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Preface

Plug in Electric Vehicles (PEVs) use energy storages usually in the form of battery
banks that are designed to be recharged using utility grid power. One category of
PEVs are Electric Vehicles (EVs) without an Internal-Combustion (IC) engine
where the energy stored in the battery bank is the only source of power to drive the
vehicle. These are also referred as Battery Electric Vehicles (BEVs). The second
category of PEVs, which is more commercialized than the EVs, is Plug in Hybrid
Electric Vehicles (PHEVs) where the role of the energy storage is to supplement the
power produced by the IC engine. These two types of PEVs are predicted to
dominate the automobile market by 2030. Widespread adoption of PEVs allows the
world to reduce carbon emissions in transportation needs significantly. Therefore, it
is vital to the success of a collective global effort in meeting the climate energy
targets and to reduce the dependence on increasingly scarce fossil fuels. However,
significant challenges are thrust upon the utility grid operators on how best to
manage the power demand arising due to the charging of PEVs by the grid (G2V)
and the power supply due to the Vehicle to Grid (V2G) discharging of energy
storages in PEVs.

This book covers the recent research advancements in the area of energy man-
agement that can be employed to accommodate the anticipated high deployment of
Plug-in Electric Vehicles (PEVs) in smart grids. The topics that are covered in this
book include smart coordination based on real-time pricing, decentralized demand
side management, optimal and distributed control of both G2V and V2G modes of
PEVs, minimizing the energy procurement cost and financial risks in an energy
hub, voltage droop controller with an event-driven control strategy for the coor-
dination of charging PEVs, Additive Increase Multiplicative Decrease to control
both the active and reactive power consumption and injection in the smart grid, an
optimal controller to maximize profit based on a novel dynamic model of the
system, aggregator bidding into the day-ahead electricity market with the objective
of minimizing charging costs, optimal operation of plug-in vehicle fleets in a
microgrid characterized by the presence of other distributed resources and a mixed
integer linear programming energy management optimization model to schedule the
charging and discharging times of PEVs. Hence, this book introduces many new
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strategies proposed recently by researchers around the world to address the energy
management of smart grids with high penetration of PEVs. The book is aimed at
engineers, system planners, energy market operators, researchers, and graduate
students, who are interested in the latest developments in this field of research.
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Chapter 1
Overview of Plug-in Electric Vehicles
Technologies

Antonio Carlos Zambroni de Souza, Denisson Queiroz Oliveira
and Paulo Fernando Ribeiro

Abstract The advent of renewable energy is about to change power systems
around the world. In this sense, operating a power system may become an even
more complex task, with implications on the system security, reliability and market.
The role played by the utilities may not be diminished, since they must be able to
provide energy when intermittent sources are not available. In this near future, the
plug-in electric vehicles will also have an important role for power distribution
systems. But, at the same time, they have a big potential to help on integration of
the renewable power generation in existing power systems. This chapter presents
some of the existing plug-in electric vehicles technologies and discusses a few
implication of this new scenario in the system operation.

Keywords Plug-in electric vehicles � Energy storage systems � Electric vehicle
technology

1.1 Introduction

Bulk power systems are operated in an interconnected mode in order to guarantee
reliability and robustness to final users. In this sense, many studies, like dynamic
and voltage stability, reliability, protection and power quality are carried out during
the planning and operating scenarios. This is because a problem in part of the
system must be managed in such a way that it is not spread to neighbor areas.
Considering natural catastrophes, like tsunamis, makes the problem even worse,
since electricity is one of the infrastructures to be preserved. This has gained
increased attention from researchers because of the penetration of renewable gen-
eration. Preserving a system after a catastrophe takes place brings the concept of a
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smart grid, theoretically capable of playing a self-healing process, in order to
preserve the system.

Micro-grids fit in smart grids concepts. However, unlike shipboard power
generation systems, which always work on an isolated mode, micro-grids may work
in an islanded manner or connected to a bulk system, though in an autonomous
way. A further characteristic lies on the fact that it may work in both ways
simultaneously, i.e., though connected to a system, it is self-sufficient to provide its
own load. The power generation portfolio of micro-grids has conventional and
renewable generation-based options. In this sense, inverters are necessary to pro-
vide an alternate current (AC) to the network in a uniform manner, so the voltage is
locally controlled and a single frequency is guaranteed. This increases the com-
plexity of the system, since new components are now necessary to be modelled and
new interfaces must be understood.

The components above tend to change the way a generation scheme is managed,
since a large number of tiny players may be involved. This problem becomes even
more dramatic by considering the penetration of plug-in electric vehicles (PEVs).
Currently, several PEVs are being traded and are characterized by higher efficiency,
fuel saving and low noise. On the other hand, PEVs still have greater prices
compared to conventional models, due to their battery energy storage system.

As these vehicles increase their market share, another problem deserves attention
from electricity companies. Their inclusion in power systems represents a large
increase on load demand, causing many problems as voltage violation, power
quality degradation, power losses increase, thermal limits violation on distribution
transformers, harmonics and fault currents increase. This subject deserved the
attention of some previous works that aimed to propose an efficient charging policy
for the system, so the voltage profile is kept within an acceptable range while PEVs
are charged [1–4]. Another interesting question is posed if PEVs are considered to
supply power to the system in emergency conditions. This changes the paradigm of
power systems’ operating conditions, since a reserve of power generation may be
considered in blackouts or catastrophic conditions.

This chapter presents an overview of PEV’s technologies available in the lit-
erature. The power systems in the future will certainly require a change of paradigm
in the way it is faced by societies in general. In this sense, the final costumer may
also be a producer, creating the term “prosumers”. The utilities are not to be
neglected. Rather than that, they will play an important role on the system reli-
ability, since the intermittence nature of prosumers may jeopardize the continuity of
supply. In this sense, two basic assumptions are recognized on energy planning
philosophies.

One philosophy takes economic progress and economic profits as a starting point
where the main values are: free market, no regulation, maximization of profits, and
self-regulation.

The other system takes sustainability in the present economic system as a
starting point in which the main values are responsibility over nature and human
life, sustainability, long term view, and maximizing added value for society. In this
approach electricity companies, governments, etc. join responsibility to develop a
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sustainable policy. This is the scenario where PEVs are considered. When
considering the inclusion of plug-in vehicles in the grid, the following philosophy
issues should be analyzed:

• Interoperability of self-sustainable micro-grids and their reliability.
• The feasibility of computational tools in this scenario.
• Governmental rules of safety. How do the utilities are faced in this scenario?
• One could be tempted to disregard the utility role in the new system operating

structure. Two reasons, however, inhibit this path:
• Renewable energy systems may be obtained as a summation of small domestic

units, creating a big amount of local energy in the system. This is particularly
important for domestic consumers, however, the industry still claims for a huge
amount of the total energy of the system.

• Renewable energy systems may also be associated to large blocks of generation,
like big wind or solar farms. In this case, operating and maintaining such
structures depend on the utility abilities.

Because this chapter focuses on technical issues of PEVs, these topics are not
directly addressed here. However, the concepts are placed in such a way that they
are compromised by the implementation of any of the items presented above.
Besides, because plug-in electric vehicles are to be a part of smart grids, a brief
discussion on the philosophy of these systems is also presented. This next section
addresses the basics of the PEV’s technologies. This is accomplished by a brief
history of energy production in the world followed by a technical discussion of each
technology considered.

1.2 PEV Technologies

Unlike many people believe, the electric vehicle technology is not a recent inno-
vation. In fact, the first electric vehicles were built during the 19th century after the
development of lead acid batteries. In addition, research on nickel-iron and nickel-
zinc batteries, and the development of recharging process helped on electric
vehicles popularization. Beyond the batteries, two new technologies collaborated to
improve electric vehicles performance: the regenerative breaking systems and the
hybrid vehicles [5]. In 1900, 28 % of the American automobile fleet was composed
of electric vehicles.

The combustion gasoline engine was first presented by Daimler and Benz in
1885, while Rudolf Diesel presented the diesel engine in 1892. Until the first years
of 20th century, three different propulsion technologies competed with each other in
automotive market: steam, electric and gasoline propulsion. But, only after Henry
Ford presented the Ford Model T and the assembly line, in 1908, the combustion
engine vehicles really overcame the concurrence. The following aspects can explain
this outcome:

1 Overview of Plug-in Electric Vehicles Technologies 3



• The Ford’s assembly line decreased the vehicle production cost and time. The
Ford Model T price was about $850, a half of an electric vehicle price. Besides,
the car was robust, safe, easy to drive and reliable.

• In 1912, the electric starting was developed, eliminating the need of a crank to
start the gasoline engine.

• The battery autonomy is low, impeding from traveling long distances without
recharging the batteries.

• The existence of oil reserves and an infrastructure to supply fossil fuel to the
transportation sector.

Only during the 1970s energy crisis, when the oil shortage from Middle East
caused a raise on prices, the electric vehicles became an attractive option to reduce
oil addiction from transportation sector. Also on 1970s, the concerns on environ-
mental aspects raised the debate on energy generation and consumption. Following
this trend, the actual Plug-in Electric Vehicles (PEVs) may be considered the result
of efforts made by automotive industry to develop a product that reflects the worry
about the environment and the future.

At first sight, a PEV looks like any other vehicle. But, the vehicle components
are different from those of conventional cars. First, the PEVs have an Energy
Storage System (ESS), which can be composed of a set of batteries, or by a fuel
cell, or by other storage technology. The ESS is charged through a battery charger,
which is connected to a conventional outlet or to a special fast recharge point.

The ESS role is to supply electricity to an electric motor, which provides traction
power through a mechanical transmission. The electric motor drive is another
component of PEVs, which should have an adequate performance for vehicular
applications. This means it should have a good performance over a wide speed and
torque range, low cost, weight and volume, high robustness and reliability. The
electric energy flows from the battery through an electronic power converter to feed
the motor drive. Regarding the power electronics converters, these devices should
be reliable, robust and meet the packaging requirements for vehicular applications.
These requirements include a better performance on severe conditions of temper-
ature, harsh environment and mechanical vibrations.

The state of art of PEV technologies is presented in the following sections.

1.2.1 Energy Storage Systems

Energy Storage Systems (ESSs) are systems which store energy in various forms
such as electrochemical, kinetic, pressure, potential, electromagnetic, chemical and
thermal, using, e.g. fuel cells, batteries, capacitors, flywheels, compressed air,
pumped hydro, super magnets, hydrogen etc. The principal criteria of an ESS
required for a specific application are [6, 7]:

• The amount of energy in terms of specific energy and energy density.
• The electrical power.
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• The volume and mass.
• Reliability.
• Durability.
• Safety.
• Cost.
• Recyclability.
• Environmental impact.

For PEV application, some ESSs features are desired, such as:

• Specific power.
• Storage capacity.
• Specific energy.
• Response time.
• Efficiency.
• Self-discharge rate/charging cycles.
• Sensitivity to heat.
• Charge-discharge rate lifetime.
• Environmental effects.
• Capital/operating cost and maintenance.

Many of the technical advantages and limitations of batteries, fuel cells and
capacitors are rooted in the fundamental electrochemical mechanisms they employ.
It is unlikely that the performance of these technologies will ever converge and so
their suitability for particular applications will always remain different [6].

Upfront cost is a key factor for public acceptance and untakes, and is proving to
be one of the steepest challenges for electrochemical energy systems. Energy
density is often cited as the largest problem for electrochemical storage devices.

The specific energy and energy density of batteries and capacitors are unlikely to
ever compete with liquid hydrocarbons. This is, however, an unfair and misleading
comparison. While the fuel in a conventional vehicle weighs relatively little by
itself, plenty of additional equipment is required to convert it into motion. In
contrast, the batteries of a PEV comprise the majority of the powertrain mass.
A second issue is that of conversion efficiency. The value of hydrocarbons,
hydrogen and electrons lies in how much of their energy can be converted into a
useful form of energy [6].

Within the last few decades the automobile industry has undergone a revolution
in overall vehicle reliability. With the large number of components and the number
of potential failures, it has become necessary for ESSs to provide a high reliability
over its operational life, typically assumed to be 10 years of 240,000 km, in order to
satisfy customer expectations [7].

Cyclic State of Charge (SoC) usage has historically been a dominating battery
failure mode for batteries in heavy-duty applications. Recently, some factors have
tended to increase the cyclic wear rate of batteries: the increasing number of on-
board electronic control units, and the power consumption of comfort devices not
matched by the alternator output. In both cases, the discharge/charge cycles are

1 Overview of Plug-in Electric Vehicles Technologies 5



typically very shallow, but the accumulated Ah turnover with time may be
significant. The ESS performance on partial SoC operation is other point of concern
[7].

1.2.1.1 Batteries

A battery is an electrochemical cell, or Galvanic cell, that transforms chemical
energy into electrical energy. It consists of an anode and a cathode, separated by an
electrolyte, which is an ionic conductor and also an insulating medium. Electrons
are generated at the anode and flow towards the cathode through the external circuit
while, at the same time, electroneutrality is ensured by ion transport across the
electrolyte. The two main types of battery used in PEVs are nickel metal-hydride
(NiMH) and lithium-ion (Li-ion) batteries [6].

NiMH batteries are usually used in hybrid PEVs. They use an alkaline solution as
the electrolyte. The batteries are composed of nickel hydroxide on the positive
electrode, and the negative electrode consists of an engineered alloy of vanadium,
titanium, nickel and other metals. The components of the NiMH battery are harmless
to the environment and the batteries can be recycled. NiMH batteries offer signifi-
cantly higher-cycle life and energy density, which is twice that of the lead-acid battery
[8]. The components of NiMH batteries include an anode of hydrogen absorbing
alloys (MH), a cathode of nickel hydroxide (Ni(OH)2) and a potassium hydroxide
(KOH) electrolyte. The general electrochemical reactions are as follows [6]:

M þ e� þ H2O ! MH þ OH�

Ni OHð Þ2þOH� ! NiO OHð Þ þ H2Oþ e�

M þ Ni OHð Þ2$ MH þ NiOðOHÞ
ð1:1Þ

The major advantage from a manufacturing point of view is the safety of this
type of battery at high voltages compared to other kinds, as Li-ion. NiMH batteries
are preferred in industrial and consumer applications due to their design flexibility
(from 30 mAh to 250 Ah), environmental acceptability, low maintenance, high
power and energy densities, cost, safety, long life cycle, storing volumetric energy
and power, wide operation temperature ranges and resistance to overcharge and
discharge. Their current cost is at $250–$1,500/kWh [6, 8].

On the other hand, if repeatedly discharged at high load currents, the life of NiMH
is reduced to about 200–300 cycles. The best operation performance is achieved
when discharged 20–50 % of the rated capacity. Other technological issues are
primarily their limitations at extreme temperatures and memory effect [7, 8].

Lithium-ion batteries are light, compact and operate with a cell voltage of
approximately 4 V with a specific energy in the range of 100–180 Wh/kg. In these
type of batteries both the graphite anode and lithium metal oxide cathode are
materials into which, and from which, lithium ions migrate through the electrolyte
in an organic solvent, then is inserted or extracted into the electrodes [6].

6 A.C. Zambroni de Souza et al.



Thus, when a lithium ion battery is discharging, Li is extracted from the anode
and inserted into the cathode and when it is charging, the reverse process occurs
according to the following reactions:

LiCoO2 ! Li1�xCoO2 þ xLiþ xe�

xLiþ þ xe� þ 6C ! LixC6

xLiþ þ xe� þ LiCoO2 ! Li2Oþ CoO

ð1:2Þ

Li-ion batteries store more energy and have lower memory effect than NiMH;
however they suffer from major issues as cost, approximately $1,000/kWh, wide
operational temperature ranges, materials availability, environmental impact and
safety. It is often observed that these batteries suffer from electrolyte decomposition
leading to the formulation of oxide films on the anode, thus blocking extraction
sites of lithium, and severe oxidative processes at the cathode due to overcharging,
in turn causing dissolution of protective films on the cathode and excess and
continuous oxidation of the electrolyte.

Li-ion batteries manufacturing process has progressed much since their intro-
duction to the market in the early 1990s. In fact, manufacturing has scaled so well
that the cost of standardized cells fell to 1/9 of the initial value [9]. Breakthroughs in
battery technology are urgently required, with innovative, performing and durable
material chemistries for both the electrodes and the electrolyte sub-components.
The major objective is to identify materials exhibiting higher performance and
durability than those currently offered.

The calendar life of Li-ion batteries is still a problem, as the rate capacity loss
has not been improved. Lifetimes of these batteries are in the order of 2,000 cycles
to 80 % depth of discharge (DoD) before 20 % of power is lost. The number of
cycles is approximately reciprocal with the DoD, meaning that approximately 4,000
cycles to 40 % DoD can be expected.

However, differently from most previous measurements indicate, the Li-ion
battery capacity does not decrease only as a result of cycling and DoD. Some
investigations are conducted on [10], and they show that the cycle life versus DoD/
cycle feature is different from the data given from manufacturers. Some results
show that deep discharges of 95 % do not affect severely the battery cycle life. At
the same time, shallower DoD values do not appear to increase cycle life signifi-
cantly. These results suggest that a greater portion of the cell capacity could be used
during each cycle and the DoD does not have a great effect on lifetime.

Moreover, the results from [10] contradict the literature claiming that there is
little or no relationship between DoD and capacity fade and the electrolyte
decomposition occurs at the same rate regardless of SoC and degree of graphitic
lithiation. More investigation is necessary to determine the most important
parameters for battery degradation.

1 Overview of Plug-in Electric Vehicles Technologies 7



At present Li-ion batteries are expensive but it is anticipated that the price will
decline rapidly and that they will be the cheapest rechargeable batteries in 10 years.
Scarcity of lithium was once thought of as a looming concern for the electrification
of PEV fleet. However, it should be noted that only around 1 % of a Li-ion battery
is Li by weight, implying around 0.08 kg Li/kWh of storage capacity. There also is
the possibility to recycle the batteries in the future.

The lithium/air battery is attractive because lithium has the highest theoretical
voltage and electrochemical equivalence of any metal anode considered for a
practical battery system. Lithium metal, atmospheric oxygen, and water are con-
sumed during the discharge, and excess LiOH is generated. The cell discharge
reaction is depicted below.

2Liþ H2Oþ 1=2O ! 2LiOH ð1:3Þ

The cell can operate at high coulombic efficiencies because of the formation of a
protective film on the metal that retards fast corrosion after formation. On open-
circuit and low-drain discharge, the self-discharge of the lithium metal is rapid due
to the parasitic corrosion reaction. This reaction degrades the anode coulombic
efficiency and must be controlled if the full potential of the lithium anode is to be
realized.

The main advantage of the lithium/air battery is its higher cell voltage, which
translates into higher power and specific energy. However, in view of their avail-
ability, cost and safety advantages, the development of metal/air batteries has
concentrated primarily on zinc and aluminum [9].

In Lead-Acid Batteries, the spongy lead works as the negative active material of
the battery, lead oxide is the positive active material and diluted sulfuric acid is the
electrolyte. For discharging, both positive and negative materials are transformed
into lead sulfate. As the cell discharges, both electrodes are converted into lead
sulfate. The process reverses on charge as depicted on (1.4).

Pb $ Pb2þ þ 2e

Pb2þ þ SO2�
4 $ PbSO4

PbO2 þ 4Hþ þ 2e $ Pb2þ2H2O

Pb2þ þ SO2�
4 $ PbSO

Pbþ PbO2 þ 2H2SO4 $ 2PbSO4 þ 2H2O

ð1:4Þ

As advantages for PEV applications, the lead-acid batteries have good high-rate
performance, moderate performance for a wide range of temperature, high cell
voltage, easy SoC indication, good performance for intermittent charge applica-
tions. They are available in production volumes today, yielding a comparatively
low cost power source. In addition, the lead-acid battery technology is a mature
technology [8, 9].

8 A.C. Zambroni de Souza et al.



However, the lead-acid battery is not suitable for discharges over 20 % of its
rated capacity. When operated at a deep rate of SoC, the battery would have a
limited life cycle. The energy and power density of the battery is low due to the
weight of lead collectors [8]. Valve-regulated lead acid batteries have been shown
to withstand Ah turnover at least three times higher than conventional batteries.
Further improvement can be expected for high-rate partial SoC operation [7].

Due to their unrivalled low cost, improved flooded batteries will continue
serving as the primary energy storage system for automotive applications where the
charge turnover is not critical. These advanced aqueous-electrolyte battery systems
have the advantage of operating close to ambient temperature. Nevertheless,
complex system design and circulation of electrolyte are needed to meet perfor-
mance objectives. In order to meet the vehicular application requirements, these
batteries would need significant improvements in shallow-cycle life and dynamic
charge acceptance. Furthermore, the inherent tendency to build up acid stratification
needs to be addressed because it aggravates sulfation during partial SoC operation
as well as cyclic wear [7, 9].

Regarding the flow batteries, the zinc-bromine is an attractive technology for
both utility-energy storage and vehicular applications. The concept of a battery
based on zinc-bromine couple is old, but development to a commercial battery was
not possible due to the tendency of zinc to form dendrites upon deposition and the
high solubility of bromine in the aqueous zinc bromine electrolyte. Dendritic zinc
deposits could easily short-circuit the cell, and the high solubility of bromine allows
diffusion and direct reaction with the zinc electrode, resulting in self-discharge of
the cell.

The major advantages of the zinc-bromine battery are the good specific energy
and efficiency, low-cost and readily available materials, low environmental impact
materials, recyclability, ambient temperature operation, adequate power density,
and possibility of deep discharge and fast recharge. By the other side, the main
drawbacks are the high self-discharge rate when shut down while being charged,
safety and the need of cooling and temperature control system. The electrochemical
reactions in a zinc-bromine battery can be simply represented as follows [9].

Zn2þ þ 2e $ Zn0

2Br� $ Br2 aqð Þ þ 2e

ZnBr2 aqð Þ $ Zn0 þ Br aqð Þ
ð1:5Þ

The Nickel-Zinc (Ni-Zn) battery is an alkaline rechargeable system. It is a
combination of the nickel electrode, as used in other batteries and the zinc elec-
trode. Currently, the Ni-Zn system is capable of delivering about 50–60 Wh/kg.
They have high energy and power density, low-cost materials, and deep cycle
capability (500 cycles at 100 % DoD) and are environmentally friendly. The
operation of Ni-Zn batteries ranges from −10 to 50 °C, which means they can be
used under severe working circumstances. However, they suffer from poor life
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cycles due to the fast growth of dendrites, which prevents the development of
commercial Ni-Zn batteries for vehicular applications [8, 9].

The electrochemistry on zinc in alkaline solution is quite complex than other
battery technologies, so the reactions presented here are for illustration purpose
only of discharge (1.6), charge (1.7) and overcharge (1.8) modes [9].

2NiOOH þ 2H2Oþ 2e� ! 2NiðOHÞ2 þ 2OH�

Znþ 2OH� ! Zn OHð Þ2þ2e�

2NiOOH þ 2H2Oþ Zn ! 2NiðOHÞ2 þ ZnðOHÞ2
ð1:6Þ

2NiðOHÞ2 þ ZnðOHÞ2 ! 2NiOOH þ 2H2Oþ Zn ð1:7Þ

2OH ! 1=2O2 þ H2Oþ 2e�

2H2Oþ 2e� ! H2 þ 2OH�

Znþ 1=2O2 ! ZnO

H2O ! H2 þ 1=2O2

ð1:8Þ

Nickel-Cadmium (Ni-Cd) batteries are being considered for use in electric buses.
They offer a good power density, maintenance-free operation over a wide tem-
perature range, long cycle life, a relatively acceptable self-discharge rate, and can be
fully discharged without damage. Another advantage is their capability for fast
charging. The specific energy of Ni-Cd batteries is around 55 Wh/kg. These bat-
teries can be recycled, but cadmium is a kind of heavy material that could cause
pollution if not properly disposed of. Another important drawback is the high cost,
as most nickel batteries.

Their longer cycle life may offset some of this cost on a life cycle basis. New
electrode developments such as plastic-bonded and nickel foam electrodes promise
to improve performance and reduce costs. Some kinds of Ni-Cd batteries are the
vented pocket-plate, the sintered-plate and the portable sealed. The pocket-plate
battery can stand both severe mechanical and electrical operational conditions, as
overcharging, reversal and short-circuiting. The sintered plate Ni-Cd battery can be
constructed in a much thinner form and has 50 % higher energy density than the
vented pocket-plate model and the cell has a much lower internal resistance and
superior high-rate and low-temperature performance. Sealed batteries incorporate
specific design features to prevent a buildup of pressure in the device caused by
gassing during overcharge. The overall reaction for Ni-Cd batteries is depicted in
(1.9) [8, 9].

NiðOHÞ2 þ OH� ! NiOOH þ H2Oþ e�

CdðOHÞ2 þ 2e� ! Cd þ 2OH

Cd þ 2NiOOH þ 2H2O $ CdðOHÞ2 þ 2NiðOHÞ2
ð1:9Þ
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1.2.1.2 Fuel Cells

The fuel cell was invented by Sir William Grove, in 1839. It is an electrochemical
device operating at various temperatures (up to 1,000 °C) that transforms the
chemical energy of a fuel (hydrogen, methanol, natural gas etc.) and an oxidant in
the presence of a catalyst into water, heat and electricity. Furthermore, the power
generated by a fuel cell depends largely upon the catalytic electrodes and materials
used. It is considered to be an efficient and non-polluting power source offering
much higher energy densities and energy efficiencies than any other ESSs. Fuel
cells are considered to be promising energy devices for transport, mobile and
stationary sectors.

The essential difference between a fuel cell and a battery is the manner for
supplying the source of energy. In a fuel cell, the fuel and the oxidant are supplied
continuously from an external source when power is desired. The fuel cell can
produce electrical energy as long as the active materials are fed to the electrodes. In
a battery, the fuel and oxidant (except for metal/air batteries) are an integral part of
the device. The battery must be replaced or recharged [9]. Fuel cell technology can
be classified into two categories [9]:

• Direct systems where fuels, such as hydrogen, methanol and hydrazine, can
react directly in the fuel cell.

• Indirect systems in which the fuel, such as natural gas or other fossil fuel, is first
converted by reforming to a hydrogen-rich gas which is then fed into the fuel
cell.

The heart of a fuel cell consists of a non-conductive electrolyte material sand-
wiched between two electrodes—the anode and the cathode. The fuel and the
oxidant are fed continuously to the anode and the cathode sides, respectively. At the
anode side the fuel is decomposed into ions and electrons. The insulator electrolyte
material allows only ions to flow from both the anode to the cathode side through an
external electrical circuit. The recombination of the ions with the oxidant occurs at
the cathode to form water. The electrodes materials of the fuel cell are inert in that
they are not consumed during the cell reaction, but have catalytic properties which
enhance the electroreduction or electrooxidation of the reactants [6, 9].

Fuel cell systems can take a number of configurations depending on the com-
binations of fuel and oxidant, the type of electrolyte, the temperature of operation,
and the application. There are currently six main groups of fuel cells available:
proton exchange membrane fuel cell (PEMFC); alkaline fuel cell (AFC); phos-
phoric acid fuel cell (PAFC); molten carbonate fuel cell (MCFC); solid oxide fuel
cell (SOFC); and microbial fuel cell (MFC) [11].

Regarding the fuels, the hydrogen seems to be the most promising. It has the
highest energy content by weight, but very low energy content by volume. This
makes storage and distribution to the point of use costly. However, the problem
with low volumetric energy density can be decreased by storing the hydrogen either
under increased pressure, at extremely low temperatures as a liquid or in metal-
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hydride systems. Hydrogen storage on board the vehicle is the key factor for
achieving market success. The methods of hydrogen storage in vehicle are:

• Liquid hydrogen, which demands very low temperatures (−253 °C in ambient
pressure) and causes a loss of chemical energy.

• Compressed hydrogen, which also consumes energy in compression step.
• Metal hydride, which is the safest method, but very heavy and require a lot of

time to store the hydrogen and has an insufficient release rate.
• Carbon nanotubes and Metal organic frameworks.

There are a few challenges related to hydrogen generation, storage and utiliza-
tion. These include:

• The design and development of low-cost and efficient hydrogen production
system using novel technologies, with a particular emphasis on the production
of hydrogen from renewable sources.

• Novel technologies associated with low carbon emission hydrogen production
and utilization from fossil fuels and distributed hydrogen technologies.

• The development of novel materials, systems and solutions for hydrogen storage
and transportation, with low costs and high energy efficiency.

In recent years, the PEMFC has been extensively demonstrated worldwide in
many applications fields and is now on the verge of commercialization. A single
cell PEMFC consists of a membrane electrode assembly sandwiched between two
flow field plates. Each cell produces approximately 1.1 V, so to obtain the required
cell voltage the single cells are combined to produce a PEMFC stack. The mem-
brane is typically made of a proton exchange membrane material designed to
conduct protons H+; anode and cathode electrodes or catalyst layers made of an
electrocatalyst supported on carbon and proton exchange materials, and; gas dif-
fusion layers, which allows reactants to diffuse to the active sites on the electro-
catalyst and facilitating water management by allowing water vapor to diffuse out,
and the liquid water produced on the cathode side to flow out of the fuel cell.

In a PEMFC, the following electrochemical reactions occur at the anode and at
the cathode, respectively.

H2 ! 2Hþ þ 2e�

O2 þ 4Hþ þ 4e� ! 2Hþ þ 2e�

H2 þ 1=2O2 ! H2O

ð1:10Þ

The oxygen reduction reaction at the cathode is a kinetically slow process, which
has a more dominant effect on the performance of the PEMFC than the hydrogen
oxygen reaction. Consequently, developing active catalysts is the main focus of
research on PEMFC.

As all fuel cells are normally distinguished by the materials used, although the
manufacturing of the fuel cell electrodes is also different in each case, the main
objective in fuel cell technologies is to develop low-cost, high-performance and
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durable materials. As well as reducing the cost, the main target in automotive PEMFC
is to operate the system above 100 °C with low humidification of reactant hydrogen
and air. Large-scale deployment of PEMFCs for the transportation sector demands
the development of low-cost and high-performance membrane electrode assemblies.

Currently, fuel cells are too expensive and not durable. Platinum is the key
catalytically active component in the most fuel cell types. Although its degradation
process is well understood, there are a few solutions under investigation to prevent
this effect. Platinum price is also high and contributes with one third of a stack cost.
However, from an electrochemical point of view, platinum is still the best elect-
rocatalyst for PEMFC as it is stable, durable and very active towards the electro-
chemical reactions. Although promising, surrogate technologies, as nanomaterials,
have shown poor durability and stability in acidic and aggressive environments and
cell voltage cycling under real operating conditions.

In addition to the high material cost, platinum is extremely sensitive to poisoning
by CO, H2S, NH3, organic sulfur-carbon and carbon-hydrogen compounds in the
H2 stream and NOX and SOX in air. It is also prone to dissolution and/or
agglomeration resulting in performance degradation. Moreover, platinum is rare
and is mined in a limited number of countries, with more than 80 % in South Africa.
Thus, the political aspect is also a determining factor for supply [6]. Fuel cell
lifetimes are assessed by the number of hours until 10 % rated power is lost.

1.2.1.3 Other Technologies

Electrochemical capacitors are high power density and low energy density devices.
There are two energy storage mechanisms for capacitors: (i) electrochemical double
layer capacitors i.e., double-layer capacitance arising from the charge separation at
the electrode/electrolyte interfaces and (ii), pseudo-capacitors i.e., pseudo-capaci-
tance arising from fast, reversible faradaic reactions occurring at or near the solid
electrode surfaces. In all cases, electrochemical capacitors rely upon the separation
of chemically charged species at an electrified interface between a solid electrode
and an electrolyte. The electrolyte between the anode and the cathode is ionic,
usually a salt in an appropriate solvent. The operating cell voltage is controlled by
the breakdown voltages of the solvents with aqueous and organic electrolytes [6].

Electrochemical capacitors are currently being proposed by many automotive
manufacturers due to their load level demand, quickly inject or absorb power to
help minimize voltage fluctuations in the electronic systems, and provide pulse
power well over 1,000 W/kg with a cycle life reaching more than 500,000 cycles. In
contrast to batteries and fuel cells, the lifetime of electrochemical capacitors is
longer and in some cases their energy efficiency rarely falls below 90 % provided
they are kept within their design limits. Finally, it is speculated that the next
generations of capacitors are expected to come close to Li-ion battery technology in
energy density while maintaining their high power density [6]. The prospects for
capacitors are excellent regarding to durability and degradation, with calendar times
measured in decades and charge/discharge cycles in millions.
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1.2.2 Electric Motors

An electric motor drive forms the central core of a PEV. In research and devel-
opment works worldwide, significant consideration is given to the use of high-
performance and high-efficiency electric motors at high speed in the range of
12,000–15,000 rpm [12]. The electric motor in its normal mode can provide con-
stant rated torque up to its base or rated speed. At this speed, the motor reaches its
rated power limit. The operation beyond the base speed up to the maximum speed is
limited to a constant power region. The range of the constant power operation
depends primarily on the particular motor type and its control strategy [13].

In an industrial point of view, the major categories of electric motor drives
adopted or under consideration for PEVs are: permanent magnet motor (PM) drives,
which could be AC or DC, induction motor (IM) drives, the DC motor, and the
switched reluctance motor [12–14].

Choosing a motor for PEV traction is challenging due to the following reasons
and it should be emphasized that the motor design is a part of the system tradeoff
[12, 14, 15]:

• Wide speed range, including constant-torque and constant-power regions.
• Adequate torque capability for passing and overtaking at high speed, and high

torque at low speeds for starting and climbing.
• A high instant power and a high power density.
• Limited DC voltage level since battery favors low voltage.
• Very limited packaging space.
• Highest possible efficiency for travel range.
• Lowest possible cost.
• Reliability and robustness for various vehicle-operating conditions.
• Driver expectations.
• Energy Source.
• Market acceptance degree of each motor type.
• High controllability, steady-state accuracy and good transient performance.

In the context of PEV design, the motors can be classified according to their
maximum speed. Low speed motors have a maximum speed of 6,000 rpm. From
6,000–10,000 rpm, the motors can be classified as medium speed. And, above
10,000 rpm the motor drives are classified as high speed motors. The maximum
motor speed affects the gear size and has an effect on the rated torque of the motor,
but it does not affect the power requirement. Low speed motors with extended
constant power speed range have a much higher rated shaft torque. Consequently,
they need more iron to support these currents. This will also impact the power
converter silicon size and conduction losses. Extended speed range, however, is
necessary for initial acceleration as well as for cruising intervals of operation.
Therefore, the rated motor shaft torque can only be reduced through picking a high
speed motor, but this affects the gear ratio. A good design is the result of a tradeoff
between maximum motor speed and the gear size [13].
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In addition to the regular central traction motors, numerous wheel-hub motor
concepts have been developed, but no commercial vehicles have been developed
using these concepts. One of the main technical challenges of wheel motors is the
unsprung mass [16]. In this section, the main motor drives technologies and their
features are presented.

1.2.2.1 Permanent Magnet Motor Drives

The Permanent Magnet (PM) machine drives include the DC motor drives, the
synchronous motor and the brushless DC motor, which is a type of electronically
commutated PM synchronous machine. The PM DC motor usually needs two or
three gear ratios due to their limited speed range, heavy weight and large size, while
the PM synchronous machine and brushless PM DC motors provide a good per-
formance over 12,000 rpm without any need of gear ratios due to their magnetic
materials [12].

The PM motors have several distinct advantages, namely, high efficiency, high
power factor and relatively higher stability. Smooth brushless operation and simple
rotor construction of PM synchronous motors offer additional advantages, partic-
ularly for high-speed applications. Furthermore, a high number of pole pairs reduce
the weight and material content. Absence of rotor cooper losses at synchronous
speed makes it highly efficient. The stator and the drive electronics are similar to
those for the IM drives. Most of the ac motors for PEVs are liquid-cooled, as this
reduces size and weight. It also keeps the magnet temperature down, which is
beneficial to the magnetic material [12].

However, there are also a few disadvantages. PM motor drives do not have self-
starting torque. If cage windings are included, they can be operated at asynchronous
mode during starting. The cost of magnetic materials is quite high. Magnetic cor-
rosion and relatively low temperature tolerance are potential hazards and fixed flux
level gives low speed range at constant power [12].

The PM brushless DC motor is specifically known for its high efficiency, high
power density due to reduced overall weight and volume for a given output power
and efficient heat dissipation. The high power factor of the PM brushless DC motor
also reduces the volt-ampere rating of the converter. However, this kind of motor
drive suffers from a rather limited field weakening capability. This is due to the
presence of the PM field which can only be weakened through production of a
stator field component which opposes the rotor magnetic field. Nevertheless,
extended constant power operation is possible through the advancing of the com-
mutation angle [13, 14].

There are several combinations of PM brushless motors. Depending on the
arrangement of the PM, basically, they can be classified as surface-magnet mounted
or buried-magnet mounted, with the latter being the more rugged. PM hybrid
motors offer a wide speed range and a higher overall efficiency [14].

By observing the major vehicle manufacturers, it is possible to perceive that
almost the entire light-duty PEV industry has shifted from IM to PM motor drives
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in order to meet the increasing power density and efficiency requirements. In the
future, it is expected that PM machines start to extend into medium and heavy-duty
markets. In the long run, there is a lot of concern about the prices and availability of
rare PM materials and the development of other materials are very important [16].

1.2.2.2 Induction Motor Drives

AC induction motors are preferred over DC motors for their high reliability and
maintenance-free operation. IM drives are standard technology with existing
manufacturing infrastructure. Cage IMs are potential candidates for electric pro-
pulsion of PEVs, owing to their reliability, ruggedness, low maintenance, low cost,
and ability to operate in hostile environments [14, 15]. Differently from the light-
duty fleet, for medium and heavy-duty vehicles the IM motor drives are still the
main preference [16].

However, when frequency changes, the motor impedance will also change and
the variation of stator impedances will lead to the change of air gap flux and, thus,
the output torque. The nonlinearity of its dynamic model with coupling between the
direct and quadrature axes also makes the control more complex. Moreover, IM
motors have an inherent disadvantage of slip-dependent rotor copper loss, and there
is the problem of heat extraction from the machine core. The motors are either two
or four-pole types, with large end windings and considerable back iron yoke,
causing their weight to increase [12].

The presence of a breakdown torque limits its extended constant-power opera-
tion. At critical speed, the breakdown torque is reached. Generally, for a conven-
tional IM, the critical speed is around two times the synchronous one. Any attempt
to operate the motor at the maximum current beyond this speed will stall the motor.
Moreover, efficiency at high-speed range may suffer in addition to the fact that IMs
efficiency is inherently lower than of PM motors, due to the absence of rotor
winding and rotor copper losses [14].

Field orientation control of IM can decouple its torque control from field control.
This allows the motor to behave in the same manner as a separately excited DC
motor. This motor, however, does not suffer from the same speed limitations as the
other. Extended speed range operation is accomplished by flux weakening, once the
motor has reached its rated power capability, but it is limited by the presence of a
breakdown torque. It may be mentioned here that the torque control in induction
motor is achieved by PWM control of current. In order to retain the current control
capability in the extended speed constant power range, the motor is required to
enter the field weakening range before reaching the base speed, so that it has
adequate voltage margin to control the current [13].

In general, IM motor drives are facing a number of drawbacks that pushed them
out of the race of PEVs propulsion. These drawbacks are mainly high loss, low
efficiency, low power factor and low inverter-usage factor, which are more serious
for the high speed, large power motor. These problems should be taken into account
in the design step of IM motor drives for PEVs [14].
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1.2.2.3 DC Motors Drive

Traditional DC commutated motors have been prominent for PEV propulsion
systems because their torque-speed characteristics suit the traction requirement.
This kind of motor drive is inherently suited for field weakened operation, due to its
decoupled torque and flux control features. Extended constant power operation is
possible with this motor through its separate field weakening. Control of these
motors is very simple. However, the presence of mechanical commutators imposes
a severe restriction on the maximum speed of the DC motors. This low speed and
extended constant power operation would necessitate higher motor shaft torque.
Consequently, more iron is needed, which causes the motor to be bulky, heavy and
expensive. It also requires considerable maintenance of its brushes and commuta-
tors. It is also restricted by the sparks, which come from the mechanical commutator
system. These problems make them less reliable and unsuitable for maintenance-
free operation [12–14].

Moreover, the development of rugged solid-state power semiconductors made it
increasingly practical to introduce the IM and PM synchronous motor drives that
are mature to replace the DC motor drive in traction applications. In fact, the
commutatorless motors are attractive, as high reliability and maintenance-free
operation are prime considerations for electric propulsion. Nevertheless, with regard
to the cost of the inverter, AC drives are used generally just for higher power. At
low power ratings, the DC motor is still more than an alternative [14].

1.2.2.4 Switched Reluctance Motor Drive

Due to the simple construction, the absence of rotor conductors, low inertia, fault-
tolerant operation, simple control and outstanding torque-speed characteristics, the
switched reluctance motor (SRM) is a potential motor drive for PEV applications.
In a SRM, the phase windings on the stator in turn set up a magnetic dipole between
stator and rotor poles. The resulting tendency is to reduce the air-gap reluctance. It
results in that the rotor poles moves toward an aligned position with the excited
stator pole. This operational feature is much different than the electromechanical
energy conversion that takes place in other types of motor drives.

The SRM can reach extremely high speeds with a long constant power range.
Operation in constant power is made possible in this motor by the phase advancing
of stator current conduction angle until overlapping between the successive phases
occurs. The SRM drive has a high starting torque and high torque-inertia ratio. The
absence of magnetic sources makes it relatively easy to cool and insensitive to high
temperatures, which are desired features for vehicular applications. Furthermore, it
typically has a low-cost construction due to the absence of windings and permanent
magnets on the rotor structure.

As drawbacks, the SRM motor has a low power factor which can penalize the
converter, torque ripple, excessive bus ripple, acoustic noise and electromagnetic-
interference noise generation. But, the existence of a long tail of natural mode of
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operation, beyond the constant power range, can offset some of this disadvantage
by making the motor power rating smaller [13, 14].

1.2.2.5 Other Motor Drive Types

The hysteresis motor (HM) has not only simple constructional features with con-
ventional polyphase stator windings and a solid rotor hysteresis ring, but also high
built-in self-starting torque during the run-up and synchronization period. It has no
rotor slots and, thus, it has a low noise during operation. These advantages make the
hysteresis motor especially suitable for applications in which constant torque,
constant speed, and quiet operation are required. The HM motor also has high
magnetizing current and high parasitic losses. When it reaches synchronous speed,
the rotor flux ceases to sweep around it and the residual flux density of hysteresis
material on the rotor is relatively fixed. As the eddy current torque disappears at
synchronous speed, the motor behaves as a temporary PM motor [12].

The combination of permanent magnet and hysteresis materials in the rotor
constitutes a hybrid design motor drive with many advantages over conventional
PM or hysteresis motors. This hybrid motor in which the permanent magnets are
inserted into the slots at the inner surface of the hysteresis ring is called the hybrid
permanent magnet hysteresis synchronous (HPMHS) motor. During asynchronous
speed, the motor torque consists of the hysteresis torque, eddy current torque and
permanent magnet brake torque. While in synchronous speed, the motor torque is
comprised of the hysteresis and permanent magnet torques. So, it combines the
advantageous of both machine drives. The negative effect of the magnet brake
torque of a conventional PM motor is ideally compensated by the high eddy current
and hysteresis torque, particularly at the initial run-up period [12].

The choice of the motor drive for PEVs is mainly determined by three factors.
Reference [12] provides a detailed description of this. The main factors are weight,
efficiency and cost, so the PEV motor selection may carry out taking into consid-
eration technical and economic aspects.

1.2.3 Power Electronic Converters

The power switching devices, electric motors, and associated control systems and
components play a key role in bringing PEVs to market with reliability and
affordability. The power electronic system should be efficient to improve the range
and efficiency of PEVs. The selection of power semiconductor devices, converters/
inverters, control and switching strategies, packaging and system integration is
crucial to the development of efficient and high performance vehicles [17].

To meet the requirements of the automotive environment, several technical
challenges need to be overcome, and new developments are necessary from the
device level to the system level, as enumerated below.
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• The development of a power device that combines the MOS gate control
characteristics of thyristor-type structure whose forward voltage drop, even at
higher currents above 400 A, must be less than 2 V and, at the same time, can be
operated at switching frequencies higher than 10 kHz.

• The design of a new power diode with superior dynamic characteristics, such as
MOS-controlled diode.

• The research on silicon carbide needs to be accelerated to make possible their
application to high-power switching devices at higher operating temperatures.

• The devices and the rest of the components need to withstand thermal cycling
and extreme vibrations.

The technologies related to device packaging need to be investigated by the
semiconductor industry to develop a power switch for vehicular applications. Wire
bonding, device interconnections, etc., are the barriers to the development of high-
current-density power units. The power electronic systems available in the market
are still bulky and difficult to package for automotive applications [17].

Although the technology of power semiconductor devices has advanced, it still
needs to be improved. The cooling method needs to be adequate to quickly take
away the heat from the devices. In addition, the impact of current intensiveness in a
system on lower efficiency, larger passive components such as inductors and
capacitors, and a thicker wiring harness among the components should be properly
taken into consideration at the design stage [17].

However soft-inverters have the advantage of lower switching losses and low
electromagnetic interference, they need more components, higher operating voltage
devices, and more complicated control compared to hard-switched inverters. There
is a need to develop an inverter topology that achieves the performance of a soft-
switched inverter but with less components and simplified control. Fault-tolerant
and control techniques also need further investigation.

The technology development effort needs to be focused on the sensorless
operation of electric machine drives and the reduction or elimination of current
sensors on inverters. The development of low-cost high temperature magnets would
lead to the widespread use of PM motors, which have higher efficiency and need
lower current to obtain the same torque as other machines [17].

Considering the technologies described above create a new scenario for electric
systems of the future. Some of the implications are discussed next.

1.3 New Power System Operation Philosophies

The advent of renewable sources brings along a quite important discussion about the
system reliability and cooperation. These issues are important because reliability is
increased as renewable sources are connected to the grid. On the other hand, the
intermittent nature of these sources requires the grid to be able to supply the load in
adverseweather conditions, in case of a huge penetration ofwind and solar generation.
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The supply of sustainable energy is one of the greatest challenges of our modern
society. Governments, universities and industries must cooperate intensively to
develop sustainable energy sources that meet future requirements.

A great advantage of electric energy supply is that it can be transported easily
over large distances. It is widely recognized that the development and integration of
sustainable sources also requires an innovation of the electrical grid and associated
technologies for generation, transmission, distribution and energy storage systems.
The present electrical system is based on a model of large and centralized electricity
generators (large-scale plants based on fossil fuels) whereas the future electrical
system will be based on a large amount of smaller, local generators (solar panels,
wind turbines). The changes in renewable energy generation will induce large
changes in the management and distribution of electrical energy due to their
unpredictability. The present electrical system has to be made smarter in order to
accommodate and balance demand and supply on local, regional, national, and
transnational level.

The long-term global prospects continue to improve for generation from
renewable energy sources making the fastest-growing sources of electricity with
annual increases averaging 2.8 % per year from 2010 to 2040. In particular, non-
hydropower renewable resources are the fastest-growing sources of new generation
in the outlook, in both OECD and non-OECD regions. Non-hydropower inter-
mittent renewables, which accounted for 4 percent of the generation market in
2010, could increase their share of the market to 9 % in 2040 [18].

Sustainable energy systems need innovation in three basic areas:

(a) development of reliable sustainable energy sources;
(b) development of smart grids to accommodate production and consumption of

energy under market signal incentives;
(c) development of models to understand the non-technological aspects of the

production and consumption of energy, e.g., social and ethical questions. In
addition, these non-technological aspects have to be integrated in the design of
sustainable sources and smart grids.

Creating this environment demands a huge effort from system designers, which
includes a different philosophical point of view. A model to deal with this problem
has been given in [19], as shown in Fig. 1.1. This model states that designers have
to use three different perspectives to specify new technologies: integrality, inclu-
siveness and ideal-drivenness. The idea of integrality refers to the different aspects
that have to be taken into account, the idea of inclusiveness to the different
stakeholders whose interests are at issue, and the idea of ideal-drivenness to the
ideals, value systems, or basic believes that underlay the development of smart
grids. This model is based on the ontology as developed by the philosopher
Dooyeweerd [20] and the practice model developed by the philosophers Hoogland,
Jochemsen, Glas, Verkerk and others [21].

The first ‘I’ refers to the different aspects that have to be analyzed. In total fifteen
different aspects are identified, varying from the numerical, physical, social, eco-
nomic, juridical to the moral dimension, see Table 1.1. Each aspect has its own
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Societal plurality (Triple I –model)

Smart grid 

Aspects
(Integral)

Stakeholders
(Inclusive) 

Value systems
(Ideal-driven) 

Fig. 1.1 General model
proposed

Table 1.1 Overview of different aspects of design

Aspects Sustainable energy generation and smart grids

Arithmetic Measurable quantities like voltage, current and power

Spatial Spatial location of power generation plants, overground or underground
transmission and distribution networks

Kinematic Rotating generators, energy, flow, water flow (hydro energy)

Physical Different physical laws that determine the generation and transport of electric
energy

Biotic Influence of energy generation and electromagnetic fields on life (plants, animal,
human)

Physic Influence of energy generation and electromagnetic fields on the emotions of
human depression, feelings of uncertainty and so on

Analytical Distinction between different types of sustainable energy generation and
distinction between different types of grid

Formative Control of power generation and consumption, influence that citizens has (on the
use of) smart grids in their home

Lingual What meaning do citizens give to words like “smart grids”? Threatening?
Promising development? How to name sustainable energy to promote the use of
these sources?

Social The influence of micro grids on the social behavior of citizens. How “to seduce”
customers to adapt their activities to balance supply and demand (nudging)?

Economic Price differentiation depending on momentary supply and demand

Esthetic Esthetic design of wind mills and solar panels. Integration of sustainable energy
sources in architectural designs

Judicial Liability for safety of micro, smart and super grids

Moral How to design micro and smart grids so that they really support and care about
human life? How to prevent that human life is harmed?

Pistic Do people trust smart meters? Or are they afraid that their privacy will be
threatened? Do people trust smart systems in their house? Do they welcome
these technologies? How to design for trust?
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nature, dynamics and normativity. Consequently, these different aspects cannot be
reduced to each other but every aspect has to be analyzed in detail.

The second ‘I’ refers to the different stakeholders and their justified interests.
Based on a philosophical approach, Ref. [19] argues that the interests of stake-
holders are different. For example, this comes to the fore when we analyze how
different stakeholders will cope with breakdown of widespread blackout of the
electrical system. Industrial enterprises will balance the risks, potential losses and
prevention costs on economic grounds, hospitals will always choose for back-up
installations to prevent harming patients, and citizens will accept the risks as long as
their normal life is not hampered strongly. So, ‘inclusiveness’ requires the analyses
of the interests of all different stakeholders. In this analysis the lists of aspects will
be very helpful.

The third ‘I’ refers to the ideals, values and basic beliefs that underlay the search
for sustainable sources and the design of the energy system of the future. It has to be
noted that in Western culture different value systems are present. Some people
believe that economic considerations have to be dominant (neoliberal approach),
others believe that the present system can be adapted to meet environmental and
sustainability requirements (‘swallow ecology’), and again other state that do not
only need technological innovations but also radical societal reforms (‘deep ecol-
ogy’) [22]. It is important to make this third ‘I’ explicit in order to discuss the ‘why’
of sustainable energy and smart grids and to prevent that these fundamental
questions are suppressed by technological and economical perspectives.

The approach of [19] is summarized in Fig. 1.2. It shows that for every (sub-)
technology an extensive analysis of the three I’s is required. On the one hand, it is
hard to do this kind of analyses. Especially, because this demands from engineers
an additional research. On the other hand, failures in this field are so costly that no
organization or institution can permit itself big failures.

Combining the existing technologies with a new philosophy of system designing
is certainly a great challenge for engineers and scientists. The problems to be
overcome are complex and require knowledge not usually taught in the engineering

Different aspects or 
dimensions

Every (sub) technology

Different stakeholdersDifferent ideals 

Fig. 1.2 Overview of the
proposed approach
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curricula. Ignoring this problem, however, may create a system susceptible to
failure and ethical problems of operation. Understanding the existing technology
and proposing a model to integrate the available devices into a new paradigm of
system designer are the challenge to face.
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Chapter 2
Smart Coordination Approach for Power
Management and Loss Minimization
in Distribution Networks with PEV
Penetration Based on Real Time Pricing

Bhuvana Ramachandran and Ashley Geng

Abstract The impact of Plug in Electric Vehicles (PEV) will be most significantly
felt by the electric power distribution networks, and specifically by distribution
transformers that exist on each neighborhood block and cul-de-sac as customers
charge their PEVs. That impact is unlikely to be positive. Since PEV adoption is
initially expected to cluster in neighborhoods where demand for PEVs is strongest,
the new load may overload transformers, sap much-needed distribution capacity
and also increase distribution network losses. Hence, the national goal of putting
one million PEVs on the road by 2015 could easily impose a severe burden on the
distribution network. Whether PEVs will help or hinder electricity provision will
depend on how frequently and at what times the customers charge their vehicles.
This behavior will be driven in part by the rate structures that are offered by utilities,
as well as the price responsiveness of PEV owners to those rate structures. In this
chapter, we propose a method to optimally charge the PEVs in order to minimize
the system distribution network losses and to maximize energy transferred to PEVs.
A novel short term prediction unit consisting of a receding time horizon method is
proposed to forecast the PEV load and a multi objective bacterial foraging algo-
rithm is used as an optimization tool. Also it is interesting to study the manner in
which distribution network losses vary with PEV charging behavior. Hence the
purpose of this chapter is to demonstrate a power management strategy using smart
coordination approach to (a) design a charging and discharging infrastructure for
the PEVs that maximizes energy delivered to PEV batteries and (b) reduce the
distribution network losses to avoid overloading of the grid.
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2.1 Introduction

The growing use of electricity increases grid loading, power losses, and the risk of
congestion. However, employing electricity for heating and transportation, also
introduce a significant level of flexibility to the traditional consumption pattern [1].
Over the past 5 years, transportation sector has been revolutionized due to the
advent of Plug-in Electric Vehicles (PEV). The growing societal awareness of
environmental issues as well as ongoing concerns about reducing dependence on
foreign oil or petroleum have made the concept of PEV very popular during the past
few years [2]. Preliminary studies indicate that PEVs will dominate the electricity
industry in the near future as pollution-free alternatives to the conventional petro-
leum based transportation and they will populate residential feeders, especially in
USA and Australia. Due to the high penetration levels of PEVs, significant impacts
will be felt especially at the distribution level [3–10]. In the absence of proper
coordination, it is most likely that these PEVs will charge and discharge during the
overall peak load period [3] causing severe branch congestions, unpredictable
system peak demands, unaccepted voltage deviations, significant increase in losses
and poor power quality. Some studies conducted by authors in [7, 9] have observed
that the existing distribution system infrastructure would only support a very low
PEV penetration level without grid operation procedure changes or additional grid
infrastructure investments. To overcome these problems, several PEV coordination
approaches have been suggested in literature [5, 11–17].

The charging and discharging process of PEVs can be controlled so that energy
will be transferred from grid to vehicle (G2V) or from vehicle to grid (V2G)
respectively. Several PEV coordination techniques based on deterministic and
stochastic dynamic programing were discussed [5]. Several other authors have
adopted prediction of PEV charging profiles and vehicle range reliability using
recorded vehicle usage data and also designs a minimum cost load scheduling
algorithm based on the forecasted electricity price and PEV power demands.

Many countries have ventured into smart metering and smart appliances to
improve the system load profile and to reduce peak demand so that demand side
management (DSM) can be implemented for load control and power management
in the electrical grid [18–22]. PEVs can be utilized to provide ancillary services
including energy storage and frequency regulation [16, 17, 23]. These added
benefits of PEVs enable electric grids to rapidly heal and self-regulate under con-
ditions of emergency thereby improving system security and reliability and effi-
ciently manage energy delivery and consumption [24–30].

Majority of existing strategies on load control and power management treat loads
as individual entities, even for loads sharing the same load characteristics. With
such an approach, either computational complexity (for centralized schemes) or
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communicational effort (for decentralized schemes) would grow significantly as the
number of loads in the network increases. In this chapter, we consider groups of
loads rather than individual loads, by categorizing loads into a relatively small
number of load types. With this scheme, the size of the proposed optimization
problem does not change as the load population increases, which is a valuable
feature for large-scale load management.

To accomplish these objectives, this chapter proposes a novel real time smart
coordination approach using a receding time horizon method to coordinate multiple
charging and discharging of PEVs while reducing system stresses that can severely
impact grid reliability, security and performance [24]. Real time charging control
issues were addressed by very few authors such as [12, 31] where it is very
challenging to obtain performance guarantees. The proposed PEV charging algo-
rithm developed for smart coordination consists of a forecasting module and an
optimization module which will improve power system resource utilization. The
forecasting module sends information about the number of PEVs in the parking
garage and also their arrival and departure rates.

The module then calculates and forecasts the number of PEVs that will be present
at the same time in the parking garage for the next time interval. The heuristic multi-
objective optimization module takes in the present and future power demands for all
loads including PEV’s over a finite time interval. The aim of this optimization
module is to maximize the energy delivered to PEV batteries and satisfy the SOC
criteria for the PEV while including constraints related to the power grid and cus-
tomer demands. The optimization module is also designed to minimize distribution
network losses considering charging time zone priorities specified by PEV owners.

To validate the power management infrastructure and distribution network loss
minimization, the smart coordination strategy is implemented on a IEEE 13 node
test feeder and a 38 bus power system consisting of a mix of residential, com-
mercial and industrial customers penetrated with PEVs. To estimate the economics
of charging, simulation results will be presented for uncoordinated and coordinated
charging scenarios for three different Time of Use (TOU) rates and different PEV
penetrations.

2.2 Research on Smart PEV Charging Coordination

Literature review of research carried out in the area of coordination of charging and
discharging of PEVs throws light on the two categories of work so far. One cate-
gory of research was focused on charging and discharging decisions based only on
the present information about the state of the grid. The second category is the one
which is based on forecasted estimates of the state of the grid and future power
demands in the grid are considered while making decisions about charging or
discharging. In [12], a real time coordinated PEV charging approach was proposed
in which the time varying energy process was accounted for and along with
charging time and zone preferred by the PEV owner. A DSM based charge control
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was proposed in [32] where the objective was to provide dynamically configurable
dispersed energy storage during peak demand and outage conditions. An optimal
PEV charging model that responds to the time-of-use price in a regulated market is
proposed in [33]. In these papers, the impact of present and future PEV charging
and discharging decisions on the grid were not considered. This means that the
charging of PEVs would not result in a target state of charge level for the PEVs and
hence would affect the reliability of the power system.

Several other authors have proposed probabilistic models and charging coordi-
nation strategies considering day ahead or real time markets [16, 34, 35]. The
optimization model used could be either single objective optimization (to optimize
cost or losses) or multi-objective optimization (to optimize operating cost with
losses). The ultimate objective of this research is to develop a smart coordinated
charging and discharging framework for smart grids based on TOU rates which
would improve the system reliability and security.

2.3 Electric Vehicles and Distribution System

If PEV owners were to simultaneously charge their vehicles in a small geographical
area, the increased demand would cause severe problems for the utility that must
serve the load reliably. If PEV owners were to simultaneously charge their vehicles
in a small geographic area, the increased demand caused due to charging could cause
major problems for the utility that must reliably serve that area. While simultaneous
charging of PEVs at system peak could result in supply shortages or create a need for
large new investments in expanding generating capacity and setting up new gen-
eration plants, the most serious concern due to simultaneous PEV charging will be
the congestion problem at distribution level for most utilities (Fig. 2.1).

First, consider the effect of PEV adoption on system peak demand. Assume that
one in every four homes owns a PEV, or roughly 250,000 residential customers
with an electric vehicle in the example utility considered. Assume that half of these
customers are simultaneously charging their vehicles at the time of the system peak
(other owners may not yet be home from work or could already have a full charge).
Assuming a charging demand of 3.3 kW per vehicle, the resulting increase in peak
demand would be roughly 400 megawatts (MW) (calculation: 250,000 custom-
ers × 50 % peak-coincident charging × 3.3 kW). While not an insignificant number,
a mid-sized utility with, for instance, 5,000–10,000 MW of existing load would
have the capability to address this load growth over a long-term forecast horizon.

Now, consider what could happen at the distribution level. There is evidence to
suggest that adoption of PEVs will be geographically “clustered.”Assume that of the
residents living on a street that is served by a single transformer and in a “green”
neighborhood, half own a PEV. A charging demand of 3.3 kW could double the
daily demand of these homes. As a result, if the PEV owners were all to plug in their
vehicles when returning home from work in the evening, the load on that street’s
transformer could increase by 50 % (calculation: 50 % PEV ownership × 100 %
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increase in load per PEV owner). If the transformer was already being loaded at 70 %
of capacity, then this increase would be enough to overload the transformer and
create severe havoc in the distribution system. Dynamic pricing schemes, such as
reduced rates for nighttime charging allow drivers to choose how to respond to
change in prices. These pricing schemes allow users to choose their charging time
and it does offer some relief to the grid in terms of motivating the user to charge
during off peak periods by offering low tariff at those times. Such a smart grid can
accommodate PEV charging according to schedule determined/chosen by the user.

Certainly, PEV adoption rates will vary from one service territory to the next,
and the vehicles will be charged at varying rates and at different times of day.
However, it is becoming clear that the existing generation resources will be in a
much better position to accommodate future PEV market penetration than our
distribution systems. Hence it is the distribution system infrastructure that needs to
be restructured to accommodate high penetration of PEVs in communities.

2.4 Electric Vehicles and TOU Rates

The numerous potential benefits of widespread adoption of PEVs have been rated
very high [36]. PEV are capable of reducing the greenhouse gas emissions due to
reductions in the amount of gasoline burned by the vehicles internal combustion
engines. Also since the price of gasoline is escalating, fueling with electricity is a
least expensive option to the PEV owners. In a Smart Grid environment, if the

MV LV
Transformer

Charging Station

User

Fig. 2.1 Distribution network with PEV charging stations

2 Smart Coordination Approach for Power Management … 29



owners decide to charge their vehicles late into the night, the vehicles represent an
ideal off peak load that would complement new intermittent renewable energy
resources such as wind and solar power.

The time and period of charging of PEVs could have a negative impact on the
grid. Contrary to many expectations, PEVs will not result in unmanageable
demands on generation resources. The real challenge would be at the distribution
level. If all the residents of a small community purchased PEVs and they all
charged at the same time, there would be a heavy spike in demand that could
overload the transformers feeding those houses and would result in a severe damage
to the distribution system. This could happen in reality if several of the PEV owners
cluster in specific neighborhoods. Hence the utilities are trying hard to encourage
off peak charging by allowing customers who own PEVs to take all or part of their
electric service on some form of TOU pricing, often at higher voltages to facilitate
faster charging. Many have approved TOU tariffs specially dedicated to PEVs.
Several of the utilities offer different rates depending on whether the metering is
done for the whole house or separately for the electric vehicle. It is somewhat
common for utilities not to have created an EV-specific TOU rate, but to recom-
mend that EV owners enroll in an existing residential TOU rate. TOU pricing is to
encourage trend for charging PEVs efficiently since their owners can lower their
electric bills by charging during off-peak hours.

PEV owners have the option to choose between charging based on convenience
or only during those times when electricity costs are lowest. Saving money would
motivate some owners to charge when the cost of charging is less. In the absence of
incentives and benefits, PEV owners may not plug in their car for charging when
they come back home at 6 pm and charge it to full capacity so that the vehicle is
ready for them the very next morning. However, there are customers who might
find it more convenient to charge their vehicle whenever they want to depending on
their work schedule, availability for charging stations (Fig. 2.2) outside their home,
extent of their tolerance to a less than fully charged battery and the regularity of
their driving among other factors.

Fig. 2.2 Charging stations for PEVs
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An aggregated charging profile for the PEVs is given below in Fig. 2.3. Figure 2.4
shows the charging costs across TOU rates by time of day. A driver who is on the
low TOU rate has the least incentive to charge during the cheapest periods, since

Fig. 2.3 Charging profile of PEV owners

Fig. 2.4 Charging costs across TOU rates by time of day
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their cost exposure is much less than that of an owner on either the medium or high
TOU rates. A priori, one would expect drivers on the high TOU rate to display the
largest price responsiveness and drivers on the low TOU rate to display the least.

Even in the high TOU rate case, the savings are modest. The difference between
charging at 6 pm and 1 am is about $60 a month. Now the question arises as to
whether a PEV owner will pay much attention to saving this sum of money.
Research with other dynamic pricing and TOU pricing pilots suggests that despite
the modest savings that accrue to customers on such pricing designs, people do
move their load profiles in response to higher prices. Drawing upon empirical
evidence from more than 100 tests with dynamic pricing, we would expect a peak-
to-off-peak price ratio of 8:1 to produce a drop in peak load of around 15 %. The
implied arc elasticity is fairly small (around −0.04) but is still capable of producing
significant demand response with a potent rate design. Hence in this chapter we
have implemented a real time pricing scheme for charge coordination of PEVs.

2.4.1 PEV Owners’ Price Response and Distribution
Transformer Overload

To conclude without any doubts that price responsiveness would alleviate any
distribution transformer overload and loss issues, based on the TOU rates already
established and the aggregate charging profile for the case study under consider-
ation, price elasticity of demand of −0.04 is made use of. The percentage of
customers charging during peak period would drop from 60 to 55 %. This is not
beneficial to the grid operators trying to mitigate the adverse impact on the dis-
tribution system. Authors in [36] have tried various different price elasticities to
effectively eliminate peak time charging.

2.4.2 Prediction of Charging Behavior

To predict charging behavior of PEV owners, a large number of volunteers were
surveyed to study their charging behavior under various TOU rates. These volun-
teers were then randomly allotted to control groups and treatment groups where the
control group members continue to drive their existing vehicles throughout the day
whereas the treatment group members were supplied with a PEV. Both the control
and treatment group’s driving behavior was observed over a period of several
months before and after the treatment group was supplied with PEVs. Results from
the study carried out by [36] have shown that TOU rates may help reduce future
grid reliability issues as PEVs penetrate the vehicle market. However, the extent to
which properly designed rates would assist in maintaining grid reliability was not
explored because of lack of information about the PEV owners’ price
responsiveness.
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2.5 Coordinated and Uncoordinated Charging

To find applicable solutions to the problem of distribution transformer overloading,
two general PEV coordination schemes have been considered in the literature.

• Centralized Coordinated PEV Charging—The system operator as a central
controller sends commands through the smart grid communication network to
each individual PEV to set the charging start time and rate. The decisions can be
made based on several factors such as system capacity, system loss minimiza-
tion, node voltage profiles, final state of charge, budget, etc. Therefore, a stable
and more secure network can be achieved. However, centralized architectures
with few central data stores require customer information and may lead to un-
scalable systems and costly initial infrastructure investments.

• Decentralized Coordinated PEV Charging—Each PEV is allowed to determine
its own charging pattern. The decision can be made on the base of system
capacity and conditions. The consequence of a decentralized approach may or
may not be optimal, depending on the information and methods used to
determine local charging patterns. Indeed, this approach does not require sub-
stantial knowledge of individual customers.

A comparison of both approaches is given in Table 2.1.
The phrase “decentralized” implies the ability of individual PEVs tomake their own

charging decisions. Most PEV charging algorithms have a centralized philosophy and
structure, with all PEVs to be controlled from a central dispatch center. That is, PEV
chargers cannot make any individual decisions on the starting time, rate and duration of
their charging process. On the other hand, there are a few recently proposed

Table 2.1 Comparison of PEV coordination approaches

Centralized PEV charging Decentralized PEV charging

Idea The system operator acts as central
controller and sends commands
through the smart grid communica-
tion network to each individual PEV
to set its charging start time and rate.
The decisions can be made based on
several factors such as system
capacity, system loss minimization,
node voltage profiles, final state of
charge, budget, etc.

Each PEV is allowed to determine
its own charging pattern. The deci-
sion can be made on the bases of
system capacity and conditions

Advantages
and
disadvantages

• More stable and secure network • Easy to implement

• Optimal coordination • Preserves individual authority

Centralized architectures with few
central data stores may lead to
unscalable systems and costly initial
infrastructure investments

• Independent operations of PEV
chargers

• More dynamic and flexible system

The results of a decentralized coor-
dination approach may or may not
be optimal

• Relies on customer information.
Hard to implement

2 Smart Coordination Approach for Power Management … 33



decentralized PEV coordinated charging algorithms, which rely on smart meter
information and make their own individual decisions on charge time, rate and duration.

This chapter will first show the detrimental effects of uncoordinated charging of
PEVs on distribution network and then introduces a new real time smart coordi-
nated charging of PEVs in unbalanced residential network to control the distribu-
tion network losses and energy transferred to the PEVs. Detailed simulations are
performed and presented to demonstrate the abilities of the proposed PEV charging
algorithm. The main research goals are to formulate the optimal PEV coordination
problem, define the objective function and select appropriate constraints such that
the following requirements are fulfilled within a 24 h period:

1. Grid losses are minimized over the 24 h.
2. Each PEV charger operates independently and only relies on the information

available at its own smart meter.
3. The distribution transformer loading is kept within its designated rated level to

prevent possible damages to the equipment.
4. Finally, coordination is performed such that the system losses are minimized and

energy transferred to the PEVs is maximized as a result of PEV charging activities.

The model developed in this chapter for smart coordination consists of a short
term forecasting module and an optimization module. The short term forecasting
module sends information about the number of PEVs in the parking garage and also
their arrival and departure rates. The module then calculates and forecasts the
number of PEVs that will be present at the same time in the parking garage for the
next time interval. The heuristic multi-objective optimization module takes in the
present and future power demands for all loads including PEV’s over a finite time
interval. The aims of this optimization module is to maximize the energy delivered
to PEV batteries and satisfy the SOC criteria for the PEV while including
constraints related to the power grid and customer demands.

The optimization module is also designed minimize distribution network losses
considering charging time zone priorities specified by PEV owners. To validate the
power management infrastructure and distribution network loss minimization, the
smart coordination strategy is implemented on IEEE 13 node test feeder and a 38
bus power system consisting of a mix of residential, commercial and industrial
customers penetrated with PEVs. To estimate the economics of charging, simula-
tion results will be presented for uncoordinated and coordinated (centralized and
decentralized) charging scenarios for different PEV penetrations.

2.6 Power Management

Electricity demand varies both by day and by year and since it is difficult to store
electricity in large quantities it is produced at the same time as it is consumed.Hence, the
variations in demand result in variations in the electricity generation and generation
capacity must be designed to handle the peak demand. Similarly, the transmission
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capacity in the grid must be designed to handle the peak power in the system. The
variation in electricity demand leads to increased cost of electricity since it requires a
higher transmission capacity in the electric grid and since the electricity consumed
during the peak is usually produced by generation plants with high production cost.

Power and Energy Management (PEM) can be performed on the supply side or
demand side. On the supply side, PEM is undertaken when:

• There is a growing demand (demand requirement is higher than supply)
• There is a lack of resources (finance, energy) and PEM helps to postpone the

construction of a new power plant.

On the demand side, energy management is used to reduce the cost of purchasing
electrical energy and the associated penalties. The techniques used for PEM are aimed
at achieving valley filling, peak clipping and strategic conservation of electrical
systems. There are techniques that are used to decrease the need for additional
capacity and the costs involved by increased fuel on the supply side. The imple-
mentation of the techniques leads to improving off-peak valley-hours and the load
factor of the system. The common load management techniques to supply side or
demand side are presented as load shedding and restoring. There are also more exotic
means such as power wheeling, the installation of energy efficient processes and
equipment, the use of energy storage devices, co-generation, use of renewable energy
and reactive power control. Implementation of these techniques has found a steady
increase in application and meets demand side management (DSM) objectives.

2.6.1 Power and Energy Management: Techniques

Energy management embodies engineering, design, applications, utilization, and to
some extent, the operation and maintenance of electric power systems for the
provision of the optimal use of electrical energy without violating other interna-
tional standards. Load management in utility industries is the planning and
implementation of the utility activities, which are designed to influence customers
to use electricity in such a way, that it produces a desired change in the utility load
shape. Different load management techniques have been proposed and used, e.g.
time-of-use-tariffs, interruptible load tariffs, critical peak pricing, real-time pricing
(RTP) and distribution system loss reduction [37, 38]. As stated in [38] different
techniques can have differential impact on the electric grid.

Direct load control (DLC) This is the program designed to interrupt consumers’
loads during the peak time by direct control of the utility power supply to individual
appliances on a consumer premises. The control usually involves residential con-
sumers. The cost benefit of DLC includes:

• Power system production cost savings.
• Power system generating capacity cost savings.
• Power system loss reduction.
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The various control options for DLC are

• Direct load control, utility can switch off the load directly when required.
• Interruptible load control—the utility provides advance notice to the customer

for switching off their loads.
• TOU tariffs, where utility rate structure is designed according to the time.

Mohamed and Khan [39] developed methods for classification of customers loads
according to the size of load. Telephone, radio signal and power line were used to
produce a signal that interrupted large industrial consumers. In this system, customers
were required to reduce their electric demand to an emergency service load for only
10 min upon request. Under frequency, the relay was installed in the customer’s loads,
which responded very fast in the under frequency regime. Tools for evaluation of end-
use monitoring DLC programs were described by [40] namely a duty cycle model
(DCM) and demand side planning. The PC-basedworkstation had proven to be a viable
and cost effectivemeans of analyzing thevoluminous data used in the program.Theduty
cycle model offered an integrated approach to DLC impact analysis. This is given by:

t ¼ Average Load=Connected Load ð2:1Þ

In the case of PEM based on time dependent tariffs, load management is carried out
by the influence of tariffs setting. The total cost of generating and delivering of
electricity to consumers was being broken into four fundamental categories of services:

• Customer services,
• Distribution services,
• Transmission services,
• Generation services.

Integrated utilities in regulated states set the rates to cover the costs of all
services. The electric consumers are billed as:

• Flat rate tariffs/two part tariff
• Time of use tariff
• Spot price

In a flat rate tariff, a customer pays the same amount for electricity at any time of day.
In the TOUbasedmethod, the utility provides transparent information on the electricity
price at different periods to the customers to encourage off peak and discourage peak
period consumption by varying price of electricity. Time of use rates provide variation
of the cost of energy by season or time of day. Rates are higher during peak demand
periods and lower during off-peak periods. Some utilities have made TOU rates
mandatory for large customers. Savings from time of use rates vary depending on the
size of the peak/off-peak price differential and the length of the peak period. Another
type of tariff setting for LM is spot price. The message is sent to customers to indicate
the price of electricity for an instant of time. A spot price scheme is appreciable if
electricity price fluctuation is high and if the consumer can anticipate the price behavior
as well as being able to respond quickly when the electricity price is high or low.
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2.7 Proposed Smart Coordination of PEV Charging
Using Real Time Pricing

In the proposed approach, PEV owners are allowed to select one of the charging
time periods and rates. Each PEV owner will provide to the system his charging tag
number, required state of charge and parking duration. The command center
receives and processes this vehicle data. The forecasting algorithm predicts the
number of PEVs in the system during that time period. Forecasting algorithm will
then be used to predict the number of PEVs that would be in the system during the
next time interval. This forecasted data along with the actual data would then be
sent to the centralized command center who will then operate the optimization
module to schedule PEV charging until maximum energy is delivered to the bat-
teries and distribution losses are minimized. This chapter explains in detail how
PEVs can be scheduled using real time costs thereby reducing the burden on the
local distribution networks. For online coordination of PEVs, a smaller optimization
period should be chosen to start charging the PEVs as fast as possible.

2.7.1 Forecast Module for Predicting PHEV Owners
Charging/Discharging Behavior/Schedule
in a Smart Grid

A smart grid is a power grid with information transfer allowing agents on the grid to
communicate and make decisions regarding load connections. One major advantage
of a smart grid is the opportunity to more efficiently utilize the power that is
generated. When considering a conventional power grid that uses load forecasting
to predict power demands, it is possible to account for activities that have been
exhibited for many years such as the cycle of the modern family to work or school
and back home again. When an additional element outside of the historical fore-
casted data is added to the power demands it can be difficult to compensate. Such a
scenario could present itself with the emergence of plug-in electric vehicles (PEVs).
Not only is the additional load associated with PEVs uncertain due to their adoption
rate, but it could also prove difficult to quantify because of the stochastic nature of
vehicle use. This topic investigates the use of smart coordinated PEV charging on a
smart grid allowing for a more manageable overall use of power. The information
transfer is used by the PEV’s control strategy to make efficient charging decisions.

Figure 2.5 presents a flowchart of the proposed approach. The first step is to
gather the data needed for the study. From the data, four key parameters can be
processed for further analysis: (i) the locations of the vehicles (i.e., where they can
be charged); (ii) when they are parked (i.e. when they can be charged), (iii) the
number of PEVs that are being charged and (iv) real time price during that interval.
The second step is to formulate and implement the optimization models for different
control strategies. The final step is to use the data in the models developed to
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evaluate the impacts of different control strategies on the distribution system. The
optimization model is based on an AC optimal power flow framework which is
described in [41], with the objective function being: maximization of energy
transferred to the PEVs and minimization of distribution network losses. This
model was developed using Matlab-Simulink.

2.7.1.1 Methodology

Uncontrolled PEV charging in a modern day grid with renewable energy resources
may cause several local grid problem including additional extra power losses,
voltage swings and power quality disturbances. Uncontrolled charging is the current
practice for PEV charging and is expected to persist in the near future to enable a
transition period for the PEV penetration to be significant, hence it paves the way
for the coordinated charging, which is the second expected scenario. For this
scenario, a coordinated charging system should be developed under the smart grid
paradigm. This system must be able to deal with real-time measurements and
parking lot dynamics through the utilization of the two-way smart grid communi-
cation infrastructure. The primary target of such a coordinated charging system is
the best use of smart grid generation resources so that the PEV load can be shifted
to optimal periods during PEV parking duration in order to maximize customer
satisfaction without jeopardizing system equipment.

Smart coordination refers to coordinated charging and it has been shown that
coordinated charging of PEVs can lower power losses and voltage deviation by
flattening out peak power and improve the load profile. In the proposed approach,
smart charging and discharging coordination architecture consists of two main
modules: a prediction module, and an optimization module. The prediction module

Short Term Forecast Data using 
Receding Time Horizon 

Demographic data:
·  No. of vehicles
·  No. of workplaces
·  No. of employees
Travel data:
·  Start time
· Stop time
· Driving time
· Distance
Distribution system data:
·  Structure
·  Transformer data
·  Cable data
Load data:
·  Load profile
·  Variable load
·  Non-variable load
Vehicle data
. State of Charge of battery

Key parameters
·  Location of vehicles
·  Time when vehicles are parked
· Variable loads
·  Limitations of the distribution system

Apply PEM strategy 
·  To minimize distribution system losses and maximize energy transferred 
to the batteries using multi-objective bacterial foraging optimization 
algorithm

Implement models and solve using Matlab-Simulink 

Output

Fig. 2.5 Flowchart of smart coordination approach with forecasting module and optimization
modules
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consists of a data collection and storage module which governs the collection of
information related to current PEV power demands, the current state-of-charge
(SOC) of PEV batteries, and the power demand of regular loads. In most cases, an
aggregator is assumed to be in place to deal with PEV data collection and storage. The
role of the aggregator is to collect information from the PEVs and send it to the grid
operator, and to send charging/discharging decisions from the operator to the
chargers. The short term prediction/forecasting module should provide accurate
forecasts of future PEV power demands and regular loads in the power system. Based
on this information, the optimization module should then make optimal coordinated
charging and discharging decisions that guaranteemaximum energy transferred to the
customers PEVs and minimum distribution network losses (Fig. 2.5).

Accurately estimating the impact of PEV charging on electric power system
components requires both component models and good estimates of the magnitude
and timing of demand increases due to PEV charging. Early PEV research assumed
very simple charging profiles, such as assuming that vehicles will charge daily
starting at 17:00, 18:00 or 19:00 h, with batteries fully depleted at the start of each
charge cycle. However actual PEV charging loads will depend highly on travel
patterns, which vary tremendously from driver to driver and day to day. To better
capture this variability in driving behavior, researchers have used either detailed
GPS data for small groups of drivers, or survey data from larger populations.
Authors have used data from 9 drivers to estimate variability in daily miles driven,
but with fixed evening arrival times. Another study used GPS data from 76 vehicles
to derive a stochastic model of miles driven and arrival/departure times. Other
authors have used a larger set of GPS data to develop a Monte Carlo model that is
similar to the one presented here, but the data are not used to model the miles
driven, which is necessary to estimate the battery state-of charge on arrival.

In this chapter, the problem is formulated as an optimization problem with the
objective function being a sum of convex and strictly increasing functions. This
power scheduling problem is solved in a static fashion, that is, the optimization is
performed only once before or at the beginning of the scheduling horizon. To take
dynamic changes of loads into consideration, this chapter studies a real time
implementation of the power scheduling. Our approach is to reformulate the opti-
mization problem so that it is solved in the fashion of receding horizon. Generally,
it works by solving optimization over the next T time steps, executes the first time
step decision, and resolves the optimization problem for the next T time steps by
incorporating new information available at the moment. Since the power man-
agement problem is not formulated in a traditional way, the receding horizon
operation needs to be carefully designed. The main challenge comes from the fact
that load groups may need to be reorganized during the execution.

The short term forecasting method implemented is the receding horizon formu-
lation of power management problem discussed in [43]. Along this direction, two
strategies are available: one is based on the conventional receding horizon idea, and
the other is a reformed scheme with the merit of reducing online computational load.
We assume individual EV charging loads (either residential or commercial) are
connected to the power grid through a control unit. Each control unit monitors status
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of an EV battery, connect/disconnect load from the grid, and wirelessly communi-
cates with a remote aggregator. The aggregator acts as a central scheduler and
commander to communicate with the PEV owner/driver and to regulate the charging
process of each load. Once a vehicle is plugged-in, the corresponding aggregator
(e.g., parking deck operator) receives the battery state information (e.g., state-of-
charge, state-of-health, voltage, and current) as well as customer information (e.g.,
customer identification, customer preference, and billing information) and sends in
the real time pricing rate to the customer. Multiple aggregators serve as middleware
between the central controller (e.g., distribution Company, and microgrid operator)
and individual vehicles. Given the real-time information from multiple aggregators,
the central controller performs the energy scheduling (optimization of losses and
energy transferred) and sends back control signals periodically.

The load population is assumed to be large, by taking into consideration the
anticipated high penetration level of PEVs. This requires our solution to the power
management scalable and computational tractable. To this end, the PEV charging
loads are classified into groups with the following definitions given in [43]:

Definition 1 A load type lr is defined by lr ¼ ar; br; sr; prf g; r ¼ 1; 2; . . .;m,
where ar is the (earliest) charging start time, br the (latest) charging completion
time, sr is the required total charging period, and pr indicates the desired power
level required by the EV charging system which is assumed to be time-varying.

Definition 2 A family of load requests is defined as F ¼ l1;N1ð Þ; l2;N2ð Þ; . . .;�
lm;Nmð Þg:, where lr; r ¼ 1; . . .;m, is the r-th load type, and Nr is the total number
of requests from customers for the type-r load.

Here, the scheduling horizon is discrete and consists of T time steps, which is
denoted as 1; T½ �. For each time step, the power level pr desired by type r loads may
be different; therefore, we introduce the notation of charging stages below.

Definition 3 For each time step j of the charging process for type-r power loads,
denote the demanded power level by prðjÞ; j ¼ 1; 2; . . .; sr. It is said that the type-
r load requires sr charging stages, and the jth stage power level is prðjÞ. With the
above definition, the power of type-r loads can be expressed as a power vector
pr ¼ ½prð1Þ; prð2Þ; . . .; prðsrÞ�. This is an ordered vector for which the stage prðiÞ
must be completed before the prðjÞ stage starts, for any i\j. The completion of
charging could be intermittent, i.e., charging stages could be discontinuous in time.

2.7.2 Optimization Module to Minimize Distribution
Network Power Losses for Power Management

A common approach to deal with power management is to assign each individual
load a vector of binary numbers (1 or 0); each number is used to indicate the on/off
state of the power at one discrete time step. As the load population increases, the
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number of decision variables increase proportionally, and the searching space
grows exponentially. Therefore, such approach is not scalable generally for cen-
tralized strategies.

This chapter focuses on groups of loads rather than individuals. With the defi-
nitions of load type and charging stage, the decision variables are chosen to be the
total number of loads for each load type to be powered on for a certain charging
stage at any discrete time instant. Symbolically, the decision variable is denoted by
brkðjÞ, representing the total number of type-r loads being charged at charging stage
j at time step k, where k 2 ½1; T � is the time index, j 2 f1; . . .; srg the charging stage
index, and r 2 ½1; . . .;m� the load type index. Then, the total power consumption of
the entire power system at time k is:

Lk ¼
Xm
r¼1

Xsr
j¼1

brk jð ÞprðjÞ ð2:2Þ

The objective of power management is to minimize the total power losses and
maximize energy transferred to the PEVs over time duration ½1; T �. To this end, a
multi-objective function

Min
XT
k¼1

C Lkð Þ þMax
X

ED ð2:3Þ

is chosen where function Cð�Þ is strictly increasing and convex. Convexity of the
above cost function causes heavier penalty on larger instantaneous power losses,
which is important in alleviating power loss values. More advantages of choosing
such a cost function are discussed in [42]. ED is the energy delivered to a PEV
battery during the time interval [1, T]. Based on power flow constraints, bus
voltages and generated real and reactive powers are specified. The decision vari-
ables are the voltage magnitudes and angles at all buses except slack bus and real
and reactive power generated at slack bus. During each iteration of the optimization
algorithm, voltage limits are checked to see if there are any violations.

The optimization problem of EV charging power management to minimize
distribution network losses and maximize energy transferred is summarized below,
and the detail can be found in [43] along with a two-layer strategy to reduce
computation burden of the optimization. The total real and reactive power generated
at each bus can be calculated based on current measurements and predicted data.
The total real power consumed by load will be the sum of real power consumed by
all other regular loads added to the real power consumed by 67 PEV load. Decision
to charge or discharge is made based on the state of charge (SOC) of the PEV
battery and is limited by the capacity of charger. Energy transferred to the battery is
calculated as product of battery capacity and the difference between final SOC and
initial SOC at a particular time interval. State of charge of the battery is limited by
the desired SOC by the user. But also the incoming PEVs are expected to require a
final SOC of 100 % when they leave and to arrive with a minimum SOC.
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Problem Pp (EV Power Management Problem)
Find brk jð Þ to

Min
XT
k¼1

C
Xm
r¼1

Xsr
j¼1

brk jð ÞprðjÞ
 !

þ
XT
k¼1

ED ð2:4Þ

subject to the following constraints:

(a) brk jð Þ 2 Zþ for k ¼ 1; . . .T; j ¼ 1; . . .sr; and r ¼ 1; . . .;m:
(b) brk jð Þ ¼ 0 for any k\ar or k[ br .

(c)
Psr

j¼1 b
r
k jð Þ�Nr; for k ¼ 1; . . .T ; r ¼ 1; . . .;m:

(d)
PT

k¼1 b
r
kðjÞ ¼ Nr; for any j ¼ 1; . . .; sr; r ¼ 1; . . .;m:

(e)
Pnþ1

k¼1 b
r
kðjþ 1Þ� Pn

k¼1 b
r
kðjÞ; for all

n ¼ 1; . . .; T � 1; j ¼ 1; . . .; sr; r ¼ 1; . . .;m:

Note that decision variables of problem Pp are number of EV charging loads
which are integers and are not preferable by numerical optimization solvers.
Assuming a large network with high population of EV loads, we can rewrite the
problem with a set of new decision variables as defined below.

Definition 4 Given decision variables brkðjÞ of problem PP, we define a new set of
decision variables crkðjÞ as the percentage of type-r load requests being switched
on, i.e.,

crkðjÞ ¼
brkðjÞ
Nr

; r ¼ 1; 2; . . .;m ð2:5Þ

where Nr is the total number of the type-r loads. Note that the above new decision
variables, crkðjÞ, are rational numbers, which can be easily used to replace brkðjÞ in
problem PP. Once the optimization problem PP is solved, the aggregator can plan
out a more specific schedule on power allocation, by indicating which exact load
needs to be powered on/off for any charging stage at any time step. One approach to
such power allocation is described in Algorithm 1 below. More specifically, the
solution to Problem PP produces number of requests brkðjÞ, where k is time index,
j is charging stage index, and r is load type index. In compact form, we write brkðjÞ
as matrix Br, for each load type r, as follows:

Br ¼
br1 1ð Þ br2 1ð Þ � � � brT 1ð Þ
br1 2ð Þ br2 2ð Þ � � � brT 2ð Þ
..
. ..

. ..
. ..

.

br1 srð Þ br2 srð Þ � � � brT srð Þ

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time step !!

Charging
Stage j
#
#

ð2:6Þ
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The problem PP generates m of such matrix, B1; . . .;Bm, one for each load type.
For each Br, Algorithm 1 yields another matrix Kr with dimension Nr � T:

Kr ¼

kr1;1 kr1;2 � � � kr1;T
kr2;1 kr2;2 � � � kr2;T
..
. ..

. ..
. ..

.

krNr ;1 krNr ;2 � � � krNr ;T

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time step !!

Individual
loads
#
#

ð2:7Þ

Each row of Kr corresponds to each individual load of type r and each column
corresponds to one time step. Each element, kri;k , is the charging stage number of
load i at time k. Note that we set kri;k ¼ 0 when the load is not served. Thus, we have
kri;k 2 f0; 1; . . .; srg. Below is the algorithm which creates Kr from Br.

Algorithm 1  : 

Given: ,  number of type- loads being served with charging stage at time step , .

Find: , charging stage index of type- loads being served at stage , at time step = .

Procedure:

For each row of Λ ,

;

For each column of Λ ,

; 

For 

; 

End

; 

End

End 

Here is an example to illustrate the algorithm. Suppose type-r loads have pop-
ulation Nr ¼ 10, total number of charging stages sr ¼ 3, and scheduling horizon
T ¼ 5. The optimization problem Pp produces

Br ¼
6 2 2 0 0
0 4 4 2 0
0 0 2 6 2

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time 1 ! 5

Stage
1
2
3

ð2:8Þ
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Then, the outcome of Algorithm 1 generates

Kr ¼

1 2 3 0 0
1 2 3 0 0
1 2 0 3 0
1 2 0 3 0
1 0 2 3 0
1 0 2 3 0
0 1 2 3 0
0 1 2 3 0
0 0 1 2 3
0 0 1 2 3

2
666666666666664

3
777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time 1 ! 5

Loads
1
..
.

#
..
.

10

ð2:9Þ

This matrix indicates at any time step, which charging stage each load needs to
be served. A zero in the matrix tells that the corresponding load needs to be turned
off at that time step. For instance, load 3 will be turned on at time step 1, 2 and 4,
for charging stage 1, 2 and 3, respectively. In summary, the static approach to deal
with the power management problem is solving the optimization problem Pp fol-
lowed by executing Algorithm 1. Algorithm 1 is extremely light in computation
effort, with complexity linearly proportional to the load population size and inde-
pendent of how Pp is solved; therefore, next we only need to focus on the receding
horizon implementation of the optimization problem Pp. Receding horizon (RH)
control provides a method to extend the above static optimization work to real-time
power scheduling so that the dynamic changes of the power network can be taken
into account and real time pricing rates could be applied to the customers. In
general, RH works by solving optimization over the next T time steps, executes the
first time step decision, and resolve the optimization problem for the next T time
steps by incorporating new measurement data available at the moment. In short, RH
scheme repeats the process of optimization, execution, and adaptation.

In this section, we present two schemes of receding horizon optimization: a
global scheme and a local scheme, for our power management problem. Both these
receding horizon formulations deal with the power management problem for a fixed
time duration ½1; T�. The process of optimization is illustrated in Fig. 2.6. At each

Implemented time steps

Optimization time horizon

Entire time horizon for power management

Iterations

Fig. 2.6 Time horizons for receding horizon optimization

44 B. Ramachandran and A. Geng



of iteration, the optimization problem will be updated by considering the changes of
loads. For example, the entire time horizon is assumed to be ½1; 24� for 24-h period.
The first iteration solve the optimization in time horizon ½1; 24�, the second iteration
considers optimization horizon ½2; 24�, and so on. Our RH algorithm for power
management problem follows the procedures listed in Algorithm 2. The formulation
of receding horizon optimization problem mentioned in part c of Step 2 will be the
focus of the rest of the section.

Algorithm 2  : 

Procedures:

Step 1. Set and solve optimization problem followed by Algorithm 1. 

Step 2. At time step : 

a) Issue charging services scheduled at time step . 
b) Collect updates in the network (dropouts and newcomers).
c) Solve the updated receding horizon optimization problem.  

Step 3. Repeat Step 2 procedure with until . 

One major benefit of receding horizon approach is the ability to incorporate
updated information; in EV charging power management, updates may include
newly arrived charging requests as well as dropped outs. For example, a customer
gets home late and plugs his EV to the grid hoping the charging to complete on time
as usual. On the other hand, it is possible that existing requests are dropped from the
system at time step k; for instance, some customers may unplug their devices in the
middle of charging for an unplanned trip. The charging service requests come and
go dynamically. The load controller equipped at the customer end monitors such
condition and reports to the aggregator through a two-way communication link.

Complete Receding Horizon Optimization Consider the iteration at time step k.
A few matters need our attention regarding the formulation of receding horizon
optimization. First, decision variables here will be denoted by bri ðjÞ, instead of brkðjÞ
as in problem Pp, to represent the total number of type-r loads being charged at
charging stage j at time step i, where i 2 ½1; T� is the time index, j 2 f1; . . .; srg the
charging stage index, and r 2 ½1; . . .;m� the load type index. The reason for this
notation change is that only values of bri ðjÞ at i ¼ k þ 1 will be implemented in this
iteration, and the rest of values will be discarded. In addition, note that, at time step
k, the loads being scheduled at past and present time steps, 1; 2; . . .k, have been
implemented and cannot be rescheduled; hence we only need to solve for
bri jð Þ; i 2 k þ 1; T½ �. To keep the formulation consistent, we still consider the
optimization horizon to be ½1; T� by constraining bri ðjÞ to be zero for any i� k.

Secondly, due to the fact that problem Pp deals with groups of loads instead of
individuals, the receding horizon optimization needs to be reformulated since indi-
vidual loads in the same groupmay have undergone different charging services during
previous execution stage. More specifically, for the same load type, at time steps
1; 2; . . .; k, some are powered on and others off, and for the ones being on, theymay be
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at different charging stages. Therefore, at time step k, the optimization needs to keep
track of and consider the existing state of the network due to all these executions.

Thirdly, before solving the optimization at time step k, the aggregator of the
power system collects the messages sent from the loads about changes of the
network. When a charging load withdraws its service request, a withdraw signal is
triggered and sent by the load controller to the aggregator, similar to the case when
a new charging request arrives. These changes are formulated below.

At time step k, let Dr
k jð Þ denote the number of loads dropped out after they

completed charging stage j and before their services are completed, where
j ¼ 1; 2; . . .; sr � 1. Note that a load is not counted as a dropout if its charging
service is completed. Then, at time step k, the total number of type-r loads exiting
abnormally from the network is

Dr
k ¼

Xsr�1

j¼1

Dr
kðjÞ ð2:10Þ

Further, denote Ar
k the number of type-r loads newly arrived at the present time

step k; thus, the total number of type-r loads currently in the network is

Nr
k ¼ Nr

k�1 � Dr
k þ Ar

k ð2:11Þ

with Nr
0 ¼ Nr and k ¼ 1; 2; . . .; T � 1.

Among the type-r loads in the network at time step k, we use hrkðjÞ to denote the
number of loads having completed stage j charging and waiting for stage jþ 1,
j ¼ 1; 2; . . .; sr � 1. Then, it follows that,

hrk jð Þ ¼ hrk�1 jð Þ þ �b r
k jð Þ � �brkðjþ 1Þ � Dr

k jð Þ ð2:12Þ

where �brkðjÞ and �brkðjþ 1Þ are calculated in the previous iteration and currently
implemented, with �brk jð Þ being the number of loads served with stage j charging at
the current time step, and �brk jþ 1ð Þ being the number of loads served with stage
jþ 1 charging.

With the above notation, we present below the receding horizon optimization
problem solved at each time step k in Algorithm 2.

Problem PCRH
p (Complete Receding Horizon Optimization) Find bri jð Þ to

Min
XXT

i¼1

C
Xm
r¼1

Xsr
j¼1

bri jð ÞprðjÞ
 !

þMax
XT
i¼1

ED ð2:13Þ

subject to the following constraints:

(a) bri jð Þ 2 Zþ for i ¼ 1; . . .T; j ¼ 1; . . .sr; and r ¼ 1; . . .;m:
(b) bri jð Þ ¼ 0 for any i\maxðar; k þ 1Þ or k[ br:
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(c)
Psr

j¼1 b
r
i jð Þ�Nr

k ; for i ¼ 1; . . .T ; r ¼ 1; . . .;m:

(d)
PT

i¼1 b
r
i ðjÞ ¼ Nr

k � hrk jð Þ þ hrk jþ 1ð Þ � � � þ hrk srð Þ� �
; for any j ¼ 1; . . .; sr; r ¼

1; . . .;m:
(e)

Pnþ1
i¼1 bri ðjþ 1Þ� Pn

i¼1 b
r
i jð Þ þ hrk jð Þ, for all n ¼ 1; . . .; T � 1; j ¼

1; . . .; sr; r ¼ 1; . . .;m:

The constraints of problem PRH
p are explained in the following. Constraint (a)

requires number of loads to be integers, and constraint (b) states that no type-r loads
will be scheduled beyond its required horizon ½ar; br�, and no loads will be
scheduled for present or past time steps. Note that due to constraint (b), the cost
function satisfies

XT
i¼1

C
Xm
r¼1

Xsr
j¼1

bri jð ÞprðjÞ
 !

þ
XT
i¼1

ED

¼
XT
i¼kþ1

C
Xm
r¼1

Xsr
j¼1

bri jð ÞprðjÞ
 !

þ
XT
i¼kþ1

ED

ð2:14Þ

That is, as iteration advances, the lower bound of the optimization time horizon
increases while the upper bound keeps the same, which is consistent with the
optimization time horizon illustration in Fig. 2.7.

The last constraint (e) sets the sequencing requirement of charging stages, i.e.,
for any loads, charging stage jþ 1 cannot start before completion of stage j. The left
side of the inequality is the total number of loads having been serving with stage
jþ 1 charging up to time step nþ 1, and the first term on the right,

Fig. 2.7 IEEE 13 node
system
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Xn
i¼1

bri jð Þ ¼
Xn
i¼kþ1

bri jð Þ; ð2:15Þ

represents the number of loads having gone through stage j during duration
½k þ 1; n�, and the second term hrk jð Þ includes the number of loads having gone
through stage j before or at time step k. Two terms on the right together comprises
the number of loads completed stage j prior to time step nþ 1.

The constraint (c) and (d) will be explained with the matrix

Br ¼
br1 1ð Þ br2 1ð Þ � � � brT 1ð Þ
br1 2ð Þ br2 2ð Þ � � � brT 2ð Þ
..
. ..

. ..
. ..

.

br1 srð Þ br2 srð Þ � � � brT srð Þ

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time step !!

Charging
Stage j
#
#

ð2:16Þ

Column sum of the matrix Br is the total number of loads being powered on at
one time step, and this number should be less than the total number of loads
currently being present in the network; this explains constraint (c). Row sum of the
matrix is handled in constraint (d), which is the total number of loads being allo-
cated at each charging stage over time. This number should be no more than the
number of loads currently in the network waiting for the service. This number is
obtained by the total number of loads Nr

k in the network subtracting the sum,
hrk jð Þ þ hrk jþ 1ð Þ � � � þ hrk srð Þ� �

, which contains the loads which doesn’t need stage
j charging.

Overall, this complete receding horizon algorithm for power management is
summarized in Algorithm 3.

Algorithm 3  (

Procedures: 

Step 1. Set , and . Solve optimization problem to obtain for ,
, and .

Step 2. At time step : 

a) Issue charging services for all and . 
b) Let for time step , and obtain and from the aggregator. Update:

(2.17)

(2.18)

c)  Solve the updated receding horizon optimization problem .

Step 3. Repeat Step 2 procedure with until .

Partial Receding Horizon Optimization In the previous scheme of complete
receding horizon optimization, the power management optimization is redone at
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each iteration for the entire network of EV charging. Here, we present a scheme by
optimizing only a small part of the network.

Let us consider the formulation of the optimization problem for time step k. New
EV charging requests may arrive at time step k, and we denote them as a new-arrival
family ~Fk ¼ l1; ~N1

k

� �
; . . .; lm; ~Nm

k

� �� �
with lr ¼ ar; br; sr; prf g representing the

type-r load characteristics, r ¼ 1; 2; . . .;m. Note that the only difference between ~Fk

and F (existing loads) is the population size of each load type. At this time step,
previous approach is to execute the scheduled action for time step k, update the status
of the existing requests, and combine the existing and new-arrived requests as a new
family of power tasks. Here we look at a somewhat different action.

Now we consider the existing condition of the network at time step k. From the
scheduling of the last iteration, bri ðjÞ indicates the number of type-r loads being served
with charging stage j at time step i ¼ k; k þ 1; . . .; T . With the same notation as in the
complete receding horizon scheme, letDr

kðjÞ denote number of loads dropped out after
they finish charging stage j at time step k. For convenience of formulation, define

Dr
i jð Þ ¼ Dr

kðjÞ i ¼ k
0 i 6¼ k

	
: ð2:19Þ

Without considering newcomers, based on the previous iterative optimization,
the power load at time step i, for i ¼ k þ 1; . . .; T , is

�Li ¼
Xm
r¼1

Xsr
j¼1

bri jð Þ � Dr
i ðjÞ

� �
prðjÞ ð2:20Þ

Again, we allow i ¼ 1; 2; . . .; T by constraining bri jð Þ to be zero for
i ¼ 1; 2; . . .; k, since the charging services have been conducted at these time steps
and rescheduling is no longer necessary.

At time step k, the optimization problem here will keep the schedule from the
previous decision, and allocates only the new arrivals. For this reason, the first part of
�Li in 0 never changes from iteration to iteration, so �Li can be obtained recursively by

�Li ¼ �Li �
Xm
r¼1

Xsr
j¼1

Dr
i ðjÞprðjÞ ð2:21Þ

The optimization is formulated below as problem PPRH
p .

Problem PPRH
p (Partial Receding Horizon Optimization)

Find ~bri jð Þ to

Min
XT
i¼1

C
Xm
r¼1

Xsr
j¼1

~bri jð ÞprðjÞ þ �Li

 !
þMax

XT
i¼1

ED ð2:22Þ
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subject to the following constraints:

(a) ~bri jð Þ 2 Zþ for i ¼ 1; . . .T ; j ¼ 1; . . .sr; and r ¼ 1; . . .;m:
(b) ~bri jð Þ ¼ 0 for any i\maxðar; k þ 1Þ or k[ br.

(c)
Psr
j¼1

~bri jð Þ� ~Nr
k ; for i ¼ 1; . . .T; r ¼ 1; . . .;m.

(d)
PT
i¼1

~bri ðjÞ ¼ ~Nr
k ; for any j ¼ 1; . . .; sr; r ¼ 1; . . .;m.

(e)
Pnþ1

i¼1
~bri ðjþ 1Þ� Pn

i¼1
~bri jð Þ, for all n ¼ 1; . . .; T � 1; j ¼ 1; . . .; sr;

r ¼ 1; . . .;m:

In the above formulation, �Li are known constants for k ¼ 1; 2; . . .; T , as calculated
in 0, which indicates the power amount at each time step if the charging schedules
for the existing EV loads keep the same. The decision variables are ~bri jð Þ, the number
of newly-arrived type-r requests. Note that the optimization is conducted only on the
new arrivals. In the situation where traffic of new arrivals is light, this small-size
scheduling problem can be conveniently solved with heuristic algorithms such as
Largest Energy Consumption First and Longest Process Time First.

In summary, the procedure of partial RH algorithm is listed as Algorithm 4
below.

Algorithm 4  : 

Procedures: 

Step 1. Set . Solve the original optimization problem to obtain for , , and 
. 

Let and

Calculate

(2.23)

Step 2. At time step : 

a) Issue charging services for all and . 
b) Obtain and from the aggregator. Update:

(2.24)   

c) Solve the updated receding horizon optimization problem .

Step 3. Repeat Step 2 procedure with until .

The goal of optimization module is to minimize the distribution network losses
and tomaximize the energy transferred from the grid to PEVs. Hence the optimization
problem is a multi objective optimization problem for which we have used a bacterial
foraging optimization algorithm. Bacterial Foraging Optimization (BFO) algorithm
has been applied to model the E. coli bacteria foraging behavior for solving opti-
mization problems. It is known that bacteria swim by rotating whip-like flagella
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driven by a reversible motor embedded in the cell wall. For E. coli have 8–10 flagella
placed randomly on a cell body. When all flagella rotate counterclockwise, they form
a compact, helically propelling the cell along a helical trajectory, which is called run.
When the flagella rotate clockwise, they all pull on the bacterium in different direc-
tions, which causes the bacteria to tumble. The cycle of optimization can be divided
into three parts: Chemotaxis, Reproduction, Elimination and Dispersal. Interested
readers can refer to [44] for more detailed explanation about BFO. The following
section explains Multi Objective bacterial Foraging Optimization method.

Since the BFO algorithms could solve single-objective optimization problems,
the idea of solving multi-objective optimization problems with BFO algorithms was
tested. However, the purpose of multi-objective optimization problems is to find all
values which are possibly satisfied to all functions. Since different decision makers
have different ideas about objective functions, it is not easy to choose a single
solution for a multi-objective optimization problem without interaction with the
decision makers. Thus, all we could do is to show the set of Pareto optimal solutions
to decision makers. The main goal of multi-objective optimization problems is to
obtain a non-dominated front which is close to the true Pareto front. The details of
the new optimization algorithm based on BFO are given in the following sections.

In what follows we briefly outline the Multi-objective Bacterial Foraging
Optimization (MBFO) step by step:

Algorithm MBFO 

Begin 
Initialize all the parameters and positions 
While (a terminate-condition is met) 

For (Elimination-dispersal loop) 
For (Reproduction loop) 

For (Chemotaxis loop) 
Compute two fitness functions J1 and J2 .
Let J last1 = J1, and J last2 = J2 

Update of the positions 
End For (Chemotaxis) 
Compute two health values Jhealth1 and J health2

Sort bacteria based on health values 
Copy the best bacteria 

End For (Reproduction) 
Eliminate and disperse each bacterium with probability Ped

End For (Elimination-dispersal) 
End While 

End

Algorithm 5  

2.8 Case Study Simulation and Results

For verification and validation of the proposed smart coordination infrastructure,
two test systems were considered for simulation purposes. The first system is a
IEEE 13 node distribution system with PEV charging system (Figs. 2.7 and 2.8).
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Different penetration levels of PEVs have been considered. Reference [45] obtained
that the capacity of this network for PEV charging station is equal to 1.2 MW, in
case of unity power factor consideration. In this study, we have considered 20, 40
and 60 % penetration level based on the maximum capacity of the charging station,
to see the impact of PEVs charging demand’s increment on losses in the lines and
energy transferred. In addition, the supervision system is considered in parallel to
compare the improvement level of voltage profile and losses reduction. The results
of supervised charging are labeled as coordinated, whereas unsupervised charging
results are marked as uncoordinated.

In order to assess the state of a smart grid subject to PEV charging as well as
generation status, voltage profile, and power losses necessary for the objective
function and checking of constraints, a modified Newton-based load flow routine is
used. All loads are modeled as constant power loads with their real and reactive
powers updated through a daily load curve for each time interval the load flow is
performed.

IEEE 13 node system The results of simulation are presented in Figs. 2.9 and
2.10. In Fig. 2.9, charging power of arriving vehicles in uncoordinated charging
makes a peak demand at 19:00, which is increasing with more penetration level.
While in the smart coordinated charging, the same charging power is distributed
after the peak-hours until departure time of the vehicles. So the vehicles will be
charged at the off-peak hours from 22:00 to 9:00 approximately. In addition, with
the help of V2G application, from 13:00 to 20:00, capable vehicles with respect to
their arrival SOC, participate in injecting power to the grid, i.e., V2G is enabled.

These results could be considered as global optimum, as a multi-objective
bacterial foraging optimization algorithm has been considered to minimize cost of
power losses and maximize energy transferred, where at each instant the a priori
optimal result is taken into account. Finally, from network losses point of view, it is
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shown in Fig. 2.10 that maximum losses at 20:00 with 50 % penetration is reduced
with using coordinated charging strategy. Peak-hours charging avoidance is an
important criteria from loss reduction point of view, which in this algorithm is
implemented successfully. The multi objective bacterial foraging algorithm has
resulted in a minimum loss and also maximum energy transferred to the PEVs.
Under uncoordinated operation of the system and, low penetration of PEVs, the
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system allows all the PEVs to be charged without violating the technical limitations
and constraints imposed on the system. On the other hand, the smart coordination
method even during the regular load peak, PEV charging is limited due the pre-
diction module and optimization module functioning hand in hand to reduce the
power losses and to maximize power transferred so that system reliability is
preserved.

Bus Distribution Test Feeder The total system peak load is 4:37 MVA. The
system line data, customer type, and load point demand are as given in [46]. The
system contains four parking lots as shown in Fig. 2.11. Two cases of PEV pen-
etration levels (20 and 40 %) were considered because above 40 % penetration
level, PEV loads resulted in violation of several system constraints under uncoor-
dinated charging. Load profile is given in Fig. 2.12.
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The resulting coordinated and uncoordinated charging results for 20 and 40 %
penetration of PEV’s is shown in Figs. 2.13, 2.14 and 2.15.

Comparing the uncoordinated charging and smart coordination results, it is
evident that a significant improvement in performance is achieved with the help of
the proposed approach. Most importantly, the system peak demand is reduced
which is very advantageous from the standpoint of generation dispatch and pre-
venting overloads. Comparison of results in Figs. 2.9, 2.10, 2.12, 2.13, 2.14 and
2.15 also indicates that energy transferred to the PEV is increased compared to the
uncoordinated case. Furthermore, peak power losses have been reduced to a frac-
tion of the uncoordinated case. The computing time required by BFO to arrive at
these solutions was in the range of 3 ms for each time period considered.
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2.9 Conclusion

In this chapter, a real time system for managing the dynamics associated with
charging/discharging of PEVs in a grid has been proposed. The smart coordination
approach for power management incorporates a forecasting module and an opti-
mization module. For a superior coordination of PEV charging/discharging, the
forecasting module comprising of a receding time horizon approach provides
information about the PEV loads for the next interval. Then the optimization
module comprising of BFO based technique guarantees that the power management
strategy results in minimum distribution network losses and maximum energy
transferred to the PEV. This smart coordination approach has been implemented on
two different test systems with varying levels of penetration. The results from
simulation demonstrate the versatile performance of the smart coordination
approach. This implementation is very appropriate for practical implementation as
the computation time required by receding time horizon method and BFO based
approach are of the order of milliseconds.
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Chapter 3
Plug-in Electric Vehicles Management
in Smart Distribution Systems

Antonio Carlos Zambroni de Souza and Denisson Queiroz Oliveira

Abstract The advent of smart grids brings a set of new concepts not usually
employed in current power systems. Plug-in electric vehicles fit this concept, since
it is a low carbon emission device. However, an important characteristic of plug-in
vehicles lies on the fact that it may become a source of energy during emergency
conditions. Another aspect that may not be overlooked is the fact that the advantage
of low carbon emission may be faded by the fact that charging these vehicles may
deteriorate the network operating conditions. In this sense, a recharging policy must
be addressed, so the system losses and voltage profile are adequately managed. This
chapter deals with these topics, so the advent of plug-in electric vehicles may be
understood as an important component of future smart grids.

Keywords Plug-in electric vehicles � Energy management system � Intelligent
control

3.1 Introduction

The Plug-in Electric Vehicles (PEVs) are the result of efforts made by automotive
industry to develop a product that reflects the worry about the environment and the
future. These vehicles have energy storage systems (ESSs) to supply power to an
electric motor and mechanical shaft. They generally have energy recovery systems
to help to charge the ESS. Each manufacturer develops its power unit architecture
and mechanical transmission by choosing the technologies that best meet the
individual requirements. Although many manufacturers are already trading their
PEV models, their expensive prices, market uncertainties, and some other points
still turn them into the last choice for the most of people.
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But, as the PEVs become more popular, they will bring some problems to the
electrical power distribution systems. As the vehicles are intended to be recharged
mainly at home in residential outlets, a sudden load increase due to thousands of
PEVs recharging simultaneously in the evening may harm the system. The PEVs
charging process will contribute to increase load uncertainty, peak load, power
losses, harmonic distortion, voltage deviations, conductors and power transformers
overload and early aging. In addition, it may change the philosophy of power
systems operation, since the load may become a supplier in emergency conditions.
This important issue is about to be discussed and will certainly play a crucial role on
the definition of policies and operating modes of power systems in the future.

Beyond, this daily peak load will require reinforcements over the grid and new
assets, though this new capacity will remain idle during almost all the time. Fur-
thermore, the PEVs will require the development of a new recharging infrastructure
on the streets and public buildings. These recharging stations may belong to the
electricity utility or to private agents. However, the domestic recharging is expected
to be more ordinary than those options. As depicted above, the PEVs integration
represents a great challenge for the electrical power systems, which has to be faced
by engineers, power utilities and all electric power industry.

The emerging smart grids concept presents a novel structure for electricity
industry with many new features which adds many possibilities for electrical power
grid control, operation and management in all stages. The communication infra-
structure advanced smart metering and demand management systems are some of
these new features, providing real-time information on all system variables, as
voltage levels, currents, active and reactive power flows and power losses.

Regarding to PEVs, the smart grids present several solutions to manage their
integration to electrical power systems. Real-time communication, demand man-
agement systems, demand response and intelligent control systems are some of these
features. This integration process comprises the recharging process, the communi-
cation between the Distribution System Operator (DSO) and the vehicles and
between PEVs and aggregating agents, and finally the vehicle-to-grid capability.

In the literature, several papers suggestedmany solutions to copewith this problem
in smart grid environment. The main solution is the adoption of a recharge policy
based on a Demand Management System (DMS) to keep the voltage on acceptable
levels, avoid peak loads and transformers and conductors overload, and decreasing
losses by using on-load tap change transformers (LTCs) and shunt capacitors.

On the other side, PEV popularization may bring benefits to power systems, like
load leveling, increased generation capacity to the grid during high load periods,
regulation capacity, emergency reserve and integration of renewable power generation.

This chapter introduces the PEV management problem and the solutions on
smart grids environment. For this purpose, some technical issues are first intro-
duced. Then, the issue of management of recharging process is presented. For this
sake, a recharging policy that aims to keep the operating conditions within the
specified standards is proposed. This is based on a recharging management along an
overnight, so the vehicles are charged along the night with no operating violation.
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3.2 PEV Management in Smart Distribution Systems

As different PEV models from several manufacturers are presented on specialized
events and are available for trade, the consumers become more familiar with this
new vehicle concept. It is possible to perceive good feelings about them, as they
represent a green option for the automotive market with an environmental-friendly
approach based on zero greenhouse gases emissions, free or low fossil fuel usage
and low noise.

However it is not expected this type of vehicles become dominant soon, there is a
concern about their integration to power systems. As the modern society develop-
ment is also based on large electricity usage and the population is still growing, a
higher pressure on electrical energy generation is expected. The PEVs will have an
important role in this scenario. As the prices become cheaper and the PEV turns into a
real option for population, a higher load is expected, especially in the evening.

The integration of PEVs in distribution power systems will create a new load to
be connected to the grid mainly in the evening, possibly causing low voltage levels
on further nodes of feeders, high currents which can cause transformers overloading
and exceed thermal limits, power losses and harmonics distortion increase.

In addition to it, this new load claims for investments on distribution grid
expansion and assets replacement (substation and lines transformers, conductors,
fuses and switch breakers) to be supplied properly. The current system infra-
structure seems to be insufficient to the task, but the expensive investment on
system expansion seems to not be the better option, as the new load is highly
dependent of the time of the day. This means that the entirely system will operate
on a lower efficiency point, remaining idle during almost the day.

As the PEV integration to power systems is expected to create so many prob-
lems, it is necessary to find a way to overtake them and also take advantage of it.
The smart grids have suitable features to solve this problem, e.g. real-time com-
munication, Advanced Metering Infrastructure (AMI) and Demand Management
Systems (DMS). For this sake, many researchers have presented the implementation
of a vehicle policy recharge controlled by an Intelligent DMS as the possible
solution for PEV integration.

This DMS is responsible for managing the controllable loads, i.e. the PEVs. This
is done by shifting the PEV recharge process for late night, during a time when the
system have low load and it is possible to supply them with sufficient power to
reach a suitable level for transportation purposes and control the system operational
variables. This approach also avoids large investments for system expansion to
supply the new load, making possible to supply a PEV fleet with the current
network infrastructure.

As the reader can imagine, the development of smart grids is a fundamental step
to help on PEV integration. However some aspects like real-time communication
systems and DMS, though not mandatory, tend to facilitate the whole process.
Hence, the charging control and management algorithm must receive all the
information from the system and assesses the charging schedule for each PEV and
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the network operational state. By the communication infrastructure, the DMS send
signals for all customers with determined schedules.

The DMS may perform its task in a centralized or distributed way. These two
approaches are discussed on next sessions.

3.2.1 Centralized Demand Management System Approach

As described before, theDMS role is tomanage the controllable loads aiming to shave
load on peak times and allowing the PEV recharge only in low demand time. This is
equivalent to shift the recharge process to late night, when the system’s load is low.

By the time the PEV owner arrives home, he/she plugs the vehicle on the
residential outlet. Generally, the vehicles are used for commuting during the
weekdays, i.e., a round-trip travel from home to work. In this case, it is expected
that the vehicle will be used again only in the next morning. Sometimes the vehicle
can be used for unscheduled travels during the night. On the weekends, there will
be longer travels that should require more power from the ESS.

As one could see, the vehicle usage has an ordinary schedule represented by the
daily commuting and some deviations represented by the unscheduled travels and
weekends. Considering that all PEV owners have an individual schedule, this
stochastic behavior should be represented by a probabilistic distribution. Although
these are random variables, they have a predictable behavior if enough data is stored
in order to assess them.

These comments are important to show that there is an optimal ESS State of
Charge (SoC) to be reached in every case to assure the transportation daily pur-
poses, which is not necessarily the 100 % of SoC. So, if exists some smart control
on the PEV charger, this feature is very welcome. This intelligent control will learn
about the owner’s driving patterns, store data as standard commuting distance and
assess this optimal SoC.

After connecting the vehicle to the outlet, the consumer may choose between a
standard charge process, if the vehicle will only be used in the next day and a fast
charge process if he wishes to use the vehicle soon. This information is sent by the
vehicle charger to the DSO operator through the real-time communication network.
At the DSO operational center, it is also expected that there is some information
about the customers’ charging schedule. Some data like PEV connection probability
during the day for each feeder or geographical region is expected to exist and it will
help the DSO to assess some important variables like load forecasting.

Besides this information, several data is sent to DSO operational center through
Supervisory Control and Data Acquisition Systems (SCADA), e.g. nodal voltages,
currents and power measurements, Load-Tap Transformers (LTC), Line Step-Voltage
Regulators (SVR) and Shunt Capacitors (SC) status. These measurements have an
important feature: they are not acquired at the same hour, i.e. they are not synchronized.

Hence, after receiving all data from SCADA and from real-time communication
systems, the DSO operational center has all necessary input for its assessments. The
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DSO is now able to run the optimization and operational algorithms in order to assess
the best control actions for proper system operation and also to determine the PEVs
charging schedules in order to reach their optimal SoC in expected time and to
maintain the systems’ variables within limits. The expected outputs of this process are
the individual PEVs charging schedules and tape positions for voltage control devices
as LTCs, SVRs and SCs. This data is sent back through real-time communication
system and voltage control devices can be controlled remotely from the substation.

This approach requires a fast, robust and reliable communication system. The
amount of data is high even for a small system.But, by the other side, the centralization
of controlmakes possible to assess the optimal schedule and control actions each time.

Figure 3.1 depicts the main players involved in a centralized DMS structure.
There are several PEV units connected to residential outlets which send their
recharging schedules directly to the DSO operational center through the real-time
communication channel. The flow of the PEVs’ data is represented by the dark
arrow and as described before, it contains the desired schedule by the PEV owner
and other important information as the expected plug-out time. All information is
processed by the DSO operational center and the optimal schedule is sent for all
connected PEVs. The DSO’s data flow is represented by the light arrow.

3.2.2 Distributed Demand Management System

Since the DMS role is to manage the controllable loads aiming to shift the PEVs’
recharge process to a low demand time, this also could be done using a distributed
or decentralized approach. The decentralized approach is based on the existence of

PEV data
DSO data

DSO
Operational

Center

Fig. 3.1 A centralized DMS control for PEV management
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local controllers spread over the entire system. These local controllers are able to
receive data from different devices under their control and assess some optimization
and control algorithms in order to send back setup configurations to the controlled
devices.

The role of these local controllers is played with the help of computational
agents. These agents are computational intelligent players that are designed to
execute specific tasks. A set of agents working on a system creates a multiagent
system. These agents have some interesting features that allow them to perform
complex tasks:

• Intelligence.
• Learning capacity.
• Sociability.
• Communication capacity.
• Hierarchy.

During the normal operation of a multiagent system, each agent looks for its own
objectives, i.e. they compete for resources considering the system limits and
commands from superior agents. In a case of an emergence, they are able to work
together under superior agents commands to overtake the critical situation, i.e. they
collaborate with each other during the emergence. These agents’ features make
them a good choice for application on smart grids distributed control.

In the decentralized approach, by the time the PEV owner arrives home, he/she
plugs the vehicle on the residential outlet and chooses for a recharging mode, which
could be fast or standard. At this moment, the residential agent is responsible to
control and assess the PEV schedules according to the information received from
the vehicle charger.

The residential agent sends to the upper level agent, called here feeder agent, a
request for an amount of power. The feeder agent receives requests from several
residential agents. It may assess simple calculations regarding to the available
feeder’s power and current capacity and should send a requesting message for an
upper agent, called here as Substation Agent. The Substation agent, by its turn,
communicates with Feeder Agents and may also assess some other variables and
control devices operations and control all agents in lower hierarchy. Substation
agents can communicate to DSO Agent, which is the highest level. The DSO Agent
is on DSO operational center and is able to control and to communicate with all
agents in different substations. As the different agents assess their solutions, they
send the solutions to other agents in hierarchy, which updates their controls and
PEV schedules according to the solution presented.

As this scenario is just an example, in real situations could exist more or less
agents than in the situation described above. But, this is a good example to describe
the operation of multiagents systems in a smart grid environment.

Figure 3.2 illustrates the structure of a decentralized PEV management DMS
control and the different participants. The different agents’ data flows are repre-
sented using color arrows. Figure 3.2 aims to show the data flow of each agent.
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There are some bidirectional arrows, which mean that the respective agent can
request/send information and also receive data from other agents.

3.2.3 Technical Issues

The problem of PEV management in smart distribution grids is a complex task. It
depends on the existence of some requirements which, until now, are not properly
determined. Although the major parts of the necessary technologies already exist,
there are some questions that are not answered yet. These questions refer mainly to
regulatory aspects and to the definition of standard practices.

The communication issue is one of the most important. As seen before, the real-
time communication system has a big role on all the system operation. It is
responsible for bringing data from all over the system and for taking them back to
every smart device in the network. So, some requirements are mandatory for these
communication systems:

• Reliability.
• Robustness.
• Data speed.
• Data capacity.
• Signal range.

PEV Agent data
Feeder Agent data

Substation Agent data
DSO data

PEV Agent

Feeder  Agent

Substation
    Agent

DSO
Operational

Center

Fig. 3.2 A decentralized DMS control for PEV management
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Currently, there are a set of technologies which could be employed in smart grids
for different purposes. The Power Line Carrier (PLC), the Internet (TCP/IP), Zig-
Bee, WiMax, radio waves, mobile communication lines, optical cables and so are
existent and emerging technologies with potential applications. As they have dif-
ferent features regarding to speed, reliability, capacity and signal range it is
expected that not only one technology become dominant, but a merge of them is
applied in each case.

PLC and wireless communication are promising technologies to implement in
distribution level. The PLC carries data on a conductor that is also used simulta-
neously for electricity supply. The main issues for this technology are the power
wires limited ability to carry high frequency signals and interferences with radio
services. At its turn, the WiMax is a wireless communication standard designed to
provide higher data rates and it refers to interoperable implementations of the IEEE
802.16 family of wireless networks standards. Due to its higher bandwidth and
range it is suitable for potential smart grids and metering applications.

Wi-Fi covers almost 100 meters and can communicate with 3G/4G technologies.
It is a low cost solution to control and monitor appliances in-house, most used in
Home Area Networks (HANs). As for ZigBee, it is a promising technology to be
employed indoors (HAN), i.e., there is no need of infrastructure investment, good
data rates and high QoS (Quality of Service), but it faces some disadvantages, high
monthly fees, very susceptible to interferences and it does not cover some rural
areas. Radio Frequency (RF) is a technological resource used to provide data
communication via electromagnetic signals propagating through space. Radios are
arranged in series to a pre-determined distance so there is no signal loss and good
propagation. Cognitive Radio (CR) is a new concept which takes advantage of
white space spectrum in the VHF and UHF/TV ranges. It is composed by a
transmitter that analyses the environment and adjusts its own operating frequency
from a spare one, which has the fewest possible interference.

As depicted before, the communication requirements for PEV integration on
smart grids are high, especially for centralized control approach. The amount of
data that should be carried is high even for a small system. The required channel
should be robust, fast and reliable.

Still on communication requirements, another important aspect is the geo-
graphical area. As bigger the geographical area and/or the demographical density,
higher is the data amount because there is a high concentration of PEV over these
areas while there is low density areas with low number of PEVs. On these areas,
faster and more robust systems are required than on low density neighborhoods.

Regarding to decentralized approach, the same concerns described above also
apply, but in this case the data flow is more restrict, have less distance and the
amount is lower than in the other case. Even the decentralized approach seems to
require less resources, the previous requirements are as important as for the cen-
tralized approach.

In smart grids environment, there is a big set of data available for control
purposes, e.g. voltage levels, currents, power flows, PEVs schedules, real-time load
measurements and so. Hence, there is a possibility to adopt a smart tariff program.
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This program adopts a variable electricity tariff for different hours of day. In a smart
tariff schedule, the electricity price may be higher in the evening to discourage the
electricity usage. At late night, this tariff may be lower to stimulate the PEV
recharging process at this time.

For PEV integration, the existence of smart tariff programs stimulates the shift of
recharge process to low demand times. The choice for fast charge in the PEV
schedule can also be charged with a higher tariff by the DSO. Doing so, the DSO
can stimulate the choice for standard recharge, and the fast charging will only be
used when it is really necessary.

3.2.4 Other Issues

The PEV integration to power systems does not depend only on technical aspects.
In addition to the technical considerations, there are some cultural important con-
siderations that will influence all the integration process.

One of the concerning points is related to how a customer will react when his/her
vehicle is unavailable due to low charging state, even after connected to the outlet.
This can be a common occurrence considering that the DMS will manage the PEVs
schedule according to many variables, including the hour of connection and the
available load margin.

To cope with these situations, there is the possibility to propose customer-
oriented approaches for DMS control. These customer-oriented programs are based
on a control strategy that assures the customer settled schedule is matched and the
customer convenience is assured. The customer-oriented approach should be based
on customers programs with different features and even with different electricity
tariffs. If different tariffs cannot be applied, a reward for customers who signed the
program should exist. The customers programs should also include higher tariffs for
fast charging schedules.

As occurred with other technologies, the development and popularization of PEVs
depend on the creation of a public infrastructure to provide a new set of services for
those customers. As a clear example, the development and popularization of the
combustion engine vehicles was helped by the development of the oil industry, which
could supply the market with cheaper gasoline. The infrastructure was improved with
more gas stations, more streets and roads, cheaper components and so.

The infrastructure development, as for fossil fueled vehicles, will help the trans-
portation electrification, not onlyprivatePEVs, but also electric buses, trucks andother
heavy duty vehicles. Charging points on the streets and on parking lots, fast recharge
points, cheaper components and new services can help on integration process.

These new services have a huge potential to overcome the resistance to electric
vehicles. The combination of radically different technologies and a highly complex
multi-agency operating environment theoretically provide the conditions and
requirements for such an emergent business models. As discussed deeper in [1], the
understanding of the interplay between place, innovation and sustainability suggests
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that diverse solutions are likely to be characteristic solution rather than ubiquity and
standardization.

Some of these innovative business models include renewable energy integration,
battery second use, mobility services and so. The battery second use refers to the
reuse of batteries in stationary applications after their automotive retirement thus
could contribute to lower the costs. The aim of stationary battery usage lies in
storing energy and releasing it at more beneficial time periods. The reason can be
found in an added disposal value of the used battery reducing initial battery prices
of PEVs. The disposal value depends on the battery lifetime after retirement and its
application purpose [1, 2].

Regarding the communication technologies discussed previously, the electro-
magnetic radiation from wireless technologies should also be considered and it
should fits on existent standards, even if the consequences for human health are not
completely understood.

3.3 Case Study

In this section, let consider a case study applying a centralized DMS approach to
investigate some practical aspects of the PEVs management in smart grids aiming
their smooth and complete integration to the grid.

3.3.1 Initial Assumptions

First, let choose one distribution power system for the example. The IEEE 34 node test
system is an interesting example to be considered [3]. It is a three-phase feeder with
two step-voltage regulators (SVR) and two shunt capacitors (SCs), single-phase lat-
erals and unbalanced load. The IEEE 34 node network diagram is depicted on Fig. 3.3.

In order to create a more realistic example to be investigated, let consider a
heterogeneous geographic location of PEVs with some low density areas and other
higher PEV density areas. This heterogeneous feature is also found in real distri-
bution systems due to demographic aspects. The PEV localization used in this
example is shown in Fig. 3.4. It shows the PEV percentage distribution for each
hundred vehicles. In the x-axis it is depicted the node number and in the y-axis the
respective percentage of connected PEVs. The percentages shown here are kept for
all simulations, independently from the quantity of PEVs.

Some different real PEV models are also considered with different ESS capacity
and features. These different PEV models are presented on Table 3.1. The first
column shows the PEV model, the second column presents the ESS nominal
capacity, in kWh, and the third column shows the maximum Depth of Discharge
(DoD) for each model. The DoD is the maximum allowable discharge for the ESS.
If the ESS is discharged below this point, it will suffer early aging and decrease the
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Fig. 3.3 Network diagram of IEEE 34 node distribution system [3]

Fig. 3.4 PEV distribution on IEEE 34 node system

Table 3.1 PEV models
PEV
models

ESS nominal
capacity (kWh)

Maximum
DoD (%)

Consumption
(km/kWh)

Model 1 42 80 4.9

Model 2 24 65 6.15

Model 3 16 65 5.86
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batteries life cycle. In the fourth column, the energy consumption in kilometer per
kilowatt-hour of each model is depicted.

Important information for simulations regards to daily commuting distance. It is
obvious that all PEVs do not run the same distance and one PEV does not run the
same distance every day. So, the PEV’s commuting distance can be represented by a
normal distribution with a mean and a standard deviation. For the case study, all PEV
fleet commuting distance is determined following the feature described in Fig. 3.5.

In the same way the commuting distance is not equal for all PEVs, the connection
hour is not the same too. Hence, it is also considered a connection probability during
the simulations, as depicted on Fig. 3.6. Looking at the situation pictured here,
the connection of a PEV has more probability to occur during these hours of the day.
For the case presented here, a PEV can be connected from 4 to 10 p.m.

Fig. 3.5 Commuting distance for PEVs

Fig. 3.6 PEV connection probability
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When a PEV is connected to the outlet, the customer is supposed to inform
desired the recharge schedule. This schedule configuration should include the type
of recharge, which can be standard or fast. Beyond this, other information may be
included and new data assessed by the intelligent charger, as the expected time of
disconnection and the optimal SoC for the PEV.

The DMS is responsible for managing the PEV recharge process in the distri-
bution system, avoiding the problems described before and assuring the optimal
SoC for each PEV is reach by the time the vehicle is disconnected the next morning.
To accomplish this task, the DMS manages the charging power for each vehicle,
controlling the load while shift the demand to late night.

It is possible to describe better the DMS role looking for the power flow
equations in (3.1)–(3.2).

Pn ¼ Vn

XN

x¼1

Vm � Gnm cos hnm þ Bnm sin hnmð Þ ð3:1Þ

Qn ¼ Vn

XN

x¼1

Vm Gnm sin hnm � Bnm cos hnmð Þ ð3:2Þ

Regarding to active and reactive power for each node, assessed as (3.1)–(3.2), the
load power is assessed as (3.3). The DMS should manage the PPEV demand, since this
is the controllable load in the system. Regarding to PL, it refers to non-controllable
loads connected to the grid and it is not a variable to be considered in the problem.

Pn ¼ PG � PL þ
X

PPEV

� �
ð3:3Þ

where
Pn Node active power
PG Node active power generation
PL Node active power load
PPEV Node active power PEV load

While managing the PEV recharge, the DMS also looks for improving some
system operational conditions, as power losses, load unbalance, and cost of
recharging process considering some restrictions, e.g. voltage level, ampacity, and
power transformers loading. Here, let consider the DMS searches for power losses
minimization through capacitor placement and switching and load management.
The objective function for this problem is defined on (3.4).

Min
XR

r¼1

Re Zr � I2r
� � ð3:4Þ
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St.:

•

Vn a; b; cð Þmin\Vn a; b; cð Þ\Vn a; b; cð Þmax ð3:4:1Þ

•

Ir\Irmax ð3:4:2Þ

where:
r Branch
R Total number of branches
n node (phases a, b, and c)
Vmin 0.90 p.u
Vmax 1.05 p.u
Ir Branch current
Irmax Maximum conductor ampacity

3.3.2 The Artificial Immune Systems

As optimization tool, the Artificial Immune System (AIS) is applied during the
investigation. The AIS is an evolutionary technique which mimics the natural
immune systems from the animals. This system works in a decentralized, parallel
and adaptive way, desirable features to solve complex problems.

The immune system of the vertebrate animals is a complex of cells, molecules and
organs that represent an identification mechanism capable of perceiving and com-
bating dysfunction from our own cells and the action of exogenous infectious agents.
It recognizes an almost limitless variety of infectious foreign cells and substances,
known as nonself elements, distinguishing them from those native cells. When an
infectious foreign agent enters the body, it is detected and mobilized for elimination.

The tissues and organs that compose the immune system are distributed
throughout the body. They are known as lymphoid organs, once they are related to
the production, growing and development of lymphocytes, the leukocytes that
compose the main operative part of the immune system. In the lymphoid organs, the
lymphocytes interact with important non-lymphoid cells, either during their mat-
uration process or during the start of the immune response. There are two inter-
related systems which the body identifies pathogens: the innate and the adaptive
immune systems.

The adaptive immune system uses somatically generated antigen receptors which
are clonally distributed on the two types of lymphocytes: B cells and T cells. These
antigen receptors are generated by random processes and, as a consequence, the
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general design of the adaptive immune response is based upon the clonal selection of
lymphocytes expressing receptors with particular specificities.

The antibody molecules play a leading role in the adaptive immune system. The
receptors used in the adaptive immune response are formed by piecing together
gene segments. Each cell uses the available pieces differently to make a unique
receptor, enabling the cells to collectively recognize the infectious organisms
confronted during a lifetime. Adaptive immunity enables the body to recognize and
respond to any agent, even if it has never faced the invader before.

When an animal is exposed to an antigen, some subpopulation of its bone
marrow derived cells (B lymphocytes) respond by producing antibodies. Each cell
secretes a single type of antibody, which is relatively specific for the antigen. By
binding to these antibodies (cell receptors), and with a second signal from accessory
cells, such as the T-helper cell, the antigen stimulates the B cell to proliferate
(divide) and mature into terminal (non-dividing) antibody secreting cells, called
plasma cells. The process of cell division (mitosis) generates a clone, i.e., a cell or
set of cells that are the progenies of a single cell.

While plasma cells are the most active antibody secretors, large B lymphocytes,
which divide rapidly, also secrete antibodies, albeit at a lower rate. On the other
hand, T-cells play a central role in the regulation of the B cell response and are
preeminent in cell mediated immune responses, but will not be explicitly accounted
for the development of the model. Lymphocytes, in addition to proliferating and/or
differentiating into plasma cells, can differentiate into long-lived B memory cells.
Memory cells circulate through the blood, lymph and tissues, and when exposed to
a second antigenic stimulus commence to differentiate into large lymphocytes
capable of producing high affinity antibodies, pre-selected for the specific antigen
that had stimulated the primary response [4, 5].

The AISs try to reproduce the immune system features in a computational way
by reproducing some interesting abilities described below [4, 5]:

• Pattern recognition: the ability to recognize different patterns from known and
unknown cells.

• Reinforced learning: AIS is able to learn when solving one problem in such a
way that in the next time the same problem is faced, the solution is faster and
more robust.

• Memory: as the natural immune system, AIS also has a memory for previous
known problems.

• Imperfect detection: an absolute recognition of the pathogens is not required,
hence the system is flexible.

The basic steps for AISs evolutionary algorithms is: (i) reproduction; (ii) mat-
uration; (iii) selection, and; (iv) receptor editing. These four steps are responsible
for the creation of the random initial population, reproduction of the individuals,
and for the global and local search steps through random mutations in the indi-
viduals according to their viability/fitness index.
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As other evolutionary techniques inspired on biological processes and animal
behavior, the AISs also apply some terms from biology as metaphors for compu-
tational problems. In order to help the reader to understand better these metaphors,
some terms are briefly explained. For more information, please refer to glossary
on [2].

• Antibody: a soluble protein molecule produced and secreted by B lymphocytes
in response to an antigen. Translating to an optimization problem, the antibody
is the solution for the objective function. Its dimensions and length depend on
the variables of the problem.

• Antigen: any substance that, when introduced into the body, is recognized as an
enemy by the immune system. For optimization problems, the antigen is the
faced problem or any objective function to be solved.

• Clone: a group of genetically identical cells or organisms from a single common
ancestor. In evolutionary techniques, a clone is a copy of a candidate solution.

• Hypermutation: mutations somatically introduced into an antibody gene at a
high rate. For AISs, the hypermutation is the name of maturation process and
corresponds to the local search of the evolutionary algorithm.

For further discussion on immune systems and on AIS, please refer to [4–7].

3.3.3 Simulations and Results

For this case, let consider that one hundred PEVs are expected to be connected to
the power system according to the described features. The PEV models are chosen
from those presented on Table 3.1 and are divided in 20 % of Model 1, 45 % of
Model 2 and 35 % of Model 3. Their individual commuting distance is randomly
chosen from Fig. 3.5 and their connection hour is in accordance to Fig. 3.6, which
depicts the PEV connection probability according to the hour of the day.

Now, to simplify the study case, let consider that when disconnected in the next
morning, all PEVs should have a 100 % SoC. So, in this case it is not considered
the customers programs described before. As the evening time is the most inter-
esting situation, let consider a simulation from 4 p.m. to 7 a.m. of the next day,
resulting a 15-hour simulation divided into steps of 15 min.

First, it is interesting to see what happens when there is not any DMS control to
manage the PEV load during the recharging process. As depicted on Fig. 3.7, the
low voltage level in all three phases during some hours is evident as the need for a
managing control application. The minimum voltage level is represented by con-
tinuous line in phase ‘a’, by dashed line in phase ‘b’ and by dotted line in phase ‘c’.
When connected, the PEV starts to be recharged with the nominal charger power.
Here, this maximum power is 4 kW for a residential outlet, even if the nominal
charger power is higher. When more PEVs are considered, the scenario is worse
than this one.
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Repeating the simulation using the same set of vehicles and the same initial
conditions, the recharging process applying the DMS control presents better results
regarding to voltage levels and power losses, as depicted on Fig. 3.8. As the
previous example, the figure shows the minimum voltage levels in phase ‘a’ using
continuous lines, in phase ‘b’ using dashed lines and in phase ‘c’ using dotted line.
The DMS manages the individual PEV schedule according to the load margin of the
system. Each PEV recharge power is assessed using the load margin of the system,
in such a way that the minimum voltage level is matched in every hour.

Regarding the power losses, the application of a DMS control also decreases
the losses from 0.0473 to 0.0312 p.u. This result is obtained using the antibody
[840 852 864 828]. This solution is found after the AIS optimization and means

Fig. 3.7 Minimum voltage levels without a DMS control

Fig. 3.8 Minimum voltage levels with DMS control

3 Plug-in Electric Vehicles Management … 75



that those nodes are potential candidates to capacitor placement on planning stage
or switching during operating stage aiming for power losses minimization,
according to (3.4) and the restrictions (3.4.1)–(3.4.2). As the objective here is not
developing the optimization technique itself, more information and examples may
be found on [8].

By observing Fig. 3.8, it is possible to see that the recharging process is slower
than on the uncontrolled previous case due to the power limitation imposed by the
DMS after assessing each PEV schedule. This schedule is determined using a
previous assessment of the PV curve, determining the maximum load in order to
maintain the voltage levels at each node. The available power is shared between the
PEVs according to their schedule and setup recharge configurations. Although the
recharging process is slower, the minimum voltage level requirement is matched for
all nodes.

During the process, there is a possibility of communication failure due to any
cause. In this case, it is impossible to inform the assessed schedule for a set of
PEVs. As this is a possible event in smart grids, many researchers proposed to use
local measurements as reference signals for control functions to keep the frequency
and voltage control [9, 10]. Even if this solution is proposed for parallel inverters
from renewable distributed generation connected to power distribution system, it is
possible to apply it for PEV chargers as a secondary control reference signal when
the DSO signal is not available.

3.4 Discussions on the Results

The PEV is one of the most promising products of the automobile industry. It has a
great potential to change the way people see the transportation concept. But, it is
not expected that the fossil-fuelled vehicle will disappear as it can be presented as a
different option best suited for other applications than daily commuting in urban
environment.

As the PEV will become a real option as the prices decrease and a younger
generation more used to take advantage of new technologies will be potential PEV
owners, the integration of these vehicles to power system is a task to be planned
now. Assuming this planning is performed now, any of those problems described
before will take place.

The smart grids features will help in this process in a definitive way. A DMS
control will not be responsible only for PEV loads, but for a wider set of smart
appliances and applications which will be developed in the future. But, even with
all this expectations and possibilities, the core of a DMS will not change. It is a
system responsible for managing the controllable loads according to predefined
rules in order to assure some operational restrictions for quality and safety purposes.

The assessment is based on the available system’s load margin and the PEVs’
schedules depend on this solution and also on some other combinatorial situations
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represented by probabilities, as the daily commuting distance, the hour of con-
nections and the predefined charge setup chosen by the customer.

Regarding to the best approach to be applied, the centralized and decentralized
ones are described here. As their features are different but they perform the same
task, the choice for one model depends more on other variables as costs, current
infrastructure, technology availability and revenue expectations.
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Chapter 4
An Optimal and Distributed Control
Strategy for Charging Plug-in Electrical
Vehicles in the Future Smart Grid

Zhao Tan, Peng Yang and Arye Nehorai

Abstract In this chapter, we propose an optimal and distributed control strategy for
plug-in electric vehicles’ (PEVs) charging as part of demand response in the smart
grid. We consider an electricity market where users have the flexibility to sell back
the energy stored in their PEVs or the energy generated from their distributed gen-
erators. The smart grid model in this chapter integrates a two-way communication
system between the utility company and consumers. A price scheme considering
fluctuation cost is developed to encourage consumers to lower the fluctuation in the
demand response by charging and discharging their PEVs reasonably. A distributed
optimization algorithm based on the alternating direction method of multipliers is
applied to solve the optimization problem, in which consumers need to report their
aggregated loads only to the utility company, thus ensuring their privacy. Consumers
update the scheduling of their loads simultaneously and locally to speed up the
optimization computing. We also extend the distributed algorithm to the asynchro-
nous case, where communication loss exists in the smart grid. Using numerical
examples, we show that the demand curve is flattened after the optimal PEV charging
and load scheduling. We also show the robustness of the proposed method by con-
sidering estimation uncertainty on the overall next day load, and also the renewable
energy. The distributed algorithms are shown to reduce the users’ daily bills with
respect to different scenarios, thus motivating consumers to participate in the pro-
posed framework.
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4.1 Introduction

In the electricity market, demand response [1] is a mechanism to manage users’
consumption behavior under specific supply conditions. The goal of demand
response is to benefit both consumers and utilities via a more intelligent resource
scheduling method. While the classical rule for operating a power system is to
supply all the demand whenever it occurs, the new philosophy focuses on the
concept that the system will be more efficient when the fluctuations in demand are
kept as small as possible [2]. With a fixed amount of electricity generation, demand
fluctuation can add significant ancillary cost to the suppliers due to the inefficient
usage of thermal plants in the power grid. Therefore the goal of demand response is
to flatten the demand curve by shifting the peak hour loads to off-peak hours.
Traditionally it is achieved by setting a time of use (TOU) price scheme [3, 4],
which normally assigns high prices to the peak hours and low prices to the off-peak
hours. Thus consumers will try to move some of their schedulable power usage to
the off-peak hours in order to reduce their electricity bill. Overall, this behavior will
reduce the fluctuation in the power consumption level. The TOU price scheme
works well when the schedulable power usage is not dominant.

With the incorporation of plug-in electric vehicles (PEVs) into the power grid
[5–7] consumers have more flexibility to schedule their loads and tend to charge
their PEVs when the electricity price is low. Therefore with high PEV penetration
the effect of the traditional TOU price scheme is simply to move the peak demand
from previous peak hours into previous off-peak hours. The cost arising from load
variation still remains high in this situation.

In a smart grid, an advanced metering infrastructure (AMI) [8] and an energy-
management controller (EMC) [9, 10] are widely employed, and they enable
communications between the users and the utility company, which makes it pos-
sible to implement more effective PEV scheduling strategies. The AMI device
collects data on the electricity usage and communicates with other AMI devices and
the system controller. The EMC device helps the users to manage and schedule
their consumption of electricity in order to minimize their cost and inconvenience/
dissatisfaction. With the introduction of the AMI and EMC more effective PEV
charging strategies have been proposed, and they fall into two categories. One is
based on the centralized control, in which every consumer transmits his or her
PEV’s information to the centralized controller. Then the centralized controller
determines the charging portfolio of each consumer by minimizing several objec-
tive functions, such as power loss, load variance, and so on [11, 12]. The other
category aims to solve the peak shifting and electric vehicle charging problems
[10, 13, 14] in a distributed fashion. In [13], an optimal distributed charging
algorithm is shown, but it is limited to the case where all PEVs have the same
behavior, i.e., all PEVs have the same starting time and also the same deadline. In
[10], the authors apply a game-theoretical approach for consumers to schedule their
loads. A distributed algorithm is proposed and guaranteed to find the Nash equi-
librium of the game. But their distributed algorithm can be applied only sequentially
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among the consumers, and the communication time and cost reduce the effective-
ness of the method. Moreover, consumers have to report their own usage curves to
all the other consumers, so the privacy of each consumer is not protected. In [14],
the authors propose a parallel distributed optimization algorithm for the PEV
charging problem and present a convergence proof. A similar distributed approach
is proposed for the demand response for smart grid with penetration of distributed
renewable generators [15]. In our numerical example at the end of this chapter, we
will show that the convergence behavior of this method is sensitive to the choice of
parameters in the computing algorithm.

In this work (see also [16, 17]) we consider a smart grid with a certain pene-
tration level of PEVs and also with some on-site renewable distributed generators
[18–20], such as solar panels and wind turbines. The smart grid model is provided
in Fig. 4.1, in which we can see that consumers exchange information with the
utility company. We consider the case where users can sell back the energy they
generate to the grid. The PEVs can also be used as batteries to store electricity,
which can be either consumed or sold back to the grid whenever is more advan-
tageous. The price model in this chapter consists of two parts. The first part con-
siders the base price, and the second part takes the fluctuation cost into account. The
fluctuation price encourages consumers to cooperate with each other when they
calculate their charging portfolio. We implement the alternating direction method of
multipliers (ADMM) to solve the optimization [21]. Unlike in [10], our algorithm is
computed in parallel. Each user needs to report their usage curve only to the utility
company, thus privacy can be guaranteed. The convergence of the ADMM requires
only convexity and the saddle point condition [21]; therefore the convergence of the
distributed algorithm in this paper can be easily obtained. We extend the traditional
ADMM approach to consider the case when AMI messages are lost during the
communication between the utility company and consumers, and an asynchronous
ADMM is formulated in this chapter to deal with loss of data.

Information flow

Power flow

Utility Company

Fig. 4.1 Schematic diagram of a smart grid model with PEVs and renewable generators
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The rest of the chapter is organized as follows. In Sect. 4.2, we build a math-
ematical model for PEVs and other loads. We then set the pricing policy for the
utility company. We also formulate the model with random prediction error in the
base load and distributed generations. In Sect. 4.3, using the alternating direction
method of multipliers, we reformulate the optimization problem into a distributed
optimization problem. We provide the convergence analysis and also extend the
traditional distributed approach to take communication loss into account. In
Sect. 4.4, we show numerical examples to demonstrate the performance of the
proposed method. In Sect. 4.5, we conclude the chapter and point out directions for
future research.

4.2 Smart Grid Model with PEVs

We consider a smart grid model with certain number of residences provided with
electricity from the same utility company. Each consumer has an EMC that controls
and communicates with different appliances within the household and also has an
AMI to perform two-way communication with the utility company. We also assume
that there are a certain number of user-owned distributed generators and PEVs in
the grid. Users can sell back the energy generated from their own distributed
generators or store this energy in the batteries of their PEVs. Users can also sell the
energy left in their PEV batteries back to the grid whenever it is profitable. The
price contains two parts: the first part is based on the non-schedulable load at each
time, which we will refer to as the base price; the second part is based on the
fluctuation of the load throughout a day.

We divide a day into T time periods, i.e. we have t = 1,2…T. We assume there
are four types of loads, both positive and negative, in our model: the base load,
schedulable load, PEV load, and the distributed generation. The base load supplies
users’ basic needs, such as lighting, which cannot be scheduled. The schedulable
load can be scheduled, but needs to maintain a certain quantity during a day, such as
refrigerators, air conditioning, laundry machines, and dishwashers. Please note that
the minimum load requirement for the schedulable load can also be included in the
base load. The PEV load denotes the electricity usage of PEVs. It can be a negative
number at time slots when users sell back the electricity stored in their PEVs. The
distributed generation is considered as a negative load generated by solar or wind
generators and users can sell this energy back to the grid when they have surplus.
We use lIk tð Þ to represent the type I load for user k at time point t. Here, the
superscript I = B, S, P, and D, to indicate the base load, schedulable load, PEV load,
and distributed generation, respectively. Then the total load of user k at time point
t can be expressed as the sum of these four types of loads:
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lkðtÞ ¼ lBk ðtÞ þ lSkðtÞ þ lPk ðtÞ þ lDk ðtÞ ð4:1Þ

The above equation is satisfied for all k and t.
lBk tð Þ denotes the base load of user k at time point t. lSk tð Þ is the schedulable load

of user k at time t. It can be scheduled during a day, but it must satisfy the following
sum constraint to meet the satisfaction of consumers. It should also meet the
maximum physical usage rate constraint. The constraints for schedule load of user
k are stated as follows:

XT
t¼1

lSk tð Þ ¼ lSk ; and 0� lSk tð Þ� lmaxk tð Þ: ð4:2Þ

Here lsk is the total amount of schedule load for user k.
lPk tð Þ denotes the electric vehicle load of user k. It can be decomposed into two

parts, namely the charging energy and discharging energy. The equation can be
written as

lPk tð Þ ¼ lPþk tð Þ
lc

þ ldl
P�
k tð Þ; ð4:3Þ

where lc and ld denote the charging efficiency and discharging efficiency of the
electric vehicle in this chapter. The terms lPþk tð Þ and lP�k tð Þ represent the charging
and discharging electricity seen by the battery of the PEV. Since a PEV cannot
charge and discharge at the same time, lPþk tð Þ and lP�k tð Þ follows a constraint,
expressed as

lPþk tð Þ � lP�k tð Þ ¼ 0: ð4:4Þ

The charging and discharging profile should also satisfy the sum constraint. In
addition, the user can use the electric vehicle as a battery to store energy when the
electricity price is low and sell it back when the price is high. The charging and
discharging rate also have upper bounds to meet physical constraints. The energy
remaining in a battery at every time slot should also be larger than zero and less
than the battery size. Let Ek denote the battery size of user k, and let rmin

k and rmax
k

denote the maximum discharging rate and maximum charging rate respectively. Let
lPk denote the energy left in the battery when user k’s PEV arrives home, and let lQk
denote the energy required for the next trip for user k. Then these constraints can be
stated as follows:

Xtdepk �1

t¼tark

lPþk tð Þ þ
Xtdepk �1

t¼tark

lP�k tð Þ ¼ lQk � lpk ; ð4:5Þ
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0� lPk þ
Xt0
t¼tark

lPþk tð Þ þ
Xt0
t¼tark

lP�k tð Þ�Ek; t0 ¼ tark ; t
ar
k þ 1; . . .; tdepk � 1; ð4:6Þ

rmin
k � lP�k tð Þ� 0; 0� lPþk tð Þ� rmax

k ; ð4:7Þ

where tark is the arrival time of user k’s PEV and tdepk indicates the time of departure.
Equation (4.5) means that the battery of PEV of user k is charged to satisfy the
preset energy level before departure. Equation (4.6) expresses that the energy left in
one battery is always larger than zero and less than the capacity of that battery. The
physical constraint of charging speed is given in Eq. (4.7). If we are given a
charging profile with multiple charging requests for the PEV of user k, it can be
easily decomposed into several constraints, which are similar to constraints
(4.5–4.7) given above.

Due to the fact that charging and discharging cannot happen at the same time,
these constraints for PEVs, i.e. (4.3–4.7) are not convex when lc and ld are less
than one. When lc ¼ ld ¼ 1, these constraints define a convex set:

Xtdepk �1

t¼tark

lPk tð Þ ¼ lQk � lpk ; ð4:8Þ

0� lPk þ
Xt0
t¼tark

lPþk ðtÞ þ
Xt0
t¼tark

lP�k ðtÞ�E; t0 ¼ tark ; t
ar
k þ 1; . . .; tdepk � 1; ð4:9Þ

rmin
k � lPk ðtÞ� rmax

k : ð4:10Þ

In this chapter, we let lDk ðt) denote the distributed generation of user k at time
point t. It is a negative value since it is obtained from an external clean energy
source and can be sold back to the grid when the user has a surplus.

4.3 Electricity Pricing Policy

In this section, we first describe the cost model for electricity generation and then
propose a corresponding pricing scheme related to this cost model. Let ct denote the
marginal generation cost for one unit of electricity from thermal plants at time t. In an
electrical power system, demand fluctuation can result in ancillary cost to the utility
company since larger fluctuation will also lead to inefficient usage of the plants and
the need for secondary thermal plants during the peak hours. We model this fluc-
tuation cost as a function of the variance of the electricity load [22]. Therefore the
total generation cost model for the utility company can be described as
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Cost ¼
XT
t¼1

ct
X
k

lk tð Þ þ l
XT
t¼1

X
k

lk tð Þ � m

 !2

; ð4:11Þ

where lk tð Þ is the load of user k at time t as defined in Eq. (4.1) and m is the mean
usage during a day defined by 1

T

PT
t¼0

P
k lk tð Þ. The parameter l is chosen to

describe the fluctuation cost.
Electricity pricing is a complicated procedure and depends on the entire elec-

tricity market. The price discussed in this chapter can be understood as a price
indicator. For simplicity we will still call it “price” in the rest of the chapter. The
price function contains two parts, namely the base price and the price arising from
the demand fluctuation. They are related to the two parts of the generation cost of
electricity.

The base price pB tð Þ is determined by the sum of the base loads of all individual
users at time t. Since the sum of the base loads can be well predicted in a day-ahead
market, the base price is well defined. We assume that the base price pB tð Þ is
proportional to the sum of base loads at time t:

pB tð Þ ¼ C1

X
k

lBk tð Þ
 !a

; ð4:12Þ

where C1 is chosen so that ct � pB tð Þ for all time points t. This choice will guarantee
that revenue can cover the regular electricity generation cost as long as there is more
energy demand than the generation from the on-site renewable generators when
fluctuation cost is not considered. The parameter a is within the range [0, 1], which
can influence changes in the base electricity price between the different time slots
and therefore influence the users’ usage pattern. We will show this influence in the
numerical examples.

If only base price is used, consumers have limited motivation to reschedule their
demand response to lower the fluctuation in the demand curve. When the per-
centage of schedulable load and the penetration level of PEVs are high, another
peak will be created in the time periods with low base prices. In order to align the
incentives of consumers to lower the fluctuation cost in (4.11), an extra price based
on how much they contribute to this demand curve fluctuation needs to be intro-
duced. Let f0 denote the variance of the aggregated demand load:

f0 ¼
XT
t¼1

X
k

lk tð Þ � m

 !2

: ð4:13Þ

An extra price term pF tð Þ related to this variance is introduced in our price
model. This price term is added to the base price only in the time periods when the
total load of all users is larger than the mean usage. Let X denote the set containing
these time points. The fluctuation price pF tð Þ can be written as
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pF tð Þ ¼ C2f0

P
k0 lk0 tð Þ�mP

t0 2 X

P
k0 lk0 t0ð Þ�mð Þ

lk tð ÞP
k0 lk0 tð Þ

; if t 2 X

0 otherwise

(
ð4:14Þ

Therefore the actual price charged on the consumers is pðtÞ ¼ pBðtÞ þ pFðtÞ. The
electrical bill to each individual user during a day can be summarized as

ck ¼
XT
t¼1

pBðtÞ þ pFðtÞð Þlk tð Þ: ð4:15Þ

By summing ck over all the consumers, we have the total revenue for the utility
company as

R ¼
XT
t¼1

pB tð Þ
X
k

lk tð Þ þ C2

XT
t¼1

X
k

lk tð Þ � m

 !2

; ð4:16Þ

in which C2 is chosen to be larger than l from (4.11) to cover the generation cost.
With the introduction of the fluctuation price, consumers will cooperate with

each other to reduce the variance of the overall load curve, and therefore lower the
generation cost to the utility company and their own bills. The savings result from a
more efficient utilization of the generation infrastructures, which can be shared
between the utility company and consumers. The saving for consumers is directly
reflected in a reduction of their daily bills, which will be shown in the numerical
example. The extension to the unbundling situation, i.e., when the generation
companies and retailers are separated entities in the electricity market, is an inter-
esting, but more complicated problem. Discussion on the unbundling model is
beyond the scope of this preliminary work.

4.4 Prediction and Uncertainty in the Smart Grid

In order to perform the optimization in the next section, we need to predict the base
load, the distributed generation, and also parameters of schedulable load and PEV
usage. Users can input the parameters related to PEVs and schedulable loads directly
through their own EMC device, and there is no need to report them to the utility
company if the distributed algorithm is used. The prediction of the base load has been
investigated in the literature, using artificial neural networks [23] and pattern analysis
[24]. The prediction can be quite precise. Therefore in our model, we assume the
predicted base load for each individual user is a Gaussian random variable as follows:

lBk ðtÞ ¼ lB0k ðtÞ þ eBk ðtÞ; ð4:17Þ
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where lB0k ðtÞ denotes the actual load of user k at time t, and eBk ðtÞ is a random
Gaussian noise with distribution N 0; r2B

� �
, which shows the prediction error in the

mathematical model. We assume that the noise term eBk ðtÞ is uncorrelated among all
the users.

The renewable energy can be predicated using a short-term prediction method
[25]. By assuming the prediction error as an addictive Gaussian noise [26], we will
have a linear model as,

lDk ðt) ¼ lD0k ðtÞ þ eDk ðtÞ; ð4:18Þ

where lD0k ðtÞ denotes the actual distributed generation of user k at time t, and eDk ðtÞ is
the prediction error, which can be regarded as random noise in the model. Unlike
the users’ base load, we assume that the noise term eDk ðtÞ is highly correlated among
all the users since they are all affected by the same weather condition if they are
located in the same geographic area. Then we can write the noise term as

eDk ðtÞ ¼ eDðtÞ þ eDk ðtÞ ð4:19Þ

The term eDðtÞ follows a Gaussian distribution N 0; r20
� �

, and it shows that the
prediction errors of distribution generators in different households are correlated.
The term eDk ðtÞ follows a Gaussian distribution N 0; r2D

� �
. The impact of the

uncertainties in the base load and also the distributed generation is analyzed in the
numerical example section.

4.5 A Distributed Optimization Algorithm

4.5.1 Centralized Optimization of the Loads

The goal of users is to minimize their bills. The utility company also has the
incentive to minimize this total bill. Since minimizing the total bills of all the users
will lead to a more flattened load curve, this will lower the fluctuation cost for the
utility company. In other words, the utility company should minimize the total
electricity bill under the condition that its revenue can cover its own cost, which can
be guaranteed with a proper choice of C1 and C2. Then, with fixed C1 and C2, the
goal of the utility company is to minimize the total bill to all the users. Therefore
according (4.16) to the centralized optimization problem can be formulated as

min
lkf g

X
k

pTBlk þ C2f0
X
k

lk

 !
;

subject to lk 2 Fk; 8k:
ð4:20Þ
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Here pB ¼ pBð1Þ; pBð2Þ; . . .; pBðTÞ½ �T which includes information of base prices
at all time points in one vector, and lk ¼ lkð1Þ; lkð2Þ; . . .; lkðTÞ½ �T includes the load
scheduling of user k at all time points. Fk denotes the feasible set for load lk , which
means that Fk = {lk:lk satisfies conditions (4.1–4.7)}.

Since in real world application, the charging and discharging efficiencies are less
than 1, we can set them to be 1 in the optimization problem (4.20) to ensure
convexity of the problem. Therefor the set Fk becomes convex and defined by
Fk = {lk:lk satisfies conditions (4.1–4.3) and (4.8–4.10)} (After obtaining the
optimal solution, we post-process the load of the electric vehicles to get a subop-
timal solution of the distributed optimization algorithm. Solving the optimization
problem (4.20) in a centralized way is inefficient due to the huge dimensionality and
thousands of constraints. The size of this optimization problem increases with the
number of households. In addition consumers need to report their specific load
usage to the utility company, which will lead to privacy issues. In order to speedup
the calculation, we implement a distributed algorithm in which every household has
a small computing unite center to deal with a relative small scale optimization
problem and report their results to the utility company. In order to make this chapter
self-contained, we briefly introduce the general theory about Alternating Direction
Method of Multipliers (ADMM). For more technical details, please check the
review paper on this subject [21].

4.5.2 Mathematical Preliminary: Alternating Direction
Method of Multipliers

The standard ADMM is intended to solve a separable convex optimization. The
objective function is the sum of several convex functions, and the variables are
coupled through linear equations. The general form is

min
x;z

F xð Þ þ G zð Þ
subject to Axþ Bz ¼ c;

ð4:21Þ

in which x 2 R
n; z 2 R

m; A 2 R
p�n; B 2 R

p�m; and c 2 R
p.

We form the augmented Lagrangian by adding a quadratic penalty for feasibility
violation to the original Lagrangian function:

L x; z; vð Þ ¼ F xð Þ þ G zð Þ þ vT Axþ Bz� cð Þ þ q
2

Axþ Bz� ck k22; ð4:22Þ

where v 2 R
p is the dual variable, and q[ 0 is a penalty parameter. The method of

multipliers cycles between the following two steps:
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xiþ1; ziþ1
� � ¼ argmin

x;z
L x; z; vi
� �

; ð4:23Þ

viþ1 ¼ vi þ q Axiþ1 þ Bziþ1 � c
� �

: ð4:24Þ

Instead of solving x; z jointly as we showed in (4.23), ADMM updates x; z in an
alternating fashion. It implements a single Gauss-Seidel pass [27] over the aug-
mented Lagrangian multiplier, followed by updating the dual variable with a gra-
dient descent. Specifically, the ADMM consists of the following iterations:

xiþ1 ¼ argmin
x

L x; zi; vi
� �

; ð4:25Þ

ziþ1 ¼ argmin
z

L xiþ1; z; vi
� �

; ð4:26Þ

viþ1 ¼ vi þ q Axiþ1 þ Bziþ1 � c
� �

: ð4:27Þ

Note that the step-size for the gradient descent is q, which is the same penalty
parameter as found in the quadratic term in (4.22).

The convergence analysis of ADMM is based on two theoretical assumptions,
which are satisfied for most applications.

Assumption 1 The extended real valued functions of FðxÞ and GðzÞ are closed,
proper and convex.

Assumption 2 The unaugmented Lagrangian function of (4.21) has a saddle point,
i.e., there exists x�; z�; v�ð Þ such that

L0 x�; z�; vð Þ� L0 x�; z�; v�ð Þ� L0 x; z; v�ð Þ; ð4:28Þ

in which

L0 x; z; vð Þ ¼ F xð Þ þ G zð Þ þ vT Axþ Bz� cð Þ: ð4:29Þ

Under these assumptions, the existence of a saddle point implies the existence of
a primal dual solution pair. In [21], the authors show that with these assumptions,
the ADMM, which cycles among (4.25–4.27), has residual convergence, objective
convergence, and also dual variable convergence. For details, please see Sect. 3.2.1
from [21].

4.5.3 Distributed Optimization of the Loads

The objective function in problem (4.20) is a sharing problem and therefore can be
decentralized into parallel programming using ADMM. The optimization problem
(4.20) is reformulated by introducing auxiliary variables zkf g as follows:
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min
lkf g; zkf g

X
k

pTBlk þ C2f0
X
k

zk

 !
;

subject to lk ¼ zk; lk 2 Fk; 8k:
ð4:30Þ

Note that feasible set for each consumer is independent. Thus by introducing
indicator functions fkðFkÞ for feasible sets, the centralized optimization can be
reformulated as

min
lkf g; zkf g

X
k

pTBlk þ fk Fkð Þ� �þ C2f0
X
k

zk

 !
;

subject to lk ¼ zk; 8k:
ð4:31Þ

The indicator function fkðFkÞ is defined as

fk Fkð Þ ¼ 0; lk 2 Fk;
þ1; otherwise:

�
ð4:32Þ

The optimization (4.31) leads to the same optimal solution as in (4.20), and can
be solved by a primal-dual method. However, this approach is very sensitivity to
the selection of the step size. In order to increase the robustness of the algorithm, a
quadratic term is added to the objective function in (4.31) without changing the
optimal solution.

min
lkf g; zkf g

X
k

pTBlk þ
q
2

lk � zkk k22þfk Fkð Þ
� �

þ C2f0
X
k

zk

 !
;

subject to lk ¼ zk; 8k:
ð4:33Þ

The parameter q is a regularization parameter for the quadratic term, and the
performance of the algorithm is not sensitive to the choice of q, as we will show in
the numerical examples. Introducing the Lagrange multipliers vk for each lk ¼ zk
constraint in the above optimization, we can obtain the augmented Lagrangian
function as

L lkf g; zkf g; vkf gð Þ ¼
X
k

pTBlk þ vTk lk � zkð Þ þ q
2

lk � zkk k22þfk Fkð Þ
� �

þ C2f0
X
k

zk

 !
:

ð4:34Þ

The original optimal problem can be solved using a Gauss-Seidel algorithm on
the augmented Lagrangian function Lðflkg ,f zkg ,f vkgÞ as we shown in the
previous section. Note that (4.25) for the smart grid application is given as
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liþ1
k

� � ¼ argmin
X
k

pTBlk þ viTk lk � zik
� �þ q

2
lk � zik
		 		2

2þfk Fkð Þ
� �

: ð4:35Þ

Since the objective function is separable among different customers, it can be
solved in parallel and locally. Basically, the Gauss-Seidel algorithm for ADMM
cycles through the following steps until convergence is reached:

liþ1
k ¼ argmin pTBlk þ viTk lk � zik

� �þ q
2

lk � zik
		 		2

2þfk Fkð Þ
� �

; ð4:36Þ

ziþ1
k

� � ¼ argmin
ziþ1
kf g

X
k

viTk liþ1
k � zk
� �þ q

2
liþ1
k � zk

		 		2
2

� �
þ C2f0

X
k

zk

 !
; ð4:37Þ

viþ1
k ¼ vik þ q liþ1

k � ziþ1
k

� � ð4:38Þ

In (4.36), lk is updated by solving a convex optimization problem while keeping
zk and vk fixed to the values from the previous iteration. Likewise, we solve for zk.
Equation (4.38) is a gradient descent of the augmented Lagrangian multiplier, with
step size q. The optimization problems (4.36 and 4.38) can be solved locally and
also in parallel. As shown in Fig. 4.2, each user needs to report his/her total usage
during each time slot only to the utility company, which then solves the optimi-
zation problem (4.37). They also need to provide the utility company with their
Lagrangian multipliers. In every iteration of ADMM, the utility company also
needs to send the parameter zik to user k. As an intuitive interpretation of the
ADMM procedure, we can regard zk as the load which is suggested by the utility
company to minimize the fluctuation in the demand response, and we regard lk as
the load according to the user’s own benefit. The whole algorithm is a process of
negotiation between each user and the utility company. vk and q=2 are the penalty
coefficients for the first and second order terms of disagreement. The optimization
problem (4.36) can be reformulated as a constrained convex optimization.

kth HouseholdUtiliy Company

i
kvl ,ik

i
kz

Fig. 4.2 Information exchange between utility company and kth household at ith iteration
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4.5.4 Theoretical Convergence Behavior of ADMM

The conditions for the convergence of the ADMM scheduling method in this
chapter are based on one theorem given in [21]. Before introducing the convergence
results, a key lemma is introduced.

Lemma 1 Suppose set D is a closed nonempty convex set and f(D) is an indicator
function, then the epigraph of the indicator function f(D) is also a closed nonempty
convex set.

Proof Since set D is nonempty, there exists an element x 2 D, so that we have
f ðxÞ¼ 0� 1. Therefore ðx; 1Þ 2 epi f . Thus the epigraph is nonempty. Convexity
can be easily obtained by using the convexity of set D. Suppose we have a sequence
xk; tkð Þ 2 epi f satisfying f ðxkÞ� tk that converges to point x�; t�ð Þ. We know that
xk 2 D for all k. Since the sequence xkf g converges to x�, and D is closed, then
x� 2 D. Therefore we know f ðx�Þ¼ 0� lim

k!1
tk ¼ t�. Therefore the point x�; t�ð Þ is

also in epi f , and the epigraph is closed. h

With the above lemma we can guarantee that the objective function converges to
the optimal solution with ADMM iterations as shown in the following theorem.

Theorem 1 If the charging and discharging efficiency lc and ld both equal to one
and the charging and scheduling constraints are feasible, which means there is at
least one lkf g satisfies conditions (4.1–4.3) and (4.8–4.10); Then by iterating
between (4.36), (4.37) and (4.38), we have the residual convergence behavior.
Also, the objective function converges to the optimal value p�, and the Lagrangian
multipliers vk converge to the optimal solution v�:

lim
i!1

lik � zik
� � ¼ 0; 8k; ð4:39Þ

lim
i!1

X
k

gk lkð Þ þ f0
X
k

zik

 ! !
¼ p�; ð4:40Þ

lim
i!1

vik ¼ v�k ; 8k; ð4:41Þ

where gk lkð Þ ¼ pTBlk þ f Fkð Þ:
Proof Function f0

P
k z

i
k

� �
is a quadratic function in this paper, therefore it is easy

to show the epigraph of this function is a nonempty close convex set. When lc and
ld both equal to one, the constraints in the optimization defines a convex set.
Combining the solution feasibility and Lemma 1, we can easily show that the
epigraph of gk lkð Þ is also a nonempty closed convex set. Since strong duality holds
for the original optimization (4.30), the optimal solution is the saddle point for the
unaugmented saddle point, satisfying
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L0 l�k
� �

; z�k
� �

; vkf g� �� L0 l�k
� �

; z�k
� �

; v�k
� �� �� L0 lkf g; zkf g; vkf gð Þ ð4:42Þ

for q ¼ 0, where l�k
� �

, z�k
� �

are the optimal solution for the primal problem and
v�k
� �

are the optimal dual variables. Combining this property with the properties of
the epigraphs we get the convergence results [18]. h

4.5.5 Distributed Optimization of the Loads with Lost AMI
Messages

The distributed algorithm implemented in the previous section requires the utility
company and every household to exchange information in each iteration. In prac-
tice, AMI messages get lost if there is a malfunction in the transmitter or due to the
random noise in the transmitting line. Therefore we need to extend the ADMM
distributed optimization to the case when a certain percent of the transmitted
information is lost during the information exchange. We refer to this extended
ADMM as an asynchronous ADMM.

The key idea of the asynchronous ADMM is that whenever loss of AMI mes-
sages occurs, we use the value from the previous transmission to substitute the
missing information. Let Ci denote the set of users who successful receive zik from
the utility company, and let

Q
i denote the set of users who successful upload their

lik; v
i
k to the utility company. We use ~zik to represent the information received by

user k at iteration i. Let ~lik; ~v
i
k denote the information received by the utility com-

pany from user k at iteration i. Then the asynchronous ADMM can be represented
as follows:

liþ1
k ¼ argmin

lk2Fk

pTBlk þ viTk lk � ~zik
� �þ q

2
lk � ~zik
		 		2

2; ~z
i
k ¼

zik; k 2 Ci�1

~zik; k 62 Ci�1

�
; ð4:43Þ

ziþ1
k

� � ¼ argmin
ziþ1
kf g

X
k

~viTk ~liþ1
k � zk
� �þ q

2
~liþ1
k � zk

		 		2
2

� �
þ C2f0

X
k

zk

 !
;

with~liþ1
k ¼ liþ1

k ; k 2 Pi

~lik; k 62 Pi

;

(
~vik ¼

vik; k 2 Pi

~vi�1
k ; k 62 Pi

;

(

ð4:44Þ

viþ1
k ¼ vik þ q liþ1

k � ~ziþ1
k

� �
; ~ziþ1

k ¼ ziþ1
k ; k 2 Ci

~zik; k 62 Ci

(
: ð4:45Þ

The theoretical analysis of the convergence for this asynchronous ADMM is still
an open problem. Note that when there is no loss of AMI messages, asynchronous
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ADMM is exactly the same as original ADMM. In the section of numerical results,
we use this algorithm to show that the ADMM-based algorithm is robust to com-
munication loss, and it can still achieve satisfactory scheduling results for load
management when there are PEVs in the smart grid.

4.6 Numerical Results

In this simulation we consider the case where there is only one electricity supplier
and 120 households in the smart grid. There are 60 households with both wind-
distributed generators and PEVs, 60 households with only distributed generators.
The sum of the base load demand and schedulable demand from each household
is generated randomly according to the MISO daily report by the U.S. Federal
Regulatory Commission (FERC) [28]. The distributed wind generation values are
taken from the Ontario Power Authority [29]. We set the battery size of the PEV as
either 10 kWh or 20 kWh, to reflect different kinds of vehicles. The maximum
charging rate is assumed to be 3.3 kW, and the maximum discharging rate is
1.5 kW. We also assume the charging and discharging rates can change continu-
ously between the maximum discharging rate and maximum charging rate. The
statistical mean of arrival time and departure are 18:00 and 8:00, respectively. The
specific time slots are generated according to Gaussian distributions.

In our simulation, we first show three different types of distributed scheduling
algorithms. The first one uses no optimization, and is widely used when the EMC
and AMI devices are not applied. Users randomly select time slots for their
schedulable loads, and charge their PEVs as soon as their vehicles are in the
garages. The second algorithm is a greedy algorithm, in which everyone tries to
lower his or her total electricity bill according to the pre-determined base price. This
simulates the scenario when there is no fluctuation fee in the cost (4.15) and users
are not cooperating with each other when making decisions. We compare them with
the ADMM scheduling method proposed earlier. We show the effect of discharging
the PEVs’ batteries by comparing the case when discharging is not allowed with the
case when discharging is enabled. Then we show the impact of a in pricing (4.12) to
reduce the daily bill of each individual user. The effect of the proportion of
schedulable load is also discussed in this section. Consumers participate in this
algorithm when they see the reduction of their daily bills compared with the greedy
method. We also show how prediction errors in base load and distributed generation
will affect the performance of the ADMM scheduling method. Additionally, we
show the robustness of asynchronous ADMM by introducing lost messages during
the communication between the utility company and different customers. Last, we
compare our method with another distributed optimization algorithm, proposed in
[14]. We show that the convergence behavior of ADMM is less sensitive to the
choice of parameter in the algorithm compared with the method in [14].
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4.6.1 Valley Filling Properties of the ADMM Scheduling
Method

In the first part of the results, we present the experiment when 20 % of the load
(except PEV and load supplied by distributed generators) of an individual user is
schedulable. Thus the ratio of the base load and schedulable load is 4:1. The a in
(4.12) is set to be 1. Both charging efficiency and discharging efficiency are set to be
0.9. q in the ADMM iteration is chosen to be 0.006. In the pricing model, we have
C1 ¼ 7:8� 10�5 and C2 ¼ 5� 10�4. We show the valley filling results of the
ADMM scheduling algorithm in Fig. 4.3. We can see that the load without opti-
mization creates a peak when most PEVs arrive home. The greedy algorithm simply
moves the peak to another time period, which has the lowest base electricity price.
The ADMM-based distributed optimization model proposed in this paper can fill the
valley of the original base load and thus lead to a lower fluctuation of the load curve.

In Fig. 4.4, we show the specific load arrangement with our proposed method, the
method without optimization and also the greedy algorithm of one user with dis-
tributed generator and PEV. We can see that the greedy user moves his entire
schedulable load into the periods with cheaper electricity prices. She/he also tends to
charge his/her PEV at times when the electricity prices are low and discharge his/her
PEV at times when electricity prices are high. Comparing part (b) with Fig. 4.3, we
can see that actually this decision pattern will lead to a high fluctuation price for this
user. Therefore when the proportion of the fluctuation price is high, it is not worth
doing this greedy algorithm. In part (c) of this figure, we can see that the user under
ADMM strategy is more rational and cooperative. With this kind of cooperation
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Fig. 4.3 Total loads of three scheduling methods as a function of time

4 An Optimal and Distributed Control Strategy … 95



among different users, the total fluctuation cost will be lowered and therefore reduce
the bill every user pays for their utility usage.

The total daily bill of all users is also compared among these three methods. The
unoptimized method has a total bill as high as $725, and the greedy method has a
bill amount as $550. While the ADMM scheduling method leads to a total bill as
low as $455.

4.6.2 Effect of Battery Discharging in the ADMM

In this section, we compare the case when discharging is not allowed with the case
when both charging and discharging are implemented in battery management. The
system parameters are the same as in the previous section. The results of total load
scheduling are shown in Fig. 4.5. We can see that allowing discharging leads to a
smaller variation in the demand response. The load schedule of one specific user is
shown in Fig. 4.6.
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Fig. 4.4 Comparison of user’s load scheduling strategy under three different scheduling methods

96 Z. Tan et al.



1:00 4:00 7:00 10:00 13:00 16:00 19:00 22:00 0:00
100

200

300

400

500

600

700

800

900

Time

D
em

an
d

 L
o

ad
 (

kW
)

 

 

Base Load
Only Charging
Charging and Discharging

Fig. 4.5 Total loads of two strategies, one with only charging, the other with charging and
discharging

1:00 4:00 7:00 10:00 13:00 16:00 19:00 22:00 0:00
−2

0

2

4

6

Time

 

 

1:00 4:00 7:00 10:00 13:00 16:00 19:00 22:00 0:00
−2

0

2

4

6

Time

Base price Schedulable Load PEV load

D
em

an
d

 L
o

ad
 o

f
 U

se
r 

1 
(k

W
)

D
em

an
d

 L
o

ad
 o

f
 U

se
r 

1 
(k

W
)

(a)

(b)
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The total bill for ADMM with both charging and discharging for batteries of
PEVs is $455, while the total bill for only charging ADMM is $458. The saving is
due to the lower variance when discharging is enabled, as we can observe from time
13:00 to 22:00 in Fig. 4.6. Next we vary the charging and discharging efficiency
of PEVs’ batteries and show the total bills for different scenarios in the Fig. 4.7.
One interesting fact is that when charging and discharging efficiency is reduced to
0.7, the strategy with only charging achieves a better scheduling result. This is
because when the efficiency is less than 1, the ADMM strategy for simultaneous
charging and discharging obtains a suboptimal solution for the load scheduling,
while the ADMM strategy for only charging achieves an optimal solution.

People can decide whether to turn on their PEVs’ discharging ability by com-
paring the savings with the money that needed to replace their battery when battery
life is shortened due to frequent discharging. This simulation is a preliminary result,
and we can hope for a better bill reduction performance using discharging with
more diversified PEV behaviors.

4.6.3 Load Scheduling with Loss of AMI Messages

In this section we show the robustness of the proposed asynchronous ADMM
strategy in Sect. 4.5.5 with respect to loss of AMI messages during communication
between the utility company and consumers. The efficiency of PEVs’ batteries is
assumed to be 0.7 in this simulation. We assume that the information loss occurs
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randomly. In this simulation, we assume that different percentages of the infor-
mation are lost due to transmitting errors. As we show in Fig. 4.8, we can observe
that asynchronous ADMM strategy still achieves a desirable load scheduling result,
comparable to the case where communication is 100 % successful. The total bill for
the asynchronous ADMM with 10 % loss of data is $466; it is $468 for both 20 and
30 % loss of data; it is $470 for 40 % loss of data. By comparison, the total bill for
ADMM with no loss of information is $465.

4.6.4 Impact of Pricing Parameter a

From now on, we consider the case where there are 30 households with both wind
distributed generators and PEVs, 20 households with only distributed generators,
30 households with only PEVs, and 40 households with none of these. The effi-
ciency of PEVs’ battery is 0.8 for both charging and discharging. As we mentioned
earlier in the pricing policy section, the parameter a in (4.12) has the ability to affect
users’ behavior. When a is set to be 1, the base price is proportional to the base
load; therefore, the difference between prices from different time slots is relatively
large, and then user will become more sensitive to this base price. When a is set to
be 1/2, the base price is proportional to the square root of the base price, and the
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user will become less sensitive to which time slot is the cheapest for their sched-
ulable energy. When a is set to be zero, the user will not care about which time slots
to allocate their energy and their goal becomes lowering the load variation as much
as possible.

In Fig. 4.9, we range the value of a from 0.2 to 1, and plot the money saved for
each individual user when consumers use the ADMM method compared with the
greedy scheduling method. In each box in Fig. 4.9, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, and the whiskers extend to
the most extreme data. The portion of schedulable load is 20 %, and q is chosen to
be 0.006. We can see that even when a is high, which makes the greedy algorithm
perform well, the consumer will still save money using the ADMM method. Overall
every consumer will save his or her money every day under the ADMM scheduling
method.

4.6.4.1 Results with Different Proportions of Schedulable Energy

In Fig. 4.10, we show the daily bill reduction achieved by using the proposed
distributed ADMM optimization algorithm, compared with the greedy algorithm.
The percentage of schedulable load of each individual user changes from 10 to
50 %. a is set to be 1, and q equals 0.006 in the algorithm. Every user will gain
under the proposed distributed algorithm, and thus everyone has the incentive to be
cooperative. In fact, if some users have perfect information about others’ usage,
they can gain even more by deviating from the ADMM solution for themselves, but
it is impossible to get such information in real applications. In Fig. 4.10 we notice
that when percentage of schedulable load is 20 and 30 %, the difference between
ADMM scheduling method and greedy method is less than other cases. This is due
to the fact that with this percentage of schedulable energy, the valley in the base
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load can be filled without creating a new peak at the same time therefore greedy
method is more efficient than greedy algorithm in other cases.

4.6.5 Results with Uncertainty in the Smart Grid Model

In order to set the base price for the next day, the utility company needs to predict
the sum of the base load for all the households. The prediction will suffer from
some random noise. We will see how much the prediction error will deteriorate
the performance of ADMM. We will also show the impact of randomness in the
distributed generation on the performance of the ADMM scheduling method. The
models describing this randomness are shown in Sect. 4.4. The percentage of
schedulable energy is 20 %. We let a ¼ 1 and q ¼ 0:006 in this simulation. We
range the standard deviation rb for the base load prediction error from 0.5 to
2.5 kW. The scale for the base load for a household at a certain time point ranges
from 0 to 7 kW. We set rd to be 0.01 kW, and change r0 from 0.2 to 1 kW to see
the impact of randomness in the distributed generation.

From Fig. 4.11, we can see that the ADMM scheduling method still outperform
the greedy method and also the method without optimization. The total bill will
increase with more uncertainties in the model. The ADMM method is more sen-
sitive to the randomness in the distributed generation than that in the base load since
the prediction error terms in the distributed generation are correlated among dif-
ferent households.
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4.6.6 Comparison with Another Distributed PEV Charging
Method

In this section, we compare our distributed scheduling method with the optimal
decentralized charging method (ODC) proposed in [14]. The ODC algorithm
basically cycles between the following two operations until some kind of conver-
gence criteria is satisfied:
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Fig. 4.11 Total bills for three scheduling methods with uncertainty in the model. The upper figure
shows the impact of uncertainty in the base load, and the lower figure shows the impact of
uncertainty in the distributed generation
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liþ1
k ¼ argmin

lk
piT lk þ b lk � lik

		 		2
2; lk 2 Fk; 8k ð4:46Þ

piþ1 ¼ c
X
k

liþ1
k : ð4:47Þ

We can see from optimization problem (4.46) that the ODC algorithm is similar
to the optimization problem (4.36) in the ADMM scheduling method. Rather than
being given a reference usage pattern by the utility company, the users in ODC are
required to choose their usage pattern only within the neighborhood of the usage
pattern in previous iteration. The pricing parameter c is chosen to be 10�4. In the
pricing model of ADMM, we let C1 ¼ 7:8� 10�5, and C2 ¼ 5� 10�4. We test the
performance of ADMM and ODC algorithms when b and q are set to be 0.0006,
0.006, and 0.06 respectively. In this simulation, the percentage of schedulable load
is 20 %, and a is set to 1 in the pricing model.

From Fig. 4.12, we can see that when both b and q are set to be 0.006, the
ADMM and ODC will have almost the same optimal convergence behavior after
three iterations. When we increase the value of the parameters to 0.06, the ODC
converges much slower than the ADMM scheduling method. When we decrease the
value of these two parameter to 0.0006, which is not shown in the figure, the ODC
algorithm will diverge, while the ADMM gives a total bill of $537 after ten iter-
ations. From this numerical example, we can see that the convergence of the
ADMM scheduling method is less sensitive than ODC method to the parameter
used.
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4.7 Conclusions

In this chapter, we first built an electricity usage model for the PEV charging
problem and also provided models for other loads in the smart grid, namely the base
load, schedulable load, and distributed generation. A price scheme considering both
base price and demand fluctuation in the demand response was proposed to
encourage different consumers to corporate with each other to lower the fluctuations
in the total loads. By applying the alternating direction method of multipliers, we
decomposed the centralized optimization problem into distributed and parallel
optimization problems. The decentralized scheme reduces the workload of the
centralized controller while protecting the privacy of each consumer. Theoretical
convergence proof was given for the ADMM case. We also extended the traditional
ADMM to asynchronous ADMM to consider the case where AMI messages are lost
during communication.

By showing numerical examples, we demonstrated that the demand response
was flattened by using the ADMM based distributed scheduling method. We also
compared the case where discharging is not allowed with the case where both
charging and discharging are allowed. The results provide guidance for consumers
to decide whether they want their PEVs to discharge or not during the load
scheduling process. We tested the robustness of the asynchronous ADMM by
considering different levels of AMI message loss in the communication system, and
we showed that the proposed approach worked well. We also showed the robust-
ness of the proposed method by considering estimation uncertainties for the overall
next day load and the renewable energy. We demonstrated that all consumers would
reduce their bills under several circumstances, which gives them incentives to
participate in the distributed optimization program to charge their PEVs and
schedule their appliances.

In our future work, we will employ a more detailed cost function for the utility
company. We will also develop more advanced machine learning models to predict
the users’ future electricity usage behavior and will propose detailed strategies for
choosing pricing parameters in real-world applications. The theoretical proof of
asynchronous ADMM will also be of interest in the area of distributed computing.
Extension of the price scheme proposed in this paper to an unbundling market
situation, i.e., when the generation companies and retailers are separated entities in
the electricity market and they have different interests, is another interesting open
problem, and will also be included in our future work.
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Chapter 5
Risk Averse Energy Hub Management
Considering Plug-in Electric Vehicles
Using Information Gap Decision Theory

Alireza Soroudi and Andrew Keane

Abstract The energy hub is defined as themulti-inputmulti-output energy converter.
It usually consists of various converters like thermal generators, combined heat and
power (CHP), renewable energies and energy storage devices. The plug-in electric
vehicles as energy storage devices can bring various flexibilities to energy hub
management problem. These flexibilities include emission reduction, cost reduction,
controlling financial risks, mitigating volatility of power output in renewable energy
resources, active demand side management and ancillary service provision. In this
chapter a comprehensive risk hedgingmodel for energy hubmanagement is proposed.
The focus is placed on minimizing both the energy procurement cost and financial
risks in energy hub. For controlling the undesired effects of the uncertainties, the
Information gap decision theory (IGDT) technique is used as the risk management
tool. The proposed model is formulated as a mixed integer linear programming
(MILP) problem and solved using General Algebraic Modeling System (GAMS). An
illustrative example is analyzed to demonstrate the applicability of the proposed
method.

Keywords Energy hub � Information gap decision theory � Uncertainty
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Nomenclature

Uc t,vð Þ Binary variable indicating the charging state
Ud(t,v) Binary variable indicating the discharging state
ggechp CHP efficiency in converting gas to electricity

gghchp CHP efficiency in converting gas to heat

Pc(t,v) Charged power of vehicle v in time t
gcv Charging efficiency of vehicle v
Pdðt; vÞ Discharged power of vehicle v in time t
gvd Discharging efficiency of vehicle v
Le(t) Electric load in time t
ket Electricity price

gghf Furnace efficiency in converting gas to heat

kg Gas price
Lh(t) Heat load in time t
Pw(t) Injected wind power
Pcvmin=max Min/max charging limits of vehicle v

Pdvmin=max Min/max discharging limits of vehicle v

OF Objective function
Pg(t) Purchased gas power
PebðtÞ Purchased electricity power
aLe Radius of uncertainty for electric load
aLh Radius of uncertainty for heat load
aw Radius of uncertainty for wind power generation
PesðtÞ Soled electricity power
SOC(t,v) State of charge of vehicle v in time t
PgchpðtÞ Share of purchased gas power to feed into CHP
Pgf ðtÞ Share of purchased gas power to feed into furnace
Ptrðt; vÞ Traveling requirement of vehicle v in time t

5.1 Introduction

The concept of energy hub was first introduced in [1]. It is defined as a combination
of energy conversion units which satisfy different types of energy demands. Fig-
ure 5.1 illustrates an example of energy hub, which provides an interface between
the different inputs and outputs energy carriers.

A relevant number of recent researches have proposed some models for energy
hub concept. These models describe the energy hubs as a combination of nuclear
plants, wind turbines, solar panels, biomass reactors, electrolyzers, fuel cells [2] and
energy storage devices. Different optimization techniques are available for solving
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the optimal management of energy hubs like Simulated Annealing algorithm [3],
genetic algorithm [4] and multi-objective goal programming [5]. The optimal
operating schedule of an energy hub highly depends on the input parameters of the
model. Usually these input parameters are subject to uncertainty due to various
reasons. For example, renewable power generations are volatile because of their
natural primary resource like wind speed, solar radiation, temperature and etc.
Another important uncertain input parameter is the demand whether it is electrical
or heat which should be treated properly [6]. It is highly dependent on the consumer
behavior which cannot be predicted easily. The last important uncertain parameter
is the electricity price which directly affects the payments or benefits of the decision
maker. The electricity prices in deregulated electricity markets are uncertain due to
various reasons like: competition between the price maker generating companies,
contingencies and etc.

There are different types of uncertainty modeling in energy hub management.
The most famous technique is stochastic method [7, 8]. The Monte Carlo Simu-
lation (MCS) [9] is used in uncertainty modeling of energy prices [10]. The
shortcoming of this technique is that it is computationally expensive and it also
requires the probability density functions (PDF) of uncertain parameters. Without
them the problem cannot be solved. The second issue is that using the Monte Carlo
simulation gives the decision maker the expected value of objective function and
also its variance. It’s more useful in assessment applications rather than optimi-
zation applications. The scenario based modeling which defines some discrete

Fig. 5.1 The general concept
of energy hub
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scenarios with specific probabilities and then tries to minimize the expected values.
It improves the computational burden significantly compared to MCS.

In [11], this method is used to handle the uncertainty of wind, price and elec-
tricity demand. The conditional value at risk (CVaR) [12] is also used for risk
controlling. Another uncertainty modeling technique is robust optimization [13].
This technique does not require the PDF of the uncertain parameters. Instead, it uses
an interval for uncertain parameters. It tries to find the optimal decision variables
while some predefined degree of conservativeness is taken into account. This
technique is used for uncertainty modeling of energy prices, energy demand and
also the converter efficiencies of energy hubs [14]. To cope with the increasing
volatile renewable generation in energy hubs it is possible to use energy storage
[15]. Different energy storage technologies have been used in energy hubs such as
solid hydrogen storage [3], water electrolyzers for hydrogen production [16],
thermal energy storage [17], Hydrogen-Natural Gas Co-Storage [18] and plug-in
electric vehicles (PEV) [19]. The PEVs have recently attracted a great deal of
attention in energy system management strategies. The advents of these new
technologies have changed the original operating philosophy of PEVs from pure
transportation into important energy system flexibility providers. They can be used
as an energy storage device when not in use for transportation purposes. In this
chapter, a risk averse Information Gap Decision Theory (IGDT) [20] framework is
proposed for optimal energy management of an energy hub. This technique is exact
and does not require the PDF of the uncertain parameters. This hub purchases
energy from different resources and converts them to different output forms. It also
uses the flexibilities that PEV may provide. The problem is analyzed with the
following constraints, decision variables and objective function:

• Decision variables:

– Electricity purchase from the electricity market
– Electricity sell to the electricity market
– Gas purchase from the gas network
– Operation schedule of energy conversion devices
– Operation charging and discharging of PEV

• Constraints:

– Uncertainty of thermal demand
– Uncertainty of electricity demand
– Uncertainty of energy production of renewable resources
– Technical constraints of energy conversion/storage of PEVs
– Different demand balance
– Risk of energy management strategy due to different uncertainties

Objective function: it is defined as the total payments regarding the energy
management.
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5.2 IGDT Based Uncertainty Modeling

The decision makers need some strong tools in order to handle the severe uncer-
tainties. Specially when not enough information is available from the uncertain
input parameters (like probability density function or membership function). The
information gap decision theory provided such a tool which is computationally
efficient and it is robust against the prediction errors. It has been successfully
applied on various energy system applications such as:

• Energy procurement in distribution networks [20]
• Risk-constrained self-scheduling of GenCos [21]
• Multi-objective robust transmission expansion planning [22]
• Optimal bidding strategy of generation station in power market [23]

In this chapter, an IGDT based model [8] is proposed to handle the uncertainty
of wind power generation, electric load and heat load. The mathematical formu-
lation of risk hedging IGDT framework is as follows:

minX f ðX;wÞ ð5:1Þ

HiðX;wÞ� 0; i 2 C ð5:2Þ

C is the set of all constraints. w is the vector of input uncertain parameters. In
this work, an IGDT based energy management is formulated as:

maxX ‘̂ ð5:3Þ

HiðX;wÞ� 0; i 2 C ð5:4Þ

‘̂ ¼ max‘ jf ðX;wÞ � Kc � 0f g ð5:5Þ

w 2 Uð�w; ‘Þ ¼ fw : jw� �w
�w

jg� ‘ ð5:6Þ

Kc is the critical value of objective function (for a given value of X) which can
be exceeded when the realized values are not the same as forecasted ones. �w is the
forecasted value of w. ‘ is the unknown radius of uncertainty.
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5.3 Problem Formulation

The general operating concept of an energy hub can be described as follows:

OF ¼
X
t

kcðtÞPin
c ðtÞ ð5:7Þ

Pout
c ðtÞ ¼ APin

c ðtÞ ð5:8Þ

where, c is the set of energy carriers. Pin
c ðtÞ, Pout

c ðtÞ denote the input and output
energy carriers of the hub, respectively. kcðtÞ is the price of energy carrier c at time
t. The matrix A is the core function of the energy hub which defines the conversion,
storage and distribution of different energy carriers. The energy hub under study in
this chapter is depicted in Fig. 5.2.

This energy hub has three inputs as the supplying resources namely electric
power purchased from electricity market (PebðtÞ), wind power generation (PwðtÞ)
and finally natural gas (PgðtÞ). The output of energy hub has three different parts
namely electric load (LeðtÞ), heat load (LhðtÞ), power sold to energy market (PesðtÞ)
and power charge/discharge for PEV (Pdðt; vÞ;Pcðt; vÞ). The question is how to
optimally exploit the energy hub in order to minimize the payments for energy
procurement.

The performance of the described energy hub in Fig. 5.2 can be modeled as
follows:
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( )Pw t
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Fig. 5.2 The energy hub under study

112 A. Soroudi and A. Keane



PebðtÞ þ PwðtÞ þ PgchpðtÞggechp þ
X
v

Pdðt; vÞ ¼ LeðtÞ þ PesðtÞ þ
X
v

Pcðt; vÞ

ð5:9Þ

0 � PebðtÞ �Pemax
b ð5:10Þ

0 � PesðtÞ � Pemax
s ð5:11Þ

PwðtÞ � 1� awð Þ �PwðtÞCapw ð5:12Þ

LeðtÞ ¼ 1þ aLeð Þ �LeðtÞLemax ð5:13Þ

LhðtÞ ¼ 1þ aLhð Þ �LhðtÞLhmax ð5:14Þ

PgðtÞ ¼ PgchpðtÞ þ Pgf ðtÞ ð5:15Þ

LhðtÞ ¼ Pgf ðtÞgghf þ PgchpðtÞgghchp ð5:16Þ

The electric balance is modeled in (5.9). This means that the electric output of
the energy hub (LeðtÞ þ PesðtÞ þ

P
v Pcðt; vÞ) is fed using PebðtÞ þ PwðtÞ

þPgchpðtÞggechp þ
P

v Pdðt; vÞ. The third term is the converted gas to electricity in
CHP units. The purchased gas PgðtÞ is divided into two streams PgchpðtÞ;Pgf ðtÞ.
The PgchpðtÞ is fed into the CHP unit and the Pgf ðtÞ is fed into the furnace unit as
described in (5.15). Finally, the heat load (LhðtÞ) is supplied using furnace and CHP
units as given in (5.16).

The operation modeling of PEV is described in (5.17–5.23).

SOC(t, v) = SOC(t � 1; v) + gcvPcðt; v)�
Pdðt; v)

gdv
� Ptrðt, v) ð5:17Þ

SOC(t,v) = E0
v þ gcvPcðt; vÞ �

Pdðt; vÞ
gdv

� Ptrðt,v) ð5:18Þ

SOCv
min � SOC(t,v) � SOCv

max ð5:19Þ

Ptrðt,v) = DD(t,v) Xv ð5:20Þ

PcvminUcðt; vÞ�Pcðt; vÞ� PcvmaxUcðt; vÞ ð5:21Þ

PdvminUcðt; vÞ�Pdðt; vÞ� PdvmaxUcðt; vÞ ð5:22Þ

Ucðt; vÞ þ Udðt; vÞ� 1 ð5:23Þ

The state of charge in vth PEV at time t (SOCðt; vÞ) depends on the state of
charge at time t − 1 (SOCðt � 1; vÞ). as well as the charging/discharging or
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traveling state of the PEV as modeled in (5.17) and (5.18). The relation between the
required energy for traveling of vth PEV (Ptrðt,v)) depends on the traveling distance
(DD(t,v)) and also the efficiency of the vehicle (Xv) as described in (5.20). The state
of charge should be kept between operating limits as (5.20). The charging and
discharging rate of each PEV are limited by technical characteristics as well as the
operating state as enforced by (5.22) and (5.23). It is assumed that each PEV is
either in charging (Ucðt; vÞ ¼ 1)/discharging state Udðt; vÞ ¼ 1 or traveling state
(Ucðt; vÞ þ Udðt; vÞ ¼ 0) as described in (5.23).

The objective function is defined as the total payments regarding the energy
purchase as follows:

OF ¼
X
t

PgðtÞkg þ ket ðPebðtÞ � PesðtÞÞ ð5:24Þ

If the OF is negative in (5.24) it means the energy hub is making profit in the
electricity market.

5.4 Simulation Results

The proposed mixed integer linear programming (MILP) model is implemented in
GAMS [24] environment solved by CPLEX solver running on an Intel® Xeon®
CPU E5-1620 @ 3.6 GHz PC with 8 GB RAM. The predicted hourly electric/heat
demand, wind power, electricity price pattern are depicted in Fig. 5.3. The wind
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Fig. 5.3 The hourly electric/heat demand, wind power, electricity price pattern
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capacity is assumed to be Capw ¼ 15 kW. The energy hub characteristics and data
are described in Table 5.1. The peak electric and heat load is Lemax ¼ 5 kW,
Lhmax ¼ 4:5 kW, respectively. The peak value of electric price is 47 $

kWh. The gas

price is assumed to be constant and equal to kg ¼ 30 $
kWh.

The travel pattern of PEV (km) are given in Table 5.2.
In order to demonstrate the applicability and strength of the proposed approach

different scenarios are considered as follows:

• Base case (no uncertain parameter exists in the model)
• Wind uncertainty (aw)
• Electric load uncertainty (aLe)
• Heat load uncertainty (aLh)

5.4.1 Base Case

In this case, it is assumed that no uncertain parameter exists in the model. The
objective function to be minimized is the energy procurement cost. It is called the
base cost (benefit) OFb. The following optimization is solved:

minDVb OFb ¼ OF ð5:25Þ

Subject to: (5.9–5.24)

Table 5.1 Energy hub
characteristics and data Parameter Value Unit

ggechp 35 %

gghchp 45 %

gghf 75 %

Pemax
s 7 kW

Pemax
b 7 kW

gdv 93 %

gcv 90 %

E0
v 3 kWh

SOCv
max 25 kWh

SOCv
min 1 kWh

Pðc=dÞvmin 0 kW

Pðc=dÞvmax 12.5 kW

Xv
1
6

kW
km
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aLh ¼ aLe ¼ aw ¼ 0 ð5:26Þ

DVb ¼ Pebðt), Pesðt), Pw(t), Pgchpðt), Pgf ðt), Pd(t, v), Pc(t, v), Ud(t, v), Uc(t, v)
n o

ð5:27Þ

The total costs would be OFb ¼ � $0:480165. The hourly total charge and
discharge pattern of PEVs is shown in Fig. 5.4.

The hourly gas input to CHP and furnace is shown in Fig. 5.5.
The hourly purchased/sold power from/to electric grid is shown in Fig. 5.6.

Table 5.2 The travel patterns of PEVs (km)

Time (h) v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

t1 0 0 0 4.6 0 0 0 4 0 0

t2 0 3.6 0 1.8 0 2 0 0 0 0

t3 0 5 0 0 0 2.2 0 0.6 0 2

t4 0 0 0 0 3.6 0 0 1.2 0 0

t5 2.4 0 0 0 1.8 4.2 2.8 3.6 0 4.4

t6 0 4.8 0 0 1.4 1.8 0 0 0 0

t7 0 0 0 0 1.6 2.6 0 0 0 0

t8 4.8 0 1 2 0 3.8 0 0 0 2

t9 0 0 0 0 1.2 3 1.2 0.8 0 1.2

t10 0 2.4 0 4 0 0 3.4 0 0 1

t11 0 0 0 4.6 2.4 0 0 4.4 0 0.4

t12 4 0 0 0 4.2 3 0 1.2 0 0

t13 0 0 0 0 2 0 3.4 0 4.2 0

t14 0 0 0 0 3 0 0 4 0 0

t15 0 0 0 0 0 1.4 0 0 3.8 0

t16 3.6 0 0 4.6 0 0 3.8 0 0 4

t17 0 0 3.6 0 1.6 0 0 3 0 4

t18 0 0 0 4 0 0 0 1.8 0 0

t19 0 0 4 0 2.2 2.6 0 0 2 4

t20 0 0 0 0 3 0 4.2 3.2 2.2 0

t21 0 0 4.8 3.8 0 0 0 2.6 1 1

t22 0 0 0 0 3.8 0 0 0.4 0 0

t23 0 4.8 0 0 0 0 0 0 0 2.2

t24 0 0 0 0 2.2 0 3.2 0 0.4 0
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Fig. 5.4 The hourly total charge and discharge pattern of PEVs in base case
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5.4.2 Uncertain Wind (aw 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
wind power generation. The objective function in this case is radius of wind power
uncertainty (not the total cost (benefit)). The following optimization is solved:

maxDVwaw ð5:28Þ

OF�OFb þ b OFbj j ð5:29Þ

Subject to: (5.9–5.24)

aLh ¼ aLe ¼ 0 ð5:30Þ

DVw ¼ DVb; awf g ð5:31Þ

The interpretation of each b value is simply defined as the relaxation degree of
objective function. The objective function is defined as aw and the decision maker
tries to maximize it for a given b value. In this way, the traditional objective
function OF would be immune against the wind uncertainty. This means even if the
forecasted value of wind doesn’t come true, the total payments do not increase more
than b percent of the base case costs OFb. The b is increased from 0 to 1 and the
variation of different variables (DVw) versus b is shown in Fig. 5.7.
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Fig. 5.6 The hourly purchased/sold power from/to electric grid in base case
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In this way, the decision maker has a portfolio of the decision variables (DVw)
for each b. The simulation results show that the aw varies from 0 to 5.829 %. This
means that if the total cost is 100 % increased then the decision maker can be
immune up to 5.829 % error in wind power prediction. In order to increase the
immunity of the objective function against the wind power uncertainty,
PesðtÞ; Pgf ðtÞ are decreased and PgchpðtÞ is increased. Both charging and dis-
charging of PEVs (Pdðt; vÞ; Pcðt; vÞ) are increased. For clarification, the decision
variables DVw are given in Table 5.3 for b ¼ 30%. In this table, the hourly optimal
schedule of energy hub b ¼ 30% under PwðtÞ uncertainty are described. The total
payments would be OF = − $0.3361 and the maximum wind uncertainty that can be
tolerated would be aw ¼ 1:748692%.

5.4.3 Uncertainity Electric Load Missing (aLe 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
electric load. The objective function in this case is radius of electric load uncertainty
[not the total cost (benefit)]. The following optimization is solved:
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maxDVw aLe ð5:32Þ

OF�OFb þ b OFbj j ð5:33Þ

Subject to: (5.9–5.24)

aLh ¼ aw ¼ 0 ð5:34Þ

DVLe ¼ DVb; aLef g ð5:35Þ

The objective function is defined as aLe and the decision maker tries to maximize
it for a given b value. In this way, the traditional objective function OF would be
immune against the electric load uncertainty. This means that even if the forecasted
value of electric load is not equal to the real value, the total payments do not
increase more than b percent of the base case costs OFb. The b is increased from 0
to 1 and the variation of different variables versus b is shown in Fig. 5.8.

Table 5.3 The hourly optimal schedule of energy hub b ¼ 30% under Pw(t) uncertainty

Time (h) PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P

v Pc t; vð Þ P
v Pd t; vð Þ

t1 0 7 6.245 6.245 0 0 3.353

t2 0 7 7.808 7.808 0 0 3.145

t3 0 3.729 8.787 8.787 0 0.36 0

t4 7 0 5.974 0 5.974 7.63 0

t5 7 0 5.306 0 5.306 7.708 0

t6 0 4.569 9.502 9.502 0 0 0

t7 0 7 9.385 9.385 0 0 2.568

t8 0 7 10 10 0 0 0.724

t9 0 7 9.044 8.159 0.885 0 0

t10 0 7 9.091 9.091 0 2.048 0

t11 0 7 8.387 6.866 1.522 2.862 0

t12 0 7 5.544 0 5.544 1.511 0

t13 0 7 7.214 4.718 2.496 4.031 0

t14 0 7 6.536 3.663 2.874 4.378 0

t15 0 7 6.183 3.391 2.792 4.061 0

t16 0 7 8.23 8.23 0 6.186 0

t17 0 7 6.603 4.656 1.947 5.129 0

t18 0 7 8.807 8.807 0 5.439 0

t19 0 7 5.448 0 5.448 1.087 0

t20 0 7 9.011 9.011 0 3.582 0

t21 0 7 6.002 4.207 1.795 0 0

t22 0 7 8 8 0 0 0.389

t23 0 7 7.558 7.558 0 0 0.835

t24 0 5.113 6.713 6.713 0 0 0
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In this way, the decision maker has a portfolio of the decision variables (DVLe)
for each b. For clarification, the decision variables are given in Table 5.4 for
b ¼ 30%. In this table, the hourly optimal schedule of energy hub b ¼ 30% under
Le(t) uncertainty are described. The total payments would be OF = − $0.336115
and the maximum wind uncertainty that can be tolerated would be
aLe ¼ 3:963492% .

5.4.4 Uncertain Heat Load (aLh 6¼ 0)

In this case, it is assumed that the only uncertain parameter existing in the model is
heat load. The objective function in this case is radius of heat demand uncertainty
(not the total cost (benefit)). The following optimization is solved:

maxDVLh aLh ð5:36Þ

OF�OFb þ b OFbj j ð5:37Þ

Subject to: (5.9–5.24)
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Fig. 5.8 The variation of different variables versus b (uncertain electric load)
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aLe ¼ aw ¼ 0 ð5:38Þ

DVLh¼ DVb; aLhf g ð5:39Þ

The interpretation of each b value is simply defined as the relaxation degree of
objective function. The objective function is defined as aLh and the decision maker
tries to maximize it for a given b value. In this way, the traditional objective
function OF would be immune against the heat load uncertainty. This means that
even if the forecasted value of heat load is not equal to the real value, the total
payments do not increase more than b percent of the base case costs OFb. The b is
increased from 0 to 1 and the variation of different variables (DVLh) versus b is
shown in Fig. 5.9.

In this way, the decision maker has a portfolio of the decision variables (DVLh)
for each b. For clarification, the decision variables are given in Table 5.5 for
b ¼ 30%. In this table, the hourly optimal schedule of energy hub b ¼ 30% under

Table 5.4 The hourly optimal schedule of energy hub b ¼ 30% under Le(t) uncertainty

Time (h) PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P
v
Pc t; vð Þ P

v
Pd t; vð Þ

t1 0 7 6.245 6.245 0 0 3.398

t2 0 7 7.808 7.808 0 0 3.213

t3 0 3.645 8.787 8.787 0 0.359 0

t4 7 0 5.974 0 5.974 7.533 0

t5 7 0 8.843 8.843 0 10.707 0

t6 0 4.482 9.502 9.502 0 0 0

t7 0 7 9.385 9.385 0 0 2.657

t8 0 7 10 10 0 0 0.781

t9 0 7 9.079 8.246 0.832 0 0

t10 0 7 9.091 9.091 0 2.048 0

t11 0 7 9.402 9.402 0 3.778 0

t12 0 7 5.544 0 5.544 1.557 0

t13 0 7 5.327 0 5.327 2.442 0

t14 0 7 8.452 8.452 0 6.134 0

t15 0 7 4.826 0 4.826 2.955 0

t16 0 7 7.247 5.774 1.473 5.417 0

t17 0 7 4.74 0 4.74 3.594 0

t18 0 7 8.343 7.646 0.697 5.114 0

t19 0 7 7.686 5.595 2.091 3.111 0

t20 0 7 5.407 0 5.407 0.489 0

t21 0 7 7.199 7.199 0 1.079 0

t22 0 7 8 8 0 0 0.385

t23 0 7 7.558 7.558 0 0 0.835

t24 0 5.101 6.713 6.713 0 0 0
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Lh(t) uncertainty are described. The total payments would be OF = − $0.336115
and the maximum wind uncertainty that can be tolerated would be
aLh ¼ 4:040376%.

5.5 Comparison and Discussion

In this section, the four assessed cases are compared and discussed. The simulation
results show that in order to increase the robustness of the decision variables against
the wind uncertainty, some actions should be taken. Selling electricity to the pool
should be reduced. This holds also for reducing the undesired impacts of electric
demand uncertainty. In contrary to these two cases, the energy selling to the pool
market should be increased in order to avoid the financial risks due to uncertainty of
heat load. Increasing the amount of gas purchase would have positive impacts on
reducing the risks of all uncertain parameters (including wind power generation,
electric and heat load). However in order to make the objective function immune to
uncertainty of wind and electric load, the share of the natural gas which is fed into
the CHP unit is increased and the furnace share is decreased. The decision maker
should increase the share of furnace unit to avoid the risks of uncertain heat
demand. The amount of PEVs in charging and discharging should be increased in
order to handle the uncertainties of wind and electric load in contrary to the
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uncertain head load case. The comparison between different cases and the actions to
be taken is shown in Fig. 5.10.

Some lines of future research can be concluded from this work, as follows:

• To consider more elements (like energy conversion and storage units) in energy
hub

• To consider other uncertain parameters affecting the performance of the energy
hub

• To consider the possibility of participating in other markets in addition to energy
market

• To assess the Impacts of smart grids on energy hub energy management policies
• To analyze the reliability issues of elements in energy hub
• To develop a model for describing the interaction of multiple energy hubs from

technical and economical points of view
• To incorporate the grid (gas and electric) integration constraints of energy hubs

Table 5.5 The hourly optimal schedule of energy hub b ¼ 30% under Lh(t) uncertainty

Time
(h)

PebðtÞ PesðtÞ PgðtÞ PgchpðtÞ Pgf ðtÞ
P

v Pc t; vð Þ P
v Pd t; vð Þ

t1 0 7 6.497 6.497 0 0 3.181

t2 0 7 8.123 8.123 0 0 2.943

t3 0 4.272 9.142 9.142 0 0.042 0

t4 7 0 6.331 0.29 6.041 7.831 0

t5 7 0 5.52 0 5.52 7.809 0

t6 0 4.814 9.886 9.886 0 0 0

t7 0 7 9.764 9.764 0 0 2.326

t8 0 7 10.404 10.404 0 0 0.447

t9 0 7 9.096 7.705 1.391 0 0

t10 0 7 9.458 9.458 0 2.365 0

t11 0 7 5.869 0 5.869 0.677 0

t12 0 7 5.768 0 5.768 1.749 0

t13 0 7 5.542 0 5.542 2.632 0

t14 0 7 8.793 8.793 0 6.435 0

t15 0 7 8.369 8.369 0 6.057 0

t16 0 7 5.137 0 5.137 3.564 0

t17 0 7 8.219 8.219 0 6.639 0

t18 0 7 7.553 5.138 2.415 4.391 0

t19 0 7 8.295 6.565 1.729 3.593 0

t20 0 7 5.625 0 5.625 0.619 0

t21 0 7 6.002 3.771 2.231 0 0

t22 0 7 8.323 8.323 0 0 0.156

t23 0 7 7.864 7.864 0 0 0.615

t24 0 5.307 6.984 6.984 0 0 0
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5.6 Conclusions

The problem of considering the input uncertainties within the context of the energy
hub management has been addressed in this chapter. An IGDT based technique was
proposed to obtain the optimal operating strategy of the energy hub. The PEVs have
been used as the energy storage device in order to maximize the flexibility of
decision making framework. The optimal energy procurement from different
resources is determined taking into account the influence of electric/heat demand as
well as the wind power generation uncertainties. The obtained results from the
proposed risk-averse strategy assures the decision maker that although the predicted
values of the uncertain input parameters are not exact, the outcome of the proposed
model (payments) would be immune against the prediction error to some controlled
extent. The method can be extended to consider the risk seeking behavior of
opportunistic decision maker.

Acknowledgments This book chapter is gratefully dedicated to Simin, Shahryar, Mona and
Soudeh who taught me how to be a better man.

Fig. 5.10 The comparison between different cases and the actions to be taken
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Chapter 6
Integration of Distribution Grid
Constraints in an Event-Driven Control
Strategy for Plug-in Electric Vehicles
in a Multi-Aggregator Setting

Klaas De Craemer, Stijn Vandael, Bert Claessens
and Geert Deconinck

Abstract In literature, several mechanisms are proposed to prevent Plug-in Elec-
tric Vehicles (PEVs) from overloading the distribution grid [1]. However, it is
unclear how such technical mechanisms influence the market level control strate-
gies of a PEV aggregator. Moreover, the presence of multiple aggregators in the
same distribution grid further complicates the problem. Often, grid congestion
management mechanisms are proposed to solve the potential interference between
the technical and market objectives. Such methods come at the expense of addi-
tional complexity and costs, which is not beneficial for the large scale application of
demand response. In our work, we investigate this problem by combining a simple
low level voltage droop controller with an event driven control strategy for the
coordination of charging PEVs. The approach is evaluated in different distribution
grid settings, using two different market objectives for the aggregator.

6.1 Introduction

In a liberalized electricity market, aggregators are typically seen as the actors who
will utilize the flexibility of PEVs. To control their PEVs, an aggregator typically
determines a collective charging schedule for the fleet, based on wholesale energy

K. De Craemer � G. Deconinck (&)
Department of Electrical Engineering (ELECTA - EnergyVille), KU Leuven, PB2445
Kasteelpark Arenberg 10, 3000 Leuven, Belgium
e-mail: geert.deconinck@esat.kuleuven.be

K. De Craemer
e-mail: klaas.decraemer@esat.kuleuven.be

S. Vandael
Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3000 Leuven, Belgium
e-mail: stijn.vandael@cs.kuleuven.be

B. Claessens
Flemish Research Institute (VITO), Boeretang 200, 2400 Mol, Belgium
e-mail: bert.claessens@vito.be

© Springer Science+Business Media Singapore 2015
S. Rajakaruna et al. (eds.), Plug In Electric Vehicles in Smart Grids,
Power Systems, DOI 10.1007/978-981-287-302-6_6

129



prices or its portfolio position. However, charging PEVs are physically connected
to a distribution grid, which is inherently constrained by its infrastructure. To assure
correct operation of the distribution grid, the Distribution System Operator (DSO)
can enforce constraints by using grid congestion management mechanisms.

To integrate both aggregator and DSO objectives in the coordination of PEV
charging, we identified two operation levels [2]:

• The market operation level entails actions with the objective of following
beforehand traded volumes on the wholesale electricity markets, where trading
takes place on relatively long-term scale (months, seasons) and amounts are
expressed as energy quantities—usually MWh—in time slots of typically 1 h or
15 min.

• The real-time operation level entails the actions to comply with instantaneous
consumer preferences and respect local grid constraints. Because changes and
control are relatively more instantaneous and dynamic at this level, real-time
operation (or technical operation) is usually expressed in terms of electrical
power, e.g. kW. Granularity is in the range of minutes to seconds. At this level,
fast responses are important and the number of exchanged messages will be
limited.

The influence between market operation and real-time operation in coordinated
charging of PEVs is often overlooked. A large part of research on integration of
PEVs is aimed at optimally coordinating charging at the market operation level,
facilitating larger shares of renewable energy sources or providing system-wide
ancillary services. At the same time, a lot of work in literature has been carried out
towards the use of PEVs to avoid distribution grid overloads or reducing losses [3,
4], objectives that are situated in the technical operation level.

However, the market and technical level can come into conflict, which typically
occurs when the distribution grid is constrained or overloaded, at which point the
technical objectives will intervene in the market objective(s). As market operation is
overruled, consumption can deviate from what is intended by the aggregator.
Multiple aggregators active in the same distribution grid further complicate this
problem.

In this chapter, we analyze the influence of the real-time operation level on the
market operation level by simulating both levels in a set of varying distribution grid
scenarios with a single aggregator and multiple aggregators. For the market oper-
ation level, an existing event-driven market-based control (MBC) for coordinated
PEV charging is used. For the real-time operation level, an optional voltage droop
controller is used to mitigate local voltage limitations. In our analysis, we quantify
the optimality of the aggregator’s objective at the market operation level, while
using droop controllers.

The contributions of this chapter can be summarized as follows:

1. Analysis of the influence of grid constraints in an event-driven control strategy
for PEVs. Attention is paid to the effect of grid constraints on an aggregator’s
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market-level objectives, optionally with the use of a voltage droop controller to
alleviate grid congestion.

2. Analysis of the influence of grid constraints in a multi-aggregator setting.

In Sect. 6.2, existing algorithms and models for both market and real-time
operation levels are discussed. In Sect. 6.3, the choice of algorithm for the market
operation level is detailed and motivated. Then, in Sect. 6.4, a set of relevant
distribution grid scenarios is described, together with an explanation of the models
and assumptions for the simulations. In Sect. 6.5, the chosen algorithms are sim-
ulated in these predefined scenarios, and the influence of real-time operation on
market-level objectives is thoroughly analyzed. Finally, the same scenarios are
analyzed for a multi-aggregator setting in Sect. 6.6.

6.2 Background

6.2.1 Market Level Operation

Current research regarding the optimization and coordination of clusters of Demand
Response (DR) participants at the market level can roughly be divided according to
the way the optimization is performed; distributed, centralized and aggregate and
dispatch algorithms. This is illustrated in Fig. 6.1.

Distributed algorithms perform a significant part of the optimization process of
allocating energy over the cluster at the participating devices themselves. This way,
the computational complexity of finding a suitable solution is spread out over the
demand response cluster, typically using an iterative process where information is
communicated between the participants. However, the distributed aspect does not
exclude the existence of an entity responsible for initiating or coordinating the
convergence over the iterations.

One share of distributed algorithms in literature is based around distributed
optimization techniques, in which a large optimization problem is divided in
smaller parts that can be iteratively and independently solved [5–9]. In particular
the use of gradient ascent methods and its derivatives, such as dual decomposition,
are common.

Centralized Distributed Aggregate & dispatch

Aggregator Local DR device Optimization

Fig. 6.1 Illustration of the three classes of algorithms and coordination for DR at the market-level
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Centralized algorithms are entirely the opposite. A central actor collects
information that is sent to it from the DR devices. This information can consist of
individual constraints and deadlines or comfort settings. Using the collected
knowledge, and possibly including its own additional information such as predic-
tions or stochastic functions, the central coordinator can perform a single optimi-
zation that returns an optimal schedule satisfying all the constraints at once.
Inherently, this makes centralized algorithms the least scalable, as the optimization
process quickly becomes intractable with an increasing number of participating
devices. Furthermore, the communication towards and from a single point poses a
potential bottleneck. Several solutions are proposed that help to overcome the
tractability issue [10, 11]. In [12], focus is on ensuring that vehicle owners truth-
fully report their value for receiving electricity, willingness to wait and maximum
charging rate. Owners could misreport their availability, for example by unplugging
early or plugging in the vehicle some time after arrival to try and get a better price.

Inbetween distributed and centralized mechanisms are the aggregate and dis-
patch algorithms. They decouple the optimization of the objective and the dispatch
of its outcome, thus alternatively the term ‘dispatching mechanism’ is equally fitting.
An aggregate & dispatch mechanism allows information (such as constraints) from
and to the central entity to be aggregated, reducing the complexity of the optimi-
zation and improving scalability, but carrying certain compromises or constraints
regarding the optimality of the results. The work of [13–15] follows this idea.

While distributed and centralized algorithms can determine an optimal DR
schedule given the device’s constraints, market data,… they carry some disad-
vantages regarding computation times, complexity or communication. Aggregate
and dispatch mechanisms are a compromise allowing for a scalable and low-cost
implementation, at a limited loss in optimality [16]. In our work, we have chosen to
work with one aggregate & dispatch algorithm in particular, MBC. We will discuss
this method in more detail in Sect. 6.3.

6.2.2 Real-Time Level and Grid Congestion

As the electricity grid cannot get physically congested, the term grid congestion
refers to a situation where the demand for active power exceeds the nominal power
transfer capabilities of the grid [17]. Grid congestion can be mapped to the violation
of one or more constraints at its connection points. In the context of this chapter,
these will mainly be in the form of power quality problems in distribution grids, and
can be attributed to the resistive and unbalanced nature of distribution grids.

6.2.2.1 Grid Congestion Metrics

The European EN 50160 standard, “Voltage characteristics of electricity supplied
by public distribution systems” [18], describes, among others, the following
important specifications:
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• Over- and undervoltage: “The European EN 50160 standard specifies that the
10 min mean RMS voltage deviation should not exceed ± 10 %, measured on a
weekly base. For undervoltages, a wider range is allowed in the measurement
procedure: −15 to −10 % during maximum 5 % of the week.”

• Voltage dip: EN 50160 allows 1,000 voltage dips per year, during which the
voltage drops at most to 85 % of its nominal value, for a duration of less than
1 min. Interruptions, defined as lasting less than 180 s, should occur less than
500 times/year.

• Voltage unbalance factor (VUF): When magnitudes of phases or line voltages
and the phase angles are different from balanced conditions. “The European EN
50160 standard specifies that the 10 min mean RMS value of the voltage
unbalance factor should be below 2 % for 95 % of time, measured on a weekly
base.” Different ways to compute the VUF exist, and here we will use True VUF
as shown below. More information on the definitions and calculation of VUF
can be found in [19].

True VUF ¼ negative voltage sequence component Vn

positive voltage sequence component Vp

with Vp ¼ Vab þ aVbc þ a2Vca

3

and Vp ¼ Vab þ aVbc þ a2Vca

3

ð6:1Þ

• Harmonics: Caused by the power electronics inside converters such as found
inside vehicle chargers or photovoltaic (PV) inverters. Harmonics will not be
looked into here, but the use of power electronics such as found inside PEV
chargers can create problematic harmonics [20].

6.2.2.2 Congestion Mitigation

A distribution system operator, faced with grid congestion problems, can opt for a
number of mitigating strategies.

• Reactive power and voltage control to increase the (local) transfer capacity.
This is already used in wind generators connected to the medium voltage net-
work. In distribution grids, reactive power and voltage control can be achieved
through the use of tap changers and capacitor banks, and their switching is
planned using load forecasts. For example, [21] optimizes to limit switching of
such devices.

• Coordinating the power flow [17] throughput via shifting or curtailment of
demand, possible through the implementation of demand response, or through
the mandated implementation of voltage droop control.
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• Increasing the transfer capacity of the local grid by replacing or upgrading
equipment (adding or replacing cables, installing a bigger transformer…). While
this option is attractive because it limits the involvement of the DSO (retain
‘passive’ role, no forecasts …), the cost of this option can be substantial and
thus only considered when other solutions are exhausted or deemed infeasible.

The first option is already used today. However, in practical operation, low
voltage-grid tap changers are usually off-load types and barely used [22]. Tap
positions are calibrated and changed only in case of network extension or modi-
fication [23]. Automated and remotely controllable on-load tap changers (OLTC)
exist, but their use in distribution grids is still reserved to a few test cases [24], due
to costs.

The third option is technically attractive for DSOs, since it fits within a pre-
dominantly off-line role of installation, maintenance and asset management at the
distribution network level.

Adding parallel cables to or upgrading existing lines by using new cables with
higher cross sections is considered a straightforward solution [23]. No additional
tasks such as day-to-day load forecasting, extensive state estimation and monitoring
are required. The high investment costs will likely reserve this to some corner-
cases.

In the remainder of this chapter, congestion management will refer to the use of
the second option; the coordination of active power demand at congested grid
locations. In the light of the real-time and market operation levels, we will now
discuss the use of voltage droop control and grid congestion management
mechanisms.

6.2.2.3 Voltage Droop Control

As mentioned, lines in distribution grids behave resistively rather than inductively.
This causes voltage deviations along the line when large amounts of active power
are drawn from or injected into the grid. To avoid such effects, large-scale PV
installations in some countries are now required to be able to provide grid services
to the DSO. Similarly, small PV installations are required to respond to overfre-
quency and overvoltage by limiting injected power or temporarily disconnecting
[25, 26].

But PV output is determined by the uncontrollable radiation of the sun, whereas
charging rates of PEVs can be varied and shifted arbitrarily in time. Thus, in
addition to the coordination at the market level, a fast-acting grid-supportive
behavior similar as used in PV installations can be implemented inside a charger
[27–29]. It is not unthinkable that the use of automatic voltage control for Electric
Vehicle Supply Equipment (EVSE) becomes mandatory as well once their impact
reaches a significant quantity.

Nonetheless, a droop control scheme is robust and easy to implement because it
only requires the measurement of voltages and a way to adjust local active or
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reactive power settings. No communication with a central entity is needed. An
example of a voltage droop curve for a PEV charger is shown in Fig. 6.2. When the
voltage at its connection point drops below 0.9 per unit (pu), power is linearly
reduced until 0.85 pu, where charging is completely halted.

On the downside, activation of the droop will almost certainly conflict with
market level coordination [30] (Sect. 5.2.4). For example, at some point the fleet
manager would send its optimal power set-points or an equilibrium priority to the
vehicle agents. But due to local grid problems the EVSE is forced to reduce power.
The result is that, even if the real resulting power setting is communicated back to
the fleet manager, the deviation holds a disparity from the original optimal market
level energy plan. The resulting energy shortfall (negative imbalance) may result in
a penalty for the fleet manager.

6.2.2.4 Advanced Congestion Management Mechanisms

The task of a grid congestion management mechanism is to limit the managed loads
to the capacity of the distribution grid assets at any time, especially in the presence
of multiple competing actors with different objectives. This can be achieved by
adding a network cost or penalty for the use of the network during certain times of
the day. In [17], algorithms for congestion management are classified according to
strategy.

• Distribution grid capacity market: In this mechanism, the aggregators
involved will start by optimizing the schedule for their PEVs in absence of a
network tariff. The schedule is sent to the DSO, which evaluates whether the
network constraints are met. If not, the aggregators will receive a price that
reflects congestion at each node in the network and are requested to update their
schedule.
The procedure is then repeated until convergence, at which point the network
tariff and charging schedules are fixed. As the mechanism is essentially the same
as dual decomposition, the use of non-strict convex objective functions can
cause problems. In [31, 32], this method is used.
A capacity market would be complex to implement and the iterations add a lot
of computational burden. The DSO could be offloaded by externalizing the

Fig. 6.2 Example voltage droop control characteristic for PEV chargers
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process into a separate capacity market, in which it still has to provide measured
and estimated power.

• Advance capacity allocation system: The idea behind this mechanism is that the
DSO pre-allocates grid capacity at each transformer or line to the aggregators,
based on the free capacity remaining at each line or transformer, after inelastic
load (mainly household consumption) has been accounted for. The allocation
between aggregators would be based on auctioning of this free capacity.
While relatively straightforward, there are some drawbacks to this method. First
of all, the DSO needs to map all its customers’ connection points to their
respective aggregator. Secondly, there is no way to incorporate the time-
dependency of demand; if an aggregator bids for the capacity during certain
time, that bid depends on what was allocated before and after that time-period.
An iterative approach would solve this, but also increases complexity again.

• Dynamic grid tariff: In this case, a time-varying location-dependent grid tariff is
determined by the DSO beforehand, based on expected consumption levels at
each node in the grid. Predicting loads and estimating price-sensitivity is entirely
the responsibility of the DSO. Once the tariffs are published to the aggregators, the
latter integrate them into their scheduling. In case of severe deviations from the
expected value, the DSOmay resort to controlled interruptions in real-time, which
in turn also holds a risk for the aggregators. The work of [33] uses this approach.
The biggest drawback consists of the high complexity of the problem that needs to
be solved by the DSO (predictions, load flow calculations…), let alone when the
stochastic properties of inevitable uncertainties are taken into account.

The work of [34] (p. 97) provides an overview and comparison of these 3 types
of mechanisms. While all of the mechanisms should lead to the same optimal PEV
charging profile, the complexity involved limits their practical implementation. It is
also not clear how deviations during the course of the day should be handled, which
will inevitably occur as the algorithms are based on the use of allocations in time
slots (e.g. 15 min in [32] ), besides the last-resort of DSO-controlled interruptions.

In [34] (p. 100) the use of a simpler proxy tariff is proposed, such as a historical
ToU or real-time tariff, as a compromise. Unfortunately, following simulations, the
conclusion suggested that the use of proxy tariffs does not necessarily reduce
system peak load, leads to higher costs (approx. +20 %) and distorts the economic
signal of the electricity price.

6.3 Market-Level Operation: Market-Based Control
for PEVs

The concept of MBC is rooted in the theory of microeconomics, wherein economic
activity is modeled as an interaction of individual parties pursuing their private
interests [35] (Chap. 4). The market mechanisms that apply provide a way to
incentive the parties, referred to as economic agents, to behave in a certain way.
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In [36], appliances in a DR cluster are represented by software agents in a multi-
agent system (MAS). They have control over one or more local processes (e.g.
heating of water or charging of a PEV’s battery), but compete for resources (electric
power) on an equilibrium market with other agents.

6.3.1 Architecture

The MBC system has been used in a number of field tests and is commercially
known as PowerMatcher. The clearing of the market in [36, 37] is operated on a
periodic basis, e.g. a time slot length of 15 min, or using events, and is implemented
in a hierarchical, tree-like manner [35], as illustrated by Fig. 6.3a.

At the root of the tree is an auctioneer agent, directly connected to a number of
concentrator agents. The auctioneer agent is a special type of concentrator agent
and is responsible for the price setting process, just as in the Walrasian auctions.
The concentrator agents lower in the tree aggregate the demand functions of their
child agents. Because a uniform interface is used between the levels, an unlimited
number of such aggregation levels can be used. Eventually, at the bottom of the
tree, we find the device agents themselves.

The device agents assemble demand functions representing their willingness to
pay and consume, taking into account the specific constraints of the controlled
device. Demand functions are sent upwards and an auctioneer agent performs a
matching process with producing agents. An equilibrium price is communicated
back to the agents, that start consuming or producing at the equilibrium level.

If equilibrium prices are regarded as a pure control signal, so that there is no
direct link to the cost of energy, the MAS MBC mechanism can be viewed as a
dispatching method for the aggregator’s business case. In such scenario, the
demand function data is regarded as input for a scheduling algorithm, and the
equilibrium price (or better, equilibrium priority) as a level to steer the cluster
towards its outcome.

6.3.1.1 Demand Functions for PEV Device Agents

Representative demand functions can be built using various means, but in case of
PEVs, a straightforward way is by combining each agent i’s requested energy iEreq,
time till departure iDtdep and maximum charging power iPmax to create a sloped
curve iPdem, as shown below each PEV in Fig. 6.3a and also in Fig. 6.3b. In case
there is not enough time left to receive the requested energy (tcritical occurs before
the current time), an inflexible demand function can be used, so that charging
happens at maximum power regardless of the control signal.
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iPdem ¼ f iEreq;
i Dtdep;

i Pmax
� � ð6:2Þ

itcritical ¼ tj iEreq ¼ i Pmax
iDtdep ð6:3Þ

A detailed description of building demand functions for PEVs in this context can
be found in [2, 16].

Fig. 6.3 Overview of the control structure in MAS MBC in (a). Device agents, pictured as
charging PEVs, send demand functions iPdem, shown in (b), upwards. After aggregation of the
individual demand functions, equilibrium priority pequi is determined, shown in (c), and sent back
to the agents
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6.3.1.2 Concentrator Agents and Aggregation

At the concentrator agents, the individual demand functions of n agents are
aggregated into a single curve Paggreg

dem , shown in Fig. 6.3c. At the auctioneer agent,
this aggregated curve is used to find the equilibrium priority pequi that corresponds
to a desired power setting Pctrl for the DR cluster.

Paggreg
dem ¼

Xn
i¼1

iPdem ð6:4Þ

pequi ¼ Paggreg
dem jPctrl ð6:5Þ

The value for Pctrl has to be determined by the business agent.

6.3.2 MAS MBC Advantages and Drawbacks

Using a multi-agent market based control system (MAS MBC) for demand
response, as exemplified by the PowerMatcher, offers several benefits.

• Scalability: In a centralized system, the central entity has to deal with all
incoming and outgoing messages, OðnÞ, quickly creating a communication
bottleneck. Because of the aggregation on multiple levels in the PowerMatcher,
the amount of messages that have to be dealt with per agent can be reduced to
Oðlog nÞ.

• Low complexity: The construction of demand function data and the matching
process itself is straightforward, and is not based on any model. Determining a
demand function for a device can be done during its development.

• Openness: Any kind of device can be integrated in the cluster, since operation
only depends on the exchange of demand functions and price. Devices without
flexibility are represented by an inelastic demand function.

• Privacy: Since demand functions are aggregated there is no central entity that
collects all information. Furthermore, the physical processes of devices, bidding
strategy and motives of users are all abstracted through their demand functions.

As indicated before, the use of an aggregated model at the auctioneer agent and a
heuristic to build the PEV’s demand functions will lead to a suboptimal solution.
However, a more significant shortcoming compared to other methods presented in
this chapter, is the lack of look-ahead functionality.
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6.3.3 Addition of Scheduling Functionality and Control
Objectives

For loads that can store electric energy, such as PEVs, an energy constraints graph
can be used to capture the available flexibility over a certain time horizon. This is
introduced in the work of [16]. For each PEV i, two vectors iEmax and iEmin are
added to the information iPdem sent from device agents to auctioneer agent.

The vector iEmax is the energy path of a PEV agent i, if it were to start charging
immediately at maximum power and then (at tidle) stay idle until its departure time
tdep. On the other hand, iEmin represents the case when charging is postponed as
long as possible (up to tcritical). This is expressed in the equations below and
illustrated in Fig. 6.4a. All area in between iEmax and iEmin represents the flexibility
of the charging process.

iEmax ¼ iEmax tð Þj iEmax tð Þ ¼ min t iPmax;
i Ereq

� �8t 2 0; 1; . . . iDtdep
� �� �

iEmin ¼ iEmin tð Þj iEmin tð Þ ¼ max iEreq � iDtdep � t
� �

iPmax; 0
� �8t 2 0; 1; . . . iDtdep

� �� �
ð6:6Þ

To represent the battery constraints of an entire PEV fleet of n vehicles, the
individual constraints are aggregated into collective battery constraints Eaggreg

max and
Eaggreg
min , at the intermediate agents and the auctioneer agent. The auctioneer agent

can now use the collective energy constraints to determine an optimal path Eopt over
the horizon thorizon; according to some objective function C:

Eopt ¼ argmin
E

C Eð Þ ð6:7Þ

Fig. 6.4 a Energy constraints graph for a single vehicle i, and b aggregated energy constraints
graph and some scheduled path E through it
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with: E ¼ Etf 8t 2 0; 1; . . .; thorizonf gg;
subject to: Pt �Plimit

t 8t 2 0; 1; . . .; thorizonf g
Eaggreg
min;t �Et �Eaggreg

max;t 8t 2 0; 1; . . .; thorizonf g
Etþ1 ¼ Et þ PtDt 8t 2 0; 1; . . .; thorizon � 1f g

HereEt i s the collective energy of the cluster at time t, andPt is the power consumed
by the cluster during time t toDt. Any objective C Eð Þ can be used to determine a path
for the PEV cluster, and in Sect. 6.4.1, two objectives will be discussed.

6.3.4 Event-Driven Approach

Communication takes on an important role in demand side management of PEVs.
Charging requirements and constraints need to be communicated to an aggregator,
while aggregators need to send control signals back to PEVs in order to steer their
charging power towards cluster-wide goals.

In terms of integrating charge coordination algorithms into a realistic “real-
world” environment, two challenges are identified: continuous coordination, and
messaging limitations.

The first challenge is the need for continuous coordination of the charging
process. In energy markets, charging only needs to be optimized in terms of energy
volume per hour. However, vehicles arrive and depart continuously, and will want
to start charging or depart at asynchronous times.

This means that, ideally, control and coordination actions should also commence
immediately, especially for fast-charging applications, and allow for quickly
altering the fleet’s behavior if the need arises. Consequently, charging needs to be
coordinated at two levels: a market level, where time is divided in time slots, and a
real-time, event-driven level that is focused on responsiveness. This division
applied to the MBC architecture is illustrated in Fig. 6.5.

In this case, event-based interaction allows the PEVs and aggregator to quickly
respond to changes in setpoint or in flexibility. If a situation occurs where vehicles
have to slow down charging due to distribution grid constraints, the aggregator is
informed and will try to use flexibility from other vehicles that do not experience
such problems.

The second challenge is related to the exchange of messages between PEVs and
an aggregator. In reality, the underlying infrastructure places constraints on the
communication, pertaining to packet delays, link reliability or maximum through-
put. In the latter case, the exchange of messages should be limited by the coordi-
nation mechanism, which is done by caching information from and to the PEVs.
More details on the event-driven implementation can be found in [2].
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6.4 Simulation Objectives and Models

We want to investigate the situation where an aggregator coordinates a cluster of
PEVs based on market-level objectives, but a large part or all of the vehicles are
situated inside a weak and constrained grid topology. How effective is the use of a
voltage droop controller in eliminating or reducing grid congestion problems? To
what degree do the technical objectives impact the aggregator’s business case?

To answer these questions, a simulation framework was developed; a Java-based
part allows to model the interaction between the agents, while the market-level
optimization is performed in Matlab using CPLEX. To simulate the effects on the
voltages in a distribution grid, a Matlab-based backward-forward sweep load flow
solver developed at our research group was also integrated in the framework.

Besides a framework, several models and datasets are required to properly
represent the actors and their behavior. In this section, we describe the driving
profiles and model for the PEVs, the wind prediction and generation, and the
household loads present in the distribution grids.

6.4.1 Aggregator Market-Level Objectives

Two market-level objectives for the auctioneer agent are considered:

• Time-of-Use (ToU), where the aggregator’s goal is to minimize the cost of
charging a cluster of vehicles, based on a time-varying tariff pt, and using a
Linear Program (LP) optimization:

Fig. 6.5 MAS MBC
architecture with dual
coordination. The real-time
part is event-driven, while the
market operator works in
discrete time intervals (time
slots)
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Eopt ¼ argmin
E

Xthorizon
t¼0

C Etð Þ with C Etð Þ ¼ ptEt ð6:8Þ

Because this is a linear objective, a sharp on-off control behavior can be
expected.

• Portfolio balancing, where the goal of the aggregator is to use the flexibility of a
fleet of PEVs to limit his portfolio’s wind generation exposure to the imbalance
markets. This means finding an optimal energy trajectory for the PEVs, EPEV,
over a horizon, such that the difference between short-term wind prediction
Ewind and day-ahead nomination Enomin is minimized:

Eopt ¼ argmin
E

Xthoriz
t¼0

EPEV;t þ Ewind;t þ 1
4
Enomin;t=4

� �2

ð6:9Þ

In this specific case, the day-ahead nominations are required to be supplied on an
hourly-basis, while the short-term wind predictions are on known a quarterly basis,
15 min ahead, and with a horizon of 24 h. The control variables of the PEVs can be
on an arbitrary time basis.

Thus, as more accurate wind predictions become available after the nomination,
the optimization will try to use the vehicles to limit the difference, and, due to the
quadratic term, favor to spread out remaining imbalance in time (Fig. 6.6).

6.4.2 PEV Model

The model of the PEVs (hybrid plug-in or full electric) in the simulations consists
of two main parts: a battery model and a usage or driving profile.

Fig. 6.6 Illustration of the
balancing objective
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6.4.2.1 Battery and Charging

In literature, a great deal of research has been done on the characterization and use
of batteries for electric drive-train applications. The purpose of the envisaged model
for the simulations in this context does not include aspects such as aging and
depreciation costs, and are subsequently left out in favor of a simple first order
approximation of the storage capacity of the battery.

In reality though, the maximum charging current has to decrease before the
battery reaches a state of charge (SOC) of 100 %, to avoid damaging the cells. Here,
the charging and discharging process in the PEV is simplified to a constant power
behavior, and the capacity is chosen such that it corresponds to a depth of discharge
(DOD) of 83 %. This is a valid consumption, as the SOC of existing PEVs is also
kept within a certain DOD to extend battery life. Summarized, all vehicle instances
are equipped with the same usable battery content of 20 kWh. Technically
speaking, 20 kWh would then represent a PEV with a total battery capacity of
around 24 kWh.

Technical constraints in (European) residential installations limit charging power
to around 3.3 kW (corresponding to 16 A at 230 V and 10 % allowed voltage
deviation) or 6.6 kW (32 A). In fact, to avoid problems due to inadequate wiring or
installations, some car manufacturers only allow the 3.3 kW power level when the
vehicle is plugged into a so-called dedicated wall-box. Charging through standard
outlets is then typically limited to 2–2.5 kW. In the battery model used here,
charging takes place at a variable power level between 0 and 3.3 kW. This may
seem to be a slow charging rate, but because of the long standstill times at home,
the need for higher charging rates at home is not critical [38].

Also assumed that vehicles want their battery fully charged by departure, as this
is the worst case and also more convenient for drivers, not having to enter an
expected distance. Vehicle-to-grid scenarios were not considered.

6.4.2.2 Driving Profiles

To complete the PEV model, data about the state of the vehicle during the day (idle
at home, driving, unavailable,…) and the energy consumption while driving is
required.

In the work of [39], the results of the 3rd Flemish Mobility Study (OVG3) were
analyzed. The latter was commissioned by the Flemish government and looks at the
transportation behavior of 8,800 drivers during September 2007 and 2008.
Recorded data includes the number of trips each day, distances, motives, departure
times, … From this, synthetic availability profiles were prepared that can be used in
simulations. An example for 2,500 vehicles is shown in Fig. 6.7, where the number
of vehicles that is at home, driving or at work over the course of 7 days is plotted. It
can be seen that fleet behavior is very periodic and therefore predictable.

Vehicles will only charge at home, so that the amount of energy needed reflects a
worst-case scenario for the distribution grid.
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For the energy consumption model, required power during acceleration and
braking (related to vehicle size, aerodynamics and driver habits) has to be added on
top of auxiliaries such as lighting, heating, wipers etc. More information can be
found in [30] (Chap. 2), and [39, 40]. From [39], an average driving speed of
42 km/h is combined with an energy consumption of 250 Wh/km.

These numbers result in a theoretical range of 80 km for each simulated vehicle.
Figure 6.8 shows the cumulative distribution of the SOC of the battery at arrival
time, after a simulation with 1,000 vehicles and over 7 days. From the figure, half of
the arrivals happened with a battery of almost 80 % SOC or more. However, for
6.8 % of the simulated trips, 20 kWh was insufficient. Simply increasing the usable
battery size to 24 or 26 kWh does not eliminate these occurrences, so these trips are
out of range for the average battery electric vehicle (BEV). It will therefore be
assumed that these drivers are using a plug-in hybrid electric vehicle (PHEV) to
complete their journey.

Fig. 6.7 Illustration of the used vehicle availability profiles, cumulative for 2,500 vehicles, over
7 days

Fig. 6.8 Effect of simulated battery size on SOC at vehicle arrival, for different usable battery
contents, obtained for a set of 1,000 vehicles over 7 days
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6.4.3 Wind Energy Generation and Predictions

In one objective, renewable energy production from wind turbines is taken into
account. For several locations in the Netherlands, both wind speed measurements
and predictions are available. The wind speed predictions were calculated by the
Aanbodvoorspeller Duurzame Energie (AVDE) at ECN [41, 42] and translated to
the correct height of the turbine, as winds aloft generally have a higher velocity than
winds at ground level.

The resulting wind speed then has to be put alongside the turbine’s specified
output power. For the turbine specifications, one type from manufacturer Nordex is
used, the 2.5 MW peak N80/2500 [43].

Since the available wind speed data consists of predictions that have a horizon of
48 h, and are updated every 6 h, the most accurate predictions that can be submitted
for nomination are those generated at 12h00 the day before.

6.4.4 Household Consumption

To be able to simulate the effects on voltage quality in a distribution grid, realistic
household consumption profiles are required. Synthetic aggregated profiles, avail-
able from the local regulator and used by energy retailers to estimate their cus-
tomers’ consumption, are too generic. In the ‘Linear’ smart grid project [44],
measurements at 100 households were performed over the course of a year, with a
resolution of 15 min. When more profiles are needed the available set is rotated. An
illustration of 20 of the used profiles is plotted in Fig. 6.9.

It can also be observed that there is a high simultaneity between households
consumption in the evening and the arrival of PEVs.

6.4.5 Weak Grid Topology and Agent Architecture

When investigating the effects of coordinated charging on the state of the dis-
tribution grid and vice versa, it makes sense to focus on weak grid configurations,
where problems are more likely to occur. The question then arises what specific
topology should be used as grid model. We are focusing on the grid situation in
Belgium, but from discussions with experts, information on the current state of
distribution grids seems to be lacking. During planning and deployment of new
grid segments, DSOs selected appropriate values for the cable sizes and lengths,
and individual connection points were spaced out evenly over the phases. Dec-
ades later, sections have been added, reconfigured, new connections points have
been attached to “random” phases, etc. This makes the occurrence of virtually any
situation possible in practice and with the increasing share of PV installations on
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the roof of households, power quality problems have already started to appear.
More information regarding PV and power quality problems in Belgian grids can
be found in [22].

Nonetheless, indicative simulations and other work [45, 46] (Chap. 3) suggests
that power quality problems in distribution grids due to charging PEVs only comes
into view at larger penetration levels of over 30–50 %, and then mostly in weak
grids, with unfavorable cable types and lengths. Since we want to study the
interference between technical and market level objectives, the focus in the next
sections will be on specific cases that represent constrained grids, and not on some
average grid situation (if that even exists).

6.4.5.1 Base Physical Grid Structure

Figure 6.10 shows the base topology used in the simulations. A 400 kVA trans-
former supplies several parallel feeders. Each feeder then supplies a number of
household loads, bringing the equivalent transformer load up to 191 households.
This is within the limits of the DSO; in a document published by the VREG [47], a
maximum occurrence of 220 connections per transformer cabin can be derived.
Unfortunately, there is no mention of the rating of the corresponding transformer.
The resulting topology is similar to the urban setting used by [45], also with a PEV
penetration level of 100 %, but here no PV installations are added, since it was
found that they do not cause major changes in the occurrence of undervoltages due

Fig. 6.9 Examples of the household profile data used, for 6 individual households in Belgium,
one week starting at day 80 of the year
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to charging. This can be attributed to the non-coincidence of PV production and
PEV availability.

One of the feeders, Feeder0, is linked to a line-segment supplying 38 single-
phase household connections. These are alternatingly attached to phases 1 to 3 and
spaced apart by distance D2. The distance from the transformer to the first
household connection is D1. From each connection point, a cable with length D3
runs from the line to the household’s supply terminals. In the simulated model, the
other feeders and loads (153 households) connected to the transformer are lumped
together into one single entity (Feeder 1), as their impact is not studied in detail.

Cable parameters are taken from the design specifications of the standard for
underground distribution cables, NBN C33-322 [48]. Cable type EIAJB 1 kV
3 × 70 + 1 × 50 mm2 is used for the main feeder and line (D1, D2), while cable type
EXVB 1 kV 4 × 16 mm2 is used to connect the household’s supply terminals to the
main cable (D3).

Table 6.1 shows the variations on this topology that are evaluated in the next
sections. Case NS and NL have a relatively short cable between the transformer and
the first household terminal (100 m). Case NL and FL represent scenarios with
rather long total cable lengths (914 and 805 m), due to longer distances between the
household connection points.

Fig. 6.10 Left single instance of the physical grid topology. Right agent topology in relation to the
physical grid in the single aggregator scenario

Table 6.1 Variations of the physical base topology, representing various weak grids

Case name Abbreviation D1 (m) D2 (m) D3 (m) Total length (m)

NearTransf
ShortCable

NS 100 15 20 655

NearTransf
LongCable

NL 100 22 20 914

FarTransf ShortCable FS 250 7 20 509

FarTransf LongCable FL 250 15 20 805
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6.4.5.2 Agent Structure

The organization of the software agents that represent the charging vehicles is
independent of the grid topology from the previous section. But, in our simulations,
it is assumed that all agents for vehicles that are physically connected to the same
transformer are grouped under a single concentrator agent.

At the same time, for the market operation at the fleet manager to function
properly, more flexibility than what is provided by the 38 vehicles in the base
topology should be available in the cluster. To that end, the cluster is extended so
that, depending on the scenario, a total of 200 or 1,000 vehicle agents takes part in
the coordinated charging. These additional agents are not part of the load flow
calculations. The right side of Fig. 6.8 shows the resulting agent topology.

To test additional shares of PEVs inside weak distribution grids, additional
variations of the agent structure are created by having multiples of the base
topology. These are shown in Table 6.2. The suffix after the case number deter-
mines the share of agents used in the topology.

6.5 Single Aggregator Simulations and Results

In this section, the effect of coordinated charging using market-level objectives on
local grid congestion, in the distribution grid scenarios from Sect. 6.4.5, will be
examined.

Besides the MAS MBC event-based implementation that was outlined before,
we will also include an uncoordinated or dumb charging scenario, during which
vehicles plug in and start charging upon arrival at their maximum rated power Pmax.

6.5.1 Aggregator with ToU Cost Objective

The objective of the fleet manager during a ToU scenario is to respond on a 24-hour
horizon ToU tariff in such a way as to minimize the charging cost of the vehicle
fleet. The 24-hour tariff is based on the wholesale energy price of the hourly
BELPEX day-ahead market. It should be noted that using the price profile of a day-
ahead market is not fully representative of a future ToU tariff as it could be
implemented by utilities. Still, prices on the day-ahead market do reflect real-world

Table 6.2 Variations of the
agent topology, representing
different amounts of vehicles
situated in weak grids

Case name EVs inside weak grid

x-38 38

x-114 3 × 38

x-380 10 × 38

x-760 20 × 38
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peak and off-peak periods on an hourly basis, which is what is needed in these
simulations.

Because of the seasonal effects of household consumption and tariffs, distribu-
tion grid problems are correlated to the time of the year. To limit the influence of
the choice of day on the results and get a global picture, randomized sets of scenario
parameters are generated and tested. The randomized parameters consist of the day
of the year for the tariff, vehicle driving profiles and household load profiles.

The result of 100 randomized parameter sets for each case and coordination
option regarding voltage problems according to the EN 50160 standard are shown
in Fig. 6.11.

6.5.1.1 Real-Time Level Results

Looking at the household-only (HHOnly) results of Fig. 6.11 indicates that the
chosen topologies are sufficient as long as no PEVs are introduced, although
voltage regularly fluctuated within the EN50160 specifications. With charging
PEVs, the voltage problems are outside the EN 50160 specifications by a wide
margin, confirming that the grid topologies qualify as ‘weak grid’. Voltages reg-
ularly drop below 0.9 pu for more than 5 % of the time, and events where the
voltage drops below 0.85 pu are quite common. The problems will no doubt turn
for the worse in situations with unbalanced phase connections, higher charge cur-
rents (such as future 6.6 kW chargers) and increasing household loads.

Still, the severity of distribution grid problems strongly depends on the grid
topology, shown as cases NS, NL, FS and FL. Having the longest cable sections to
the loads, case FL leads to the highest amount of voltage magnitude and VUF
problems, while case NS and FS experience the least problems.

However, the observed trend is the same: uncoordinated charging is responsible
for a peak in the evening that overlaps with the peak of household loads. Charging
coordination based on ToU cost minimization objectives leads to only a little less
voltage problems. The reason is that, while the coincidence of household loads and
charging has disappeared, all available vehicles are now asked to commence
charging at one or two points during the day. This creates a new peak that is in itself
sufficient to create voltage problems.

To illustrate, Fig. 6.12 shows the power through the feeder and the voltage
profile at the worst node for one specific simulated week inside case FL-38, for the
event-driven MAS MBC implementation. The situation has the potential to be a lot
worse, were the low wholesale prices to correspond to the household evening peak.

It is also immediately visible that the severity of voltage deviations for the
implementation with voltage droop controllers is reduced. However, because the
voltage droop control only activates below 0.9 pu, the measured values for 0.9 pu
deviations are still often outside the 5 % specifications of the EN 50160 standard.
Looking at the 0.85 pu results reveals that such occurrences are entirely solved by
the use of the voltage droop controller. By tuning the setpoints of the controller so
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Fig. 6.11 EN 50160 voltage magnitude and unbalance problems, over the course of 7 days, for
100 randomized days
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Fig. 6.12 Single simulation instance of case FL-38, for the event-based MAS MBC algorithm,
week starting at day 16; a power profiles, b difference between (non)-droop enabled chargers,
c voltages in the 3 phases of the Feeder0-line and d tariff used for ToU objective

Fig. 6.12 (continued)
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that it intervenes sooner, the weak grids can be brought into full EN 50160
compliance.

The difference between the power profiles for the case with and without voltage
droop controller is also shown in Fig. 6.12. It is visible that, initially, power during
the peak is lower, but immediately afterwards part of the ‘lost’ energy is recovered.

6.5.1.2 Market-Level Results

Table 6.3 shows the cost of charging for a cluster of 200 PEVs. Due to technical
constraints, the 8 cases were simulated in separate batches. Because different ran-
dom parameter sets were generated for each batch, the total cost values between the
cases cannot simply be compared.

During droop control intervention, some vehicles can end up with an incom-
pletely charged battery at departure time tdep. Since this influences the cost num-
bers, a cost has to be attached to the resulting energy deficit. Edeficit equals the
difference between the requested battery level and the level by which the vehicle
departed:

Edeficit ¼
X
i

X
i

iEreq;t �i Ebatt;tjt ¼ i tdep

 !
ð6:10Þ

A cost of €50/MWh is assigned to this energy deficit. Of course, the amount of
deficit is directly related to the amount of vehicles that can suffer from distribution
grid problems. Vehicles outside of weak distribution grids will obviously never end
up with lost energy.

Table 6.3 Cost results for the ToU scenarios, and the difference due to the use of voltage droop
control in the PEV chargers

Case
name

Dumb Event
MBC

Event MBC + droop Cost diff. due to V droop
(%)

w/o
Edeficit

w.
Edeficit

NS-38 €805.46 €595.00 €596.71 €598.03 +0.28

NL-38 €795.83 €589.72 €594.25 €600.02 +0.77

FS-38 €814.26 €604.59 €606.71 €608.20 +0.35

FL-38 €806.75 €603.77 €609.84 €616.50 +1.00

NS-114 €792.28 €580.16 €585.32 €589.99 +0.89

NL-114 €823.00 €611.03 €626.54 €645.26 +2.50

FS-114 €816.26 €614.34 €620.61 €625.55 +1.02

FL-114 €819.28 €610.95 €630.91 €653.93 +3.27

The cost difference due to the undelivered energy is also shown
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While the droop controller has a positive effect on the occurrence of voltage
problems, it also increases the cost of charging the fleet, as more energy is con-
sumed during unfavorable periods. Without taking into account the energy deficit at
departure time, there is already a small cost increase of 0.6 % for the a-cases, and
almost 2 % for the b-cases, where close to 60 % of the PEVs are situated in weak
distribution grids. Taking into account Edeficit, this cost increase is doubled, and the
cumulative battery deficit volume takes up to 1.15 % of the total delivered energy.

6.5.1.3 Conclusions on the ToU Scenario

From the results, it is apparent that ToU based controlled charging of PEVs has the
potential to create significant power quality problems, because of the tendency to
synchronously switch a large amount of the controlled loads when market prices are
low, thereby creating large power peaks.

The effect on the state of the distribution grid can be even worse than when no
coordinated charging is used (dumb charging). In fact, there were two mitigating
factors in the simulations; the household connection points’ phases were alternat-
ingly distributed along the line and the price profiles used by the aggregator kept the
power peak of the vehicles out of the household’s evening peak. If the latter two
were not the case, the EN 50160 results would be even worse.

One could argue that, once the penetration level of PEVs reaches a significant
share, peak periods will be reflected in the ToU prices, which in turn will favor the
spreading of charging load. However, problems in distribution grids can arise much
earlier, due to clustering effects, meaning we have large penetration levels in a
relatively small geographic area due to demographics. Additionally, when the share
of variable renewable energy sources increases, the wholesale price will become
more decorrelated from the instantaneous load. E.g. when wind or solar generation
is peaking, electricity prices could be low even though the distribution grids are
experiencing high load. Influencing distribution grid congestion through ToU tariffs
will need carefully designed tariffs [49, 50].

On the positive side, the use of a simple voltage droop controller can practically
solve the encountered power quality issues and is able to bring relatively weak
distribution grids back into EN 50160 compliance, with some tuning. However, the
use of a droop controller has a negative impact on the business case of the ag-
gregator, as the cost of charging goes up and a small number of vehicles do not get
their required charge at departure time. But quantitatively speaking, the differences
only start to become significant (>2 %) when a large share (>50 %) of an aggre-
gator’s fleet is situated inside weak grids (Fig. 6.13).

154 K. De Craemer et al.



6.5.2 Aggregator with Balancing Objective

In the previous sections, the objective for the coordinated charging at the market-
level has been the cost of charging for the whole fleet. The outcome of an opti-
mization over a ToU tariff of the next 24 h and the constraints of the vehicles results
in a charging schedule. While a well-established generic objective, it does not
entirely represent the potential of coordinated charging for fleet aggregators.

Alternatively, an aggregator could use the flexibility of a fleet to reduce the
uncertainty on his portfolio after day-ahead commitments are made, to limit his
exposure to the balancing market. In Europe, balancing services are traded on
separate markets than wholesale energy [51]. While the prices for these services are
correlated to those of the energy markets, they tend to be more expensive. The
responsibility and the costs of balancing are usually attributed to an Access
Responsible Party (ARP), which will prefer to reschedule their own generation
portfolio rather than being exposed to the balancing market.

For wind farms, for example, wind predictions are used to build estimated
production profiles and the required day-ahead nominations. Since the predictions
are not perfect, real output will deviate from the day-ahead prediction during the
day itself, and without intervention this difference leads to a positive or negative
imbalance. An example is shown in Fig. 6.14a. By using the energy flexibility of
the charging vehicles, an aggregator could try to reduce this wind imbalance.

The main difficulty in compensating for wind prediction errors with PEVs,
however, is that large imbalances require the shifting of a considerable share of the
fleet’s available flexibility. Because the driving behavior of a fleet has a 24 h

Fig. 6.13 Worst phase voltages observed in Feeder0 versus actual market prices over 7 days, for
the MAS MBC algorithm with the ToU-objective, during case FL-38, both active and passive
distribution grid. A correlation can be seen between low market prices and the occurrence of low
voltages
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periodicity (as seen on Fig. 6.7) and remains relatively constant over time, so is the
amount of charging energy per day. At the same time, wind prediction errors do not
equal each other out over the course of a day and persist for longer times. Therefore,
using all the vehicles’ flexibility early in the day means any unexpected imbalance
later that day cannot be compensated anymore. A possible solution could consist of
incorporating stochastic optimization [52] and intra-day prediction updates to refine
the scheduling process.

Another possible source of imbalance lies in the time resolution of the nomi-
nations; nominations for the day-ahead market in Belgium require energy values on
an hourly basis [53]. However, imbalance volumes are settled on a 15 min basis.
Even if an ARP has predictions on his portfolio with high resolution and accuracy,
imbalance will still occur as nominated values are averaged per hour.

The description of the optimization problem was already provided in Sect. 6.4.1.

Eopt ¼ argmin
E

Xthoriz
t¼0

EPEV;t þ Ewind;t þ 1
4
Enomin;t=4

� �2

ð6:11Þ

Enomin;t ¼ EPEV;nomin;t þ Ewind;nomin;t ð6:12Þ

The nominated energy Enomin consists of a nomination for the PEV fleet and the
day-ahead wind power prediction with a resolution of 1 h, for 24 h. Such nomi-
nations have to be determined by the ARP or aggregator, for example from

Fig. 6.14 a shows predicted and nominated versus measured hourly wind energy for 1.25 MW
peak wind power (W ¼ 0:5), for one week during March of 2008, and b resulting hourly
prediction error over the simulated days
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historical records or estimates. Because the driving behavior of an entire fleet
behaves stable and predictable over time, it can be justified to use the power profile
of a previous day or week as nomination for the fleet.

When historic energy constraints graphs are used, the amount of flexibility at any
given time can be maximized by following an energy path through it according to a
fixed ratio of e.g. 1/2 or 1/3 in between Eaggreg

max and Eaggreg
min . Figure 6.15 illustrates

such a planned path. The power values that correspond to the path can then be
translated to hourly energy values to compose EPEV;nomin;t.

An extra decay-term, c can be added to reduce the influence of long-term
information in the objective function.

Eopt ¼ argmin
E

Xthoriz
t¼0

ct=thoriz EPEV;t þ Ewind;t þ 1
4
Enomin;t=4

� �2

ð6:13Þ

A c\1 will assign a higher optimization cost to the quarter hour imbalance
values that are closest in time. In the limit, a c ! 0 will mean that the system will
act myopic, as no information on the future is taken into account. It behaves as the
MAS MBC algorithm without planning and minimize instantaneous imbalance.

In order to evaluate the benefit of using this objective, a new ‘dumb’ scenario is
added during which the fleet manager only tries to keep the energy consumption as
close as possible to the nomination (referred to as tracking the nomination with the
fleet). All scenarios use the event-based MAS MBC system to coordinate the fleet,
but in the ‘tracking’ scenario, no optimization to minimize the difference with the
nomination using short-term wind data takes place.

6.5.2.1 Simulation Scenarios and Performance Metrics

Due to the relatively long simulation times, the need to prepare nomination data for
the wind and PEVs and an exponentially increasing set of parameters, a fixed
simulation case is chosen for the simulations, in which the wind and vehicle profiles

Fig. 6.15 Example PEV nominated energy based on historic aggregated energy constraints data
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start at day 112 of the year. This was chosen because the first 3 days of the
consequent week had relatively little wind imbalance and the last 3 relatively large.
To end up with a significant amount of energy flexibility, the PEV cluster consists
of 1,000 vehicles, instead of 200 for the previous case. Similar to the ToU sce-
narios, different shares of vehicles can be inside weak distribution grids, according
to Table 6.2.

The main performance indicator consists of the total energy volume of remaining
quarter hourly imbalance and the resulting cost. For the latter, real market data on
the positive and negative imbalance price from the Transmission System Operator
(TSO) Elia is used. It should be noted that the price data used dates from 2012,
because the operating principle of the imbalance settlement was changed from then
onwards, while the wind data available is from 2008.

While the total remaining imbalance volume accumulated during a simulation
gives a good idea about the performance, it does not tell anything about its dis-
tribution during the day. From Fig. 6.14a, it can be seen that during the first 3 days,
nominated and measured wind energy values are reasonably balanced over the
course of a day. However, during the last 4 days, the difference between prediction
and measured energy exists for the whole period. This is apparent from Fig. 6.14b,
where the resulting prediction error during each hour of the simulation is shown.
Unless the ratio of energy flexibility to wind power is very high, it is difficult to end
up without imbalance under such conditions.

But the quadratic nature of the objective will favor to spread out imbalance as
much as possible, so that a relatively flat imbalance profile should be obtained in the
case of c ¼ 1. Therefore, looking solely at the remaining imbalance volume as a
measure of performance would not capture the intent of the algorithm’s objective.
In fact, a myopic algorithm, instantly matching imbalance figures with the flexi-
bility of PEVs, will perform better regarding the remaining imbalance volume.

Because the ability to smoothen or influence the occurrence of imbalance can be
very beneficial for an ARP, it makes sense to look at the “variability” of the
imbalance profiles. The spectral content of the imbalance profile is obtained by
taking the sum of FFTs over a sliding window of 32 profile samples. Then the mean
value is subtracted to get rid of the DC component, and the surface under the
spectral plot is kept, expressed in kW Hz. The higher this value, the more variability
there is on the remaining imbalance’s power profile.

To evaluate the effects at the real-time level, the EN 50160 specifications and
performance indicators from the ToU case, are used here as well.

6.5.2.2 Market-Level Results

In a first simulation, only the behavior at the market level is investigated, disre-
garding the distribution grid completely. In Fig. 6.16a, the 15 min imbalance
volumes are plotted for different values of c, for a simulation covering the 7 days
from Fig. 6.14. It is visible that the event-based balancing successfully reduces the
amount of imbalance with the nomination. Smaller c values lead to aforementioned
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‘myopic’ behavior and force the imbalance profile close to zero, until of course the
aggregator runs out of short-term flexibility.

In Fig. 6.16b, the Fourier transformed imbalance volume is plotted. This figure
thus shows its frequency components. In case of the balancing optimization sce-
narios, it is visible that their imbalance profiles contain less high-frequency com-
ponents then when no balancing optimization is done. This confirms what can be
seen in Fig. 6.16a, namely that the case with the balancing optimization for c ¼ 1.
is able to better spread out the remaining imbalance.

In the above scenario, the wind nominations and measurements were scaled with
a factor W ¼ 0:5, to obtain a peak wind output of 1.25 MW. Varying ratios of wind
and vehicles have also been examined, of which the results are shown in Table 6.4.

The improvement in remaining imbalance volume over the tracking case is
between 20 and 30 %. Smaller c values lead to slightly less remaining imbalance

Fig. 6.16 Imbalance scenario, a remaining imbalance profile for different values of c over the
course of 7 days and for a peak wind output of 1.25 MW (W = 0.5), together with the tracking
scenario and b spectral plot of the power profiles expresses variability of the remaining imbalance
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over 7 days compared to c ¼ 1. However, since the objective of the optimization is
related to the quadratic imbalance over the optimization horizon, the conclusion that
a myopic algorithm performs better based on the total remaining imbalance would
be misleading. It has to be looked at together with the ‘spreading’ of the remaining
imbalance, expressed by the spectral content on the ‘Volume difference’ column of
Table 6.4.

For larger wind scaling factors and thus larger wind prediction error volumes,
the improvement regarding remaining imbalance decreases to 16–21 %. A similar
effect is observed for the spectral content values. It can be deduced that, based on
this balancing method, around 1–1.25 MW of wind power can be properly com-
pensated per 1,000 PEVs. Higher or lower shares of wind power decrease the
efficiency of this system.

Table 6.4 Balancing case simulation results for 7 consecutive days and a cluster 1,000 PEVs, for
different values of the wind scaling parameter W and discount factor c

W = 0.05 (0.125
MWp)

Imbal Vol-
ume (MWh)

Imbal
Cost

Volume
diff. (%)

Spectr.
(kW Hz)

Spectr.
diff (%)

Tracking nomin. 2.543 €171.2 0 2.7 0

Balancing c ¼ 1 2.087 €128.7 −17.9 2.5 −7.4

Balancing c ¼ 0:1 1.988 €120.9 −21.8 3.1 +14.8

Balancing c ¼ 0:01 1.967 €117.1 22.7 3.5 +29.6

W = 0.2 (0.5 MWp)

Tracking nomin. 8.633 €580.3 0 9.3 0

Balancing c ¼ 1 6.832 €434.3 −20.7 3.3 −64.5

Balancing c ¼ 0:1 6.322 €397.8 −26.8 6.2 −33.3

Balancing c ¼ 0:01 6.131 €379.7 −28.9 8.0 −14.0

W = 0.5 (1.25 MWp)

Tracking nomin. 21.056 €1413 0 23.2 0

Balancing c ¼ 1 16.680 €1091 −20.8 7.6 −67.2

Balancing c ¼ 0:1 15.775 €1014 −25.1 13.2 −43.1

Balancing c ¼ 0:01 15.313 €989.4 −27.3 16.9 −27.2

W = 0.7 (1.75 MWp)

Tracking nomin. 29.364 €1970 0 32.5 0

Balancing c ¼ 1 23.888 €1570 −18.6 12.2 −62.5

Balancing c ¼ 0:1 22.860 €1471 −22.1 18.9 −41.2

Balancing c ¼ 0:01 22.216 €1443 −24.3 23.8 −23.8

W = 1.0 (2.5 MWp)

Tracking nomin. 41.830 €2806 0 46.4 0

Balancing c ¼ 1 35.112 €2324 −16.1 20.8 −55.2

Balancing c ¼ 0:1 33.762 €2186 −19.3 29.2 −37.1

Balancing c ¼ 0:01 33.141 €2150 −20.8 34.9 −24.8
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6.5.2.3 Real-Time Level Results

For the effects at the distribution level, the different cases and its variations again
come into play. From the tested parameters in the previous section, we keep the
wind scaling of W ¼ 0:5, since this parameter led to the best performance at the
market level, and a c of 1, as this is the most generic application.

The EN 50160 results of the passive distribution grid scenarios are grouped
together with the active distribution grid scenarios in Fig. 6.17, to improve clarity
and avoid duplication. These plots show the results for the FL case, but the
household-only results have been omitted, since their results are the same as in the
previous section.

Fig. 6.17 EN 50160 voltage
magnitude stats for the single-
aggregator balancing
scenarios; a V < 0.9 pu,
b V < 0.85 pu and
(c) VUF > 2 %
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Compared to the ToU results, problems are a lot less worse, but voltages still
drop below 0.85 pu. The use of voltage droop control reduces the limited remaining
voltage problems to below the EN 50160 specifications.

Since the tracking scenario already tries to follow the nomination, which is a
smooth path through the aggregated energy constraints graph for the PEVs, the
reduction in voltage deviations are relatively small when voltage droop controllers
are introduced, in comparison to the balancing case.

6.5.2.4 Impact of Droop Control on Market-Level Objectives

The amount of vehicles that is affected by voltage droop activation is expected to
influence the business case at the market level. It would follow that moving from
case FL-38 to FL-760 will increase the remaining imbalance, as less and less peak
flexibility is available to the fleet manager. Figure 6.18 shows that the imbalance
volume is constant for case FL-38 and FL-114, having respectively 4 and 21 % of
all the PEVs inside of a weak grid.

For case FL-380, with 38 % of the fleet inside the weak distribution grids, a
small increase of 2.4 % in the imbalance volume is noticeable, and finally, for the
case FL-760 with 76 % of the PEVs located inside the constrained grids, the
observed increase in imbalance volume is 10.3 %. During the latter, the ‘dumb’
tracking scenario also suffered slightly with a minor 0.95 % increase.

6.5.2.5 Conclusions on the Balancing Case

The balancing concept was successfully tested on a portfolio consisting of wind
generation and charging PEV’s. The optimization reduces both the imbalance that

Fig. 6.18 Total remaining imbalance after 7 days, for different shares of PEVs in weak
distribution grids. At larger shares, an effect on the remaining imbalance is noticeable, as the
aggregator fails to compensate for the activation of the droop controllers
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originates from the hourly discretization of the day-ahead nomination, and the
imbalance that exists because of imperfect wind speed predictions. Using short-term
information on the wind production, the imbalance can also be intentionally spread
in time. This can be beneficial for the aggregator, as the remaining imbalance could
then be countered by other generation units in its portfolio.

Additionally, the effect of varying the discount factor c was shown. By including
c as variable into the optimization, one could move the remaining imbalance
towards points in time where this has economical benefits, such as by using sto-
chastic information on the imbalance market prices.

Regarding grid constraints, the use of the (quadratic) balancing objective puts
less load on the grid compared to the (linear) ToU objective, because flexibility of
the PEVs is intentionally spread out when creating the nomination of the charging
energy and therefore not enabled all at once.

As in the ToU case, voltage droop controllers inside PEV chargers are successful
in mitigating weak grid constraints. Some tuning of its parameters may be needed to
find a setting where the grid state at all nodes is within the EN 50160 specifications
during all the time.

Unless a very large share of PEVs of a coordinated charging fleet manager is
located inside weak grids, the business case is practically unaffected by the addition
of local voltage droop control, using the coordination system that was implemented
in this work. That means being event-based for fast response and having a com-
pensation loop at the fleet manager. The combination of both ensures that, when
droop controllers activate, the equilibrium priority is changed quickly enough so
that the flexibility of other vehicles is dispatched to compensate for the ‘loss’ in
expected energy over time.

6.6 Multi-aggregator Simulations and Results

In many cases, when studying coordinated charging of PEVs, there is only a single
fleet manager or aggregator. However, if the business case of using the energy
flexibility of vehicles takes off, it can be anticipated that multiple competing ser-
vices will become available. This leads to the question what problems can arise if
multiple aggregators are active within the same distribution grid, as illustrated by
Fig. 6.19.

In case of problems, is there a need for additional congestion management
mechanisms, to ensure that capacity inside individual grids is allocated to the
aggregator’s objective that has the highest value, or is the use of a voltage droop
controller that intervenes when problems arise sufficient?

The advantage of a voltage droop controller lies in its simplicity of operation and
the fact that it does not rely on communication with external actors. More complex
grid congestion management systems, briefly touched upon in Sect. 6.2.2.2, assign
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an active role to the DSO, that must perform ahead-of-time capacity allocation and/
or check iteratively whether all aggregators’ schedules are feasible (advance
capacity allocation). This would be required for every grid segment wherein ag-
gregators are active. Or, a DSO could set up dynamic ToU network tariffs based on
location and projected network load.

6.6.1 Aggregators with ToU Cost Objective

Since the use of a ToU objective implies that aggregators use the same actual
market prices, a multi-aggregator version of the ToU scenario of Sect. 6.5.1 does
not perform any different than its single-aggregator counterpart. Therefore, the
simulations and results have been omitted.

However, in case one aggregator is serving mostly customers that are located at
the beginning of a line and the other aggregator mainly ones at the end, the latter
will be at a disadvantage. A similar situation will occur if the phase connections are
heavily correlated with the aggregator assignment.

6.6.2 Aggregators with Balancing Objective

During the balancing case, different aggregators can base their optimizations on
different predictions or portfolios, and the expected results are not as straightfor-
ward to derive as in the ToU cases.

Fig. 6.19 Multi-aggregator grid situation. Two aggregators, A1 and A2, control a number of
charging EVs that are connected to the same distribution grid transformer
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In the simulations, both aggregators will be using an identical portfolio, again
consisting of a fleet of 1,000 PEVs combined with 1.25 MW of peak wind gen-
eration. To have a realistic case that represents wind generation in a geographically
shared region, the wind predictions should at least be correlated, which is taken care
of by adding one day of difference for the second aggregator.

To ensure that aggregators each have the same fleet size, the total amount of
vehicles in the simulations has to be doubled. Again, different cases represent
varying shares of vehicles that are inside the weak distribution grids. Case FL-38
has been left out, since at less than 4 % of PEVs inside a weak grid, the effects
during the balancing scenario are practically zero, as previously shown.

6.6.2.1 Real-Time Level Results

On Fig. 6.20, the EN 50160 results are plotted for cases x-114, x-380 and x-760
(respectively with 114,380 and 760 of 1,000 PEVs inside weak distribution grids).
Compared to the single-aggregator scenario, the severity of the voltage deviations is
a lot less. This can be entirely attributed to the reduced coincidence of the objectives
of both aggregators.

6.6.2.2 Market Level Results

The total remaining imbalance for both aggregators after one simulated week is
shown in Fig. 6.21. Just as with the single aggregator case in Fig. 6.18, the
imbalance volume is only affected by the droop controllers at high shares of PEVs
in weak grids. The absolute volume of aggregator A2 is lower because its wind
profile starts one day earlier than that of A1, thereby avoiding a day with large
prediction error.

6.6.2.3 Conclusions on the Multi-aggregator Case

From the results, it can be concluded that settings where two aggregators are active
within the same part of the distribution grid do not show problematic behavior. This
is due to the fact that the wind profiles are not the same for both aggregators, so that
access to PEVs’ flexibility in one distribution grid is spread out and less voltage
deviations appear. Therefore, in the worst case, voltage deviations would be similar
to those of the single-aggregator case.

With these results in mind, and based on the implemented DR algorithm with
voltage droop controllers inside the presented grid configurations, the necessity of
additional grid congestion management mechanisms can be questioned. The
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complexity introduced by such solutions, computationally and from a responsibility
perspective, are hard to justify with the amount of gains that can be achieved.

It was however assumed that the PEVs were evenly assigned to both aggrega-
tors. In the situation where one aggregator controls all the PEVs at the beginning of
a grid and the other all the PEVs towards the end of the line, the latter will be
subjected to more droop activations and be at a disadvantage compared to the other
aggregator. But again, the limited energy deficits this causes might not warrant the
deployment of grid congestion management mechanisms (e.g. capacity markets in
cooperation with the DSO, Sect. 6.2.2.2).

Fig. 6.20 EN 50160 voltage
magnitude stats for the multi-
aggregator balancing
scenarios; a V < 0.9 pu,
b V < 0.85 pu and
c VUF > 2 %
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6.7 Conclusions

In the light of the challenges that were discussed in the introduction, we can
summarize the results and contributions as follows:

• The separation between two demand response operation levels was identified;
the market operation level is responsible for the business case of a fleet of PEVs
and operates synchronous with the energy markets. The technical or real-time
operation level uses the setpoints determined by the business case and uses an
event-driven architecture to efficiently dispatch constraints from and control
signals to the charging PEVs. At the market level, an algorithm based on MBC
was adapted for the coordination of PEVs, and at the technical level, a voltage
droop controller is integrated to be able to respect the local grid constraints.

• The effect of using market-level objectives on congestion in weak distribution
grids has been examined. Especially the use of ToU cost minimization objec-
tives has a negative effect on the occurrence of undervoltages, with respect to
the EN 50160 standard. Synchronization of large amounts of controllable loads
is to be avoided in DR.

• Besides a ToU cost minimization objective, it has been shown that a cluster of
fast-responding PEVs can be used to limit an aggregator’s exposure to the
balancing market. An optimization at the market level determines setpoints for
the fleet such that the remaining imbalance between predicted and nominated
wind output and more recent short-term predictions is spread out in time. This
can be beneficial for the aggregator, as the remaining imbalance could be then

Fig. 6.21 Total remaining imbalance after 7 days. Left side of the bar represents aggregator A1,
right side aggregator A2
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be countered by other generation units in its portfolio. Additionally, one could
include c as variable into the optimization to express a preference of having the
remaining imbalance occur when this has economical benefits.

• A straightforward and common way of mitigating grid congestion is the use of a
voltage droop controller. While fast, inexpensive and able to act independently
from any central coordinator, its activation will intervene in the the business
case. In literature, the overruling of the market operation level by technical
objectives is often presented as a major challenge to be addressed. The results in
Sects. 6.5 and 6.6 show that, unless very large shares of the PEV fleet are
located inside weak grids, the effects of the activation of voltage droop con-
trollers on the business case remains relatively modest. This is due to the limited
amount of scheduled energy that is ‘lost’ and the possibility to compensate for
by other parts in the DR cluster, with the event-driven approach.

• Additionally, situations where multiple aggregators are active within the same
distribution grid were also looked at. Based on the assumptions made and using
the presented DR algorithm, it can be stated that the use of voltage droop
controllers only is already effective in mitigating grid congestion problems
without significantly disturbing the aggregators’ business case. The need for
additional grid congestion management algorithms, e.g. a capacity market in
cooperation with the DSO, might better be reserved to a few corner cases where
increasing the transfer capacity of the grid is (economically or otherwise)
infeasible.
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Chapter 7
Distributed Load Management Using
Additive Increase Multiplicative Decrease
Based Techniques

Sonja Stüdli, Emanuele Crisostomi, Richard Middleton,
Julio Braslavsky and Robert Shorten

Abstract Due to the expected increase in penetration levels of Plug-in Electric
Vehicles (PEVs), the demand on the distribution power grid is expected to rise
significantly during PEV charging. However, as PEV charging in many cases may
not be time critical, they are suitable for load management tasks where the power
consumption of PEVs is controlled to support the grid. Additionally, PEVs may
also be enabled to inject power into the grid to lower peak demand or counteract the
influence of intermittent renewable energy generation, such as that produced by
solar photovoltaic panels. Further, PEV active rectifiers can be used to balance
reactive power in a local area if required, to reduce the necessity for long distance
transport of reactive power. To achieve these objectives, we adapt a known dis-
tributed algorithm, Additive Increase Multiplicative Decrease, to control both the
active and reactive power consumption and injection. Here, we present this algo-
rithm in a unified framework and illustrate the flexibility of the algorithm to
accommodate different user objectives. We illustrate this with three scenarios,
including a domestic scenario and a workplace scenario. In these scenarios the
various objectives allow us to define a type of “fairness” for how the PEVs should
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adapt their power consumption, i.e. equal charging rates, or charging rates based on
energy requirements. We then validate the algorithms by simulations of a simple
radial test network. The simulations presented use the power simulation tool
OpenDSS interlinked with MATLAB.

Keywords Power sharing � Load management � AIMD � Reactive power
compensation � PEV charging � G2V � V2G

7.1 Introduction

The increased integration of renewable energy into the electricity grid has stimulated
significant interest in designing “demand side management” and “load management”
strategies to support the distribution grid [4]. In this context, “peak shaving” and
“load tracking” are two important support services required for proper functioning of
the grid with highly variable renewable power generation; see for example [18] and
more recently [22].

Peak shaving is an instance of time-shifting power demand. Peaks in aggregate
demand experienced in the power grid may be reduced by shifting the power usage
of controllable loads to other times of the day. Load tracking is a network service
where controllable loads are driven to follow a given varying power signal. Load
tracking is particularly useful to follow the fluctuating power generated from
renewable sources, and to limit the use of electricity from more polluting power
plants at times when demand exceeds the power available from renewable sources.

There is a general consensus that should widespread adoption occur, Plug-in
Electric Vehicles (PEVs), will play an important role in demand side management.
In fact, PEVs can be often treated as controllable loads and their charging can be
postponed to some later time of the day (unless the owner has some urgency in using
the vehicle) see [23, 31]. With the capability to act as energy storage, PEVs may also
be utilized to inject power into the grid, often referred to as vehicle to grid (V2G)
operation. Especially during day-times, such functionality can be used to flatten the
peak demand and to help regulate the grid frequency, see for example [1, 20]. When
injecting power into the grid, it is important to take into account the needs of the PEV
owner such that their energy requirements are met, see for example [30]. This can be
implemented in several ways, for example by limiting the energy that is allowed to
be used for V2G operation [1]. In that way it is guaranteed that the battery of the PEV
is not completely depleted when the vehicle is needed, due to providing V2G
services.

In addition, PEV charging infrastructure can also support the power grid, by
exchanging reactive power with the grid, as mentioned in for example [5]. In this case,
the PEVs can either consume or inject reactive power into the grid to compensate for
the reactive power required locally where they are connected. The advantage of using
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PEVs for reactive power balance, is that in some cases this can be done without
affecting the charging process, see for instance [5].

The aim of this chapter is to explore how PEVs may be integrated into the
distribution grid for peak shaving, load tracking and reactive power support pur-
poses without imposing a significant impact on the existing infrastructure. In doing
so, we use algorithms well-known to the communication community, namely,
additive increase multiplicative decrease (AIMD) algorithms, and adapt them for
the PEV charging problem. Preliminary work in this direction is reported in
[28, 29]. In the present chapter we combine the previous work in a unified
framework, and evaluate the performance of the proposed approach in a more
realistic simulation setting.

7.2 PEV Charging Problem Description

We formulate the active load management task as the task of sharing a limited
resource (here, the power) among several loads. Some of the loads may be con-
trollable (e.g., PEVs, where we use the term ‘agent’ to describe local management of
charge rate) and some uncontrollable (i.e., lights, televisions, and other appliances
whose power consumption cannot be shifted to a later time without inconvenience
to the user). We denote the aggregate power limit at time step k by P(k). Note
that this power is generally time-varying, as it depends itself on the power generated
from renewable sources, and is subject to some physical constraints, such as limi-
tations at power lines or distribution transformers. Further, note that we operate in
discrete time with the time index denoted by k.

We denote by piðkÞ the active power drawn by the ith controllable load. This
power can be either positive or negative, as we assume that PEVs can both draw
power from the grid and inject power into the grid. We say that when the PEV
absorbs real power, it operates in grid to vehicle (G2V) mode, and when it injects
power into the grid, it operates in the V2G mode. The admissible power drawn or
injected into the grid is also subject to constraints such as a limit on the apparent
power, i.e., ��si � piðkÞ��si for all k. This limit may arise, for example, due to
inverter current limitations where we assume there is negligible variation in supply
voltage. In addition, we denote by ~pðkÞ the aggregated demand of the uncontrollable
loads. Then, neglecting losses in the local distribution grid, the sum of the (con-
trollable and uncontrollable) loads should be smaller than the available power, i.e.,

XN

i¼1

piðkÞ þ ~p kð Þ�P kð Þ 8k: ð7:1Þ

In most cases, we treat Eq. (7.1) as a hard constraint, though in some cases, we
allow minor transient excursions beyond this limit. This is allowed, for instance, if
the power limit is due to thermal constraints at a power distribution transformer.
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By inspecting Eq. (7.1) it is clear that in some cases the problem can be
infeasible depending on the values of P(k) and of the demand by uncontrollable
loads ~pðkÞ. This happens, for instance, if the demand of the uncontrollable loads is
greater than the available power plus the maximum power that may be injected by
the PEVs into the power grid. In such cases, we will be interested in a “best-effort”
solution, where the PEVs will be required to provide as much power as possible to
mitigate the effects of the power mismatch. The exchange of active power between
the grid and the PEVs can be used to implement the peak-shaving and load-tracking
functionalities described previously.

As the most important service remains the charging of the vehicles, the first part
of the PEV charging problem that we consider here is to govern the active power
consumption of the vehicles such that the constraint in Eq. (7.1) is not violated,
while maximizing the energy transferred to the vehicles. This can be expressed by

maxp1ðkÞ; ... ;pN ðkÞ
PN

i¼1
piðkÞ

s:t: ��si � pi kð Þ��si for all i; k
PN

i¼1
piðkÞ þ ~pðkÞ�P kð Þ for all k;

which represents the first part of the PEV charging problem.
This objective assumes that PEV owners permit the reduction of their charge

rates in order to lessen the stress on the distribution grid. To encourage the owners
of PEVs to participate in such a program energy distributors may give incentives to
the owners in form of electricity price reductions.

As the primary objective of the PEVs is to use them as a mode of transportation, it
is important that the batteries of the vehicles have enough stored energy to
accommodate the needs of the owners. In the case that the PEV is a hybrid model
which combines a combustion engine with an electric motor, the combustion engine
can be used to compensate for the required energy, possibly given to the grid. In this
case, it is important that the customers are compensated for the inconvenience or for
the costs incurred after using the combustion engine (e.g., fuel costs). If the PEVs do
not have a combustion engine, the missing energy could even prevent the owners
from doing a trip, and this situation is clearly very undesirable. In some studies, it
was shown that the average traveled distance per day usually lies around 40 km
[9, 24]. The charging levels define a power rate of 2.4 kW as Level 1 [2] which
corresponds to an approximate charging time of 200 min for 40 km. This implies that
if we assume as in [9] that most vehicles charge at least while staying at home where
they are connected for 7–8 h [9, 24] less than half of the time is required to charge the
40 km that are required for the next day. The range of fully electric vehicles lies
between 90 and 395 km with battery sizes ranging from 9 to 53 kWh [2]. Hence, for
most drivers it is not necessary to fully charge their PEV batteries every day.
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Obviously, there are some exceptions, as when the PEVs are required to travel
long distances. In such cases, we allow the owners of the PEVs to temporarily stop
their participation to the energy exchange program and treat the PEVs as uncon-
trollable loads. They would then pay a higher tariff if charging occurs at peak times.

On the other hand, when the owners decide to participate in an energy exchange
program with the grid, they automatically allow signals from the grid to influence
their local power consumption. Also, note that it is reasonable to believe that the
problems regarding the limited range of PEVs will likely lessen in the future as
the technology progresses and charging points become available at additional
places than just residential houses, such as at the parking lots at shopping centers,
restaurants, working places, and many others. In [24], it is assumed that vehicles
stay parked for an average duration of 3 h at work places, while parking at shopping
facilities lasts 2 h on average. If charging facilities are available at such places, then
the necessity to fully charge the battery at each of these locations is clearly reduced.
This further means that we can safely assume that even with the limitations imposed
by our algorithm, the PEV will have enough power to complete the next trip.

It remains to define how the power should be shared among the vehicles. As in
principle there are many ways in which the power can be shared among the con-
nected PEVs, in Sect. 7.3 we define different scenarios that give rise to different
ways of sharing the available active power.

In addition, the PEVs can also exchange reactive power with the grid to balance
the reactive power required locally. Reactive power management is particularly
attractive when a large fleet of PEVs is connected to the grid in close proximity to
industrial areas where a large amount of reactive power is required. We denote by
qiðkÞ the reactive power drawn by the ith PEV at time step k. Accordingly, the
upper bound on the active and reactive power injected or drawn from the grid
becomes in practice

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi kð Þ2þqi kð Þ2

q
��si: ð7:2Þ

Ideally, the PEVs can be used to balance all the reactive power consumed in the
area of interest, for instance by the uncontrollable loads, i.e.,

XN

i¼1

qi kð Þ þ ~q kð Þ ¼ 0 8k; ð7:3Þ

where q
�ðkÞ denotes the total reactive power consumed by the uncontrollable loads

in the area of interest at time k. However, we will not consider Eq. (7.3) as a hard
constraint. In fact, if it is not possible to achieve a full balance, generators and other
devices nowadays used for reactive power balancing in the grid can be used to
balance the residual reactive power, though at the price of transporting reactive
power over a longer distance. Not being a critical task, we give a lower priority to
reactive power management compared to active power management. However, if

7 Distributed Load Management using Additive Increase … 177



needed by the grid, it is possible to exchange the priorities of active and reactive
power management.

The reactive power management is the second part of the PEV charging
problem.

7.3 Charging Scenarios

We assume that PEVs can modulate the active and reactive power exchanged with
the grid to accommodate their own charging needs, the energy needs of the other
PEVs connected, and also the needs of the distribution grid itself. Hence, at each
time step the PEVs are supposed to adjust their active and reactive power con-
sumption such that ideally the constraints in Eqs. (7.1)–(7.3) are fulfilled.

In the future with a higher penetration of PEVs, it will be possible to recharge the
vehicles at a variety of different locations, such as at homes, work places, fast
charging stations, shopping centers, hospitals, and airports. Accordingly, the needs
and desires of PEV owners and the providers of the charging service, for example at
a shopping center, should be considered and the PEV charging problem should
reflect the different scenarios of interest. In this section we will illustrate three
specific scenarios, which give rise to three different concepts of “fairness” among
the participating vehicles. These scenarios are:

• Power Fairness (PF): In this scenario each connected PEV will receive (or
provide) exactly the same share of the available power, hence the power con-
sumption (or injection) is equalized. This is fair in the sense that each PEV
receives exactly the same quantity of power;

• Energy Fairness (EF): In this scenario the power consumption is proportional to
the expected needs of the users, while the power injection is inversely pro-
portional (e.g., smaller power is given to the PEVs that will not need to travel
anytime soon). Hence, the scenario is fair in regard to the energy needed;

• Time Fairness (TF): In this scenario the PEVs are categorized depending on the
time they have already been connected. Thus PEVs that have been connected for
a long time consume (or inject) a smaller amount of power compared to recently
connected PEVs. Hence, this scenario is fair in a way that short connection
times are not penalized.

In the remainder of this section, we illustrate each scenario in greater detail.

7.3.1 Power Fairness (PF) Scenario

The most obvious and simple way to share the available active power among a fleet
of PEVs is to give exactly the same amount of power to each PEV. Such a solution
can, for instance, be adopted in a domestic charging scenario, where it might be too
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complicated, and also unfair, to give higher charging rates to some particular
vehicles. Note that the power shared among the connected vehicles will change
during the day; either due to the presence of a high power demand from uncon-
trollable loads in the same area, or as a consequence of a reduction of energy
produced from renewable energy generation (e.g., using the energy produced by
solar panels on top of buildings).

In this scenario, all PEVs should on average consume, or inject, the same
amount of power. We mathematically model the complete PEV charging problem
as a prioritized optimization problem. This means that we have an objective with
very high priority, denoted O1(k), which is solved first. This objective represents
rapid charging while maintaining the constraint on the active power demand by the
grid. If the solution of this objective allows additional degrees of freedom, an
objective with lower priority, denoted O2(k), is solved. This objective represents the
power fairness condition imposed in this scenario. If further flexibility is available
(for example if the total power available means that many chargers are not operating
at their individual complex power limits), the third objective, which has even lower
priority, denoted O3(k), is then solved to balance the reactive power. These prior-
itized optimizations can be represented by

O1 kð Þ ¼ max
p1 kð Þ; ... ;pN ðkÞ

XN

i¼1

pi kð Þ

s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ þ ~p kð Þ� P for all k

O2 kð Þ ¼ min
p1 kð Þ; ... ;pN kð Þ

B p kð Þk k1
s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ ¼ O1ðkÞ for all k

O3 kð Þ ¼ min
q1 kð Þ; ... ;qN ðkÞ

XN

i¼1

qi kð Þ þ ~q kð Þ
�����

�����

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi kð Þ2þqi kð Þ2

q
��si for all i; k

XN

i¼1

pi kð Þ ¼ O1 kð Þ for all k;

B p kð Þk k1¼ O2 kð Þ for all k;

ð7:4Þ

where pðkÞ is the vector containing the power consumption of each PEV and B is a
matrix containing 1, −1, and 0 such that B pðkÞ contains the difference between the
power consumptions. For example
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B ¼

1 �1 0 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0
0 � � � 0 1 �1
1 0 �1 . . . 0
. .
. . .

. . .
. . .

. ..
.

1 0 � � � 0 �1

2

66666666664

3

77777777775

is such a matrix.
Note that in the above mathematical formulation, we implicitly assumed that all

PEVs participating are also able to participate in the V2G program. In some cases
this might not be true and only a subset of the participating PEVs would allow
reverse power flows. However, Eq. (7.4) can easily be modified to include such
situations by making the lower bound on the real power absorbed zero.

The previous optimization problem explicitly requires that the charge rates of
two vehicles must be exactly the same at every time step. However, our interpre-
tation of “fairness” in this scenario can also be relaxed if we require only the
running average of the power consumption by each PEV to be equal, which in
the following will be denoted by qi. The average can either be computed from the
beginning of the charging procedure by

qi kð Þ ¼ 1
k

Xk

l¼0

pi lð Þ

or over the past s time steps (e.g., the last few minutes of charging) by

qi kð Þ ¼ 1
s

Xk

l¼k�s

pi lð Þ:

Accordingly, the second optimization objective in Eq. (7.4) can be reformulated
to

O2 kð Þ ¼ min
p1 kð Þ;...;pN kð Þ

B q kð Þk k1
s:t: � �si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ ¼ O1 kð Þ for all k;

ð7:5Þ

where qðkÞ is the vector containing the average power consumption of each vehicle
and B is the same matrix as above.

Note that there is no objective in Eq. (7.5) that states how the reactive power
should be provided by the vehicles if there are multiple possibilities. However,
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extensions of this work could be pursued in the future to introduce a type of
“fairness” for the reactive power compensation as well as for the real power. For
example if the PEV owners get paid according to the amount of reactive power they
compensate, it is important to impose a “fairness” on the reactive power com-
pensation. This is simply possible by adding a forth objective O4(k) with even lower
priority that represents a “fairness” notion for the reactive power compensation.

7.3.2 Energy Fairness (EF) Scenario

The PF scenario of Sect. 7.3.1 shares the instantaneous power among the partici-
pating PEV in the same way, independently from the actual power requirements of
the PEVs connected. As a consequence, some PEVs might be fully charged long
before they are actually needed, while other PEVs might not be fully recharged by
the time their owners require the vehicle for transportation. To include different
energy needs by the owners in this scenario we design charging strategies that
prioritize the PEVs according to the time they are connected to the grid for charging
their batteries, and their energy requirements. Note that such a solution cannot be
implemented in a competitive scenario where all the PEV owners are only inter-
ested in their own needs. Hence, it is more realistic to implement it in a scenario like
a work place, where employees are not in competition with one another.

In this scenario, let us assume that at time step k a PEV requires a certain amount
of energy EiðkÞ to fully charge its battery to a desired level. Note that the required
energy is non-negative. In addition, let TiðkÞ denote the remaining time the PEV is
expected to remain connected to the grid at time step k, before it is used again.
Then, the objective in the EF scenario is to give an amount of energy EiðkÞ to the ith
PEV within time TiðkÞ. This corresponds to a desired average charging rate p̂i kð Þ
and is computed as

p̂i kð Þ ¼ min
Ei kð Þ
Ti kð Þ ;�si

� �
; ð7:6Þ

namely, that rate to allow the PEV to finish the charging procedure in the desired
time. Note that we explicitly bound the desired charging rate by the maximum
power consumption that is physically allowed by the electrical power outlet and the
charger. This upper bound makes it impossible to obtain an unrealistically large
amount of energy in a small time. Note that the desired charge rate p̂iðkÞ has 0 as
natural lower bound, since the required energy is larger than or equal to 0. In that
case, it might still make sense to connect the vehicle to the grid to perform V2G
services, or to exchange reactive power.

In this scenario, we prioritize the vehicles according to their desired charge rates,
i.e., vehicles with a high desired charge rate p̂iðkÞ actually receive more power than
the ones with a lower desired charge rate. The PEV charging problem related to this
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scenario can be formulated as in the previous scenario where we order in total three
objectives depending on their priorities. This leads to

O1 kð Þ ¼ max
p1 kð Þ;...;pN ðkÞ

XN

i¼1

pi kð Þ

s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ þ ~p kð Þ� P for all k

O2 kð Þ ¼ min
p1 kð Þ;...;pN kð Þ

B f kð Þk k1
s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ ¼ O1ðkÞ for all k

O3 kð Þ ¼ min
q1 kð Þ;...;qN ðkÞ

XN

i¼1

qi kð Þ þ ~q kð Þ
�����

�����

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi kð Þ2þqi kð Þ2

q
��si for all i; k

XN

i¼1

pi kð Þ ¼ O1 kð Þ for all k;

B f kð Þk k1¼ O2 kð Þ for all k;

ð7:7Þ

where B is a matrix as in Sect. 7.3.1 and fðkÞ is a vector with the jth element

fj kð Þ ¼ pjðkÞ
~pjðk0Þ

whenever the vehicles consume power from the grid and

fj kð Þ ¼ pj kð Þ~pj k0ð Þ;

whenever the PEVs inject power into the grid.
In the above notation, k0 corresponds to the initial (or intermediate) time step at

which the desired charge rate is computed, according to Eq. (7.6).
As for the PF scenario, the second objective O2ðkÞ can be relaxed by using the

running average qiðkÞ instead, as in Eq. (7.5). The running average can again be
taken over the whole connection period, or over a smaller time window τ.

Another similarity with the PF scenario is that we are not interested in how much
reactive power each PEV consumes (or injects) as long as the aggregated reactive
power consumption (injection) compensates the reactive power by uncontrollable
loads in the region. As mentioned before, additional, lower priority reactive power
objectives can easily be incorporated by adding an additional objective O4ðkÞ.
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7.3.3 Time Fairness (TF) Scenario

The two scenarios presented in Sects. 7.3.1 and 7.3.2 accommodate situations
where the PEVs are connected for long periods of time. However, during the day a
lot of situations arise where the vehicle is parked for short periods of time, for
example in shopping centers, restaurants, cafes, parking lots in a city center, etc.
While it is currently unlikely to find charging facilities at such locations, the
increasing amounts of PEVs on the roads can increase the desire for them. In
addition, local authorities or shopping mall owners may wish to provide incentives
for PEV owners to visit there and therefore provide charging infrastructure.

In such a framework, one possible way to charge the PEVs of the customers to
encourage short connections and avoid excessively long stays (e.g., to encourage
people to leave as soon as they have finished shopping, so they make their parking
spot available for new customers). In this case, we suggest allowing a higher power
consumption (or injection) to PEVs that are connected more recently than the PEVs
that have been connected for a longer period.

First, we categorize the vehicles into groups with different priorities depending
on the length of their connection. Accordingly, upon connection a PEV automat-
ically joins the group with highest priority. Then after a predefined period has
elapsed, the PEV is moved into a group with lower priority. The PEV is then
repeatedly shifted to a group with lower priority, until, after another predefined
period of time, it ends up in the group with lowest priority. We assume that there
are L groups, where group 1 has priority 1 (the lowest) and group L has priority
L (the highest). Also, we assume that the time period before a PEV is moved into
another group is constant and the same for all PEVs. In the following, we denote
such a time period by j and it is measured in time steps. Further, let Ti be the time
step at which the ith PEV connects to the power grid. Then, the priority of the ith
PEV at time step k, denoted � iðkÞ, can be computed as

� iðkÞ ¼ min L� 1;
k � Ti

j

� �� �
; ð7:8Þ

where bxc denotes the integer part of x.
Now, the power should be shared according to user priority. This can again be

formulated as a prioritized optimization problem similar to the ones before,
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O1 kð Þ ¼ max
p1 kð Þ; ... ;pN ðkÞ

XN

i¼1

pi kð Þ

s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ þ ~p kð Þ�P for all k

O2 kð Þ ¼ min
p1 kð Þ; ... ;pN kð Þ

BN kð Þk k1
s:t: ��si � piðkÞ��si for all i; k

XN

i¼1

pi kð Þ ¼ O1ðkÞ for all k

O3 kð Þ ¼ min
q1 kð Þ; ... ;qN ðkÞ

XN

i¼1

qi kð Þ þ ~q kð Þ
�����

�����

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi kð Þ2þqi kð Þ2

q
��si for all i; k

XN

i¼1

pi kð Þ ¼ O1 kð Þ for all k

BN kð Þk k1¼ O2 kð Þ for all k;

ð7:9Þ

where B is the same as in the previous sections and NðkÞ is the vector with ith
element

Ni kð Þ ¼ piðkÞ
� iðkÞ :

Analogously to the previous two scenarios it is possible to relax objective O2 kð Þ
by using the running average of the power consumption qiðkÞ.

Finally, in the current formulation we are not interested in the reactive power
consumed or injected by each vehicle, but only in the aggregated reactive power.

7.4 The Additive Increase Multiplicative Decrease
Algorithm (AIMD)

To solve the PEV charging problem for the different scenarios defined in Sect. 7.3,
we propose a distributed algorithm. Distributed algorithms are attractive for a
number of reasons. Firstly, such solutions are known to be robust against possible
failures. Secondly, the requirements for distributed algorithms usually place a
smaller burden than centralized algorithms on the communication infrastructure.
Finally, distributed solutions sometimes lead to “plug-and-play” type functionalities
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which could be convenient in the future where a large but unknown number of
PEVs connect to the same power distribution grid and compete for power. Note that
after the preliminary work [29], other papers have been published to solve the
charging problem in a distributed fashion, see for instance [3, 11, 32].

The PEV charging problem formulated in Sect. 7.2 is a typical resource-sharing
problem, where several agents compete to acquire their share of the resource (in this
case, power). This is similar to what occurs in the Internet, where the connected
devices compete with each other to obtain as much bandwidth as possible. The
similarities between the power distribution network and the communication net-
work have already been observed by a number of authors [17, 19]. Algorithms
developed for the transmission control protocol (TCP), namely additive increase
multiplicative decrease (AIMD) type algorithms, have recently been used in power
networks [8], and in the PEV charging problem [3, 19, 28, 29]. AIMD based
algorithms are known to be flexible and reliable, require a small amount of com-
munication between a central management unit and agents, such as PEVs, and have
been extensively investigated and tested in the past 20 years [6, 15, 16, 25–27].

The AIMD algorithm is a distributed algorithm that relies on a central man-
agement unit to broadcast a binary control signal. The PEVs autonomously react to
this control signal by changing their power consumption and injection in a sto-
chastic manner. As the PEVs, or the charger outlet they are connected to, are
themselves in command of their reaction, it is possible to accommodate for the
individual needs of the PEVs. Thus, AIMD-like algorithms are perfectly suitable for
distributed resource allocation problems found in smart grid applications.

As mentioned in Sect. 7.2, the PEV charging problem involves management of
active and a reactive power. Normally, the PEVs will draw power (active and/or
reactive) from the grid. However, in some cases it might be desired to reverse one
or both of the power flows, and make the vehicles inject power into the distribution
grid. This situation occurs if, for instance, the grid at a given moment does not have
enough power to supply the uncontrollable loads.

The AIMD algorithm can be extended to allow management of active and
reactive power exchange and both G2V and V2G power flows. We call such an
algorithm double (prioritized) AIMD (in the following, DAIMD). The DAIMD
algorithm comprises an active power AIMD algorithm, which manages the active
power consumption, and a reactive power AIMD algorithm, which governs the
reactive power consumption. Each of these AIMD sub algorithms is able to operate
in two modes: the G2V mode, in which the PEV draws power from the grid, and the
V2G mode, in which the PEV injects power into the grid.

In the following, we first present the active power AIMD algorithm as it operates
in G2V mode, which is the most basic form of the algorithm. Afterwards, we show
how we can extend this algorithm, so that the PEVs can also operate in V2G mode,
and how the PEVs can autonomously determine in which mode they should
operate. We then illustrate how the reactive power AIMD algorithm works and how
it can be implemented to obtain the DAIMD algorithm. In Sects. 7.4.1, 7.4.2 and
7.4.3 we illustrate three ways to tune the DAIMD to accommodate for the three
charging scenarios presented in Sect. 7.3.
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While the PEVs operate in G2V mode, the active power AIMD algorithm
controls the active power consumption of each PEV by switching between two
distinct phases. The first phase is the additive increase (AI) phase, where the PEVs
gently increase their charging rate, according to equation

pi k þ 1ð Þ ¼ pi kð Þ þ ai kð Þ�a: ð7:10Þ

The additive increase is scaled by a fixed scalar �a, which is identical for all
PEVs. This allows for some control over the increase from a central management
unit, if necessary, where occasional broadcast of �a may be desirable. Further, the
charging rate cannot exceed some value �si (given by the physical constraints of the
individual charging infrastructure).

The second phase is called the multiplicative decrease (MD) phase which occurs
when Eq. (7.1) is violated, i.e., when the sum of the consumed power by all
connected PEVs and the demand by uncontrollable loads exceeds the maximum
amount of power allowed by the power grid. We will refer to such an event as a
capacity event (CE). When a CE occurs, the central management unit notifies all the
connected PEVs of such an event by broadcasting a binary feedback signal. In

response, the PEVs decrease their charge rate by a multiplicative factor bð1Þi ðkÞpiðkÞ
with probability kiðkÞ, or by another multiplicative factor bð2Þi ðkÞpiðkÞ with residual
probability 1� kiðkÞ. In addition, when a PEV decreases its power consumption
from an already small value, we force the decrease to be greater than a fixed
threshold w. In this way, it is possible to handle the situations where the power is
near zero e.g., when transitioning between V2G and G2V modes.

If the PEVs operate in the V2G mode, the AIMD algorithm described above is
inverted. This means that upon receiving a CE the PEVs increase their power
injection additively, which corresponds to an actual decrease of the power con-
sumption. Similarly, when no CE is received the PEVs decrease their power
injection multiplicatively, which corresponds to an increase in power consumption.

The PEVs can automatically recognize at which point they need to change the
operating mode (i.e., from V2G to G2V or vice versa) in the following way. The
switch from G2V to V2G mode occurs after a CE if the actual power consumption
is very small. Let miðkÞ indicate whether the ith PEV operates in G2V mode at time
step k, i.e. miðkÞ ¼ 1 if at time step k vehicle i is in G2V mode and mi kð Þ ¼ 0 if at
time step k vehicle i is in V2G mode. Then, the indicator is updated after a CE by

miðk þ 1Þ ¼ 1; if pi k þ 1ð Þ[ e and mi kð Þ ¼ 1;
0; if pi k þ 1ð Þ� e and mi kð Þ ¼ 1;

�

where e is a positive scalar parameter. The return from V2G mode to G2V mode
occurs when no CE is received, and the indicator changes as
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miðk þ 1Þ ¼ 1 if pi k þ 1ð Þ[ � e and mi kð Þ ¼ 0
0 if pi k þ 1ð Þ� � e and mi kð Þ ¼ 0

:

�

Figure 7.1 illustrates the active power AIMD algorithm executed by the vehicles
for both G2V and V2G mode operation.

Different values of the parameters aiðkÞ in the AI phase, and kiðkÞ, b 1ð Þ
i ðkÞ and

b 2ð Þ
i ðkÞ in the MD phase give rise to different solutions, and this flexibility will be

used in the Sects. 7.4.1, 7.4.2 and 7.4.3 to handle the different scenarios presented
in Sect. 7.3.

V2G mode

G2V mode mi(k) = 1?

start

capacity
event signal
received?

pi(k + 1) = βi(k)pi(k)
pi(k + 1) = pi(k) + αi(k)ᾱ

mi(k + 1) =

{
1 if pi(k + 1)
0 if pi(k + 1) ≤

yes

no

capacity
event signal
received?

pi(k + 1) = pi(k) − αi(k)ᾱ
pi(k + 1) = βi(k)pi(k)

mi(k + 1) =

{
1 if pi(k + 1) > −
0 if pi(k + 1) ≤ −

yes

no

true false

end

Fig. 7.1 Illustrative diagram of the active power AIMD for PEVs
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To handle both the active and the reactive power exchange with the grid, the
above active power AIMD algorithm is embedded in a DAIMD, which also includes
a reactive power AIMD algorithm. Figure 7.2 shows a flow chart implementing such
a DAIMD. In a first step the active power AIMD algorithm is executed as previously
explained, and as illustrated in Fig. 7.1. Afterwards, a second AIMD algorithm, the
reactive power AIMD algorithm, is executed, where the PEVs aim at computing the
value of the reactive power qiðkÞ to be exchanged with the grid.

The reactive power AIMD algorithm depends on reactive CEs. Such events
occur whenever the reactive power at a defined measuring point, for example placed
at a transformer, is larger than 0. This indicates that all reactive power in the area
has been compensated and additional consumption of reactive power would lead to
over-compensation. Similarly to the active power AIMD, the PEVs are able to draw
or inject reactive power depending on the requirements of the power grid. The
reactive power consumption (or injection) additively increases if no reactive CE
occurs, and multiplicatively decreases otherwise. Figure 7.3 illustrates this algo-
rithm in detail. To distinguish between the parameters used in the reactive power
AIMD from the ones used in the active power AIMD, we denote the additive

parameter aiðkÞ, its additive scaling factor �a, the two multiplicative factors bð1Þi ðkÞ
and bð2Þi ðkÞ, the associated probability ciðkÞ, and the indicator ziðkÞ.

Naturally, at all times, the charger outlet gives a maximum bound on the
apparent power that can be exchanged between the vehicles and the grid

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piðkÞ2 þ qiðkÞ2

q
��si:

Regarding this bound it is important to note that we first bound the active charging
rate piðk þ 1Þ, and then we bound the reactive power consumption qiðk þ 1Þ, see
Fig. 7.2. Thus, we give a higher priority to the active power exchange rather than to the
reactive power exchange. This is deliberate and based on the assumption that charging
PEVs is more important than satisfying some ancillary services for the grid (i.e.,
exchanging reactive power). If necessary the priorities can easily be reversed, giving
reactive power exchange first priority and active power a lower priority.

One of the main advantages of AIMD-like algorithms is that they can be easily
implemented in a distributed way with small communication constraints. In par-
ticular, the basic active and reactive power AIMD algorithms as described above
only require a central management unit to broadcast binary CE signals. In this case,
no communication between the PEVs, or from the PEVs to the central management
unit is required. Other studies that deploy a central controller require more com-
munication, see for examples [10, 21, 23, 33]. This requires higher investments to
equip each charger outlet with two-way communication capabilities and stringent
communication requirements, especially in larger scale deployments, to mitigate the
effects of increased delays and signal loss. In addition, two-way communications
may face user resistance from PEV owners who might not be willing to share all the
required data with the central controller.

188 S. Stüdli et al.



7.4.1 Algorithm for the Power Fairness Scenario

In [26] it is shown that an equal share of the available active power can be achieved
by setting the AIMD parameters identical for all participating vehicles. This means

that aiðkÞ ¼ a; b 1ð Þ
i ðkÞ ¼ bð1Þ; b 2ð Þ

i ðkÞ ¼ bð2Þ, and kiðkÞ ¼ k for all i and k. This can
be done if the infrastructure informs the PEVs of the values of the parameters before
beginning the charging procedure, which would require additional communication.
Another possibility is to have static parameters that are coded in the charger, or
dynamic ones that are broadcasted to the vehicles during CEs (in this way, different
parameters can be used in different situations).

Since we are not primarily interested in reactive power exchange, the parameters
of the reactive power AIMD can be selected with more freedom. Hence, we choose
the reactive power AIMD parameters to be equal for all connected PEVs, i.e.

ai kð Þ ¼ a; b 1ð Þ
i kð Þ ¼ b 1ð ÞðkÞ; b 2ð Þ

i kð Þ ¼ b 2ð ÞðkÞ, and ci kð Þ ¼ cðkÞ. In this way, the
PEVs draw (or inject) equal amounts of reactive power.

start

active power AIMD algorithm

reactive power AIMD algorithm

pi(k + 1) = max (−s̄i,min (s̄i, pi(k + 1)))
qi(k + 1) = max − s̄2i − pi(k + 1)2,min s̄2i − pi(k + 1)2, qi(k + 1)

disconnect PEV?

end

yes

no

Fig. 7.2 Illustrative diagram of the DAIMD, where the active power AIMD is illustrated in detail
in Fig. 7.1 and the reactive power AIMD in Fig. 7.3
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7.4.2 Algorithm for the Energy Fairness Scenario

In some cases, one is interested in sharing the power directly (inversely) propor-
tionally to the desired charge rate in the G2V (V2G) mode. This objective can be
achieved by appropriately changing the parameters of the AIMD algorithm. In the
G2V mode, the parameters have to be changed such that

V2G mode

G2V mode zi(k) = 1?

start

reactive
capacity

event signal
received?

qi(k + 1) = bi(k)qi(k)

qi(k + 1) = qi(k) + ai(k)ā

zi(k + 1) =

{
1 if qi(k + 1)
0 if qi(k + 1) ≤

yes

no

reactive
capacity

event signal
received?

qi(k + 1) = qi(k) − ai(k)ā

qi(k + 1) = bi(k)qi(k)

zi(k + 1) =

{
1 if qi(k + 1) > −
0 if qi(k + 1) ≤ −

yes

no

true false

end

Fig. 7.3 Illustrative diagram of the reactive power AIMD for PEVs
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aiðkÞ
b 1ð Þ
i kð ÞkiðkÞ þ b 2ð Þ

i ðkÞð1� kiðkÞÞ

is proportional to the desired charge rates ~piðkÞ.
In this regard, it does not matter which of the AIMD parameters are adapted to

obtain such a result. However, such a choice affects the behavior of the algorithm.
In fact, adapting the additive parameter aiðkÞ influences the ability of the demand to

increase, while adapting the multiplicative factors b 1ð Þ
i ðkÞ and b 2ð Þ

i ðkÞ, or the
probability kiðkÞ, influences the ability to decrease the demand. In this section, we
only adapt the additive parameter aiðkÞ to achieve objective O2ðkÞ in this scenario,
while all the other parameters are chosen identical for all the connected PEVs.
Therefore, the additive parameter is adjusted as

ai kð Þ ¼ p̂iðkÞ
�si

ð7:11Þ

in the G2V mode, and as

ai kð Þ ¼ �si
p̂iðkÞ ð7:12Þ

in the V2G mode.
This scenario requires that the PEVs are informed of the value of the other

parameters �a; bð1Þ; bð2Þ, and k. As for the PF scenario, this information can be
transmitted along with the CEs or be coded in the charger to avoid additional
communication requirements.

As in the PF scenario, we use identical parameters for all PEVs for the reactive
power AIMD. Hence, the reactive power drawn or injected by the PEVs should be
equal.

7.4.3 Algorithm for the Time Fairness Scenario

For the TF scenario the power has to be proportional to the priority � iðkÞ assigned
to the PEVs. Hence, as in the EF scenario, we adapt the parameters such that � iðkÞ
is proportional to

aiðkÞ
b 1ð Þ
i kð ÞkiðkÞ þ b 2ð Þ

i ðkÞð1� kiðkÞÞ
:

Here, we adapt only the additive parameter aiðkÞ, while the remaining param-
eters of the active power AIMD are kept identical for all connected PEVs. The
parameter is updated at each time step according to
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aiðkÞ ¼ � iðkÞ
L

: ð7:13Þ

Note that we scale the priority � iðkÞ with L, i.e., the number of available groups,
such that the additive parameter remains in the interval ½0; 1�. While it is not
essential that the additive parameter lies in that interval, this is a useful property,
since then a

�
is the upper limit for the increase per time step and PEV.

7.5 Simulations

In this section we illustrate the behavior of our algorithms in a simulated scenario,
using a customized OpenDSS-Matlab simulation platform. In particular, Matlab
was used to compute the power consumption according to the different algorithms,
while OpenDSS, a power simulation tool developed by [13], was used to simulate
the power grid.

We tested our algorithms on a revised version of the power distribution system
based on the IEEE37 bus test feeder found among the OpenDSS examples [12].
This is depicted in Fig. 7.4. Note that Fig. 7.4 only shows the interconnections
between the loads, buses, and the transformer, and is not meant to depict the real
dimensions of the distribution grid. We also assumed that the actual power was
measured at the transformer that connects the loads with the external grid, and we
assumed a power limit at this transformer of 180 kW for the active power. The
transformer is depicted in Fig. 7.4 as the square block with label “SubXF”.
Additionally, the algorithm controls the reactive power flow to compensate it
completely at the transformer, i.e., the reactive power at the transformer should be
equal to 0 VAR.

Overall there are 25 uncontrollable three-phase loads, indicated by inverted
triangles in Fig. 7.4, connected to different buses. Such loads follow a pre-specified
load pattern over a day. For illustrative purposes, we made the assumption that the
peak load of the uncontrollable loads would overlap the connection time of the
PEVs. While this assumption is clearly not always true (PEVs could be recharged at
night time when the load curve is lower), it still allows us to investigate a worst-case
scenario. Also, note that there are some studies that predict that domestic charging
is likely to partly occur during the evening load peak, directly after work, and this
last scenario is consistent with this assumption. For example in [7] three charging
periods are identified: during daytime, during the night, and during the evening.
Similarly, [14] assumes that without control the charging starts around 6 p.m. and
identifies such a scenario as a worst-case, which is consistent with our simulation.

In our simulation, up to 20 PEVs can connect at the locations specified in
Fig. 7.4 with ellipses. We assume that the PEVs are connected with uniform
probability between hours 7 and 10 of the daily simulation. The connection is single
phase, where each charger has a maximal apparent power capacity of 3.7 kVA.
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In Fig. 7.4 the different line styles (solid, dashed, dotted) of the ellipses indicate the
different phases the PEVs are connected to. The required energy is assigned using a
uniform distribution between 15 and 20 kWh. We also assume that the PEV is
automatically disconnected when it is charged to the desired level. Note that this
means that fully charged vehicles do not participate in reactive power balancing.
Also, we assume that PEVs can be disconnected after a predefined time, inde-
pendently from their charging state. Further, we only simulate one scenario per
time. This means that all PEVs are in the same situation and therefore deploy
the same algorithm, corresponding to the simulated scenario. In the simulation, the
PEVs react synchronously to the CE, and possible communication delays have not
been taken into account.
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Fig. 7.4 Connection graph of the IEEE37 test feeder including PEVs. Inverted triangles
symbolize uncontrollable three-phase loads. The square block represents the transformer that
connects this part of the distribution grid to the external grid. The ellipses represent connected
PEVs and the line style (solid, dashed, dotted) indicates to which phase the PEV is connected to
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The results obtained using the proposed DAIMD algorithm to control the active
and reactive power consumption are compared with:

(i) the case where there are no PEVs connected at all, to evaluate the possibly
different utilizations of the uncontrollable loads; and with

(ii) the case where PEVs are charged with the maximum charge rate until they
are fully charged, i.e., piðtÞ ¼ �si for all i.

7.5.1 Simulation of the Power Fairness Scenario

In this section the PEVs connected to the distribution grid, shown in Fig. 7.4, use
the PF scenario algorithm described in Sect. 7.4.1. This means that they should be
recharged with the same average charge rate, without exceeding the maximum
active power allowed by the transformer. The active power AIMD parameters are

identical for all the PEVs: a ¼ 1; �a ¼ 0:1 kWs ; bð1Þ ¼ 0:75; bð2Þ ¼ 0:99; k ¼ 0:7,
and w ¼ 0:15. The values for the reactive power AIMD are also identical for all
PEVs and identical to the ones used for the active power AIMD, i.e. a ¼ 1,

�a ¼ 0:1 kVAs ; bð1Þ ¼ 0:75; bð2Þ ¼ 0:99; c ¼ 0:7, and w ¼ 0:15.
Figure 7.5 shows the active and reactive power consumption at the transformer

and Fig. 7.6 shows the active power consumption of four randomly selected PEVs.
The results are filtered using a moving average filter with a window length of 600
time steps which corresponds to 10 min.

Note that the load demand exceeds the allowed limit by a small margin for a
brief period of time near 9 h. However, when the PEVs are connected to the
distribution grid, they are able to inject power into the grid and reduce the total
demand to below the limit. On the other hand, if the PEVs are not controlled, then
there is a peak demand which exceeds the power limit by a large margin. By
appropriately controlling the charge rates, it is possible to mitigate the peak, though
the overall charging time obviously increases. Furthermore, the PEVs can also
support the grid with reactive power management, and successfully push the
reactive power at the transformer towards zero. This is helpful both in terms of
reduced grid transmission losses and local voltage support. Finally, note that in our
set-up the PEVs disconnect as soon as they are charged to the desired level (e.g.,
fully charged).

7.5.2 Simulation of the Energy Fairness Scenario

In this section, the charge rates of the PEVs are determined using the modified
algorithm illustrated in Sect. 7.4.2. To make a comparison with the previous
charging strategy, we use a similar setting as previously described. While the
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additive parameter ai is determined by the Eqs. (7.11) and (7.12), respectively, the
remaining active power AIMD parameters are chosen identically to those in

Sect. 7.5.1 for the previous simulation, i.e. : a ¼ 1; �a ¼ 0:1 kWs ;

bð1Þ ¼ 0:75; bð2Þ ¼ 0:99; k ¼ 0:7, and w ¼ 0:15. The values for the reactive
power compensation are also chosen identically to the previous scenario, i.e.

a ¼ 1; �a ¼ 0:1 kVAs ; bð1Þ ¼ 0:75; bð2Þ ¼ 0:99; c ¼ 0:7, and w ¼ 0:15.
Each PEV has to know the expected time it will be connected to the power grid

in advance, in order to compute the additive parameter as in Eqs. (7.11) and (7.12).
In this simulation, we assumed that every PEV is expected to stay connected for
9 h. Then the desired charge rate is computed once at connection of the vehicle to
the grid according to Eq. (7.6). This desired charge rate is then used to continuously
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update the additive parameter aiðkÞ using Eqs. (7.11) and (7.12) while the PEVs
operate in G2V and V2G mode, respectively.

Figure 7.7 depicts the active and reactive power at the transformer. Again, we
show a comparison of the results relative to the case of no connected vehicles, and
to the case of uncontrolled charge rates.

The second objective O2ðkÞ in this scenario is to share the power proportionally
to the desired charge rate (i.e., more power to those who need more energy in a
shorter time). To investigate whether this objective is fulfilled, the ratio between the
desired charge rate and the actual average power consumption is plotted in Fig. 7.8.
As before, the power consumption is filtered using a moving average filter with a
window size of 10 min.

7.5.3 Simulation of the Time Fairness Scenario

We repeat the simulation to simulate the TF scenario. As mentioned in Sect. 7.3.3
the power consumption or injection should be proportional to an assigned priority
� iðkÞ, which can be computed by Eq. (7.8). The parameters for the scenario are
such that the number of groups L is set to four and the time period j is set to 1 h.
While the additive parameter of the active power AIMD is computed at each time
step using Eq. (7.13), all remaining parameters of the active and reactive power
AIMD are identical to the previous simulations.

Figure 7.9 depicts the active and reactive power consumption at the transformer
“SubXF”. Similarly to the other scenarios, the algorithm manages to mostly push
the active power below the limit, while allowing the PEVs to balance a large part of
the reactive power in the area.
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Here, the PEVs power consumption or injection should be proportional to their
priority. In Fig. 7.10 the power consumption of four randomly selected vehicles is
depicted (dashed) and their priority (solid). The power consumption or injection is
higher for PEVs that have just been connected to the grid compared to those
connected for a longer period, as desired in this scenario.

Similarly to the other simulations, the power consumption is filtered using a
moving average filter with a window length of 10 min.
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7.6 Future Work

We have simulated the algorithm proposed for managing the active and reactive
power consumption of PEVs to support the distribution grid while PEVs are con-
nected for charging. In this chapter a simple radial feeder model has been used to
test the algorithm. In reality, however, the grid structures are more complex and
may contain multiple feeders with different limitations. Those more complex cases
with additional limitations have to be investigated to guarantee an efficient opera-
tion of the algorithm.

Similarly, different types of constraints such as line current or node voltage
limits may be present. For example, a node voltage limit might be imposed to
ensure all users have supply that meets the relevant standards. In that regard it may
be important to carefully select a subset of nodes where excess voltage excursions
are most likely to occur. In this case, further studies would be required to prevent
unforeseen interactions among the different CE-generating sources.

Additionally, the algorithm proposed could be used to shape the demand curve
that regions should follow instead of just limiting the demand in the region. Such a
behavior can be achieved by intelligent adaption of the limit, P. This can be used to
limit the rate of change in aggregate demand to allow generators that react slowly to
compensate for the changes. The main problem in this case is how to find the optimal
P to support the distribution grid while full-filling the needs of the owners of PEVs.

Similarly, extensions of this basic algorithm and intelligent adaptation of the limit
P allows two more services of support. The first one is to balance the power among
the three phases by controlling the phases separately. In that case, a limitation is
introduced for each phase whose value depends on the demand in the three phases.
However, it is not straightforward to include such an operation. For example it might
be hard to define whether a phase should reduce its power consumption or the other
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phases should increase their power consumption. The second possible extension is to
regulate currents according to the grid frequency and utilize this frequency as a
signal, indicating when to locally reduce the power consumption.

Furthermore, we assumed throughout the paper that all participating PEVs are
applying an identical scenario. It has to be verified whether the fairness can still be
guaranteed if the connected PEVs apply different scenarios in the same distribution
grid. For example in a region where a lot of PEVs are connected using the PF
scenario, for example in a domestic setting, and a few vehicles connect using the EF
scenario, for example at a small office building in the same area. This issue has to be
studied, especially for a larger scale use of the algorithm. In the situations described
above, one might try to use multiple levels of DAIMD. For instance, one DAIMD
controls only the PEVs that apply the EF scenario, and a second one controls the
PEVs that apply the PF scenario. The power limit of those two separate DAIMD
algorithms is then controlled by a higher level DAIMD. Such multi-level DAIMD
algorithms might also be used for the control of large scale distribution grids.
However, as this adds higher levels of communication and control, the behavior has
to be studied more carefully.

Due to the small communication overhead of a single bit, the PEVs are not able
to react to future expectations of the demand by uncontrollable loads and the power
generated by renewable power sources. By allowing the management unit to
broadcast additional information, for example the expected increase in demand in
the next hour, the PEVs may be able to react to such information and adapt their
power consumption in response to predictions. What information is most useful and
how the PEVs should react while maintaining a sense of fairness remains an open
problem. Further, by relying on predictions it is important to consider that they
normally are not exact. It needs to be verified that the algorithm can handle such
prediction errors and whether the advantages are large enough to accept the higher
communication requirements and the necessity of predictions.

7.7 Conclusions

This chapter presents a distributed algorithm to control the charging of PEVs and
enables them to support the grid. While the algorithm manages to limit the peak
demand and reduces the reactive power transported outside of an area, it also allows
flexibility in how the PEVs are “fairly” controlled.

We presented three possible definitions of how the control can be interpreted as
“fair”. While there are many more possibilities to define “fairness” among the
participants, those three scenarios illustrate the flexibility of the proposed algorithm.

Using a simple radial test feeder we simulated the behavior of the algorithm for
the different scenarios and verified its usefulness.
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Chapter 8
Towards a Business Case
for Vehicle-to-Grid—Maximizing Profits
in Ancillary Service Markets

David Ciechanowicz, Alois Knoll, Patrick Osswald
and Dominik Pelzer

Abstract Employing plug-in electric vehicles (PEV) as energy buffers in a smart
grid could contribute to improved power grid stability and facilitate the integration
of renewable energies. While the technical feasibility of this concept termed vehicle-
to-grid (V2G) has been extensively demonstrated, economic concerns remain a
crucial barrier for its implementation into practice. A common drawback of previous
economic viability assessments, however, is their static approach based on average
values which neglects intrinsic system dynamics. Realistically assessing the eco-
nomics of V2G requires modeling an intelligent agent as a homo economicus who
exploits all available information with regard to maximizing its utility. Therefore, a
smart control strategy built on real-time information, prediction and more sophis-
ticated battery models is proposed in order to optimize an agent’s market partici-
pation strategy. By exploiting this information and by dynamically adapting the
agent behavior at each time step, an optimal control strategy for energy dispatches of
each single PEV is derived. The introduced cost-revenue model, the battery model,
and the optimization model are applied in a case study building on data for Singa-
pore. It is the aim of this work to provide a comprehensive view on the economic
aspects of V2G which are essential for making it a viable business case.
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8.1 Introduction

In power systems, fluctuations of energy demand and supply cause continuous
deviations from the desired frequency. Ensuring power grid stability requires an
instantaneous response by the power system operator which restores the equilib-
rium between demand and supply. This is either achieved by power plants capable
of quickly adjusting their power output or by storage facilities which buffer energy
excesses or shortages. Most of these solutions are, however, either costly, entail
large space or exhibit low energy efficiencies leading to the need for development
of alternative approaches.

One possible solution could be the utilization of plug-in electric vehicles (PEV)
of which batteries could be employed as short term energy storage through charging
in the case of a power excess or by feeding electricity back to the grid in the
opposite case. This concept termed vehicle-to-grid (V2G) was first mentioned in
1997 [1] and has been subject to intensive research in the last two decades. While
the effectiveness of the V2G concept to improve power grid stability has been
confirmed by both theoretical considerations [2–8] as well as fully functional
prototypes [5, 7, 9], its economic viability is still subject to controversial discus-
sions. This is reflected in the diverging conclusions on the profitability where some
expect annual losses of several thousand dollars while others promise multiple
thousand dollars of yearly income [2, 6, 9–15].

One drawback of previous economic analyses of the V2G concept is that cal-
culations are based on average annual values for the involved parameters. In reality,
however, electricity prices highly vary during the course of a day, presenting
varying scenarios where V2G may yield profits in one time period but result in
losses in a different one. Furthermore, individual travel itineraries impose restric-
tions on the temporal availability of PEVs. At the same time, factors such as battery
aging typically depend non-linearly on a variety of parameters which cannot be kept
constant during V2G operation. Simple averaging therefore does not yield correct
cost estimations. The entity of these aspects significantly limits the explanatory
power of static approaches and leaves the outcome of these methods highly sen-
sitive to the choice of the input parameters. To correctly determine the economic
viability of V2G and at the same time provide a control strategy for individual V2G
agents, more dynamic approaches are required.

The purpose of this chapter is to discuss the problems of previous approaches
investigating the economic viability of V2G and to identify solutions that could
pave the way for making V2G an economically viable business case. The remainder
of this work is structured as follows: In Sect. 8.2, the transition from a power
system to a smart grid is described. In this context, the V2G concept is discussed as
one possible future solution for improving power grid stability. Section 8.3 intro-
duces an electricity market independent V2G control strategy which aims for
maximizing profits in ancillary service markets. This concept includes an appro-
priate consideration of battery depreciation as well as an optimization methodology.
The optimization model is then applied in a simple case study building on data for
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Singapore in Sect. 8.4, followed by a discussion of parameter sensitivities. In
Sects. 8.5 and 8.6 findings are finally discussed and an outlook on future research is
given.

8.2 Power System Fundamentals

In the first part of this section, the fundamentals of the power system and the
concept of ancillary services are briefly introduced. It is discussed, how the tran-
sition to a smart grid could mitigate the increasing need for balancing power
demand and supply which arises from the growing share of renewable energy
sources. This leads to the possible role of PEVs and the V2G concept in the future
power grid, which is described in more detail in Sect. 8.2.2. One important com-
ponent for the implementation of V2G is the aggregator which is finally discussed
in Sect. 8.2.3.

8.2.1 Power System and Smart Grid

A power system is a network of power lines which connect energy producing and
consuming entities with each other. Different voltage levels may distinguish the
power grid into a maximum, high, medium, and low voltage grid with the first two
levels forming the transmission grid and the latter two the distribution grid. The
different levels are physically separated from each other by substations, switches,
and transformers and are controlled by high performance computers.

In Fig. 8.1 a rough illustration of the Singapore power system as it can be
derived from data on high-voltage grid, substations and consumers is exemplarily
shown. The upper layer shows the transmission grid while the middle layer depicts

Fig. 8.1 Singapore power system
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the distribution grid. The nodes in both layers represent power plants, substations,
switches or transformers which in this case are not visually distinguished. The
nodes at the bottom layer on the map depict a selection of consumers connected to
the distribution grid.

A power grid is operated by one or more transmission system operators (TSO) of
which its primary task is the energy transfer from the generation units to regional or
local distribution system operators (DSO) which then deliver the energy to the
consumers. One key responsibility of a TSO is to ensure power grid stability. The
power grid itself only exhibits negligible energy storage capacity and is therefore an
inherently unstable system. Deviations between energy demand and supply which
may either be positive when supply exceeds demand or negative in the opposite case
therefore lead to fluctuations of voltage and frequency which require an immediate
action. This response is performed by so called ancillary services provided by fast
responding power generators which are capable of quickly ramping up or curbing
down their power output. Depending on the response time and the duration of
providing ancillary services, it is distinguished between regulation as well as pri-
mary, secondary, and contingency reserve. All of the four markets usually have a
ratio of around 1 % of the total annual energy generation. Providers of ancillary
services receive a payment for the dispatched energy when up-regulation is required
or a compensation for curbing power generation in the opposite case. These energy
payments are usually differentiated and considerably higher for regulation than for
reserve. Besides these energy payments, many national electricity markets also have
a capacity payment which is a reward solely for holding power generation potential
available instead of energy dispatch. In most markets, prices are fairly variable over
time but are kept constant for a certain time period of 15 or 30 mins in most cases.

As a result of growing shares of intermittent renewable energy sources and the
introduction of PEVs on a large scale, the need for ancillary services and energy
storage is increasing. This is because both the availability of renewable energies and
the mobility pattern of PEVs are volatile and sometimes hard to predict. To satisfy
the additional demand for ancillary services, either fast reacting generators or
energy storage facilities are needed. Technologies capable of providing this func-
tionality include pumped storage hydroelectricity (PSH), compressed air energy
storage (CAES), hydrogen-driven fuel-cells, or supercapacitors. These technolo-
gies are, however, often costly, energy inefficient or may entail large space leading
to the need for alternative approaches.

The need for energy storage may be reduced in a smart grid which supports
multi-directional energy flow instead of showing a strictly hierarchical topology. In
this case, energy is not only generated at the high voltage levels but may also be
provided by generators within the distribution grid. These generators could then
also serve as ancillary service providers so that large power plants could keep
operating at their optimal efficiency. With a communication infrastructure allowing
the intelligent control of energy producers and consumers this would lead to a
distributed, self-organizing grid design.

One important role in a future smart grid could be taken by PEVs which have the
capability of acting as either consumers or producers by using their battery as
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energy buffers. PEVs are advantageous compared to classical generators in the way
that they can react to demand requests virtually in real-time, have low standby and
initial costs per kWh, and provide temporarily high power. With a sufficient amount
of PEV participating in V2G services, capacities from conventional power sources
would therefore become redundant. This V2G concept will be introduced in greater
detail in the following section and will be further assessed in the remainder of this
chapter.

8.2.2 The V2G Concept

The V2G concept is depicted in Fig. 8.2. Energy is generated by conventional
power plants or renewable energy sources and transmitted through maximum, high,
medium and low voltage lines to the consumers (e.g., households, enterprises,
charging stations, etc.). The type of consumers that is of interest in this context are
PEVs which may either use the energy for driving or serve as a short-term energy
storage by charging their battery packs in case of power excess or feeding electricity
back in the opposite case. Discharging a PEV’s battery during an energy shortage
and therefore providing energy to the grid is called V2G while charging the battery
during an energy excess is known as grid-to-vehicle (G2V). The V2G concept
incorporates both services so this term will be used within this chapter whenever no
explicit distinction is necessary. In the following, four scenarios are introduced in
which possible use cases for the energy stored in the battery packs of the PEVs are
outlined.

Scenario A depicts a one-way flow of energy where a PEV is simply charged at a
charging station installed in a household. Scenario B uses the same setting but in
addition energy can be locally fed back to the household. This concept is termed
vehicle-to-home (V2H). The case of allowing energy to flow back into the power
grid representing the V2G concept is depicted in Scenario C. In this case, the PEVs
communicate with an intelligent charging station which then dispatches or draws
energy to or from the PEV. The charging station itself is controlled by an aggre-
gator which is a unit that bundles multiple PEVs to a virtual power plant (VPP)
[7, 16–19] in order to trade energy at the electricity market. Due to its important
role, the aggregator is discussed in further detail in Sect. 8.2.3. In Scenario D,
multiple PEVs are aggregated to a VPP through an operator of e.g. a car park. This
operator could use the aggregated energy as described by the V2H concept, directly
participate in the energy market or could again be part of a VPP of some higher
level aggregator.
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Fig. 8.2 The V2G concept

208 D. Ciechanowicz et al.



8.2.3 The Aggregator

The amount of energy and power each individual PEV can provide is too small to
participate on most electricity markets (in Singapore 1 MW for half an hour is
necessary). Meeting these conditions thus requires hundreds to thousands of PEVs
aggregated to a VPP. This is achieved by an aggregator who serves as a mediator
between the PEVs and the electricity market. The aggregator trades energy at the
market and ensures that the VPP is capable of providing the contracted power at all
times. An aggregator should be considered a virtual entity rather than a physical
one. This means that the PEVs belonging to one aggregator do not necessarily need
to be connected at neighboring locations. Instead, aggregation at the level of the
same grid node or even only in the operation range of one grid operator may be
sufficient in many electricity markets. In addition to PEVs, an aggregator could
have access to other energy sources e.g. secondary market battery packs, conven-
tional or renewable energy power plants or other sub-aggregators. From the TSO’s
point of view, the power generation capacity offered by the aggregator presents
itself as a single large, fast-controllable energy source although it may originate
from a variety of different sources. The relation between all involved actors is
depicted in Fig. 8.3.

The challenge faced by the aggregator is to synchronize charging and dis-
charging operations of a large number of PEVs in order for all PEVs to reach their
targeted state of charge, while ensuring that the contracted ancillary services can be
provided at all times. Due to the continuous fluctuation of the number of PEVs in
the VPP, the heterogeneity of the carpool and the fact that both aggregator and PEV
owners aim to maximize their profit, this leads to an optimization problem with a
high degree of uncertainty. Since each PEV typically has its individual utility
function and own constraints, a central control mechanism would quickly become

Fig. 8.3 The aggregator concept
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infeasible. Therefore, a distributed approach where each PEV performs its indi-
vidual optimization is discussed in Sect. 8.3.3. As such, the central remaining task
of the aggregator is to achieve sound estimations on the demand and power gen-
eration capacity of its VPP and, if necessary, trigger behavior changes of the
involved PEVs in case it is at risk of failing to fulfill its obligations to the TSO.

Influencing the charging and dispatching behavior of PEVs which are part of the
VPP can be achieved by sending price signals which may not necessarily corre-
spond to market prices. By decoupling prices offered by an aggregator from prices
given by the electricity market, the temporal gap between a period in an electricity
market in the range of minutes and the requirements for regulation on a scale of
seconds can be closed. Real-time prices would also allow an aggregator to
dynamically adapt the charging/dispatching power of each individual agent in real-
time and not only on a period basis. Based on historical data collected by an
aggregator, the algorithm would have to take an estimate of the temporal avail-
ability of each PEV as well as each agent’s individual cost function and battery
capacity constraints into consideration. In return, it may produce an optimal
charging/dispatching schedule for each point in time optimizing its own profits by
also generating (not necessarily optimal) profits for each agent.

Presuming V2G is a profitable concept, there are different types of entities that
might be interested in establishing themselves as aggregators. First of all, battery
pack or vehicle manufacturers have detailed knowledge about their battery inherent
depreciation cost functions. The drawback of the two parties is the spatial distri-
bution of their aggregated PEV fleet which might cause problems with feeding
energy into the right section of the low voltage grid. Additionally, they may lack
necessary know-how in the area of communication. Another group of interest could
be mobile network operators and DSOs which both have expertise regarding
communication technology and accounting systems, especially with a large amount
of small-size customers. Additionally, DSOs already have a business connection
with customers in the energy segment. Particularly advantageous for DSOs is their
profound knowledge of power demand and supply in the grid. At last, entities
who command a sufficiently large PEV fleet could promote themselves being an
aggregator. Their advantage is their knowledge about the tempo-spatial availability
of each PEV.

8.3 An Intelligent Agent Behavior Model

One essential criterion for making the V2G concept applicable in practice is to
prove its economic viability on one hand and on the other to provide individual
agents with a control strategy which maximizes their profit. For this purpose, in
Sect. 8.3.1 the basic equations for an economic model for V2G are introduced.
Section 8.3.2 then discusses the challenges and approaches regarding battery aging
models which are a crucial factor for assessing the costs of V2G. In Sect. 8.3.3 it is
then described, how the introduced equations can be utilized for a dynamic control
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strategy which most effectively exploits the economic potential of V2G for an
individual user. Section 8.3.4 finally briefly discusses what role artificial intelli-
gence could play for making V2G applicable in practice.

8.3.1 Economic Model

In this section, the equations which are used for investigating the economic viability
of V2G valid for most electricity markets are introduced [20]. Total annual profits
are calculated from the difference between revenues R and costs C

Y
¼ R� C ð8:1Þ

which are separately discussed in the following two sections.

8.3.1.1 Revenues

The total revenue R is the sum of the revenues made from up-regulation and the
revenues attained from down-regulation services. In the event of an under-supply of
power, up-regulation is necessary. In this case, the PEV acts as a generator and
feeds energy into the grid. Therefore, energy is sold at the regular selling price in
the respective electricity market pE plus a compensation for providing up-regulation
ancillary services p";Anc. Depending on the energy market under consideration,
p";Anc corresponds to either the payment for reserve or regulation. In this case, the
received payment per unit of dispatched energy is

p";E ¼ pE þ p";Anc ð8:2Þ

In the opposite case where power supply exceeds demand, down-regulation is
required and the PEV acts as a consumer. The owner pays the electricity tariff pET
which is discounted by the down-regulation compensation p#;Anc. Since the energy
purchase costs given by pET are explicitly accounted for in Sect. 8.3.1.2, the
effective payment per unit of energy in this case is therefore simply

p#;E ¼ p#;Anc ð8:3Þ

In many national electricity markets, additional capacity payments p";Cap and
p#;Cap are provided for only holding power generation potential available rather than
actually dispatching energy.

The total annual revenueR is the sum of the revenues resulting from the energy and
the capacity payment. Each of the two payments has to bemultiplied by the respective
amounts of purchased and dispatched energy, or stand-by power. As previously
discussed, market prices are typically time-dependent but remain constant for time
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periods of a certain duration Dt. As a simplification, the charging/dispatching power
may also be assumed to be kept unchanged during one time period. The total annual
revenue R over all time periods i can then be written as

R ¼
X

i

p";E;iP";E;i þ p";Cap;iP";Cap;i þ p#;E;iP#;E;i þ p#;Cap;iP#;Cap;i
� � � Dt ð8:4Þ

8.3.1.2 Costs

The total annual costs CA are calculated as the variable costs cvar ¼ cg þ cD mul-
tiplied by the total annual amount of energy cycled through the battery pack EA,
plus annual fixed costs CAF :

CA ¼ EA cg þ cD
� �þ CAF ð8:5Þ

In this equation, cg denotes the energy purchase costs which, using the charge-
discharge efficiency g, can be written as

cg ¼ pET
g

ð8:6Þ

The term cD represents the variable battery pack depreciation costs which result
from the limited number of possible charge-discharge cycles. Using the purchase
costs of a battery pack CBatterPack and the total possible energy throughput ELifetime,
this turns into

cD ¼ CBatteryPack

ELifetime
ð8:7Þ

The quantity of energy which can be cycled through a battery pack until it fails
to meet its specific performance criteria is given by the capacity QBatteryPack mul-
tiplied by the depth of discharge (DOD) and the maximum number of cycles Z
possible at a certain DOD:

ELifetime ¼ Z � DOD � QBatteryPack ð8:8Þ

One cycle in this context is understood as discharging the battery from an initial
state of charge (SOC) by a certain DOD and subsequently recharging it to the initial
SOC; the charge throughput per cycle therefore depends upon the corresponding
DOD. The cycle stability Z is a quantity which depends on a large number of
parameters such as charge rate (C-rate), DOD, temperature, humidity and time and
which strongly varies among different battery chemistries [21]. It is therefore not
possible to reliably model the cyclic lifetime so that many studies simply assume a
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fixed number for Z [6, 10, 12, 13]. In Sect. 8.3.2 the challenges related to battery
lifetime modeling are discussed in further detail.

The last term of (8.5) CAF denotes the fixed costs which account for the
investment in equipment required to make a PEV suitable for V2G. To annualize
and discount the fixed costs, it can be written as

CAF ¼ CC
d

1� 1þ dð Þ�n ð8:9Þ

with CC being the total capital costs, d the discount rate and n the number of years
until the investment is depreciated. With these considerations, the total annual costs
can finally be rewritten as

CA ¼ EA
pET
g

þ CBatteryPack

Z � DOD � QBatteryPack

� �
þ CC

d
1� 1þ dð Þ�n ð8:10Þ

8.3.2 Battery Modeling

A crucial aspect for the profitability of V2G applications is battery degradation cost.
To appropriately consider the costs of battery degradation in an economic model
and to account for these costs during V2G operation, an understanding of battery
aging processes and their representation by a suitable battery model is required.

The performance fade of a cell can be separated into the loss of capacity
(measured in Ah) as well as the increase of the cell impedance which causes energy
fade (measured in Wh) and power fade (measured in W). The main effect for
capacity fade is the loss of cyclable lithium, primarily caused by formation of the
solid electrolyte interface (SEI) at the graphite anode [22, 23] as well as by lithium
plating occurring at high charging currents and low temperatures. This loss of
cyclable lithium in turn causes a change of the electrode balancing, preventing the
battery from being fully charged and discharged at specific current rates [24].
The second contributor to capacity fade is the loss of active electrode material.
When the cell is cycled at high and low SOCs, the electrodes undergo certain
mechanical stress during lithium intercalation, resulting in micro cracking. These
micro cracks lead to either further SEI formation or can cause a loss of contact for
the active material, making them unavailable for further intercalation processes
[22, 23, 25]. In addition to the capacity fade described, these mechanisms are
closely correlated to the increase of the cell impedance. The ongoing SEI refor-
mation causes a constantly growing surface layer with a low conductivity and low
diffusivity, causing an increase in the charge transfer resistance [25]. The loss of
active material leads to higher local currents and local SOC variations, which in
turn accelerate the aging process [26].
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These different aging mechanisms are triggered from the environment and the
utilization mode, including the cell’s temperature, the DOD, the charge and dis-
charge current rate as well as the SOC range the cell is used in [25, 27–29]. In
general, high currents as well as extremely high and low SOC conditions accelerate
the aging process of the cells; high temperatures accompanying these high currents
lead to an increased amount and speed of parasitic side reaction. An intelligent V2G
control strategy would therefore aim at maintaining moderate SOC conditions,
avoiding extreme DODs and keeping charge and discharge currents low.

Numerous studies have been performed to understand these mechanisms and to
establish a quantitative relation between these aging effects and the corresponding
control parameters [29, 30]. Battery aging studies considering multiple parameters
are, however, complex and very time consuming, particularly at low C-rates.
Hence, certain drawbacks in the accuracy of the battery aging model have to be
taken into account. As a first approach, it can be assumed that the aging of the cell is
dominated by the charge throughput during charge and discharge of the cell. As
described earlier, the rate of damage is greater at extremely high and low SOCs
which can be reflected in a DOD dependent aging parameter.

To quantitatively account for battery depreciation costs due to charging and
discharging, the cost of a unit of cycled energy needs to be computed according to
(8.7). A simple empirical model for battery aging which is employed in the sen-
sitivity analysis of the case study presented in this paper was developed by Peterson
and Whitcare [31]. In this model, the cyclic stability introduced in (8.8) is given as

Z DODð Þ ¼ 145:71
DOD

� � 1
0:6844

ð8:11Þ

which explicitly considers the effect of the DOD on the possible number of cycles.
While the DOD can be assumed to be the most relevant parameter, the battery

aging estimation can be further improved by additionally taking the non-linear
behavior of the SOC-dependent aging into account. This is achieved by a model
presented in [32] which was adapted to be employed in the case study in Sect. 8.4.
It describes the battery capacity fade due to cyclic aging as a function of the charge
throughput q according to the relation

CAPðqÞ ¼ 1� b � ffiffiffi
q

p ð8:12Þ

where CAP denotes the battery capacity and where b is an experimentally deter-
mined factor which was found to be

b ¼ 7:348� 10�3 � �U � 3:667ð Þ2þ7:6� 10�4 þ 4:081� 10�3 � DOD ð8:13Þ

for the investigated battery type.
In this equation, �U is the average voltage at which the cycling occurs which can be

obtained from the open-circuit voltage of the battery cell. As �U depends on the SOC,
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this relation implicitly accounts for the SOC as a second parameter apart from the
DOD. Setting CAP qð Þ ¼ 80% which is a common criterion for the end of life of
batteries used for automotive applications then allows calculating ELifetime. This
ultimately leads to the following equation for battery depreciation costs

cD ¼ CBatteryPack � b2

0:04 � U ð8:14Þ

which consider both DOD and SOC.

8.3.3 Optimization

Cost and revenue equations similar or equivalent to the ones discussed in the
previous sections have been applied in many cases to assess the economic viability
of V2G. This has mostly been accomplished by using average values for prices,
battery lifetime and charging and dispatching power. Most of the studies relying on
realistic assumptions conclude that the PEV owner would incur monetary losses
from providing V2G services. It is therefore clear that control strategies based on
this averaging behavior would not lead to a valid business case. Control strategies
for V2G need to be directly related to economic considerations to give the V2G
concept a chance to be implemented in practice at all. This means that strategies
need to account for the temporal dynamics of the market and need to reflect the
behavior of intelligent agents who would attempt to maximize their profits by
adapting to these fluctuations.

The resulting question therefore is how rational agents would decide on their
charging and dispatching strategies presuming they have certain information on
internal and external parameters. Technically, this means that a cost-benefit cal-
culation according to the equations defined above needs to be conducted whenever
any change of the relevant parameters occurs.

There have been several recent attempts in the literature which address this issue
[15, 33]. A simple strategy which improves the loss-making averaging approach is
to make a binary decision on when to provide V2G services, depending on whether
the evaluation of the cost model yields an expected benefit or a loss. Given an
additional degree of freedom where the user cannot only make a binary decision but
continuously adapt the power output or input, a next step is to compute an optimal
value for the charging or dispatching power for a certain point in time. This
approach can be refined further by making use of predictive information. In most
electricity markets, price estimates for buying and selling electricity are known a
certain period of time in advance. This information may be used by an intelligent
agent to decide when and at what power to charge or discharge its battery in order
to achieve the greatest possible profit. The agent may then even accept losses in
some periods to attain higher profits in the following ones. Technically, this can be
formulated as a mathematical optimization problem with various constraints.
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The function to be maximized is the profit P which can be attained during a
certain number of time periods T . Since electricity prices fluctuate over time,
revenues and costs according to (8.4) and (8.10) can be expected to be different in
each time interval so that the profit has to be written in the form

P ¼
XT

i¼1

Ri Pið Þ � Ci Pið Þð Þ ð8:15Þ

In a simple scenario, the power Pi in a certain time interval is limited by the
maximum C-rate defined by the battery specifications and by an SOC constraint
which determines how much energy can be charged into the battery or dispatched to
the grid. The optimization problem can then be written in the form

maximize
Pi

P

subject to Pmin �Pi �Pmax

and 0� SOCi � 1
ð8:16Þ

The SOC change between two time steps is simply calculated according to the
relation

SOCi ¼ SOCi�1 þ Pi � Dt
Q

ð8:17Þ

A more sophisticated control strategy should also account for time periods at
which the PEV is expected to be in use. This leads to additional constraints which
ensure that the battery contains enough energy to complete the next trip. Given a
battery capacity Q and energy consumption e, a trip starting at time interval m with
an expected driving distance d implies the following condition for the SOC at time
interval m� 1:

SOCm�1 � e � d
Q

ð8:18Þ

During the trip from time interval m to n no grid connection can be established
so that

Pi ¼ 0 8i : m� i� n ð8:19Þ

The SOC change between the start and the end of the trip is then calculated by

SOCn ¼ SOCm � e � d
Q

ð8:20Þ

In general, due to the non-linearity of realistic battery aging models, this problem
has to be treated as a non-linear optimization problem. It may therefore either be
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addressed by a non-linear solver, or be piecewisely linearized and then be solved
using a linear solver.

8.3.4 Artificial Intelligence

Given the dynamics of the system and complexity of the problem, the decision on
whether to charge or discharge the battery needs to be automatized by an intelligent
control unit in the PEV [19]. This control system should not only be capable of
performing the mathematical optimization but should also be able to autonomously
define the optimization constraints. One example for these constraints is the battery
SOC required for driving. A user cannot be expected to be willing to manually
specify the time, duration and expected energy consumption of the next
trip. Instead, the system needs to be able to make appropriate predictions which
ensure that the user does not run out of energy at any point in time. The better the
prediction quality, the higher the expected profits because safety buffers can be kept
small resulting in more battery capacity being available for V2G. This prediction,
however, needs to be tailored to every individual user. Different users have different
driving patterns, different driving styles and corresponding differences in energy
consumption. Some may exhibit very regular commuting patterns while others
might have highly varying itineraries. Different agents would therefore require
different V2G strategies. In order to facilitate V2G, intelligent mechanisms are thus
required to keep the user free of these concerns.

Artificial intelligence may also be beneficial in the context of price prediction.
While 24 h predictions of electricity prices are available in a day ahead market,
these are generally subject to an error which grows with the number of lookahead
periods. Using these predictions may therefore compromise optimization efforts.
With an increasing number of individual market participants, the market can be
expected to gain additional dynamics that may further increase this error. For best
optimization results it would therefore be crucial for an intelligent system to provide
error estimations for certain times and locations. Also aggregators may require
machine learning mechanisms in order to optimize their bids at the electricity
markets.

8.4 Case Study

In this section, the cost and revenue model is applied to the electricity market data
of Singapore using the optimization model from Sect. 8.3.3. The purpose of this
case study is to demonstrate how different models and parameters lead to highly
different conclusions on the economic viability of the V2G concept and to show
how previous studies relate to a model which accounts for the dynamics of the
problem. This case study should not be considered a thorough economic viability

8 Towards a Business Case for Vehicle-to-Grid … 217



analysis of the V2G concept. Instead, its purpose is to create a sense for the
influence of certain parameters and therefore demonstrate the importance of
choosing models and parameters with care.

Due to the non-linearity of the battery model and the existence of integer
variables, the optimization problem is treated as a mixed integer non-linear pro-
gram (MINLP). The problem was implemented in the general algebraic modeling
system (GAMS) and the COUENNE solver was used for optimization.

General parameters that are used for the optimization model are described in
Sect. 8.4.1. Section 8.4.2 then introduces the specific electricity market data of
Singapore. Findings of this case study are discussed in different scenarios in
Sect. 8.4.3. Since several of the mentioned parameters broadly disperse in reality
and are expected to change over time, the general parameters are varied as part of
the sensitivity analysis presented in Sect. 8.4.4.

8.4.1 General Parameters

In all calculations of the case study, a battery pack capacity of 20 kWh is assumed.
This is in accordance with the battery dimensions of the Nissan Leaf (24 kWh), the
Mitsubishi i-MiEV (16 kWh), or the BMW i3 (18.8 kWh). The battery pack
replacement costs are set to S$ 7701 per kWh which reflects present prices
according to [34, 35]. Additional equipment that enables PEVs to provide V2G
services is expected to yield fixed costs of at most a few hundred S$. These costs
are negligibly low when prorated over the whole lifetime of the battery pack and are
therefore not considered in this case study.

As described in Sect. 8.3.3, power is treated as a continuous variable in the
model and is kept in the range between −40 and +40 kW. This ensures a maximum
C-rate of 2C meaning that the battery pack can be fully charged or discharged
within half an hour. The energy efficiency of a charge-discharge cycle is determined
by the efficiency of charging and discharging electronics as well as the efficiency of
the battery pack. In the given C-rate range, the efficiency can be considered the
same for charge and for discharge processes [36, 37]. In accordance with values
from this literature, the total energy efficiency of a charge-discharge process is set to
g ¼ 0:80. The cycle stability model used for the assessment of the V2G concept in
this case study was already described in Sect. 8.3.2. Prices for the different energy
markets are described in Sect. 8.4.2.

1 S$ 1 equals 0.80 USD (November 6, 2014).
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8.4.2 Market Data

In Singapore, energy is traded at the national electricity market singapore (NEMS)
which is controlled by the energy market authority (EMA) [38]. As already dis-
cussed in Sect. 8.2.1, this case study focuses on the ancillary service market.
Depending upon the response time and the duration of providing ancillary services,
the market distinguishes between regulation as well as primary, secondary, and
contingency reserve [39]. When buying electricity from a generator an entity has to
pay the uniform singapore energy price (USEP). This is considered the energy
payment an entity receives when offering up-regulation [see (8.2)]. For the opposite
case of down-regulation, no energy payment is provided [see (8.3)]. In addition to
the energy payment, there is a compensation for holding power generation or
remission potential available. This capacity payment is called market regulation
price (MFP) and market reserve price (MRP) for regulation and reserve, respec-
tively. While there is only one MFP, a distinct MRP is associated with each of the
three classes of reserve. Due to the lack of concrete data it is assumed that offered
energy will be entirely dispatched. This is to ensure that participants in the NEMS
only earn money if they actually dispatch energy.

The electricity market price data used in this study cover the USEP, MFP and all
classes of MRP for the entire year 2012 [40]. At the NEMS, all of these prices are
adjusted on a half-hourly basis so that all presented calculations build on time series
with a 30-min resolution, dividing one day in 48 periods. These prices are known
24 h in advance with an increasing average deviation, depending on the lookahead
time. Calculations in this case study are based on a lookahead of 2 periods having a
mean uncertainty of slightly above 1 ‰. Additionally, the end-consumer price for
electricity, called electricity tariff (ET), is used. It mainly consists of energy costs
(82 %) as well as transmission costs (17 %) and is subject to quarterly adaptation.
To provide a rough overview of these prices and their temporal variance, their
average values as well as standard deviations are given in Table 8.1.

8.4.3 Results

In the simplest possible scenario, a PEV is grid-connected 24 h per day, 365 days a
year. It can therefore be considered a stationary energy buffer with a service level

Table 8.1 Key figures of the NEMS price data in 2012

ET [S$/
MWh]

USEP [S
$/MWh]

MFP [S
$/MWh]

MRP [S$/MWh]

Primary Secondary Contingency

Average 279.3 222.49 91.53 0.33 1.37 11.40

Standard
deviation

5.69 112.92 40.35 2.26 4.48 64.86
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agreement on availability of 100 %. Although this assumption is fairly unrealistic, it
allows an upper bound estimate on the economic attractiveness of the different
ancillary service types introduced in Sect. 8.2.1.

An illustration of the functioning of the method can be found in Fig. 8.4a–d
which exemplarily shows the optimization result for a period of two days. Fig-
ure 8.4a depicts the MFP and USEP. In this figure it can roughly be distinguished
between four different regions, the first exhibiting high prices, the second showing a
period of lower prices and another high price period followed by a region of again
lower prices. In Fig. 8.4b, the calculated optimal power is shown. It can be seen that
during high price periods high charging and discharging power is applied while
power remains low or even zero in the low price regions. The alternation between
charging and discharging is due to the SOC constraint and ensures that the cycling
occurs at moderate SOC levels. Naturally, as shown in Fig. 8.4c, profits in each
time period follow the power curve. Oscillations into the negative direction are,
however, fairly moderate since the compensation for down-regulation is credited.
Figure 8.4d shows the accumulation of profits over time. The oscillations occur
because losses are accepted in one period in order to make even higher profits in
another. With increasing lookahead, these oscillations can be expected to become
less regular since the algorithm has a higher degree of freedom for optimizing
profits.

The outcome of the analysis for the different energy markets of Singapore can be
found in Table 8.2. Results for all of the three reserve markets show that annual
profits in the range from S$ 177 to S$ 912 can be gained. A large fraction of those

Fig. 8.4 Exemplary illustration of the optimization result for a time period of two days regarding
a prices, b power, c profit and d accumulated profit
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profits, however, results from just a dozen extraordinarily profitable periods which
are most likely the outcome of a disruption in the power system. Leaving out those
periods would result in annual profits of only up to S$ 36 for the contingency
reserve and no profit at all for primary and secondary reserve. The reserve market is
therefore not of interest for an economic application of the V2G concept and can be
neglected in further analyses. For the regulation market the situation is more
beneficial so that up to S$ 394 can be gained per year. Again, by neglecting the
highest-price periods annual profits decrease to S$ 109.

To illustrate the fluctuations of achievable profits, Fig. 8.5 shows revenues and
variable costs for one exemplary week in March 2012 for a fixed charging/
dispatching power of 2 kW. It can be observed that revenues are highly variable
over time. Some of these fluctuations have a considerable impact on annual income
which leads to the discrepancy between profits and adjusted profits shown in
Table 8.2.

A more realistic scenario assumes typical commuting habits of the population of
the area of investigation. Therefore, mobility patterns of Singapore residents rep-
resenting about 90 % of the population are used [20]. These patterns describe the
trips various groups of people undertake on different days of the week. In particular,
the data specify the start and end time of a trip as well as the type of destination
categorized by home, work and leisure. This reveals information on the time
windows at which PEVs can be connected to the grid depending upon the avail-
ability of charging stations at the various types of destinations.

Table 8.2 Profits in different electricity markets regarding the simple scenario

Market Profits [S$/year] Profits, adjusteda [S$/year]

Reserve, primary 177 0

Reserve, secondary 183 0

Reserve, contingency 912 36

Regulation 394 109
a Extraordinarily profitable periods are left out

Fig. 8.5 Exemplary
illustration of revenues and
variable costs at fixed
charging/dispatching power
for a week in March 2012
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Findings for different electricity markets regarding the mobility pattern-based
scenario are presented in Table 8.3. Results for all of the three reserve markets show
an annual profit in the range from S$ 60 to S$ 863, depending on the market and the
applied mobility pattern. In the regulation market, annual profits lie in the range from
S$ 262 to S$ 357. In the mobility pattern based approach, highest-price periods are
sometimes left out anyway and therefore do not contribute as much to the resulting
profits as in the simple scenario. Nevertheless, by completely leaving out these
periods, annual profits decrease to S$ 0 to S$ 25 for reserve and S$ 71 to S$ 90
for regulation, respectively, again depending on the applied mobility pattern.
Concluding from the results, profits in this configuration might not be high enough to
practically apply the V2G concept.

8.4.4 Sensitivity Analysis

As discussed in Sect. 8.3, V2G profits strongly depend on multiple parameters.
Above all are the battery inherent variable depreciation costs, the energy efficiency,
and the electricity market prices whose influence will be discussed in this section.
All investigations in this section are based on the simple scenario introduced in
Sect. 8.4.3. Analyses are done ceteris paribus, meaning that each section discusses
the variation of only one specific parameter.

8.4.4.1 Battery Model

The simplest view on battery lifetime which has been broadly employed in V2G
literature is to assume a fixed number of possible cycles. Using this approach,
battery lifetimes between 1,000 and 6,000 cycles would yield annual profits in the
range between S$ 343 and S$ 2,992 in the presented case. While any of these cycle
stabilities may be theoretically achievable under specific conditions, fixing the
number of possible cycles to one particular value is a completely arbitrary decision
because it neglects the dynamic processes within the battery. To realistically assess
profits, a proper battery aging model is of utmost importance. A battery aging
model provides the battery inherent variable depreciation costs from charging and

Table 8.3 Profits in different electricity markets for the mobility pattern-based scenario

Market Profits [S$/year] Profits, adjusteda [S$/year]

Reserve, primary 60–178 0

Reserve, secondary 128–171 0

Reserve, contingency 597–863 21–25

Regulation 262–357 71–90
a Extraordinarily profitable periods are left out
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dispatching and is the main factor influencing the magnitude of annual profits. As
described in Sect. 8.3.2 the cycle stability highly depends on a large number of
parameters and varies among different cell chemistries.

In [20], a battery model for V2G profit calculation is presented that accounts for
the important dependency of battery lifetime from the DOD. This model provides a
significantly more realistic representation of battery aging costs than assuming a
constant cyclic lifetime, however, it still lacks the SOC as the second most
important parameter. Section 8.3.2 refers to a refined battery model that incorpo-
rates both, DOD and SOC, as parameters for the cyclic lifetime of a battery. This
model more realistically assesses battery depreciation costs and was used for all
calculations in this case study except stated otherwise. Results obtained by using
the simpler model from [20] indicate annual profits of about S$ 650 while incor-
porating the SOC dependency reduces annual profits to roughly S$ 400. The sig-
nificant discrepancies to the static approach and even between the fairly realistic
models thus demonstrate that for any estimation of V2G profitability, a careful
choice for a proper battery model needs to be made. Annual profits achievable
depending on different battery models are presented in Table 8.4 (Fig. 8.6).

Varying the initial price of the battery pack has the same effect on the variable
costs as proportionally changing the cyclic lifetime. Cutting fixed battery pack costs
in half thus results in the same profits as doubling the cyclic lifetime. PEV man-
ufacturers are already pre-selling battery packs to be delivered in 8 years at a price
four times lower than the current one.2 Besides the proper choice for the battery
model, the initial battery pack costs are therefore a crucial factor when re-investi-
gating V2G in the future.

8.4.4.2 Efficiency Factor

With the increasing maturity of battery technology or the integration of super
capacitors into PEVs, the charging/discharging efficiency is expected to undergo

Table 8.4 Profits depending on the battery model

Battery model Cyclic lifetime/Depending variables Profits [S$/year]

Static 1,000 343

2,000 785

3,000 1,238

4,000 1,736

5,000 2,322

6,000 2,992

Non-linear DOD 653

DOD, SOC 394

2 http://www.teslamotors.com/blog/2013-model-s-price-increase.
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further improvements. The reduced energy dissipation will therefore result in
decreased variable costs and ultimately in an increase in profits per period. Analysis
show that on an absolute value in the range from 0.80 to 0.90, annual profits
increase by roughly S$ 8 with a 1 % increase in efficiency. This relation results in a
15 % increase of annual profits when increasing the efficiency in the given range by
10 %. This relation is presented in Table 8.5 and Fig. 8.7 respectively. The impact
of the efficiency factor is therefore slightly higher than proportional but cannot be
considered a game changing parameter with regard to V2G profits.

8.4.4.3 Market Prices

Although prices are fixed by the electricity market, it might be useful to understand
their influence on the profit. For this purpose, the end-consumer price for electricity
(ET), the energy payment (USEP), as well as the capacity payment (MFP) were
altered. As shown in Table 8.6, an increase/decrease in the ET by a factor will result in
a decrease/increase of profits by less/more than this factor. For the USEP and theMFP
it is the opposite case, meaning an increase/decrease in the USEP or MFP by a factor
will result in an increase/decrease of profits by more/less than this factor. The ratio of

Fig. 8.6 Profits as a function
of the cyclic lifetime

Table 8.5 Profits depending
on the efficiency factor Efficiency

(one-way)
Efficiency
(two-way)

Profits
[S$/year]

0.7 0.49 207

0.75 0.56 248

0.8 0.64 293

0.85 0.72 343

0.9 0.81 396

0.95 0.9 468

1 1 565

0.89 0.80 394
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those factors favors the USEP and the MFP over the ET. An increase of the ET may
therefore be more than compensated by a corresponding increase of the energy or
capacity payment (Fig 8.8).

In Fig. 8.9 the distribution of USEP and MFP for the whole year 2012 is shown.
It can be observed that the upper 3 % of prices (Region 3) exhibit a high variance
with maximum values of up to S$ 4,000 in case of the USEP. This domain is
followed by a broad plateau which consists of about 83 % of all time periods
(Region 2). Finally, 14 % of the time intervals exhibit low prices with again higher
fluctuations (Region 1). As already pointed out in Sect. 8.4.3, periods of Region 3
represent the extraordinarily profitable periods. In case of a low value of a
parameter with a positive influence on profits (e.g., efficiency), only the periods of
Region 3 are profitable. By increasing the value of this parameter, the intervals

Fig. 8.7 Profits as a function
of the efficiency factor

Table 8.6 Profits when
varying the ET, USEP and
MFP

Price Price factor Profits [S$/year]

ET 0.5 1,062

0.75 565

1 394

1.25 324

1.5 279

MFP 0.5 121

0.75 233

1 394

1.25 639

1.5 1,025

USEP 0.5 248

0.75 310

1 394

1.25 542

1.5 858
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belonging to the plateau of Region 2 also become economically viable. Once this
area is reached, a slight increase in this parameter significantly raises the number of
profitable time periods leading to a considerable profit increase.

8.5 Discussion

This section summarizes and evaluates the findings of applying the presented
intelligent agent behavior model to the electricity market data of Singapore. To
show the relevance of these results for other countries, a qualitative discussion of
the characteristics of the Singaporean market compared to other national markets is
given. Furthermore, the benefits of the proposed strategy on power grid stability as
well as the limitations of the applied cost and revenue model are examined. Finally,
advantageous conditions for the practical implementation of the V2G concept are
discussed.

Fig. 8.9 Distribution of
USEP and MFP

Fig. 8.8 Profits as a function
of the ET, MFP and USEP
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8.5.1 Profitability of V2G in Singapore

The results presented in Sect. 8.4 show that given present market conditions of
Singapore and realistic technical parameters, a maximum annual profit of S$ 110
could be achieved at the regulation market. This value, however, is only valid when
the PEV is continuously grid-connected at all times except for the dozen outlier
periods. When investigating the more realistic mobility pattern based scenario with
a lower PEV availability profits decrease to S$ 80 per year. Since these numbers are
the outcome of an optimization specifically targeted on profits, it is clear that
alternative approaches would yield lower annual incomes. This shows that an
economically motivated optimization strategy is a necessary condition for making
V2G profitable in practice.

Nevertheless, these values indicate that under the given conditions V2G is yet
unlikely to be an attractive concept for PEV owners in Singapore. There are,
however, three main factors which could increase profits and thereby create con-
ditions under which V2G could become a profitable business case. The first aspect
relates to the battery where further development may either lead to reduced
investment costs or where advancements in cell chemistry could yield higher cyclic
lifetimes. This is, however, unlikely to happen on very short time scales. A second
more realistic scenario to increase profits is therefore to utilize more information on
future prices in the optimization process. Since longer temporal lookaheads also
come with a higher uncertainty, this would, however, require improvements of the
optimization approach to efficiently deal with uncertain information. A third factor
could be to give a higher weight to capacity payments. In this study it was assumed
that all energy offered to the ancillary service market is also being dispatched. In
practice it could, however, also be possible to only receive a capacity payment
without actually delivering energy. In this case, no depreciation costs occur which
would ultimately have a positive effect on profits. Summing up all chances of
realistically increasing profits, PEV owners may then be able to achieve an addi-
tional income of a few hundred S$ per year.

8.5.2 Applicability to Other National Markets

The cost-revenue model, the battery model, and the optimization method are
generic under the described conditions and can be equally applied to other markets.
In contrast, the results of the case study are specific to the conditions of Singapore
and would not necessarily be identical in other markets. A quantitative conclusion
for V2G in other countries would therefore require other case studies building on
the presented models. Hence, in this section only a qualitative discussion putting the
results obtained for Singapore into a greater context can be provided.

In the NEMS, as in many other markets, there is an energy and a capacity payment.
Especially the latter has been identified as a major source of profits [2, 10, 13].
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Economic analyses have to show whether or not the abolishment of this revenue
stream in certain countries like Germany can be compensated by a higher energy
payment. To investigate these questions, no changes in the cost-revenue model and
the presented optimization method are required.

In Singapore, the fiscal framework appears to be advantageous in regard to the
economic viability of V2G. The end-consumer electricity price almost entirely
consists of generation and transmission costs without much taxes added. This is in
contrast to other markets where a PEV owner would have to pay consumption taxes
on the electricity price even if the energy may just be bought for the purpose of
feeding it back into the grid. A different taxation policy could therefore yield higher
profits in these countries while there is little potential for improvements in
Singapore.

8.5.3 Model Limitations

A remaining weakness of the optimization approach is the inability to deal with
uncertain price information and to make improved predictions based on knowledge
from the past. This limits the temporal lookahead and therefore leaves parts of the
optimization potential unutilized. This deficiency can, however, be addressed by
further elaborating the optimization algorithm to incorporate these aspects.

Another issue is the difficulty of determining battery depreciation costs. As
discussed above, this work employs empirically validated battery models which are
believed to give a good estimation of battery aging costs. Nevertheless, conducting
measurements regarding cell aging is time consuming and results in battery models
that are always one generation behind the cells implemented in newest PEVs. The
discussion in Sect. 8.3.2 also shows that the aging process depends on a large
variety of parameters and may significantly differ among various cell chemistries. It
therefore needs to be considered that for application purposes, battery aging models
specifically developed for the corresponding battery type need to be employed.

8.6 Conclusion and Outlook

In this chapter, it is argued that static approaches for assessing the economic viability
of V2G are of only limited informative value because market dynamics are neglected
and the optimization potential individual agents have remains unexploited. In con-
trast, models which take the dynamics of market prices into account to optimize the
charging/dispatching strategy for each individual PEV are considered more suitable
for showing the economic potential of the V2G concept. Using dynamic approaches
based on real-time information, a PEV may autonomously decide on its individual
charging/dispatching strategy. This is achieved by the introduced optimization
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model which dynamically adapts charging/dispatching power of a PEV in each time
period depending on its internal cost function and externally given market prices.

From the discussion of the results, it becomes clear that a control strategy
motivated by an economic optimization approach is a necessary condition for the
realization of the V2G concept in practice. Above all, this requires that V2G
participants gain access to dynamic market prices for electricity instead of being
bound to fixed tariffs. This is also necessary to trigger the behavior of V2G pro-
viders in order to achieve an effective load curve flattening. Current profits are
assumed to be at the lower range of what PEV owners would accept for providing
their batteries for ancillary services. An increase of prices for regulation and reserve
energy which may follow growing shares of renewable energy sources or the
introduction of premium tariff rates for V2G power would therefore be beneficial
for the introduction of the V2G concept. On the cost side, battery depreciation is a
crucial factor for the economic viability of V2G. While only moderate improve-
ments of cyclic stabilities are expected in the near future, battery purchase costs are
assumed to undergo a more rapid decrease, which in turn would lead to a significant
cost reduction of V2G. A game changing innovation could additionally be the
introduction of supercapacitors which exhibit significantly higher cyclic stabilities
than batteries.

A possible soft factor obstructing the acceptance of the V2G concept is the
reluctance of PEV owners to assign control of their vehicle battery to a third party.
The possibility to manually take over control of the charging process by means of a
smart mobile device could therefore be helpful for creating appropriate framework
conditions for the practical employment of V2G.

A next step towards the implementation of V2G is to extend the optimization
algorithms to address the issue of uncertain price information. By also incorporating
machine learning mechanisms to improve price prediction, this can boost further
exploitation of the optimization potential. Another important aspect of a feasible
system in practice is the implementation of an aggregator. The challenge faced by
this entity is to synchronize charging and discharging operations of a large number
of PEVs under individual constraints. For this purpose, an algorithm has to be
developed which estimates a VPPs power generation capacity and triggers behavior
changes of the involved PEVs in case the power dispatch obligations cannot be
fulfilled. Building on the entity of individual optimization algorithms combined
with an aggregator mechanism would allow simulating the entire system in a
nanoscopic simulation environment to quantify the overall impact on power grid
stability. Together with temporally resolved data on the required quantity of reg-
ulation and reserve energy, this could then also yield a sound estimation of the V2G
market size.
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Chapter 9
Integration of PEVs into Power Markets:
A Bidding Strategy for a Fleet Aggregator

Marina González Vayá, Luis Baringo and Göran Andersson

Abstract With a large-scale introduction of plug-in electric vehicles (PEVs), a new
entity, the PEV fleet aggregator, is expected to be responsible for managing the
charging of, and for purchasing electricity for, the vehicles. This book chapter deals
with the problem of an aggregator bidding into the day-ahead electricity market with
the objective of minimizing charging costs while satisfying the PEVs’ flexible
demand. The aggregator is assumed to potentially influence market prices, in contrast
to what is commonly found in the literature. Specifically, the bidding strategy of the
aggregator is formulated as a bi-level problem, which is implemented as a mixed-
integer linear program. The upper-level problem represents the charging cost mini-
mization of the aggregator, whereas the lower-level problem represents the market
clearing. An aggregated representation of the PEV end-use requirements as a virtual
battery, with time varying power and energy constraints, is proposed. This aggregated
representation is derived from individual driving patterns. Since the bids of other
market participants are not known to the aggregator ex ante, a stochastic approach is
proposed, using scenarios based on historical data to describe such uncertain bids.
The output of the proposed approach is a set of bidding curves, one for each hour of
the day. Results show that by using PEV demand flexibility, the aggregator signifi-
cantly reduces the charging cost. Additionally, the aggregator’s bidding strategy has
an important impact on market prices.
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9.1 Introduction

9.1.1 Motivation

The introduction of plug-in electric vehicles (PEVs) in the vehicle fleet contributes
to the reduction of greenhouse gas emissions and fossil fuel demand. However, a
large-scale introduction of PEVs may cause problems in the electricity network.
Most drivers have similar driving patterns. For example, on a typical day, most
drivers depart from home to work in the morning, then vehicles are parked for
several hours at the work location. After that, drivers may perform other activities
such as shopping, and finally they drive back home, where vehicles remain parked
until the next day. Without charging control or incentives, PEV owners would start
charging their PEVs as soon as they park and until the battery is completely filled or
they depart for the next trip. This means that most PEVs would be charging at the
same time, which may cause voltage and congestion problems in the grid. There-
fore, it becomes important to manage the charging of PEVs to avoid such problems
[1, 2].

PEVs usually remain parked more time than what is needed to completely fill
their batteries. In such a situation, it may be optimal to postpone the charging until a
more suitable time, instead of starting charging as soon as PEVs are parked. This
charging flexibility might be used, for example, to shift charging to hours of low
electricity prices, which would reduce the charging costs, or to avoid voltage and
congestion problems in the grid that may arise if a very large number of PEVs are
simultaneously charged. Moreover, flexible charging may also alleviate problems
caused by intermittent generators, such as photovoltaic and wind.

However, although it is potentially possible to achieve some improvements by
letting each individual PEV owner manage the charging of its own PEV based on
local information, such as voltage and frequency, or an exogenous time-of-use
tariff, the optimal use of the flexibility potential can only be achieved when
charging decisions are coordinated. Thus, a new entity, the so-called aggregator, is
envisaged to be in charge of managing a PEV fleet. PEV owners communicate their
driving requirements to the aggregator, which is responsible for purchasing elec-
tricity on behalf of the PEV owners.

In this context, we develop a strategic bidding algorithm for an aggregator in
charge of a set of PEVs. The aggregator participates in the day-ahead market with
the aim to minimize the charging costs of the PEV fleet, while at the same time
satisfying the driving requirements of PEV owners. To do so, the aggregator
decides both the bid price and the bid power level to be submitted to the day-ahead
market.

On one hand, the bidding strategy is formulated using a bi-level model in which
we explicitly model the working of the day-ahead market [3, 4]. On the other hand,
the aggregation of PEVs is modeled using a virtual battery model with time-varying
power and energy constraints [5].
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Finally, note that the aggregator decides its bidding strategy one day in advance.
At this point in time the aggregator faces a number of uncertainties, e.g., uncertainty
in the market in which the aggregator participates and uncertainty in the driving
requirements of the PEV fleet. Thus, it is important to model these uncertainties in
order to obtain informed decisions. To do so, we consider a stochastic bi-level
model in which uncertainties are efficiently modeled using a set of scenarios.

The focus of this chapter is on how to establish an optimal bidding strategy for a
PEV aggregator, which results in an aggregated charging schedule. We do not
describe how this aggregated profile is broken down into individual charging
schedules for single PEVs. This latter problem can be treated separately in a
consecutive step [6]. Distribution network constraints can be considered at this later
stage. For example, distributed optimization approaches [7], as well as market
based control approaches [6] could be used to determine individual charging
schedules.

9.1.2 Literature Review and Contributions

First, we briefly review the literature on the integration of PEVs into power systems
through an aggregation agent [8–13]. The aggregator is seen as an intermediary
agent between PEVs and other system’s entities, such as transmission system
operators (TSOs), distribution system operators (DSOs), energy suppliers, balance
group managers, and electricity markets [10–12]. For example, the aggregator could
sell ancillary services to the TSO [14, 15], or negotiate demand side management
contracts with the DSO, e.g. to avoid the overloading of lines and distribution
transformers [16, 17]. Moreover, the aggregator could purchase the charging energy
directly on electricity markets, such as the day-ahead market, and use the available
flexibility to do so at the lowest cost possible. This is the subject addressed in this
chapter. Different possible business models for the aggregator are discussed in [9].

Several publications have proposed optimization algorithms for the participation
of PEV aggregators in electricity markets [4, 18–22]. In [18] an approach to
determine the optimal charging and discharging profiles for a fleet, by forecasting
the electricity prices in the Nordic day-ahead power exchange Nord Pool, is
introduced. The charging and discharging flexibility is modeled through a set of
aggregated representative PEV demand types, obtained by clustering individual
driving patterns. This paper proposes both a model for the case where the aggre-
gator is assumed to be a price-taker, and where it acts a price-maker, which leads to
linear and quadratic programming techniques, respectively. An optimization
framework for the aggregator to participate both in the day-ahead market and in the
secondary reserve market simultaneously is presented in [19], and a case study for
the Iberian market is analyzed. The fleet flexibility is modeled through constraints
on the aggregated charging power and on the amount of aggregated energy to be
purchased by a given time. The same authors extend the framework in [19] by
introducing a model where PEVs are modeled individually [20], as opposed to the
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aggregated model in [19]. In [21] a method for the participation of a PEV aggre-
gator in day-ahead and regulation markets is introduced, where a method for
clustering driving patterns is proposed. The stochastic nature of driving patterns and
market prices is taken into account but, instead of solving a stochastic optimization,
a sequence of deterministic optimizations are performed, based on point estimates.
As [19, 21], [22] proposes a method for bidding in the day-ahead and regulation
markets, with a case study with data corresponding to PJM markets. It proposes a
stochastic optimization framework where the uncertainty in both the fleet model
and the market environment is taken into account.

Compared with the existing approaches, the framework described in this chapter,
which extends the work in [4], comprises the following contributions:

• The aggregator is modeled as a price-maker. Apart from the approach in [18], all
other models in the literature assume exogenous prices. Instead of estimating the
relationship between demand and prices through a regression as in [18], the
market clearing process is explicitly modeled, taking into account estimates of
the bids of other market participants. Therefore the proposed framework not
only provides the optimal bid volumes to be entered into the market, but also the
optimal bid prices.

• A stochastic optimization framework is proposed to take into account market
uncertainties, which are only explicitly modeled in [22], and partially in [21].
Since prices are not an exogenous parameter in our model, uncertainty here
comes from bid prices and volumes in the market. Therefore, by considering
several scenarios of market bid configurations, a bid curve, instead of a single
bid, is computed for each time step.

As aforementioned, using a bi-level model we explicitly represent the working
of the electricity pool, which allows us to consider endogenous market prices within
the model. Bi-level models have been recently used in a wide range of energy-
market topics [22]. Regarding bidding strategies, bi-level models have been applied
for conventional producers [3], renewable generating units [23, 24], and PEV ag-
gregators [4].

Bi-level models such as the one described in this chapter can be transformed into
mathematical programs with equilibrium constraints (MPECs) [25, 26]. These
MPECs are generally non-convex. However, several techniques have been pro-
posed in the literature to efficiently solve them, e.g., mixed-integer linear pro-
gramming (MILP) reformulations [27], relaxation methods [28], and interior
methods [29].

9.1.3 Chapter Organization

The remaining of this chapter is organized as follows. Section 9.2 describes the main
features of the proposed problem. Section 9.3 outlines the bi-level model used to
derive the optimal bidding strategy of the aggregator, as well as its transformation into
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a MILP problem. Section 9.4 analyzes a clarifying example to illustrate the working
of the model. Finally, Sect. 9.5 summarizes the chapter and provides some
conclusions.

9.2 Problem Description

9.2.1 Notation

The main notation used in this chapter is stated below for quick reference. Other
symbols are defined as needed throughout the text.

Index:
d Index for demand bids d ¼ d1; . . .; dDð Þ
s Index for supply bids s ¼ s1; . . .; sSð Þ
t Index for time periods t ¼ t0; t1; . . .; tTð Þ
v Index for vehicles v ¼ v1; . . .; vVð Þ
- Index for market scenarios - ¼ -1; . . .; -Xð Þ

Constants:
bDd-t Bid price of the dth demand bid at time period t and scenario - [€/MWh]
cSs-t Bid price of the sth supply bid at time period t and scenario - [€/MWh]
EARR
t Energy contribution of vehicles arriving at time period t [MWh]

EDEP
t Energy drop of vehicles departing at time period t [MWh]

EA;min
t

Lower bound of the energy content of the PEV aggregation at time period
t [MWh]

EA;max
t Upper bound of the energy content of the PEV aggregation at time period

t [MWh]
EV;min
vt Lower bound of the energy content of the battery of vehicle v at time

period t [MWh]
EV;max
vt Upper bound of the energy content of the battery of vehicle v at time

period t [MWh]
PA;min
t

Lower bound of the aggregated charging power at time period t [MW]

PA;max
t Upper bound of the aggregated charging power at time period t [MW]

PV;min
vt Lower bound of the charging power of vehicle v at time period t [MW]

PV;max
vt Upper bound of the charging power of vehicle v at time period t [MW]

�PD
d-t Volume of the dth demand bid at time period t and scenario - [MW]

�PS
s-t Volume of the sth supply bid at time period t and scenario - [MW]

g Charging efficiency of the PEV aggregation [pu]
p- Weight of market scenario - [pu]
Dt Duration of time periods [h]
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Variables:
bA-t Bid price of aggregator at time period t and scenario - [€/MWh]
EA
-t Energy content of the PEV aggregation at time period t and scenario -

[MWh]
PA
-t Accepted volume of aggregator’s demand bid at time period t and scenario

- [MW]
PD
d-t Accepted volume of the dth demand bid at time period t and scenario -

[MW]
PS
s-t Accepted volume of the sth supply bid at time period t and scenario -

[MW]
b-t Marginal market price at time period t and scenario - [€/MWh]

9.2.2 Aggregation Model

The aggregator needs a representation of the fleet’s demand, to be incorporated as a
set of constraints in its cost minimization problem. Since this demand is flexible, i.
e., not fixed, it is not sufficient to forecast a demand profile, but a model that
represents the set of feasible demand profiles is needed. For this purpose, the fleet
can be modeled as a virtual battery, with a set of constraints on the aggregation’s
charging power and on the energy state of the virtual battery. The energy con-
straints introduce a link between the different time-steps of the problem, and
therefore make the bidding strategy problem an inter-temporal problem. To derive
the parameters of the aggregated virtual battery, a bottom-up approach is adopted,
based on the driving patterns and characteristics of individual PEVs.

Starting at the individual PEV level, it is possible to define a lower and upper
energy bound, EV;min

vt and EV;max
vt , for the energy in the battery of vehicle v at time

step t. The lower bound is calculated assuming that charging is deferred as much as
possible, while the upper bound is calculated assuming charging takes place as soon
as the vehicle plugs in. A minimum state of charge (SOC) is also considered to
avoid excessive battery degradation.

Figure 9.1 shows an example of the computation of the energy bounds for a
given vehicle. Before a trip, the energy content must reach a certain minimum level,
so that the battery can provide enough energy for that trip. In fact, this minimum
level is calculated with foresight, e.g. in the case of a short parking break before a
long trip, this is taken into account before the previous trip. After a trip, the energy
content can be built up again at the maximum charging rate until the battery is full.
Moreover, it is assumed that batteries are fully charged at some point in time, and
therefore the energy content of the battery cannot drop by more than the total daily
energy consumption from this reference.

Similarly, lower and upper bounds can be derived for the charging power of a
vehicle at a given time step PV;min

vt and PV;max
vt . When a vehicle is connected, the

upper bound of the charging power is equivalent to the lowest of the following
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(i) the maximum charging power of the charging station or (ii) the maximum
charging power of the PEV’s battery. The lower bound of the charging power when
the vehicle is connected is either zero or whatever is necessary to fulfill the trip
energy requirements (inflexible charging). This inflexible charging can be derived
by comparing the upper and lower energy bounds at subsequent time steps: If
EV;max
vðt�1Þ\EV;min

vt , this implies that some charging is required at time step t. When the

vehicle is disconnected, both the lower and upper power bounds are equal to zero.
Based on these descriptions at the individual vehicle level, an aggregated model

of a virtual battery can be derived. The following equations describe the aggregated
virtual battery model:

EA
t ¼ EA

ðt�1Þ þ PA
t gDt þ EARR

t � EDEP
t 8t ð9:1Þ

PA;min
t �PA

t �PA;max
t 8t ð9:2Þ

EA;min
t �EA

t �EA;max
t 8t ð9:3Þ

The energy content of the virtual battery EA
t stands for the aggregation of energy

contents of all PEVs plugged in at a given time step. The dynamics of this variable
are defined by Eq. (9.1) and given by the aggregated charging power at a given time
step PA

t , and by the positive/negative energy contributions of arriving/departing
vehicles, EARR

t

�
EDEP
t . The power and energy of the virtual battery should be within

certain bounds as defined by Eqs. (9.2) and (9.3), respectively.
The aggregated parameters EARR

t , EDEP
t , EA;min

t , EA;max
t , PA;min

t and PA;max
t are

determined out of the individual PEV bounds. We denote uvt a binary variable
specifying the connection status of vehicle v at time step t, i.e. uvt ¼ 1 when the
vehicle is connected and uvt ¼ 0 otherwise. Then the aggregated parameters are
calculated as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

upper energy bound

lower energy bound

energy consumption 1sttrip energy consumption 2nd   trip

hours

en
er

gy
 c

on
te

nt
battery capacity

bound given by minimum 
SOC requirements

driving drivingplugged in plugged in plugged in

maximum charging rate

Fig. 9.1 Example of the energy bound computation for an individual vehicle
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EA;max
t ¼

X

v

uvtEV;max
vt ;EA;min

t ¼
X

v

uvtEV;min
vt ð9:4Þ

PA;max
t ¼

X

v

uvtP
V;max
vt ;PA;min

t ¼
X

v

uvtP
V;min
vt ð9:5Þ

EDEP
t ¼

X

v

uvðt�1Þðuvðt�1Þ � uvtÞEV;max
vðt�1Þ;E

ARR
t ¼

X

v

uvtðuvt � uvðt�1ÞÞEV;max
vðt�1Þ

ð9:6Þ

The power and energy bounds of the individual vehicles contribute to the
aggregated bounds when these vehicles are connected, as defined by Eqs. (9.4) and
(9.5). The departure and arrival energy is estimated using the upper energy bound at
the time of departure or arrival, respectively, see Eq. (9.6).

Figures 9.2 and 9.3 show examples for the aggregated energy and power bounds
of a PEV fleet, respectively. These are the bounds used in our case study (more
details on fleet composition are given later in Sect. 9.4). It can be seen that two dips
in the upper bounds occur in the morning and in the evening, which correspond to
typical commuting patterns.
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9.2.3 Uncertainty Characterization

The aggregator decides on its bidding strategy in the day-ahead market one day in
advance. At this point in time, (i) the aggregator does not know the actual driving
requirements of the PEV owners in the PEV fleet that the aggregator manages, and
(ii) the aggregator does not know the bidding decisions of the remaining market
participants. That is, the bidding decisions are made in an uncertain environment
that should be modeled correspondingly in order to obtain accurate and informed
bidding decisions.

On one hand, the aggregator faces the uncertainty in the driving requirements of
the PEV owners. However, note that we do not model each PEV individually but an
aggregation of PEVs. While the driving requirements of an individual PEV are
highly uncertain, the uncertainty in the driving requirements of a PEV fleet as a
whole decreases as the number of PEVs in the fleet increases [4, 30]. For the sake of
simplicity, we consider that the number of PEVs managed by the aggregator is large
enough, and thus, we assume that the driving requirements of the PEV fleet are
perfectly forecasted throughout this book chapter. From previous tests, fleets
composed of more than 100,000 vehicles exhibited a small variance in the aggre-
gated model parameters to be forecasted.

On the other hand, the aggregator faces the uncertainty in the bidding decisions
of other market participants. Note that if these bidding decisions are not precisely
described, the aggregator’s bidding decisions may be suboptimal and, as a conse-
quence, the aggregator may be scheduled in the day-ahead market an amount of
energy lower/higher than that needed by the PEV fleet. Therefore, it is important to
model the uncertainty in such bidding decisions of other market participants. To do
this, we consider a set of market scenarios indexed by -. These scenarios represent
different realizations of the bidding decisions of other market participants for each
time period of the considered planning horizon and are generated based on his-
torical observations in the day-ahead market under study.

9.2.4 Bi-Level Structure

As previously explained, the aggregator is responsible for the charging of a PEV
fleet. To do so, the aggregator participates in the day-ahead electricity market in
which it submits a bid power volume and a bid price for each hour of the following
day. This bid price is the maximum price the aggregator is willing to pay for its
submitted bid power volume. Most markets allow market participants to submit
bidding curves, i.e., instead of submitting just one bid power volume with its
corresponding bid price, participants can submit different bid power volumes with
the different prices they are willing to pay for each of them.

The aggregator derives its bidding strategy with the aim to minimize the
charging costs of the PEV fleet, while at the same time taking into account the

9 Integration of PEVs into Power Markets … 241



driving requirements of the PEV fleet. Additionally, the aggregator should incor-
porate the clearing of the market in which it participates into its decision frame-
work. However, this market clearing is itself an optimization problem. Thus, we
have an optimization problem (minimizing charging costs) subject to a set of
constraints (driving requirements), as well as to another optimization problem
(market clearing). This type of problems can be formulated as a bi-level model, also
known as complementarity or hierarchical models [25].

Figure 9.4 schematically depicts the structure of the considered bi-level model:

1. There is an upper-level (UL) problem where the aggregator makes its bidding
decisions, i.e. the bid prices to be submitted to the market so that the expected
charging costs are minimized and the driving requirements of the PEV fleet are
satisfied.

2. There is a set of lower-level (LL) problems representing the clearing of the day-
ahead market under different market scenario realizations. In this market
clearing problem, the total surplus of the market participants is maximized,
given the bid volumes and prices submitted to the market. From the market
clearing outputs, the aggregator is informed about its scheduled volume PA

-t

� �

and the price b-tð Þ to pay for the charging power. We consider a common
marginal market clearing price to pay/be paid by each market participant, which
is the common situation of most day-ahead markets.

Both the UL and the LL problems are interconnected. On one hand, the ag-
gregator decides its bidding strategy in the UL problem, which influences the
market clearing through the aggregator’s bid prices. On the other hand, from the
market clearing problem represented in the LL problems, the aggregator obtains its

Upper-level problem

Aggregator’s optimization problem

Lower-level problems

Market clearing problem for 
market scenario 1

Bidding
decisions

Market
outputs

Fig. 9.4 Bi-level structure of
the bidding problem
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scheduled charging power, as well as the price it has to pay for this charging power,
which in turn influence its costs, and therefore its bidding strategy. Thus, the UL
and LL problems must be jointly solved. This is further explained in Sect. 9.3.

9.3 Model Formulation

9.3.1 Bi-Level Model

The optimal bidding strategy of the PEV aggregator can be formulated using the
bi-level model below:

MinimizeWUL
-t

S
WLL;P

-t

X

-

p-
X

t

b-tP
A
-tDt ð9:7Þ

subject to

EA
-t ¼ EA

-ðt�1Þ þ PA
-tgDt þ EARR

t � EDEP
t 8-; 8t ð9:8Þ

EA;min
t �EA

-t �EA;max
t 8-; 8t ð9:9Þ

PA;min
t �PA

-t �PA;max
t 8-;8t ð9:10Þ
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-tF ¼ EA

-t0 ¼ EA
-0 t0

8-; 8-0 ð9:11Þ

b-t ¼ k-t 8-; 8t ð9:12Þ

where k-t;PA
-t 2 argf

MinimizeWLL;P
-t
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X

d

bDd-tP
D
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A
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X

s
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X

d
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d-t þ PA

-t : k-t ð9:14Þ

0�PS
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S
s-t

; �uS
s-t 8s ð9:15Þ

0�PD
d-t � �PD
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D
d-t
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g; 8-; 8t, where

WUL
-t ¼ bA-t;E

A
-t;E

A
-t0

n o
8-; 8t; ð9:18Þ

WLL;P
-t ¼ PS

s-t; 8s;PD
d-t; 8d;PA

-t

� �8-; 8t; ð9:19Þ
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WLL;D
-t ¼ k-t;u

S
s-t

; �uS
s-t; 8s;uD

d-t
; �uD

d-t; 8d;uA
-t
; �uA

-t

n o
8-; 8t: ð9:20Þ

Bi-level problem (9.7)–(9.17) comprises UL problem (9.7)–(9.12) and a col-
lection of LL problems (9.13)–(9.17), one for each market scenario and time period.
The dual variables associated with the constraints of the LL problems are indicated
following a colon.

On one hand, the UL problem (9.7)–(9.12) represents the aggregator’s optimi-
zation problem. The aggregator aims to decide the bidding strategy that minimizes
its expected charging costs (9.7) and that satisfies the driving requirements of the
PEV fleet. Constraints (9.8) represent the evolution of the energy content of the
virtual battery at each time period and for each scenario. Constraints (9.9) and
(9.10) impose bounds on the energy content and the charging power of the virtual
battery, respectively, as explained in Sect. 9.2.2. Constraints (9.11) impose that the
energy content of the virtual battery at the end of the planning horizon must be
equal to the energy content of the virtual battery at the beginning of the planning
horizon, which must have the same value across scenarios. Otherwise, and due to
the cost minimization nature of the problem, the aggregator would tend to deplete
the energy of the virtual battery over time. Constraints (9.12) state that the price
paid for charging is the market clearing price, which is obtained from the day-ahead
market clearing problem.

On the other hand, the LL problems (9.13)–(9.17) represent the clearing of the day-
ahead market under different market scenarios and time periods. In these day-ahead
market problem, the minus surplus of the market is minimized (9.13). Constraints
(9.14) define the supply-demand balance, while constraints (9.15)–(9.17) impose
bounds on the accepted volumes of supply, demand and aggregator bids, respectively.
The market clearing prices are defined as the sensitivity associated with the supply-
demand balance constraints (9.14). Here we represent a simple market clearing
process, where supply and demand bids are cleared together independent of their
physical locations, i.e. network constraints are not taken into account. This type of
market clearing is typical for spot power markets in many European countries.
However, it is also possible to represent the lower level problem as a DC-Optimal
Power Flow (DC-OPF), which also leads to a MILP problem [3].
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9.3.2 MPEC

In order to obtain the solution of bi-level model (9.7)–(9.17), the UL and LL
problems need to be jointly solved as explained below.

Note that each LL problem is continuous and linear, and thus, convex.
Hence, the Karush-Kuhn-Tucker conditions are necessary and sufficient optimality
conditions [31]. Therefore, we replace each LL problem by its KKT optimality
conditions rendering an MPEC, which is provided below:

MinimizeWUL
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S
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S
WLL;D

-t
ð9:7Þ ð9:21Þ
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g; 8-; 8t.
MPEC (9.21)–(9.32) comprises the objective function of the UL problem (9.21),

constraints of the UL problem (9.22), equality constraints of the LL problems
(9.23), equality constraints (9.24)–(9.26) obtained by differentiating the Lagrangian
function of each LL problem with respect to the primal variables included in sets
WLL;P

-t , and complementarity constraints (9.27–9.32).
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9.3.3 Linearization

MPEC (9.21)–(9.32) includes two types of nonlinear terms, namely:

1. The objective function (9.21).
2. The complementarity constraints (9.27)–(9.32).

However, these nonlinear terms can be replaced by exact equivalent mixed-
integer linear expressions as explained in the Appendix. Using such mixed-integer
linear terms, the problem of identifying the optimal bidding strategy of a PEV
aggregator can be finally formulated as the following MILP problem:

MinimizeWUL
-t

S
WLL;P

-t

S
WLL;D

-t

S
WAUX

-t

X

-

p-
X

t

!-t ð9:33Þ
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Constraints ð9:2Þ�ð9:7Þ ð9:34Þ

Constraints ð9:23Þ�ð9:32Þ ð9:35Þ

Constraints ð9:67Þ�ð9:81Þ ð9:36Þ

g; 8-; 8t, where

WLL;AUX
-t ¼ uSs-t; �u

S
s-t; 8s; uDd-t; �uDd-t; 8d; uA-t; �uA-t

� �8-; 8t: ð9:37Þ

9.3.4 Building Bidding Curves

From the optimal solution of the MILP problem (9.33)–(9.37), the aggregator
obtains, for each market scenario realization -, a value for the bid price bA-t and a
value for the scheduled power volume PA

-t. Based on the resulting scheduled
charging power in the day-ahead market and the computed bid prices for each
scenario, the aggregator builds its bid blocks, as schematically depicted in Fig. 9.5.

The resulting MILP problem (9.33)–(9.37) allows the aggregator to decide its
optimal bidding strategy in the market. For each market scenario, the aggregator
obtains a value for the bid price and a value for the bid volume to be submitted to
the market. However, demand bid curves need to be decreasing in price. With the
formulation provided in Sect. 9.3.1, this is not ensured since bid prices and volumes
for different market scenarios are not linked. In order to ensure that the resulting bid
blocks are decreasing in price, it is necessary to include an additional set of con-
straints in MILP problem (9.33)–(9.37):
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bA-t � bA-0t � x--0tM
b 8-; 8-0 [-;8t ð9:38Þ

bA-t � bA-0t � x--0t � 1ð ÞMb 8-; 8-0 [-; 8t ð9:39Þ

PA
-0t � PA

-t � y--0tM
P 8-; 8-0 [-; 8t ð9:40Þ

PA
-0t � PA

-t � y--0t � 1ð ÞMP 8-; 8-0 [-; 8t ð9:41Þ

x--0t þ y--0t ¼ 2z--0t 8-; 8-0 [-; 8t ð9:42Þ

x--0t; y--0t; z--0 t 2 0; 1f g 8-; 8-0 [-; 8t ð9:43Þ

where Mb and MP are large enough positive constants.
The working of constraints (9.38)–(9.43) is illustrated in Fig. 9.6. Let us con-

sider two market scenarios, namely - and -
0
. We obtain, for each of them, a value

for the bid price ðbA-t; bA-0 tÞ and a value for the bid power volume PA
-t;P

A
-0t

� �
.

Figure 9.6 depicts the four different possibilities for these pairs of values. However,
only cases (a) and (b) are feasible bidding curves since case (c) and (d) have a
positive slope, and thus, cannot be used as demand curves.

In case (a), we observe that bA- � bA-0 � 0 and PA
-0t � PA

-t � 0. This is ensured by
considering x--0 ¼ 1 and y--0 ¼ 1 as explained below:

1. We obtain that 0� bA- � bA-0 �Mb by Eqs. (9.38) and (9.39). Provided that Mb is
a large enough positive constant, this ensures bA- � bA-0 � 0.

2. We obtain that 0�PA
-0t � PA

-t �MP by Eqs. (9.40) and (9.41). Provided that MP

is a large enough positive constant, this ensures PA
-0t � PA

-t � 0.

Note also that x--0 ¼ 1 and y--0 ¼ 1 satisfy Eq. (9.42), with z--0 ¼ 1.

Fig. 9.5 Illustrative example
of bid blocks
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Similarly, in case (b), we observe that bA- � bA-0 � 0 and PA
-0t � PA

-t � 0, which is
ensured by considering x--0 ¼ 0 and y--0 ¼ 0. These values of x--0 and y--0 also
satisfy Eq. (9.42), with z--0 ¼ 0.

On the other hand, in cases (c) and (d) we observe bA- � bA-0 � 0, PA
-0t � PA

-t � 0
and bA- � bA-0 � 0, PA

-0t � PA
-t � 0, respectively. To achieve this, we need to consider

x--0 ¼ 0, y--0 ¼ 1 in case (c) and x--0 ¼ 1, y--0 ¼ 0 in case (d). However, these
two cases violate constraint (9.42), i.e. there is no corresponding feasible value for
z--0 . By including constraints (9.38)–(9.43) in the bi-level model described in
Sect. 9.3.1 we ensure non-increasing demand curves.

Finally, note that constraints (9.38)–(9.43) allow us to represent those cases with
equal power volumes and different bid prices. These cases represent, for example,
situations where the aggregator needs a specific power volume to satisfy the driving
requirements regardless of the price to be paid.

9.3.5 Central Dispatch Model

As a benchmark for the proposed bidding strategy we consider a central dispatch
model [4] whose formulation is provided below:

MinimizeWCD
t

X

s

cSstP
S
st �

X

d

bDdtP
D
dt ð9:44Þ

Fig. 9.6 Different
alternatives for bidding curves
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A
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n o
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In this central dispatch model, the constraints of the virtual battery used to model
the PEV aggregation (9.45)–(9.48) are included as additional constraints of the
market clearing problem (9.13)–(9.17). Note that in this problem there is no
uncertainty in the market since the market operator knows the bids of the partici-
pants. This benchmark represents a theoretical welfare-maximizing dispatch of the
PEV fleet together with supply and demand bids by a central agent. It can therefore
be used to assess the market power potential of the aggregator.

9.4 Illustrative Example

9.4.1 Data

The proposed approach is tested with price curves of the electricity spot market for
the bidding area of Germany/Austria, obtained from the European Energy
Exchange (EEX). The market clearing volumes and prices of this day-ahead market
are public and reported on the EEX website [32]. However, the price curves con-
taining detailed information on demand and supply bids, which are used here, are
only commercially available. The bid prices in this market have to lie between
−3000 € and 3000 €. The simulation period spans the period from February to
November 2013. Each day is divided into hourly time steps, i.e. Dt corresponds to
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one hour. Figure 9.7 shows the supply and demand curves, without aggregator bids,
for a given day and hour.

The scenarios for supply and demand bids are derived from past data. For the
sake of simplicity, we consider X equally weighted scenarios, which are defined as
the supply and demand bids of the X previous weeks to the week under study. For
example, for a given Monday at noon, the bids of the previous X Mondays at noon
are used as scenarios. This simple method is used here for demonstration purposes,
but more advanced estimation methods are possible. Note that although there is a
rich literature in price estimation techniques, bid estimation has received little
attention.

We assume a 2 % penetration of PEVs in Germany and Austria, which corre-
sponds to almost one million PEVs [33, 34]. The value of 2 % is chosen because it
is a number low enough to be realistic in the near future, but already high enough to
affect market prices, as will be shown later. In Germany, the goal is to have
1 million PEVs by 2020 [35].

The driving patterns used in the case study are obtained from the transportation
simulation tool MATSim [36]. MATSim is an agent-based simulation where each
agent has a set of activities to be performed (e.g. go to work, go shopping, etc.) and
the optimization selects the driving patterns that maximize agents’ utility, taking
into account factors such as the induced traffic and the available means of trans-
portation. This simulation is specific to Switzerland and represents typical mobility
behavior on weekdays. No equivalent simulations exist for Germany and Austria
and for weekend mobility. For this reason we use the Swiss data for the numerical
example, although it does not allow an exact quantitative analysis. Nevertheless, it
is still possible to qualitatively test the performance of the described bidding
strategy. The assumed maximum charging power for vehicles is 3.7 kW and the
charging efficiency 90 %. The energy consumption is derived from trip distances
with the factor 0.2 kWh/km. Battery capacities of 16 and 24 kWh are used, each for
half of the fleet. A minimum SOC of 20 % is enforced. Table 9.1 summarizes the
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Fig. 9.7 Supply and demand curves of the day-ahead market of the Germany/Austria area on
March 8, 2013, hour 24
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main PEV parameters. It is assumed that PEVs can potentially charge whenever
they are parked for 1 h. Therefore we indirectly assume that charging infrastructure
is available at every location. Our results therefore represent a lower bound on the
costs of charging. In practice, charging flexibility would be partially reduced
because of the unavailability of charging infrastructure at some locations.

The simulations were run with MATLAB R2012a on a 2.67 GHz Intel Xeon
processor. The optimization problems (MILP problems for the bidding strategy and
LP problems for the central dispatch) were solved using CPLEX v12.5.1.

9.4.2 Results

Table 9.2 gives an overview of the results of both the central dispatch and the
bidding strategy. For the bidding strategy, results are computed under perfect
information and with uncertainty in market bids. In the latter case, different num-
bers of scenarios are considered. Results under perfect information are computed
with a single scenario, which corresponds to a perfect forecast of the market’s
supply and demand bids. The central dispatcher, since it decides on the charging of

Table 9.1 PEV parameters

Charging
power

Charging
efficiency

Minimum
SOC

Battery
capacity

Average
consumption

3.7 kW 90 % 20 % 16/24 kWh 0.2 kWh/km

Table 9.2 Results overview

Central
dispatch

Bidding strategy

Perfect
information

One
scenario

Two
scenarios

Three
scenarios

Average cost [€/MWh] 28.52 27.88 26.53 28.43 28.98

Average cost including
additional purchases/sales
[€/MWh]

28.52 27.88 33.64 31.92 31.33

Average energy purchased
[MWh]

6,092 6,092 2,615 4,026 4,571

Average energy shortfall
[MWh]

– – 3,477 2,188 1,671

Average energy overshoot
[MWh]

– – 0 121 150

Average problem size
(continuous/integer)

5,180/0 15,487/10,292 30,954/
20,611

46,350/
30,971

Average solving time [s] 0.041 28 319 3,612
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the PEV fleet simultaneously with the market clearing, does not face any uncer-
tainty in market bids.

The costs reported in Table 9.2 are the total costs of purchasing electricity
divided by the total purchased electricity for the considered period. Since the
aggregator’s bidding strategy can lead to purchasing insufficient or, more rarely,
excess energy in the day-ahead market, these costs are not directly comparable. To
really be able to compare the strategies, it would be necessary to simulate a second
step, after the day-ahead market clearing, where the aggregator would purchase the
missing energy in a different market, or through bilateral contracts. This is outside
of the scope of this chapter. Instead, an additional cost computation is performed,
estimating the potential costs of purchasing/selling the mismatch between the
required energy and the assigned volume in the day-ahead market. For this purpose,
the additional purchases/sales were priced at the average price for each of the days.

It can be seen that if the aggregator had perfect information of market bids, it
would face slightly lower costs than under a central dispatch. This means that the
aggregator could potentially exercise market power. With the bidding strategy
under uncertainty, the costs are also around 28 €/MWh in the case where several
scenarios are considered, and 26.53 €/MWh for a single scenario. The costs of the
bidding strategy using a single scenario are lower than under perfect information,
but in this case the aggregator does not even manage to purchase 50 % of the
required energy, which is not a desirable situation. Although the costs are the
highest in the three-scenario case, the energy shortfall is significantly lower than in
the other cases. Taking the additional purchases/sales into account in the cost
computation, the three-scenario case performs best. However, the difference
between the two- and three-scenario cases is not very large. The size of the problem
grows approximately linearly with the number of scenarios, whereas the compu-
tation time grows approximately exponentially. For larger number of scenarios
partitioning decomposition techniques could be applied to reduce the computation
time [37, 38]. We also computed the costs that the aggregator would incur if
demand were left uncontrolled, i.e. each PEV would start charging as soon as it is
parked. In this case the aggregator has to purchase this predefined demand in the
market, independent of the price. This is equivalent to a bid with the maximum
allowed bid price and the aggregated charging demand at each time step as the bid
volume. The costs for charging in this case are 43.07 €/MWh in average, i.e. a
much higher value than the costs reported in Table 9.2. This means that it is in
principle economically attractive to exploit the charging flexibility.

Figure 9.8 shows profiles for market clearing volumes and prices, as well as
accepted aggregator bid volumes (charge profiles) for a particular day. Results are
shown for both the bidding strategy under perfect information, as well as under
uncertainty, using three scenarios. Although the aggregator’s purchased volume
corresponds to a small percentage of the total market volume only, the impact on
prices is clearly visible. The aggregator tends to shift most demand to the night
hours, when prices are lowest, and also part of demand to the time between the
daily peaks. The latter cannot be avoided since demand is not flexible enough to
move all charging to the night. It can be seen that the charge profiles with perfect
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information and with uncertainty are relatively similar, since the aggregator is
capable of predicting the general price trends by using several scenarios. However,
it is not capable of perfectly optimizing it strategy without full information on
market bids.
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Figure 9.9 focuses on the differences between the central dispatch and the
aggregator’s bidding strategy under perfect information, i.e. the aggregator has the
same information (market bids) as the central dispatcher. It can be seen that whereas
the central dispatcher tries to generate a price curve that is as flat as possible, the
aggregator tries to increase prices as little as possible, which leads to a flatter charge
profile. This explains the small differences in charging costs between the two
approaches, as reported in Table 9.2.

Figure 9.10 shows two exemplary bid curves resulting from the simulation
considering three scenarios. It can be seen that one of these bid curves (hour 7)
consists of three bid blocks, each corresponding to a different price/volume
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combination in each of the three scenarios. The other bid curve consists of a single
block, which happens when for all the prices in all three scenarios the same volume
is chosen. This situation actually happens in 74 % of the hours simulated. This can
be interpreted as the aggregator choosing an optimal aggregated charge profile
independently of the prices, as long as these are not higher than a given value. This
maximum willingness to pay at a particular hour is defined by the highest price
chosen for that hour across the scenarios.

9.5 Summary and Conclusions

This chapter describes a mathematical tool to assist an aggregator responsible for
charging a PEV fleet in deciding its optimal bidding strategy in the day-ahead
electricity market. The aim of the aggregator is to minimize the charging costs
while at the same time satisfying the driving requirements of PEV drivers.

The problem is formulated as a bi-level model comprising an UL problem,
which represents the charging optimization problem, and a set of LL problems,
which represent the clearing of the day-ahead market. This bi-level model is recast
as a MILP problem that can be solved using conventional branch-and-cut solvers.

PEVs are represented in an aggregated way. In this sense, PEVs are modeled as a
virtual battery.

Uncertainty in the bids of the market participants is efficiently modeled using a
set of scenarios.

Given the framework described in this chapter and the results of the illustrative
example carried out in Sect. 9.4, the conclusions below are in order:

1. The aggregator uses the flexibility of PEV demand to significantly reduce
charging costs.

2. Even at a low penetration of PEVs (2 %), the aggregator significantly impacts
market prices through its bidding strategy.

3. An accurate modeling of the uncertainty in the market bids of market partici-
pants is important to avoid energy shortfalls.

4. The resulting MILP problem is computationally tractable provided that the
number of scenarios is small enough.

Appendix

This appendix explains the procedure used to linearize the non-linear terms that
appear in problem (9.21)–(9.32) provided in Sect. 9.3.2.
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Linearization of Objective Function (9.21)

Objective function (9.21) includes the terms
P

t b-tP
A
-t. These terms are nonlinear

since they include the product of two decision variables, namely b-t and PA
-t.

However, these nonlinear terms can be replaced by exact equivalent linear
expressions as explained below [3].

The strong duality theorem states that if a problem is convex, the objective
functions of the primal and dual problems have the same value at the optimum [31].
This is the case of LL problems (9.13)–(9.17), and thus:
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On the other hand, from Eq. (9.26) we obtain

bA-t ¼ k-t þ �uA
-t � uA

-t
8-; 8t; ð9:54Þ

and thus,

bA-tP
A
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PA
-t 8-; 8t; ð9:55Þ

In a similar way, from constraints (9.26) and (9.27) we obtain
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-tu

A
-t

¼ 0 8-; 8t; ð9:56Þ
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respectively.
Next, we use (9.56) and (9.57) to simplify (9.55) and we obtain:
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Finally, we replace term bA-tP
A
-t in Eq. (9.53) by its equivalent expression defined

in (9.58) and we obtain:
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Since b-t ¼ k-t; 8-; 8t; as defined in (9.6), Eq. (9.59) allows us to calculate
nonlinear terms b-tP

A
-t as a function of exclusively linear terms:

�-t
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d
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s

�uS
s-t

�PS
s-t þ

X

d

�uD
d-t

�PD
d-t 8-; 8t: ð9:60Þ

Linearization of Complementarity Constraints

Complementarity constraints (9.27)–(9.32) have the form 0� a ? e� 0, which is
equivalent to the following set of equations:

a; e� 0 ð9:61Þ

a � e ¼ 0 ð9:62Þ

Equations (9.61)–(9.62) can be replaced by a set of exact equivalent mixed-
integer linear equations as explained in [27]:

a; e� 0 ð9:63Þ

a�Mu ð9:64Þ

e�M 1� uð Þ ð9:65Þ

u ¼ 0; 1f g ð9:66Þ

where M is a large enough positive constant.
Using (9.63)–(9.64) to linearize complementarity constraints (9.22)–(9.27) we

obtain:
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0�uD
d-t

�M 1� uDd-t
� � 8d ð9:73Þ

0� �PD
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g; 8-; 8t, where M is a large enough positive constant.
For the sake of clarity in the notation, a single M has been defined. However,

note that appropriate and different values of this large constant should be defined for
each constraint (9.67)–(9.81) as explained in [27].
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Chapter 10
Optimal Control of Plug-in Vehicles Fleets
in Microgrids

Guido Carpinelli, Fabio Mottola and Daniela Proto

Abstract This chapter focuses on the optimal operation of plug-in vehicle fleets in
a microgrid characterized by the presence of other distributed resources, such as
distributed generation units. The possible services that vehicle aggregators can
provide in the microgrid are discussed and the control actions to be performed in
order to obtain such services while integrating the vehicle aggregator actions with
those of the other distributed resources of the grid are outlined. The problems with
optimal operation are formulated as single-objective and multi-objective optimi-
zation problems, specifying, in both cases, objective functions, equality and
inequality constraints. The differences and criticisms of both approaches are
extensively analyzed in the chapter, where the two approaches are also imple-
mented and solved with reference to the practical cases.
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10.1 Introduction

In the last few years, the electrical power system has been witnessing an increasing
penetration of plug-in vehicles (PEVs). The number of PEVs on the road is expected
to increase even more in the near future, as they represent a key element for global
emissions reduction. In addition, their double role of being a load and energy source
makes them strategic resources for grid operation, as they are able to provide several
services that can improve the operation of distribution networks. This is possible
because most vehicles are typically only driven a few hours per day and are parked
the rest of the time (during the night or while the owner is working) [1].

In the case of a vehicle fleet, this capability is even greater since, by grouping
together a large number of vehicles, an effective and significant contribution can be
obtained on the grid service provision. Theoretically, a certain number of parked
PEVs, managed through an aggregator, can provide several important ancillary
services to the grid, such as regulation, peak power, and spinning reserve [1–3].
These services can be furnished by the vehicle fleets requiring two-way or one-way
energy flows to the grid. A typical service that requires a one-way energy flow from
the distribution network to the vehicle, as an example, is the so called Smart
Charging. Smart Charging is the coordination of vehicle charging aimed at pre-
venting congestion in the grid and providing frequency regulation [2].

In addition, when included in a microgrid (µG), the PEV fleets can be integrated
with other energy resources. All of these PEV fleets can provide, in an optimized
fashion, some or all of the previously mentioned services to the same µG or to the
distribution grid to which the µG is linked. In this case, the distributed energy
resources (DERs) can be coordinated by a control system to provide the usual
energy service, as well as a number of ancillary services. This configuration is even
more effective when the µG is supposed to operate in both grid connected and
islanded modes. This last operating mode is particularly critical and requires the
contribution of all µG resources to the regulation, as well as the provision of other
power quality services.

In order to perform the optimal control of vehicle fleets, an optimization strategy
is required. This optimization strategy is aimed at operating the grid efficiently. The
strategy must take into account all technical and operating limitations of the grid
resources to be integrated, as well as those regarding the grid itself. The optimi-
zation can be formulated as a single-objective (SO) or multi-objective (MO)
problem. The choice of the approach to be used depends on several aspects as, for
instance, the perspective of the stakeholder who is performing the control. The first
formulation can be particularly practical from the distribution system operator
point-of-view, who can directly and easily identify the best solution for system
operation. Multi-objective approaches could be more effective, as they consider, at
the same time, several, and sometimes conflicting, objectives.

In this chapter, a low voltage (LV) µG derived from an interconnection bus is
considered which is characterized by the presence of DG units and PEVs fleets
(Fig. 10.1).
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The DG includes both controlled and non-controlled units; all DG units are
undispatchable renewable power plants. The term ‘controlled’ refers to the presence
of an interfacing converter which is able to regulate some typical quantities such as
the reactive power, so giving the possibility to provide services to the grid where
the DG unit is connected. Non-controlled DG units are systems directly connected
to the grid without any interfacing device. The vehicle fleets are all connected
through power electronic converters to the µG, that is supposed to be controlled and
monitored by a centralized control system (CCS). The CCS is responsible for the
optimal management of the distributed resources and is able to coordinate the grid
resources by sending appropriate command signals. The converters receive refer-
ence signals of active/reactive power from the CCS. The signals are obtained by
solving appropriate SO and MO optimization models that are able to guarantee
specified µG internal and external services1 while meeting operational and technical
constraints.

It has to be outlined that in this chapter the µG operator is not directly
responsible of the charging requirements of the single vehicles since aggregators
and µG operator are supposed to be independent. In particular, the management of

CONTROLLED 

DG SYSTEM

MV

DISTRIBUTION NETWORK

LV MICROGRID

LOADS

CCS

NON-CONTROLLED 

DG SYSTEM

PLUG-IN VEHICLE 

FLEETS

Fig. 10.1 Schematic diagram of the µG

1 Internal services are those required for the correct or efficient operation of the µG, such as loss
minimization and voltage regulation. External services are those provided to the upstream elec-
trical system to which the µG is interconnected for its correct operation.
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single vehicles is assumed to be effected by the aggregators who, at this purpose,
apply appropriate procedures [4, 5].

In the next sections, the services that can be performed by the PEVs, their
configurations and operating modes, are outlined (Sect. 10.2). The SO and MO
optimization problems are then formulated (Sects. 10.3, 10.4). Finally, the results of
the numerical applications are presented to verify the feasibility of the proposed
approaches (Sect. 10.5).

10.2 Plug-in Vehicle Services, Configurations
and Operating Modes

There are several services that PEVs or aggregations of PEVs could provide to the
grid, such as regulation, peak power, spinning reserve and other ancillary services.
In practice, only some of them represent attractive market opportunities.

In order to provide services, two operating modes are foreseen for PEVs. The
first is PEVs that are connected to the grid and require one-way energy flows to the
distribution network, in which only charging is considered. The second is two-way
energy flows in which PEVs provide also power to the grid while parked to allow a
bi-directional energy stream between the vehicles and the grid. In the charging
mode, the PEV battery charging can be conducted either without the application of
any particular control strategy (e.g., the charging of the PEV automatically starts
when the vehicle is plugged in and ends when the storage device is fully charged) or
with a local control strategy aimed at maximizing the advantages of PEV owners in
terms of costs (e.g., PEV automatically charges during low energy price periods)
[6]. Interesting applications include charging strategies based on the possibility of
vehicles communicating with the grid in real time and charging according to the
grid needs to provide services to the grid. The applications requiring one-way
energy flows are usually referred to as V1G. The bi-directional operation mode
is usually referred to as V2G. In the V2G operating mode, the possibility of
bidirectional energy flows allows for the performing of all of the services mentioned
previously [1, 7, 8].

Regarding the use of PEVs as generation units during peak load periods (peak
power service), the required duration of energy to be supplied by PEVs could reach
3–5 h. As such, this service is impractical, due to the on board storage limitations.
This limitation could be overcome by a series of vehicles drawing power sequen-
tially (e.g., in car parking managed by aggregators) [7, 9].

Two interesting market opportunities include spinning reserve and regulation.
Spinning reserve is an additional power capacity that can be requested in the case of
an outage. It represents an attractive market opportunity for PEVs, since it is paid
for by the amount of time the generators are available and ready (capacity price),
even if no energy is produced; an extra amount is paid for the energy that is actually
furnished, if needed (energy price) [8]. Compared to spinning reserve, regulation
requires availability several times per day. It also requires a faster response, but
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only for a short duration of generation. These reasons make PEVs good candidates
for the provision of such a service. Regulation consists of the use of controllable
generation units or aggregated loads to regulate frequency and voltage [10]. There
are two possible regulation modes: ‘regulation up’ is the ability to increase power
generation (or decrease loads) from a baseline level and ‘regulation down’ is aimed
at decreasing power generation (or increasing loads) from a baseline. PEVs are
suited for this market, because they can respond very quickly. Moreover, the
provision of both regulation up and down can imply only a little net discharge of
batteries. PEVs provide regulation service through the so called smart charging
service that involves the control of the charging of each vehicle to meet both the
needs of the vehicle owner (i.e., to have the vehicle charged at a certain time) and
the needs of the grid (e.g., providing regulation).

In conclusion, the services for which PEVs are more suitable are those char-
acterized by a high power value and fast response. PEVs cannot provide a base load
power at a competitive price, whereas peak power, spinning reserve and regulation
are services that could be provided, because of the short duration of supply [1, 2].

As mentioned previously, two primary PEVs configurations can be considered:
the first refers to individual vehicles, while the second refers to fleets. In the first
case, the individual vehicle gives its contribution as a service provider, whereas in
the second case, the grid interacts with a fleet (a significant number of vehicles
plugged simultaneously into the same connection point). In this case, PEV fleets are
managed by the so-called “aggregators” who contract with the grid operator through
the day-ahead and hour-ahead markets to provide the required services [4]. In this
way, all vehicles controlled by the aggregator would appear to the grid as a unique
storage device. The fleets, compared to the individual vehicles directly plugged into
the grid, represent a large source of rapidly-controllable generations or loads and are
more convenient to manage when services to the grid have to be provided. In fact,
when the grid has to face individual vehicles, the control procedure usually needs
tighter constraints [11]. Regarding the typology of the aggregators, car parking can
be either “residential”, where cars are usually parked at night, or “office”, where cars
are parked during the morning or afternoon when the owner is working. This will
impact the cost and availability of energy throughout the day. Swapping stations are
automated stations where the dry batteries are changed with charged ones [12].
Besides satisfying this primary duty, they seem particularly suitable for providing
grid services [2, 6].

10.3 Optimal Control of Vehicle Fleets: Single Objective
Approach

As mentioned in the introduction, the converter control systems for all of the
controlled DERs included in the considered LV µG receive reference signals of
active and/or reactive power obtained by solving either the SO or MO optimization
problems.
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In the case of a control strategy formulated in terms of an SO optimization
problem, a unique objective is required to be fixed, while the other operation
requirements are considered constraints. In the most general case, the problem can
be formulated as the following non-linear constrained optimization problem:

min fobjðX;CÞ ð10:1Þ

Subject to

w X;Cð Þ ¼ 0 ð10:2Þ

g X;Cð Þ� 0 ð10:3Þ

where fobj is the objective function to be minimized, w, g the constraints to be
satisfied, X is the system state vector (e.g., the bus voltages) and C is a control
vector which includes the variables to be controlled in the optimization (e.g., the
PEV aggregators’ active and reactive power). The choice of the objective function
depends on the strategy that has to be applied and the services to be provided.
Constraints are typically related to the technical limitations of the grid and the
DERs. Moreover, constraints could also be related to services to be provided.
Irrespective of the strategy adopted, the inputs of the problem are the requirements
of both the grid and DERs. Examples of grid requirements are the satisfaction of
limits imposed on the node voltages, which must fall into admissible ranges, and
line currents, which must be lower than the line ampacity. DERs’ requirements can
refer to the DGs active power production and energy required by the aggregator for
charging the PEVs. The outputs are the values of the control variables that are, for
example, the unknown active and/or reactive powers of the controlled DERs.

In what follows, an example of an optimization strategy is reported that deals
with the economical aspects of the µG management and is aimed at minimizing the
cost of the energy consumption of the whole µG. Other examples of SO strategies
for PEV operations and their comparisons are reported in [10, 13].

The proposed example of a control strategy is based on an SO optimization and
refers to a LV µG which includes several DERs (Fig. 10.1). It is assumed that the
µG is an ‘active cell’ able to bid and offer energy as a whole.

The active/reactive powers of the aggregators, as well as the reactive powers of
the controlled DG units, are optimally scheduled in order to minimize the daily
energy costs and, contemporaneously, satisfy the technical constraints on µG bus
voltages and line currents. The peak-shaving service is performed by imposing an
upper boundary to the power imported from the grid to which the µG is inter-
connected. A further boundary can be imposed also to the power exported to the
grid.

The proposed scheduling strategy is based on the solution of the SO optimiza-
tion problems (10.1)–(10.3), where the vector of the decision variables C includes
the schedule of active powers to be provided for by the aggregators and of the
reactive powers that the DG and aggregator converters must supply to perform the
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desired services. The vector of the state variables X includes, as an example, the
voltages at the grid nodes during the day.

The model input variables are the forecasted grid load demand, DG active power
production, day-ahead market price and aggregator requirements. The model output
variables are the daily profile of the: (1) active power imported/exported from/to the
upstream grid, (2) active and reactive powers of the aggregators, and (3) reactive
power of the DG units.

The objective function (10.1) to be minimized is:

fobj ¼
XNT

t¼1

ECt � P1;t � DTt; ð10:4Þ

where t is the time-slot code, ECt is the forecasted value of the day-ahead market
energy cost, P1;t is the active power at the interconnection bus, which is positive
when it is absorbed from the upstream grid or negative when it is supplied to the
upstream grid, and DTt is the duration of the time-slot. For the sake of simplicity,
the price for the energy supplied to the upstream grid is assumed equal to the price
for that absorbed from the upstream grid. If the µG is not allowed to sell energy to
the grid, a constraint could be imposed on the power at the interconnection node
which must be always positive.

The equality/inequality constraints to be satisfied are listed separately for each
bus and for the entire µG. For the sake of clarity, in what follows, it is assumed that
each bus is considered to be of one type (e.g., DG bus, load bus, etc.) and if there
were “mixed” cases these could be resolved easily.

• DG bus

The constraints for the controlled DG bus are related to the power flow equations
and the rating of the interfacing converter:

DPsp
i;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k cos di;t � dk;t
� �þ Bi;ksinðdi;t � dk;tÞ

� � ð10:5Þ

DQi;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k sin di;t � dk;t
� �� Bi;kcosðdi;t � dk;tÞ

� � ð10:6Þ

DPsp
i;t

� �2
þ DQi;t
� �2

� 	1=2
�DSmax

i ð10:7Þ

t ¼ 1; 2 ; . . . ; NT ; i 2 XD

where i is the bus code, N is the number of grid nodes, DPsp
i;t is the DG’s specified

active power, DQi;t is the DG’s reactive power, Vi;t ðdi;tÞ is the magnitude (argu-
ment) of the bus voltage, Gi;kðBi;kÞ is the (i, k)-term of the system’s conductance
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(susceptance) matrix, DSmax
i is the size of the interfacing converter and ΩD is the set

of DG buses. In (10.5)–(10.7), DQi;t is an optimization variable, and the value of
DPsp

i;t is a predicted value obtained as the result of a deterministic forecast. It should
be noted that forecasts, of course, are typically characterized by errors whose entity
depends on the time horizon of their application.

It also is important to note that, if the DG has the capability of controlling
voltages, a specified value of the DG node voltage (Vsp

i;t ) also must be assigned [14],
then the following constraint has to be imposed:

Vi;t ¼ Vsp
i;t ð10:8Þ

Other types of DG units can be also considered as, for example, wind turbines
equipped with asynchronous generators directly connected to the grid [15]. The
problem formulation in case this last category of DG units is considered, requires to
regard both active and reactive powers as specified values [14] obtained by means
of deterministic or probabilistic forecasting procedures, i.e. based on neural net-
works or Bayesian Inference [16–18]. Thus, in this case, in Eq. 10.6 the reactive
power is not an optimization variable and Eq. 10.8 is not assigned.

• Load bus

The constraints at the load bus refer only to the power flow equations:

LPsp
i;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k cos di;t � dk;t
� �þ Bi;ksin di;t � dk;t

� �� � ð10:9Þ

LQsp
i;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k sin di;t � dk;t
� �� Bi;kcosðdi;t � dk;tÞ

� � ð10:10Þ

t ¼ 1; 2 ; . . . ; NT ; i 2 XLD

where LPsp
i;tðLQsp

i;tÞ is the load-specified active (reactive) power, and ΩLD is the set of
load buses. Also load powers can be predicted by means of deterministic or
probabilistic forecasting procedures.

• PEV aggregator bus

The PEV aggregator was assumed to be characterized by forecasted data related
to its charging/discharging potential throughout the day [4, 19], depending on the
forecasted requirements of the vehicles. To avoid critical situations in case the
actual data are different from the forecasts, a backup battery bank could be used [5].
The forecasted data related to the aggregator’s charging/discharging potential are
given in terms of both deliverable power and energy. With reference to energy, the
aggregators are allowed to charge during Nc pre-assigned time intervals; each of
the Nc intervals (lasting several hours) is characterized by a specified value of
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contracted energy that the aggregator has to absorb from the grid for charging the
fleet of vehicles [13, 19]. The Nc time interval duration depends on the fleets
features (e.g., for a home park, it is forecasted that the vehicles stay plugged in for a
long time during the night, so that a time interval of a few hours can be chosen).
With reference to the power, admissible ranges of charging/discharging powers that
can be potentially exchanged with the grid are specified for each time interval. This
information is based on available forecasts on the PEVs requirements and is sup-
posed to be treated and provided by the aggregator.

The constraints at the aggregator busbars referring to the power flow equations
and the rating of the interfacing converters are:

PEVPi;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k cos di;t � dk;t
� �þ Bi;ksinðdi;t � dk;tÞ

� � ð10:11Þ

PEVQi;t ¼ Vi;t

XN

k¼1

Vk;t Gi;k sin di;t � dk;t
� �� Bi;kcosðdi;t � dk;tÞ

� � ð10:12Þ

PEVPi;t
� �2þ PEVQi;t

� �2h i1=2
�PEVSmax

i ð10:13Þ

t ¼ 1; 2 ; . . . ; NT ; i 2 XPEV

while the following additional constraints are included to take into account previ-
ously-mentioned allowable aggregator energy/powers:

PEVPmin
i �PEVPi;t �PEVPmax

i ð10:14Þ

XNend
j

t¼Nstart
j

PEVPi;tDTt ¼ �PEVEsp
i;j ð10:15Þ

t ¼ 1; 2 ; . . . ; NT ; j ¼ 1; 2 ; . . . ;NC; i 2 XPEV

In (10.11)–(10.15), PEVPi;tðPEVQi;tÞ is the active (reactive) aggregator power,
PEVEsp

i;j is the aggregator contracted energy, PEVPmin
i;t ðPEVPmax

i;t Þ is the minimum
(maximum) aggregator active power, PEVSmax

i is the maximum apparent power of
the aggregator, Nstart

j ðNend
j Þ is the first (last) slot of the jth time interval of the ith

aggregator, j is the aggregator’s time interval index code and ΩPEV is the set of
aggregator buses.

• Whole micro grid

The constraints at the bus that interconnects the μG and the upstream MV grid
refer to the power flow equations, the peak-shaving, if required, and the rating of
the interfacing MV/LV transformer:
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P1;t ¼ Vsp
1;t

XN

k¼1

Vk;t G1;k cos dsp1;t � dk;t
� �

þ B1;ksinðdsp1;t � dk;tÞ
h i

ð10:16Þ

Q1;t ¼ Vsp
1;t

XN

k¼1

Vk;t G1;k sin dsp1;t � dk;t
� �

� B1;kcosðdsp1;t � dk;tÞ
h i

ð10:17Þ

P1;t �Pmax
MG ð10:18Þ

P1;t
� �2þ Q1;t

� �2h i1=2
� Smax

MG ð10:19Þ

with t ¼ 1; 2 ; . . . ;NT , where P1;t Q1;t
� �

is the active (reactive) power at the inter-
connection bus, Pmax

MG ðSmax
MG Þ is the maximum allowed active (apparent) power and

dsp1;t is the reference for the phase angle. The value of S
max
MG imposes also a limitation

on the maximum power that can be injected into the upstream grid. This limitation
which regards the transformer rating could be applied also in compliance with other
technical or economical aspects regarding the grids’ interconnection. A constraint
on a specific maximum value of active power injected into the grid can also be
considered.

It must be noted that the value of Pmax
MG can be a stringent constraint as it depends

on the contractual conditions for the peak-shaving service. In the case of a lack of
resources, the provision of the service to the upstream grid would be quite small or
even absent.

Constraints related to the μG’s bus voltages and line currents are also imposed to
improve the μG’s behavior:

Vmin �Vi;t �Vmax ð10:20Þ

Il;t � Irl ð10:21Þ

t ¼ 1; 2 ; . . . ; NT ; i ¼ 1 ; . . . ;N; l 2 Xlines

where VminðVmaxÞ is the minimum (maximum) magnitude of the bus voltage, Il;t is
the line current expressed as a function of the state bus voltages, Irl is the maximum
value of the current (lth line rating), and Ωlines is the set of µG lines.

10.4 Optimal Control of Vehicle Fleets: Multi Objective
Approach

In some cases the strategy requires the satisfaction of many objectives that may be in
conflict with each other. In this case, the optimization model to be solved is par-
ticularly complex because the different objectives must be optimized simultaneously
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while several constraints must be met. The most adequate framework to formulate
this problem is multi-objective optimization. In fact, an MO approach permits the
processing of many objectives, which are sometimes conflicting, and several con-
straints to determine a compromised solution that takes into consideration different
perspectives.

As is well known, anMO optimization problem can be formulated as follows [20]:

minF X;Cð Þ ¼ fobj1 X;Cð Þ; fobj2 X;Cð Þ ; . . . ; fobj m X;Cð Þ� � ð10:22Þ

subject to the equality and inequality constraints such as (10.2) and (10.3).
In (10.22), m is the number of objective functions to be optimized, X and C have

been already defined in (10.1)–(10.3). In particular, in the case of an MO problem,
they are defined as the feasible design space (often called the feasible decision space
or constraint set) [21].

Again, the choice of the objective functions depend on the strategy that has to
be applied (i.e., the services to be provided). Constraints are typically related to the
technical limitations of the grid and DERs [22, 23]. Examples of inputs of the
problem are the requirements of both the grid and DERs. Outputs are the values of
the control variables. However, in this case, unlike the single objective approach, an
MO problem does not have a unique solution. That being said, a set of points can be
available, all of which fit a predetermined definition for an optimum.

Pareto optimality is the predominant concept in defining an optimal point [20].
A solution is Pareto optimal if there exists no feasible solution that can decrease
some objective functions without causing at least one objective function increase
[21]. Theoretically, there are an infinite number of Pareto optimal solutions (Pareto
frontier), so it often is necessary to incorporate the decision-maker’s (DM’s)
preferences to obtain a single, suitable solution, where the term preference is
intended to mean the relative importance of the different objective functions. In this
framework, there are several criteria to articulate preferences, each defining an MO
problem solution method. Methods with a priori articulation of preferences, with a
posteriori articulation of preferences and with no articulation of preferences can be
used. A classification, as well as a discussion, of the best-performing methods in
terms of programming and computational efforts is described in [20].

In what follows, an example of a possible strategy based on an MO optimization
is described to operate the LV µG described in Fig. 10.1. In this strategy, the DERs
are optimally controlled to provide both services internal to the µG and external to
it. It is assumed that there is more than one µG internal service to be satisfied that is
the minimization of power losses, optimization of the voltage profile and maxi-
mization of the security margin of the currents. The external service is the smart
charging [2, 24]. It has to be noted that the proposed strategy is aimed at enabling
both PEV aggregators and µG operator to provide smart charging, which is a
remunerated service, and at the same time guaranteeing an efficient, secure and high
quality operation of the grid.

To perform the smart charging service, it is assumed that the CCS receives a load
dispatch command from the grid operator. Consequently, the optimization model
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must provide for sharing the load dispatch command signal among the aggregators
of the fleets that are connected to different µG busbars. The load dispatch command
has to fall into a range compatible with the expected aggregators energy avail-
ability, thus avoiding the possibility that the command signal is not complied with
(otherwise, as outlined in Sect. 10.3, to avoid critical situations, a backup battery
bank could be used [5, 22]). Each aggregator provides information to the CCS on its
expected energy availability.

In the problem under study, the vector of decision variables, C, includes the
active powers to be provided by the aggregators and the reactive powers that the DG
and aggregator converters must supply to perform the desired services. The vector of
the state variables X includes, as an example, the voltages at the grid nodes.

Unlike the example of SO optimization reported in Sect. 10.3, the control
interval slot t, in this case, is a few seconds, as smart charging is performed as an
external service. In addition, the MO model is solved at each dispatch command
sent from the grid operator for every control interval t.

The objective functions to be minimized in (10.22) are the power losses, the
squared voltage deviation along all the µG busbars, and the security margin related
to the line currents:

fobj1 ¼ Ploss;t; ð10:23Þ

fobj2 ¼ 1
N

XN

i¼1

Vi;t � Vsp
i;t

� �2
; ð10:24Þ

fobj3 ¼ 1�min
l2Xl

Irl � Il;t
Irl











; ð10:25Þ

where t is the control interval code, Ploss;t is the value of power losses expressed as a
function of the state variables, Vi;t is the voltage amplitude at node i, Vsp

i;t is its
specified value, N is the total number of nodes, Il;t is the current of the lth line
expressed as a function of the state variables, Irl is its rating, and Xl is the set of all
the µG lines.

The use of the objective function (10.23) refers to an energy saving objective,
whereas the use of the voltage objective function (10.24) is related to a quality
improvement that is nowadays an essential requirement in the context of SGs where
the power quality problem is a crucial issue. Regarding the objective function
(10.25), the security margin, which consists of the amount by which power transfers
can change before a security violation is encountered, its inclusion among the
objective functions makes it possible for the system to better support unexpected
loads and DG variations. This aspect can be a critical issue in the context of µGs,
where aggregators are present; in fact, excessively high charging/discharging rates
of aggregators can be avoided.
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The equality/inequality constraints that must be satisfied are (10.5)–(10.14) and
(10.16)–(10.21) which in this case refer only to each time slot of 4 s. Unlike the
case of the scheduling procedure of Sect. 10.3, in this case the constraints in the
time slot have to be verified independently of the other time slots. As a conse-
quence, constraint (10.15) which refers to a number of consecutive time slots, is not
included here. The energy required by PEVs on larger time intervals, in fact, is
managed directly by the aggregator, which performs an optimal dispatch by
determining how and when each vehicle is to be charged. To perform the smart
charging service, the power absorbed by each aggregator has to also be compatible
with the following constraint:

Xv

i¼1

PEVPi;t ¼ Psp
load dispatch; ð10:26Þ

where Psp
load dispatch is the specified load dispatch command sent by the grid operator

to the CCS, PEVPi;t is the active power at the ith aggregator, and ν is the number of
aggregators.

Since, for the solution of the previously mentioned problem, the control interval
is a few seconds (due to the need to perform the smart charging service), the
optimization model must be quickly solved. As such, the CPU time is an important
and constraining issue. Among the possible solution methods, the weighted sum
approach and the objective sum method seem to be highly attractive, since they
require low CPU time efforts. In addition, these methods are characterized by less
programming complexity [20]. They are all scalar methods that provide sufficient
conditions for Pareto optimality. The first approach is characterized by a priori
articulation of preferences, while the second is with no articulation of preferences.
Methods characterized by a posteriori articulation of preferences cannot be taken
into account, because this category is less efficient in terms of CPU time when only
one solution has to be selected. More details on these methods can be found in
[20, 25]. In Appendix 1, the objective sum method, the weighted sum approach and
the problem of setting the preferences are summarized. Moreover, two rank
methods are reported and discussed, which were used in the numerical application:
the rank order and the rank centroid.

10.5 Verification and Simulation Studies

Numerical applications were effected to verify the SO and MO optimization models
shown in Sects. 10.3 and 10.4, respectively. The results are reported in the fol-
lowing sub-sections. Both the control strategies were tested on the 30-busbar μG,
balanced, 3-phase, low-voltage distribution system shown in Fig. 10.2.

The parameters of the test system are reported in Appendix 2. The LV net-
work was connected to an MV grid through a 20/0.4-kV, 250-kVA transformer
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with vcc% = 4.2 %. The system included three photovoltaic (PV) units, one wind
turbine (WT) unit, and two PEV aggregators. The PV units (20-kW peak power
units) were located at busbars #15, #24, and #30 and connected through DC/AC
converters having size of 20 kVA. The WT unit, equipped with a 7.5-kW asyn-
chronous generator, was located at busbar #24 and was connected directly to the
distribution system. The fleet’s aggregators (40 kW peak power) were connected at
busbars #17 and #25 through DC/AC converters having size of 40 kVA.

As examples of the input data, Fig. 10.3a shows the absolute value of the daily
active power requested by the load at bus #18. Figure 10.3b shows the active power
of the PV unit at bus #30. Figure 10.3c shows the electricity price [19].

10.5.1 Case 1: Single-Objective Optimization
for the Minimization of Microgrid Costs

The day was divided intoNC = 5 time intervals (T1 = [0.00–8.00], T2 = [8.00–12.00],
T3 = [12.00–14.00], T4 = [14.00–18.00] and T5 = [18.00–24.00]). Each interval was
characterized by a specified energy request from aggregators. At each time interval,
the upper and lower limits of the aggregators active powers during the whole day
are also specified (Table 10.1). The specified values reported in the table derive
from the forecasted requirements of the vehicles and are supposed to be treated and
provided by the aggregator.

Fig. 10.2 Low-voltage distribution test system
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As shown in Table 10.1, the PEV aggregator connected to bus #17 refers to a
fleet of vehicles parked in a home parking area, while the PEV aggregator in bus
#25 refers to a fleet of vehicles parked in an office parking area; PEVs for both of
the two aggregators are allowed to perform the V2G service. In this application, for
the sake of simplicity, DTt is assumed to be 60 min. Consequently, since the energy

Fig. 10.3 a Absolute value of the power requested by the load at busbars #18. b PV unit power
production (busbar #30). c Electricity price
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price is usually an hourly price, ECt is assumed to be constant at each time-slot,
DTt. To perform the peak-shaving service, the power that the μG is allowed to
request to the upstream grid cannot exceed the maximum value of 50 kW.

Figures 10.4a–c report the profile of the active power, energy and reactive power
of the aggregator at busbar #17; in Fig. 10.4a, the upper and lower limits of the
aggregator active power during the whole day are also reported. Figure 10.4d
reports the active power at the interconnection bus (i.e., #1). In Fig. 10.4d, the
active power profile is reported with reference to the case in which the peak-shaving
service was not performed.

Figures 10.4a, b show that the control actions allow for the satisfaction of the
requirements of the aggregator in terms of power limits and energy requests. It also
appears that when the power is positive in Fig. 10.4a, that means that the aggregator
supplies power to the grid, the total energy stored in the PEVs’ battery, reported in
Fig. 10.4b, decreases. On the other hand, when the power is negative, the aggre-
gator is absorbing power from the grid to charge the batteries on board of the
vehicles and the energy stored increases. Figure 10.4a shows that the aggregator
supplies power to the grid when the price is higher, if it is allowed by the energy
requirements of the aggregators. This happens before 8 a.m. and after 5 p.m. In the
other periods the aggregator is required to charge in order to satisfy its energy
needs. In particular, by analyzing its behavior at each of the specified intervals
T1 = [0.00–8.00], T2 = [8.00–12.00], T3 = [12.00–14.00], T4 = [14.00–18.00] and
T5 = [18.00–24.00], it appears that the power requested by the aggregator for
charging is always larger in the periods of lower energy prices coherently with the
rationale of cost minimization.

With reference to the reactive power provided by the aggregators, in Fig. 10.4c
the high contribution in terms of the reactive power of the aggregator is clearly
highlighted. Always the aggregator supplies capacitive-reactive power close to the
maximum value imposed by the interfacing converter size (40 kVA) and the
absolute value of the aggregator’s active power never reaches the maximum value.
By the simulations, it emerged that also other DERs have similar behavior. For the
sake of brevity, their reactive power profiles are not reported here.

The analysis of Fig. 10.4d reveals the smoothing effect of the peak-shaving
service on the active power profile at the interconnection bus. The peak-shaving is

Table 10.1 Aggregators’ energy requests and active power limits

Time period Aggregator at bus #17 Aggregator at bus #25

Energy
requested
(kW h)

Upper and lower
limits of the active
power (kW)

Energy
requested
(kW h)

Upper and lower
limits of the active
power (kW)

T1 = [0.00–8.00] 144 +25; −25 40 +10; −10

T2 = [8.00–12.00] 32 +10; −10 100 +30; −30

T3 = [12.00–14.00] 20 +15; −15 40 +25; −25

T4 = [14.00–18.00] 40 +20; −20 32 +15; −15

T5 = [18.00–24.00] 120 +30; −30 30 +10; −10
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Fig. 10.4 a Active powers of the aggregator at busbar #17, b energy supplied to the aggregator at
busbar #17, c reactive power of aggregator at bus #17, d profile of the active power at the
interconnection bus
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obtained thanks to the ability of the control actions to regulate the active power of
the aggregators (e.g., during the interval [4.00–6.00 a.m.]). By comparing the
profiles of the active power with and without peak shaving, it can be observed that,
when the peak shaving is applied, the µG imports a higher value of energy in
the interval [6.00–7.00 a.m.] whereas in the interval [7.00–8.00 a.m.] the imported
energy is close to zero; without peak shaving, in the last interval, the µG is able to
export energy to the upstream grid. During the interval [5.00–7.00 p.m.] the µG
exports energy in both cases (with and without peak shaving) but when the peak
shaving is applied, the energy exported to the upstream grid is lower. As a con-
sequence, when the peak shaving service is performed, the objective function (i.e.,
the total cost suffered by the µG for energy) is higher than the value it assumes in
the case without peak shaving. In particular, the increment of the objective function
value resulted to be about 3 %. To justify this, it has to be considered that, although
the control actions are aimed at the minimization of the total cost sustained by the
µG for energy consumption, in order to satisfy the peak shaving constraint, the µG
is forced to import power even in higher energy price periods.

10.5.2 Case 2: Multi-objective Optimization

In this application, a time interval of 60 s was simulated. The proposed MO
optimization model was applied at each four second time step. During the 60 s time
interval, the CCS sends the dispatch command every 4 s (i.e., 15 times), as illus-
trated in Fig. 10.5a. As a further example of the input data, Fig. 10.5b reports the
load active power at busbar #18 and Fig. 10.5c reports the power production of
the PV unit located at busbar #30.

A constant value was assumed for the voltage at busbar #1 (1.05 p.u.). The
specified value of the voltage in the objective function (10.24) is 1.0 p.u.

Both the weighted sum approaches and the objective sum method (Appendix 1)
were applied. With reference to the weighted sum approaches, the values of the
weights were chosen according to different methods: the rank centroid and rank
order. As discussed in the Appendix, Sect. 1.1, both of these two methods need to
assume a specific rank order which, in this case, is:

f1 = squared voltage deviations,
f2 = power losses,
f3 = security margin.

With this order, by applying relationships (10.29) and (10.30), the values of the
weights in the rank order centroid (ROC) method were found to be w1 = 0.611,
w2 = 0.278 and w3 = 0.111, while in the rank sum (RS) method, they were
w1 = 0.500, w2 = 0.333 and w3 = 0.167.

With reference to the normalization of the objective functions, relationship
(10.28) is applied. In this case, the maximum admissible value that each function
can assume has to be evaluated. In the considered case, to calculate the maximum
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value of the squared voltage deviation (fmax
1 ) and that of the power losses (fmax

2 ),
two off-line power flows were performed in which the nominal values for the loads
and a zero value for the reactive power of the DG units and aggregators were
assumed. Moreover, for the calculation of fmax

1 , the power flow was performed

Fig. 10.5 Input data with reference to a 60 s time interval: a Load dispatch command sent by the
grid operator to the CCS. b Load power at busbar #18. c PV unit power production (busbar #30)
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assuming the nominal value for the DG unit’s active powers. For the calculation of
fmax
2 , the power flow was performed without considering any DG unit. Regarding
the security margin, its maximum value (fmax

3 ) was assumed to have the value 1.
As a first example of the obtainable results, the outputs of the proposed control

strategy applying the objective sum method are shown in Figs. 10.6a, b. In
Fig. 10.6a the active power signals sent from the CCS to the aggregators are
reported. Figure 10.6b reports the reactive power requested to the aggregator at
busbar #25 and to the PV unit at busbar #30.

As a further example of the output results, Figs. 10.7a, b show the voltage
profiles at the aggregators’ busbars and the line currents flowing in the lines con-
nected to the aggregator located at busbar #25 and the PV unit located at busbar
#30.

To study the impact of each objective function on the control procedure, some
results are reported in Fig. 10.8, where the values assumed by each objective
function in the case when the MO optimization is effected is compared to those

Fig. 10.6 Outputs of the control strategy applying the objective sum method method: a Active
power of the aggregators. b Reactive power of the aggregator at node #25 and reactive power of
the PV unit at node #30
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obtained in the cases of SO optimizations (i.e., SO squared voltage deviation min-
imization, SO power losses minimization, and SO security margin maximization).

Figure 10.6a shows that the active power of the aggregator at bus #17 is always
greater than that of the aggregator at bus #25. Figure 10.6b clearly reveals the
significant contribution of the aggregator at bus #25 in terms of reactive power. It is
interesting to note that the reactive power of the PV unit at bus #30 assumes, in
some cases, negative values (i.e., during the intervals of 32–36 s and 44–48 s). This
is probably due to the need, during those intervals, to decrease the voltages at bus
#30.

Figure 10.7 confirms that the constraints on currents and voltages are fully
satisfied. In particular, Fig. 10.7a shows that the voltage observed in the considered
time interval is always greater than the lower limits imposed, even when the ag-
gregator power requests are high. The voltage profile is also quite close to 1 p.u., as
required by the first objective function. This is more marked in the busbar #25 due
to the fact that the power supplied to the aggregator at bus #25 is lower than that
supplied to the other aggregator and also because the PV and WT units located
close to bus #25 supply a power greater than that supplied by the PV unit located

Fig. 10.7 Outputs of the control strategy applying the objective sum method method: a Voltage
profile at busbars #17 and #25. b Current profiles at lines 24–25 and 9–30
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close to bus #17. Figure 10.7b shows that the upper limits imposed on the values of
the line currents are satisfied. In fact, in the figure, the ratio between the line current
magnitude and the line ampacity is reported and these profiles are always lower
than 1 p.u. This is obtained thanks to the contribution of the security margin
objective function that is aimed at reducing the value of the current flowing into the
line. The same result is obtained also by the minimization of the power losses
objective function.

Fig. 10.8 Outputs of the control strategy applying different optimization methods: values assumed
by a squared voltage deviation, b security margin, c power losses
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By observing Figs. 10.8a–c, it appears that the values of the objective functions
in the MO approach are always included in the ranges bounded by the best and
worst values of the equivalent functions in the SO approaches.

To study also the impact of the different solving algorithms on the control
actions resulting from the MO approach, in Fig. 10.9, the values assumed by each

Fig. 10.9 a Squared voltage deviations for objective sum, rank order centroid and rank sum
methods. b Power losses for objective sum, rank order centroid and rank sum methods. c Security
margin for objective sum, rank order centroid and rank sum methods
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objective function are reported by applying the weighted sum ROC and RS
methods. In the same figure, the results obtained with the objective sum method
approach are also reported, for comparison purposes. In more detail, Fig. 10.9a
shows the values assumed by the squared voltage deviation, Fig. 10.9b reports the
values assumed by the power losses, and the values obtained by the security margin
are reported in Fig. 10.9c.

From the analysis of Fig. 10.9, it appears that the objective sum method yields
the best result in terms of power losses and security margins, whereas the ROC
method yields the best result in terms of the squared voltage deviation. The RS
method, instead, yields results closer to the best solution, even if it doesn’t provide
the absolute optimum for any objective function. In fact, as an example, in terms of
the squared voltage deviation, the RS method provides values included between
the best results (obtained by using the ROC method) and worse results (obtained by
using the OS method). The same considerations arise with reference to the other
objective functions. It should be noted, however, that the previously mentioned
results are strictly related to the rank order of preferences assumed for this appli-
cation (i.e., squared voltage weight > power losses weight > security margin
weight).

The mean values of each objective function over the 60 s time interval are
reported in Table 10.2 whereas, with reference to each method, Table 10.3 reports
the minimum and maximum deviations (with reference to the same time interval) of
each objective function from their best values (in %). The results reported in the
tables are coherent with the consideration that the ROC method emphasizes the first
objective function, whereas the RS method provides flatter results due to the values
assumed for the weights associated with each objective function in the two methods
(w1 = 0.611, w2 = 0.278 and w3 = 0.111 in the ROC method; w1 = 0.500,
w2 = 0.333 and w3 = 0.167 in the RS method) (Table 10.3).

Table 10.2 Mean values of the objective functions over the 60 s time interval

Method Squared voltage
deviation (%)

Power
losses (kW)

Security
margin (p.u.)

Objective Sum 0.0648 7.822 0.4548

Rank Order Centroid 0.0592 8.558 0.4805

Rank Sum 0.0615 8.197 0.4652

Table 10.3 Objective functions deviation ranges over the 60 s time interval

Method Squared voltage
deviation (%)

Power losses (%) Security
margin (%)

min max min max min max

Objective Sum 2.99 13.00 0 0 0 0

Rank Order Centroid 0 0 3.28 13.15 1.48 8.41

Rank Sum 0.44 6.54 2.30 6.66 0.73 4.41
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10.6 Conclusions

This chapter focused on the possible strategies available to optimally manage PEV
fleets, considering the grid operator perspective. Two different approaches were
considered: single-objective and multi-objective optimizations. Two examples of
the possible strategies were presented to manage the PEV fleets together with other
distributed resources included in a low voltage microgrid. The peculiarities of the
two approaches used for the management of the PEV fleets were evidenced by
implementing computer simulations. The examples reported in this chapter evi-
denced the importance that PEVs assume in the framework of modern power
systems and smart grids. It has also been evidenced that an optimal management of
PEV fleets, as well as their integration with other distributed resources, can provide
both economical and technical benefits. It is worth to note that forecasting errors
affecting the proposed control strategies would decrease the achievable economic
benefits. When using procedures based on very short time forecasts as that reported
in Sect. 10.4, less significant forecasting errors should be expected.

Appendix 1

A.1.1 Weighted Sum Approaches

The weighted sum approach consists of solving the following single-objective
optimization problem [20]:

min
Xm

i¼1

wiFiðX;CÞ ð10:27Þ

subject to constraints (10.2) and (10.3). In (10.27), wi are positive weights, whose
values reflect the relative importance of the objectives. Typically, the weights
satisfy the conditions

Pm
i¼1 wi ¼ 1.

Before running the optimization algorithm, the DM indicates the preferences by
setting the weights in (10.27). Regarding the relationship between the preferences
and weights, even if the DM has a good knowledge of the objective functions and a
precise idea of his own preferences, the solution obtained by minimizing (10.27)
may not necessarily reflect the preferences [25]. The value of a weight must be
relative to the other weights and relative to its corresponding objective function as
outlined in [20]. Thus, the objective functions have to be transformed so that they
all have similar magnitudes. As such, in this chapter, the following transformation
in (10.27) is applied:
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Fi ¼ fi
fmax
i

; ð10:28Þ

with fmax
i the maximum value of the ith objective function. In this transformation Fi

should result in a non-dimensional objective function with an upper limit of one and
a lower limit of zero. To have a fast computation of fmax

i , for each objective
function, the maximum value is approximated on the basis of an engineering
intuition and computed in particularly critical grid operative conditions.

Several methods can be applied for the choice of the weights in (10.27). The
type of method depends on the kind of information available from the DM. As a
general rule, when the ratio scale properties of the DM evaluation of the objectives
are available, the ratio weights methods should be used. When only the ordinal
properties of the DM judgments are known, the rank order methods could be
considered.

Ratio weights methods can be more effective than rank order weights methods
but require extra time or effort to assess the ratio weights. Rank order methods are
typically adopted when DMs are not able to provide more than ordinal information
about objective function importance or when the decision process depends on the
choice of a group, rather than one DM, whose members are able to agree on the
ranking of the objectives, but not on the precise weights. Moreover, when choices
require tradeoffs between objectives, the uncertainty regarding the preferences is
even stronger [20, 25].

In this chapter, only the rank order methods were considered as criteria for
choosing weights in the weighted sum approaches; in particular, the methods
adopted were the rank order centroid (ROC) and rank sum (RS) methods [25].

In the ROC method a uniform distribution of the weights can be assumed on the
simplex of the rank-order weights. Given that w 1ð Þ [wð2Þ [ � � � [wðmÞ, if (i) is
the rank position of w(i) and m is the number of objective functions, the expected
values of the true weights are given by:

wðiÞ ¼
1
m

Xm

k¼i

1
k

i ¼ 1 ; . . . ;m: ð10:29Þ

In the RS method, the objective functions are ranked in terms of their relative
importance. Each objective is then ranked in the proportion of its position in the
rank order:

wðiÞ ¼ 2ðmþ 1� iÞ
mðmþ 1Þ i ¼ 1 ; . . . ;m: ð10:30Þ

where: (i) is the rank position of the objective function i, 0\wðiÞ\1 andP
i wðiÞ � 1.
It should be noted that, both the two approaches analyzed in this chapter (ROC

and RS methods) are sharable and provide quite accurate results. The choice
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between the methods primarily depends on the particular circumstances. In more
detail, as evidenced in [25], the RS weights are flatter than the ROC weights, then,
the choice between these two approaches could depend also on the steepness of the
true weights from which the DM’s decisions derive. The greater the value of
the first few weights, the more attractive the ROC method.

It has to be observed that when dealing with a larger number of objectives, the
differences among the methods are more pronounced.

A.1.2 Objective Sum Method

The objective sum (OS) method has no articulation of preferences. It can be stated
that OS is a particular case of the weighted sum method with all weights being
equal. In this way, it does not require any DM preference input. This is not nec-
essarily a limit, because, in some cases, the DM has incomplete information and
does not have a clear idea about their desires. At worst, the DM may have no
preferences at all. The primary advantages of this method are its easy application
and the reduced subjective requirements.

Appendix 2

The line parameters are reported in Table 10.4. The nominal values of active and
reactive power requested by the loads are reported in Table 10.5.

Table 10.4 Line parameters
Line R [Ω] X [Ω] Ampacity [A]

From bus To bus

2 3 0.0195 0.0070 249

3 4 0.2603 0.0137 60

4 5 0.3192 0.0168 60

5 6 0.0190 0.0010 60

3 7 0.2033 0.0107 60

7 8 0.1938 0.0102 60

3 9 0.0620 0.0164 210

9 10 0.0310 0.0082 210

10 11 0.0268 0.0071 210

11 12 0.0807 0.0073 120

12 13 0.1944 0.0713 91

12 14 0.0573 0.0051 120

14 15 0.0746 0.0067 120
(continued)
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Chapter 11
Energy Management in Microgrids
with Plug-in Electric Vehicles, Distributed
Energy Resources and Smart Home
Appliances

Okan Arslan and Oya Ekin Karaşan

Abstract Smart Grid is transforming the way energy is being generated and
distributed today, leading to the development of environment-friendly, economic
and efficient technologies such as plug-in electric vehicles (PEVs), distributed
energy resources and smart appliances at homes. Among these technologies, PEVs
pose both a risk by increasing the peak load as well as an opportunity for the
existing energy management systems by discharging electricity with the help of
Vehicle-to-grid (V2G) technology. These complications, together with the PEV
battery degradation, compound the challenge in the management of existing energy
systems. In this context, microgrids are proposed as an aggregation unit to smartly
manage the energy exchange of these different state-of-the-art technologies. In this
chapter, we consider a microgrid with a high level of PEV penetration into
the transportation system, widespread utilization of smart appliances at homes,
distributed energy generation and community-level electricity storage units. We
propose a mixed integer linear programming energy management optimization
model to schedule the charging and discharging times of PEVs, electricity storage
units, and running times of smart appliances. Our findings show that simultaneous
charging and discharging of PEV batteries and electricity storage units do not occur
in model solutions due to system energy losses.
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11.1 Introduction

The level of information exchange and ease of communication we are witnessing
today is transforming the way we interact with the world around us. In the context
of energy management, this translates to what has become the “Smart Grid”. This
new technology, referred to as “internet of energy” [1], facilitates development of
environment-friendly, economic and efficient technologies such as PEVs (plug-in
electric vehicles), DERs (distributed energy resources) and smart appliances at
homes. Furthermore, classical problems are being reevaluated to cope with these
developments. One such problem is the way we manage our daily energy
requirements. For decades, electricity generation has always been centralized to
reduce the costs and increase the efficiency. Smart Grid is transforming the way
energy is being generated and distributed. Today, in addition to reducing costs and
increasing efficiency, decentralizing the generation units and making use of
renewable, more environmental friendly technologies have become new objectives.

In this context, microgrids are proposed as an aggregation unit to smartly manage
the energy exchange of these different state-of-the-art technologies. Microgrid is an
electric power system operating in either autonomous mode or connected to an
electricity grid. It is formed by DERs, storage units and loads without a large scale
infrastructure setup requirement. Due to its independence from the grid, it offers
increased reliability. Furthermore, higher efficiencies and increased flexibility can be
achieved by microgrids with respect to conventional electricity grids. Due to the
smart grid technology, small scale energy resources can efficiently be integrated into
the energy management systems. A microgrid generally operates in a confined
geography and therefore transmission losses are reduced. Furthermore, it offers
reduced costs for its participants.

In this chapter, we consider a microgrid with a high level of PEV penetration
into the transportation system, widespread utilization of smart appliances at homes,
distributed energy generation and community-level electricity storage units. We
propose a mixed integer linear programming (MILP) energy management optimi-
zation model to schedule the charging and discharging times of PEVs, electricity
storage units, and running times of smart appliances. Furthermore, we show that
simultaneous charging and discharging of PEV batteries and electricity storage
units do not occur in model solutions due to system energy losses.

11.1.1 Literature Review

The problem of energy management is addressed from several different aspects in
the recent literature: Morais et al. [2] search for the least-cost schedule for a number
of power resources for the forecast load by using MILP and take into account
generators and storage units. Their study is one of the first examples of microgrid
energy scheduling. The total cost of generating the energy is minimized and the
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forecast load is satisfied. Khodr et al. [3] use the same model with additional power
loss constraints and implement it for an experimental setting with in-place power
resources. Kriett and Salani [4] consider thermal energy and electricity, and model
energy scheduling with the objective of minimizing operating costs. Naraharisetti
et al. [5] improve the energy scheduling model by adding a constraint to maintain
diversity between several resources so that no resource is idle. Moghaddam et al.
[6] report a multi-objective model, including pollutant emission minimization and
operating cost minimization. They use a variant of the particle swarm optimization
(PSO) heuristic to reach a near-optimal solution. Basu et al. [7] author a compre-
hensive survey about the advantages and disadvantages of the microgrid. The
aforementioned microgrid scheduling literature addresses the resource scheduling
problem for a forecast load usually with the objective of cost minimization, but does
not include PEV battery charging and discharging.

Xiong et al. [8] analyze a home microgrid, comprised of smart appliances
capable of responding to hourly changing electricity prices. Pedrasa and Spooner
[9] and Rastegar et al. [10] include a PEV as a load in a smart home microgrid.
Elma and Selamogullari [11] give another example of the home microgrid sched-
uling model, but the load is time-inelastic and therefore not schedulable. The home
microgrid scheduling literature approaches the energy scheduling problem from the
demand side with the perspective of the end-user. It assumes that energy is provided
from a single source, determines the on/off status of home appliances to minimize
the individual customer cost and regards the PEV as an “appliance” in the house.

Aside from the microgrid energy scheduling literature, several different papers
address the energy scheduling problem in PEV-penetrated networks: Fernandes
et al. [12] consider massive deployment of EVs (electric vehicles) and investigate
the impact of V2G capability on the power system operation in terms of cost, but
they do not explicitly provide their models. Studies such as Arslan and Karasan [13]
and Sioshansi and Denholm [14] analyze the value of PEVs as grid resources and
model the charge scheduling of PEV batteries. Sioshansi and Denholm [14] is a unit
commitment model of the Electricity Reliability Council of Texas (ERCOT) electric
power system, formulated as an MILP. The objective of the model is to minimize
the total system cost, which consists of conventional generator costs and PEV
operation costs. The model approaches the problem from the energy generation
perspective and neglects the pricing of individual PEV owners. Even though the
sum of PEV operation costs is included in the objective function, this does not
necessarily imply that the cost for each PEV owner is the least possible cost
individually. Arslan and Karasan [13] analyzes the value of PEVs in a virtual power
plant (VPP) formation. Several sensitivity analyses are carried out to see the
impacts of PEV penetration in different settings. However, smart devices are not
considered in [13]. Furthermore, energy trade between the VPP and the national
grid is only one sided, that is, the VPP cannot sell its excess energy to the grid.
A later study by Sioshansi [15] uses the same model of [14] and includes another
aspect to make driving and charging decisions for the PEV owner. As a result, the
paper examines the incentives for individual drivers with different electricity tariffs.
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Su and Chow [16] propose a PSO algorithm for scheduling PEV charging at a
municipal parking station. They model the probabilistic nature of the problem,
whose objective function is to maximize the average state of charge for all vehicles
in the next time period. Saber and Venayagamoorthy [17] schedule PEV batteries
under uncertainty using PSO by taking plug-in and plug-out times with associated
probability density functions. Their objective is to minimize the expected cost and
emissions. Kristoffersen et al. [18] model EV charging in a market environment
from the aggregator’s point of view for two cases: when the aggregator is a price-
taker and when it has market power. Sousa et al. [19] address the problem of energy
scheduling from the microgrid perspective, also considering technical constraints
such as bus voltage magnitude and angle limits. In [20, 21], the authors discuss the
impacts of PEV specifications, road network features and driver tolerances on the
route selection to minimize the costs. In this chapter, we assume that drivers prefer
to drive using electricity whenever possible. If not, gasoline is used as the source of
energy for transportation.

11.1.2 Problem Definition

We consider a group of house owners coming together to form a microgrid to benefit
from economies of scale (Fig. 11.1). Rather than providing the energy solely from
the grid, each entity in the new formation is generating a certain level of energy with
DERs such as small capacitated photovoltaics and/or wind turbines. Houses have

Fig. 11.1 The microgrid
energy management model

294 O. Arslan and O.E. Karaşan



time-inelastic (TIE) load demands, e.g. refrigeration or television, which need to be
satisfied as soon as demanded. They also have time-elastic (TE) loads and these
loads need to be satisfied within a given time frame. TE loads are non-preemptive;
once started, the “smart” device must run non-stop for at least a certain amount of
time. In addition to TIE and TE loads, the houses also have a number of PEVs with a
certain driving profile in a given day. A PEV drives on charge depleting (CD) mode
until a certain minimum state-of-charge (SoC) is reached, and switches to charge
sustaining (CS) mode preserving the remaining charge in its battery and driving on
gasoline. In order to drive on CD mode, PEVs needs to be charged when they are
connected to the microgrid. The difference between TE loads and PEV charging
loads is that the latter can be preemptively charged and does not require continuous
energy flow. The PEVs can also supply the energy in their batteries to the microgrid
via V2G technology. When charging or discharging PEV batteries, the battery
degrades with respect to the level of discharge. Modeling battery degradation is
another important aspect of the energy management models. In this respect, PEVs
pose both a risk and an opportunity for the existing energy management systems.
The microgrid as the energy management unit of the houses is responsible for
satisfying the loads that are defined above. The energy generated by the DERs is at
the discretion of the microgrid which “smartly” manages the total energy available
within the microgrid. If a house is underutilizing DER capacities, the excess gen-
erated energy can be used to satisfy another house’s demand. The microgrid also has
a number of electricity storage units to balance the network loads and to postpone the
usage of generated energy for a short period of time. There is also a trading
mechanism between the national grid and the microgrid according to a pricing
schema. If the energy generated is in excess of the required load and the storage
limits, then the energy can be sold to the national grid. In this context, this work deals
with the microgrid energy management model. In Sect. 1.2, we present a mixed
integer linear programming model to handle the problem and discuss some insights
related to the model. In Sect. 1.3, we provide a realistic case study and discuss the
value of the microgrid for its participants. Sensitivity analyses of the results to
gasoline prices, electricity prices and driving patterns are carried out in Sect. 1.4.

11.2 Methodology

In this section, we introduce the methodology for energy management of microgrids.
First, we define the sets, parameters and variables to be used in the model.

11.2.1 Parameters and Variables

The following sets, parameters and variables are used in the microgrid energy
management model. Note that our system of interest is the microgrid. Therefore,
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when defining the variables, we used a “+” superscript to indicate that the microgrid
is receiving the energy, and a “−” superscript to indicate that the microgrid is
providing the energy.

11.2.1.1 Sets

H Set of microgrid participant homes
Ah Set of appliance running tasks (non-preemptive) in home h 2 H
Dh Set of DERs in home h 2 H
Ph Set of PEVs in home h 2 H
S Set of electrical storage units
T Set of time periods

11.2.1.2 Appliance-Related Parameters

aappah Period at which appliance running task a 2 Ah at home h can be started
bappah Period at which appliance running task a 2 Ah at home h must be finished
sappah Non-preemptive running period of appliance task a 2 Ah at home h
wapp
ah Energy requirement of appliance running task a 2 Ah at home h in one time

period (kWh)

11.2.1.3 PEV-Related Parameters

ucs
ph Gasoline consumption of PEV p 2 Ph at home h in CS mode (gallons /mile)

ecdph Electricity consumption of PEV p 2 Ph at home h in CD mode (kWh/mile)

gpev
þ

ph
Discharging efficiency of PEV p 2 Ph at home h

gpev
�

ph
Charging efficiency of PEV p 2 Ph at home h

qpev
þ

ph
Total transferable energy from PEV p 2 Ph at home h in one period

qpev
�

ph
Total transferable energy to PEV p 2 Ph at home h in one period

Ipevph Initial state of charge for PEV p 2 Ph at home h

opevpht 1 if PEV p 2 Ph at home h is connected to the microgrid for charging/
discharging during period t 2 T , 0 otherwise

�Kpev
ph Maximum capacity of PEV p 2 Ph at home h

Kpev
ph Minimum capacity of PEV p 2 Ph at home h
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dpevpht Total travel distance during period t by PEV p 2 Ph at home h (miles)

cdegph
Battery degradation cost parameter for PEV p 2 Ph at home h (¢)

11.2.1.4 DER and Grid-Related Parameters

gderdh Generation efficiency of DER d 2 Dh at home h
cderdh Cost of energy generation for DER d 2 Dh at home h
Kder
dht Generation limit of DER d 2 Dh at home h during period t 2 T (kWh)

cgrid
þ

t
Electricity price of buying from the grid during period t 2 T (¢)

cgrid
�

t
Electricity price of selling to the grid during period t 2 T (¢)

11.2.1.5 Storage Unit-Related Parameters

gstor
þ

s
Discharging efficiency of storage unit s 2 S

gstor
�

s Charging efficiency of storage unit s 2 S
cstors Maintenance cost of storage unit s 2 S per period per kWh usage (¢)
Istors Initial state of charge for storage unit s 2 S (kWh)
qstor

þ
s

Total transferable energy from the storage unit s 2 S in one period (kWh)
qstor

�
s Total transferable energy to the storage unit s 2 S in one period (kWh)

Kstor
s Capacity of storage unit s 2 S (kWh)

dstorst Battery depth of discharge of storage unit s 2 S at the end of period t 2 T

11.2.1.6 Other Parameters

ltieht Time-inelastic load of home h 2 H during period t 2 T (kWh)
M Energy trade limit between the grid and the microgrid in one time period

(kWh)
cgast Price of gasoline during period t 2 T (¢)

11.2.1.7 Variables

ederdht Energy transfer from DER d 2 Dh at home h during period t 2 T (kWh)

egrid
þ

t
Energy import from the grid during period t 2 T (kWh)
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egrid
�

t
Energy export to the grid during period t 2 T (kWh)

wgrid
t

1 if electricity is purchased from the grid during period t 2 T , 0 otherwise

epev
þ

pht
Energy transfer from the PEV p 2 Ph at home h during period t 2 T (kWh)

epev
�

pht
Energy transfer to the PEV p 2 Ph at home h during period t 2 T (kWh)

epevpht State of energy of the PEV p 2 Ph at home h at the end of period t 2
T [ f0g (kWh)

rpevpht Required energy to run PEV p 2 Ph at home h in period t 2 T (kWh)

dpevpht Battery depth of discharge of PEV p 2 Ph at home h at the end of period
t 2 T

bpevpht 1 if PEV p 2 Ph at home h is charged during period t 2 T , 0 otherwise

dCDpht CD mode travel distance during period t 2 T by PEV p 2 Ph at home
h (miles)

dCSpht CS mode travel distance during period t 2 T by PEV p 2 Ph at home
h (miles)

estor
þ

st
Energy transfer from the storage unit s during period t 2 T (kWh)

estor
�

st Energy transfer to the storage unit s during period t 2 T (kWh)
estorst State of energy of the storage unit s at the end of period t 2 T [ f0g (kWh)
dstorst Battery depth of discharge of storage unit s 2 S at the end of period t 2 T
ystorst 1 if storage unit s is charged during period t 2 T , 0 otherwise
sappaht 1 if appliance task a 2 Ah at home h is started at the beginning of period

t 2 T , 0 otherwise
xappaht 1 if appliance task a 2 Ah at home h is running during period t 2 T , 0

otherwise

11.2.2 Objective Function

The objective of the model is the cost minimization as depicted in Eq. 11.1. The
cost is incurred due to energy generation, energy trade with the grid (buying and
selling), maintenance of equipment, battery degradations and satisfying transpor-
tation requirements.

minimize
X
t2T

cgrid
þ

t � egrid
þ

t � cgrid
�

t � egrid
�

t þ
X
h2H

X
d2Dh

ðcderdh � ederdhtÞ þ cstors �
X
s2S

ðestorþst þ estor
�

st Þ

þ
X
s2S

f ðdstorst Þ � f ðdstors t�1Þ
� �þ þ

X
h2H

X
p2Ph

cgast � ucs
ph � dCSpht þ cdegph � f ðdpevpht Þ � f ðdpevph t�1Þ

h iþ !
2
6664

3
7775

ð11:1Þ

The first two terms in the objective function correspond to the price of buying
energy from and selling energy to the main grid. If microgrid can satisfy the
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demand load by its own resources, then the additional energy generated by the
DERs is sold back to grid which is an income. On the other hand, if the resources
are not enough for the load at any given period, then the microgrid provides energy
from the grid according to a pricing schema set by the grid. The third term in the
objective function is for the energy generation cost by the DERs. Even if the
resources of some DERs (such as sun or wind) do not incur any cost for the owners,
there is a fixed operation and maintenance cost per each kWh of energy generation.
Similarly, the fourth term is for the cost incurred due to storage unit maintenance
per each kWh of usage. The fifth term corresponds to battery degradation of the
storage units. In this term, operator ½��þ equals only a non-negative value. If the
term in the parenthesis is less than zero, then the operator returns a zero value. Note
that if the battery is charged in period t, then the term in the parenthesis might be a
negative value. Thus, we consider the battery cost component when this cost value
is non-negative by the ½��þ operator. The battery degradation cost accounts for the
battery degradation of the storage units at each charging cycle similar to PEV
batteries [13 and 14]. Peterson et al. [22] identifies that in real world applications,
the life cycle of a battery is a linear function of the depth of discharge (DoD).
Therefore, the degradation cost component in the objective, i.e. function f, is a
linear function of DoD difference between periods [13]. The last term is related to
the cost incurred by the PEVs. It has the gasoline cost component which is for
traveling the distance in CS mode, and the battery degradation cost component
similar to storage units degradation.

11.2.3 Energy Balance Constraint

The energy balance between the generation units and the electricity demanding
units must be satisfied at every time period. The left hand side of Eq. 11.2 is the
summation of the energy that is received by the microgrid. The electricity can be
received from the grid, from the storage units, from the PEV batteries by dis-
charging and from the DERs. The right hand side is the summation of the energy
that is leaving the microgrid system: the electricity exported to the grid, to the
storage units, to the PEV batteries by charging, to the smart appliances at homes
and for satisfying the TIE loads.

egrid
þ

t þ
X
s2S

estor
þ

st þ
X
h2H

X
p2Ph

gpev
þ

ph � epev
þ

pht þ
X
d2Dh

gderdh � ederdht

 !

¼ egrid
�

t þ
X
s2S

estor
�

st þ
X
h2H

X
p2Ph

gpev
�

ph � epev
�

pht þ
X
a2Ah

wapp
ah � xappaht þ ltieht

 !
t 2 T:

ð11:2Þ
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11.2.4 PEV Modeling

PEV modeling is an important aspect of our formulation and in this section, we
model the constraints related to the PEVs. Equation 11.3 sets the upper and lower
bounds for the SoC of PEV at every time period. Observe that SoC of a PEV battery
is bounded above by the capacity and bounded below by the technical require-
ments. Typically, a PEV battery is not discharged below 20–30 %.

Kphev
ph � ephevpht � �Kphev

ph h 2 H; p 2 Ph; t 2 T ð11:3Þ

In Eq. 11.4, we require the energy balance of a PEV battery to hold between
periods. The energy at the end of a given period t is equal to the summation of
energy at the end of the previous period t − 1 and the energy difference in period
t. The energy difference might be due to charging or discharging (by the virtue of
the V2G technology) when the PEV is connected to the grid, or it might be due to
consumption in CD mode transportation. When energy is transferred to PEV, it can
only receive a percentage of the transferred energy due to system losses. Similarly,
when the energy is transferred from PEV to the microgrid, only a percentage of
the energy can be provided to the microgrid. Thus, we make sure that more energy
is discharged from the battery to ensure that the required level of energy is provided
to the microgrid.

epevpht ¼ epevph t�1 þ gpev
�

ph � epev
�

pht � 1

gpev
þ

ph

epev
þ

pht � rpevpht h 2 H; p 2 Ph; t 2 T ð11:4Þ

The initial SoC of PEV batteries are set by Eq. 11.5 in which epevph0 corresponds to
the SoC at the beginning of the planning horizon. We also require by Eq. 11.6 that
the SoC at the end of the planning horizon is greater than or equal to the same SoC
as the beginning state. This makes sure that the PEV is ready for the following day
travels.

epevph0 ¼ Ipevph h 2 H; p 2 Ph ð11:5Þ

epevph; Tj j � Ipevph h 2 H; p 2 Ph ð11:6Þ

Equations 11.7 and 11.8 make sure that energy cannot be charged to or dis-
charged from PEV batteries if they are not connected to the microgrid. Observe that
if the parameter ophevpht equals to zero, then charge and discharge levels are essentially
set equal to zero. If this parameter equals to one, then there is a maximum limit on
the charge and discharge levels. Therefore, the same sets of equations also make
sure that there is an upper bound on the level of energy that can be charged or
discharged in one period. Furthermore, by the use of binary variables, we ensure
that the PEV batteries are not simultaneously charged and discharged.
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epev
þ

pht � qpev
þ

ph � opevpht � bpevpht h 2 H; p 2 Ph; t 2 T ð11:7Þ

epev
�

pht � qpev
�

ph � opevpht � ð1� bpevpht Þ h 2 H; p 2 Ph; t 2 T ð11:8Þ

The distance to be travelled on CD mode is limited from above by the available
energy in the PEV battery. The energy that can be used for transportation is the
difference of the current SoC and the minimum SoC level. Dividing this value by
the energy consumption of the PEV gives the mileage that can be traveled on CD
mode which is ensured by Eq. 11.9.

dCDpht �
epevph t�1 � Kpev

ph

ecdph

 !
h 2 H; p 2 Ph; t 2 T ð11:9Þ

Note also that the CD mode trip distance is also bounded above by the total
distance that will be traveled in a given time period. This constraint is realized by
Eq. 11.10.

dCDpht � dpevpht h 2 H; p 2 Ph; t 2 T ð11:10Þ

If the total travel distance requirement of PEV cannot be traveled solely on CD
mode, then the PEV travels the remaining distance on CS mode using gasoline as
the source of energy for transportation which is ensured by Eq. 11.11.

dCSpht ¼ dpevpht � dCDpht h 2 H; p 2 Ph; t 2 T ð11:11Þ

The energy requirement of PEV for transportation is set by Eq. 11.12. The total
level of energy that PEV consumes in transportation is the mileage that is actually
traveled in CD mode times the energy consumption of PEV per mile.

rpevpht ¼ dCDpht � ecdph h 2 H; p 2 Ph; t 2 T ð11:12Þ

DoD is used for obtaining the battery degradation cost in the objective function.
Equation 11.13 sets the DoD for each period depending on the current SoC of PEV
battery. Observe that it can assume values in [0, 1] range.

dpevpht ¼ 1� epevpht

�Kpev
ph

h 2 H; p 2 Ph; t 2 T ð11:13Þ
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11.2.5 DERs and Grid Modeling

The energy supply is limited by an upper bound depending on the forecast
sunshine, wind and/or generation capacity of the DER. The limit is enforced by
Eq. 11.14.

ederdht �Kder
dht h 2 H; d 2 Dh; t 2 T ð11:14Þ

The energy trade between the microgrid and the grid is modeled by Eqs. 11.15
and 11.16. M is the limit of energy transfer. Practically, it can be set to a sufficiently
large number. The binary variables in the equations ensure that the energy is not
simultaneously transferred both ways in the same time period.

egrid
þ

t �M � wgrid
t t 2 T ð11:15Þ

egrid
�

t �M � ð1� wgrid
t Þ t 2 T ð11:16Þ

11.2.6 Electricity Storage Units Modeling

Electricity storage units’ modeling has a similar characteristic with the PEV con-
straints as presented in Sect. 11.2.4. Equation 11.17 models the capacity of the
storage unit: the SoC of the storage unit can at most equal capacity.

estorst �Kstor
s s 2 S; t 2 T ð11:17Þ

Equations 11.18 and 11.19 ensure that charge and discharge is bounded at any
given period. Furthermore, simultaneous charging and discharging is avoided by
the use of binary variables.

estor
þ

st � qstor
þ

s � ystorst s 2 S; t 2 T ð11:18Þ

estor
�

st � qstor
�

s � ð1� ystorst Þ s 2 S; t 2 T ð11:19Þ

Similar to PEV batteries, the energy of the storage units between periods must be
balanced. Equation 11.20 states that the energy level at the end of a given period t is
the summation of the energy at the end of the previous period t − 1 and the energy
change during period t. The energy change is due to charging or discharging.
Furthermore, Eq. 11.20 takes into account the system losses. Only a percentage of
the energy provided by the microgrid can actually be stored by the unit, and
similarly, only a percentage of the energy discharged from the storage unit can
actually be used by the microgrid.
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estorst ¼ estors t�1 þ gstor
�

s � estor
�

st � 1
gstorþs

� estor
þ

st s 2 S; t 2 T ð11:20Þ

Equation 11.21 sets the initial conditions for the storage units and Eq. 11.22
ensures that the SoC at the end of the planning horizon is at least as much as the
starting SoC.

estors0 ¼ Istors s 2 S ð11:21Þ

estors; Tj j � Istors s 2 S ð11:22Þ

Similar to Eqs. 11.13, and 11.23 sets the DoD for each period depending on the
current SoC of storage units.

dstorst ¼ 1� estorst

Kstor
s

s 2 S; t 2 T ð11:23Þ

11.2.7 Smart Appliances Modeling

The users of smart devices define a feasible time interval for running tasks. Smart
devices need to run for a fixed number of periods non-stop. In this regard, Eq. 11.24
models the starting time of the smart devices. Beginning from time period aappah , the
appliance must be started before time period bappah � sappah to be able to finish the task
by time period bappah . Note that bappah � sappah might exceed the planning horizon, i.e.
period Tj j. Thus, we consider the minimum of these two terms when planning the
starting time period of the appliance. Once the device is started, Eq. 11.25 ensures
that the binary variables indicating that the device is running, xappaht , is set equal to 1
for the number of periods that the device needs to run. Equation ensures that the
variable xappaht equals 1 if the appliance is started any time period in the previous sappah
time periods. Note that the term t � sah þ 1 might be less than 1. Thus, we only
consider the planning horizon, starting from time period 1 until time period T .

Xmin Tj j;bah�sahf g

t¼aah

sappaht ¼ 1 h 2 H; a 2 Ah ð11:24Þ

Xt
i¼max 1;t�sahþ1f g

sappahi � xappaht h 2 H; a 2 Ah; t 2 T ð11:25Þ

Lastly, Eqs. 11.26 and 11.27 are the domain restrictions of the model.
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ederdht ; e
gridþ
t ; egrid

�
t ; epev

þ
pht ; epev

�
pht ; epevpht ; r

pev
pht ; d

pev
pht ; e

storþ
st ; estor

�
st ; estorst ; dCDpht ; d

CS
pht � 0

t 2 T; s 2 S; h 2 H; p 2 Ph; d 2 Dh; a 2 Ah

ð11:26Þ

sappaht ; x
app
aht ; b

pev
pht ; y

stor
st ;wgrid

t 2 0; 1f g t 2 T ; s 2 S; h 2 H; p 2 Ph; a 2 Ah ð11:27Þ

11.2.8 Binary Variable Reduction

In the above energy management model, we have made use of binary variables in
order to model that the results exclude simultaneous occurrence of energy transfer
between microgrid and the other entities: PEVs, storage units and the grid. These
variables that are traditionally included in the energy management models are
actually not required due to system energy losses. To see, we consider two different
settings. In the first one, simultaneous charging and discharging of a PEV v occurs
in a given time period t. Let c be the energy provided by the microgrid to PEV v,
d be the energy received by the microgrid from the PEV v and e < 1 be the
efficiency of PEV v. In the second setting, the microgrid provides (c − d) units of
energy to a PEV v and does not receive any energy from it. Observe that in the
second setting, PEV v can only charge (c × e) units of energy due to system losses,
and need to send (d/e) units of energy to the microgrid to make sure that the
microgrid receives d units of energy. The net energy stored in the PEV battery is
then (c × e − d/e) units of energy, which is strictly less than (c − d). In both of the
scenarios, the net energy difference of the microgrid is the same, but PEV v stores
more energy in the second setting. Since the objective function of the above energy
management model is cost minimization, the first setting is always a suboptimal
solution and the model never simultaneously charges and discharges a PEV in a
given time period t.

The same result was also obtained in a different study [13] for a different setting.
The same logic also proves that simultaneous charging and discharging of storage
units, and simultaneous buying and selling of energy from the national grid is never
profitable. Excluding these binary variables from the energy management model
ensures speed and efficiency in reaching the optimal solutions.

11.3 Case Study

In this section, we present a case study to observe the model behavior in different
settings. The data related to the case study is obtained from official sources as well
as recent literature. We consider a group of 100 houses forming a microgrid in
California. In addition to TIE loads, the houses have 0, 1 or 2 PEVs, 0, 1 or 2 DERs
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and/or 2, 3 or 4 smart devices. The total number of PEVs, DERs and smart
appliances in the microgrid are 90, 100 and 300, respectively. The microgrid also
has one storage unit. The energy management model above is used for scheduling.
365 days are simulated to observe the impacts in a one-year time period. In the
following, we present the data and the experimental design details for the sensitivity
analyses.

11.3.1 PEV Data

Four types of PEVs are considered in this study with all-electricity ranges of 7, 20,
40 and 60 miles. The features for each type of PEV are presented in Table 11.1. The
capacities of the vehicles, electricity and gasoline consumption data are obtained
from [23]. Transferrable energy per period is 7 kWh [24]. The minimum capacity is
30 % of the capacities. The initial SoC is assumed to be the minimum capacity.
Cost of gasoline in a day changes between $4.00 and $4.10.

The driving data is obtained from the US Department of Transportation’s
National Household Travel Survey [25]. The number of PEVs travelling in any
given period is presented in Fig. 11.2. The peak at 8 a.m. is due to morning
commute and a similar peak occurs at close of business hours around 5 p.m.

Travel distances of PEVs are depicted in Fig. 11.3. The average number of
travels per vehicle is 2.1 per day in the case study.

11.3.2 DER and Grid Data

We consider three types of DERs that can be used in smart homes: photovoltaics
(PVs), wind turbines and natural gas engine with combined heat and power (CHP).
The related data is presented in Table 11.2 [26].

Observe that the electricity generation is dependent on two natural factors: sun
and wind. Figure 11.4 plots the availability of the sun and the wind as a percentage
of its maximum capacity throughout the day [27].

Similarly, these two factors also follow different trends during different seasons
of the year [28]. Since we are simulating a year in the case study, we also take into
account the seasonal changes of the sun and the wind levels. Figure 11.5 plots the
change of wind and sun in a year.

We assume that the grid electricity prices in a given day change in the range of
4.80¢–4.85¢ [29], and that the microgrid sells the excess energy to the grid for half
the price that grid sells the electricity for.
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Fig. 11.2 Number of PEVs on the road according to the driving patterns
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Table 11.2 Technical data of the DERs

DER type Range of
capacities
(kWh)

Efficiency
(%)

Operation and
maintenance
cost (¢/kWh)

Number in the
case study

Photovoltaics [1, 5] N/A 0.2 30

Wind turbines [1, 5] N/A 1.0 30

Natural gas w/CHP [1, 5] 85 2.7 30
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11.3.3 Load and Smart Device Data

The smart appliances in the case study are presented in Table 11.3 [30], and the
maximum and minimum limits on the TIE loads are depicted in Fig. 11.6 [31].

0

25

50

75

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
le

ct
ri

ci
ty

 g
en

er
at

io
n 

as
 p

er
ce

nt
ag

e 
of

 c
ap

ac
it

y 
(%

)

Time Periods

Wind

PV

Fig. 11.4 Energy generation of PVs and wind turbines as percentage of total capacity

0

25

50

75

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
er

ce
nt

ag
e 

of
 t

he
 C

ap
ac

it
y 

(%
)

Months

wind
sun

Fig. 11.5 Capacity of PVs and wind turbines as percentage of maximum, yearly change

Table 11.3 Technical data of the smart appliances

Appliance type Energy requirement
per period (kWh)

Running
hours

Number in
the case study

Dishwasher 2.8 2 75

Washer and dryer 2.5 3 75

Water heater 5 4 75

Air conditioner 0.75 5 75
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11.3.4 Storage Unit Data

In the case study, we consider a single storage unit with a capacity of 85 kWh and a
charging efficiency of 93 % [32]. The cost of battery maintenance per kWh of use
is 1¢ [26]. The transfer rate is 19.2 kWh when charging and 14.2 kWh when
discharging [33, 34].

11.3.5 Emission Data

In the case study, two types of greenhouse gas (GHG) emissions are considered:
NOx and CO2. The CHP, grid and gasoline usage are the main sources of GHG
emission. The emission for the DERs [26] and PEVs on CS mode [35] is shown in
Table 11.4.

11.3.6 Experimental Design

We constructed 365 different datasets with the above baseline data. A total of 100
driving profiles are randomly distributed among PEVs in the scenarios. Every day,
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Fig. 11.6 Time-inelastic load range per house for a given day

Table 11.4 Emission data of DERs and PEVs (in CS mode)

GHG emission source NOx emission CO2 emission

Natural Gas w/CHP (lb/kWh) 0.0059 0.97

National Grid (lb/kWh) 0.005 1.2

PEV7/PEV20 (on CS mode) (g/mile) 0.693 368.4

PEV40/PEV60 (on CS mode) (g/mile) 0.95 513.5
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randomly selected smart appliances are required to run. We also randomly assign
the TIE loads to the microgrid participant houses. In order to test the impacts of
Smart Grid, PEVs, DERs, gasoline and electricity pricing, we built 16 different
scenarios as presented in Table 11.5. “Baseline” in the table refers to the data
settings presented in Sect. 1.3 above. When the scenario excludes PEVs (i.e.
Scenarios 2 and 4), an equivalent performance vehicle is assumed to be in the
scenario to travel the required driving patterns.

11.4 Results and Discussion

In this section, we present the results of 16 scenarios, each of which are run for
365 days. For solving the models, IBM ILOG CPLEX Optimization Studio 12.5
was used on a computer with Intel®Core™2 Duo CPU at 2.00 GHz and 2.00 GB
RAM. The average solution time for each model is 2.25 s. Daily average energy
distribution among generation (grid and DERs) and consumption (PEVs, smart
appliances, TIE loads) units are listed in Table 11.6. The corresponding cost and
emission values are shown in Table 11.7. In the following part, we shall refer to
these tables when discussing the results and providing insights.

Table 11.5 Scenario settings

Scenario PEVs DERs DER
capacities

Gasoline
pricing

Electricity
pricing

Driving
patterns

Smart
appliances

1 + + Baseline Baseline Baseline Baseline Baseline

2 − + Baseline Baseline Baseline Baseline Baseline

3 + − Baseline Baseline Baseline Baseline Baseline

4 − − Baseline Baseline Baseline Baseline Baseline

5 + + ×1.5 Baseline Baseline Baseline Baseline

6 + + ×2.0 Baseline Baseline Baseline Baseline

7 + + Baseline $3.50–$3.60 Baseline Baseline Baseline

8 + + Baseline $3.00–$3.10 Baseline Baseline Baseline

9 + + Baseline $2.50–$2.60 Baseline Baseline Baseline

10 + + Baseline $2.00–$2.10 Baseline Baseline Baseline

11 + + Baseline Baseline 9.60¢–9.70¢ Baseline Baseline

12 + + Baseline Baseline 19.20¢–19.40¢ Baseline Baseline

13 + + Baseline Baseline Baseline ×2.0 Baseline

14 + + Baseline Baseline Baseline ×4.0 Baseline

15 + + Baseline Baseline Baseline Baseline 0

16 + + Baseline Baseline Baseline Baseline ×2.0
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Table 11.6 Daily average energy distribution of the microgrid in kWh

Scenario Grid DER PEV Appliances TIE loads

1 2926.66 3427.88 395.1 2955.9 2747.7

2 2584.59 3412.44 0.0 2955.9 2747.7

3 6059.13 0.00 395.1 2955.9 2747.7

4 5703.55 0.00 0.0 2955.9 2747.7

5 1360.80 5141.38 395.1 2955.9 2747.7

6 202.84 6388.72 395.1 2955.9 2747.7

7 2926.66 3427.88 395.1 2955.9 2747.7

8 2926.66 3427.88 395.1 2955.9 2747.7

9 2919.24 3427.88 386.8 2955.9 2747.7

10 2584.78 3412.63 0.4 2955.9 2747.7

11 2926.66 3427.88 395.1 2955.9 2747.7

12 2926.66 3427.88 395.1 2955.9 2747.7

13 3198.12 3427.88 696.7 2955.9 2747.7

14 3546.85 3427.88 1084.2 2955.9 2747.7

15 327.13 3020.60 395.1 0.0 2747.7

16 5882.56 3427.88 395.1 5911.8 2747.7

Table 11.7 Daily average
cost and emission impacts of
the microgrid

Scenario Cost (¢) NOx emission
(kg)

CO2 emission
(kg)

1 30325.48 15.82 3107.68

2 36450.71 15.03 2927.99

3 38370.51 13.75 3304.50

4 44472.55 12.97 3124.25

5 26303.93 16.86 3009.28

6 22989.24 17.57 2927.80

7 30146.85 15.82 3107.68

8 29968.21 15.82 3107.68

9 29789.45 15.81 3104.04

10 27963.66 15.04 2932.15

11 44440.09 15.82 3107.68

12 72669.29 15.82 3107.68

13 42651.78 16.46 3265.40

14 70645.14 17.30 3484.59

15 16691.44 8.84 1513.53

16 44581.47 22.53 4716.61
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11.4.1 Value of PEVs and DERs

The base scenario (i.e. Scenario 1) has an average electricity generation of
6,354.6 kWh and consumption of 6,098.7 kWh. The difference between generation
and consumption is due to system losses which accounts to 4 % of the generation.
When the PEV is excluded from the base scenario, less energy is purchased from the
grid. In particular, the amount of reduction is as much as the energy that is used by the
PEVs. On the other hand, the cost increases around 20 % when PEVs are excluded.
The reason for this effect is that rather than utilizing electricity as the source of energy
for transportation, gasoline is used. Thus, the cost increases in Scenario 2. However,
counter-intuitively, the emissions are decreasing when more gasoline is used.
Observe that the energy that is used by the PEVs to drive on CD mode is solely
generated by the grid. The average emissions of the grid (as presented in Sect. 1.3) are
higher than that of gasoline. Therefore, we do not observe a reduction in emissions
when more electricity is used in transportation. One critical insight is that in order to
observe the emission reduction when PEVs penetrate the transportation network, the
source of electricity generation for the PEVs will be crucial.

The benefits of DERs can be observed by analyzing the results for Scenarios 1, 3,
4, 5, and 6. Observe that when the DERs are not considered in the microgrid in
Scenario 3, the level of electricity to be obtained from the grid is the maximum
among the scenarios considered in this study. The cost also increases drastically
when compared to the base scenario. When both DERs and PEVs are excluded, i.e.
Scenario 4, the cost increase is more than 45 %. When the DER capacities are
increased by 1.5 and 2 times in Scenarios 5 and 6, respectively, the cost benefits are
between 13 and 25 %. The CO2 emission also reduces by increasing DER capacities.
However NOx is increasing. This increase is due to the extra NOx generation by the
natural gas with CHP as presented in Table 11.4. Considering a PEV with an average
electricity usage of 0.352 kWh per mile, the natural gas with CHP generates 0.96 g of
NOx per mile, the highest amount of emission in our experiments. Therefore, NOx is
increasing in Scenarios 5 and 6. However this increase rests on the assumption that
there is no limit on the level of NOx emission. If the governments put certain limits
on the emission levels, then the cost benefits of the microgrid might decrease.

In the base scenario, different PEV types perform differently in terms of elec-
tricity utilization in transportation (Fig. 11.7). CD mode usage can be considered as
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the level of advantage that a PEV owner benefits from driving a hybrid vehicle.
Thus, the benefits are more for higher all-electricity range vehicles. However, note
that the CD more drive percentages almost do not change for PHEV20, PHEV40
and PHEV60. This indicates that after a basic all-electric range is attained (20 miles
in our scenarios), the benefits are almost similar for all longer all-electric range
vehicles.

11.4.2 Gasoline Pricing Sensitivity

Scenarios 7–10 are dedicated to analyzing the results’ sensitivity for gasoline
prices. Observe that decreasing the costs does not affect the PEV electricity
requirement to a great extent in Scenarios 7, 8, and 9 (Table 11.6). However, in
Scenario 10, the energy requirement for PEVs is practically zero. This indicates that
there is a critical gasoline pricing between $2.0 and $2.5 beyond which drivers
prefer gasoline over electricity drive. This is another critical insight of this study.

11.4.3 Electricity Pricing Sensitivity

In scenarios 11 and 12, we consider electricity pricing by the national grid twice
and four times more than the baseline pricing, respectively. Even though costs are
increased in both scenarios, the electricity purchase from the grid has not changed.
The reason is that DERs are utilized at full capacity in even the baseline scenario so
that increasing the prices does not significantly affect the amount of electricity
purchase. The microgrid still needs to satisfy the loads. Therefore the microgrid
purchases the energy that it requires in excess of the generation capacity of the
DERs from the grid regardless of the price.

11.4.4 Driving Patterns

Increasing the driving mileage by two and four times in Scenarios 13 and 14, we
observe a gradual increase in the cost and the electricity purchase from the grid.
Note that the impact of traveling longer distances is significant and might result in
doubling the total costs, however impact on emissions is not that significant.
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11.4.5 Smart Appliances

In the last two scenarios, we consider excluding the smart devices from the sce-
narios and doubling the number of devices. Both of the scenarios give the same
effect: the cost is halved or doubled as expected. The reason is the change in the
amount of electricity purchase from the grid.

11.5 Conclusions

In this study, we consider a microgrid that manages the DERs, PEVs, and smart
devices with the objective of cost minimization. The opportunities of microgrids
over classical national grid are investigated. Smart management of loads is a way to
tackle the excess energy requirement of PEVs as well as peak load increase. High
level of PEV penetration into the transportation system, widespread utilization of
smart appliances at homes, distributed energy generation and community-level
electricity storage units all complicate the energy management problem, however if
smartly managed, these complications can be regarded as strengths and opportunities
for the next generation energy management units: the microgrids.

In this scope, we propose a mixed integer linear programming energy man-
agement optimization model to schedule the charging and discharging times of
PEVs, electricity storage units, and running times of smart appliances. Our findings
show that simultaneous charging and discharging of PEV batteries and electricity
storage units do not occur in model solutions due to system energy losses.

Critical insights are also presented in this study. First of all, in order to observe
the emission reduction when PEVs penetrate the transportation network, the source
of electricity generation for the PEVs is crucial. If charged from renewable, more
benefits can be attained. However charging from the national grid reduces the
benefits of PEVs and might even increase the emission level. Another important
result is that after a basic all-electric range, cost and emission benefits are almost
similar for all longer all-electric range vehicles. This range is 20 miles in this study.
Lastly, there is a critical gasoline pricing between $2.0 and $2.5 beyond which
drivers prefer gasoline over electricity drive.
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