay a fine, unneces- 
sarily reset the mean to a higher value, etc.). The consequences of declaring 
company not at fault, when in fact it is, are hard to express in terms of cost; 
they involve many very small losses suffered by individual buyers. 

The fact that the probabilities of errors of types I and I1 are negatively related, 
and that each is a function of 0 (defined on sets 80 and 81, respectively), makes 
formulation of the criterion to be optimized a difficult and challenging task. The 
conceptual structure of the theory is as follows. First, the problem of optimization 
is solved for the simplest case, where Qo = (00)  and 81 = {el}. The solution is 
given by the Neyman-Pearson lemma, which determines the test (Le., critical region) 
with the preassigned probability of error of type I, and a minimal probability of error 
of type I1 (or equivalently, a maximum power at value 01). Such test is called most 
powerful. In some sense the Neyman-Pearson lemma plays a role analogous to that 
of the Rao-Cramer inequality in estimation theory: both set the standard by showing 
how much can potentially be achieved. 

In some classes of testing problems, in which 81 (and often also Qo) consist of 
more than one element, there exists a test C that is the most powerful against any 
0 E 01; such tests are called uniformly mostpowerfil, (UMP). 

There are, however, classes of testing problems in which the UMP test does not 
exist. In such cases the idea is to eliminate tests with some undesirable properties. 
The UMP test will often exist in the reduced class. 

We discuss only one such reduction, reduction to the class of unbiased tests. The 
UMP unbiased tests may not achieve maximum possible power specified by the 
Neyman-Pearson lemma, but they are uniformly most powerful among the unbiased 
tests (UMPU). 

A following analogy can help one understand why such a reduction can lead to 
the existence of a UMP test. Suppose that we want to find the strongest athlete, in 
the sense of the strength of his right arm and strength of his left arm (considered 
separately). It may happen that there will be no strongest athlete in the group. The 
one with strongest right arm will have weak left arm, and vice versa, and no winner 
will be found. But one may restrict the competition to only those athletes that have 
equal strength in both arms. Among those, the winner (or winners) can always be 
found. Such a winner may be called the most powerful “unbiased” athlete. 
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This analogy immediately suggests another solution: Why not compare the ath- 
letes with respect to combined strengths of right and left arms? Or, according to 
the sum of appropriate scores, possibly different for left and right arms? (similar to 
deciding the winner in events such as the decathlon, which is based on sum of scores 
for different events). 

While in our example the “most powerful unbiased athlete(s)” could always be 
found, it is not necessarily so with UMP tests. To understand why, suppose that the 
competition involves comparisons of strengths of right and left arms, and also right 
and left legs (separately). If no “absolute” winner (strongest on each limb) exists, 
one could reduce the competition to “unbiased” athletes, those whose strengths of 
right and left arms are the same, and whose strengths of right and left legs are the 
same. But now there is no guarantee that “most powerful unbiased athlete” exists, 
since an athlete with strongest arms need not have strongest legs, and vice versa. 

In short, UMP unbiased tests exist in some classes of problems and do not exist 
in other classes, so some further reduction may be needed to single out the UMP 
tests in this reduced class. The best exposition of the theory can be found in the 
monograph of Lehmann and Romano (2005). 

The following example shows how reality can force one to use tests that are sub- 
optimal: 

EXAMPLE 13.3 

The testing procedure suggested in Example 13.1 declares the company at 
fault when Z < 23. Such a test may well be optimal from the point of view of 
statistical criteria involving probabilities of errors, but it has a disturbing fea- 
ture: it may happen that we declare the company at fault when all boxes tested 
actually contain more than the nominal 20 oz amount. Such a decision may 
not be defensible in court, in case the company decides to appeal. One should 
then restrict the consideration to procedures, that have the threshold value set 
below the nominal value 20 oz, and such procedures may be suboptimal. 

The next example shows the nature of technical difficulties that appear when the 
term “parameter” is interpreted in a somewhat nonstandard sense. 

EXAMPLE 13.4 

Suppose that a pharmaceutical company develops a drug to treat some disease, 
hoping that it is superior to the drug used thus far. After running the toxicity 
tests, studying the side effects, and so on (as required by the FDA), the only 
issue that remains is to compare the merits of the two drugs. In a typical setup 
one chooses two groups (samples) of patients. One group is then given the 
“old” drug, while the other receives the drug just developed. The data will 
consist of two sets of observations X = XI, . . . , X ,  and Y = YI , . . . , Y,- 
the results of some medical tests where rn and TI represent numbers of people 
in each group. 

Setting the hypotheses in the form discussed above can be accomplished 
as follows: Let F and G be the cdf‘s of observations in the first and second 
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sample, respectively. The joint cdf of the data ( X ,  Y )  may be taken as 

This joint distribution is characterized by the pair 6 = ( F ,  G) of two cdf‘s. 
Thus the parameter space is the class of all pairs of distributions, and the hy- 
pothesis tested is that 6 belongs to the “diagonal” in this space, namely to the 
set of all pairs of the form ( F ,  F ) ,  where F is some cdf. 

13.2 INTUITIVE BACKGROUND 

As already mentioned, we start from the same setup as in Chapter 12: We observe 
a random sample X I ,  X2 ,  . . . , X ,  from a certain distribution. We know that this 
distribution belongs to some family f(z, 0) and we know that 6 is an element of 
a parameter space 8. As before, we do not know what is the true value of 6 that 
governs the probabilities of the sample X I ,  X z ,  . . . , X,. 

The difference between the problem of estimation and the problem of testing is 
simply that now we are not interested in approximating the true value of 6. What we 
need to know is only whether 6 belongs to some specific subset 80 c 8. 

EXAMPLE 13.5 

Consider a politician who will win or lose the election, depending whether the 
proportion of voters who will cast their votes for him exceeds 50% or not. If 6 
is the fraction of voters who favor the politician in question, then 0 5. 6 5. 1, 
so that the parameter space is 8 = [0,1], and the set of interest is 00 = (a,  11. 
A survey may give a sample X I ,  . . . , X ,  of random variables with Bernoulli 
distribution f(z,6) = 6.(1 - 6 ) l - = , z  = O , l ,  and the question is how to 
use the observation to determine whether or not 6 E 80. A typical question 
may be: suppose that out of n=400 voters sampled, only 195 will vote for 
the politician in question, and 205 will vote against him. Should one reject 
the hypothesis that 6 > 1/2? The answer depends on many factors, the most 
crucial being: how likely is it to observe the data so much (195 vs 205) or even 
more in favor of rejecting the claim 6 > 1/2, if in fact the true value of 6 is 
above 1/2? 

In the generally accepted terminology, the statement that 6 belongs to 80 and the 
statement that 6 does not belong to 80 are called hypotheses. 

Let 01 = 8 \ 80 so that out of the two hypotheses, Ho : 6 E 80 and H I  : 
0 E 81, exactly one must be true. Logically speaking, denying the truth of one 
hypothesis is equivalent to accepting the truth of the other. The actually observed 
sample x = ( z ~ , I c ~ ,  . . . , 2,) provides some evidence, typically pointing in favor 
of one of the two hypotheses. A decision rule is a rule that tells us what to do 
in case of observing x = (51,. . . , z,). These actions may be “accept Ho,” “reject 
Ho (and therefore accept HI),” “take another observation,” or even “leave the matter 
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unresolved.” A decision rule will be called a t e d 5  (more precisely, a nonrandomized 
test) if the only actions allowed are “accept Ho” and “accept HI.” 

Since only two actions are allowed in a test, we must choose one of them re- 
gardless of the value of x. Therefore any decision rule is equivalent to a partition 
of the sample space into two subsets: the set of those points x at which HO is to be 
accepted, and its complement, the set of those points x at which HO is to be rejected 
(Le., H I  accepted). 

Accordingly we designate one of the hypotheses as the null hypothesis, denoted 
Ho, with the corresponding subset ofparameter space denoted 80. The complemen- 
tary hypothesis is called the alternative hypothesis, and is usually denoted by H I  or 
Ha. The corresponding subset of parameter space is 81 = 8 \ 80. 

The testing procedure is specified by the subset C of the sample space, called the 
critical region, and the rule 

reject HO if x E C. 

Observe that in this formulation the two hypotheses, HO and H I ,  are treated sym- 
metrically, and the designation of one of them as the null hypothesis is arbitrary. 
Subsequently this symmetry will be lost, and the null hypothesis will play a differ- 
ent role than the alternative. 

To formulate the meaningful criteria that will eventually allow to choose the best 
test, we introduce some auxiliary definitions. 

Definition 13.2.1 A hypothesis H :  8 E 80 is called simple if it completely specifies 
0 the distribution of the sample; otherwise, it is called composite. 

As mentioned before, two types of error can be made as a result of our decision: 
a true null hypothesis can be rejected, or a false null hypothesis can be not rejected. 

It goes without saying that we would like to minimize the probabilities of both 
types of errors. The trouble here is twofold. First, the probability of errors depends 
typically on the value of 8, so the phrase “probability of rejecting null hypothesis 
when it is true” does not have unique meaning if the null hypothesis is composite. In 
fact, there are many values of 8 for which null hypothesis is true, and the probability 
in question depends on the particular value of 8. The same remark applies to the 
alternative hypothesis if it is composite. 

The second source of difficulty lies in the fact that under any reasonable defini- 
tion of the probability of errors, the two probabilities are inversely related. If the 
probability of one type of error decreases, then the probability of error of the other 
type increases. To obtain a convenient tool for expressing the probabilities of errors 
associated with a test, we introduce the following definition, central for the whole 
theory of testing statistical hypotheses: 

251t is important to realize that the phrases “accept H” and “reject H” are to be interpreted as decisions 
regarding future behavior rather than regarding truth or falsehood of H .  Thus, to “accept H” means (in 
majority of practical situations) to proceed “as i f H  were true.” In fact it would be unrealistic to expect 
more: our decision is based on observation of a random sample; hence we are always exposed to a risk of 
a wrong decision, namely rejecting H when in reality H is true, or accepting H when in reality it is false. 
The best one can do is to control the probabilities of these errors. Instead of stating that “hypothesis Ho 
is accepted,” the verdict is often phrased in a more cautious way such as “there is not enough evidence to 
reject Ho.” 
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Definition 13.2.2 If C is the critical region of a test of the null hypothesis Ho: 
6' E 0 0 ,  the function nc(0) ,  defined on parameter space 8 as 

~ c ( 6 )  = pe{X E C), (13.3) 

0 

Thus, power is the probability of rejecting the null hypothesis if the value of the 
parameter is 6'. Qualitatively speaking, a good test should have high power when 
6' $ 0 0 ,  since for such 6' the null hypothesis is not true, and rejecting it is a correct 
decision. On the other hand, for 6' E 80 the power of a good test should be low, 
since for such 6' the null hypothesis is true, and rejecting it is a wrong decision. Let 
us now consider a few examples. 

is called the power (or powerfunction) of test C. 

4 EXAMPLE 13.6 

A supermarket buys oranges from a certain company, that claims that the frac- 
tion of unacceptable fruit (e.g., rotten) in each shipment does not exceed 3%. 
The supermarket is willing to accept such (but not higher) percentage of bad 
fruit. The procedure agreed upon specifies that a random sample of 30 oranges 
will be selected from each shipment (the method of sampling is typically also 
a part of the protocol). The shipment will be accepted if there is no more than 
one unacceptable fruit in this sample, and rejected (or bought at a discounted 
price, etc.) otherwise. 

First, assume that the results of sampling constitute independent Bernoulli 
trials with a probability of "success" (finding a rotten orange) equal to 0. 

The range of 6' is (at least theoretically) the whole interval 8 = [0,1]. 
The random sample X I ,  . . . , X 3 0  is drawn from the distribution f(z, 0) = 
P ( 1  - 6')1-2, z = 0 , l .  The supplier's claim is that 6' 5 0.03. Let us take 
this claim as the null hypothesis so that 80 = [0,0.03], while the alternative 
is 01 = (0.03,1]. 

The agreed procedure specifies that the supplier's claim (null hypothesis) 
is rejected if there are two or more bad oranges in the sample, that is, if 

i=l 

This means that the critical region is the set C = { 2,3,  . . . ,30).  The elements 
in C are values of S30 that lead to rejection of the supplier's claim that 6' E 80. 

The power function of this test is 

T C ( 0 )  = pB(S30 2 2) = 1 - pO(s30 = 0 )  - pB(s30 = 1) 
= 1 - (1 - q 3 0  - 3 o q i  - qZ9 = I - (1 - e)29(1 + 298). 

Function Tc(6') is strictly increasing (see Figure 13.1) from ~ c ( 0 )  = 0 to 
T-C (1) = 1, and its highest value on the set 80 (null hypothesis) is attained at 
6' = 0.03, and equals 

~ ~ ( 0 . 0 3 )  = maxT-c(0) = 0.227 
B E 8 0  
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Figure 13.1 Power functions nc(0)  and ncl (0) 

The supermarket manager would probably be content with such a procedure: 
if the alternative is true, that is, if the fraction 0 of unacceptable fruits exceeds 
0.03, then he has at least a 22.7% chance of detecting it. In fact this chance 
increases rather fast with 0. For instance, for 0 = 0.05, we have rc(0) = 
0.446, and for 0 = 0.1, we have already T c ( 6 )  = 0.816. 

On the other hand, the supplier will not be too happy. The chances of 
having a shipment rejected while the standard of 0 5 0.03 is actually met can 
be as high as 22.7% (if 0 is very close to 0.03). 

EXAMPLE 13.7 

Continuing Example 13.6, a possible solution to the problem of accepting 
orange shipments is to change the procedure and reject the shipment if three 
or more (rather than two or more) fruits are unacceptable. The critical region, 
C1, for rejecting the claim 0 5 0.03 is now (5’30 2 3}, so 

nc,(s) = 1 - (1 - q 3 0  - 308(i - 0)29 - 435e2(i - e)28 
= i - ( i - 0 ) 2 8 ( i + 2 8 e + 4 0 6 0 2 ) .  

Again, this is an increasing function, and (see Figure 13.1) 

xcl (0.03) = max rcl (0) = 0.060. 
R E Q o  

This time the supplier is happier, but the manager is not. He might feel that the 
chance of accepting a shipment with 0 = 0.1, equal to 1 - ncl (0.1) = 0.411, 
is too high. 

These two examples illustrate the fact that an attempt to decrease the probabili- 
ties of one type of error by changing the critical region leads to an increase of the 
probabilities of error of the other type. The only way to decrease both probabilities 
of error at the same time is to increase the sample size. 
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EXAMPLE 13.8 Randomization 

In the case of orange shipments discussed in Examples 13.6 and 13.7, one 
could also suggest the following procedure, which does not involve any in- 
crease of the sample size and yet leads to a procedure that may be acceptable 
to both the manager and the supplier. 

Since rejection of the shipment if S30 2 2 is too favorable for the manager, 
while rejection if S30 2 3 is too favorable for the supplier, one could suggest 
the following procedure: if 5’30 is 0, 1, or 2, the shipment is accepted by the 
store; if S30 is 4, 5, . . . , 30, the shipment is rejected by the store. However, if 
S30 = 3, a coin is tossed, and the shipment is accepted or rejected depending 
on the outcome of the toss. Actually, it is not necessary to use a fair coin. One 
can also activate some other random mechanism such that the probability of 
the shipment being rejected if S30 = 3 is some fixed number y. 

The power function r(0) = Ps(H0 is rejected} now equals 

where 0 < y < 1, and it lies between power functions of the two procedures 
considered in Examples 13.6 and 13.7. It is possible that the manager and the 
supplier can negotiate a value of y that is acceptable for both of them. 

The randomized procedure described in Example 13.8 is somewhat controver- 
sial. If testing statistical hypotheses is regarded as a process aimed at establishing 
the truth or falsehood of some statements about the experimental situation under 
analysis, then indeed, declaring the truth of one hypothesis on the basis of a flip 
of a coin may appear appalling and ridiculous. However, in testing statistical hy- 
potheses according to the original intention of Neyman and Pearson (who built the 
foundations of this theory), the rejection and acceptance of the hypothesis are not 
statements about truth and falsehood. They are intended to be the guidelines for 
future actions. As Neyman (1950, pp. 259-260) wrote: “The terms “accepting” 
and “rejecting” a statistical hypothesis are very convenient and are well established. 
It is important, however, to keep their exact meaning in mind and to discard vari- 
ous additional implications which may be suggested by intuition. Thus, to accept 
a hypothesis H means only to take an action A rather than B. This does not mean 
that we necessarily believe that the hypothesis H is true. Also, if the application of 
the rule of inductive behavior “rejects” H ,  this means only that the rule prescribes 
action B and does not mean that we believe that H is false.” 

In light of this interpretation, the randomization of a decision is justifiable. 

EXAMPLE 13.9 

Let us consider a random sample from the U[O, 61 distribution. We have here 
0 = (0,m). Suppose that we want to test the null hypothesis HO : 5 5 6 5 
6. The alternative hypothesis is H1 : 8 < 5 or 8 > 6. Thus 00 = [5 ,6]  and 
01 = (0,5) U (6, m). 

We consider two tests and determine their power. First, we know (see Ex- 
ample 12.58) that TI = Xn:n  is the sufficient statistic for 8, and we might 
try to base the testing procedure on it. Clearly, if T1 2 6, we should reject 
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the null hypothesis, since it simply cannot be true in this case. Similarly we 
should reject the null hypothesis if 2‘1 is too small, for example, TI < 4.6. 
Finally, we may argue that the values of TI slightly below 6 are also a good 
indication that Ho may be false, since we always have TI < 6. The actual 
thresholds will depend on n. For the critical region 

C = { (z l l .  . . z,) : TI < 4.6 or TI > 5.9), (13.4) 

the power of the test is 

nc(0 )  = Pg(T1 < 4.6) + Pg{Ti > 5.9), (13.5) 

Similarly 

Pg(T1 > 5.9) = 1 - Pg{T1 5 5 . 9 )  
0 if 0 5 5.9 

if e > 5.9. 
- - { 1 - 

Thus 

for 0 5 4.6 
for 4.6 < 6’ 5 5 . 9  
for 0 > 5.9. 

The graph of this power function for n = 15 is presented in Figure 13.2. 
Let us also consider a test based on statistic 7. We know that E ( X )  = 0/2. 

To have a comparison with the test (13.4), consider now a test with the critical 
region 

To determine the exact distribution of x, while possible in principle, is very 
cumbersome, so we will rely on the approximation provided by the central 
limit theorem, using the fact that Var(Xi) = 02/12. The distribution of x 
is therefore approximately normal N(0/2, e2/12n), and the power of the test 
(13.6) is 

C1 = ( ( z l1 . ,  .,zn) : Z < 2.30 or 5 > 2.95). (13.6) 

~ c , ( 0 )  = P{X < 2.30) + P { X  > 2.95) 

2.30 - 012 I z 2.95 - 8 / 2 1  
= e / G  01 G 

2.95 - 012 2.30 - 012 

= ’ - [@(  B / G ) - @ (  6 / m ) ] ’  

The graph of this function, for n = 15, is presented in Figure 13.2. 
As already mentioned, the expectation of a “good” test is that it should have the 

power as low as possible on the null hypothesis, and as high as possible on the 
alternative hypothesis. A glance at Figure 13.2 shows that the test C, based on the 
sufficient statistic, is much better than the test C1 based on the sample mean X. 
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I e 

Figure 13.2 Power functions of tests C and Ci 

As can be seen, for all 6 in the null hypothesis HO we have nc(6) < KC, ( 6 ) .  
Actually, 

sup rc(6’) = max(nc(5), r c (6 ) )  = max(0.2863,0.2414) = 0.2863. 
B E Q o  

On the other hand, 

sup ncl ( 6 )  = max(nc, (5),  7rc1 (6)) = max(0.4094,0.6033) = 0.6033. 
eceo 

For the alternative hypothesis, when we want the power to be as high as possible, 
we have 7rc(O) > ncl (O), except for two rather narrow ranges immediately to the 
left of 6’ = 5 and to the right of 6’ = 6. The test based on critical region C may be 
considered “better” than the test based on critical region C1. 

EXAMPLE 13.10 

Finally, consider one of the classical examples, a test hypotheses about the 
mean in a normal distributionwith known variance. We assume that X I ,  . . . , X ,  
is a random sample from the N(p, 1) distribution (assumption that 0 = 1 is 
not a restriction ofgenerality, as it simply amounts to choosing the appropriate 
unit for Xi’s). Suppose that we want to test the null hypothesis HO : p = po 
against the alternative H1 : p # po. In this case the null hypothesis is simple 
while the alternative is composite. 

The procedure will be based on the sample mean 5?. If this average deviates 
“too much” from PO, then the null hypothesis should be rejected. This means 
taking the critical region of the form 

c = ((51,. . , , s,) : Is1 - pol > k}, (13.7) 

where k is some constant. 
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Figure 13.3 Power of the two-sided test C 

Recalling that V a r ( x )  = 112, the power function of this test is 

XC( IL)  = ~ ~ { I ~ - ~ o l > ~ } = ~ - P ~ { I ~ - p o j I k }  
= 1 - Pfi{po - k 5 x 5 + k }  

If HO is true, then p = po and the power equals 

a quantity that depends on the chosen threshold k .  Also, for any fixed k > 0, 
we have r c ( p 0 )  -+ 0 as n -+ 00. On the other hand, for fixed k > 0 and n, 
we have rc(p) -+ 1 when p -+ f m .  

This means that for a fixed sample size n we can choose the critical region 
so that the probability of the type I error is equal to any preassigned level. The 
probability 1 - rc(p) of the type I1 error approaches 0 as p moves away from 
the null hypothesis (see Figure 13.3). How quickly it happens (i.e., how fast 
the power function approaches 1 as lp - PO I increases) depends on n. 

The main issues raised by the examples of this section may be summarized as 
follows: 

1. A test, being a procedure that Ultimately leads to a choice between two hypothe- 
ses, is equivalent to specifying a critical region C in the space of observations. 

2. The performance of the test C is described by the power function defined as 
r(0) = P{rejecting Ho if 0 is the true parameter value}. All criteria of 
choice of a test should ultimately be expressed in terms of the power function. 
Any such criterion should conform to the intuitive requirement that the power 
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of a test should be as high as possible for 6’ in the alternative hypothesis, and 
as low as possible for 6’ in the null hypothesis. 

3. The class of all possible tests (i.e., class of all possible critical regions C) is very 
rich, and any reduction of this class will facilitate the search for the best set 
(in whichever way the optimality is ultimately defined). 

PROBLEMS 

13.2.1 Let X 1 ,  X2 be a random sample from the U[O, 6’ + 11 distribution. In the test 
of No : 6’ = 0 against H1 : 6’ > 0, NO is rejected when X I  + X2 > Ic .  Find the 
power function of the test that has probability of the type I error equal 0.05 

13.2.2 Consider the following procedure for testing the hypothesis HO : p 2 0.5 
against the alternative H1 : p < 0.5 in BM(10, p )  distribution. We take observation 
X I ,  and reject HO if X1 = 0 or accept HO if X1 2 9; otherwise, we take another 
observation X2 (with the same distribution as X1 and independent of it). Then we 
accept or reject Ho depending on whether X1 +X2 1 5 or X1 +X2 < 5 .  Determine 
and graph the power function of this procedure. 

13.2.3 Consider three tests C1, C2 , and C3 of the same hypothesis, performed inde- 
pendently (e.g., for each of these tests the decision is based on a different sample). 
Consider now the following three procedures: 
A: Reject HO only if all three tests reject it; otherwise, accept Ho, 
B: Reject Ho only if at least two tests reject it; otherwise, accept Ho, 
C: Reject HO only if at least one test rejects it; otherwise, accept Ho. 
(i) Express the power functions of procedures A, B, and C through power functions 
of tests C1-6‘3. (ii) Assuming that power functions of tests C1-C3 are the same 
(~c,(6’) = T C , ( ~ ’ )  = rc3(6’) = n(O)), graph the power functions ofprocedures A, 
B, and C and determine where each the procedures A, B, and C performs better than 
the “component” test Ci. 

13.2.4 Let X I ,  X2 be a random sample of size 2 from the U[O, 6’1 distribution. We 
want to test HO : 6’ = 3 against H1 : 6’ = 2 (observe that Ho and H1 do not exhaust 
all possibilities). (i) HO will be rejected if x < c.  Find c such that the probability of 
a type I error of the test is a = 0.05 and determine its power function. (ii) Answer 
(i) if HO will be rejected when X2:2 < c. (iii) Compare the power functions of both 
tests. 

13.2.5 An urn contains five balls, T red and 5 - T white. The null hypothesis states 
that all balls are of the same color (i.e., Ho : T = 0 or T = 5) .  Suppose that we 
take a sample of size 2 and reject Ho if the balls are of different colors. Find the 
power of this test for T = 0, . . . , 5  if the sample is drawn: (i) Without replacement. 
(ii) With replacement. (iii) In each case find the probability of a type I error. (iv) 
Answer (i j ( i i i )  if the null hypothesis is now HO : T = 1 or T = 2, and it is rejected 
when all Ic balls selected are white. 

13.2.6 Let X I ,  . . . , Xg be a random sample from the N(p, 1) distribution. To test 
the hypothesis HO : p 5 0 against H1 : p > 0, one uses the test “reject HO if 
3 5 x 5 5.” Find the power function and show that this is a bad test. 
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13.3 MOST POWERFUL TESTS 

If in the parametric situation considered in this chapter both hypotheses, null and 
alternative, are simple, it means that we are testing HO : B = 60 against HI : B = 81 
where 60 and 61 are two parameter values. 

To simplify the notation, let us write f(z,  00) = fo(z) and f(z, 01)  = fl(z). 
The only assumption about fo and fi is that they represent different probability dis- 
tributions. In the discrete case, this means that P { X  = z ~ H o )  = fo(z) # fl(z) = 
P { X  = zlH1) for some z. In the continuous case, fo and fl are densities, and it is 
not enough that fo and f1 differ at some isolated point, or even on a countable set of 
points. Thus in the continuous case we assume that 

J, fo(z)dz # J, fl (zc)dz 

for some set A. 
We present the motivation for steps of the proof of the reduction principle theorem 

that will be introduced later. We consider the case of a single observation, but the 
extension to the case of n observations will be obvious. 

Suppose that we determined some critical region C. Thus the test is 

reject Ho if z E C. (13.8) 

Since both hypotheses are simple, we can determine the probabilities of errors of 
both types. Thus the probability of rejecting Ho if it is true (type I error) equals 

sc fo (z)dx 
(13.9) 

depending on whether we deal with a continuous or a discrete case. Similarly the 
probability of not rejecting HO if H1 is true (type I1 error) is 

{ E X E C  f o b ) ,  

i 1 - E X E C  fl (z). 

a = P { z  E CIHO} = 

1 - sc f 1 b ) d z  
( 1  3.10) p = P { z  CIH1) = 

Since to decrease p we must increase the integral in (13.10), the problem is to 
choose C so as to maximize sc fl(z)dz. It will be convenient to partition the set of 
values of z into four sets Ao, A l ,  A2, AS,  depending on which of the two densities 
is zero and which is positive (see Figure 13.4). 

Let us first consider the set 

A1 = {X : fo(z) = 0, fi(z) > 0). (13.11) 

If any part of this set lies outside C, then we can improve the test by including it into 
C, that is, take the test with critical region C' = C U A1 = C U (C" n A l ) .  

Indeed, for the test C* (in the continuous case) we have 
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t 

Figure 13.4 Partition into sets Ao, Ai ,  Az ,  A3 

since fo(x) = 0 on Cc n A l .  Thus test C' has the same probability of a type I error 
as test C. However (again for the continuous case), we have 

which means that the probability of a type I1 error has decreased. This argument 
shows that the set A1 should be totally contained in the critical region C. 

On the other hand. consider the set 

A2 = {X : f o ( ~ )  > 0, f i ( ~ )  = 0).  (1 3.12) 

A reasoning analogous to that carried for A1 shows that the entire set A2 should lie 
outside the critical region C. Next, the set 

plays no role in our reasoning. The way in which this set is partitioned between C 
and its complement has no effect on cx and P. 

Now let 
A3 = {x : fo(x) > 0 and f l ( z )  > 0). (13.13) 

The problem reduces to finding the best way of partitioning A3 between C and its 
complement, in order to improve C. 

To simplify the argument, consider the discrete case. Suppose that we have al- 
ready selected some set C as a candidate for a critical set, and that C 2 A1 and 
A2 c Cc. 

Let x* 6 C (with x' E A3), and consider the consequences of changing C by 
including z* in it. The probability of a type I error will change to 
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On the other hand, the probability of a type I1 error will change to 

1 - c fib) + f l ( Z * )  = P - f l ( Z * )  < P. LCC 1 
Thus a increased by fo(z*) while p decreased by f1 (z"). 

will decrease by fo(z**) while ,B will increase by fl(z**). 

in the following change: 

In a similar way, suppose that z** E C and that we remove it from C. Then cy 

Consequently, if z+ @ C and z** E C, switching the role of these points results 

a changes to cy + ( f ~ ( z * )  - fo(z++)), 

,B changes to P + (fl(z**) - fl(z*)). 

Since we want to minimize both a and P, such a change should always be carried 
out if fo(z*) - fo(z++) 5 0 and f1 (zL*) - fl(z*) 5 0, with at least one inequality 
being strict. 

f l(z*) and fo(z**) 2 fo(z*) > 0. So since one inequality is strict 
The inequalities above mean (remembering that z+ and z** are in As) that fl (z**) 5 

(13.14) 

We therefore obtained the following principle: 

Reduction Principle In choosing the critical regions, one should restrict the con- 
siderations to sets based on the likelihood ratio fl (z)/fo(s) of the form 

(13.15) 

0 

Indeed, if a critical set is not of the form (13.15), then there exist points z+ and z**, 
with z* @ C and z+* E C and such that (13.14) holds. Then a better critical region 
can be obtained by exchanging the roles of z* and z**. 

It should be noticed that we did not solve the problem of finding the best test. In 
fact we did not even specify the criterion to be optimized. The reduction principle 
above tells us only which tests should not be used-in other words-it specifies the 
class of tests from which the choice should be made, provided only that the optimal- 
ity criterion is compatible with the general motive to decrease borh probabilities of 
errors. 

Two obvious ways of defining the criterion to be optimized are as follows: 

1. Impose an upper bound on one of the probabilities of errors, and minimize the 
probability of the other kind of error. 

2. Minimize a linear combination of the two error probabilities. 

These two approaches are closely related, the first being used in the original Neyman- 
Pearson lemma dating back to 1933. In formulating the theorem below, we will con- 
sider a general situation of a random sample X = (XI, . . . , X,) from one of the 
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two distributions fo or fl. The null hypothesis asserts that the distribution is fo. For 
i = 0 , l  we will write fi(x) = fi(zl) x . . . x fi(z,). The critical regions under 
consideration are now subsets of the n-dimensional Euclidean space. 

Theorem 13.3.1 (Neyman-Pearson Lemma) Let C' be a critical region that has 
the followingproperties: There exists a constant k > 0 such that: 

(a) Zffl(x)/fO(x) > k ,  then x E C'. 

(b) Zffl(x)/fo(x) < k,  then x $Z C' withpoints at which fl(x)/fO(x) = k 

Let C be any critical region. Then a ( C )  5 cr(C*) implies p(C) 2 P(C*), and if 
a ( C )  < a(C*) ,  then p(C) > ,B(C*). 

Proo$ Without danger of confusion we can use the symbols Ao, Al ,  A2, and A3 
for the four sets in R", depending on which of the joint densities fo(x) and f1 (x) is 
zero and which is strictly positive. If we assume that C/O = co for any c > 0, then 
the critical region C* in the lemma is such that 

partitioned between C' and its complement in some way. 

A1 c C' ,  A2 C (C*)'. (1 3.16) 

Indeed, we have fl(x)/fo(x) = 00 > k on A1 and fl(x)/fo(x) = 0 < k on Az. 
The theorem follows from the argument for the one-dimensional case preceding 
this proof: if C does not meet conditions (13.16), then one or both of its error 
probabilities can be improved, as stated in the assertion of the Neyman-Pearson 
lemma. 

Next, the set A0 plays no role, and the question remains about points x in As. In 
the discrete case, the argument given for one-dimensional case remains valid: if C 
is not of the form specified in the lemma, then there exist X' C and x** E C such 
that (13.15) holds, and by switching these points we improve both error probabilities. 
It remains therefore to prove the theorem in the continuous case. Consider the sets 

C * n C C =  { x : -  fl(x) > k , x  $Z c} 
f o ( 4  

and 

We have here 
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The inequality between the extreme terms completes the proof: if a(C)  5 a(C*),  
then the left-hand side is nonnegative and so must be the right-hand side, which 
means that p(C) 2 p(C*). If the left-hand side is strictly positive, so must be the 
right-hand side. 0 

We will now formulate the analogue of the Neyman-Pearson lemma in the case 
where the criterion to be minimized is a linear combination of the two error prob- 
abilities. The proof, which follows closely the reasoning in the proof of Neyman- 
Pearson lemma, will be omitted. 

Theorem 13.3.2 Suppose that in testing HO : f = fo against H I  : f = fl, it is 
desired to$nd the critical region C' in n-dimensional space, such that for any other 
critical region C we have 

A a ( C * )  + B P ( C * )  I A a ( C )  + BP(C), 

where A > 0 ,  B > 0 are given constants. Then C* contains all points x such 
that f1 (x)/ f o ( x )  > A / B ,  and its complement contains all points x such that 
fi(x)/fo(x) < A/B.  The points where fl(x)/fo(x) = A / B  can be allocated 
between C' and its complement in an arbitrary way. 

Since in the case of simple hypotheses the power of the test with critical region 
C is 1 - p(C), the Neyman-Pearson lemma gives us in effect a rule of constructing 
the mostpowerful test, with the preassigned probability a ( C )  of type I error (as we 
will see, this probability is determined by the choice of a constant I c ) .  

We now introduce three important definitions. Let C be the critical region for 
testing the null hypothesis Ho : 19 E 80 against the alternative H I  : 0 E 81, and let 
rc(6') = Po{X E C} be the power of the test. 

Definition 13.3.1 The size of the test C is defined as 

Thus, the size of the test of a simple null hypothesis is the probability of a type I 
error, while for the composite null hypotheses the size is the least upper bound for 
all probabilities of type I errors. 

Definition 13.3.2 Any number a satisfying the inequality E ( C )  5 a is called the 
level of test C, and a test C satisfying E ( C )  5 a will be called an a-level test. 0 

According to this definition a test with Z(C) = 0.01 is a 1%-level test, as well as 

Finally, we define a significance level. This is not so much a property of a test as 
a 5%-level test, and so on. 

a constraint imposed by the statistician. 

Definition 13.3.3 If in testing the hypothesis Ho the statistician chooses a number 
QO (0 < a0 < 1) and decides to use only those tests C whose size satisfies the 
inequality C(C) 5 ao, then a0 is called the SigniJicance level chosen by the user. 0 

It is often felt that a report that a given hypothesis was rejected at the significance 
level a = 0.05 is not informative enough (e.g., the hypothesis might also be rejected 
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at the significance level Q = 0.01 or even lower). Thus it is customary to report 
the so calledp-value, defined as the lowest level at which the null hypothesis would 
be rejected by the test. More intuitively, the p-value of the results actually observed 
is the probability that if the experiment were repeated, we would obtain results that 
give at least as strong evidence for the alternative hypothesis (or equivalently, as 
strong evidence against the null hypothesis) as the present result. For instance, sup- 
pose that we use statistic T for testing, and we reject the null hypothesis if T is 
large. The result which we observe is T = t o ,  say. Then the p-value of this result is 
P{T 2 to /Ho} ,  so that the smaller is the p-value, the stronger is the evidence that 
suggests rejection of the null hypothesis. 26 

In the case of two-sided tests based on statistic T with a symmetric distribution, 
the p-value of the result t o  is defined as 2 P ( T  > Itol). Here the rationale is that the 
observations more “in favor” of the alternative hypothesis are those above It01 and 
below -1tol. In the case of tests based on a statistic that does not have a symmetric 
distribution, the ideas behind the concept of p-value become rather fuzzy, and there 
is no definition on which all statisticians agree. Consequently, one may find various 
“competing” definitions in different texts. For a review of these definitions, see 
Gibbons and Pratt (1975). 

We will now illustrate the procedure of test selection by some examples. In the 
four initial examples we will also illustrate another aspect: how an empirical hy- 
pothesis becomes “translated” into a statistical hypothesis. 

EXAMPLE 13.11 

Suppose that a scientist found the exact location where memory is stored in 
the rats’ brain and needs to confirm it by an experiment. Ten rats are trained to 
find food in a maze. In running through the maze, the rat makes three binary 
choices and as a result ends in one of eight final locations, of which only one 
contains food. After some surgical intervention in the part of the brain that- 
according to the researcher’s hypothesis-stores the acquired knowledge fol- 
lowed by a period of healing, the rats run the maze again, and the experimenter 
observes the number X of rats that reach the arm with food. Without any 
memory left, each rat has probability (1/2)3 = 0.125 of finding the way to 
the food on the first trial. Suppose that-according to the experimenter-if 
this probability is as high as 0.3, it means that part of the memory must be 
stored in another (undamaged) region of the brain. If the rats run through the 
maze independently, and each has the same probabilityp of choosing the path 
leading to food, then X has a binomial distribution BIN( 10, p ) .  We have now 
two hypotheses: one asserting that p = 0.125 (if the researcher is correct in 
identifying the memory storage region of the brain), and the other asserting 
that p = 0.3 (if the researcher is wrong). Suppose that from the researcher’s 
point of view the error of rejecting the hypothesis p = 0.125 (i.e., no memory 

26High p-values (close to 1) might indicate that the data were manipulated so as to make them “more 
conforming” to the null hypothesis. The rationale here is as follows: Suppose that the p-value of the data 
is 0.999. This means that the “fit” to HO is so perfect that only once in a 1000 times we would observe a 
better fit. The same principles which lie at the foundation of testing allow us to reach the conclusion that 
the data were fudged to fit Ho. 
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is left), if in fact it is true, is more serious than accepting p = 0.125 if in fact 
p = 0.3. 

In this case we set the null hypothesis as Ho : p = 0.125 and the alterna- 
tive is H1 : p = 0.3. Consequently fo(z) = (1,0)(0.125)"(0.875)10-" and 
f1 (z) = (',0)(0.3)"(0.7)'0--'. According to the Neyman-Pearson lemma, we 
should choose the critical region ofthe form {z : fl (z)/fo(z) 2 k }  for some 
k .  But 

= 0.107 3" 
f i ( ~ )  (0.3)"(0.7)10-" 
fo(z) - (0.125)"(0.875)'0-" 
-- 

The inequality {z  : f~(z)/fo(z) 1 k }  is equivalent to the inequality z 1 
k' for some k*.This means that the critical region C is formed of the right 
tail of the distribution of X. Since the possible values of X are 0, 1, . . . , 
10, we must simply determine the smallest value that belongs to C. Here 
the choice depends on the significance level 00 of the test. Suppose that the 
experimenter decides to use a0 = 0.05. Then k' must be such that P{X 2 
k*lp  = 0.125) 5 0.05; that is, P{X < k * J p  = 0.125) 2 0.95. We have here 
P { X  < 4 /p  = 0.125) = 0.973 while P{X < 3 / p  = 0.125) = 0.881. It 
follows that we must reject the null hypothesis HO : p = 0.125 if X 2 4; that 
is, if four or more rats find their way to the food on the first try. This test has 
the probability of a type I error equal to 1 - 0.973 = 0.027 and the probability 
of a type I1 error equal P { X  < 4 / p  = 0.3) = 0.649. 

Some comments about this example appear to be in order. First, we see that the 
type I1 error has rather high probability, whereas the probability of the type I error is 
below the level of significance. A test with a critical region C = {3,4, . . . , 10) will 
have a ( C )  = 0.119, while p(C) = 0.382. It is clear that among tests satisfying the 
assertion of the Neyman-Pearson lemma, none has the probability of a type I error 
equal to the desired significance level 0.05. This is due to the discrete nature of the 
test statistic X .  

A procedure with the probability of a type I error a0 = 0.05 exists if we allow 
randomized procedures. That is, suppose that we decide to reject Ho if X 1 4, 
accept it if X 5 2, and activate some auxiliary random mechanism and reject HO 
with probability y if X = 3. Then the probability of rejecting HO if it is true is 

y P { X  = 31p = 0.125) + P { X  2 41p = 0.125) = 0.092y+ 0.027, 

which equals 0.05 if y = 0.25. 
A procedure that attains a significance level a0 = 0.05 is therefore as follows: 

If four or more rats reach food on their first trial, then reject Ho. If three rats reach 
food on the first trial, then toss two coins and reject Ho if both show up heads. In all 
other cases accept Ho. 

As was already pointed out, such a randomized procedure may be suggested and 
agreed upon in the process of acceptance or rejection of merchandise. However, in 
the case of a decision regarding scientific hypotheses, it would be disturbing to rely 
on the toss of a coin. 

A way out from the dilemma is to abandon the concept of a significance level as 
a quantity imposed by the experimenter. One can then proceed to minimize a linear 
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combination of errors of type I and type I1 as in the Theorem 13.3.2. A procedure 
that attains it never requires randomization. 

H EXAMPLE 13.12 

Continuing Example 13.1 1, if we want to find a critical region C so as to 
minimize the linear combination 10a(C)  + p(C), we must include in the 
critical region all z such that J1(z)/fo(z) > 10, which means that 

(0.3)” (0.7) lo-” 

(0.125)“ (0.875) lo-” 
> 10 

or 3” > 93.46; hence z > 4.13. Then, ifthe type I error is considered 10 times 
as serious as the type I1 error, the null hypothesis should be rejected only if 5 
or more rats find their way to the food on the first attempt. 

4 EXAMPLE 13.13 

Suppose that we have a well with drinking water that is thought to be con- 
taminated with bacteria. A fixed volume V of water from the well is sent to 
the laboratory for testing. Assume that the admissible norm is N bacteria of 
a certain kind in volume V ,  with 5 N  bacteria in volume V indicating an un- 
desirable level of contamination. Here N > 0, so that some positive level of 
contamination is acceptable as safe. 

The procedure in the laboratory is as follows: The water sent for analysis 
is thoroughly mixed, and then a sample of volume v is drawn from it, where 
v << V .  A technician inspects the sample under the microscope and reports 
the number X of bacteria that she sees. It is assumed that each of the bacteria 
present in the observed sample is recorded by the technician with probability 
T (assumed known), independently of the other bacteria. 

This process is repeated ‘n times, generating reports XI, X2,  . . . , X, of 
the numbers of bacteria observed in different samples. We assume that the 
probability 1 - T of overlooking a bacteria is the same for all technicians. 

It is desired to test the null hypothesis that the water in the well is safe 
against the alternative that it contains an undesirable level of bacteria. To 
solve this problem, it is first necessary to determine the distributionsofthe ob- 
servable random variables and translate the empirical hypotheses stated above 
into statistical hypotheses. 

Let XO = N/V  be the density of bacteria in the well allowed by the safety 
standards so that the null hypothesis is Ho : X = XO, where X is the ac- 
tual density of bacteria per unit volume of water in the well. The alternative 
hypothesis is HI : X = 5N/V = 5x0 = XI. 

We assume now that when a sample of volume v is taken, each of the bacte- 
ria has the probability v/V of being included in the sample, independently of 
other bacteria. The assumption that w << V makes the probability u/V small, 
and from Example 7.14 (about “thinning” of Poisson processes) it follows that 
in each sample of volume v the actual number of bacteria will have Poisson 
distribution with mean Mw/V,  where M is the actual number of bacteria in 
volume V .  Thus, under the null hypothesis Ho, in each sample of volume v the 
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number of bacteria will have Poisson distribution with mean N v / V  = XOV, 
whereas under the alternative, the mean will be Xlv  = 5 x 0 ~ .  

We assume also that the total volume of water inspected by technicians, 
'lil + 02 + ' .  . + v,, is still small as compared with V so that the Poisson 
approximation applies to the total number of bacteria in all samples. Finally, 
the counts XI, . . . , X, (see Example 7.14) have a Poisson distribution with 
mean XOT under hypothesis HO and mean X ~ T  under the alternative hypothesis 
Hi. 

Letting X = ( X I ,  . . . , X,), we know that the test (whether most powerful, 
in the sense of the Neyman-Pearson lemma or minimizing the linear com- 
bination of error probabilities) is based on the likelihood ratio f1 (x)/fo(x), 
with values larger than a threshold leading to rejection of the null hypothesis. 
Denoting S, = X1 + . . + X ,  for a = 0,1, we have 

Consequently, remembering that XI = 5x0, we obtain 

so that the null hypothesis HO should be rejected if the total count S, reported 
by all technicians exceeds some threshold k. 

The actual value of k depends on the numerical values of the parameters. 
For instance, suppose that we take n = 50 samples to be inspected by techni- 
cians, and that probability T of recording bacteria by each of them is T = 0.1 
(i.e., each technician records about one bacterium out of each 10 present). Fur- 
thermore, assume that the number of bacteria allowed is 10,000 per liter (lo3 
cm3), with the volume v taken for inspection being 1/20 ofa  cubic centimeter. 
This gives XO = 104/103 = 10 with w = 0.05 cm3, so 

T X O U  = 0.1 x 10 x 0.05 = 0.05. 

Under the null hypothesis Ho, the total count X1 + . . . + X50 in all samples 
has a Poisson distribution with mean 0.05 x 50 = 2.5. Under the alternative, 
this count is still Poisson, but with mean 12.5. 

If we want to test the null hypothesis at significance level (Y = 0.05, then k 
is determined by 

P { s 5 0  2 klX = 2.5) 5 0.05, 

where S, has a Poisson distribution with mean 2.5. We have P{ S, 5 5) = 
0.9580, which means that P{S,  2 6) = 0.042. We may take k = 6, so 
the probability of type I1 error of this test is = P(S50 < 61X = 12.5) = 
0.015. Thus the chances of raising a false alarm (in this case the type I error) 
are about 4%, whereas the chances of failing to notice a dangerous level of 
contamination are only about 1.5%. 
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EXAMPLE 13.14 

Continuing Example 13.13, suppose that the laboratory is under a financial 
squeeze and decides to save on the cost of observations. The technicians are 
instructed to inspect each sample of size and report only whether the bacteria 
were found. The saving here is that technicians stop searching the sample as 
soon as one bacterium is found (instead of continuingthe search and counting). 
In a sample Y1 , . . . , Y,, y3 = 1 or 0 depending on whether bacteria are found 
in the j th  sample. We have, for i = 0, 1, 

P{Y,  = I~H,)  = 1 - = O I H , )  = 1 - e - X ~ n v .  (13.17) 

Consequently, the total number of samples where bacteria were found, S = 
Yl + . . + Y,, has a binomial distribution, with the number of trials n and 
probability of success given by (13.17), depending on whether HO or H1 is 
true. Recall that A1 = 5x0, so the likelihoodratio is now 

Since the fraction in brackets exceeds 1, the likelihoodincreases with s. Again, 
the critical region is the set S 2 k, where k has to be determined from the 
fact that under the null hypothesis S has a binomial distribution, BIN( n, 1 - 
e-nXav ). In particular, the laboratory may now ask the question: How large 
should n be to ensure that the same significance level and the same power as 
in the more expensive procedure with technicians counting the bacteria, We 
have now e-rrXOv = 1 - e-O.O5 = 0.0488 and e-xXlv = 1 - e-o.2 = 0.1813. 
We look for n and k such that P ( S  1 k )  5 0.05, where S - BIN(n, 0.0488), 
and P(S' 5 k) 5 0.015, where S' - BIN(n, 0.1813). Based on the central 
limit theorem (Theorem 10.6.2), k has to satisfy 

= 0.05, 
k - 0.048871 

(0.0488)(0.9512)n 

= 0.015, 
k - 0 . 1 8 1 3 ~ ~  

(0.18 13) (0.8 187)n 
and consequently 

k = 0.0488nf (1.645)(0.2154)fi { k = 0.1813~1- (2.17)(0.3852)&. 

The solution, rounded to integers, is n = 81, k = 7. The simplified ob- 
servation procedure (recording only whether or not the bacteria are present) 
necessitates the increase of the number of samples from 50 to 81. 

It is clear that in the case of continuous random variables we can always find 
a test (critical region C) such that a(C)  equals the desired significance level ao. 
Below we present examples concerning distributions other than normal, leaving the 
detailed presentation of various tests for the normal case to a separate section. 
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EXAMPLE 13.15 

Suppose that the observations XI , .  . . , X, form a random sample from the 
EXP(X) distribution. We want to test hypothesis Ho : X = 5 against a simple 
alternative H1 : X = 8 at the significance level (YO. The likelihood ratio is 

and the inequality f l  (x)/fo (x) > k is equivalent to C xi < k' for some k*. 
Here k' = -(1/2)[nlog(5/8) + logk], but the exact relation between k 

and k' is not needed to determine the test. What matters most is the direction 
of the inequality. The way we set the solution is that we reject Ho if the 
likelihood ratio f l  /fo (with alternative density on the top) is large. Typically 
this condition reduces to an inequality for some statistic (such as 21 +. . . +z,, 
or equivalently, F). In the present case the rejection region is the left tail (i.e., 
values of 21 + ' . + 2 ,  less than a certain threshold). 

To continue, we need a value k' such that 

P{X1+. . . + X, < k'IHo} = QO. 

Each Xi has exponential distribution with parameter XO, hence with the mean 
l / X o .  Consequently, 2XoXi has an exponential distribution with mean 2, that 
is, a chi-square distribution with 2 degrees of freedom (see Theorem 9.4.3). 
Therefore 2Xo(X1 + . . . + X,) has a chi-square distribution with 2n degrees 
of freedom. 

In the case under consideration, we have XO = 5; hence the critical thresh- 
old k' can be obtained from the tables of chi-square distribution with 2n de- 
grees of freedom: 

P { x l + ' ~ ~ + X , < k * ~ H o }  = P { l O ( X 1 t . . . + X , ) <  1Ok'lHO) 
= P{Xi,  < 10k') = Qo. 

Taking, as an example, n = 10 and a0 = 0.1, we obtain 10k' = x$.9,zo = 
12.44 (from Table A4.), which gives k' = 1.244. 

The probability of a type I1 error is, 

P{X1+. . .+X,>1 .244181)  = P { 1 6 ( X 1 + . . . f X n ) > 1 6 x  1.2241H1) 
= P{xi0  > 19.904) = 0.4637, 

as obtained from statistical software. This probability seems rather high as 
a probability of error. One reason is that the difference between X = 5 and 
X = 8 is equivalent to a small difference between means (1/5 and 1/8, re- 
spectively). Another reason is that the small sample size (n = 10) affects the 
quality of the inference. 

Thus far we have considered testing the simple null hypothesis against a simple 
alternative in a parametric setup, where the distribution belongs to the same family 
f (z ;  e) ,  and the hypotheses are obtained by specifying Ho : 0 = 00 and HI : 0 = 
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61. It is important to realize that the Neyman-Pearson lemma applies to any two 
simple hypotheses. For instance, suppose that we have a single observation X, that 
comes from the U[O, 13 distribution if HO is true or from the EXP(3) distribution if 
H1 is true. The densities are 

The likelihood ratio equals 

- = {  f l (x)  3e-3z 
f o b )  00 i f x  > 1, 

i f0  5 x 5 1 

and it is undefined for z < 0. Each critical region should contain the set { 17: : z > l}, 
and also a set of the form 3e-3x > k ,  hence a set of the form {z : 0 5 z 5 k '}  for 
some k' < 1. To determine k', we must have 

k' 

fo(z)dz + /im fo(z)dz = 1 fo(z)da: = k ' .  

It follows that if we choose the significance level (YO = 0.05 (say), then k' = 0.05, 
and we reject Ho if the observation is either below 0.05 or above 1. The power of 
this test is 

3e-3xdx = 1 - e-3 + e-0.15 = 0.1891. 

PROBLEMS 

13.3.1 Let XI , . . . , X l o  be a random sample from a POI(@ distribution. (i) Find the 
best critical region for testing Ho : 6 = 0.2 against H1 : 6 = 0.8 at the significance 
level Q = 0.05. (ii) Determine the size of the test in (i). 

13.3.2 A single observation X is taken from a BETA(a, b) distribution. Find the 
most powerful test ofthe null hypothesis Ho: a = b = 1, against the alternative H I :  
(i) a = b = 5. (ii) a = 2, b = 3 (iii) a = b = 1/2. Use significance level Q = 0.05. 

13.3.3 Let X have a negative binomial distribution with parameters r and p .  Find 
the most powerful test of HO : r = 2, p = 1/2 against H I  : T = 4 ,p  = 1/2 at 
significance level Q = 0.05. Find probability of type I1 error. Use randomized test 
if necessary. 

13.3.4 Assume that X has a N(2, a2) distribution. Find the best critical region for 
testing Ho : o2 = 2 against: (i) : o2 = 4. (ii) H I  : a2 = 1. 

13.3.5 Let X I ,  . . . , X ,  be a random sample from EXP(X) distribution. Null hypoth- 
esis Ho : X = XO is tested against the alternative H1 : X = XI, where A1 > XO. 
Compare the power functions of the two tests: (a) the most powerful test, and (b) 
the most powerful test based on the statistic  XI:^. Assume that both tests have equal 
probabilities of a type I error. 
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13.3.6 The sample space of a test statistic X has five values: a, b, c, d,  e. Test the 
HO : f = fo against Ha : f = fl, where distributions fo and f1 are given by the 
table 

X a b C d e 

fo 0.2 0.2 0.0 0.1 0.5 
f i  0.2 0.4 0.3 0.0 0.1 

13.3.7 An urn contains six balls, T red and 6 - T blue. Two balls are chosen without 
replacement. Find the most powerful test of Ho : T = 3 against the alternative 
H1 : T = 5 ,  with a size as close to Q = 0.05 as possible. Find the probability of a 
type I1 error for all T # 3. 

13.3.8 A multiple-choice exam gives five answers to each of its n questions, only 
one being correct. Assume that a student who does not know the answer chooses 
randomly and is correct with probability 0.2. Let 8 be the number of questions to 
which the student knows the answers, and let X be the number of correct responses 
given by this student. (i) Determine f ( ~ ;  0) = P ( X  = zle). (ii) For n = 50, find 
the most powerful test of HO : 0 = 30 against H1 : 0 = 40 at the significance level 
a = 0.05. (iii) Determine the probability of a type I1 error if 0 = 40. 

13.3.9 Let X1 , . . . , X, have a joint density f(x; O), and let U be a sufficient statistic 
for 0. Show that the most powerful test of HO : 0 = Oo against H1 : 6 = O1 can be 
expressed in terms of U .  

13.4 UNIFORMLY MOST POWERFUL TESTS 

From the derivation of the most powerful tests in Examples 13.13 and 13.15, no- 
tice that the final form of the test is, to a large extent, independent of the choice 
of a specific alternative hypothesis. For instance, in Example 13.13 observations 
XI, . . . , X, come from one of the two Poisson distributions. Omitting the details 
on size 21 of the water samples and the probability x of recording the presence of 
bacteria, we could test a simple hypothesis HO : E ( X i )  = 80 against a simple alter- 
native H I  : E ( X i )  = 81, where €$ > 00. The likelihoodratio, after canceling the 
factorials, turns out to be 

If 01 > 00,  then the likelihood ratio is an increasing function of C Xi; hence the 
rejection region must be of the form 

c= {(XI,. ..,Xn) : CXi 2 k } .  (1 3.18) 

Determination of value k involves only the value of 00 and a level of significance 
ao; the value 81 plays no role, provided that 01 > 00. We know that under the null 
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hypothesis S, = EL, Xi has a Poisson distribution with mean n&; hence 

where a0 is the desired significance level. 
This means that a test with the critical region given by (1 3.18) and (1 3.19) is 

the most powerful for any alternative hypothesis if only the reasoning leading to 
(13.18) applies. But the only fact about 81 used in the derivation is that 81 > 80.  

This inequality causes the ratio 81 / B o  to exceed 1, and hence the likelihood ratio to 
increase with the sum C zi (for 81 < 80 the likelihood ratio would decrease with an 
increase of C zi and the critical region would comprise the left tail, i.e., we would 
reject HO if C zi 5 k ) .  

In the continuous case, we can restrict the considerations to tests based on crit- 
ical regions. In the discrete case, one can also consider randomized procedures, 
that is, procedures in which the rejection or acceptance of HO depends both on the 
observation of X and also possibly on additional randomization. 

Consequently, in the definitions below we consider procedures for testing Ho; 
without much danger of confusion we will use letter C for a procedure, and define 
its power function as 

.rrC(O) = Pe{procedure Crejects H o } .  

We will fix the significance level 00 (0 < a0 < 1) and let K(H0,  ao) be the class 
of all procedures for testing HO whose size is at most ao, that is, procedures C such 
that 

SUP rc(q 5 ao. (1 3.20) 
B E 8 0  

Definition 13.4.1 Aprocedure C' E K(H0,  DO), such that 

.rrc*(Q) 2 rc(0) 

for every 8 E 01 and for any C E K(H0,  ao), will be called a uniformly most 
powerful (UMP) procedure for testing Ho against H1 at the significance level ~ 1 0 .  

In the case where C' is nonrandomized (i.e., C' is the critical region of a test) 
0 

The essence of this definition lies in the fact that the same test (procedure) is most 
powerful against all simple hypotheses in HI. The Neyman-Pearson lemma (or its 
extension to composite null hypothesis) asserts that the most powerful test exists 
against any simple alternative, but it sometimes happens that these most powerful 
tests are different for different simple alternatives. 

we will speak of a UMP test of Ho against H I  at the significance level ao. 

EXAMPLE 13.16 

Consider the situation of testing the simple null hypothesis HO : p = 0 against 
the composite alternative H1 : p > 0 in case of a normal distributionN(p, 02) 
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with known u2. Let us fix p1 > 0 and consider the likelihood ratio test of Ho 
against H i  : p = p1. We have 

Since p1 > 0, this likelihood ratio is an increasing function of zi (hence 
also of T),  and the critical region of the most powerful test against p > 0 is of 
the form {x = (zl,.. . ,z,) : E 2 k } .  

For any given significance level (YO we determine k from the condition 

so that k = z a o u / f i ,  where zoo is the upper ao-quantile of the standard 
normal distribution. 

The only assumption about p1 that is used here is p1 > 0; consequently, 
the test with the critical region C,  

reject HO i f x  2 (13.21) 

is UMP for the alternative H1 : p > 0 .  

EXAMPLE 13.17 

Continuing Example 13.16, observe that the test (13.21) is also UMP for the 
composite null hypothesis Ho : p 5 0 against the composite alternative H1 : 
p > 0. Indeed, the power of this test is 

Consequently, for p < 0 ,  7rc(p) 5 P { Z  2 zuo}  = NO = 7rc(O); hence the 
size of the test C is (YO. 

EXAMPLE 13.18 

Example 13.17 shows that there exists no UMP test for the hypothesis HO : 
p = 0 against the alternative H I  : p # 0. Indeed, (13.21) is the most powerful 
test against any alternative p > 0, but it performs very poorly against the 
alternative p < 0: its power on such alternatives is less than ao. On the other 
hand, by symmetry, the test with critical region C’, 

(13.22) 
0 

reject Ho if F I: -zao- 
6, 

is most powerful against any alternative p < 0, but performs poorly,against 
alternatives p > 0. The “compromise” test, with the critical region C 

reject ~o if 1x1 2 z a 0 / 2 3 1  0 (13.23) 
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performs quite well for all alternatives p # 0 but its power is below the power 
oftest (13.21) for p > 0, and below the power oftest (13.22) for p < 0. So it 
is not a UMP test. 

We know from the examples above that UMP tests may not exist. On the other 
hand, if they do exist, they provide the best available procedures (if one takes into 
account only the error probabilities, and not extraneous aspects, such as computation 
costs, etc). It is therefore natural to ask for conditions under which UMP tests exist. 
The answer is given by the next theorem, which we will precede by some necessary 
definitions. 

Definition 13.4.2 We say that the family {f(z; 8) ,  8 E 8) of distributions has a 
monotone likelihood ratio in statistic T if for any two values 8' 8" E 8 with 6' < 
8" ,  and x = (z1 . . . zn), the likelihood ratio 

fn (x ;  e " ) / f n ( x ;  8 ' )  

of T ( x ) .  17 
depends on x only through the values T ( x ) ,  and this ratio is an increasing function 

We will now illustrate the introduced concept by some examples. 

1 EXAMPLE 13.19 

Consider the normal density depending on parameter p,  with a2 known, so 
that 

Let p' < p", and for typographical reason, let = p1 p" = p2 . Then 

where D > 0. Consequently, the normal distribution for a fixed g2 has a 
monotone likelihood ratio in T = C Xi, or equivalently, in x. 

1 EXAMPLE 13.20 

Consider again the normal distribution, this time for known p and unknown 
0'. Let uf < 0:. Then 
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Since D > 0 and l/o: - 1/oi > 0, we see that now the likelihood ratio is 
increasing in statistic T = C(xi - P ) ~ .  

EXAMPLE 13.21 Bernoulli Trials 

Let XI,. . . , X ,  be a random sample from Bernoylli d@ibution f (x ;  p )  = 
pz( l  - P ) I - ~ ,  z = 0,1, and 0 < p < 1. For 0 < p < p < 1 we have 

Since p”(1  - p’)/p’(l - i ’) > 1, the Bernoulli distribution has monotone 
likelihood ratio in statistic C Xi  (total number of successes in n trials). 

It turns out that most of the known families of distributions have monotone like- 
lihood ratio in some statistics. The role of families with monotone likelihood ratio 
for UMP tests is explained by the following theorem: 

Theorem 13.4.1 Let {f(z;  0) ,  8 E 8) be a family of distributions with a monotone 
likelihood ratio in statistics T .  Then for every ao, 0 < a0 < 1, there exists a test 
(possibly randomized) that is UMP for testing Ho : 0 5 00 against H I  : 9 > 00 at 
significance level 00. This test satisjes the following two conditions: 
(a) There exists k such thar i f T ( x )  > k ,  then HO is rejected and i f T ( x )  < k ,  then 
HO is accepted. 
(b) P,, { HO is rejected } = cro. 
Similarly, for testing HO : 0 2 00 against H I  : 0 < 00,  there exists k l  such that Ho 
should be rejected f T ( X )  < kl  andaccepted i f T ( X )  > k l .  

PmoJ Observe first that condition (b) may require randomization. Indeed, in 
view of (a) and (b), letting y = P{Ho is rejected I T ( X )  = k}, we must have 

QO = Peo{T(X) > k }  + y P e o { T ( X )  = k } .  (13.24) 

It follows that if Pe,{T(X)  = k }  = 0, then we have 

00 = Po,{T(X) > k }  = Pe,{T(X)  2 k } ,  

and the test is nonrandomized, with critical region C = {x : T ( x )  2 k } .  If 
Pe,{T(X)  > k }  < 010 5 Pe , {T(X)  2 k } ,  then by (13.24), 

Clearly, we have 0 < y < 1, and an auxiliary randomization with probability of 
success equal to y gives a procedure with size ~ 0 .  

Let C’ denote the procedure described by the theorem, and its power be re. (0) = 
Pe{ C* leads to rejecting Ho}. By condition (b), TC. (00) = 00. 

Without loss of generality, let 81 > 80. By the Neyman-Pearson lemma, the 
most powerful procedure for testing the simple hypothesis H,’ : 0 = 00 against a 
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simple alternative H ;  : 6 = 61 is based on the likelihood ratio, and rejects HO if 
fn(x; Ol)/f,(x; 60)  > k’ for some k’. But by the monotonicity of the likelihood 
ratio, the last condition means that T ( X )  > k for some k .  Since the last condition 
does not depend on the choice of 61, the procedure C* described in the theorem is 
UMP for testing the simple hypothesis H,* : 6 = 60 against the composite altema- 
tive HI : 6 > B 0 ,  

We will also show that the power function of procedure C’ is nondecreasing; For 
any 6’ < 6” (regardless of their location with respect to &), we have xc. (6 ) 5 
xc. (6”). This fact will be crucial for completing the proof. 

Indeed, consider the class K of all procedyres of testing the simple hypothesis 
HA : 0 = 6’ against the simple alternative HI : 6 = 6” at a level of significance 
a, say. We know from the Neyman-Person lemma that C’ is the most powerful 
procedure in class K, that is, for any C E K ,  

nc.(e”) 2 nc(e”). (13.25) 

On the other hand, the (randomized) procedure CO: “reject H,* : 6 = 6’ with prob- 
ability cr regardless of observation” satisfies the condition xco(6) = cr for all 6. 
Clearly, CO E K. So, using (13.25), we write 

T ~ . ( O ” )  2 ~ ~ ~ ( 6 ” )  = Q = xc.(e’), 

which shows monotonicity of TC. (6). 
To complete the proof we have to show that the procedure C* is U M P  not only 

in the class B of all procedures C that satisfy the condition x c ( 6 0 )  I a0 but also in 
the class 13’ of all procedures C such that 

Clearly, B’ c B, and the monotonicity of the power function xc. (0) shows that 
C’ is an element of the smaller class B’:  Indeed, for 6 5 60, 

- nc(6o) I QO. 

W. (6) I xc. (0,) I a0. 

This completes the proof, since we already know that for every 61 > 60,  the proce- 
dure C’ maximizes the power in the larger class f?, and hence also maximizes the 

0 power in the smaller class f?’. 

PROBLEMS 

13.4.1 Check whether the following families of distributions have a monotone like- 
lihood ratio in the parameter specified: (i) Poisson. (ii) Exponential. (iii) Gamma, 
for each parameter separately. (iv) Beta, for each parameter separately. 

13.4.2 Let X I ,  . . . , X ,  be a random sample from Laplace distribution with density 
f(z;  A) = (X/2) exp{-X/z(}. Find a UMP test for testing Ho : X = 1 against 
H1 : X < 1 at the significance level 0.01. 

13.4.3 Let XI, . . . , X ,  be a random sample from a folded normal distribution with 
density f(s; 6) = m 6 e x p {  -O2s2/2), for 2 > 0,6 > 0. (i) Derive the UMP 
test for Ho : 6 = 60 against H I  : 6’ > 60.  (ii) Show that the power function is 
increasing. 
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13.4.4 Suppose that the number of defects in magnetic tape of length t (yards) has 
POI(Xt) distribution. (i) Assume that 2 defects were found in a piece of tape of 
length 500 yards. Test the hypothesis HO : X 2 0.02 against the alternative H1 : 
X < 0.02. Use a UMP test at the level Q 5 0.01. (ii) Find the p-value. (iii) Find the 
power of the test at X = 0.015. 

13.4.5 The effectiveness of a standard drug in treating specific illness is 60%. A 
new drug was tested and found to be effective in 48 out of 70 cases when it was 
used. Specify an appropriate alternative hypothesis and perform the test at the 0.01 
level of significance. Find the p-value. 

13.4.6 Suppose that XI, . . . , X, is a random sample from the U[O, 81 distribution. 
(i) Hypothesis HO : 8 5 80 is to be tested against the alternative H I  : 8 > 80. 
Argue that the UMP test rejects HO if X,:, > c. Find c for 80 = 5 ;  n = 10, and 
Q = 0.05. (ii) If the hypothesis HO : 6 2 00 is tested against H I  : 8 < 00, show 
that the UMP test rejects HO if X,:, < c. Find c if 80 = 5 ,  n = 10, and Q = 0.05. 

13.4.7 Let X I ,  . . . , X, be a random sample from the GAM(a, A) distribution. (i) 
Derive a UMP test for the hypothesis HO : a 5 QO against the alternative HI : Q > 
QO if X is known. (ii) Derive a UMP test for the hypothesis HO : X 5 XO against the 
alternative H1 : X > XO if a is known. 

13.4.8 Recall Problem 13.3.8. Assume that R = 50 and that a student with a score 
at most 30 will fail. Does there exist a UMP test for the hypothesis HO : 0 5 30? If 
yes, find the test; if no, justify your answer. 

13.4.9 Let XI, . . . , X, be a random sample from the distribution f(2; 8) = C[8/(8+ 
1)Iz, where z = 1 , 2 , .  . . and C is the normalizing constant. Determine a UMP test 
of the hypothesis HO : 8 = 00 against the alternative H1 : 8 > 00. 

13.4.10 A reaction time to a certain stimulus (e.g., time until solving some problem) 
is modeled as a time of completion of T processes, running one after another in a 
specified order. The times TI ,  . . . , 7,. of completion of these processes are assumed 
to be iid exponential with mean 1 / X .  If T = 3 and the observed reaction times (in 
seconds) are 15.3, 6.1, 8.5, and 9.0, test the hypothesis HO : X 2 0.8 against the 
alternative H1 : X < 0.8. Use Q = 0.05. 

13.5 UNBIASED TESTS 

As we already know, there are situations where the UMP tests do not exist. One 
example may be a test of hypothesis HO : 8 = 80 against a two-sided alternative 
H I  : 8 # 80 (i.e., where 80 is not on the boundary of the parameter space 0). 
Since UMP tests are highly desirable, the theoretical efforts became directed toward 
a reduction of the class of tests. Such reduced class might already contain a UMP 
test. 

We present an approach that requires unbiasedness. Consider the problem of 
testing the null hypothesis HO : 8 E 00 against the alternative H1 : 8 E 01. Let 
C be a testing procedure with a power function ~ c ( 8 ) .  Here the parameter space 
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0 may be multidimensional, and one or both of the hypotheses HO or H1 may be 
composite. 

Definition 13.5.1 The test C of Ho against H I  is called unbiusedif 

(13.26) 

Since the left-hand side of (13.26) is the size of the test C, we say that C is unbiased 
if its power on the alternative hypothesis is never below its size. In particular, if 
the null hypothesis is simple, then the power function of an unbiased test reaches its 
minimum at 00. 

It turns out that in some cases where there is no UMP test in the class of all tests, 
there is a UMP unbiased test. 

EXAMPLE 13.22 

Consider the case of testing the simple hypothesis HO : p = po against 
the alternative H I  : p # po, where observations X I ,  . . . , X ,  are a random 
sample from the N(p, n2)  distribution with known u2. 

Intuition suggests that we take T ( X )  = x - po as the test statistic, and 
reject HO if either T ( X )  < -k’ or T ( X )  > k” for some suitably, chosen 
positive numbers k’ and k”. To have size equal (YO, we must choose k and k 
so that 

1 - cuo = P,,,{-k’ < T ( X )  < k ” }  = Ppa{-k’  < X -  po < k”}  

that is, 

CP ( k “ $ )  - CP ( - k ’ $ )  = 1 - (YO, (13.27) 

where @ is the cdf of standard normal random variable. 

region C = {x < po - k } u {x > po + k”},we have 
Let us investigate the power function of the test above. For the critical 

~ c ( p )  = 1 - P,{-k‘ < - /LO < +k”} 

k” + po - p -k’ +PO - 

Clearly, r c ( p )  is a continuous differentiable function of p, and C is unbiased 

if &.nc(p)l = 0. We have, letting cp be the density of standard normal 
,=PO 
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Figure 13.5 
unbiased test (solid line). 

Power functions of a one-sided UMP test (dashed line) and a UMP 

random variable, 

For p = po we obtain 

which equals 0 (remembering that k’ and k” are positive) only if k’ = k ” .  
Thus we obtain an unbiased test only if the two parts of the rejection regions 
are located symmetrically with respect to the null hypothesis value po. For- 
mula (13.27) gives now k = k’’ = z,,/2. 

One can show that the test obtained in Example 13.22 is actually the U M P  unbi- 
ased test for hypothesis HO : p = /LO against the two-sided alternative H I  : p # po. 
It is not, however, a UMP test against one-sided alternatives (see Figure 13.5). 

One can argue that such a specific hypothesis like HO : p = po simply cannot 
be true. The chances that the mean is exactly equal to po are zero. This is true if the 
parameter p is a random variable, varying from situation to situation according to 
some continuous prior distribution. It is also true in most cases of Bayesian priors, 
where p does not vary, but the statistician’s experience can be expressed in terms of 
a (subjective) probability distribution on p,  

Thus, the argument goes, HO should be rejected at once, without any testing. 
As explained at the beginning of this chapter, this conclusion misses the essential 
intention of the theory of hypotheses testing, which is to serve not as a means of 
establishing the truth of hypotheses, but of establishing good rules of inductive be- 
havior. In this sense, “accepting Ho : 0 = &” means simply that it is reasonable to 
act us ifthe parameter value were 00 ,  even if in fact 0 is only close to 00.  This sug- 
gests testing a composite null hypothesis stating that 6’ lies in some interval, against 
the alternative that it lies outside it. We will illustrate this approach with an example: 

EXAMPLE 13.23 

Let again XI, . . . X ,  be a random sample from the N(pl a) distribution with 
az known. We want to test the null hypothesis HO : p1 5 p 5 p.2 against the 
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Figure 13.6 Power function of an unbiased test 

alternative H I  : p < p1 or p > p2. To simplify the notation, let 

(13.29) 

denote the midpoint between the boundaries of the null hypothesis. It appears 
reasonable to use the test statistic T ( X )  = - p * ,  and reject Ho if T ( X )  < 
-1;’ or T ( X )  > k”, where k’, k” are some positive constants. The power of 
this test (call it C’) is 

irc.(p) = 1 - Pp{-k’  < x - p *  < k ” }  

k” + p* - p 

./ J;I 
k” + p* - p 4‘ + p* - p 

Again, to have the test unbia;sed, the power curve must have a minimum at p* ,  
which necessitates taking k = k . Then the size of the test (see Figure 13.6) 
equals to the fommm value of the power at the points p1 and p2, that is, after 
letting k = k = k and A = (14 - p 1 ) / 2 ) ,  

A f k  A - k  

If we now require (for given p1, p2, and 6, hence given p* and A) a test 
with a specified size a0 and a specified probability PO of a type I1 error at some 
target value pt in the alternative, we can determine the threshold k and sample 
size TI from the equations 

and 
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The solution has to be obtained by a numerical procedure. It can be shown 
that the resulting test is UMP unbiased. 

PROBLEMS 

13.5.1 Suppose that XI, . . . , X, is a random sample from the U[O, 61 distribution. 
Test hypothesis HO : 8 = 80 against the two-sided alternative H I  : O # 80 using 
an unbiased test that rejects HO if X,:, < c1 or X,:, > c2. Find c1 and c2 if 
B0 = 5 ,  n = 10, and Q = 0.05. 

13.5.2 Let X be a single observation from a distribution with density f(z, 0) = 
1 - 02(z - 0.5)3 for 0 < z < 1 and zero otherwise, -1 < 8 < 1. Find a UMP 
unbiased test of NO : 8 = 0 against HI : 8 # 0. 

13.5.3 Let XI, . . . X, be a random sample from the POI(X) distribution. Find the 
(approximate) UMP unbiased test for the hypothesis Ho : X = XO against the two- 
sided alternative H I  : X # XO, where XO is assumed to be large. [Hint: Use the 
fact that if X has Poisson distribution with mean A, then (X - X ) / d  converges (as 
X -+ co) in the distribution to a standard normal random variable.] 

13.5.4 For testing hypothesis HO : o = C$ against the alternative H I  : o2 # 
ui at level Q,  find an unbiased test with a critical region of the form "reject Ho 
if El"=, X?/o," < C1 or Cb, X?log > C2." Assume that the observations 
X1 . . . X, form a random sample from: (i) N(0, g2) distribution. (ii) N(pl 02) 
distribution with both parameters unknown. 

13.6 GENERALIZED LIKELIHOOD RATIO TESTS 

As shown by the Neyman-Pearson lemma, analysis of the likelihood ratio is a good 
way of searching for test statistics. It turns out that an extension of the likelihoodra- 
tio method, originally called the "lambda principle" by Neyman (1 950),  often leads 
to tests that perfom quite well. The role and importance of these tests, called gen- 
eralized likelihood ratio (GLR) tests, can be compared with that of maximum likeli- 
hood estimators in the estimation problems. 

A rather common situation in statistical practice occurs when we are interested 
in testing hypotheses about a specific parameter, but the population distribution de- 
pends also on some other parameters. Equivalently, we may say that Q = (81, . . . Or) 
is a multidimensional parameter, but we are interested in hypotheses involving one 
component only. One example here is testing a hypothesis about the population 
mean p in the normal distribution when variance a2 is also unknown. 

The parameter (or parameters) that is not constrained by the null hypothesis is 
called a nuisance parameter. The presence of nuisance parameters causes the null 
and alternative hypotheses to be composite. The generalized likelihood ratio tests 
that will be discussed in this section can also be applied to testing in the presence of 
nuisance parameters. 

Suppose that we want to test the null hypothesis Ho : 8 E 00 against the al- 
ternative HI : 6 E 0 \ 00. In most typical cases both hypotheses HO and HI are 
composite, which corresponds to the sets 80 and 01 containing more than one el- 
ement. In analogy with most powerful tests in the case of a simple null hypothesis 
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and a simple alternative (which are based on the likelihood ratio), we might use the 
ratio 

(13.30) 

and reject the null hypothesis if the observation x gives a high value of w(x). The ra- 
tio here is based on the analogy with the likelihood ratio tests given by the Neyman- 
Pearson lemma: if the numerator in (13.30) greatly exceeds the denominator, then x 
is good evidence for the alternative hypothesis. On the other hand, small values of 
V(X) constitute good evidence for the null hypothesis. 

An inconvenience with the use of ~ ( x )  is that it may be difficult to compute, 
especially because typically only one of the two suprema in v(x) is attained. Con- 
sequently, it is often easier to use the statistic defined as follows: 

Definition 13.6.1 The ratio 

S U P e c e o  fn (X; 0) 
S U P e E e  fn(X; 0) 

X(X) = 

will be called the generalized likelihood ratio statistic. 0 

Under some continuity assumptions, if*@, i s a  closed set, then the suprema in 
X(x) are both attained. In particular, if 00 = &(x) is the value of the parame- 
ter that maximizes fn(X; 0) over the set 80, then the numerator in X(x) becomes 
fn(X; &(X)). Similarly the value of 0 that gives the maximum of the denominator 
is simply the MLE of 0, denoted 6 = i(X). Thus a useful computational formula 
for X(X) is 

Clearly, X(X) 5 1, since the denominator, being the maximum over a larger set, is 
at least as large as the numerator. Since X(X) does not depend on any parameter 
values, it is a statistic. 

To see how v(X) and X(X) are related, observe that 

hence v(X)X(X) 5 1. Consequently, large values of w(X) are associated with small 
values of X(X). 

It happens sometimes that the distribution of X(X) under HO does not depend 
on any parameters. In such cases the a-size critical region is obtained from the 
condition 

P{X(X) I IclHo} = a.  (13.3 1) 

The rationale here is that small values of X(X) are a premise for the alternative: it 
means that the maximum of the likelihood over 80 is much smaller than the overall 
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maximum. Hence it also means that the maximum over 0 is much higher than the 
maximum over 8 0 .  

It may happen that exact test, using (13.31), is not available. However, it can be 
shown that if MLE has an asymptotically normal distribution (which is true under 
very general regularity conditions), then the limiting distribution of X(X) does not 
involve any parameters. 

Theorem 13.6.1 Let X I ,  . . . , X ,  be a random samplefrom the f (x, 0 )  distribution 
with B = (el, . . . , B,,,). r f B  E 80, then sfatistic -2 IogX(X) has an asymptotical[y 
chi-square distribution with m - r degrees offreedom, where r is the number of 
components of 0 completely specijed by the null hypothesis (r < m). Thus the 
approximate a-size test is 

We have the following theorem, which we provide without proof: 

reject HO if - 2 log X(X) 2 xi,,-,. 
We will now derive some important GLR tests as examples. 

EXAMPLE 13.24 

Let X = ( X I ,  . . . , X,) be a random sample from the N(p, u2) distribution 
with p and u2 unknown. For testing HO : p = pol u arbitrary, the parameter 
space 0 is the upper half-plane, while 80 is the ray { ( p ,  u2) : p = P O } .  We 
now have 

and the MLE’s of p and o2 are 

.. 1 ,  /2 = x, 0 2  = - C(Xi - X)? (13.33) 
n 

i=l 

After we substitute in (13.32), the denominator in X(X) becomes: 

It remains to find the numerator in X(X), that is, 

Here the maximum is attained at 8.0” = (l/n) c ( X i  - p ~ ) ~  and equals 
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Consequently, 

where - 
x - PO 

t ( X ) =  J.=-- 

has a Student’s t distribution with n - 1 degrees of freedom; see formula 
(10.21). The inequality X ( X )  5 k is equivalent to the inequality It(X)l 2 k”. 

Thus the critical region of our test is It(X)l 2 t o / 2 , , - 1 .  One can show (see 
Lehmann and Romano, 2005) that this test is UMP unbiased. 

EXAMPLE 13.25 

Consider the GLR test for the hypotheses HO : p1 = p2, a; = a: against 
the alternative H I  : p1 # p2 ,  of = a: (a more general case, solved in the 
same way, is obtained when we assume that af = yo:, where y is a known 
constant). 

The likelihood, letting u: = 17; = a2,  has the form 

f ( x , y ; p . l , p . z , a  2 ) - - ( Zno2)-(”+”)/2e-1/2“2[C(2,-~1)2+C(y, -d], 

By maximizing the likelihoodover all ( P I ,  p2,  a2)  and on the subspace (p1 = 
p2 = p ,  02), one can derive the generalized likelihood ratio test. The exact 
form of the test is given in Section 13.9. We omit the details of the calculations, 
which are similar to those in Example 13.24. 

EXAMPLE 13.26 Paired Observations 

A situation deceptively similar to that in Example 13.25 occurs when we have 
the data obtained by observing the values of some attribute of different ele- 
ments of the population, observed “before” and “afier.” A typical case would 
be to measure a certain reaction in human subjects before (Xi) and after (x) 
some treatment. The purpose is to decide whether or not the treatment has 
an effect. Since we have here the situation of two samples, XI, . . . , X, (val- 
ues “before”) and Y1, . . . , Y, (values “after”), we cannot apply the method of 
Example 13.25 for m = R. 

Such a procedure would not be correct, since in the present case the values 
Xi, Yi are not independent (as observations for the same subject). Under the 
following assumptions, however, one can use here a one-sample test: The 
observations need to be such that the differences Vi = yi - Xi have the same 
normal distribution with mean p and variance a2. Separately, Xi’s and yZ’s 
do not need to be normally distributed. 
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We may wish to test the null hypothesis HO : p = pa against a one- or 
two-sided alternative H I  : p > po or H I  : p # po, o2 arbitrary. In most 
typical applications we take po = 0 (treatment has no effect). The form of the 
test is the same as in Example 13.25, applied to random variables Ui, and we 
omit the details. 

EXAMPLE 13.27 

To test the efficiency of sleeping pills, a drug company uses a sample of pa- 
tients with insomnia. The time (in minutes) until falling asleep is observed for 
each person. A few days later, the same patients are given a sleeping pill and 
the time until falling asleep is measured again. Suppose that the data are 

Subject No Pill (Xi) With Pill (Y,) 

1 65 45 
2 35 5 
3 80 61 
4 40 31 
5 50 20 

The proper procedure is to treat the data as paired. The differences ui = -yi 
are then 20, 20, 19, 9, and 30 and we want to test the hypothesis E(Ui) = 0 
against the alternative E(Ui) > 0. Since Tl = 19.6 and s$ = (1/5) C(ui - 

= 44.24 we have 

Compared with the quantiles of the Student’s t distribution with 4 degrees of 
freedom, the result has a p-value below 0.005. 

However, if we treat the problem as a two-sample problem (which is incor- 
rect), we obtain a different conclusion. The procedure is described in Section 
13.9, but it is worthwhile to explain here why an analysis of the same numeri- 
cal values can lead to two different conclusions, depending whether the values 
result from paired or unpaired data. 

In essence, in both cases we are comparing two means, and trying to deter- 
mine whether their difference is so small that it may be explained by chance 
variation (null hypothesis) or that it is large enough to be regarded as “signifi- 
cant.” To make such inference we have to assess the amount of variability, to 
serve as a base for comparison. 

Now the formulas for an estimate of variance are different in case where 
data are paired and in case they are not. In general, the first estimate gives a 
lower p-value simply because “a person is typically more similar to himself 
than to another person.” Thus, quantitatively speaking, the same difference 
between means can turn out to be significant when compared with a smaller 
variance given by the formula for paired data, than when compared with higher 
variance given by the formula for independent samples. 
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In the present case we have Z = 54, sx = 16.55,g = 32.4, and s y  = 
19.41. so that 

- x - 3  1 / 5 : 5 2  21.6 
= -v% = 1.69, 

t =  ,/- + 57.04 

which, for 8 degrees of freedom, is not significant at the 0.05 level. 

We complete this section with a discussion of the problem of reaching a decision 
before the data collection is complete. 

w EXAMPLE 13.28 

A research laboratory employs two specialists, Dr. Brown and Dr. Smith. Dr. 
Brown claims that he invented a certain method that is superior to the currently 
used method of Dr. Smith. After some debate, it is decided that Dr. Brown’s 
method will be tested. Five experiments are to be run on five consecutive days, 
starting Monday, and the results X1 , . . . , Xg recorded2’ It is known that Xi’s 
form a random sample from a normal distribution with an unknown standard 
deviation. It is also known that for the current method of Dr. Smith, the mean 
is 10, or perhaps less, so Dr. Brown’s method will be declared superior if the 
mean of Xi’s is be higher than 10; that is, if the null hypothesis HO : p 5 10 
(asserting that Dr. Brown’s method is no better than Dr. Smith’s) is rejected 
in favor of the alternative H1 : p > 10. The significance level, a = 0.01, is 
agreed upon during negotiations. 

The observed data for the consecutive five weekdays are: 14.8, 13.6, 13.9, 
10.3, and 11.4. We have here Z = 12.8, and ,/(1/5) C(zi - 2)2 = 1.6769, 
which gives - 

(12.8 - 10) 
V G  = 3.339. 

1.6769 
t =  

This value is below the critical value t0 ,01 ,4  = 3.747, so Dr. Brown’s method 
is not declared to be superior at the significance level 0.01. 

Dr. Brown, however, is not someone who easily gives up. He notices that 
if the test were run on Wednesday (after only three observations), we would 
have Z = 14.1, and d(1/3) C(xi - = 0.51, hence t = 11.369, which 
exceeds the critical value to .o l ,2  = 6.965, so the p-value would be less than 
0.01. 

The issues involved here are serious. Generally, when the data are collected 
sequentially, it happens that the conclusion reached on the basis of all data 
values differs from a conclusion that is reached on the basis of some initial 
sequence of data points. Is one then justified in reaching the conclusion that 
is, for some reason, more convenient (e.g., in favor of one’s own preferred 
hypothesis, and likely to get one an extension of a grant)? In particular, can 
one discard part of the data? 

”One may feel that important decisions, like about the superiority of a scientific method, cannot be 
decided on the basis of only five observations. Of course, if possible, one should use a larger sample size 
to get a better quality of inference. This, however, does not change the essence of the problem. 
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The answer, of course, is negative, not merely because of the moral issues 
involved. It is equally important to realize that with modified or discarded data 
it may be hard, or even impossible, to assess the probabilities involved. To take 
the example of Dr. Brown, to assess the p-value of the result calculated with 
the use of the first three data points, one would have to assess the conditional 
probability, given the conclusion of all five data points, that is , 28 

where C3 and C5 are critical regions for sample sizes n = 3 and ‘n = 5 .  
Quite apart from the moral and computational issues involved, there exists 

a theory of sequential testing of hypotheses. At each new data point, one 
of the three decisions is made: “accept Ho,” “accept HI,” or “take another 
observation.” The process stops on making either of the first two decisions. 
The criteria for making these decisions are chosen in such a way that (1) the 
probabilities of making wrong decisions (type I and type I1 errors) are bounded 
by preassigned numbers, and (2) the number of observations taken (being a 
random variable) has finite expectation. 

This theory was developed originally by A. Wald. The details can be found in 
many advanced textbooks on mathematical statistics. 

PROBLEMS 

13.6.1 Suppose that we test the null hypothesis that p = 100 against the alternative 
that p # 100. The distribution is normal with its variance unknown. We have just 
two observations, XI = 105 and X2 = 105 f a .  Find a such that the null hypothesis 
is rejected at the significance level Q: = 0.05? 

13.6.2 The following data concerning accidents on various types of highways were 
obtained from the Ohio Department of Transportation, September 1990 (see Al- 
Ghamdi, 1991): 

Highway Number of Annual Million Accident 

Type Accidents Vehicle Miles Rate 
~~ ~ ~ ~~ 

Scenic 3,621 1,021 3.55 
Other 2-lane 36,752 1 1,452 3.21 
Multi-lane 20,348 6,920 3.23 
Interstate 10,460 9,412 1.11 

From the table it appears that the accident rate on interstate highways is significantly 
lower than on other types of highways, and that on the first three types, the accident 
rates are essentially the same. Use the likelihood ratio test to test those claims. 

28The analysis here is similar (but more complicated) than the ballot problem, studied in Chapter 3. There 
we calculated the probability that in the process of counting votes, the losing candidate will lead at least 
once during the counting. A moment ofreflection shows that we have here a very similar situation, except 
that the “votes” being random variables with values f 1) are replaced by observations, that may “favor” 
one or the other hypothesis in varying degree. 
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13.6.3 The times for the diagnosis and repair of a car with a certain type of problem 
are assumed to be normally distributed with mean p and standard deviation u = 15 
minutes. A mechanic serviced five cars in one day, and it took him a total of 340 
minutes. (i) Test, at the level a = 0.05, hypothesis HO : p 5 60 against the 
alternative H1 : p > 60. (ii) Suppose that you doubt the information that u = 15, 
and decide to test the hypotheses in (i) without assuming anything about 6. If the 
sum of squares of the five diagnosehepair times is m, how small should m be to 
reject HO at the significance level a = 0.05? 

13.6.4 Let XI ,  . . , , X, be a random sample from the GAM(3,O) distribution. De- 
rive the GLR test for HO : 6' = 6'0 against HI : O # 6'0. 

13.6.5 A random sample of size n was selected from the EXP(6') distribution. Per- 
form the GLR test of HO : i3 = 2 against the alternative HI : 0 # 2 if the actual 
observations are 0.57,0.21,2.18,0.85, 1.44. Use a = 0.05. 

13.6.6 Derive the GLR test for Ho : 6' = 6'0 against HI : 6' # 6'0 based on a 
random sample XI, . . . , X, selected from the BETA(1,O) distribution. Determine 
an approximate critical value for a size a. 

13.6.7 Two independent samples XI,. . . , X, and Y1,. . . , X, were selected from 
the EXP(O1) and EXP(O2) distributions, respectively. Derive the GLR test of size 
0.05 for Ho : 01 = 6'2 against HI : O1 # 82. 

13.6.8 Let two independent samples XI,. . . , X, and Y1,. . . , X, be selected from 
the N(p1 ,of )  and N(p2, ug) distribution, respectively. Obtain the GRL test for HO : 
p1 = p2 and of = ui against H I  : p1 # p2 and of # ui .  

13.7 CONDITIONAL TESTS 

As explained in the previous section, the parameter (or parameters) that are not 
constrained by the null hypothesis are called nuisance parameters. Besides the like- 
lihood ratio tests, for testing in the presence of nuisance parameters one can use 
conditional tests. 

Suppose that the distribution of X depends on a parameter -9 = (77,  T ) ,  where 77 
is the parameter tested and T is the nuisance parameter. Assume that we want to test 
the null hypothesis that v = 70 against the alternative that 77 < vo. These are in fact 
composite hypotheses: 

HO : 77 = 7 7 0 , ~  arbitrary against H I  : 77 < 770, T arbitrary. 

It may happen that there exists a sufficient statistic, say T ,  for T .  In such a case 
the conditional distribution of X given T = t does not depend on T ,  and it may then 
happen that one can find a test on a given level cr for Ho (for each t separately). 

We will first illustrate such a situation by an example. 
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EXAMPLE 13.29 

Let X and Y be independent binomial random variables: X - BM(n1 ,  p1 )  

and Y - BIN(n2,pz). We want to test the hypothesis that pl = p2 against 
one- or two-sided alternative. If the null hypothesis is true, then letting p = 
p l  = p 2 ,  we have 

P { X  = x , x +  Y = k }  
P { X  + Y = k }  

P { X = z l X + Y = k }  = 

- P { X  = z}P{Y = k - z} 
P { X + Y  = k }  

- 

which is independent of the nuisance parameter p.  
The question is which values of X (given X + Y = k )  constitute the 

strongest premise against the null hypothesis, and how should one assess the 
p-value of the result. Here the argument is as follows: We can expect X / n l  
to be close to p l  and Y/n2 = ( k  - X ) / n 2  to be close to p2. So, if HO is 
true, we can expect X / n l  z k /n2  - X / n 2 .  For the two-sided alternative, the 
"worst" cases are where X is close to 0 or close to k so that the critical region 
comprise two tails of the hypergeometric distribution (13.34). 

Letting 
(7) (k"-'j) 

(n l ;nz)  ' 
4 j )  = 4 j ;  n1,7121 k )  = 

we may define the p-value of the result X = 2 for two-sided test as 

This is Fisher's exact test. 

EXAMPLE 13.30 

(13.35) 

Let X and Y be two independent observations of two Poisson random vari- 
ables, with parameters A1 and X p ,  respectively. We want to test the hypothesis 
Ho : A2 = 6A1 against the alternative H1 : A2 > 6x1, where 6 > 0 is some 
fixed constant. For instance, if b = 1, we have the hypothesis of equality of 
parameters in two Poisson distributions. 

The joint distribution of (X, Y )  is here 
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This suggests reparametrization with 7 = X2/X1 and 7 = XI + X2, leading to 
the joint probability function 

It is now clear that T = X + Y is a sufficient statistic for 7 ,  and that given 
T = t ,  the random variable X has the conditional distribution that is binomial 
with parameters t and 1/(1 + 7 ) .  Under the null hypothesis, we have 7 = 6, 
while under the alternative hypothesis, 7 > 6. Given T = t ,  we may therefore 
test the null hypothesis Ho : p = 1/(1 + 6) against the alternative H1 : p < 
1/( 1 + 6), observing the random variable X with the BlN(t, p )  distribution. 

EXAMPLE 13.31 

Suppose that traffic engineers suggest a certain change of a traffic light se- 
quence to reduce the number of accidents at some type of intersections. Two 
intersections, far apart to ensure independence but otherwise identical in all 
aspect (traffic intensity, road condition, etc.) are to be tested. The number X 
of accidents at the intersection with the new traffic light pattern is 7. Over 
the same period at each intersection with a previous traffic light pattern, the 
number of accidents is Y = 13. At the significance level Q = 0.05, does 
this indicate that the new traffic light pattern decreases the probability of an 
accident? 

We want to test the hypothesis that XI = A2 against the alternative XI < A2 

(so that 6 = 1 and 1/(1 + 6) = 1/2). Since t = z + y = 7 + 13 = 20 and 
X - BlN(20,1/2) 

7 20 

p { X  5 7 )  = (20) (i) = 0.1310. 
3 j =O 

The answer is clearly negative. If the new traffic lights pattern does not affect 
the probability of accident at all, the outcome as obtained (13 against 7), or 
more extreme, has more than 13% chance of occurring. 

The scheme above is an application of the following theorem: 

Theorem 13.7.1 Suppose that the random sample X = (XI . . . X,) has a joint 
distribution of the form 

for some functions a,, b, u,, 111, . . . , v,. Let U = u ( X ) ,  and let V = (VI, . . . , VT), 
where V, = t~j(X) for  j = 1,.  . . 'r. Then for each 77, variables & l .  . . , V, are 
jointly suficient for (71, . . . , r,), and the conditional distribution of U given V (x) = 
v depends on 77 but not on (71, . . . , T ~ ) .  A test with size Q for testing Ho : 7 5 70 
against HI : 7 > 70 is obtained by rejecting HO i f U ( x )  2 q(v), where P{U 2 
q(v)lv) = Q f o r 7 =  70. 
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For testing HO : 77 2 qo against H1 : 77 < qo the directions of inequalities will be 
reversed; a two-tailed test is to be used in case oftwo-sided hypothesis HO : 77 = 770 
against H1 : q # qo. 

Lehmann and Romano (2005) show that under some regularity conditions these 
tests are UMP unbiased. 

EXAMPLE 13.32 

To see how the situation of Example 13.30 falls under the scheme of Theorem 
13.7.1, observe that the distributionof X = (XI,  X 2 )  can be reduced to the 
form (13.37) with T = 1, V(X) = X I ,  V(X) = XI +X2. This is calculated as 
follows: Take s = X2/X1, t = X1+X2; henceX1 = t/(l+s), A2 = st/(l+s)). 
The distribution 

reduces, after some algebra, to the form 

f = ( v(x)) L e - t  exp { u(x) ln - + v(x) log t + log - 
V(x) V(x)! S l [  l + s  I1 

Introducing new parameters 77 = log(l/s) = log(X1/X2) and T = logt + 
log s / (  1 + s )  = log X2, and then expressing t in terms of T and 7, we obtain a 
density in the form (13.37). 

PROBLEMS 

13.7.1 Suppose that in a group of 10 randomly sampled Democrats only 2 favor a 
certain issue, whereas in a sample of 12 Republicans the same issue is favored by 5 
persons. At the level cy = 0.05, does this result indicate that the fractions p~ and p~ 
of Democrats and Republicans favoring the issue in question are different? Find the 
p-value by carrying out the two-sided Fisher’s test. 

13.7.2 A company A that produces batteries claims that their product is “at least 
50% better” than the batteries produced by company B. To test the claim, batteries 
A and B are used one after another in two analogue devices. That is, one device 
has a battery A installed and is left running until the battery becomes dead. It is 
then immediately replaced by another battery A,  and so on. The second device runs 
parallel on batteries B. 

Assume that the lifetimes of the batteries are exponential random variables, with 
densities X A ~ - ~ ~ ~  and XBe-’Bt. Suppose that in some time (e.g., a week) batteries 
A had to be replaced 5 times, whereas batteries B had to be replaced 9 times. Test 
the advertising claim by determining the p-value of the result. (Hint: If interarrival 
times are exponential, the process is Poisson.) 

13.8 TESTS AND CONFIDENCE INTERVALS 

In this section we will briefly explain how the theory of testing statistical hypothe- 
ses is related to the theory of confidence intervals, discussed in Chapter 12. This 
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connection was noticed by Neyman (who laid the foundations to both theories) as 
early as in 1938. To simplify the presentation, assume that X I ,  . . . , X, is a random 
sample from a distribution f(z;  O), and that 8 is a one-dimensional parameter. 

A confidence interval (with confidence level 1 - a )  is a random interval [ L ,  V ]  = 
[ L ( X ) ,  V(X)] such that for every 6' E 0, 

(13.38) 

Suppose that we want to test hypothesis HO : 6' = 6'0 against the alternative H I  : 
6' # 6'0. The equivalence of tests and confidence intervals is based on the fact that if 
we can construct confidence interval (13.38), then we can also construct an a-level 
test of HO against H I ,  and conversely: given a testing procedure of level a, we can 
construct a confidence interval. 

Indeed, condition (13.38) for 6' = 80 allows us to define the set 

A = {X = (XI,. . . ,z,) : L(x) 5 6'0 5 V(X)}. 

Clearly, if we take the set A as the acceptance region of HO (equivalently, we let 
C = A' to be the critical region for Ho), we obtain a test with level a:  

P{H~isrejectedlHoistrue} = P { B o f t ' [ L ( X ) , U ( X ) ] l 6 ' = 6 ' 0 } = a .  

Conversely, suppose that for every 6'' we can construct an n-level test of the hypoth- 
esis HO : 6' = 8;. This means that for every 0' we have a critical region Cot such 
that 

P { X  ft' ce!le = 6 ' ' )  = 1 - a.  (1 3.39) 

Define now, for every x, 
B(x) = { e  : x ft' Cot}. (1 3 $40) 

When x is the observed value of random vector X, we obtain a random set B(X). 
From (13.39) and(13.40) it followsthat & { B  E B(X)} = 1 -0, whichmeans that 
B ( X )  is a confidence set for 6' with confidence level 1 - a. 

Except for the fact that the second part of the argument provides us with confi- 
dence sets (not necessarily intervals), the argument shows that the two theories are 
essentially equivalent, at least in case of one-dimensional parameters. 

The main results of the theory combine optimality properties of tests and confi- 
dence intervals. For instance, confidence intervals (sets) associated with UMP tests 
have the property of being the shortest possible (uniformly most accurate, or UMA 
confidence Intervals). It is worth mentioning here that the theory extends also to the 
case of testing in presence of nuisance parameters, but we will not go into the details 
here. 

13.9 REVIEW OF TESTS FOR NORMAL DISTRIBUTIONS 

We now review the major testing procedures for parameters of normal distributions. 
This section is intended as a convenient reference for users rather than an exposition 
of new concepts or results. If the derivations were given in the other sections, we 
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refer to them. In other cases, we omit the derivations, specifying only the properties 
of the tests, possibly with indications of the proofs. 

In all tests below (Y is the significance level and 1 - p is the power, zp is the upper 
pth quantile of standard normal random variable 2, so that 

P { Z  > z p }  = 1 - @ ( z p )  = p .  

Similarly, tp,u is the upper pth quantile of the Student’s t distribution with v degrees 
of freedom, x ; , ~  is the upper pth quantile of the chi-square distribution with v de- 
grees of freedom, and Fp,ul,uz denotes an upper pth quantile of the F distribution 
with v1 and v2 degrees of freedom. 

One-Sample Procedures 

Let X I ,  . . . , X ,  be a random sample from distributionN(p, a2). 

Hypotheses about the mean, variance known 

Hypotheses: 

The sufficient statistic is zL1 X i ,  hence also x. 

One-sided alternatives: 
(i) HO : p = po (or p 5 po) vs. H1 : p > po. 
(ii) HO : p = po (or p 2 PO) vs. H I  : p < PO 

Two-sided alternatives: 
(iii) HO : p = po vs. H I  : p # po. 
(iv) HO : p1 5 p 5 p2 vs. H I  : p < p1 or p > p2. 

Other cases: 
(v) HO : p I PI or p 2 p2 vs. HI : p1 < p < p2. 

Test statistics: - 
(iHiii) TI  = 

(iv), (v) T2 = $&, where p* = 
Corresponding critical regions, reject Ho if: 
( 0  TI 2 z,, (ii) TI 5 (iii) IT11 2 z a p ,  (iv) IT21 2 k,, 
(v) IT21 5 v,, where k ,  and v, are determined from 

and 

with A = ( ~ 2  - p1) /2 .  Tests (i), (ii), and (v) are U M P  tests; (iii) and (iv) 
are UMP unbiased tests. 
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Power: 

(i)x(p) = 1 - @ 

(ii)r(p) = 1 - @  

(iii) x ( p )  = 1 - CJ 

(iv)r(p) = 1 - @ 

(v)r(p) = 

Sample size determination: 

(21-,+21-p)2 

Wanted: sample size n giving power at least 1 - p at 1.1 

(iii) Solve numerically for n, 
fJ2 (i),(ii) n 1 ( p L _ p a ) 2  

-fi - z 1 - 4 2  = p. ) PO - P PO - P 
@ ( ~ y h + % l - a , 2 )  - @ (  Ll 

(iv) Solve numerically for n, 

(v) Solve numerically for n, 

fT? ( - f i+va)  Ll -CJ(yfi-%) = p .  

4 EXAMPLE 13.33 Generic Problem 

All philogaps presently on the market have an average concentration of muzzz 
of at least 3.7 mg per philogap. A company claims to have discovered a new 
method ofproduction that will decrease the average muzzz content to the level 
below 3.7 mg. To test this claim, the muzzz content of 15 philogaps of this 
company are analyzed, and their average muzzz content is found to be 3.52 
mg. 

It is known that the standard deviation of the muzzz content in a philogap 
does not depend on the production process and equals 0.35 mg. It is also 
known that the muzzz content is normally distributed. At the significance 
level a = 0.01, does this finding indicate that the new production process 
decreases the concentration of muzzz in philogaps? 

Remark You are probably curious about what are philogaps and what is 
muzzz (spelled with triple z). These words, to our best knowledge, mean 
nothing. If you so wish, substitute “objects” and “attribute A,” or “cars” and 
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“miles per gallon,” “beer” and “alcohol content,” “oranges” and “sugar content 
in juice,” and so on, and change numbers and possibly, inequality directions 
accordingly. 

We set up this problem as being of type (ii): The null hypothesis is HO : 
p 2 3.7 and the alternative is HI : p < 3.7. The value ofthe test statistic TI is 
t = [(3.52-3.7)/0.35]~% = -1.99. The l%quantileofthe standardnormal 
distribution is -2.33, so the null hypothesis is not rejected. The average 3.52 
or less in a sample of 15 is more likely than 0.01, if the mean is in fact 3.7. 
Therefore the null hypothesis cannot be rejected at the significance level 0.01. 
The p-value is equal to P(Z < -1.99) = 0.0233, or about 2.3%. 

Suppose that we want not only the 1% level of significance but also at least 
95% chance of detecting the improvement of the average muzzz content in 
philogaps by 0.15 mg. In statistical terms, this means that we want the power 
to be at least 0.95 at p = 3.7 - 0.15 = 3.55. Then we need to take the sample 
of at least 

(2‘33 -k 1‘96)2 (0.35)2 = 100.2, (0.35)2 = 
(0.1 5)2 

(20.01 + z0.od2 

(3.7 - 3.55)2 

meaning that n should be at least 101. 

EXAMPLE 13.34 

A food-packing company purchased a new machine to fill plastic containers 
with sour cream. The nominal weight, as listed on the container, is 8 oz. The 
dial on the machine can be set on average weight. . . ,7.98,8.00,8.02,8.04, . . . 
oz. When it is set on 8.00 oz (say), it puts into successive containers the 
amounts X I ,  X2 ,  . . . , which are normally distributed with some mean p and 
standard deviation (the same for all settings of the dial) 0 = 0.005 oz. This 
standard deviation reflects the unavoidable container-to-container variability 
of the amounts of sour cream about their mean p. Naturally it is impossible 
to build a machine that gives the average p exactly equal to the setting on the 
dial, be it 7.995,8.002, and so on. 

A consumer protection agency may disregard the instances where the vari- 
ability will occasionally lead to a container with more than the nominal amount 
of sour cream. However, it might strongly object if the average p is even 
slightly less than 8 oz, as this constitutes a systematic theft from society. On 
the other hand, if p exceeds the nominal weight even slightly, it may in time 
constitute a sizable free gift of the company to society. 

The company decides that it will risk getting into trouble with the consumer 
protection agency, or absorb the loss, if the mean p satisfies the inequality 
7.995 5 p 5 8.015 but wants to avoid both lower p and higher p. Careful 
measurements of 50 containers with sour cream give the average Z = 8.017. 

We are now in situation (iv) where the null hypothesis states that p lies 
between some bounds, and we may proceed as follows: We have here p1 = 
7.995 and p2 = 8.015, so p* = 8.005 oz and A = 0.01. Consequently the 
observed value of 2’2 is t 2  = [(8.017 - 8.005)/0.005]~‘% = 16.97. On the 
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other hand, ( A / o ) f i  = 14.142, and the equation 

reduces to Q(14.142 - k,) = a.  For a = 0.01 we must have 14.142 - k ,  = 
-2.33; hence 5 ,  = 16.472. The observed value 16.97 exceeds k,, and this 
indicates that the null hypothesis should be rejected at the level 0.01. 

It should be stresses here that the conclusion is that p < 7.995 or p > 8.015 
despite the fact that the result Z = 8.017 suggests that the second of the two 
inequalities holds. The point is that the null hypothesis states that 7.995 5 
p 5 8.015, and its rejection is logically equivalent to the pair of inequalities. 

To conclude that p > 8.015, we should test the null hypothesis p 5 8.015. 
The test statistic is then 

d% = 2.82, 
8.017 - 8.015 

0.005 
t l  = 

with a corresponding p-value of about 0.0025. 

Hypotheses about the mean, variance unknown 
- The jointly sufficient statistics are C Xi and C X:, or equivalently X a n d  c ( X i -  

Hypotheses: 
X ) 2 .  

One-sided alternative: 
(i) Ho : p = pol u > 0 (or No : p 5 po, u > 0 ) vs. HI : p > po, u > 0. 
(ii)Ho : /I = p0,a > O(orH0 : p 2 p0,u  > 0)vs. H1 : p < p0,o > 0. 
Two-sided alternative: 
(iii) HO : p = po, u > 0 vs. H1 : p # po, u > 0 

Test statistic: 
- 

Remark Many tests use the notation t = [(x - po)/S]&?i or t = [(x - 
p o ) / S ] f i .  These may be confusing, since one has to bear in mind that in the first 
case S2 is the MLE of a2; that is, S2 = ( l /n)  C ( X i  - x)2. In the second case, S2 
is the unbiased estimator of variance: S2 = [ l / (n  - l)] C(Xi - 5?)2. The notation 
for S2 is not standardized across statistical textbooks and papers. 

Corresponding critical regions, reject HO if  
(9  t 2 t,,n-1. 

(iii) It1 2 tuj2,n-1. 

(ii) t 5 -ta,n-l. 

For each of these tests the power is the function 7r depending on a two-dimensional 
variable ( p ,  a2). We haveT(p0, u2)  = a for all u2.  However, for p # PO, the values 
n(p, a2) depend on (unknown) u2, and are given by the noncentral Student distribu- 
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tion. Therefore the sample size determination requires some additional information 
about u2 (a two-stage procedure, etc.). All three tests are UMP unbiased29 tests. 

EXAMPLE 13.35 

A certain make of cars is advertised as attaining gas mileage of at least 32 
miles per gallon. Twelve independent tests gave the results 33, 28, 31, 28, 
26, 30, 31, 28, 27, 33, 35, 29 miles per gallon. What can one say about the 
advertisements in light of these data? 

Let us make the assumption that the observed mileages are normally dis- 
tributed. We may then set the problem of evaluation of the advertising claim as 
that of testing the hypothesis HO : p 2 32 (claim is true) against the altema- 
tive H 1  : p < 32 (claim is false). We have here n = 12, c zi = 359, czf = 
10,823. Thus Z = 29.92, C(zi - ?Q2 = 82.92, so t = -2.62. Since the crit- 
ical values for 11 degrees of freedom are t0.025,11 = 2.201, to.o1,11 = 2.718, 
the result is not significant at the 0.01 level but significant at the 0.025 level. 
In other words, the p-value is between 0.01 and 0.025. 

Hypotheses about the variance, mean known 

Hypotheses: 
The sufficient statistic is c ( X i  - P ) ~ .  The sample size can be 1. 

One-sided alternative: 
(i) HO : c2 = ug (or Ho : u2 5 cri vs. H I  : c2 > ug. 
(ii) Ho : u2 = ui (or HO : u2 2 ci) vs. H I  : c2 < ci. 
Two-sided alternative: 
(iii) Ho : u2 = 00" vs. H1 : u2 # 00'. 

Test statistic: 

Calculations for remaining cases are similar. 
Tests (i) and (ii) are UMP. Test (iii) is asymptotically (for n + co) UMP unbi- 

ased. A UMP unbiased test in case (iii) is obtained if the thresholds are equal to the 

29As mentioned before, two-sided UMP tests may not exist. Nevertheless, they can often be found in 
some restricted classes of tests, for example, in the class of unbiased tests. 
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endpoints of the shortest (1 - a)-level confidence interval for u2 (see Section 12.7). 

Hypotheses about the variance, mean unknown 

Hypotheses: 
Jointly sufficient statistics are x and C ( X i  - y)2. Tests require n 2 2. 

One-sided alternative: 
(i) HO : u2 = u," (or HO : u2 5 u,") vs. H1 : u2 > u$; p E R. 
(ii) HO : o2 = oi (or HO : u2 2 00") vs. H I  : u2 < u$; p E R. 
Two-sided alternative: 
(5) Ho : uz = u$ vs. H1 : u2 # 0 0 2 ;  p E R. 

0 Test statistic: 
n 

i=l 

Corresponding critical regions, reject HO if: 
(i) V > X :  n-1. 

(ii) v < x : ' - = , ~ - ~ .  

Power: 

~ ( p ,  0 2 )  = PP,+ { HO is rejected} is obtained in the same way as in the case 
above. 
Test (i) is unbiased. Tests (ii) and (iii) are not UMP unbiased. 

The following example was taken from Larsen and Marx (1986): 

EXAMPLE 13.36 

The A above middle C is the note given to an orchestra, usually by the oboe, 
for tuning purposes. Its pitch is defined to be the sound of a tuning fork vi- 
brating at 440 hertz (Hz). No tuning fork, of course, will always vibrate at 
exactly 440 Hz; rather, the pitch, Y, is a random variable. Suppose that Y is 
normally distributed with p = 440 Hz and variance u2 (here the parameter 
o2 is a measure of quality of the tuning fork). With the standard manufactur- 
ing process, u2 = 1.1. A new production technique has just been suggested, 
however, and its proponents claim it will yield values of oz significantly less 
than 1.1. To test the claim, six tuning forks are made according to the new 
procedure. The resulting vibration frequencies are 440.8,440.3,439.2,439.8, 
440.6, and 44 1.1 Hz. 

We will test the hypothesis Ho : 6' = 1.1 against the alternative H I  : 
o2 < 1.1, at the significance level a = 0.05. First, we accept as the fact that 
the new production process gives the mean p = 440. Then u = c(q - 
440)2/1.1 = 1.62. The value xi,05,6 = 1.635, so we conclude that the new 
production process indeed gives a variance less than 1.1. 

Suppose that we have some doubts about whether or not p = 440. We can 
then use the method for unknown p. Now z1 = 2.219 and x,",05,5 = 1.145, 
and we do not reach the preceding conclusion. 
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Two-Sample Procedures 

Two independent random samples X I ,  . . . , X, and Y1, . . . , Y, are selected from 
distributions N( 1-11, CT:) and N(p2, c$), respectively. 

Hypotheses about the means, variances known 

0 Hypotheses: 
Jointly sufficient statistics are ELl X i  and Cz1 Y,, or 7, and 7 

One-sided alternative: 
(i) Ho : p l  = p2 (or HO : pl 5 y2) vs. H1 : p1 > p2 

Two-sided alternative: 
(ii) HO : p~ = p2 vs. HI : p1 # p2 

Remark The opposite inequality in (i) reduces to changing the role of Xi’s and 
Yj’s. The apparently more general hypotheses of the form p1 = p2 - A, reduce to 
the ones above by subtracting constant A from all 5 ’ s .  

0 Test statistic: 

0 Corresponding critical regions, reject HO if: 
(i) U 2 2,. 

(ii) IUI 2 2,/2 

+ CJ ( - ~ , / 2  + A/Jo: lm + .;In) 
where p2 - 1-11 = A.  

Tests (i) is UMP; test (ii) is UMP unbiased. 

Hypotheses about the means, variances unknown, but ui = yu;. 

0 Hypotheses: 

- -  
Jointly sufficient statistics are X ,  Y ,  and c ( X i  - x)2 + $ c(y3 - F)2 

One-sided alternative: 
(i) HO : 1-11 = p2 (or HO : 1-11 5 pz) vs. H I  : p1 > p2; n: > 0 

Two-sided alternative: 
(ii) Ho : p1 = p2, vs. H1 : p1, # p2; CT: > 0 

Remark The opposite inequality in (i) reduces to changing the role of Xz’s  and 
Yj’s.  The apparently more general hypotheses of the form p1 = 1-12 + A,  reduce to 
the ones above by adding a constant A to all Yj’s. 
0 Test statistic: 
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Remark y = 1 if uf = ui.  
0 Corresponding critical regions, reject HO if: 

0) u > ta,m+n-2. 

(ii) lu/ > to1/2,m+n-2. 

0 Power depends on p1 , p2 ,  u?, and it is expressed through noncentral Student’s 
t distribution. Tests (i) and (ii) are UMP unbiased. 

Hypotheses about the variances, means unknown 

0 Hypotheses: 

- -  
Jointly sufficient statistics are X, Y ,  C(Xi - y)2, and c(y3 - y )2 .  

One-sided alternative: 
(i) HO : ui = yu: (or H O  : of 5 yu?) vs. H 1  : ui > ya:; p1 E R, p2 E R 
Two-sided alternative: 
(ii) HO : u! = yu: vs. H 1  : ui # ra:; ,ul E R,  pz E R. 

Remark y = 1 if the hypothesis asserts equality of variances. 
0 Test statistic: 

C(yi - W y ( n  - 1) 
C ( X j  - X)2/(rn - 1)‘ 

F =  

0 Corresponding critical regions, reject I10 if 
0 )  F 1 Fa,n-l,m-1 

(ii) F 5 Fl-a/2,n-l ,rn-l  = F, / a  I m - I ,  n - 1 or F 2 Fa/2,n-l ,rn-l .  
1 

Tests (i) and (ii) are U M P  unbiased. 

Hypotheses about the variances; one or both means known. 
Jointly sufficient statistics are X ,  Y ,  c(Xi - F)2, c(q - T)2 .  Whenever a 

mean is known, it replaces the sample average in ratio F ,  and the divisor (and num- 
ber of degrees of freedom) changes into m (respectively, n). For instance, suppose 
that both p1 and p2 are known. Then we test Ho : ui = uf vs. H1 : ui > uf.  The 
testing variable is 

-- 

and the null hypothesis is rejected if F 2 

Large Sample Tests for Binomial Distribution 

If X has a BIN(n,p) distribution, then for n large, one can use either the Pois- 
son approximation theorem or the central limit theorem to obtain testing procedures 
for hypotheses about p .  Thus, if n is large, but np is small, then asymptotically X - 
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POI(np). The hypothesis HO : p = po corresponds to HO : X = npo in the Poisson 
distribution. We can use tests for this distribution. 

If neither n p  nor n(l - p )  is small, then we have X / n  -N(p,p(l - p ) / n ) .  To 
test the hypothesis HO : p = po (against a one- or two-sided alternative), we use the 
fact that under Ho,  the distribution of the random variable 

x/n - PO 
JPOP - p o ) / n  

z= 

is asymptotically standard normal. 
For two sample situations, let X N BIN(n1,  p l ) ,  Y - BIN(n2 ,  p2) ,  where n1 and 

' 22  are both large, and assume that we can use normal approximation. Then we have 

Thus under the null hypothesis Ho : p l  = p2 ,  we have, letting p l  = p z  = p ,  

This statistic still involves the nuisance parameter p .  However, under HO the MLE 
o f p  is ( X  + Y) / (n l  + nz), so we can use the test statistic 

which is asymptotically standard normal. Whether we use the one- or two-sided test 
depends on the alternative hypothesis. 

EXAMPLE 13.37 

In primary elections, 28% of the Republicans in New Hampshire voted for 
candidate A.  A poll of 180 Republicans in Iowa show that 41 of them will 
vote for candidate A. Does this result indicate that the Republican support of 
candidate A is lower in Iowa than in New Hampshire? 

SOLUTION. We have here po = 0.28, the known level of support for A in 
New Hampshire, and we want to test the hypothesis HO : p 2 0.28 against 

.A eakem twe 8:. s Y  ~ - 6 ~  a2.R ,.whve p i  $& 4. k?.&Qr f.EquMim mtw 
who support A in Iowa. The observed value of test statistic is 

41/180 - 0.28 z= = -1.58, 
J0.28 x 0.72)/180 

which corresponds to the p-value 0.059. 
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EXAMPLE 13.38 

Continuing Example 13.37, of the 180 persons polled, 1 10 are women, and 20 
of them of whom 21 said they would vote for A. Does this result indicate that 
support for A in Iowa is higher among men? 

SOLUTION. We now want to test the hypothesis pw = p~ against the al- 
ternative p~ < p ~ .  The value of the test statistic is 

21 20 
70 110 
- - -  

= 1.84. z =  
41 (1 - 41) 180 (L 110 + -I-) 
180 

The p-value here is about 0.033, and this may serve as an indication that in- 
deed, the support for A among Republican women is lower than among Re- 
publican men. 

13.10 MONTE CARLO, BOOTSTRAP, AND PERMUTATION TESTS 

The tests introduced so far were based either on the known distribution of a test 
statistic or on its asymptotic form applicable when the sample size is large enough. 
There are, however, problems in which the distribution of the statistic is either un- 
known or difficult to handle theoretically, or the sample is not large enough to use 
the asymptotic properties of a test statistic. In all such cases one could apply power- 
ful computer-intensive statistical procedures that recently became widely available 
with advances of computer technology. 

EXAMPLE 13.39 

Assume that X I , .  . . , X, is a random sample from the Laplace distribution 
with a density j ( z ;  p ,  A) = (X /2 )  exp{ -Xlz - p l } ,  and X known. Ifwe want 
to test the hypothesis HO : p = 0 against the alternative HI : p > 0 at the 
significance level a,  then for the large sample size we could use the central 
limit theorem and reject HO if z > &z,/X (recall that Var(X) = 2/X2). 
However, if the sample size is rather small (e.g., n = lo), the normal approx- 
imation of the distribution of x may not be appropriate, and other methods 
should be used instead. 

Monte Carlo Tests 

In Monte Carlo tests the critical values for given levels of significance, or con- 
versely, the probabilities for specified thresholds, are estimated from generated sam- 
ples based on the fact that relative frequencies can be used to estimate probabilities. 

EXAMPLE 13.40 

Continuing Example 13.39, ifwe are testing HO : p = 0 against H1 : p > 0 
at the significance level a = 0.1, then we need to find a critical value v, 
such that P('jT 2 v,Ip = 0) = a. For that we generate many (at least 
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several thousand) samples of size n = 10 from the distribution with density 
f(z; p = 0, A) = (1/2)X exp{ -Alzl}, and for each of them obtain its sample 
mean. Next, 6, is obtained as the sample upper 0.1 quantile in the set of all 
means in generated samples. 

In Examples 13.39 and 13.40 the sample size was small. Other situations where 
the use of Monte Carlo tests is recommended would be cases where distributions 
of statistics are difficult to track theoretically (e.g., when population distributions 
are mixed or contaminated) or the estimators of parameters of interest are difficult 
to handle theoretically (e.g., sampling distribution of the coefficient of skewness or 
kurtosis). 

Bootstrap Tests 
Bootstrap procedures are designed for the situations where the population distri- 

butions are unknown, and the actual samples provide the only available information. 
Consequently, the reference distribution for the statistic of interest is obtained from 
bootstrap samples. One may notice that bootstrap sampling is actually a Monte Carlo 
sampling from the distribution obtained from all n sample values, with probabilities 
l / n  assigned to each of them (the generation of bootstrap samples was described in 
Section 12.7). The p-values of the test are obtained as appropriate relative frequen- 
cies from the bootstrap distribution of the statistic being used. 

EXAMPLE 13.41 

Let us consider a problem in which hypothesis Ho : p = 10 is tested against 
H I  : p > po. The test statistic that can be used here is 5?, and its sampling 
distribution is imitated (as explained in Section 12.7) by the bootstrap distri- 
bution. However, we need to keep in mind that the p-values must be obtained 
as probabilities for the distribution determined by the null hypothesis. Since 
we do not know what distribution the random sample represents (with p = po 
or rather p > PO), before generating bootstrap samples we need to modify 
sample values by taking wi = zi - Z + po, where Z is the mean obtained from 
the original sample. Then the p-value will be obtained as 

number of Et’s exceeding Z 

B 
p-value = , 

where El is the average in the ith bootstrap sample. 

We can also use bootstrap tests to compare parameters in two populations. In 
such a case we usually have two independent random samples XI,. . . , X, and 
Yl, , . . , Y,. B bootstrap samples X;, . . . , XA and Y;,  . . . , YA are then generated 
by sampling with replacement from the same set that consists of combined m + n 
original observations. 

Permutation Tests 
Permutation tests are similar to bootstrap tests as they also use only actual Sam- 

ple(s) to obtain a reference distribution based on which a p-value is determined. 
However, the sampling process is now different. 
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Practically all parametric tests have a corresponding permutation test that is based 
on the same test statistic as the parametric test. But the p-value is obtained from 
the sample-specific permutation distribution of that statistic rather than from the 
theoretical distribution derived from the parametric assumption. 

We will focus here on a two-sample test that compares two population distribu- 
tions; the HO states that both distributions (or their respective parameters) are equal. 
An important assumption behind a permutation test is that the observations are ex- 
changeable under the null hypothesis. The respective samples x = ( 5 1  , . . . , z,) and 
y = (y1, . . . , 9") of size m and n can then be combined into one set of size m + n 
which is then partitioned into two subsets of sizes m and n so that the value of the 
appropriate statistic can be obtained. This process is repeated for all possible (",'") 
partitions, eventually giving the reference distribution based on which a p-value will 
be determined as a measure of how "extreme" is the value obtained from the original 
samples. 

EXAMPLE 13.42 

Let x = (z l l .  . . ,z,) and y = (91,. . . , ym) be two particular samples se- 
lected randomly from distributions f(z;  00) and f ( y ;  01 ), respectively. We 
want to test hypothesis HO : 00 = 81 against the alternative H I  : 00 < 82. 
Assume that the difference A = 01 - 00 is estimated by some statistic A, 
and its large values provide evidence supporti;g the a!temative hypothesis. To 
perform the permutation test, we first obtain A0 = A(x, y). Then samples x 
and y are combined into a set w = (ql . . . zn, y1,. . . , ym), which is next 
partitioned (",'") times into two subsets of sizes m and n, respectively. For 
each partition the value of statistic A is obtained and the p-value is determined 
as 

number of values of A equal or exceeding A 0  
p-value = (",'"I 

If sample sizes 'm and n are such that the number of all possible partitions (",'") 
is very large, then a smaller number of partitions can be obtained in a random (rather 
than systematic) way. Such procedure is called a randomization test. 

More information on procedures introduced in this section can be found, for ex- 
ample, in Good (2005). Additional examples of computer-intensive procedures pre- 
sented in this section together with the R-code can be found on the book's FTP site 

ftp://ftp.wiley.com/public/sc-techmed/probabilitystatistical. 

PROBLEMS 

13.10.1 A random sample 0.38,-0.49,0.03,0.21,0.12,0.14,-0.18,-0.34,0.46, 
-0.01 was selected from a Laplace distributionwith density f(z,  b)  = exp{ -212 - 
p i } .  Use Monte Carlo simulations to estimate the p-value for testing hypothesis 
Ho : p = 0 against the alternative H1 : p > 0. 

13.10.2 Arandom sample 1.138,1.103,3.007,1.307,1.885,1.153was obtainedfrom 
a distribution with density f (z l  0) = 282z-3 for z 2 0 and 0 otherwise. Find the 



MONTE CARLO. BOOTSTRAP, AND PERMUTATION TESTS 515 

Figure 13.7 Golden rectangles 

MLE of 6, and use it to test Ho : 6 = 1 against H I  : 6 > 1. Find the p-value and 
compare it with the p-value based on 2000 Monte Carlo generations. 

13.10.3 Assume that the hypothesis Ho : 6 = 0 is to be tested against H I  : B > 0, 
where 6 is a parameter in the U[6,0 + 11 distribution. (i) Derive the test of size 
cr = 0.05, based on one observation only, and obtain its power function for 6 = 
0.1,0.2, . . . ,0.9. (ii) Use Monte Carlo simulations to obtain a test with a critical 
region > k ;  that is, estimate k.  Then again use Monte Carlo simulations to 
estimate the power function of this test at 6 = 0.1,0.2, . . . ,0.9. Use the same size 
cr = 0.05. (iii) Compare the power functions of both tests. 

13.10.4 Use the bootstrap test for testing Ho : /I = 2 against H I  : p > 2, based 
on a random sample: 3.49,2.21, 1.07,3.04, 2.57,2.43, 2.18, 1.10, 1.04, 1.92,0.99, 
3.13,0.92, 2.72,4.03. 

13.10.5 (Shoshoni Rectangles) The following problem is taken from Larsen and 
Mam (1986). Since antiquity, societies have expressed esthetic preferences for rect- 
angles having a certain width (w) to length (1) ratio. For instance, Plato wrote that 
rectangles formed of two halves of an equilateral triangle are especially pleasing 
(for such rectangles w/ l  = l/&). Another standard, adopted by the Greeks, is the 
golden rectangle. It is defined by the condition that the ratio of its width to length 
must be the same to that of the part remaining after cutting off a square with the 
side equal to its width (i.e., the shaded area in Figure 13.7 is similar to the whole 
rectangle). Thus a golden rectangle must have w/ l  = (1 - w)/w, which gives 
w/l = & - 1; hence w/ l  = (A  - 1)/2 = 0.618. 

Both the Greeks and the Egyptians used golden rectangles in their architecture. 
Even today the golden rectangle remains an architectural and artistic standard (e.g., 
items such as drivers’ licenses, business cards or picture frames often have w/l ratios 
close to 0.618). 

The data below show width-to-length ratios of beaded rectangles used by Shoshoni 
Indians to decorate their leather goods. Use the bootstrap test to check whether the 
golden rectangle can be considered an esthetic standard for the Shoshonis. 
Width-to-length ratios for 20 rectangles found on Shoshoni handicraft: 

0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 
0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933 
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13.10.6 A study of pollution was carried out in two lakes, A and B. The level of a 
specific pollutant was measured using a certain instrument, and the results for lake 
A were 3.17,4.22,2.58,4.01, and 3.79. In lake B the measurements (made with the 
same instrument) were 4.04,4.32, and 4.12. Test the hypothesis that pollution levels 
are the same in both lakes, against the alternative that the level in lake B is higher 
using: (i) The bootstrap test. (ii) The permutation test. (iii) Compare both results. 

13.10.7 Two random samples 4.49, 7.68, 5.97, 0.97, 6.88, 6.07, 3.08, 4.02, 3.83, 
6.35, and 4.59, 3.39, 3.79, 6.89, 5.07, 7.41, 0.44, 2.47, 4.80, 7.23 were obtained 
independently from distributions with the same mean. Perform a permutation test 
to test the hypothesis that the variability in both populations is the same against the 
alternative that it is larger in the second population. As a test statistic use: (i) The 
difference of sample ranges. (ii) The ratio of sample variances. (iii) Compare both 
results. 



CHAPTER 14 

LINEAR MODELS 

14.1 INTRODUCTION 

This chapter is devoted to statistical problems arising in situations where the ob- 
served values (called “dependent variable,” “response,” etc.) are influenced by some 
other variable (referred to as “independent variable,” “explanatory variable,” “treat- 
ment,” “factor,” etc.). In this chapter we consider the case where only expected 
values are affected, while other characteristics (as well as the type of distribution) 
remain the same. 

The theories that we present depend on the assumptions about the independent 
variable: Can its value be observed or not? If yes, can it be controlled by the ex- 
perimenter? If no, can it be regarded as random? Depending on the answer to these 
questions, we have a regression analysis or different analysis of variance models 
(one-factor, two-factor, with or without interaction, with fixed or random effects, 
etc.). 

Many models (theories) are available in the general setup considered in this chap- 
ter. The basic ideas and solutions we present cover a few of the most representative 
cases. We hope that the information we provide is enough information to motivate 
users of various statistical packages to try to identify conditions where a specific 
procedure is not the only one available. A thorough and exhaustive presentation of 
any of these theories can be found in any of numerous books devoted to regression 
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analysis or analysis of variance (e.g., see Montgomery et al., 2006; Stapleton, 1995; 
Myers and Milton, 1991; Myers, 1986). 

In this chapter we outline some of the most common ways of analysis of data 
measured on a scale of at least interval type. We discuss the methods of detecting 
and measuring effects expressed through the mean of the observed random variable. 
However, we present only the most common of such methods, regression analysis 
and analysis of variance. 

EXAMPLE 14.1 

In a simple case of linear regression analysis we observe a random variable Y 
such that Y = ax + p + t ,  where X is some variable (random or not, pos- 
sibly controlled by the experimenter) and t is the “error,” meaning a random 
variable with E(t) = 0, Var(t)  = o2 < 00. Both X and Y are assumed to be 
measured on an interval (or possibly even ratio) scale. 

Specific examples may be obtained by taking Y to be the time to com- 
pletion of some chemical reaction, and X being the temperature; Y may be 
some substance that accumulates linearly (up to random fluctuations) in hu- 
man bones throughout life, and X may be the age of the person at death, and 
so on. 

Typically we have data in the form of pairs (Xi, Yi), i = 1, . . . , n, possibly 
with some Xi’s repeating. The problems are to estimate a, p, and o2 (or to test 
hypotheses about these parameters) and predict the value of Y to be observed 
for some X O ,  or to estimate X corresponding to some observed value of Y. 

Obvious generalizations involve a model with more than one variable X, 
for instance, when Y = alX1 + (~2x2 + p + t ,  where X1 and X2 are some 
variables. We may have nonlinear models, such as Y = ax2 + p X  + y + t 
(quadratic regression), etc. 

EXAMPLE 14.2 Analysis of Variance, or ANOVA 

Analysis of variance applies to situations where variables Xi are nominal. We 
typically speak of “factors” that operate on some levels.30 For instance, we 
might have data (measurements of some “response”) taken from populations 
classified according to some criteria such as sex (male, female) and smoking 
status (never smoked, former smoker, current smoker). We want to find out 
whether any of these factors (sex and smoking status) has an effect on Y (e.g., 
response to some drugs). 

The data can be summarized in a table: 

1 2 3 
Never Smoked Former Smoker Current Smoker 

1 Male y11 Yl2 y13 

2 Female y2 1 y22 y23 

3oThe use of the word “level” in the context of ANOVA does not imply any specific ordering of the levels 
of factors such as “sex,” F (female) and M (male). 
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Here y Z j  is the response of a subject from group ( z , j ) ,  where we have one 
observation in each cell. The model is 

y , .  23 - - ~ + ~ i + P j + t i j ,  

for which we can assume cq + 0 2  = O,pl + p2 + p3 = 0, and E i j  to be 
the error term satisfiing [ i j  -N(O, a2).  We may wish to test the hypotheses 
Ho : a1 = a2 = 0 and Hh : /31 = p2 = p3 = 0 (no se: effect, and no 
smoking effect) against the alternatives H I  : a1 # a2 and H ,  : p k  # /3l for 
some lc, 1 = 1 , 2 , 3 ,  k # 1. 

The scheme of Example 14.2 can be modified in a number of ways, of which 
we will discuss some. The main issue we note here is that comparing the results 
within each pair separately (until either a pair of “significantly different” results is 
found or until all pairs are checked and found not to differ significantly) is not a 
correct method. Indeed, for many pairs the probability of finding a pair with a large 
difference becomes quite likely because of chance fluctuations, even where the null 
hypothesis is in fact true. The correct method requires testing all pairs at once, which 
is accomplished by the analysis of variance methodology. 

14.2 REGRESSION OF THE FIRST A N D  SECOND K I N D  

Let Y denote a dependent variable (assumed to be one-dimensional) and X (or 
X) denote an independent variable. In most cases X will be one-dimensional, 
but the considerations can usually be extended to rn-dimensional vectors X = 
( X I ,  . . . , X m ) ,  where rn > 1. 

A few comments about the nature of X and some illustrative examples are in 
order here. We start with the case where the values of the independent variable 
(or variables) can be observed. Depending on how the values of X are chosen, X 
may be random, either one- or multidimensional, nonrandom, or even under the 
experimenter’s control. Typical cases of such situations are exemplified below. 

EXAMPLE 14.3 

In some genetic theories one studies a characteristic Y of offspring, such as 
height, which depends on characteristics X = ( X I ,  X 2 )  of a father and a 
mother ( X I  , X2 may be heights, but it is also possible to study some other 
features affecting the offspring’s height Y ) .  

EXAMPLE 14.4 

Sometimes the randomness of Y for a given X = z has to be postulated, since 
it is not possible to observe more than one Y for the same 5 .  This happens, for 
instance, if z is the calendar time, and we observe the stock market index Y, 
at the end of the day z. Here we treat Y, as random, since we cannot predict 
its value with complete precision. We only have the conviction that “if such 
and such events had occurred, the value Y, would be different from that being 
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observed.” But for each z only one single value is recorded, and we have no 
empirical access to the distribution unless we make some assumptions about 
the nature of randomness of Y, across different times z. 

EXAMPLE 14.5 

It may happen that X is not random. For instance (in the case of one dimen- 
sion), we may study the relation between some developmental characteristic 
Y of a child, say height or size of vocabulary, as dependent on age X. The 
randomness concerns values of Y for the same X = 5 ,  since in the population 
of children of age z there is some variability of values of Y.  

EXAMPLE 14.6 

It may even happen that the values of X are totally under the experimenter’s 
control. For instance, a chemist may be interested in some characteristic Y of 
a chemical reaction (e.g., its duration) depending on temperature X. Then X 
can be determined arbitrarily by the experimenter, and for a given temperature 
X = 5, the randomness of Y may be due to measurement error, or to some 
other factors. 

In each of the cases under consideration the data have the form of a set of pairs 
(xi, yi), i = 1,2,. . .n, where values of zi can repeat. Even if the xi’s are not 
random, the formulas are identical with those obtained under the assumption that 
X has discrete uniform distribution over the set ( 5 1 ,  . . . , zn}, with probabilities 
appropriately increased in the case of repeated values. Thus we will proceed as if X 
(respectively, X) were a random variable. We will assume throughout this chapter 
that X and Y have finite variances, hence also finite expectations. 

Let us begin by recalling some facts from Chapter 8. Suppose that we know the 
value of X, X = z, and we want to predict the value of Y .  The best prediction of 
Y (in the sense of mean square error) is given by the conditional expectation 

u(5) = E ( Y I X  = z). (14.1) 

In other words, we have 

m i n E [ ( Y  - [ )21X = z] = E[(Y  - u ( ~ ) ) ~ l X  = z]. 
€ 

Accordingly we introduce the following definition: 

Definition 14.2.1 The conditional expectation of Y given X = z, that is, the func- 
tion u(z )  given by (14.l), will be called the true regression, or regression o f t h e j r s t  
kind, of Y on X. 0 

In the case of a continuous random variable X, it may happen that the regression 
function u(z )  is defined only for almost all z, that is, on a set A such that P { X  E 
A }  = 1. However, in all cases that are encountered in statistics, there is typically a 
function u(z)  that is “natural” in a given problem. We will select such a function and 
comment on the nonuniqueness of a regression function only when such a comment 
is essential for the problem. 
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The usefulness of the regression function u(x) is not restricted to the prediction 
of Y .  To mention just one other use of it, suppose that we do not know how X and 
Y are related; we only formulated the hypothesis that the true regression function is 
equal to some function UO. In other words, the null hypothesis is Ho : E ( Y I X  = 
x) = UO(Z) for all z. If we know something about the conditional distribution of 
Y given X ,  we may test this hypothesis, rejecting it if the value of Y observed for 
given X = x is “far” from uo(z). 

Finding the true regression U(Z) requires the knowledge of the joint distribution 
of ( X ,  Y )  or, more precisely, the conditional distribution of Y given X = Z. Such 
knowledge can come from a sufficiently deep understanding of the stochastic mech- 
anisms that connect X and Y, or from very extensive data on pairs ( X i ,  y Z ) .  There 
are many practical cases when neither is available. Moreover, even if we do know the 
joint distribution of ( X ,  Y ) ,  determining U(Z) may present formidable difficulties. 

To cover such situations, another type of regression has been introduced. Starting 
again from problem of prediction, suppose that we want to find the best predictor of 
Y that is linear in X .  It will have the form Yp = a + b X ,  and we will have to find 
such a and b that Yp is the best predictor of Y-in the sense of minimizing the mean 
square error E ( Y  - Yp)2. We have here 

E(Y - Yp)2 = E [ Y  - ( a  + bX)I2 
= 
= 

E ( Y 2  + a2 + b2X2 - 2aY - 2bXY + 2abX) 

E ( Y 2 )  + a2 + b 2 E ( X 2 )  - 2 a E ( Y )  - 2 b E ( X Y )  + 2abE(X) .  

By differentiating with respect to a and b and setting the derivatives to be 0, we 
obtain the normal equations; 

a , + b E ( X )  = E ( Y ) ,  

a E ( X )  + b E ( X 2 )  = E ( X Y ) .  

Multiplying the first equation by E ( X )  and subtracting it from the second, we obtain 

E ( X Y )  - E ( X ) E ( Y )  UY 
b =  = P-, 4 ox 

and consequently 
QY 

QX 
a = E ( Y )  - p - E ( X ) .  

(14.2) 

(14.3) 

Thus coefficients a and b require only means, variances, and covariances of X ,  Y .  
We now introduce the following definition: 

Definition 14.2.2 The relation 

Y = u + bX = E ( Y )  + p2[X - E ( X ) ]  (14.4) 

0 

QX 

is called the linear regression, or regression of the second kind, of Y on X .  
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Figure 14.1 True regression 

EXAMPLE 14.7 

Let us consider the situation where the true regression is the hnction 

x f o r ~ < x < i  

i for < x 5 1. 
u(x) = 

Such a regression can occur for various conditional distributions of Y .  To fix 
the idea, suppose that given x, the random variable Y is distributed uniformly 
on an interval whose leftmost point is 0. Thus, for 0 5 z 5 i, random 
variable Y, is uniform on [0,2x] ,  whereas for f 5 2 5 1, random variable Y, 
is uniform on [0,1]. The situation is presented in Figure 14.1. The shaded area 
shows all possible points ( X ,  Y ) .  The polygonal line OAB is the graph of the 
true regression u(x ) .  For use in the next example, note that we have here 

(14.5) 

EXAMPLE14.8 

In Example 14.7 the distribution of X did not play a role in determining re- 
gression. In fact X could have been nonrandom. On the other hand, to de- 
termine the linear regression of Y on X ,  it is necessary to know the marginal 
distribution of X .  The intuitivejustification here is that in linear regression the 
objective is to find the best approximation of Y by a straight line. Thus it mat- 
ters which values of X occur more often and which occur less often. Suppose 
that the joint distribution of the vector (X, Y )  is uniform on the shaded area in 
Figure 14.2. To determine the linear regression, we need the expectations and 
variances of X and Y as well as their covariance. We have here, using simple 
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Figure 14.2 Linear regression for uniform distribution of (X, Y )  

geometry, for the marginals of X and Y: 

(14.6) 

The value of c is determined from the condition 

3 
8 

1 

1 = f x ( z ) d x  = -c; 

hence c = 8/3. Consequently 

After simple integrationwe obtain E ( X 2 )  = 31/72, hence Var(X) = 37/648. 
Similarly, fu(y) = (4/3)(1 - y/2) for 0 5 y 5 1, and consequently 
E ( Y )  = 4/9, and Var(Y) = 13/162. 

Finally, the joint density f (x ,  y) is constant, equal to 4/3 on the shaded 
area in Figure 14.2. Thus E ( X Y )  = 7/24, and using (14.4), we obtain the 
equation for linear regression (see Figure 14.2): 

x 7  Y=-+---. 
4 24 

It is of some interest to compare the average square error of prediction of 
Y on the basis of X if we use true and linear regressions. For prediction under 
true regression, we find the average square error, using (14.5) and (14.6): 

1 

E ~ [ v ~ ~ ( Y I x ) ~  = 1 Var(Y1X = x)fx(x)dx  
0 
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For prediction with the use of linear regression, we have the error 

7 1 
12 48 

- -E(Y)  + - E ( X )  = 0.0738. 

Thus, in this case, the mean square error of the linear prediction is about 5.5% 
higher than the corresponding error of prediction based on the true regression. 
Whether a 5.5% difference is important or negligible depends on the context. 
The point is that the mean square error of a linear prediction is always at least 
as large as the error of prediction based on a true regression. Also one can 
easily construct examples where the ratio of these two errors is as large as one 
wishes. In the extreme case, if Y = g(X), where g is a deterministic nonlinear 
function, g is the true regression and there is no error involved in a prediction 
of Y using g(X) as the predictor. But there is an error involved if a nonlinear 
function g is approximated by a linear function a + b X .  

Example 14.8 shows that the issue ofprediction errors in comparison of two types 
of regression is only partially statistical. One component is due to the randomness 
of Y for a given X = 2,  and the other is due to replacing the true regression w,(z) 
by a straight line. 

The situation may be improved by considering a regression of the second order, 
where the predictor is of the form Yp = a + bX + c X 2 ,  or a regression of some other 
special form, and as Yp = a + b s in(cX) ,  and so on. The point is that none of these 
regressions can give the mean square error lower than that based on true regression. 

PROBLEMS 

14.2.1 Let X and Y have a joint distribution uniform on a parallelogram with ver- 
tices at points (-1, -l), (0, -l), (1,l) and (0 , l ) .  Find the true and linear regres- 
sion of: bf (i) X on Y. (ii) Y on X .  

14.2.2 Find an example of random variables ( X ,  Y )  such that their true and linear 
regressions of Y on X coincide, but ( X ,  Y )  do not have a joint normal distribution. 

14.2.3 Suppose that the true regression of Y on X is not linear in X. Is it possible 
that the marginal distribution of X is such that the expected square error of the best 
linear predictor of Y is the same as the expected square error of predictor based on 
the true regression u? 

14.2.4 Let (xi, yj), i = 1, . . . , n be the data where at least one value of zi is not 
zero. Find an estimate of the slope parameter b if it is known that (I. = 0 [i.e., find 
the best fit of the model E(Y Iz) = bz]. 

14.2.5 Suppose that X = ( X I ,  X 2 ) .  Find coefficients a,  b l ,  b2 such that Yp = 
a + blXl + bzX2 is the best linear predictor of Y given X. 
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14.2.6 Find true regression Y on X if X and Y have a joint trinomial distribution 

forrc = 0 , l . .  . n , y  = 0,1 , .  . . , n , andO 5 z + y  5 n, 

14.2.7 The number of eggs in nests of a certain species of birds is one, two, or 
three, with two eggs found in about 80% of nests, and one or three eggs in about 
10% of nests each. In one-egg nests, the egg hatches successfully in 75% of cases. 
In two-egg nests the probabilities for the number of offspring are 0-20%, 1-30%, 
2-50%, whereas in three-egg nests, these probabilities are 0-10%, 1-20%, 2-60%, 
3-10%. Find the best linear predictor of Y being the number of offspring based on 
the observation of X-the number of eggs in the nest. 

14.3 DISTRIBUTIONAL ASSUMPTIONS 

In addition to the classification of regression models with respect to the two types 
of regression, a meaningful and useful classification is obtained when one considers 
typical assumptions about the distribution of the response Y for a given value of X. 

The oldest methods that can be included in regression theory dates back to the 
beginning of the nineteenth century and the works of Legendre. He found a method 
of best approximation of a set of points by a straight line. The word “best” was 
understood in the sense of least squares. In other words, Legendre found, for a set 
ofdata points (zi, yi), the coefficients u and b such that the sum Ci [yz  - (a+b3:i)12 
attained its minimum. In this formulation no assumptions about randomness are 
needed: the best-fitting line always exists, even if the “best” fit does not mean a 
“good” fit. The extension to the best linear fit in two (or k) dimensions-finding 
u l ,  u2, b to minimize the sum ~[y~-(~+b~z~~)+b~z,(~))]~-i~nowstraightfonvard. 
Similarly the theory extends naturally to other forms of relations, such as quadratic 
or periodic functions obtained by minimizing the sums Ci[yi - (u + bzi + C Z ~ ) ] ’  

or Ci[yi - acos(bzi + c ) ] ~ .  
Viewed in this way, regression theory belongs properly to the domain of nu- 

merical analysis. However, to allow statistical inference, one usually makes some 
assumptions about the randomness inherent in the model. One of the standard as- 
sumptions is that for every 3: we have Y = p(.) + €, where p is some deterministic 
function and is the “error” random variable, such that: 
(i) E ( E )  = 0. 
(ii) Var(€) = 2 >,O. ,, 
(iii) The errors 6, , € , . . , , corresponding to different observations of Y (for the 
same, or for distinct values of z are ~ncorrelated.~’ 

Under these assumptions, cp(z) is the true regression of Y on X. If one now 
imposes some parametric model on p, one can set up the least square equations for 
parameters of ’p and the parameter $. 

3’The assumption that variance is independent of x is often called homoscedarticity, as opposed to het- 
eroscedasticity . 
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If the assumptions ( iHi i )  are replaced by 
(iv) The errors E ,  E ’ ,  . . . , have a N(0,02) distribution, 

then the errors are independent. The independence of errors and knowledge of the 
distribution, have profound theoretical consequences: we can write the likelihood of 
the data and find the maximum likelihood estimators of the parameters. 

One can easily see that in this case the MLE’s coincide with least square esti- 
mators, so it might appear that nothing is gained by replacing ( i x i i i )  with (iii) and 
(iv). However, under (iv) we know the sampling distribution of the estimators, and 
we are therefore able to use the results from estimation and testing theory to build 
confidence intervals, tests of various hypotheses, and so on. 

(v) p(x) = a + bx, 
(vi) X has a normal distribution, 
then the joint distribution of (X, Y) is bivariate normal. The converse is also true, 
as shown in Theorem 9.5.4. We may summarize these facts as the following: 

Theorem 14.3.1 In case ofbivariatenormal distribution ( X ,  Y), the true and linear 
regress ion coincide. 

A comment appears necessary here in regards to assumptions (iii) and (iv), and 
their implementation in practical situations. To illustrate potential difficulties, sup- 
pose that we collect data on a regression where x is the age of a child, and Y is 
some response, such as reaction time to a specific stimulus. Suppose that we need 
two observations for the same age z. Then it is not correct to measure the reaction 
time Y twice for the same child of age z, even if such observations can be regarded 
as independent. The correct procedure is to take two children of  the same age z and 
observe their reaction times. The reason is that variability of Y has two components: 
the between-children variability and the within-child variability. Taking two mea- 
surements for the same child will involve only the second component, whereas other 
observations will involve both components, violating (among others) the assumption 
of homoscedasticity. 

Assumptions (i)-(vi) are by no means the only sensible assumptions one can 
make in regression analysis. The linearity assumption E(Y,) = a + bx is often 
acceptable as an approximation or in some narrow range. A typical case of this kind 
is illustrated by the following example: 

Finally, let us mention, that if in addition to (i), (ii), and (iv) we can assume that 

EXAMPLE 14.9 Logistic Regression 

Assume that the response variable Y, is of the binary character (e.g., success 
or failure). We can always take the possible values of Y, as 0 and 1 so that 
E(Y,) = P{Yz = 1) = ~ ( x ) .  We will assume that x is a numerical variable 
(random or not, depending on the situation under study), and that ~ ( x )  is the 
true regression of Y on x. The assumption ~ ( x )  = a + bx can be realistic 
only in a narrow range of values of x, since we must have 0 5 T(Z) 5 1 for 
all z. Still the inference about the shape of function ~ ( x )  is of considerable 
interest, and linearity is a powerful assumption (in the sense of allowing many 
analytical results). To realistically utilize such an assumption, we consider the 
odds ratio n(z)/[l - T ( z ) ] ,  with range (0, co), and its logarithm, with range 
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(-m, m). Thus we consider the model 

or equivalently, 
ea+bx 

1 + ea+bz ' 
7T(x) = (14.7) 

The right-hand side of (14.7) is called the 1ogisticJirnction (and is a cdf of 
a logistic distribution if b > 0), which explains the name logistic regres- 
sion. The problem now is to estimate parameters a and b given the data 
( x i ,  ni, N i ) ,  i = 1,. . . , m, where xi's are the values of the independent vari- 
able at which observations are taken, while ni and Ni are the number of suc- 
cesses and the number of trials at value xi, respectively. The likelihood is 
therefore 

Determining a and b that maximize L requires using numerical iterations. 

PROBLEMS 

14.3.1 The random variable Yx has the density 

1 for a , + b x - ~ < y < a + b x + ~  
f ( Y b )  = { 0 otherwise. 

Find the MLE's of a and b given the sample: (-1,1.3), (0,1.4), ( 1 , O .  l), (2, -0.4), (3, -0.1 
Compare the MLE's with the LS estimates. 

14.3.2 Let ( X ,  Y) have the distribution uniform on the quadrangle with vertices 
( O , O ) ,  (1, l),  (0,2), and (0.5, l ) .  Find: (i) The true regression of Y on X and of X 
on Y .  (i i)Var(X/Y) andVar(Y1X). 

14.3.3 Assume that the total number X of eggs laid by a bird has a Poisson distribu- 
tion with parameter A, and that each egg hatches with probability p ,  independent of 
other eggs. Find the regression of the number Y of eggs hatched on X. Let Xi, Y, 
be the number of eggs laid and hatched by the ith bird. Derive the likelihood of the 
data for n birds, and the equation for estimating X and p .  Find the MLE's of X and 
P .  

14.3.4 Answer Problem 14.3.3 assuming a more realistic model, where Xi's have a 
Poisson distribution conditional on a positive value, that is, for k = 1 , 2 ,  . . . , 
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14.3.5 A still more realistic model is that when all eggs are laid, a disaster occurs, 
and with probability Q all eggs are destroyed. If there is no disaster, eggs hatch 
independently, each with probability p .  Find the regression E ( Y I X ) ,  the likelihood 
of the data, and (where possible) the estimators of A, a, and p under assumptions of 
Problems 14.3.3 (Poisson distribution of X) and 14.3.4 (conditional Poisson). State 
carefully the assumptions you make. 

14.4 LINEAR REGRESSION IN T H E  NORMAL CASE 

In this section we will present the main results in the case where for any given 5 ,  the 
response Y is of the form 

Y = a f b 5 + €  

for E - N(0, a2). Moreover, we will assume that the errors E for different observa- 
tions of Y (for the same as well as for a distinct z) are independent. 

We will assume that the data have the form 

(zi ,yi) ,  i = 1,. . . , n ,  (14.8) 

where y1, . . . , yn are independent observations. We will use the notation 

I "  

i=l i=l 

and assume that not all xi's are identical. 

tion of the sample (14.8) is 
The estimates of parameters a ,  b, and o2 are easy to obtain. The likelihood func- 

L = fi 1 e - ( Y , - a - b z , ) z / 2 0 2  

i=l a& 

hence 
I1 1 "  

log L = c - - log(a*) - - c ( y i  - a - bZi)2 
2 2g2 l=l 

Differentiating with respect to a and b, we obtain a pair of equations (in which a2 
cancels out) that are the same as the equations for the least squares estimates of a 
and b. The solutions can be obtained from formulas (14.2) and (14.3) by treating X 
as a random variable uniformly distributed on x1, . . . , 5,. Thus 

(14.9) 

The denominator in the expression for b is not zero in view of the assumption that 
not all xi's are equal. 
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Differentiating log L with respect to CT' and setting the derivative equal to 0, we 
obtain the MLE of u2: 

( 1 4.1 0) 

To determine the sampling distribution of estimators (under variability of y j  's only, 
for fixed xj 's) ,  let us regard y j  as a value of the random variable YZj.  Then the 
estimators of b, a, and o2 are, respectively, 

v = Y - u z  
. n  

(14.1 1) 

1 

n 
T 2  = -x(Y,, - V - Uxi)' 

i=l 

Notice that the randomness of U, V, and T 2  is related only to the variability of the 
dependent variable Y, about its mean a + bx. The values xi may be nonrandom, and 
even if they are arising from the sampling, U, V, and T2 involve only a conditional 
distribution of Y given X = x. 

It follows from (14.1 1) that U ,  as a linear combination of normally distributed 
random variables, has itself a normal distribution. To determine the mean, observe 
that 

Consequently we have 

To find the variance of U ,  we write 

Consequently, by assumption of homoscedasticity, 

Next the estimator V given by (14.1 1) is also a linear combination of the normal 
random variables, so it has a normal distribution. Here 

E(V) = E ( 7 )  - E ( U ) Z  = a + bZ - b: = a 

so that CJ and V are unbiased estimators of b and a.  
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The derivation of the variance of estimator V is somewhat messy. We have 

In the last term, all covariances corresponding to i # j vanish while all others are 
equal u2.  Consequently 

After some algebra we obtain 

In a similar manner, we can show that 

- 
2 

Cov(U, V )  = -u2 
C(Zi - q 2  

(14.13) 

(14.14) 

(we leave the proof as an exercise). 

following theorem holds: 

Theorem 14.4.1 The estimators (V, U ,  T 2 )  are jointly suficient for the parameter 
0 = ( a ,  b, 02). Moreovel; (U, V )  have a bivariate normal distribution with means, 
variances, and covariance given by (14.12) through (14.14). Finally, T2 is inde- 
pendent of (U, V ) ,  and nT2/a2 has a chi-square distribution with n - 2 degrees of 
freedom. 

These results suggest that (U,  V )  has a bivariate normal distribution. In fact the 

Proof We can use the joint moment generating function 

Substituting the expression for U ,  V and T2,  and integrating with respect to the joint 
density of (x, . . . Yn), we can show (after considerable algebra) that m(t1 t z l  t 3 )  = 
rnl ( t l  , t 2 )  x "12 ( t 3 ) ,  which proves the independence of (U,  V )  and T 2 .  The form 
of functions ml and m2 will then show that claims about the distributions of (U,  V )  
and T2 are also valid. We omit the details. 0 

We will now illustrate the applications of Theorem 14.4.1 with some examples 
on the construction of confidence intervals and tests for parameters of the regression 
model. 
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Figure 14.3 Ages of Polish kings and their heirs at death 

EXAMPLE 14.10 Is It Good to Be a Royal Prince? 

Poland had altogether 13 kings whose fathers were also Polish kings (starting 
from the fifteenth century, Polish kings were elected, and the election of a late 
king's son, although often likely, was by no means ensured). In one pair, the 
son died young in battle; deaths in the remaining 12 pairs came from natural 
causes. The ages at death of fathers ( 2 , )  and sons (yi) are listed below. 

Father 2% Son Ya 

Mieszko I 
Boleslaw the Brave 
Casimir I the Restorer 
Wladyslaw I the Short 
Wtadyslaw I1 Jagiello 
Casimir IV Jagiellonian 
Casimir IV Jagiellonian 
Casimir IV Jagiellonian 
Sigismund I the Old 
Sigismund 111 Vasa 
Sigismund 111 Vasa 
Augustus I1 the Strong 

62 
59 
42 
73 
83 
65 
65 
65 
81 
66 
66 
63 

Boleslaw the Brave 
Mieszko I1 
Boleslaw the Bold 
Casimir 111 the Great 
Casimir IV Jagiellonian 
John I Albert 
Alexander Jagiellonian 
Sigismund the Old 
Sigismund I1 Augustus 
Wladyslaw IV Vasa 
John I1 Casimir Vasa 
Augustus 111 

59 
44 
42 
60 
65 
42 
45 
81 
52 
53 
63 
67 

As can be seen, only in 2 out of 12 pairs did the son live longer than his 
father, Can this be attributed to chance, or does it indicate some systematic 
trend (e.g., a "pampered" heir to the crown is not capable of dealing with the 
stress and additional duties demanded of him upon his accession to the crown). 
We have here 

- x = 65.83, = 56.08 
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which means that on average, sons lived about 10 fewer years than their fa- 
thers. For the regression coefficients, and their variances and covariances, we 
obtain 

and also zf = 53,224, c(q - 2)2 = 1215.67. Finally, T2  = 115.034. 
The individual points, as well as the regression line y = 29.214 + 0.4082, 
are presented in Figure 14.3 (broken line). We will return to the analysis in 
Example 14.1 1. 

ii = 29.214, 6 = 0.408, 

We begin by constructing confidence intervals for the regression intercept a and 
slope b. It is known that (U - b)/ou has a standard normal distribution. This 
quantity, however, involves the nuisance parameter u. Since nT2/u2 is independent 
of U and has a chi-square distribution with n - 2 degrees of freedom, the ratio 

(14.15) ( U - b ) / g u  t =  - (U - b )  J (n - 2) C ( X ~  - T ) 2  

JnT2/[a2(n - 2)] JX(YZi  - u x i  - V)2 

has a Student’s t distributionwith n - 2  degrees of freedom. Copsequently, (14.15) is 
a pivotal quantity for b (see Definition 12.7.2 ). Letting 6 and b denote the observed 
values of estimators V and U of intercept and slope, we obtain the (1 - 7)-level 
confidence interval for slope b as 

In a similar way we can derive the (1 - 7)-level confidence interval for the intercept 
a in regression line: 

EXAMPLE 14.11 

To continue Example 14.10, the 95% confidence intervals for the regression 
slope and the intercept are now, respectively, 

[0.408 - 0.751; 0 .408+ 0.7511 = [-0.343,1.159] 

and 

Since the confidence interval for regression slope b covers the value 0, we 
cannot exclude the possibility that the true regression is a constant a. This 
means that the age of the son at death does not depend on the father’s age at 
death. Thus the evidence is not conclusive with regard to the effect of being 
born to a royal family on duration of life. 

Obviously this example should not be taken too seriously. There are many 
factors affecting the length of one’s life that should also be taken into account 
in a real study. 

[29.214 - 50.000; 29.214+ 50.000] = [-20.786; 79.2141. 
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We can even construct a simultaneous confidence set for both regression param- 
eters using the F distribution. We want to show (we omit the proof) that the random 
variable 

1 
Q = -[n(U - 

U2 
b )  + 2nZ(U - b)(V - U )  + C X ~ ( V  - 

has the chi-square distribution with two degrees of freedom. Consequently, the ran- 
dom variable 

n - 2 [n(U - b )  + 2 4 U  - b)(V - a)  + C Z P ( V  - a)2] 
X Q P  - 

nT2/(n- 2 )  2 C(YZi - uxa - V)2 

has the F distribution with ( 2 ,  n - 2 )  degrees of freedom. Thus, the ellipsoid in the 
(a ,  b)-plane, 

is a (1 - 7)-level confidence set for the regression parameters. 
Notice that the results obtained thus far can be used to build estimators and to con- 

struct tests of hypotheses about linear combinations of the regression coefficients a 
and b. We will illustrate the situation with an example. 

EXAMPLE 14.12 

Suppose that we need to estimate the parameter 0 = Aa + Bb, where A and 
B are given constants. A special case is obtained here if A = 1, B = 20, 
so that the objective is to estimate the mean response at X = 20, namely 
E(YZ,) = u + bzo. 

Clearly, the unbiased estimator of 8 is W = AV + BU, whose value for 
the sample is e* = A6 + Bb. The distributionof W is normal since W is a sum 
of two normally distributed random variables. So we have 

U& = A2u$ + B2ub + 2ABCov( U ,  V )  

Proceeding as before, we can show that the random variable 

[A(V - U )  + B(U - b)]  J(n - 2 )  C ( x i  - T ) 2  

J [A2  C x: - 2 A E  + B2] [C(YZ, - U X ~  - V)'] 

has the Student's t distribution with n - 2 degrees of freedom. This gives the 
(1 - 7)-level confidence interval for 0 as 
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These results can also be used to test hypotheses about the regression coefficients 
a and b. The testing procedures (likelihood ratio tests) use the same Student-type 
ratios as the confidence intervals above. We will give the results for the slope coef- 
ficient b, leaving the derivation of the tests for intercept a as exercises. 

Suppose that we want to test the null hypothesis 

against a one- or two-sided alternative. Then, given Ho, the random variable (U - 
bo)/uu has a standard normal distribution, and consequently the test statistic ob- 
tained upon division by &T2/[u2(n - 2)], that is 

U - bo 
t =  d ( n  - 2) C ( X i  - c)2 dZ(YZi - U X i  - V)2 

has t distribution with n - 2 degrees of freedom. A one- or two-sided rejection re- 
gion is then used depending on the alternative hypothesis. 

PROBLEMS 

14.4.1 Derive the test for the null hypothesis HO : a = a0 against the one- or 
two-sided alternative. 

14.4.2 The scores on an entrance exam ( x )  and the GPA’s upon graduation (y) for 
10 randomly selected students of a certain university are 

x 355 361 402 365 375 404 349 380 420 395 
y 3.66 3.49 3.86 3.24 3.55 3.92 3.11 3.19 3.16 3.15 

Assume normality and homoscedasticity. (i) Compute the MLE’s of a,  b, and u2. (ii) 
Test the hypothesis that there is no relation between the grade on the entrance exam 
and the GPA, against the alternative that higher scores on the entrance exam tend to 
be associated with higher GPA’s. (iii) Find the shortest 95% confidence intervals for 
a and for b. (iv) Find the joint confidence set for (a, b )  with confidence level 0.95; 
sketch it and compare with your answers to (iii). 

14.4.3 Suppose that observations are taken only at two values, X I  and X Z ,  of an 
independent variable. Let B1 and ?jz be the average observed responses for x = X I  

and for z = 5 2 ,  respectively. Show that the estimated regression line passes through 
points (z1,Bi) and ( x 2 , i J 2 ) .  

14.4.4 Using the ideas given on deriving the confidence set for ( a ,  b ) ,  derive the 
testing procedure for the null hypothesis HO : a = ao, b = bo against the general 
alternative H1 : Ho is false. Consider two cases: (i) u known. (ii) u unknown. 

14.4.5 Suppose it is known that the true regression (assuming a normal case) has 
the form E(YZ)  = bx. Derive the MLE’s for b and for 02. 
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14.5 T E S T I N G  LINEARITY 

In this section we make the following two additional assumptions regarding the de- 
sign of the experiment for collecting the data on regression parameters: 
(i) There are at least three distinct values among 51, 5 2 ,  . . . , xn. 
(ii) There exist at least two repeated values among $1 , . . . , xn. 

We will show that under (i) and (ii) it is possible to construct a test for linearity of 
regression, that is, a test of the null hypothesis 

Ho : E(Y,) = a + bx for some a, b against HI : E(Y,) = u(x), 

where ~ ( x )  is not a linear function of x. 
The test for linearity will be based on construction of two independent unbiased 

estimators of c2. One of them will estimate o2 regardless of whether or not HO is 
true, and the other will be an unbiased estimator of o2 onlyunder the null hypothesis. 

For the considerations of the present section only, it will be convenient to change 
the labeling of the sample (zt, yt), i = 1, . . . , n, as follows: Let xi, xi, . . . , x; 
be all those x, at which multiple abservations were made, and let n l ,  . . . , nr be 
the numbers of observations made for those values. Furthermore, let the observa- 
tions made for xi be Y;,~, . . . , y;,+, , and regarded as values of iid random variables 

q’,l , . . . , $,. . Finally, the remaining values of independent variable will be de- 
noted by x,+~, . . . , x;, with the corresponding observations yi+l , . . . , y; being 
the values of random variables Yi+l , . . . , YA. 

We have therefore 

nl + . . + nr + (,m - r )  = n, (14.16) 

with ni 2 2, i = 1,. . . , r .  
Consider now the following decomposition of the sum of the squared deviations: 

n m 

i=l j=1 t=l  k = r + l  

r n3 m 

= J-(y;,t - g; + g;, - 8 - iz;y + c (y; - 8 - bzc;)2 
j=1 t=1 k=r+l 

j=1 t=l j=1 k=r+l  

In passing from the third to the fourth expression, the cross-products were omitted. 
One can check that indeed they are equal to zero. 
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Now the sums s?, sg , and s! are observed values of random variables 

j=1  t= l  

Under the assumption of normality of the distributions of Y,, the random variables 
Sf and Si are independent; random variables 5’3” and ST are independent as well. 
The proof of these facts is similar to the proof of Theorem 10.2.1, and it will be 
omitted. 

Finally, in view of (14,16), ST/a2 has a chi-square distribution with the number 
of degrees of freedom equal to 

P r 

where n - m > 0, since T 2 1 and nj 2 2 for all j. It is important to recognize 
that this statement about the distribution of Sf holds regardless of whether the null 
hypothesis Ho about linearity of regression is true. 

On the other hand, if HO is true, then also 

Again, the number of degrees of freedom is positive, in view of the assumption that 
m, the number of distinct values of xi, is at least 3. 

To obtain the testing procedure, observe finally that any violations of the null 
hypothesis will tend to increase the expected value of the sum S; + S,”, since E(Y - 
o2 is minimized for [ = E(Y). 

Consequently, 

has the F-distribution with (m  - 2, n - m) degrees of freedom, provided that Ho is 
true, while any lack of fit to the linear model will tend to inflate the value of F .  Thus 
the testing procedure with size a: is as follows: reject the hypothesis of linearity of 
regression if 
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EXAMPLE 14.13 

To develop some sort of intuition concerning the linearity test, we will analyze 
the situation in a deliberately oversimplified case: two observations for z = 0 
are d and -d, an observation for x = 1 is c, and an observation for x = 2 
is 0. We will find the range of values c (for fixed d), and the range of values 
d (for given c) when the linearity hypothesis should be rejected, on a level of 
significance cy = 0.05, say. 

Intuitively, for a fixed d linearity will be rejected if the middle point devi- 
ates too far from the x-axis in any direction, and (for fixed c # 0) when d is 
close to 0. 

We have here Z = (0 + 0 + 1 + 2)/4 = 3/4 and c ( x i  - T)2 = 11/4. 
Moreover 3 = (d - d + c + 0)/4 = c/4. This gives 

The estimated regression lineis therefore iZ+b = (c/11)(2+z). To compute 
the F ratio, we have s: = 2d2 with n - m = 1. For the numerator we find 

with m - 2 = 1 degree of freedom. Since F,,1,1 = 161.45, the hypothesis of 
linearity should be rejected if 

s4 c2 C2 
121 > 161.45 or - > 443.99. 

2d2 d2 

Since d > 0, this is equivalent to the inequality Icl > 21.56d. 

PROBLEMS 

14.5.1 The output of a certain device is suspected to decrease linearly with the tem- 
perature. Two observations were taken for each temperature, and the data (in appro- 
priate units) are as follows: 

Temperature 55 65 75 85 95 105 

Observation 1 2.01 2.01 2.02 1.48 1.93 1.90 
Observation2 2.03 2.02 2.00 1.48 1.95 1.94 

At the significance level 0.05, test the hypothesis that the output is a linear function 
of temperature. 

14.5.2 Suppose that we have six data points in addition to those in Problem 14.4.2: 

x I 355 402 402 309 375 375 

y 1 3.44 3.91 3.95 3.24 3.52 3.31 

Test the hypothesis (using all 17 data values) that the regression of GPA's on the 
scores from the entrance exam is linear. 
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14.5.3 Check the identity (14.17). 

14.5.4 Derive, if possible, a test of linearity of regressiop under the assumptions 
of this section, if the individual observations for values x,+~, . . . , x, are now un- 
known, and instead we have the data on averages Y:+~, . . . , y b ,  and the correspond- 
ing numbers of observations TL:+~ , . . . , nk. 

14.6 PREDICTION 

Consider now the problem of prediction. As before, the data have the form of a set 
of pairs (xi, yz), i = 1, . . . , n, where yl. is the observed value of a random variable 
Y,, assumed to be normal with mean a + bxi and standard deviation 0. The ran- 
dom variables Y,, , . . . , Y,,, are independent, and at least two among x1, . . . , zn are 
distinct. The problem is to predict Y,, as precisely as possible. 

More generally, we want to predict the average of k independent observations 
of Y,, . By prediction, we mean here providing an interval, as short as possible, 
such that the value of the predicted random variable will fall into this interval with a 
preassigned probability, say 1 - y. Let P,, denote the average of k observations to 
be taken at the value $0 of the independent variable. We are looking for an interval 
[CI , Q] such that - 

P{Cl 5 Y,, 5 cp} = 1 - y. 

The solution will be obtained as follows. Note first that the average Y,, has distri- 
bution N(a  + bzo, u 2 / k ) .  Consequently, 

- 

4 Y,, - a - bxo z= 
U 

is a standard normal random variable, and we have 

{-Z7/2 5 z 5 Z 7 / 2 }  = 1 - 7 .  

A simple argument based on symmetry around 0 of normal density shows that 
( - z ? / ~ ,  ~ ~ 1 ~ )  is the shortest prediction interval for Z. Thus the corresponding short- 
est prediction interval for y,, (given that the regression parameters a, b and o2 are 
known) is 

" 
a + bxo + Z 7 / 2 -  

and its length is 2(a/\/iF)t,/2, The actual prediction interval has to take into account 
the fact that the regression parameters are estimated. The construction is based on 
an analogue to the pivotal quantity. Thus the random variable 

L = T,, - uxo - v 

has a normal distribution (being a linear combination of normal random variables), 
and E ( L )  = 0 in view of the fact that U and V are unbiased estimators of b and a. 
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We have, using the fact that yz0 is independent of (U, V), 

02 = Var(L) = Var(Fz,) + si Var(U) + Var(V) + 2x0 COV(U, V) 

1 = 6 2 [ - +  1 s; + ; C X f  - 2soP 1 1 (zo - q 2  

k C(x2 - Z)2 

Consequently, the random variable 
- 
Y,, - U s 0  - v - L 

DL 
_ -  

o d l / k  + l / n  + ( s o  - Z ) 2 /  C(zi - T ) 2  

has a standard normal distribution. Dividing by d n T 2 / [ 0 2 ( n  - 2 ) ] ,  we obtain 

(TZO - Us0 - V)&i=T? 
t =  1 

d m  
which has the t-distributionwith n-2 degrees of freedom. Substitutingthe observed 
values ii and & of V and U, we obtain the prediction interval for yz, with prediction 
probability 1 - y as 

] [ c ( y z i  - ii - (14.17) 
ii+ bzo f -/[ ty/2n-2 1 + - 1 + (so -z)2 

k n  xi - ~ ) 2  

Let us remark here that the prediction interval (for fixed n and k )  is shortest if xo = Z 
(i.e., it is “easier” to predict values of dependent variable for so close to 2). 

Observe also that as k + m, the length for prediction interval for known a ,  b,  
and u tends to 0. In the present case the increase of k has much less effect, and as 
k + co, the length of the prediction interval tends to a positive quantity depend- 
ing on n and on the location of observations z1,52, . . . , zn. This is consistent with 
intuition, according to which in the present case the uncertainty of prediction has 
two sources: randomness of the dependent variable about its estimated mean, and 
uncertainty as to the exact location of the true mean. 

PROBLEMS 

14.6.1 At harvest, the weight of a certain fruit grown in a greenhouse has the N( a + 
bt,  02)  distribution, where t is the average temperature. Weights in a sample of five 
fruits for t = 80°F are 1.02, 1.03,0.98, 1.05, 1.02, while a sample of seven fruits for 
t = 86°F (other conditions being equal) are 1.03, 1.03, 1.09, 1.07, 1.04, 1.02, 1.08. 
Give a 95% prediction interval for the average weight of four fruits grown: (i) In the 
first greenhouse. (ii) In the second greenhouse. (iii) In a greenhouse fort  = 84’F. 

14.6.2 Combine data points in Problem 14.4.2 and 14.5.2, and find the 95% predic- 
tion interval for the GPA of a student who scored 400 on an entrance exam. 
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14.6.3 Find the prediction interval with a probability 1 - y of coverage for an ob- 
servation to be taken at the value 50 by an independent variable, given the data 
(xi, yi), i = 1, . . . , n, and assuming the normal model of the form Y, = bx + E with 
E "(0, a?). 

14.6.4 Under condition of Problem 14.6.3 find the prediction interval for the mean 
of k observations taken for value 20 of the independent variable. 

14.7 INVERSE REGRESSION 

Inverse regression is the problem of inference about an unknown value s o  of an 
independent variable on the basis of a number of observations of a response for this 
value. The data consist of two groups of observations. One group is, as before, the 
sample 

where yz is the observed value of random variable yi - N(a + bx%, 02), with the 
usual assumption of independence. The second group, (&, . . . , &), is a random 
sample from an N(a + b s 0 ,  a2) distribution, where so is unknown. The objective is 
to estimate so, with a ,  b, and a2 being unknown. 

(G, Yz), 2 = 1,. . . ,n ,  

The likelihood of the data is 

L = n n 1  -e-1/202(y,-a-b~,)2 n m 1  -e-1/202(y:-a-bzo)2 

2 = 1  a 6  3=1  0& 

Taking the logarithm and differentiating with respect to a ,  b, 02, and 20, we obtain 
the equations 

i=l j=l 

i=l j=1  
n m 

m 

j=1 

Letting < = (l/m) c,"=, yj, we obtain from the last equation the estimate 

- 
Y'-& 

& '  
5 0  = - ( 1 4.1 8) 
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assuming, of course, that 6 # 0. The third equation gives 

. r n  m 1 

Using (14.18) in the first two equations, we can easily check that in each case the 
sum involving y(i equals 0, which means that the expressions for 6 and b are given 
by (14.9). 

These results are consistent with our intuition. Indeed, since we do not know 
XO, the observations y; , . . . , y k  cannot provide any information about the slope 
and ifltercept of the regression line. On the other hand, if only m > 1, the val- 
ues yl, , , . , y h  provide additional information about u 2 .  

To set a confidence interval for 20,  we may proceed as in the case o f  a prediction. 

The random variable W = P - U s 0  - V has the normal distribution with mean 0 
and variance 

m o  - q 2  

Consequently, W/UW has a standard normal distribution. To eliminate u, we note 
that the random variable 

has the chi-square distribution with m + n - 3 degrees of freedom. Indeed, the 
two sums are independent, with n - 2 and m - 1 degrees of  freedom, respectively. 
Consequently the random variable 

(14.19) WlfJW 
d ( m  + n)$/uz(m + n - 3) 

has the Student’s t distribution with m + n - 3 degrees of freedom. The observed 
value of the random variable given by (14.19) is 

and the confidence interval is obtained by converting the inequality 

-ty/2,m+n-3 < t ty/2,m+n-3 (14.20) 

into an inequality for so. Observe, however, that (14.20) is now a quadratic in- 
equality. 

EXAMPLE 14.14 

The amounts of a chemical compound (y) that dissolve in a given amount of 
water at different temperatures (z) are given in the following table: 
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5 3 4 2  
10 I 7 6  
15 10 13 11 
20 15 18 17 
25 21 18 19 

Two measurements for an unknown temperature xo are 14 and 16. What can 
one say about XO? 

SOLUTION. We have here n = 15 and m = 2. The relevant quantities 
are 

Thus the point estimate of zo is 20 = 19.23. Since t0.05,14 = 2.145 (n + 
nz - 3 = 14), to obtain a 95% confidence interval for XO, we must solve the 
inequality (14.20), which in our case takes the form 

< 2.145 
115 - 0 . 8 5 3 ~ 0  + 1.41 

Ja 1 + & + (50 - 15) 2 / 750 d2iZTT 

or 
1346.98 - 1 8 . 0 5 ~ 0 /  

d ~ i  - 30x0 + 650 
< 2.145. 

After some algebra, we obtain xg - 38.567 + 365.499 < 0, which gives the 
confidence interval 

16.96 < 20 < 21.80. 

PROBLEMS 

14.7.1 Five measurements of Y at z = 10 are 10.5, 10.6, 9.7, 11.1, and 12.3. Six 
measurements of Y at x = 20 are 3.1, 3.6, 3.1,4.0, 5.2, and 2.9. Assuming that the 
regression of Y on X is linear, estimate the value of x if two observations made at 
this value are 6.3 and 7.1. 

14.7.2 Using data from Problems 14.4.2 and 14.5.2, estimate the score on an en- 
trance exam of a student who graduated with a GPA equal to 3.95. 

14.8 BLUE 

Most of the results presented thus far rely on the assumptions that the random vari- 
able Y, is normally distributed with constant variance and that the observations are 
independent. These assumptions allow us to use the likelihood and provide access 
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to the distributions of MLE’s. The natural question is what to do if the assumptions 
above are not satisfied. 

First, with regard to homoscedasticity, there exist numerous variance-stabilizing 
transformations. These transformations have been suggested by statisticians as an ad 
hoc remedy against heteroscedasticity: instead of data of the form (xi, yi),  one can 
use the data (xi, yl), with y,* = g(yi), where g is some suitably selected function. 

One can also use transformation of y’s that depend on x’s, that is, by replacing the 
pair (xi, yi) with (xi, gZi (yi)), where gs is some function[e.g., replacing (xi, yi) by 
(xi, yilsi)]. Which transformation should be used in a given situation can be hard 
to resolve, especially when little is known about the distribution of Y,. It is rather 
statistical intuition and experience that can serve as a guide. 

A question interesting from a both theoretical and practical point of view is what 
to do if the distribution of Y, is not normal. Suppose, for instance, that the model 
analyzed is that of linear regression Y, = a + bx + c,, where the errors 6 ,  can be 
assumed to satisfy the conditions; 

(i) E(6,) = 0 (unbiasedness). 
(ii) E(c$)  = u2 (homoscedasticity). 
(iii) E(c ,c ,~ )  = 0 (orthogonality). 

MLE’s in the normal case) are 
The least squares estimators of regression coefficients a and b (which are also the 

The estimator of u2 may be based on residuals, where 

. n  

is the observed value of the estimator 

with U ,  V,  and T given by (14.1 1). Clearly, U ,  V, and S2 are unbiased estimators of 
b, a, and u2,  with variances and covariances obtained as before. This is true because 
the calculations of moments did not rely on the assumption of normality. 

It is possible to show that under the assumption of normality, U and V are also 
minimum variance estimators of b and a (i.e., that their variances coincide with the 
bounds given by the Rao-Cramtr inequality). 

The question is: Is there a reason to use U and V as estimators of b and a when 
the normality assumption does not hold? The mere availability of the computational 
formulas in statistical packages is hardly a justification. Unbiasedness of U and V 
is a desirable property only if it can be related to MSE. As we have seen, there are 
situations where the use of biased estimators is recommended, as leading to smaller 
mean square error. 

The answer is positive and is given by the following theorem (which we state 
here without a proof). 
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Theorem 14.8.1 (Gauss-Markov) Consider the observations ( x i ,  q ) ,  i = 1,2,  . . . , n, 
with Y, = a + bxi + ti, where the ermrs ei satisJL conditions (i)-(iii) of unbiased- 
ness, homoscedasticity, and orthogonality. Let L be the class of all statistics of the 
form 

rlY1 + ~2Y2 + . . . + TnYn, 

where ri are constants-dependingpossibly on the vector ( 5 1  , . . . , x,). Further- 
more, let La c L ,  & c L be the subsets of C consisting of statistics that are 
unbiased estimators of a and of b. Then the statistics V and U given by (14.1 1 ) 
have minimal variances in classes La and L b .  

The acronym used here is BLUE, which stands for the “best linear unbiased esti- 
mator.” Thus V is BLUE for a, and U is BLUE for b. 

Note that in view of unbiasedness, “best” estimators mean those with a minimum 
mean square error. Recall that in normal case U and V are best (in the sense of 
MSE) estimators of regression parameters in the class of all estimators, linear or 
not. In the present case, under the weaker assumption the conclusion is also weaker: 
U and V are best estimators in a more restricted class of estimators, namely those 
that depend linearly on the data. 

PROBLEMS 

14.8.1 Suppose that the number of errors in a text of length x is known to be a 
Poisson random variable with unknown mean A. We observe n texts of lengths 
x1 , 2 2 ,  . . . , x ,  and find the numbers of errors they contain, Y1, . . . , Y,, satisfy E(Y,)  = 
Var(Yj) = Xxj .  Find the BLUE of A. 

14.8.2 Carry out the calculations in the following direct proof of the Gauss-Markov 
theorem showing that the LS estimators of a and b are BLUE. For a you need to 
determine the constants a{ ,  i = 1,. . . , n such that the statistic T = cZl aiY, 
satisfies the conditions: (1) E ( T )  = a.  (2) Variance of T is the smallest among all 
linear estimators for which condition (1) holds. Show first that condition (1) implies 

(14.21) 

Next use the fact that y3’s are uncorrelated and homoscedastic, and show that Var(T) 
= c2 c a;, that is, minimize c a; subject to constraints (14.21). Using Lagrange 
multipliers, this means that one must minimize 

Take the derivatives with respect to a1 , . . . , a,, XI, and X 2 ,  solve the resulting n + 2 
equations, and check that the solution aj gives the LS estimator of a. 

14.8.3 Provide the same argument as in Problem 14.8.2 for the LS estimator of b. 

14.8.4 Given data ( x i , y i ) ,  i = 1,. . . ,n,  find the LS estimators of the quadratic 
regression a + bx + cx’. 
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14.9 REGRESSION TOWARD T H E  M E A N  

The phenomenon known as regression toward the mean was discovered in the nine- 
teenth century by Galton, who studiedvarious hereditary traits. He noticed that (e.g., 
in using height) tall fathers tend to have tall sons, but their sons tend to be closer to 
the average than the fathers. Similarly short fathers tend to have short sons, but their 
sons tend to be closer to the average than their fathers. Galton called it a “tendency 
toward mediocrity.” Galton’s choice of the word “mediocrity” may also explain why 
he chose the term “regression,” a word with somewhat derogatory connotations. 

It should be realized that regression, understood as “affecting the mean of depen- 
dent variable Y by independent variable X,” need not imply any casual relationship 
between the values of X and Y .  One of the more common types of relations be- 
tween X and Y, that leads to the regression phenomenon and yet does not involve 
any casual effects of X on Y ,  is exemplified by the following situation: Imagine 
some attribute of objects, for example, length. Suppose that a person takes two ob- 
servations, typically differing somewhat because of a measurement error, and calls 
the first and second measurement ofthe ith object zi and yi. 

Imagine now that points (xi, yi) are plotted, resulting in a scatter diagram. If 
the measurement errors are small, and/or the objects measured differ in their true 
lengths, we will observe that the points (xi, yi) have a strong linear relationship 
with a slope close to 1. 

Such a relationship will appear stronger when the variability of lengths of mea- 
sured objects is higher. This effect is utilized in designing some psychological ques- 
tionnaires. 

EXAMPLE 14.15 Psychological Test Scores 

In the areas ofpsychology dealing with personality or motivation (as opposed 
to areas such as memory studies, with more quantifiable experiments) a re- 
searcher typically introduces some construct (“ neuroticism,” “self-esteem,” 
etc.). Those constructs are then used to explain and/or predict some behav- 
ior. The explanation has the form of specific hypotheses, such as “persons 
with low self-esteem are more likely to be aggressive,” etc. In addition to a 
theoretical justification of such hypotheses, there arises a problem of testing 
them empirically. Clearly, one needs here a tool for measuring the level of the 
construct (a tool to measure the level of neuroticism, self-esteem, etc.). 

A typical tool has the form of a questionnaire and a scoring rule. For some 
questions, it is the answer “yes” that contributes to the total score; for some 
other questions it is the answer “no.” This is done in order to eliminate any 
bias arising from a possible tendency toward some type of answers. 

When the questionnaire is applied to a subject s, one obtains the score 
X,. Upon repetition, the score may be different, say Xi. One of the central 
assumptions of the theory of psychological tests is that the expected scores X, 
and X, are equal: 

E(X, )  = E ( X i )  = T, 
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Moreover, the deviations c, = X ,  - T, and 
satisfy the conditions 

= X: - T, are expected to 

var(c,) = var(c&) = gs, 2 E ( C , ~ & )  = 0. 

For fixed s, the value T, (called the true value of the measured construct for 
person s) is a constant, while c, is a random variable (reflecting intra-person 
variability of response to the questionnaire, upon hypothetical repetitions of 
measurement). 

Assume now that person s is sampled from some population according to 
a certain probability distribution. Using Theorem 8.6.4, we have 

0; = Var(X) = E,{Var(XIT)} + Var{E,(XjT)} 
= 

Clearly, CT;, = 09 + o$. Similarly 

E ( o , ~ )  + Var(T,) = O: + c;. 

Cov(X, X’) = E ( X X ’ )  - E ( X ) E ( X ’ )  = E{(T  + E)(T + 6‘))  - [E(T)]’ 
= E ( P )  - [ E ( T ) ] 2  = O$, 

since E(cT) = E,{E(cT)} = E,{T,E(c)} = E(0)  = 0, and similarly for 
the other products. Thus 

(14.22) 

The last ratio is called the refiubilify of the test, and formula (14.22) shows that 
reliability is equal to the test-retest correlation. This correlation approaches 1 
with an increase of up, that is, with an increase of variance of the true scores 
of the test in the population under study. 

The reliability of a psychological test is (unlike of the instruments for phys- 
ical measurements) not intrinsic for the test only but depends also on how 
diverse the population is to which the test is applied. 

14.10 ANALYSIS OF VARIANCE 

In the remainder of this chapter we deal with testing for the existence of the effects 
of an independent variable X (often measured on the nominal scale) on a response 
Y .  

The standard terminology of the analysis of variance (ANOVA) is that of levels 
offuctors. These factors cross each other in the sense that every level of one factor 
can be combined with every level of the other factor. 

The central assumptions of analysis of variance models are very much the same 
as in regression models: 

(i) The response variable Y has, for each level of factors, a normal distribution with 
the same (unknown) variance o2 (homoscedusticify). 
(ii) The factors may affect only the mean of the response. 
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(iii) Distinct observations for the same or different levels of factors are independent. 
We show the tests for the hypothesis that a given factor has no effect on the 

response variable against the alternative that it has some effect. 
The main issue here is that these tests can be carried out for various factors on 

the same data. In fact ANOVA models originated from questions arising in agri- 
culture, where one is interested in the response variable (e.g., size of harvest Y )  as 
dependent on combinations of various factors (e.g., type of soil, time of planting, 
time of harvesting, type of cultivation, and use of various fertilizers). Since a typical 
experiment lasts for one season, it is imperative to find a design that will allow us to 
study the effects of various factors using the same data. We begin with the simplest 
case of one factor only. 

14.11 ONE-WAY LAYOUT 

Consider the situation where the data are partitioned into groups, each corresponding 
to one level of a factor. Alternatively, the same setup may be described as “indepen- 
dent samples from different populations.” 

We let n, denote the number of observations from the zth group, where 2 = 
1, .  . . , I .  We have here I 2 2 and 71% 2 2 for at least one i. 

Let n1 + 712 + ’ . + n1 = N be the total number of observations, and let 
yzl,  yz2, . . . , ytn,  be the observations corresponding to the ith level of the factor. 
These observations are regarded as the recorded values of the random variables 

According to the assumptions stated at the beginning of this section, all random 
variables K3 are independent, normally distributed, with Var(Y,,) = 02. Moreover, 
since the effect of a factor is expressed only through the mean, we must have 

K1, yz2 ,  ‘ ’ ’ , Kn, .  

E(  yzj ) = pi , j = 1, . . . , ni 

The objective is to test 

Ho: p 1 = ~ 2 = ‘ “ =  PI against HI : pi # pi! for some i, i 

It will be convenient to let 

pi = p + C Y Z ,  i = 1, . . . , I, 

where 
Pl + . . . + P I  

I Pi = 

We have therefore 
I 

c a i  = 0, 
i=l 

and the hypotheses tested can be formulated as 

Ho : C Y ~  = C Y ~  = . . . = CYI = 0 against 

(14.23) 

HI : C Y ~  # 0 for at least one a .  
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Before we develop the testing procedure, let us observe that if I = 2, we have 
the problem of comparing the means of two normal populations with the same (un- 
known) variance n2. This problem was solved in Chapter 13 (Section 13.9). The 
testing procedure used the t distribution with n1 + 722 - 2 degrees of freedom. 

It would seem that if I > 2, we can use this result for the present case by com- 
paring pairs of levels of the factor until either we find a pair where the difference is 
significant (and then we reject Ho)  or we find no significant difference in all pairs 
tested (in which case we accept Ho). The reason why such a procedure is unaccept- 
able lies in the fact that it is impossible to determine its significance level because 
(i) the procedures for overlapping pairs of factor levels are not independent and (ii) 
even for nonoverlapping pairs, if the null hypothesis is true, the chances of at least 
one incorrect rejection of null hypothesis increases quickly with the number of tested 
pairs. 

Consequently, the objective is to find a procedure that can test the null hypothesis 
of no effect of the factor with a preassigned level of significance. The construction 
here will be based on a partition of the sum of squared deviations from the mean, 
which is very much similar to the technique used for testing linearity of regression 
in Section 14.6. 

In the derivation below, the subscript + will stand for averaging over the values 
of the index replaced by +. Thus 

. n; . n, 

and 

and similarly for p++. 
In the identities below we omit the cross-products. We encourage the reader to 

verify that all the cross-products are indeed zero. Using the fact that by (14.23) we 
have E ( X j )  = p + cri, we decompose the sum of squared deviations of the variables 
from their means as follows: 

(14.24) 

I n, I 

I ni I 

Under the assumption that y Z j  are normally distributed, the three terms in the last 
row are independent random variables. Moreover, the first term, upon division by 
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u2, has the chi-square distribution with the number of degrees of freedom equal 
(nl - 1) +.  . + (n1 - 1) = N - I regardless of whether or not the null hypothesis 
is true. The second sum, again upon division by g2, has the chi-square distribution 
with I - 1 degrees of freedom, provided that E(yi+ - y++) = cii for every z. 
Thus, under Ho, the sum 

i=l 

has a chi-square distribution with I - 1 degrees of freedom, and any violation of 
HO will increase the expectation of the sum (14.25). This suggests the use of an 
appropriate F ratio to test the hypothesis Ho. 

Finally, if p = 0, then N ( P + + ) 2 / n 2  has the chi-square distribution with one 
degree of freedom, which allows us to test hypothesis H i  : p = 0 against the 
alternative H ,  : p # 0. In terms of observations, the testing procedure is most often 
displayed in the form of the following ANOVA table: 

Source of Degrees Sum of Mean Sum 
Variation of Freedom Squares of Squares F Ratio 

Mean 1 SSM M S M = Y  F M = m  M SR 

Factor I -1  SSA M S A = E  FA== M S R  

Residual N - I SSR M S R  = f& 
Total N SST 

where 

I 

SSM = N(jj++)2,  SSA = C ni(Bi+ - P++)2, 
i=l  

I n, I n, 

SSR = C C ni(yij - gi+)2, SST = F2 &. 
i=l j=1 i=l j=1 

We reject the hypothesis Ho : a1 = . . . = QI = 0 (at level 7 )  if the ratio 
FA exceeds the upper quantile F y , l - l , ~ - l .  It is important to remember that in 
ANOVA one always uses a one-sided critical region (since any violation of HO 
tends to increase the numerator without affecting the denomin$tor). 

If, for some reason, one is interested in the hypothesis Ho : p = 0, then one 
should reject it in favor of Hi  : p # 0 if the ratio FM exceeds F y , l , ~ - ~ .  Such a test 
is useful if observations can be positive as well as negative (e.g., deviations from the 
required standards in a technological process). 

PROBLEMS 

14.11.1 Verify that the cross-products in (14.24) do indeed equal zero. 
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14.11.2 To test the milage achieved by cars produced by different companies, but 
of comparable price, size, and so on, one make of cars was selected from among the 
three major American companies and two foreign companies. For each make se- 
lected, a number of new cars was chosen and their mpg (miles per gallon) recorded. 
The data (in mpg) are as follows: 

n l = 5  n 2 = 4  n 3 = 5  n 4 = 3  n5 = 6 

25.1 27.1 39.9 25.4 29.2 
26.2 26.4 21.4 28.2 29.3 
24.9 26.8 22.2 27.1 30.4 
25.3 27.2 22.5 28.5 
23.9 20.8 28.9 

29.2 

At the significance level 0.05, test the hypothesis that the average mpg is the same 
for all makes of cars tested. 

14.11.3 Suppose that we take a random sample of size n from a normal distribution 
N(p, a'). We divide the observations into k groups of sizes n1, . . . , n k ,  where ni 2 
2 for i = 1, . . . , k and n1 + ' . + nk = n. Let S; be the sample variance in the ith 
group. Find: (i) The distributionof [(nl - 1)s: + . . + (12k - l)S,]/a2. (ii) The 
distribution of S,"/Sl. 

14.11.4 Show that the test developed in this chapter is equivalent to the Student's t 
test for the case when the factor operates at two levels only. 

14.12 TWO-WAY LAYOUT 

Assume now that we have data concerning possible effects of two factors, A and 
B, with I and J levels, respectively. Let yij  be the observation for the ith level 
of A and the j t h  level of B. Such data can be arranged into a matrix [yij] with I 
rows and J columns. For the moment assume that we have one observation in each 
of the I J  cells formed by crossing factors A and B. As before, we regard yij as 
the recorded value of a random variable y Z j ,  assumed to have normal distribution 
l'& - N(p + C Y ~  + pj,  a'), where ai and represent the effects of factors A and 
B. Without loss of generality, we can write 

I .I  c a i  = 2 p i  = 0. (14.26) 
i=l j=1 

We want to construct a test for the hypothesis 

against fp:  C y 1 = . . . =  C y I  = o H!*) : ai + o for some i, 

as well as a test for 

fp p1 = . . . = pJ = o against H ! ~ )  : pj # o for some j .  
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The tests are built on a partition of the sum of squares, as in the case of one factor. 
Omitting again the cross-products (which are zero), we have 

I J  
2 = y X(Xj - L++ + L++ - p - at - P j )  

J 

+ c I(Y+j - P++ - pj )2  + IJ(L++ - p ) 2 .  

Substitutingthe observed data for random variables and letting ,u = 0, ai = pj = 
0 for all i, j ,  we obtain the following sums of squares: 

I 

S S M  = I J ( Y + + ) 2 ,  SSA = c J(Li+ - Y++K 
i=l 

I J  J 

which add up to the total sum of squares 

The four terms in the last decomposition of S2 are independent random variables. 
The SSR does not involve any parameters and (upon division by 02) has a chi- 
square distribution with the number of degrees of freedom equal to 

ZJ - ( I  - 1) - ( J  - 1) - 1 = ( I  - 1)(J - l) ,  

regardless of whether the hypotheses are true or false. The SSA sum has a chi- 
square distribution if a1 = . . . = a1 = 0, and a similar statement holds for SSB if 

= . . . = PJ = 0. The numbers of degrees of freedom are I - 1 and J - 1 , respec- 
tively. Any deviation from the null hypothesis tends to increase the corresponding 
sum of squares. 

The ANOVA table is now: 
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Source of Degrees Sum of Mean Sum 
Variation of Freedom Squares of Squares F Ratio 

M S M  Mean 1 S S M  M S M  = F M  = MSR 

FA = !!&! A I -1  SSA M S A =  M S R  

B J - 1  SSB M S B = %  FB = 

S S R  Residual ( I  - 1)(J - 1) SSR M S R  = l r - l ) (J- l j  

Total N = I J  SST 

The hypothesis HiA’ (that factor A has no effect) is rejected whenever FA > 
Fy,I-l,(~-l)(.r-l), and H i B )  is rejected if FB > Fy,~-l,(r-l)(~-l), where y is 
the desired level of significance. 

PROBLEMS 

14.12.1 Twelve overweight subjects participated in a study comparing the effective- 
ness of three weight-reducing diets. The subjects were grouped according to their 
initial weight, and each of three subjects from each initial weight group was ran- 
domly assigned to a diet. The weight loss (in pounds) at the end of the experimental 
period is given below: 

Diet 
Initial Weight A B C 

15C-174 10 23 24 
175-199 12 21 26 
2OC-224 12 31 21 
Over 224 20 28 33 

(i) Do these data provide sufficient evidence that (after eliminating the effect of 
initial weight) the diets are different in their effectiveness? Use cy = 0.01. (ii) Does 
the initial weight affect the loss of weight? 

14.12.2 The nutritional value of a certain vegetable is measured on 18 specimens 
grown in two varieties in three geographical regions. The data are as follows: 

Geographical Region 
Variety A B C  

6.3 9.2 6.8 
1 11.5 5 . 1 7 . 2  

9.2 8.1 5.5 

11.0 5 . 4 7 . 1  
2 7.3 5.0 7.8 

8.2 6.1 8.4 
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Study the effect of variety and geographical location on the nutritional value, taking 
the average of three observations in each cell as a response. Use the significance 
level Q = 0.05. 

14.12.3 The model for three factors is E(Yij,+) = p + cyi + Pj + T k ,  where 

the tests for the hypotheses analogous to those in the case of two factors. 

ai = 
Y,+. Assume that X j k  is normally distributed with variance u2. Derive Pj = 

14.13 ANOVA MODELS WITH INTERACTION 

The model considered in Section 14.12 was of the form E(Y, j )  = p + ai + pj, by 
which we assume that the effects of the factors A and B are additive. The hypotheses 
H p )  and HiB’ are tested within this model. 

In general, the effects of A and B need not be additive, and one might wish to 
consider the case where E ( X j )  is an entirely arbitrary function of i and j .  Such a 
function can always be represented in the form 

E(Y, j )  = p + ~ r i  + Pj + yij, 

where Ci ai = Cj pj = Cij  -yij = 0 for all i, j (we leave the proofas an exercise). 
The constants -yij are referred to as interaction terms. Testing for the presence of 
interaction is based on an idea similar to that used in testing linearity of regression. 
It requires a model-independent estimate of a2, which in turn can be achieved if 
we have more than one observation for each combination of levels of factors A and 
B. We assume therefore that the data now have the form of a three-dimensional 
array yijk, a = 1,. . . , Z; j = 1,. . . J ;  Ic = 1, .  . . , K ,  where I 2 2, J 2 2, K 2 2. 
Leaving the details of the derivation as an exercise, we can write the decomposition 
of the sum of squared deviations of the random variables x j k  from their means as 

(14.27) 
i = l  j=1 k = l  

= IJK(P+++ - p)2 
I - J 

+ c J K ( K + +  - F+++ - ai)2 + 1 IK(F+j+ - Y+++ - pj)2 
i=l j = 1  

I J  

As before, the last sum (upon division by a’) has the chi-square distribution with 
ZJ(K - 1) degrees of freedom, given only normality and homoscedasticity (regard- 
less of any other hypotheses tested), Thus, it can serve as a denominator in all F 
ratios used for testing, while the two single sums and the double sum can be used to 
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test the hypotheses about the effects of A, of B,  and of their interaction. To put it 
differently, each of the sums above, divided by its number of degrees of freedom, is 
an unbiased estimator of o2 if the appropriate hypothesis is true (except for the last 
sum, for which this holds regardless of any hypothesis). Letting 

SSM = IJK(jj+++)2, 
I 

S S A  

I J K  

i= l  j=1 k = 1  

I J K  

the corresponding ANOVA table is as follows: 

Source of Degrees Sum of Mean Sum 
Variation of Freedom Squares of Squares F Ratio 

FM = MSM Mean 1 S S M  M S M = F  M S R  

FA = &&! A I - 1  SSA M S A = E  M S R  

FB = MSB 
M S R  B J -1  SSB M S B =  

M S I  A B  ( I  - 1)(J - 1) SSAB MSAB = ( I - f G 5 - l )  FAB = MSR 

Residual I J ( K  - 1) SSR M S R  = A I J ( K - 1 )  

Total N = I J K  SST 

EXAMPLE 14.16 

A researcher studies the effects of sex and type of stimulus (“soothing” or “ex- 
citing’’) on the aggressive behavior of parrots. Six male and six female birds 
of a given species are each placed in a separate cage isolated from other cages. 
The six birds of a given gender are randomly divided into two groups. The 
cages are covered for the night. Before uncovering the cage in the morning, 
the birds hear a tape. One is a “soothing” tape, with the voice of the experi- 
menter talking quietly to the birds. The other tape contains angry voice of the 
experimenter. The observed value Y is the number of times the bird attacks 
the experimenter’s hand when she uncovers the cage and puts food into the 
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plate. The data are as follows (the three numbers in each cell represent the 
data for three birds): 

Soothing (S) Angry (A) 

M 8 6 13 22 28 33 
F 5 1 0 6  12 14 9 

The within-cell averages yij+ and row and column averages x+, y+j, as well 
as y++ are 

S A  

M 9 27.67 18.33 
F 7 11.67 9.33 

8 19.67 13.83 

The sum SSR of the squared deviations from cell means is SSR = 1113.33. 
We therefore have the next table: 

df ss M S  F 

Mean 1 2296.33 2296.33 162.10 
Gender 1 243.00 243.00 17.15 
Stimulus 1 408.33 408.33 28.82 
Interaction 1 147.00 147.00 10.38 
Residuals 8 113.33 14.17 

Since FO.OS,J,S = 5.318, we can conclude that both the gender of the parrot 
and the type of stimulus have an effect, and there is interaction between gender 
and type of stimulus at the 0.05 significance level. The mean response is 
significantly different than zero. 

To better grasp the meaning of interaction, we will use a graphical representa- 
tion. Let us arrange the categories of one factor, say A, along the horizontal axis 
(there may be no numerical values attached, and the categories need not have any 
“natural” order). Then along the horizontal axis we can plot average responses Tij+ 
for various j .  The effects of A ,  B and of their interaction can now be interpreted as 
follows (see Figure 14.4). The effect of A means that at least one of the curves dif- 
fers significantly from the horizontal line (last two figures). The effect of B, but not 
of any interaction, means that the curves for various levels of B are parallel to one 
another but significantly different from one another (Figure 14.4b and c). Finally, 
the interaction reveals itself by the lack of parallelism of the curves (Figure 14.4d). 

PROBLEMS 

14.13.1 The scores measuring the level of emotional maturity of young adult males 
classified by age and extent of use of marijuana are given below. 
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-- 
levels of A levels of A 

( a )  (b) 

levels of A levels of A 

( C )  (d) 

Figure 14.4 (a) No effects of A, B or AB. (b) No effect of A ,  effect of B ,  no 
interaction. (c) Effect of A ,  no effect of B, no interaction. (d) Effect of A, effect of 
B ,  effect of interaction. 

Marijuana Use 
Age Never Occasionally Daily 

25 18 17 
15-19 28 23 24 

22 19 19 

28 16 18 
20-24 32 24 22 

30 20 20 

25 14 10 
25-29 35 16 8 

30 15 12 

Test for effects of age, extent of use, and their interaction. Use a = 0.05 

14.13.2 Use data given in Problem 14.12.2 to test for the existence of interaction 
between variety and geographical notation. 

14.13.3 Show that if E(Y, j )  = c ( i , j )  = p + q  +Pj + ~ i j ,  where i = 1, .  . , , Z,j = 
1, . . . , J ,  then one can always find constants p ,  ai, &, and -yij such that 

I J I J  
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14.14 FURTHER EXTENSIONS 

The ANOVA models presented in the last three sections can easily be extended to 
the case of more than two factors, with or without interaction, provided that we con- 
sider completely balanced designs. Each level of a factor can be combined with all 
combinations of levels of other factors, and in each cell we have the same number of 
observations. Testing for interactions is possible only if the number of observations 
per cell is at least two. The number of observations needed very quickly becomes 
unattainable practically. For instance, with three factors, each on five levels, we need 
53 = 125 observations, and twice that if we want to test for interactions. 

This situation led to research in two major directions. The first was to invent 
experimental schemes that allow testing for the presence of effects (as well as esti- 
mation of those effects) with as small a number of experiments as possible. If one 
resigns from the stringent requirement that every level of a factor has to appear with 
every combination of levels of other factors, there are many possibilities of exper- 
iments (e.g., forming the so-called Latin or Greco-Latin squares). To use a simple 
example, imagine that we have three factors, each appearing on five levels. Repre- 
senting one factor as a row, the other as a column, and the third as letter (with levels 
a, b, c, d ,  e), we can arrange the experiment as follows: 

l e l a l b l c l d l  

Each level of the first factor (row) combines exactly once with each level of the 
second factor (column), and exactly once with the third factor (letters). The same is 
true for the other two factors. However, of 53 = 125 possible combinations, only 25 
actually appear. 

It is possible to include here the fourth factor (e.g., Greek letters, a, p, y, 6, 6 )  as 
follows: 

I eP I a7 I bb I Cf I d a  I 
Now each row and each column has exactly one of the Roman letters and exactly 
one of the Greek letters, and each Roman letter is combined exactly once with each 
Greek letter. 

One can therefore plan an agricultural experiment (say) in which in each row are 
plants of one of five varieties of seed, and in each column one of the five varieties 
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of fertilizers. Then each Roman letter would correspond to one of the five different 
amounts of watering, and each Greek letter to one of the five different times of 
planting. 

There are seemingly countless variety of experimental designs to cover all contin- 
gencies that occur in practice, each design with its own testing or estimation proce- 
dures. By introducing appropriate criteria, one can search for designs that optimize 
these criteria. 



CHAPTER 15 

RANK METHODS 

15.1 INTRODUCTION 

This chapter is devoted to statistical tests applicable to data measured on ordinal 
scales only and more precisely, when only ordinal relations are taken into account. 
These methods32 fall under the general heading “nonparametric statistics,” and they 
involve techniques based on ranks, which offer several advantages. While the data 
sampled must be from a continuous distribution, the type of the distribution is irrel- 
evant. Nonparametric methods are almost as powerful as normal theory methods. 
They can therefore be applied when a population distribution is not normal (e.g., it 
is skewed) or if the sample size is not large enough for testing normality. 

EXAMPLE 15.1 

Suppose that four observations randomly selected from some population are 
X I  = 8,x2 = 7 , 2 3  = 3, x4 = 15, and five observations from another popula- 
tion are y1 = 5, y2 = 4 ,y3  = 0, y4 = 6 ,  y5 = 1. If the data are expressed on 
the ordinal (but not any higher) scale, these data contain the same information 
as such data as 5 1  = 1000,22 = 3 2 , ~  = 30, x4 = 1001, y1 = 35, y2 = 

32See Hollander and Wolfe (1999) for an exhaustive presentation 
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31, y3 = -5, y4 = 36, ys = 0. In effect all relevant information is contained 
in the sequence 

Y Y X Y Y Y X X X ,  

which tells us that the observations from the first sample occupy places 3, 7, 
8, and 9 in the ordered combined sample. 

Methods based on ranks should be used for the data measured on an interval scale. 
They, however, can be used for the data measured on an interval or ratio scale. In 
other words, one can always use methods for a weaker scale. 

The assumption of continuity is what distinguishes the methods of this chapter 
from the methods of categorical data that sometimes are also of an ordinal charac- 
ter (discussed in Chapter 16) and exemplified by questionnaire responses such as 
“strongly agree,” “agree,” “neutral,” “disagree,” “strongly disagree.” The essential 
difference is that under the assumption of a population distribution being continu- 
ous, we can disregard ties in our theoretical considerations. Practically, it means that 
ties in the data are rather exceptional. 

We begin with the study of the behavior of empirical cdf‘s. The empirical cdf 
converges almost surely and uniformly to the cdf of the underlying random variable. 
This is a general fact, and it is true regardless of whether or not the random variable 
is continuous. If we restrict the analysis to the continuous case, we can construct a 
test for the hypothesis that the random sample XI, . . . , X, comes from a population 
with a specific continuous cdf. 

Next we will consider the two-sample problem, tests of the hypothesis that two 
random samples (XI , . . . , X,) and (Y1 , . . . , Y,) come from the same continuous 
distribution. We will also introduce tests for randomness and present procedures 
for testing hypotheses about population medians in one, two, and more than two 
populations. Last, we will present an ANOVA type of inference in case of response 
distribution that is other than normal. 

15.2 GLIVENKO-CANTELLI THEOREM 

Let X, = ( X I ,  . . . , X,) be a random sample from some population. Specifically, 
this means that XI, . . . , X, is the initial fragment of a sequence X, = {Xi, i = 
1 ,2 ,  . . .} of iid random variables. We let F denote the common cdf of Xi’s so that 
F ( t )  = P {  Xi 5 t } .  At the moment, we can make no assumptions about the nature 
of F .  We only know that F is an arbitrary nondecreasing right-continuous function, 
satisfLing 

lim F ( t )  = 1, lim F ( t )  = 0 

(see Chapter 6). For any ‘n and t ,  we define the empirical cdf ofthe sample XI,  . . . , X, 
as 

t‘, t--a3 

number of data values that do not exceed t 
n Fn(t)  = 

Thus F,(t) is a step function that increases by 1/n (or by a multiple of l / n )  at each 
point of the sample. It is important to keep in mind that Fn( t )  is a random function. 
It depends formally on the sequence X, but in fact only on the first n observations. 
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If we fix the value t ,  then nF,(t) is a random variable, equal to the number of 
Xi’s among the first n observations, satisfying the condition Xi  5 t .  Thus nF,(t) 
has a binomial distribution with parameters n and p = P{ Xi 5 t }  = F ( t ) .  Conse- 
quently, by Theorem 10.5.19, for every t ,  

(15.1) 

with probability 1. 
To appreciate the meaning of this result, and the meaning of its extension below, 

let us write explicitly F,(t, X), where X = X,. Since X is the element of the 
sample space corresponding to sampling an infinite sequence of values of iid random 
variables, each with cdf F ,  the phrase “with probability 1” or “almost certainly” 
means “for all sequences X, except sequences in a set N with P ( N )  = 0.” 

Specifically, (15.1) means that for every t there exists a set Nt of sequences X 
such that P(Nt) = 0 and if X $ Nt, then 

lim F, ( t ,X )  = F ( t )  
n+W 

(15.2) 

The following theorem is an extension of this result to the convergence for all t 
at once, and uniform: 

Theorem 15.2.1 (Glivenko-Cantelli) As n -+ m, we have 

SUP IFn(t) - F ( t ) /  --t 0 
t 

with probability 1. 

Prooj The theorem means that one can find a set N of sequences X such that 
P ( N )  = 0 and supt \F , ( t ,X)  - F(t)l  -+ 0 as n -+ DC) for all X g‘ N .  We 
show first that such a common set N exists for convergence F,(t) to F ( t )  for all 
t (convergence being not necessarily uniform). Let A be the set of all points at 
which F is discontinuous. Since F is nondecreasing and continuous on the right, 
the condition t E A means that F ( t )  - F ( t - )  > 0, where 

F ( t - )  = lim F ( T )  = sup F ( 7 ) .  
r-t- T < t  

If t E A, we define the random variables 

1 if X , = t  
U n ( t )  = U,(t, X) = 0 if X ,  # t ,  

(15.3) 

so that E[Un(t)] = P{U,(t) = 1) = F ( t )  - F( t - ) .  Clearly, the random variables 
U1 ( t ) ,  U z ( t ) ,  . . . are iid, and by Theorem 10.5.19, we have 

for all X @ N:, where P(N,t) = 0. Here NT is the “exceptional” set chosen for 
specific t. 
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Clearly, the set A is at most countable. Indeed, if Ak C A is the set of points 
t E A with F ( t )  - F( t - )  2 l / k ,  then A k  has at most k elements because of 
monotonicity of F and the condition F(m) - F(-m) = 1. Since A = uk Ak, 
the set A is at most countable, and the condition (15.3) holds for all X # U t E A  N;, 
with 

P (  u Nt') I C P ( N ; )  = 0. 
t E A  t E A  

Now let Q be the set of all rational t (or any other countable dense subset of 
real line). We may assert that F,(t) + F ( t )  for all t E Q with probability 1, 
since by (15.2) we have F,(t, x) -+ F ( t )  for all t if x # UtEQNt, and again 

Thus we showed that with probability 1 we have F,(t) -+ F ( t )  for all t E Q 
and F,(t) - F,(t-) + F ( t )  - F ( t - )  for all t E A .  We will next show that with 
probability 1 we also have F,(t) + F ( t )  for all t # A,  and that the convergence 
is uniform. These last statements do not involve any probability considerations: 
They are true for any X # U (UtEQNt), so one may suppress the 

dependence on X and consider a fixed sequence of cdf  s F, (.). 
Thus let t be a continuity point of F ,  and let t # Q. We want to show that 

F,(t) + F ( t ) .  Let E > 0, and let t l ,  t 2  E Q satisfy the relations tl < t < t 2  and 

p ( u t E Q  Nt) 5 CtEQ p ( N t )  = O. 

(1 5.4) 

(which is possible because t is a continuitypoint of F) .  Next we choose N such that 
for n 2 N, 

E 
F(t2)  - F(t1)  < - 

2 

This is possible because F,(ti) + F ( t i )  as n -+ cc for i = 1,2. By monotonicity 
of F we have F ( t l )  5 F ( t )  5 F ( t 2 ) ;  hence by (15.4), 

t € 
F ( t 2 )  - - < F ( t )  < F(t1)  + 2'  

~ ( t )  I ~ ( t 2 )  I ~ ( t l )  + 5 I ( F n ( t l )  + 5 )  + 5 I Fn(t)  + E 

2 

Using (15.4), (15.5), andmonotonicity of F,(.), we can write for n 2 N, 

E 

t 
and also 

t 
~ ( t )  L ~ ( t 2 )  - 5 2 ( ~ n ( t 2 )  - f )  - - > ~ n ( t )  - E ,  2 -  

which gives IFn(t) - F ( t ) /  5 E .  It remains to prove that the convergence F,(t) -+ 

F ( t )  is uniform, that is, sup, IFn(t) - F(t ) l  -+ 0 as n -+ 00. The proof is after 
Chung (2001). 

Now assume the contrary. There exists E O  > 0, and sequences n k  and t k  such 
that IFn,(tk) - F ( t k ) (  > €0 for all t .  Since Fn( , )  and F ( . )  are cdf's, we cannot 
have tk --+ +cc or tk + -m; hence the sequence { t k }  is bounded. Without loss of 
generality we can assume that tk -+ t ' .  
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Moreover, there exists either a subsequence of { t k }  which converges to t* mono- 
tonically from below or monotonically from above. Similarly, since IFnk(tk) - 
F(tk) l  > € 0 ,  there exists either a subsequence at which Fnk( tk)  > F ( t k )  + €0 or 
a subsequence at which Fnk( tk)  < F ( t k )  - € 0 .  Restricting the analysis to these 
subsequences, we distinguish four cases: 

1. tk T t*,tk < t * , F n k ( t k )  > F ( t k )  + € 0 .  

2. t k  T t* ,  t k  < t* ,  F n k ( t k )  < F ( t k )  - € 0 .  

3. tk -1 t’, Fno(tk) > F ( t k )  + €0. 
4* t k  1 t’, F 7 L k ( t k )  < F ( t k )  - €0.  

We will select t ’ ,  t” E Q such that t‘ < t’ < t”. 

large,: 
In case 1, using the monotonicity of Fn, and F, we can write, for all k sufficiently 

€0 < Fnk(tk) - F ( t k )  5 F n k ( t * - )  - F( t ’ )  

5 F,,(t*-) - Fn,(t*) + Fnk(t”)  - F( t“ )  + F( t” )  - F( t ‘ ) .  

If we let k -+ oc), the difference Fnk( t* - )  - Fnk( t* )  converges to - ( F ( t * )  - 
F ( t * - ) ) ,  andthe difference F,,(t”) - F ( t ” )  converges too. Letting t” 1 t * ,  t‘ t t* 
along values in Q, the last difference converges to F ( t * )  - F(t* -). Thus the right- 
hand side can be made as small as possible, which gives a contradiction. 

In case 2, we have 

€0 < F ( t k )  - F,,(tk) < F( t* - )  - F,,(t’) 5 F( t* - )  - F ( t ’ )  + F ( t ’ )  - Fn,(t’). 

Letting k ---t m, we obtain F( t ’ )  - Fnk( t ’ )  --+ 0, and letting next t’ t t * ,  we obtain 
F ( t * - )  - F( t ‘ )  --+ 0, which gives another contradiction. 

In case 3, we have 

€0 < F 7 1 k ( t k )  - F ( t k )  < F n k ( t ” )  - F ( t * )  

5 F,,(t”) - F,,(t’) + F,,(t’) - F( t ’ )  + F( t ‘ )  - F ( t * )  

Now Fnk(t”)-Fnk ( t ’ )  -+ F( t” ) -F( t ’ ) ,  while F,,,(t’)-F(t’) --+ 0. We let t” 1 :* 
and use the continuity of F on the right, which results in the term F ( t ” )  - F ( t  ) 
converging to F ( t * )  - F(t ’ ) .  So we again have a contradiction. 

Finally, in case 4, we can write 

€0 5 F ( t k )  - FTLk( tk)  5 F ( t ” )  - F 7 Z k ( t * )  

5 F ( t ” )  - F( t ‘ )  + F( t ’ )  - F,,,(t’) + F,,(t*-) - F n s ( t * ) .  

Ask--+mwehaveY(t‘)-F, ,J t ’ )  --+O,whileFnf,(t*-)-Fnk(t*) -+ F ( t * - ) -  
F ( t * ) .  Letting now t t t* and t I t’, we have F ( t  ) - F( t ’ )  --+ F ( t * )  - F( t* - ) ,  
which also leads to contradiction. 
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PROBLEMS 

15.2.1 Let F ( t )  = 0 for t < 0, F ( t )  = p for 0 5 t < 1, and F ( t )  = 1 otherwise. 
Use the central limit theorem to evaluate directly the distribution of sup, 1 F,(t) - 
F( t ) l ,  and show that F,(t) tends to F ( t )  almost surely and uniformly in t .  

15.2.2 Let X be a random variable such that P { X  = a }  = 1 / 2 ,  P { X  = b} = 
1/3 and P { X  = c} = 1/6. Let XI, X2,  . . . , X200 be a random sample from the 
distributionof X .  Suppose that among the first 100 observation of X i ,  55 were equal 
to a and 38 were equal to b. Among the next 100 observations, 51 are equal to a, 
and 30 are equal to b. Determine sup, IF20o(t) - F(t)l  and sup, IF1oo(t) - F(t)I 
in all six cases a < b < c, a < c < b, b < a < c, and so on, as well as in all cases 
such as b = c < a , a  = b < c , .  . . ,  a n d a  = b = c. 

15.3 KO LM OGO ROV-SM I RN OV TESTS 

One-Sample Kolmogorov-Smirnov Test 

Let 
D, = SUP IFn(t) - F ( t ) l .  (15.6) 

The distance D, converges a s .  to zero if the F,'s are empirical cdf's of random 
samples drawn from distribution F. Research on the rate of this convergence, that is, 
finding constants c,  + oc7 such that the sequence of random variables { cnDn, n 2 
l} has a limitingdistribution, led to a remarkable discovery, due to Kolmogorov and 
Smimov: if F is continuous, then this limiting distribution exists for c, = fi, and 
moreover, it does not depend on F .  

The following theorem specifies this limiting distribution, and serves as a foun- 
dation for a test of the hypothesis that a random sample comes from a specific dis- 
tribution. We will omit the proof here. 

Theorem 15.3.1 (Kolmogorov and Smirnov) Let XI, X2,  . . . be iid random vari- 
ables, with a continuous cdf F .  Then for every L > 0, 

t 

lim P{ f i D ,  5 z }  = Q ( z ) ,  
n-cc 

where 
m 

(15.7) 
k = l  

The function Q ( z )  is a cdf of a continuous distribution called a Kolmogorov dis- 
tribution. The values of this cdf are given in Table A7. 

Suppose now that we want to test the hypothesis 

HO : F = FO against the alternative 

where the hypothetical cdf FO is continuous. Under the null hypothesis, for large n, 
the distribution of f i D ,  is given by Q(s), If the true distribution of Xi ' s  is F', we 

H I  : F # Fo, 
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can write 

supjFn(t) - Fo(t)l I sup{IFn(t) - F*(t)l + IF*(t) - Fo(t)l) 

5 sup IFn(t) - F*(t)l  + SUP lF*(t) - Fo(t)l 

= D, +supIF*( t )  - Fo(t)I. 

t t 

t t 

t 

Upon multiplication by J;E, the first term, f i D n ,  has the limiting distribution 
(15.7), while the second term &supt J F * ( t )  - Fo(t)I tends to infinity if F * ( t )  $ 

The last property means that the test should reject HO if the observed value of 
the statistic f i D ,  exceeds the critical value determined from the right tail of the 
distribution (1 5.7). This test has-in the limit-power 1 against any alternative. 

Fo ( t ) .  

EXAMPLE 15.2 

A small town had 30 fires last year: on January 5 and 18, February 3, 4, 21, 
and 26, March 5, 10, and 13, April 6, May 16 and 25, June 19, July 10 and 
21, August 12 and 15, September 1, 8, and 21, November 2,6,  7, 19, and 29, 
December 3, 9, 12, 17, and 24. Are these data consistent, on the 0.05 level, 
with the hypothesis that the occurrences of fires follow a Poisson process? 

SOLUTION. One of the solutions may be based on the fact that if the fires 
form a Poisson process, then they occur throughout the year according to the 
uniform distribution. The data are summarized in Table 15.1 

Table 15.1 

Fire Day Fn(z,) Fire Day Fn(x,) F ( z , )  
i 2% = 2/30 =:!$65 1 2 x, = 2/30 =x,/365 

1 5 0.033 0.014 
2 18 0.067 0.049 
3 34 0.100 0.093 
4 35 0.133 0.096 
5 52 0.167 0.142 
6 57 0.200 0.156 
7 64 0.233 0.175 
8 69 0.267 0.189 
9 72 0.300 0.197 

10 96 0.333 0.263 
11 136 0.367 0.373 
12 145 0.400 0.397 
13 170 0.433 0.466 
14 191 0.467 0.523 
15 202 0.500 0.553 

16 224 0.533 0.614 
17 227 0.567 0.622 
18 244 0.600 0.668 

' 19 251 0.633 0.688 
20 264 0.667 0.723 
21 306 0.700 0.838 
22 310 0.733 0.849 
23 311 0.767 0.852 
24 323 0.800 0.885 
25 333 0.833 0.912 
26 337 0.867 0.923 
27 343 0.900 0.940 
28 346 0.933 0.948 
29 351 0.967 0.962 
30 363 1.000 0.995 

Since Fn( , )  is a step function, it suffices to inspect only the differences 
/F(zi ) -Fn(zi) l  and lF(zi)-Fn(zi-l)1. The largest difference inTable 15.1 
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isF(x21)-F30(z20) = 0.838-0.667 = 0.171,andfiDn = d%x0.171 = 
0.937. Since (see Table A7.) P{ &Dn > 0.9) = 1-0.6073 = 0.3927, there 
is no reason to reject the null hypothesis that the fires form a Poisson process. 

It is important to realize that the Kolmogorov-Smirnov test applies only when 
the null hypothesis specifies completely the distribution F .  The test cannot be used 
in cases where the null hypothesis specifies only the distribution type but does not 
provide the values of the parameters. If one estimates parameters from the sample 
to obtain a specific distribution F * ,  F*( z )  is then a random cdf that depends on the 
sample, and consequently the limiting distribution of f i D ;  = &supz lFn(x) - 
F * ( z ) /  will not given by formula(l5.7). 

EXAMPLE 15.3 

In this application of the Kolmogorov-Smirnov test we will regard points dis- 
tributed uniformly on a circle. The quality of the estimation depends heavily 
on how good the method is that is used for generating random points in the 
circle. 

Without loss of generality, we can assume that the circle is x2 + y2 5 1. 
Letting , (2 be a pair of independent random variables distributed uniformly 
on [0,1], we let z = 2(1- 1, y = 2(z - 1 and then check whether z2 +y2 5 1. 
If yes, the pair (z, y) is accepted. If not, we sample a new pair ((1, &), and 
proceed in this way until we obtain an accepted pair (z, y). One can continue 
this process to generate as many accepted pairs as needed. The distribution of 
(z, y) is easily seen to be uniform on the circle with radius 1 centered at the 
origin, as long as (1, (2 are iid uniform on [0, 11. 

To “save computer time” it was proposed that when x 2  + y2 > 1, rather 
than rejecting both z and y, the value of z is kept, and the computer generates 
a new (2, transforms it to a new y = 2& - 1, and tests if z2 + yz 5 1 (i.e., 
once z is sampled, it is retained, and only y is added to it). 

For an estimation of the savings in the computer time, and for the distribu- 
tion of the resulting points ( 2 ,  y), see Problem 15.3.3. To test the uniformity 
of the distribution, n = 100 points are generated on the circle according to a 
“time-saving” scheme. Two tests are performed, both reducing the problem to 
a one-dimensional Kolmogorov-Smirnov test. First, the angles are measured 
from an arbitrary direction; the angles between this direction and the line con- 
necting point (z, y) with the origin are uniformly distributed on [0,27r]. Next, 
the positive z-axis is the direction chosen, and, counting counterclockwise, 
the values cpi = arctan(zi/yi) + (7r/2)[1 - sign(yi)] take on a U[O, 27r] dis- 
tribution. The ordered values cpi are shown in the left part of Table 15.2. 

The empirical cdf of these values increases by 0.01 at each cpi:loo, while 
F ( t )  = t/27r. For our data, f i D ,  = f i s u p  IFn(t) - F(t) l  equals 1.136, 
which corresponds to a p-value of about 0.15 (see Table A7.). 

On the other hand, if the points have distribution uniform on the circle 
with radius 1, the distance R of a random point from the center has a cdf 
F R ( ~ )  = P { R  5 t }  = 7rt2/7r = t2  for 0 5 t 5 1. Thus the theoretical cdf of 
distance R is a parabola t 2 .  The right side of Table 15.2 gives the ordered dis- 
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tances. We can then compute the values of the Kolmogorov-Smirnov statistic 
f i D n  = fi sup IFn( t )  - t 2  1, which equals 1.737; the corresponding p-value 
(see Table A7.) is less than 0.005. 

Table 15.2 

0.0537 
0.0570 
0.0571 
0.1170 
0.1242 
0.1525 
0.3353 
0.4496 
0.4866 
0.5360 
0.5655 
0.5957 
0.6237 
0.6343 
0.7253 
0.8785 
0.8945 
0.9055 
0.9839 
1.0182 
1.1167 
1.1671 
1.2113 
1.3437 
1.4048 
1.4319 
1.4435 
1.4962 
1.5223 
1.523 1 
1.5716 
1.5774 
1.6020 
1.7543 

1.7784 
1.8854 
1.8967 
1.9798 
2.0339 
2.0721 
2.1705 
2.1833 
2.2 170 
2.3099 
2.3482 
2.4588 
2.4618 
2.5279 
2.5874 
2.5840 
2.8752 
2.9165 
2.9489 
2.9534 
2.9606 
2.9669 
2.9774 
3.0322 
3.0663 
3.1596 
3.2035 
3.3165 
3.3226 
3.4023 
3.4204 
3.4407 
3.4981 
3.5595 

3.7217 
3.8933 
3.91 10 
3.9215 
4.0757 
4.0778 
4.1081 
4.1494 
4. I922 
4.3407 
4.531 1 
4.5437 
4.5571 
4.7786 
4.8246 
5.0184 
5.2162 
5.2770 
5.3605 
5.3661 
5.425 1 
5.6105 
5.7050 
5.8654 
5.8959 
6.0020 
6.0355 
6.1418 
6.1496 
6.1781 
6.21 17 
6.2705 

0.0432 
0.1238 
0.141 1 
0.1872 
0.2365 
0.2774 
0.3865 
0.4014 
0.4036 
0.4125 
0.4262 
0.4457 
0.4905 
0.4966 
0.5178 
0.5298 
0.5351 
0.5371 
0.5701 

0.5734 
0.5788 
0.5865 
0.5888 
0.61 85 
0.6232 
0.6251 
0.6261 
0.6279 
0.6355 
0.6509 
0.6556 
0.6578 
0.6717 

0.5729 

0.6757 
0.6969 
0.7045 
0.7145 
0.7 168 
0.7268 
0.7312 
0.7326 
0.7365 
0.7462 
0.7547 
0.7557 
0.7833 
0.7836 
0.7924 
0.7967 
0.8 175 
0.8268 
0.8290 
0.83 1 1 
0.8337 
0.84 12 
0.8453 
0.8472 
0.8476 
0.8485 
0.849 1 
0.8521 
0.8632 
0.8656 
0.8669 
0.8692 
0.8713 
0.8724 

0.881 1 
0.8827 
0.8834 
0.8846 
0.9027 
0.9104 
0.9134 
0.9169 
0.9200 
0.9223 
0.9254 
0.9278 
0.9333 
0.9349 
0.9421 
0.9443 
0.9460 
0.9468 
0.9494 
0.9496 
0.9503 
0.9536 
0.9566 
0.9591 
0.96 16 
0.962 1 
0.9687 
0.9709 
0.9795 
0.98 15 
0.9880 
0.9988 

To find the correct p-value of the observed result, we can perform two tests, 
one giving nonsignificant result corresponding to a p-value 0.15 and the other 
giving a highly significant result with a p-value of 0.005. 

To see what is involved here, suppose that instead of the p-value we just 
carry out two tests on significance levels a1 and ag, respectively. We decide 
to reject HO ifeither test 1 or test 2 rejects it. Consequently the probability of 
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type 1 error equals 

a = P {  test 1 rejects or test 2 rejects1 Ho} 
= P{test 1 rejectslHo} + P{test 2 rejectslHo} - P{both tests rejectlHo} 

= a1 + 012 - P{bothtests rejectlHo}. 

If test 1 and test 2 are performed on two independent samples, then the attained 
significance level is 

Q = a1 + 012 - 011012. 

In the present case, the testing was performed on the same data set. Normally 
the determination of a significance level in such case is difficult because it 
requires knowledge of the joint distribution of the statistics used in both tests 
1 and 2. 

In the case under consideration, however, the situation is simple. Since cp 
and R are independent (under null hypothesis), we can apply (15.8), which 
gives the result 0.154. 

(15.8) 

Two-Sample Kolmogorov-Smirnov Test 

In a two-sample problem we need to determine whether or not two samples come 
from populations with the same distribution. We have already encountered its special 
cases (e.g., in considering the Student’s t test for equality of two normal distribu- 
tions with the same variance). We now consider this problem in its generality, under 
the only assumption that the samples are drawn from continuous distributions. Thus 
we let XI, . . . X ,  and Y1, . . . , X, be two independent random samples from dis- 
tributions with continuous cdf‘s F and G ,  respectively. The objective is to test the 
hypothesis 

against 

Unlike in the one-sample case of Section 15.3, the null hypothesis is now composite. 
The following theorem, also due to Kolmogorov and Smirnov, is presented without 
proof. 

Theorem 15.3.2 Let X, = ( X l 1 . .  . , X,) and Yn = (Y1, . . . Y,) be random 
samples from distributions with continuous cdf S F and G, respectively, and let 
F,(t) and Gn(t)  be the respective empirical ccf’s. Furthermore let 

HO : F = G H1 : F # G. 

If Ho is true, then the statistic 4% D,,,, has a limiting distribution given by 

the cdf Q ( t ) ,  regardless of the particular cdf that governs the sampling of Xi’s and 
q’s. Suppose now that HO is false. As m,n + 03, we have Fm(t) + F ( t )  and 



KOLMOGOROV-SMIRNOV TESTS 569 

Gn(t) + G(t) almost surely and uniformly in t ,  by the Glivenko-Cantelli theorem. 
Then 

J= sup IF(t)  - G(t)l 
m + n  t 

The two extreme terms in the last expression have limiting distributions, while the 
middle term tends to infinity for any single hypothesis contained in the alterna- 
tive. Thus, again, the test rejects the null hypothesis when the value of the statistic 
Jmn/(m + n)D,,, is large enough. 

1 EXAMPLE 15.4 

Is a Poisson process observed at every other event also a Poisson process? 

SOLUTION. We know, of course, that the answer is negative: If we observe 
every other event in a Poisson process, then the inter-event times are sums of 
two exponential random variables and hence are not exponential. Let us verify 
this fact empirically. Table 15.3 gives m = 12 interarrival times in a Poisson 
process with mean 1 (where every event is observed) and n = 16 interarrival 
times for every other event in another Poisson process with mean (so the 
mean interarrival times are the same). 

Column Ti gives the observed interarrival times in both samples, jointly 
ordered, while the next two columns give the values of Fm(t )  and Gn(t) at 
the observed points-F,(t) increases at points from the first sample while 
Gn(t) increases at points from the second sample. It may be seen therefore 
that the six shortest interarrival times are all in a Poisson process observed at 
every event. Here the value Dm+ is 0.5 and the statistic Jmn/(m + n) Dm,n 
equals 1.309, corresponding to a p-value of about 0.065. 
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0.049 
0.198 
0.237 
0.259 
0.310 
0.352 
0.381 
0.546 
0.547 
0.569 
0.801 
0.803 
0.878 
0.895 

0.083 
0.166 
0.250 
0.333 
0.416 
0.500 
0.500 
0.500 
0.500 
0.583 
0.583 
0.666 
0.750 
0.750 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.062 
0.125 
0.187 
0.187 
0.250 
0.250 
0.250 
0.312 

0.942 
0.969 
1.033 
1.094 
1.375 
1.392 
1.555 
1.625 
1.697 
2.019 
2.065 
2.114 
2.244 
2.534 

0.750 
0.750 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.916 
1 .ooo 
1 .ooo 
1 .ooo 
I .ooo 

0.375 
0.437 
0.437 
0.500 
0.562 
0.625 
0.687 
0.750 
0.812 
0.812 
0.812 
0.875 
0.937 
1.000 

PROBLEMS 

15.3.1 Let the observed values XI,. . . ,x, be such that 1 / 3  5 xi 5 2 / 3  for all i. 
What can be said about n, if the null hypothesis that the underlying distribution is 
U[O, 11 cannot be rejected by the Kolmogorov-Smirnov test at cy = 0.05 level? 

15.3.2 Suppose that the data are as in Example 15.2, except that there were only 25 
fires, none of them in November. Test that the fires occur according to the Poisson 
process. 

15.3.3 Find the joint density of (X, Y) resulting from the “time-saving scheme” of 
Example 15.3. Find also the expected number of random variables necessary to 
sample in order to obtain one pair (X, Y) under both schemes. 

15.3.4 What is the minimal possible value of the statistic Dm,n if k values of Xi 
precede the third in the magnitude value y3? If m = 100, k = 30, and n = 200, is 
there enough evidence to reject (at the level cy = 0.05) the null hypothesis that the 
distributions of X’s and Y’s are the same? 

15.3.5 Suppose that out of 30 fires in Example 15.2 those on January 5 and 18, 
February 3 and 21, March 10, April 6, May 25, June 19, December 3 were caused by 
arson, and in the remaining cases arson was excluded. Use the Kolmogorov-Smirnov 
statistic to test the hypothesis that the occurrences of “arson” and “nonarson” fires 
within a year follow the same distribution. 

15.3.6 Suppose that one sample contains 2 m  data points while the other contains 
2 m  + k data points. The first 2m and the last 2.m data points in the joint sample 
alternate between samples. Thus the ordered data has the form 

(15.9) 
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(i) For given m find k such that the Kolmogorov-Smirnov test will reject the hypoth- 
esis that both samples are drawn from the same population (a = 0.05). (ii) Solve 
this problem if the string of k consecutive Y's occurs at the beginning of the joint 
ordering. 

15.3.7 Assume that each of two samples contains 2m + k elements with the follow- 
ing ordering: 

YX...YXYY...YXY...XYXX...X (15.10) ---- 
2m k 2m k 

For given m find k such that the Kolmogorov-Smirnov test will reject the hypothesis 
that both samples are drawn from the same population ( a  = 0.05). 

15.4 ONE-SAMPLE RANK TESTS 

We begin this section with the Wilcoxon signed rank test. This test, used for testing 
hypotheses about a location parameter in symmetric distributions (median), is an 
excellent example of the simplicity and versatility of nonparametric methods. 

Assume that we have a random sample XI, . . . X ,  from a continuous, symmet- 
ric distribution with a cdf F and a density f ,  Then there exists 0 such that for any 

F(O - X) = 1 - F(O + x). 
Equivalently we can say that f ( O  + z) = f ( 0  - z) for any 2. 

The null hypothesis Ho : 0 = 00 will be tested against either the one-sided 
alternative H1 : 6 > 00 or the two-sided alternative H1 : 6' # 00. We can use this 
test also for HO : 0 5 00 against H1 : 0 > 00. The case of null and alternative 
hypotheses involving opposite inequalities can be obtained by an obvious change 
of signs. To define the test statistic, consider the absolute differences V1 = 1x1 - 
Boll V2 = 1x2 - 001, . . . , V, = IX, - 001. Since the underlying distribution is 
continuous, we can assume that all K's are distinct and that none equals 0. 

Let us arrange the K's in increasing order and assign ranks R1, Rzl . . . , R, to 
them, with rank 1 assigned to the smallest l4. Furthermore let 

$1 if Xi > 00 
if Xi < 00. { -1 

'qi = 

The Wilcoxon signed rank statistic is defined as 

n 

i = l  

We construct a test for any of the hypotheses mentioned above, we need to: 

1. Find the distribution (or at least, limiting distribution as 'n becomes large) of the 
statistic S, under the null hypothesis. 

2. Study the effect of values of 0 in the alternative hypothesis on the values of S,. 
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Suppose therefore that the true value of 6' is 6'0. In this case the signs qp are 
equally likely to be positive or negative: 

1 
2 

P(q2 = 1) = P{qi = -1) = -. 

Moreover, the random variables 771 , . . . qn are independent (since each is deter- 
mined by a different Xi), and also 772 is independent of Ri, by symmetry of the 
distribution of Xi about 6'0. The values R1 , . . , R, form a permutation of numbers 
1,. . . , n, so we write 

n 

i=l 

Since E(qi)  = 0 and Var(7i) = E ( $ )  = 1, we also have E(S,) = 0 and 

It is possible, though tedious, to determine the distribution of S,, for small values of 
n; the exact distributionof S, can be found in almost any sufficiently large collection 
of statistical tables. For large n one can prove that has a limiting 
standard normal distribution. 

Indeed, Sn is the sum of n independent random variables ql + 2772 + . . + nq,, 
where iqi = f i  with probability 1 / 2  each. To apply the Lindeberg-Feller theorem 
(10.6.5), we have Var(i.r]i) = E[(i77i)2] = i 2 ,  so s i  = Var(S,,) = Cy=, i2 - n3. 
Since E(iqi) = 0 for i = 1 , 2 ,  . . ., we have to show that 

for every E > 0, where Fi is the cdf of iqi. Since s,, - n3f2,  we have €8, > n 
for n large enough, and each integral equal to 0; since iqi is either i or 4, we have 
Ji77il 5 n. This shows that Lindeberg-Feller condition is satisfied, and the proof is 
complete. 

To determine now whether to use the right tail, left tail, or both tails of the dis- 
tribution of S, (limiting or exact), observe that if the true value of 6' exceeds 6'0, 
then 

1 
2 

P(q2 = +1} = P(X2 > 6'0) > P(X2 > 6') = -. 

Consequently, the positive signs are more likely than negative signs, and this will 
tend to increase the value of S,. Thus, in tests of HO : 6' = 60 or HO : 6' i 6'0 

against H I  : 6 > 60, large values of S, provide evidence for the alternative, and the 
right tail should be used as the critical region. 

EXAMPLE 15.5 

Assume that f is a density symmetric about 0; that is, it satisfies the condition 
f(z) = f(-z) for all z. Let XI,  . . . , X,, be a random sample from the distri- 
bution with density f, and suppose that we observe the values Y,  = 6'+Xi, i = 
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1, . . . , n. Thus 6‘ is the median of (and also its mean, if E/Xil < 00). Let 
the observed values of n = 20 observations of Yi be 3 15,493,366,29 1,50 1, 
503,388,526,308,410,418,540,285,360,426,475,336,455,301,359. We 
want to test the hypothesis that the median 6’ satisfies the inequality 6’ 5 350, 
against the alternative 6’ > 350. The consecutive values IV, - 3501, the signs 
vi of the differences Y ,  - 350, and ranks Ri are listed in Table 15.4. 

Table 15.4 

i lK -3501 9% Rank 1 i lY, -3501 qi Rank 

1 35 -1 5 
2 143 +1 16 
3 16 +1 4 
4 59 -1 9 
5 151 +1 17 
6 153 +1 18 
7 38 +1 6 
8 176 + I  19 
9 42 -1 7 

10 60 +1 10 

11 68 + I  12 
12 190 +1 20 
13 65 -1 11 
4 10 +1 2 

15 76 +1 13 
16 525 + I  15 
17 14 -1 3 
18 105 + I  14 
19 49 -1 8 
20 9 +1 1 

~ 

The value of statistic S ~ O  equals 124. The asymptotic variance of S20 

is 20 x 21 x 41/6 = 2870, and therefore the observed value of statistic 
S~O/,,/- is 2.31. The corresponding p-value is 0.0129, so we have 
strong evidence in the data that the median of the population exceeds 350. 

The Wilcoxon one-sample test can also be used to compare two related popula- 
tions. This setup was already introduced in Chapter 13, in the test we developed for 
the mean difference in paired data. 

EXAMPLE 15.6 Paired Data 

When comparing the effect of two treatments A and B, part of the variation in 
the data is caused by other factors-for example in medical experiments this 
could be patient’s age, gender, health status, and so on. To eliminate, or at least 
significantly reduce that variability, the experimenter should apply treatments 
A and B to the same, or at least very similar (“almost the same”) subjects. 
Therefore our data will concern pairs, either formed naturally (e.g., twins) or 
carefully matched as closely as possible (age, gender, etc.). It is important to 
realize that the pairing process is not random. In fact, the strength of the final 
conclusion depends largely on how well the members of each pair are matched 
by as many factors as possible. 

Next within each pair the experimenter allocates one member to treatment 
A, and the other to treatment B, this allocation being random. Let Xi and 
Yi denote the results of treatments A and B, respectively, for members of the 
ith pair of subjects, and let 2, = Xi - Yi. If the treatments do not differ, 
then 2, is as likely to be positive as negative (i.e., its median is zero). It will 
have a symmetric distribution because members of the pair are matched and 
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treatments are allocated at random to members of the pair. Thus the hypothesis 
“treatments do not differ” and “treatment A is superior” are now expressed as 
Ho : 0 = 0 and HI : 0 > 0. The Wilcoxon signed rank procedure can be 
used to test these hypotheses. 

We will present here one more procedure, called the runs test. In the case of a 
single sample, it can be used to test the hypothesis that the sample elements were 
selected randomly. In the case of two samples, it can be used to test the equality of 
two underlying distributions. For example, suppose that in a sample of size n = 10, 
we observe that the first 5 values are all negative while the last 5 values are all 
positive. Is this an indication that the process of taking the sample was not random? 

The general idea of the runs test is to partition the observations XI, . . . , X, into 
two classes, say A and B = AC, in such a way that the partition is induced by the val- 
ues of Xi only, not by their order (A may be the set of observations that are positive, 
observations that exceed the hypothetical median, etc.). Formally this means that 
if the vector ( X I  , . . . , X,) leads to a choice of observations with indices 21 , . . . , i k  
to form the set A and r ( l ) ,  . . . , r (n )  is a permutation of indices (1,. . . , n) ,  then 
the choice of set A from the permuted vector of observations (X,(l), . . . , X,,,,) is 
the set with indices r(i l) ,  . . . r ( i k ) .  The randomness of the sample, combined with 
the fact that with probability 1 there are no ties among the sample values, imply that 
each set of indices of appropriate size is equally likely to be the set A of the partition. 

In the special case we could have two samples, X1 , . . . , X, from a distribution F 
and Yl , . . . , Y, from a distribution G, and we wouldtest the null hypothesis that F E 
G (i.e., samples come from the same distribution). We would then consider the joint 
sample of X’s and Y’s and the partition would correspond to the two constituent 
samples. In this case, if the null hypothesis is true, each arrangement of X’s and Y’s 
would be equally likely. 

The test in now based on the intuitive idea that if the sampling is really random 
(or, in the two-sample case, if samples come from the same distribution), then the 
partition into sets A and B = AC is “random.” One of the possible measures of de- 
viations from randomness is to observe the number of runs. To fix the idea, imagine 
that we have ‘m = 5 symbols A and n = 7 symbols B arranged in some order, such 
as 

_. BBABAAABBABB. 

A run is a string of elements of one kind, bordered either by elements of the other 
kind or by the end of the string. For instance, the string above has four runs of 
elements B, as underlined, and three runs of elements A, not underlined. The test is 
based on the intuitive expectation that a too small number of runs, such as 

AAAAABBBBBBB, 

or a too large number of runs, such as 

BABABABABABB, 

indicates lack of randomness. 
To develop the test, we need the distribution of the number of runs under the null 

hypothesis. Let R be the total number of runs. In the sequel we will assume that 
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m 5 n. Clearly, the smallest value of R is 2, while the largest possible value of R is 
obtained for alternating runs of A’s of length 1. If m < n, then the maximal value 
of R is 2 m  + 1, while if m = n, then it is 2m. 

It remains to determine the probabilities P{ R = r }  for all possible values of T .  

Consider first the case where T is even (T = 2k). The sequence must then contain k 
runs of each kind that alternate, starting either with a run of A’s or with a run of B’s. 
Let us imagine m elements A arranged in a string. Dividing the string into k runs 
means choosing k - 1 out of m - 1 places separating consecutive A’s. This can be 
done in (:I;) ways. In a similar way the string of B’s of length n can be divided 
into k runs in (:I:) distinct ways. 

A joint string with 2k runs is now formed by dividing A’s and B’s into k runs 
each, as described above, and joining them by taking alternating runs. For instance, 
suppose k = 3, m = 5 ,  and n = 7. The string of five A’s can be partitioned into 
three runs in (i) = 6 ways: 

AAAIAIA AAlAAlA AAIAlAA AIAIAAA AIAAAIA AIAIAAA. 

In a similar way, a string of seven B’s can be divided into 3 strings in (:) = 15 ways. 
Taking one such partition for A’s and one for B’s, we obtain two arrangements 
giving r = 2 x 3 = 6 runs. For example, taking the partition AAAIAIA and 
Bl BBBBl BB we obtain two arrangements: 

AAABABBBBABB and BAAABBBBABBA. 

Consequently 
m-1 n-1 

P ( R  = 2k)  = 2 ( k - l ) ( k - l )  

(“,‘“I ’ 
(15.11) 

where the denominator gives the total number of arrangements of m objects A and 
n objects B. For r = 2k + 1 we must have either k runs of A’s and k + 1 runs of 
B’s, or vice versa. Reasoning analogous to that used in obtaining (1 5.1 1) leads to 

Formulas (15.11) and (15.12) therefore give the distribution of the number of runs 
R. 

EXAMPLE 15.7 

A machine produces items whose nominal diameter is c. Because of inherent 
variability the diameters of the items produced are random, sometimes above 
c and sometimes below it. The machine was designed in such a way that the 
diameter of the each item produced has no effect on the diameter of the next 
one. The diameters of 12 consecutively produced items were recorded and 
classified as “above c” (A)  or “below c” (B).  The resulting sequence was 
BAAAAABBBBBB, so m = 5,n = 7, and R = 3. The small number 
of runs led to the suspicion that there may be some systematic low-frequency 
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oscillation in operation of the machine, which tends to produce long runs of 
items with dimensions above c, followed by long runs of items with dimen- 
sions below c. 

To test the hypothesis on “randomness” of dimensions of items against the 
alternative of “low-frequency oscillation,” we must choose the left tail of the 
distribution of R (low number of runs) as the critical region, or equivalently, 
determine the p-value of the observed result, that is, P ( R  5 3). In this case 
the calculations are straightforward: using formulas (15.1 1) and (15.12), we 
obtain, f o r m  = 5 ,  n = 7 ,  and k = 1, 

P ( R  I 3) = P ( R  = 2 )  + P ( R  = 3) 

2 + 6 + 4  12 
( y )  792 

= 0.0152. - - -  - - 

Thus observing only three runs in this situation is a strong indication of the 
low-frequency oscillation effect. 

Calculations such as in the example above are cumbersome for large m and n. 
Fortunately, we can use the normal approximation showing first that 

2mn 
m + n  

2mn(2mn - m - n)  
(m  + n)2(rn + n - 1) 

E ( R )  = - + 1 and Var(R) = 

We also have the following theorem: 

Theorem 15.4.1 Ifm + co, n -+ 03 in such a way that mln --t 77 with 0 < 7 < 
M, then 

converges in distriburion to N(0, 1). 

Thus, replacing 7 by m/n, we can expect that the random variable 

d6-F ( 15.13) 
R - 2rnn/(m + n) 

2mn 

has approximate standard normal distribution, provided that m and n are large. 

acceptable when m, n 2 10. 
We can show that the approximation is very good for m,n 2 20, and quite 

EXAMPLE 15.8 
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Recall Example 15.7. Using (1 5.13) we have an approximation 

rn R - 2 x 5 x 7/(5 + 7) { 2 x 5 ~ 7  
P ( R 5 3 )  = P 

3 - 2 x 5 x 7/(5 + 7) 
2 x 5 ~ 7  I 

= P { Z  5 -1.68) = 0.0465. 
3 - 5.83 

70 

As compared with the exact p-value 0.0152, the approximation is not good. 
This shows that for small sample sizes one should try to determine the exact p-  

value (by direct evaluation, use of special tables, or an appropriate statistical pack- 
age). 

PROBLEMS 

15.4.1 Prove the asymptotic normality of the Wilcoxon signed rank statistic S, us- 
ing the Liapunov theorem. 

15.4.2 Out of 15 data points one is between 0 and 1, two are between -2 and -1, 
three are between 2 and 3, four are between -4 and -3, and five are between 4 and 
5. Use the Wilcoxon signed rank statistic to test the hypothesis that the median is: 
(i) 0. (ii) 1. 

15.4.3 Twelve pairs of subjects, matched within each pair with respect to age, gen- 
der, health status, and initial weight, were put on two types of diets. The data on 
pounds lost after five weeks are as follows: 

Pair 1 1  2 3 4 5 6 7 8 9 10 11 12 

DietA I 15 33 21 17 14 25 25 31 18 5 46 1 1  

DietB I 18 17 10 10 32 1 1  8 26 -3 19 5 8 

Use the Wilcoxon signed ranked test to test the hypothesis that both diets have the 
same effect, against the alternative that diet B is more efficient than diet A.  Use 
CY = 0.05. 

15.4.4 Some texts define the Wilcoxon signed rank statistic as j ,  = C jj,Rtiwhere 
jj, = 1 if X, > 00 and 0 otherwise. Determine the mean and variance of S,, and 
show that tests based on S, and on 8, are equivalent in the following sense: under 
a null hypothesis, S, = .$, - $;, where .!?, and j *  have the same distribution. 

15.4.5 Solve Problems 15.3.6 and 15.3.7 using a runs test. Compare the results 
obtained by different methods (use the same a = 0.05). Explain the differences, if 
they exist, for m = 10 and k = 5. 

15.4.6 A machine is set up to produce items, each with a diameter above 1 inch. The 
diameters of 15 consecutive items produced are 1.1 1, 1.15, 0.98, 1.11, 1.08, 1.06, 
0.97,0.97, 1.05, 1.02,0.98,0.99,0.96, 1.03, 1.01. Use aruns test, taking 1 inch as a 
threshold to test the hypothesis that the measurements represent random deviations 
from the required standard. 
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15.5 TWO-SAMPLE RANK TESTS 

Let X = (XI . . . X,) and Y = (Yl . . . Yn) be random samples from two con- 
tinuous distributions with cdf's F and G, respectively. We want to test the null 
hypothesis 

against some alternatives, whose form will be discussed later. 

Whitney two-sample test. The underlying idea of the test is as follows: 

order: 

where each Ui belongs to one of the samples. Because of the assumed continuity of 
F and G, we can disregard the possibility of ties in the joint sample, so we assume 
that all inequalities among Ui's are strict. 

Next we assign ranks from 1 to m + n to consecutive elements Ui. If the null 
hypothesis is true, then the m ranks of elements of the first sample and the n ranks 
of elements of the second sample are mixed randomly, in the sense that each of 
the (",'") allocations of the m ranks of elements of the first sample has the same 
probability 1/ 

Wilcoxon suggested to use the statistic W X ,  defined as the sum of ranks of ele- 
ments of the sample ( X I  . . . X m ) ,  in the joint ordering of both samples. Formally, 
we can write 

m+n 

H 0 : F - G  

We present one of the most important of the rank tests, the Wilcoxon-Mann- 

First, we combine both samples and then arrange all observations in an increasing 

UI I u2 5 . ' 5 Um+n,  

i= l  

where I X  ( U i )  = 1 if Ui comes from sample X and is 0 otherwise. 
Equivalently we can use statistic WY,  being the sum of ranks of elements of 

the second sample in the joint ordering. Statistics WX and WY carry the same 
information. Indeed we have 

m+n m+n m+n 

(m + n)(m+ n - 1) m+n 

= Xi= 
2 1 

i=l 

so 

- wx. (,m + n)(m + n - 1) 
2 

w y  = 

Let us begin with finding the expectation and variance of W X .  We have 

\ i = l  1 i=l i = l  

Since all allocations of the m ranks of elements of the first sample among rn + 
n elements of both samples are equally likely, the probability that the ith ranking 
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element comes from the first sample is P(lx(Ui)  = 1) = m/(m + n). We have 
therefore 

m m ( m + n + l )  m+n 
E(Wx) = C i,+m = 

i=l 2 

The calculations of variance is somewhat more tedious (we leave it as exercise). The 
result is 

mn(m + n + 1) 
12 

Var(Wx) = (15.14) 

One could also show (we omit the proof) that as m -+ 03,n + M, the random 
variable 

W x  - E(Wx) - - WX - m(m + n + 1)/2 

d w  Jmn(m + 12 + 1)/12 
zm,n = 

converges in distribution to the standard normal random variable. 
To design a testing procedure, it is now necessary to specify the alternative hy- 

pothesis. In other words, we have to determine the class of hypotheses such that if 
(F,  G) belongs to this class, then the values of Zm,n will tend to be relatively large 
(or small, or large in absolute value). 

One such class of alternative hypotheses is obtained by taking 

H~ : ~ ( t )  = ~ ( t  - e )  (15.15) 

for all t and some 0. To grasp the meaning of this hypothesis and its consequence 
for W X ,  let us consider the case 6 > 0. Here G(t)  = F ( t  - 6) 5 F ( t ) ,  which 
means that P{Y 5 t }  5 P { X  5 t } ;  hence the values of X tend to be smaller than 
values of Y (since whatever the value t ,  the random variable X is more likely to be 
below t than the random variable Y ) .  Consequently the observations X I ,  . . . , X ,  
will tend to be located closer to the left end and so have smaller ranks. Thus small 
values of W X  support the alternative hypothesis HI : O > 0. The case O < 0 is 
analogous, whereas for the alternative H1 : G(t)  = F ( t  - O ) ,  6 # 0, one should 
take the two-sided test. 

Actually the class of alternatives against which the Wilcoxon statistic WX can be 
used is larger. Recall that the random variable X is stochastically larger than Y if 
P{ X 5 t }  5 P{ Y 5 t }  for all t .  In the present notation, X is stochastically larger 
than Y if F ( t )  5 G( t )  for all t .  Thus stochastic dominance of Y by X (or X by Y )  
is an alternative that will tend to inflate (or decrease) the statistic W X .  

About the same time as Wilcoxon introduced his statistic W X ,  Mann and Whit- 
ney introduced another statistic, pertaining to the same two-sample problem: 

R = number of pairs ( X i ,  Y j )  with X i  > Y j .  

The statistic WX can be written as 

j = 1  

where Rj is the rank of Xj,,. This means that Rj equals the number of elements in 
the combined sample that do not exceed Xj,,.  
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By definition, there are j elements in the sample X I  , . . . , X m  that are less or 
equal to Xj:,, so we can write 

Rj = j + number of Yi with Yi < X j : m .  

Consequently 

It follows that 

and 
mn(m + n + 1) 

2 
Var(R) = Var(Wx) = 

It also follows, from the asymptotic normality of WX , that as m -+ 00, n -+ 03, the 
statistic 

R - mn/2 

dmn(m + n + 1)/2 
Zm,n = (15.16) 

converges in distribution to N(0 , l ) .  Since the tests based on WX and on R are 
equivalent, they became known as Wilcoxon-Mann-Whitney tests. 

Observe now that there are mn possible pairs with elements of the pair com- 
ing from different samples. Consequently, Rlmn is a consistent estimator of the 
probability P { Y  < X } ,  so as m -+ 03, n -+ 00, we have 

+a, +a, 1, G(t ) f ( t )d t  = 1, 11 - F(t)ldt)dt .  
R 

mn 
- 3 P { Y  < X} = 

Under the null hypothesis F = G, we have P{Y < X} = 112. If P{Y < X} = 
< # 112, then, using(l5.16), we can write 

The first term converges in distribution to a standard normal random variable, while 
the second diverges to +m or --x if only t # 1/2. This shows that in the limit 
as m -+ co, n -+ 03, the Wilcoxon-Mann-Whitney test (based on WX or R) has 
asymptotic power 1 for all alternatives ( F ,  G) with E # 1/2. 

EXAMPLE 15.9 

Consider two athletes, A and B; one of them is to be selected to represent the 
country in some competition. Assume that both athletes have attained some 
stable level of proficiency in their discipline. Their results (in competitions, 
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their best daily training results, etc.) may be taken as random samples of 
some random variables, say X ( A )  and X(’). Furthermore, assume that the 
discipline is such that tied results are unlikely. Let n = 15 be the results of 
A and n = 20 the results of B, with none of the results repeating. Suppose 
that after arranging these results jointly from worst to the best, we obtain the 
sequence 

A A A B A B B A A A B B B B A B A B B A B B A A B B A B B B A B B B A  

Here the three lowest results are of athlete A, the fourth is of athlete B, and so 
on. The best result belongs also to A.  

We can define the “better” athlete (of a pair) as the one who has better than 
even chances of defeating the other one. Thus A is better than B if 

1 
2 

[ = P ( A  beats B) > -. 

The idea that lies at the foundation of the US system of selecting Olympic 
representatives is the same as that in the case under consideration: A is better 
than B because the best result of A is better than the best result of B. Let us 
therefore test the hypothesis that 

1 
[ =  P(Abeats B) = P ( X  > Y )  5 - 

2 

( A  is equal to B, or inferior to B)  against the alternative that [ > 1/2. The 
Wilcoxon statistic (sum of ranks of A )  is 

W x  = 1 + 2 + 3 + 5 + 8 + 9 + 1 0 + 1 5 + 1 7 + 2 0 + 2 3 + 2 4 + 2 7 + 3 1 + 3 5 =  230. 

For m = 15, n = 20 we have E(Wx) = 270, Var(Wx) = 900, so the p -  
value is P { Z  > (230 - 270)/30} = P { Z  > -1.33) = 0.9082. There is 
therefore no reason to reject the null hypothesis that A is no better than B, 
despite the fact that the best result is attained by athlete A.  

PROBLEMS 

15.5.1 Prove formula (15.14) showing first that for i # j 
mn mn 

Var(lA,) = and COV(IA,, IA,  ) = - 
(m  + n)2 (m + n)2(m + n - 1) ’ 

15.5.2 Two samples of sizes m = 20 and n = 10, respectively, are selected from 
two populations. Let T I ,  . . . , ~ 1 0 ,  denoting the numbers of observations from the 
first sample that do not exceed the lcth (k = 1, . . . , 10) element in the ordered sec- 
ond sample, be 1, 1 ,2 ,4 ,4 ,6 ,8 ,9 ,11 ,  d .  (i) Find the value of Wilcoxon and Mann- 
Whitney statistic as a function of d. (ii) Find the value of Kolmogorov-Smirnov 
statistic as a function of d. (iii) Suggest the appropriate alternative hypothesis, and 
determine d for which the hypothesis about the same median can be rejected based 
on the Mann-Whitney or Wilcoxon test. (iv) Answer (iii) using the Kolmogorov- 
Smirnov test. 



582 RANK METHODS 

15.5.3 Use a runs test for the data of Problem 15.5.2. 

15.5.4 Assume that n is odd and that all rn elements of the first sample are below the 
median of the second sample. Find the range of the test statistics and the rejection 
region for the appropriate alternative hypothesis using: (i) The Wilcoxon test. (ii) 
The Mann-Whitney test. (iii) The runs test. (iv) The Kolmogorov-Smimov test for 
the appropriate alternative hypothesis. ( a  = 0.05, n = 51, m = 20). 

15.6 KRUSKAL-WALLIS TEST 

Finally, we present the Kruskal-Wallis test, a rank-based counterpart of the one-way 
analysis of variance test. We consider k random samples, of sizes nl, n2, . . . n k ,  

where k 2 2. We let Xi j  be the jth element ( j  = 1, . . . , ni) in ith sample, and we 
assume that X i , l ,  . , . , Xt,n, are iid random variables with a cdf given by 

~ , ( z )  = G(. - si) 
for all 5. Here G is assumed to be a cdf of some continuous random variable. We 
want to test the null hypothesis 

Ho : el = e2 = . ' = e k  against 

If G is a cdf of a distribution symmetric around &satisfying G(-z) = 1 - 
G(z)-then the median and the mean (if it exists) of Fi is easily seen to be Bi ,  

and the null hypothesis asserts that the medians (or means) of all populations are 
the same. The variance need not exist, but the fact that all populations have the 
same distribution up to a location parameter corresponds to the assumption of ho- 
moscedasticity of Chapter 14. 

Let us order all n = n1 + . . . + n k  observations Xi j  from smallest to largest, 
and let Rij be the rank of observation X Q  in the joint ordering. Furthermore let 
Ri+ = c;:, Rij be the sum of ranks corresponding to elements in the ith sample 
(if we have two populations, i.e., k = 2, then R1 and R2 correspond to Wilcoxon 
statistics W x  and Wy from the preceding section). 

H1 : not all e;s are equal. 

The test of null hypothesis Ho is based on Kruskal-Wallis statistic 

( 1 5.17) 

We have the following theorem: 

Theorem 15.6.1 I f H o  is true, andallsample sizes 711,122, . . . , nr increase to infin- 
ity in such a way that niln --t pi  > 0 for all i, then the distribution of statistic B 
converges to the chi-square distribution with r - 1 degrees offieedom. 

We will not give a ful l  proof, but outline the argument to explain why the large 
values of the statistic B are compatible more with the alternative than with the null 
hypothesis. 

First, under the null hypothesis, 

. (15.18) 
(n  + l ) (n  - ni) 
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The proof is left as an exercise. Now letting 

we write 

3(n + 1). - - -  

First, from expression (15.19) we have that any deviation from the null hypoth- 
esis will tend to increase B. Thus the critical region is always the right tail of the 
appropriate chi-square distribution, as in ANOVA tests under normal assumptions. 

Second, we have to show that 6 converges in the distribution to a standard normal 
variable, or equivalently that the distribution of Ri+ is asymptotically normal. Once 
this fact is established, the proof of the theorem can be completed by observing that 
the random variables R1+, . . . , R,+ are constrained by the condition EL==, Ri+ = 
n(n + 1)/2, which reduces the number of degrees of freedom to T - 1. It remains 
to check, for instance, that the asymptotic mean and variance of B agree of those of 
chi-square distribution with T - 1 degrees of freedom. 

The proof of asymptotic normality of Ri+ lies beyond the scope of this book; 
it relies on one of the central limit theorems for the sum of exchangeable random 
variables. 

PROBLEMS 

15.6.1 Prove relations (15.18). 

15.6.2 STAT 102 can onlytaken be taken by students who passed STAT 101. Among 
15 students in STAT 102, five took STAT 101 from instructor X ,  four took it from 
instructor Y ,  and the rest took the course from instructor 2. Ordered according to 
their performance, the students of the three instructors are 

Z X Z Z Z Y  X Z Y X Y X Z X Y .  

(this means that the best student was taught by instructor 2, second best by instructor 
X ,  etc.). At the significance level (Y = 0.05, test the hypothesis that the performance 
of students in STAT 102 class does not depend on who taught them STAT 101. 
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CHAPTER 16 

ANALYSIS OF CATEGORICAL DATA 

16.1 INTRODUCTION 

The term categorical data refers to observations recorded either on a nominal scale 
or on a discrete ordinal scale (so ties are expected to occur often). Typical examples 
of the nominal scale occur when data represent frequencies of categories of some 
qualitative attribute (e.g., responses in a questionnaire about the state of residence or 
religious affiliation). The discrete ordinal scale consists of a set of naturally ordered 
categories. For example, opinion on a specific issue may be classified as “favorable,” 
“neutral,” or “unfavorable”; education achieved may be classified as “high school,” 
“junior college,” “four-year college or university,” “graduate school”; and so on. 

A special case is played by a binary data, for example male vs. female, smoker vs. 
nonsmoker. There is no “natural” ordering here, but one can always assign values 0 
and 1 (or any other two values) to the categories. 

The following examples illustrate some of the possible problems in the analysis 
of categorical data. 

EXAMPLE 16.1 

A typical case of data on a nominal scale occur in genetic experiments. Sup- 
pose that we have a gene with two forms, A and a, so that an individual (e.g., 

585 
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plant) belongs to one of the three categories AA, Aa, or aa. If none of the 
forms is dominant, the three genotypes can be identified (they coincide with 
the phenotypes). According to genetic theory, the probabilities of three geno- 
types are 6J2, 2O(1 - O ) ,  and (1 - Q 2 ,  respectively, where 0 is the unknown 
frequency of allele A. Suppose that out of 200 plants we have 100 of type AA, 
89 of type Aa, and 11 of type aa. Are these data in agreement with genetic 
theory? 

H EXAMPLE 16.2 

Suppose that we have joint data on ethnicity and incidence of various types 
of cancer. In studying the association between these two attributes, we might 
search for genetic, dietary, or other reasons for a lack of independence. 

In the last example, both variables (ethnicity and type of cancer) were of a nom- 
inal character. When both variables are measured on an ordinal scale, we may 
additionally be interested in the strength of association between variables. Such 
questions are discussed later in this chapter, where we present selected methods of 
analysis of ordinal aspects of categorical data. 

EXAMPLE 16.3 

For data measured originally on an ordinal scale and later grouped into classes, 
the methods of Chapter 15 are not applicable. Suppose that we want to study a 
relationship between level of education (classified as “I, no college”; “11, some 
college”; and “111, at least four-year college/university”) and the frequency of 
changing jobs (again classified as high, moderate, or low). The data take the 
form 

Education 
Frequency 
of Job Change I I1 I1 

Low Nil  Ni2 N13 

Moderate N21 N22 N 2 3  

High N31 N32 N33 

Here Ni, is the frequency of occurrence of a given category among ran- 
domly selected study participants. We want to test the hypothesis that there 
exists an association (positive or negative) between the frequency of changing 
jobs and the level of education. 

The theory of categorical data is a domain with a long tradition, the chi-square 
test being one of the oldest examples of statistical procedures that use only frequen- 
cies. At the same time this domain has been developing rapidly over the last four 
decades. We will introduce some of the basic information on problems and methods 
in analysis of categorical data. An exhaustive presentation of the field can be found 
in Agresti (2002). 
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16.2 CHI-SQUARE TESTS 

In this section we present one of the oldest and best known statistical tests. Begin- 
ning with the case of a discrete distribution with a finite number of values, we let 
X be a random variable with r possible values 21, . . . , x, and the corresponding 
probabilities pi  = P { X  = xi}, i = 1, .  . . , T .  For a random sample X I , .  . . , X,, 
counts N1, . . . , N,, where N1 + . . . + N, = n, are respective frequencies of values 
5 1 ,  . . . , 5,. The vector (N1, . . . , N,.-l) (notice that one of the coordinates Ni is re- 
dundant), called the count vector of the sample, carries all the necessary information 
about the distribution of X .  Formally, the likelihood of the data is 

V-1  

i=l 

where C = n!/(N1!N2! . . N,!). Consequently, the count vector is a set ofjointly 
sufficient statistics for the vector ( p l , p 2 , .  . . p r - ~ ) .  

An important remark here is that procedures for the inference about the distri- 
bution ( P I ,  p2 ,  . . . , p,-1) of X on the basis of the counts ( N I  , . . . , N,-l) do not 
dependonxl ,  . . . ,  x,. 

Suppose that we want to test the hypothesis 

H ~ :  p i = p p ,  i = ~  , . . . , r  (16.1) 

against the general alternative 

HI  : hypothesis HO is not true. 

Here (p:, . . . , p:) is some fixed probability distribution, and we assume that pp > 0 
f o r i =  l , . . . , r .  

Under the null hypothesis, for each i, the marginal distribution of the count Ni is 
B I N ( n ,  pp) .  The test will be based on the following theorem: 

Theorem 16.2.1 Let (N1, . . . , N,) be the count vector of random sample of size n 
from multinomial distributionwithprobabilities (p:, . . . , p:) ,  so thatp: +. . ' + p :  = 
1 and N1 + . . . + N ,  = n. Then the statistic 

(16.2) 

has the limiting (as n -+ 00) chi-square distribution with r - 1 degrees of freedom. 
The statistic Q2 is often referred to as Person j .  chi-square. 

Proof: A simple argument shows that the theorem is true for T = 2. In this case 
we have, remembering that p$ = 1 - p: and NZ = 'n - N1, 
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For an arbitrary r the algebra is more complicated: the statistic Q’ is represented 
as a sum of r - 1 squares of random variables, each converging in distribution to a 
standard normal random variable, and such that their coefficients of correlation tend 
to 0 as n increases. We omit the details. 0 

As a practical rule, one obtains a reasonable approximation of the distribution of 
Q2 if expected counts npy , i = 1, . . . , T ,  are at least 5, and the approximation is 
good if the expected counts exceed 10. 

To test the null hypothesis HO : p i  = pg , j = 1, . . . , r against the alternative 
H I  : “hypothesis HO is false,” we need to determine the critical region. Since any 
violations of the null hypothesis in the chi-square test will tend to increase the value 
of statistic Q2, we should take the right tail as the critical region, with x&-l as a 
critical value. 

1 EXAMPLE 16.4 

According to genetic theory, the seeds collected from a field of pink pea should 
produce plants with white, pink, and red flowers, in the proportion 1 : 2 : 1. 
Of 400 plants grown from such seeds, 93 are white, 21 1 are pink and 96 are 
red. Does this result contradict genetic theory? 

SOLUTION. We have here 400 observations of a three-valued random vari- 
able. According to the null hypothesis we have py = 1/4,p$ = 1/2, and 
p$ = 1/4, so the expected counts np;  are 100, 200, and 100. The observed 
value of the test statistic Q2 is 

2 - (93 - 100)’ (211 - 200)’ (96 - 100)’ 
= 1.255. 

- 100 + 200 + 100 

Since we have here 2 degrees of freedom, the p-value is 0.534, and conse- 
quently, the data do not provide enough evidence against the null hypothesis. 

As already mentioned, the chi-squared test can be used for testing the hypoth- 
esis that the data of a continuous type follow a specific distribution. In this case, 
to obtain the count vector (N1,  . . . , N T )  we partition the range of values of the ob- 
served random variable X into T sets, say CI, C2, . . . , C,. Typically the sets Cj are 
intervals, but this is not necessary; the sets Cj need not to be connected, and may 
consist of a number of non-contiguous intervals. The count N i ,  given the sample of 
n observations of random variable X, is defined as a frequency of observations in 
set Cj. Clearly, N1 + . . + Nr = n. I f f  is the density of X specified by the null 
hypothesis, then we have 

The test statistic Q2 depends not only on the sample but also on the choice of the 
partition into sets Cj. Sometimes the choice of the partition is natural, while in other 
cases the partition is chosen in a rather arbitrary way. 
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a EXAMPLE 16.5 

Fox and James (1987) give the following data about the birth signs of 851 
prominent chess players: 

Capricorn 
Aquarius 
Pisces 
Aries 
Taurus 
Gemini 
Cancer 
Leo 
Virgo 
Libra 
Scorpio 
Sagitarius 

63 
79 

101 
76 
77 
67 
54 
67 
63 
69 
71 
64 

Lasker, Keres, Chiburdanidze 
Spassky, Bronstein 
Fischer, Tarrasch, Geller, Larsen 
Smyslov, Kasparov, Korchnoi, Portisch 
Miles, Nunn, Steinitz 
Petrosian, Karpov, Short, Euwe 
Morphy, Anderssen 
Botvinnik 
Philidor 
Rubinstein, Fine 
Capablanca, Alekhine, Nimzowitsch, Tal 
Reshevsky, Pillsbury. 

It seems that Pisces have a significantly higher number of prominent chess 
players. 

We want to test the null hypothesis that the birthday is not related to chess 
talent. In this case, we can expect that the birthdays of n = 851 prominent 
chess players form a random sample from a distribution uniform on the year 
(which we may conveniently regard as a continuous distribution). The ex- 
pected count for each sign will be 851 x (1/12) = 70.917, and 

= 21.53. 
63 - 70.917)2 (64 - 70.917)2 

70.917 
Q 2 = (  +. . .+  

70.917 

The p-value of the observed result is 0.028 which means that such a result will 
occur, on average, about once in 35 times, ifthe null hypothesis is true. Some- 
one with a firm belief that there is some truth in astrology may use this result 
to support an argument. A sceptic who is convinced that the configuration of 
stars and planets at the time of one’s birth cannot affect this person’s talents 
will regard the observed result as an example of a type I error. 

EXAMPLE 16.6 

The left tail (indicating a good fit) of the chi-square test can be used for de- 
tecting whether the data were tampered with. The point is that the p-value 
gives the probability that in a repetition of the experiment, one would observe 
worse (in discrete case, no better) fit than the one actually observed. Thus if 
the p-value is close to 1, say 0.99, it means that on average, only once in 100 
repetitions one can expect to observe a better fit. That strongly suggests that 
the data were “improved” to make them conform better to the null hypothe- 
sis. An interesting example of such a type of inference is provided by Fisher’s 
analysis of data on heredity by Gregor Mendel. For a detailed explanation, see 
Freedman et al. (1992). Here we briefly sketch the idea and results. 

Mendel studied the laws of inheritance of various characteristics, eventu- 
ally introducing the concept of a gene. In a typical experiment of Mendel, 



590 ANALYSIS OF CATEGORICAL DATA 

plants of genotype AA are crossed with plants of genotype aa. All seeds are 
then hybrids Aa. A number of such seeds are grown and the plants are cross- 
pollinated. According to genetic theory, the ratio of plants of genotypes AA, 
Ao, and aa are 1 : 2 : 1. If AA and Aa cannot be distinguished, then the ratio 
of genotype aa to all others is 1 : 3, and so on. For example, in the last case, 
of 800 plants, about 200 can be expected to be aa. In all of Mendel’s experi- 
ments, the observed numbers differ suspiciously little from the expected. For 
example, suppose that in the last case Mendel reported 205 plants with an aa 
genotype out of 800. The chi-square fit of such a result is 

(205 - 200)2 (595 - 600)2 
= 0.167, 

200 + 600 
which corresponds to a p-value of about 90%. 

A single result with so high a p-value is not unusual, but when Fisher com- 
bined all of Mendel’s data using the combined chi-square test, the p-value was 
0.99996 (i.e., only 4 times out of 100,000 one can expect a better fit). Thus 
either Mendel had some extraordinary luck, or his data were “beautified” to 
conform better to his theory. 

In the cases considered above, the null hypothesis is simple; that is, the hypothet- 
ical distribution is specified completely. More often the null hypothesis comprises a 
class of distributions. We will now consider cases where the distribution of a random 
variable X depends on some parameter 8 (possibly vector valued) in a specified fam- 
ily of distributions. Thus we will assume that X is discrete random variable, with r 
possible values z1, . . . , z,, and such that 

where 8 = (81 , . . . ,&) E H k .  Moreover we will assume that the number of classes 
r satisfies the inequality r 2 k + 2 and that p j ( 8 )  > 0 for all j and all 8 E Hk. 

As before, we assume that we have a random sample of values of X, leading to 
the count vector (N1, . . . , N,), where Nl +. . .+ N,. = n. This time we cannot form 
the test statistic (16.2) because the expected class frequencies n p j ( 8 )  depend now 
on the unknown parameter 8. According to Theorem 16.2.2, we must use instead 
the estimated expected frequencies obtained as functions of the MLE of 8. Given 
the count (N1, N2, . . . , N,) the likelihood of the data is 

q e ; N l ,  . . . ,  N,,) = [ ~ ~ ( e ) ] ~ l - . [ p , ( e ) ] ~ ~  (16.3) 

Let 4 = (61, . . . , &) denote the value of the parameter 0 that maximizes the likeli- 
hood (16.3). We have then the following theorem: 

Theorem 16.2.2 The statistic 

(16.4) 

has, as n -+ m, the limiting chi-square distribution with T - 1 - k degrees of 
freedom. 

We omit the proof, which can be found in Cramtr (1 946). 
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EXAMPLE16.7 

Consider a gene with two alleles, A and a. Let the frequency of gene A in pop- 
ulation be 6. Under random mating, the frequencies of individuals of geno- 
types A A ,  Aa, and aa are e2, 20(1 - e ) ,  and (1 - S)2. To test the theory, 
n individuals are randomly selected, and the count of the three genotypes is 
N 1 ,  N2, N3. Then the likelihoodofthe data is 

* 2N1 +N2 e =  
2n ' 

(16.5) 

For a numerical example, suppose that n = 200, Nl = 25, N2 = 10, and 
N3 = 165. We have then 6 = 60/400 = 0.15, and using (16.5), we get 

(25 - 30)2 (10 - 51)2 (165 - 144.5)2 
= 36.70. 

+ 51 + 144.5 
Q 2  = 

30 

Since this result exceeds ~ ; , 0 0 0 5 , l  = 7.879, the p-value is less than 0.005, so 
the evidence against the null hypothesis of random mating provided by such 
data is very strong. 

Theorem 16.2.1 asserts that if the null hypothesis is simple (specifies completely 
the distribution), then the limiting distribution of Q2 (under null hypothesis) is chi- 
square with r - 1 degrees of freedom. On the other hand, if the null hypothesis is 
composite, and we have to estimate the expected counts by finding the MLE's of the 
parameters 81, . . . , Bk given the counts, we lose k degrees of freedom. 

EXAMPLE 16.8 

Assume that we have raw data for the numbers 21905, 21906, . . . ,51991 of 
cloudless nights in the last n = 87 years at some prospective telescope site. 
Suppose that it is known that 21905 + 21906 + . . + ~ 1 9 9 1  = 21,163 and 
2:905 + . . . + zqggl = 5,226,819. However, the actual data are not available, 
and instead we have the following counts Ni of years with given numbers of 
cloudless nights: 

Interval N ,  

160 or below 1 
161 to 180 3 
181 to200 7 
201 to 220 17 
221 to 240 18 
241 to 260 26 
261 to 280 9 
281 to 300 4 
301 or above 2 
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We want to test the hypothesis that the number of the cloudless nights at 

The MLE's of 1-1 and o2 computed from original data are 
the site is normally distributed. 

1 
87 87 

- 5.L- 21 163 - 243.25 and d2 = -(5,226,819) - (243.25)2 = 907.82; 

hence 8 = 30.13. The estimated class probabilities are, letting X denote the 
number of cloudless nights, 

p i  = P ( X  5 160) = @ ( 160302:!'25) = @(-2.76) = 0.0029 

p2 = P(160 5 X 5 180) = @(-2.10) - @(-2.76) = 0.015, 

and similarly for subsequent intervals. 
The actual and expected counts for the consecutive classes are therefore 

Interval 87pt Ni 

160 or below 
161 to 180 
181 to 200 
201 to 220 
221 to 240 
241 to 260 
261 to 280 
281 to 300 
301 or above 

0.252 
1.305 
4.959 

12.676 
19.192 
22.281 
15.356 
7.056 
2.612 

1 
3 
7 

17 
18 
26 
9 
4 
2 

To avoid too small expected class sizes, we combine the first three classes 
together as well as the last two classes and obtain: 

200 or below 6.516 11 
201 to 220 12.676 17 
22 1 to 240 19.192 18 
241 to 260 22.281 26 
261 to 280 15.356 9 
281 or above 9.668 6 

The observed value of the statistic Q2 is now 9.278. This corresponds to 
the p-value equal 0.026 (3 df). 

PROBLEMS 

16.2.1 Ladislaus von Bortkiewicz, a Russian economist and statistician, is known 
for the data he collected on the number of Prussian cavalryman being killed by the 
kick of a horse. He observed 10 army corps for 20 years, obtaining 200 observations. 
The total of 122 deaths was distributed as follows: 



HOMOGENEITY AN0 INDEPENDENCE 593 

0 1 2 3 4 5 6  
109 65 22 3 1 0 0 

Test the hypothesis that the number of deaths from horse kicks has Poisson distribu- 
tion. 

16.2.2 A certain type of toy is sold with three batteries included. The number of 
defective batteries (X) in a random sample of 200 toys are as follows: 

x ( o 1 2 3  

Count I 51 92 40 17 

Test the hypothesis that the number of defective batteries in a toy has a binomial 
distribution. 

16.2.3 Assume that the genders of children in a family are independent. In a human 
population, the probability that a child is a male is very close to 0.5. Numbers of 
boys (X) in a random sample of 100 families with four children are: 

X I 0 1 2 3 4  

Count I 7 21 40 27 5 

Test the hypothesis that the distribution of the number of boys in a family of four 
children is indeed BW(4,0.5). 

16.2.4 Suppose that counts of female offsprings in a certain animal species with four 
offsprings are 3,8,28,40,21.  Test the hypothesis that the corresponding distribution 
is binomial. 

16.2.5 Given the data on numbers of hits of various areas of London by V2 rockets 
(see Example 9.14), test the hypothesis that the numbers of hits have a Poisson 
distribution. 

16.3 HOMOGENEITY AND INDEPENDENCE 

Chi-square tests can also be used for testing hypotheses about jointly distributed 
categorical variables. The data obtained in a random sample are summarized in 
a contingency table with T rows and c columns representing levels of respective 
classification variables. If n observations are taken, then NzJ is the number of ob- 
servations classified at the ith level of the first classification variable and at the j t h  
level of the second. The counts can be arranged into a matrix [Nzl] ,  where we have 

We will postpone a more detailed analysis of types of contingency tables to sub- 
sequent sections. Here we will consider only the simplest case, corresponding to 
random sampling from a population whose elements are categorized according to 
some classification system (gender vs. educational level, smoking status vs. cause 
of death, etc.) 

Let p , ,  be the probability that a single observation belongs to the ith category 
in first classification, and j th  category in the second classification. The marginal 

cz3 Nz3 ,= 71. 
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probabilities here are 

j i 

and the most obvious null hypothesis is that of independence of the two classifica- 
tions: 

Ho : p i j  = pi+p+j for all i, j .  

The alternative hypothesis is 

H ,  : HO is not true. 

Let now fit, denote the MLE of the probability p i j  based on the count matrix [Nij].  
Then the test statistic (16.4) takes on the form 

(16.6) 

This statistic, according to Theorem 16.2.2, has a limiting (as n - m) chi-square 
distribution with rc - 1 - k degrees of freedom, where k is the number of estimated 
parameters. 

To determine k ,  and also find the estimators ljij, observe that under the null hy- 
pothesis HO we have (by the invariance property of MLE's) f i i j  = f i i+ f i+ j .  Now 
there are r values of the marginal probabilities pi+, and c values of marginal prob- 
abilities p + j ,  but in each of these marginal distributions one value is a function of 
others, for instance, 

p T +  = l - p l +  - P 2 + - ' ' ' - P T - l , +  

and similarly 

Thus the number of estimated parameters is k = ( r  - 1) + (c - l), and consequently 
the number of degrees of freedom of the limiting distribution of (16.6) is 

p+c = 1 - P+l - P+2 - . . . - P+,c-l. 

rs  - 1 - ( r  - 1) - (c - 1) = ( r  - l ) ( c  - 1). (1 6.7) 

Finally, we know that the MLE of a probability in multinomial distribution is the 

where 
(16.8) 

j i 

Thus & j  = Ni+ N+j/n2,  and substitution into (16.6) gives the following theorem: 

Theorem 16.3.1 Assume that n elements of a random sample are classijed accord- 
ing to two attributes with r and c categories, respectively, producing a contingency 
table (count matrix) [Nij]. For testing the hypothesis 

Ho ; row and column classijcations are independent 
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against the general alternative 

Ha : hypothesis HO is false, 

one can use the statistic 

(16.9) 

which (under Ho) has Iimitingchi-square distribution with ( r  - l ) ( c  - 1) degrees 
ofpeedom. 

Any deviations from Ho tend to increase Q2. So the critical region contains val- 
ues of Q2 that exceed x:,(T-l)(c-l). 

EXAMPLE 16.9 

The Special Election Issue of Newsweek (NovemberlDecember 1992) gives 
the exit poll results for the 1992 presidential election. One of the tables is the 
following: 

I Clinton Bush Perot 

White 87% 1 41% 38% 21% 
Black 9% 82% 11% 7% 

Although the conclusion seems quite clear, let us try to analyze this table and 
test the hypothesis that the preferences for the three candidates are independent 
of race. The total sample size given is n = 15,241 voters, and the margin of 
error is given as 1.1 percentage points. 

Observe first that the marginal percentages of whites and blacks do not add 
up to loo%, which means that the data for 4% of the voters (e.g., Hispanics) 
were not taken into account. Thus we can estimate the sample size for our test 
to be about 0.96 x 15,241 = 14,631. Now the marginal totals for whites and 
blacks can be estimated as 

= 13,259, 
0.87 

0.87 + 0.09 
Nw+ = 14,631 x 

and therefore NB+ = 1,327. 
Next the percentages in each row add to 100%; this allows us to estimate 

the counts Nw,clinton, N w , B ~ ~ ~ ,  and so on. The whole contingency table 
takes on the form 

Clinton Bush Perot 

White 5,436 5,039 2,784 13,259 
Black 1,125 151 96 1,372 

6,561 5,190 2,880 14,631 

We can now compute the observed value of statistic Q2 given by formula 
(16.9). We obtain here Q2 = 845.2, which exceeds the critical value for a chi- 
square distribution with 2 degrees of freedom chosen for any reasonable level 
of significance cr. The race and voting preference are definitely dependent. 
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Continuing this analysis we could ask what confidence level the pollsters 
use in announcing their “margin of error.” Here it is given as f l .1  per- 
centage points. We are estimating here the true proportion p on the basis 
of sample of size ‘TI = 14,631. If X is the number of observations of a 
given category, then X has a binomial distribution with parameters n and 
p ;  hence X is approximately normal N(np,np(l  - p ) ) .  Consequently, the 
estimated percentage, 1005 = 100X/n has an approximate normal distri- 
bution with mean E (  loo$ = l oop  and Var( 10013) = Var( ( lOO/n)X)  = 
(1002/n2)Var(X) = 1002p(l - p) /n .  The (1 - a)-confidence interval for 
the mean l o o p  is 1006 f z a p f l x @ .  

The fact that the error given is the same for all data (instead of depending 
on the observed percentage) suggests that an upper bound p( l  - p )  5 1/4 is 
used. We have therefore the inequality 

The right-hand side equals 1.1 for z,/2 = 2.575, which suggests that the 
pollsters used a 99% confidence level. 

The chi-square test for independence described in Theorem 16.3.1 concerns the 
case where the counts Nij arise from a cross-classification of independent and iden- 
tically distributed observations. In experiments where one of the classification vari- 
ables is not random but controlled by the experimenter, the data cannot be treated as 
a sample from a bivariate distributions. 

EXAMPLE 16.10 Prospective and Retrospective Studies 

Data summarized in contingency tables are usually used to analyze the hy- 
pothesized relationship between cause and effect (also referred to as stimulus 
and response, explanatory and response variable, independent and dependent 
variable, etc.). Let X and Y denote these variables, with X having T cate- 
gories (also referred to as levels or treatments, depending on the context) and 
Y having c categories. 

In prospective studies one selects groups of subjects corresponding to vari- 
ous levels of X and then classifies each group separately according to levels of 
Y. For instance, in the social sciences, one may be interested in productivity 
(Y) and its dependence on stress level (X). The data may result from selecting 
T groups of subjects, exposing the ith group to the ith stress level, and then 
observing levels of productivity. Consequently the totals Ni+ (sizes of groups 
exposed to levels of stress) are not random. Similarly in medical research, 
one may select two groups of patients and then administer the treatment being 
studied to one group and a placebo to the other group. The response Y can be 
observed in both groups. Again, the sizes of the groups are not random but are 
under the control of the experimenter. 

In retrospective studies the situation is similar, except that now the marginal 
counts N+j of the response categories are controlled by the experimenter. An 
example might be provided by typical data on smoking habits and lung cancer. 
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A sample of subjects who died from lung cancer is selected and compared with 
a sample (possibly matched with respect to various attributes such as sex, age, 
etc.) of subjects who died from other causes. The sizes of these two samples 
are chosen largely at will. The two samples are then classified according to 
categories related to smoking. 

For the analysis of contingency tables in which one of the marginal frequency 
vectors is fixed, let us first introduce the appropriate notation and then formulate the 
hypothesis to be tested. 

The data form, as before, a count matrix [Nij],  with marginal counts Ni+ = 
Cj Nij and N+j = Xi Nij. The total number of observations is n = Cij Nij. 
For the sake of argument, assume that the counts Ni+, i = 1, . . . , T ,  are not ran- 
dom. For each i, the vector (Nil, Ni2, . . . , Nit) is assumed to represent the counts 
from Ni+ iid observations, sampled from the distribution corresponding to the ith 
level of the first attribute. The probabilities in this distribution will be denoted by 
( p l l i , p 2 1 i , .  . . , p + ) ,  where pl l i  + p2li + . . . + p+ = 1. Here pjli  stands for the 
probability that the observation will fall into the j th class of the second attribute, 
if the sample is taken from the population of objects with the ith level of the first 
attribute. Note that p j l i  is not a conditional probability as long as i is not random. 
We use, however, the symbols appropriate for conditional probabilities, since in the 
special case where i is random, we have the obvious relation 

P i j  = P j j i P i + .  (16.10) 

The hypothesis of interest here is the hypothesis of homogeneity, which may be 
stated as follows: 

HO : distributions (p l j i ,  . . . , p + )  do not depend on i; (16.11) 

that is, for each j we have pill  = . . . = Pjlr = P j .  
As before, we will obtain a test for HO against the general alternative 

H1 : hypothesis Ho is not true. 

Despite the differences between the independence hypothesis and the homogeneity 
hypothesis above, they are tested by the same statistic. Indeed, for any fixed i, the 
component of the chi-square sum is 

where fijjri is the MLE of probability p j l i .  Clearly, under the null hypothesis of 
homogeneity we have 

( 16.12) 

and fij = N+j / n  (i.e., the MLE of p j  is the relative frequency of the j th category). 
Adding over i, we obtain the test statistic 

(16.13) 



598 ANALYSIS OF CATEGORICAL DATA 

The number of degrees of freedom equals T ( C  - 1) - k ,  where Ic is the number of 
estimated parameters. Indeed, each QS will have c - 1 degrees of freedom if the 
value p j  is known. The parameters estimated are p l ,  . . . , p c - l ,  so k = c - 1, and 
we obtain the following theorem: 

Theorem 16.3.2 rf the null hypothesis Ho (16.11) is true, and if Ni+ --+ M for  
i = 1,. . . , r, then the statistic Q2 given by (16.13) has the lirnitingchi-square dis- 
tributionwith T ( C  - 1) - ( c  - 1) = (T - l ) ( c  - 1) degrees offreedom. 

Any violation of the null hypothesis will tend to increase the value of Q2. So, again, 
the null hypothesis will be rejected if the observed value of the statistic Q2 exceeds 

2 
Xa,(T-l)(c- l ) .  

PROBLEMS 

16.3.1 Show that in the case of a 2 x 2 contingency table, the statistic Q2 given by 
(16.9) is proportional to (N11N22 - N21 N I ~ ) ~ ,  and find the proportionality constant. 

16.3.2 For each 3 x 4 contingency table below find such k that the hypothesis about 
independence of two classification variables is rejected at the 0.05 significance level. 

(i) k k k k (ii) 5 5 5 5 
k k O k  5 5 k 5  
k k k k  5 5 5 5 .  

16.3.3 Mrs. Smith, who teaches an elementary statistics course, classified each stu- 
dent in the class according to whether the grade on the first exam was below or above 
the median for this exam, and then did the same for the second exam. The results 
obtained are: 

Second Exam 
First Exam Below Above 

Below 30 5 
Above 5 30 

Compute Q2 and find the p-value. What legitimate conclusion can be made? 

16.3.4 Professionals from various disciplines participated in a study on job-related 
stress. A random sample of size 100 was selected from each group of professionals 
(physicians, engineers, and lawyers) and each person was asked to evaluate the level 
ofjob-related stress as low, moderate, or high. The results of a study are given below. 

L M  H 

Physicians 5 25 70 
Engineers 25 25 50 
Lawyers 10 30 60 

Specify the hypothesis to be tested, perform the test, and make the appropriate con- 
clusions. 



CONSISTENCY AND POWER 599 

16.3.5 A random sample of 29 university students was selected and each student 
was then classified according to their high school GPA and college GPA. Both clas- 
sifications had the same two categories: “I, below 3.0,” “11, at least 3.0.” Formulate 
a hypothesis to be tested. Perform the test and make appropriate conclusions. 

High School College GPA 
GPA I I1 

I 5 3 
I1 12 9 

16.4 CONSISTENCY AND POWER 

Chi-square tests of either independence or homogeneity serve as tests against a gen- 
eral alternative, asserting simply that the null hypothesis is false (such tests are called 
omnibus tests). If the independence hypothesis is not true, then (as the sample size 
increases) the probability of rejection of the null hypothesis tends to 1. We may 
rephrase this property by stating that power of the chi-square test for independence 
tends to 1 for any simple hypothesis contained in the alternative as the sample size 
increases. This property of the test is called consistency. 

The situation is similar in the case of tests for homogeneity, except that now the 
sample sizes refer to rows (levels of explanatory variable), and are determined not 
by chance but by the experimenter. Again, if the null hypothesis is not true, then at 
least two of the rows of the matrix [pilj] are different. The power of the chi-square 
test will tend to 1 on a simple alternative in which the rows labeled io and ib are 
different, if the sample sizes Nio+ and Nib+ both tend to infinity. 

In general, it is difficult to analyze the power of chi-square tests for independence 
or homogeneity, since it involves determining the exact or limiting distribution of a 
statistic under some distribution in the underlying population. 

However, if one looks at the main motivation of an analysis of the power of 
a test, namely to decide “which hypothesis should be accepted if one rejects null 
hypothesis,” then one can suggest the following approach. 

When the null hypothesis is not valid, it typically is due to the fact that there is 
a strong association between some specific values of the two attributes analyzed, 
while for other values the null hypothesis is, at least approximately, satisfied. 

In symbols, the null hypothesis (of independence) asserts that all absolute differ- 
ences 

IPij - ~ i + ~ + j  I (16.14) 

are zero. If the null hypothesis is not valid, then there exist absolute differences that 
are positive. What typically happens in such cases is that a few of those differences 
are high; other may be close to zero (rather than all of these differences being small). 
In these cases one would like to identify the cells for which the differences (16.14) 
are high. 

To present the solution, let us first derive an alternative to the chi-square test, 
namely the generalized likelihood ratio (GLR) test (see Section 13.6). Consider the 
case of testing the hypothesis of independence, which states that pij  = pi+p+j  for 
all i, j .  The union of HO and H I  allows the probabilities p i j  to be arbitrary (subject 
only to the constraint that xi,] p i j  = 1). The data form the contingency table [Nij].  
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The likelihood of the data is (up to a multiplicative constant) equal to L = 
n, n , ( p s j ) N t ~ .  It is maximized at Pzl  = N,,/n, where n = xEJ N,, is the to- 
tal sample size. Consequently the denominator in the GLR, equal to the maximum 
over all parameter space, is 

On the other hand, the likelihood over the null hypothesis equals (up to the same 
multiplicative constant) 

i j  

This is maximized at &+ = Ni+/n and$+j = N+j/n,  and we obtain 

= n - 2 " n n ( N i + ) N + ' ( N + j ) N + J .  
i j  

The generalized likelihood ratio equals therefore 

Under the null hypothesis Ho, the statistic 

has a limiting (as n -+ 00) chi-square distribution with a number of degrees of 
freedom equal to the difference in the number of estimated parameters in the de- 
nominator and in the numerator. Thus the number of degrees of freedom is 

( T C  - 1) - [ (T  - 1 )  + (c - l)] = (T - l ) ( c  - 1). 

Symbolically we may write Q2 = C ( N i j  - E ( N i j ) ) 2 / E ( N i j ) ,  where Nij and 
E ( N i j )  stand for observed and expected (under null hypothesis) counts. On the 
other hand, using the fact that 

22 

2 
log(1 +z)  = 5 + - + .  . . , 

we can write 
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Now, as n -+ m, we have Nz,/E(Nz,)  -+ 1 in probability, and also E[C(N, ,  - 
E(Nz,))] = 0. This suggests that the first sum is close to 0, and the second sum is 
close to Q2. 

Although the argument above falls short of being a proof, it suggests that Q2 and 
G2 are close to one another for large samples. In fact one can show that Q2-G2 ---t 0 
in probability as n ---t m. The idea of using the statistic G2 to investigate the power 
lies in the additivityproperty of the chi-square distribution. If W has xi distribution, 
and k = kl  + k2 + . . + k ,  is a sum of positive integers, then there exist independent 
random variables YI , . . . , Y, such that W = YI + . . . + Y, and Y,  - xi,. 

In the case under consideration, we have the random variable G2 given by (16.16), 
which (under the null hypothesis) has a limiting chi-square distribution with (T- - 
l ) (c  - 1) degrees of freedom. It may be shown that G2 can be represented as a sum 
of independent random variables Gq, . . , G:, each corresponding to a subtable of 
the original contingency table. 

The subtables are obtained by taking a part of the original table and then col- 
lapsing some of the categories. Goodman (1 969, 197 1) and Lancaster (1 949, 1969) 
formulated following necessary conditions for components GT in the sum 

G2 = G? + Gi + . . .  + G: (16.17) 

are independent: 

1. The degrees of freedom for the components Gq, . . . , G: must sum to the number 

2. Each cell count Nz, of the original table must appear in exactly one subtable. 

3. Each of the marginal counts Nz+ and N+, of the original table must appear as 

If all three conditions are satisfied, then the values of statistic G2 computed for 

( r  - l ) ( c  - 1) of the degrees of freedom of G2. 

marginal count in exactly one subtable. 

the whole table and for the subtables satisfy (1 6.17). 

EXAMPLE 16.11 

Consider a 3 x 3 contingency table 

I Yl yz y3 I Marginals 

Marginals I N+I N+z  N+3 1 
An example of a decomposition satisfying the three conditions of indepen- 
dence is as follows: 

Subtable 1: 
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X I  or X2 

x3 

Subtable 2: 

I X o r K  E l  

N11 + N U  N13 + N23 N1+ + N2+ 
+N21 + N22 

N31 + N32 N33 I N3+ 

N1+ Et: 1 Nz+ 

N13 + N23 I Nil  + Ni2 

+N21 + N22 

Subtable 3: 

I y1 E l  

EXAMPLE 16.12 

In a study of marijuana use in colleges, 445 students were sampled and clas- 
sified according to a response variable (use of marijuana or other drugs) into 
three categories: “never,” “occasionally,” “regularly.” As a possible explana- 
tory variable the experimenters selected the number of parents who were alco- 
hol or drug users (“neither one,” “exactly one,” “both”). The data that follow 
are from Devore (1 99 1): 

Student’s Drug Use 
Parents’ 
Drug Use Never (N) Occasionally (0) Regularly (R) 

None 141 54 40 235 
One 68 44 51 163 
Both 17 11 19 47 

226 109 110 445 
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For 3 x 3 tables, the statistic G2 has a limiting chi-square distribution with 
4 degrees of freedom. The value for the table above is G2 = 22.254, which 
is highly significant (p-value equals 0.00018). Incidentally, for this table we 
have Q2 = 22.394, which illustrates the closeness of G2 and Q2 for large 
samples. Thus we may conclude that there is a relationship between parental 
and student use of drugs. 

One of the questions we could ask here is whether a positive or a negative 
example is stronger. In other words, taking for granted that the frequency of 
marijuana use tends to increase with the number of parents who use alcohol 
or drugs, the question is whether the effect of a bad example of one parent 
tends to outweigh the good example of the other parent. To get an insight into 
this question, we consider two decompositions of G2. The first decomposition 
correspond to the following four subtables: 

I N  O / N + O  R 
3 4 1 N O I N + O  R 

1 

None 141 54 195 40 209 98 307 91 
One I 68 44 I 112 5 1  I 17 11 1 28 19 

The values of G2 four these for tables are, respectively, Gq = 4.344, G: = 
10.957, Gi  = 0.616, and Gi  = 6.336, and we check that G2 = Gq + G; + 
GZ + Gi. The corresponding p-values for 1 degree of freedom are, respec- 
tively, 0.037,0.001,0.432, and 0.012. 

An alternative decomposition is as follows: 

1* 2* 4* 
10 R I N  O + R / I  

9s I/ Neither 
Both I 11  19 1 17 30 Atleastone 
One 44 51 68 

Now the values are G?. = 0.871, G;. = 0.470, G& = 3.893, and GZ. = 
17.019. The corresponding p-values are 0.351, 0.493,0.048, and 0.000. 

These results indicate that a bad example, of just one parent, has a big 
influence on a student’s marijuana use. As subtables 1* and 2’ show, if at 
least one parent uses drugs or alcohol, then it does not really matter whether 
the other parent does as well. On the other hand, as subtables 3* and 4* 
show, there is a significant difference where none of the parents use drugs or 
alcohol. This effect increases greatly the likelihood that a student will never 
use the marijuana, and-if he uses it-at a decreasing frequency of use. 

The conclusions are strengthened if one analyzes also a first decomposition. 
Here the category “one” is either compared with “neither,” or category “at 
most one” is compared with category “both.” As can be seen, subtables 1, 2, 
and 4 show the significant effect of a parent using alcohol or drugs. Subtable 
3 shows that any positive effect of the other parent is limited. The presence 
or absence of a positive model does not have any significant effect on the 
frequency of marijuana use as long as this frequency is low (or zero). Subtable 
4 suggests that the presence of a positive parent role model has only the effect 
of lowering the probability of a regular use of marijuana during the college 
years. 
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PROBLEMS 

16.4.1 Find a decomposition of G2 into independent components by decomposing: 
(i) A 2 x k table. (ii) A 3 x 4 table. 

16.4.2 The data on the incidence of a certain disease, classified by age and gender, 
are as follows: 

< 20 20-39 4-59 60 + 
Men 10 15 30 40 
Women 20 30 60 300 

Find the values of statistics Q2 and G2. Find the decomposition of G2, and verify 
that the “source” for lack of independence is the very high incidence of this disease 
among women over 60. 

16.4.3 At the beginning of the semester a random sample of 104 students was se- 
lected out of students in all introductory statistics classes. Students were then clas- 
sified according to their GPA (I, “below 3.0”; 11, “between 3.0 and 3.5”; and 111, 
“above 3.5”) and their attitude towards the statistics course (i, “I hate to take this 
class but I have to”; ii, “I do not mind taking this class but it is not one of my fa- 
vorites”; iii, “I look forward to taking this class”). The results of classifications are 
given below. 

i I1 i i i  

I 14 8 2 
I1 10 14 12 
I11 6 16 22 

Test the hypothesis of independence of both classification variables. In the case of 
lack of independence, use decomposition to identify the cause of dependence. 

16.5 2 x 2  CONTINGENCY TABLES 

We begin with the simplest, but very common situation, where both variables have 
only two categories (i.e., are treated as binary variables). Denoting those levels by 
1 and 2; we have then two distributions of the response, corresponding to the values 
of the explanatory variable, namely 

(PllllP211) and (P112,P212), 

whereP2ll = 1 -Pill andP212 = 1 -P112. 
The null hypothesis of homogeneity reduces to 

- 1. Plll 

P112 

When response 1 is in some sense undesirable (death, relapse of disease, etc.) 
the ratio p111/p112 was often called the relative risk. This term is now used gen- 
erally regardless of the context (similarly as “success” and “failure” in a binomial 
distribution). 

H o :  -- 
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The alternative hypothesis of a positive association asserts that a higher value 
of explanatory variable gives a higher probability of a higher value of the response 
variable, that is, pzll < ~ 2 1 2 .  The latter inequalityis equivalentto l-plI1 < 1 -p1p; 
hence p111/1)112 > 1. Similarly a negative association means that the relative risk is 
less than 1. 

An alternative formulation, which also suggests a testing procedure, is as follows: 
Consider a binary distribution (n, 1 - n), where 7r is the probability of some event 
A.  Then the ratio - 

II 

q = -  ( 16.1 8) 
1 - 7 r  

is called the odds (for the event A).  It is clear that q determines n uniquely, namely 
7r = q / (1+  7). As 7r increases from 0 to 1, the odds 7 increase from zero to infinity. 
The odds for the complement of the event A are 1/77. In the case of the distributions 
(~111,pzp) and ( P I ~ Z , P Z ~ Z ) ,  the odds (forthe response 1) are 

Plll Plj2 q1 = - and qz = - 
P2ll PZlZ 

To formulate the null and alternative hypotheses, it appears natural to consider 
the odds ratio : 

( 1 6.1 9) 
172 PllZP2ll PlZP21 

where the latter expression is meaningful in the case where the explanatory variable 
is random. 

The null hypothesis, of either homogeneity or independence, has the form 

H ~ :  e = i .  (1 6.20) 

The alternative H ;  of positive and H ;  of negative association are, respectively, 

H ; :  B > 1  and H ; :  B < 1 .  (16.21) 

Suppose now that the null hypothesis Ho : B = 1 is to be tested against the 
alternative of positive association H,‘ : 19 > 1. The data have the form of a 2 x 2 
count matrix (contingency table): 

[ 2 21 
The question is: How to determine the p-value of the observed contingency table, 
that is, the probability (calculated under the assumption that the null hypothesis is 
true) of observing-ifthe experiment were to be repeated-a contingency table that 
will at least be as much in favor of the alternative as the contingency table actually 
observed. 

To implement the idea of determining the p-value of the observed result, one 
needs to proceed as follows: 

1. Explicate the ordering of the contingency tables according to the relation of “be- 
ing more in favor of the alternative hypothesis.” 
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2. Specify the probabilities of occurrence of the various contingency tables under 
the null hypothesis. (Note that the null hypothesis of independence is com- 
posite; hence it does not lead directly to numerical values of probabilities.) 

Regarding step 1, as a statistic, one can take a sample counterpart of the odds ratio 
8 ,  replacing the probabilities p i j  by the corresponding relative frequencies Nij /n ,  
where n is the total sample size. This leads to the statistic U ,  defined as 

(and U = rn if N12 or N21 is zero). 

defined formally as 
Thus, if the observed contingency table is [nij], then the p-value of this result is 

(1 6.22) 

It remains to specify the probability distribution PO on a suitably selected class of 
2 x 2 contingency tables. The main requirement is that PO should not depend on 
any parameters so that its numerical value can be determined for every contingency 
table for which PO is defined. 

Now, if we take a random sample of size n from a population whose elements are 
classified according to two dichotomous classifications, then the probability of a par- 
ticular contingency table with its sum of entries equal n is given by the multinomial 
distribution 

If the null hypothesis HO is true, then p i j  = pi+p+j, and substitution into (16.23) 
gives 

where ni+ = nil + ni2 and n+j = nlj + n2j for i, j = 1 , 2 .  
It should be clear that in order to obtain the probabilities of the contingency tables 

that do not depend on the parameter, it is necessary to restrict the definition of PO 
to the class of tables with given marginals ni+ and n+j (2 ,  j = 1,2) .  This suggests 
taking as PO the conditional probabilities given both marginals, since the product 
pl+ p2+ p + ,  will then cancel. 

We have, for the probability of marginals being (n1+, n2+) and (.+I, n+2), the 
product of two binomial probabilities: 

ni+ na+, n+l  “+z 

and 

p{N+i  = n+i} = (“n+)P;:’(l- p+l)n-n+l = 
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Consequently 

P{N1+ = ~1+ ,N+1  = n+1} = P{N1+ = nl+}P{N+1 = n+1} (16.25) 

ni+ n2+ n+i n+2 
Pl+ P2+ P+l P+2 . 

Dividing (16.24) by (16.25), we obtain, after rearranging the multinomial coeffi- 
cients, the following theorem in which Nij (z) is the 2 x 2 table with given marginals 
and N11 = z : 

Theorem 16.5.1 Under the null hypothesis Ho : 0 = 1, for  any integers n, n1+, n+1 
satishingthe conditions n > 0,O 5 n1+ 5 n, 0 5 n+1 5 n, 

n1+ n--ni+ 
- - ( ) ( n + l - x ) .  (16.26) 

(n",) 

Observe now that we have 

71117122 - 4. - n1+ - n+1 + X I  

72127221 (n1+ - .)(nil - X) ' 
-- 

which is an increasing function of x. This means that the ordering of contingency 
tables with the same marginal totals coincides with an ordering with respect to the 
element 5 = 1211. Consequently, in view of Theorem 16.5.1, the p-value defined by 
(16.22) becomes 

EXAMPLE 16.13 

To study whether or not there exists a positive association between musical and 
mathematical abilities, a group of 12 fourth graders was classified according 
to their scores (high or low) in these subject areas. The results are as follows: 

Mathematics 
Music High Low 

High 4 1 5 
Low 2 5  I 

6 6  12 

Do the observed data lead to rejecting the null hypothesis of independence of 
musical and mathematical abilities in favor of the alternative of a positive as- 
sociation? 
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SOLUTION. There is only one contingency table with the same marginals 
as original one, which is more in favor of the alternative, namely 

; : I ;  
6 6 / 1 2  

The p-value of the observed result is therefore the sum of probabilities of both 

Clearly, at level 0.1 (and therefore also at any lower level) the null hypoth- 
esis should not be rejected: There is about a 12% chance of observing a result 
at least as much in favor of the alternative hypothesis if only due to random 
fluctuations (i.e., if in fact the null hypothesis is true). 

Let us mention here that the test as described above is applicable also to the cases 
of prospective or retrospective studies where one of the marginals is not random. 
Indeed, if the marginals n1+ and n2+ are selected by the experimenter, then the 
contingency table is 

n11 nlz 

n+1 n+z 1 n 
(where we let a. and b denote the nonrandom marginals to distinguish them from the 
random marginals). The corresponding table of conditional probabilities, under the 
null hypothesis of homogeneity, is 

Plll P211 Y 1 - 7  [ Pll2 P212 1 = [ Y 1 - 7  1 
The likelihood of the data, under the null hypothesis, is therefore a product of two 
binomial probabilities: 

On the other hand, the probability of the observed column marginals is, again under 
HO , 

(;J yn+l (1 - -YYfa. 
Thus the conditional probability, given the column marginal, is free of y, and it 
equals 

(n+i )  

which agrees with (16.26). 
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EXAMPLE 16.14 

Returning to Example 16.13, the p-value of the observed contingency table 
would be the same as calculated there (i-e., about 0.12) if we selected six 
students with high and six with low math scores, and then classified them 
according to their music scores. 

EXAMPLE 16.15 

Twenty occasional headache sufferers participated in testing a newly devel- 
oped headache remedy. They were given the drug and later asked whether or 
not it was significantly better than the drug they usually took. In fact, however, 
every fourth subject tested received not a drug but a placebo. The data are as 
follows: 

Significant No Significant 
Improvement Improvement 

D w  1 1  4 15 
Placebo 3 2 5 

14 6 20 

Do these data indicate that the new drug is better than the drugs usually taken? 

SOLUTION. We are testing here the hypothesis of homogeneity against the 
alternative of a positive association between taking the new drug and benefi- 
cial effects for patients. To determine the p-value observe that the count rill, 
given the marginals, may be only 11, 12, 13, or 14 if the table is to be at least 
as much in favor of the alternative as the observed one. Tables 

have probabilities 

12 3 13 2 14 1 :I,[ 2 3 ] : [  1 4 1 "  o 5 1 ,  

respectively. Hence the p-value is about 0.48, so there in no evidence to back 
the claim that the new drug is superior to the drugs used so far. 

The testing procedure described above is known as the Fisher's exact test (see 
Section 13.7). In testing the null hypothesis Ho : 6' = 1 against a two-sided alterna- 
tive H I  : 6' # 1, one encounters the usual problem of defining p-values in the case 
of two-sided alternatives. There seems to be no agreement among statisticians as to 
what is the proper procedure in such situations. In the case of continuous and sym- 
metric distributions of a test statistic (e.g., Student's t ) ,  the p-value for the observed 
result is usually taken as a doubled p-value for the one-sided alternative. In the case 
of an asymmetric distribution, there is little justification of doubling the one-sided 
p-value. In the case of discrete distributions, an additional source of difficulty is 
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that by such a procedure one can obtain a value exceeding 1. Some authors suggest 
taking as the p-value the sum of all probabilities of tables that are at most as likely 
as the observed one (see Freeman and Halton, 1951). 

In all situations already considered in this section, observations were classified 
according to two arbitrary variables. There are, however, cases when classification 
variables are dependent, very often it is the same classification variable applied to 
data collected on two occasions. For example one might want to study the effect of 
a certain medical treatment by comparing data from some tests collected from the 
same patients before and after the treatment was administered. If the classification 
variables have dichotomous response (such as 0 and 1, “Yes” and “No”, etc.) one 
can use the so-called McNemar S test to compare marginal distributions. The McNe- 
mar’s test is considered a counterpart of a matched-pair t test discussed in Chapter 
13. The data to be analyzed are summarized as in the table below: 

Variable 2 
Variable 1 Yes No 

Yes Nil  N12 N1+ 
No N21 N Z Z  N2+ 

N+i N+2 n 

Marginal distributions are (p i+  , p2+)  and (p+l , p + 2 )  for variable 1 and variable 2, 
respectively. To test if marginal distributions of classification variables are the same 
(marginal homogeneity) we will be testing 

HO : PI+ = p + l  against HI : P I +  # P+I. (16.27) 

Hypotheses in (16.27) reduce to hypotheses 

Of course we could perform the McNemar’s test against one-sided alternatives, ei- 
ther 

Ho : p l +  = p+1 against H1 : PI+ > p + l ,  (16.29) 

or 

HO : P I +  = p+l  against HI : PI+ < p + l .  (16.30) 

The measure of the difference between marginal probabilities PI+ - p + l  reduces 
to p12 - pa1 and its MLE is the difference of relative frequencies N12/n - N 2 l / n .  

Under the Ho the distribution of N12 is BIN(”,  1 / 2 ) ,  where N* = N I Z  + N21. 

Since it is a symmetric distribution, its normal approximation N( ” 1 2 ,  N*/4) can 
be applied for N > 10. Consequently, the test statistic we then take 

(16.31) 

has approximately N(0, 1) distribution. 
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EXAMPLE 16.16 

A students who was not doing well in his statistics class was offered an online 
tutorial to enhance his algebra skills. To assess the effectiveness of an online 
tutorial, the student was required to take a pre-test at the beginning and a post- 
test at the of the last tutorial session. Both, pre- and post-tests consisted of 
the same 30 multiple-choice questions so each answer was either correct or 
incorrect. Student’s results are summarized in the table below. 

Post-test 
Pre-test Correct Incorrect 

Correct 6 2 8 
Incorrect 18 4 22 

24 6 30 

Did the student improve his algebra skills by taking the online tutorial? 

SOLUTION. Here we will be testing null hypothesis HO : p12 = p21 of 
no change against one-sided alternative HI : p12 < p21. The value of the test 
statistic (16.31) is (2 - 1 8 ) / ~ ‘ m  = -3.578, what corresponds to p-value 
equal 0.0002. The data provide strong evidence that student’s algebra skills 
improved by taking online tutorial. 

At the end of this section we would like to mention that similarly to all tests that 
were discussed we could obtain confidence intervals for various statistics. Unlike 
the McNemar’s test statistic that uses only the information about the counts in dif- 
ferent categories for two variables (N12 and N21), while the counts N11 and N22 

are irrelevant, the formula for the confidence interval depends on all four counts. 
Interested readers are advised to check the texts on the analysis of categorical data, 
for example Agresti (2002). 

PROBLEMS 

16.5.1 Use the data from Problem 16.3.5 to test if high school GPA’s are positively 
related to college GPA’s. 

16.5.2 Two out of ten randomly selected men, and four out of ten randomly selected 
women were found to be allergic to some drug. (i) Does these data indicate that there 
is a difference between men and women in their propensity to develop an allergic 
reaction to the drug in question? (ii) Does these data indicate that men are less 
likely than women to develop an allergic reaction to the drug in question? Find 
corresponding p-values for (i) and (ii) and explain why are they different. 

16.5.3 A study of change in employment status was conducted among residents of 
a certain county. A random sample of 100 adult residents was surveyed on their 
employment status, and their responses (Yes/No) were recorded. The same people 
were contacted after 12 months and asked the same question. Their answers are 
summarized in the table below. Does the employment status in the county changed 
significantly within these 12 months? 
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Survey 2: Employed 
Survey 1: Employed Yes No 

Yes 80 10 90 
No 2 8 10 

82 18 100 

16.5.4 Fifty randomly selected college students that take courses with on-line quizzes 
were classified according to their answer on two questions: “DO you cheat taking 
on-line quizzes?” and “Do other students that you know well cheat taking on-line 
quizzes?” Explain what can be said about student’s cheating. Formulate appropriate 
hypotheses and perform the test using the data in the table below. 

Other students cheat 
Student Yes No 

~ ~ ~~ 

Yes 5 2 
No 13 30 

16.6 R x C CONTINGENCY TABLES 

At the end, we will extend the results for 2 x 2 to the general case of r x c tables, 
in which the categories corresponding to rows and those corresponding to columns 
are ordered. The assumption of Theorem 16.5.1 carries over to the present case. By 
conditioning on both marginals, we obtain (under the null hypothesis of indepen- 
dence or homogeneity) a probability distribution defined on the class of all r x c 
tables with the given marginals, which does not involve any unknown parameters. 

For the case where both marginals are random, the situation is as follows: Sup- 
pose that we take n independent observations, each with the same distribution, and 
classify them according to two systems with r and c categories, respectively. The 
cell counts are Nij,  and the marginal counts are Ni+ and N+j, where i = 1, . . . , r 
and j = 1, . . . , c.  We have then the following theorem: 

Theorem 16.6.1 Under the assumption of independence, for any contingency table 
[nij), i = 1, . . . , r ,  j = 1, . . . , s, with nij = n and with marginal counts ni+ 
and n+j , we have 

In order to implement Definition 16.22 for the p-value of an observed contingency 
table, say AD,  it remains to order all T x c tables with marginals the same as those of 
Ao, according to their “strength of support” for the alternative hypothesis of (say) a 
positive association. 

In presenting the solution, we will use an approach different than that which we 
used for 2 x 2 tables. Instead of expressing the null hypothesis in terms of a single 
parameter and then finding its empirical counterpart (as we did in the case of 2 x 2 
tables), we will introduce several indices (statistics, i.e., functions of the observed 
counts Nij). Each of these indices will provide, on an intuitive ground, an ordering 
of contingency tables according to the strength of support for the alternative. 
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Symbolically, let A0 be the observed contingency table, and let A be any con- 
tingency table with the same marginals as Ao. Furthermore, let t = t ( A )  be a 
real-valued function defined on the considered class of contingency tables. Then the 
p-value of the observed table is defined as 

(16.33) 

The only problem remaining is the choice of statistic t so that its values could 
reflect the order of "strength of support" of the alternative hypothesis. The choices 
here are based on the following idea: Consider a pair of observations. Since each 
observation is classified as belonging to one of the ro,ws,and one of the columns, 
such a pair determines two pairs of coordinates, say (T , c ) and ( T " ,  c"). 

Definition 16.6.1 The pair of observations is called concordant if 
,I I I ,  , 

(T - T ) ( C  - c ) > 0 ;  

I ,  I ,I 
it is called discordant if 

(T - T )(c - c ' )  < 0 ,  

and it is called tied if (T" - ~ ' ) ( c ' '  - c') = 0. 0 

It should be obvious that every concordant pair provides support in favor of the 
alternative of positive association: the differences T" - T' and &' - c) are both 
nonzero and of the same sign. This means that a higher evaluation on one variable 
is accompanied by a higher evaluation on the other variable. By the same logic, 
every discordant pair provides a support for the alternative of a negative association: 
a higher classification on one variable is accompanied by a lower evaluation on the 
other variable. 

Let C = number of concordant pairs, and let D = number of discordant pairs. If 
we can assume that any concordant (or discordant) pair equally supports the alter- 
native, then the overall support for the alternative of (say) a positive association is a 
function of the difference C - D. Standardizing this difference, we let 

~ C - D  y=- 
C + D '  

(16.34) 

The choice of the symbol reflects the fact that 9 (the estimator of some parameter 7 )  
depends on the observed contingency table. 

We can now define the p-value of the observed contingency table (in testing the 
alternative of positive association) as the sum of probabilities of all the tables with 
the same marginals as the one observed, and with the value of index + at least as 
high as for the original table. 

EXAMPLE 16.17 

For 2 x 2 tables, the numbers of concordant and discordant pairs of observa- 
tions are C = 72117222 and D = 72127221, respectively; hence 
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Notice that the ordering of the values of ;i coincides with the ordering accord- 
ing to the values of 0. 

EXAMPLE 16.18 

For the case of marijuana use in colleges (recall Example 16.12), the categories 
represented by the rows and those represented by the columns were ordered 
by a natural way: by the number of parents who use drugs or alcohol and by 
the frequency of marijuana use by the student. 

A concordant pair is formed by observations such that one of them is below 
and to the right of the other: 

C = 141 x (44 + 51 + 11 + 19) + 54 x (51 + 19) 

1 6 8  x (11 + 19) + 44 x 19 = 24,281, 

and similarly 

D = 4 0 ~  ( 6 8 + 4 4 + 1 7 + 1 1 ) + 5 4 ~ ( 6 8 + 1 7 )  
$51 x (17 + 11) + 44 x 17 = 12; 366. 

Thus 9 = 0.325 

To evaluate the p-value of an observed contingency table, one should use a statis- 
tical package such as SAS. 

The index utilizes only the information contained in the numbers C and D of 
concordant and discordant pairs. The numbers of tied pairs are not used, since a pair 
of observations tied on one or both variables provides evidence neither in favor of 
the null hypothesis nor in favor of the alternative. However, one could argue that 
a large number of tied pairs (as compared with C + D) is an indication that the 
difference C - D might be insignificant, This argument has led to the introduction 
of two indices that take tied pairs into account, called Kendall’s tau-b and Somers’ 
d. 

The total number of all possible pairs of observations (disregarding the order) is 

n(n - 1) (3 = 2. 
Therefore the total number of tied observations is n(n - 1)/2 - C - D. Let TX , Ty , 
and TXY denote numbers of pairs of observations tied on the first coordinate (row), 
on the second coordinate (column), and on both coordinates (falling to the same 
cell), respectively. 

Observe that the categories of ties are not disjoint: any pair tied on both coordi- 
nates is counted twice, in TX and in T y  . 

Definition 16.6.2 The statistic 

(16.35) 
C - D  

Tb = 
&(n - 1)/2 - Tx] [n(n - 1)/2 - Ty] 

is called Kendall’s tau-b. 0 



Definition 16.6.3 The statistic 

C - D  
n(n - 1)/2 - TX 

d =  

is called Somers ’ d. 

In the formulas above we have 
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(16.36) 

0 

H EXAMPLE 16.19 

Returning to the marijuana data (Examples 16.12 and 16.18), we have TX = 
41,779 and T y  = 37,306. The total number of all possible pairs is 445 x 
44412 = 98,790. We have here Q = 0.201 and d = 0.209 (while 9 = 0.325). 

The calculation of the p-value based on Q or d for the alternative of (say) a 
positive association again uses the sum of all probabilities of tables with the same 
marginals as those observed, and the index Tb, or d, at least as high as that for the 
observed table. 

It ought to be mentioned that the very fact of an introduction of an index is-to 
a certain extent-an attempt to reduce the problem to one dimension. That enables 
one to compare objects (in this case, contingency tables) and select the best. This 
may be, however, a deceptive comfort, since not all things are comparable in such a 
simple way. In the present case, just thinking in terms of an index (e.g., 9 )  leads to 
the danger of attaching significance to certain values of that index. For instance, one 
may tend to take 9 = 1 first as an indication of a very strong positive association 
(which it is), and then tend to attach to it a fixed significance level. To see this, 
observe that tables 

both have D = 0; hence 9 = 1. The p-value for the first table equals 

(4!4!) (2!4! 2! 
8!2!2!2!2! 

= 0.086, 

whereas the p-value for the second table is about half of that for the first table: 

= 0.008. 
(6!6!)(3!5!2!) 

10!3!2!3!2! 

This is simply the effect of regarding as equivalent two situations characterized by 
the same value of 9. This example shows that the values of 9 are not comparable for 
experiments with different marginal counts. 

Computations of the p-value become cumbersome especially when the number of 
row and/or column categories increases. When cell counts are sufficiently large, nor- 
mal approximation of sampling distribution may be used (e.g., see Agresti, 2002). 
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PROBLEMS 

16.6.1 A study reported in Science magazine investigated the relationship between 
sex, handedness (right- or left-handed), and relative foot size (left foot bigger than 
right foot, left foot within one-half shoe size of right foot, or right foot bigger). A 
random sample of 150 adults gave the following data: 

Right-handed Left-handed 
Relative foot size Male Female Male Female 

L > R  2 5 5  6 0 
L z R  10 18 6 2 
L < R  28 14 0 9 

Test the association between gender and handedness considering three groups of 
people: these whose left foot is bigger than their right foot, these whose both feet are 
almost the same, and these whose left foot is bigger. Compare the results obtained. 

16.6.2 Measure the association of GPA and attitude toward statistics courses based 
on the data from Problem 16.3.5 using +, Tb, and d coefficients. 



Statistical Tables 

Table A1 Binomial Distribution 

Table A2 Standard Normal Distribution 

Table A3 Student’s t Distribution 

Table A4 Chi-square Distribution 

Table A5 Quantiles for the shortest CI for 0. 

Table A6 F Distribution 

Table A7 Kolmogorov Distribution 
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Table A l .  Cumulative binomial probabilities cE=, b ( k ;  n,p)  = xi=, ( ; ) p k ( l  -p)"-' ,  

P 
n z 0 . 0 5  0.10 0.15 0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4489 0.4225 0.3600 0.3025 0.2500 
I 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8911 0.8775 0.8400 0.7975 0.7500 

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.3008 0.2746 0.2160 0.1664 0.1250 
1 0.9927 0,9720 0.9392 0.8560 0.8437 0.7840 0.7452 0.7182 0.6480 0.5747 0.5000 
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9641 0.9571 0.9360 0.9089 0.8750 

4 0 0.8145 0.6561 
I 0.9860 0.9477 
2 0.9995 0,9963 
3 1.0000 0.9999 

5 0 0.7738 0.5905 
I 0.9774 0.9185 
2 0.9988 0.9914 
3 1.0000 0.9995 
4 1.0000 1.0000 

0.5220 
0.8905 
0.9880 
0.9995 

0.4437 
0.8352 
0.9734 
0.9978 
0.9999 

- 

0.4096 
0.8192 
0.9728 
0.9984 

0.3277 
0.7373 
0.9421 
0.9933 
0.9997 

0.3164 
0.7383 
0.9492 
0.9961 

0.2373 
0.6328 
0.8965 
0.9844 
0.9990 

0.2401 0.2015 
0.6517 0.5985 
0.9163 0.8918 
0.9919 0.9881 

0.1681 0.1350 
0.5282 0.4675 
0.8369 0.7950 
0.9692 0.9564 
0.9976 0.9961 

0.1785 0.1296 0.0915 
0.5630 0.4752 0.3916 
0.8735 0.8208 0.7585 
0.9850 0.9744 0.9590 

0.1 160 0.0778 0.0503 
0.4284 0.3370 0.2562 
0.7648 0.6826 0.5931 
0.9460 0.9130 0.8688 
0.9947 0.9898 0.9815 

0.0625 
0.3125 
0.6875 
0.9375 

0.03 13 
0.1875 
0.5000 
0.8125 
0.9687 

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0905 0.0754 0.0467 0.0277 0.0156 
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3578 0.3191 0.2333 0.1636 0.1094 
2 0.9978 0.9841 0.9527 0.9011 0.8306 0.7443 0.6870 0.6471 0.5443 0.4415 0.3438 
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.9031 0.8826 0.8208 0.7447 0.6562 
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9830 0.9777 0.9590 0.9308 0.8906 
5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9987 0.9982 0.9959 0.9917 0.9844 

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0606 0.0490 0.0280 0.0152 0.0078 
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0,2696 0.2338 0.1586 0.1024 0.0625 
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5783 0.5323 0.4199 0.3164 0.2266 
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8318 0.8002 0.7102 0.6083 0.5000 
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9566 0.9444 0.9037 0.8471 0.7734 
5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9935 0.9910 0.9812 0.9643 0.9375 
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996 0.9994 0.9984 0.9963 0.9922 

8 0  
1 
2 
3 
4 
5 
6 
7 

0.6634 
0.9428 
0.9942 
0.9996 
1 .oooo 
1 .oooo 
1 .oooo 
I .oooo 

0.4305 
0.8131 
0.9619 
0.9950 
0.9996 
1 .oooo 
I .oooo 
I .oooo 

0.2725 
0.6572 
0.8948 
0.9786 
0.9971 
0.9998 
1 .oooo 
1 .oooo 

0.1678 
0.5033 
0.7969 
0.9437 
0.9896 
0.9988 
0.9999 
1 .oooo 

0.1001 
0.3671 
0.6785 
0.8862 
0.9727 
0.9958 
0.9996 
I .oooo 

0.0576 
0.2553 
0.5518 
0.8059 
0.9420 
0.9887 
0.9987 
0.9999 

0.0406 
0.2006 
0.4764 
0.7481 
0.9154 
0.9813 
0.9976 
0.9999 

0.03 19 
0.1691 
0.4278 
0.7064 
0.8939 
0.9747 
0.9964 
0.9998 

0.0168 
0.1064 
0.3154 
0.5941 
0.8263 
0.9502 
0.9915 
0.9993 

0.0084 
0.0632 
0.2201 
0.4770 
0.7396 
0.9115 
0.9819 
0.9983 

0.0039 
0.0352 
0.1445 
0.3633 
0.6367 
0.8555 
0.9648 
0.9961 

9 0  
1 
2 
3 
4 
5 
6 
7 
8 

0.6302 
0.9288 
0.9916 
0.9994 
1 .oooo 
1 .oooo 
I .oooo 
1 .oooo 
I .oooo 

0.3874 
0.7748 
0.9470 
0.9917 
0.9991 
0.9999 
I .oooo 
1 .oooo 
I .oooo 

0.2316 
0.5995 
0.8591 
0.9661 
0.9944 
0.9994 
1 .oooo 
I .oooo 
1 .oooo 

0.1342 
0.4362 
0.7382 
0.9144 
0.9804 
0.9969 
0.9997 
1 .oooo 
1 .oooo 

0.0751 
0.3003 
0.6007 
0.8343 
0.951 I 
0.9900 
0.9987 
0.9999 
1 .oooo 

0.0404 
0.1960 
0.4628 
0.7297 
0.9012 
0.9747 
0.9957 
0.9996 
1 .oooo 

0.0272 
0.1478 
0.3854 
0.6585 
0.8602 
0.9596 
0.9922 
0.9991 
1 .oooo 

0.0207 
0.1211 
0.3373 
0.6089 
0.8283 
0.9464 
0.9888 
0.9986 
0.9999 

0.0101 
0.0705 
0.2318 
0.4826 
0.7334 
0.9006 
0.9750 
0.9962 
0.9997 

0.0046 
0.0385 
0.1495 
0.3614 
0.6214 
0.8342 
0.9502 
0.9909 
0.9992 

0.0020 
0.0195 
0.0898 
0.2539 
0.5000 
0.7461 
0.9102 
0.9805 
0.9980 



Table A l .  (Continued) 

n x  

10 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

15 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 

20 0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 

0.05 

0.5987 
0.9139 
0.9885 
0.9990 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
I .oooo 

0.4632 
0.8290 
0.9638 
0.9945 
0.9994 
0.9999 
1 .oooo 
1 .oooo 
1.0000 
1 .oooo 
I .oooo 
I .oooo 
1 .oooo 
I .oooo 

0.3585 
0.7358 
0.9245 
0.9841 
0.9974 
0.9997 
1 .oooo 
1 .oooo 
1 .oooo 
I .oooo 
I .oooo 
1 .oooo 
I .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

0.10 

0.3487 
0.7361 
0.9298 
0.9872 
0.9984 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

0.2059 
0.5490 
0.8159 
0.9444 
0.9873 
0.9978 
0.9997 
I .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

0.1216 
0.3917 
0.6769 
0.8670 
0.9568 
0.9887 
0.9976 
0.9996 
0.9999 
I .oooo 
I .oooo 
1 .oooo 
I .oooo 
1 .oooo 
I .oooo 
I .oooo 
1 .oooo 
1 .oooo 

0.15 

0.1969 
0.5443 
0.8202 
0.9500 
0.9901 
0.9986 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 

0.0874 
0.3186 
0.6042 
0.8227 
0.9383 
0.9832 
0.9964 
0.9994 
0.9999 
I .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

0.0388 
0.1756 
0.4049 
0.6477 
0.8298 
0.9327 
0.9781 
0.9941 
0.9987 
0.9998 
1 .oooo 
1 .oooo 
1.0000 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1.0000 

P 
0.20 0.25 0.30 0.33 0.35 0.40 0.45 0.50 

~~ 

0.1074 
0.3758 
0.6778 
0.8791 
0.9672 
0.9936 
0.9991 
0.9999 
1 .oooo 
1 .oooo 

0.0352 
0.1671 
0.3980 
0.6482 
0.8358 
0.9389 
0.9819 
0.9958 
0.9992 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 

0.0115 
0.0692 
0.2061 
0.41 14 
0.6296 
0.8042 
0.9133 
0.9679 
0.9900 
0.9974 
0.9994 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 
I .oooo 
1 .oooo 
1 .oooo 

0.0563 
0.2440 
0.5256 
0.7759 
0.9219 
0.9803 
0.9965 
0.9996 
1 .oooo 
1 .oooo 

0.01 34 
0.0802 
0.2361 
0.4613 
0.6865 
0.8516 
0.9434 
0.9827 
0.9958 
0.9992 
0.9999 
1 .oooo 
1 .oooo 
1 .oooo 

0.0032 
0.0243 
0.0913 
0.2252 
0.4148 
0.6172 
0.7858 
0.8982 
0.9591 
0.9861 
0.9961 
0.9991 
0.9998 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1.0000 

0.0282 
0,1493 
0.3828 
0.6496 
0.8497 
0.9527 
0,9894 
0.9984 
0.9999 
1 .oooo 

0.0047 
0.0353 
0.1268 
0.2969 
0.5155 
0.7216 
0.8689 
0.9500 
0.9848 
0.9963 
0.9993 
0.9999 
1 .oooo 
1 .oooo 

0.0008 
0.0076 
0.0355 
0.1071 
0.2375 
0.4164 
0.6080 
0.7723 
0.8867 
0.9520 
0.9829 
0.9949 
0.9987 
0.9997 
1 .oooo 
1 .oooo 
I .oooo 
1 .oooo 

0.0 182 
0.1080 
0.3070 
0.5684 
0.7936 
0.9268 
0.9815 
0.9968 
0.9997 
1 .oooo 

0.0025 
0.0206 
0.0833 
0.2171 
0.4148 
0.6291 
0.8049 
0.9163 
0.971 1 
0.9921 
0.9984 
0.9997 
1 .oooo 
1 .oooo 

0.0003 
0.0036 
0.0189 
0.0642 
0.1589 
0.3083 
0.4921 
0.6732 
0.81 82 
0.9134 
0.9650 
0.9881 
0.9966 
0.9992 
0.9999 
1 .oooo 
1,0000 
1 .oooo 

0.0135 
0.0860 
0.2616 
0.5138 
0.7515 
0.9051 
0.9740 
0.9952 
0.9995 
1 .oooo 

0.0016 
0.0142 
0.0617 
0.1727 
0.3519 
0.5643 
0.7548 
0.8868 
0.9578 
0.9876 
0.9972 
0.9995 
0.9999 
1 .oooo 

0.0002 
0.0021 
0.0121 
0.0444 
0.1182 
0.2454 
0.4166 
0.6010 
0.7624 
0.8782 
0.9468 
0.9804 
0.9940 
0.9985 
0.9997 
1 .oooo 
1 .oooo 
1 .oooo 

0.0060 
0.0464 
0.1673 
0.3823 
0.633 I 
0.8338 
0.9452 
0.9877 
0.9983 
0.9999 

0.0005 
0.0052 
0.0271 
0.0905 
0.2173 
0.4032 
0.6098 
0.7869 
0.9050 
0.9662 
0.9907 
0.998 1 
0.9997 
1 .oooo 

0.0000 
0.0005 
0.0036 
0.0160 
0.0510 
0.1256 
0.2500 
0.4159 
0.5956 
0.7553 
0.8725 
0.9435 
0.9790 
0.9935 
0.9984 
0.9997 
1 .oooo 
1 .oooo 

0.0025 0.0010 
0.0233 0.0107 
0.0996 0.0547 
0.2660 0.1719 
0.5044 0.3770 
0.7384 0.6230 
0.8980 0.8281 
0.9726 0.9453 
0.9955 0.9893 
0.9997 0.9990 

0.0001 0.0000 
0.0017 0.0005 
0.0107 0.0037 
0.0424 0.0176 
0.1204 0.0592 
0.2608 0.1509 
0.4522 0.3036 
0.6535 0.5000 
0.8182 0.6964 
0.9231 0.8491 
0.9745 0.9408 
0.9937 0.9824 
0.9989 0.9963 
0.9999 0.9995 

0.0000 0.0000 
0.0001 0.0000 
0.0009 0.0002 
0.0049 0.0013 
0.0189 0.0059 
0.0553 0.0207 
0.1299 0.0577 
0.2520 0.1316 
0.4143 0.2517 
0.5914 0.4119 
0.7507 0.5881 
0.8692 0.7483 
0.9420 0.8684 
0.9786 0.9423 
0.9936 0.9793 
0.9985 0.9941 
0.9997 0.9987 
1.0000 0.9998 



Table AZ. Standard normal cumulative distritution function O ( z )  = s_", & e - f ; d t .  
~~ 

z 000 001 002  003  004  0 0 5  006 007 008 0 0 9  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 . 1  
1.2 
1.3 
I .4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

0.5000 
0.5398 
0.5793 
0.6179 
0.6554 
0.6915 
0.7257 
0.7580 
0.7881 
0.8159 
0.8413 
0.8643 
0.8849 
0.9032 
0.9192 
0.9332 
0.9452 
0.9554 
0.9641 
0.9713 
0.9772 
0.9821 
0.9861 
0.9893 
0.991 8 
0.9938 
0.9953 
0.9965 
0.9974 
0.998 1 
0.9987 

0.5040 
0.5438 
0.5832 
0.62 17 
0.6591 
0.6950 
0.7291 
0.761 I 
0.7910 
0.8186 
0.8438 
0.8665 
0.8869 
0.9049 
0.9207 
0.9345 
0.9463 
0.9564 
0.9649 
0.9719 
0.9778 
0.9826 
0.9864 
0.9896 
0.9920 
0.9940 
0.9955 
0.9966 
0.9975 
0.9982 
0.9987 

0.5080 
0.5478 
0.5871 
0.6255 
0.6628 
0.6985 
0.7324 
0.7642 
0.7939 
0.8212 
0.8461 
0.8686 
0.8888 
0.9066 
0.9222 
0.9357 
0.9474 
0.9573 
0.9656 
0.9726 
0.9783 
0.9830 
0.9868 
0.9898 
0.9922 
0.9941 
0.9956 
0.9967 
0.9976 
0.9982 
0.9987 

0.5120 
0.5517 
0.5910 
0.6293 
0.6664 
0.7019 
0.7357 
0.7673 
0.7967 
0.8238 
0.8485 
0.8708 
0.8907 
0.9082 
0.9236 
0.9370 
0.9484 
0.9582 
0.9664 
0.9732 
0.9788 
0.9834 
0.9871 
0.9901 
0.9925 
0.9943 
0.9957 
0.9968 
0.9977 
0.9983 
0.9988 

0.5 I60 
0.5557 
0.5948 
0.633 1 
0.6700 
0.7054 
0.7389 
0.7704 
0.7995 
0.8264 
0.8508 
0.8729 
0.8925 
0.9099 
0.9251 
0.9382 
0.9495 
0.9591 
0.9671 
0.9738 
0.9793 
0.9838 
0.9875 
0.9904 
0.9927 
0.9945 
0.9959 
0.9969 
0.9977 
0.9984 
0.9988 

0.5199 
0.5596 
0.5987 
0.6368 
0.6736 
0.7088 
0.7422 
0.7734 
0.8023 
0.8289 
0.8531 
0.8749 
0.8944 
0.9115 
0.9265 
0.9394 
0.9505 
0.9599 
0.9678 
0.9744 
0.9798 
0.9842 
0.9878 
0.9906 
0.9929 
0.9946 
0.9960 
0.9970 
0.9978 
0.9984 
0.9989 

0.5239 
0.5636 
0.6026 
0.6406 
0.6772 
0.7123 
0.7454 
0.7764 
0.8051 
0.8314 
0.8554 
0.8770 
0.8962 
0.9131 
0.9279 
0.9406 
0.9515 
0.9608 
0.9686 
0.9750 
0.9803 
0.9846 
0.9881 
0.9909 
0.9931 
0.9948 
0.9961 
0.9971 
0.9979 
0.9985 
0.9989 

0.5279 
0.5675 
0.6064 
0.6443 
0.6808 
0.7157 
0.7486 
0.7794 
0.8078 
0.8340 
0.8577 
0.8790 
0.8980 
0.9147 
0.9292 
0.9418 
0.9525 
0.9616 
0.9693 
0.9756 
0.9808 
0.9850 
0.9884 
0.991 1 
0.9932 
0.9949 
0.9962 
0.9972 
0.9979 
0.9985 
0.9989 

0.5319 
0.5714 
0.6103 
0.6480 
0.6844 
0.7190 
0.7517 
0.7823 
0.8106 
0.8365 
0.8599 
0.8810 
0.8997 
0.9162 
0.9306 
0.9429 
0.9535 
0.9625 
0.9699 
0.9761 
0.9812 
0.9854 
0.9887 
0.9913 
0.9934 
0.9951 
0.9963 
0.9973 
0.9980 
0.9986 
0.9990 

0.5359 
0.5753 
0.6141 
0.6517 
0.6879 
0.7224 
0.7549 
0.7852 
0.8133 
0.8389 
0.8621 
0.8830 
0.9015 
0.9177 
0.9319 
0.9441 
0.9545 
0.9633 
0.9706 
0.9767 
0.9817 
0.9857 
0.9890 
0.9916 
0.9936 
0.9952 
0.9964 
0.9974 
0.9981 
0.9986 
0.9990 



Table A3. Upper quantiles L,,” of Student’s t distribution with u degrees of freedom 

L2 

v 0.400 0.300 0.200 0.100 0.050 0.025 0.010 0.005 0.001 0.0005 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

100 
M 

0.325 
0.289 
0.277 
0.271 
0.267 
0.265 
0.263 
0.262 
0.261 
0.260 
0.260 
0.259 
0.259 
0.258 
0.258 
0.258 
0.257 
0.257 
0.257 
0.257 
0.257 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.256 
0.255 
0.254 
0.254 
0.253 

0.727 
0.614 
0.584 
0.569 
0.559 
0.553 
0.549 
0.546 
0.543 
0.542 
0.540 
0.539 
0.538 
0.537 
0.536 
0.535 
0.334 
0.534 
0.533 
0.533 
0.532 
0.532 
0.532 
0.531 
0.53 I 
0.531 
0.531 
0.530 
0.530 
0.530 
0.529 
0.527 
0.526 
0.524 

1.376 
1.061 
0.978 
0.941 
0.920 
0.906 
0.896 
0.889 
0.883 
0.879 
0.876 
0.873 
0.870 
0.868 
0.866 
0.865 
0.863 
0.862 
0.861 
0.860 
0.859 
0.858 
0.858 
0.857 
0.856 
0.856 
0.855 
0.855 
0.854 
0.854 
0.851 
0.848 
0.845 
0.842 

3.078 6.314 
1.886 2.920 
1.638 2.353 
1.533 2.132 
1.476 2.015 
1.440 1.943 
1.415 1.895 
1.397 1.860 
1.383 1.833 
1.372 1.812 
1.363 1.796 
1.356 1.782 
1.350 1.771 
1.345 1.761 
1.341 1.753 
1.337 1.746 
1.333 1.740 
1.330 1.734 
1.328 1.729 
1.325 1.725 
1.323 1.721 
1.321 1.717 
1.319 1.714 
1.318 1.711 
1.316 1.708 
1.315 1.706 
1.314 1.703 
1.313 1.701 
1.311 1.699 
1.310 1.697 
1.303 1.684 
1.296 1.671 
1.290 1.660 
1.282 1.645 

12.706 
4.303 
3.182 
2.776 
2.571 
2.447 
2.365 
2.306 
2.262 
2.228 
2.201 
2.179 
2. I60 
2.145 
2.131 
2.120 
2.1 I0 
2.101 
2.093 
2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 
2.042 
2.021 
2.000 
1.984 
1.960 

31.821 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 
2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 
2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 
2.457 
2.423 
2.390 
2.364 
2.326 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 
3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 
2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 
2.750 
2.704 
2.660 
2.626 
2.576 

3 18.309 
22.327 
10.215 
7.173 
5.893 
5.208 
4.785 
4.501 
4.297 
4.144 
4.025 
3.930 
3.852 
3.787 
3.733 
3.686 
3.646 
3.610 
3.579 
3.552 
3.527 
3.505 
3.485 
3.467 
3.450 
3.43 5 
3.42 1 
3.408 
3.396 
3.385 
3.307 
3.232 
3.174 
3.090 

636.619 
31.599 
12.924 
8.610 
6.869 
5.959 
5.408 
5.041 
4.781 
4.587 
4.437 
4.318 
4.221 
4.140 
4.073 
4.015 
3.965 
3.922 
3.883 
3.850 
3.819 
3.792 
3.768 
3.745 
3.725 
3.707 
3.690 
3.674 
3.659 
3.646 
3.551 
3.460 
3.390 
3.291 



Table A4. Upper quantiles of the chi-square distrihtion with u degrees of freedom. 

Q 

Y 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 

I20 

0.000 
0.010 
0.072 
0.207 
0.412 
0.676 
0.989 
1.344 
1.735 
2.156 
2.603 
3.074 
3.565 
4.075 
4.601 
5.142 
5.697 
6.265 
6.844 
7.434 
8.034 
8.643 
9.260 
9.886 

10.520 
11.160 
11.808 
12.461 
13.121 
13.787 
20.707 
27.991 
35.534 
83.852 

0.000 
0.020 
0.115 
0.297 
0.554 
0.872 
1.239 
1.646 
2.088 
2.558 
3.053 
3.571 
4. I07 
4.660 
5.229 
5.812 
6.408 
7.015 
7.633 
8.260 
8.897 
9.542 

10.196 
10.856 
11.524 
12.198 
12.879 
13.565 
14.256 
14.953 
22.164 
29.707 
37.485 
86.923 

0.000 0.004 
0.051 0.103 
0.216 0.352 
0.484 0.71 1 
0.831 1.145 
1.237 1.635 
1.690 2.167 
2.180 2.733 
2.700 3.325 
3.247 3.940 
3.816 4.575 
4.404 5.226 
5.009 5.892 
5.629 6.571 
6.262 7.261 
6.908 7.962 
7.564 8.672 
8.231 9.390 
8.907 10.117 
9.591 10.851 

10.283 11.591 
10.982 12.338 
11.689 13.091 
12.401 13.848 
13.120 14.611 
13.844 15.379 
14.573 16.151 
15.308 16.928 
16.047 17.708 
16.791 18.493 
24.433 26.509 
32.357 34.764 
40.482 43.188 
91.573 95.705 

0.016 
0.21 1 
0.584 
1.064 
1.610 
2.204 
2.833 
3.490 
4.168 
4.865 
5.578 
6.304 
7.042 
7.790 
8.547 
9.312 

10.085 
10.865 
11.651 
12.443 
13.240 
14.041 
14.848 
15.659 
16.473 
17.292 
18.114 
18.939 
19.768 
20.599 
29.051 
37.689 
46.459 

100.624 

2.706 
4.605 
6.25 I 
7.779 
9.236 

10.645 
12.017 
13.362 
14.684 
15.987 
17.275 
18.549 
19.812 
2 1.064 
22.307 
23.542 
24.769 
25.989 
27.204 
28.412 
29.615 
30.813 
32.007 
33.196 
34.382 
35.563 
36.741 
37.916 
39.087 
40.256 
5 1.805 
63.167 
74.397 

140.233 

3.841 
5.991 
7.8 15 
9.488 

11.070 
12.592 
14.067 
15.507 
16.919 
18.307 
19.675 
21.026 
22.362 
23.685 
24.996 
26.296 
27.587 
28.869 
30,144 
31.410 
32.671 
33.924 
35.172 
36.415 
37.652 
38.885 
40.113 
41.337 
42.557 
43.773 
55.758 
67.505 
79.082 

146.567 

5.024 
7.378 
9.348 

11.143 
12.833 
14.449 
16.013 
17.535 
19.023 
20.483 
21.920 
23.337 
24.736 
26.119 
27.488 
28.845 
30.191 
31.526 
32.852 
34. I70 
35.479 
36.781 
38.076 
39.364 
40.646 
41.923 
43,195 
44.461 
45.722 
46.979 
59.342 
71.420 
83.298 

152.211 

6.635 
9.210 

I 1.345 
13.277 
15.086 
16.812 
18.475 
20.090 
21.666 
23.209 
24.725 
26.217 
27.688 
29.141 
30.578 
32.000 
33.409 
34.805 
36.191 
37.566 
38.932 
40.289 
41.638 
42.980 
44.314 
45.642 
46.963 
48.278 
49.588 
50.892 
63.691 
76. I54 
88.379 

158.950 

7.879 
10.597 
12.838 
14.860 
16.750 
18.548 
20.278 
21.955 
23.589 
25.188 
26.757 
28.300 
29.819 
31.319 
32.801 
34.267 
35.718 
37.156 
38.582 
39.997 
41.401 
42.796 
44.181 
45.559 
46.928 
48.290 
49.645 
50.993 
52.336 
53.672 
66.766 
79.490 
91.952 

163.648 



Table A5. Quantiles of the chi-square distribution for determining the shortest CI for u 
~~ ~ 

01 = 0.10 01 = 0.05 
U 011 Xil,” X&.” % 0 1  Xi,,” X i 2 , ”  Yo 

1 0.09998 0.016 
2 0.09988 0.211 
3 0.09948 0.582 
4 0.09882 1.056 
5 0.09800 1.594 
6 0.09708 2.175 
7 0.09612 2.788 
8 0.09516 3.426 
9 0.09420 4.084 

10 0.09328 4.758 
1 1  0.09238 5.447 
12 0.09152 6,147 
13 0.09070 6.858 
14 0.08990 7.579 
15 0.08916 8.308 
16 0.08844 9.045 
17 0.08774 9.788 
18 0.08710 10.539 
19 0.08648 11.295 
20 0.08588 12.056 
21 0.08530 12.823 
22 0.08476 13.595 
23 0.08424 14.371 
24 0.08374 15.151 
25 0.08326 15.935 
26 0.08278 16.723 
27 0.08234 17.514 
28 0.08192 18.310 
29 0.08150 19.108 
30 0.081 I0 19.909 
40 0.07780 28.063 
50 0.07536 36.418 
60 0.07346 44.918 
80 0.07066 62.232 

100 0.06866 79.847 

18.189 24.92 
18.056 49.02 
17.647 61.21 
18.100 68.50 
18.907 73.41 
19.871 76.95 
20.927 79.65 
22.041 81.77 
23.182 83.48 
24.352 84.90 
25.530 86.09 
26.719 87.11 
27.915 87.98 
29.109 88.75 
30.313 89.42 
31.514 90.02 
32.711 90.55 
33.916 91.03 
35.117 91.46 
36.315 91.85 
37.510 92.21 
38.708 92.54 
39.903 92.84 
41.095 93.12 
42.286 93.37 
43.471 93.61 
44.659 93.83 
45.846 94.04 
47.027 94.23 
48.208 94.41 
59.927 95.75 
71.499 96.57 
82.949 97.13 

105.571 97.83 
127.915 98.25 

0.04999 
0.04998 
0.04988 
0.04969 
0.04943 
0.0491 1 
0.04876 
0.04839 
0.04802 
0.04764 
0.04726 
0.04689 
0.04653 
0.04619 
0.04585 
0.04552 
0.04521 
0.04490 
0.04461 
0.04433 
0.04405 
0.04379 
0.04354 
0.04329 
0.04306 
0.04283 
0.04261 
0.04240 
0.042 19 
0.04199 
0.04031 
0.03903 
0.03803 
0.03653 
0.03544 

0.004 
0.103 
0.351 
0.708 
1.139 
1.623 
2.147 
2.703 
3.284 
3.886 
4.505 
5.141 
5.790 
6.451 
7.123 
7.804 
8.495 
9.193 
9.899 

10.612 
11.331 
12.056 
12.787 
13.523 
14.264 
15.009 
15.759 
16.513 
17.271 
18.032 
25.823 
33.855 
42.064 
58,859 
76.015 

19.511 
2 1.640 
20.726 
21.047 
21.806 
22.736 
23.791 
24.910 
26.083 
27.270 
28.472 
29.689 
30.915 
32.153 
33.386 
34.619 
35.859 
37.091 
38.328 
39.563 
40.791 
42.024 
43.254 
44.478 
45.706 
46.928 
48.149 
49.369 
50.583 
5 1.797 
63.834 
75.694 
87.41 8 

I 10.535 
133.321 

24.99 
49.48 
61.82 
69.10 
73.94 
77.41 
80.04 
82.1 1 
83.78 
85.16 
86.32 
87.31 
88.16 
88.91 
89.56 
90.14 
90.67 
91.13 
91.56 
91.94 
92.29 
92.61 
92.91 
93.18 
93.43 
93.67 
93.89 
94.09 
94.28 
94.46 
95.78 
96.59 
97.14 
97.84 
98.26 



Table A6(a). Upper quantiles FO.OS,~, ,y2 of the F distritution. 

Vl 

V2 1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
00 

161.45 
18.51 
10.13 
7.71 
6.61 
5.99 
5.59 
5.32 
5.12 
4.96 
4.84 
4.75 
4.67 
4.60 
4.54 
4.49 
4.45 
4.41 
4.38 
4.35 
4.32 
4.30 
4.28 
4.26 
4.24 
4.23 
4.21 
4.20 
4.18 
4.17 
4.08 
4.00 
3.92 
3.84 

199.50 
19.00 
9.55 
6.94 
5.79 
5.14 
4.74 
4.46 
4.26 
4.10 
3.98 
3.89 
3.81 
3.74 
3.68 
3.63 
3.59 
3.55 
3.52 
3.49 
3.47 
3.44 
3.42 
3.40 
3.39 
3.37 
3.35 
3.34 
3.33 
3.32 
3.23 
3.15 
3.07 
3.00 

215.71 
19.16 
9.28 
6.59 
5.41 
4.76 
4.35 
4.07 
3.86 
3.71 
3.59 
3.49 
3.41 
3.34 
3.29 
3.24 
3.20 
3.16 
3.13 
3.10 
3.07 
3.05 
3.03 
3.01 
2.99 
2.98 
2.96 
2.95 
2.93 
2.92 
2.84 
2.76 
2.68 
2.60 

224.58 
19.25 
9.12 
6.39 
5.19 
4.53 
4.12 
3.84 
3.63 
3.48 
3.36 
3.26 
3.18 
3.11 
3.06 
3.01 
2.96 
2.93 
2.90 
2.87 
2.84 
2.82 
2.80 
2.78 
2.76 
2.74 
2.73 
2.71 
2.70 
2.69 
2.61 
2.53 
2.45 
2.37 

230.16 
19.30 
9.01 
6.26 
5.05 
4.39 
3.97 
3.69 
3.48 
3.33 
3.20 
3.11 
3.03 
2.96 
2.90 
2.85 
2.81 
2.77 
2.74 
2.71 
2.68 
2.66 
2.64 
2.62 
2.60 
2.59 
2.57 
2.56 
2.55 
2.53 
2.45 
2.37 
2.29 
2.21 

233.99 
19.33 
8.94 
6.16 
4.95 
4.28 
3.87 
3.58 
3.37 
3.22 
3.09 
3.00 
2.92 
2.85 
2.79 
2.74 
2.70 
2.66 
2.63 
2.60 
2.57 
2.55 
2.53 
2.51 
2.49 
2.47 
2.46 
2.45 
2.43 
2.42 
2.34 
2.25 
2.18 
2.10 

236.77 
19.35 
8.89 
6.09 
4.88 
4.21 
3.79 
3.50 
3.29 
3.14 
3.01 
2.91 
2.83 
2.76 
2.71 
2.66 
2.61 
2.58 
2.54 
2.51 
2.49 
2.46 
2.44 
2.42 
2.40 
2.39 
2.37 
2.36 
2.35 
2.33 
2.25 
2.17 
2.09 
2.01 

238.88 
19.37 
8.85 
6.04 
4.82 
4.15 
3.73 
3.44 
3.23 
3.07 
2.95 
2.85 
2.77 
2.70 
2.64 
2.59 
2.55 
2.51 
2.48 
2.45 
2.42 
2.40 
2.31 
2.36 
2.34 
2.32 
2.31 
2.29 
2.28 
2.27 
2.18 
2.10 
2.02 
1.94 

240.54 
19.38 
8.81 
6.00 
4.77 
4.10 
3.68 
3.39 
3.18 
3.02 
2.90 
2.80 
2.71 
2.65 
2.59 
2.54 
2.49 
2.46 
2.42 
2.39 
2.37 
2.34 
2.32 
2.30 
2.28 
2.27 
2.25 
2.24 
2.22 
2.21 
2.12 
2.04 
1.96 
1.88 

241.88 
19.40 
8.79 
5.96 
4.74 
4.06 
3.64 
3.35 
3.14 
2.98 
2.85 
2.75 
2.67 
2.60 
2.54 
2.49 
2.45 
2.41 
2.38 
2.35 
2.32 
2.30 
2.27 
2.25 
2.24 
2.22 
2.20 
2.19 
2.18 
2.16 
2.08 
1.99 
1.91 
1.83 



Table A6(a). (Continued) 

4 

u? 12 15 20 24 30 40 60 120 00 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
00 

243.91 
19.41 
8.74 
5.91 
4.68 
4.00 
3.57 
3.28 
3.07 
2.91 
2.79 
2.69 
2.60 
2.53 
2.48 
2.42 
2.38 
2.34 
2.31 
2.28 
2.25 
2.23 
2.20 
2.18 
2.16 
2.15 
2.13 
2.12 
2.10 
2.09 
2.00 
1.92 
I .83 
1.75 

245.95 
19.43 
8.70 
5.86 
4.62 
3.94 
3.51 
3.22 
3.01 
2.85 
2.72 
2.62 
2.53 
2.46 
2.40 
2.35 
2.31 
2.27 
2.23 
2.20 
2.18 
2.15 
2.13 
2.11 
2.09 
2.07 
2.06 
2.04 
2.03 
2.01 
1.92 
1.84 
1.75 
1.67 

248.01 
19.45 
8.66 
5.80 
4.56 
3.87 
3.44 
3.15 
2.94 
2.77 
2.65 
2.54 
2.46 
2.39 
2.33 
2.28 
2.23 
2.19 
2.16 
2.12 
2.10 
2.07 
2.05 
2.03 
2.01 
1.99 
1.97 
1.96 
1.94 
1.93 
1.84 
1.75 
1.66 
1.57 

249.05 
19.45 
8.64 
5.77 
4.53 
3.84 
3.41 
3.12 
2.90 
2.74 
2.61 
2.51 
2.42 
2.35 
2.29 
2.24 
2.19 
2.15 
2.11 
2.08 
2.05 
2.03 
2.01 
1.98 
1.96 
1.95 
1.93 
1.91 
1.90 
1.89 
1.79 
1.70 
1.61 
1.52 

250.10 
19.46 
8.62 
5.75 
4.50 
3.81 
3.38 
3.08 
2.86 
2.70 
2.57 
2.47 
2.38 
2.3 1 
2.25 
2.19 
2.15 
2.1 1 
2.07 
2.04 
2.01 
1.98 
1.96 
1.94 
1.92 
I .90 
1.88 
1.87 
1.85 
1.84 
1.74 
1.65 
1.55 
1.46 

251.14 
19.47 
8.59 
5.72 
4.46 
3.77 
3.34 
3.04 
2.83 
2.66 
2.53 
2.43 
2.34 
2.27 
2.20 
2.15 
2.10 
2.06 
2.03 
1.99 
1.96 
1.94 
1.91 
I .89 
1.87 
1.85 
1.84 
1.82 
1.81 
1.79 
1.69 
1.59 
1 s o  
1.39 

252.20 
19.48 
8.57 
5.69 
4.43 
3.74 
3.30 
3.01 
2.79 
2.62 
2.49 
2.38 
2.30 
2.22 
2.16 
2.11 
2.06 
2.02 
1.98 
1.95 
1.92 
1.89 
1.86 
1.84 
I .82 
1.80 
1.79 
1.77 
1.75 
1.74 
1.64 
1.53 
I .43 
1.32 

253.23 
19.49 
8.55 
5.66 
4.40 
3.70 
3.27 
2.97 
2.75 
2.58 
2.45 
2.34 
2.25 
2.18 
2.1 1 
2.06 
2.01 
1.97 
1.93 
1.90 
1.87 
1.84 
1.81 
1.79 
1.77 
1.75 
1.73 
1.71 
1.70 
1.68 
1.58 
1.47 
1.35 
1.22 

254.30 
19.50 
8.53 
5.63 
4.36 
3.67 
3.23 
2.93 
2.71 
2.54 
2.40 
2.30 
2.21 
2.13 
2.07 
2.01 
1.96 
1.92 
1.88 
I .84 
1.81 
1.78 
1.76 
1.73 
1.71 
1.69 
1.67 
1.65 
1.64 
1.62 
1.51 
1.39 
1.25 
I .oo 



Table A6(b). Upper quantiles Fa.~l.~., ,y2 of the F distribution. 

V1 

u2 1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
w 

4052.2 
98.50 
34.12 
21.20 
16.26 
13.75 
12.25 
11.26 
10.56 
10.04 
9.65 
9.33 
9.07 
8.86 
8.68 
8.53 
8.40 
8.29 
8.18 
8.10 
8.02 
7.95 
7.88 
7.82 
7.77 
7.72 
7.68 
7.64 
7.60 
7.56 
7.31 
7.08 
6.85 
6.63 

4999.5 
99.00 
30.82 
18.00 
13.27 
10.92 
9.55 
8.65 
8.02 
7.56 
7.21 
6.93 
6.70 
6.51 
6.36 
6.23 
6.1 I 
6.01 
5.93 
5.85 
5.78 
5.72 
5.66 
5.61 
5.57 
5.53 
5.49 
5.45 
5.42 
5.39 
5.18 
4.98 
4.79 
4.61 

5403.4 
99.17 
29.46 
16.69 
12.06 
9.78 
8.45 
7.59 
6.99 
6.55 
6.22 
5.95 
5.74 
5.56 
5.42 
5.29 
5.18 
5.09 
5.01 
4.94 
4.87 
4.82 
4.76 
4.72 
4.68 
4.64 
4.60 
4.57 
4.54 
4.51 
4.31 
4.13 
3.95 
3.78 

5624.6 
99.25 
28.71 
15.98 
11.39 
9.15 
7.85 
7.01 
6.42 
5.99 
5.67 
5.41 
5.21 
5.04 
4.89 
4.77 
4.67 
4.58 
4.50 
4.43 
4.37 
4.31 
4.26 
4.22 
4.18 
4.14 
4.11 
4.07 
4.04 
4.02 
3.83 
3.65 
3.48 
3.32 

5763.7 
99.30 
28.24 
15.52 
10.97 
8.75 
7.46 
6.63 
6.06 
5.64 
5.32 
5.06 
4.86 
4.69 
4.56 
4.44 
4.34 
4.25 
4.17 
4.10 
4.04 
3.99 
3.94 
3.90 
3.85 
3.82 
3.78 
3.75 
3.73 
3.70 
3.51 
3.34 
3.17 
3.02 

5859.0 
99.33 
27.91 
15.21 
10.67 
8.47 
7.19 
6.37 
5.80 
5.39 
5.07 
4.82 
4.62 
4.46 
4.32 
4.20 
4.10 
4.01 
3.94 
3.87 
3.81 
3.76 
3.71 
3.67 
3.63 
3.59 
3.56 
3.53 
3.50 
3.47 
3.29 
3.12 
2.96 
2.80 

5928.4 
99.36 
27.67 
14.98 
10.46 
8.26 
6.99 
6.18 
5.61 
5.20 
4.89 
4.64 
4.44 
4.28 
4.14 
4.03 
3.93 
3.84 
3.77 
3.70 
3.64 
3.59 
3.54 
3.50 
3.46 
3.42 
3.39 
3.36 
3.33 
3.30 
3.12 
2.95 
2.79 
2.64 

5981.1 
99.37 
27.49 
14.80 
10.29 
8.10 
6.84 
6.03 
5.47 
5.06 
4.47 
4.50 
4.30 
4.14 
4.00 
3.89 
3.79 
3.71 
3.63 
3.56 
3.51 
3.45 
3.41 
3.36 
3.32 
3.29 
3.26 
3.23 
3.20 
3.17 
2.99 
2.82 
2.66 
2.51 

6022.5 
99.39 
27.35 
14.66 
10.16 
7.98 
6.72 
5.91 
5.35 
4.94 
4.63 
4.39 
4.19 
4.03 
3.89 
3.78 
3.68 
3.60 
3.52 
3.46 
3.40 
3.35 
3.30 
3.26 
3.22 
3.18 
3.15 
3.12 
3.09 
3.07 
2.89 
2.72 
2.56 
2.41 

6055.9 
99.40 
27.23 
14.55 
10.05 
7.87 
6.62 
5.81 
5.26 
4.85 
4.54 
4.30 
4.10 
3.94 
3.80 
3.69 
3.59 
3.51  
3.43 
3.37 
3.31 
3.26 
3.21 
3.17 
3.13 
3.09 
3.06 
3.03 
3.00 
2.98 
2.80 
2.63 
2.47 
2.32 



Table A6(b). (Confinued) 

v1 

12 15 20 24 30 40 60 120 DO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
DO 

6106.3 
99.42 
27.05 
14.37 
9.89 
7.72 
6.47 
5.67 
5.1 1 
4.71 
4.40 
4.16 
3.96 
3.80 
3.67 
3.55 
3.46 
3.37 
3.30 
3.23 
3.17 
3.12 
3.07 
3.03 
2.99 
2.96 
2.93 
2.90 
2.87 
2.84 
2.66 
2.50 
2.34 
2.18 

6157.3 
99.43 
26.87 
14.20 
9.72 
7.56 
6.31 
5.52 
4.96 
4.56 
4.25 
4.01 
3.82 
3.66 
3.52 
3.41 
3.31 
3.23 
3.15 
3.09 
3.03 
2.98 
2.93 
2.89 
2.85 
2.81 
2.78 
2.75 
2.73 
2.70 
2.52 
2.35 
2.19 
2.04 

6208.7 
99.45 
26.69 
14.02 
9.55 
7.40 
6.16 
5.36 
4.81 
4.41 
4.10 
3.86 
3.66 
3.51 
3.37 
3.26 
3.16 
3.08 
3.00 
2.94 
2.88 
2.83 
2.78 
2.74 
2.70 
2.66 
2.63 
2.60 
2.57 
2.55 
2.37 
2.20 
2.03 
1.88 

6234.6 
99.46 
26.60 
13.93 
9.47 
7.31 
6.07 
5.28 
4.73 
4.33 
4.02 
3.78 
3.59 
3.43 
3.29 
3.18 
3.08 
3.00 
2.92 
2.86 
2.80 
2.75 
2.70 
2.66 
2.62 
2.58 
2.55 
2.52 
2.49 
2.47 
2.29 
2.12 
1.95 
1.79 

6260.7 
99.47 
26.50 
13.84 
9.38 
7.23 
5.99 
5.20 
4.65 
4.25 
3.94 
3.70 
3.51 
3.35 
3.21 
3.10 
3.00 
2.92 
2.84 
2.78 
2.72 
2.67 
2.62 
2.58 
2.54 
2.50 
2.47 
2.44 
2.41 
2.39 
2.20 
2.03 
1.86 
1.70 

6286.8 
99.47 
26.41 
13.75 
9.29 
7.14 
5.91 
5.12 
4.57 
4.17 
3.86 
3.62 
3.43 
3.27 
3.13 
3.02 
2.92 
2.84 
2.76 
2.69 
2.64 
2.58 
2.54 
2.49 
2.45 
2.42 
2.38 
2.35 
2.33 
2.30 
2.11 
1.94 
1.76 
1.59 

6313.1 
99.48 
26.32 
13.65 
9.20 
7.06 
5.82 
5.03 
4.48 
4.08 
3.78 
3.54 
3.34 
3.18 
3.05 
2.93 
2.83 
2.75 
2.61 
2.61 
2.55 
2.50 
2.45 
2.40 
2.36 
2.33 
2.29 
2.26 
2.23 
2.21 
2.02 
1.84 
1.66 
1.47 

6339.4 
99.49 
26.22 
13.56 
9.1 1 
6.97 
5.14 
4.95 
4.40 
4.00 
3.69 
3.45 
3.25 
3.09 
2.96 
2.84 
2.75 
2.66 
2.58 
2.52 
2.46 
2.40 
2.35 
2.3 I 
2.27 
2.23 
2.20 
2.17 
2.14 
2.1 1 
1.92 
1.73 
1.53 
1.32 

6366.0 
99.50 
26.13 
13.46 
9.02 
6.88 
5.65 
4.86 
4.3 I 
3.91 
3.60 
3.36 
3.17 
3.00 
2.87 
2.75 
2.65 
2.57 
2.49 
2.42 
2.36 
2.31 
2.26 
2.21 
2.17 
2.13 
2.10 
2.06 
2.03 
2.01 
1.80 
1.60 
I .38 
1 .oo 



Table A7. Tail probabilities 1 - Q ( z )  of the Kolmogorov distrihtion. 

I 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 

1 .oooo 
0.9972 
0.9639 
0.8643 
0.71 12 
0.5441 
0.3927 
0.2700 
0.1777 
0.1122 
0.0681 
0.0397 
0.0222 
0.0120 
0.0062 
0.003 1 
0.0015 
0.0007 
0.0003 
0.0001 
0.0001 

I .oooo 
0.9960 
0.9572 
0.8508 
0.6945 
0.5280 
0.3791 
0.2594 
0.1700 
0.1070 
0.0646 
0.0375 
0.0209 
0.0112 
0.0058 
0.0029 
0.0014 
0.0006 
0.0003 
0.0001 
0.0000 

0.9999 
0.9945 
0.9497 
0.8367 
0.6777 
0.5 120 
0.3657 
0.2492 
0.1626 
0.1019 
0.0613 
0.0354 
0.01 97 
0.0105 
0.0054 
0.0027 
0.0013 
0.0006 
0.0002 
0.0001 
0.0000 

0.9999 
0.9926 
0.9415 
0.8222 
0.6609 
0.4962 
0.3527 
0.2392 
0.1555 
0.0970 
0.0582 
0.0335 
0.0185 
0.0098 
0.0050 
0.0025 
0.0012 
0.0005 
0.0002 
0.0001 
0.0000 

0.9998 
0.9903 
0.9325 
0.8073 
0.6440 
0.4806 
0.3399 
0.2296 
0.1486 
0.0924 
0.0551 
0.03 16 
0.0174 
0.0092 
0.0047 
0.0023 
0.001 I 
0.0005 
0.0002 
0.0001 
0.0000 

0.9997 
0.9874 
0.9228 
0.7920 
0.6272 
0.4653 
0.3275 
0.2202 
0.1420 
0.0879 
0.0522 
0.0298 
0.0164 
0.0086 
0.0044 
0.0021 
0.0010 
0.0004 
0.0002 
0.0001 
0.0000 

0.9995 
0.9840 
0.9124 
0.7764 
0.6104 
0.4503 
0.3154 
0.21 1 1  
0.1356 
0.0834 
0.0495 
0.0282 
0.0154 
0.0081 
0.0041 
0.0020 
0.0009 
0.0004 
0.0002 
0.0001 
0.0000 

0.9992 
0.9800 
0.9013 
0.7604 
0.5936 
0.4355 
0.3036 
0.2024 
0.1294 
0.0794 
0.0469 
0.0266 
0.0145 
0.0076 
0.0038 
0.0018 
0.0009 
0.0004 
0.0002 
0.0001 
0.0000 

0.9987 
0.9753 
0.8896 
0.7442 
0.5770 
0.4209 
0.2921 
0. I939 
0.1235 
0.0755 
0.0443 
0.0250 
0.0136 
0.0071 
0.0035 
0.0017 
0.0008 
0.0003 
0.0001 
0.0001 
0.0000 

0.9981 
0.9700 
0.8772 
0.7278 
0.5605 
0.4067 
0.2809 
0.1857 
0.1 177 
0.07 I7 
0.0420 
0.0236 
0.0127 
0.0066 
0.0033 
0.0016 
0.0007 
0.0003 
0.0001 
0.0001 
0.0000 
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Answers to  Odd-Numbered Problems 

CHAPTER 1 
1.2.1 (i) H1, H2, , . . , H6, TTT, TTH, THT, THH; (ii) TT, HTT, THT, THHT, HTHT, 
HHTT, HHHH, THHH, HTHH, HHTH, HHHT. 
1.2.3 134,234, 135,235. 
1.2.5 (i) 600, 510, 501,420,411,402, 330, 321, 312, 303,240, 231, 222, 213,204, 
150, 141, 132, 123, 114, 105,060,051,042,033,024,015,006; (ii) 600, 510,420, 
41 1,330,321,222; (iii) Six allocations for two white balls: 200, 110, 101,020,011, 
002. Fifteen allocations for four red balls: 400, 310, 301,220, 211, 202, 130, 121, 
112, 103, 040, 031, 022, 013, 004. Each allocation of two white and four red balls 
is a combination of two allocations (6  x 15 = 90). 
1.2.7 (i) THT; (ii) A2, Ad, A6; (iii) 6 (MG+SP, MG+SJ, MP+SJ, MP+SG, MJ+SG, 
MJ+SP). 
1.2.9 Yes. If the answer is “yes” and the interviewer manages to find out that the 
repondent was not born in April, the privacy is not mantained. 
1.3.1 (i) False; (ii) False; (iii) False; (iv) True; (v) True; (vi) True. 
1.3.3 (i) X = A ; (ii) X = 0; (iii) X = A‘; (iv) X = B + A.  
1.3.5 D1 = E l l ,  D2 = E2, D3 = Eg, 0 4  = E6, 0 5  = E4 = E5, D6 = E3, 
0 7  = El,  0 8  = Eg, Dg = E10, Dlo = E7. 
1.3.7 (i) z = 0, y = 4; (ii) Either z = 0 or y 2 3; (iii) z = 0, no inference about y 
possible; (iv) z 5 4, no inference about y possible . 
1.4.1 lim A ,  = 8. 
1.4.3 (i) Z2“  ; (ii) Z 3 x 2 n - Z  ; (iii) Zn+l  ; (iv) 2 ; (v) Answers are the same as for the 
field. 
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CHAPTER 2 
2.3.1 True:(i), (iii), (v); False: (iii), (iv), (vi), (vii), (viii). 
2.3.3 (i) 13/24. 
2.4.1 5/18. 
2.4.3 516. 
2.4.5 (i) 0.6; (ii) 0.4; (iii) 0.5. 
2.4.7 (i) 0.1; (ii) 0.3; (iii) 1; (iv) 0.6. 
2.4.9 0.1, 
2.4.11 0.95. 
2.4.13 317. 
2.5.1 0.25. 
2.5.3 25. 

CHAPTER 3 
3.2.1 (i) 10; (ii) 12. 
3.2.3 (i) 10; (ii) 13; (iii) 14. 
3.2.5 (i) 2/n; (ii) l / n ;  (iii) 0.5; (iv) 2(n - 3)/[n(n - l)]. 
3.2.7 (i) 28,800; (ii) 86,400. 
3.2.9 (i) 153; (ii) a hat; (iii)138. 
3.2.11 ( 2 n  + 1)!/(2%!). 
3.2.13 320. 
3.2.15 k 2 n. 
3.2.17 (i) v (A)  = 0.6; (ii) v(A)  = 0.4, v ( B )  = 0.25, V(Z) = 7/60 for other 
members. 
3.2.19 0.016 for each nonaermanent member. 0.168 for each Dermanent member. 
3.3.1 (i) ( ' :yo) ;  (ii) (y::)l(iii) ( ' ~ ~ ' ) .  
3.3.3 k 2 30. 
3.3.5 4!49! 
3.3.7 (i) 4; (ii) 36; (iii) 5108; (iv) 624; (v) 3744; (vi) 54,912. 
3.3.9 p = 0.0444. If Queen is replaced by Jack then p = 0.0204. 
3.3.11 (i) 0.8964; (ii) 0.04255; (iii) 0.061 1. 
3.3.13 A(n, k)/kn. 
3.3.15 ($252; (ii) 0; (iii) 5 
3.3.17 2 ( b$!k) / ("t'). 

CHAPTER 4 
4.1.1 (ii)(a) P ( Z  = 2), (b) P ( X + Y  = 012 > 0), (c) P [ A n B I ( A u B ) n ( Z  > O)].  
4.2.1 (i) False; (ii) False; (iii) True; (iv) True; (v) False. 
4.2.3 1/(1 + a). 
4.2.5 113. 
4.2.7 1/4 
4.2.9 (i) 0.492; (ii) 0.123; (iii) 1; (iv) 114; (v) 0.5, 0.105, 1, 0.210; (vi) 0.25 for 
n odd, less than 0.25 for n even; (vii) P(sumodd) + 0.5 ,  P(productodd) -+ 

0.125, P(product oddlsum odd) --$ 0.25. 
4.2.11 3/4n. 
4.2.13 (i) 0.145; (ii) 0.5; (iii) 0.005. 
4.3.1 1/11. 
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4.3.3 (i) 0.21 13; (ii) 0.2510; (iii) 0.2526; (iv) 0.2091. 
4.3.5 (i) 
4.4.1 (i) 0.5; (ii) 0.00276. 
4.4.3 (i) 23/45; (ii) 13/45; (iii) 14/23. 
4.4.5 15/29. 
4.4.7 15/22. 
4.4.9 1/3. 
4.5.1 (i) False; (ii) True; (iii) False; (iv) True. 
4.5.3 0 for k 2 1 and 1 - kfor k < 1. 
4.5.5 A and B are not independent-all other pairs are. 
4.5.7 0 < P(A)  < 1. 
4.5.9 (i) True; (ii) True. 
4.5.11 6/11. 
4.5.13 6/11. 
4.5.15 (6!)2/216 = 0.006. 
4.5.17 (i) No; (ii) No. 
4.5.19 P,(Y = h 2 k )  = nPk1[l - (1 - p(hj))3][1 - p()h2k+1]3, PB(Y = h k )  = 

4.6.1 (ii) - l / (N - 1). 

CHAPTER 5 
5.1.1 P(X,+1 = j l X ,  = i) = p j  for i = 0 , .  . . , m. If i > m then P(X,+1 = 

5.2.1 (i) pjk = p if j = k - 1, r if j = k, and q if 9 = k + 1. (ii) The formulas 
remain valid if we replace p by p / (  1 - T )  and q by q/  (1 - T ) .  

5.2.3 Rows of the matric are: (0, 1/2, 1/2), (1/4,0,3/4), (1/8,7/8,0). 

5.3.3 pi? = r2(100 - C)[2A + (100 - B )  + 2C]/40000. 
5.4.1 2. 

TO. .7ri-l(l - T,); (ii) 1 - (1 - p)/(1 - Ap). 

n:k,[l - (1 - P(h2jN31[1 - P0h2k+2l3. 

j lX , - - 2 ’ ) = p .  , f o r j  = 0 , 1 , .  . . . 

5.2.5 pi,o = ~ i / ( ~ i  + ri+l + .  . . ) , p i , i + l  = 1 - ri/(.i + ~ i + l  + . . ’ ) .  

5.4.5(3 ( , Y j ) / ( 2 N ) N .  

5.5-1 p30-30 = zr=o(2pq)np2 = p2/(1 - 2pq). 

CHAPTER 6 
6.2.1 (i) False; (ii) True; (iii) True; (iv) False; (v) True; (vi) True; (vii) False; (viii) 
False; (ix) True. 
6.2.3 (i) 0.7; (ii) 0.0608; (iii) 0.7786. 
6.2.5 0 for t < 0, r ( t / a )2  for 0 5 t < a/2, d- + 2 ( t / ~ ) ~  - [ ~ / 2  - 
2 arctan Jm-1 for 0,/2 5 t < af i /2 ,  and 1 for t 2 af i /2 .  
6.3.1 Even (56/91). 
6.3.3 (i) 0.7753; (ii) 0.3162. 
6.3.5 (i) (1 - e-x/2)/(1 - e-’) ; (iii) (e-x/2 - e-’)/(l - e-’) . 
6.3.7 (i) P(X4 = -4) = P(X4  = 4 = 1/16,P(X4 = -2) = P(X4 = -2) = 
4/16,P(X4 = 0) = 6/16; (ii) 5/16; (iii) P(X4 > 01x4 2 4) = 5/11 for n = 4, 
and P(X5 > OIX5 1 0) = 1 for n = 5. 
6.3.9 (i) a = 5, b = 22; (ii) 0.3195; (iii) 0.2065. 
6.3.11 (i) 5/6; (ii) 0.1 15; (iii) 0.5. 
6.4.1 (i) P(Y = y) = 1/6 for y = 0 ,4 ,9 ,16  and P(Y = 1) = 1/3; P ( Z  = 0.5) = 
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P ( Z  = 1.5) = 1/3, P(Z = 2.5) = P ( Z  = 3.5) = 1/6. 
6.4.3 (i)2tfx(t2); (ii) e t fx(et) ;  (iii) ( l / t 2 ) fx ( l / t )  ; (iv) ( l / t ) fx( logt) .  
6.4.5 g(u) = 2 ~ X e - ~ " *  for u 2 0 and 0 for u < 0. 
6.4.7 fy(y) = 2 / J m  for 0 5 y < 0.25, and 0 otherwise. 
6.4.9 (i) U[O, 13; (ii) U[-l,13. 
6.4.11 (i) g(y) = 2/J=for 0 5 y 5 0.25 and 0 otherwise; (ii) h ( w )  = 2 for 
0.5 5 w 5 1, and 0 otherwise. 
6.4.13 g ( u )  = , m - 3 / 2 k ~ e - 2 b u / m ,  u > 0. 

6.5.3 (i) q = (a/2)ea; (ii) For 0 < t < 1, S( t )  = 0.5(1 - t )  + 0.5 and h( t )  = 
1/(2 - t ) .  For 0 < t < 1, S(t )  = 0.5e-a(t-1) and h( t )  = a. 
6.5.5 0.1876. 

6.5.1 h(t)  = 1/(1 - t ) , O  < t < 1. 

CHAPTER 7 
7.1.1 (ii) 22/36, 0, 1/6; (iii) 2/3, 213, 10/26. 
7.1.3 (ii) -0.1048. 
7.1.5 (i) k = 2; (ii) 5/16. 
7.1.7 (i) 6; (ii) 3/20; (iii) 0 for u < 0, v < 0, u2v3 for 0 5 u 5 1 , O  5 v 5 1, v3 for 
u > 1 , 0  5 v 5 l , u 2  forv > 1 , 0  5 u 5 1,and 1 foru  > 1 , v  > 1. 
7.1.9 (i) 0.6534; (ii) 0.5. 
7.2.1 (i) 1/14; (ii) 0; (iii) 517; (iv) 417; (v) 11/14. 
7.2.5 (i) 1; (ii) POI(X); (iii) Yes. 
7.2.7 1/18, 1/9, 219,3/9. 
7.2.9(ii) ~ ~ h l ( z ) e x p { - ~ ~ [ h l ( u )  +h2(t~)]du}dx.  
7.2.11 (i) e-5;  (ii) 0.4678. 
7.2.13 ( z / u 2 )  exp{ -z2/(202)} for z > 0. 
7.2.17 (4) for X and (7) for Y. 
7.3.3 (i) 1 - exp{-(X1 + XZ)}; (ii) POI(X1 + XZ); (iii) BIN(n, X l / ( X l  + X2)). 

7.3.7 (i) 1; (ii) 2x2 + 1/3 and y2 + 2/3; (iii) 0.301 1; 
7.4.1 (i) { r ( z 2  + l)}-'; (ii) e u / 2 / G ;  (iii) same as (i). 

7.4.5 (i) k = 1/[4(a + b)]; (ii) [ (a  - b ) f i  + b]/[4(a + b)z2]. 
7.4.9 b(1  - fi)2 for o 5 w 5 1. 
7.5.1 (ii) 19/34. 
7.5.3 (i) 4; (ii) 5/48; (iii) 10/18. 

CHAPTER 8 
8.2.1 (i) a = 0.25, b = 0.35; (ii) a = 1 - m/2, b = m/2 - 0.4,0.8 5 m <_ 2. 
8.2.3 (i) 3.36; (ii) approximately 22.97. 
8.2.5 (i) l/(nA) ; (ii) a + ( b  - a ) / ( n  + 1). 
8.4.3 5 1 1/8,255/2048, (1/8) c;=, 22k. 
8.4.5 (i) 1 ; (ii) 1 ; (iii) 1.5 ; (iv)21og2. 
8.4.7 15. 
8.5.1 (ent - l)/[n(et - l)]  fort  # 1, and 1 for t  = 0. 
8.5.3 X4. 

7.4.3 kwa- l ( l  - w)P-1. 
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A - ' / 2 .  

8.5.9 (i) eA(e't-l); (ii) p/( l  - q i t ) ;  (iii) A/ (A  - it) . 
8.6.1 0.1633. 
8.6.3 (i) 164 - 30c; (ii) (c - 2 ) / s f i ;  (iii) -1.464 5 c 5 5.464. 

8.7.1 (i) 2; (ii) (13s2 + 13s + 4)/[6(4z + l)]. 

CHAPTER 9 
9.1.1 (i) True; (ii) False. 
9.1.3 (i) r /n;  (ii) -T(R - r)/[n2(n - l ) ]  . 
9.1.5 0.5. 
9.1.9 E ( U )  = 65,  Var(U) = 65(65 - 1). 
9.1.11 T = M/(1+ M), A2 = 100M2/[C(M + l)'], 
9.1.13 (i) 3(p3 + q 3 )  + 12pq(p2 + q 2 )  + 30p2q2; (ii) 2(p2 + q z )  + 6pq. 
9.2.1 P ( X = j )  = (9)(3!j)/(:),j=0,1,2,3. 
9.3.1 (i) [A] ; (ii) 0.5(1 + e-2A) . 
9.3.3 (i) 0.1094; (ii) 0.0042. 
9.3.5 (i) 0.4164; (ii) 0.1677. 
9.3.7 (i) 0.0588 ;(ii) 0.1567. 
9.3.11 (i) xi=, O(y) (9/30)k(21/30)10-k; (ii) 7n/30. 
9.4.3 (i) 0.5665; (ii) E ( T )  = (m + l)/A, Var(T) = (m + 1) /A2  . 
9.4.5 WEI(k, l/O). 
9.4.7 (i) 2.5 years; (ii) 0.189. 
9.5.1 (i) 0.4099; (ii) 0.4221 ; (iii) 0.0672 ; (iv) 0.6807 ; (v) 0.3078 ; (vi) 0.1335. 
9.5.3 0.1747 
9.5.5 About 48 feet above the average level. 
9.5.7 (i) 0.3520; (ii) 0.0793. 

9.6.3 a = p = (1/k2 - 1)/2, provided Ik( < 1. 

CHAPTER 10 
10.1.3 N(p, (g2/9)(l /nl  + l/n2 + l /n3)) andN(p, n2/(n1 + 712 + 723)). 
10.2.3 0.9975. 
10.3.1 EXP(nA) 
10.3.3 (i) 1/2; (ii) 1 - (1/2)n-1. 
10.3.5 7. 
10.4.1 0, 1, 0, 1, 2,4. 

10.4.5 0.146930,0.115247,0.420803. 
10.4.9 (ii) (0.548291,0.304935). 
10.5.3 The cdf's of the limiting distributions are: (i) 1 - y-2n for y 2 1 and 0 
otherwise; (ii) 1 - y-2 for y 2 1, and 0 otherwise; (iii) e - ' / Y Z  for y > 0 and 0 
otherwise. 
10.5.5 0.3679,0.6262. 
10.6.1 c = 1.939. 
10.6.3 a = 11.16, b = 1.24. 
10.6.5 0.36. 

8.6.5 0, 1 - p2,  0. 

= 1 - 100M/[C(M + l ) ] .  

9.6.1 (i) BETAU, a); (ii) r (a  + p)r  ( k  + a)r(m+p) / [r (.)r(p)r ( k  +m+ a: + p)] . 

10.4.3 0.336517, -0.037361. 
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10.6.7 n 2 32. 
10.6.9 0.9875. 
10.6.11fi(Xn(1-X,)-p(1-p))+ N ( 0 , p ( l - p ) ( l - 2 p ) 2 ) .  

CHAPTER 12 

12.3.1 (i) a + b = 1; (ii) b = 1 - a, a = .;/(a; + a;); (iii) a = (a; - C) / (B?  + 
cr; - 2C) .  
12.3.3 @/n ,  e 2 / ( n  + 1). 
12.3.5 ( 1  - e)/(ne2),  (1 - e)(n + 1 - e)/[e2(n+ 1)2]. 
12.3.7 (ii) 1/(3n), 2 / [ ( n +  l ) (n  + 2 ) ] .  
12.4.1 0.5. 
12.4.3 1/(X2n). 
12.4.5 (i) 2 / u 2 ,  l / ( 2 a 4 ) ;  (ii) 0,  l / ( 2 a 4 ) .  
12.4.7 (i) y1 = u’/n, 7 2  = p ; (ii) y1 = p ( l  - p ) / n ,  7 2  = p .  
12.5.1 (i) T, = (X)’ / [ ( l /n )  C x,” - ( X ) 2 ] ,  Tb = X / [ ( l / n )  C X:  - ( X ) 2 ]  ; (ii) 
T, = bX, Tb = a /X .  
12.5.3 (i) T = 5? + Js ; ( ii) Xn:,; (iii) same as in (ii) except that it 
cannot be observed when X,:, 5 -1; (iv) 0 = (n  - Un)/Un if U,  > 0. 
12.5.7 (i) k/(k + 1); (ii) ( I c  - l ) / k .  
12.5.11 0.5 

12.2.5 T = NXI: , .  

12.5.13 ( i )x .  (ii) MLE does not exist. 
12.5.15 J ( l / n )  C(Xi - p)’. 
12.5.17 + X,:,)/2 
12.5.19 0.0587. 
12.5.21 (i) @I = 5?, $2 = L, d2 = [ C ( X i  - X ) 2  + C(Yj - T)’]/(m + n).  
12.6.1 (i) C X ? ;  (ii) C lXij2; (iii) n Xi(l - X i ) ;  (iv) X l r n ,  and Xn:,. 
12.6.3 X n z n .  
12.6.5 C X i  and  XI:^. 
12.6.7 TI = n X i ,  T2 = 
12.6.9 Cfz; X i : ,  + ( n  - Ic + 1)Xk,,. 
12.7.1 BETA(5,3), 0.227. 
12.7.3 (i) n X i ;  (ii) &(l * z , p / f i ) .  
12.7.5(i) 1.117f0.035and 1.117f0.053;(ii)1.117 f 0 . 0 1 6 a n d  1.117k0.020; 
(iii) [0.00068, 0.005201 and [0.026, 0.0721. 

12.7.9 P{xi4 < 35.179. 
12.7.11 (i) ?t k zap s‘ ?t/n ; (ii) CI from part (i) is [3.955, 5.8251, the approximated 
CI is 4.80k 0.9306. 
12.7.13 (i) [0.00058, 0.003651 ; (ii) [274.05, 1728.621 ; (iii) same as in (ii); (iv) 
[O. 0049,0.4294]. 
12.7.15 (i) [0.428, 1.0811; (ii) [0.856,5.459]. 

CHAPTER 13 
13.2.1 n(e) = 0 . 5 ( 2 e + J o i ) ~  for0 < e < 0 . 5 ( i - m ) ,  r(e) = 1-0.5(2-2e-  a)’ for 0.5(1 - d8-i) 5 8 < 1 - 0 . 5 a ,  and R ( e )  = 1 for 6 2 1 - 0 . 5 h - i .  
13.2.3 (i) Ra (e) = n1 ( e ) x 2  (e)r3 ( 0 )  , R b ( 0 )  = r1 (e)n2 ( o h 3  @)+[ 1 -m (e)l.2 (e)n3 (e)+ 

Xi are minimal jointly sufficient. 

12.7.7 (i) E ( L t )  = 4 0 ~ [ t ~ p , ~ - 1 ] ~ / n ;  (ii) n L 8[tcrp,,-l] 2 . 
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7-rl(e)[i - ~ ~ ( e ) ] ~ ~ ( e )  + 7-rl(%(s)[1 - 7-ra(e)l, 7-rc(e) = 1 - [1 - 7 M l [ l  - 
7r2(6)\[l - ~ 3 ( e ) l ;  (ii) A is always better than any test Ci, B is better than any test 
Ci if 0 < T ( 0 )  < 0.5, C is always worse. 
13.2.5 (i)r(5 - ~ ) / 1 0 ;  (ii) 2r(5 - r)/25; (iii) P(Type I error)=O in each case. 
13.3.1 (i) Reject HO if c Xi 2 6; (ii) 0.017. 
13.3.3 X-the number of failures preceding the 7th success. Reject HO if x 2 7, 
accept HO if X 5 5. For X = 6 reject Ho with prob. 0.5413, p = 0.7837. 
13.3.5 Reject Ho if 2x0 C X i  I X; .05 ,2n ,  .(A) = p{X;, 5 ( X / X O ) X ~ . 0 5 , 2 n ) .  Re- 
ject Ho if XI:,, < -(log0.95)/(Xon),.~x,,, = 1 - (0.95)x/x0. 

13.4.3 Reject HO is C Xa < k .  
13.4.5 H I  : p > 0.6, p-value=0.072. 
13.4.7 (i) Reject HO for large values of 7'1 = n Xi; (ii) Reject Ho for small values 

13.4.9 Reject Ho if C Xi 2 T ,  where r is the smallest integer such that ci=, Co[eo/(eo+ 

13.3.7 1 - r ( ~  - 1)/30. 

of T 2  = C Xi. 

1)" 2 a.  
13.5.1 ~1 = 3.71, ~2 = 5. 
13.5.3 Reject Ho if /X - Xol/& > z,/2. 

13.6.1 a < 0.8543. 
13.6.3 (i) Not significant at 0.05 level; (ii) m < 24,940. 
13.6.5 -2 logX = 3.58 < ~ i . 0 5 , ~  ~ 3 . 8 4 1  Do not reject Ho. 
13.6.7 X = (,m + r ~ ) ~ + " / [ ( r n  + n Y / X ) m ( m X / B +  T L ) ~ ] .  

13.7.1 0.536. 

CHAPTER 14 
14.2.1 (i) E(XIY = y) = y/2 and X = Y;(ii) E(YIX = x) = x and Y = X. 
14.2.5 a = E(Y)  - b l E ( X 1 )  - b 2 E ( X 2 ) ,  bl = (PY/PX)(PX,,Y - pxl ,x l  x 
PX,,Y)/(l - P2x1,xz), b2 = (PY/PX)(PXl,Y - PX1,XZ x PX,,Y)/(l - P2Xl,X2). 
14.2.7 0.335 + 0.475X. 
14.3.1 Any point (a, b)  such that a > 0.9, b < -a/2 - 0.05, b < -a + 0.6, b > 
a, - 1.8 and b > -a./2 - 0.45. 
14.3.3 = x.8 = y Z /  Xi. 
14.4.5 b = C ~ i y i /  C x:, d 2  = (l/,n) C(yi - Lo2. 
14.5.1 Reject Ho, F = 451.14 > F0.05,4,6 = 4.53. 
14.6.1 (i) [0.980, 1.0611; (ii) [1.014, 1.0891; (iii) [1.006, 1.0761. 

14.6.3 6x0 f t y / 2 , n - l  J 1 + xi/ C . :Jm/m. 
14.7.1 13.646 < 20 < 17.883. 
14.8.1 (C~Z)/(CX~). 

14.12.1 Fw = 2.94 < Fo.o1,3,6 = 10.72, FD = 15.16 > F0.01,2,6 = 9.76. There is 

14.13.1 FA = 6.325 > Fo.o5,2,18 = 3.55, FB = 38.855 > Fo.o5,2,18 = 3.55, 

14.11.3 (i)x;& (ii) F n k  - 1, nl - 1 distribution. 

no effect of initial weight, but the type of diet affects final results. 

FAB = 4.970 > F0.05,4,18 = 2.93. There is significant effect of the age, marijuana 
use, and their interaction on the level of emotional maturity. 

CHAPTER 15 
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15.3.3 The joint density is 1 / ( 4 v ‘ m )  for x2 +y2 5 1 and 0 otherwise/ Expected 
sample size is 8/7r = 2.55 under the “correct” scheme and 1 + 7r/2 = 2.57 under 
the “time saving” scheme. 
15.3.5 Reject HO at 0.05 level. 
15.3.7 k > 1.85 + 1.36d1.85 + 4m2. 
15.4.3 Z = 1.647, significant at 0.1 level. 
15.4.5 Z = 5.668 for Problem 15.3.6 (i) and (ii), Z = 4.808 for Problem 15.3.7. 
Reject Ho in all cases. 
15.5.3 R = 16 or R = 17 depending on the value of d.  Z = 1.095 and Z = 1.596, 
respectively. 

CHAPTER 16 
16.2.1 Q2 = 0.323 < x;,05,2 = 5.991. Do not reject Ho. 
16.2.3 Q2 = 1.307 < x & , ~  = 7.779. Do not reject Ho. 
16.2.5 Q2 = 1.019 < x$,05,3 = 7.815. Do notreject Ho. 
16.3.1 4/n2. 
16.3.3 Q2 = 35.714, p-value is below 0.005. 
16.3.5 Q 2  = 0.069 < 
16.4.3 Q2 = 18.714 > x 8 , 0 5 , 4  = 9.488. Reject Ho. 
16.5.1 p-value= 0.5675. 
16.5.3 2 = 2.309, the employment status in the county has changed. 
16.6.1 For variables “gender-ME” and“handedness-WL,” thevalues o f j  are; -1, -0.6875,l. 
p-values for the tests of negative association in the first two tables are 0 and 0.058. 
p-value for testing for positive association in the last table is 0. 

= 2.706. Do not reject Ho. 



INDEX 

Absorbtion law for events, 13 
Absorbtion probabilities, 110 
Accept-Reject algorithm, 327 
Adhikari, A., 589 
Agresti, A,, 586, 61 1 
Allais’s paradox 45 
ANOVA, 518, 546 

one-way, 547 
two-way, 550 
with interaction, 553 

Antle, C. E., 448 
Arnold, B. C., 421, 
Associativity law for events, 13 
Axioms of probability, 26 

Bad luck, 208 
Bain, L. J., 448 
Ballot problem, 64 
Bartoszynski, R., 85, 124 
Basu theorem, 439 
Bayes’ formula, 87 
Bayesian statistics, 360 
Bayesian intervals, 440 
Berger, R. L., 349 
Bernoulli trials, 257, 485 
Bertrand paradox, 28 
Binomial: 

coefficients, 55, 56 
thinning, 185 

642 

Birthday problem, 51 
Blackwell, D., 43 
Boes, D. C., 393 
Bootstrap: 

t CI, 451 
percentile interval, 45 1 
tests, 512 

Boref-Cantelli lemma: 
first, 39 
second, 97, 332 

Borel-Kolmogorov paradox, 192 
Box-Mueller transformation, 329 

Bray, T. A,, 329 
Brownian motion, 21 

Casella, G., 349 
Categorical data, 371 
Cdf, 6, 128, 165 

Box-plot, 355 

bivariate, I65 
empirical, 560 

Censoring, 179, 363 
Central limit theorem, 342, 346 

Laplace, 343 
Liapunov, 347 
Lindeberg and Feller, 348, 572 
Lindeberg and Levy, 342, 400 

Chain rule, 76 
Characteristic function, 235 



INDEX 643 

Chebyshev inequality, 253, 338 
Chi-square test, 598, 590 

of homogeneity, 597 
of independence, 594 

Chow, Y. S., 19, 71 
Chung, K. L., 19, 27, 562 
Closure of a class of events, 18, 236 
Color blindness gene, 74, 82 
Combinations, 55 
Combinatorics, 39 
Commutativity law for events, 13 
Completeness, 436 
Concordant pair, 613 
Conditional: 

density, 181 
distribution, 180 
expectation, 248 
independence, 99 
probability, 73 

bound, 441 
interval, 440, 441 

Conjugate prior, 409 
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of type 11, 457, 475 
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R-dominating, 381 
risk function of, 381 
robust, 420 
sufficient, 424, 425 
unbiased, 382 
unbiasedness of, 375 
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