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149 Solitary Waves
in Complex Dispersive Media
Theory · Simulation · Applications
By V.Yu. Belashov and
S. V. Vladimirov

150 Topology in Condensed Matter
Editor: M.I. Monastyrsky

Volumes 90–135 are listed at the end of the book.



Peter Mohn

Magnetism
in the Solid State
An Introduction

Corrected Second Printing

With 72 Figures and 7 Tables

123



Prof. Dr. Peter Mohn
Vienna University of Technology
Center for Computational Materials Science
Getreidemarkt 9/134
1060 Vienna, Austria
E-mail: phm@cms.tuwien.ac.at

Series Editors:

Professor Dr., Dres. h. c. Manuel Cardona
Professor Dr., Dres. h. c. Peter Fulde∗

Professor Dr., Dres. h. c. Klaus von Klitzing
Professor Dr., Dres. h. c. Hans-Joachim Queisser
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
∗ Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38
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To the memory of E. Peter Wohlfarth, a great magnetician and humanist



Preface

During 1986 and 1987, when I was working at the Imperial College of Science
and Technology in London with E.P. Wohlfarth, I was asked to prepare some
lecture notes following his lecture “Magnetic properties of metals and alloys”.
Peter Wohlfarth had planned to use these lecture notes in a book about
itinerant magnetism he wanted us to write together. Due to his untimely
death this project was never realized.
Back in Vienna I started to write up the lecture notes for a graduate

course, which to some extent was based on these original lectures but in
many respects has been modernized by including more recent results of band
structure calculations and band theoretical results. During a two month visit
of Melbourne University in 1993, I met G. Fletcher from Monash Univer-
sity (Melbourne) who kindly offered to critically read the manuscript. His
comments are highly appreciated.
The present greatly enlarged version was mainly written during a sabbati-

cal at the university of Uppsala during 2000. I am grateful to Börje Johansson
for making this possible and to Clas Persson for reading the manuscript and
providing me with lots of useful comments.
The aim of the book is to present a largely phenomenological introduction

to the field of solid state magnetism at a relatively elementary level. The two
basic concepts of magnetism in solids namely the localized and the delocali-
zed description are presented as the extreme approaches. The true nature of
magnetism lies, as often in life, somewhere in between, sometimes showing
a tendency towards the more localized side, sometimes tending to the delo-
calized side. It is perhaps this mixing of concepts which makes magnetism
appear complicated and difficult. Another source of confusion is the diffe-
rent language used by theoreticians and experimentalists. I have tried very
hard to clarify these rather more semantic problems and to use a uniform
nomenclature throughout the book. It is my belief and my experience that
the approach presented here provides a useful introduction not only for the
physicist, but also for the interested reader coming from fields like chemistry,
electrical engineering or even geo-sciences. The mathematical concepts used
are kept rather simple and hardly ever go beyond an undergraduate course in
mathematics for physicists, chemists or engineering. Since the book emerged
from a lecture course I have given at Vienna University of Technology for the
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last 15 years, the chapters in the book are not completely self-contained. The
first-time reader is thus advised to read the chapters in the sequence that
they appear in the book. It is my sincere hope that after having read this
book the reader will agree that for once the Encyclopedia Brittanica is in
error when it states Few subjects in science are more difficult to understand
than magnetism, (Encyclopedia Brittanica, 15th edition 1989).
The present book does not attempt to cover the whole field of solid state

magnetism, but tries to provide an overview by selecting special topics. The
idea is to create an interest in this fascinating field in which quantum me-
chanics, thermodynamics and computer simulations join forces to explain
“Magnetism in the Solid State”.

Vienna, Peter Mohn
June 2002

Since this book has been so well received by the scientific community that
the first printing has been sold within three years, I was asked by the publi-
shers to produce an updated version for a second printing. I am grateful to
all colleagues (mainly students) who reported typos, ambiguous or unclear
formulations etc. I considered all of them seriously and thus made a number
of changes, which I hope will improve the text.

Vienna, Peter Mohn
September 2005
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1. A Historical Introduction

Already in archaic times it was known that a type of stone which was found
close to a place called Magnesia in northern Greece attracts iron. The Greek
philosopher and mathematician Thales of Milet (about 625-564 b.c.) [1] even
attributed a soul and thus life to this attracting material. The first known
application of magnetism is the compass as it was used by the Chinese [2]. The
oldest description of a compass is found in the bookMeng Chhi Pi Than (from
the year 1086) of the author Shen Kua who not only describes the compass
needle to point to the south direction but also refers to a slight easterly
deviation meaning the declination of the compass. Although only described
therein for the first time, it seems probable that the compass was already
used in the 7th and 8th century since during this time the natural magnet
lodestone (formed by the mineral magnetite; Fe3O4) was already replaced by
iron needles. The Chinese used the compass mainly for terrestrial navigation;
only at the end of the 12th century did it also appear on ships.
In Europe the compass was first mentioned in 1187 by the Englishman A.

Neckam [3] in his works De utensilibus and De naturis rerum. Other sources
about the use of magnetic needles can be found in a poem by G. de Provins
[4] and in a letter of the crusader P. de Mericourt in his Epistola de magnete
[5]. It is interesting that, although it was well known that magnets only
attract iron and iron rich metals, the medieval literature also reports tales
about magnetic mountains or islands whose magnetism was said to be able to
remove the copper or bronze nails out of boats. It took until 1600 for Gilbert
[6] to notice that the use of the right kind of iron is necessary to produce
strong magnets. Figure 1.1 shows how a piece of iron can be magnetized by
coldworking in the earth’s magnetic field.
During the next centuries people tried to produce stronger magnets; in

particular Knight [7] succeeded in building a magnetic “magazine” which was
strong enough to reverse the magnetization of any other known magnet put
into it. Also in the medical science of the 18th century the use of magnets
came into fashion. In particular the German physician Mesmer claimed to
be highly successful in curing various diseases by magnetizing the patient. In
1775 he published his results and claimed that his discovery of what he cal-
led Magnetismus animalis is of medical relevance. His influence was so strong
that his name even entered the English language and is still present in the
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Fig. 1.1. Coldworking of a permanent magnet in the direction of the earth’s ma-
gnetic field (septentrio=north, auster=south) taken from Gilbert [6]

word mesmerizing. In a rather satirical way Lorenzo da Ponte comments on
the Mesmer hysteria of his time in the textbook to Mozart’s opera Cosi fan
tutte [8] where in one scene two young men, who pretend to have poisoned
themselves, are brought back to life by the application of a giant horseshoe
magnet. This is not the only lyrical approach to magnetism. A rather diffe-
rent one can be found in the operetta Patience by Gilbert and Sullivan where
W.S. Gilbert wrote in 1881:1

A magnet hung in a hardware shop,
And all around him was loving crop
Of scissors and needles, nails and knives,
Offering love for all their lives;
But for iron the magnet felt no whim,

1 I am grateful to G. Fletcher for bringing this “magnetism chant” to my attention.
It has also been referred to by J.H. van Vleck [9].
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Though he charmed iron, it charmed not him;
From needles and nails and knives he’d turn,
For he’d set his love on a Silver Churn!
... But this magnetic, peripathetic
Lover he lived to learn,
By no endeavour
Can magnet ever
Attract a Silver Churn!

The effect of electric currents on compass needles was discovered by Oers-
ted in 1820. As early as in 1831 Faraday formulated the induction principle
which finally gave rise to a new scientific discipline: electromagnetism. The
first electromagnets were built by Sturgeon [10] whose work started also a
new and more systematic search for improving magnets. With the develop-
ment of exact sciences the need for well defined stable magnetic fields also
grew and reached its climax with the work of F. Bitter during the 1930s who
succeeded in producing fields up to 15T in a bore of 5cm diameter. He deve-
loped segmented coils (which could tolerate the enormous mechanical stress)
which were water cooled and had a power consumption of about 5MW. This
line of experimental setup soon came to an end not only because of the
enormous power consumption and cooling problems, but also because of the
development of superconducting magnets. Although the mechanical stress
problems remain, coils from technical superconductors like Nb-Ti and Nb3Sn
with upper critical fields of 15 and 23T, respectively, are readily available.
The highest fields produced in the laboratory come from pulsed magnets,
where a capacitance battery is discharged through a coil. Experiments are
then performed at the peak flux usually for periods less than 1ms. These ap-
pliances reach up to 120T. A further increase can be achieved by implosion
coils, where at the time of the main flux from a pulsed current, an implosion
charge is ignited which contracts the coil area and thus increases the flux.
Due to the high cost of these “self destroying” experiments their application
is rather limited.
The development of “microscopic”models of the magnetic properties of

free atoms, molecules and (much later) solids, started in the late 19th and
early 20th century. It required the formulation of Maxwell’s electrodynamics
and the ideas of Boltzmann’s statistical thermodynamics to treat the pro-
perties of ensembles of electric and magnetic carriers. If one assumes that a
molecule has a magnetic moment of magnitude μ, the paramagnetic suscep-
tibility χpara of an ensemble of such molecules will be given by

χpara =
Nμ2

3kBT
. (1.1)

These persistent magnetic moments are thought to be represented by tiny
permanent magnets, which themselves are supposed to be rigid and hence
incapable of induced polarization. At T = 0K these elementary magnets will
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all be aligned parallel to an applied field. At finite T , temperature agitation
will reduce the average number of aligned moments in the way expressed in
(1.1). The linear temperature dependence of the inverse susceptibility was
noticed experimentally by P. Curie [11] and was later derived theoretically
by Langevin [12]. Equation (1.1) is in fact known as Curie’s law and describes
the susceptibility of all systems in the classical limit (high temperature).
While the Langevin paramagnetism always yields a positive contribution

to the susceptibility there must also exist a different mechanism which leads
to a diamagnetic behavior. Langevin also showed that induced polarization
leads to a diamagnetic response by assuming that an applied field induces
an additional electric current in the electron system. Due to the classical
induction law, the magnetic field produced by this current is opposed to the
direction of the applied field (Lenz’s rule) and thus weakens it, which in turn
leads to a negative value of the susceptibility. On calculating the statistical
average of the two-dimensional projection over a three-dimensional motion
Langevin missed out a factor of 2, which was only later corrected by Pauli
[13] so the diamagnetic susceptibility χdia reads

χdia = −
Ne2

6mc2

∑
i

〈
r2i

〉
. (1.2)

In (1.2) the quantity 〈r2i 〉 is the average radius of the motion of electron i. A
comparison of the para- and diamagnetic susceptibilities shows the latter one
to be usually much smaller. In fact, for most systems with open electronic
shells the diamagnetic part is negligible. Only in cases where all electron
shells are filled and the paramagnetic contribution (ideally) becomes zero,
can a net diamagnetic susceptibility be observed (e.g. copper, noble-gases).
At this point of the development of a theory of magnetism there existed

a beautifully simple model for the understanding of both para- and diama-
gnetism which seemed to be based on purely classical physics. The draw-
back came when in 1919 Miss van Leeuwen, a Ph.D. student of Niels Bohr,
demonstrated that classical Boltzmann statistics applied rigorously to any
dynamical system must lead to a zero susceptibility [14]. The proof of the
theorem, which is also referred to by van Vleck [15], is most elucidating for
the understanding of magnetism and is briefly reviewed here.
Unambiguously one can assume that any magnetic moment, which has to

be related to an angular momentum of a charged particle, can be written as
a linear function

mz =

f∑
k=1

akq̇k , (1.3)

of the generalized velocities q1...qf . This assumption is particularly clear in
Cartesian coordinates where the magnetic moment (e.g. mz) is given as

mz =
1

2c

∑
ei (xiẏi − yiẋi) , (1.4)
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and the linearity in the velocities is preserved under any transformation to
another set of generalized coordinates. The magnetic moment in the direction
of the applied field (which defines the z-direction) is then given by

Mz = CN

∫
...

∫ f∑
k=1

akq̇ke
−H/kBTdq1...dqfdp1...dpf . (1.5)

Since Hamilton’s equations relate the velocities to the momenta via

q̇f =
∂H

∂pj
, ṗf = −

∂H

∂qj
, (1.6)

the integrand for a particular index j is merely

−kBT
∂
(
aje
−H/kBT

)
∂pj

(1.7)

so that for this value j the integral in (1.5) becomes

−CNkBT

∫
...

∫ [
aje
−H/kBT

]pj=+∞
pj=−∞

dq1...dqfdp1...dpj−1dpj+1...dpf .

(1.8)

Ergodicity requires that the integration has to be carried out over the whole
range of the phase space so that the value for pj varies over ±∞. From the
convexity property of the free energy (see Sect. A.) one deduces that the
energy has to become infinite for infinite values of the coordinate pj which
makes the integrand zero for any particular coordinate pj . This proof holds
for any Hamiltonian H (also with an applied field) since no properties of H
were required.
This result is not only the formal proof that classical mechanics cannot

account for magnetism but it also asks for an explanation of why one is
able to obtain the Langevin results, (1.1) and (1.2), from the same classical
mechanics. The answer is both simple and complicated at once: To derive
Langevin’s formula one has already assumed that finite and constant magne-
tic moments are present. In the sense of the proof given above, this means
that one has restricted the integration to particular parts of the phase space,
or in other words, some relevant parts of the energy remain finite (even cons-
tant) while the coordinates go to infinity. While classical mechanics cannot
give any reasoning for such a restriction, quantum mechanics can, e.g. by
requiring quantized values for the angular momentum or finite occupation
numbers. In this sense van Leeuwen’s theorem not only proves the inability
of classical mechanics to explain magnetism, but also calls for a different
mechanics on the microscopic scale which justifies the requirements for the
Langevin formulation.
Langevin’s result (1.1) can of course be derived from first principles quan-

tum mechanics where it is known under the name Langevin–Debye formula.
In the chapter about the Weiss molecular field model (Chap. 6), it will be
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shown how the Langevin–Debye result (6.13) can be obtained. A more pro-
found derivation together with an extensive discussion is given in the book
by John van Vleck [15].
The first successful quantum mechanical theory of magnetism goes back to

N. Bohr who, around 1913, developed what is now known as the old quantum
mechanics. (The “new quantum mechanics” – starting about 1921 – was later
pioneered by Heisenberg, Schrödinger, Born, and Dirac.) With Bohr’s astoni-
shingly simple theorem that the angular momentum is given by multiples of
Planck’s constant, he immediately solved all problems which classical statis-
tics imposed on the physics of microscopic particles. Among these problems
of classical physics one usually only refers to the electrodynamically forbid-
den stationary electron orbits, but there existed other unanswered questions
which rely on the application of Maxwell–Boltzmann statistics. One of these
problems is the distribution of atomic (or molecular) sizes, since if Maxwell–
Boltzmann statistics applies, the distribution of atomic radii in an ensemble
of atoms must vary from very small ones (even zero) to very large ones. In
particular the behavior for very small radii resembles the problem of the
black-body radiation where classical physics requires that the energy density
goes to infinity for zero wavelength (Rayleigh–Jeans law). Since quantum me-
chanics can thus explain why some variables remain constant, as discussed
by van Leeuwen, it can also account for magnetism.
The microscopic theory of ferromagnetism starts with Weiss [16] who in

1907 postulated his famous molecular field model. Although formulated be-
fore the advent of quantum mechanics, he already assumed discrete energy
levels associated with respective values for magnetic moments (angular mo-
menta). To explain spontaneous alignment of the elementary magnetic mo-
ments, he postulated the existence of an internal (molecular) field which
should represent the then unknown interaction between these moments. La-
ter this interaction was found to be the exchange interaction which again is
of entirely quantum-mechanical origin.
With the advancing spectroscopic techniques, the explanation of atomic

spectra required the introduction of a new quantum number. Landé [17] pro-
posed that he could explain his g-factor by assuming that the atom contained
a mysterious Atomrumpf whose magnetic moment is exactly half the value
found for ordinary angular momenta. The actual idea that the electron has
an internal degree of freedom is due to Uhlenbeck and Goudsmit [18]. Only
with the spin did it become possible to understand the anomalous Zeeman
effect (i.e. the non-linear splitting of spectral lines in a weak applied field).
Although the spin was originally described in analogy to the other angu-
lar momenta its actual origin was discovered by Dirac on formulating the
relativistic quantum mechanics [19].
With the knowledge of the four principle quantum numbers (angular l,

magnetic ml, spin s, and spin–magnetic ms) and the two different ways of
coupling these angular momenta in the non–relativistic (ll–coupling) and in



1. A Historical Introduction 7

the relativistic case (jj–coupling) it became possible to explain the multiplet
structure of atoms and molecules. Hund [20] combined these efforts in his
three famous rules which describe a simple way to determine the term symbol
and thus the multiplet structure of a given atom (see Sect. I.)
In 1927 Heitler and London [21] (Sect. 16.1) published a quantum me-

chanical calculation for the H2 molecule. They showed that on obeying the
exchange interaction by antisymmetrization of the molecular wavefunctions,
the ground state of H2 is either a singlet or a triplet state, depending on
the sign of the exchange integral J . For negative J the spins of the two ele-
ctrons are parallel (triplet state – “ferromagnetic alignmet”), for positive J
the electrons in the ground state have antiparallel spin (singlet state – “anti-
ferromagnetic alignment”) which also can be regarded as a “non-magnetic”
state. This result suddenly gave the “molecular field” of the Weiss model a
direct quantum mechanical origin.
The first quantum mechanical formulation of the interaction between two

spins leading to magnetic order is the phenomenological Heisenberg Hamil-
tonian [22] (Chap. 7) where spins located on different sites interact via an
exchange parameter (often called the exchange integral). Heisenberg also suc-
ceeded in demonstrating that the Weiss molecular field is just the exchange in-
teraction which tends to align spins in parallel if the exchange integral is nega-
tive. Within the Heisenberg model both ferromagnetic and anti-ferromagnetic
order can be described and at finite temperature a new kind of elementary
excitations of the whole spin system (magnons) are found.
The first microscopic account of anti-ferromagnetism was given by Neél

[24] who generalized the Weiss model for the anti-ferromagnetic case by as-
suming two sublattices for the collinear up and down spins. In this model
a spin on one sublattice interacts with spins on the same and on the other
sublattice giving rise to a two component susceptibility divided into a parallel
and a perpendicular part.
All the models mentioned so far deal with localized moments. The carrier

of magnetism is a spin or an angular momentum and thus the magnetic mo-
ments measured are given by the expectation value of the respective quantum
numbers. Examples for this type of localized magnetism are free atoms and
molecules, or single ions in solids. Among the metallic solids localized mo-
ments are found for the f -electrons of the rare earths. The understanding of
metallic magnetism (in particular of the transition metals) remained a chal-
lenge for a longer time. The measured magnetic moments were non-integer,
so that a relation to angular- or spin-moments was not straight forward since
these quantities appear to be quenched (see Sect. C.). The development of the
electron band model [25] paved the way for an understanding of the magne-
tism of “itinerant” electrons. The first attempts to understand the metallic
state were based on the free electron gas model and Pauli could show that the
quenching of the spin can be explained if one assumes that all the electrons
in open shells (conduction electrons) are at least partially free. The Pauli
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exclusion principle requires that two electrons have to be different in at least
one quantum number. For free electrons the only relevant quantum numbers
are the spin and the electron momentum k. Since any state with quantum
number k can accommodate two electrons, these electrons must have oppo-
site spin so that all spins appear to be compensated. For the non-interacting
(no exchange) gas of free electrons Pauli [26] derived the susceptibility to be

χP = 2μ
2
BN(εF) , (1.9)

which relates the paramagnetism of the free electrons to the density of states
at the Fermi energy N(εF). Formally this relation resembles the result for
the specific heat of the free electron gas which also depends on the density of
states at the Fermi energy. These ideas about the metallic state described as
an electron gas were further developed by Mott [27] and Slater [28, 29] who
introduced more realistic models for the band structure and finally by Sto-
ner [30] who succeeded in formulating a phenomenological “molecular field”
model analogous to the Weiss model, but by replacing the discrete angular
momentum levels by the electronic band structure. This model of itinerant
electron magnetism accounts for non-integer magnetic moments in terms of a
band filling of the narrow d-band and by taking into account the interaction
of the s- and d-electrons of the valence band. Within the framework of the
Stoner model (see Chap. 8), the susceptibility of the interacting free electron
gas is enhanced by the exchange interaction and reads

χS =
2μ2BN(εF)

1− IsN(εF)
. (1.10)

The quantity Is in (1.10) is the Stoner exchange factor which is a slowly
varying atomic quantity through the periodic table. The denominator allows
one to formulate a criterion for the spontaneous onset of magnetism. If, in
the paramagnetic state, the denominator is negative the resulting negative
susceptibility means that the paramagnetic state is not at a total energy
minimum but at a maximum, so that any magnetic state must have a lower
total energy. This is the famous Stoner criterion which is usually formulated
such that magnetism occurs if the following inequality holds

IsN(εF) ≥ 1 . (1.11)

By performing Hartree–Fock and tight binding calculations for the free elec-
tron gas attempts were made to clarify the role of the exchange interaction
in metals (see e.g. the review by Wohlfarth [31] and references given the-
rein). A crucial step towards understanding and towards the practicability
of quantum mechanical calculations of the metallic state was made by Slater
[32] who suggested that the exchange interaction should be approximated
by an averaged potential over the occupied states of a homogenous electron
gas which is no longer a non–local quantity but depends only on the local
electron density at the point r. The exchange potential energy then reads
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vS(r) = −3e
2

(
3

8π

) 1
3

ρ(r)
1
3 . (1.12)

A significant improvement to the Slater exchange occurred with the introduc-
tion of the Xα method where the Slater exchange potential vS(r) is multiplied
by a factor which is determined by the requirement that the total energy
of an isolated atom calculated from the Xα–potential equals the respective
Hartree–Fock value [33].
The next major step towards an understanding of the electronic structure

of solids and subsequently of their magnetism was the density functional for-
malism introduced by Hohenberg and Kohn [34]. They showed that ground
state energy can be expressed in terms of an universal functional of the elec-
tron density. In a second paper it was shown that the variation of the energy
with respect to the electron density leads to effective one-electron Schrödinger
type equations [35]. In these equations the exchange-correlation potential
vxc(r) enters additively to the coulomb part, which makes it straight forward
to use independent interpolation formulae to approximate vxc(r). This treat-
ment is called the local-spin-density-approximation (LSDA) for exchange and
correlation [36, 37, 38].
Within the framework of the local-density-approximation the Stoner ex-

change factor Is can be evaluated in a straight forward way. It appears that
the exchange splitting ΔE can be written as the expectation value for the
difference of the spin-up and spin-down exchange–correlation potential

IsM = ΔE = 〈Ψ | v↑xc − v↓xc | Ψ〉. (1.13)

where Is is the Stoner exchange factor and M is the resulting magne-
tic moment. v↑xc and v↓xc are the exchange–correlation potentials for spin-
up and spin-down respectively. In Table 1.1 the values for ΔE and Is for
hcp- (fcc-) cobalt for some commonly used models of the local-spin-density-
approximation are compared. (a) best value from experiments (hcp Co) given
by Wohlfarth [39]; (b) Xα result for fcc Co by Wakoh and Yamashita [40];
(c) to obtain an improved description of the correlation effects Oles et al.
[41] introduced their local approach (LA) (fcc Co); (d),(e) values taken from
own calculations for hcp Co employing the Hedin–Lundquist (HL) [37] and

Table 1.1. Exchange splitting ΔE and Stoner factor Is for closed packed cobalt
for various models of the local density approximation for exchange and correla-
tion. Despite of the large scattering found for ΔE and Is the calculated magnetic
moments are all between 1.55 and 1.7μB (exp: 1.62μB). For the meaning of the
superscripts see preceding text

expt.a Xαb LAc HLd vBHe

ΔE(eV) 1.05 2.05 1.23 1.40 1.48

Is(eV/μB) 0.65 1.21 0.72 0.93 0.96
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the von Barth–Hedin (vBH) [38] exchange potential respectively. It appears
that most of the usual models yield too large a band splitting and Stoner fa-
ctor. This shortcoming is due to an incomplete description of the correlation
effects. Only in case (c) where a special treatment is used to improve the cor-
relation do the calculated values come closer to the experimental estimates.
Parallel to the development of band structure theory there was a search

for “simple” toy-models to reproduce solid state magnetism. These models
should reproduce the main features of electrons in a solid which are the
bonding to a certain site and the coulomb repulsion of electrons at the same
site. The most prominent of these models was introduced by Hubbard [42]
(Chap. 13) who tried to describe transition metal oxides with their narrow
d-bands and their strong correlation.
With these tools at hand it became possible to calculate the ground state

properties with high reliability and also to understand the complex mecha-
nisms occurring in solids. Among the remaining problems the most crucial
one was the temperature dependence of solid state magnetism. While for the
localized moment models the finite temperature effects became reasonably
clear at a very early stage, this development took some time for the deloca-
lized electrons in most solids.
For the free electron gas the temperature dependence of the susceptibi-

lity was calculated from the finite temperature properties of the Fermi–Dirac
distribution (Sommerfeld expansion). Stoner applied the same ideas to intro-
duce finite temperatures into the itinerant electron model. Unfortunately the
respective Curie temperatures came out too large by a factor of 4 − 8 and
the inverse susceptibility above the Curie temperature showed a T 2 rather
than a linear T dependence (as observed experimentally). After 30 years of
persistent struggle to salvage the Stoner model it finally became clear that
the single particle excitations are not (or only to a small degree) responsible
for the finite temperature behavior of metallic magnetism.
These results suggest that one must consider two extreme limits:

• the localized limit for which the magnetic moments and their fluctuations
are localized in real space (delocalized in reciprocal space), with their am-
plitudes being large and fixed.
• the itinerant limit for which the moments and their fluctuations are loca-
lized in reciprocal space (delocalized in real space), with their amplitudes
being temperature dependent.

A Curie–Weiss law is observed in both cases but its physical origin and the
corresponding value of the Curie constant will be different.
To solve these inconsistencies Moriya tried to include thermally induced

collective excitations of the spin systems (as they were already known for
localized spins) in order to formulate an unified picture of magnetism [43]. A
similar very promising approach was introduced by Murata and Doniach [44]
who introduced local and random classical fluctuations of the spin-density
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(spin fluctuations) which should be excited thermally. The latter two mo-
dels become equivalent at high temperatures and lead to a Curie–Weiss law.
Although the Murata–Doniach approach runs into trouble at T = 0K (the
classical fluctuations cause a violation of the 3rd law of thermodynamics) it
has successfully been applied to calculate Curie temperatures from data de-
rived from de Haas–van Alphen measurements [46] and to formulate a simple
model for the Curie temperature of metallic solids [47] which gives much
better results than the above mentioned Stoner model.
Today, about a hundred years after Langevin, there exists a fairly good

knowledge about the basic mechanisms of localized and itinerant electron
magnetism but many open questions still remain. A practicable unified pic-
ture of magnetism is still not at hand. The magnetism of strongly correlated
systems is not very well understood. New effects (e.g. the high temperature
superconductors) create new questions and new technologies create new ma-
terials like the magnetic superstructures with very interesting new properties
such as giant magnetoresistance. As in all disciplines magnetism is no longer
a subject sui generis. It is entangled with electronic structure and correlation
effects, with crystalline phases and their stability and with dynamical pro-
cesses like the excitation of collective modes and relaxation effects on long
time scales. All this adds up to make magnetism one of the most interesting
and most challenging subjects of solid state physics.



2. Consequences of Fermi Statistics

2.1 Quantum Statistics of Fermions

To describe the quantum mechanical properties of an ensemble of particles
one has to choose the appropriate statistics. The kind of statistics is of course
a consequence of the assumptions one makes. Fermi statistics is based on three
axioms:

• The particles are indistinguishable
• The particles should obey the Pauli principle (exchange interaction); one
thus deals with particles whose spin is given by n + 1/2 with n ∈ N ;
the particle wavefunctions are antisymmetric against the exchange of two
particles.
• Interactions between the particles are only weak. This assumption may
cause trouble (see e.g. the ideal gas). To describe collective excitations
(magnons) it becomes necessary to change the statistics (Bose statistics).

At an average energy εs, a system has a number of quantum states as
with occupation numbers ns. The number of different distributions is given
by

Ws =
as!

ns! (as − ns)!
. (2.1)

The division by ns! accounts for the fact that the particles are indistingui-
shable. (e.g. as = 3, ns = 2,⇒ Ws = 3. If one would have used classical
Maxwell–Boltzmann statistics Ws = anss = 9.) Ws is of course proportio-
nal to the probability of a state being occupied or not and can replace this
probability, because for the maximization of the entropy only the logarith-
mic derivative is needed. For the total probability W , the number of particle
states N and the total energy E one finds:

W =
∏
s

Ws =
∏
s

as!

ns! (as − ns)!
, (2.2)

N =
∑
s

ns , (2.3)
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E =
∑
s

εsns . (2.4)

One now has to maximize the entropy (maximizeW ) under the condition that
the number of particles N , and for a closed system also the total energy is
constant. From Boltzmann’s formula S = kB ln(W ) one obtains the variation

dS = kBd(ln(W )) = kB

(
∂ ln(W )

∂n

)
dn ,

where only the variation with respect to the occupation number n needs to
be considered, because all other variables can be expressed in terms of n.
It is thus only necessary to calculate the quantity ∂ ln(W )/∂n , because W
is the probability for the “most probable” configuration of the system. The
variation is written as

∂ ln(W )− α∂N − β∂E = 0 , (2.5)

introducing the Lagrange multipliers α and β. Employing the relations
(2.2)–(2.4) one obtains

∂N =
∑
s

∂ns ,

∂E =
∑
s

εs∂ns . (2.6)

The calculation of lnW is more elaborate:

lnW =
∑
s

lnWs =
∑
s

ln
as!

ns! (as − ns)!
.

Using Stirling’s approximation for the logarithm of the factorial

ln(k!) � k ln(k)− k , (2.7)

one gets

lnW =
∑
s

ln(as!)− ln(ns!)− ln(as!− ns!)

=
∑
s

ns ln

(
as
ns
− 1

)
− as ln

(
1−

ns
as

)
. (2.8)

One thus obtains for the variational condition (2.5)∑
s

(
ln

(
as
ns
− 1

)
− α− βεs

)
∂ns = 0 . (2.9)

Because of the principle of detailed equilibrium the variational condition has
to be fulfilled for any value of s giving:

ln

(
as
ns
− 1

)
− α− βεs = 0 , (2.10)
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and hence

ns =
as

exp(α+ βεs) + 1
= asf(εs) . (2.11)

The assumptions for the quantum statistics thus lead to the Fermi–Dirac
distribution. If one would have used classical statistics for the probability
(2.1) W = anss , one would have obtained the Boltzmann distribution

ns = exp(−α− βεs) . (2.12)

To obtain the sum of states one uses (2.11) and (2.8)

lnW =
∑
s

[ns(α+ βεs) + as ln(1 + exp(−α− βεs)] . (2.13)

Taking the total derivative of the energy E

∂E =
∑
s

εs∂ns +
∑
s

ns∂εs , (2.14)

one can use (2.14) to introduce the thermodynamical variables entropy TdS
and work dW ′ which are used to identify the first an second part of the energy
variation respectively. Using this identification one can rewrite lnW as:

∂ lnW =
∑
s

α∂ns +
∑
s

βεs∂ns . (2.15)

Under the assumption that the number of particles is constant one can put
α
∑
s ∂ns = 0. This does not hold for the second term, because there one has

to sum over the product of ∂ns times the “spectral weight” energy. Putting
everything together yields a differential form of Boltzmann’s formula

∂ lnW = βT∂S . (2.16)

Equation (2.16) also implicitly defines the Lagrangian multiplier β to take
the value 1/(kBT ). The entropy can now be written as

S

kB
= lnW =

∑
s

[ns(α+ βεs) + as ln(1 + exp(−α− βεs)] . (2.17)

Carrying out the summation one obtains

S

kB
= αN + βE + Z ,

Z =
∑
s

as [ln (1 + exp (−α− βεs))] . (2.18)

The quantity Z is called the “sum of states” or “partition function”. Z is a
central quantity of statistical thermodynamics; some of its properties, which
will be used later on, are given in brief:
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N =
∑
s

ns = −
∂Z

∂α
,

P = kBT
∂Z

∂V
, (2.19)

T∂S = ∂E + kBT∂Z = ∂E + P∂V .

2.2 Free Energy of the Fermi Gas

From standard thermodynamics one uses the relations for the free energy F

F = E − TS = −kBT (Nα+ Z) , (2.20)

and the free enthalpy G

G = F + PV = −kBT (Nα+ Z) + kBTZ

= −NkBTα . (2.21)

Equation (2.21) provides an immediate definition for the Lagrangian multi-
plier α which can be written in terms of the chemical potential μ,

G

N
= −αkBT = μ .

Originally as denoted the number of quantum states at an energy εs . If
one now introduces quasi-continuous energies, one replaces as by the density
of states (DOS) N (ε). Since N (ε) counts the number of states in the energy
interval dε one can write

as ⇒ N (ε) dε ,

ns ⇒ N (ε) f (ε) dε .

In solid state physics the density of states is a central quantity for the un-
derstanding of the electronic and magnetic properties. The density of states
is the solid state analogue of the energy level in a free atom with a certain
occupation number. The density of states is calculated via the Brillouin zone
integration over the band structure of a solid (i.e. the dispersion relation bet-
ween the electron momentum k and the respective energy eigenvalues), as
shown in Chap. 4.
For T 	= 0 the DOS becomes multiplied with the Fermi–Dirac distribution

and reads

N (ε) f (ε) = N (ε)
1

exp
(
ε−μ
kBT

)
+ 1

. (2.22)

With the density of states N (ε) the sum of states becomes
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Z =

∞∫
0

N (ε) ln

(
1 + exp

(
μ− ε

kBT

))
dε . (2.23)

For the gas of free electrons, the density of states is of the form

N (ε) =
4π

h3
(2m)

3
2 ε

1
2 . (2.24)

In (2.24) it was not distinguished between the two spin directions. At T = 0K
the electron gas is of course in the state of lowest energy. All states below
the Fermi energy εF are occupied, all states above are empty. This is caused
by the form of the Fermi distribution for T = 0K which is 1 below εF and
0 above. At T = 0K, εF is equal to the chemical potential μ which is defi-
ned as the energy necessary to add one particle to the system. As all states
below εF are occupied the lowest unoccupied state (in a metal) has exactly
the energy εF. This definition has to be changed if one considers semicondu-
ctors or insulators where the lowest unoccupied state is separated from the
bottom of the conduction band by the insulating (or semiconducting) gap. In
semiconductor physics it is common to place the Fermi energy in the middle
of the gap, which, however, no longer allows an interpretation of εF as the
chemical potential.
The concept of the Fermi energy and the analysis of the shape of the

density of states at εF enter into a number of properties of the solid. The
reason for the major role of the Fermi surface is again the fact that it is the
threshold between occupied and unoccupied states, the only place in phase
space where excitations (thermal, magnetic, etc.) can occur.
The free electron DOS (Fig. 2.1) has the shape of a parabola. Very often

the expression parabolic band is used as a synonym for a free electron like
behavior if the energy is proportional to k2 (square of the electron momen-
tum). As an example the DOS of fcc-aluminium is shown in Fig. 2.2. The
nearly parabolic band is obvious and is typical for valence electrons (s, p ele-
ctrons) of simple metals (without d-electrons) which show a free electron like

Fig. 2.1. Parabolic density of states (DOS) of the free
electron gas at T = 0
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behavior. The “ripples” around the Fermi energy are caused by the actual
electronic bandstructure and are called “van Hove–singularities”. This free
electron model for the simple metals enabled physicists to describe their basic
properties long before band structure calculations were available.
The number of particles (electrons) up to the energy εF is given by

Ntot =

∫ εF

0

N (ε)dε . (2.25)

Conversely if the number of particles is known, the Fermi energy εF can
always be calculated from the DOS. Again for the free electron gas one obtains

εF =
h2

2m

(
3Ntot
8πV

) 2
3

. (2.26)

One uses εF to define a temperature TF = εF/kB which is called the Fermi
degeneracy temperature. TF sets the scale for the energies in the solid and
defines a relation between the temperature of the system and the temperature
dependence of the various physical properties. TF is of the order of 10

4−105K
for sodium and other simple and transition metals and only for a few rare
earth systems (mainly Ce-containing heavy fermion systems) TF goes down
to 103K. Why is this characteristic temperature so important? Since the
Fermi energy εF is equal to the chemical potential μ (at T = 0) TF relates
the energy needed to add one particle to the system to excitation energies.
Thermal excitations are usually of the order of room temperature, excitations
due to magnetic or electric fields are at least one order of magnitude smaller
(expressed in terms of energy, an external magnetic field of 1T corresponds
to a temperature of about 0.6 K). These relations immediately show that
the electronic structure of a solid usually remains fairly unaffected by an
excitation of normal magnitude. This property of fermionic systems will be
used again when one describes the response of a solid to excitations solely
from the properties of the DOS around the Fermi energy.

Fig. 2.2. Density of states of fcc aluminium
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At finite temperature however, the DOS becomes modified by the Fermi–
Dirac distribution (Fig. 2.3)

N (ε, T ) =
3

2

Ntot

ε
3
2

F

ε
1
2(

exp
(
ε−μ
kBT

)
+ 1

) , μ = μ (T ) . (2.27)

It should be noticed that Fig. 2.3 strongly exaggerates the influence of
temperature on the Fermi surface. The change due to the finite temperature
Fermi–Dirac distribution occurs in an energy interval of kBT around the
Fermi energy. A distribution as shown in Fig. 2.3 would thus be due to a
temperature of several thousand K.
To derive an expression for the electron gas at finite temperatures, one

introduces the abbreviations

x =
ε

kBT
, η =

μ

kBT
, n =

Ntot
V

. (2.28)

For the number of particles n one obtains

Ntot =

∞∫
0

N (ε, T )dε

=
3

2
Ntot

(
kBT

εF

) 3
2

F1/2 (η) , (2.29)

where F1/2 (η) is the Fermi integral which in general is defined as

Fy (η) =

∞∫
0

xy

exp (x− η) + 1
dx . (2.30)

In the latter two equations one has to replace the upper limit of integration
by infinity since for T > 0 a Fermi energy is no longer rigorously defined.
Equation (2.29) allows one to calculate the value of F1/2 (η)

Fig. 2.3. Free electron density of states at finite tempera-
ture



20 2. Fermi Statistics

1 =
3

2

(
kBT

εF

) 3
2

F1/2 (η) , η = η (T ) =
μ

kBT
,

F1/2 (η (T )) =
2

3

(
εF
kBT

) 3
2

. (2.31)

In an analogous way one can calculate the energy of the occupied states giving

E =

∞∫
0

εN (ε, T )dε =
3

2
NtotkBT

(
kBT

εF

) 3
2

F3/2 (η) , (2.32)

⇒
E

NtotkBT
=

F3/2 (η)

F1/2 (η)
, (2.33)

with the sum of states

Z =
3

2

(
kBT

εF

) 3
2

Ntot

∞∫
0

x
1
2 ln (1 + exp (η − x)) dx

= Ntot

(
kBT

εF

) 3
2

F3/2 (η) (2.34)

=
2

3
Ntot

F3/2 (η)

F1/2 (η)
=
2

3

E

kBT
.

Now one expresses the thermodynamical variables entropy S, free energy F ,
and enthalpy G in terms of the Fermi integrals

S

NtotkB
= −η +

5

3

F3/2 (η)

F1/2 (η)
, (2.35)

F

NtotkBT
= η −

2

3

F3/2 (η)

F1/2 (η)
, (2.36)

G

NtotkBT
= −α =

μ

kBT
= η (T ) . (2.37)

To obtain the formulae given above, a free electron density of states was
assumed. However, one finds that these relations also hold quite well for
general densities of states as e.g. in the transition metals. The reason for this
behavior is that, because of the Fermi distribution, all effects involve states
in a small energy range around εF, because TF is much larger than room
temperature. In this case η >> 1 and thus μ

kBT
>> 1 one can expand the

Fermi functions as
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Fy (η) =
ηy+1

y + 1

[
1 + 2

∞∑
r=1

(y + 1) y... (y − 2r + 2)

η2r
(
1− 21−2rζ (2r)

)]
,

(2.38)

where ζ (2r) is the Riemann ζ-function.
For the Fermi function one obtains in lowest order in T (expressed in

terms of η) the approximations

F1/2 (η) ∼=
2

3
η
3
2

(
1 +

π2

8
η−2 + ...

)
,

F3/2 (η) ∼=
2

5
η
5
2

(
1 +
5π2

8
η−2 + ...

)
. (2.39)

Employing (2.29) one can now derive an expression for the temperature de-
pendence of the chemical potential

F1/2 (η (T )) =
2

3

(
εF
kBT

) 3
2

=
2

3
η
3
2

(
1 +

π2

8
η−2

)
.

Since

εF
kBT

=
μ (0)

kBT
= η , (2.40)

one obtains

η =
μ (T )

kBT
=

μ (0)

kBT

(
1−

π2

8

(
kBT

εF

)2) 2
3

. (2.41)

Expanding also (1− x)2/3 one yields a physically intuitive approximation of
the form

μ (T ) � μ (0)

(
1−

π2

12

(
kBT

εF

)2)
. (2.42)

At elevated temperature (2.42) describes a lowering of the chemical poten-
tial. This behavior is due to the thermal excitation of particles into higher
unoccupied states, making unoccupied states available at energies below εF
which can be filled at an energy below μ (0). Since this effect again scales
with TF it can be expected to be rather small but it is nevertheless respon-
sible for the specific heat of the electron gas. From (2.33), (2.39), and (2.42)
one calculates an expression for the total energy E and the specific heat at
constant volume, cv

E

NtotεF
=
3

2

(
kBT

εF

) 5
2

F1/2 (η) =
3

5

(
1 +
5π2

12

(
kBT

εF

)2)
, (2.43)

cv =

(
∂E

∂T

)
V

= NtotεF
3

5

5π2

12
2
k2B
ε2F

T . (2.44)
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If one writes cv in the usual form as cv = γT, one finds for the coefficient of
the linear term of the electronic specific heat

γ =
π2

2

nkB
TF

, TF =
εF
kB

. (2.45)

By means of (2.24) and (2.26) one expresses the factor γ of the electronic
part of the specific heat terms of the density of states at the Fermi energy

(2.24)→N (ε) =
4π

h3
(2m)

3
2 ε

1
2 (2.46)

(2.26)→ εF =
h2

2m

(
3Ntot
8πV

) 2
3

⇒ N (εF) =
3

2

n

εF
,

γ =
π2

3
k2BN (εF) . (2.47)

The specific heat contribution of the valence electrons is proportional to the
density of states at εF. Although our derivation was based on the free electron
gas one finds that (2.47) also holds quite well for d-electron systems. The
only necessary condition is that the valence electrons should show a quasi
free behavior (itinerant electrons). In systems where these electrons form
localized states and/or show strong correlation effects, (2.47) is no longer
valid. Such a counter example are the heavy fermion systems, which due to
the large effective mass of the electrons (fermions) at εF have an extremely
large specific heat, which cannot be explained solely by the DOS at εF.
As an example for which (2.47) should be valid, we consider the spe-

cific heat coefficient of the simple metal Al. The calculated value is: γ =
2.38×10−4cal/mol/K2 whereas the observed one amounts to: γ = 4.18×10−4

cal/mol/K2. The reason for the discrepancy between the values lies in the
electron–electron and the electron–phonon interaction which also gives a li-
near contribution to cv. In a very crude way one can include these contribu-
tions as

γobs = γcalc (1 + λ) , 0 ≤ λ ≤ 1 . (2.48)

How does the free electron gas behave at elevated temperatures? From the
derivation above one finds that the specific heat rises linearly with tempera-
ture. For higher temperatures one has to consider higher order terms in the
expansion of the Fermi integral and finds

γ =
π2

3
k2BN (εF)

(
1 + bT 2

)
,

b =
π2k2B
10

[
7
N (εF)

′′

N (εF)
− 5

(
N (εF)

′

N (εF)

)2]
. (2.49)
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Fig. 2.4. Specific heat of the electron gas: (a) T 3 contribution, (b) linear contri-
bution, (c) overall behavior

In the constant b appear the first and second derivatives of the density of
states at the Fermi energy. This result shows that even at high temperatures
the specific heat depends on the ground state properties at T = 0K and
is given by the particular details of N (εF). The expansion given in (2.49)
is often called the Sommerfeld expansion. The characteristic form of (2.49)
will appear again when one calculates the temperature dependence of the
susceptibility. For the experimental evaluation of the T 3 term there is however
the problem that there is usually a T 3 contribution from the phonons (Debye
term) as well, which makes it hard to distinguish between the electronic and
the phononic part. Figure 2.4 shows this behavior.
In the high temperature limit when T is large compared to TF so that

η << 0 the Fermi integrals are expanded asymptotically

Fy (η) = Γ (y + 1)
∞∑
r=1

(−1)r−1
exp (rη)

ry+1
, (2.50)

so that for η →∞⇒ Fy (η)→ 0. From (2.33) one obtains

E

nkBT
=

Γ
(
5
2

)
Γ

(
3
2

) = 3
2

,

⇒ E =
3

2
RT , cv =

3

2
R . (2.51)

In the high temperature limit the specific heat contribution of the electrons
becomes constant and approaches the classical value of the Dulong–Petit law
as shown in Fig. 2.4. From the previous discussion it is obvious that this
high temperature limit is experimentally never reached, because it requires
that the temperature of the electron gas must be larger than TF. For all
practical applications the assumption of a linear contribution to the specific
heat strictly holds until the melting temperature.
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This chapter will describe how the free electron gas reacts to an external
magnetic field. The model used is based on a classical picture where it is
assumed that the magnetic moment caused by the spin can be described as
a tiny “elemental magnet” (which is not even half the truth). In this case
it will be energetically favorable for the spin to orient itself parallel to an
applied field. Opposing this orientation is the loss in kinetic energy due to
the occupation of states at higher energy.
At this point it is usually helpful to say a few words on the term “spin di-

rection”. In a non-relativistic treatment the direction of the spin is not given
by a direction in the R3. A change of the spin direction can thus never be
obtained by an operation within the R3. That means spin up in Austria is
also spin up in Australia and vice versa. However if spin and angular momen-
tum are coupled via the relativistic LS coupling, the direction of the spin is
also coupled to the crystal axis. This in turn leads to an anisotropy of the
magnetization which is manifested by the existence of a spatial dependence of
the susceptibility. Experimentally this behavior is manifested by a preferred
direction of the magnetic moment in a sample, which is the reason for the
properties of all permanent magnet materials.
In equilibrium and without an applied magnetic field, each electronic state

is occupied by two electrons with opposite spin. In a Gedankenexperiment
this degeneracy is lifted and one observes the two spin directions separately

↑ ↓
↑ ↓
↑ ↓

=⇒
↑
↑
↑ ↓
↑ ↓

H↑

To include the magnetization and the other magnetic quantities in the
equations derived in the previous chapter, one needs a few alterations. Inclu-
ding a magnetic field H in the free energy is accomplished by a term −MH,
where M is the magnetic moment of the system caused by the field H. From
this it follows that

M = −

(
∂F

∂H

)
T,V

, (3.1)
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Using (2.20) one obtains easily

F = nkBTη − kBTZ ⇒M = kBT
∂Z

∂H
. (3.2)

The relation given in (2.23) has to be modified to contain the influence
of the magnetic field H and to hold for both spin directions. As the density
of states N (ε) is now split into two spin dependent contributions, the sum of
states has to be carried out over spin up and spin down separately

Z =

∞∫
0

N (ε) ln

(
1 + exp

(
μ− ε− μBH

kBT

))
dε (3.3)

+

∞∫
0

N (ε) ln

(
1 + exp

(
μ− ε+ μBH

kBT

))
dε .

Since one accounts for each spin separately, the density of states N (ε) is thus

divided by 2 and reads N (ε) = 3
4nε

1
2 /ε

3/2
F . In (3.3) the Bohr-magneton μB

was introduced which is defined as

1μB =
eh̄

2me
= 0.578× 10−4eV/T = 0.927× 10−23J/T , (3.4)

which relates the magnetic field H to the energy.
One now carries out the same derivation for the gas of free electrons as

in Sect. 2.2. To this end one introduces the following abbreviations

x =
ε

kBT
, η =

μ

kBT
, β =

μBH

kBT
, (3.5)

and obtains

Z =
1

2
n

(
kBT

εF

) 3
2 (

F3/2 (η + β) + F3/2 (η − β)
)

. (3.6)

To calculate the derivative of Z the recursion relation for the derivatives of
the Fermi integrals is applied

dFk (η)

dη
= kFk−1 (η) . (3.7)

Using the relations M = μB
∂Z
∂β
and n = ∂Z

∂η
in connection with (3.7) one

obtains

M =
3

4
nμB

(
kBT

εF

) 3
2 (

F1/2 (η + β)− F1/2 (η − β)
)

,

n =
3

4
n

(
kBT

εF

) 3
2 (

F1/2 (η + β) + F1/2 (η − β)
)

. (3.8)
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One now introduces the relative magnetization ζ as the ratio between the
magnetic moment and the total number of particles

ζ =
M

nμB
=

M

M0
, (3.9)

which can be expressed in terms of the Fermi integrals

ζ =
F1/2 (η + β)− F1/2 (η − β)

F1/2 (η + β) + F1/2 (η − β)
=

n+ − n−

n+ + n−
. (3.10)

For β = μBH/ (kBT ) << 1 the Fermi integral is expanded in a Taylor series

F1/2 (η + β) � F1/2 (η) + β
dF1/2 (η)

dη
= F1/2 (η) + βF ′1/2 (η) ,

so that ζ becomes

ζ =
F1/2 (η) + βF ′1/2 (η)− F1/2 (η) + βF ′1/2 (η)

F1/2 (η) + βF ′1/2 (η) + F1/2 (η) + βF ′1/2 (η)
=

β

F1/2 (η)
F ′1/2 (η) .

(3.11)

If the Fermi energy εF is much larger than kBT , it follows that kBT/εF → 0.
In this case the Fermi integrals are approximated by [see (2.38)]

F1/2 (η) �
2

3
η
3
2 . (3.12)

With this relation one easily obtains the derivatives with respect to η. The
relative magnetization thus becomes

ζ =
μBH

kBT

3

2

kBT

nμB
=

M

nμB
,

⇒ χ =
M

H
=
3

2

nμ2B
εF

. (3.13)

In (3.13) a new quantity has been introduced, namely the susceptibility χ.
This quantity describes the response of the system to an applied magnetic
field. In the simple (linearized) case χ is simply given by the ratio of M to
H, in general χ is calculated from the derivative dM/dH. By expressing the
Fermi energy in terms of the density of states (for one spin direction) of the
free electron gas using

N (εF) =
3

4

n

εF
(3.14)

χ takes a well known form, namely the Pauli susceptibility χP of the free
electron gas
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χ = 2μ2BN (εF) = χP . (3.15)

It should be noted that the fact that the electrons in a metal are not
free but move in a periodical potential which causes a correction to the bare
Pauli susceptibility which has been introduced by Landau [48], Peierls [49],
and Wilson [50] leading to

χ = 2μ2BN (εF)

(
1−
1

3

( m

m∗

)2)
. (3.16)

It is thus found that the application of an external field leads to a diama-
gnetic contribution of −13 of the Pauli susceptibility. The additional term

m
m∗

accounts for the influence of the band structure which is embodied in the
effective mass of the conduction electron m∗ (see Chap. 4). In cases where
the effective mass becomes small, the diamagnetic part can outweigh the pa-
ramagnetic part leading to an overall diamagnetic behavior of the metal (e.g.
in bismuth). However, comparing the calculated and the experimental sus-
ceptibilities leads to a disappointing result. For fcc palladium, for instance,
the observed value of χ is about 10 times higher than the calculated one.
Similar discrepancies are observed for the transition metals but also for the
simple alkali metals (see Table 3.1) which are actually assumed to show a
free electron like behavior.

Table 3.1. Ratio of the experimental susceptibility χexpt and the free electron
susceptibility χP from (3.15)

Metal χexpt/χP Ref.

Li 2.5 [51]

Na 1.67 [52]

K 1.51 [53]

Rb 1.60 [54]

Cs 1.74 [54]

It becomes obvious that the description of the free electron gas used up
to now is not sufficient; what is missed are the effects of the electron–electron
interaction, in particular the effect of the exchange interaction, which will
provide the necessary correction.
The temperature dependence of the susceptibility can be calculated in

analogy to the specific heat

χ = χ0
(
1 + aT 2

)
with a =

π2

6
k2B

(
N (εF)

′′

N (εF)
−

(
N (εF)

′

N (εF)

)2)
.(3.17)

Again, the temperature dependence is related to the details of the density
of states at the Fermi energy. A detailed derivation of the coefficient a can
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Fig. 3.1. Total density of states of fcc Sc. The Fermi energy is almost in a valley
of the DOS, a position which can lead to an increasing susceptibility in a limited
temperature range

be found in Sect. B. This relation can be used to define a temperature TF
given by T 2F = a−1. This characteristic temperature (which depends on the
peculiarities of the density of states at the Fermi energy) allows one to write
the susceptibility in a concise form

χ = χ0

(
1±

T 2

T 2F

)
, (3.18)

which will be used again later on.
The expression for the Pauli susceptibility (3.15) should be compared with

the result for the specific heat of the free electron gas (2.44). Both quantities
describe the response of the electron gas to an excitation. For the specific
heat it is the temperature and for the susceptibility it is the magnetic field.
For the gas of free electrons, which consists of fermions, only those electrons
which are on the surface of the Fermi sphere can be excited, which causes
the proportionality to the density of states at the Fermi energy.
To study the influence of the peculiarities of the DOS at εF one has to

distinguish between three fundamental cases which occur only in the low
temperature regime:

1. a > 0 , ⇒ εF occurs at a minimum of the density of states, e.g. in Sc
(Fig. 3.1); χ rises.

2. a < 0 , ⇒ εF occurs at a maximum of the density of states, e.g. in
non-magnetic bcc Cr (Fig. 3.2); χ drops more strongly than 1/T.

3. a more general behavior of χ as e.g. in Pd [104] or YCo2 [55] requires
higher terms of the Sommerfeld expansion. In the case of Pd and YCo2
one finds a maximum in the susceptibility (Fig. 3.3).



30 3. Paramagnetism

Fig. 3.2. Total density of states of bcc Cr. The Fermi lies in a local maximum
of the DOS, a position which can lead to an stronger than usual decrease of the
susceptibility in a limited temperature range

Fig. 3.3. Total density of states of fcc Pd. The Fermi energy is in a valley of the
DOS, a position which indeed leads to an increasing susceptibility below about 90K



4. Energy Bands in the Crystal

In the preceding chapters it was assumed that the non-interacting electrons
form a gaseous state moving freely in space as independent particles. This
description is equivalent to the assumption of a constant potential in the
respective Schrödinger equation so that the electron wavefunctions are repre-
sented by plane waves. For the free electrons the Schrödinger equation is thus
of the form[

−
h̄2

2m
�2 +V (r)

]
ψ (r) = εψ (r) , (4.1)

with V (r) = 0 = constant. In a realistic solid the potential is far from
being constant, but shows strong periodic oscillations caused by the Coulomb
potential of the atomic cores and of the lattice periodicity of the electron
density. As a contrast to the free electron description the model of tightly
bound electrons (tight binding approximation) is introduced. This model is
based on the assumption that a solid can be thought of as a periodic array of
neutral atoms. The interaction of these atoms with one another should only
be a small perturbation compared to the interaction between the various
particles (electron and protons) inside the respective atoms. As a basis for a
perturbational description the electron wavefunctions are taken from the free
atom. The only necessary additional change to the wavefunctions stems from
the translational symmetry of the ideal crystal by assuming a translation
invariance of the electron density leading to

ψ = ψk (r) =
∑
l

eikRlφ (r −Rl) , (4.2)

whereby eikRl represents a plane wave (often called a phase factor) being the
eigenfunction of the translation operator and φ (r −Rl) is the atomic wave-
function (Wannier-function) centered at Rl. Figure 4.1 clarifies the geometry
assumed.
In quantum chemistry the expression for the wavefunction given in (4.2)

is also known as an LCAO wavefunction (Linear Combination of Atomic
Orbitals) since the total wavefunction is assumed to be a sum of atomic
wavefunctions centered at the atomic positions Rl.
To describe the crystal potential the model sketched in Fig. 4.2 is applied.

U(r) is the unperturbed Coulomb potential of the single free atom. V (r) is
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Fig. 4.1. Geometry for the tight binding model

the actual crystal potential, which is constructed by the superposition of the
individual atomic potentials.
The Wannier-functions (atomic wavefunctions) are the solutions of the

free atom Schrödinger equation

H0φ (r) =

[
−

h̄2

2m
�2 +U (r)

]
φ (r) = E0φ (r) . (4.3)

Conversely the crystal Hamiltonian is of the form

H =

[
−

h̄2

2m
�2 +V (r)

]
. (4.4)

Due to the lattice periodicity, one has to satisfy (4.3) also for the isolated
atom with H replaced by

Hl =

[
−

h̄2

2m
�2 +U (r −Rl)

]
, (4.5)

for all l. To improve the legibility of the following equations the obvious spa-
tial dependencies are omitted so that V (r) = V , etc. By means of “resolution
of the identity” one rewrites the crystal Hamiltonian

Fig. 4.2. Assumed potentials in the tight binding model, after [56]
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H = Hl + (H −Hl) = Hl + (V − U) . (4.6)

Calculating the expectation value of the crystal Hamilton operator for the
assumed wavefunction (4.2) one obtains

E =
1

N

∫
ψ∗kHψkdτ =

1

N

(∫
ψ∗kHlψkdτ +

∫
ψ∗k (V − U)ψkdτ

)
.

(4.7)

In (4.7) N is the norm of the wavefunction: N =
∫
ψ∗kψkdτ .

For the eigenvalue of Hl with respect to ψk one finds, using (4.2)

Hlψk =
∑
l

eikRlHlφ (r −Rl) = E0ψk , (4.8)

and hence

E = E0 +
1

N

∫
ψ∗k (H −Hl)ψkdτ

= E0 +
1

N

∑
m

∑
l

eik(Rl−Rm)
∫

φ∗ (r −Rl) (V − U)φ (r −Rm) dτ

= E0 +
1

N

∑
R=0,nn

eikR
∫

φ∗ (r −R) (V − U)φ (r) dτ . (4.9)

The energy eigenvalue for the crystal Hamiltonian is thus expressed by a large
component E0 which stems from the solution of the isolated atom and a small
contribution (second term of (4.9)) which depends only on the difference bet-
ween the free atom potential and the crystal potential. Via a transformation
of the coordinates of the atomic positions R = Rl −Rm in (4.9) the gene-
ral summation over all lattice sites is transformed into a summation starting
from the atom at the site with R = 0 and is carried out further over its
nearest-neighbors (nn). In general this summation must however be taken
over the whole crystal. However, by assuming atomic wavefunctions whose
amplitude rapidly decreases to zero for increasing values of r, this summa-
tion can often being reduced to the next nearest-neighbor shells only. The
summation in (4.9) is now split up into two parts, one for R = 0 (on site)
and one over the next nearest-neighbors (off site). These involve two integrals
which are abbreviated as A and B describing the crystal field effects and the
electron hopping (overlap), respectively

−A =
1

N

∫
φ∗ (r) (V − U)φ (r) dτ , (4.10)

−B =
1

N

∫
φ∗ (r −R) (V − U)φ (r) dτ . (4.11)

Assuming that φ is spherically symmetrical (e.g. an s-orbital), then; since
|r −R| is the same for all next nearest-neighbors, the hopping integral always
has the same value, so that the only remaining summation is that over the
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phase factors. If one restricts the summation to a single nearest neighbor shell
only the energy E becomes

E (k) = E0 −A−B
∑
nn

eikR . (4.12)

For a simple cubic (sc) lattice with lattice constant a0 one obtains for the
s-electrons (l = 0,m = 0)

E (k) = E0 −A− 2B(cos(a0kx) + cos(a0ky) + cos(a0kz)) . (4.13)

Between the center of the Brillouin-zone (BZ) k = 0 (Γ–point) and the
surface of the first BZ the energy E varies between E0 −A∓ 6B. A contour
plot of the energy given by (4.13) in the kx, ky plane is shown in Fig. 4.3.
Fig. 4.4 depicts the s-band along the kx direction between the center of

the Brillouin zone (k = 0) and the reciprocal lattice vector (kx =
π
a0
),(length

of the Brillouin zone).
B depends on the distance |r −R| so that external pressure will affect its

value. As the overlap increases with increasing pressure also the bandwidth
will increase accordingly. That means that the same number of electronic
states is now dispersed over a wider energy range, making the density of
states at the Fermi energy smaller. From this simple picture it is obvious
that all quantities which rely on the density of states at the Fermi energy,
like the specific heat or the susceptibility, will also be influenced by pressure.
In general, if the band dispersion E(k) is given, the density of states (de-

fined as the number of states in the energy unit) can be calculated according
to

Fig. 4.3. Energy contours for the s-band in the tight binding model (kz = 0). The
lattice constant is assumed to be unity and the band energies are in arbitrary units
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N (ε) =
1

8π2

∫
(∇kE (k))

−1
dSk , (4.14)

dSk being an element of the constant energy surface E(k) = ε = const.
In the case of a small wave vector k, (long wave length) (4.13) can be

expanded in a Taylor series for the cosx which gives the well known parabolic
relation for the free electron gas

E (k) = E0 −A− 6B +Ba2k2 . (4.15)

Comparing (4.15) with the solution for the free electron gas one can reach
a formal identity by introducing the effective mass m∗ = h̄2/(2a2B). The
meaning of the effective mass is that electrons moving in a band with low
dispersion (small B) behave like heavier particles than those who are moving
freely. This behavior has strong consequences on properties like the conducti-
vity, the specific heat, the Hall effect, etc. As long as the electron momentum
is small the behavior of the electrons in the crystal can be described by the
free electron gas. Small momentum means long wavelength of the respective
plane wave, and thus the electron feels only the mean value of the potential
averaged over a large number of atomic sites.
For a realistic description of transition metals it is of course not sufficient

to treat only s-electrons since in these metals the d-electrons – and the inte-
raction between the s- and the d-electrons – are important. For d-electrons
one has to consider the spatial and angular dependence of the five orbitals.
According to the magnetic quantum number m the atomic wavefunctions
are fivefold degenerate. In a crystal (with cubic or tetragonal symmetry) one
usually uses symmetry adapted wavefunctions which are linear combinations
of the atomic ones (see also Sect. C.). Using the Cartesian representation
these five orbitals read

Fig. 4.4. One dimensional dispersion along kx for the s-band in the tight binding
approximation
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φ1 = C1xy
f (r)

r2
φ2 = C2xz

f (r)

r2
φ3 = C3yz

f (r)

r2

φ4 = C4
(
x2 − y2

) f (r)

r2
φ5 = C5

(
3z2 − r2

) f (r)

r2
. (4.16)

The functions φ1, φ2, φ3 are very often named t2g-orbitals, the remaining
φ4, φ5 are known as eg-orbitals. The crystal wavefunction is thus given by a
linear combination of the orbital wavefunctions

ψnk (r) =
5∑
m=1

anm (k)Φmk (r) , (4.17)

with

Φmk (r) =
∑
l

eikRlφm (r−Rl) . (4.18)

Determining the coefficients anm(k) by applying the variational principle
leads to a matrix eigenvalue problem of the type

|Hnm −Eδnm| = 0 , (4.19)

Hnm = E0δnm+
1

N

∑
R=0,nn

eikR
∫

φ∗n (r −R) (V − U)φm (r) dτ ,(4.20)

and, since the φn on the same atom are orthonormal, the on-site terms can
be found easily and are put into a quantity C

Hnm = (E0 + C) δnm+
1

N

∑
nn

eikR
∫

φ∗n (r −R) (V − U)φm (r) dτ(4.21)

The matrix elements Hnm depend on the hopping integrals and on tri-
gonometric functions. For cubic symmetry it is possible to construct three
independent integrals the so called Fletcher integrals.
As mentioned above, the electronic properties of transition metals can

only sufficiently be described by considering at least s- and d-wavefunctions.
The matrix eigenvalue problem then becomes of block diagonal form. The
eigenvalues are determined from the nodes of the secular equation which is
given by the determinant being set to zero:∣∣∣∣ s sd− hybrid

sd− hybrid (Hnm −Eδnm)

∣∣∣∣ = 0 . (4.22)

All modern methods (and the respective computer programs) to deter-
mine the electronic band structure of solids essentially follow these ideas.
They differ in the choice of the basis set which is very often tailor-made for
the problem to be solved. An excellent introduction into the subject of elec-
tronic band structure calculations and their application to magnetic systems
can be found in [146].
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This chapter provides an overview of experimental findings concerning the
magnetic properties of ferromagnetic systems, in particular of Fe, Co, Ni, and
their alloys. These experimental results provide the basis for all theoretical
models, whether phenomenological or from first principles (ab initio). Howe-
ver, before going into the details of the experiment one has to define what to
measure.
In vacuo the magnetic field H and the induction B are related via:

B = μ0H (SI) (5.1)

where μ0 is the vacuum permeability and has the value μ0 = 4π × 10−7
Vs
Am .

To describe the magnetic state of matter one introduces the magnetization
M so that the total induction becomes

B = μ0 (H +M) . (5.2)

The magnetization is equal to the density of the magnetic dipoles m

M =m
N

V
. (5.3)

To make things a bit less confusing one introduces an external induction B0
to replace the external field so that (5.2) reads

B = B0 + μ0M . (5.4)

It is found that very often there exists a linear relation between the exter-
nal induction and the magnetization in the specimen. The proportionality
constant is the susceptibility χ and one writes

μ0M = χB . (5.5)

If χ is negative the induced magnetic polarization opposes the applied field.
In this case one speaks of a diamagnetic behavior. In the case χ > 0 a para-
magnetic behavior is found so that the induced magnetic polarization acts in
the same direction as the applied field and thus enhances it. In general the
susceptibility of atoms is composed of a diamagnetic χdia and a paramagne-
tic χpara contribution to χ. The paramagnetic part is due to the orientation
of already present intrinsic magnetic moments by the applied field. These
magnetic moments stem from the orbital angular momenta of the electrons
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and from their spin. The magnetic dipole moment due to the orbital angular
momentum of an electron is given by

m = −
e

2me

∑
i

ri × pi = −μBL , (5.6)

where μB =
eh̄
2me
is the Bohr magneton and L is the (operator of the) orbital

angular momentum defined by

L =
1

h̄

∑
i

ri × pi . (5.7)

In addition to the angular momentum the electrons possess a spin which
can be treated as an angular momentum. The sum of the individual electron
spins yields the total spin-momentum of the atom and reads

m = μBgs
∑
i

si = μBgsS , (5.8)

where gs is the electron g-factor (gs = −2.0023). Both L and S can also be
seen as quantum mechanical operators which allows a direct evaluation for
quantum mechanical systems.
For closed shells both the orbital angular momentum and the spin momen-

tum adds up to zero. Only open shells contribute to magnetic phenomena.
Typical examples are the open d-shells in the 3d-atoms or the 4f-shell of the
rare earths. For both cases we can expect a paramagnetic behavior.
In addition to the paramagnetic contribution there is also the diamagne-

tism of the electrons. It is reasoned by the classical electrodynamical effect
that a magnetic field causes a circular current which itself produces a magne-
tic field which is opposed to the inducing one. In classical electrodynamics
this effect is called Lenz’s rule. Due to this effect the susceptibility always
contains a negative diamagnetic contribution. The usual treatment of the
diamagnetism of atoms and ions employs the Larmor theorem.

• In a magnetic field the motion of electrons around a central nucleus is,
to the first order in B, the same as a possible motion in the absence of
B except for the superposition of a precession of the electrons with the
frequency

ω =
eB

2me
(SI) . (5.9)

If the average electron current around the nucleus is zero initially, the appli-
cation of the magnetic field will cause a finite current around the nucleus.
The current is equivalent to a magnetic moment opposite to the applied field.
It is assumed that the Larmor frequency (5.9) is much lower than the original
motion in the central field. The Larmor precession of Z electrons is equivalent
to an electric current I (charge×revolutions per unit time)
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I = −Ze

(
1

2π

eB

2me

)
. (5.10)

The magnetic momentm of a current loop is given by the product (current×
area of the loop). The area of a loop of radius ρ is simply ρ2π giving

m = −
Ze2B

4me

〈
ρ2

〉
(SI). (5.11)

where
〈
ρ2

〉
=

〈
x2

〉
+

〈
y2

〉
is the mean square of the perpendicular distance

of the electron from the field axis through the nucleus. The mean square
distance of the electrons from the nucleus is

〈
r2

〉
=

〈
x2

〉
+

〈
y2

〉
+

〈
z2

〉
. For

a spherically symmetrical distribution of charge we have
〈
x2

〉
=

〈
y2

〉
=

〈
z2

〉
so that

〈
r2

〉
= 2
3

〈
ρ2

〉
. With n = N

V
one obtains

χdia = −
μ0nZe2

6me

〈
r2

〉
(5.12)

which is the classical result for the Langevin susceptibility. Typical examples
for diamagnetic systems are the inert gases but also metals with closed elec-
tron shells.
Experimentally the magnetic moment is usually given in units of emu/g,

emu/cm3 or emu/mole. In theoretical papers it is more common to measure
the moment as the number of unpaired spins, leading to a magnetic moment
M or in units of μB (Bohr magnetons). A collection of various magnetic units
and their conversion between the different units systems can be found in Sect.
K.

1μB =
eh̄

2me

= 5.78838263× 10−5eV/T

= 9.27401543× 10−24J/T .

Table 5.1 gives the experimental magnetic moment σ and the Curie tem-
perature Tc for the three ferromagnetic transition metals

Table 5.1. Magnetic moments of the ferromagnetic 3d transition metals. Note that
cobalt which has hcp structure at T = 0K is fcc at Tc

σ [emu/g] σ [μB] Tc [K] ρ at 298K
[
g/cm3

]
Fe (bcc) 221.7 2.22 1044 7.875

Co (fcc) 166.1 1.75 1388 8.793

Co (hcp) 163.1 1.72 1360 8.804

Ni (fcc) 58.6 0.62 627 8.912
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Plotting the magnetic moment σ of the pure metals and of the binary
alloys as a function of the electron concentration ne (number of valence elec-
trons per atom) for the 3d transition metals yields the Slater–Pauling (S-P)
curve [57] (Fig. 5.1).
According to the position on the S-P curve one makes a phenomenological

distinction into two classes of systems which are given by their position on
the left (ascending) or right (descending) branch:

• weakly ferromagnetic.... dσdn > 0 ascending branch.

• strongly ferromagnetic... dσdn < 0 descending branch.

The magnetic moments of the transition metals are basically different
from the moments of free atoms, ions or atoms bound in chemical complexes
(or of the rare earth metals) as they are never given by an integer number
of unpaired spins. This behavior is typical for itinerant systems and is a well
known deviation from Hund’s rules. For a review of Hund’s rules see Sect. I.
In contrast to the itinerant electron systems, those with localized magnetic
moments can readily be understood from their normal quantum state. Their
state is defined by the quantum numbers L, S, and J . The total magnetic
moment (in atomic physics traditionally for these moments the letter μ is
used) of such an atom consists of an orbital and a spin contribution given by

μl = glμB
L

h̄
, μs = gsμB

S

h̄
, (5.13)

Fig. 5.1. Slater–Pauling curve (after [57])
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where gl = −1 and gs = −2.0023 are the respective gyromagnetic factors.
Due to the spin-magnetic anomaly (from here on gs will be approximated by
(gs = −2) whenever appearing throughout the whole book) the total magne-
tic moment is not simply the sum of the angular and the spin component
(given by J) but is given by multiplication by the Landé factor gj

μj = gjμB
J

h̄
, with (5.14)

gj = −
3J (J + 1)− L (L+ 1) + S (S + 1)

2J (J + 1)
. (5.15)

This description usually holds well for free atoms, ions in chemical complexes
or localized electron states like the 4f electrons in the rare earth elements. In
the rare earth metals the magnetic moment is provided by 4f electrons, which
are shielded by the 6d electrons and which are not involved in the chemical
bonding and are thus localized (atomic like), the magnetic moments given by
Hund’s rules thus agree very well with experiment.
In solids the angular moment appears to be always close to zero, an effect

which is called the quenching of the orbital momentum. The reason for this
effect is that in solids the crystal-field of the neighboring atoms is much
larger that the spin orbit splitting (which gave rise to the ordering due to
Hund’s rules) and thus J and L are no longer good quantum numbers (see
Sect. C.). The magnetic moment is thus given only by the value of the spin-
moment. For the light elements (Z < 49 , indium) the orbital moment is usual
negligible compared with the spin contribution, as the angular momentum
appears to be quenched in these systems. For the heavier elements, when spin-
orbit coupling becomes more important (which is due to relativistic effects
becoming progressively more important for the heavier elements) the orbital
moment recovers and must be taken into account. However also for these
systems very often a scalar relativistic treatment is sufficient and the L · S-
coupling interaction can be accounted for in a perturbational treatment. The
respective correction to the Hamiltonian is of the form

WLS =
1

2m2c2
1

r

dV

dr
L · S = Γ (r)L · S , (5.16)

Γ (r) is the Thomas-factor which becomes small for the weakly bound valence
electrons where r is large and because of the flat potential dV/dr is also small.
The breakdown of Hund’s rules in a crystalline solid is easily seen by

applying them to the magnetic 3d transition metals. For Fe, Co and Ni the
magnetic spin-moment due to Hund’s rules would be 4, 3, and 2μB respecti-
vely. These numbers neither resemble the experimental trend for the moments
per atom in the solids nor do they come close to the absolute numerical values
(see Table 5.1).
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5.1 Nickel Alloys

In most Ni-rich alloys of the form Ni1−cXc , σ and Tc vary in an astonishingly
simple manner as a function of the concentration c:

σ (c) = σ (0) (1− νc) , T (c) = T (0) (1− νc) , (5.17)

where ν appears as a kind of magnetic valence: ν = 1, 2, 3, 4, 6 for Cu, Zn,
Al, Ti, Cr. (Fig. 5.2) A more rigorous formulation of the concept of magnetic
valence is given in Chap. 9

Fig. 5.2. Concentration dependence of the Curie temperature Tc and the magne-
tization σ in Ni alloys

However, when the susceptibility becomes very large, or the magnetic mo-
ments become very small, there are deviations from this simple law. Examples
are Ni alloys with palladium and platinum (Ni1−cPt(Pd)c: c0 � 58%), (Fig.
5.3 ) and Ni-Al alloys (Ni1−cAlc: c0 � 25%) in particular the very weak
ferromagnet Ni3Al (Fig. 5.4).

Fig. 5.3. Concentration dependence of the magnetization σ in Ni-Pt alloys
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Fig. 5.4. Concentration dependence of the Curie temperature Tc and the ma-
gnetization σ in Ni-Al alloys. The way of plotting T 2c or σ

2 as a function of the
concentration is sometimes referred to as Mathon plot

5.2 Iron Alloys

These alloys more or less show a rather uniform behavior. In most cases the
average magnetic moment scales with the concentration and is given by the
relation: σ(c)/c � 2.2μB. This increasing moment behavior is typical for weak
ferromagnets which, as a consequence of alloying are gradually transformed
into a strong ferromagnet.
As an example for an iron alloy with a magnetic partner the system Fe-Co

is shown (Fig. 5.5). While the moment at the Co site stays constant as a func-
tion of the concentration, the iron moment increases, following approximately
the S-P curve.

Fig. 5.5. Magnetic moment of Fe and Co in the alloy Fe-Co
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5.3 Palladium Alloys

Palladium is a most interesting system. Not only does its susceptibility de-
viate strongly from the Pauli value of the free electron gas, but it is almost
ferromagnetic so that very small amounts of 3d transition metal impurities
cause a ferromagnetic transition [58]. As the susceptibility describes the ma-
gnetic polarizability of a system, one concludes that Pd is on the verge of a
magnetic instability so that these magnetic impurities drive it into magnetic
order. Historically, however, it was assumed that the magnetic moment mea-
sured is located only at the 3d transition metal atoms. This interpretation
yielded magnetic moments at the impurities up to 10μB per impurity atom,
an effect described as “giant moments”. It is clear that such systems have
raised the interest of theoreticians as well as of experimentalists. Both from
calculations and from neutron diffraction it was seen that the impurity mo-
ments are actually limited to their number of holes in the d-band which gives
about 4, 3, 2 μB for Mn, Fe, Co respectively. The giant moment stems from
the large polarization cloud around these impurity atoms. Depending on the
impurity concentration, the number of magnetically polarized Pd-atoms in-
side this cloud can be as large as 1000 atoms [160]. Adding up all these small
Pd moments and attributing this total moment to the impurity transition
metal explains the giant moment.

5.4 Iron–Nickel Alloys

The alloy system Fe-Ni exhibits extraordinary properties. As iron crystallizes
in the bcc lattice and Ni in the fcc lattice, the alloy system shows a phase
transition from the α (bcc) to the γ (fcc) phase for a Ni concentration of
about 32%. Close to this transition is the alloy Fe65Ni35 which shows the so
called Invar behavior. The name Invar means that this alloy does not show
any thermal expansion around ambient temperature. The Invar effect was
discovered in 1897 by the Swiss-born scientist C.E. Guillaume [59], who was
presented with the 1920 physics Nobel prize for his work on the metallurgy of
Invar systems. The reason for the vanishing thermal expansion (see Fig. 5.6) is
a compensation between the positive phonon part and the negative magneto-
volume part of the thermal expansion coefficient. Apart from the vanishing
thermal expansion there exist a number of other effects which are related to
the Invar anomaly like a maximum in the susceptibility, a maximum in the
atomic volume and a minimum in the bulk modulus.

5.5 Effects of Strong Magnetic Fields

If one applies an external magnetic field to a system, the magnetic moment
of the system varies according to the susceptibility. In general the relation
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Fig. 5.6. Thermal expansion coefficient α as a function of the concentration in
Fe-Ni. The dashed-dotted line denotes the phase boundary between the α- (bcc)
and the γ-phase (fcc)

is linear. Deviations from this linearity can either be caused by higher order
terms related to the itinerant electrons or by spin fluctuations or excitation
processes (Schottky anomalies); other reasons might include metallurgical
effects such as gradients in the alloy concentrations.
An elegant way to plot the results of high field experiments was introduced

by A. Arrott and is commonly known as an Arrott plot (Fig. 5.7), where the
axes are scaled in terms of M2 and H/M
If the resulting graphs are straight lines, one obviously can write M2 in

the following form

M2 = M2
0 + b

H

M
,

⇒ F = A
M2

2
+B

M4

4
, (5.18)

Fig. 5.7. Arrott plot
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A = −
M2
0

b
, B =

1

b
.

This phenomenological form of the free energy F is not immediately obvious.
It will become clear when the magnetic phenomena are described within the
Landau theory of phase transitions (Chap. 14).

5.6 Effects of High Pressure

Pressure experiments provide a lot of information about the magnetic pro-
perties. For any itinerant ferromagnet there exists a critical pressure for the
disappearance of ferromagnetism, at which these systems are transformed
into a real non-magnetic state. This non-magnetic state has to be distingui-
shed from the paramagnetic state above Tc, being truly non-magnetic so that
no microscopic magnetic moments exists. From thermodynamics one obtains
the relation between the pressure dependence of the magnetic moment σ, the
Curie temperature Tc and the susceptibility χ

d lnσ

dP
= λ
d lnTc
dP

= −
λ

2

d lnχ

dP
. (5.19)

The coefficient λ depends on the underlying model and its value allows a
classification of the magnetic interaction present in the system studied.
In an Arrott plot pressure leads to a parallel shift of respective isotherms

(Fig. 5.8 a) .
For Fe-Ni, Fe-Pd, and Fe-Pt one finds a very simple relation for the change

of the Curie temperature with pressure

dTc
dP
= −

α

Tc
,

⇒ T 2c (P ) = T 2c (0)

(
1−

P

Pc

)
, (5.20)

Pc =
T 2c (0)

2α
,

Fig. 5.8. (a) Arrott plot for the external pressure as parameter, (b) pressure
dependence of the Curie temperature Tc according to (5.20)
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where Pc is the critical pressure for the disappearance of magnetism (Fig.5.8
b). It should be noted again that above the critical pressure, a system becomes
truly non-magnetic. This state is different from the paramagnetic state which
appears above the critical temperature Tc which is due to a breakdown of
long range order between the spins. This is the reason why pressure expe-
riments are most useful to distinguish between these two macroscopically
“non-magnetic” but microscopically essentially different states.
There are deviations from the simple behavior described by (5.20). For

pure Fe and Co dTc/dP is zero (or at least very small) over a wide pressure
range and for pure Ni dTc/dP is even slightly positive for small pressure.
However, this does not mean that these metals no critical pressure Pc exists.
The slightly positive pressure dependence found for Ni in the low pressure
range is due to its peculiar electronic structure.

5.7 Effects of Finite Temperature

Up to this point it has simply been assumed that there exists a critical tem-
perature where magnetism disappears, which is called the Curie temperature.
Experimentally it is found that the bulk magnetic moment of a sample goes
to zero which in the framework of the Arrott plot means that the M2 graph
passes through the origin, so that for H/M = 0 also M2 = 0. This macro-
scopic picture does not allow us to say anything about what is going on at
the individual atom and its individual moment. This question about a lo-
cal moment will be discussed later. The Curie temperature is a macroscopic
quantity which is given by a pole in the susceptibility and concomitantly the
magnetic moment goes to zero. Depending on the system and on the theo-
retical model assumed, various analytical relations temperature variation of
the magnetic moment σ(T ) are found which can be written in the general
form

σ (T )

σ (0)
= X . (5.21)

In (5.21) depending on the underlying model, X stands for:

• first and second order spinwaves: X = 1− aT 3/2 + bT 5/2

• Stoner excitations (Fermi liquid): X = 1− cT 2

• energy gap Δ at εF: X = 1− dTn exp
(
− Δ
kBT

)
• Weiss model: X = B(a, J).
• Spin fluctuations: X =

√
1− eT

5.8 Susceptibility above Tc

As the susceptibility χ(T ) diverges at Tc, it is often more convenient to argue
in terms of the node of the reciprocal susceptibility 1/χ(Tc). One finds that
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for most systems (and at sufficiently high temperature) χ(T )−1 varies ap-
proximately linearly with T

1

χ (T )
= C (T − Tc) for T > Tc , (5.22)

C =
d
(
χ−1

)
dT

Curie constant. (5.23)

This behavior is called the Curie–Weiss law. Deviations from it are related
to peculiarities of the systems or the models. This linear relation is a crucial
test for the quality of a model. However, in the high temperature case, where
one approaches the classical regime, the Curie–Weiss law is established in
any case. At low temperatures however and around the Curie temperature
deviations from the Curie–Weiss behavior are very common. Fig. 5.9 sketches
a the large variety of cases found in real systems.

5.8.1 Susceptibility of “Classical Spins”

To derive the classical result one assumes an ensemble of N particles car-
rying a classical spin (moment) which in the absence of an external field are
oriented at random. Each of these spins ±12 thus carries a magnetic moment
μ = ∓gsμB2 , (gs is the gyromagnetic ratio for the spin and takes the value
−2). If one applies an external field H one can calculate the resulting total
magnetic moment by counting the number of particles who orient their mo-
ments parallel and antiparallel to the direction of the field where the energy
associated with this orientation is given by ±μH. The average magnetic mo-
ment per particle is then given by

m =
M

N
= μ
exp

(
μH
kBT

)
− exp

(
− μH
kBT

)
exp

(
μH
kBT

)
+ exp

(
− μH
kBT

)
= μ tanh

(
μH

kBT

)
. (5.24)

The functional dependence involving the tanh given by (5.24) is identical
with the Brillouin function for a two level system (see Chap. 6). Since the
susceptibility is defined as the derivative of the magnetic moment with respect
to the applied field one obtains

χ =
dm

dH

=
μ2

kBT

1

cosh2
(
μH
kBT

) . (5.25)

Figure 5.10 shows this functional dependence which is characterized by an
exponential increase for low temperatures and a 1/T behavior in the high
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Fig. 5.9. A sketch of the different behavior found for the susceptibility above Tc
in various systems

temperature range (Schottky behavior, Schottky anomaly). It should be no-
ted that for the specific heat of a 2-level system exactly the same type of
anomaly occurs and that the name “Schottky anomaly” was originally coi-
ned for this case.
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Fig. 5.10. Susceptibility of a two-level system. The increase in the low temperature
region is about exponential, for high temperature the susceptibility shows a 1/T
behavior. Susceptibility and temperature are given in arbitrary units

The high temperature behavior can be determined by rewriting (5.25)
for the inverse susceptibility and expanding the hyperbolic cosine for small
arguments (large T ) so that

χ−1(T ) =
kBT

μ2

[
1 +
1

2!

(
μH

kBT

)2
+
1

4!

(
μH

kBT

)4
+ ...

]
. (5.26)

For sufficiently large temperature the inverse susceptibility becomes linear in
T and scales with a Curie constant of the value C = 4

gs2μ
2
B

. A more detailed

evaluation of the properties of a “classical spin” system is given in Sect. D.

5.9 Critical Exponents

At the critical temperature the behavior of a thermodynamic function F (t) is
determined by its critical exponent, where t is the deviation from the critical
temperature defined as [83]

t =
T − Tc

Tc
. (5.27)

The critical exponent is then defined as

λ = lim
t→0

ln |F (t)|

ln |t|
. (5.28)

Since any function F (t) can be written in the form
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F (t) = A |t|λ
(
1 + btλ1 + . . .

)
. (5.29)

λ can always be calculated using (5.28). Experimentally one performs highly
accurate measurements of the thermodynamic property of interest (specific
heat, magnetization, susceptibility, etc.) and plots the experimental depen-
dence around the critical point on a double logarithmic scale. From (5.28) it
is obvious that λ is then given by the slope of the resulting graph at t = 0.
In the literature the various critical exponents are characterized by specific
Greek letters as there are:

Zero-field specific heat cH ∼ |t|
−α

,

Zero-field magnetization M ∼ (−t)−β ,

Zero-field isothermal susceptibility χT ∼ |t|
−γ

,

Correlation length ξ ∼ |t|−ν .

It is known that the critical exponents of a system are not independent of each
other but obey certain scaling relations. The reason for this general behavior
is that the exponents are to a large degree universal depending only on a
few fundamental parameters. For models with short-range interactions these
are the dimensionality of space, and the symmetry of the order parameter.
One possibility to determine these scaling relations is to use thermodynamic
relations. Here one example is given: The specific heat for constant field cH
and constant magnetization cM obey the equation

χT (cH − cM ) = T

(
∂M

∂T

)2
H

. (5.30)

Because cM must be greater or equal to zero one can write the inequality

cH ≥
T
(
∂M
∂T

)2
H

χT
. (5.31)

Using the definitions of the critical exponents given above, (5.31) can only
be fulfilled if

α+ 2β + γ ≥ 2 , (5.32)

which yields one particular scaling relation. It should be noted once again that
these inequalities (others can be determined from the convexity properties of
the free energy e.g.) are independent of the underlying models they represent
universal relations which will proof extremely useful in classifying our models
and their range of validity.

5.10 Neutron Diffraction

Neutrons are fermions and carry a magnetic moment due to their spin s =
1/2, but no electric charge. They thus not only interact with the nuclei but
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also with the spins of the crystal electrons, although not with their charge
density (as X-rays do). From elastic neutron scattering experiments one can
thus obtain information not only about the crystallographic [60, 61] but also
about the magnetic lattice. Performing inelastic scattering experiments, the
energy and momentum transfer neutrons can create excitations of the spin
system such as magnons [62]. From these experiments one can measure e.g. a
dispersion relation as described by the Heisenberg Hamiltonian (see Chap. 7)
which reads

h̄ω = Dk2 . (5.33)

The so called spinwave stiffness constant D can be determined from inelastic
neutron scattering by measuring the excitation of these collective modes via
the momentum transfer from the neutron.

5.11 Further Experimental Methods

From the thermodynamical relations there are a number of experiments which
are related to the magnetic properties such as specific heat, thermal expan-
sion, elastic constants etc. A further group of investigations are the resonance
experiments such as Mössbauer, NMR, NQR [63, 64] and the deHaas–van Al-
phen effect which provides a means to measure the dimensions of the Fermi
surface [70, 71].
Spectroscopical methods such as photoemission [72, 73] allows one to de-

termine the density of states at the Fermi energy, although they have the
shortcoming that they are very surface sensitive (which can also be an ad-
vantage).
A very exciting method has been developed by using polarized X-rays

from a synchrotron namely the Spin Resolved X-ray Dichroism, where the
differing absorption of a right-circular and a left-circular X-ray beam can be
related to the number of spin-up and spin-down electrons in the sample [65].
Spin-resolved scanning tunneling microscopy [67]–[68] can be performed

by using a CrO2 tip, which is a half metallic ferromagnet [66].
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To explain the spontaneous magnetic order in solids, Pierre Weiss [16] postu-
lated the existence of an internal magnetic field, the so called molecular field,
which should be responsible for the spontaneous magnetic order. About the
physical interpretation of that field nothing was known.
One writes the molecular (magnetic) field as

HM = NM , (6.1)

whereM is the magnetization andN a proportionality factor called molecular
field constant. For the derivation one now follows classical thermodynamics.
The magnetic moment of a particle with quantum numbers J andmJ is given
by:

μ = mJgjμB, for − J ≤ m ≤ +J , (6.2)

where mJ and J are the usual quantum numbers and gj is the Landé factor
(5.15). The magnetic moment is measured in the direction of mJ which is
the eigenvalue of the Jz component of the J operator. For a given value of
J = 2, Fig. 6.1 shows the allowed directions of J. The length of the angular
momentum vector is

√
J (J + 1) being the square-root of the expectation

value of J2.

Fig. 6.1. Possible orientations of the angular momentum according to the allowed
values of mJ
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The magnetic moment M at temperature T is given by the statistical
average over all possible states of mJ

M

M0
=

1

JgjμB

+J∑
mJ=−J

mJgjμB exp
(
− W
kBT

)
+J∑
m=−J

exp
(
− W
kBT

) , (6.3)

with

W = −mJgjμBH, H = HM +Hext . (6.4)

M0 is the magnetic moment at T = 0, Hext is an externally applied field.
In the Weiss model the magnetic moment is given by an average over a
thermally induced statistical distribution of the possible direction of J . Figure
6.2 sketches this distribution the case J = 2 and a temperature below Tc.

Fig. 6.2. Statistical distribution of the local moments in the Weiss model (T < Tc).
a0 is the lattice parameter

To calculate the expression in (6.3) one introduces the following abbre-
viations

a =
JgjμBH

kBT
, x = exp

( a

J

)
= exp

(
gjμBH

kBT

)
(6.5)

⇒
M

M0
= J−1

∑+J
−J mJx

mJ∑+J
−J x

mJ
. (6.6)

To evaluate the expression given in (6.6) one applies the identity∑
mJx

mJ∑
xmJ

= x
d
dx

∑
xmJ∑

xmJ
= x

d

dx
ln

∑
xmJ . (6.7)

+J∑
−J

xmJ =
x−J

(
1− x2J+1

)
1− x

=
x−J − xJ+1

1− x
,

ln
∑

xmJ = ln
(
x−J − xJ+1

)
− ln (1− x) ,
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x
d

dx
ln

∑
xmJ =

−Jx−J − (J + 1)xJ+1

x−J − xJ+1
+

x

1− x

=
−J

(
x−J + xJ+1

)
x−J − xJ+1

−
xJ+1

x−J − xJ+1
+

x

1− x

=
J
(
x2J+1 + 1

)
(x2J+1 − 1)

−
xJ+1

x−J − xJ+1
−

x

x− 1

=
J
(
x2J+1 + 1

)
(x2J+1 − 1)

+
1

2

(
xJ+1 + x−J + xJ+1 − xJ

xJ+1 − x−J
−

x+ 1 + x− 1

x− 1

)

=

(
J +
1

2

)
x2J+1 + 1

x2J+1 − 1
−
1

2

(
x+ 1

x− 1

)
.

resubstituting the abbreviations the final result becomes

M

M0
= B (a, J) =

2J + 1

2J
coth

(
a
2J + 1

2J

)
−
1

2J
coth

( a

2J

)
, (6.8)

where B(a, J) is the Brillouin function. The J dependence B (a, J) is shown
in Fig. 6.3.

Fig. 6.3. J dependence of the Brillouin function

How perfectly this model works for paramagnetic ions [74] can be seen
from the experimental results given in Fig. 6.4.
For high temperature a << 1 and one can expand the coth according to

cothx =
1

x
+

x

3
− . . . , (6.9)
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Fig. 6.4. Plot of the magnetic moment versus Hext/T for the metal ions Cr
3+,

Fe3+ and Gd3+. After W.E. Henry [74]

to obtain a much simpler form for the Brillouin function

B(a, J) ∼=
1

3
a
J + 1

J
. (6.10)

With this relation one can immediately derive an expression for the Curie
temperature. As M becomes zero at Tc (6.3) also determines Tc(Hext = 0)

M

M0
=
1

3

J + 1

J

JgJμB
kBT

NM ,

⇒ kBTc =
1

3
(J + 1) gJμBNM0 . (6.11)

For electrons it is obvious that J = S = 1
2 and |gj | = 2, so that (6.11)

becomes

kBTc = μBNM0 . (6.12)

One can use (6.12) to determine the molecular field constant and the mo-
lecular field for Fe, Co, and Ni from the experimental data of the Curie
temperature and the magnetic moment (Table 6.1)
The calculated fields are found to be extremely high. Later (see Sect. 16.1)

the origin for this “field” will be shown to be the exchange interaction. The
exchange interaction is of purely quantum mechanical origin and in lowest
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Table 6.1. Molecular field constant N and the respective molecular field HM for
Fe, Co, and Ni

N (T/μB) HM (T)

Fe 700 1500

Co 1300 2100

Ni 1600 940

order of Coulomb type. This “electrostatic” type of interaction rather than
the assumed “magnetic” one is the reason for the large numbers in terms of
a magnetic field.
For a paramagnetic system the molecular field constant is zero. One ob-

tains the susceptibility by differentiating the magnetic moment M induced
by Hext with respect to Hext which yields the Langevin–Debye formula (1.1)
from a quantum mechanical Ansatz

χ =
1

3
J(J + 1)

g2jμ
2
B

kBT
=

μ2J
3kBT

, (6.13)

where μJ is the quantum mechanical value of the magnetic moment due to
the angular momentum

μ2J = J(J + 1)g2jμ
2
B = μ2eff . (6.14)

In general (6.14) defines an effective moment μeff which experimentally is
derived from measurements of the Curie constant. As can be seen from the
definition, the effective moment measures the size of the local moments pre-
sent above the ordering temperature. It should be noted that this interpre-
tation via local moments is only valid in systems where these local moments
actually determine the magnetic behaviour. For itinerant electron magnetism
(Chap. 12) and for spin fluctuations (Chap. 18) this interpretation must be
seen in a wider context of moments existing locally in space and time.
Equation (6.11) also allows one to calculate the susceptibility above Tc

M

M0
=
1

3

J + 1

J

JgjμB
kBT

(Hext +NM)

=
1

3

J + 1

J

JgjμB
kBT

(
Hext +

3kBTcM

(J + 1) gjμBM0

)
,

⇒
M

M0

(
1−

Tc
T

)
=
1

3

(J + 1) gjμB
kBT

Hext ,

⇒ χ =
M

Hext
=

C

T − Tc
, with C =

1

3
(J + 1)

gjμB
kB

M0 .(6.15)

With the definitions for M0 (6.3) and μ2eff (6.14) one easily recovers the
general expression for the Curie constant
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C =
μ2eff
3kB

. (6.16)

For J = S = 1
2 and |gj | = 2 , (6.15) reduces to: C =

μBM0
kB
. The relation given

by (6.15) is the Curie–Weiss law. For high enough temperature all systems
obey this linear temperature dependence of the inverse susceptibility as it
represents the classical limit.
The spontaneous magnetization as a function of temperature is also given

by the Brillouin function. Using (6.1) and (6.11) one gets

M

M0
= B

(
3J

J + 1

M

M0

Tc
T

, J

)
, (6.17)

which again for J = S = 1
2 and |gj | = 2 gives

M

M0
= tanh

(
M

M0

Tc
T

)
. (6.18)

In the case for J =∞ one arrives at the classical limit where the tilting angle
is continuous. The Brillouin function (6.8) reduces to an expression which is
usually referred to as the Langevin function[12] which reads

M

M0
= coth (a)−

1

a
. (6.19)

Equation (6.18) is a transcendental equation which is usually solved graphi-
cally or numerically. However, approximate solutions can be found around
T = 0 and T = Tc. Expanding (6.18) around Tc one immediately obtains the
mean field exponent β = 1

2

M

M0
=

(
3

(
Tc
T
− 1

)) 1
2

�

(
Tc
T
− 1

)β
. (6.20)

Expanding (6.18) around T = 0 gives

M

M0
= 1− 2 exp

(
−
2Tc
T

)
. (6.21)

Equation (6.18) describes a universal relation between the magnetization
M and the temperature T . Unfortunately this relation does not really apply
to metallic systems and alloys. As being typical for all mean field models, the
Weiss model predicts critical exponents β = 1/2 and γ = 1. These exponents
deviate from experiment which gives β ≈ 0.33 and γ ≈ 1.3 − 1.35. Only for
systems where one finds only a weak interaction between the individual spins,
does the Weiss model work satisfactorily.
Five final remarks:

1. The Weiss molecular field model is a mean field model where the in-
teraction between the spins is assumed to have the form of a uniform
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field. Quantum mechanical principles enter via the assumption of dis-
crete energy levels associated with the quantum number mJ . The ther-
mal excitation of these localized states can be calculated via classical
thermodynamics. These assumptions lead to a restricted applicability of
the theory. The Weiss model can be applied to systems with localized
(→Hund’s rules !) magnetic moments and at high temperatures where
the Weiss model becomes classical.

2. The temperature dependence of the magnetic moment is much more often
given by a power law rather than the complicated relation in (6.18).

3. The Curie–Weiss behavior is hardly ever found in metallic systems (only
at very high temperatures).

4. The Weiss model can easily be applied over limited temperature ranges
where it is valid to use the given approximations.

5. At the Curie point, the Weiss model predicts that for temperatures T ≥
Tc the spin order vanishes completely, which is mathematically expressed
by the finding that the Curie–Weiss behavior of the susceptibility sets in
exactly at Tc which is called the “paramagnetic Curie temperature”. In
reality there exist short range magnetic correlations also above Tc which
should be treated on the basis of quantum statistics [75] which also would
lead to a lower Curie temperature which is called “ferromagnetic Curie
temperature”.

6.1 Rhodes–Wohlfarth Plot

According to the assumption made in the beginning, the Weiss model is a
model for weakly interacting localized magnetic moments. This also means
that deviations from this behavior can be used for the classification of lo-
calized versus itinerant magnetism. If one assumes that at T = 0K the J
levels are occupied according to Hund’s rule, the magnetic moment per atom
is given by

M0
nμB

= qs = gjJ = 2J , (6.22)

where M is the magnetic moment of the system, n is the total number of
atoms, and |gj | = 2 if the carriers of the magnetic moments are assumed to
be electrons. The quantity qs is the “magnetic carrier” per atom.
Calculating the Curie constant one obtains

C =
1

3
(J + 1) gjμB

n2gjμBJ

nkB

=
1

3
gjJ (gjJ + gj)

n2μ2B
nkB

=
1

3
qc (qc + 2)

n2μ2B
R

, (6.23)
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Fig. 6.5. Rhodes–Wohlfarth plot

where R is the gas-constant (R = LkB) with L = n being Avogadro’s number.
qc = gjJ is again defined as a magnetic carrier, but is now calculated from
the Curie constant and is thus a measure for the behavior of the system for
T > Tc . Taking qs and qc from experiment and plotting the ratio qc/qs as a
function of the Curie temperature of the respective system one obtains the
Rhodes–Wohlfarth plot [76] (Fig. 6.5)
This phenomenological curve allows one to analyze the different mecha-

nisms of magnetic order. For a system with localized moments, the value of
the moment will not change very much if measured below and above Tc . The
ratio qc/qs will thus be of the order of 1. In the case of delocalized (itine-
rant) moments qs → 0, if Tc → 0 while qc remains independent of T which
in turn leads to a large value for qc/qs. One thus has two basically different
mechanisms:

1. Local magnetic moments:
This means that the magnetic moments are made up according to Hund’s
rule. The driving interaction is the intraatomic exchange so that interac-
tion with the neighboring atoms is small. The magnetic moment is given
by

μJ = gjμB
J

h̄
, (6.24)

where J is the total angular momentum.
2. Itinerant magnetic moments:
The carriers of the magnetic moment are the delocalized (itinerant) va-
lence electrons. The driving interaction is the interatomic exchange (the
exchange interaction of the electron gas). Magnetic order can be descri-
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bed as a long-range, coulomb-type interaction. The magnetic moments
are not given by the angular momentum.

The Rhodes–Wohlfarth plot shows a fairly uniform distribution of the
various systems. This means that cases of complete localization or complete
delocalization are hardly ever found. In fact both phenomena exist side by
side to a greater or lesser degree. A “unified” theory of solid state magnetism
will have to interpolate between these two extremes.



7. Heisenberg Model

In 1928 Werner Heisenberg [22, 23] formulated a model to describe the in-
teraction between neighboring spins which leads to long range ferromagnetic
order. Unlike the Weiss model, where the interaction is put into a “mean
field”, the Heisenberg model accounts in a microscopic way for the pairwise
interaction between spins on different lattice sites. In addition the Heisenberg
model treats the spins as quantum mechanical observables, rather than the
Weiss model where “classical” moments are assumed. In its simple form the
Heisenberg Hamiltonian H [77] reads

H = −Ih
∑
l,δ

SlSl+δ − gjμBHext
∑
l

Szl . (7.1)

One assumes that the spins sit on lattice sites l and δ is taken symbolically
to replace the vector pointing to the nearest-neighbor sites. Ih is the so called
exchange integral which is defined to be positive for the ferromagnetic and
negative for the antiferromagnetic case. Hext is an external field, which is
applied along the z axis. This field is > 0 so that at T = 0K all spins are
aligned parallel to this field and form the ground state which is described by
a state vector |0〉. (for simplicity h̄ is set to 1). If one considers an ensemble
of N atoms with spin S the ground state vector in the |S,MS〉 basis reads
|0〉 ≡ |NS,NS〉 . For the total spin the usual relations hold:

S2 |0〉 = NS(NS + 1) |0〉 with S =
∑
l

Sl , (7.2)

Sz |0〉 = NS |0〉 with Sz =
∑
l

Szl . (7.3)

It will be shown that the spectrum of the Heisenberg Hamiltonian des-
cribes excitations of the whole spin system. These excitations are called spin
waves or magnons (the term magnon is used in analogy to the term phonon
and denotes the respective quantized quasiparticle).

7.1 Magnon Operators

The transformation from the components of the spin vector operator to the
creation and annihilation operators for the magnons was devised by Holstein
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and Primakoff [78] who in 1940 formulated boson operators a+, a which are
used to represent the spin operators. For the components of the spin operator
the commutation relation [Sx, Sy] = iSz (and cyclic permutations) has to be
obeyed. This is the reason why a new set of operators is introduced namely

S+ = Sx + iSy , S− = Sx − iSy , η = S − Sz , (7.4)

where η is a new operator which describes the difference between the total
spin and its z component. For the excitation which one will find η will be the
respective order parameter since the energy difference η |S,MS〉 is exactly
the energy which is absorbed by the spinwave. If the eigenvalue of η is n the
respective eigenfunction of the spinwave can be written as ψn. In general the
creation and annihilation operators are defined as

a+ψn =
√
n+ 1ψn+1 , aψn =

√
nψn−1 , (7.5)

with the boson commutation rule[
a, a+

]
= 1 , (7.6)

and the property

〈ψn| a
+a |ψn〉 = n . (7.7)

Applying the operators S+ and S− on the ground state yields

S+ |S,MS〉 =
√
(S −MS) (S +MS + 1) |S,MS + 1〉 , (7.8)

S− |S,MS〉 =
√
(S +MS) (S −MS + 1) |S,MS − 1〉 , (7.9)

or using the wavefunction ψn

S+ψn =
√
(S −MS) (S +MS + 1)ψn−1 ,

S−ψn =
√
(S +MS) (S −MS + 1)ψn+1 ,

so that S+, S− and η can be formulated in the a, a+ operators

S+l =
√
2S

(
1−

1

2S
a+l al

) 1
2

al ,

S−l =
√
2Sa+l

(
1−

1

2S
a+l al

) 1
2

, (7.10)

η = a+l al , Szl = Sl − a+l al .

The next step is to transform the operators S+, S−, η from the (real space)
spin operators a+l , al to the (reciprocal space) magnon operators bk, b

+
k , which

are related via a lattice Fourier transform given by

bk ≡
1
√
N

∑
l

exp (ikxl) al , b+k ≡
1
√
N

∑
l

exp (−ikxl) a
+
l , (7.11)

al ≡
1
√
N

∑
k

exp (−ikxl) bk , a+l ≡
1
√
N

∑
k

exp (ikxl) b
+
k , (7.12)
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again with the boson commutation rules
[
bk1 , b

+
k2

]
= δk1,k2 and [bk1 , bk2 ] =[

b+k1 , b
+
k2

]
= 0. The operator b+k creates a magnon with the wave vector k,

whereas bk annihilates it. The discrete values for k are defined by the pe-
riodic boundary conditions. From the backtransformation (7.12) one notices
immediately that the change of an individual state at site l (e.g. a spin flip
in a spin 12 systems) is described via a superposition of an infinite number of
lattice periodic spin waves which have to be added up at site l to describe
this very spin flip.
To perform the transformation to the magnon operators, one has to res-

trict the description to low excited states only. In this case the square root
in (7.10) can be expanded according to

√
1− ξ � 1− ξ

2 + . . . given that the

excitation described by a+l al remains small as compared to the total spin 2S.
One obtains

S+l =

√
2S

N

[∑
k

exp (−ikxl) bk

−
1

4SN

∑
k1k2k3

exp (ixl (k1 − k2 − k3)) b
+
k1
bk2bk3 + . . .

]
,

S−l =

√
2S

N

[∑
k

exp (ikxl) b
+
k

−
1

4SN

∑
k1k2k3

exp (ixl (k1 + k2 − k3)) b
+
k1
b+k2bk3 + . . .

]
,

Szl = S −
1

N

∑
k1k2

exp (ixl (k1 − k2)) b
+
k1
bk2 ,

Sz = NS −
1

N

∑
lk1k2

exp (ixl (k1 − k2)) b
+
k1
bk2 (7.13)

= NS −
∑
k1k2

δk1k2b
+
k1
bk2 = NS −

∑
k

b+k bk ,

where Sz is again the operator for the total spin as defined in (7.3). From
the expression for Sz one notices that b

+
k bk can be seen as the occupation

number operator for the magnon state k , the eigenvalues of b+k bk are the
positive integers.
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7.2 Heisenberg Hamiltonian in Magnon Variables

To formulate the Hamiltonian given by (7.1) using the magnon creation and
annihilation operators one has to rewrite it as follows

H = −Ih
∑
lδ

[
SzlSz(l+δ) +

1

2

(
S+l S

−
l+δ + S−l S

+
l+δ

)]
− gjμBHext

∑
l

Szl .

(7.14)

The four terms appearing in (7.14) yield

(1) −Ih
∑
lδ

SzlSz(l+δ)

= −Ih
∑
jδ

[
S2 −

S

N

∑
k1k2

eixl+δ(k1−k2) b+k1bk2 −
S

N

∑
k1k2

eixl(k1−k2) b+k1bk2

]

−
1

N2
Ih

∑
lδ

∑
k1k2k3k4

eixl(k1−k2)+ixl+δ(k3−k4) b+k1bk2b
+
k3
bk4 , (7.15)

(2) − Ih2
∑
lδ

S+l S
−
l+δ

= −
IhS

N

∑
lδ

{[∑
k1

e−ixlk1 bk1 −
1

4SN

∑
k1k2k3

eixl(k1−k2−k3) b+k1bk2bk3

]

×

[∑
k1

eixl+δk1 b+k1 −
1

4SN

∑
k1k2k3

eixl+δ(k1+k2−k3) b+k1b
+
k2
bk3

]}

(7.16)

(3) − Ih2
∑
lδ

S−l S
+
l+δ

= −
IhS

N

∑
jδ

{[∑
k1

eixlk1 b+k1 −
1

4SN

∑
k1k2k3

eixl(k1+k2−k3) b+k1b
+
k2
bk3

]

×

[∑
k1

e−ixl+δk1 bk1 −
1

4SN

∑
k1k2k3

eixl+δ(k1−k2−k3) b+k1bk2bk3

]}
,

(7.17)

(4) −gjμBHext
∑
l

Szl

= gjμBHext
1

N

∑
lk1k2

exp (ixl (k1 − k2)) b
+
k1
bk2 − gjμBHext

∑
l

Szl . (7.18)

One now separates the Hamiltonian into three partsH = H1+H2+const.
where H1 contains only terms which are bilinear in the magnon operators,
H2 contains all terms of higher order (4th and 6th order) and the constant
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factors. To calculate the latter part one performs the summation over l and
δ assuming z nearest-neighbors giving

H = H1 +H2 − IhNS2z︸ ︷︷ ︸
from (1)

− gjμBHextNS︸ ︷︷ ︸
from (4)

. (7.19)

The bilinear terms are collected to

H1 = −
IhS

N

∑
lδk1k2

⎧⎪⎪⎨
⎪⎪⎩e
−ixl(k1−k2eik2δ bk1b

+
k2︸ ︷︷ ︸

from (2)

+eixl(k1−k2e−ik2δ b+k1bk2︸ ︷︷ ︸
from (3)

− eixl(k1−k2 b+k1bk2︸ ︷︷ ︸
from (1)

− eixl+δ(k1−k2 b+k1bk2︸ ︷︷ ︸
from (1)

⎫⎪⎪⎬
⎪⎪⎭

+
gjμBHext

N

∑
lk1k2

exp (ixl(k1 − k2) b
+
k1
bk2︸ ︷︷ ︸

from (4)

. (7.20)

Introducing a new quantity γk ≡
1
z

∑
δ

exp (ikδ) and performing the sum-

mation over l yields

H1 = −IhzS
∑
k

[
γkbkb

+
k + γ−kb

+
k bk − 2b

+
k bk

]
+ gjμBHext

∑
k

b+k bk .

(7.21)

If there exists a center of inversion of the lattice, γk = γ−k so that
∑
k

γk = 0.

Employing the commutator rule
[
bk, b

+
k

]
= 1 one finally arrives at

H1 =
∑
k

[2IhSz (1− γk) + gjμBHext]︸ ︷︷ ︸
≡ ωk

b+k bk =
∑
k

ωkb
+
k bk . (7.22)

The termH2 contains higher orders in the magnon variables and is usually
neglected. A discussion of the magnon–magnon interaction which is described
by this term has been given by Dyson [79] and Keffer and Loudon [80].

7.3 Magnon Dispersion Relation

Using the results from the preceding section one writes H1 as follows

H1 =
∑
k

nkωk (7.23)

where nk is the occupation number operator for a state with energy ωk.
Assuming a Bravais lattice with a center of inversion (γk = γ−k) allows one
to rewrite γk
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γk =
1

z

∑
δ

exp (ikδ)

=
1

2z

∑
δ

[exp (ikδ) + exp (−ikδ)]

=
1

z

∑
δ

cosh (ikδ) =
1

z

∑
δ

cos (kδ) , (7.24)

so that the dispersion relation is obtained in the well known form

ωk = 2IhSz

(
1−
1

z

∑
δ

cos (kδ)

)
+ gjμBHext . (7.25)

Since the derivation was restricted to low excitation energies, the cosine can

be expanded as cosx = 1− x
2

2 + . . . so that ωk becomes

ωk � IhS
∑
δ

(kδ)
2
+ gjμBHext . (7.26)

For a cubic lattice with lattice constant a0 this expression is reduced further

ωk = gjμBHext + 2IhS (ka0)
2

(7.27)

= gjμBHext +Dk2 , (7.28)

with D being the spin wave stiffness constant which is an experimentally
accessible quantity (from inelastic neutron diffraction e.g.). It should be noted

that the factor 2 appearing out of the sum
∑
δ (kδ)

2
is not obvious but is

due to the properties of the direct and reciprocal lattice. A derivation of this
factor is given in Sect. H. Figure 7.1 shows a classical representation of a spin
wave. The thermally induced motion of the spins appears to be correlated
(in contrast to the Weiss model; see Fig. 6.2). Such a type of motion is called
collective excitation.
Equation (7.27) can be used to estimate the effective massm∗ of a magnon

(quasiparticle) by equating the kinetic energy of a massive particle and the
excitation energy for Hext = 0,

Fig. 7.1. Classical representation of the collective excitation described by the Hei-
senberg Hamiltonian
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k2

2m∗
= 2IhSk

2a20

⇒ m∗ =
(
4IhSa

2
0

)−1
. (7.29)

For a usual ferromagnet with a Curie temperature around 300K one finds an
effective mass of about 10 times the electron mass which easily allows one to
perform inelastic neutron scattering experiments.

7.3.1 Specific Heat of Magnons

In the long wavelength limit |kδ| << 1 and at low temperatures (a few
Kelvins) one writes the total energy of the magnon Bose gas as

U =
∑
k

ωk 〈nB〉 , (7.30)

with 〈nB〉 being the Bose distribution function

〈nB〉 =

[
exp

(
E

kBT

)
− 1

]−1
. (7.31)

One thus gets

U =
∑
k

ωk

[
exp

(
ωk
kBT

)
− 1

]−1

=
1

(2π)3

kmax∫
0

Dk2
[
exp

(
Dk2

kBT

)
− 1

]−1
d3k

=
1

2π2

kmax∫
0

Dk4
[
exp

(
Dk2

kBT

)
− 1

]−1
dk . (7.32)

Using the abbreviations x = Dk2

τ
and τ = kBT one rewrites the expression

given in (7.32) as

τ
5
2

4π2D
3
2

xmax∫
0

dx x
3
2

1

exp (x)− 1
.

Since the integrand decreases rapidly one can approximate the upper limit
by ∞ so that the integral can be evaluated analytically and becomes

Γ

(
5

2

)
ζ

(
5

2
, 1

)
=

(
3
√
π

4

)
(1.341) ,

Γ
(
5
2

)
is the gamma-function and ζ

(
5
2 , 1

)
is the Riemann zeta-function giving

U �
0.45τ

5
2

π2D
3
2

,
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and for the specific heat at constant volume defined as cv =
(
∂U
∂T

)
V

cv = 0.113kB

(
kBT

D

) 3
2

. (7.33)

This result means that in a system where spin waves are excited, the magne-
tic part of the low temperature specific heat should be proportional to T

3
2 .

Since this dependence can easily be disentangled from the other contribu-
tions to the specific heat (free electrons, phonons, electron-phonon coupling),
it provides an experimental possibility to derive a value for the spin wave
stiffness constant D.

7.3.2 Ordering Temperature

The ordering temperature (Curie temperature) can be calculated from the
number of the reversed spins ([81]). The magnetic moment of the spin system
is described by the z component of the total number of spins

MS = gjμBSz = gjμB

(
NS −

∑
k

b+k bk

)
. (7.34)

This allows one to rewrite the temperature dependence of the magnetic mo-
ment

MS (0)−MS (T ) = gjμB
∑
k

〈nB〉

=
gjμB
2π2

kmax∫
0

k2

exp
(
Dk2

kBT

)
− 1
dk , (7.35)

which with the abbreviations as before gives

MS (0)−MS (T ) =
gjμB
2π2

( τ

D

) 3
2

∞∫
0

x
1
2

1

exp (x)− 1
dx

=
gjμB
2π2

( τ

D

) 3
2

Γ

(
3

2

)
ζ

(
3

2
, 1

)

= 0.117gjμB

(
kBT

D

) 3
2

. (7.36)

Equation (7.36) describes the well known T
3
2 behavior of the magnetic mo-

ment of a system of localized interacting spins (Bloch T
3
2 law). It is easy to

rewrite (7.36) in the usual way

MS (T ) = MS (0)

(
1−

(
T

Tc

) 3
2

)
(7.37)

with Tc =

(
MS (0)

0.117gjμB

) 2
3 D

kB
(7.38)
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In the case of a cubic lattice the spin wave stiffness constant D = 2IhSa
2
0. Re-

calling that MS (0) = gjμBNS and setting N = 1 one obtains an expression
for Tc which reads

kBTc = 1.26 S
5
3 Iha

2
0 . (7.39)

This result should be compared with the expression which was found from
the Weiss model (6.11) which, applied to our case (J = S) becomes

kBTc =
1

3
S (S + 1)N . (7.40)

Note that N is the molecular field constant as introduced in the Weiss model.
The basic structure of both equations is very similar. They essentially differ
in the power of S, a behavior which is due to the different treatment which
includes quantum fluctuations in the Heisenberg case and a quasi classical
treatment in the Weiss case.
Equation (7.39) can be used to calculate the value of the exchange integral

Ih. As example it is applied to fcc Gd which represents a local moment system
with a total spin S = 7

2 . On the basis of a Curie temperature of 300K and a

lattice constant of 5.05Å a value of about 100meVÅ−2 is found which is of
the right order of magnitude as compared to experiment.

7.4 Approximations for the Heisenberg Model

In a general way the Heisenberg model not only takes into account the in-
teraction between the nearest-neighbor shell but in fact sums over a larger
number of neighboring shells

H = −
∑
i	=j

IijSiSj (7.41)

where Iij are the exchange integrals between spins located on sites i and j.
From the Heisenberg model various simpler approaches can be derived.

7.4.1 Ising Model

The simplest and most frequently used spin model is the Ising model [82].
The spin vector operator is assumed to be only one-dimensional and has only
two states namely spin up +1 (↑) and spin down −1 (↓). One is thus only
using the z-component of the spin vector which can be written as

Si = Siez (7.42)

where the spin vector is chosen along the z-axis. The resulting Hamiltonian
HI looks very familiar, but it must be noted that the major quantum effects
represented by the commutation relations between spins have been removed
from the model.
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HI = −
∑
i	=j

IijSiSj − gjμBHext
∑
i

Si (7.43)

The first term in (7.44) is responsible for the cooperative behavior and the
possibility of a phase transition. The second term is again the Zeeman inte-
raction between the spin and an external magnetic field. Since the exchange
integrals depend on the extent of the overlap between the wavefunctions
which varies about exponentially with distance, one can often restrict the
summation over the nearest-neighbor shell.
It is relatively easy to solve the Ising model in one dimension [83] but it

took some time before Onsager presented his solution of the two-dimensional
problem in a mathematical tour de force [84]. The three-dimensional Ising
model is still not solved analytically, but there exist numerical solutions based
on Monte–Carlo simulations. For the one-dimensional Ising model, the phase
transition to the ordered state is always at T = 0 which means that for
any finite temperature long range order is destroyed completely. In the two-
dimensional case a phase transition occurs at a finite temperature and the
magnetic moment has the following temperature dependence

M (T ) =

⎧⎪⎪⎨
⎪⎪⎩

[(
1−

(
sinh 2I

kBT

))−4]β
T < Tc

0 T ≥ Tc

, (7.44)

with β = 1
8 . The resulting value for the Curie temperature reads

Tc =
2

ln
(
1 +
√
2
) I

kB
� 2.269

I

kB
. (7.45)

7.4.2 XY Model

The XY model goes one step further by assuming a two dimensional spin
vector which describes a spin which can rotate with in the xy-plane. The
respective spin vector reads

Si = Sxi ex + Syi ey , (7.46)

and the Hamiltonian becomes

HXY = −
∑
i	=j

Iij
(
Sxi S

x
j + Syi S

y
j

)
− gjμBHext

∑
i

(HextSi) . (7.47)

It has been shown [85] that the XY model only has a traditional second or-
der phase transition for a dimensionality larger than 2, a conjecture which
is known as the Mermin–Wagner theorem. The XY model has also attrac-
ted great attention as a model for spin glasses, superconductivity and liquid
helium.
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An interesting aspect of the XY model is the fact that anisotropy, which
actually is due to LS-coupling, can easily be simulated by introducing an
anisotropy parameter λ so that

HXY = −
∑
i	=j

IijS
x
i S
x
j − (1− λ)

∑
i	=j

IijS
y
i S
y
j − gjμBHext

∑
i

(HextSi) .

(7.48)

The value λ = 0 corresponds to an isotropic XY model and λ = 1 to a
quasi Ising model with the x-axis chosen as the Ising axis.

7.4.3 Mean Field Solutions of the Heisenberg Model

Since the product of spin operators is difficult to treat if one goes beyond
nearest-neighbor interaction one looks for simplifications of the Heisenberg
Hamiltonian. One possible way is to replace the pairwise interaction between
the spins by the interaction of one spin with the field exerted by all the
neighboring ones. This is achieved by replacing the spin operator by its mean
value plus the deviations from it (fluctuations)

Sk = 〈Sk〉+ (Sk − 〈Sk〉)︸ ︷︷ ︸
fluctuations

. (7.49)

This expression, which is still exact, now enters the Heisenberg Hamiltonian

H = −
∑
i	=j

Iij [〈Si〉+ (Si − 〈Si〉)] [〈Sj〉+ (Sj − 〈Sj〉)] ; (7.50)

multiplying out and neglecting terms which are second order in the fluctua-
tions yields the mean field representation

HMF =
∑
i	=j

Iij 〈Si〉 〈Sj〉 −
∑
i	=j

Iij (Sj 〈Si〉+ Si 〈Sj〉)

=
∑
i	=j

Iij 〈Si〉 〈Sj〉 −
∑
i

Si

⎡
⎣2∑

j

Iij 〈Sj〉

⎤
⎦ . (7.51)

The first term in (7.51) is a constant, the second term can be interpreted as

a spin interacting with a field given by
[
2
∑
j Iij 〈Sj〉

]
which is produced by

all neighboring spins. Since this form of interaction is exactly the same as
in the Weiss model, the solution to the problem is once again the Brillouin
function (6.8). The respective expression for the Curie temperature is thus
given by

Tc =
2S (S + 1)

3kB

1

N

∑
i	=j

Iij . (7.52)

For an fcc and a bcc lattice this gives
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Tc =
2S (S + 1)

3kB

1

78
(12J1 + 6J2 + 24J3 + 12J4 + 24J5) fcc

Tc =
2S (S + 1)

3kB

1

58
(8J1 + 6J2 + 12J3 + 24J4 + 8J5) bcc

where the summation is taken up to the 5th neighbor shell. The results for
Tc are usually in fair agreement with experiment, although they are syste-
matically too high which is typically of the mean field approximation which
suppresses additional quantum fluctuations.
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While Weiss’ molecular field theory assumes localized electrons which occupy
mj-dependent energy levels, Stoner theory of itinerant magnetism describes
particles which move freely in the periodic potential of the solid as a more or
less free electron gas. Since for these crystal electrons the angular momentum
is no longer a good quantum number (the orbital moment is quenched by the
crystal field; see Sect. C.), their properties are governed by their momentum
described by their wave vector k and their spin. These electron states overlap
and form electron bands rather than discrete energy levels (see Chap. 4). The
solid state analogue to the energy levels is thus the density of states formed
by these bands (2.2). Consequently one finds that the magnetic moments
of the transition metal are rational numbers rather than integers (as they
are for the rare earths, where the f -electrons are localized). These rational
numbers cannot be explained from a successive orbital occupation as descri-
bed by Hund’s rules. A model for the magnetism of metals has to take into
account this electronic structure which indeed is responsible for all properties
which distinguish metals from other solids. The model of itinerant electron
magnetism goes back Stoner who formulated it during the 1930s [30].
The Stoner model is based on the following postulates:

1. The carriers of magnetism are the unsaturated spins in the d-band.
2. Effects of exchange are treated within a molecular field term.
3. One must conform to Fermi statistics.

In analogy with the Weiss model one introduces a molecular field which
should contain all interactions. The molecular field per atom is given by

HM = NM = NM0ζ , with ζ =
M

M0
. (8.1)

The energy shift exerted by the molecular field is

εm = −μBHM = −μBNM0ζ = −kBΘζ . (8.2)

Equation (8.2) defines a characteristic temperature Θ which is given by

Θ =
μBNM0

kB
. (8.3)

To calculate the free energy at T = 0K one starts from H = dF/dM . The
contribution of a magnetic field to the free energy is given by
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Em
n
= −

∫
HdM

= −

ζ∫
0

kBΘζdζ = −
1

2
kBΘζ2

⇒ Em = −
1

2
nkBΘζ2 , (8.4)

where n is the number of particles (electrons).
One starts from a paramagnetic density of states and splits it into two

identical bands for spin-up and spin-down (Fig. 8.1).
If one applies an external magnetic field (molecular field) the bands

become shifted relative to each other (Fig. 8.2a ). Since the Fermi energy
has to be the same for both spin directions (⇒ equal chemical potentials)
this spin splitting causes a redistribution of electrons and a mutual shift of
the two subbands (Fig. 8.2b ) which leads to a difference in the occupation
numbers for spin-up and spin-down.
The occupation numbers n+, n− and the relative magnetization ζ are

related to one another by the following:

n = n+ + n− ,

nζ = n+ − n− ,

n± =
n

2
(1± ζ) . (8.5)

These occupation numbers are related to the density of states N (ε) via

n

2
=

εF∫
0

N (ε) dε ,

Fig. 8.1. Non-magnetic density of states split
into the two subbands for the two spin direc-
tions
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Fig. 8.2. Spin split density of states. n+, n− number of electrons for spin up and
spin down, ε+, ε− Fermi energies for spin up and spin down

n

2
(1± ζ) =

ε±∫
0

N (ε) dε ,

n

2
ζ =

ε+∫
εF

N (ε) dε ,
n

2
ζ =

εF∫
ε−

N (ε) dε . (8.6)

If one considers a parabolic band (2.24), where the density of states is pro-
portional to

√
ε the spin splitting is then given by

ε± = εF (1± ζ)
2
3 . (8.7)

Calculating the respective band energy Eb by integrating over the occupied
electron states gives

Eb =

ε+∫
εF

εN (ε) dε−

εF∫
ε−

εN (ε) dε+ const. (8.8)

For a parabolic band ε± are given by (8.6) and (8.7) and one thus obtains
for the band energy

Eb =
3

10
nεF

[
(1 + ζ)

5
3 + (1− ζ)

5
3

]
+ const. (8.9)

The free energy is now
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E = Eb +Em = E (ζ)

=
3

10
nεF

[
(1 + ζ)

5
3 + (1− ζ)

5
3

]
−
1

2
nkBΘζ2 + const. (8.10)

One now determines a possible extremum (minimum or maximum) of E(ζ),

where dE(ζ)dζ = 0 and obtains the condition

ε+ − ε− = 2kBΘζ = �E , (8.11)

where �E is called molecular field energy or band splitting.
Again for the parabolic band one finds

kBΘ

εF
=
1

2ζ

[
(1 + ζ)

2
3 − (1− ζ)

2
3

]
. (8.12)

Equation (8.12) gives the equilibrium state as a function of ζ:

ζ = 0 ⇒
kBΘ

εF
=
2

3
� 0.67 ,

ζ = 1 ⇒
kBΘ

εF
≥
1
3
√
2
� 0.79 . (8.13)

This result describes three ranges of magnetic order as shown in Fig. 8.3.

1. There exists a threshold below kBΘ
εF

< 2
3 such that no magnetic ordering

occurs → the system is non-magnetic.
2. Between 23 < kBΘ

εF
< 1/ 3

√
2 the molecular field is not strong enough to

saturate the spins for the majority spin direction→ the system is weakly
ferromagnetic.

Fig. 8.3. Ranges of magnetic order described within the Stoner model for a parabo-
lic band. Although transition metals do not have parabolic bands their hypothetical
positions in the three regimes are given. Pd is at the verge of being magnetic, ZrZn2
is a very weak ferromagnet, Fe is on the verge to the strongly ferromagnetic regime,
both Co and Ni are strong ferromagnets
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3. For kBΘ
ε0
≥ 1/ 3

√
2 all spins are saturated by the molecular field → the

system is strongly ferromagnetic

If one calculates the inverse susceptibility χ−1 from (8.8) and (8.10) from
the second derivative of E (ζ) one obtains

n2μ2B
χ
=
d2E (ζ)

dζ2
=

n2

4

(
1

N (ε+)
+

1

N (ε−)

)
− nkBΘ . (8.14)

Since for a minimum of the free energy the second derivative has to be larger
than zero (positive susceptibility), (8.14) provides a criterion for that case.
In the non-magnetic limit one has ζ = 0 and obviously N (ε+)=N (ε−) =
N (εF). If the free energy should become smaller for finite ζ, meaning that
there is spontaneous magnetic order, E (ζ) must have a maximum at ζ = 0.
This condition leads to the so called Stoner criterion for spontaneous magnetic
order of a system of itinerant electrons

2

n
N (εF) kBΘ ≥ 1 . (8.15)

The Stoner criterion is fulfilled if either the molecular field term kBΘ , or
the density of states at the Fermi energy N (εF) is large. It is found that the
molecular field constants are of the same order of magnitude for most metallic
systems. The (often) continuous phase transition (second order) from the non-
magnetic to the ferromagnetic state is thus usually caused by a large value of
the DOS at the Fermi energy. It should be noted that these large values of the
density of states will never be reached by an electron density which behaves

Fig. 8.4. Total energy E (ζ) as a function of the reduced magnetization ζ for the
three magnetic regimes: (a) non-magnetic, (b) weakly ferromagnetic, (c) strongly
ferromagnetic
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like a free electron gas. Only if the bandwidth is considerably smaller, like
for the 3d-electrons, the DOS is large enough to fulfill the Stoner criterion.
The derivation above follows the original work by E.C. Stoner from 1936.

The interpretation of the molecular field as a characteristic temperature is
nowadays not felt to have any physical reason. In his original work however,
Stoner speculated that this temperature might be somehow related to the
Curie temperature. Unfortunately this assumption (of single particle excita-
tions) leads to Curie temperatures which are too high by a factor of 3 – 5. It
will be shown later that only collective excitations (like those which appear
in the Heisenberg model) which depend on the dynamical properties of the
susceptibility describe the Curie temperature properly.

In order to formulate the important Stoner criterion in a contemporary
way the derivation above is repeated in a more general form which does not
depend on the assumption of a parabolic band.

8.1 Pauli Susceptibility of the Itinerant Electrons

Applying an external magnetic field causes a splitting of the spin-up and
spin-down Fermi energies according to: ε± = ε0 ± μBHext. The band energy
is then given by

Eb =

εF∫
0

εN (ε) dε−

εF∫
ε−

εN (ε) dε+

εF∫
0

εN (ε) dε+

ε+∫
εF

εN (ε) dε .(8.16)

Carrying out the integration with the assumption of a rectangular DOS
(N (ε) constant around εF) yields

E = Ep −
N (εF)

2

(
ε2F − (εF − μBHext)

2
)

+
N (εF)

2

(
(εF + μBHext)

2 − ε2F

)
= Ep +N (εF)μ

2
BH

2
ext , (8.17)

where Ep is the contribution of the non spin-split (non-magnetic) density of
states. Taking the second derivative of E with respect to Hext yields the Pauli
susceptibility of the non-interacting electron gas as before (1.9):

χP = 2μ
2
BN (εF) .

8.2 Susceptibility of the Interacting Itinerant Electrons

The free energy for the interacting itinerant electrons can be obtained in
an analogous way but now by including the molecular field energy −IsM2/2.
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This term is completely analogous to (8.4). Is is again an effective interaction
parameter (like Θ), the so called Stoner exchange integral.

Eb =

εF∫
0

εN (ε) dε−

εF∫
ε−

εN (ε) dε+

εF∫
0

εN (ε) dε+

ε+∫
εF

εN (ε) dε

−
IsM

2

2
. (8.18)

Carrying out the same integration procedure as above gives analogously

E = Ep −
N (εF)

2

(
ε2F − (εF − μBHext)

2
)

+
N (εF)

2

(
(εF + μBHext)

2 − ε2F

)
−

IsM
2

2
. (8.19)

From the Pauli susceptibility (1.9) one obtains

μ2BH
2
extN (εF) =

M2

4μ2BN (εF)

which allows one to write the free energy as

E = Ep +
M2

4N (εF)μ2B
−

IsM
2

2
, (8.20)

which in turn leads again to the susceptibility of the interacting itinerant
electrons which now reads

χ =
χP

1− 2μ2BIsN (εF)
= χP S . (8.21)

It appears that for the interacting electron system the susceptibility is
no longer given by the bare Pauli term, but is enhanced by the factor
S = 1/

(
1− 2μ2BIsN (εF)

)
the Stoner enhancement factor. The discrepancies

between experiment and the non-interacting electron gas results can often be
explained by the exchange enhancement (see e.g. Pd).
The denominator again allows to formulate the Stoner criterion by de-

manding that the susceptibility must be positive in the minimum of the free
energy. If for M = 0, the susceptibility is negative one obtains that

2μ2BIsN (εF) > 1 . (8.22)

The quantity Is is called Stoner exchange integral (Stoner parameter) and is
found to be a quasi-atomic property which depends very little on chemical or
metallurgical effects (bonding, alloying etc.). Also the k-vector dependence
of Is is very weak (as one can expect for mean field property). Is can be
calculated from the exchange interaction, since the band splitting is given by
the expectation value of the difference of the spin up and spin down exchange
potentials. Values derived from electronic band structure calculations [88]
employing the KKR-method (Korringa–Kohn–Rostoker method) [89, 90] and
the local spin density approximation for exchange and correlation are given
in Table 8.1.
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Table 8.1. Stoner exchange integral Is and density of states at the Fermi energy
N (εF) for various metallic elements throughout the periodic table. a0 is the lattice
constant of the respective crystallographic unit cell

Element Structure a0 [bohr] N (εF)
[
Ry−1

]
Is [mRy]

Li bcc 6.42 3.25 172

Be fcc 5.96 0.36 156

Na bcc 7.7 3.1 134

Mg fcc 8.4 3.1 104

Al fcc 7.6 2.8 90

K bcc 9.45 4.9 98

Ca fcc 10.0 10.5 74

Sc bcc 6.74 16.5 50

Sc fcc 8.49 12 50

Ti fcc 7.56 11 50

V bcc 5.54 11 52

Cr bcc 5.30 4.7 56

Mn fcc 6.543 10.5 60

Fe bcc 5.15 21 68

Co fcc 6.448 15 72

Ni fcc 6.55 27 74

Cu fcc 6.76 2 54

Zn fcc 7.25 2 76

Ga fcc 7.83 2.8 74

Rb bcc 10.21 6 86

Sr fcc 10.88 2.1 62

Y fcc 9.23 9.5 48

Zr bcc 6.54 8.5 46

Nb bcc 6.2 9.5 44

Mo bcc 5.89 4.5 44

Tc fcc 7.28 8.5 44

Ru fcc 7.2 7.5 44

Rh fcc 7.24 9 48

Pd fcc 7.42 15.5 50

Ag fcc 7.79 1.8 60

Cd fcc 8.40 2.5 64

In fcc 8.95 3.4 30
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8.3 Non-linear Effects

There exist some systems which, although they do not fulfill the Stoner cri-
terion, show a local minimum in the free energy for finite magnetic moment.
This behavior eventually leads to an effect called metamagnetism which will
be discussed in Sect. 8.4.6. For these systems the application of an external
field leads to a first order phase transition from a low-moment to a high-
moment state. This means that up to the a critical field Hc2 the system
remains paramagnetic and then jumps to a finite moment. This behavior is
caused by a magnetization-dependent term in the susceptibility,

d2E (ζ)

dζ2
=

n2

2N (εF)

(
1− cζ2

)
− nkBΘ . (8.23)

with c given by

c =
1

8

n2

N (εF)
2

[
N (εF)

′′

N (εF)
− 3

(
N (εF)

′

N (εF)

)2]
. (8.24)

A detailed derivation of c is given in Sect. E. The equilibrium is again given
by dEdζ = 0

kBΘ =
n

2N (εF)

(
1−
1

3
cζ2

)
. (8.25)

Demanding a minimum at ζ = 0 one finds the condition

2

n
N (εF) kBΘ ≤ 1−

1

3
cζ2 . (8.26)

If c is negative, this condition will be fulfilled for all values of ζ. This is for
example the case when the Fermi energy lies in a maximum of the density
of states where N (εF)

′
= 0 and N (εF)

′′
< 0. If the Fermi energy lies in a

minimum of the DOS, c is positive and the condition will be violated for a
finite value of ζ. This means that the system will behave like an ordinary non-
magnetic one until this critical value of ζ is reached, where a phase transition
to a magnetic state sets in.
For c < 0 the magnetization dependence is, however

kBΘ =
n

2N (εF)

(
1 +
1

3
|c| ζ2

)
. (8.27)

8.4 Effects of High Fields at 0 K

Under an applied magnetic field the equilibrium condition is given by

dE (ζ)

dζ
= nμBHext . (8.28)
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Since this field adds to the molecular field, it increases the band splitting so
that ε± → ε̃± and ζ → ζ̃. The band splitting given by (8.11) then reads

ε̃+ − ε̃− = 2kBΘζ̃ + 2μBHext . (8.29)

Again one calculates the inverse susceptibility χ−1 = dζ̃
dHext

and obtains the
Wohlfarth–Gersdorf [86, 87] form of the high field susceptibility

nμ2B
χ
=
1

n

d2E (ζ)

dζ2
=
1

4
n

(
1

N (ε+)
+

1

N (ε−)

)
− kBΘ . (8.30)

Equation (8.30) not only describes the susceptibility of a paramagnetic sys-
tem under an applied field, but of course also the susceptibility of a ferro-
magnet (8.14) where the bands are split by the “molecular field”. From the
form of (8.30) it is obvious that the susceptibility becomes small if either
N (ε+) and/or N (ε−) are small. This means that strongly ferromagnetic
materials, where the spin-up band is filled with electrons and N (ε+) is thus
small, usually have a small susceptibility. In weakly itinerant systems where
both N (ε+) and N (ε−) are reasonably large also the susceptibility is large
as well.

8.4.1 Non-magnetic Limit

In the non-magnetic limit the energies ε+ and ε− become equal to εF so
that N (ε+) = N (ε−) = N (εF). It is easy to calculate that the high field
susceptibility reduces to

χ = 2μ2BN (εF)S = χPS

=
2μ2BN (εF)

1− 2
n
kBΘμ2BN (εF)

. (8.31)

The susceptibility χP is again the Pauli susceptibility of the non-interacting
electron gas, enhanced by the molecular field term. The quantity S is the
Stoner enhancement factor. In the case of Pd where the Fermi energy lies in
a region of large density of states (3.3), S is of the order 7 − 10 explaining
the earlier mentioned discrepancy between experiment and theory. Since the
susceptibility diverges as S →∞, (8.31) allows one to derive the Stoner cri-
terion as given by (8.15) and (8.22). The effect of exchange enhancement is
indispensable for the understanding of metallic magnetism. In the framework
of the Stoner model this quantum mechanical many-body effect is described
within the mean field approximation leading to an effective exchange para-
meter Is. Paramagnetic systems with large exchange enhancement are thus
on the verge to a ferromagnetic phase transition. One of the most striking
examples is the intermetallic compound TiBe2 which forms a cubic Laves
phase. Although consisting of two normally magnetically rather “inactive”
constituents, it exhibits a Stoner enhancement factor of S ≈ 30. Adding only
0.1% Cu leads to a slight increase of the volume which is sufficient to trigger
the phase transition towards magnetic order.
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8.4.2 Strong Ferromagnets

Equation (8.30) also describes the susceptibility in the magnetic state when
ε+ 	= ε− . In the case of a strong ferromagnet one spin band is fully occupied
so that N (ε+) is small or even zero. The susceptibility of such systems is
thus also small or zero because the spin splitting is saturated so that an
additional field cannot cause an significant additional magnetic moment. hcp
Co is a typical example for a strong ferromagnet (Fig. 8.6). The spin-up band
is completely filled and the the Fermi energy is separated form the top of the
spin-up d-band by the so called Stoner gap . The determination of the Stoner
gap by means of photo-electron-spectroscopy played an important role for
the understanding of magnetic ordering in solids.

8.4.3 Weak Ferromagnets

To calculate the susceptibility of a weak ferromagnet one replaces the two
terms appearing in (8.30) by the respective expressions given by (8.24) and
(8.25)

nμ2B
χ
=

n

2N (εF)

(
1 + |c| ζ2

)
−

n

2N (εF)

(
1 +
1

3
|c| ζ2

)
,

⇒ χ =
3μ2BN (εF)

|c| ζ2
, (8.32)

where a negative value of c is readily assumed (see discussion above) and ζ is
the respective equilibrium moment. Equation (8.32) demonstrates that weak
ferromagnets always have a high susceptibility.

8.4.4 bcc Iron and hcp Cobalt

To demonstrate the applicability of the theoretical results the densities of
states of representative systems are discussed. As examples of a more weakly
ferromagnetic and of a strongly ferromagnetic material Fe and Co are consi-
dered, respectively. In the case of bcc Fe (Fig. 8.5) the spin splitting (and the
magnetic moment) is determined by the position of the Fermi energy in a mi-
nimum of the spin-down DOS. This position is energetically more favorable
than for the formation of a strong ferromagnet with a completely filled spin-
up band. For both spin directions the value of the DOS at the Fermi energy
is finite so that bcc Fe is just weakly ferromagnetic. In Fig. 8.5 also the non-
magnetic DOS is shown (dotted line). In the non-magnetic case the density
at the Fermi energy is sufficiently large to fulfill the Stoner criterion. Cobalt
(Fig. 8.6) has one more electron and a different crystal structure (hcp). Due
to the larger number of nearest neighbors the density of states for the closed
packed systems (hcp and fcc) is much more compact and does not show these
pronounced minima and maxima as the in the bcc modification. Thus hcp
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Fig. 8.5. Density of states of bcc Fe. Ferromagnetic state (M = 2.2μB) (full line),
non-magnetic state (dotted line). In the non-magnetic state, the Fermi energy lies
in a region of high density of states which sufficient to fulfill the Stoner criterion

Co is a strong ferromagnet with the majority band being fully occupied. The
Fermi energy is positioned above the spin up d-band in a region of very low
DOS where mainly s-states exist. The resulting susceptibility is small.
In both systems it is found that the band splitting leaves the shape of the

two subbands almost unchanged. This behavior is called rigid band behavior.
It must be noted that this rigid band picture is at best valid for pure metals
or alloys between metals (magnetic) and metalloids (non-magnetic). In alloys
which consist of more than one magnetic constituent (e.g. FeCo) the interac-
tion between the different atoms leads to changes in the electronic structure

Fig. 8.6. Density of states of ferromagnetic hcp Co (M = 1.6μB)
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which go beyond this simple picture. The resulting magnetic interaction is
called covalent magnetism (Chap. 10).

8.4.5 Extremely High Fields

For extremely high magnetic fields one finds a deviation from the linear rela-
tion between field and magnetization. This can be understood by returning
to (8.14) and (8.23) to formulate

nμBHext =
dE

dζ
=

n2ζ

2N (εF)

(
1−
1

3
cζ2

)
− nkBΘζ . (8.33)

As a first approximation the ζ3 term can be neglected

nμBHext =
n2ζ

2N (εF)

1

S
,

and as a second step ζ is determined from (8.31)

nμBHext =
n2ζ

2N (εF)
− nkBΘζ −

1

3

n2c

2N (εF)

8N (εF)
3
μ3B

n3
S3H3ext .

Equating both approximations yields

n2ζ

2N (εF)

1

S
= nμBHext

(
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6

(
N (εF)

′′

N (εF)
− 3

(
N (εF)

′
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)2)
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2
ext

)
,

which allows one to calculate the magnetic moment M

M = 2μ2BN (εF)SHext

(
1 +
1

6

(
N (εF)

′′

N (εF)
− 3

(
N (εF)

′

N (εF)

)2)
S3μ2BH

2
ext

)
.

(8.34)

In powers of the external field Hext one finds that the next order term
is proportional to H3ext. Although c is usually rather small, this effect is
enhanced by the factor S3 which is large for weak ferromagnets. The sign of
c determines the direction of the deviation. Two cases are possible:

• c < 0,⇒ M shows a saturation behavior (Fig.8.7a);
• c > 0, dMdH diverges if Hext becomes large enough. This causes a first order
phase transition ⇒ metamagnetism (Fig.8.7b).

8.4.6 Metamagnetism

One of the most prominent representatives of metamagnetism [91, 92] is YCo2
[93, 94] which shows a first order phase transition to a magnetic state at a field
of about 70T [95]. Metamagnetism is also present in similar alloys of the same
structure type (cubic Laves phase [96]) like ScCo2 and the pseudo binaries
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Fig. 8.7. Depending on the sign of c, the magnetic moment can show a saturation
behavior (a) or a divergence (b)

Y(Co-Al)2 [100], Sc(Co-Al)2 [101], Lu(Co-Al)2 [102]. In the paramagnetic
state the Fermi energy is found near a minimum of the density of states, so
that the case c > 0 is realized. For ζ = 0 the Stoner criterion is not fulfilled
since the free energy rises with increasing ζ. Only for larger values of ζ does
the free energy drop again and a metastable minimum is found.

Fig. 8.8. Magnetization curves showing the metamagnetic transition (hysteresis)
in Lu(Co1−xAlx)2 for x = 0.06 at 4.2K

Figure 8.8 shows this behavior for the pseudo-binary cubic Laves phase
Lu(Co1−xAlx)2 with the characteristic non-linearity of the magnetization
curve above the critical field Hc2 [102]. The hysteresis found found for the
magnetization is typical for a first order phase transition. The critical field
can be calculated from the condition that the first and second derivative of
E(ζ) with respect to ζ must vanish

Hc2 =
n

3μBN (εF)

1
√
cS3

. (8.35)
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Fig. 8.9. Mechanism of a metamagnetic phase transition induced by an external
field Hext

Figure 8.9 explains how a metamagnetic transition happens. The zero
field energy E (ζ) shows an anomaly for finite ζ. Note that in the limit ζ = 0,
the energy has an upwards curvature which means that the Stoner criterion
is not fulfilled. For small moments the systems behaves like an ordinary non-
magnetic one. Applying an external field tilts the energy curve around the
origin because the external field enters the energy as −Hextζ. For a field Hc1
both possible minima have the same energy. At the field Hc2 one minimum
degenerates into a state where both the first and second derivative are zero.
Consequently the susceptibility at this point diverges and the system un-
dergoes a first order phase transition (discontinuous phase transition) to a
magnetically ordered state for finite ζ.
One finds that the existence of a metamagnetic phase transition is very

often coupled to a maximum in the temperature dependence of the suscep-
tibility. The reason is again the similarity between the coefficients a in χ(T )
(3.17) and c of χ(H) (8.24).

8.5 Susceptibility of Paramagnetic Alloys

As was shown in the previous section the Pauli susceptibility is enhanced by
the exchange interaction. Susceptibility and magnetic moment in a thermo-
dynamical sense are extensive variables (extensive variables scale with the
volume) (e.g. magnetic field or temperature do not!). If one wants to de-
termine the susceptibility per formula unit this can be done by taking the
density of states per formula unit or of the unit cell
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χc =

nc∑
i=1

χi , (8.36)

where the index c denotes “cell”.
In a more general approach to the problem defining a Stoner enhancement

factor for an alloy, Jarlborg and Freeman [97] devised a method for calculating
these values directly from the electronic band structure. They apply their
formalism to the strongly enhanced Pauli paramagnet TiB2 [98] and to the
very weak itinerant magnet ZrZn2 [99].

Fig. 8.10. Paramagnetic susceptibility of the alloy system Cu–Rh, calculation (full
line) in comparison with experiment [104] (dashed line)

In the example given here, the susceptibility of the system Cu1−xRhx [103]
(Fig. 8.10) is derived from the density of states (Fig. 8.11). Both pure Co and
Rh have fcc crystal structure. The alloy system, however, has a miscibility
gap between 0.2 ≤ x ≤ 0.9 which leads to a phase segregation. By rapidly
quenching from the melt one can stabilize an amorphous phase which has a
number of nearest-neighbors close to 12 as in the fcc system. For x = 0.75
one finds a pronounced maximum in the susceptibility which must have its
reason in the electronic structure.
If one calculates the densities of states (DOS) for an ordered fcc alloy one

can explain this effect (Fig. 8.11). For x = 1.0 the DOS for fcc Rh is shown.
It has the typical appearance for a 4d-metal in the fcc structure with a not
completely filled d-band. For Cu (x = 0.0) the 3d-band is completely filled and
the band width of the 3d-band is already reduced with respect to fcc Ni for
instance. The Fermi energy is in the region of the 4s-band where the DOS is
very small. This causes the Pauli susceptibility to be very small as well, so that
it is exceeded by the diamagnetic contribution of the completely filled shells
(Langevin diamagnetism) which shows up in experiment as a slightly negative
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Fig. 8.11. Densities of states of the alloy system Cu–Rh. Cu-DOS (full line), Rh-
DOS (dashed line)

value of χ for x = 0 (Fig. 8.10). On the Rh rich side the Fermi energy is found
in a region of relatively high DOS leading to a large exchange enhanced
susceptibility. For CuRh3 the Fermi energy is just below a pronounced peak
in the DOS. When, with further increase of the Rh concentration, the Fermi
energy passes this peak, the susceptibility shows a peak as well which explains
the experimental finding as being due to the peculiar electronic structure. The
comparison with experiment shows a satisfactorily agreement.



9. Band Gap Theory of Strong
Ferromagnetism

The Slater–Pauling (SP) curve (Fig. 5.1) shows two distinct branches with
slopes ±1. In the region of the positive slope one finds the weakly ferroma-
gnetic systems, in the region of the negative slope the strongly ferromagnetic
ones. How can one explain that behavior?
The total number of valence electrons Z and the magnetic moment M is

given by two simple equations

Z = n+ + n− , M = n+ − n− . (9.1)

From these relations one can eliminate either n+ or n− and obtain

M = 2n+ − Z , (9.2)

M = Z − 2n− . (9.3)

Equation (9.2) accounts for the descending branch of the SP-curve: If the
number of spin-up electrons n+ is constant, which is the case for strong
ferromagnetic systems, one finds a linear decrease of the magnetic moment
with increasing number of valence electrons. Equation (9.2) thus describes
the right, descending branch of the SP-curve. In the second case (9.3) one
assumes that n− is constant (which in fact means that n− is zero), so that
the magnetic moment rises with increasing Z. Equation (9.3) describes the
left, ascending branch of the SP-curve. There remains the question of why
either n+ or n− should remain constant. Basically Hund’s first rule explains
this feature. At first all spin-up electrons are added therefore n− is constant
because it is zero. Once one has added 5 electrons with spin-up (for a d-
band) the remaining electrons can only be added with spin-down; now n+

is constant because the spin-up band is already full. Ideally, for the first 5
electrons the magnetic moment rises linearly up to 5μB and for the second
5 electrons it drops again linearly and becomes zero when the band is full.
However, for itinerant systems one does not find 5μB since Hund’s rule is not
strictly valid as discussed earlier.
The strongly ferromagnetic systems are those where the spin-up band is

fully occupied. Here one notes that the Fermi energy is never found just at
the upper edge of the spin up d-band, but is always separated by a gap �εs.
This gap is called the Stoner gap. If one assumes the validity of a rigid
band model, the exchange interaction produces a transfer of electrons from
spin-down to spin-up. This process comes to an end when the total energy
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Fig. 9.1. Spin splitting for a strong
ferromagnet with a rectangular band

is minimized. To study this process in detail one considers a d-band which is
more than half filled. For simplicity a rectangular band is drawn in top panel
of Fig. 9.1 (which by the way is close to the band shape of a closed packed
transition metal).
In the bottom panel of Fig. 9.1 the integrated density of states, i.e. the

number of electrons, is plotted. The creation of a magnetic moment is caused
by the transfer of spin-down electrons to the spin-up band. Since with each
spin-down electron leaving its original (spin-down) band exactly one spin-up
electron is created, the resulting change in the occupation numbers is symme-
trical about the paramagnetic occupation number np. As the bandwidth of
the d-band is finite, the resulting energy splitting of a spin-up and spin-down
Fermi energy is not symmetrical about the paramagnetic value.
From the minimum condition for the total energy one derives the following

equilibrium condition for the spin splitting (compare to (8.11))

�ε = ε+ − ε− = IsM (9.4)

⇒
M

ε+ − ε−
= I−1s =

dM

dε
= H−1M .

The spin-splitting (band-splitting) comes to an end once the respective ma-
gnetic field is equal to the molecular field. In the case of the rectangular DOS
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this condition is given by the slope of the line connecting the points (ε+, n+)
and (ε−, n−). Since this slope is also given by the averaged DOS between ε+

and ε− one can formulate the following mechanism for the formation of a
magnetic moment: If the density of states is larger than I−1s the Stoner cri-
terion is fulfilled and the splitting starts spontaneously. This process comes
to an end when the equilibrium condition above is fulfilled. As long as both
Fermi energies are in a region of a high density of states the slope is constant
(for the rectangular band) and is given by M

ε+−ε− . However, if the spin-up
Fermi energy passes above the spin-up band the slope becomes smaller until
finally the equilibrium condition is met.
The second case which will be investigated is one where the DOS is not

of rectangular shape but shows a gap or at least a valley (even in the lat-
ter case the word gap will be used, although strictly speaking a gap is an
energy interval where the DOS is zero). Assuming that the DOS shows a
pronounced minimum which is of parabolic shape (top panel of Fig. 9.2) the
same derivation as above is applied. One finds that the existence of a mi-
nimum causes the slope M

ε+−ε− to vary rapidly. Such a gap is thus able to
stabilize the position of the spin-up Fermi energy. If, as in Fig. 9.2 (bottom
panel) the paramagnetic Fermi energy lies below the minimum of the DOS,
the spin-up Fermi energy will end up at a position slightly above the mini-
mum. This effect is also known as pinning. Further electrons can only enter
the spin-down band and thus reduce the net magnetic moment. This case
describes a quasi strongly ferromagnetic behavior on the descending branch
of the Slater–Pauling curve.
If the paramagnetic Fermi energy lies above the minimum, the spin down

energy becomes pinned and one describes a weakly ferromagnetic system.
Further electrons can only enter the spin-up band and the magnetic moment
increases. This is an example for the ascending branch of the Slater–Pauling
curve.
This latter case is found for bcc Fe. The minimum in the DOS pins the

spin-down Fermi energy and causes the weak itinerant behavior of iron and
the “too small” magnetic moment of 2.2μB. Band structure calculation of the
fcc Fe phase show that, for enlarged volume, fcc Fe would have a magnetic
moment of ∼= 2.6μB. The reason is the different DOS for a fcc structure
which does not show the pronounced gaps as for the bcc case. In fcc Fe the
Fermi energy does not become pinned in a gap, so that fcc Fe is a strong
ferromagnet like its right hand neighbors in the periodic table, hcp Co and
fcc Ni. Such calculations of seemingly hypothetical structures are not in the
least academic. Although fcc Fe does not exist as a bulk material, it can be
produced as an epitaxially grown thin film [105, 106] or as a precipitate in
a copper matrix [107]. In both cases the measured magnetic moment agrees
fairly well with the result from the band structure calculation.
At this point one has to redefine the terms “weak” and “strong” fer-

romagnetism. Following our investigations one finds strong ferromagnetism,
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whenever the Fermi energy is in a region of low DOS. The lower the DOS is,
the stronger the ferromagnetism becomes. The reason is that the DOS deter-
mines the susceptibility (8.30) which is the response function of the system.
If the susceptibility is small also the response of the system to an external
perturbation such as field, pressure etc. is small because the magnetic mo-
ment cannot follow the perturbation. The occurrence of the Fermi energy in
a gap or above the spin-up band, leads to a similar strongly ferromagnetic
behavior [108].
At this point it becomes clear why bcc Fe behaves so strangely. According

to the older definition bcc Fe would be a weak ferromagnet because the spin-
up band is not completely filled. From experiment one would expect bcc Fe to
be more on the stronger side, because the magnetic moment is large so that
the susceptibility is not too high and the pressure dependence of the Curie
temperature and the magnetic moment are very small. Only the position of
the Fermi energy in a gap can explain this situation so that bcc Fe is near
to the transition from a weakly to strongly ferromagnetic system and is thus
found on the top of the Slater–Pauling curve, where both branches intersect.

Fig. 9.2. Spin splitting over a gap state
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9.1 Magnetism of Alloys

In the following section it is demonstrated that the magnetic moment of an
alloy between a magnetic host lattice (mostly Fe, Co, or Ni) and a dissolved
constituent, the solute, (mostly non-magnetic transition metals or metalloids)
can easily be calculated if strongly ferromagnetic behavior is present. One
considers an alloy of the composition A1−xBx , where A is the host and B
the solute. The average moment per atom is given by

μav = μA (1− x) + μB (x) = n+ − n− . (9.5)

The average valency, i.e. the number of electrons outside the last completely
filled shell, is the sum of spin-up plus spin-down electrons

Zav = ZA (1− x) + ZB (x) = n+ + n− . (9.6)

Eliminating n+ or n− one obtains as before

μav = 2
(
n+sp + n+d

)
− Zav , μav = Zav − 2

(
n−sp + n−d

)
. (9.7)

The number of valence electrons are now split into a contribution due to the
s and p states nsp and one due to the d states nd. Assuming that either n

+
sp

and n+d or n
−
sp and n−d is constant under alloying one finds

μav = μ0A − x (ZB − ZA) , μ0A = 2
(
n+sp + n+d

)
− ZA , (9.8)

μav = μ0A + x (ZB − ZA) , μ0A = ZA − 2
(
n−sp + n−d

)
, (9.9)

where μ0A is the host moment. Again one describes the change of slope dis-
tinguishing the two branches of the Slater-Pauling curve.
As an interlude a brief historical review is given here. The relations above

were formulated for the first time by N.F. Mott [27] in 1935. For conventional
strong ferromagnets he assumed that the spin-up band is filled so that 2n+ =
10. Mott also assumed that nsp is constant but he had severe difficulties
justifying this assumption. This simple model led to useful results for Ni-Cu,
Ni-Zn, Ni-Co, Co rich Fe-Co, and Ni rich Fe-Ni alloys, all of which are found
on the descending branch of the SP curve. The second form (9.9) explains
the weakly ferromagnetic systems like Fe-Cr and Fe rich Fe-Co where one
assumes that the rigid band model is valid and Co and Cr (in these alloys)
form similar band structures to bcc Fe (an effect which is called “common
band behavior”). If the Fermi energy is pinned in a gap, n−d stays constant
and one describes the ascending branch of the SP-curve (see Fig. 5.1). This
model explains, for instance Fe-Co, Fe-Cr, and Fe-V.
Despite this success, the rigid band model ran into trouble, because with

the publication of the first band structure calculations it became clear that
the bands of the solute were far from rigid. This led to criticism of the rigid
band model formulated as: “success based on canceling mistakes”.
The first modification which accounted for the new band structure results

was formulated by J. Friedel [109]. He found out that in alloys between consti-
tuents at the beginning or the end of the transition metal series, the strongly
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repulsive potential of the host causes a solute state close to the Fermi energy
which contains room for 10 electrons (impurity state). If the Fermi energy
is again pinned in the gap between the host d -band and the impurity peak,
Friedel modified the equations accordingly

μav = μ0A − x (10 + ZB − ZA) . (9.10)

This generalization now explains most of the side branches appearing in the
SP-curve such as Co-Cr, Co-V, Ni-Cr, and Ni-V.
Although the models satisfactorily explain the magnetic moments of tran-

sition metal alloys it is not clear how one has to alter the theory to describe
alloys between a magnetic transition metal and a non-magnetic metalloid
such as B, Al, or Si. If one replaces a strongly ferromagnetic transition metal
by a metalloid one effectively reduces the number of spin-up d-electrons by
5 while at the same time the number of sp-electrons should stay constant.
This is questionable insofar as from the position in the periodic table one
would expect that those metalloids which occur on the right hand side of
the periodic table should have fully occupied s-bands and partially occupied
p-states. It is thus surprising that experimental data of Ni-Al, Ni-Ge, Ni-Si
actually confirm the fixed number of sp-electrons.
The Ni alloys became famous for a different reason. By chance Ni has

exactly 10 valence electrons. This reduces the Friedel formula (9.10) to1

μav = μ0A − xZB . (9.11)

How can one understand the constancy of the nsp electron number and
why is it possible that metalloid atoms which have a large number of s- and
p-electrons leave this nsp number unchanged?
When one adds metalloid atoms one has to consider two effects which are

able to create sp-electrons in the host:
i) The attractive potential of the metalloid shifts unoccupied sp-states

below the Fermi energy where they become occupied. This effect would lead
to an increase in the nsp number and is called “new state filling” and is a
covalent bonding which occurs in metals and alloys.
ii) The alternative process is “polarization” of the occupied states of the

host. States in the host are composed of linear combinations of states of
nearest-neighbors. These are already occupied, so that this mechanism does
not increase the number of sp-states.
From band structure calculations one finds that the latter case occurs

much more often than the first one, thus the number of nsp remains unchan-
ged. The reason is found in the so called hybridization gap which is caused
by the interaction between the sp- and the d-states of the host. Even if the
potential of the solute is attractive it would cost a lot of energy to move

1 There exist a number of publications where this formula is used for other systems
as well (as a counterexample to the rigid band picture) although it is only valid
for Ni alloys with B atoms from the beginning of the transition metal series.
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states across that gap. Thus this mechanism is suppressed in favor of the
polarization. The hybridization gap is thus the reason that the sp-potential
is shielded by the polarization. This effect is also called Fano–anti-resonance.
This terminology is chosen in analogy of the p- and d-resonance (Wigner de-
lay time [110, 119]) which leads to peaks in the density of states. Figure 9.3
shows this anti-resonance for the intermetallic compound CoAl.
Having found an argument why nsp should stay constant one can go back

to our original problem. One defines a magnetic valence [111] Zm,av by

Zm,av =
∑
i

xiZ
i
m ,with Zim = 2n

+
di − Zi . (9.12)

In the case of a binary alloy this gives

Zm,av = (1− x)
(
2n+dA − ZA

)
+ x

(
2n+dB − ZB

)
. (9.13)

The average magnetic moment is then

μav = 2n
+
sp + Zm,av . (9.14)

The magnetic valence as defined by (9.12) of Fe, Co, Ni, Cu, Zn are
2, 1, 0,−1,−2. The respective values for the metalloids B, Si, P are−3,−4,−5.

As an example the magnetic moments of the transition metal borides
MnB, FeB, CoB are calculated and compared to experiment; n+sp = 0.5:

MnB: Zm,av = 0.5× 3 + 0.5× (−3) = 0 μav = 1 + 0 = 1μB
FeB: Zm,av = 0.5× 2 + 0.5× (−3) = −0.5 μav = 1− 0.5 = 0.5μB
CoB: Zm,av = 0.5× 1 + 0.5× (−3) = −1 μav = 1− 1 = 0μB

Fig. 9.3. Density of states for the sp-states (upper panel) and total DOS (lower
panel). In both panels the DOS is given per formula unit CoAl
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Since the metalloid atom (boron) does not carry a magnetic moment,
the “average” moment μav must reside entirely at the transition metal. This
yields μMn = 2μB, μFe = 1μB, and μCo = 0μB. If one compares these values
with experiment one finds a fair agreement: MnB: 1.83μB/Mn-atom, FeB:
1.12μB/Fe-atom, CoB is non-magnetic [112].
This simple method of determining the magnetic moment of an alloy bet-

ween a magnetic and a non-magnetic constituent can of course never replace
the experiment or a full bodied electronic structure calculation. However, it
provides a tool to acquire a certain feeling about what size of a moment can
be expected. This feeling proves to be rather helpful when it comes to the
interpretation or evaluation of experimental or theoretical results.



10. Magnetism and the Crystal Structure –
Covalent Magnetism

Since the carriers of magnetism in the transition metals are the d-electrons it
is obvious that the description of the metallic properties via the free electron
model has its limitations. The d-electrons are much more tightly bound than
the s-electrons and they form directional bonds. A picture like this is typical
for a covalently bound solid. However, metals are not completely covalently
bound (like diamond) since they show metallic conductivity. A characteri-
zation which probably describes the covalency in metals best was given by
V. Heine: “metals are systems with unsaturated covalent bonds” [113]. This
characterization not only account for the directional (covalent) bonds which
are responsible for the crystal structure but also for the typical metallic pro-
perties which distinguish metals from insulaters. The electrons which partly
occupy the orbitals formed by the covalent interaction have a relatively high
“resonance” energy which makes it easy for them to hop from atom to atom
as required for a true metal. This “chemical” picture can even be applied
to explain where the particular shape of the DOS in metals comes from. As
an example the schematic DOS of the d-electrons in a bcc metal (like non-
magnetic iron) will be derived. Figure 10.1 shows the local environment of
an atom in the bcc structure. The central atom is surrounded by a nearest-
neighbor (n.n.) shell of 8 atoms (black circles) at a distance of a0

√
3/2 and a

next-nearest-neighbor (n.n.n.) shell of 6 atoms (grey circles) at a distance of
a0.

Fig. 10.1. Nearest-neighbor (n.n.) and
next-nearest-neighbor (n.n.n) shells in a
bcc structure. a0 is the lattice constant
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To describe the interactions for this cluster one has to distinguish bet-
ween stronger n.n. interactions along the shorter n.n.-distance and weaker
n.n.n. interactions. The left panel of Fig. 10.2 shows the interaction of two
free atoms using a molecular-orbital (MO) diagram. When the two atoms are
brought together, their atomic wavefunctions start to overlap and form hy-
brid orbitals. Within a tight binding model (Chap. 4), these hybrid orbitals
can be described as linear combinations of Wannier functions. These hybrid
orbitals split into a bonding and an anti-bonding (marked by ∗) orbital. The
width of the splitting depends on the energy difference of the respective ato-
mic states and for most on the spatial separation of the two atoms. The
splitting becomes large if the energy separation is small and the atoms are
close together, and vice versa. In the present case of a bcc environment, there
exist 8 neighbors at a closer distance of a0

√
3/2. Their atomic wave functions

overlap strongly and form the wide split bottom and top hybrid orbitals. The
n.n.n. shell is located at a distance of a0. Consequently the overlap between
the atomic wavefunctions is smaller and the resulting energy splitting of the
hybrid orbitals as well. This interaction leads to the two orbitals in the center
of the MO-diagram. Each atom now provides a number of electrons which fill
the newly formed hybrid orbitals.
The MO-diagram describes the interactions still on a molecular level.

Assuming that a periodic solid is formed of a periodic array of such molecules,
it is easy to understand that the energetic sequence of the hybrid orbitals
will also be present in the solid. However, the molecular energy levels will
form bands and thus will be broadened according to the strength of the
interactions. The right panel of Fig. 10.2 shows the transformation of the

Fig. 10.2. Left panel: MO-diagram for the interaction of 2 atoms in a bcc environ-
ment; Right panel: transformation of the energy levels of the hybrid orbitals into a
density of states (DOS)
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MO-diagram into the respective density of states of a periodic solid with bcc
structure. The DOS consists of two major features:

• The strong n.n. interaction leads to a broad peak (bonding states) at low
energy and a similar one at the top of the DOS (anti-bonding states).
• In the center of the DOS one finds a double peak which stems from the
weaker n.n.n. interaction. Also this peak consists of a bonding and an anti-
bonding component at its bottom and top energy, respectively. Due to
the broadening of the band states, these bonding and anti-bonding states
largely overlap and form the pronounced double peak.

This central peak is a peculiar feature of the bcc structure. Since it con-
sists of a mixture of bonding and anti-bonding states its contribution to the
chemical bond is rather weak so that it is often also referred to as “transition
metal non-bonding peak”. The DOS which has been derived here should di-
rectly be compared to the result of a full band structure calculation as shown
in Fig. 8.5 for bcc Fe. Such calculation yields almost exactly the shape which
has been derived on the basis of the MO-diagram. The fact that the shape of
the DOS of the d-electrons of a solid can be described along these line justi-
fies the earlier statement about the covalent interactions present in a metallic
solid. The common picture of a metallic state which consists of a positively
charged lattice of atomic cores and the freely moving valence electrons ob-
viously breaks down once the much more localized d-electrons enter the game.
The discussion given here is of course not restricted to non-magnetic solids.
It is easy to generalize this picture to magnetically split states where atomic
orbitals of like spin will interact to form spin dependent hybrid orbitals.

10.1 Crystal Structure of Mn, Fe, Co, and Ni

Comparing iso-electronic elements one finds that these elements not only
have comparable chemical properties but also group together in their crystal
structure. This tendency to form groups of like crystal structure is not only
restricted to the transition metals but holds, with very few exceptions, for
the whole periodic table [114]. Figure 10.3 shows an excerpt from the periodic
table concentrating on the s-d transition metal series. All three series show
the same structural trend as a function of the number of valence electrons:
hcp→bcc→hcp→fcc. This behavior can be traced back to the electronic stru-
cture and the interaction of the s- and d-band in these elements [117]. The
magnetic elements Mn, Fe, and Co however, deviate from this general trend.
Mn which would be expected to be hcp, forms a highly complicated structure
type (α-Mn structure) with 58 atoms per unit cell. Also its magnetic struc-
ture is extremely complicated exhibiting anti-ferromagnetism together with
non-collinear spin ordering. The most stable form of Fe is the bcc structure
although Fe would actually fall into the hcp group. At T = 0K Co is hcp and
not fcc as expected. One should note that Co shows a crystallographic phase
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transition towards the fcc structure already below the Curie temperature.
This suggests that both the hcp and the fcc modification in Co must have
comparable energies. This is not surprising, since the two close packed stru-
ctures (hcp and fcc) are closely related to each other (both structures have
12 nearest neighbors and differ only in the stacking sequence along the [111]
direction). The reason why Mn, Fe, and Co fall out of the general trend must
thus be caused by their magnetic order. The number of valence electrons
n↑ + n↓ is the sum of the s- and the d-electrons. Assuming a spin-up and a
spin-down band n↑ and n↓ are the same for the non-magnetic elements. For
the magnetic elements magnetism causes a band splitting and thus a different
occupation for the spin-up and the spin-down band. If one assumes that, for
simplicity, the spin-up d-band is full with 5 electrons (like in a strong ferro-
magnet) the remaining electrons occupy the spin-down band which makes 2,
3, and 4 spin-down electrons for Mn, Fe, and Co, respectively (see the grey
shaded box in Fig. 10.3).

Fig. 10.3. Explanation of the deviations from the usual crystal structure for Mn,
Fe, and Co
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From the theory of the chemical bond it is known that filled electron
shells do not contribute to the bonding. This means that for Mn, Fe, and
Co the full spin-up band can be neglected and the electronic and structural
properties are governed by the partially filled spin-down band. Since the
crystal structure is determined by the number of valence electrons in the
partially filled band, Mn, Fe, and Co behave as if they would have 2, 3, and
4 valence electrons which are responsible for the chemical bond and thus for
the crystal structure. Fe thus falls in the Cr, Mo, W group and thus adopts
the bcc structure. Co falls in the Ru, Os group and becomes hcp (note that
the fcc region is however very close) [115]. Mn, as mentioned above, is rather
a case in itself. The fact that for the magnetic elements the spin-up electrons
do not contribute to the bonding also leads to a significant reduction of the
bulk modulus. Concomitantly one also observes an increase in volume, an
effect which is known as volume magnetostriction.

10.2 Covalent Magnetism

Another direction of approach to the problem of the magnetism of alloys is
covalent magnetism[116]. As an example, the system Fe-Co is chosen. The
two metals are neighbors in the periodic table which makes them very similar
concerning their electronic structure. They also have almost the same electro-
negativity so that any substantial charge transfer between them can be ruled
out. Pure Fe and pure Co crystallize bcc and hcp, respectively. Fe1−xCox
for x ≤ 0.8 also crystallizes in a body centered structure forming an alloy
where the Fe and Co atoms randomly occupy the lattice sites. On alloying
they will form a common band as long as the energies of the respective Fe-
and the Co-states are comparable. If one were to just assume a rigid band
behavior one would simply fill this bcc band with the necessary number of
electrons. This would mean however that one allows a charge transfer of half
an electron from cobalt to iron. This charge transfer, as mentioned above,
is completely unphysical, not only due to the comparable electronegativities
but also due to the metallic character of the bond. In addition because of
electrostatics, a charge transfer is energetically always very “expensive”. Ho-
wever if one performs a band structure calculation one finds that only for
the fully occupied spin-up band the common band picture is valid (where
one has the same number of electrons for both spin-up Co and spin-up Fe
namely 5). This is not the case for the spin-down bands and there it is where
covalent magnetism occurs. Fig. 10.4 shows how this interaction can be un-
derstood from a simple molecular orbital (MO) scheme. One starts from the
non-spinpolarized states of Fe and Co. Due to the additional electron the Co
states will be lower in energy than the Fe ones. If one now allows for a band
splitting, Fe will show a larger splitting that Co. Since only states with like
spin can interact, Fe and Co spin up, which are about at the same energy
will form a common band. For the spin down states, an energy difference
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Fig. 10.4. MO diagram of the interaction in FeCo and its translation into the
density of states

occurs. When these states form a molecular (hybrid) orbital, the occupation
with electrons will be inversly proportional to the energy difference between
the atomic level and the MO-level. This means that for the spin down bon-
ding MO more Co that Fe electrons will be transferred and vice versa for the
antibonding state (this process is sketched by the variable length of the spins
arrows). If this picture is now translated into a density of states (right panel
of Fig. 10.4), it leads to an unperturbed DOS for spin up (the Co-DOS, dot-
ted, is slightly shifted to make it visible) and a distortion for the spin down
DOS according to the MO mechanism described before.

Fig. 10.5. Density of states of the alloys FeCo. Fe-DOS (full line), Co-DOS (dotted
line)
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Fig. 10.6. Schematic view of the interaction in ZrFe2 leading to the ferrimagnetic
coupling of the Zr moment

Fig. 10.5 shows an actual DOS from a calculation of the electronic band
structure. One identifies exactly the mechanism described for Fig. 10.4 with
a common band for the spin up DOS and the redistribution of spectral weight
in the spin down band. Since this redistribution enhances the number of Co
states below εF , Co can accommodate its additional electron without the
need of a charge transfer.
Another example of covalent magnetism is found in the cubic Laves phase

compounds e.g. ZrFe2 [118] (Fig. 10.6). Here an intermetallic compound bet-
ween a magnetic and a non- magnetic partner is formed. One again starts from
the non-magnetic states, where Zr, because of its small number of valence ele-
ctrons will be higher in energy than Fe. The peculiar energetic position of
the Fe and Zr states causes a magnetic moment at Zr which is antiparallel to
the moment on Fe although pure Zr does not show a spontaneous magnetic
moment. The occupation of the resulting MO’s follows the arguments given
in the description above. The result can also be used to determine the mutual
magnetic polarization, by just adding up the length of the spin-up and spin-
down arrows for the occupied states (below εF ). One finds that the moment
of Fe is reduced with respect to pure Fe and that at Zr a magnetic moment
is formed which is antiparallel to the Fe moment. The mechanism demons-
trated here for ZrFe2 has been generalized as “covalent polarization” [161].
One finds that for an alloy between a magnetic and a non-magnetic partner,
the polarization on the non-magnetic site is anti-parallel for an atom from
the beginning of a series in the periodic table (small number of valence ele-
ctrons). Changing the non-magnetic alloy partner through the series results
in a progressive lowering of the anti-parallel polarization until in the second
half of the series a parallel polarization occurs.
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Fig. 10.7. Densities of states for the ordered phases of the alloy system Fe-Co.
The DOS shown is the total DOS per unit cell and spin divided by the number
of atoms per unit cell (normalized to one atom); spin-up DOS: full line, spin-down
DOS: dashed line

As a final example again the alloy system Fe-Co is discussed. Up to about
80% Co, Fe-Co forms a body centered alloy and for higher Co concentrations
a transition to the hcp structure is observed. In the example given here, the
system Fe-Co will be simulated by assuming ordered structures of the bcc
type. For Fe3Co and Co3Fe the Heusler structure was assumed. In this stru-
cture which is of the general type ABX2 there exist always either two types
of Fe atoms (Fe3Co) of two types of Co atoms (Co3Fe) which differ by their
nearest-neighbor coordination. In Fig. 10.8 these local coordination shells are
shown explicitly. Figure 10.7 shows the DOS for the systems bcc Fe, Fe3Co
(Heusler structure), FeCo (CsCl-structure), FeCo3 (Heusler structure), and
hypothetical bcc Co. (The hypothetical bcc Co structure was also calcula-
ted to simulate a complete miscibility). Already in Fe3Co the Fermi energy
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Fig. 10.8. Magnetic moments for Fe and Co in the alloys system Fe-Co (after
[119]). It is found that the magnetic moment for Fe depends strongly on the type
of neighboring atoms, whereas the moment of Co does not

is pushed above the spin-up band but remains pinned in a minimum of the
spin-down band. The system is close to a transition to a strong ferromagnet
and the magnetic moment per unit cell is a maximum.
In FeCo the splitting is again increased but for Fe the maximum moment

is reached for 2.6− 2.7μB being at the border line of a strongly ferromagne-
tic system. One finds that the magnetic moment of Co remains unchanged.
In [119] a second modification of the FeCo alloy has been studied as well.
This is the Zintl-phase (NaTl-structure) where each atom is surrounded by
4 neighbors of its own and 4 of the other kind. Fe which lies between the
weakly and strongly ferromagnetic regime changes its moment according to
the coordination having the smaller moment when being surrounded by 8
atoms of its own kind thus being “closer” to bcc Fe.
In FeCo3 the moment of both alloy partners is saturated and one finds

a strong ferromagnet. The magnetic moment of Co is as large as in pure
(hcp) Co. This constancy of the magnetic moment of Co demonstrates once
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more that for a strongly ferromagnetic system the magnetic moment does
not depend on the crystal structure and on the chemical environment.
It is also interesting to ask how the magnetization density (this is the

difference between the spin-up and the spin-down electron density) is distri-
buted within a magnetic solid. Such an analysis can be drawn from neutron
diffraction experiments or, nowadays much more easily, from calculations of
the electronic structure. Figures 10.9 and 10.10 shows the result of a full po-
tential LMTO (Linear Muffin Tin Orbital) calculation for the ordered phase
of FeCo in the CsCl structure. It can immediately be seen that the ma-
gnetization density is far from being uniformly distributed over the whole
crystal as one would expect for an itinerant electron magnet. However, this
is not really surprising, since the carriers of the magnetic moments are the
d-electrons which are certainly not delocalized themselves. This result again
demonstrates that the assumption of free electrons in a metal is over idea-
lizing the actual situation when it comes to the transition metals. Since the
magnetization density is produced by the comparably narrow 3d-bands is
appears to be fairly localized around the atomic positions. But there is one
more fact to be noticed: From the contour-plot (Fig.10.10) one notices that
the spin density, and also the charge density, is strongly aspherical. This as-
phericity is particularly pronounced for Co. This feature is again a direct
consequence of the covalent interactions present in the FeCo alloy. Howe-
ver, at this point of the book the reader should no longer be surprised that
the magnetic transition metals are not very good examples for true itinerant
electron ferromagnets. After all, one hardly knows better ones.

Fig. 10.9. Magnetization density in a [011] plane for the ordered phase of FeCo
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Fig. 10.10. Magnetization density contours in an [011] plane for the ordered phase
of FeCo. The asphericity of the spin density around the Co atom is clearly visible

10.3 Covalent Polarization

When a magnetic atom is inserted into a non-magnetic host lattice, the atoms
of the host become polarized by this magnetic impurity and show a magne-
tic moment. In the limiting case of the free electron gas, this polarization is
described by the RKKY interaction (see Chap. 11). In a more realistic des-
cription of a solid, the electronic states of the magnetic impurity atom will
interact with the neighboring atoms of the host. Since this interaction can
again be described on the basis of a molecular orbital picture, one can derive
a model which is based on the covalent interaction of the impurity with the
host electronic states. As long as the concentration of the magnetic impu-
rity atoms is low, these atoms will form fairly localized states, so that these
impurities behave like almost free atoms. The host lattice remains almost
unperturbed by the presence of these impurities, apart from the magnetic
polarization described herein. In Fig. 10.11 the assumed energetic scheme is
shown. The electronic structure of the non-magnetic host is described by a
density of states, which for simplicity is assumed to be of rectangular shape
N (ε) = const. The localized impurity atom is assumed to have two atomic
like energy levels E↑ and E↓ for spin-up and spin-down electrons, respecti-
vely. This magnetic splitting occurs symmetrically around a non-magnetic
state E0. The spin-split energy levels E

↑ and E↓ interact with the respective
states of the host band h22 from the bottom of the host band up to the Fermi
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Fig. 10.11. Energy level scheme to determine covalent polarization. The host states
are drawn as a rectangular shaped density of states (grey shaded rectangle), the
impurity state E0 is split magnetically into E

↑ and E↓ which interact with the host
state. For simplicity only the covalent interaction between E↑ and h22 is shown

energy εF . The strength of this interaction will be described by a single pa-
rameter h12 which in fact is given by the overlap between the respective wave
functions of the impurity atom and the host atoms. In the picture of cova-
lency, this interaction leads to a splitting of the energy levels E↑ and E↓ into
the eigenvalues E↑1 , E

↑
2 and E↓1 , E

↓
2 which are given by

E↑↓1 =
E↑↓ + h22
2

−
1

2

√
(E↑↓ − h22)

2
+ 4h212 ,

E↑↓2 =
E↑↓ + h22
2

+
1

2

√
(E↑↓ − h22)

2
+ 4h212 . (10.1)

If Ψimp
(
E↑↓

)
is the respective wave function of the impurity atom for the

energy E↑↓ and Ψhost (h22) is the wave function of the host, the total wave fun-
ction Φ can be written as a linear combination of Ψimp

(
E↑↓

)
and Ψhost (h22)

which reads

Φ = CAΨimp
(
E↑↓

)
+ CBΨhost (h22) . (10.2)

The total energy Etot of the interacting system is calculated from Etot =
〈Φ |H|Φ〉 where H is the Hamiltonian describing the interaction giving

Etot = C∗ACA 〈Ψimp |H|Ψimp〉︸ ︷︷ ︸
E↑↓

+C∗BCB 〈Ψhost |H|Ψhost〉︸ ︷︷ ︸
h22

+ C∗ACB 〈Ψimp |H|Ψhost〉︸ ︷︷ ︸
h12

+C∗BCA 〈Ψhost |H|Ψimp〉︸ ︷︷ ︸
h21

, (10.3)

where its was assumed that both Ψimp and Ψhost are normalized to 1. CA and
CB are the linear combination coefficient which themselves obey the norma-
lization condition C2A +C2B = 1. Minimizing the total energy with respect to
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the two linear combination coefficients leads to a set of homogeneous linear
equations

∂Etot
∂C∗A

= CAE
↑↓ + CBh12 = 0

∂Etot
∂C∗B

= CAh21 + CBh22 = 0 . (10.4)

The secular equation of this problem is given by the determinant of the
coefficients of (10.4). Due to the hermicity of the problem h12 = h21 so that
the secular equation reads(

E↑↓ − λ
)
(h22 − λ)− h212 = 0 (10.5)

The two solutions for λ are the energies given by (10.1) Form this result CA
and CB become

C2A

(
E↑↓1

)
=

h212

h212 + (E
↑↓ −E↑↓1 )

2
, (10.6)

C2A

(
E↑↓2

)
=

h212

h212 + (E
↑↓ −E↑↓2 )

2
, (10.7)

C2B

(
E↑↓1

)
=

(E↑↓ −E↑↓1 )
2

h212 + (E
↑↓ −E↑↓1 )

2
, (10.8)

C2B

(
E↑↓2

)
=

(E↑↓ −E↑↓2 )
2

h212 + (E
↑↓ −E↑↓2 )

2
. (10.9)

The interaction will modify the density of states of the host in a diffe-
rent way for the spin-up and spin-down states. The magnetic moment which
results from this interaction is given by the difference of the spin-up and
spin-down host electrons N↑host and N↓host

N↑host =

εF∫
0

N (h22)

2

[
C2B

(
E↑1

) dE1 (E↑)
dh22

+ C2B

(
E↑2

) dE2 (E↑)
dh22

]
dh22 ,

(10.10)

N↓host =

εF∫
0

N (h22)

2

[
C2B

(
E↓1

) dE1 (E↓)
dh22

+ C2B

(
E↓2

) dE2 (E↓)
dh22

]
dh22 .

(10.11)

Putting everything together one obtains for the magnetic moment of the host
lattice Mhost = N↑host −N↓host
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Mhost =

εF∫
0

N (h22)

2

×

(
E↑ −E↓

) (
E↑ +E↓ − 2h12

)
h212 dh22

(E↑2 + 4h212 − 2E
↑h22 + h222) (E

↓2 + 4h212 − 2E
↓h22 + h222)

.

(10.12)

Carrying out the integration and considering our assumption of a rectangular
density of states N (ε) = N (εF) = const. yields

Mhost =
h12
2
N (εF)

[
arctan

(
E↓

2h12

)
− arctan

(
E↑

2h12

)

− arctan

(
E↓ − εF
2h12

)
+ arctan

(
E↑ − εF
2h12

)]
.

Expanding the arctan (x) = x − x3

3 + . . . and identifying the spin splitting
of the impurity atoms as ΔE given by ΔE = E↑ − E↓ and E↑ + E↓ = 2E0
yields

Mhost = −
N (εF) εF
8h212

ΔE
(
E0 −

εF
2

)
. (10.13)

Equation (10.13) describes the polarization of a host lattice by a magnetic
impurity and is called “covalent polarization” [161]. It is physically intuitive
that the magnetic moment scales with the spin-splitting ΔE and thus with
the impurity moment. If one expresses the spin splitting ΔE in terms of
the impurity moment Mimp and the respective Stoner factor I

imp
S as ΔE =

I impS Mimp one finds a linear relation between the band filling expressed in
terms of E0 and the polarization ratio Mhost/Mimp.

Mhost
Mimp

= −
N (εF) εF
8h212

I impS

(
E0 −

εF
2

)
. (10.14)

What is surprising is the fact that the sign of the polarization depends on
the energetic position of the impurity states with respect to the Fermi energy.
For impurities with a less than half filled shell, E0 will be larger than εF/2
so that the resulting host polarization will be antiparallel to the impurity
moment. For an impurity atom with a half filled shell E0 will become about
equal to εF/2 so that Mhost will be close to zero. Consequently for impurity
atoms with a more than half filled shell the host polarization is parallel to the
impurity moment. This behavior is shown in Fig. 10.12 where results from
an ab initio band structure calculation of the “giant moment” system Pd-
TM (TM=transition metal) are plotted as a function of the type of impurity
atom (=position of E0) [161]. For a Cr impurity with a less than half filled
shell the resulting polarization is negative. For Mn with its half filled d shell,
although its magnetic moment is close to 4μB, the polarization is close to
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Fig. 10.12. Polarization ratio between the host moment MPd per cell and the
impurity moment MPd as a function of the impurity atom. The data are taken
from calculations of a Pd31TM supercell, where TM = Cr, Mn, Fe, Co, Ni. The
dotted line is a linear least square fit to the data

zero. Ni with its almost completely filled shell causes the large polarization
although its magnetic moment is only 0.84μB.
Calculations of the magnetic structure of such impurity systems confirm

the simple linear dependence of the host polarization as a function of the band
filling [120, 121]. This result can also be compared to earlier investigations
which arrive at similar conclusions [122]–[125].



11. Magnetic Impurities in an Electron Gas

J. Friedel [109] noted that an impurity put in a gas of free electrons (jel-
lium) causes an oscillatory perturbation of the electron density around it,
which shields the impurity. The charge density oscillations are called Friedel
oscillations. The physical origin for this perturbation is the scattering of the
free electrons at the impurity potential. The magnetic analogue is the Ru-
dermann, Kittel, [126] Kasuya [127], and Yoshida [128] (RKKY) interaction
which describes the interaction between a localized magnetic impurity and
the surrounding electron gas. The RKKY interaction caused by the super-
position of the charge density oscillations of the spin-up and the spin-down
electrons giving rise to a spin density oscillation.

11.1 Impurity Potential in the Jellium

In the jellium model of a solid it is assumed that the positive charge of the
cores is continuously smeared out to form a constant positive background.
The electron density is thus also constant and the respective eigenfunctions
are plane waves exp (ikr). If one inserts an impurity potential V0 (r) it will
become shielded by the electron gas. The resulting shielded effective potential
V (r) will lead to a change in the electron density Δn (r). In lowest order
perturbation theory one can write this density change as [129]

Δn (r) =

∫
χ0 (r, r

′)V (r′) dr′ . (11.1)

One now calculates the susceptibility χ0 (r, r
′). It should be noted that this

is not yet a magnetic susceptibility. The term susceptibility is just used in
its more general meaning as a response function. To calculate χ0 (r, r

′) one
first introduces the Green function G (r, r′;E) to the Hamiltonian H. In its
spectral representation G (r, r′;E) can be expressed using the eigenvalues Eα
and the eigenfunctions ψα to H

G (r, r′;E) =
∑
α

ψα (r)ψα (r
′)

E + iε−Eα
. (11.2)

The charge density is then given by
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n (r) = 2
∑

α,Eα<EF

|ψα (r)|
2
= −
2

π

EF∫
Im {G (r, r;E)}dE . (11.3)

For a small perturbation, Dyson’s equation G = G0 +G0V G is approxi-
mated by G � G0 +G0V G0 which allows to calculate the Green function of
the perturbed system G from the Green function of the unperturbed system
G0

Δn (r) = −
2

π

EF∫
dE Im

∫
G0 (r, r

′;E)V (r)G0 (r
′, r;E) dr′ , (11.4)

so that the susceptibility defined in (11.1) reads

χ (r, r′) = −
2

π

EF∫
dE Im {G0 (r, r

′;E)G0 (r
′, r;E)} . (11.5)

In the case of free electrons
(
H0 = −

h̄2

2m∂2r

)
the unperturbed Green function

is a spherical wave of the form

G0 (r, r
′;E) = G0 (r − r

′;E) = −
2m

h̄24π

exp (ik |r − r′|)

|r − r′|
, (11.6)

with k =
k

|k|

√
2m

h̄2
E > 0 .

The resulting susceptibility is easy to calculate and its radial part reads

χ (R) =
m

h̄2 (2π)
3

1

R4
(2kFR cos (2kFR)− sin (2kFR))

�
m

h̄2 (2π)
3

2kF cos (2kFR)

R3
for 2kFR� 1 . (11.7)

The susceptibility χ (R) and therefore also the density oscillate with a period
π/kF (for distances far enough from the perturbation). The amplitude of
these oscillations decays with 1

R3
. These oscillations are a direct consequence

of the oscillatory character of the free Green function (i.e. a spherical wave).
Apart from the formal derivation one can also easily give a classical explana-
tion of this effect. If a plane wave representing the free electron hits a point
target (the scattering potential) a spherical wave is emitted from that target.
This spherical wave is exactly the free Green function. The classical optics
analogue would simply be Huygen’s principle.
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11.2 Strong Perturbations in the Jellium

For strong perturbations linear response theory is no longer valid. In this case
the potential V must be replaced by the energy dependent T -Matrix

T (E) ≡ V
1

1−G0 (E)V
. (11.8)

This expression is a consequence from the Dyson equation

G = G0 +G0V G

= G0 +G0V G0 +G0V G0V G0 + ... ,

which formally can be solved by introducing the T -Matrix to be

G = G0 +G0TG0 . (11.9)

The result for the density oscillations reads

Δn (r) �
2m

h̄2 (2π)
3

kF |t|

r3
cos (2kFr + δ) , (11.10)

where |t| is the trace of the T -matrix at EF.
One finds that a strong perturbation leads to the same type of oscillations

but there occurs a phase shift which depends on the strength of the potential.

11.3 Layer and Line Defects

With the advancement of the necessary experimental techniques, the phy-
sics of magnetic superstructures became a central object of investigation. In
particular structures which consist of repeated magnetic and non-magnetic
layers show new features like giant magneto resistance (GMR) which are of
great technological interest. If one wants to describe the magnetic coupling
between such layers one has to consider perturbations which are of one- and
two-dimensional shape. The derivation is analogous so that only the result is
given.
For a layer in the x, y plane the susceptibility along the z direction is

given by

χ(2) (z) � −
m

h̄2 (2π)
2

sin (2kFz)

z2
. (11.11)

For a line defect the perturbation potential V (r) = V (ρ) ; ρ =
√

x2 + y2

independent of z. The result is
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χ(1) (ρ) �
m (2kF)

3

h̄2 (2π)
3

(
cos (2kFρ)

ρ
5
2

a+
sin (2kFρ)

ρ
5
2

b

)
, (11.12)

with a =

∞∫
0

du
cosu
√
u

, b =

∞∫
0

du
sinu
√
u

,

so that the oscillation decays as 1
ρ5/2

.

11.4 Magnetic Impurities and Oscillations
of the Magnetization

In many non-magnetic host lattices 3d-impurities possess a magnetic moment.
Very famous are the 3d-impurities in a palladium host which have large mo-
ments (almost at the Hund’s rule limit) and polarize the surrounding Pd
atoms to form a large magnetization cloud. This oscillatory polarization can
be understood from the charge oscillations discussed above. Following density
functional theory spin-up and spin-down electrons “feel” a different potential
of the form

V± (r) � vc (r)± vx (r)m (r) , (11.13)

which means that spin-up and spin-down electrons are scattered differently.
The main difference is the different phase shift which gives rise to oscilla-
tions of the spin-up electron density shifted relative to the oscillations of the

Fig. 11.1. Oscillatory magnetic coupling due to the RKKY interaction
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spin-down density. The superposition of these two charge densities yields an
oscillatory magnetization which decays according to the dimensionality of
impurity considered. Fig. 11.1 depicts this behavior following (11.7). This
RKKY-interaction is the reason that atoms at a given distance from the im-
purity either feel a positive or negative polarization and consequently have
magnetic moments of respective orientation. The RKKY-interaction is also
employed to explain the behavior of canonical spin-glasses. A spin-glass is a
system (e.g. small amounts of Fe dissolved in a Au host) where localized ma-
gnetic moments exists which are oriented at random. Since these orientations
appear to be “frozen” below a certain temperature, in analogy to a undercoo-
led amorphous melt the name spin-glass was coined. It is assumed that any
magnetic impurity (which themselves are distributed at random) produces an
RKKY polarization. These polarizations interfere with each other and thus
produce a completely random polarization pattern in which the impurity
moments are locked. It is easy to understand that such systems have highly
degenerate ground states which only differ in the orientation of the impurity
moments. Consequently one often finds extremely slow relaxation processes
which can happen on a time scale of months or even years.



12. Itinerant Electrons at T > 0:
A Historical Survey

The introduction of finite temperature to the Stoner model caused problems
from the very beginning. The temperature dependences predicted are too
weak and, even worse, the analytic behavior of the temperature dependent
variables do not agree with experiment. Finally there were only a few systems
which could be described within this model (e.g. ZrZn2, Ni3Al). These sys-
tems must have an extremely high susceptibility and a very small magnetic
moment, consequently their Curie temperatures are very small as well. For
all other systems the Stoner model has proved to be hardly applicable and
at best provides a correction to the collective excitations which dominate the
finite temperature properties. However, the model became very famous at
the time and that fact makes it worthwhile going into the details.
As in the chapter about the temperature dependence of the paramagnetic

susceptibility one assumes that the temperature dependence of the Fermi
distribution function is the crucial quantity. Using (3.6) one writes the sum
of states

Z =
1

2
n

(
kBT

εF

) 3
2 (

F3/2 (η + β + β′) + F3/2 (η − β − β′)
)

, (12.1)

where

β′ =
μBHext
kBT

, η =
μ

kBT
, β =

kBΘζ

kBT
. (12.2)

β′ describes the influence of an external field and β the influence of the
molecular field. In the case when the external field is zero β′ vanishes. The
magnetization per atom is then given by

M =
3

4
nμB

(
kBT

εF

) 3
2 (

F1/2 (η + β)− F1/2 (η − β)
)

,

n =
3

4
n

(
kBT

εF

) 3
2 (

F1/2 (η + β) + F1/2 (η − β)
)

, (12.3)

and the relative magnetization ζ becomes

ζ =
F1/2 (η + β)− F1/2 (η − β)

F1/2 (η + β) + F1/2 (η − β)
=

n+ − n−

n+ + n−
. (12.4)
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Equation (12.4) is a rather complicated relation for ζ which is given as a
function of T and via the characteristic temperature Θ describing the mole-
cular field. However, given the density of states, the number of spin-up and
spin-down electrons can be written

n± =
n

2
(1± ζ)

=

∫ ∞

0

N (ε)

(
exp

(
ε

kBT
− η±

)
+ 1

)−1
dε , (12.5)

with

η± = kBTη ± kBΘζ ± μBHext , (12.6)

which are the famous Stoner equations.
These are now used to determine the paramagnetic susceptibility. By

means of the Stoner equations the magnetization M is given by

M = nμBζ

= μB

⎡
⎣ ∞∫
0

N (ε)

(
exp

(
ε

kBT
− η + β + β′

)
+ 1

)−1
dε

−

∞∫
0

N (ε)

(
exp

(
ε

kBT
− η − β − β′

)
+ 1

)−1
dε

⎤
⎦

= μB [G (η + β + β′)−G (η − β − β′)]

= 2μB (β + β′)
dG

dη
= 2μB

μBHext + kBΘζ

kBT

dG

dη
,

where G (η) is given by

G (η) =

∞∫
0

N (ε) f (ε) dε

=

∞∫
0

N (ε)

(
exp

(
ε

kBT
− η

)
+ 1

)−1
dε ,

⇒
dG

dη
= −kBT

∞∫
0

N (ε)
df (ε)

dε
dε = kBT

∞∫
0

N (ε)

∣∣∣∣df (ε)dε
∣∣∣∣ dε .

One thus obtains for the magnetic moment

M = 2μB

(
μBHext + kBΘ

M

nμB

) ∞∫
0

N (ε)

∣∣∣∣df (ε)dε
∣∣∣∣dε , (12.7)

and for the susceptibility



12. Itinerant Electrons at T > 0: A Historical Survey 125

χ =
M

Hext

=

2μ2B

∞∫
0

N (ε)
∣∣∣df(ε)dε ∣∣∣dε

1− 2kBΘ
n

∞∫
0

N (ε)
∣∣∣df(ε)dε ∣∣∣dε . (12.8)

For T = 0, (12.8) can be traced back to the result given in (8.31).
One can now study the inverse susceptibility 1/χ for various values of the

molecular field (kBΘ) / (nμB)

1

χ
=

⎛
⎝2μ2B

∞∫
0

N (ε)

∣∣∣∣df (ε)dε
∣∣∣∣dε

⎞
⎠−1 − kBΘ

nμ2B
. (12.9)

The temperature dependence of 1/χ is shown in Fig. 12.1. All three curves
are parallel. The curvature, which is roughly quadratic does not give a Curie–
Weiss law and there are only few systems which show this dependence (e.g. Ni-
Al, Ni-Ga, Ni-Pt). Curve “0” is the function without a molecular field being
the temperature dependence of the non-interacting susceptibility. Curve “1”
describes systems which are on the verge of magnetic order, which means that
χ =∞ at T = 0. From this curve one can again derive the Stoner criterion

0 =
1

2μ2BN (εF)
−

kBΘ

nμ2B
,

Fig. 12.1. Temperature dependence of the inverse susceptibility in the Stoner
model
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⇒ 2N (εF)
kBΘ

n
= 1 .

For curve “2” there is a critical temperature above which the susceptibility
becomes positive. This critical temperature is the Curie temperature in the
Stoner model. From the condition that 1/χ must be zero at Tc one derives

2kBΘ

n

∞∫
0

N (ε)

∣∣∣∣df (ε)dε
∣∣∣∣dε = 1 at Tc . (12.10)

Equation (12.10) is nothing other than a temperature dependent Stoner cri-
terion. Due to the convolution with the function df (ε)/dε, the DOS at the
Fermi energy drops with rising temperature until the lhs of (12.10) becomes
equal to 1. This temperature is then called the Curie temperature. It should
be noted here that this definition of the Curie temperature means that the
magnetic moments at each atom vanishes individually. This assumption is
basically different from the picture of statistical disorder or a breakdown of
the long range correlation which appear in the Weiss and the Heisenberg
model.
Earlier on the temperature dependence of the integral in (12.10) was cal-

culated. Using (3.18) one obtains

2N (εF)
kBΘ

n

(
1 + aT 2c

)
, (12.11)

with a =
π2

6
k2B

(
N (εF)

′′

N (εF )
−

(
N (εF)

′

N (εF)

)2)
,

which is an equation to determine Tc given that a < 0. The constant a has
already been identified as an effective Fermi degeneracy temperature a = T−2F
(3.18). For Tc << TF one writes (12.11) as

kBΘ =
n

2N (εF)

(
1 +

T 2c
T 2F

)
. (12.12)

Using (8.27) one can equate the respective terms to those in (12.12) and finds

1

3
|c| ζ2 = |a|T 2c (12.13)

Equation (12.13) shows that in the Stoner model, the Curie temperature
scales linearly with the magnetic moment. This linear relation is typical for
Fermi liquid theories. In Chap. 18 where spin fluctuations are introduced it
will be found that Tc becomes proportional to M

2.
From (8.31) one also derives the result

1

3
|c| ζ2 = |a|T 2c = 2μ

2
BN (εF)χ

−1 = 2N (εF)
kBΘ

n
− 1 . (12.14)

If one inspects the relations in (12.14) more closely and for that purpose
again introduces the Stoner factor Is, the Curie temperature of an itinerant
ferromagnet within the Stoner model is given by
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T 2c = T 2F (IsN (εF)− 1) . (12.15)

Equation (12.15) relates the Fermi degeneracy temperature TF and the Curie
temperature Tc . Since TF is usually of the order of several thousand Kelvin
one only obtains reasonable values for Tc if (IsN (εF)− 1) becomes very small.
This means that Stoner theory will only be applicable for very weak itinerant
systems but will fail for most of the everyday magnetic materials, which is
actually the case.

12.1 Excitations at Low Temperatures

From the Stoner equations (12.5) and (12.6) one can calculate the thermal
excitation of the magnetization ζ at low temperatures. Again the two cases
of weak and strong ferromagnetism are discussed.

12.1.1 Strongly Ferromagnetic Systems

The situation around the Fermi energy of a strong ferromagnet (the spin-up
band is completely filled) is depicted in Fig. 12.2.
Here kBTη−0 is the chemical potential of the spin-down electrons, �E =

2kBΘ is the band splitting (for a strong ferromagnet ζ = 1). � = �E −
kBTη−0 is the Stoner gap. At T = 0 one has

�+ kBTη−0 = 2kBΘ , �+ kBTη+0 = 0 , (12.16)

and

Fig. 12.2. The upper band edge of a strong ferromagnet
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n = n− =

kBTη
−
0∫

0

N (ε) dε , n+ = 0 . (12.17)

At low temperatures the softening of the Fermi distribution function being
of the order kBT is much smaller than the Stoner gap. In this case one can
approximate Fermi statistics by the classical Boltzmann distribution, which
yields a simple mechanism [134] describing the thermal excitation of spin-up
electrons in the unoccupied states of the spin-down band.

n+ =
n

2
(1− ζ)

=

∞∫
0

N (ε) exp

(
−

ε

kBT

)
exp

(
−
�

kBT

)
dε

= F (T ) exp

(
−
�

kBT

)
. (12.18)

Equation (12.18) describes a thermally induced “weakening” of the strong
ferromagnet. Electrons are transferred from the majority to the minority
band. The magnetization is thus

ζ = 1−
2

n
F (T ) exp

(
−
�

kBT

)
. (12.19)

One can now use experiments to determine the various parameters. For
fcc Ni it was shown [132] that F (T ) obeys a relation of the form

2

n
F (T ) = 2.6× 10−5T

3
2 (12.20)

It is not surprising that the low temperature behavior of Ni has the same
form as it was found for spinwave excitations. This behavior exists at low
temperature for almost all magnetic systems, since the collective excitations
which are responsible for it can already easily excited at low temperatures.
Taking also the Stoner gap into account one finds a highly accurate fit

function for the magnetization of Ni

ζ = 1− 2.6× 10−5T
3
2 exp

(
−
440

T

)
(12.21)

This gives a Stoner gap of about 40meV. The values given in the literature
scatter greatly, e.g. neutron diffraction data give 60meV. The proof of the
existence and the value of the Stoner gap was once a great challenge for
all kinds of spectroscopic methods ranging from neutrons to photo electron
spectroscopy.
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12.1.2 Weakly Ferromagnetic Systems

The derivation for weakly ferromagnetic systems is somewhat more complica-
ted because one has to consider the framework of the Sommerfeld expansions
which were also used to determine the effect of metamagnetism (see Sect.
8.4.6). One starts at T = 0 where the magnetic moment ζ0 is given by

n

2
(1± ζ0) =

∞∫
0

N (ε) dε .

Using the results derived earlier one writes

1−
ζ (T )

ζ0
=

3

2c∗ζ20
a∗T 2 , (12.22)

where a∗ and c∗ are given by

a∗ =
1
6π
2k2B

2kBΘζ20

[
N (ε+)

′

N (ε+)
−
N (ε−)

′

N (ε−)

]
, (12.23)

and

c∗ =
3
2

2kBΘζ20

[
2kBΘ −

n

2

(
1

N (ε+)
+

1

N (ε−)

)]
. (12.24)

One finds that the magnetization shows a T 2 dependence, which is very
weak. (Fe: 1 − ζ

ζ0
= 1.9 × 10−6 at 4K) Using (8.30) one can express c∗ in

terms of the interacting susceptibility

c∗ = −2
3

2

1

2kBΘζ20

nμ2B
χ

. (12.25)

For ζ0 << 1 one replaces the susceptibility by means of (8.32)

nμ2B
χ
=
1

3

n |c| ζ20
N (εF)

, (12.26)

⇒ c∗ = − |c|
n

2kBΘN (εF)
� − |c| .

Now the behavior of (12.22) is determined by the sign of a∗. Depending on
the sign of a∗ one has to distinguish two cases:

1. a∗ < 0 and c∗ < 0 : The magnetization decreases with increasing tempe-
rature following a T 2 behavior(

ζ

ζ0

)2
= 1−

T 2

T 2c
. (12.27)
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2. a∗ > 0 and c∗ < 0: In this extremely unlikely case one should observe
a magnetic moment which increases with rising temperature. This effect
has once been seen in Y2Ni7 [130]. A few years later M. Shimizu [131]
even provided a theoretical model. However, later investigations were not
able to confirm the original finding. Today it is believed that an additio-
nal ferromagnetic phase contained in the sample caused these surprising
results.

12.2 Stoner Theory for a Rectangular Band

To calculate the magnetization ζ = ζ(T,Θ,H) one must solve the Stoner
equations (12.5) and (12.6). In his original work Stoner solved these equations
for the parabolic (free electron like) band. During the 1970s calculations of
more complicated forms appeared in the literature. It was found that for
realistic values of Θ the shape of the magnetization curves depends strongly
on the details of the density of states. To get a feeling for such a calculation
one now considers a very simple but useful band shape, the rectangular band
where N (ε) = const.
For a band of the shape depicted above the density of states is given by

N (ε) =
n

2εF
. (12.28)

Putting this expression into the Stoner equations yields (H = 0)

n

2
(1± ζ) =

n

2εF

∞∫
0

[
exp

(
ε

kBT
− η ±

kBΘζ

kBT

)
+ 1

]−1
dε ,

with the abbreviations

x =
ε

kBT
, ρ =

kBΘζ

kBT
,

one obtains

Fig. 12.3. Rectangular model density of states
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εF (1± ζ) = kBT

∞∫
0

[exp (x− η ± ρ) + 1]
−1
dx

= kBT ln (1 + exp (η ± ρ)) .

From this it follows that

η ± ρ = ln

[
exp

(
εF (1± ζ)

kBT

)
− 1

]
,

and hence for ρ

2ρ =
2ζ

(
kBΘ
εF

)
(
kBT
εF

)

= ln

⎡
⎣exp

(
εF(1+ζ)
kBT

)
− 1

exp
(
εF(1−ζ)
kBT

)
− 1

⎤
⎦ .

With τ = kBT
εF
one obtains

kBΘ

εF
=

τ

2ζ
ln

⎡
⎣exp

(
1+ζ
τ

)
− 1

exp
(
1−ζ
τ

)
− 1

⎤
⎦

=
1

2
+

τ

ζ
tanh−1

[
tanh ζ2τ
tanh 12τ

]
. (12.29)

The analytic form given in 12.29 is not very practical, especially if one wants
to find an expression for ζ(T ). But it can be used to derive some very inte-
resting results:

1. Curie temperature: In the case ζ → 0, τ → τc =
kBTc
εF
one can easily

determine the Curie temperature

εF
kBΘ

= 1− exp

(
−
1

τc

)
,
1

τc
= − ln

(
1−

εF
kBΘ

)
. (12.30)

By chance the two equations given above are of exactly the same form
as for the BCS theory of superconductivity. This is not completely sur-
prising, since the formation of Cooper-pairs is also mediated by an inte-
raction between the electrons forming these pairs. Within BCS theory,
the electrons become coupled via a phonon. If magnetic order occurs,
the electrons (spins) become coupled by the exchange interaction. Both
phenomena describe the instability of the electron gas to a “many body”
excitation, which lowers the total energy.

2. Susceptibility: For the susceptibility above Tc one assumes that for ζ = 0,
and H 	= 0 then
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nμ2B
χ
= εF

[
1− exp

(
−
1

τc

)]
− kBΘ . (12.31)

This result is analogous to (12.9).
3. Magnetization: For low temperatures one obtains a form similar to that
given by (12.19)

ζ = 1− τ exp

[
−
2

τ

(
kBΘ

εF
− 1

)]
. (12.32)

For most systems the theoretical ζ(T ) curves do not agree with experi-
ment. The reason for this discrepancy is mainly that spinwaves and other
collective excitations change the ζ(T ) dependence considerably even at low
temperature.

12.3 Weak Excitations with ζ << 1

In the case of very weak itinerant systems one can expand the Stoner equa-
tions in powers of ζ and obtain to first order

2

n
N (εF) (kBΘζ + μBH) = ζ , (12.33)

which is simply the susceptibility at T = 0. For finite temperatures one uses
the temperature dependences of the two coefficients a and c from (3.18),
(8.23), and (8.24)

2

n
N (εF) (kBΘζ + μBH) = ζ

(
1− aT 2

)
−
1

3
cζ3 . (12.34)

For c > 0 and a > 0 and with (12.14) one finds

2

n
N (εF) kBΘζ = 1 +

1

3
|c| ζ3 ,

|a|T 2c =
1

3
|c| ζ30 ,

χ0 =
3μ2BN (εF)

|c| ζ20
.

Introducing the magnetic moment M = nμBζ0 one obtains the equation for
the magnetic isotherms of weak itinerant systems [133](

M (H,T )

M (0, 0)

)3
−

M (H,T )

M (0, 0)

(
1−

T 2

T 2c

)
=
2χ0H

M (0, 0)
. (12.35)

Equation (12.35) also gives the Arrott plots which have been introduced
earlier in Sect.5.5

M (H,T )
2
=M (0, 0)

2

(
1−

T 2

T 2c

)
+
2χ0H

M (H,T )
. (12.36)



12.3 Weak Excitations with ζ << 1 133

One finds parallel lines with a constant slope which has the value 2χ0.
The intersection with the M2axis is given by

M2 =M (0, 0)
2

(
1−

T 2

T 2c

)
, (12.37)

so that the distance between the parallel lines is given by the temperature
dependence of the magnetization. Linear Arrott plots are observed for all
weakly ferromagnetic systems (ZrZn2, Ni3Al, Ni3Ga, Ni-Pt, Fe-Ni, etc.). For
other alloys and compounds there are characteristic deviations from linearity
which are due to additional effects. For small fields one often finds deviations
which are due to magnetization processes or to inhomogeneities of the sample.
Deviations for large fields are often caused by spin fluctuations.
From (12.35) one can also determine the susceptibility below and above

Tc. The inverse susceptibility is given by
dH
dM . Rewriting (12.35) yields

M3

2χ0M2
0

−
M

2χ0

(
1−

T 2

T 2c

)
= H ,

dH

dM
=
1

χ
=
3M2

2χ0M2
0

−
1

2χ0

(
1−

T 2

T 2c

)
.

One has two cases to consider:

1. T > Tc:
Above the Curie temperature the magnetic moment becomes zero and
one obtains

χ = 2χ0

(
T 2

T 2c
− 1

)−1
for T > Tc . (12.38)

Fig. 12.4. Arrott plot of a weak itinerant magnet
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2. T < Tc :
The case T < Tc is a little bit more complicated since one has to consider
the temperature dependence of the magnetization and make use of (12.37)
to obtain

χ = χ0

(
1−

T 2

T 2c

)−1
for T < Tc . (12.39)

Apart from the mathematical formalism there must exist a physical reason
for this surprising result that the susceptibility in the magnetic state is half
of the susceptibility of the non-magnetic state. In the Stoner model there
is no magnetic order and thus no molecular field above Tc. If one applies a
magnetic field one creates spins from the “spin vacuum”. Below the Curie
temperature all spins are parallel to the molecular field and an applied field
has to flip the spin from − to +, which explains the factor 2. A classical
analogue is the reflection of a ball from a solid wall. If one releases the ball
from the hand it has the momentum p. Once the ball becomes reflected its
momentum changes by 2p .
To compare the susceptibility above Tc with a Curie–Weiss behavior one

writes the susceptibility (12.38)

1

χ
=
(T − Tc) (T + Tc)

2χ0T 2c
. (12.40)

The first bracket would describe the Curie–Weiss law, but the whole expres-
sion shows a quadratic rather than a linear dependence. Calculating the Curie
constant gives

C =
d
(
1
χ

)
dT

=
T

χ0T 2c
, (12.41)

which depends linearly on temperature rather than being a “constant”.
At the end of this chapter one should recall that the Stoner model in

general fails to describe the finite temperature properties of magnetic systems.
The reason is that the excitations (single particle excitation also called Stoner
excitations) which are thought to destroy magnetic order scale with TF and
are thus much too weak at normal temperature to create any sizeable effect.
Since the Stoner exchange Is (or Θ) is an atom specific quantity, the Stoner
model only describes the conditions for the formation of a moment at a given
atom. The interactions leading to long range order are only very indirectly
accounted for via the change of the density of states upon alloying. It is
therefore not surprising that the finite temperature Stoner model is today of
merely historical interest.
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Parallel to the development of band structure theory there was a search for
“simple” toy-models to explain solid state magnetism. The Hubbard model
combines electron hopping between neighboring sites and the Coulomb re-
pulsion of electrons at the same site. With this onsite Coulomb repulsion
it corrects for the usually neglected (or underestimated) electron correla-
tion. Electron correlation means that electrons do not move independently
of each other but of course feel their pairwise repulsion. However in most
of the usual approximations to calculate the properties of the electron sys-
tem, the influence of the other electrons is put into a mean field which has to
be determined self-consistently. Within this approximation correlation effects
are averaged out. The most prominent examples for this treatment are the
Hartree- and the Hartree–Fock-method and all electronic structure methods
based on them. These features are combined within the Hubbard Hamilto-
nian, [42, 135, 136] which in its simplest form reads

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (13.1)

The electron hopping is controlled by the tij ,whereas the parameter U (the

famous Hubbard-U) models the Coulomb interaction. c†iσ, ciσ are the fermion
creation and annihilation operators for an electron with spin σ on site i and
niσ = c†iσciσ is the related ladder operator counting the occupation on site i.
These fermion operators obey the following anti-commutator rules[

c†iσ, cjσ′
]
= δijδσσ′

[
c†iσ, c

†
jσ′

]
= [ciσ, cjσ′ ] = 0 . (13.2)

Depending on the sign of U the Hubbard Hamiltonian describes various
phases:

• U > 0 (repulsive): paramagnetic metallic, ferromagnetic metallic, antifer-
romagnetic insulating,
• U < 0 (attractive): normal Fermi liquid, superconducting, charge density
wave (insulator), normal Bose liquid (insulator).

U is however not the only parameter. There exists also the strength of
the electron hopping tij and the temperature T . Further “hidden” variables
are the dimensionality of the system and the structure of the crystal lattice.
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Since the band filling (thus the number of electrons) plays an important role
also the electron density n = n↑ + n↓ can also be regarded as a parame-
ter of the Hubbard Hamiltonian. Since the Pauli principle avoids that two
electrons with like spin occupy the same lattice site one finds nσ ≤ 1 for
σ =↑, ↓ and thus n ≤ 2. The special case n = 1 describes the half filled band
(antiferromagnetism).
A straightforward solution can be found in the unperturbed case U = 0.

The solution is found by the Fourier transform of the respective operator. In
the time dependent form one obtains

ih̄ċiσ = −
∑
j

tijcjσ ⇒ ciσ =
1
√
N

∑
k

eikRickσ , (13.3)

ih̄ċkσ (t) = ε0kckσ (t) ⇒ ckσ (t) = e
− i
h̄ ε
0 tckσ (0) , (13.4)

which as a solution describes a single electronic band in the tight binding
limit

ε0k = ε0 −
∑
j 	=i

tije
ik(Ri−Rj) . (13.5)

For a 2d square lattice one finds ε0k = −2tij (cos (kxa) + cos (kya)) leading to
a band width W = 4tij .
In a similar way one treats the case for U 	= 0 in the Hartree–Fock ap-

proximation where the Hubbard interaction ni↑ni↓ is replaced by n̄i↑ni↓ +
ni↑n̄i↓−n̄i↑n̄i↓. The entities n̄iσ are thermodynamical averages which have to
be determined self consistently. The physical interpretation of the Hartree–
Fock approximation is that fluctuations in the double occupancy ni↑ni↓ are
suppressed. The respective time dependent Schrödinger equation reads(

ih̄
d

dt
− ε0 − Un̄i−σ

)
ciσ = −

∑
j

tijcjσ . (13.6)

The solutions are two bands split by the Hubbard interaction U

ε↑k = ε0k +
1

2
U (n̄+m) , ε↓k = ε0k +

1

2
U (n̄−m) , (13.7)

with n̄↑ =
1

2
(n̄+m) , n̄ ↓=

1

2
(n̄−m) . (13.8)

The respective band splitting is thus given byΔE = Um = ε↑k−ε↓k, which can
be directly compared to the result obtained from the Stoner model (8.11).
In complete analogy to the Stoner model one also arrives at a criterion for
magnetic ground state which is fulfilled if UN (εF ) ≥ 1 an expression which
is in analogy to (8.15).
It is found that within the Hartree–Fock approximation the Hubbard mo-

del and the Stoner model become equivalent. The suppression of fluctuations
in the double occupancy leads to an effective mean field treatment where Um
represents the resulting self-consistent molecular field.
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The missing physics is again the orientational disorder. This is well des-
cribed by the Heisenberg model but hard to see for itinerant electrons where
in the Hartree–Fock approximation the paramagnetic state becomes the non-
magnetic state. However, what is required for the paramagnetic state is that
the average over the magnetic moments vanishes〈∑

i

mi

〉
=

〈∑
i

(ni↑ − ni↓)

〉
, (13.9)

but the individual moment at site i remains, so that mi = ni↑ − ni↓ 	= 0 for
times τ such that h̄

W
≤ τ ≤ h̄

kBT
.

13.1 Beyond Hartree–Fock

In general the Hubbard model hardly ever describes a ferromagnetic state. In
most cases one finds an antiferromagnetic ground state. One of the few cases
where a ferromagnetic ground state can be stabilized is the so called Nagaoka
state [137]. In the limit of strong (infinite) Hubbard repulsion at half band
filling one would describe an insulating state (Mott insulator [138, 139]). One
can now ask the question about what will happen if one allows for a hole in
the half filled band. For this scenario, Nagaoka found a ferromagnetic ground
state for the simple cubic and the body centered cubic lattice. The condi-
tions for the stabilization of a ferromagnetic state are extremely subtle, e.g.
for close packed lattices (hcp or fcc) ferromagnetic ordering is unstable. In
an attempt to go beyond the Hartree–Fock approximation which overempha-
sizes magnetism, Gutzwiller [140] proposed an approximation which promotes
more competitive paramagnetic solutions. In the case of strong Hubbard re-
pulsion U >> t Hartree-Fock favors magnetic solutions, since these are the
only (in the single particle picture) allowable type of correlations which ensure
that the Hubbard repulsion is avoided. Gutzwiller’s idea was to construct a
wave function which reduces the probability of finding doubly occupied atoms
without associated magnetic coherence. The Gutzwiller wave function reads

|ΨG〉 =
∏
i

[1− ηni↑ni↓] |ψ0〉 = P (η) |ψ0〉 , (13.10)

where |ψ0〉 is the wave function of the single particle ground state and η
is a variational parameter which varies between 0 and 1. The operator P (η)
only effects components in real space which have doubly occupied atoms, and
these components are reduced by a factor (1− η)

D
where the exponent D is

given by D =
∑
i ni↑ni↓ counting the doubly occupied sites. When U → ∞

so η → 1 so that all doubly occupied sites are projected out completely since
P (1)

2
= P (1). By applying the variational principle, η is determined such

as to minimize the ground state energy calculated for ΨG. Unfortunately
this variational problem cannot be solved analytically but there exists an
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approximation to the problem which is known as “Gutzwiller-approximation”
which however becomes exact in the limiting case of infinite dimensionality.
On the basis of numerical simulations for a two-dimensional square lattice it
could be shown that while Hartree–Fock predicts ferromagnetism at any band
filling, the Gutzwiller Ansatz indeed gives a paramagnetic ground state for
low and high band fillings [141]. The Hubbard model with its various solutions
provides a fascinating field of research. However, only during the last decade
some connection between the “pure” Hubbard model and all-electron band
structure calculations was made. Some pioneering work in this direction was
done by W. Nolting and the reader is referred to [142] and references given
therein.
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14.1 General Considerations

The Landau theory of phase transitions is a phenomenological description of
the behavior of the free energy F as a function of an order parameter [143].
One can freely choose this order parameter as long as one obeys the inhe-
rent symmetry of the problem. This parameter can be temperature, volume,
correlation length (superconductivity) or alloy concentration, etc. In the case
of magnetic systems the role of the order parameter is usually taken by the
magnetic moment M . The free energy for the magnetic system is then writ-
ten as a polynomial in M and, by applying the rules of thermodynamics, its
other physical properties can be derived. For a simple ferromagnet without
an external field the free energy can be written

F = F0 + a2M
2 + a4M

4 . (14.1)

The magnetic momentM enters only in even powers because only even terms
are invariant under a reversal in the sign of magnetization (only for even
powers of M is time reversal symmetry preserved). In lowest order the series
can be truncated after the 4th order term, because if a4 is taken to be positive,
subsequent terms cannot alter the critical behavior of the system.
In Fig. 14.1 the variation of the Landau free energy for decreasing value

of a2 are shown (remember, a4 is positive). The following four cases are
depicted: (a) a2 > 0, (b) a2 = 0, (c) a2 ≤ 0, (d) a2 < 0. The arrows denote
the possible solutions for the equilibrium state. Due to inherent symmetry
there always exists a solution for +M and −M . The case a2 = 0 corresponds
to the critical temperature where spontaneous magnetization appears. One
can thus write a2 in the form

a2 = a′2t with t =
T − Tc

Tc
. (14.2)

With the variation of t one describes a continuous transition of the magne-
tization (however, its derivative changes discontinuously). This means that
one can study the respective critical exponents (see Sect. 5.9). The easiest
one to calculate is β. Since the equilibrium magnetization is given by the first
derivative of the free energy, one obtains
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dF

dM
= 2a′2tM + 4a4M

3 = 0 , (14.3)

⇒ M2 = −
a′2
2a4

t . (14.4)

from which it follows immediately that for t < 0

M ∝ (−t)
1
2 , (14.5)

which is the mean field value βmf =
1
2 . To calculate the critical exponent for

the specific heat one uses (14.4) to rewrite the free energy

F = F0 −
a′2
4a4

t2 . (14.6)

The specific heat is given by cm = −T
d2F
dT 2

cm =
a′2
2a4Tc

(t+ 1) , (14.7)

which becomes constant if one approaches Tc (t = 0) from low temperatures.
Coming from temperatures above always gives cm = 0 because above Tc the
magnetization M goes to zero and so does the free energy. The specific heat
exhibits a discontinuity; its critical exponent is thus zero, αmf = 0.
To determine the critical exponent for the susceptibility γ (defined as

χ ∝ |t|−γ) one calculates the second derivative of the free energy and obtains

d2F

dM2
=
1

χ
= −4a′2t , (14.8)

⇒ γ = 1 , (14.9)

Fig. 14.1. Variation of the Landau free energy for decreasing values of a2
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which is again the mean field value. The exponents obtained from the Landau
free energy are those for any mean-field model. Any model whose symmetry
leads to a Landau expansion must have the same mean-field critical expo-
nents. Ising-, XY-, and Heisenberg models are examples. A useful example
is provided by the Ornstein–Zernicke extension to Landau theory which is
discussed in Sect. F.

14.2 Application to the Stoner Model

One writes the free energy

F =
1

2
AM2 +

1

4
BM4 −MH . (14.10)

From the extremal conditions ( dFdM = 0 and
d2F
dM2 > 0) and using (12.39), the

coefficients A and B can be derived easily

A = −
1

2χ0

(
1−

T 2

T 2c

)
, (14.11)

B =
1

2χ0M2
0

. (14.12)

Furthermore one finds the relations

M2
0 = −

A

B
, (14.13)

�F = −
M2
0

8χ0
, (14.14)

M2 = M2
0

(
1−

T 2

T 2c

)
, (14.15)

where M0 is the equilibrium moment at T = 0, �F is the difference in
energy between the magnetic and the non-magnetic state at T = 0, andM is
the magnetic moment at a given temperature T . Replacing A, B, and M in
(14.10) by the respective expressions given by (14.11), (14.12), and (14.15)
yields the temperature dependence of the free energy, which for H = 0 reads

Fm = −
M2
0

8χ0

(
1−

T 2

T 2c

)2
. (14.16)

Equation (14.16) can now be used to calculate the magnetic contribution to
the specific heat and the entropy. The specific heat of a Stoner system is
given by

cm = −T
d2F

dT 2

= −
M2
0

2χ0Tc

T

Tc

(
1− 3

T 2

T 2c

)
. (14.17)
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Since in the Stoner model the magnetic moment above Tc vanishes, cm
also becomes zero. One thus finds a pronounced discontinuity in the specific
heat at Tc which has the value

�cm =
M2
0

χ0Tc
(14.18)

For low temperature the behavior of cm is determined by the linear term in
(14.17). Formulating the specific heat in analogy to (2.47), one obtains

cm = γmT with γm = −
M2
0

2χ0T 2c
, (14.19)

where γm is often termed the “Wohlfarth correction”. Equation(14.17) shows
that the specific heat is proportional to T and T 3. Unfortunately at low T
the specific heat of the electrons is also proportional to T and that of the
phonons is proportional to T 3 which makes it very difficult to disentangle
these contributions from the magnetic ones with any degree of certainty.
From the free energy one can also calculate the entropy via

�Sm =

T2∫
T1

cm
T
dT .

Taking the integral from T = 0 to T = Tc, �Sm vanishes. The complete
functional dependence is

�Sm = −
M2
0

2χ0Tc

T

Tc

(
1−

T 2

T 2c

)
. (14.20)

The entropy S is zero for T = 0K as required by the 3rd law of thermo-
dynamics and it also vanishes for T ≥ Tc where magnetism disappears in

Fig. 14.2. Specific heat of a Stoner system
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the Stoner model. In the intermediate temperature range a finite negative
contribution is found.
To calculate magneto-elastic phenomena one introduces a volume depen-

dence into (14.10). As the energy of an elastic system is proportional to V 2

(Hooke’s law) one considers the square of the relative volume change ω2.
The interaction between volume and magnetic moment is described by the
magneto–volume coupling constant C. How can the volume change due to
the formation of a magnetic moment? Consider a slightly more than half fil-
led d-band as in non-magnetic bcc Fe (Fig. 8.5) If the non-magnetic bands
become split by the onset of magnetism electrons are removed from spin-down
bonding states which now occupy spin-up antibonding states. This leads to
a weakening of the bond strength and subsequently to a volume expansion.
This phenomenon is also called volume magnetostriction. In general it is ob-
served that the volume in the magnetically ordered state is always larger than
in the non-magnetic state. With the new parameters the free energy reads

F =
1

2
AM2 +

1

4
BM4 −MH +

1

2κ
ω2 − Cω

(
M (H,T )

2 −M (0, T )
2
)
.

(14.21)

The new parameters in (14.21) are: κ, the compressibility; C, the magneto–
volume coupling constant; and ω = (V −V0)/V = �V/V , the relative volume
change.
The relation between ω and P is given by ω = −κP .
The free energy now depends on two variablesM and V . The equilibrium

is given by the nodes of the magnetic equation of state dF
dM

∣∣
V
= 0 and the

mechanical equation of state dFdV
∣∣
M
= 0. From the latter one obtains

ω = κC
(
M (H,T )

2 −M (0, T )
2
)

. (14.22)

If one plots ω versusM(H,T )2 one gets parallel lines. From the slope one
obtains a value of the magneto-volume coupling constant C. From (14.21)
one can also calculate the pressure dependence of the Curie temperature

Fig. 14.3. Entropy of a Stoner system
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1−

T 2c (P )

T 2c (0)

)
= −4χ0Cω ,

⇒ T 2c (P ) = T 2c (0) (1− 4χ0CκP ) (14.23)

and the critical pressure for the disappearance of magnetism Pc

P−1c = 4χ0Cκ , (14.24)

⇒ T 2c (P ) = T 2c (0)

(
1−

P

Pc

)
(14.25)

The pressure dependence given by (14.25) is observed very often. Equation
(14.25) yields a general form which contains only ground state quantities
(besides Tc which is just a scaling parameter). An experimental determination
of Pc is often impossible because the values can become very large. It is easier
to measure the slope dTcdP which is given by

2Tc
dTc
dP
= −4T 2c χ0Cκ ,

⇒
dTc
dP
= −2Tcχ0Cκ . (14.26)

With: χ0 = μ2BN (εF)
T 2F
T 2c
(14.26) becomes

dTc
dP
= −

α

Tc
with α = 2κCμ2BN (εF)T

2
F . (14.27)

This result is in fair agreement with experiment. Many weak itinerant systems
show this type of hyperbolic dependence (Fe-Ni Invar, Fe-Pt, Fe-Pd). In Table
14.1 below a few values are given for α and α/T 2F

Table 14.1. Pressure coefficient α and pressure scaling factor α/T 2F for some weak
itinerant ferromagnets

α (K2/kbar) α/T 2F (kbar)

ZrZn2 40± 4 5.9

Ni3Al 28± 8 2.2

Ni-Pt 36± 2 9.0

Fe-Ni Invar 2000± 400 5
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The thermal expansion coefficient αm can also be calculated from (14.21)

αm =
dω

dT

= −T
2κCM (0, 0)

2

T 2c
. (14.28)

As for the specific heat, a discontinuity occurs at Tc with the value

�αm = −
2κCM (0, 0)

2

Tc
. (14.29)

Comparing (14.18) for �cm, (14.29) for �αm, and (14.27) for
dTc
dP
one can

apply a general thermodynamical relation

�αm
�cm

=
d lnTc
dP

= −2κCχ0 . (14.30)

Equation (14.30) is a so called Ehrenfest relation. The Ehrenfest relations are
model independent relations for the behavior of thermodynamical variables
at critical points.
Another important quantity is the bulk modulus B. It is defined as the

hypothetical pressure necessary to reduce the volume by a factor 1/2. Ther-
modynamically it is given by

B = V (0, 0)
d2F

dV 2
. (14.31)

Also B shows a discontinuity at Tc which has the value

�B = 4χ0M (0, 0)
2
C2 (14.32)

Equation (14.32) yields a direct possibility of determining the magneto–
volume coupling constant from experiment. It should be noted once again
that the discontinuities derived above for the Stoner model are in general too
large as compared to experiment. The reason is of course that in the Stoner
model the state above the Curie temperature is the true non-magnetic state
where no magnetic moments whatsoever exist. In reality the true paramagne-
tic state is a state where local moments still exist but where the long range
order has broken down. This difference in the description of the non-magnetic
state is that reason why Stoner theory fails at finite temperature.



15. Coupling Between Itinerant and Localized
Moments

The alloys and compounds formed between rare earth elements and 3d ele-
ments are of great technological importance. One example among many is
the intermetallic compound Nd2Fe14B which is a high performance perma-
nent magnet. It is characterized by the largest energy product BHmax = 360
kJ/mol of all known permanent magnet materials. For a rectangular hystere-
sis, the energy product BHmax measures the area under the hysteresis curve
defined as the product of the remanent induction Br times the coercivity
Hc. Unfortunately, due to its Curie temperature of only 600K, Nd2Fe14B is
restricted to applications only around ambient temperatures. The reason for
this limitation is the strong temperature dependence of the demagnetization
which even at 400K makes Nd2Fe14B inferior to the older SmCo5 magnets.
It is thus of vital importance to study the mechanism which determines the
ordering temperature in such systems. In the case of Nd2Fe14B and also of
SmCo5 the rare earth atom with its large localized f -electron moment not
only produces a strong anisotropy (which is important for a large energy pro-
duct) but also couples to the 3d transition metal atoms which are the major
carriers of the magnetization. A review of the experimental results of this
class of materials can be found in [144].
A elegant way of formulating the coupling between localized and initerant

moment was given by Bloch et al. [145]. The localized magnetic momentMloc
is proportional to the angular momentum J and is given by the relation

Mloc = μBgJJ . (15.1)

The localized moment should couple to the spins S of the itinerant electrons
via

2K (gJ − 1)JS . (15.2)

In (15.1) and (15.2), J is the total angular momentum of the rare earth atom,
gJ is the Landé factor, and K is a coupling constant. The Hamiltonian for
the coupled systems with an external field Hzext applied in the z direction is
given by

H = Hband + [2K (gJ − 1) 〈Sz〉+ μBgJH
z
ext]

∑
i

Jzi + 2NμB 〈Sz〉H
z
ext ,

(15.3)
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where Hband is the contribution from the non-magnetic electronic band stru-
cture, 〈Sz〉 the average spin in the 3d band per molecular unit that is per rare
earth atom, and N is the number of rare earth atoms. The magnetization of
the 3d band is given by

M3d = −2NμB 〈Sz〉 . (15.4)

From (15.3) one can determine the field HK which acts on the localized rare
earth atoms and represents the influence of the itinerant 3d spins via the
coupling parameter K

HK = Hzext −
(gJ − 1)

NgJμ
2
B

KM3d . (15.5)

The total free energy contains the contribution of the 3d atoms F3d (M3d, T ),
the contribution of the external field −HzextM3d and the usual term from the
Weiss model (Chap. 6) for an angular momentum J in a “molecular field”
HK

F = F3d (M3d, T )−HzextM3d −NkBT ln
sinh

((
J + 12

)
y
)

sinh
(
y
2

) , (15.6)

with

y =
μBgJHK

kBT
. (15.7)

From the equilibrium condition dF/dM3d = 0 one obtains

−
dF3d (M3d, T )

dM3d
= Hzext −

gJ − 1

μB
KJBJ (J, y) , (15.8)

where the Brillouin function BJ (J, y) (6.8) is defined as

BJ (J, y) =
2J + 1

2J
coth

((
J +
1

2

)
y

)
−
1

2J
coth

(y

2

)
. (15.9)

Applying the usual high temperature approximation (6.10) of BJ (J, y)

BJ (J, y) �
1

3
y (J + 1) (15.10)

and for zero external field, Hzext = 0, one obtains

dF3d (M3d, T )

dM3d
=
(gJ − 1)

2

Nμ2B
K2

J (J + 1)

3kBT
M3d . (15.11)

Let us assume that the free energy of the 3d atoms can be written in form of
a Landau type expansion (14.10)

F3d (M3d, T ) =
A (T )

2
M2
3d +

B (T )

4
M4
3d +

C (T )

6
M6
3d + . . . (15.12)

The rhs of (15.11) renormalizes the coefficient A (T ) of the free energy
F3d (M3d, T ) so that the equilibrium condition reads
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0 =
dF

dM3d
=M3d

(
A (T ) +

(gJ − 1)
2

Nμ2B
K2

J (J + 1)

3kBT

)
+ . . . (15.13)

The coefficient A (T ) is given by −1/ (2χ3d (T )). The inverse susceptibility of
the coupled system is thus given by

χ−1 =
d2F

dM2
3d

=

(
−

1

2χ3d (T )
+
(gJ − 1)

2

Nμ2B
K2

J (J + 1)

3kBT

)
+ . . . (15.14)

At the Curie temperature Tc the susceptibility diverges so that χ−1 = 0
which yields a condition for the Curie temperature

kBTc =
(gJ − 1)

2

Nμ2B
K2
2J (J + 1)

3
χ3d (Tc) . (15.15)

Equation (15.15) is a very general expression for the Curie temperature of
coupled systems. It can be applied to systems where the 3d atoms carry a
magnetic moment by themselves which of course becomes changed by the
presence of the field exerted by the localized moment, but also to alloys
where the 3d atoms are genuinely non-magnetic but become polarized by the
localized moment. The coupling constant K can be determined from (15.8)
by setting T = 0K so that BJ (J, y) = 1 which gives

K =
μB

J (gJ − 1)

dF3d (M3d, T = 0)

dM3d
=

μB
J (gJ − 1)

H3d . (15.16)

Replacing the field H3d by M3d/χ3d and by applying (15.1) one finds

K =
gjμ

2
B

(gJ − 1)
χ−13d

M3d
Mloc

. (15.17)

The coupling constant, which is of the dimension of an energy, describes a
linear relation between the 3d moment and the localized moment, which is
in agreement with the physical intuition.
The model introduced here is also known under the names s − d model

or d − f model, depending which type of atom is supposed to provide the
itinerant and which the localized moment. In the original paper [145] it was
applied to the problem of the order of the phase transition in ACo2 com-
pounds, where A=Er, Ho, Dy, Tb, Gd. A different application was found for
the ordering temperature of transition metal impurities in a Pd host lattice
[161] where a combination with spin fluctuation theory was formulated.



16. Origin of the Molecular Field

Starting from the early days of Weiss, most models postulated an inner field
to explain the formation of magnetic order. Historically this field is called mo-
lecular field. Since a classical formulation (theorem of Bohr and van Leeuwen;
Chap. 1) cannot explain magnetic order, it already became clear in the 1920s
that the interactions leading to solid state magnetism must be of quantum
mechanical nature.

16.1 Heitler–London Theory for the Exchange Field

The origin of the molecular field is the interaction between the electrons.
These are electrostatic effects of coulomb type. Very early on Heitler and
London [21] gave an LCAO–type solution for the H2 molecule. There they
also took into consideration the spin of the electrons which means that the
wavefunction must be antisymmetric under the exchange of two electrons.
However, because of the atomic–like wavefunctions used in their model, the
Heitler–London solution is only valid for localized and not for itinerant elec-
trons. Nevertheless it gives a direct explanation of the nature of the interac-
tion incorporated into a molecular field in terms of the exchange interaction.
To write down the respective Schrödinger equation for the H2-molecule

one considers the geometry given in Fig. 16.1

Fig. 16.1. Schematic geometry of the H2 molecule. The grey spheres represent the
protons and the black spheres the electrons. rxy are the respective distances
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h̄2

2me

(
∇21 +∇

2
2

)
+ Um −

[
e2

rab
−

e2

ra1
−

e2

ra2
−

e2

rb1
−

e2

rb2
+

e2

r12

])
Ψm = 0.

(16.1)

Um is the exact energy eigenvalue for the molecular wavefunction Ψm. For
two isolated H-atoms the Schrödinger equations are

h̄2

2me
∇2ψa1 + (E0 +

e2

ra1
)ψa1 = 0 , (16.2)

h̄2

2me
∇2ψb2 + (E0 +

e2

rb2
)ψb2 = 0 . (16.3)

E0 is the eigenvalue of the isolated atom, ψa1 and ψb1 are the atomic wave
functions (e.g. 1s-functions). Without the electron–electron interaction, the
ground state of the H2 molecule would be 4-fold degenerate: There are two
electrons and each can have + or − spin so one is involved with

ψaα , ψaβ , ψbα , ψbβ with α, β = +
1

2
,−
1

2
.

The total spin S can take two values: S = 0 , MS = 0 and S = 1 , MS =
−1, 0,+1 .
The molecular wavefunction Ψm cannot be calculated analytically. The

usual way to circumvent this ever-present problem is to approximate the
“unsolvable” many-body problem by using linear combinations of known wa-
vefunctions. To set up these linear combinations one introduces linear combi-
nation coefficients which are then used as variational parameters to minimize
the total energy of this approximate solution. To solve the Schrödinger equa-
tion of the H2 molecule one uses exactly this method.
Distributing the electrons among these four wavefunctions one can cons-

truct four determinant wavefunctions. The use of determinant wavefunctions
(Slater determinant) satisfies the antisymmetry of the problem, because ex-
change of two electrons means exchange of two rows of the determinant and
consequently a change of sign. These four determinant wavefunctions are

Ψ1 =

∣∣∣∣ψaα (1) ψbα (1)ψaα (2) ψbα (2)

∣∣∣∣ ⇒MS = 1 , (16.4)

Ψ2 =

∣∣∣∣ψaβ (1) ψbα (1)ψaβ (2) ψbα (2)

∣∣∣∣ ⇒MS = 0 , (16.5)

Ψ3 =

∣∣∣∣ψaα (1) ψbβ (1)ψaα (2) ψbβ (2)

∣∣∣∣ ⇒MS = 0 , (16.6)

Ψ4 =

∣∣∣∣ψaβ (1) ψbβ (1)ψaβ (2) ψbβ (2)

∣∣∣∣ ⇒MS = −1 . (16.7)

Here for instance ψaα (1) means: electron 1 at atom a with spin +1/2. Wi-
thout interaction, these wavefunctions lead to the eigenvalue
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U0 = 2E0 . (16.8)

When the interaction is switched on, the fourfold degenerate state splits into a
singlet (S = 0, MS = 0) and a triplet (S = 1, MS = −1, 0,+1) state where
a priori either of the two could be the ground state.

S = 1,MS = −1, 0,+1
2E0

S = 0,MS = 0
,

S = 0,MS = 0
2E0

S = 1,MS = −1, 0,+1

The aim is now to find out which interaction is responsible for making the
“antiferromagnetic” singlet (S = 0 the spins are antiparallel) or the ferroma-
gnetic triplet (S = 1 the spins are parallel) lower in energy.
Since one considers isolated atoms one can directly formulate an ortho-

gonality relation between the electron wavefunctions

Sαβ =

∫
ψaαψbβdτ = 0 , (16.9)

Sαα =

∫
ψaαψbαdτ = Sββ =

∫
ψaβψbβdτ = S . (16.10)

In our case the value of the overlap integral S is directly related to the
orthogonality relations. Two cases are possible

rab = 0⇒ S = 1 the wavefunctions are identical,

rab →∞⇒ S = 0 no overlap.

One constructs the approximation for the molecular wavefunction as a sum
over all four determinant wavefunctions with variational parameters ci

Ψ =
4∑
i=1

ciΨi (16.11)

To perform the calculation a number of abbreviations are introduced, starting
with

HΨ = UΨ ,

with H = 2E0 + V0 ,

and V0 = e2
[
1

rab
−
1

ra2
−
1

rb1
+
1

r12

]
,

where U is the eigenvalue to the approximate wavefunction Ψ . It is also
convenient to introduce the following spin functions
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σ1 = α (1)α (2) MS = +1 ,

σ2 = β (1)α (2) MS = 0 ,

σ3 = α (1)β (2) MS = 0 ,

σ4 = β (1)β (2) MS = −1 .

Rewriting the Schrödinger equation (16.1) now yields

(U − 2E0)Ψ − V0Ψ = 0 . (16.12)

Multiplying (16.12) with the product ψaα (1)ψbβ (2) form the rhs gives

(U − 2E0)

∫
σ

α (1)β (2) dσ

∫
τ

Ψψa (1)ψb (2) dτ

=

∫
σ

α (1)β (2) dσ

∫
τ

ΨV0ψa (1)ψb (2) dτ ,

or in general

(U − 2E0)

∫
σ

σkdσ

∫
τ

Ψψa (1)ψb (2) dτ =

∫
σ

σkdσ

∫
τ

ΨV0ψa (1)ψb (2) dτ.

(16.13)

One can now replace Ψ for the sum in (16.11) and obtain

4∑
i=1

ci [Hik + (2E0 − U)Sik] = 0 , (16.14)

where

Sik =

∫
σ

σkdσ

∫
τ

Ψiψa (1)ψb (2) dτ , (16.15)

and

Hik =

∫
σ

σkdσ

∫
τ

ΨiV0ψa (1)ψb (2) dτ . (16.16)

The variation of the total energy with respect to the coefficients ci leads to
a secular determinant of the form∣∣∣∣∣∣∣∣

H11 +ES11 0 0 0
0 H22 +ES22 H23 +ES23 0
0 H32 +ES32 H33 +ES33 0
0 0 0 H44 +ES44

∣∣∣∣∣∣∣∣ = 0 , (16.17)

with E = 2E0 − U .
The secular matrix is of block diagonal form. This means that one only

has to diagonalize the block in the center. The first element can immediately
be calculated: S11 →MS = +1 , i = 1 , k = 1
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Ψ1 = σ1 [ψa (1)ψb (2)− ψa (2)ψb (1)] ,

S11 =

∫
σ

σ21dσ

︸ ︷︷ ︸
=1

∫
τ

ψa (1)ψb (2)ψa (1)ψb (2) dτ

︸ ︷︷ ︸
=1

−

∫
σ

σ21dσ

︸ ︷︷ ︸
=1

∫
τ

ψa (2)ψb (1)ψa (1)ψb (2) dτ

︸ ︷︷ ︸
=S2

,

S11 = 1− S2 , (16.18)

H11 =

∫
σ

σ21dσ

︸ ︷︷ ︸
=1

∫
τ

|ψa (1)|
2 |ψb (2)|

2
V0dτ

︸ ︷︷ ︸
=C

−

∫
σ

σ21dσ

︸ ︷︷ ︸
=1

∫
τ

ψa (2)ψb (1)ψa (1)ψb (2)V0dτ

︸ ︷︷ ︸
=J

,

H11 = C − J . (16.19)

Here S is the overlap-, C the coulomb-, and J the exchange integral. The
first matrix element is now given by

H11 + (2E0 − U)S11 = 0 ,

⇒ U = U1 = 2E0 +
C − J

1− S2
, MS = +1 .(16.20)

The energy for H44 is calculated analogously and has the same value, but
for MS = −1. The terms U1 and U4 describe states where both spins are
parallel which leads to a “ferromagnetic” state with S = 1.
Diagonalizing the block in the center of the determinant one can use

the following relations which are due to the fact that the secular matrix is
hermitian

S22 = S33 =

∫
σ

σ22dσ

∫
τ

|ψa (1)|
2 |ψb (2)|

2
dτ = 1 , (16.21)

H22 = H33 =

∫
σ

σ22dσ

∫
τ

|ψa (1)|
2 |ψb (2)|

2
V0dτ = C , (16.22)

S23 = S32 =

∫
σ

σ23dσ

∫
τ

ψa (2)ψb (1)ψa (1)ψb (2) dτ = S2 , (16.23)
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H23 = H32 =

∫
σ

σ23dσ

∫
τ

ψa (2)ψb (1)ψa (1)ψb (2)V0dτ = J , (16.24)

so that this block reads∣∣∣∣C + (2E0 − U) J + (2E0 − U)S2

J + (2E0 − U)S2 C + (2E0 − U)

∣∣∣∣ = 0 ,

which leads to the eigenvalues

U2 = 2E0 +
C + J

1 + S2
, MS = 0 , S = 0 , (16.25)

and

U3 = 2E0 +
C − J

1− S2
, MS = 0 , S = 1 . (16.26)

The Heitler–London model leads indeed to a threefold degenerate state
with parallel spin (triplet state) and a non-degenerate state with antiparallel
spin (singlet state). If one now postulates that the “ferromagnetic” state
(S = 1) should be lower in energy than the “antiferromagnetic” state (S = 0)
one finds the relation

U (S = 1)− U (S = 0) =
2
(
CS2 − J

)
1− S4

< 0 ,

and if the overlap can be neglected, one finds the well known result that the
exchange interaction must be positive

J > 0 . (16.27)

The state of the H2 molecule thus depends on the sign of the exchange inte-
gral. The magnitude of the exchange energy is about 2J and is proportional
to the quantity which is called the molecular field. The exchange interaction
is entirely of quantum mechanical origin and is an interaction of coulomb
type. This is the reason why the values for the molecular field came out so
unphysically large (Table 6.1). It must be stressed that this example only
yields a plausible explanation and may not be applied to any itinerant sys-
tem and to systems with more than one valence electron. However, there are
a number of conclusions that can be drawn from it.

16.1.1 Magnetism of a Spin Cluster

One can try to generalize our result to a cluster of spins (cluster of atoms
with spin + or −).

↓ ↓ ↑
↑ ↑ ↓
↑ ↓ ↑
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One assumes that the central atom has z neighbors, of which x neighbors
have spin up (+1/2) and y neighbors have spin down (−1/2), x+ y = z. For
each pair of atoms with parallel spin, the energy is

U = 2E0 +
C − J

1− S2
� 2E0 + C − J ,

and for each pair with antiparallel spin

U = 2E0 +
C + J

1 + S2
� 2E0 + C + J .

Apart from spin independent constants one writes the total energy of the
system

�U = −xJ + yJ = −J (x− y) .

Depending on whether the central atom has spin-up or spin-down one finds

�U = ±
1

2
J (x− y) .

Introducing the relative magnetization ζ = (x+y)
(x−y) one obtains for �U

�U = ±
1

2
zJζ .

To calculate the temperature dependence one uses classical statistics (the
particles are on fixed lattice sites and thus distinguishable) and obtains

ζ =
exp

(
1
2z

J
kBT

ζ
)
− exp

(
−12z

J
kBT

ζ
)

exp
(
1
2z

J
kBT

ζ
)
+ exp

(
−12z

J
kBT

ζ
) (16.28)

= tanh

(
1

2
z

J

kBT
ζ

)
.

This is of course the same result (D.4) as in Sect. D.. Comparing this equation
with the result one obtained from the Weiss’ molecular field model (6.18)

Equation (6.18)→ ζ = tanh

(
ζTc
T

)
,

one finds a relation between the value of the exchange integral and the Curie
temperature

kBTc
J
=

z

2
. (16.29)

With this simple model one finds surprisingly good results for the value of
the exchange integral which are of the order of

2kBTc
z
≈ 20 meV .
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The generalization of the Heitler–London model for the H2 molecule to
“solids” is only valid as long as the electrons are localized (compare with the
Weiss model, Chap. 6). In the present form it is also restricted to systems
which have only one valence electron. The model leads to essentially wrong
results for the conductivity (ferromagnetic conductors and antiferromagnetic
insulators).

16.1.2 Spinwaves for Localized Electrons

In a similar manner to that of the preceding section one now considers a linear
chain of spins. For this many–particle system there exists a wave function Ψ
and an energy eigenvalue U which satisfy a Schrödinger equation

HΨ = UΨ .

The aim is now to calculate the excitations of the spin system at low tempe-
ratures. One assumes that a number r of the N spins forming the chain are
antiparallel to the others. N is not only the total number of spins, but also
the total number of electrons in the system. Usually r will be much smaller
than N and the magnetic moment is given by

M = μB (N − 2r) , (16.30)

ζ =
M

NμB
= 1−

2r

N
.

One now enumerates the lattice sites such that the antiparallel spins oc-
cupy the positions n ≡ n1, n2, n3, . . . , nr. Each electron on its lattice site n
is described via an “atomic” wavefunction ψ (n). The wavefunction of the
spin system, in analogy to (16.11), is written as a linear combination of the
individual determinant wavefunctions

Ψ =
∑
n

α (n)Ψ (n) , (16.31)

where the α (n) are the variational parameters. For a number n of reversed
spins one can construct 2n configurations. One now writes the Schrödinger
equation, analogously to (16.14) in the form∑

n

α (n) [V (n, n′)− U� (n, n′)] = 0 , (16.32)

with

� (n, n′) =

∫
Ψ (n)Ψ (n′) dτ , (16.33)

V (n, n′) =

∫
Ψ (n)HΨ (n′) dτ . (16.34)

One can now calculate the matrix elements:
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For an interaction leading to a diagonal element two neighboring parallel
spins change sites. Obviously the distribution is unchanged. Off-diagonal ele-
ments are created when two neighboring antiparallel spins change sites and
hence the distribution changes.
Diagonal Elements: The distribution n is changed to n′, but where n′ is equal
to n

↑ ↑ ⇀↽ ↑ ↓ ↑ n
↑ ↑ ↑ ↓ ↑ n = n′

V (n, n′) is thus given by (16.20) (as for H11 )

V (n, n′) = NE0 +NC −mJ , S = 1 . (16.35)

Here m is the number of pairs of neighboring parallel spins. If m′ is the
number of pairs of neighbors with antiparallel spins one gets

Nz = m+m′ , z . . . number of nearest neighbors. (16.36)

Off-diagonal Elements: If two neighboring antiparallel spins change sites, the
distribution n is changed to the distribution n′ and n 	= n′

↑ ↑ ↑ ⇀↽ ↓ ↑ n
↑ ↑ ↓ ↑ ↑ n 	= n′

In this case V (n, n′) is given by H23 (16.24) and has the value

V (n, n′) = −J . (16.37)

For � (n, n′) one can use the orthogonality between two distributions n and
n′

� (n, n′) = δn,n′ . (16.38)

For a distribution with r antiparallel spins the total energy is thus given by

Uα (n) = (NE0 +NC −mJ)α (n)− J
∑
n′

α (n′) . (16.39)

By using the relation m = Nz −m′ = Nz −
∑
n′
1 (16.36) one obtains

Uα (n) = (NE0 +NC −NzJ)α (n) + J
∑
n′

[α (n)− α (n′)] . (16.40)

One now removes the constant terms in (16.40) by defining a new quantity ε

2Jε = U − (NE0 +NC −NzJ) ,

ε =
U

2J
+ const. , (16.41)

and gets

2εα (n) =
∑
n′

[α (n)− α (n′)] , (16.42)

where the constant terms in ε have been omitted. To solve (16.42) one assumes
the following distributions
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distribution n ↑ ↑ ↓ ↑ ↑
distribution n′1 ↑ ↓ ↑ ↑ ↑
distribution n′2 ↑ ↑ ↑ ↓ ↑

n− 2 n− 1 n n+ 1 n+ 2

In carrying out the sum over the n′ one has to sum over the pairs of
antiparallel spins in the new distributions n′. Equation (16.42) thus becomes

2εα (n) = α (n)− α (n− 1) + α (n)− α (n+ 1) . (16.43)

Equation (16.43) is a differential equation, where the rhs represents the nega-
tive second derivative of α (n) written as finite differences. To find a solution
one chooses the usual Ansatz

α (n) = exp (inka0) . (16.44)

This function can be also seen as a Fourier representation of the spin lattice
with the lattice constant a0. One obtains the general solution

ε = 1− cos (ak0) . (16.45)

Equation (16.45) describes the dispersion relation for spinwaves (magnons)
as they were also found as solutions of the Heisenberg model (7.25). These
are elementary excitations of the spin lattice. In Chap. 7 the Hamiltonian
was diagonalized via a transformation employing boson operators. From the
derivation above it becomes clear why these magnons are to be described as
a particle with integer spin. Since a magnon consists at least of one pair of
antiparallel spins moving through the lattice their total spin amounts to zero
and thus magnons are bosons.
In a classical picture the excitation of a spinwave causes a precession

of the spin system, where the phase difference between two lattice sites is
determined by the wave vector k . The uniform precession, i.e. k = 0 (infinite
wavelength) is known as ferromagnetic resonance. Figure 7.1 in Chap. 7 shows
this classical picture.
In real space a magnon consists of a single pair of antiparallel spins moving

through space. This single pair is described by a superposition of an infinite
number of spinwaves with varying k.



17. Exchange and Correlation in Metals

In the previous chapter it was shown how the exchange interaction is res-
ponsible for the formation of magnetic order in systems with localized spins.
Unfortunately for itinerant electrons the subject is rather more complicated
and one has to develop the theory for the limiting cases of the free electron
gas and of tightly bound electrons.

17.1 Free Electron Gas

Although the free electrons never really carry ferromagnetism it is useful to
study them as a model system. Interactions between free electrons are of
long range (coulomb type). In metals the interactions are of shorter range
due to the shielding effects of the other electrons, which will be discussed
later. However, the results derived from the electron gas form the basis of
the local density approximation (LDA) for exchange and correlation (for an
excellent account of LDA and itinerant magnetism see [146]). Within this
highly successful scheme, exchange and correlation are calculated from the
electron density, rather than carrying out the full integration over all states
in the system.
The total energy of the free electron gas is given by (8.9)

(8.9)→ Ee =
3

10
nεF

[
(1 + ζ)

5
3 + (1− ζ)

5
3

]
+ const. , (17.1)

where the Fermi energy is given by (2.26)

εF =
h2

2m

(
3Ntot
8πV

) 2
3

. (17.2)

The exchange interaction of the free electron gas will be calculated within
the framework of the Hartree–Fock model. The HF-model approximates the
many particle problem by an effective single particle Schrödinger equation,
where a single electron is assumed to move in the field of the other n − 1
electrons. This field has to be calculated self consistently (SCF methods). In
the Hartree–Fock model the exchange integral is given by the sum over both
spin directions
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J = −
1

2

⎛
⎝ ↑∑
ij

Jij +

↓∑
ij

Jij

⎞
⎠ , (17.3)

where

Jij =

∫
e2

|r1 − r2|
ψ∗i (r1)ψ

∗
j (r2)ψi (r2)ψj (r1) dτ1dτ2 . (17.4)

The wavefunction for a free electron is a plane wave, namely

ψi (r) =
1
√
V
exp (ikir) . (17.5)

Therewith Jij can be written

Jij =
e2

V 2

∫
exp [−i (ki − kj) (r1 − r2)]

|r1 − r2|
dτ1dτ2 . (17.6)

This integral can be evaluated by means of the Poisson equation, and gives

Jij =
4πe2

V

1

|ki − kj |
2 . (17.7)

Integrating over all occupied states with wavevectors ki and kj yields

−
↑↓∑
ki,kj

= −
3

2
e2

(
3

4πV

) 1
3 (

n±
) 4
3 , (17.8)

with n± = 1
2n (1± ζ), and finally

J = −
3

8
nεJ

[
(1 + ζ)

4
3 + (1− ζ)

4
3

]
, (17.9)

with

εJ = e2
(
3n

πV

) 1
3

. (17.10)

Equation (17.9) describes the exchange energy for the free electron gas with
Coulomb interaction. One finds that this energy is proportional to the ele-
ctron density (n/V ). This result is the starting point for the LDA (local
density approximation). In the LDA one calculates the ground state pro-
perties of a many particle system without the antisymmetry condition but
including a correction for the exchange interaction based on the result given
above. Adding the exchange term to (17.1) yields the total energy as given
by

U

nεF
=
3

10

[
(1 + ζ)

5
3 + (1− ζ)

5
3

]
−
3

8

εJ
εF

[
(1 + ζ)

4
3 + (1− ζ)

4
3

]
.(17.11)

Figure 17.1 shows a plot of the total energy U
nεF
as a function of ζ. The result

is quite surprising and sobering.
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For curve A , εJ
εF

< 2, the equilibrium state is found for ζ = 0 (parama-
gnetism). For curve B, εJ

εF
> 2, and results in a fully polarized system ζ = 1.

This is the condition for ferromagnetic order in a system with purely cou-
lomb type interaction. Within the Hartree–Fock approximation there exist
only two possible solutions for the free electron gas. The reason is found in
the fact that the exchange term is exactly of coulomb form and therefore
has an infinite range of interaction whereas in real metals the exchange in-
teraction is shielded by the other electrons so that its range of interaction is
reduced. Only with this shielding can weak itinerant magnetism occur.
It should be noted that the HF approximation only accounts for exchange

but not for correlation effects. Considering also correlation is a rather com-
plicated task. Correlation means that these electrons do not move comple-
tely independently from one another. In metallic systems correlation effects
should be smaller than exchange effects; nevertheless there is a rising inte-
rest in highly correlated systems (ceramic superconductors, Mott insulators)
where the correlation correction affects the whole physics. As correlation oc-
curs only between antiparallel spins it becomes zero for ζ = 1. For ζ = 0 the
correlation energy is negative and thus reduces exchange effects.

17.2 Tightly Bound Electrons

In the above, the electrons in a metal were approximated by a free electron
gas. Now we move to the other extreme and describe the electrons by atomic-
like functions (Wannier functions) which are always localized on a single
atomic site (tight binding approximation). The respective wavefunction reads

ψi (ri) =
1
√
N

∑
l

exp (ikiRl)φ (ri −Rl) , (17.12)

where N is the number of electrons (or atoms), R the position of the atom
with number l and φ (ri −Rl) the atomic wavefunction. For both spins the

Fig. 17.1. Hartree–Fock total energy
as a function of ζ
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exchange integral is again given by (17.3) and (17.4). Inserting the wavefun-
ction (17.12) one obtains

Jij =
1

N2

∑
l,m,n,p

I (l,m, n, p) exp [−i (ki (Rl −Rp) + kj (Rm −Rn))] ,

(17.13)

where

I (l,m, n, p) =

∫
e2

|r1 − r2|
φ∗ (r1 −Rl)φ

∗ (r2 −Rm)

×φ (r1 −Rn)φ (r2 −Rp) dτ1dτ2. (17.14)

The integral involves two electrons and four centers. These integrals are well
known in quantum chemistry (but nevertheless are very complicated). A
slight simplification can be obtained by putting the atom l at the origin
of the coordinate system (l = 0) and by restricting the integration to the
next-nearest-neighbors. One obtains

Jij =
1

N2

∑
m,n,p

I (0,m, n, p) exp [−i (−kiRp + kj (Rm −Rn))] . (17.15)

In a symbolic notation m,n, p = 1 for a neighbor of the atom l = 0, all
contributions to Jij are given in the table below. The following abbreviations
are used:

• R: distance between the neighbors.
• m,n, p,= Rm,Rn,Rp for all neighbors which are positioned symmetrically
around the central atom.
• exp [−i (−kiRp + kj (Rm −Rn))] = exp (−iA).

•
∫

e2

|r1−r2|
φ∗ (r1)φ

∗ (r2 −Rm)φ (r1 −Rn)φ (r2 −Rp) dτ1dτ2

=
∫

e2

|r1−r2|
Bdτ1dτ2

m n p A B Integral

0 0 0 0 |φ (r1)|
2 |φ (r2)|

2 I0
1 0 0 kjR |φ (r1)|

2 φ (r2)φ
∗ (r2 −R) I2

0 1 0 −kjR |φ (r2)|
2 φ (r1)φ

∗ (r1 −R) I2
0 0 1 −kiR |φ (r1)|

2 φ (r2)φ
∗ (r2 −R) I2

1 1 0 0 φ∗ (r1)φ (r2)φ
∗ (r2 −R)φ (r1 −R) I3

1 0 1 −kiR− kjR φ∗ (r1)φ
∗ (r2)φ (r2 −R)φ (r1 −R) I3

0 1 1 −kiR+ kjR |φ (r1)|
2 |φ (r2 −R)|

2 I1
1 1 1 −kiR φ∗ (r1)φ (r1 −R) |φ (r2 −R)|

2 I2

For z nearest-neighbors on a cubic lattice one thus finds

Jij =
1

N

[
I0 + zI1 (R) cos (kiR) cos (kjR) + 4zI2 (R) cos (kiR)

+zI3 (R) + zI3 (R) cos (kiR) cos (kjR)
]
. (17.16)
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The integrals I0, I1, I2, I3 are one- and two-center integrals which are again
well known (and often tabulated) in quantum chemistry. Integrals of this type
occur quite frequently and, for special basis sets like Gaussians, can also be
evaluated analytically. Their properties are now discussed in more detail.

1. I0 =

∫
e2

|r1 − r2|
|φ (r1)|

2 |φ (r2)|
2
dτ1dτ2 .

I0 is an intraatomic Coulomb integral of two electrons on one site. For
pure 3d-functions one finds a very large value of about 20eV. In a real
3d metal the screening by the 4s-electrons reduces the value to about
3eV. For degenerate electrons there exist a number of these integrals for
different sets of quantum numbers. These exchange integrals are called
Hund-terms and are important in the theory of atomic spectra, their
magnitude is about 1eV. One finds that all these effects enter somehow
into the exchange term. One usually formulates an interaction Ib (bare
interaction) which due to the Hund-, screening-, and correlation-terms
will be reduced to an effective interaction Ieff .

2. The integral I1 is an interatomic integral between two atoms on different
sites

I1 =

∫
e2

|r1 − r2|
|φ (r1)|

2 |φ (r2 −R)|
2
dτ1dτ2 .

For pure 3d-functions one finds a value of about 4eV, which is again
reduced by screening effects to 1eV.

3. The integrals I2 and I3 are also interatomic ones, but give only very small
contributions. In particular I3 is of a form similar to one which can be
derived for localized systems and should thus be small in our itinerant
case.

To calculate the total energy of the lattice in the Hartree–Fock model one
also has to determine the respective coulomb term which is given

C =
1

2

∑
ij

Cij , (17.17)

Cij =
1

N

[
I0 + zI1 (R) + 4zI2 (R) cos (kiR)

+2zI3 (R) cos (kiR) cos (kjR)
]
. (17.18)

Again C and J involve summation over the occupied states. One sees imme-
diately that for |R| → ∞ both Cij and Jij have the same value

Cij = Jij =
I0
N

One has to consider the two cases for ζ = 1 and ζ = 0 for |R| → ∞

• ζ = 1 ; ferromagnetism, all spins are parallel and hence U = NE0, because
C and J cancel each other.
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• ζ = 0 ; paramagnetism, C and J do not cancel each other. In calculating
J one assumes that half of the spins are spin-up and half are spin-down so
that the total energy becomes

U −NE0 =
1

2

(
NI0 − 2

N2

4

1

N
I0

)
=
1

4
NI0 . (17.19)

Plotting U − NE0 as a function of |R| (Fig. 17.2) for both cases shows a
surprising result, namely that in Hartree–Fock theory for infinite separation
of the electrons the ferromagnetic state is always more stable. This error is
buried in the fact that the HF wavefunction is assumed to be a product of
single particle wavefunctions. This product gives reliable results as long as the
atomic distance is small so that a product of wavefunctions is reasonable. For
large distances a linear combination (sum) of single particle wavefunctions
would meet reality much better. This is the case for the Heitler–London model
(Sect. 16.1) where for infinite separation the energy is always U = NE0
(which is the sum of the energies of N non-interacting particles) independent
of the mutual orientation of the spins and thus independent of the value of
ζ. As the correlation energy is zero for ζ = 1, the error in the Hartree–Fock
model is due to the missing correlation term. From the difference between
the two cases the correlation energy can be calculated to be

Ucorr = −
1

4
NI0 for ζ = 0 , (17.20)

Ucorr = 0 for ζ = 1 . (17.21)

For finite values of R the calculation of the exchange integral becomes very
complicated. The usual way to circumvent this problem is to assume that the
major contribution to I0 does not depend of k. For practical application one
introduces a quantity Ieff which also contains correlation effects.

Fig. 17.2. Hartree–Fock energy for the ferromagnetic (ζ = 1) and the paramagnetic
(ζ = 0) case
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Uxc =
1

N

(
J+ + J−

)
= −
1

2
Ieff

[(
n+

)2
+

(
n−

)2]
, (17.22)

n± =
n

2
(1± ζ) .

This yields an expression which is also known from the Hubbard–model

1

N

(
J+ + J−

)
= −
1

2
Ieff n2 + Ieff n+n− . (17.23)

Using (17.22) one can also arrive at a direct comparison with the molecular
field term which was postulated for the Stoner model

Uxc = −
1

2
Ieff
1

4
n2

[
(1 + ζ)

2
+ (1− ζ)

2
]

(17.24)

= −
1

2
nkBΘζ2 + const.

With the usual formulation that kBΘ =
1
2nIeff , (17.24) provides an inter-

pretation of the molecular field in terms of the exchange interaction. This is
also the reason why these molecular fields have such large (almost unphysi-
cally large) values. The exchange interaction is an electrostatic interaction
between electrons which occurs on a completely different energy scale that
usual magnetic fields. Expressing the respective Coulomb energy in terms
of a magnetic field leads to extremely large values, such as those given in
Table 6.1.



18. Spin Fluctuations

In Chap. 12 the temperature dependence of the magnetic properties was
calculated as arising from the temperature dependence of the Fermi distri-
bution. The results of this model were rather disappointing and led to an
unrealistic description of the magnetic behavior. For localized moments the
Heisenberg model (Chap. 7) and similar approaches yield fair results. For
these models collective excitations of the whole spin system were formula-
ted earlier. In the case of itinerant electrons one can no longer assume the
existence of a localized spin and statistical fluctuations of the magnetic mo-
ment (the magnetization-density/spin-density) have to replace the spinwaves.
Spin fluctuation theory in the way it has been introduced by Moriya [43] has
added much to our understanding of itinerant ferromagnetism. The Landau–
Ginzburg theory presented here (and in detail in Chap. 20) was introduced
by Murata and Doniach [44] and later quite successfully applied by Lonza-
rich at al. [45, 46] to explain the properties of weakly itinerant ferromagnets
Ni3Al and MnSi.
In an itinerant electron system the magnetic moment is carried by the

spin-density. Figure 18.1 sketches how such a fluctuation of the spin-density
can be envisaged.

Fig. 18.1. Sketch of a fluctuation in the spin-density σ (r)
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18.1 Fluctuations of a Thermodynamical Variable

Those physical quantities that characterize the equilibrium state of a ma-
croscopic system are always very close (with high accuracy) to their average
value (this fact is an alternative definition of equilibrium). However, there
are – small – deviations from equilibrium, the variables fluctuate and one
has the problem of finding the probability distribution for these deviations.
One assumes a system in equilibrium and x to be a certain physical quantity
which characterizes the system as a whole or a part of it (in the first case,
x must not be a quantity which has to be constant due to any conservation
law: e.g. the total energy). An elegant way to formulate fluctuations is to use
Gaussian statistics [147].
From Boltzmann’s formula one obtains for the probability w (x)

w (x) = exp (S (x))× const. (18.1)

Since the entropy S (x) has to be a maximum for the equilibrium one finds
that for x = 〈x〉 = 0 (〈x〉 is the average value of x) the first derivative of
S (x) must vanish and the second derivative be negative.

∂S (x)

∂x
= 0 ,

∂2S (x)

∂x2
< 0 for x = 0 . (18.2)

It should be noted that these assumptions of equilibrium properties for the
entropy causes trouble when approaching a critical point where both the first
and the second derivative vanish. The Gaussian statistics for the fluctuations
are therefore restricted to those parts of phase space that are far from critical
points.
Since the quantity x should be small, one expands S (x) in a Taylor series

up to second order, where the linear term vanishes because of the condition
formulated in (18.2)

S (x) = S (0)−
β

2
x2 . (18.3)

With (18.1) one obtains

w (x) dx = κ exp

(
−
β

2
x2

)
dx . (18.4)

The constant κ is given by the condition
∫

w (x) dx = 1. Although the
expression for w (x) is only valid for small x, one can carry out the integration
from −∞ to +∞ because the integrand vanishes rapidly for larger values of
x. The normalization constant κ is thus given by

κ =

(
β

2π

) 1
2

. (18.5)

The probability distribution for x is now given by
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w (x) dx =

(
β

2π

) 1
2

exp

(
−
β

2
x2

)
dx . (18.6)

A distribution of this kind is called a Gaussian distribution. It shows a maxi-
mum for x = 0 and decreases monotonically for positive and negative values
of x. The statistical averages for even powers of the variable x are now given
by

〈
x2k

〉
=

(
β

2π

) 1
2
+∞∫
−∞

x2k exp

(
−
β

2
x2

)
dx = β−k (2k − 1)!! . (18.7)

This means in particular that
〈
x2

〉
= β−1 and

〈
x4

〉
= 3β−2 = 3

〈
x2

〉2
. Each

higher order average can be expressed in terms of
〈
x2

〉
.

18.2 Fluctuations of the Magnetic Moment

In the framework of the Landau theory of phase transitions, the magnetic
moment M was introduced as the order parameter (14.10). Without further
discussion it was assumed that M is a scalar. This was possible because M
appeared only in even powers asM2n = (M ·M)n which are always scalars.
When one now deals with fluctuations one has to recognize the vector proper-
ties of both the magnetization and its fluctuations. For reasons of symmetry
one can postulate that the volume integral over odd powers in the fluctuation
always vanishes. If nowm (r) is the locally fluctuating magnetic moment one
assumes

1

V

∫
(m (r))

n
dτ =

{
〈mn〉 for n = 2k
0 for n = 2k + 1

. (18.8)

As an example the lowest two powers of the total magnetic moment are cal-
culated. Fluctuations appear in all three space directions. The direction of
M = (0, 0,Mz) is taken as the z axis of a local coordinate system, so that
one has to consider two fluctuations perpendicular to M and one parallel.
These three components of the fluctuation are denoted mi = miei where
(m1,m2,m3) = (mx,my,mz) are the three components in the directions gi-
ven by the unit vectors ei. (mz is parallel toM ,mx andmy are perpendicular
toM). One now extends the original order parameterM2n by the statistical
average including the fluctuation terms. The bulk magnetizationM remains
the order parameter which of course will vanish at the critical temperature
(Curie temperature).

M2n →

〈(
M +

3∑
i=1

mi

)2n〉
. (18.9)
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Putting n = 1 yields〈(
M +

3∑
i=1

mi

)2〉
=

〈
M2 + 2M

3∑
i=1

mi +
3∑
i=1

3∑
j=1

mimj

〉

= M2 + 2
〈
m2⊥

〉
+

〈
m2‖

〉
. (18.10)

On averaging, the mixed term vanishes, becausemi appears as an odd power.
For the same reason in the term

∑3
i=1

∑3
j=1mimj for the same reason only

the diagonal elements remain. On the rhs of (18.10) it was assumed that

the system is isotropic. This means that one describes one component
〈
m2‖

〉
which is parallel to the direction ofM and two components

〈
m2⊥

〉
which are

equal and perpendicular toM .
Putting n = 2 yields〈 (

M +
3∑
i=1

mi

)4〉
=

〈(
M2 + 2M

3∑
i=1

mi +
3∑
i=1

3∑
j=1

mimj

)2〉

=

〈(
M2 + 2Mm3 +

3∑
i=1

3∑
j=1

mimj

)2〉

=

⎡
⎣〈M4 + 4M2m23 +

3∑
i,j,k,l=1

mimjmkml

+4M3m3 + 2M
2
3∑
i=1

3∑
j=1

mimj + 4Mm3

3∑
i=1

3∑
j=1

mimj

〉⎤
⎦

= M4 +M2
(
6
〈
m2‖

〉
+ 4

〈
m2⊥

〉)
+ 8

〈
m2⊥

〉2
+3

〈
m2‖

〉2
+ 4

〈
m2⊥

〉 〈
m2‖

〉
. (18.11)

An analytical recipe for calculating the coefficients of the various polynomial
terms which appear in (18.10) and (18.11) as well as for the coefficients up
to order n = 6 is given in Sect. J. To enter the fluctuation terms into the free
energy one replaces the bulk magnetization M in (14.10) by the respective
averages (18.10) and (18.11). One obtains an expression for the free energy
in the variable M which describes the macroscopic magnetic moment (bulk

moment) and the variables
〈
m2⊥

〉
and

〈
m2‖

〉
giving the quadratic average

over the locally fluctuating magnetic moment. To distinguish the free energy,
which includes the fluctuation terms, from the straightforward Landau ex-
pansion one sometimes uses the name “dynamical” form of (14.10) which now
reads
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F =
A

2

(
M2 + 2

〈
m2⊥

〉
+

〈
m2‖

〉)
+
B

4

[
M4 +M2

(
6
〈
m2‖

〉
+ 4

〈
m2⊥

〉)
+8

〈
m2⊥

〉2
+ 3

〈
m2‖

〉2
+ 4

〈
m2⊥

〉 〈
m2‖

〉]
. (18.12)

The static fluctuations-free form of the free energy has just been extended
by the fluctuations. For T = 0 the fluctuation amplitude is zero and (18.12)
reduces to (14.10). One also notices that the dynamics of the fluctuations
scales with the static susceptibility (contained in the coefficient A). The first
important result is for the fluctuation amplitude at Tc. In the framework of
the Landau theory, the Curie temperature is given by the point where the
susceptibility diverges under the conditionM = 0. As the bulk magnetization
M vanishes at Tc there is no longer a difference between the parallel and

perpendicular fluctuations. This means that for T ≥ Tc ⇒
〈
m2‖

〉
=

〈
m2⊥

〉
=〈

m2
〉
. Calculating d

2F
dM2 = χ−1,with M = 0, one obtains

χ−1 = A+
B

2
10

〈
m2

〉
= 0 for T = Tc , (18.13)

which determines the magnitude of the fluctuations at Tc. One recovers the
so called Moriya formula〈

m2c
〉
=

M2
0

5
for T = Tc , (18.14)

where
〈
m2c

〉
is the fluctuation amplitude at the critical temperature. Equation

(18.14) shows that this amplitude is entirely given by ground state quantities
defined at T = 0. Equation (18.14) also allows to formulate an approxima-
tion for the temperature dependence of the fluctuations. From the fluctuation
dissipation theorem [147] it is obvious that classical fluctuations change essen-
tially linear with temperature. Since the fluctuations have to vanish at T = 0
and their value at T = Tc is known, one can approximate the temperature
variation by〈

m2‖

〉
(T ) =

〈
m2⊥

〉
(T ) �

〈
m2c

〉 T

Tc
=

M2
0

5

T

Tc
. (18.15)

In (18.15) it was also assumed that
〈
m2‖

〉
and

〈
m2⊥

〉
are identical, which is

largely true for isotropic systems.
From (18.12) one can directly calculate the temperature dependence of

the bulk moment M

dF

dM
= 0 = AM +BM3 +BM

(
3
〈
m2‖

〉
+ 2

〈
m2⊥

〉)
,

⇒ M2 =M2
0 − 3

〈
m2‖

〉
− 2

〈
m2⊥

〉
. (18.16)

Using the approximations given in (18.15) one thus obtains
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M2 =M2
0

(
1−

T

Tc

)
. (18.17)

This behavior differs from the Stoner model insofar as the reduction of the
magnetic moment at low temperature is stronger. The reason is the same as
for the comparison between the Weiss and the Heisenberg models: the colle-
ctive modes described by the spin fluctuations can readily be excited at low
temperature, where the Stoner excitations are still very small. A comparison
of these two models is shown in Fig. 18.2.
It is also interesting to study the temperature dependence of the total

magnetic moment defined in (18.10)〈(
M +

3∑
i=1

mi

)2〉
= M2

0

(
1−

T

Tc

)
+ 2

〈
m2⊥

〉
+

〈
m2‖

〉

�

{
M2
0

(
1− 25

T
Tc

)
T < Tc

M2
0
3
5
T
Tc

T ≥ Tc
. (18.18)

The temperature behavior of the bulk moment, the fluctuations and the order
parameter is shown in Fig. 18.3.
The susceptibility below and above Tc is given by

χ = χ0

(
1−

T

Tc

)−1
for T < Tc , (18.19)

Fig. 18.2. Temperature dependence of the magnetization for the spin-fluctuation
model (full curve) and the Stoner model (dashed curve)
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χ = 2χ0

(
T

Tc
− 1

)−1
for T ≥ Tc , (18.20)

which leads to a Curie constant C

C =
dχ−1

dT
=

1

2χ0Tc
, (18.21)

which is no longer temperature dependent (as for the Stoner model, see
12.41)) and thus describes a Curie–Weiss behavior. This result can be used
to derive an expression for the effective magnetic moment 6.14 created by
the spin fluctuations. Equating the definition of the Curie constant in terms
of the effective magnetic moment 6.16 with 18.21 yields

μ2eff =
3kB
2χ0Tc

. (18.22)

This allows to explain the Tc-dependence found for the Rhodes–Wohlfarth
plot (Fig. 6.5). By identifiying the effective carriers as being proportional to
qc one immeadiatley recovers that

qc
q0
∝
1
√
Tc

, (18.23)

which nicely describes the Tc-dependence of this otherwise phenomenologi-
cally derived relation.
Based on these results and the work by Lonzarich and Taillefer [46], Mohn

and Wohlfarth [47] derived a simple model for the Curie temperature in
weakly itinerant systems

Fig. 18.3. Temperature dependence of the bulk moment
√(
1− T

Tc

)
(full curve),

the fluctuations
√
3
5
T
Tc
(dotted curve), and the total moment

√(
1− 2

5
T
Tc

)
(for T ≤

Tc) and
√
3
5
T
Tc
(for T > Tc) (dashed curve)
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Tc ∝ TSF =
M2
0

10kBχ0
. (18.24)

In (18.24) TSF is a characteristic temperature which scales with the actual
ordering temperature Tc. In Fig. 18.4 the relation between TSF and the expe-
rimental Curie temperature Tc is shown. The plot shows that in general TSF
scales rather well with Tc. From the deviations, however, one can draw con-
clusion about the more localized or itinerant behavior of the systems shown.
Roughly speaking one finds the localized moment systems below the dashed
line and the itinerant ones above.
Equation (18.24) describes the long wave length limit for fluctuations in

weakly itinerant systems and is thus an approximation which is based on the
assumption of an effective cut–off for the collective excitations which should
be fairly constant. In the literature this approach is known as the Mohn–
Wohlfarth model and has considerable interest in the application of spin
fluctuation theory. Although this approach can be expected to break down
for strong ferromagnets [148] it can still be used to describe the relative
change of Tc, e.g. for different concentrations in an alloy system [149].
From (18.24) it also becomes clear why the Curie temperature of Co is

larger, although the magnetic moment is smaller, than that for Fe. The reason
is that Fe is just on the verge of a strongly ferromagnetic system, but still has
a relatively large susceptibility. Co however is already strongly ferromagnetic
and the susceptibility is drastically reduced. This means that in (18.24) the

term
M2
0

χ0
(and thus TSF ) is smaller for Fe than for Co. For Ni the magnetic

moment drops to 0.6μB, so that for a comparable susceptibility with Co the
Curie temperature is reduced as well.

Fig. 18.4. Relation between TSF and the experimental Tc
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18.3 Specific Heat of the Spin Fluctuations

The expression for the free energy (18.12) allows one to calculate the specific
heat using the thermodynamic relation

cm = −T
d2F

dT 2
. (18.25)

If one neglects the temperature dependence of the coefficient A (neglecting
single particle excitations) one obtains for T < Tc the result

c<m =
B

2

〈
m2‖

〉⎡
⎣6∂

〈
m2‖

〉
∂T

+ 4
∂
〈
m2⊥

〉
∂T

⎤
⎦+B

〈
m2⊥

〉⎡⎣2∂
〈
m2‖

〉
∂T

− 2
∂
〈
m2⊥

〉
∂T

⎤
⎦ .

(18.26)

For T ≥ Tc, the bulk magnetization M and its derivatives are zero so that
one finds

c≥m = −
B

2

〈
m2

〉
15

∂
〈
m2

〉
∂T

. (18.27)

This negative contribution to the total specific heat has already been noticed
by Murata and Doniach [44]. An experimental verification of this peculiar
behavior was found for the Invar system Fe-Pt [150]. The specific heat of the
fluctuations thus shows a discontinuity at Tc which is given by

�cm =
B

2

〈
m2c

〉
15

∂
〈
m2

〉
∂T

∣∣∣∣∣
T=Tc

. (18.28)

Using (18.14) and (18.15) one obtains

�cm =
M2
0

4χ0Tc
. (18.29)

For bcc Fe one calculates a value of about 36 J/mole K which is close to the
experimental value of 43 J/mole K. Equation (18.29) should be compared
to the analogous expression derived for the Stoner theory (14.18). One finds
that the discontinuity at Tc is reduced by a factor 4 (!) with respect to the
Stoner theory. The reason for this is that in the spin fluctuation model the
state above Tc is not the non-magnetic state (like in the Stoner model) but
a paramagnetic state, where local moments still exist, but long range order
has been destroyed by the fluctuations [151].

18.4 Magneto–Volume Coupling

In analogy with Chap.14 (14.21) the interaction between the volume of a
system and its magnetic moment is taken into account via a magneto–volume
coupling constant δ. With these extensions the free energy reads
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F =
A

2

(
M2 + 2

〈
m2⊥

〉
+

〈
m2‖

〉)
+
B

4

[
M4 +M2

(
6
〈
m2‖

〉
+ 4

〈
m2⊥

〉)
(18.30)

+8
〈
m2⊥

〉2
+ 3

〈
m2‖

〉2
+ 4

〈
m2⊥

〉 〈
m2‖

〉]
+α+ βV + γV 2 + δV

(
M2 + 2

〈
m2⊥

〉
+

〈
m2‖

〉)
. (18.31)

The magnetic and mechanical equations of state are given by

H =
∂F

∂M

∣∣∣∣
V

(18.32)

= AM +BM3 +BM
(
3
〈
m2‖

〉
+ 2

〈
m2⊥

〉)
+ 2δVM ,

−P =
∂F

∂V

∣∣∣∣
M

(18.33)

= β + 2γV + δ
(
M2 + 2

〈
m2⊥

〉
+

〈
m2‖

〉)
.

The equilibrium magnetic moment at T = 0 is thus

M2
0 = −

A+ 2δV0
B

, (18.34)

where V0 is the equilibrium volume at T = 0. From these results one can
determine the critical pressure for the disappearance of magnetism

Pc =
γA− βδ

δ
, (18.35)

and the pressure dependence of the Curie temperature

dTc
dP
= −

Tc (P = 0)

Pc
,

⇒ Tc (P ) = Tc (P = 0)

(
1−

P

Pc

)
. (18.36)

For fluctuation systems the Curie temperature depends linearly on the ap-
plied pressure. A discussion of the various models and their application to
experiment is given in [152]. This result for the spin fluctuation model is
again in contrast to Stoner theory (14.25) which gives

(14.25) → Tc (P ) = Tc (P = 0)

(
1−

P

Pc

) 1
2

.

A crucial quantity is the magnetic contribution to the thermal expansion
αm since the respective value for the Stoner model was again too large. For
the spin fluctuation model one finds
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αm =
dω

dT
=

⎧⎪⎪⎨
⎪⎪⎩
1
Tc

(
VNM
V0
− 1

)(
1− 3

〈m2c〉
M2
0

)
for T < Tc ,

1
Tc

(
1− VNM

V0

)(
3
〈m2c〉
M2
0

)
for T ≥ Tc .

(18.37)

here ω is the relative volume change (V−V0
V
), V0 is the equilibrium volume

at T = 0K and VNM is the hypothetical volume of the non-magnetic phase
(M = 0,

〈
m2

〉
= 0), which is also the volume for the Stoner model at Tc. For

the fluctuation model the volume at Tc becomes

V (Tc) = VNM − 3 (VNM − V0)

〈
m2c

〉
M2
0

, (18.38)

which leads to a considerably smaller spontaneous volume magnetostriction
as given by the Stoner model, again comparable to experiment.
Equation (18.37) also allows one to recover a “rule of thumb” given by

Masumoto in 1927 for Invar alloys:

• To observe a large negative value of αm (and consequently a small overall
thermal expansion) the fraction M2

0 /Tc should be large.

If one rewrites (18.37) in a different form one finds exactly Masumoto’s rule

αm =
1

Tc

4Bδ
〈
m2c

〉
Aδ − 2Bβ

with
〈
m2c

〉
�

M2
0

5
:

⇒ αm =
M2
0

Tc

4Bδ

5 (Aδ − 2Bβ)
(18.39)

namely that αm is proportional to
M2
0

Tc
.

18.5 Applications of the Spin Fluctuation Model

During recent years spin fluctuation theory has been successfully applied to
various problems of solid state magnetism. In this section some particularly
interesting ones will be briefly discussed: i) the Invar effect, ii) the tempera-
ture dependence of the susceptibility and the critical field of metamagnets,
and iii) the Curie temperature of transition metal impurities in Pd.
i) Under the name Invar effect one collects various phenomena with the most
striking one (which also gives the effect its name) being the vanishing thermal
expansion in a certain temperature range. Among the quite large number of
alloys the most prominent one is Fe65Ni35 which was already found by Guil-
laume [59] in the 19th century (see Fig. 5.6). Combined with this property
a number of other effects appear which are more or less closely related to
it. During the last 100 years there has appeared an enormous literature on
the Invar effect and recently the problem was reviewed by Wassermann [153].
The basic idea how to explain the very low thermal expansion goes back to
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R. Weiss [154] who proposed the so called 2-γ-state model. He assumed that
in Invar alloys there exists a ferromagnetic groundstate with a larger volume
and an metastable anti-ferromagnetic state with a smaller volume. As tempe-
rature rises the systems should become excited from the ferromagnetic to the
anti-ferromagnetic state. As a consequence the volume would shrink. This
magnetically induced shrinking of the volume should then compensate the
ever-present phonon-driven thermal volume expansion. In a certain tempera-
ture range below the Curie temperature these two contributions cancel each
other so that the overall thermal expansion vanishes. This model explains
the basic mechanism, although the proposed anti-ferromagnetic state has ne-
ver been found experimentally. Band calculations for Fe3Ni, however, showed
a very small energy difference between the magnetic and the non-magnetic
state [155]. Stoner theory again failed since it predicts a magnetic contribu-
tion to the thermal expansion which is by far too negative (it would actually
describe a shrinking of the crystal above Tc!). For Fe3Ni, whose composition
is close to the actual Invar alloy Fe65Ni35, it was shown how spin fluctua-
tions lead to a smaller value for the spontaneous magnetostriction which also
brings the magnetic contribution to the thermal expansion αm to a realis-
tic value [156]. In a second paper on this subject [157] the properties of the
Fe-Ni alloy system were investigated over the full concentration range and it
could be shown that αm goes through a minimum close to the experimen-
tal concentration. In addition to the obvious success of the spin fluctuation
model it was demonstrated how band structure calculations of the quantum
mechanical ground state can be combined with finite temperature concepts
of statistical thermodynamics to explain a rather complex phenomenon.
ii) Spin fluctuations are not restricted to ferromagnetic systems. It was also
shown how the thermal properties, in particular the susceptibility, are in-
fluenced by them. For ordinary paramagnets spin-fluctuation theory leads to
a Curie-Weiss behavior as expected for “localized” entities. More interesting
is the case of Pd and YCo2 where the susceptibility goes through a maximum
before entering the Curie–Weiss regime. When proposing the effect of meta-
magnetism, Wohlfarth and Rhodes [91] considered the susceptibility maxi-
mum as a prerequisite for the possibility of such a phase transition. Again
combining band structure calculations and spin fluctuation theory it could be
shown that for Pd only a deviation from the linear temperature dependence
of χ−1(T ) exists, but no discontinuous phase transition to a magnetic state.
For YCo2 there is indeed a metamagnetic phase transition at low tempera-
tures. Above T = 35K this transition is suppressed by the spin-fluctuations
and the remaining phase transition is continuous [158, 159] in agreement with
experiment.
iii) The finite temperature behavior of transition metal impurities in pal-
ladium [58] has also been studied within the spin fluctuation model. It was
found that only small amounts of a transition metal turn the Pd-matrix to be-
have like a ferromagnet. Due to the very large susceptibility of the Pd-host,
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the transition metal impurities, which themselves form localized magnetic
moments, polarize the surrounding Pd-atoms causing a polarization cloud
which can extend out over more than 1000 atoms [160]. When the total mo-
ment produced that way was attributed to the impurity alone it was thought
that these impurities carry “giant” moments of up to 10μB. Experimentally
the Curie temperature is not a linear function of the concentration but shows
a slowing down of its increase for an impurity concentration around > 5%,
however, all earlier models for the Curie temperature predicted a linear con-
centration dependence. To explain the magnetic behavior of these systems a
combined model was proposed, where the localized impurity moment is trea-
ted within a Weiss-model (see also Chap. 15). The polarizing field produced
by the impurity then acts on the Pd-host which is treated as an enhanced
Pauli–paramagnet with strong spin fluctuations [161]. In this sense this model
describes the interaction of localized spins via a molecular field which has an
additional temperature dependence from the spin fluctuations. The coupling
constant between the impurity moments and the itinerant host moments can
also be calculated from first principles and is in good agreement with ex-
perimental estimates. For the Curie temperature the following equation was
derived

A+ 5BαkBTc + 35C (αkBTc)
2
=
(gJ − 1)

2

μ2BN
K2
2J (J + 1)

3kBTc
(18.40)

where Tc is given by the real solutions of this cubic equation. Equation (18.40)
is identical to the result derived in (15.15) with the exception that the lhs of
(18.40) represents the spin fluctuation part of the itinerant Pd-host given in
terms of the spin fluctuation dependent susceptibility. The rhs describes the
localized impurity moments which are given by their angular momentum J .
The coupling between the localized impurity moments and the itinerant host
magnetization is monitored by the coupling constant K (see (15.16) in Chap.
15). For a more detailed description of the parameters occurring in (18.40) it
should be referred to the original paper. In this model only one experimental
parameter comes in, namely the temperature of the susceptibility maximum
for pure Pd. All other quantities which enter (18.40) were derived from first
principles electronic band structure calculations.
Spin fluctuations are of course not restricted to ferromagnetic systems.

Also anti-ferromagnets and ferrimagnets (which are otherwise not discussed
in this book) have been treated successfully. Among these systems are γ-Mn
and FeRh. FeRh is especially interesting, because with rising temperature
it shows a phase transition from an anti-ferromagnetic to a ferromagnetic
state. Comparing the respective free energies of these two phases allowed to
determine this magnetic phase transition [213].
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18.6 Comparing the Spin-Fluctuation and the
Stoner-Model

In this section a comparison between the results from the spin fluctuation
model and the Stoner model is presented (Table 18.1). In both cases the
results are based on a Landau expansion of the free energy up to fourth
order in M and up to second order in V . The starting equations are thus
(14.10) or (14.21) for the Stoner model and (18.12) or (18.31) for the spin
fluctuation model, respectively.
Spin fluctuations lead to a different power law behavior for both the sus-

ceptibility and the magnetic moment. However, since spin fluctuations are
also treated within mean field theory, the critical exponents of both models
are the same. This different power law is also found for the pressure de-
pendence of the Curie temperature and its slope. As expected for localized
moments, spin fluctuations lead to a linear temperature dependence of the
inverse susceptibility (Curie–Weiss law), which is expressed by a temperature
independent Curie constant. The magnetic contributions to the thermal ex-
pansion coefficient caused by the spin fluctuations are smaller than that for

Table 18.1. Comparison between the spin fluctuation and the Stoner model for the
susceptibility χ, the Curie constant C, the magnetic moment M (T ), the magne-
tic contribution αm to the thermal expansion coefficient, the volume at the Curie
temperature V (Tc), the pressure dependence of the Curie temperature Tc (P ), the
coefficient dTc/dP of the pressure dependence of Tc; the discontinuity of αm at
the Curie temperature Δαm, the discontinuity of the specific heat cm at the Curie
temperature Δcm

spin fluctuation model Stoner model

χ for T < Tc χ0
(
1− T

Tc

)−1
χ0

(
1− T2

T2c

)−1
χ for T ≥ Tc 2χ0

(
T
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)−1
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(
T2

T2c
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C =
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1
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T
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1
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(
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)
2
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)
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the Stoner model and exist also above Tc. Consequently also the volume at
Tc i s larger than for the Stoner model, which causes a smaller spontaneous
volume magnetostriction. Finally the discontinuity in the specific heat at Tc
is also reduced by a factor 4 with respect to the Stoner model.



19. Single Particle Excitations Versus Spin
Waves

This chapter tackles the question of the response of a system of itinerant ele-
ctron spins to a magnetic field varying in space or time. For a homogeneous
field this response function is given by the uniform susceptibility which can
also be seen as generalized susceptibility χ(q, ω) in the limit q = 0 (no spatial
variation = infinite wavelength of the variation) and ω = 0 (no time depen-
dence). The knowledge of the dynamical properties of an electron system is
of great importance not only for the understanding of its finite temperature
properties, as was demonstrated for the Heisenberg model (7.1) and (7.25)

where the quadratic dispersion relation found led to the Bloch T
3
2 law, but

also for more complex magnetic order than just ferromagnetism (antiferro-,
ferri-, heli-magnetism). The latter point can be understood by considering
that e.g. antiferromagnetism can be seen as a magnetic order produced by
a molecular field, with opposite sign at any sublattice (staggered magnetic
field). Since a transition into a magnetically ordered state is due to a pole in
the susceptibility (the Stoner criterion is just the condition for a pole of the
uniform, q = 0, susceptibility), a pole of χ(q, ω) for q = π

a0
(0, 0, 12 ) would des-

cribe antiferromagnetic order along the z-axis of a cubic crystal. This simple
example also demonstrates why there is no obvious “Stoner criterion” for
antiferromagnetism since this would require the knowledge of the dynamical
properties of the spin system, a feature which can not easily be derived from
the non–magnetic ground state. The dynamical (q-dependent) susceptibility
is thus a central quantity for the understanding of magnetism.
The basic excitation mechanism for an itinerant electron system is shown

in Fig. 19.1. Since the single particle excitations should reduce the magne-
tization one assumes transitions from the majority band (spin-up) to the
minority band (spin-down).
The simplified band structure given in Fig. 19.1 resembles a strong fer-

romagnet where the majority band is completely filled. The Fermi energy
thus lies above the majority band separated from it by the Stoner gap ΔS.
The spin splitting between spin-up and spin-down is given by ΔE and, for
simplicity, a rigid shift is assumed. One now considers an excitation from
an occupied state k↑ to an unoccupied state k

′
↑ where k

′
↑ can be written as

k↓ + q. If q is zero the necessary energy is exactly ΔE which simply des-
cribes ferromagnetic resonance of an electron in the respective “molecular”
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field. For non-zero q the response of the system is given by the dynamical
susceptibility which reads [162]

χ (q, ω) =
2μ2BΓ (q, ω)

1− 2IΓ (q, ω)
, (19.1)

Γ (q, ω) =
∑

|k|=const.

nk↑ − nk′↓
εk′↓ − εk↑ − h̄ω +�E

. (19.2)

Equation (19.1) is of the same kind as the enhanced static susceptibility
(8.21). However the density of states of the Bloch-electrons is now replaced
by a generalized Lindhard-type [163] expression which for q = 0, ω = 0 re-
duces to the original density of states. Formally the rhs of Γ (q, ω) represents
a δ–function for a particular value q → 0 where the density of states is then
calculated by integration over a surface with |k| = const., with the denomi-
nator describing the energy conservation for the creation of a single particle
excitation with the energy h̄ω.
Assuming quasi-free (non-interacting) electrons in a magnetic field (the

molecular field) which produces the band splitting, one can determine the
major part of the excitation spectrum. For a free electron the single particle

energy is given by h̄
2k2

2m so that one finds:

εk =
h̄2k2

2m
,

Fig. 19.1. Transfer of an electron (spin) from the majority to the minority band
leading to single particle excitations in an itinerant electron system
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εk+q =
h̄2 (k + q)

2

2m
+ΔE ,

⇒ h̄ω =
h̄2

m
kq +

h̄2

2m
q2 +ΔE . (19.3)

For q = 0 one finds ferromagnetic resonance for a field given by the exchange
energy ΔE = 2μBHM; only for finite q does one describe single particle
excitations within the Stoner continuum which is determined by all possible
values of k. For the strongly ferromagnetic case considered in Fig. 19.2 these
values are given by the k-range for the unoccupied states in the minority
band. It is also easy to see that the smallest possible excitation energy is given
by the Stoner gap ΔS. Figure 19.2 also shows how the collective excitations
can readily be excited at small q values. When the collective excitations
(spin waves) enter the range of the single particle excitations, they start to
decay into single particle excitations (Landau damping), which reduces their
lifetime drastically. As a consequence inelastic neutron scattering measures a
dramatic broadening of the collective excitations (Fe: [164], Ni: [165]).
One notices immediately that the excitation of long wavelength single

particle excitations always requires an energy of the order of the spin split-
ting since they have to reduce the z-component Mz of the magnetization.

Fig. 19.2. Energy range of the single particle excitations (shaded area) and the
collective excitations
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Quantum fluctuations, which could produce Mx and My components (as for
the Heisenberg model) and thus describe a tilting of the local moment are
not possible in the single particle picture. However, for a weak ferromagnet,
where the Stoner gap is zero so that the Stoner continuum intersects with
the q-axis these single particle excitations lead to a reduction of the magnetic
moment as given by (12.27). It should be noted that exactly the same single
particle excitations, but only within the same spin band, describe the specific
heat of an electron gas. In the strongly ferromagnetic case plotted in Fig. 19.2
the smallest possible energy for the single particle excitation is determined
by the Stoner gap ΔS which gives rise to a different temperature dependence
of the magnetization in the low temperature region [166]

M

M0
= 1− T

3
2 e
− ΔS
kBT . (19.4)

Going beyond the non-interacting electron gas and treating the effects of
exchange and correlation by e.g. a Hartree–Fock Ansatz or a Hubbard model
one finds an additional solution in the excitation spectrum, namely collective
excitations which make up the “spinwave” branch starting from q = 0. These
collective excitations are basic properties of the Fermi-liquid [167] and since
more than one particle is involved it requires more than the single particle
approximation to account for this solution. If the energy of these new states
falls outside the continuum of unperturbed states (Stoner continuum) the
electron–hole pairs form bound states whose energy is a smooth function of
k [168].
In the case of weakly itinerant systems the energy dispersion can be cal-

culated by expanding the real part of the generalized density of states (19.2)
Γ (q, ω) for small q and ω. To describe poles in the dynamical susceptibility
one sets the result equal to I/2 and obtains [169]

Dq2 � h̄ω (q) =
1

N↑ −N↓

×
∑
k

[
1

2

(
nk↑ + nk↓

)(
q

∂

∂k

)2
εk −

N
(
nk↑ − nk↓

)
I (N↑ −N↓)

(
q
∂εk
∂k

)2 ]
.

(19.5)

This relation has the same quadratic dependence upon q that was found
for the spin wave spectrum of a magnon in the Heisenberg model. The first
term of the rhs of (19.2) corresponds to the additional kinetic energy that
the electrons develop as they change their spin directions to keep up with the
change in the macroscopic spin direction of the spin wave. It can be shown
[170] that this effect is always positive and vanishes for a filled band. The
second term corresponds to a reduction in this kinetic energy due to a tilting
of the electron spin out of the plane in which the macroscopic magnetization
varies. The fact that the resulting small energy change is the difference of
two fairly large numbers makes it numerically rather unfavorable to evaluate
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this formula. One needs a highly precise description of the Fermi surface
and it also requires thousands of k-points in the Brillouin-zone to obtain
accurate results. However, realistic calculations involving five d-bands (rather
than earlier investigations which were based on an electron gas model) have
been performed for Fe [171] and Ni [172] which are in excellent agreement
with experiment (Fe: [164], Ni: [165]). Applying (19.5) Edwards and Muniz
[173] showed how the spinwave stiffness constant can be evaluated directly
from a multi-band tight-binding parametrization of a band calculation for
the ferromagnetic ground state of Fe and Ni. In the limit of the free electron
gas, (19.5) can be evaluated analytically and yields

D =
h̄2

2m∗
1

ζ

[
1−
2

5

(1 + ζ)
5
3 − (1− ζ)

5
3

(1 + ζ)
2
3 − (1− ζ)

2
3

]
, (19.6)

which in the strongly itinerant limit ζ = 1 reduces to

D =
h̄2

2m∗
4

5
, (19.7)

where m∗ is the effective mass of the electrons (see Chap. 4).
Experimentally these collective excitations have been measured already

rather early by neutron diffraction [174] and show a very strong dispersion
related to a large value of the spinwave stiffness constant D (7.28). The
measured room temperature values for Fe, Co, and Ni are 280, 510, and
455 meVÅ2, respectively. However, neutron experiments have the problem
that for larger q-vectors these collective excitations become rapidly damped,
since they decay into single particle excitations (Landau damping) once the
spinwave branch enters the Stoner continuum. A different method for deter-
mining D is by fitting low temperature magnetization measurements to a
T 3/2 law expected for collective excitations [175] a procedure which confirms
the neutron results.
From this discussion it becomes clear that the thermal properties of itine-

rant electron systems should also be governed by collective excitations. Only
at very high temperatures can single particle excitations become important,
an effect which should be more pronounced for weak ferromagnets than for
strong ones. Considering single particle excitations only, Gunnarson [176] de-
monstrated that the Curie temperatures obtained range between 4000 and
8000 K for Fe, Co, and Ni so that collective excitations are inevitably needed
to explain the experimental values.



20. Landau–Ginzburg Model
for Spin Fluctuations

In Chap. 18 spin fluctuations were introduced in a rather phenomenological
way. This meant that the actual nature of these fluctuations remained unclear
and that properties like the temperature dependence were only introduced
in an approximative manner. Although this was sufficient to describe quite
a large number of properties, here an “exact” (within the mean field ap-
proximation) theory of the magnetic fluctuations is presented. This means in
particular that one has to allow for finite values of the wave-vector q. If one
wants to solve the problem exactly one can follow the method of Landau and
Ginzburg. The expansion for the free energy now contains a local term which
takes the spatial dependence of the fluctuations into account (see also Sect.
F.) and the respective Hamiltonian becomes [191]

H =
1

V

∫
dr

⎛
⎝E

(
M +

3∑
i=1

mi (r)

)
+

C

2

∑
i,j

(∇jmi (r))
2

⎞
⎠ . (20.1)

The Hamiltonian given by (20.1) is identical to the Ornstein–Zernicke ex-

tension (F.1) which is described in detail in Sect. F.. The term (∇jmi (r))
2

accounts for local fluctuations. The fact that this term contains the spatial
derivative of the fluctuating moment makes sure that only fluctuations which
are larger that the electronic range of interaction are considered. Fluctua-
tions on a small spatial scale are suppressed because they lead to large values
of this derivative and thus to large changes in the free energy. It should be
noted that the treatment of the fluctuations via a gradient term is not the
only possible formulation. A highly interesting conjecture was introduced by
Kirchner et al. [177] who directly introduced a non-local quadratic exchange
term similar to (20.4) which couples fluctuations localized on different points
in space. In a similar way Uhl et al. formulated the “exchange coupled” spin
fluctuation theory [206] by assuming a mode coupling of Heisenberg type. All
different approaches have in common that they assume that the long range
fluctuations are responsible for the breakdown of magnetic order at finite
temperature. Short ranged intraatomic fluctuations are initially suppressed
and should only play any role at high temperatures. A thorough discussion
of these problems can be found in [196].
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E
(
M +

∑3
i=1mi (r)

)
is the usual energy expansion as given by (18.12).

The free energy then reads

F = −kBT lnZ , Z =

∫
dΓ exp (−βH) , (20.2)

where dΓ means the integration over all fluctuation variables [see (20.7)] and
β = 1

kBT
. The problem is now that the sum of states cannot be calculated

analytically for the assumed Hamiltonian. A possible solution is provided by
the Bogoliubov (Peierls–Feynman) inequality which reads

F ≤ F0 + 〈H −H0〉0 . (20.3)

For a proof of (20.3) see Sect. G.. One formulates a parametrized Ansatz
for F0 (for which the sum of states can be calculated) and finally minimizes
the rhs of (20.3). In the sense of the variational principle this leads to the
best approximation for F under the trial free energy F0. In addition this
method leads to an effective mean field solution of the problem as discussed
in Sect. G.. To have a most general form for H0 one chooses a translationally
invariant, quadratic form in m (r)

H0 =
3∑
i=1

1

V

∫
d3r d3r′Ωi (r − r

′)mi (r)mi (r
′) . (20.4)

With this approach F0 can be calculated and the a piori unknown function
Ωi (r − r′) also serves as the variational parameter. Equation (20.4) has a
physically rather intuitive form since it describes the interaction of the ma-
gnetizations at points r and r′ via a function Ωi (r − r′) and thus strongly
reminds one on the Heisenberg Hamiltonian [see (7.1) in Chap. 7]. The follo-
wing derivation is a basic example for the solution of the Landau–Ginzburg
Hamiltonian and is therefore given in detail. One starts by defining the Fou-
rier transforms

mi (r) =
∑
k

mki exp (ikr) , Ωi (r) =
1

V

∑
k

Ωki exp (ikr) ,(20.5)

which allow to write the trial Hamiltonian as

H0 =
∑
k,i

Ωkimkim−ki =
∑
k,i

Ωki |mki|
2

. (20.6)

To calculate the respective sum of states Z0 one has to integrate over the
phase space of the fluctuations which is given by the product over all inde-
pendent variables

dΓ =
∏
k,i

dmki , (20.7)

and hence
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Z0 =
∏
k,i

+∞∫
−∞

dmki exp

⎛
⎝−β∑

k,i

Ωki |mki|
2

⎞
⎠

=
∏
k,i

(
πkBT

Ωki

) 1
2

, (20.8)

so that the free energy F0 becomes

F0 = −kBT lnZ

= −
kBT

2

∑
k,i

ln

(
πkBT

Ωki

)
. (20.9)

The Fourier transforms of the averages are〈
mi (r)

2
〉
=

∑
k1,k2

〈mk1imk2i〉 exp [−ir (k1 + k2)]

=
∑
k

〈
|mki|

2
〉

. (20.10)

The simplification of the summation to involve only one variable k is due to
the translational symmetry. The thermodynamical average of the fluctuation
with respect to H0 is given by

〈
mi (r)

2
〉
=

∑
k

+∞∫
−∞
|mki|

2
exp (−βH0) dΓ

+∞∫
−∞
exp (−βH0) dΓ

=
∑
k

+∞∫
−∞

dmki |mki|
2
exp (−βH0) dΓ

+∞∫
−∞

dmki exp (−βH0) dΓ

=
kBT

2

∑
k

1

Ωki
. (20.11)

The thermodynamical average of H0 is obtained along the same lines

〈H0〉0 =
∑
ki

Ωki

〈
|mki|

2
〉
=

kBT

2

∑
ki

1 , (20.12)

giving a contribution which is just proportional to the number of modes ( =
degrees of freedom). The final step is the calculation of the thermodynamical
average of H. One writes 〈H〉 in the form

〈H〉 = E (M) + ϕ+
C

2V

∫
d3r

∑
i,j

〈∇jmi (r)〉
2

. (20.13)
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In (20.12) the function ϕ has been introduced which is the difference between
the Landau expansion at T = 0 E (M) and the respective expansion which
contains the fluctuations for T > 0. It is given by

ϕ =
1

V

∫
d3r

〈
E

(
M +

3∑
i=1

mi (r)

)
−E (M)

〉
. (20.14)

Using Fourier transforms one can calculate the integral in (20.13) (see Sect.
F.) and obtain

〈H〉0 = E (M) + ϕ+
C

2

kBT

2

∑
ki

k2

Ωki
. (20.15)

Now one can collect all terms and formulate the free energy from the Bogo-
liubov inequality

F ≤ F0 + 〈H −H0〉0

= E (M) + ϕ+
C

2

kBT

2

∑
ki

k2

Ωki

−
kBT

2

∑
ki

(
1 + ln

(
πkBT

Ωki

))
(20.16)

The function Ωki was introduced as a variational parameter so as to construct
an optimal approximation for F . The value of Ωki is now determined from
the condition dF

dΩ i
= 0 which yields

Ωki =
C

2
k2 +

∂ϕ

∂
〈
mi (r)

2
〉 . (20.17)

Up to 4th order in the magnetic moment the function ϕ is given

ϕ =
A

2

(〈
m21

〉
+

〈
m22

〉
+

〈
m23

〉)
+
B

4

[
M2

(
2
〈
m21

〉
+ 2

〈
m22

〉
+ 6

〈
m23

〉)
+ 4

〈
m21

〉2
+4

〈
m22

〉2
+ 3

〈
m23

〉2
+ 2

〈
m21

〉 〈
m23

〉
+ 2

〈
m22

〉 〈
m23

〉]
, (20.18)

where the obvious r dependence of
〈
m2i

〉
was omitted. As in Sect. 18.2 an

isotropic system is assumed so that
〈
m21

〉
=

〈
m22

〉
=

〈
m2⊥

〉
and

〈
m23

〉
=〈

m2‖

〉
. Calculating the derivative of ϕ with respect to the fluctuations one

obtains

∂ϕ

∂ 〈m21〉
=

A

2
+

B

4

(
2M2 + 8

〈
m21

〉
+ 2

〈
m23

〉)
=
1

χ⊥
−

C

2
k2 , (20.19)

for the perpendicular component, and
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∂ϕ

∂ 〈m23〉
=

A

2
+

B

4

(
6M2 + 2

〈
m21

〉
+ 2

〈
m22

〉
+ 6

〈
m23

〉)
=
1

χ‖
−

C

2
k2 ,

for the parallel component where one can interpret the result in terms of
a perpendicular and parallel susceptibility χ⊥ and χ‖. It is easy to prove
that both derivatives vanish at Tc for k = 0 which is the condition for a
ferromagnetic Curie temperature. Of more interest is their value at T = 0
and k = 0. Here the perpendicular component 1

χ⊥
is zero but the parallel

component has the value of the inverse bulk susceptibility which is (2χ0)
−1.

One can thus interpret these relations as susceptibilities for the excitation of
parallel or perpendicular fluctuations. On closer inspection one finds that the
perpendicular susceptibility is much larger (for finite k) than the parallel one,
which means that it is much easier to excite a tilting of the moments than a
fluctuation along the parallel component. This behavior again resembles the
result for the Heisenberg model where also the tilting of the localized spins
was found to be the important mechanism.
Combining (20.11) and (20.17) allows one to calculate the explicit form

for the fluctuation amplitude

〈
m2i

〉
=

kBT

2

V

8π3

kc∫
0

4πk2

C
2 k
2 + ∂ϕ

∂〈mi(r)
2〉

dk . (20.20)

In (20.20) there appear two unknown parameters: the “spin wave stiffness” C
and the cut-off wave vector kc. The latter quantity must be introduced, since
the Ornstein–Zernicke correlation function, which appears in the integrand,
leads to a divergence if the integration is carried out to |k| → ∞. A physical
justification for the introduction of this cut-off may be found in the strong
damping of the spin fluctuations by the single particle excitations as discussed
in Sect. 19. From the zero temperature properties of the derivative of in the
integrand of (20.20) one can replace the spin wave stiffness constant C by
ξ2/χ0 where ξ is the correlation length and χ0 is the susceptibility. Equation
(20.20) yields only an implicit definition of

〈
m2i

〉
because the fluctuation

amplitude occurs also in the denominator. For practical application (20.20)
must be solved numerically. Carrying out the integration yields

〈
m2i

〉
=

kBTV kc
2π2C

⎡
⎣1−

√√√√(
2 ∂ϕ
∂〈mi〉

Ckc
2

)
arctan

√√√√(
Ckc

2

2 ∂ϕ
∂〈mi〉

)⎤
⎦ , (20.21)

which together with the magnetic equation of state

H =

(
∂E

∂M

)
+

(
∂ϕ

∂M

)
T,mi

, (20.22)

forms the set of equations to be solved self-consistently to determine the bulk

moment M and the fluctuations
〈
m2⊥

〉
and

〈
m2‖

〉
at a given temperature T .
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The indices to the derivatives on the rhs of (20.22) indicate that T and mi
have to be kept fixed; H is the (external) field.
From (20.16) it is straightforward to derive expressions for the entropy S

and the specific heat cH (at constant field H)

S =
kB
2

∑
ki

(
1 + ln

πkBT

2Ωki

)
, (20.23)

and

cH =
kB
2

∑
ki

1−
∑
ki

〈
m2i

〉( ∂2ϕ

∂T∂〈m2i 〉

)
H

. (20.24)

The first term of the specific heat corresponds to the classical Dulong–Petit
law, since it simply sums up the number of independent modes of the spin
fluctuations. The second term gives the actual contribution due to the spin
fluctuations. Its form is very similar to the one derived originally by Murata
and Doniach [44]. For T > Tc it becomes negative as can be seen from (18.27).
It is easy to prove that for T= 0K the entropy diverges logarithmically. This
violation of the 3rd law of thermodynamics is due to the neglect of quantum
fluctuations. By introducing the effects of zero-point fluctuations an attempt
was made to account for this shortcoming [197].
The properties of the derivatives of the function ϕ allow one to derive

an expression for the Curie temperature of a spin fluctuation system. Since
∂ϕ

∂〈mi(r)
2〉
must vanish at T = Tc one can carry out the integration at Tc and

obtains a result similar to the Mohn–Wohlfarth model

Tc =
M2
0

10χ0kB

4π2ξ2

V kc
. (20.25)

In contrast to the long wavelength expression (18.24), (20.25) also contains
the missing information about the finite wavelength dependence of the fluc-
tuations which should lead to a wider applicability.
It should be noted that the integrand of (20.20) can be interpreted as

the wavevector dependent susceptibility. The integrand is essentially given
by (20.17) and reads

χ0 (k) =
1

Ωk‖
=

1
C
2 k
2 + 1

2χ0

=
2χ0

1 + ξ2k2
, (20.26)

where the T = 0 value for ∂ϕ

∂〈m‖(r)
2〉
was used. ξ is again the correlation

length which is also sometimes called “the real space parameter”. The role of
ξ becomes clear from Fig. 20.1, which shows that 1

ξ
determines the halfwidth

of the k-distribution.
The function χ(k) is of Lorentz shape, where the correlation length ξ de-

termines the width of the distribution. The solution given in (20.26) above
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Fig. 20.1. Wavevector dependent susceptibility of a ferromagnetic fluctuation sys-
tem

is written for low temperatures because ξ also shows a temperature depen-
dence which causes a broadening of the distribution at higher temperature
(at T = Tc the correlation length actually diverges). The simple Ornstein–
Zernicke form of χ(k) arises from the assumption of a quadratic form for H0,
however, it is found that most ferromagnetic systems are quite well described.
How can one interpret this form for the susceptibility? The susceptibility

in its most general form describes the answer of a system to a perturbation.
This perturbation can be almost anything (e.g. an electric field or as here our
case a magnetic one). When the susceptibility was introduced from the begin-
ning a static homogenous field H was assumed. The response of the system
was a static, homogenous magnetization M . If one now applies a field which
varies in space with a wavevector k (this field drives the local fluctuations) the
answer is χ(k). A mechanical example is the forced oscillation of a pendulum.
The maximum of χ(k) for k = 0 is nothing more but the resonance frequency
(ferromagnetic resonance) and for any deviation from the resonance the am-
plitude becomes smaller and follows exactly the Lorentz curve. But one can
take this analogue even further considering two coupled pendulums. There
are two frequencies one for the uniform mode (the pendulums are in phase:
ferromagnetism) and one for the antiphase mode (antiferromagnetism). This
also explains why there is no Stoner criterion for antiferromagnetism, because
the instability towards antiferromagnetic order can only be derived from the
dynamical properties of the system and not from its non-magnetic ground
state.
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In general Landau–Ginzburg theory of spin fluctuations yields fairly good
results. The deviation of the Curie temperatures and the susceptibilities are
within 15 % as compared to experiment. This means that spin fluctuations
cover the essential physics of magnetic coupling. The order of the magnetic
phase transitions is less well described. The Landau–Ginzburg theory shows
a tendency to produce first order phase transitions. In his review Shimizu
[207] blames this tendency on the use of of the Gaussian fluctuations. But a
detailed understanding of these effects is not yet at hand.
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This book has attempted to review the most common models of solid state
magnetism. At the present stage of development the spin fluctuation theory
is the most promising phenomenological model. In the form used nowadays
it combines the quantum mechanical ground state properties which are well
described by the Stoner model with a classical treatment of collective exci-
tations of the spins of the band electrons. These excitations can already be
excited at low temperature and also persist above Tc. The paramagnetic state
for T > Tc is no longer the non-magnetic state as in the Stoner model, but
it is a state where the correlation between the spins has broken down (no
long range order) but the individual moments still exist. With spin fluctua-
tion theory at hand, one can complete the analogy between the localized and
itinerant moment systems:
For localized moments and sufficiently high temperatures one can apply

the Weiss model, which considers only the z-component of the angular mo-
mentum (spin) neglecting all quantum fluctuations. The Curie temperature
is given by the temperature where all allowed states with quantum num-
ber mj are equally occupied so that the net magnetic moment is zero. The
Heisenberg model corrects for the omitted of quantum fluctuations by des-
cribing also a tilting of the localized spins produced by collective excitations.
Since collective excitations involve more than one electron (spin) the Heisen-
berg model goes beyond the single particle picture. At the Curie temperature
there is no complete disorder, but only the long range correlation between
the spins of the crystal breaks down. Collective excitations (magnons) also
exist above Tc.
For itinerant moments one starts from the Stoner model, which again

considers only the z-component of the spin of the band-electrons. The Cu-
rie temperature is given by the temperature where single particle excitations
have reduced the band splitting to zero so that the subbands for spin-up
and spin-down are equally occupied. The paramagnetic state above Tc is
described as the non-magnetic state and the resulting Curie temperature
is unrealistically high. An improvement, which is beyond the scope of this
book, can be formulated within the “random phase approximation” (RPA)
or the “dynamical Hartree–Fock” theory which also allows one to formulate
spinwave excitations. Within this theory the low temperature behavior of iti-
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nerant systems can be described rather well. At high temperatures, however,
the RPA fails, since the fluctuations are calculated only with respect to the
(T = 0K) ground state. An improvement is provided by the “self-consistent
renormalization theory” for the spin fluctuations (SCR), where the renor-
malization accounts for corrections in the free energy which a due to the
thermal excitations of the fluctuations [43]. The Landau–Ginzburg theory
of spin fluctuations presented in this book can be seen as a phenomenolo-
gical formulation of Moriya’s SCR theory. Spin fluctuations correct for this
shortcoming by allowing for fluctuations parallel and perpendicular to the
bulk magnetic moment. These fluctuations are again collective modes which
consist of local randomly fluctuating moments which are induced by tempe-
rature. At the Curie temperature the bulk magnetic moment vanishes since
the fluctuations destroy the long range correlations between the band elec-
trons. However the band splitting and the fluctuations persist above Tc so
that the paramagnetic state is no longer the non-magnetic state. A review of
itinerant electron magnetism which also includes spin fluctuations was given
by Shimizu [207].
Going beyond the aim of this course, namely to introduce solid state ma-

gnetism on the basis of the extreme cases of localization and itineracy, there
exist a number of promising efforts to combine these concepts in order to for-
mulate a unified model. The most advanced concept for the description of spin
fluctuations is the “functional integral method” [43, 183, 184] which allows
one to describe both localized and itinerant systems. Calculations performed
on the basis of this theory yield quite a good description of the thermody-
namical properties of the magnetic quantities [185]–[188]. The disadvantage
of the functional integral method is that it can only solved analytically for
highly idealized densities of states so that for real systems analytical results
cannot be obtained.
A different track that has been followed started with the first self-

consistent spin-polarized electronic band structure calculations which
emerged in the mid-1970s. These calculations yielded satisfactory results for
the magnetic moment, the cohesive energy and the stability of a magne-
tic ground state within the Stoner model which can be mapped to density
functional theory. It was shown that the results of such band structure calcu-
lations can be mapped to a thermodynamical description of spin fluctuations
as given in Chap. 18 [189]–[191]. A different method was devised by Nolting
and coworkers who plugged the single particle band structure into a Hubbard
type Hamiltonian [192]. With the parameters of the Hubbard model fitted to
experiment, excellent results for the Curie temperature were obtained.
In the “disordered local moment” (DLM) approach, the magnetic mo-

ments on individual atoms are allowed to have random orientations in the
sense described by Herring [193]. In a series of papers it was shown how the
DLM picture can be implemented into a Korringa–Kohn–Rostoker (KKR)
coherent potential approximation (CPA) band structure method [194, 196].
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Within this DLM approach it was possible to calculate the wave vector de-
pendent susceptibility [195] and ab initio Curie temperatures of 1260 K and
225 K for iron and nickel, respectively. Although the comparison with expe-
riment is reasonably good (in particular for Fe), the remaining discrepancy is
assumed to be caused by the fact that above Tc spin disorder is complete so
that effects of short range order are neglected as pointed out already earlier
[198]–[200]. The existence of local moments with in the DLM state above
the Curie temperature, which is important for a quantitative understanding
of the Curie constant, has been addressed by Heine et al. [201]. For bcc Fe
they calculate a local moment above Tc of about 1.8μB which is in agree-
ment with the experimental placement of Fe close to the localized limit in
the Rhodes–Wohlfarth plot (Fig. 6.5).
Another implementation of spin non-collinearity was introduced by San-

dratskii [202]–[205] who formulated the so called spin-spiral approach. On
the basis of these ab-initio band structure calculations of non-collinear spin-
spirals, is was possible to derive the phenomenological parameters which ap-
pear in the Landau–Ginzburg theory of spin fluctuations from first principles.
This approach formulated within the “exchange coupled” spin fluctuation
model also yielded fair results for the ordering temperatures of Fe, Co, and
Ni [206] and for the finite temperature properties of Invar alloys [208]. Both
Rosengaard et al. [209] and Halilov et al. [210] follow similar lines by mapping
the results of spin-spiral calculations to Heisenberg-type Hamiltonians.
In a slightly different approach, Antropov and coworkers [211, 212] for-

mulated spin-dynamics within the density-functional theory in a way which
allows one to use Monte-Carlo type simulations.
It is obvious that the possibility of employing massive computer power has

also changed the approach to solid state magnetism. The present strategies
are less devoted to achieving analytical solutions of microscopic models, but
rather to large scale numerical simulations. However, the interpretation of
the numerical results is still based on the understanding of the elementary
models which have been presented in this book.



A. Appendices

A. Convexity Property of the Free Energy

A function g (x) is a convex function of its argument x if the inequality holds

g

(
x1 + x2
2

)
≤

g (x1) + g (x2)

2
, (A.1)

for all x1 and x2. This property implies that the second derivative of such a
function must be ≥ 0. Applied to the free energy this condition means that

∂2F

∂T 2

∣∣∣∣
H

= −
cH
T

,
∂2F

∂H2

∣∣∣∣
T

= −χ . (A.2)

where cH is the specific heat and χ is the susceptibility. The 3rd law of
thermodynamics demands that the specific heat must be positive. Also the
susceptibility usually has a non-negative value (exceptions are diamagnetic
susceptibilities). Because the second derivatives of of the free energy with
respect to T and H are negative it is a concave function of both his variables.
It should be noted that the convexity property is not a condition which must
be fulfilled over the whole range of the free energy. Usually the free energy
shows minima, maxima or even discontinuities which violate the convexity
property locally. However, globally the free energy has to be a convex function
for x→ ±∞ so that F (+∞)→ +∞ and F (−∞)→ +∞.
The condition formulated in (A.1) can also be written in a form which is

more directly related to the statistical averaging process of thermodynamics.
A function is convex if the following relation holds

g (〈x〉) ≤ 〈g (x)〉 , (A.3)

where 〈〉 denotes the average in the same way as in (A.1).

B. Derivation of the Coefficient a in (3.17)

The coefficient a describes the temperature dependence of the paramagnetic
susceptibility as given by (3.17). A similar derivation would have been ne-
cessary to obtain the coefficient b for the specific heat (2.49). At this point
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it will be shown how the “magnetic” entity a can be derived, a procedure
which can also be applied to derive the specific heat coefficient b.
With the obvious property of the magnetic moment

M = μB
(
n+ − n−

)
,

one introduces an enthalpy type of function G (x) which allows one to write
the magnetic moment as

M = μB (G (η + β)−G (η − β)) .

From the analogy between G and the number of particles n± one derives an
explicit form for G

G (η) =

∞∫
0

N (ε)

(
exp

(
ε

kBT
− η

)
+ 1

)−1
dε

=

∞∫
0

N (ε) f (ε) dε .

For β << 1 , G(η + β) is expanded in a Taylor series:

G (η + β) = G (η) + β
dG (η)

dη
+ . . .

⇒ M = μB

(
G (η) + β

dG (η)

dη
−G (η) + β

dG (η)

dη

)

= 2μ2Bβ
dG (η)

dη
=
2μ2BH

kBT

dG (η)

dη
.

How does dG(η)dη look like ?

dG (η)

dη
=

∞∫
0

d

dη
(N (ε) f (ε)) dε

=

∞∫
0

N (ε)
exp

(
ε
kBT
− η

)
(
exp

(
ε
kBT
− η

)
+ 1

)2 dε

= −kBT

∞∫
0

N (ε)
df (ε)

dε
dε

= kBT

∞∫
0

dN (ε)

dε
f (ε) dε (by part. integr.)

(during the last step the identity dGdε = 0 was used).
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This allows one to write the susceptibility as

χ =
2μ2B
kBT

kBT

∞∫
0

dN (ε)

dε
f (ε) dε

Then it follows from (2.38) and (2.39) that

∞∫
0

N (ε) f (ε) dε =

εT∫
0

dN (ε) dε .

By means of the Taylor series given above one is able to calculate the number
of particles

n

2
=
1

2
(G (η + β) +G (η − β)) = G (η) ,

n

2
=

εT∫
0

N (ε) dε+
π2

6
(kBT )

2N (εT)
′

=

εT∫
0

N (ε) dε+ (εT − εF)N (εF) +
π2

6
(kBT )

2N (εF)
′

,

⇒ εT = εF −
π2

6
(kBT )

2 N (εF)
′

N (εF)
.

Using this expression for the “temperature dependence” of the Fermi energy
one writes for the susceptibility

χ

2μ2B
=

εT∫
0

dN (ε)

dε
dε+

π2

6
(kBT )

2N (εF)
′′

= N (εF)− (εT − εF)N (εF)
′
+

π2

6
(kBT )

2N (εF )
′′

= N (εF)−
π2

6
(kBT )

2

(
N (εF)

′)2
N (εF)

+
π2

6
(kBT )

2N (εF )
′′

,

⇒ χ = χ0

(
1 +

π2

6
(kBT )

2

[
N (εF)

′′

N (εF)
−

(
N (εF)

′

N (εF)

)2])
q. e. d.

which is identical with the result given by (3.17).
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C. Quenching of the Orbital Momentum

For a free atom the second Hund’s rule requires that the orbital momentum
always has to be a maximum. This means e.g. that for the 3d atom Ti the two
d-electrons occupy the angular momentum statesml = +2 andml = +1 , and
have parallel spin (Hund’s first rule). This result is based on the spin-orbit
interaction which, however small for the transition metals, lifts the degeneracy
of the five d-levels; the relevant quantum number for the classification of these
states is the total momentum J .
In a solid the major interaction stems from the neighboring atoms or ions

an effect which gives rise to the so called crystal field splitting (in chemis-
try one rather uses the term ligand field splitting). For the 3d-elements this
splitting is much larger than the spin-orbit splitting, so that J is no longer a
good quantum number and the latter effect can usually be treated as a small
perturbation. The crystal field splitting, which is a “geometrical” effect is due
to the electrostatic interaction among the ions or due to covalent interactions
and thus causes a breaking of the full spherical symmetry of the free atom
resembling the symmetry of the crystal. Since the cubic crystal structure is
very common for the transition metals it will now be shown how the cubic
crystal field quenches the orbital momentum.
If one considers the angular dependencies of the five d-wave functions only

one can write them

Ψ±2 ∼ sin
2 θ exp (±i2ϕ) ,

Ψ±1 ∼ sin θ cos θ exp (±iϕ) ,

Ψ0 ∼ (3 cos θ − 1) . (C.1)

These functions can be rewritten as linear combinations to obtain a different
basis which fulfills the Hamiltonian but which are now no longer imaginary
functions. One obtains the so called real spherical harmonics

K0 ≡ Ψ0 ∼

[
2z2 − x2 − y2

]
r2

,

K2+ ≡
1
√
2
[Ψ+2 + Ψ−2] ∼

[
x2 − y2

]
r2

,

K2− ≡
1
√
2
[Ψ+2 − Ψ−2] ∼

[xy]

r2
, (C.2)

K1+ ≡
1
√
2
[Ψ+1 + Ψ−1] ∼

[zx]

r2
,

K1− ≡
1
√
2
[Ψ+1 − Ψ−1] ∼

[yz]

r2
.
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It can be shown that these real spherical harmonics are the eigenfunctions
of the Hamiltonian of an atom in a cubic crystal field. One finds that these
originally degenerate five states split into the 3-fold degenerate Γ5 state (t2g )
which contains K2− , K1+ , and K1− and into the 2-fold degenerate Γ3 state
(eg ) which contains K0 and K2+ . Since the eigenfunctions of the atom in
a cubic crystal field are real functions the expectation value of the angular
momentum operator L (which is complex) with regard to these eigenfunctions
is zero. Or less formal, since any of these states combines a wavefunction
with +m and −m the expectation value for L is +m and −m at the same
time, which can only be fulfilled if m is zero. This means that the orbital
momentum is quenched or at least very small, since also for these states one
observes spin-orbit interaction which recreates a finite orbital momentum.
Going beyond this “hand waving” explanation of the quenching of the

orbital momentum this effect can be derived completely general from the
properties of the angular momentum operator concerning time reversal sym-
metry [178]. Since the operator L contains a generalized velocity, time reversal
transforms L into -L. Let T be the time reversal operator with the property
that T−1T = 1 (the unity operator) it is easy to see that since it acts only
on the angular momentum part of the wave function (C.1) one can write

TΨ = Ψ∗ . (C.3)

Since the Hamiltonian is hermitian Ψ and Ψ∗ have the same eigenvalue. If
now Ψ is the wave function of a non-degenerate state Ψ and Ψ∗ must be
linearly dependent, Ψ∗ = cΨ and by applying T to this relation one finds
that in particular Ψ= |c|2 Ψ . This means that c can be written as exp (iϕ)
where ϕ is real. One can now calculate the expectation value of L between
two states 〈n| and |m〉

〈n|L |m〉 = 〈n|T−1TLT−1T |m〉

= −〈n|T−1LT |m〉 = − exp i (ϕn − ϕm) 〈n|L |m〉
∗

. (C.4)

The expectation value of L for a non-degenerate eigenstate |n〉 is given by

〈n|L |n〉 = −1 〈n|L |n〉∗ . (C.5)

Relation (C.5) can only be fulfilled if the expectation value calculated is pure
imaginary. Since L measures an observable it must be real and thus zero.
One can formulate the general theorem: i) The matrix element of the orbi-

tal angular momentum between non-degenerate states has an arbitrary phase,
which in particular may be pure real or pure imaginary. ii) The expectation
value of L for any non-degenerate state is zero.
If the crystal field now lifts the degeneracy of the atomic states it quenches

the orbital momentum.
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D. Properties of “Classical” Spins

A less intuitive solution of our model of classical spins shall be given in the
following paragraph. Consider a system of N magnetic moments “classical
spins” which have two states μ = ±SgμB (S =

1
2 , g = −2). These two states

are given by magnetization parallel or antiparallel to an applied field H so
that the respective change in energy becomes ±μH. The sum of states for
such a system is given by

Z =

[
exp

(
+

μH

kBT

)
+ exp

(
−

μH

kBT

)]N
=

[
2 cosh

(
μH

kBT

)]N
. (D.1)

From the sum of states one can calculate all properties of this system. The
relevant relations are

Free energy F = −kBT lnZ ,

Internal energy U = −
∂ lnZ

∂β
,

Entropy S = −

(
∂F

∂T

)
H

= (U − F ) /T , (D.2)

Magnetization M = −

(
∂F

∂H

)
T

,

Specific heat cx = T

(
∂S

∂T

)
x=H,M

,

Isothermal susceptibility χT =

(
∂M

∂H

)
T

.

In our case this yields for the free energy

F = −kBT lnZ = −kBTN

(
ln 2 + ln cosh

(
μH

kBT

))
, (D.3)

and the magnetization

M

N
= m = −

(
∂F

∂H

)
=

∂

∂H
(kBT lnZ) = kBT

1

Z

∂Z

∂H

= μ
exp

(
+ μH
kBT

)
− exp

(
− μH
kBT

)
exp

(
+ μH
kBT

)
+ exp

(
− μH
kBT

) = μ tanh

(
μH

kBT

)
. (D.4)

The second line of (D.4) can easily be interpreted insofar as the expression
measures the probability of states parallel (with +μ) minus the probability
of states antiparallel (with −μ) to the applied field. In terms of fractional
occupation numbers this would read: m = μ (n+ − n−). For T → 0 the
tanh → 1, so that m → μ. For zero temperature an infinitesimal magnetic
field aligns all spins of the system.
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The entropy is given as

S

N
= −

(
∂F

∂T

)
H

= kB

(
ln 2 + ln

[
cosh

(
μH

kBT

)
−

μH

kBT
tanh

(
μH

kBT

)])
. (D.5)

For large temperature the entropy takes the value kB ln 2 which is the classical
result for a system with 2 degrees of freedom. However, for T → 0 the entropy
diverges logarithmically to +∞. This divergence and subsequent violation
of the 3rd law of thermodynamics is caused by our classical model which
neglects quantum effects. Defining our model it was assumed that these two
states have an exact energy and thus, at T = 0, an infinite lifetime, which is
a violation of the uncertainty relation. To account for this problem one must
replace our classical spin S by its quantum mechanical operator equivalent. In
this case one could of course measure the z-component of the spin, but its x-
and y-components remain uncertain. Due to the fact that the entropy diverges
only logarithmically, the term TS in the internal energy always remains finite
even at T = 0 where it becomes 0 as well.
The specific heat becomes

c

N
= T

∂S

∂T
=

μ2H2

kBT 2
1

cosh2
(
μH
kBT

) . (D.6)

This function is the classical result for the specific heat of a two-level system.
For low temperature it rises exponentially, goes through a maximum and for
high temperature it approaches zero like 1

T 2
. Such a behavior is often called

a Schottky-anomaly.
For the susceptibility one finally gets

χ

N
=

∂M

∂H
=

μ2

kBT

1

cosh2
(
μH
kBT

) . (D.7)

One immediately notices the close relation between the specific heat and
the susceptibility. This is not surprising since both functions are response
functions which describe the answer of the system to a perturbation either
the temperature or the magnetic field.
For large temperature the susceptibility becomes proportional to 1

T
and

thus shows the Curie–Weiss behavior. For T → 0 one has to distinguish
between the case of a finite field H where the susceptibility is always 0 for
T = 0. For H = 0 the susceptibility diverges to +∞ which means that for
T = 0 an infinitesimally small H field causes a full polarization.
Again one observes that a classical system of non-interacting particles

shows a strange low-temperature behavior. Only a quantum-mechanical des-
cription can account for the true behavior.
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E. Derivation of the Constant c in (8.24)

The constant c is very similar to the constant b involved in the temperature
dependence of the paramagnetic susceptibility. For its derivation one again
applies the formalism of the Sommerfeld expansion. To derive c one writes
the spin up and spin down Fermi energies as

ε+ = εF + δ+ and ε− = εF − δ− ,

and expands the density of states in powers of δ±

N
(
ε+

)
= N (εF) + δ+N (εF)

′
+
1

2

(
δ+

)2
N (εF)

′′
+ . . .

= N (εF)

(
1 + δ+

N (εF)
′

N (εF)
+
1

2

(
δ+

)2 N (εF)′′
N (εF)

+ . . .

)
, (E.1)

and analogous for N (ε−). This in turn gives for the reciprocal density of
states

1

N (ε+)
=

1

N (εF)

×

[
1− δ+

N (εF)
′

N (εF)
−
1

2

(
δ+

)2 N (εF)′′
N (εF)

+
(
δ+

)2(N (εF)′
N (εF)

)2
+ . . .

]
,

(E.2)

1

N (ε−)
=

1

N (εF)

×

[
1 + δ−

N (εF)
′

N (εF)
−
1

2

(
δ−

)2 N (εF)′′
N (εF)

+
(
δ−

)2(N (εF)′
N (εF)

)2
+ . . .

]
.

(E.3)

Adding up these two terms yields

1

N (εF)

[
2−

(
δ+ − δ−

) N (εF)′
N (εF)

−
1

2

((
δ+

)2
+

(
δ−

)2)(
N (εF)

′′

N (εF)
− 2

(
N (εF)

′

N (εF)

)2)]
. (E.4)

The respective magnetic moment for one spin direction is given by

1

2
nζ =

εF+δ
+∫

εF

N (ε) dε

=

εF+δ
+∫

εF

[
N (εF) + (ε− εF)N (εF)

′
+
1

2
(ε− εF)

2N (εF)
′′
]
dε
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= δ+N (εF) +
1

2

(
δ+

)2
N (εF)

′
, (E.5)

and analogously for ε− and δ−

1

2
nζ = δ−N (εF) +

1

2

(
δ−

)2
N (εF)

′
. (E.6)

Since (δ−)
2
can be expressed as(

δ−
)2
= (ε− εF)

2
=

n2ζ2

4N (εF)
2 ,

one obtains for δ+ and δ−

δ+ =
1

2

nζ

N (εF)
−
1

8

n2ζ2

N (εF)
2

N (εF)
′

N (εF)
, (E.7)

δ− =
1

2

nζ

N (εF)
+
1

8

n2ζ2

N (εF)
2

N (εF)
′

N (εF)
, (E.8)

and finally

1

N (ε+)
+

1

N (ε−)
(E.9)

=
2

N (εF)

[
1−
1

8

n2ζ2

N (εF)
2

(
N (εF)

′′

N (εF)
− 3

(
N (εF)

′

N (εF)

)2)
+ . . .

]

=
2

N (εF)

(
1− cζ2

)
. (E.10)

F. Ornstein–Zernicke Extension

A useful example is provided by the Ornstein–Zernicke extension to Landau
theory (The results of this section will be used for the derivation of spin-
fluctuation theory). It should be noted that this model is also often called
“Landau–Ginzburg” model or “continuum Gaussian” model. The free energy
reads

F − F0 = a′2t

∫
[m (r)]

2
d3r + g

∫
[∇m (r)]2 d3r . (F.1)

The first term on the rhs is just the quadratic term in (14.1) written as
an integral over 3-dimensional space to allow for the r dependence of the
magnetization. The second term can be interpreted as the lowest order term
in the expansion of the spin-spin interaction and takes into account the extra
free energy that results if the spins are not parallel. This latter interpretation
will become obvious when one rewrites it in its Fourier transformed form.
The Fourier transform of the magnetization is
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m (r) =
1

(2π)
3

∫
m (q) exp (iqr) d3q , (F.2)

m (q) =

∫
m (r) exp (−iqr) d3r .

Applying these transforms to the first term in (F.1) gives

a′2t

∫
[m (r)]

2
d3r = a′2t

∫
d3r

1

(2π)
6

∫
m (q) exp (iqr) d3q

×

∫
m∗ (q′) exp (−iq′r) d3q′

= a′2t
1

(2π)
6

∫
m (q)m∗ (q′) d3q d3q′

×

∫
exp (i (q − q′) r) d3r︸ ︷︷ ︸

(2π)3δ(q−q′)

= a′2t
1

(2π)
3

∫
|m (q)|2 d3q , (F.3)

where the fact that since m (r) is real, it follows that m (q) = m∗ (−q) was
used. Also note that in the third line of (F.3) the order of integration has been
exchanged which allows one to derive the respective delta function δ (q − q′).
The second term in (F.1) gives

g

∫
[∇m (r)]2 d3r = g

∫
d3r

1

(2π)
6∇

∫
m (q) exp (iqr) d3q

×∇

∫
m∗ (q′) exp (−iq′r) d3q′

= g

∫
d3r

1

(2π)
6

∫
m (q) (iq) exp (iqr) d3q

×

∫
m∗ (q′) (−iq′) exp (−iq′r) d3q′

= g
1

(2π)
6

∫
m (q)m∗ (q′) (qq′) d3q d3q′

×

∫
exp (i (q − q′) r) d3r︸ ︷︷ ︸

(2π)3δ(q−q′)

= g
1

(2π)
3

∫
q2 |m (q)|2 d3q , (F.4)

which allows one to write the free energy as

F − F0 =
1

(2π)
3

∫
d3q

(
a′2t+ gq2

)
|m (q)|2 . (F.5)
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The result should now be compared to the solution for the Heisenberg model
(7.26) where a similar k2 dependence occurs. However, it must be kept in
mind that the present case does not describe interacting spins, but local
changes in the magnetization which in are represented by a superposition of
plane waves in k space.

G. Bogoliubov–Peierls–Feynman Inequality

A Bogoliubov type inequality, which is used for the approximate calculation
of the spin-fluctuation partition function, was first suggested by Peierls [179]
in 1934. An elegant formal proof of this relation was given by Feynman [180]
only 20 years later which is reviewed here. What one has to proof is the
inequality

F ≤ F0 + 〈H −H0〉0 . (G.1)

Here F is the exact free energy to the Hamiltonian H and F0 is the free
energy to a trial Hamiltonian H0. The inequality denotes that for any choice
of H0 the exact free energy F represents a lower bound. This is exactly the
condition which is known as the variational principle in quantum mecha-
nics, the Bogoliubov inequality indeed represents a variational derivation of
a mean-field theory.
The partition function should be

Z =
∑
exp (−βH) , (G.2)

and the Hamiltonian should be broken up into

H = H0 +H1 , (G.3)

where H0 should be chosen such that its respective partition function can be
evaluated. One now considers the ratio of the true partition function to that
of the trial Hamiltonian H0

Z

Z0
=

∑
exp (−β (H0 +H1))∑
exp (−βH0)

=
∑

P0 exp (−βH1)

= 〈exp (−βH1)〉0 . (G.4)

P0 is the correctly normalized Boltzmann probability factor for the system
described by H0

P0 =
exp (−βH0)

Z0
, (G.5)

and 〈...〉0 represents the average with respect to P0.
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Since for real arguments the first and second derivatives of the exponential
function are always positive for any function f the relation holds

〈exp (f)〉 ≥ exp 〈f〉 . (G.6)

This relation is known as the convexity inequality (see Sect. A.) and describes
a basic property of the free energy of the system. Although this relation must
not hold locally everywhere it always holds globally since for reasons of the
stability of a thermodynamical system, the free energy f(x) must adopt an
upward curvature at some stage when x goes to infinity. Applying this result
one finds

Z

Z0
≥ exp (−β 〈H1〉0) . (G.7)

Taking logarithms of both sides yields

lnZ − lnZ0 ≥ −β 〈H1〉0 . (G.8)

With the definition for the free energy

F = −kBT lnZ , (G.9)

and together with (G.3) one directly obtains the Bogoliubov inequality as
defined in (G.1).
The Bogoliubov inequality is useful, because if one chooses H0 to be some

simple approximation to the real Hamiltonian of a system, it represents a
rigorous upper bound for the free energy of the true Hamiltonian. However,
in order to obtain good results one will try to incorporate as much as possible
of the physics, while still leaving the calculation tractable. One choice for H0
which is always possible is one that decomposes into a sum of many terms, one
for each of the problem’s degrees of freedom. But this is precisely the idea
of the mean-field theory namely to replace the actual interaction between
the parts of the system by a fictitious interaction with some external field or
potential [181].

H. The Factor 2 in Equation (7.27)

One starts from

γk =
1

z

∑
δ

cos (kδ) �
1

z

∑
δ

(
1−
(kδ)

2

2
+ . . .

)
, (H.1)

where k is a wave vector of the magnon and δ is the position vector of the
nearest-neighbor atom and will thus be namedRn. SinceRn describes a point
of the lattice it can be written in terms of the lattice vectors (a1,a2,a3)

Rn = n1a1 + n2a2 + n3a3 . (H.2)
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The possible magnon wave vectors are determined by the reciprocal lattice
vectors bj so that

k =
3∑
j=1

κjbj , (H.3)

with

κj =
mj
Nj

mj ∈ N and Nj =
L

|aj |
,

with L being the length of the crystal. Thus k can be written as

k =
3∑
j=1

mj
Nj
bj . (H.4)

The product kδ can now be written as

kδ =
3∑
j=1

3∑
i=1

mjni
Nj
aibj︸︷︷︸
2πδij

= 2π
3∑
i=1

mini
Ni

, (H.5)

where the general relation between the direct an reciprocal lattice aibj =
2πδij was used. The square of kδ is then given by

∑
δ

(kδ)
2
= (2π)

2
∑

(n1,n2,n3)

(
3∑
i=1

mini
Ni

)2
,

where (n1, n2, n3) are the triples describing the 6 nearest-neighbor positions
in a simple cubic lattice. These are

(n1, n2, n3) =

⎧⎨
⎩
±1, 0, 0
0,±1, 0
0, 0,±1

.

Thus carrying out the summation over the nearest-neighbor sites one gets∑
δ

(kδ)
2
= (2π)

2
2
∑
i

(
mi
Ni

)2

= 2 (2π)2
k2

b2
, (H.6)

where the last term of (H.6) is due to the fact that

k2 =
3∑
j=1

(
mj
Nj

)2
b2j = b

2
3∑
j=1

(
mj
Nj

)2
,
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for b = b1 = b2 = b3 for a cubic lattice. Since in turn b =
2π
a
one obtains∑

δ

(kδ)
2
= 2a2k2 , (H.7)

so that

γk =
1

z

∑
δ

cos (kδ)

�
1

z

∑
δ

(
1−
(kδ)

2

2
+ . . .

)

� 1−
1

2z

∑
δ

(kδ)
2
= 1−

a2k2

z
. (H.8)

I. Hund’s Rules

For systems with localized electrons the sequence of occupation of the elec-
tronic states is governed by Hund’s rules which read:

1. For a given configuration the term with the maximum multiplicity is the
one with the lowest energy.

2. For given configuration and multiplicity the term with the largest value
of the angular momentum is the one with the lowest energy.

3. For given configuration, multiplicity and angular momentum, the term
with the lowest value of the total momentum J is the one with the lowest
energy if the configuration represents a less than half filled shell. If the
shell is more than half filled, the term with the largest J is the lowest in
energy.

How these rules work is best explained using an example e.g. vanadium.
The term-symbol represents the angular momentum and spin state of a sys-
tem consisting of a finite number of electrons. The angular momentum L and
the total spin S are given as

L =
∑
i

mi , S =
∑
i

si . (I.1)

The total angular momentum J within the Russel–Saunders coupling is given
as

J = L± |S| . (I.2)

The degeneracy of the ground state is given by the multiplicity which reads
2 |S|+ 1. In symbolic form the term symbol is written

(2|S|+1)L(|J|) .
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Vanadium has the configuration [Ar],4s2, 3d3. This means the fully occupied
core levels have the same configuration as the noble gas Ar. These full shells
do not contribute to the properties of the free ion and are thus disregarded
for the term symbol. Also the 4s-shell is filled with two electrons and can
also be neglected. The term symbol is thus determined from the not fully
occupied shells only. The first rule demands to maximize the multiplicity,
meaning that all three 3 electrons must be either spin-up or spin-down giving
|S| = 3

2 . The second demands to maximize the angular momentum. Since the
state with the largest value of m is the one with the lowest energy, one
starts with the occupation of the m = 2 state, so that L takes the value 3.
Similar to the one-electron states one uses letters to symbolize the respective
L value so that L = 0, 1, 2, 3, ... is written as S, P,D, F, ... (notice that in
contrast to the single-electron states capital letters are used). The last rule
finally tells how to distinguish between L + |S| and L − |S| (depending on
the sign of S). In the present case the shell is less than half filled so that
J = L−|S| = 3− 32 =

3
2 gives the total angular momentum. The table below

shows the resulting occupation of the three of the ten possible 3d states in
Vanadium:

m 2 1 0 -1 -2
s = 1

2 - - - - -
s = −12 ↓ ↓ ↓ - -

In the form of a term symbol this is written as

4F3/2

The total magnetic moment of such an atom consists of an orbital and a spin
contribution

μl = glμB
L

h̄
, μS = gsμB

S

h̄
, (I.3)

where gl = −1 and gs = −2 are the respective gyromagnetic factors. Due
to the spin-magnetic anomaly (gs = −2) the total magnetic moment is not
simply the sum of the angular and the spin component (given by J) but is
given by multiplication by the Landé factor gj

μj = gjμB
J

h̄
,with (I.4)

gj = −
3J (J + 1)− L (L+ 1) + S (S + 1)

2J (J + 1)
. (I.5)

While in the present case both the angular- and the spin-momentum would
give a magnetic moment of 3μB, due to the antiparallel coupling, the total
moment becomes only 0.6μB.
The properties of the free atom configuration of the transition metals are

tabulated below. Applying Hund’s rules the determination is straight forward
with two exceptions namely Cr and Cu (denoted by asterisks). In these two
atoms there exists more than one partly filled shell. One thus can construct
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two term symbols which are determined from either the sum or the difference
of the total spin within the two shells. Hund’s rules do not account for this
case, so that there exists no simple solutions which of the two term symbols
describes the actual ground state of the atom. However, in most cases the
state with an antiparallel coupling of the totals spins is the one with the
lowest energy [182].

Table A.1. Term symbols of the 3d-transition metals according to Hund’s rules

configuration L S J gj μj [μB] termsymbol

Sc [Ar],4s23d1 4
2

1
2

3
2

−0.8 −1.2 2D3/2

Ti [Ar],4s23d2 6
2

2
2

4
2

−0.67 −1.33̇ 3F 4
2

V [Ar],4s23d3 6
2

3
2

3
2

−0.40 −0.60 4F3/2

Cr∗ [Ar],4s13d5 0 |0 1
2

∣∣ 5
2

1
2

∣∣ 5
2
−2 |−2 −1 |−5 2S1/2

∣∣6S5/2
Mn [Ar],4s23d5 0 5

2
5
2

−2 −5 6S5/2

Fe [Ar],4s23d6 4
2

4
2

8
2

−1.5 −6.0 5D8/2

Co [Ar],4s23d7 6
2

3
2

9
2

−1.33 −6.0 4F9/2

Ni [Ar],4s23d8 6
2

2
2

8
2

−1.25 −5.0 3F8/2

Cu∗ [Ar],4s13d10 0 |0 1
2
|0 1

2
|0 −2 |0 −1 |0 2S1/2

∣∣1S0
Zn [Ar],4s23d10 0 0 0 0 0 1S0

J. Polynomial Coefficients in (18.12)

The terms which appear in the expansion of the free energy 18.12 are of the
general form

FmtlM
2m

〈
m2⊥

〉t 〈
m2‖

〉l
(J.1)

and Fmtl can be written as [213]

Fmtl =
(m+ t+ l)!!2t (2m+ 2l − 1)!!

m!l! (2m− 1)!
. (J.2)

For a given order of the polynomial n, the coefficients Fmtl of the single terms
can be taken form the tables below where the additional condition has to be
obeyed: m = n− t− l
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n=1 l = 0 l = 1
t = 0 1 1
t = 1 2

n=2 l = 0 l = 1 l = 2
t = 0 1 6 3
t = 1 4 4
t = 2 8

n=3 l = 0 l = 1 l = 2 l = 3
t = 0 1 15 45 15
t = 1 6 36 18
t = 2 24 24
t = 3 48

n=4 l = 0 l = 1 l = 2 l = 3 l = 4
t = 0 1 28 210 420 105
t = 1 8 120 360 120
t = 2 48 288 144
t = 3 192 192
t = 4 348

n=5 l = 0 l = 1 l = 2 l = 3 l = 4 l = 5
t = 0 1 45 630 3150 4725 945
t = 1 10 280 2100 4200 1050
t = 2 80 1200 3600 1200
t = 3 480 2880 1440
t = 4 1920 1920
t = 5 3840

n=6 l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
t = 0 1 66 1485 13860 51975 62370 10395
t = 1 12 540 7560 37800 56700 11340
t = 2 120 3360 25200 50400 12600
t = 3 960 14400 43200 14400
t = 4 5760 34560 17280
t = 5 23040 23040
t = 6 46080

K. Conversion Between Magnetic Units

Theoreticians and experimentalists use often different units. While theoreti-
cians prefer atomic units, experimentalists prefer to make use of Gaussian
or SI units. Table A.2 provides help in converting between these different
worlds. In the Gaussian system the flux density B and the field strength H
are given in units of Gauss [G] and Oerstedt [Oe] respectively. Both units
have the same numerical value so that the magnetization M can be given
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either in [G] or in [Oe]. The SI (System International) makes a distinction
by measuring the flux density in Tesla [T] and the field strength and the
magnetization in [A/m]. The conversion between B and H in the SI system
is provided by B = μ0Hwhere μ0 = 4π10

−7[Tm/A]. In the atomic system,
the units are derived from the properties of the hydrogen atom. The unit of
length is the Bohr radius of the 1s orbital. The unit of energy equals twice
the ionization energy of the H atom (1 Hartree) so that 1 [Ry] is exactly the
ionization energy.

1
=

h̄
2

m
e
2

5
.2
9
1
8
×
1
0
−
9

5
.2
9
1
8
×
1
0
−
1
1

1
9
.1
0
9
6
×
1
0
−
2
8

9
.1
0
9
6
×
1
0
−
3
1

1
4
.8
0
2
9
×
1
0
−
1
0

1
.6
0
2
2
×
1
0
−
1
9

1
2

2
7
,2
0
8

4
.3
5
9
2
×
1
0
−
1
1

4
.3
5
9
2
×
1
0
−
1
8

h̄
=

h 2
π
=
1

1
.0
5
4
6
×
1
0
−
2
7

1
.0
5
4
6
×
1
0
−
3
4

1
2
.9
9
7
9
×
1
0
+
1
0

−
1

2
.9
9
7
9
×
1
0
+
8

−
1

k
B
=
3
.1
6
7
1
×
1
0
−
6

−
1
1
.3
8
0
6
×
1
0
−
1
6

−
1

1
.3
8
0
6
×
1
0
−
2
3

−
1

1
μ
B
=

e
h̄

2
m
c
=
1 2

9
.2
7
4
1
×
1
0
−
2
1

−
1

9
.2
7
4
1
×
1
0
−
2
4

−
1

χ
=
M H
=
1

μ
2 B

H
a
rt
re
e
a
to
m

8
.4
1
4
9
×
1
0
+
6

−
2
8
.4
1
4
9
×
1
0
+
7

−
2

P
=
E V
=
1
H
a
rt
re
e

b
o
h
r3

3
.3
9
9
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−
1
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−
3

3
.3
9
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−
1
4

•
1
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1
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2
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115. P. Söderlind, R. Ahuja, O. Eriksson, J.M. Wills, and B. Johansson, Phys. Rev.

B 50 5918 (1994).
116. A.R. Williams, R. Zeller, V.L. Moruzzi, Gelatt C.D.Jr. and J. Kübler, J. Appl.
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2659 (1984).
120. A. Oswald, R. Zeller, and P. Dederichs, Phys. Rev. Letters 56 1419 (1986).
121. J.F. van Acker, W. Speier, and R. Zeller, Phys. Rev. B 43 9558 (1991).
122. P.W. Anderson, Phys. Rev. 124 41 (1961).
123. P.A. Wolff, Phys. Rev. 124 1030 (1961).
124. A.M. Clogston, Phys. Rev. 125 439 (1961).
125. T. Moriya, Prog. Theor. Phys. 34 329 (1965).
126. M.A. Rudermann and C. Kittel, Phys.Rev. 96 99 (1954).
127. T. Kasuya, Progr. Theor. Phys. (Japan) 16 45 (1965).
128. K. Yoshida, Phys. Rev. 106 893 (1957).
129. P. Dederichs, 24. IFF-Ferienkurs: Magnetismus von Festkörpern und
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Landé, A., 6
Landau diamagnetism, 28
Landau theory, 46, 171
Landau theory, phase transitions, 139
Landau–Ginzburg model, 191, 211
Langevin diamagnetism, 4, 38
Langevin function, 58
Langevin, Paul, 4
Langevin–Debye formula, 57
Larmor frequency, 38
Larmor precession, 38
Larmor theorem, 38
Laves phase, 107
LCAO, linear combination of atomic
orbitals, 31

Lenz’s rule, 4, 38
Lenz, Heinrich, 4
ligand field, 206
local density approximation, 161
localized electrons, angular momentum,
216

localized moment, 60, 63

LS-coupling, 41

magnetic isotherms, 132
magnetic valence, 42, 99
magneto–volume coupling, 143, 177
magnon, 63, 160
Masumoto’s rule, 179
Mathon plot, 42
matrix eigenvalue problem, 36
Mermin–Wagner theorem, 72
Mesmer, Franz, 1
metamagnetism, 83, 87, 210
MnSi, 169
Mohn–Wohlfarth model, 176, 196
molecular field, 53, 151, 156
molecular field energy, 78
moments, itinerant, 199
moments, localized, 199
Moriya formula, 173
Moriya, Toru, 10
multiplicity, 216

Nagaoka state, 137
Nd2Fe14B, 147
Neutron diffraction, 51
Ni3Al, 123, 133, 144, 169
Ni3Ga, 133

orbital moment, 40
orbital momentum, quenching, 41, 206
Ornstein–Zernicke, 141, 195
Ornstein–Zernicke, extension, 191, 211
overlap integral, 155

paramagnetism, 25
partition function, 15
partition function, magnetic, 26
Pauli principle, 13
Pauli susceptibility, 8, 27
Pauli, Wolfgang, 7
Peierls–Feynman inequality, 192, 213
Poisson equation, 162

renormalization theory, self-consistent,
200

Rhodes–Wohlfarth plot, 60, 175
rigid band model, 93
RKKY interaction, 117
Russel–Saunders coupling, 216

scaling relations, 51
Schottky anomaly, 45, 49, 50, 209
Schrödinger equation, 31
secular determinant, 154



Index 229

secular equation, 36, 154
secular matrix, 154
SI units, 219
single particle excitations, 185
Slater determinant wavefunctions, 152
Slater exchange potential, 8
Slater–Pauling curve, 40, 93
SmCo5, 147
Sommerfeld expansion, 23
specific heat, 22
specific heat, magnon, 69
specific heat, spin fluctuations, 177, 196
specific heat, Stoner model, 141, 142
specific heat, Wohlfarth correction, 142
spherical harmonics, real, 206
spin cluster, 156
spin fluctuations, 10, 169
spin fluctuations, exchange coupled,
201

spin moment, 40
spin wave, 63
spin wave stiffness constant, 68, 195
spin, classical representation, 208
spin-orbit coupling, 41
spin-orbit interaction, 41, 206
spin-spirals, 201
spinwaves, 158
Stirling’s approximation, 14
Stoner continuum, 188
Stoner criterion, 8, 79
Stoner exchange integral, 81
Stoner excitations, 185
Stoner gap, 85, 93, 127, 185, 188
Stoner model, 75

Stoner parameter, 81
Stoner, Edmund C., 8
strong ferromagnet, 40
structuremaps, Pettifor’s, 103
sum of states, 15
susceptibility, high field, 84

term symbol, 217
thermal expansion coefficient, 145, 178
Thomas factor, 41
TiB2, 90
tight binding approximation, 31, 163
transition metals, Curie temperature,
39

transition metals, magnetic moment, 39

van Leeuwen’s theorem, 4
van Leeuwen, J.H., 4

Wannier function, 31, 163
weak ferromagnet, 40
Weiss model, 53, 148
Weiss molecular field, 6
Weiss, Pierre, 6, 53
Wohlfarth correction, specific heat, 142
Wohlfarth–Gersdorf, susceptibility, 84

XY model, 72

Y2Ni7, 130

Zintl phase, 109
ZrFe2, 107
ZrZn2, 90, 123, 133, 144



Springer Series in

solid-state sciences

Series Editors:
M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Störmer

90 Earlier and Recent Aspects
of Superconductivity
Editor: J.G. Bednorz and K.A. Müller

91 Electronic Properties and
Conjugated Polymers III
Editors: H. Kuzmany, M. Mehring,
and S. Roth

92 Physics and Engineering
Applications of Magnetism
Editors: Y. Ishikawa and N. Miura

93 Quasicrystals
Editor: T. Fujiwara and T. Ogawa

94 Electronic Conduction in Oxides
2nd Edition By N. Tsuda, K. Nasu,
A. Fujimori, and K. Siratori

95 Electronic Materials
A New Era in Materials Science
Editors: J.R. Chelikowski
and A. Franciosi

96 Electron Liquids
2nd Edition By A. Isihara

97 Localization and Confinement
of Electrons in Semiconductors
Editors: F. Kuchar, H. Heinrich,
and G. Bauer

98 Magnetism and the Electronic
Structure of Crystals
By V.A. Gubanov, A.I. Liechtenstein,
and A.V. Postnikov

99 Electronic Properties of High-Tc
Superconductors and Related
Compounds
Editors: H. Kuzmany, M. Mehring
and J. Fink

100 Electron Correlations in Molecules
and Solids
3rd Edition By P. Fulde

101 High Magnetic Fields in
Semiconductor Physics III
Quantum Hall Effect, Transport
and Optics By G. Landwehr

101 High Magnetic Fields in
Semiconductor Physics III
Quantum Hall Effect, Transport
and Optics By G. Landwehr

102 Conjugated Conducting Polymers
Editor: H. Kiess

103 Molecular Dynamics Simulations
Editor: F. Yonezawa

104 Products of Random Matrices
in Statistical Physics By A. Crisanti,
G. Paladin, and A. Vulpiani

105 Self-Trapped Excitons
2nd Edition By K.S. Song
and R.T. Williams

106 Physics of High-Temperature
Superconductors
Editors: S. Maekawa and M. Sato

107 Electronic Properties of Polymers
Orientation and Dimensionality
of Conjugated Systems Editors:
H. Kuzmany, M. Mehring, and S. Roth

108 Site Symmetry in Crystals
Theory and Applications
2nd Edition By R.A. Evarestov
and V.P. Smirnov

109 Transport Phenomena in Mesoscopic
Systems
Editors: H. Fukuyama and T. Ando

110 Superlattices and Other
Heterostructures
Symmetry and Optical Pheno-
mena 2nd Edition
By E.L. Ivchenko and G.E. Pikus

111 Low-Dimensional Electronic Systems
New Concepts
Editors: G. Bauer, F. Kuchar,
and H. Heinrich

112 Phonon Scattering in Condensed
Matter VII
Editors: M. Meissner and R.O. Pohl



Springer Series in

solid-state sciences

Series Editors:
M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Störmer

113 Electronic Properties
of High-Tc Superconductors
Editors: H. Kuzmany, M. Mehring,
and J. Fink

114 Interatomic Potential and Structural
Stability
Editors: K. Terakura and H. Akai

115 Ultrafast Spectroscopy of
Semiconductors and Semiconductor
Nanostructures
By J. Shah

116 Electron Spectrum of Gapless
Semiconductors
By J.M. Tsidilkovski

117 Electronic Properties of Fullerenes
Editors: H. Kuzmany,
J. Fink, M. Mehring, and S. Roth

118 Correlation Effects in Low-
Dimensional Electron Systems
Editors: A. Okiji and N. Kawakami

119 Spectroscopy of Mott Insulators
and Correlated Metals
Editors: A. Fujimori and Y. Tokura

120 Optical Properties of
III–V Semiconductors
The Influence of Multi-Valley Band
Structures By H. Kalt

121 Elementary Processes in Excitations
and Reactions on Solid Surfaces
Editors: A. Okiji, H. Kasai,
and K. Makoshi

122 Theory of Magnetism
By K. Yosida

123 Quantum Kinetics in Transport
and Optics of Semiconductors
By H. Haug and A.-P. Jauho

124 Relaxations of Excited States and
Photo-Induced Structural Phase
Transitions
Editor: K. Nasu

125 Physics and Chemistry of
Transition-Metal Oxides
Editors: H. Fukuyama and N. Nagaosa

126 Physical Properties of Quasicrystals
Editor: Z.M. Stadnik

127 Positron Annihilation
in Semiconductors
Defect Studies. By R. Krause-Rehberg
and H.S. Leipner

128 Magneto-Optics
Editors: S. Sugano and N. Kojima

129 Computational Materials Science
From Ab Initio to Monte Carlo
Methods. By K. Ohno, K. Esfarjani,
and Y. Kawazoe

130 Contact, Adhesion and Rupture
of Elastic Solids
By D. Maugis

131 Field Theories for Low-Dimensional
Condensed Matter Systems
Spin Systems and Strongly Correlated
Electrons. By G. Morandi, P. Sodano,
A. Tagliacozzo, and V. Tognetti

132 Vortices in Unconventional
Superconductors and Superfluids
Editors: R.P. Huebener, N. Schopohl,
and G.E. Volovik

133 The Quantum Hall Effect
By D. Yoshioka

134 Magnetism in the Solid State
By P. Mohn

135 Electrodynamics
of Magnetoactive Media
By I. Vagner, B.I. Lembrikov,
and P. Wyder


