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Preface

Math is Exciting. We are living in the greatest age of mathematics ever
seen. In the 1930s, there were some people who feared that the rising
abstractions of the early twentieth century would either lead to mathe-
maticians working on sterile, silly intellectual exercises or to mathematics
splitting into sharply distinct subdisciplines, similar to the way natural
philosophy split into physics, chemistry, biology and geology. But the very
opposite has happened. Since World War II, it has become increasingly
clear that mathematics is one unified discipline. What were separate areas
now feed off of each other. Learning and creating mathematics is indeed a
worthwhile way to spend one’s life.

Math is Hard. Unfortunately, people are just not that good at mathemat-
ics. While intensely enjoyable, it also requires hard work and self-discipline.
I know of no serious mathematician who finds math easy. In fact, most,
after a few beers, will confess as to how stupid and slow they are. This is
one of the personal hurdles that a beginning graduate student must face,
namely how to deal with the profundity of mathematics in stark comparison
to our own shallow understandings of mathematics. This is in part why the
attrition rate in graduate school is so high. At the best schools, with the
most successful retention rates, usually only about half of the people who
start eventually get their PhDs. Even schools that are in the top twenty
have at times had eighty percent of their incoming graduate students not
finish. This is in spite of the fact that most beginning graduate students
are, in comparison to the general population, amazingly good at mathe-
matics. Most have found that math is one area in which they could shine.
Suddenly, in graduate school, they are surrounded by people who are just
as good (and who seem even better). To make matters worse, mathematics
is a meritocracy. The faculty will not go out of their way to make beginning
students feel good (this is not the faculty’s job; their job is to discover new
mathematics). The fact is that there are easier (though, for a mathemati-
cian, less satisfying) ways to make a living. There is truth in the statement
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that you must be driven to become a mathematician.

Mathematics is exciting, though. The frustrations should more than be
compensated for by the thrills of learning and eventually creating (or dis-
covering) new mathematics. That is, after all, the main goal for attending
graduate school, to become a research mathematician. As with all creative
endeavors, there will be emotional highs and lows. Only jobs that are rou-
tine and boring will not have these peaks and valleys. Part of the difficulty
of graduate school is learning how to deal with the low times.

Goal of Book. The goal of this book is to give people at least a rough idea
of the many topics that beginning graduate students at the best graduate
schools are assumed to know. Since there is unfortunately far more that is
needed to be known for graduate school and for research than it is possible
to learn in a mere four years of college, few beginning students know all
of these topics, but hopefully all will know at least some. Different people
will know different topics. This strongly suggests the advantage of working
with others.

There is another goal. Many nonmathematicians suddenly find that
they need to know some serious math. The prospect of struggling with a
text will legitimately seem for them to be daunting. Each chapter of this
book will provide for these folks a place where they can get a rough idea
and outline of the topic they are interested in.

As for general hints for helping sort out some mathematical field, cer-
tainly one should always, when faced with a new definition, try to find a
simple example and a simple non-example. A non-example, by the way,
is an example that almost, but not quite, satisfies the definition. But be-
yond finding these examples, one should examine the reason why the basic
definitions were given. This leads to a split into two streams of thought
for how to do mathematics. One can start with reasonable, if not naive,
definitions and then prove theorems about these definitions. Frequently the
statements of the theorems are complicated, with many different cases and
conditions, and the proofs are quite convoluted, full of special tricks.

The other, more mid-twentieth century approach, is to spend quite a
bit of time on the basic definitions, with the goal of having the resulting
theorems be clearly stated and having straightforward proofs. Under this
philosophy, any time there is a trick in a proof, it means more work needs
to be done on the definitions. It also means that the definitions themselves
take work to understand, even at the level of figuring out why anyone would
care. But now the theorems can be cleanly stated and proved.

In this approach the role of examples becomes key. Usually there are
basic examples whose properties are already known. These examples will
shape the abstract definitions and theorems. The definitions in fact are
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made in order for the resulting theorems to give, for the examples, the
answers we expect. Only then can the theorems be applied to new examples
and cases whose properties are unknown.

For example, the correct notion of a derivative and thus of the slope of
a tangent line is somewhat complicated. But whatever definition is chosen,
the slope of a horizontal line (and hence the derivative of a constant func-
tion) must be zero. If the definition of a derivative does not yield that a
horizontal line has zero slope, it is the definition that must be viewed as
wrong, not the intuition behind the example.

For another example, consider the definition of the curvature of a plane
curve, which is in Chapter Seven. The formulas are somewhat ungainly.
But whatever the definitions, they must yield that a straight line has zero
curvature, that at every point of a circle the curvature is the same and
that the curvature of a circle with small radius must be greater than the
curvature of a circle with a larger radius (reflecting the fact that it is easier
to balance on the earth than on a basketball). If a definition of curvature
does not do this, we would reject the definitions, not the examples.

Thus it pays to know the key examples. When trying to undo the
technical maze of a new subject, knowing these examples will not only help
explain why the theorems and definitions are what they are but will even
help in predicting what the theorems must be.

Of course this is vague and ignores the fact that first proofs are almost
always ugly and full of tricks, with the true insight usually hidden. But in
learning the basic material, look for the key idea, the key theorem and then
see how these shape the definitions.

Caveats for Critics. This book is far from a rigorous treatment of any
topic. There is a deliberate looseness in style and rigor. I am trying to get
the point across and to write in the way that most mathematicians talk to
each other. The level of rigor in this book would be totally inappropriate
in a research paper.

Consider that there are three tasks for any intellectual discipline:

1. Coming up with new ideas.
2. Verifying new ideas.
3. Communicating new ideas.

How people come up with new ideas in mathematics (or in any other field)
is overall a mystery. There are at best a few heuristics in mathematics, such
as asking if something is unique or if it is canonical. It is in verifying new
ideas that mathematicians are supreme. Our standard is that there must
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be a rigorous proof. Nothing else will do. This is why the mathematical
literature is so trustworthy (not that mistakes don’t creep in, but they
are usually not major errors). In fact, I would go as far as to say that if
any discipline has as its standard of verification rigorous proof, than that
discipline must be a part of mathematics. Certainly the main goal for a
math major in the first few years of college is to learn what a rigorous proof
is.

Unfortunately, we do a poor job of communicating mathematics. Every
year there are millions of people who take math courses. A large number
of people who you meet on the street or on the airplane have taken college
level mathematics. How many enjoyed it? How many saw no real point
to it? While this book is not addressed to that random airplane person,
it is addressed to beginning graduate students, people who already enjoy
mathematics but who all too frequently get blown out of the mathematical
water by mathematics presented in an unmotivated, but rigorous, manner.
There is no problem with being nonrigorous, as long as you know and clearly
label when you are being nonrigorous.

Comments on the Bibliography. There are many topics in this book.
While I would love to be able to say that I thoroughly know the literature
on each of these topics, that would be a lie. The bibliography has been
cobbled together from recommendations from colleagues, from books that
I have taught from and books that I have used. I am confident that there
are excellent texts that I do not know about. If you have a favorite, please
let me know at tgarrity@williams.edu.

While this book was being written, Paulo Ney De Souza and Jorge-Nuno
Silva wrote Berkeley Problems in Mathematics [26), which is an excellent
collection of problems that have appeared over the years on qualifying ex-
ams (usually taken in the first or second year of graduate school) in the
math department at Berkeley. In many ways, their book is the comple-
ment of this one, as their work is the place to go to when you want to test
your computational skills while this book concentrates on underlying intu-
itions. For example, say you want to learn about complex analysis. You
should first read chapter nine of this book to get an overview of the basics
about complex analysis. Then choose a good complex analysis book and
work most of its exercises. Then use the problems in De Souza and Silva
as a final test of your knowledge.

Finally, the book Mathematics, Form and Function by Mac Lane [82], is
excellent. It provides an overview of much of mathematics. I am listing 1t
here because there was no other place where it could be naturally referenced.
Second and third year graduate students should seriously consider reading
this book.
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On the Structure of
Mathematics

If you look at articles in current journals, the range of topics seems immense.
How could anyone even begin to make sense out of all of these topics? And
indeed there is a glimmer of truth in this. People cannot effortlessly switch
from one research field to another. But not all is chaos. There are at least
two ways of placing some type of structure on all of mathematics.

Equivalence Problems

Mathematicians want to know when things are the same, or, when they are
equivalent. What is meant by the same is what distinguishes one branch
of mathematics from another. For example, a topologist will consider two
geometric objects (technically, two topological spaces) to be the same if
one can be twisted and bent, but not ripped, into the other. Thus for a
topologist, we have

0-0-

To a differential topologist, two geometric objects are the same if one
can be smoothly bent and twisted into the other. By smooth we mean that
no sharp edges can be introduced. Then

O=()#
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The four sharp corners of the square are what prevent it from being equiv-
alent to the circle.

For a differential geometer, the notion of equivalence is even more re-
strictive. Here two objects are the same not only if one can be smoothly
bent and twisted into the other but also if the curvatures agree. Thus for
the differential geometer, the circle is no longer equivalent to the ellipse:

O #()

As a first pass to placing structure on mathematics, we can view an area
of mathematics as consisting of certain Objects, coupled with the notion of
Equivalence between these objects. We can explain equivalence by looking
at the allowed Maps, or functions, between the objects. At the beginning of
most chapters, we will list the Objects and the Maps between the objects
that are key for that subject. The Equivalence Problem is of course the
problem of determining when two objects are the same, using the allowable
maps.

If the equivalence problem is easy to solve for some class of objects,
then the corresponding branch of mathematics will no longer be active.
If the equivalence problem is too hard to solve, with no known ways of
attacking the problem, then the corresponding branch of mathematics will
again not be active, though of course for opposite reasons. The hot areas
of mathematics are precisely those for which there are rich partial but not
complete answers to the equivalence problem. But what could we mean by
a partial answer?

Here enters the notion of invariance. Start with an example. Certainly
the circle, as a topological space, is different from two circles,

O O

since a circle has only one connected component and two circles have two
connected components. We map each topological space to a positive integer,
namely the number of connected components of the topological space. Thus
we have:

Topological Spaces — Positive Integers.

The key is that the number of connected components for a space cannot
change under the notion of topological equivalence (under bendings and
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twistings). We say that the number of connected components is an invariant
of a topological space. Thus if the spaces map to different numbers, meaning
that they have different numbers of connected components, then the two
spaces cannot be topologically equivalent.

Of course, two spaces can have the same number of connected compo-
nents and still be different. For example, both the circle and the sphere

have only one connected component, but they are different. (These can
be distinguished by looking at each space’s dimension, which is another
topological invariant.) The goal of topology is to find enough invariants
to be able to always determine when two spaces are different or the same.
This has not come close to being done. Much of algebraic topology maps
each space not to invariant numbers but to other types of algebraic objects,
such as groups and rings. Similar techniques show up throughout mathe-
matics. This provides for tremendous interplay between different branches
of mathematics.

The Study of Functions

The mantra that we should all chant each night before bed is:

|Functions describe the World. |

To a large extent what makes mathematics so useful to the world is that
seemingly disparate real-world situations can be described by the same
type of function. For example, think of how many different problems can
be recast as finding the maximum or minimum of a function.

Different areas of mathematics study different types of functions. Cal-
culus studies differentiable functions from the real numbers to the real num-
bers, algebra studies polynomials of degree one and two (in high school)
and permutations (in college), linear algebra studies linear functions, or
matrix multiplication.

Thus in learning a new area of mathematics, you should always “find
the function” of interest. Hence at the beginning of most chapters we will
state the type of function that will be studied.
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Equivalence Problems in Physics

Physics is an experimental science. Hence any question in physics must
eventually be answered by performing an experiment. But experiments
come down to making observations, which usually are described by certain
computable numbers, such as velocity, mass or charge. Thus the exper-
iments in physics are described by numbers that are read off in the lab.
More succinctly, physics is ultimately:

| Numbers in Boxes I

where the boxes are various pieces of lab machinery used to make mea-
surements. But different boxes (different lab set-ups) can yield different
numbers, even if the underlying physics is the same. This happens even at
the trivial level of choice of units.

More deeply, suppose you are modeling the physical state of a system
as the solution of a differential equation. To write down the differential
equation, a coordinate system must be chosen. The allowed changes of co-
ordinates are determined by the physics. For example, Newtonian physics
can be distinguished from Special Relativity in that each has different al-
lowable changes of coordinates.

Thus while physics is ‘Numbers in Boxes’, the true questions come down
to when different numbers represent the same physics. But this is an equiv-
alence problem; mathematics comes to the fore. (This explains in part the
heavy need for advanced mathematics in physics.) Physicists want to find
physics invariants. Usually, though, physicists call their invariants ‘Conser-
vation Laws’. For example, in classical physics the conservation of energy
can be recast as the statement that the function that represents energy is
an invariant function.



Brief Summaries of Topics

0.1 Linear Algebra

Linear algebra studies linear transformations and vector spaces, or in an-
other language, matrix multiplication and the vector space R™. You should
know how to translate between the language of abstract vector spaces and
the language of matrices. In particular, given a basis for a vector space,
you should know how to represent any linear transformation as a matrix.
Further, given two matrices, you should know how to determine if these ma-
trices actually represent the same linear transformation, but under different
choices of bases. The key theorem of linear algebra is a statement that gives
many equivalent descriptions for when a matrix is invertible. These equiv-
alences should be known cold. You should also know why eigenvectors and
eigenvalues occur naturally in linear algebra.

0.2 Real Analysis

The basic definitions of a limit, continuity, differentiation and integration
should be known and understood in terms of ¢’s and §’s. Using this ¢ and ¢
language, you should be comfortable with the idea of uniform convergence
of functions.

0.3 Differentiating Vector-Valued Functions

The goal of the Inverse Function Theorem is to show that a differentiable
function f : R™ — R" is locally invertible if and only if the determinant
of its derivative (the Jacobian) is non-zero. You should be comfortable
with what it means for a vector-valued function to be differentiable, why
its derivative must be a linear map (and hence representable as a matrix,
the Jacobian) and how to compute the Jacobian. Further, you should know
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the statement of the Implicit Function Theorem and see why is is closely
related to the Inverse Function Theorem.

0.4 Point Set Topology

You should understand how to define a topology in terms of open sets and
how to express the idea of continuous functions in terms of open sets. The
standard topology on R™ must be well understood, at least to the level of
the Heine-Borel Theorem. Finally, you should know what a metric space is
and how a metric can be used to define open sets and hence a topology.

0.5 Classical Stokes’ Theorems

You should know about the calculus of vector fields. In particular, you
should know how to compute, and know the geometric interpretations be-
hind, the curl and the divergence of a vector field, the gradient of a function
and the path integral along a curve. Then you should know the classical ex-
tensions of the Fundamental Theorem of Calculus, namely the Divergence
Theorem and Stokes’ Theorem. You should especially understand why
these are indeed generalizations of the Fundamental Theorem of Ciilculus.

0.6 Differential Forms and Stokes’ Theorem

Manifolds are naturally occurring geometric objects. Differential k-forms
are the tools for doing calculus on manifolds. You should know the various
ways for defining a manifold, how to define and to think about differential k-
forms, and how to take the exterior derivative of a k-form. You should also
be able to translate from the language of k-forms and exterior derivatives
to the language from Chapter Five on vector fields, gradients, curls and
divergences. Finally, you should know the statement of Stokes’ Theorem,
understand why it is a sharp quantitative statement about the equality of
the integral of a k-form on the boundary of a (k + 1)-dimensional manifold
with the integral of the exterior derivative of the k-form on the manifold,
and how this Stokes’ Theorem has as special cases the Divergence Theorem
and the Stokes’ Theorem from the previous chapter.

0.7 Curvature for Curves and Surfaces

Curvature, in all of its manifestations, attempts to measure the rate of
change of the directions of tangent spaces of geometric objects. You should
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know how to compute the curvature of a plane curve, the curvature and
the torsion of a space curve and the two principal curvatures, in terms of
the Hessian, of a surface in space.

0.8 Geometry

Different geometries are built out of different axiomatic systems. Given a
line ! and a point p not on I, Euclidean geometry assumes that there is
exactly one line containing p parallel to [, hyperbolic geometry assumes
that there is more than one line containing p parallel to I, and elliptic
geometries assume that there is no line parallel to I. You should know
models for hyperbolic geometry, single elliptic geometry and double elliptic
geometry. Finally, you should understand why the existence of such models
implies that all of these geometries are mutually consistent.

0.9 Complex Analysis

The main point is to recognize and understand the many equivalent ways
for describing when a function can be analytic. Here we are concerned with
functions f : U — C, where U is an open set in the complex numbers
C. You should know that such a function f(z) is said to be analytic if it
satisfies any of the following equivalent conditions:
a) For all z, € U,

i 1) = 1(0)

z—20 Z2—2
exists.

b)The real and imaginary parts of the function f satisfy the Cauchy-
Riemann equations:

ORef  OImf
dxz Oy
and
ORef  0Imf
oy ~ Oz

c) If y is any counterclockwise simple loop in C=R?2 and if z¢ is any complex
number in the interior of -y, then

fao) = - [ F e

21 Z2— 2

This is the Cauchy Integral formula.
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d) For any complex number 2, there is an open neighborhood in C = R?
of zp on which

f(Z) = Zak(z —'zO)ky
k=0

is a uniformly converging series.

Further, if f : U — C is analytic and if f (29) # 0, then at zg, the
function f is conformal (i.e., angle-preserving), viewed as a map from R?
to R2. :

0.10 Countability and the Axiom of Choice

You should know what it means for a set to be countably infinite. In
particular, you should know that the integers and rationals are countably
infinite while the real numbers are.uncountably infinite. The statement
of the Axiom of Choice and the fact that it has many seemingly bizarre
equivalences should also be known.

0.11 Algebra

Groups, the basic object of study in abstract algebra, are the algebraic
interpretations of geometric symmetries. One should know the basics about
groups (at least to the level of the Sylow Theorem, which is a key tool for
understanding finite groups), rings and fields. You should also know Galois
Theory, which provides the link between finite groups and the finding of
the roots of a polynomial and hence shows the connections between high
school and abstract algebra. Finally, you should know the basics behind
representation theory, which is how one relates abstract groups to groups
of matrices. '

0.12 Lebesgue Integration
You should know the basic ideas behind Lebesgue measure and integration,

at least to the level of the Lebesgue Dominating Convergence Theorem,
and the concept of sets of measure zero.

0.13 Fourier Analysis

You should know how to find the Fourier series of a periodic function, the
Fourier integral of a function, the Fourier transform, and how Fourier series
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relate to Hilbert spaces. Further, you should see how Fourier transforms
can be used to simplify differential equations.

0.14 Differential Equations

Much of physics, economics, mathematics and other sciences comes down
to trying to find solutions to differential equations. One should know that
the goal in differential equations is to find an unknown function satisfying
an equation involving derivatives. Subject to mild restrictions, there are
always solutions to ordinary differential equations. This is most definitely
not the case for partial differential equations, where even the existence of
solutions is frequently unknown. You should also be familiar with the three
traditional classes of partial differential equations: the heat equation, the
wave equation and the Laplacian.

0.15 Combinatorics and Probability Theory

Both elementary combinatorics and basic probability theory reduce to prob-
lems in counting. You should know that

(&) = mezmr

is the number of ways of choosing & elements from n elements. The relation
of (Z) to the binomial theorem for polynomials is useful to have handy for
many computations. Basic probability theory should be understood. In
particular one should understand the terms: sample space, random vari-
able (both its intuitions and its definition as a function), expected value
and variance. One should definitely understand why counting arguments
are critical for calculating probabilities of finite sample spaces. The link be-
tween probability and integral calculus can be seen in the various versions
of the Central Limit Theorem, the ideas of which should be known.

0.16 Algorithms

You should understand what is meant by the complexity of an algorithm, at
least to the level of understanding the question P=NP. Basic graph theory
should be known; for example, you should see why a tree is a natural struc-
ture for understanding many algorithms. Numerical Analysis is the study of
algorithms for approximating the answer to computations in mathematics.
As an example, you should understand Newton’s method for approximating
the roots of a polynomial.






Chapter 1

Linear Algebra

Basic Object: Vector Spaces
Basic Map: Linear Transformations
Basic Goal: Equivalences for the Invertibility of Matrices

1.1 Introduction

Though a bit of an exaggeration, it can be said that a mathematical prob-
lem can be solved only if it can be reduced to a calculation in linear algebra.
And a calculation in linear algebra will reduce ultimately to the solving of
a system of linear equations, which in turn comes down to the manipula-
tion of matrices. Throughout this text and, more importantly, throughout
mathematics, linear algebra is a key tool (or more accurately, a collection
of intertwining tools) that is critical for doing calculations.

The power of linear algebra lies not only in our ability to manipulate
matrices in order to solve systems of linear equations. The abstraction of
these concrete objects to the ideas of vector spaces and linear transforma-
tions allows us to see the common conceptual links between many seemingly
disparate subjects. (Of course, this is the advantage of any good abstrac-
tion.) For example, the study of solutions to linear differential equations
has, in part, the same feel as trying to model the hood of a car with cubic
polynomials, since both the space of solutions to a linear differential equa-
tion and the space of cubic polynomials that model a car hood form vector
spaces.

The key theorem of linear algebra, discussed in section six, gives many
equivalent ways of telling when a system of n linear equations in n unknowns
has a solution. Each of the equivalent conditions is important. What is
remarkable and what gives linear algebra its oomph is that they are all the
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same.

1.2 The Basic Vector Space R"

The quintessential vector space is R", the set of all n-tuples of real numbers
{(z1,-..,2z4) 1 z; € R}.

As we will see in the next section, what makes this a vector space is that
we can add together two n-tuples to get another n-tuple:

(xla"'7$n) + (yla'“)yn) = (xl +y1a-"7wn+yn)
and that we can multiply each n-tuple by a real number A:
MzZyy .oy Zn) = A2y, ..., ATp)

to get another n-tuple. Of course each n-tuple is usually called a vector
and the real numbers A are called scalars. When n = 2 and when n = 3
all of this reduces to the vectors in the plane and in space that most of us
learned in high school.

The natural map from some R” to an R™ is given by matrix multipli-
cation. Write a vector x € R" as a column vector:

T

T

Similarly, we can write a vector in R™ as a column vector with m entries.
Let A be an m X n matrix

ai a9 fes Ain
A=
Ami1 ce co. Omn
Then Ax is the m-tuple:
a;; @12 ... Qip T1 a1’y +...+FainZn
e I B B :
Aml oo+ <er Qmp T Am1Z1 + oo + QpnTn

For any two vectors x and y in R” and any two scalars A and u, we have

A(Ax + py) = AAx + pAy.
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In the next section we will use the linearity of matrix multiplication to
motivate the definition for a linear transformation between vector spaces.
Now to relate all of this to the solving of a system of linear equations.

Suppose we are given numbers by,..., b, and numbers a;;,...,0mn,. Our
goal is to find » numbers z1, .. ., T, that solve the following system of linear
equations:
112+ +01nTn = b
Ap1Z1++ Gy = by

Calculations in linear algebra will frequently reduce to solving a system of
linear equations. When there are only a few equations, we can find the
solutions by hand, but as the number of equations increases, the calcula-
tions quickly turn from enjoyable algebraic manipulations into nightmares
of notation. These nightmarish complications arise not from any single
theoretical difficulty but instead stem solely from trying to keep track of
the many individual minor details. In other words, it is a problem in book-

keeping.
Write
b1 ai ai2 e Ain
bm Am1 e e Amn
and our unknowns as
It
x =
Tn

Then we can rewrite our system of linear equations in the more visually
appealing form of
Ax =b.

When m > n (when there are more equations than unknowns), we
expect there to be, in general, no solutions. For example, when m = 3
and n = 2, this corresponds geometrically to the fact that three lines in
a plane will usually have no common point of intersection. When m < n
(when there are more unknowns than equations), we expect there to be,
in general, many solutions. In the case when m = 2 and n = 3, this
corresponds geometrically to the fact that two planes in space will usually
intersect in an entire line. Much of the machinery of linear algebra deals
- with the remaining case when m = n.

Thus we want to find the n X 1 column vector x that solves Ax = b,
where A is a given n x n matrix and b is a given n X 1 column vector.
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Suppose that the square matrix A has an inverse matrix A~! (which means
that A~! is also n x n and more importantly that A='A = I, with I the
identity matrix). Then our solution will be

x=A"'b

since
Ax = A(A‘lb) =Ib=hb.

Thus solving our system of linear equations comes down to understanding
when the n x n matrix A has an inverse. (If an inverse matrix exists, then
there are algorithms for its calculations.)

The key theorem of linear algebra, stated in section six, is in essence a
list of many equivalences for when an n x n matrix has an inverse and is
thus essential to understanding when a system of linear equations can be
solved.

1.3 Vector Spaces and Linear Transformations

The abstract approach to studying systems of linear equations starts with
the notion of a vector space.

Definition 1.3.1 A set V is a vector space over the real numbers' R if
there are maps:

1. RxV =V, denoted by a - v or av for all real numbers a and
elements v inV,

2. VxV =V, denoted by v+ w for all elements v and w in the vector
space V,

with the following properties:
a) There is an element 0, in V such that 0+ v =v for allv e V.
b) For each v € V, there is an element (—v) € V with v + (—v) = 0.
¢) Forallvyw eV, v+w=w+v.
d) For alla € R and for all v,w € V, we have that a(v +w) = av + aw.
e) For alla,b€ R and all v € V, a(bv) = (a - b)v.
f) Foralla,be R and allv eV, (a+b)v =av + bv.
g) ForallveV,1-v=nu.

1The real numbers can be replaced by the complex numbers and in fact by any field
(which will be defined in Chapter Eleven on algebra).
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As a matter of notation, and to agree with common usage, the elements of
a vector space are called vectors and the elements of R (or whatever field
is being used) scalars. Note that the space R™ given in the last section
certainly satisfies these conditions.

The natural map between vector spaces is that of a linear transforma-
tion.

Definition 1.3.2 A linear transformation T : V' — W s a function from
a vector space V' to a vector space W such that for any real numbers ay and
as and any vectors vy and ve in 'V, we have

T(al’U1 -+ a2v2) = alT(vl) -+ azT(Uz).

Matrix multiplication from an R™ to an R™ gives an example of a linear
transformation.

Definition 1.3.3 A subset U of a vector space V is a subspace of V if U
is itself a vector space.

In practice, it is usually easy to see if a subset of a vector space is in fact
a subspace, by the following proposition, whose proof is left to the reader:

Proposition 1.3.1 A subset U of a vector space V' is a subspace of V' if
U is closed under addition and scalar multiplication.

Given a linear transformation 7' : V' — W, there are naturally occurring
subspaces of both V' and W.

Definition 1.3.4 If T : V = W is a linear transformation, then the kernel
of T is:
ker(T)={veV :T(v) =0}

and the image of T is
Im(T) = {w € W : there ezists a v € Vwith T(v) = w}.

The kernel is a subspace of V, since if v; and vy are two vectors in the
kernel and if a and b are any two real numbers, then

T(avy +bve) = aT(vy) + T (v2)
= a-0+b-0
0.
In a similar way we can show that the image of T is a subspace of W.

If the only vector spaces that ever occurred were column vectors in R”?,
then even this mild level of abstraction would be silly. This is not the case.
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Here we look at only one example. Let C*[0, 1] be the set of all real-valued
functions with domain the unit interval {0, 1]:

F:0,1]>R

such that the kth derivative of f exists and is continuous. Since the sum of
any two such functions and a multiple of any such function by a scalar will
still be in C*[0, 1], we have a vector space. Though we will officially define
dimension next section, C*[0,1] will be infinite dimensional (and thus defi-
nitely not some R™). We can view the derivative as a linear transformation
from C*[0,1] to those functions with one less derivative, C¥~1[0, 1]:

d _

e C*[0,1] —» C*10,1].

The kernel of 345 consists of those functions with %ﬁ = 0, namely constant
functions.

Now consider the differential equation
&’f  ,df

W+3d—m+2f=0.

Let T be the linear transformation:

d2 d
+3— +2I:C?*0,1] — C°0,1].

T=3=13%

The problem of finding a solution f(z) to the original differential equation
can now be translated to finding an element of the kernel of T'. This suggests
the possibility (which indeed is true) that the language of linear algebra can
be used to understand solutions to (linear) differential equations.

1.4 Bases, Dimension, and Linear Transfor-
mations as Matrices

Our next goal is to define the dimension of a vector space.

Definition 1.4.1 A set of vectors (v1,...,vn) form a basis for the vector
space V if given any vector v in V, there are unique scalars a1,...,an€ R
with v = a1v1 + ... + GpUy,.

Definition 1.4.2 The dimension of a vector space V, denoted by dim(V),
ts the number of elements in a basts.



1.4. BASES AND DIMENSION 7

As it is far from obvious that the number of elements in a basis will
always be the same, no matter which basis is chosen, in order to make
the definition of the dimension of a vector space well-defined we need the
following theorem (which we will not prove):

Theorem 1.4.1 All bases of a vector space V have the same number of
elements.

For R™, the usual basis is
{(1,0,..,0),(0,1,0,...,0), ..., (0, ...,0, 1) }.

Thus R” is n dimensional. Of course if this were not true, the above def-
inition of dimension would be wrong and we would need another. This is
an example of the principle mentioned in the introduction. We have a good
Intuitive understanding of what dimension should mean for certain specific
examples: a line needs to be one dimensional, a plane two dimensional and
space three dimensional. We then come up with a sharp definition. If this
definition gives the “correct” answer for our three already understood ex-
amples, we are somewhat confident that the definition has indeed captured
what is meant by, in this case, dimension. Then we can apply the definition
to examples where our intuitions fail.
Linked to the idea of a basis is:

Definition 1.4.3 Vectors (v1,-..,vy) in a vector space V are linearly in-
dependent if whenever

a1+ apvy =0,
it must be the case that the scalars ay, ..., an, must all be zero.

Intuitively, a collection of vectors are linearly independent if they all point
in different directions. A basis consists then in a collection of linearly
independent vectors that span the vector space, where by span we mean:

Definition 1.4.4 A set of vectors (vy,...,vs) span the vector space V if
given any vector v in 'V, there are scalars ay,...,a,€ R with v = ayv; +
R

Our goal now is to show how all linear transformations ' : V — W
between finite-dimensional spaces can be represented as matrix multiplica-
tion, provided we fix bases for the vector spaces V and W.

First fix a basis {vy, ..., v, } for V and a basis {wy, ..., wn } for W. Before
looking at the linear transformation 7', we need to show how each element
of the n-dimensional space V can be represented as a column vector in R™
and how each element of the m-dimensional space W can be represented
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as a column vector of R™. Given any vector v in V, by the definition of
basis, there are unique real numbers ay, ..., a, with

V=aq1v1 + -+ apvy.
We thus represent the vector v with the column vector:

a

an

Similarly, for any vector w in W, there are unique real numbers b, ..., b,
with

w=b1w1 +-~-+bmwm.
Here we represent w as the column vector
by

b

Note that we have established a correspondence between vectors in V' and
W and column vectors R™ and R™, respectively. More technically, we can
show that V' is isomorphic to R™ (meaning that there is a one-one, onto
linear transformation from V to R™) and that W is isomorphic to R™,
though it must be emphasized that the actual correspondence only exists
after a basis has been chosen (which means that while the isomorphism
exists, it is not canonical; this is actually a big deal, as in practice it is
unfortunately often the case that no basis is given to us).

We now want to represent a linear transformation T : V — W as an
m x n matrix A. For each basis vector v; in the vector space V, T'(v;) will
be a vector in W. Thus there will exist real numbers ay;, ..., am; such that

T(v;) = arjwy + + + + QmiWp, -

We want to see that the linear transformation 7' will correspond to the
m X n matrix

an @2 ... Qin
A=
Am1 cer ees Qmnp
Given any vector v in V, with v = a;vy + + -+ + a,v,, we have
T(U) = T(alvl +---+ anvn)

= alT(vl) +--t anT(vn)
= al(a11w1+-'-+am1wm)+~-

+an(alnwl + -+ amnwm)-
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But under the correspondences of the vector spaces with the various column
spaces, this can be seen to correspond to the matrix multiplication of A4
times the column vector corresponding to the vector v:

a1y a2 ... Ain ay bl

Aml e+ eer Qmn Qn, b,

Note that if 77 : V — V is a linear transformation from a vector space to
itself, then the corresponding matrix will be n x n, a square matrix.
Given different bases for the vector spaces V and W, the matrix asso-
ciated to the linear transformation 7' will change. A natural problem is to
determine when two matrices actually represent the same linear transfor-
mation, but under different bases. This will be the goal of section seven.

1.5 The Determinant

Our next task is to give a definition for the determinant of a matrix. In fact,
we will give three alternative descriptions of the determinant. All three are
equivalent; each has its own advantages.

Our first method is to define the determinant of a 1 x 1 matrix and then
to define recursively the determinant of an n X n matrix.

Since 1 x 1 matrices are just numbers, the following should not at all
be surprising:

Definition 1.5.1 The determinant of a 1 x 1 matriz (a) is the real-valued
function
det(a) = a.

This should not yet seem significant.
Before giving the definition of the determinant for a general n xn matrix,
we need a little notation. For an n X n matrix

i1 @412 ... Qip
A=l o1,
Apl oo .- Qpp
denote by A;; the (n — 1) x (n — 1) matrix obtained from A by deleting

ari ai2
, then

the ith row and the jth column. For example, if A = (
a1 a2

2 3 5 6 9
Ajs = (a21). Similarly if A = (6 4 9}, then A2 = (7 8) )
7 1 8
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Since we have a definition for the determinant for 1 x 1 matrices, we
will now assume by induction that we know the determinant of any (n —
1) x (n— 1) matrix and use this to find the determinant of an n X n matrix.

Definition 1.5.2 Let A be an n x n matriz. Then the determinant of A is

n

det(A4) =D (=1)ay; det(Arg).

k=1

a a
Thus for A= [ "1 "2 ) we have
G21 G22

det(A) = a1 det(A11) — 612 det(A12) = a11022 — 612021,

which is what most of us think of as the determinant. The determinant of
our above 3 x 3 matrix is:

2 3 5
det[6 4 9] =2det (¥ 9Y_3aet (8 9)rsaet(C %Y.
> 1 18 7 8 71

While this definition is indeed an efficient means to describe the determi-
nant, it obscures most of the determinant’s uses and intuitions.

The second way we can describe the determinant has built into it the
key algebraic properties of the determinant. It highlights function-theoretic
properties of the determinant.

Denote the n x n matrix A as A = (44, ..., A,,), where A; denotes the
ith column:

Anj

Definition 1.5.3 The determinant of A is defined as the unique real-valued
function
det : Matrices - R

satisfying:
a) det(Ay, ..., A\Ag, ..., Ap) = Adet(Ay, ..., Ag).
b) det(Ay, ..., Ax + AA;, ..., A,) = det(As, ..., Ay,) for k #1.
¢) det (Identity matriz) = 1.

Thus, treating each column vector of a matrix as a vector in R", the de-
terminant can be viewed as a special type of function from R" x ... x R"
to the real numbers.
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In order to be able to use this definition, we would have to prove that
such a function on the space of matrices, satisfying conditions a through c,
even exists and then that it is unique. Existence can be shown by checking
that our first (inductive) definition for the determinant satisfies these con-
ditions, though it is a painful calculation. The proof of uniqueness can be
found in almost any linear algebra text.

The third definition for the determinant is the most geometric but is
also the most vague. We must think of an n X n matrix A as a linear
transformation from R”™ to R™. Then A will map the unit cube in R" to
some different object (a parallelepiped). The unit cube has, by definition,
a volume of one.

Definition 1.5.4 The determinant of the matriz A is the signed volume
of the image of the unit cube.

This is not well-defined, as the very method of defining the volume of the
image has not been described. In fact, most would define the signed volume
of the image to be the number given by the determinant using one of the
two earlier definitions. But this can be all made rigorous, though at the
price of losing much of the geometric insight.

2 0

Let’s look at some examples: the matrix A = (O 1

) takes the unit

square to

AL A

¥ 1 ¥

\ 4

Y

—_
N

Since the area is doubled, we must have
det(A4) = 2.

Signed volume means that if the orientations of the edges of the unit
cube are changed, then we must have a negative sign in front of the volume.
-2 0

For example, consider the matrix A = ( 0 1

) . Here the image is
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1}\ ' \;

Y - 1 -2 -1 ')

Y
F
4

Note that the orientations of the sides are flipped. Since the area is still
doubled, the definition will force

det(A) = —2.

To rigorously define orientation is somewhat tricky (we do it in Chapter
Six), but its meaning is straightforward.
The determinant has many algebraic properties. For example,

Lemma 1.5.1 : If A and B are n x n matrices, then
det(AB) = det(A) det(B).

This can be proven by either a long calculation or by concentrating on the
definition of the determinant as the change of volume of a unit cube.

1.6 The Key Theorem of Linear Algebra

Here is the the key theorem of linear algebra. (Note: we have yet to define
eigenvalues and eigenvectors, but we will in section eight.)

Theorem 1.6.1 (Key Theorem) Let A be an n X n matriz. Then the
following are equivalent:

1. A is invertible.
2. det(A4) #0.
3. ker(A) =0.

4. If b is a column vector in R™, there is a unique column vector x
in R™ satisfying Ax = b.
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5. The columns of A are linearly independent n x 1 column vectors.
6. The rows of A are linearly independent 1 x n row vectors.

7. The transpose A of A is invertible. (Here, if A = (a;;), then
Al = (a;1))-
8. All of the eigenvalues of A are nonzero.
We can restate this theorem in terms of linear transformations.

Theorem 1.6.2 (Key Theorem) Let T : V — V be a linear transforma-
tion. Then the following are equivalent: '

1. T is invertible.

2. det(T) # 0, where the determinant is defined by a choice of basis
onV.

3. ker(T) =0.

4. If b is a vector in V, there is a unique vector v in V satisfying
T(w)=h.

5. For any basis vy,...,vn of V, the image vectors T'(vy),...,T(vy)
are linearly independent.

6. For any basis vy,...,v, of V, if S denotes the transpose linear
transformation of T', then the image vectors S(vy),...,S(v,) are
linearly independent.

7. The transpose of T is invertible. (Here the transpose is defined by a
choice of basis on V).

8. All of the eigenvalues of T are nonzero.

In order to make the correspondence between the two theorems clear, we
must worry about the fact that we only have definitions of the determinant
and the transpose for matrices, not for linear transformations. While we
do not show it, both notions can be extended to linear transformations,
provided a basis is chosen (in fact, provided we choose an inner product,
which will be defined in Chapter Thirteen on Fourier series). But note that
while the actual value det(T") will depend on a fixed basis, the condition
that det(T) # 0 does not. Similar statements hold for conditions (6) and
(7). A proof is the goal of exercise 7, where you are asked to find any linear
algebra book and then fill in the proof. It is unlikely that the linear algebra
book will have this result as it is stated here. The act of translating is in
fact part of the purpose of making this an exercise.

Each of the equivalences is important. Each can be studied on its own
merits. It is remarkable that they are the same.
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1.7 Similar Matrices

Recall that given a basis for an n dimensional vector space V, we can
represent a linear transformation

T: VSV

as an nxn matrix A. Unfortunately, if you choose a different basis for V', the
matrix representing the linear transformation T" will be quite different from
the original matrix A. This section’s goal is to find out a clean criterion for
when two matrices actually represent the same linear transformation but
under different choice of bases.

Definition 1.7.1 Two n X n matrices A and B are similar if there is an
invertible matriz C such that

A=C'BC.

We want to see that two matrices are similar precisely when they repre-
sent the same linear transformation. Choose two bases for the vector space
V, say {v1,...,vn} (the v basis) and {w,,...,w,} (the w basis). Let A be
the matrix representing the linear transformation T for the v basis and let
B be the matrix representing the linear transformation for the w basis. We
want to construct the matrix C so that A = C~!BC.

Recall that given the v basis, we can write each vector 2 € V asann x 1
column vector as follows: we know that there are unique scalars a,,...,a,
with

Z=a1V1 + -+ aptn.

We then write z, with respect to the v basis, as the column vector:

ax

an
Similarly, there are unique scalars by, ..., b, so that
z=biwy + -+ bpwn,
meaning that with respect to the w basis, the vector z is the colurr.m vector:
b1

bn
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The desired matrix C will be the matrix such that
a) b1
ci =
an bn
If C = (ci5), then the entries ¢;; are precisely the numbers which yield:
W; = Ci1V1 + ...+ CinUn.

Then, for A and B to represent the same linear transformation, we need
the diagram:

R 4 R»
c | (e,

—

Rn B RTL
to commute, meaning that CA = BC or
A=C"'BC,

as desired.

Determining when two matrices are similar is a type of result that shows
up throughout math and physics. Regularly you must choose some coordi-
nate system (some basis) in order to write down anything at all, but the
underlying math or physics that you are interested in is independent of the
initial choice. The key question becomes: what is preserved when the coor-
dinate system is changed? Similar matrices allow us to start to understand
these questions.

1.8 Eigenvalues and Eigenvectors

In the last section we saw that two matrices represent the same linear trans-
formation, under different choices of bases, precisely when they are similar.
This does not tell us, though, how to choose a basis for a vector space so
that a linear transformation has a particularly decent matrix representa-
tion. For example, the diagonal matrix

1 0 0
A=10 2 0
0 0 3
is similar to the matrix
1 1 —4 -5
==-11 -1
B 1 8 ,

5 4 15
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but all recognize the simplicity of A as compared to B. (By the way, it is
not obvious that A and B are similar; I started with A, chose a nonsingular
matrix C and then used the software package Mathematica to compute
C71AC to get B. Idid not just suddenly “see” that A and B are similar.
No, I rigged it to be so.)

One of the purposes behind the following definitions for eigenvalues
and eigenvectors is to give us tools for picking out good bases. There are,
though, many other reasons to understand eigenvalues and eigenvectors.

Definition 1.8.1 Let T : V — V be a linear transformation. Then a
nonzero vector v € V will be an eigenvector of T with eigenvalue A, a
scalar, if

T(v) = Av.

For an n x n matriz A, a nonzero column vector x € R™ will be an eigen-
vector with eigenvalue A, a scalar, if

Ax = dx.

Geometrically, a vector v is an eigenvector of the linear transformation T'
with eigenvalue A if T stretches v by a factor of A.

For example,
-2 =2 1 1
(7 7)(%)-2(%)

and thus 2 is an eigenvalue and (_12> an eigenvector for the linear trans-

formation represented by the 2 x 2 matrix (%2 _52>

Luckily there is an easy way to describe the eigenvalues of a square
matrix, which will allow us to see that the eigenvalues of a matrix are
preserved under a similarity transformation.

Proposition 1.8.1 A number A will be an eigenvalue of a square matriz
A if and only if A is a root of the polynomial

P(t) = det(t] — A).

The polynomial P(t) = det(tI — A) is called the characteristic polynomial
of the matrix A.
Proof: Suppose that A is an eigenvalue of A, with eigenvector v. Then
Av = v, or

Av — Av =0,
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where the zero on the right hand side is the zero column vector. Then,
putting in the identity matrix I, we have

0=Xv—Av = — Aw.

Thus the matrix A — A has a nontrivial kernel, v. By the key theorem of
linear algebra, this happens precisely when

det(\ — A) = 0,

which means that A is a root of the characteristic polynomial P(t) =
det(tI — A). Since all of these directions can be reversed, we have our
theorem. O

Theorem 1.8.1 Let A and B be similar matrices. Then the characteristic
polynomial of A is equal to the characteristic polynomial of B.

Proof: For A and B to be similar, there must be an invertible matrix C
with A= C~!BC. Then

det(tI —A) = det(t] — C~1BC)
= det(tC~1C — C'BC)
= det(C71) det(t] — B) det(C)
= det(t] — B)
using that 1 = det(C~1C) = det(C~1) det(C). O

Since the characteristic polynomials for similar matrices are the same,
this means that the eigenvalues must be the same.

Corollary 1.8.1.1 The eigenvalues for similar matrices are equal.

Thus to see if two matrices are similar, one can compute to see if the
eigenvalues are equal. If they are not, the matrices are not similar. Unfor-
tunately in general, having equal eigenvalues does not force matrices to be
gimilar. For example, the matrices

a=(5 )
2=(5 2)

both have eigenvalues 1 and 2, but they are not similar. (This can be shown
by assuming that there is an invertible two-by-two matrix C' with C"1AC =
B and then showing that det(C) = 0, contradicting C’s invertibility.)
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Since the characteristic polynomial P(t) does not change under a simi-
larity transformation, the coefficients of P(t) will also not change under a
similarity transformation. But since the coefficients of P(t) will themselves
be (complicated) polynomials of the entries of the matrix A, we now have
certain special polynomials of the entries of A that are invariant under a
similarity transformation. One of these coeflicients we have already seen
in another guise, namely the determinant of A, as the following theorem
shows. This theorem will more importantly link the eigenvalues of A to the
determinant of A.

Theorem 1.8.2 Let Ay,..., A, be the eigenvalues, counted with multiplic-
ity, of a matriz A. Then

det(A) = Ay -+ An.

Before proving this theorem, we need to discuss the idea of counting
eigenvalues “with multiplicity”. The difficulty is that a polynomial can have
a root that must be counted more than once (e.g., the polynomial (z — 2)?
has the single root 2 which we want to count twice). This can happen
in particular to the characteristic polynomial. For example, consider the
matrix

5 0 0
05 0
0 0 4

which has as its characteristic polynomial the cubic
(t—5)(t—5)(t—4).

For the above theorem, we would list the eigenvalues as 4, 5, and 5, hence
counting the eigenvalue 5 twice.

Proof: Since the eigenvalues Aj,..., A\, are the (complex) roots of the
characteristic polynomial det(t] — A), we have

(t— A1) (t = Ap) = det(¢] — A).
Setting t = 0, we have
(=1)"A1--- Ay = det(—A).

In the matrix (—A), each column of A is multiplied by (—1). Using the
second definition of a determinant, we can factor out each of these (—1)s,
to get

(=1)"A1 - Ay = (=1)" det(A)
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and our result. O

Now finally to turn back to determining a “good” basis for representing
a linear transformation. The measure of “goodness” is how close the matrix
is to being a diagonal matrix. We will restrict ourselves to a special, but
quite prevalent, class: symmetric matrices. By symmetric, we mean that
if A = (ai;), then we require that the entry at the ith row and jth column
(ai;) must equal to the entry at the jth row and the ith column (aj;). Thus

5 3 4

3 5 2

4 2 4
is symmetric but

5 2 3

6 5 3

2 18 4

is not.

Theorem 1.8.3 If A is a symmetric matriz, then there is a matriz B sim-
ilar to A which is not only diagonal but with the entries along the diagonal
being precisely the eigenvalues of A.

Proof: The proof basically rests on showing that the eigenvectors for A
form a basis in which A becomes our desired diagonal matrix. We will
assume that the eigenvalues for A are distinct, as technical difficulties occur
when there are eigenvalues with multiplicity.

Let v1,Va,..., v, be the eigenvectors for the matrix A, with correspond-
ing eigenvalues A1, Az, ..., A,. Form the matrix
C=(vi1,v2,...,Vn),

where the ith column of C is the column vector v;. We will show that
the matrix C~!AC will satisfy our theorem. Thus we want to show that
C~'AC equals the diagonal matrix

M 0 -~ 0
B={: i i
0 0 - M
Denote
1 0 0
0 1 0
e = : , €2 = . 4oy € =
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Then the above diagonal matrix B is the unique matrix with Be; = \je;,
for all 2. Our choice for the matrix C now becomes clear as we observe that
for all 7, Ce; = v;. Then we have

C'_lAC’ei = C_IAVi = C’_l()\ivi) = /\iC_lvi = \e;,

giving us the theorem. O

This is of course not the end of the story. For nonsymmetric matrices,
there are other canonical ways finding “good” similar matrices, such as the
Jordan canonical form, the upper triangular form and rational canonical
form.

1.9 Dual Vector Spaces

It pays to study functions. In fact, functions appear at times to be more
basic than their domains. In the context of linear algebra, the natural class
of functions is linear transformations, or linear maps from one vector space
to another. Among all real vector spaces, there is one that seems simplest,
namely the one-dimensional vector space of the real numbers R. This leads
us to examine a special type of linear transformation on a vector space,
those that map the vector space to the real numbers, the set of which we
will call the dual space. Dual spaces regularly show up in mathematics.
Let V be a vector space. The dual vector space, or dual space, is:

V* = {linear maps from V to the real numbers R}
{v*:V —» R | v" is linear}.

You can check that the dual space V* is itself a vector space.
Let T : V — W be a linear transformation. Then we can define a
natural linear transformation

T - W* > V*

from the dual of W to the dual of V' as follows. Let w* € W*. Then
given any vector w in the vector space W, we know that w*(w) will be a
real number. We need to define T* so that T*(w*) € V*. Thus given any
vector v € V', we need T™*(w*)(v) to be a real number. Simply define

T*(w")(v) = w* (T ().

By the way, note that the direction of the linear transformation T :
V — W is indeed reversed to 7™ : W* — V*. Also by “natural”, we do
not mean that the map 7™ is “obvious” but instead that it can be uniquely
associated to the original linear transformation T'.
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Such a dual map shows up in many different contexts. For example, if
X and Y are topological spaces with a continuous map F': X — Y and if
C(X) and C(Y) denote the sets of continuous real-valued functions on X
and Y, then here the dual map

F*: C(Y) = C(X)

is defined by F*(g)(x) = g(F(z)), where g is a continuous map on Y.

Attempts to abstractly characterize all such dual maps were a major
theme of mid-twentieth century mathematics and can be viewed as one of
the beginnings of category theory.

1.10 Books

Mathematicians have been using linear algebra since they have been doing
mathematics, but the styles, methods and the terminologies have shifted.
For example, if you look in a college course catalogue in 1900 or proba-
bly even 1950, there will be no undergraduate course called linear algebra.
Instead there were courses such as “Theory of Equations” or simply “Alge-
bra”. As seen in one of the more popular textbooks in the first part of the
twentieth century, Maxime Bocher’s Introduction to Higher Algebra [10], the
concern was on concretely solving systems of linear equations. The results
were written in an algorithmic style. Modern day computer programmers
usually find this style of text far easier to understand than current math
books. In the 1930s, a fundamental change in the way algebraic topics
were taught occurred with the publication of Van der Waerden’s Modern
Algebra [113][114], which was based on lectures of Emmy Noether and Emil
Artin. Here a more abstract approach was taken. The first true modern
day linear algebra text was Halmos’ Finite-dimensional Vector Spaces [52].
Here the emphasis is on the idea of a vector space from the very beginning.
Today there are many beginning texts. Some start with systems of linear
equations and then deal with vector spaces, others reverse the process. A
long time favorite of many is Strang’s Linear Algebra and Its Applications
[109]. As a graduate student, you should volunteer to teach or TA linear
algebra as soon as possible.

1.11 Exercises

1. Let L : V — W be a linear transformation between two vector spaces.
Show that
dim(ker(L)) + dim(Im(L)) = dim(V).
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2. Consider the set of all polynomials in one variable with real coefficients
of degree less than or equal to three.

a. Show that this set forms a vector space of dimension four.

b. Find a basis for this vector space.

c. Show that differentiating a polynomial is a linear transformation.

d. Given the basis chosen in part (b), write down the matrix represen-
tative of the derivative.
3. Let A and B be two n x n invertible matrices. Prove that

(AB)™' = B4

(3

Find a matrix C so that C~1AC is a diagonal matrix.
5. Denote the vector space of all functions

4. Let

f:R->R

which are infinitely differentiable by C*°(R). This space is called the space
of smooth functions.

a. Show that C*°(R) is infinite dimensional.

b. Show that differentiation is a linear transformation:

d al) fe’s)
e :C®°(R) =» C*(R).

c. For a real number A, find an eigenvector for d% with eigenvalue .
6. Let V be a finite dimensional vector space. Show that the dual vector
space V* has the same dimension as V.
7. Find a linear algebra text. Use it to prove the key theorem of linear
algebra. Note that this is a long exercise but is to be taken seriously.



Chapter 2

e and 0 Real Analysis

Basic Object: The Real Numbers
Basic Maps: Continuous and Differentiable Functions
Basic Goal: The Fundamental Theorem of Calculus

While the basic intuitions behind differentiation and integration were known
by the late 1600s, allowing for a wealth of physical and mathematical appli-
cations to develop during the 1700s, it was only in the 1800s that sharp, rig-
orous definitions were finally given. The key concept is that of a limit, from
which follow the definitions for differentiation and integration and rigorous
proofs of their basic properties. Far from a mere exercise in pedantry, this
rigorization actually allowed mathematicians to discover new phenomena.
For example, Karl Weierstrass discovered a function that was continuous
everywhere but differentiable nowhere. In other words, there is a function
with no breaks but with sharp edges at every point. Xey to his proof is the
need for limits to be applied to sequences of functions, leading to the idea
of uniform convergence.

We will define limits and then use this definition to develop the ideas
of continuity, differentiation and integration of functions. Then we will
show how differentiation and integration are intimately connected in the
Fundamental Theorem of Calculus. Finally we will finish with uniform
convergence of functions and Weierstrass’ example.

2.1 Limits

Definition 2.1.1 A function f : R — R has a limit L at the point a if
given any real number € > 0 there is a real number 6 > 0 such that for all
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real numbers x with
0<|z—a|] <,

we have
|f(=) - LI <.
This is denoted by
lim f(z) = L.
r—a

Intuitively, the function f(z) should have a limit L at a point a if, for
numbers z near a, the value of the function f(z) is close to the number L.
In other words, to guarantee that f(z) be close to L, we can require that
z is close to a. Thus if we want f(x) to be within an arbitrary € > 0 of
the number L (i.e., if we want |f(z) — L| < €), we must be able to specify
how close to a we must force z to be. Therefore, given a number € > 0 (no
matter how small), we must be able to find a number § > 0 so that if z is
within § of a, we have that f(x) is within an € of L. This is precisely what
the definition says, in symbols.

For example, if the above definition of a limit is to make sense, it must
yield that

lim 22 = 4.
r—2

We will check this now. It must be emphasized that we would be foolish
to show that z2 approaches 4 as z approaches 2 by actually using the
definition. We are again doing the common trick of using an example whose
answer we already know to check the reasonableness of a new definition.
Thus for any € > 0, we must find a § > 0 so that if 0 < |z — 2| < §, we will
have
lz% — 4] < e.

Set .

5 = min (g, 1)

As often happens, the initial work in finding the correct expression for § is
hidden. Also, the ‘5’ in the denominator will be seen not to be critical. Let
0 < |z —2| <d. We want |22 — 4] < ¢. Now

jo? — 4| = [z — 2| - |z + 2|
Since z is within 4 of 2,
|z +2| < (2+6)+2=4+0<5.

Thus .
|x2—41:|x—21-|x+2|<5-|x—2|<5-3=e.

We are done.
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2.2 Continuity

Definition 2.2.1 A function f : R — R is continuous at a if

lim £(z) = £(a).
Of course, any intuition about continuous functions should capture the
notion that a continuous function cannot have any breaks in its graph. In
other words, you can graph a continuous function without having to lift
your pencil from the page. (As with any sweeping intuition, this one will
break down if pushed too hard.)

continuous not continuous

—~

A

'
A
A

In € and § notation, the definition of continuity is:

Definition 2.2.2 A4 function f : R — R is continuous at a if given any
€ > 0, there is some § > 0 such that for all x with 0 < |z — a| < §, we have

|f(z) — fla)l <e.

For an example, we will write down a function that is clearly not continuous
at the origin 0, and use this function to check the reasonableness of the
definition.

Let

1 ifz>0
ﬂﬂ:{—lﬁwﬁo

Note that the graph of f(z) has a break in it at the origin.

1—
—
—

-1

We want to capture this break by showing that

lim £(z) # £(0).
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Now f(0) = —1. Let ¢ = 1 and let § > 0 be any positive number. Then for
any z with 0 < 2 < §, we have f(z) = 1. Then

(@) = fO)=1-(=D]=2>1=¢.
Thus for all positive z < 6.
|f(z) — F(O)] > e
Hence, for any § > 0, there are z with
|z -0 <6
but

[f(z) = F(O)| > e.

This function is indeed not continuous.

2.3 Differentiation
Definition 2.3.1 A function f: R — R is differentiable at a if
i @)~ £(a)

T—a Tr—a
exists. This limit is called the derivative and is denoted by (among many
other symbols) f'(a) or %ﬁ(a).

One of the key intuitive meanings of a derivative is that it should give the
slope of the tangent line to the curve y = f(z) at the point a. While
logically the current definition of a tangent line must include the above
definition of derivative, in pictures the tangent line is of course:

5~ tangent line

~

y=f(x)

Y
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The idea behind the definition is that we can compute the slope of a
line defined by any two points in the plane. In particular, for any z # a,
the slope of the secant line through the points (a, f(a)) and (z, f(z)) will

be
f@) - (@)

r—a

slope=f———(x)z: g(a)

/

*
(a,f(a))

(x,f(x))

Y

I

We now let z approach a. The corresponding secant lines will approach the
tangent line. Thus the slopes of the secant lines must approach the slope
of the tangent line.

[tangent line

¥

F

Hence the definition for the slope of the tangent line should be:

f'(a) = lim f(:l}) — f(a)

T—a r—a
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Part of the power of derivatives (and why they can be taught to high
school seniors and first year college students) is that there is a whole calcu-
lational machinery to differentiation, allowing us to usually avoid the actual
taking of a limit.

We now look at an example of a function that does not have a derivative
at the origin, namely

f(z) = |zl

This function has a sharp point at the origin and thus no apparent tangent
line there. We will show that the definition yields that f(z) = |z| is indeed
not differentiable at x = 0. Thus we want to show that

i 1@ = £©)

z2—0 r—0
does not exist. Luckily

f(x)—f(O)zlx_]:{l, >0

z—0 T -1, <0’

which we have already shown in the last section to not have a limit as z
approaches 0.

2.4 Integration

Intuitively the integral of a positive function f(z) with domaina <z <b
should be the area under the curve y = f(z) above the z-axis.

F 3
y=1(x)
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When the function f(z) is not everywhere positive, then its integral should

be the area under the positive part of the curve y = f(z) minus the area
above the negative part of y = f(z).

positive area

AN

negative area

Of course this is hardly rigorous, as we do not yet even have a good defini-
tion for area.

The main idea is that the area of a rectangle with height a and width b
is ab.

To find the area under a curve y = f(z) we first find the area of various
rectangles contained under the curve and then the area of various rectangles
just outside the curve.

A
¥

We then make the rectangles thinner and thinner, as in:
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We take the limits, which should result in the area under the curve.

Now for the more technically correct definitions. We consider a real-
valued function f(z) with domain the closed interval [a,b]. We first want
to divide, or partition, the interval [a,b] into little segments that will be
the widths of the approximating rectangles. For each positive integer n, let

b—
At=2"2
n
and
a = to,
t1 = tg+ AL,
ta = t1+ AL,
tn(= b) = tp_1 + AL
For example, on the interval [0,2] with n = 4, we have At = 25 = 1 and

1 | ! | |
{ ] i | 1
to=0 t1=1/2 to=1 t3=§/2 t4=2

On each interval [tx—1,ts], choose points I and uy such that for all points
t on [tg—1,%x], we have

Flly) < £(2)
and

flur) > f(2).

We make these choices in order to guarantee that the rectangle with
base [tg—1,tx] and height f(Ix) is just under the curve y = f(z) and that
the rectangle with base [ty—1,¢x] and height f(ug) is just outside the curve

y = f(z).
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SR Y

tis L ti bt uk ti

Definition 2.4.1 Let f(z) be a real-valued function defined on the closed
interval [a,b]. For each positive integer n, let the lower sum of f(z) be

L(f,n) =) f(x) Ot
k=1
and the upper sum be
U(fin) =Y flur)Dt.
k=1

Note that the lower sum L(f,n) is the sum of the areas of the rectangles
below our curve while the upper sum U(f,n) is the sum of the areas of the
rectangles sticking out above our curve.

Now we can define the integral.

Definition 2.4.2 A real-valued function f(z) with domain the closed in-
terval [a,b] is said to be integrable if the following two limits exist and are
equal:

lim L(f,n) = lim U(f,n).

If these limits are equal, we denote the limit by fab f(z)dz and call it the
integral of f(x).

While from pictures it does seem that the above definition will capture
the notion of an area under a curve, almost any explicit attempt to actually
calculate an integral will be quite difficult. The goal of the next section,
the Fundamental Theorem of Calculus, is to see how the integral (an area-
finding device) is linked to the derivative (a slope-finding device). This will
actually allow us to compute many integrals.

2.5 The Fundamental Theorem of Calculus

Given a real-valued function f(z) defined on the closed interval [a, b] we can
use the above definition of integral to define a new function, via setting:

Flz) = / " fyat,
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We use the variable t inside the integral sign since the variable z is
already being used as the independent variable for the function F(z). Thus
the value of F(z) is the number that is the (signed) area under the curve
y = f(z) from the endpoint a to the value z.

F §

F(x) :jafx(t)dt

:

A

a X

The amazing fact is that the derivative of this new function F'(z) will simply
be the original function f(z). This means that in order to find the integral
of f(z), you should, instead of fussing with upper and lower sums, simply
try to find a function whose derivative is f(z).

All of this is contained in:

Theorem 2.5.1 (Fundamental Theorem of Calculus) Let f(z) be
a real-valued continuous function defined on the closed interval [a, b] and
define

Flz) = / " F)dt.

Then:
a) The function F(z) is differentiable and

dF(z) _d[; f(t)dt
dz dz

= f(z)

and
b) If G(z) is a real-valued differentiable function defined on the
closed interval [a, b] whose derivative is:

dG(z) _
dIE - f(.’L'),

then )
/ f(z)dz = G(b) — G(a).

First to sketch part a: We want to show that for all z in the interval [a, b],
the following limit exists and equals f(z):

lim F(z + h})L — F(z) _ f(a).

h—0
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Note that we have mildly reformulated the definition of the derivative, from

limg ;54 (f(z) — f(0))/(z = @o) to limpo(f(z + h) — f(x))/h. These are
equivalent. Also, for simplicity, we will only show this for z in the open

interval (a,b) and take the limit only for positive h. Consider

Fl+h) —F() _ [T r@)dt—[7 f()ae
h - h
T
p— T.

N F(x+h)-F(x) = j ?&;dt

oo
!

‘l; X x+h

On the interval [z, z + h], for each h define I, and uy so that for all points
t on [z, z + h|, we have

fle) < f(D)
and
flun) > f(2).

(Note that we are, in a somewhat hidden fashion, using that a continuous
function on an interval like [z, z + h] will have points such as I, and up. In
the chapter on point set topology, we will make this explicit, by seeing that
on a compact set, such as [z,z + h], a continuous function must achieve
both its maximum and minimum.)

VA
N A\,

xlh x+h X x+h X u, x+h

Then we have
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Dividing by h > 0 gives us:

z+h
L JO%  j,)

fln) £

Now both the I; and the up approach the point z as h approaches zero.
Since f(x) is continuous, we have that

lim f(n) = lim f(un) = f(2)

and our result.
Turn to part b: Here we are given a function G(z) whose derivative is:

dG(z)
dz

= f(@).

Keep the notation of part a, namely that F(z) = f:’ f(t) dt. Note that
F(a) =0 and

b
/ F(t)dt = F(b) = F(b) — F(a).

By part a, we know that the derivative of F(z) is the function f(z). Thus
the derivatives of F'(z) and G(z) agree, meaning that

d(F(z) — G(z))
dx

= f(@) - f(&) = 0.
But a function whose derivative is always zero must be a constant. (We
have not shown this. It is quite reasonable, as the only way the slope of the
tangent can always be zero is if the graph of the function is a horizontal
line; the proof does take some work.) Thus there is a constant ¢ such that
F(z) =G(z) +ec.
Then
b
[ fyae= @) = Fo) - Fl@
= (G(b) +¢) = (G(a) + ¢
= G(b) — G(a)

as desired.
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2.6 Pointwise Convergence of Functions

Definition 2.6.1 Let f, : [a,b] — R be a sequence of functions
fi(z), fo(2), f3(2), ...

defined on an interval [a,b] = {z: a < x < b}. This sequence {fn(x)} will
converge pointwise to a function

f(z):{a,b] = R

if for all o in [a, b,
nli)néo fale) = f(a).

In € and & notation, we would say that {f,(z)} converges pointwise to
f(z) if for all ¢ in [a,b] and given any € > 0, there is a positive integer N
such that for all n > N, we have |f(a) — fn(2)| <e.

Intuitively, a sequence of functions f,(z) will converge pointwise to a
function f(z) if, given any a, eventually (for huge n) the numbers f,(«)
become arbitrarily close to the number f(a). The importance of a good
notion for convergence of functions stems from the frequent practice of only
approximately solving a problem and then using the approximation to un-
derstand the true solution. Unfortunately, pointwise convergence is not as
useful or as powerful as the next section’s topic, uniform convergence, in
that the pointwise limit of reasonable functions (e.g., continuous or inte-
grable functions) does not guarantee the reasonableness of the limit, as we
will see in the next example.

Here we show that the pointwise limit of continuous functions need not
be continuous. For each positive integer n, set

: Ja(z) = 2"
for all z on [0, 1].
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Set

1, =1
f(“”)_{o, 0<z<l1

Clearly f(z) is not continuous at the endpoint = 1 while all of the func-
tions f,(z) = ™ are continuous on the entire interval. But we will see that
the sequence {f,(z)} does indeed converge pointwise to f(z).

Fix a in [0,1]. If @ = 1, then f,(1) = 1" =1 for all n. Then

Jim fp(1) = lim 1=1= f(1).
Now let 0 < o < 1. We will use (without proving) the fact that for any
number « less than 1, the limit of o™ will approach 0 as n approaches .
In particular,

lim f,(a) = lim a"
n—oo n—roo
= 0
= flo).

Thus the pointwise limit of a sequence of continuous functions need not be
continuous.

2.7 Uniform Convergence
Definition 2.7.1 A sequence of functions f, : {a,b] = R will converge

uniformly to a function f : [a,b] — R if given any € > 0, there is a positive
integer N such that for all n > N, we have

|f(z) — falz)] <€

for all points x.

The intuition is that if we put an e-tube around the function y = f(z),
the functions y = f,(z) will eventually fit inside this band.
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F 3

The key here is that the same € and N will work for all z. This is not
the case in the definition of pointwise convergence, where the choice of N
depends on the number z.

Almost all of the desirable properties of the functions in the sequence
will be inherited by the limit. The major exception is differentiability, but
even here a partial result is true. As an example of how these arguments
work, we will show

Theorem 2.7.1 Let f, : [a,b] = R be a sequence of continuous functions
converging uniformly to a function f(z). Then f(z) will be continuous.

Proof: We need to show that for all « in [a, b],

lim f(z) = f(a).

T—ro

Thus, given any € > 0, we must find some é > 0 such that for 0 < |z—a| < 4,
we have

|f(z) — f(e)| <e
By uniform convergence, there is a positive integer N so that

€

@)~ fn@) < 5

for all z. (The reason for the £ will be seen in a moment.)

By assumption each function fy(z) is continuous at the point «. Thus
there is a § > 0 such that for 0 < |z — a| < §, we have

€
[fv(@) = fn(e)] < 3.
Now to show that for 0 < |z — o] < §, we will have

|f(z) - fla)] <e.



38 CHAPTER 2. ¢ AND 6 REAL ANALYSIS

We will use the trick of adding appropriate terms which sum to zero and
then applying the triangle inequality ( |A + B| < |A] + |B|). We have

|f (z) = f(e)] |f (@) — (@) + (@) = fvla) + In(e) - fla) |

< @) = In@)| +1fn(@) = (o)l + (@) — flo)
< s+3+3

and we are done. O
We can now make sense out of series (infinite sums) of functions.

Definition 2.7.2 Let fi(z), f2(x), ... be a sequence of functions. The series
of functions

A@) + fale) +.. ka

converges uniformly to a function f(z) zf the sequence of partial sums:
fi(@), fi(@) + f2(2), f1(2) + fo(@) + f3(2), ... converges uniformly to f(z).

In terms of € and §'s, the infinite series of functions Y ;2 ; fi(z) converges
uniformly to f(z) if given any € > 0 there is a positive integer N such that
foralln > N,

f@) = @) <e,
k=1

for all z.
We have

Theorem 2.7.2 If each function fi(z) is continuous and if 3 4o, fr(x)
converges uniformly to f(x), then f(z) must be continuous.

This follows from the fact that the finite sum of continuous functions is
continuous and the previous theorem.

The writing of a function as a series of uniformly converging (simpler)
functions is a powerful method of understanding and working with func-
tions. It is the key idea behind the development of both Taylor series and
Fourier series (which is the topic of Chapter Thirteen).

2.8 The Weierstrass M-Test

If we are interested in infinite series of functions Y. , fx(z), then we must
be interested in knowing when the series converges uniformly. Luckily the



2.8. THE WEIERSTRASS M-TEST 39

Weierstrass M-test provides a straightforward means for determining uni-
form convergence. As we will see, the key is that this theorem reduces the
question of uniform convergence of Y 1o, fi(z) to a question of when an
infinite series of numbers converges, for which beginning calculus provides
many tools, such as the ratio test, the root test, the comparison test, the
integral test, etc.

Theorem 2.8.1 Let > i, fr(z) be a series of functions, with each func-
tion f(z) defined on a subset A of the real numbers. Suppose Y 7o, My is
a series of numbers such that:

1. 0L lfk(a:)l < Mg, for all z € A.
2. The series y .o, My converges.

Then Y ro., fr(zx) converges uniformly and absolutely.

By absolute convergence, we mean that the series of absolute values

Y vy | fe(z)] also converges uniformly.

Proof: To show uniform convergence, we must show that, given any € > 0,
there exists an integer N such that for all n > N, we have

l Z fk(m)l <¢,
k=n

for all 2 € A. Whether or not Y 7> fi(z) converges, we certainly have

o0 o0
1D fe@l <D 1 fel@)l-
k=n k=n
Since Y p, M} converges, we know that we can find an N so that for all
n > N, we have
Z M <e.
k=n

Since 0 < |fr(z)| < Mg, for all z € A, we have

1D A@ <Y 1@< Me <
k=n k=n k=n

and we are done. O .
Let us look an easy example. Consider the series Y o, &> which from
calculus we know to be the Taylor series for e®. We will use the Weierstrass
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M-test to show that this series converges uniformly on any interval [—a, a].
Here we have fr(z) = “—,’c—’:- Set

Note that for all z € [—a,a], we have 0 < |z|*/n! < a™/n!l. Thus if we can
show that the series ;o M = > 1o, ;—’k—, converges, we will have uniform
convergence. By the ratio test, > po; %4 will converge if the limit of ratios

(#5)
L

exists and is strictly less than one. But we have

gkt
1 (k+1)! — i a -0
k—o0 ak_]; k—1—>nolo (k + 1)

Thus the Taylor series for e* will converge uniformly on any closed interval.

2.9 Weierstrass’ Example

Our goal is find a function that is continuous everywhere but differentiable
nowhere. When Weierstrass first constructed such functions in the late
1800s, mathematicians were shocked and surprised. The conventional wis-
dom of the time was that no such function could exist. The moral of this
example is that one has to be careful of geometric intuition.

We will follow closely the presentation given by Spivak in his Calculus
[102] in Chapter 23. We need a bit of notation. Set {z} = distance from
z to the nearest integer. For example, {3} =  and {1.3289} = .3289, etc.

The graph of {z} is:

N
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Define

f@) = Y {10k},

k=1

Our goal is:

Theorem 2.9.1 The function f(z) is continuous everywhere but differen-
tiable nowhere.

First for the intuition. For simplicity we restrict the domain to be the
unit interval (0,1). For k = 1, we have the function {5 {10z}, which has a
graph:

This function is continuous everywhere but not differentiable at the 19
points .05,.1,.15,...,.95. Then {} + {5{10z} has the graph:

rAlA AN A

and is continuous everywhere but not differentiable at .05,.1,.15,...,.95.
For k = 2, the function ﬁ {100z} is continuous everywhere but is not
differentiable at its 199 sharp points. Then the partial sum {10z} +
165 {100z} is continuous everywhere but not differentiable at the 199 sharp
points. In a similar fashion, ﬁ {1000z} is also continuous, but now loses
differentiability at its 1999 sharp points. As we continue, at every sharp
edge, we lose differentiability, but at no place is there a break in the graph.
As we add all the terms in Y, 557 {10Fz}, we eventually lose differentiability
at every point. The pictures are compelling, but of course we need a proof.
Proof: (We continue to follow Spivak)
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The easy part is in showing that f(z) = 32, 1ar {10%z} is continuous, as
this will be a simple application of the Weierstrass M-test. We know that
{z} < { for all z. Thus we have, for all k, that

1. . 1
R < .
Tor 107} < 575w

The series
(o]

1 [ee]

Z 9. 10k =3 kX—: _k
is a geometric series and thus must converge (just use the ratio test). Then
by the Weierstrass M-test, the series f(z) = > 5o, ror{10%z} converges
uniformly. Since each function 13z {10%z} is continuous, we have that f(z)
must be continuous.

It is much harder to show that f(z) is not differentiable at every point;
this will take some delicate work. Fix any z. We must show that

i f@+h) - f(@)

h—oo h

does not exist. We will find a sequence, h,,, of numbers that approach zero
such that the sequence M does not converge.
Write z in its decimal expansmn

r=a.aqaz...,

where a is zero or one and each ay is an integer between zero and nine. Set
he — 10-™  ifan #4 orifa, £9
m —-10™ ifa, =4 orifa,, =9
Then

tho = a.a1...(am +Vamy1... fam #4 orifan, #9
r ™7 aay...(am—Damtr... ifap =4 orifa, =9

We will be looking at various 10"(z + hy,). The 10™ factor just shifts
where the decimal point lands. In particular, if n > m, then

10"z + hm) =aay ... (am £ )am+t1.--CnGpy1-. -,

in which case
{10z + hp)} = {10"z}.
If n < m, then 10™(z + h;p) = aa1...ap.Gnt1 .- (@ £ 1)amyr - .., in
which case we have

n _ [ 0ant1...(@m +Damg1... fam#4 orifa, #9
{10 (m+hm)}—{ 0.ant1-.-(@am —Damyr-.. ifayn =4 orifam, =9
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We are interested in the limit of

f(@ 4 bm) — f(2) _ i 1or {10%(@ + )} — e {102}
hm k=0 h'm '
Since {10%(z + h,,)} = {10%z}, for ¥ > m, the above infinite series is
actually the finite sum:

i e {10%(z + h;z)} e {10%) _ i +£10™#({10%(z+hm) } - {10%2}).
= m k=0

We will show that each £10™~*({10¥(z + h,,)} — {10*z}) is a plus or
minus one. Then the above finite sum is a sum of plus and minus ones and
thus cannot be converging to a number, showing that the function is not
differentiable.

There are two cases. Still following Spivak, we will only consider the
case when 10Fz = Aty e < % (the case when .agyy... > % is left to the
reader). Here is why we had to break our definition of the h,, into two
separate cases. By our choice of hp, {10¥(z + hy,)} and {10z} differ only
in the (m — k)th term of the decimal expansion. Thus

1
10m—*& :

{10%(z + hy)} — {102} = +

Then 10™~*({10%(z + h.,) } — {10%2}) will be, as predicted, a plus or minus
one. O

2.10 Books

The development of € and § analysis was one of the main triumphs of 1800s
mathematics; this means that undergraduates for most of the last hundred
years have had to learn these techniques. There are many texts. The
one that I learned from and one of my favorite math books of all times
is Michael Spivak’s Calculus [102]. Though called a calculus book, even
Spivak admits, in the preface to the second and third editions, that a more
apt title would be “An Introduction to Real Analysis”. The exposition is
wonderful and the problems are excellent.

Other texts for this level of real analysis include books by Bartle [6],
Berberian [7], Bressoud [13], Lang [80], Protter and Morrey [94] and Rudin
[96], among many others.
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2.11 Exercises

1. Let f(z) and g(z) be differentiable functions. Using the definition of
derivatives, show

a. (f+9)=f+4.

b. (f9)'=f'9+ fg'.

c. Assume that f(z) = ¢, where cis a constant. Show that the derivative
of f(z) is zero.
2. Let f(z) and g(z) be integrable functions.

a. Using the definition of integration, show that the sum f(z) 4 g(z) is
an integrable function.

b. Using the Fundamental Theorem of Calculus and problem 1.a, show
that the sum f(z) + g(z) is an integrable function.
3. The goal of this problem is to calculate fol xdz three ways. The first
two methods are not supposed to be challenging.

a. Look at the graph of the function y = z. Note what type of geometric
object this is, and then get the area under the curve.

b. Find a function f(z) such that f'(z) = z and then use the Funda-
mental Theorem of Calculus to find fol zdz.

c. This has two parts. First show by induction that

Zn: n+1

Then use the definition of the integral to find fol zdz.

4. Let f(z) be differentiable. Show that f(z) must be continuous. (Note:
intuitively this makes a lot of sense; after all, if the function f has breaks
in its graph, it should not then have well-defined tangents. This problem
is an exercise in the definitions.)

5. On the interval [0, 1], define

f(z) = 1 if z is rational
1 0 ifzis not rational

Show that f(z) is not integrable. (Note: you will need to use the fact that
any interval of any positive length must contain a rational number and an
irrational number. In other words, both the rational and the irrational
numbers are dense.)

6. This is a time-consuming problem but is very worthwhile. Find a calculus
textbook. Go through its proof of the chain-rule, namely that

2 fo@) = f'(o(a)) o' @).



2.11. EXERCISES 45

7. Go again to the calculus book that you used in problem six. Find the
chapter on infinite series. Go carefully through the proofs for the following
tests for convergence: the integral test, the comparison test, the limit com-
parison test, the ratio test and the root test. Put all of these tests into the
language of € and § real analysis.






Chapter 3

Calculus for
Vector-Valued Functions

Basic Object: R™
Basic Map: Differentiable functions f : R™ — R™
Basic Goal: Inverse Function Theorem

3.1 Vector-Valued Functions

A function f : R™ — R™ is called vector-valued since for any vector z in
R", the value (or image) of f(z) is a vector in R™. If (z1,...,%,) is a
coordinate system for R", the function f can be described in terms of m
real-valued functions by simply writing:

filzy, -+, 20)
f(1,...,2n) =

fm(z1 ....,xn)

Such functions occur everywhere. For example, let f : R — R? be defined

as
o= ()

Here t is the coordinate for R. Of course this is just the unit circle parametrized

by its angle with the z-axis.
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A

(cos(t),sin(l))

This can also be written as « = cos(t) and y = sin(?).
For another example, consider the function f : RZ — R® given by

CoS Ty
f(zy,22) = | sinzy | .
T2

JARS
e

X2

X1

This function f maps the (z,,zs) plane to a cylinder in space.

Most examples are quite a bit more complicated, too complicated for
pictures to even be drawn, much less used.
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3.2 Limits and Continuity of Vector-Valued
Functions

The key idea in defining limits for vector-valued functions is that the
Pythagorean Theorem gives a natural way for measuring distance in R".

Definition 3.2.1 Let a = (a1,...,a,) and b = (by,...,b,) be two points
in R™. Then the distance between a and b, denoted by |a — b|, is

la—b = /(a1 —b1)2 + (a2 — b2)2 + - - - + (@n — by)2.

The length of a is defined by
la] =4/a? + -+ a2.

Note that we are using the word “length” since we can think of the point
ain R™ as a vector from the origin to the point.

Once we have a notion of distance, we can apply the standard tools
from € and § style real analysis. For example, the reasonable definition of
limit must be:

Definition 3.2.2 The function f: R"™ — R™ has limit

L=(Ly,...,Ly) €R™

at the point a = (ay,...,a,) € R" if given any € > 0, there is some § > 0
such that for all x € R", if

0<|z—al <,
we have
|flz)—L| <e.
We denote this limit by
lim f(z) =L
T—a

orby f(z) > L asz — a.
Of course, continuity must now be defined by:

Definition 3.2.3 The function f : R™ - R™ is continuous at a point a
in R™ if limg o f(z) = f(a).

Both the definitions of limit and continuity rely on the existence of
a distance. Given different norms (distances) we will have corresponding
definitions for limits and for continuity.
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3.3 Differentiation and Jacobians

For single variable functions, the derivative is the slope of the tangent line
(which is, recall, the best linear approximation to the graph of the original
function) and can be used to find the equation for this tangent line. In a
similar fashion, we want the derivative of a vector-valued function to be a
tool that can be used to find the best linear approximation to the function.

We will first give the definition for the vector-valued derivative and then
discuss the intuitions behind it. In particular we want this definition for
vector-valued functions to agree with the earlier definition of a derivative
for the case of single variable real-valued functions.

Definition 3.3.1 A function f : R™ — R™ is differentiable at a € R" if
there is an m X n matriz A : R™ — R™ such that

D=1 Aol _g

If such a limit exists, the matriz A is denoted by Df(a) and is called the
Jacobian

Note that f(z), f(a) and A - (z — a) are all in R™ and hence
|f(z) = fa) ~ A- (z ~ a)]

is the length of a vector in R™. Likewise, x — a is a vector in R", forcing
|z — a| to be the length of a vector in R™. Further, usually there is an easy
way to compute the matrix A, which we will see in a moment. Also, if the
Jacobian matrix D f(a) exists, one can show that it is unique, up to change
of bases for R™ and R™.

We definitely want this definition to agree with the usual definition of
derivative for a function f : R — R. With f : R — R, recall that the
derivative f'(a) was defined to be the limit

oy e F(®) = f(a)
fi(a) = lim == ——
Unfortunately, for a vector-valued function f : R®™ — R™ with n and m
larger than one, this one-variable definition is nonsensical, since we cannot
divide vectors. We can, however, algebraically manipulate the above one-
variable limit until we have a statement that can be naturally generalized
to functions f : R™ — R™ and which will agree with our definition.
Return to the one-variable case f : R — R. Then

f’(a) = km f(:l’,') _ f(a)

z—ra T—a
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is true if and only if

oznmw

T—ra r—a

- f, (a)a
which is equivalent to

o J@) — 1@ ~ @)z — )

z—ra T—a

0

or

0 i F@ = @) = f@)z - a)]

T—a ‘x — a,|

This last statement, at least formally, makes sense for functions f : R" —
R™, provided we replace f'(a) (a number and hence a 1 x 1 matrix) by an
m X n matrix, namely the Jacobian D f(a).

As with the one-variable derivative, there is a (usually) straightforward
method for computing the derivative without resorting to the actual taking
of a limit, allowing us to actually calculate the Jacobian.

Theorem 3.3.1 Let the function f : R™ — R™ be given by the m differ-

entiable functions f1(@1,...,&n), - fm(®1,...,Zn), so that
f1(.'l?1,. ..,ZBn)
f(wla'--afl:n) =
fm(Z1,. - 20)
Then f is differentiable and the Jacobian is
Sh 8h
oy Tt Bzn
Df(@)=1| : ;
Ofm Ofm
dzy "' Oz

The proof, found in most books on vector calculus, is a relatively straight-
forward calculation stemming from the definition of partial derivatives. But
to understand it, we look at the following example. Consider our earlier
example of the function f : R? — R? given by

cos Ty
f(z1,22) = | sinz; |,

T2
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which maps the (z;,z2) plane to a cylinder in space. Then the Jacobian,
the derivative of this vector-valued function, will be

Ocos(zy)/0xzy O cos(zy)/Oze

Df(zy,z2) = d(sinzy)/Oz; Osin(z;)/0z
02 /011 Oxs [
—sinzy 0
= cosz; 0
0 1

One of the most difficult concepts and techniques in beginning calculus
is the chain rule, which tells us how to differentiate the composition of
two functions. For vector-valued forms, the chain rule can be easily stated
(though we will not give the proof here). It should relate the derivative of
the composition of functions with the derivatives of each component part
and in fact has a quite clean flavor, namely:

Theorem 3.3.2 Let f : R® =+ R™ and g : R™ — R’ be differentiable
functions. Then the composition function

gof:R*" =R’
is also differentiable with derivative given by: if f(a) = b, then

D(go f)(a) = D(g)(b) - D(f)(a).

Thus the chain rule says that to find the derivative of the composition go f,
one multiplies the Jacobian matrix for g times the Jacobian matrix for f.

One of the key intuitions behind the one-variable derivative is that f/(a)
is the slope of the tangent line to the curve y = f(z) at the point (a, f(a))
in the plane R2. In fact, the tangent line through (a, f(a)) will have the
equation

y = f(a) + f'(a)(z — a).

y = () + f(a)(x-a)
(a,i(a))

Y
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This line y = f(a) + f'(a)(z — a) is the closest linear approximation to
the function y = f(z) at z = a.

Thus a reasonable criterion for the derivative of f : R® — R™ should
be that we can use this derivative to find a linear approximation to the
geometric object y = f(z), which lies in the space R™*™. But this is
precisely what the definition

i /@ = 7@ =Df@@=a)| _,

z—ra |a:—a!

does. Namely, f(z) is approximately equal to the linear function

f(@) + Df(a)- (z —a).

Here D f(a), as an m X n matrix, is a linear map from R® -+ R™ and f(a),
as an element of R™, is a translation. Thus the vector y = f(z) can be
approximated by

y~ f(a)+Df(a) (z—a)

3.4 The Inverse Function Theorem

Matrices are easy to understand, while vector-valued functions can be quite
confusing. As seen in the last section, one of the points of having a deriva-
tive for vector-valued functions is that we can approximate the original
function by a matrix, namely the Jacobian. The general question is now
how good of an approximation do we have. What decent properties for ma-
trices can be used to get corresponding decent properties for vector-valued
functions?

This type of question could lead us to the heart of numerical analysis.
We will limit ourselves to seeing that if the derivative matrix (the Jaco-
bian) is invertible, then the original vector-valued function must also have
an inverse, at least locally. This theorem, and its close relative the Im-
plicit Function Theorem, are key technical tools that appear throughout
mathematics.

Theorem 3.4.1 (Inverse Function Theorem) For a vector-valued con-
tinuously differentiable function f : R" — R™, assume that det D f(a) # 0,
at some point a in R™. Then there is an open neighborhood U of a in R™
and an open neighborhood V' of f(a) in R™ such that f: U — V is one to
one, onto and has a differentiable inverse g : V — U (i.e., gof:U = U
is the identity and fog:V — V is the identity).
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Why should a function f have an inverse? Let us think of f as being
approximated by the linear function

f(e) = f(a) + Df(a) - (z - a).

From the key theorem of linear algebra, the matrix D f(a) is invertible if and
only if det D f(a) # 0. Thus f(z) should be invertible if f(a)+D f(a)-(z—a)
is invertible, which should happen precisely when det D f(a) # 0. In fact,
consider

y=f(@)+Df(a)-(z —a).

Here the vector y is written explicitly as a function of the variable vector
z. But if the inverse to D f(a) exists, then we can write & explicitly as a
function of y, namely as:

z=a+Df(a)™" - (y - f(a)).

In particular, we should have, if the inverse function is denoted by f~!,
that its derivative is simply the inverse of the derivative of the original
function f, namely

Df~1(b) = Df(a)7",

where b = f(a). This follows from the chain rule and since the composition
is flof=1I

For the case of f : R — R, the idea behind the Inverse Function
Theorem can be captured in pictures:

Ay locally no inverse
+ function

o
A
o)

If the slope of the tangent line, f'(a), is not zero, the tangent line will not
be horizontal, and hence there will be an inverse.
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In the statement of the theorem, we used the technical term “open set”.
There will be much more about this in the next chapter on topology. For
now, think of an open set as a technical means allowing us to talk about all
points near the points a and f(a). More precisely, by an open neighborhood
U of a point a in R™, we mean that, given any a € U, there is a (small)
positive € such that

{z:|z—a|<e}CU.

In pictures, for example,
{(z,y) € R*: |(z,9) — (0,0)] = /22 +y2 < 1}

is not open (it is in fact closed, meaning that its complement is open in the
plane R?),

while the set
{(z,y) € R?: |(z,y) — (0,0)] < 1}

is open.

10-29-96
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3.5 Implicit Function Theorem

Rarely can a curve in the plane be described as the graph of a one-variable
function

Y= f($),
ﬁk

/\/\y—:—W
o

-

4

4

though much of our early mathematical experiences are with such functions.
For example, it is impossible to write the circle

x2+y2=1

as the graph of a one-variable function, since for any value of z (besides —1
and 1) there are either no corresponding values of y on the circle or two
corresponding values of y on the circle. This is unfortunate. Curves in the
plane that can be cleanly written as y = f(z) are simply easier to work
with.

However, we can split the circle into its top and bottom halves.

y: 1- x2
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For each half, the variable y can be written as a function of z: for the top

half, we have
y=v1- m2’
and for the bottom half,
y=—v1-—22

Only at the two points (1,0) and (—1,0) are there problems. The difficulty
can be traced to the fact that at these two points (and only at these two
points) the tangent lines of the circle are perpendicular to the z-axis.

This is the key. The tangent line of a circle is the best linear approxi-
mation to the circle. If the tangent line can be written as

y=mz+b,

then it should be no surprise that the circle can be written as y = f(x), at
least locally.

The goal of the Implicit Function Theorem is to find a computational
tool that will allow us to determine when the zero locus of a bunch of
functions in some R can locally be written as the graph of a function and
thus in the form y = f(z), where the x denote the independent variables
and the y will denote the dependent variables. Buried (not too deeply) is
the intuition that we want to know about the tangent space of the zero
locus of functions.

The notation is a bit cumbersome. Label a coordinate system for Rt
by

L1,0-+5Tn; Y15+, Yk

which we will frequently abbreviate as (z,y). Let

fl(mla'-'awnaylaﬂ-7yk)a--'1fk(w11“-7wn)y11'-'7yk)

be k continuously differentiable functions, which will frequently be writ-
ten as

fl(xay)a'-'afk(may)'

Set
V={(zy) e R"™: fi(z,y) =0,..., fe(z,y) = 0}.

We want to determine when, given a point (a,b) € V' (where a € R" and
b € RF), there are k functions

pl(xlr-'amn)a-“’pk(xla'-';xn)
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defined in a neighborhood of the point @ on R™ such that V can be de-
scribed, in a neighborhood of (a,b) on R*t*, as

{(z,y) € Rk ty1 = pi®1, .y Tn)y ey Yk = Pr(T1, . T0) b

which of course is frequently written in the shorthand of

V={n=mn&),...,u=p)}

or even more succinctly as

V ={y=p()}.

Thus we want to find k functions p,..., pr such that for all z € R", we
have

filz,p1(2)) =0,..., fr(z, pr(2)) = 0.

Thus we want to know when the % functions fi,..., fr can be used to
define (implicitly, since it does take work to actually construct them) the
k functions py, ..., pg-

Theorem 3.5.1 (Implicit Function Theorem) Let fi(z,y),..., fr(z,y)
be k continuously differentiable functions on R™* and suppose that p =
(a,b) € R™* is a point for which

fi(a,0) =0,..., fr(a,b) = 0.

Suppose that at the point p the k X k matriz

8f1 of1
8yi(p) °*° Buk(p)
M= : :
Ofr Ofr
oyi(p) 77 Oyk(p)

is invertible. Then in a neighborhood of a in R™ there are k unique,
differentiable functions

p1(2), -, pr()
such that
f1($,p1(.’17)) = 07" ~7fk(-'L',Pk(-’17)) =0.

Return to the circle. Here the function is f(z,y) = 22 + 32 —1 = 0.
The matrix M in the theorem will be the 1 x 1 matrix:

of

— = 2.
Oy y
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This matrix is not invertible (the number is zero) only where y = 0, namely
at the two points (1,0) and (—1,0): only at these two points will there not
be an implicitly defined function p.

Now to sketch the main ideas of the proof, whose outline we got from
[103] In fact, this theorem is a fairly easy consequence of the Inverse Func-
tion Theorem. For ease of notation, write the k-tuple (f(z,y), .., fr(z,v))
as f(z,y). Define a new function F' : R™F s R"F by

The Jacobian of this map is the (n + k) x (n + k) matrix

I 0
(+ )

Here the I is the n x n identity matrix, M is the k x k matrix of partials as
in the theorem, 0 is the n x k zero matrix and * is some k X n matrix. Then
the determinant of the Jacobian will be the determinant of the matrix M;
hence the Jacobian is invertible if and only if the matrix M is invertible.
By the Inverse Function Theorem, there will be a map G : R"% — R ¥
which will locally, in a neighborhood of the point (a,b), be the inverse of
the map F(z,y) = (=, f(z,y))-

Let this inverse map G : R™* — R™** be described by the real-valued
functions G4, ...,Gn4x and thus as

G(z,y) = (G1(2,9), - -, Gnyr (2, 9))-
By the nature of the map F, we see that for 1 <i < n,
Gi(z,y) = ;.
Relabel the last k functions that make up the map G by setting

pi(z,y) = Gign(2,y).

Thus
G(z,y) = (T1,-+ s Tny p1(T, ), - - -, Pr(T,Y))-

We want to show that the functions p;(z,0) are the functions the theorem
requires.

We have yet looked at the set of points in R™"* where the original k
functions f; are zero, namely the set that we earlier called V. The image
of V under the map F will be contained in the set (z,0). Then the image
G(z,0), at least locally around (a,b), will be V. Thus we must have

fl(G(x70)) =0,.. :fk(G(x, 0)) =0.
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But this just means that
fl(xapl(x: O)) = 0: .. 'afk(:B?pk(x’O)) = 07

which is exactly what we wanted to show.

Here we used the Inverse Function Theorem to prove the Implicit Func-
tion Theorem. It is certainly possible and no harder to prove the Implicit
Function Theorem first and then use it to prove the Inverse Function The-
orem.

3.6 Books

An excellent recent book on vector calculus (and for linear algebra and
Stokes’ Theorem) is by Hubbard and Hubbard [64]. Fleming [37] has been
the standard reference for many years. Another, more abstract approach, is
in Spivak’s Calculus on Manifolds [103]. Information on vector calculus for
three variable functions is in most calculus books. A good general exercise
is to look in a calculus text and translate the given results into the language
of this section.

3.7 Exercises

1. In the plane R? there are two natural coordinate systems: polar coordi-
nates (r,0) with r the radius and 0 the angle with the x-axis and Cartesian
coordinates (z,y).

\J

The functions that give the change of variables from polar to Cartesian
coordinates are:

z = f(r,0) = rcos(f)
y = g(r,0) = rsin(8).

a. Compute the Jacobian of this change of coordinates.
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b. At what points is the change of coordinates not well-defined (i.e., at
what points is the change of coordinates not invertible)?

c. Give a geometric justification for your answer in part b.
2. There are two different ways of describing degree two monic polynomials
in one variable: either by specifying the two roots or by specifying the
coefficients. For example, we can describe the same polynomial by either
stating that the roots are 1 and 2 or by writing it as 22 — 3z + 2. The
relation between the roots r; and re and the coefficients a and b can be
determined by noting that

(x—7m)(x—r2) =2° +az +b.

Thus the space of all monic, degree two polynomials in one variable can be
described by coordinates in the root space (r;,72) or by coordinates in the
coefficient space (a, b).

a. Write down the functions giving the change of coordinates from the
root space to the coefficient space.

b. Compute the Jacobian of the coordinate change.

c. Find where this coordinate change is not invertible.

d. Give a geometric interpretation to your answer in part c.

3. Using the notation in the second question:

a. Via the quadratic equation, write down the functions giving the
change of coordinates from the coordinate space to the root space.

b-d. Answer the same questions as in problem 2, but now for this new
coordinate change.

4. Set f(z,y) = %2 — 42

a. Graph the curve f(z,y) = 0.

b. Find the Jacobian of the function f(z,y) at the point (1,1). Give a
geometric interpretation of the Jacobian at this point.

c. Find the Jacobian of the function f(z,y) at the point (0,0). Give a
geometric interpretation for why the Jacobian is here the two-by-two zero
matrix. '

5. Set f(z,y) = z° — 32

a. Graph the curve f(z,y) = 0.

b. Find the Jacobian of the function f(z,y) at the point (1,1). Give a
geometric interpretation of the Jacobian at this point.

c. Find the Jacobian of the function f(z,y) at the point (0,0). Give a
geometric interpretation for why the Jacobian is here the two-by-two zero
matrix.






Chapter 4

Point Set Topology

Basic Object: Topological spaces
Basic Map: Continuous functions

Historically, much of point set topology was developed to understand the
correct definitions for such notions as continuity and dimension. By now,
though, these definitions permeate mathematics, frequently in areas seem-
ingly far removed from the traditional topological space R”. Unfortunately,
it is not at first apparent that these more abstract definitions are at all use-
ful; there needs to be an initial investment in learning the basic terms.
In the first section, these basic definitions are given. In the next section,
these definitions are applied to the topological space R™, where all is much
more down to earth. Then we look at metric spaces. The last section ap-
plies these definitions to the Zariski topology of a commutative ring, which,
while natural in algebraic geometry and algebraic number theory, is not at
all similar to the topology of R™.

4.1 Basic Definitions

Much of point set topology consists in developing a convenient language
to talk about when various points in a space are near to one another and
about the notion of continuity. The key is that the same definitions can be
applied to many disparate branches of math.

Definition 4.1.1 Let X be a set of points. A collection of subsets U =
{Uq} forms a topology on X if

1. Any arbitrary union of the U, is another set in the collection U.
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2. The intersection of any finite number of sets U, in the collection U
is another set in U.

3. Both the empty set ¢ and the whole space X must be in U.

The (X, U) is called a topological space.

The sets U, in the collection U are called open sets. A set C is closed if its
complement X — C is open.

Definition 4.1.2 Let A be a subset of a topological space X. Then the
induced topology on A is described by letting the open sets on A be all sets
of the form U N A, where U is an open set in X.

A collection ¥ = {U,} of open sets is said to be an open cover of a
subset A if A is contained in the union of the U,.

Definition 4.1.3 The subset A of a topological space X is compact if given
any open cover of A, there is a finite subcover.

In other words, if ¥ = {U,} is an open cover of A in X, then A being
compact means that there are a finite number of the Uy, denoted let’s say
by Uy, ..., U, such that

AC(U1UU2U...UUH).

It should not be at all apparent why this definition would be useful, much
less important. Part of its significance will be seen in the next section when
we discuss the Heine-Borel Theorem.

Definition 4.1.4 A topological space X is Hausdorfl if given any two points
x1,Z2 € X, there are two open sets Uy, and Us with x1 € Uy and 2o € Uy
but with the intersection of Uy and Uy empty.

Thus X is Hausdorff if points can be isolated (separated) from each other
by disjoint open sets.

Definition 4.1.5 A function f : X — Y is continuous, where X and Y
are two topological spaces, if given any open set U in'Y, then the inverse
image f~Y(U) in X must be open.

Definition 4.1.6 A topological space X is connected if it is not possible
to find two open sets U andV in X with X =UUV and UNV = ¢.
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Definition 4.1.7 A topological space in X is path connected if given any
two points a and b in X, there is a continuous map

f:00,1] - X

with
f(0)=aand f(1) =b.

Here of course

0,1]={zeR:0<z <1}
is the unit interval. To make this last definition well-defined, we would
need to put a topology on this interval [0, 1], but this is not hard and will
in fact be done in the next section.

Though in the next section the standard topology on R™ will be devel-
oped, we will use this topology in order to construct a topological space that
is connected but is not path connected. It must be emphasized that this is
a pathology. In most cases, connected is equivalent to path connected.

Let

X={(O,t):—lgtgl}u{y:sin(%):x>0}.

Put the induced topology on X from the standard topology on RZ.
Note that there is no path connecting the point (0,0) to (,0). In fact,
no point on the segment {(0,t) ; —1 < ¢t < 1} can be connected by a
path to any point on the curve {y = szn(%) : z > 0}. But on the other
hand, the curve {y = sm(%) : 2 > 0} gets arbitrarily close to the segment
{(0,t) : =1 < t < 1} and hence there is no way to separate the two parts
by open sets.

Point set topology books would now give many further examples of
various topological spaces which satisfy some but not all of the above con-
ditions. Most have the feel, legitimately, of pathologies, creating in some
the sense that all of these definitions are somewhat pedantic and not really
essential. To counter this feel, in the last section of this chapter we will
look at a nonstandard topology on commutative rings, the Zariski topology,
which is definitely not a pathology. But first, in the next section, we must
look at the standard topology on R™.
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4.2 The Standard Topology on R”

Point set topology is definitely a product of the early twentieth century.
However, long before that, people were using continuous functions and re-
lated ideas. Even in previous chapters, definitions were given for continuous
functions, without the need to discuss open sets and topology. In this sec-
tion we define the standard topology on R™ and show that the definition
of continuity given in the last chapter in terms of limits agrees with the
definition given in the last section in terms of inverse images of open sets.
The important point is that the open set version can be used in contexts
for which the limit notion makes no sense. Also, in practice the open set
version is frequently no harder to use than the limit version.

Critical to the definition of the standard topology on R” is that there is
a natural notion of distance on R™. Recall that the distance between two
points a = (ay,...,a,) and b = (by,...,b,) in R™ is defined by

|a—b|=\/(al—b1)2+.‘.+(an—bn)2.

With this, we can define a topology on R™ by specifying as the open sets
the following:

Definition 4.2.1 A set U in R™ will be open if given any a € R", there
is a real number € > 0 such that

{z:|z—a| <€}
is contained in U.

In R, sets of the form (a,b) = {z : @ < < b} are open, while sets of the
form [a,b] = {z : a < z < b} are closed. Sets like [a,0) = {z:a < z < b}
are neither open nor closed. In R?, the set {(z,) : 2 + y? < 1} is open.

while {(z,y) : % + y* < 1} is closed.
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~ Proposition 4.2.1 The above definition of an open set will define a topol-
ogy on R"™.

(The proof is exercise 2 at the end of the chapter.) This is called the
standard topology on R".

Proposition 4.2.2 The standard topology on R™ is Hausdorff.
This theorem is quite obvious geometrically:

F 3

but we give a proof in order to test the definitions.
Proof: Let a and b be two distinct points in R"™. Let d = |a — b] be the
distance from a to b. Set

Uaz{wER":lm—a|<g—}

and J
={x€R”:|x——b|<§}.

Both U, and U, are open sets with a € U, and b € U,. Then R” will be
HausdorfT if
U, NUp = ¢

Suppose that the intersection is not empty. Let x € U, N Up. Then, by
using the standard trick of adding terms that sum to zero and using the
triangle inequality, we have

la—~b] = Jla—z+z—0b
< la—al+|z -
d d
<373
2
K

< d.
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Since we cannot have d = |a—b| < d and since the only assumption we made
is that there is a point z in both U, and Uj, we see that the intersection
must indeed be empty. Hence the space R™ is Hausdorfi. O .

In Chapter Three, we defined a function f : R® — R™ to be continuous
if, for all a € R",

lim f(z) = f(a),

T—ra

meaning that given any € > 0, there is some § > 0 such that if |z — a| < 6,

then
|f(z) = fla)] <

This limit definition of continuity captures much of the intuitive idea that
a function is continuous if it can be graphed without lifting the pen from
the page. Certainly we want this previous definition of continuity to agree
with our new definition that requires the inverse image of an open set to be
open. Again, the justification for the inverse image version of continuity is
that it can be extended to contexts where the limit version (much less the
requirement of not lifting the pen from the page) makes no sense.

Proposition 4.2.3 Let f : R" = R™ be a function. For all a € R",

lim f(z) = f(a)

z—ra

if and only, if for any open set U in R™, the inverse image f~1(U) is open
in R™.

Proof: First assume that the inverse image of every open set in R™ is
open in R™. Let a € R". We must show that

lim f(z) = f(a).
Let € > 0. We must find some § > 0 so that if |z — a| < 4, then

|£(z) = fla)] <e.

Define
U={yeR™:|y— fla)| <€}

The set U is open in R™. By assumption the inverse image

7Y U) = {zeR":f(z)eU}
= {zeR":|f(z) - fla)] <€}
is open in R™. Since a € f~}(U), there is some real number § > 0 such

that the set
{z:|z—a| <8}
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is contained in f~!(U), by the definition of open set in R™. But then if
|z — a| <, we have f(z) € U, or in other words,

|f(z) - f(a)| <k,

which is what we wanted to show. Hence the inverse image version of
continuity implies the limit version.
Now assume that

lim £(@) = £(@).

Let U be any open set in R™. We need to show that the inverse f=*(U) is
open in R™.

If f~Y(U) is empty, we are done, since the empty set is always open.
Now assume f~!(U) is not empty. Let a € f~*(U). Then f(a) € U. Since
U is open, there is a real number ¢ > 0 such that the set

{ye R™: |y~ f(a)| <€}

is contained in the set U. Since lim,,, f(z) = f(a), by the definition of
limit, given this € > 0, there must be some é > 0 such that if |z — a| < 4,
then

|f(z) - fa)| <e.
Therefore if |z — a| < §, then f(z) € U. Thus the set

{z: |z —a| < 4}

is contained in the set f~!(U), which means that f~!(U) is indeed an open
set. Thus the two definitions of continuity agree. O

In the last section, a compact set was defined to be a set A on which
every open cover ¥ = {U,} of A has a finite subcover. For the standard
topology on R™, compactness is equivalent to the more intuitive idea that
the set is compact if it is both closed and bounded. This equivalence is the
goal of the Heine-Borel Theorem:

Theorem 4.2.1 (Heine-Borel) A subset A of R"™ is compact if and only
if it is closed and bounded.

We will first give a definition for boundedness, look at some examples and
then sketch a proof of a special case of the theorem.

Definition 4.2.2 A subset A is bounded in R™ if there is some fixed real
number r such that for all z € A,

lz| < r

(i.e., A is contained in a ball of radius r).
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For our first example, consider the open interval (0,1) in R, which is cer-
tainly bounded, but is not closed. We want to show that this interval is
also not compact. Let

1 1
U, = (—, 1- —)
n n
1 1
= P = 1--—
{z ~<z< n}
be a collection of open sets.

Us

eol= T 7]
LNy ~-
L s <

F Sajems

U4

This collection will be an open cover of the interval, since every point
in (0, 1) is in some U,. (In fact, once a given point is in a set U,, it will be
in every future set Uy, yx.) But note that no finite subcollection will cover
the entire interval (0,1). Thus (0,1) cannot be compact.

The next example will be of a closed but not bounded interval. Again an
explicit open cover will be given for which there is no finite subcover. The
interval [0,00) = {z : 0 < z} is closed but is most definitely not bounded.
It also is not compact as can be seen with the following open cover:

Up=(-Ln)={z:-1<z<n}

The collection {Up}52;, will cover [0,00), but can contain no finite sub-
cover.

Us
[ U ]
—u
~—i f — } f } >
-1 0 1 2 3 4

The proof of the Heine-Borel theorem revolves around reducing the
whole argument to the special case of showing that a closed bounded inter-
val on the real line is compact. (On how to reduce to this lemma, see the
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rigorous proof in Spivak [103], which is where we got the following argu-
ment.) This is the technical heart of the proof. The key idea actually pops
up in a number of different contexts, which is why we give it here.

Lemma 4.2.1 On the real line R, a closed interval [a, b] is compact.

Proof: Let ¥ be an open cover of [a,b]. We need to find a finite subcover.
Define a new set

Y = {z € [a,}] : there is a finite subcover in ¥ of the interval [a, z]}.

Our goal is to show that our interval’s endpoint b is in this new set Y.

We will first show that Y is not empty, by showing that the initial point
aisin Y. If = a, then we are interested in the trivial interval [a, a] = q,
a single point. Since ¥ is an open cover, there is an open set V € ¥ with
la,a) € V. Thus for the admittedly silly interval [a,a] there is a finite
subcover, and thus @ is in the set Y, meaning that, at the least, Y is not
empty.

Set « to be the least upper bound of Y. This means that there are
elements in Y arbitrarily close to a but that no element of Y is greater than
a. (Though to show the existence of such a least upper bound involves the
subtle and important property of completeness of the real number line, it is
certainly quite reasonable intuitively that such an upper bound must exist
for any bounded set of reals.) We first show that the point « is itself in the
set Y and, second, that « is in fact the endpoint b, which will allow us to
conclude that the interval is indeed compact.

Since a € [a,b] and since ¥ is an open cover, there is an open set U in
¥ with a € U. Since U is open in [a, b}, there is a positive number € with

{z:|lz—a|<e}CU.

Since «a is the least upper bound of Y, there must be an z € Y that is
arbitrarily close to but less than a. Thus we can find an z € Y N U with

a—z <Eg,
Since z € Y, there is a finite subcover Uy,...,Un of the interval [a, z].
Then the finite collection Uy,...,Un,U will cover [a,]. But this means,

since each open set Uy and U are in X, that the interval [a, a] has a finite
subcover and hence that the least upper bound « isin Y.

Now assume o < b. We want to come up with a contradiction. We
know that « is in the set Y. Hence there is a finite subcover Uy, ..., U, of
the collection ¥ which will cover the interval [a,a]. Choose the open sets
so that the point « is in the open set U,. Since U, is open, there is an
€ > 0 with

{z:|lz—a|<e} CUpn.
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Since the endpoint b is strictly greater than the point ¢, we can actually
find a point z that both is in the open set U,, and satisfies

a<x<b
o X
{ { [IIRY |
Ia \ 17 b|
Un
But then the finite subcover Uy, ..., U, will cover not only the interval

[a,a] but also the larger interval {a,z], forcing the point z to be in the set
Y. This is impossible, since a is the largest possible element in Y. Since
the only assumption that we made was that « < b, we must have a = b, as
desired. O

There is yet another useful formulation for compactness in R"™.

Theorem 4.2.2 A subset A in R™ is compact if every infinite sequence
(zn) of points in A has a subsequence converging to a point in A. Thus,
if (z,) is a collection of points in A, there must be a point p € A and a
subsequence Tp, with limg oo Tpn, = P.

The proof is one of the exercises at the end of the chapter.
Compactness is also critical for the following:

Theorem 4.2.3 Let X be a compact topological space and let f : X = R
be a continuous function. Then there is a point p € X where f has a
mazimum.

We give a general idea of the proof, with the details saved for the exer-
cises. First, we need to show that the continuous image of a compact set is
compact. Then f(X) will be compact in R and hence must be closed and
bounded. Thus there will be a least upper bound in f(X), whose inverse
image will contain the desired point p. A similar argument can be used to
show that any continuous function f(z) on a compact set must also have a
minimum.

4.3 Metric Spaces

The natural notion of distance on the set R™ is the key to the existence
of the standard topology. Luckily on many other sets similar notions of
distance (called metrics) exist; any set that has a metric automatically has
a topology.
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Definition 4.3.1 A metric on a set X is o function
p: X xX >R

such that for all points x,y,2z € X we have:
1. p(z,y) > 0 and p(z,y) =0 if and only if z = y.

2. p(z,y) = p(y,)-
3. (Triangle Inequality)

p(z, 2) < plz,y) + p(y, 2).
The set X with its metric p is called a metric space and is denoted by (X, p).

Fix a metric space (X, p).

Definition 4.3.2 A set U in X is open if for all points a € U, there is
some real number € > 0 such that

{z:|z—a| <€}
is contained in U.

Proposition 4.3.1 The above definition for open set will define o Haus-
dorff topological space on the metric space (X, p).

The proof is similar to the corresponding proof for the standard topology
on R™, In fact, most of the topological facts about R™ can be quite eas-
ily translated into corresponding topological facts about any metric space.
Unfortunately, as will be seen in section five, not all natural topological
spaces come from a metric.

An example of a metric that is not just the standard one on R” is given
in Chapter Thirteen, when a metric and its associated topology is used to
define Hilbert spaces.

4.4 Bases for Topologies

Warning: This section uses the notion of countability. A set is countable
if there is a one-to-one onto mapping from the set to the natural num-
bers. More on this is in Chapter Ten. Note that the rational numbers are
countable while the real numbers are uncountable.

In linear algebra, the word basis means a list of vectors in a vector space
that generates uniquely the entire vector space. In a topology, a basis will be
a collection of open sets that generate the entire topology. More precisely:
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Definition 4.4.1 Let X be a topological space. A collection of open sets
forms a basis for the topology if every open set in X is the (possibly infinite)
union of sets from the collection.

For example, let (X, p) be a metric space. For each positive integer k
and for each point p € X, set

U, K) = {s € X : plz,p) < 7},

We can show that the collection of all possible U(p, k) forms a basis for the
topology of the metric space.

In practice, having a basis will allow us to reduce many topological
calculations to calculating on sets in the basis. This will be more tractable
if we can somehow limit the number of elements in a basis. This leads to

Definition 4.4.2 A topological space is second countable if it has a basis
with a countable number of elements.

For example, R™, with the usual topology, is second countable. A count-
able bagis can be constructed as follows. For each positive integer k and
each p € Q" (which means that each coordinate of the point p is a rational
number), define

U(p,k)={m€R”:lz—p]<%}.

There are a countable number of such sets U(p, k) and they can be shown
to form a basis.

Most reasonable topological spaces are second countable. Here is an
example of a metric space that is not second countable. Tt should and
does have the feel of being a pathology. Let X be any uncountable set
(you can, for example, let X be the real numbers). Define a metric on
X by setting p(z,y) = 1 if z # y and p(z,z) = 0. It can be shown
that this p defines a metric on X and thus defines a topology on X. This
topology is weird, though. Each point z is itself an open set, since the
open set {y € X : p(z,y) < 1/2} = z. By using the fact that there are an
uncountable number of points in X, we can show that this metric space is
not second countable.

Of course, if we use the term “second countable”, there must be a mean-
ing to “first countable”. A topological set is first countable if every point
z € X has a countable neighborhood basis. For this to make sense, we
need to know what a neighborhood basis is. A collection of open sets in X
forms a neighborhood basis of some 2 € X if every open set containing x has
in it an open set from the collection and if each open set in the collection
contains the point z. We are just mentioning this definition for the sake of
completeness. While we will later need the notion of second countable, we
will not need in this book the idea of first countable.
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4.5 Zariski Topology of Commutative Rings

Warning: This section requires a basic knowledge of commutative ring
theory.

Though historically topology arose in the study of continuous functions
on R", a major reason why all mathematicians can speak the language of
open, closed and compact sets is because there exists natural topologies
on many diverse mathematical structures. This section looks at just one of
these topologies. While this example (the Zariski topology for commutative
rings) is important in algebraic geometry and algebraic number theory,
there is no reason for the average mathematician to know it. It is given here
simply to show how basic topological notions can be applied in a nonobvious
way to an object besides R™. We will in fact see that the Zariski topology
on the ring of polynomials is not Hausdorff and hence cannot come from a
metric.

We want to associate a topological space to any commutative ring R.
Our topological space will be defined on the set of all prime ideals in the
ring R, a set that will be denoted by Spec(R). Instead of first defining the
open sets, we will start with what will be the closed sets. Let P be a prime
ideal in R and hence a point in Spec R. Define closed sets to be

Vp = {Q: Qis a prime ideal in R containing P}.

Then define Spec R — Vp, where P is any prime ideal, to be an open set.
The Zariski topology on Spec R is given by defining open sets to be the
unions and finite intersections of all sets of the form Spec R — Vp.

As will be seen in some of the examples, it is natural to call the points
in Spec R corresponding to maximal ideals geometric points.

Assume that the ring R has no zero divisors, meaning that if z-y =0,
then either = or y must be zero. Then the element 0 will generate a prime
ideal, (0), contained in every other ideal. This ideal is called the generic
tdeal and is always a bit exceptional.

Now for some examples. For the first, let the ring R be the integers Z.
The only prime ideals in Z are of the form

(p) = {kp: k € Z, p a prime number}

and the zero ideal (0). Then Spec Z is the set of all prime numbers:

23 5 7 11 13 17 19 23 29

and the zero ideal (0). The open sets in this topology are the complements
of a finite number of these ideals.
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For our second example, let the ring R be the field of complex numbers
C. The only two prime ideals are the zero ideal (0) and the whole field
itself. Thus in some sense the space C is a single point.

A more interesting example occurs by setting R = C[z], the ring of
one-variable polynomials with complex coefficients. We will see that as a
point set this space can be identified with the real plane R? (if we do not
consider the generic ideal) but that the topology is far from the standard
topology of R?. Key is that all one-variable polynomials can be factored
into linear factors, by the Fundamental Theorem of Algebra; thus all prime
ideals are multiples of linear polynomials. We denote the ideal of all of the
multiples of a linear polynomial z — ¢ as:

(z—¢) = {f(&)(z — ) : f(&) € Clal,c € C}.

Hence, to each complex number, ¢ = a+bi with a,b € R, there corresponds
a prime ideal (z — ¢) and thus Spec C[z] is another, more ring-theoretic
description of the complex numbers. Geometrically, Spec C[z] is

C

b " (x- (a+bi))

Note that while the zero ideal (0) is still a prime ideal in C[z], it does
not correspond to any point in C; instead, it is lurking in the background.
The open sets in this topology are the complements of a finite number of
the prime ideals. But each prime ideal corresponds to a complex number.
Since the complex numbers C can be viewed as the real plane R?, we have
that an open set is the complement of a finite number of points in the real
plane. While these open sets are also open in the standard topology on
R2, they are far larger than any open disc in the plane. No little e-disc will
be the complement of only a finite number of points and hence cannot be
open in the Zariski topology. In fact, notice that the intersection of two of
these Zariski open sets must intersect. This topology cannot be Hausdorff.
Since all metric spaces are Hausdorff, this means that the Zariski topology
cannot come from some metric.

Now let R = C[z,y] be the ring of two-variable polynomials with com-
plex coefficients. Besides the zero ideal (0), there are two types of prime
ideals: the maximal ideals, each of which is generated by polynomials of
the form z — ¢ and y — d, where ¢ and d are any two complex numbers
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and nonmaximal prime ideals, each of which is generated by an irreducible
polynomial f(z,y).

Note that the maximal ideals correspond to points in the complex plane
C x C, thus justifying the term ‘geometric point’.

C . X-C
A :/
.. d .................. P
Lo
Ideal (x-c,y-d)" L Tyd
~4 c - C
4

Since each copy of the complex numbers C is a real plane R2, C x C
is RZxR? = R*. In the Zariski topology, open sets are the complements
of the zero loci of polynomials. For example, if f(z,y) is an irreducible
polynomial, then the set

U ={(z,y) € C*: f(z,y) # 0}

is open. While Zariski sets will still be open in the standard topology on
R*, the converse is most spectacularly false. Similar to the Zariski topology
on Clz], no e-ball will be open in the Zariski topology on Clz,y]. In fact, if
U and V are two Zariski open sets that are non-empty, they must intersect.
Thus this is also a non-Hausdorff space and hence cannot come from a
metric space.

4.6 Books

Point set topology’s days of glory were the early twentieth century, a time
when some of the world’s best mathematicians were concerned with the
correct definitions for continuity, dimension and for a topological space.
Most of these issues have long been settled. Today, point set topology is
overwhelmingly a tool that all mathematicians need to know.

At the undergraduate level, it is not uncommon for a math department
to use their point set topology class as a place to introduce students to
proofs. Under the influence of E. H. Moore (of the University of Chicago)
and of his student R.L. Moore (of the University of Texas, who advised an
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amazing number of Ph.D. students), many schools have taught topology
under the Moore method. Using this approach, on the first day of class
students are given a list of the definitions and theorems. On the second
day people are asked who has proven Theorem One. If someone thinks they
have a proof, they go to the board to present it to the class. Those who
still want to think of a proof on their own leave the class for that part of
the lecture. This is a powerful way to introduce students to proofs. On the
other hand, not much material can be covered. At present, most people
who teach using the Moore method modify it in various ways.

Of course, this approach comes close to being absurd for people who are
already mathematically mature and just need to be able to use the results.
The texts of the fifties and sixties were by Kelley [72] and Dugundji [30].
Overwhelmingly the most popular current book is Munkres’ Topology: A
First Course [88].

My own bias (a bias not shared by most) is that all the point set topology
that most people need can be found in, for example, the chapter in Royden’s
Real Analysis [95] on topology.

4.7 Exercises

1. The goal of this problem is to show that a topology on a set X can also
be defined in terms of a collection of closed sets, as opposed to a collection
of open sets. Let X be a set of points and let C' = {Cy} be a collection of
subsets of X. Suppose that

e Any finite union of sets in the collection C' must be another set in C.
e Any intersection of sets in C must be another set in C.
e The empty set ¢ and the whole space X must in the collection C.

Call the sets in C closed and call a set U open if its complement X — U is
closed. Show that this definition of open set will define a topology on the
set X.

2. Prove Proposition 4.2.1.

3. Prove Theorem 4.2.2.

4. Prove Theorem 4.2.3.

5. Let V be the vector space of all functions

f:0,1] =R

whose derivatives, including the one-sided derivatives at the endpoints, are
continuous functions on the interval [0, 1]. Define

|flo = sup |f(z)]
z€[0,1]
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for any function f € V. For each f € V and each ¢ > 0, define
Us(e) ={g €V :|f — gl <€}

a. Show that the set of all Uy(e) is a basis for a topology on the set V.
b. Show that there can be no number M such that for all f € V,

d
(oo < Mo

In the language of functional analysis, this means that the derivative,
viewed as a linear map, is not bounded on the space V. One of the main
places where serious issues involving point set topology occur is in func-
tional analysis, which is the study of vector spaces of various types of func-
tions. The study of such space is important in trying to solve differential
equations.






Chapter 5

Classical Stokes’
Theorems

Basic Objects: Manifolds and boundaries

Basic Maps: Vector-valued functions on manifolds

Basic Goal: Function’s average over a boundary
= Derivative’s average over interior

Stokes” Theorem, in all of its many manifestations, comes down to equating
the average of a function on the boundary of some geometric object with
the average of its derivative (in a suitable sense) on the interior of the
object. Of course, a correct statement about averages must be put into the
language of integrals. This theorem provides a deep link between topology
(the part about boundaries) and analysis (integrals and derivatives). It
is also critical for much of physics, as can be seen in both its historical
development and in the fact that for most people their first introduction to
Stokes’ Theorem is in a course on electricity and magnetism.

The goal of Chapter Six is to prove Stokes’ Theorem for abstract man-
ifolds (which are, in some sense, the abstract method for dealing with ge-
ometric objects). As will be seen, to even state this theorem takes serious
work in building up the necessary machinery. This chapter looks at some
special cases of Stokes’ Theorem, special cases that were known long be-
fore people realized that there is this one general underlying theorem. For
example, we will see that the Fundamental Theorem of Calculus is a spe-
cial case of Stokes’ Theorem (though to prove Stokes’ Theorem, you use
the Fundamental Theorem of Calculus; thus logically Stokes’ Theorem does
not imply the Fundamental Theorem of Calculus). It was in the 1800s that
most of these special cases of Stokes’ Theorem were discovered, though,
again, people did not know that each of these were special cases of one
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general result. These special cases are important and useful enough that
they are now standard topics in most multivariable calculus courses and
introductory classes in electricity and magnetism. They are Green’s Theo-
rem, the Divergence Theorem and Stokes’ Theorem. (This Stokes’ theorem
is, though, a special case of the Stokes’ Theorem of the next chapter.) This
chapter develops the needed mathematics for these special cases. We will
state and sketch proofs for the Divergence Theorem and Stokes’ Theorem.
Physical intuitions will be stressed.

There is a great deal of overlap between the next chapter and this one.
Mathematicians need to know both the concrete special cases of Stokes’
Theorem and the abstract version of Chapter Six.

5.1 Preliminaries about Vector Calculus

This is a long section setting up the basic definitions of vector calculus. We
need to define vector fields, manifolds, path and surface integrals, diver-
gence and curl. All of these notions are essential. Only then can we state
the Divergence Theorem and Stokes’ Theorem, which are the goals of this
chapter.

5.1.1 Vector Fields

Definition 5.1.1 A vector field on R™ is a vector-valued function

F:R" - R™
Ifzq, ...,z are coordinates for R™, then the vector field ¥ will be described
by m real-valued functions fr : R® — R as follows:
fl(iL'l,. . ,(L'n)
F(z1,...,2,) =
fm(z1,. .., T0)

A vector field is continuous if each real-valued function f3 is continuous,
differentiable if each real-valued fi is differentiable, etc.

Intuitively, a vector field assigns to each point of R"™ a vector. Any
number of physical phenomenon can be captured in terms of vector fields.
In fact, they are the natural language of fluid flow, electric fields, magnetic
fields, gravitational fields, heat flow, traffic flow and much more.

For example, let F : R? — R? be given by

F(z,y) = 3,1).
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Here f,(z,y) = 3 and fao(z,y) = 1. On R2 this vector field can be pictured
by drawing in a few sample vectors.

\
\

/
/

SN

A physical example of this vector field would be wind blowing in the direc-
tion (3,1) with velocity

length(3,1) = V9 + 1 = V10.

Now consider the vector field F(z,y) = (z,y). Then in pictures we have:

\ 1/
-'\\}\\ ff,///v

7

This could represent water flowing out from the origin (0, 0).

For our final example, let F(z,y) = (—y, ). In pictures we have:
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which might be some type of whirlpool.

5.1.2 Manifolds and Boundaries

Curves and surfaces appear all about us. Both are examples of manifolds,
which are basically just certain naturally occurring geometric objects. The
intuitive idea of a manifold is that, for a k-dimensional manifold, each point
is in a neighborhood that looks like a ball in R¥. In the next chapter we
give three different ways for defining a manifold. In this chapter, we will
define manifolds via parametrizations. The following definition is making
rigorous the idea that locally, near any point, a k-dimensional manifold
looks like a ball in R,

Definition 5.1.2 A differentiable manifold M of dimension k in R™ is a
set of points in R™ such that for any point p € M, there is a small open
neighborhood U of p, a vector-valued differentiable function F : R¥ — R™
and an open set V in RF with

o) FVY=UnM

b) The Jacobian of F' has rank k at every point in V', where the Jacobian
of F' is the n X k matriz

8h oh
FE trr ox,
: : ’
8fn Ofn
Oxq e Oxy
with 1,...,2, a coordinate system for R%. The function F is called the

(local) parametrization of the manifold.

Recall that the rank of a matrix is k if the matrix has an invertible k x k
minor. (A minor is a submatrix of a matrix.)
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A circle is a one-dimensional manifold, with a parametrization
F:R' > R?
given by

F(t) = (cos(t),sin(t)).

T (cos(t)sin(t)

Geometrically the parameter ¢ is the angle with the z-axis. Note that the
Jacobian of F is (72"). Since sine and cosine cannot simultaneously be
zero, the Jacobian has rank 1.

A cone in three-space can be parametrized by

F(u,v) = (u,v, Vu? + v2).

(u,v) —= (U,v, VuZ+\2)

- Z
v P ,r""‘ ““*\‘
>
u y
X

This will be a two dimensional manifold (a surface) except at the vertex
(0,0,0), for at this point the Jacobian fails to be well-defined, much less
having rank two. Note that this agrees with the picture, where certainly
the origin looks quite different than the other points.

Again, other definitions are given in Chapter Six.

Now to discuss what is the boundary of a manifold. This is needed
since Stokes’ Theorem and its many manifestations state that the average
of a function on the boundary of a manifold will equal the average of its
derivative on the interior.

Let M be a k-dimensional manifold in R"™.
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Definition 5.1.3 The closure of M, denoted M, is the set of all points x
in R™ such that there is a sequence of points (z,) in the manifold M with

lim z, = z.
n—oo

The boundary of M, denoted OM, is:
OM = N — M,

Given a manifold with boundary, we call the nonboundary part the interior.
All of this will become relatively straightforward with a few examples.
Consider the map

r:[-1,2] - R?

where
r(t) = (%)

The image under r of the open interval (—1,2) is a one-manifold (since
the Jacobian is the 2 x 1 matrix (1,2t), which always has rank one). The
boundary consists of the two points r(—1) = (—=1,1) and r(2) = (2,4).

Our next example is a two-manifold having a boundary consisting of a
circle. Let

r:{(m,y)€R2::E2+y2§1}¥)R3

be defined by
r(z,y) = (2,92 +y°).

The image of r is a bowl in space sitting over the unit disc in the plane:
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Now the image under  of the open disc {(z,y) € R* : 22 + 32 < 1} is a
two-manifold (since the Jacobian is

1 0 2z
(0 1 2y> ’
which has rank two at all points). The boundary is the image of the bound-
ary of the disc and hence the image of the circle {(z,y) € R? : 22 +32 = 1}.
In this case, as can be seen by the picture, the boundary is itself a circle
living on the plane z = 1 in space.

Another example is the unit circle in the plane. We saw that this is a
one-manifold. There are no boundary points, though. On the other hand,
the unit circle is itself the boundary of a two-manifold, namely the unit
disc in the plane. In a similar fashion, the unit sphere in R3 is a two-
manifold, with no boundary, that is itself the boundary of the unit ball, a
three-manifold. (It is not chance that in these two cases that the boundary
of the boundary is the empty set.)

We will frequently call a manifold with boundary simply a manifold.
We will also usually be making the assumption that the boundary of an
n-dimensional manifold will either be empty (in which case the manifold
has no boundary) or is itself an (n — 1)-dimensional manifold.

5.1.3 Path Integrals

Now that we have a sharp definition for manifolds, we want to do calculus
on them. We start with integrating vector fields along curves. This process
is called a path integral or sometimes, misleadingly, a line integral.

A curve or path C in R" is defined to be a one-manifold with boundary.
Thus all curves are defined by maps F : [a,b] = R", given by
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fi(?)
Fy=| :

Fult)

These maps are frequently written as

I1 (t)

mn(t)
We will require each component function f; : R — R to be differentiable.

Definition 5.1.4 Let f(zy,...,%,) be a real-valued function defined on
R™. The path integral of the function f along the curve C is

/cfds = /f(x1,...,:z:n)d3

RO ) (\/(d”“ <d“’“>2)
Note that

[ 5,0 (\/ (S + (d"’">2)

while looking quite messy, is an integral of the single variable £.

I

Theorem 5.1.1 Let a curve C in R™ be described by two different parametriza-
tions

F:la,b] > R"
and
G :[c,d] - R",
z(t) y1(v)
with F(t) = : and G(u) = :
xn(t) yn(u)

The path integral [ f ds is independent of parametrization chosen, i.e.,

b
/ f(xa(t),. .. ())\/(dxl)2 Jr(d”’")2 dt

d _
[ 10y o o,
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While we will do an example in a moment, the proof uses critically and is
an exercise in the chain rule. In fact, the path integral was defined with
the awkward term

ds = \/(dg”1 1t (C“””)2 dt

precisely in order to make the path integral independent of parametrization.
This is why fab flz1(t),...,zp(t)) dt is an incorrect definition for the path
integral.

The symbol “ds” represents the infinitesimal arc length on the curve
C in R™. In pictures, for R%, consider the following.

As
AXy
AX,

As =2 (A% )2+ {AX5)2

With As denoting the change in position along the curve C, we have by
the Pythagorean Theorem

NAs = /(Az1)? + (Azs)?

_ A$12 A$22
B (\/ At At)>At'

Then in the limit as At — 0, we have, at least formally,

ds = (\/(darl dil)z) )dt

Thus the correct implementation of the Pythagorean Theorem will also

force on us the term ds = \/ (dﬂ + (9222 d¢ in the definition of

the path integral.

Now for an example, in order to check our working knowledge of the
definitions and also to see how the ds term is needed to make path integrals
independent of parametrizations. Consider the straight line segment in the
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plane from (0,0) to (1,2). We will parametrize this line segment in two
different ways, and then compute the path integral of the function

flz,y) =2" +3y

using each of the parametrizations.
First, define

F:[0,1] - R?

by
F(t) = (¢,21).

Thus we have z(t) = ¢t and y(¢) = 2¢. Denote this line segment by C.
Then

_ [ 2 dey, (Y
Lremis = [ @0+ s/ G+ @ a
- /1(t2+6t)\/5dt
0
= VAL s

= \/5(% +3)
10

35.

Now parametrize the segment C' by:
G:[0,2] =+ C

where
G(t) = (5,1).
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Here we have z(t) = £ and y(t) = ¢. Then

[ = [ s/ Er+ @y a
= /(—+3tht

3 2
- S p+p

\/_ 8
= T+

10
= _3_\/5,

as desired.

5.1.4 Surface Integrals

Now to integrate along surfaces. A surface in R® is a two-manifold with
boundary. For the sake of simplicity, we will restrict our attention to those
surfaces which.are the image of a map

r:D — R3,

given by

r(u,v) = (2(u, v), y(u,v), 2(u,v)),
where z,y, z are coordinates for R® and u,v are coordinates for R2. Here
D is a domain in the plane, which means that there is an open set U in R?
whose closure is D. (If you think of U as an open disc and D as a closed
disc, you usually will not go wrong.)

Definition 5.1.5 Let f(z,y,2) be a function on R3. Then the integral of
f(z,y, 2) along the surface S is

/ / fanaas= [ [ fet oo,z

Here lgﬁ X %| denotes the length of the cross product (which in a moment
we will show to be the length of a certain normal vector) of the vectors 2=
and g—;,and is hence the determinant of

81‘ Br

6 dudv.

i i k
g’" g’" = | 8z/0u By/ou Bz/du |.
U v dz/0v Oy/dv 0Oz/dv
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Thus the infinitesimal area dS is:

or Or
length of (% X %)dudv =
(Qu0s, D20y 050z Oz0z Dxdy, 0Oy
Bu v Bu dv’’ v Bu Bu dv’’ " Ou Hv Ov Bu

In analogy with arc length, a surface integral is independent of parametriza-
tion:

dudwv.

Theorem 5.1.2 The integral [ fs f(z,y,2z) dS is independent of the parametri
tion of the surface S.

Again, the chain rule is a critical part of the proof.

Note that if this theorem were not true, we would define the surface
integral (in particular the infinitesimal area) differently.

We now show how the vector field

o or
Oou v
is actually a normal to the surface. With the map r : R*> —» R3 given by
r(u,v) = (z(u,v), y(u,v), 2(u,v)), recall that the Jacobian of r is

Oz /Ou 0Ox/dv
dy/Oou dy/ov |.
0z[0u Oz/dv

But as we saw in Chapter Three, the Jacobian maps tangent vectors to
tangent vectors. Thus the two vectors

oz o 0
Ou’ Ou’ Bu

and

0z 0y 05
Ov’ v’ Bv
are both tangent vectors to the surface S. Hence their cross product must
be a normal (perpendicular) vector n. Thus we can interpret the surface

integral as
//de=//f-|n|dudv
s

with dS =(length of the normal vector = x &) dudv.
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5.1.5 The Gradient

The gradient of a function can be viewed as a method for differentiating
functions.

Definition 5.1.6 The gradient of a real-valued function f(x1,...,%,) is

8f af

Thus
v : (Functions) — (Vector fields).

For example, if f(z,y,2) = 2 + 22y + 3z2, we have
v(f) = (32 + 2y + 32,27, 32).

It can be shown that if at all points on M = (f(z1,...,2,) = 0) where
v [ # 0, the gradient v/ f is a normal vector to M.

5.1.6 The Divergence

The divergence of a vector field can be viewed as a reasonable way to
differentiate a vector field. (In the next section we will see that the curl of
a vector field is another way.) Let F(z,y,z) : R® = R® be a vector field
given by three functions as follows:

F(x7y7z) = (fl(x’yaz)af2($ay7z)af3(wayaz))'
Definition 5.1.7 The divergence of F(z,y, 2) is

Thus
div : (Vector fields) — (Functions).

The Divergence Theorem will tell us that the divergence measures how
much the vector field is spreading out at a point.
For example, let F(z,y,2) = (z,y%,0). Then

dz _9(y*) , 9(0)
div(F) = o + —5 — oy T S LTW

I you sketch out this vector field, you do indeed see that the larger the y
value, the more spread out the vector field becomes.
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5.1.7 The Curl

The curl of a vector field is another way in which we can extend the idea of
differentiation to vector fields. Stokes’ Theorem will show us that the curl
of a vector field measures how much the vector field is twirling or whirling
or curling about. The actual definition is:

Definition 5.1.8 The curl of a vector field F(z,y, z) is

i j k
curl(F) = det| 2 5% (—%
fi f2 f3

Ofs 0fz 0fs Ofi, 8fz2 Of1

Gy "9 % "B oy
Note that
curl : (Vector fields) — (Vector fields).

Now to look at an example and see that the curl is indeed measuring
some sort of twirling. Earlier we saw that the vector field F(z,y,z) =
(—y,z,0) looks like a whirlpool. Its curl is:

i j k
curl(F) =det | 2 5% 2
-y z 0

= (07 07 2)’

which reflects that the whirlpool action is in the zy-plane, perpendicular
to the z-axis.

We will see in the statement of Stokes’ Theorem that intuitively the
length of the curl(F) indeed measures how much the vector field is twirling
about while the vector curl(F) points in the direction normal to the twirling.

5.1.8 Orientability

We also require our manifolds to be orientable. For a surface, orientability
means that we can choose a normal vector field on the surface that varies
continuously and never vanishes. For a curve, orientability means that we
can choose a unit tangent vector, at each point, that varies continuously.

The standard example of a nonorientable surface is the Mébius strip,
obtained by putting a half twist in a strip of paper and then attaching the
ends.



5.2. THE DIVERGENCE THEOREM AND STOKES’ THEOREM 95

For an orientable manifold, there are always two choices of orientation, de-
pending on which direction is chosen for the normal or the tangent. Further
an oriented surface S with boundary curve 8S will induce an orientation
on 88, as will a 3-dimensional region induce an orientation on its bound-
ary surface. If you happen to choose the wrong induced orientation for a
boundary, the various versions of Stokes’ Theorems will be off merely by a
factor of (—1). Do not panic if you found the last few paragraphs vague.
They were, deliberately so. To actually rigorously define orientation takes
a little work. In first approaching the subject, it is best to concentrate on
the basic examples and only then worry about the correct sign coming from
the induced orientations. Rigorous definitions for orientability are given in
the next chapter.

5.2 The Divergence Theorem and Stokes’
Theorem

(For technical convenience, we will assume for the rest of this chapter that
all functions, including those that make up vector fields, have as many
derivatives as needed.)

The whole goal of this chapter is to emphasize that there must always be
a deep link between the values of a function on the boundary of a manifold
with the values of its derivative (suitably defined) on the interior of the
manifold. This link is already present in

Theorem 5.2.1 (The Fundamental Theorem of Calculus) Let
fila,b] 2 R
be a a real-valued differentiable function on the interval [a,b]. Then

b
£(b) ~ f(a) = / I 4o

Here the derivative % is integrated over the interval

[a,b] ={zr € R:a <z < b},
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which has as its boundary the points (a) and (b). The orientation on the
boundary will be b and —a, or

dla,b] = b - a.

Then the Fundamental Theorem of Calculus can be interpreted as stating
that the value of f(z) on the boundary is equal to the average (the integral)
of the derivative over the interior.

One possible approach to generalizing the Fundamental Theorem is to
replace the one-dimensional interval [a,b] with something higher dimen-
sional and replace the one variable function f with either a function of
more than one variable or (less obviously) by a vector field. The correct
generalizations will of course be determined by what can be proven.

In the divergence theorem, the interval becomes a three-dimensional
manifold, whose boundary is a surface, and the function f becomes a vector
field. The derivative of f will here be the divergence. More precisely:

Theorem 5.2.2 (The Divergence Theorem) In R3, let M be a three-
dimensional manifold with boundary OM a compact manifold of dimension
two. Let F(z,y,2) denote a vector field on R® and let n(z,y,z) denote a
unit normal vector field to the boundary surface OM. Then

/ /6 Fnds= / / /M(dqu) dzdydz.

We will sketch a proof in section 5.5.

On the left hand side we have an integral of the vector field F over
the boundary. On the right hand side we have an integral of the function
div(F) (which involves derivatives of the vector field) over the interior.

In Stokes’ Theorem, the interval becomes a surface, so that the bound-
ary is a curve, and the function again becomes a vector field. The role of
the derivative though will now be played by the curl of the vector field.

Theorem 5.2.3 (Stokes’ Theorem) Let M be a surface in R? with com-
pact boundary curve OM. Let n(z,y,z) be the unit normal vector field to

M and let T(z,y,z) denote the induced unit tangent vector to the curve
OM. If F(z,y,z) is any vector field, then

/ F-Tdsz// curl(F) -n dS.
oM M

As with the Divergence Theorem, a sketch of the proof will be given later
in this chapter.

Again, on the left hand side we have an integral involving a vector field
F on the boundary while on the right hand side we have an integral on the
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interior involving the curl of F (which is in terms of the various derivatives
of F).

Although both the Divergence Theorem and Stokes’ Theorem were
proven independently, their similarity is more than a mere analogy; both
are special cases, as is the Fundamental Theorem of Calculus, of one very
general theorem, which is the goal of the next chapter. The proofs of each
are also quite similar. There are in fact two basic methods for proving these
types of theorems. The first is to reduce to the Fundamental Theorem of
Calculus, f(b) — f(a) = fab %dﬂ:. This method will be illustrated in our
sketch of the Divergence Theorem.

The second method involves two steps. Step one is to show that given
two regions R; and R that share a common boundary, we have

/ function + / function = / function.
Ry 9R2 O(R1UR2)

Step two is to show that the theorem is true on infinitesimally small regions.
To prove the actual theorem by this approach, simply divide the original
region into infinitely many infinitesimally small regions, apply step two and
then step one. We take this approach in our sketch of Stokes’ Theorem.
Again, all of these theorems are really the same. In fact, to most mathe-
maticians, these theorems usually go by the single name “Stokes’ Theorem”.

5.3 A Physical Interpretation of the Diver-
gence Theorem

The goal of this section is to give a physical meaning to the Divergence
Theorem, which was, in part, historically how the theorem was discovered.
We will see that the Divergence Theorem states that the flux of a vector
field through a surface is precisely equal to the sum of the divergences of
each point of the interior. Of course, we need to give some definitions to
these terms.

Definition 5.3.1 Let S be a surface in R® with unit normal vector field
n(z,y,z). Then the flur of a vector field F(x,y, z) through the surface S is

//SF-nds.

Intuitively we want the flux to measure how much of the vector field F
pushes through the surface S.

Imagine a stream of water flowing along. The tangent vector of the
direction of the water at each point defines a vector field F(z,y, z). Suppose
the vector fleld F is:
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—_— . — ——
—_— — — ——
—_— — —

—_— . —

Place into the stream an infinitely thin sheet of rubber, let us say. We want
the flux to measure how hard it is to hold this sheet in place against the
flow of the water. Here are three possibilities:

—_— | — —_— — — —_— - — —

—_ | — — —_ —_ —> —_ — — —

—_ - | — —_— —_— — —_— — — —

—_— — |- — —_— N —_ — — —>
A B C

In case A, the water is hitting the rubber sheet head on, making it quite
difficult to hold in place. In case C, no effort is needed to hold the sheet
still, as the water just flows on by. The effort needed to keep the sheet
still in case B is seen to be roughly halfway between effort needed in cases
A and C. The key to somehow quantifying these differences of flux is to
measure the angle between the vector field F of the stream and the normal
vector field n to the membrane. Clearly, the dot product F - n works. Thus

using that flux is defined by
/ / F-ndS,
s

the flux through surface A is greater than the flux through surface B which
in turn is greater than the flux through surface C, which has flux equal to
0.

The Divergence Theorem states that the flux of a vector field through
a boundary surface is exactly equal to the sum (integral) of the divergence
of the vector field in the interior. In some sense the divergence must be an
infinitesimal measure of the flux of a vector field.

5.4 A Physical Interpretation of Stokes’ The-
orem

Here we discuss the notion of the circulation of a vector field with respect
to a curve. We will give the definition, then discuss what it means.

Definition 5.4.1 Let C be a smooth curve in R3 with unit tangent vector
field T(z,y,z). The circulation of a vector field ¥(z,y,z) along the curve

Cis
/F-Tds.
C
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Let F be a vector field representing a flowing stream of water, such as:

—_— . — —
—_—— ——— —— ———
—_— —— .

—_— ——— ——.

Put a thin wire (a curve C) into this stream with a small bead attached to
it, with the bead free to move up and down the wire.

—_ | —_— ) —

—_— — —

— — — — —
a b

—_— —- — — — —

— ———— e

—_— — —_— —_— ——- —_—
c d

In case a, the water will not move the ball at all. In case b the ball will be
pushed along the curve while in case ¢ the water will move the ball the most
quickly. In case d, not only will the ball not want to move along the curve
C, effort is needed to even move the ball at all. These qualitative judgments
are captured quantitatively in the above definition for circulation, since the
dot product F - T measures at each point how much of the vector field F -
is pointing in the direction of the tangent T and hence how much of F is
pointing in the direction of the curve.

In short, circulation measures how much of the vector field flows in the
direction of the curve C. In physics, the vector field is frequently the force,
in which case the circulation is a measurement of work.

Thus Stokes’ Theorem is stating that the circulation of a vector field
along a curve 0 M which bounds a surface M is precisely equal to the normal
component of the vector field curl(F) in the interior. This is why the term
‘curl’ is used, as it measures the infinitesimal tendency of a vector field to
have circulation, or in other words, it provides an infinitesimal measure of
the “whirlpoolness” of the vector field.

5.5 Sketch of a Proof of the Divergence The-
orem

This will only be a sketch, as we will be making a number of simplifying
assumptions. First, assume that our three-dimensional manifold M (a solid)
is simple, meaning that any line parallel to the xz—axis, y—axis or z—axis
can only intersect M in a connected line segment or a point. Thus
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liZ

<y

is simple while

<y

is not.
Denote the components of the vector field by

F(Z,y,Z) = (fl(x’ywz))f2(x7y7z))f3($7yaz))
= (f1, f2, f3)-

On the boundary surface OM, denote the unit normal vector field by:

n(x:y7z) = (nl(x’y)Z))n2(m)y7z)7n3(x;yyz))
= (nl,nz,n3)~

We want to show that
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//aMF'ndS:///MdiU(F)dmdydz.

In other words, we want

// (fin1 + fana + fang)dS = /// (3f1 % + %) dzdydz.
If we can show
/ / / Oh ——dzdydz,

//aMflnldS
//BMf2n2dS = /// 8ﬁdmdydz
/ " fansdS / / af?’dmdydz

we will be done.
We will just sketch the proof of the last equation

//aMf?’(m’y’Z)"?’(m’y’Z)dS:///M%dmdydz,

since the other two equalities will hold for similar reasons.

The function ns(z,y, 2) is the z-component of the normal vector field
n(z,y,z). By the assumption that M is simple, we can split the bound-
ary component OM into three connected pieces: {OM }s0p, where ng > 0,

{OM }sige, where ng = 0 and {9M }pottom, where ng < 0.
For example, if OM is

Az

"<|r
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then

@ (aM)bollom

/ y

Then we can sptit the boundary surface integral into three parts:

/ fangdS = // f3n3d.5'+// f3nsdS
oM 8M¢ap aMu'de
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+// f37’L3dS

aMbottom

= [ [ gmaas« [ [ pmas,
BMtop aMbottom

since ng, the normal component in the z direction, will be zero on dMg;q4e.
Further, again by the assumption of simplicity, there is a region R in
the zy-plane such that {OM }4,p is the image of a function

(z,y) — (z,y,t(z,y))

llZ

X

and {OM }pottom 1S the image of a function
(z,y) = (z,9,b(z,y)).

jlz

= (xybixy)

Then

/ fangdS = / / finsdS + / / fanad$
aM aMtap aMbottom
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= / /R fa(z,y, t(z, y))dzdy +
/ /R f3(z,y,b(z, y))dedy
= / /R (f3(2,y,t(z,y)) ~ f3(z,y,b(z,y)))dzdy,

where the minus sign in front of the last term coming from the fact that
the normal to O Mpoiem points downward. But this is just

t(z,y)
/ / / %dwdydz,
RJo(ay) 0%

by the Fundamental Theorem of Calculus. This, in turn, is equal to

/// %dmdydz,
M aZ

which is what we wanted to show.

To prove the full result, we would need to take any solid M and show
that we can split M into simple parts and then that if the Divergence
Theorem is true on each simple part, it is true on the original M. While
not intuitively difficult, this is nontrivial to prove and involves some subtle
questions of convergence.

5.6 Sketch of a Proof for Stokes’ Theorem

Let M be a surface with boundary curve M.

M

oM

We break the proof of Stokes’ Theorem into two steps. First, given two
rectangles 17; and R» that share a common side, we want

/ F-Tds+/ F'Tds:/ F - Tds,
OR, OR2 OR1UR>

where T is the unit tangent vector.
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oy
—t -

Rz 4

|
K

_— oy
o

Second, we need to show that Stokes’ Theorem is true on infinitesimally
small rectangles.

The proof of the first is that for the common side £ of the two rectangles,
the orientations are in opposite directions. This forces the value of the dot
product (F - T) along ¢ as a side of the rectangle R; to have opposite sign
of the value of (F - T) along £ as a side of the other rectangle Ry. Thus

/ F-Tds:—/ F-Tds.
¢COR, £COR;

Since the boundary of the union of the two rectangles R; U R» does not
contain the side £, we have

/ F~Tds+/ F-Tds=/ F-Tds.
ORy 8Ro OR1UR2

Before proving that Stokes’ Theorem is true on infinitesimally small
rectangles, assume for a moment that we already know this to be true.
Split the surface M into (infinitely many) small rectangles.

Then

/ /M curl(F) -ndS

il

curl(F) -ndS
small rectangles

> / F-Tds,
a(each rectangle)

since we are assuming that Stokes’ Theorem is true on infinitesimally small
rectangles. But by the first step, the above sum will equal to the single
integral over the boundary of the union of the small rectangles

/ F .- T ds,
oM
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which gives us Stokes’ Theorem. Hence all we need to show is that Stokes’
Theorem is true for infinitesimally small rectangles.

Before showing this, note that this argument is nonrigorous, as the whole
sum is over infinitely many small rectangles, and thus subtle convergence
questions would need to be solved. We pass over this in silence.

Now to sketch why Stokes’ Theorem is true for infinitesimally small
rectangles. This will also contain the justification for why the definition of
the curl of a vector field is what it is.

By a change of coordinates, we can assume that our small rectangle R
lies in the zy-plane with one vertex being the origin (0, 0).

Ily

AE

h
Y

><“

1 (Ax,0)

Its unit normal vector will be n = (0,0, 1).
If the vector field is F(z,vy, 2) = (f1, f2, f3), we have

_0fs 0h
curl(F) -n = o By
We want to show that:
Ofs _9fi _ /
( 5 By )dzdy = 6RF T ds,

where T is the unit tangent vector to the boundary rectangle OR and dz dy
is the infinitesimal area for the rectangle R.

Now to calculate |, or ¥ - T ds.
The four sides of the rectangle OR have the following parametrizations.
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Side Parametrization Integral
I+ s(t) = (tAz,0),0<t< 1 [y fitAz,0)Azdt
IT:  s(t) = (Az,thy),0< ¢t < 1 [y f2(Dx, thy) Dydt

IIT: s(t) = (Az—tAz,Ay),0<t <1 [ —fi(Az —tAz, Ay)Azdt

IV : s(t) =(0,Ay—tAy),0<t <1 Jo =20, Ay — tAy) Ayt

It is always the case, for any function f(¢), that

/01 f(t)dt = /01 £(1—t)at

by changing the variable ¢ to 1 —¢. Thus the integrals for sides III and
IV can be replaced by [y —f1(tAz, Ay)Az dt and [ —f2(0,tAy) Ay dt.
Then

F.Tds
OR

/F-Tds+ F - Tds+ F-Tds+/ F.Tds
I II III v

1
- / (1(t0,0)Az + fo(Az, ty) Ay
0
i (tAw, Ay) Az — £2(0,609) Ag)dt

1
= [ (o, 189) = 120,85 Ay

1
—/ (f1(tAz, Ay) — fL(tAz,0))Azdt
0
' oAz tAy) — £2(0,tAy)
Az

Ay

R

as Az, Ay — 0. But this last integral will be

0fs Ofi

AzxAydt,

which converges to
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which is what we wanted.

Again, letting Az, Ay — 0 is a nonrigorous step. Also, the whole
nonchalant way in which we changed coordinates to put our rectangle into
the zy-plane would have to be justified in a rigorous proof.

5.7 Books

Most calculus books have sections near the end on the multivariable calculus
covered in this chapter. A long time popular choice is Thomas and Finney’s
text [36]. Another good source is Stewart’s Calculus [108].

Questions in physics, especially in electricity and magnetism, were the
main historical motivation for the development of the mathematics in this
chapter. There are physical “proofs” of the Divergence Theorem and Stokes’
Theorem. Good sources are in Halliday and Resnick’s text in physics [51]
and in Feynmann’s Lectures in Physics [35].

5.8 Exercises

1. Extend the proof of the Divergence Theorem, given in this chapter for
simple regions, to the region:

Jiz

<y

*x

2. Let D be the disc of radius r, with boundary circle 8D, given by the
equations:
D = {(z,y,0) : * +y* <7}

For the vector field

F(z,y,2) = (¢t +y+ 2,32+ 2y + 42,52 — 3y + 2),
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find the path integral [, op F + T ds, where T is the unit tangent vector of
the circle OD.
3. Consider the vector field

F(:c,y,z) = ($72y’5‘z)'

Find the surface integral [ [;, F -n dS, where the surface M is the
boundary of the ball
M = {(z,y,2) : 2> +y* +2° <r}

of radius r centered at the origin and n is the unit normal vector.
4. Let S be the surface that is the imagé of the map

r:R? - R3
given by
r(u,v) = (x(u:v)ay(u7v)az(uav))'
Considering the image of the line v = constant, justify to yourself that

0z B 9
Ou’ Ou’ Ou

is a tangent vector to S.

5. Green’s Theorem is:

Theorem 5.8.1 (Green’s Theorem) Let o be a simple loop in C and
its interior. If P(z,y) and Q(z,y) are two real-valued differentiable func-

tions, then
0@ OP
P + = —_— .
/ov do+Q dy //Svl( Oz 6y) 4 dy

By putting the region 2 into the plane z = 0 and letting our vector field
be (P(z,y), Q(z,y),0), show that Green’s Theorem follows from Stokes’
Theorem.






Chapter 6

Differential Forms and
Stokes’ Theorem

Basic Objects: Differential Forms and Manifolds
Basic Goal: Stokes’ Theorem

In the last chapter we saw various theorems, all of which related the values
of a function on the boundary of a geometric object with the values of the
function’s derivative on the interior. The goal of this chapter is to show
that there is a single theorem (Stokes’ Theorem) underlying all of these
results. Unfortunately, a lot of machinery is needed before we can even state
this grand underlying theorem. Since we are talking about integrals and
derivatives, we have to develop the techniques that will allow us to integrate
on k-dimensional spaces. This will lead to differential forms, which are the
objects on manifolds that can be integrated. The exterior derivative is the
technique for differentiating these forms. Since integration is involved, we
will have to talk about calculating volumes. This is done in section one.
Section two defines differential forms. Section three links differential forms
with the vector fields, gradients, curls and divergences from last chapter.
Section four gives the definition of a manifold (actually, three different
methods for defining manifolds are given). Section five concentrates on
what it means for a manifold to be orientable. In section six, we define
how to integrate a differential form along a manifold, allowing us finally in
section seven to state and to sketch a proof of Stokes’ Theorem.
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6.1 Volumes of Parallelepipeds

In this chapter, we are ultimately interested in understanding integration
on manifolds (which we have yet to define). This section, though, is pure
linear algebra, but linear algebra that is crucial for the rest of the chapter.

The problem is the following: In R"™, suppose we are given k vectors
Vi,..., V. These k vectors will define a parallelepiped in R™. The question
is how to compute the volume of this parallelepiped. For example, consider
the two vectors

1 3
vi=|2)] andvyg =12
3 1

The parallelepiped that these two vectors span is a parallelogram in R3.
We want a formula to calculate the area of this parallelogram. (Note:
the true three dimensional volume of this flat parallelogram is zero, in the
same way that the length of a point is zero and that the area of a line is
zero; we are here trying to measure the two-dimensional “volume” of this
parallelogram.)

We already know the answer in two special cases. For a single vector

a)

Qan

in R", the parallelepiped is the single vector v. Here by “volume” we mean
the length of this vector, which is, by the Pythagorean theorem,

2., 2
ai +---+a3.

The other case is when we are given n vectors in R™. Suppose the n vectors

are
an Q1n

vy = yeee, Vi =
an) Ann
Here we know that the volume of the resulting parallelepiped is
a - aip
det : )
Gpnl1 - Qnn

following from one of the definitions of the determinant given in Chapter
One. Our eventual formula will yield both of these results.
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We will first give the formula and then discuss why it is reasonable.
Write the & vectors vy, ..., vy as column vectors. Set

A= (Vla cee avk)a
a k x n matrix. We denote the transpose of A by AT, the n x k matrix

T
Vi

AT = :
T
Vi
where each v] is the writing of the vector v; as a row vector. Then

Theorem 6.1.1 The volume of the parallelepiped spanned by the vectors

Viyeeo, Vi 18
1/det(AT A).

Before sketching a proof, let us look at some examples. Consider the single

vector
a
v = : .
ap

Here the matrix A is just v itself. Then

\/det(AT 4) = \/det(vTv)

431
= det((al,...,an)( : ))

= \/det(a%+---+a%)

=‘/a’%+...+a%,
the length of the vector v.

Now consider the case of n vectors vy,...,v,. Then the matrix A is
n x n. We will use that det(A) = det(AT). Then

\/det(ATA) = 1/det(AT) det(4)

= \/det(A)?

= | det(4)],
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as desired.
Now to see why in general 1/det(AT A) must be the volume. We need
a preliminary lemma that yields a more intrinsic, geometric approach to
det(AT A).

Lemma 6.1.1 For the matriz

A=(v1,..., VL),
we have that
[vi]? vi-ve ... vi-vg
ATA=| A
ViV Veeve ... |vg]?

where v;-v; denotes the dot product of vectors v; and v; and |v;| = /V; - V;
denotes the length of the vector v;.

The proof of this lemma is just looking at

T
Vi

AT A = Col (Ve VE).

Notice that if we apply any linear transformation on R™ that preserves
angles and lengths (in other words, if we apply a rotation to R™), the
numbers |v;| and v;-v; do not change. (The set of all linear transformations
of R™ that preserve angles and lengths form a group that is called the
orthogonal group and denoted by O(n).) This will allow us to reduce the
problem to the finding of the volume of a parallelepiped in R,

Sketch of Proof of Theorem: We know that

\/det(ATA) = |det

We will show that this must be the volume. Recall the standard basis for
n.

[vil2 vieve ... vi-evg

Vg Vi Vieve ... |vg|?

1 0 0
0 1 0
er=|.|,e2=] . |,...,en=1]".
0 0 1

We can find a rotation of R™ that both preserves lengths and angles
and more importantly, rotates our vectors vy,..., v, so that they lie in the
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span of the first k standard vectors ej,...,ex. (To rigorously show this
takes some work, but it is geometrically reasonable.) After this rotation,
the last n — k entries for each vector v; are zero. Thus we can view our
parallelepiped as being formed from k vectors in R*. But we already know
how to compute this; it is

|V1|2 Vi+*Vg ... Vi Vg
det . : : :
Ve Vi Vipeva ... |vg|?

We are done. O

6.2 Differential Forms and the Exterior
Derivative

This will be a long and, at times, technical section. We will initially define
elementary k-forms on R"™, for which there is still clear geometric meaning.
We will then use these elementary k-forms to generate general k-forms.
Finally, and for now no doubt the most unintuitive part, we will give the
definition for the exterior derivative, a device that will map k-forms to
(k + 1)-forms and will eventually be seen to be a derivative-type operation.
In the next section we will see that the gradient, the divergence and the curl
of the last chapter can be interpreted in terms of the exterior derivative.

6.2.1 Elementary k-forms

We start with trying to understand elementary 2-forms in R3. Label the
coordinate axis for R3 as z;, z2,z3. There will be three elementary 2-forms,
which will be denoted by dz; Adzs, dz; Adzs and dzo Adzz. We must now
determine what these symbols mean. (We will define 1-forms in a moment.)

In words, dz1 A dze will measure the signed area of the projection onto
the z;zo-plane of any parallelepiped in R3, dz; A dzs will measure the
signed area of the projection onto the z;z3-plane of any parallelepiped in
R3 and dzs A dzz will measure the signed area of the projection onto the
x9x3-plane of any parallelepiped in R3.

By looking at an example, we will see how to actually compute with
these 2-forms. Consider two vectors in R2, labelled

1 3
vi=|[2] andveo=|[ 2
3 1
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These vectors span a parallelepiped P in R3. Consider the projection map
7 : R® = R? of R to the z;22 plane. Thus

m(z1,22,23) = (21, Z2).

We define dz; A dzo acting on the parallelepiped P to be the area of 7 (P).

Note that
n(v1) = (;) and m(vy) = (g)

Then 7(P) is the parallelogram:

A

and the signed area is

dz; Adzo(P) = det(m(vy),7(v2))
1
= det (2 2)
= -4

In general, given a 3 x 2 matrix

ail; a1z
A=1}an ax |,
az1 asz

its two columns will define a parallelepiped. Then dz; A dzs of this paral-
lelepiped will be

dzy A dza(A) = det ( a1 ‘“2) .

G21 Q22

In the same way, dz; A dz; will measure the area of the projection of a
parallelepiped onto the z;z3-plane. Then

dzy A dzs(A) = det | 411 “12).
o xB( ) ¢ (G'SI ass
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Likewise, we need

a2 Q22
dzo A dzz(A) = det (asl 032) .

Before defining elementary k-forms in general, let us look at elementary
1-forms. In R?, there are three elementary 1-forms, which will be denoted
by dz;,dzs and dzs. Each will measure the one-dimensional volume (the
length) of the projection of a one-dimensional parallelepiped in R?® to a
coordinate axis. For example, with

1
v=|2],

3

its projection to the x;-axis is just (1). Then we want to define

1
dey(v)=dz; | 2 ) =1
3
In general, for a vector
ar
a21
as
we have
an a1 a1
dz, | a2y | = a1, dz2 | a2y | = a2, dzz | a2y | = as:.
as aszy a3

Now to define elementary k-forms on R™. Label the coordinates of R™ as
Z1,...,Zn. Choose an increasing subsequence of length k from (1,2,...,n),
which we will denote by

I=(i,... i)
with 1 <1 <... < i <n. Let
ail aie2 ... Qaig
A=
ani v wes Qpk

be an n x k matrix. Its columns will span a k-dimensional parallelepiped
P in R™. For convenience of exposition, let A; be the ith row of A, i.e.,

Ay
A= :
An
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We want the elementary k-form
dzy =dx;, A--- /\d.’L‘ik

to act on the matrix A to give us the k-dimensional volume of the par-
allelepiped P projected onto the k-dimensional z;,,...,z; space. This
motivates the definition:

Ay
dzr(A) =dzs, A--- Adwg (A) =det | -
A,
Elementary k-forms are precisely the devices that measure the volumes of
k-dimensional parallelepipeds after projecting to coordinate k-spaces. The

calculations come down to taking determinants of the original matrix with
some of its rows deleted.

6.2.2 The Vector Space of k-forms

Recall back in Chapter One that we gave three different interpretations for
the determinant of a matrix. The first was just how to compute it. The
third was in terms of volumes of parallelepipeds, which is why determinants
are showing up here. We now want to concentrate on the second interpre-
tation, which in words was that the determinant is a multilinear map on
the space of columns of a matrix. More precisely, if M,,(R) denotes the
space of all n x k matrices with real entries, we had that the determinant
of an n x n matrix A is defined as the unique real-valued function

det : Mp(R) - R

satisfying:
a) det(Al, ceny )\Ak, ceey An) = )\det(Al, ceny Ak)
b) det(As, ..., Ax + AAi, ..., Ap) = det(44, ..., Ap) for k #i.
¢) det(Identity matrix) = 1.

A k-form will have a similar looking definition:

Definition 6.2.1 A k-form w is a real-valued function
w:Mu(R) >R
satisfying:
W(Ai, .0y AB 4+ uC, ..., Ag) = Mw(As,..., B, ..., Ag) + pw(A, ..., C, ..., Ag).

Thus w is a multilinear real-valued function.
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By the properties of determinants, we can see that each elementary k-
form dzj is in fact a k-form. (Of course this would have to be the case, or
we wouldn’t have called them elementary k-forms in the first place.) But
in fact we have

Theorem 6.2.1 The k-forms for a vector space R™ form a vector space of
dimension (Z) The elementary k-forms are a basis for this vector space.

This vector space is denoted by \*(R™).

We will not prove this theorem. It is not hard to prove that the k-forms
are a vector space. It takes a bit more work to show that the elementary
k-forms are a basis for A*(R™).

Finally, note that O-forms are just the real numbers themselves.

6.2.3 Rules for Manipulating k-forms

There is a whole machinery for manipulating k-forms. In particular, a k-
form and an [-form can be combined to make a (k + [)-form. The method
for doing this is not particularly easy to intuitively understand, but once
you get the hang of it, it is a straightforward computational tool. We will
look carefully at the R? case, then describe the general rule for combining
forms and finally see how this relates to the R™ case.

Let z; and z» be the coordinates for R2. Then dz; and dz, are the
two elementary 1-forms and dz; A dzs is the only elementary 2-form. But
it looks, at least notationally, that the two 1-forms dz; and dzs somehow
make up the 2-form dz; A dz2. We will see that this is indeed the case.

Let
vy = (a11> and vo = a12>
azi a2
be two vectors in R2. Then

d.’Bl(VI) = da and d.’IJl(Vz) = Qai2

and
dza(vy) = a2; and dza(vae) = ass.

The 2-form dz; A dz2 acting on the 2 x 2 matrix (v, v2) is the area of the
parallelogram spanned by the vectors v; and v, and is hence the determi-
nant of the matrix (vy,vse). Thus

dz; Adza(vy, ve) = annazs — a12a91.
But note that this equals
dzi(v1) dzo(ve) — dzy (ve) dza(vy).
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At some level we have related our 2-form dzy A dze with our 1-forms dz;
and dzs, but it is not clear what is going on. In particular, at first glance
it would seem to make more sense to change the above minus sign to a plus
sign, but then, unfortunately, nothing would work out correctly.

We need to recall a few facts about the permutation group on n el-
ements, S,. (There is more discussion about permutations in Chapter
Eleven.) Each element of S,, permutes the ordering of the set {1,2,...,n}.
In general, every element of S,, can be expressed as the composition of flips
(or transpositions).

If we need an even number of flips to express an element, we say that
the element has sign 0 while if we need an odd number of flips, then the sign
is 1. (Note that in order for this to be well-defined, we need to show that
if an element has sign 0 (1), then it can only be written as the composition
of an even (0odd) number of flips; this is indeed true, but we will not show
it.)

Consider Sy. There are only two ways we can permute the set {1,2}.
We can either just leave {1, 2} alone (the identity permutation), which has
sign 0, or flip {1,2} to {2,1}, which has sign 1. We will denote the flip that
sends {1,2} to {2,1} by (1,2). There are six ways of permuting the three
elements {1,2,3} and thus six elements in S3. Each can be written as the
composition of flips. For example, the permutation that sends {1,2,3} to
{3,1,2} (which means that the first element is sent to the second slot, the
second to the third slot and the third to the first slot) is the composition of
the flip (1,2) with the flip (1, 3), since, starting with {1,2,3} and applying
the flip (1,2), we get {2,1,3}. Then applying the flip (1,3) (which just
interchanges the first and third elements), we get {3,1,2}.

We will use the following notational convention. If ¢ denotes the flip
(1,2), then we say that

o(l) =2and o(2) = 1.

Similarly, if o denotes the element (1,2) composed with (1,3) in S, then
we write
(1) =2,0(2) =3 and o(3) =1,

since under this permutation one is sent to two, two is sent to three and
three is sent to one.

Suppose we have a k-form and an [-form. Let n = k4. We will consider
a special subset of S, the (k,!) shuffles, which are all elements ¢ € S,, that
have the property that

o(l) <o(2) <--- < o(k)

and
ogk+1)<ok+2)<---<o(k+1).
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Thus the element o that is the composition of (1,2) with (1,3) is a (2,1)
shuffle, since
o(l)=2<3=0(2).

Denote the set of all (k,!) shuffles by S(k,1). One of the exercises at the
end of the chapter is to justify why these are called shuffles.
We can finally formally define the wedge product.

Definition 6.2.2 Let A = (A1,...,Ar41) be an N x (k + 1) matriz, for
any N. (Here each A; denotes a column vector.) Let T be a k-form and w
be an l-form. Then define

TAw(A) = Z (—I)SZgn(a)T(Aa(l), ceey Aa(k))w(Aa(k-i-l)a ceey Ao—(k+l)).
c€S(k,l)

Using this definition allows us to see that the wedge in R? of two elemen-
tary 1-forms does indeed give us an elementary 2-form. A long calculation
will show that in R3, the wedge of three elementary 1-forms yields the
elementary 3-form.
It can be shown by these definitions that two 1-forms will anti-commute,
meaning that
dz Ady = —dy A dz.

In general, we have that if 7 is a k-form and w is an I-form, then
TAw=(=D"wAT

This can be proven by directly calculating from the above definition of
wedge product (though this method of proof is not all that enlightening).
Note that for k£ and [ both being odd, this means that

TAw=(—1)wAT.
Then for k being odd, we must have that
TAT=(=1)TAT,

which can only occur if
TAT=0.

In particular, this means that it is always the case that
dx; Ndxz; =0

and, if i # j,
dz; A d.’IJj = —d:IIj A dx;.
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6.2.4 Differential k-forms and the Exterior Derivative

Here the level of abstraction will remain high. We are after a general
notion of what can be integrated (which will be the differential k-forms)
and a general notion of what a derivative can be (which will be the exterior
derivative).

First to define differential k-forms. In R™, if we let I = {i1,...,ix}
denote some subsequence of integers with

1< <. < <,
then we let
dzy =dz;, Ao Adag, .
Then a differential k-form w is:

W = Z fI d.’L’I,

all possible T

where each fr = fr(z1,...,z,) is a differentiable function.
Thus
((L‘l + sin(xz))dml + xlxzdfllz

is an example of a differential 1-form, while
e®1 T dxy Adzs + x% dzs Adxs

is a differential 2-form.

Each differential k-form defines at each point of R”™ a different k-form.
For example, the differential 1-form (z; + sin(zz))dz; 4 z1z2dzy is the
1-form 3 dz; at the point (3,0) and is 5dz; + 2wdz, at the point (4, §).

To define the exterior derivative, we first define the exterior derivative
of a differential 0-form and then by induction define the exterior derivative
for a general differential k-form. We will see that the exterior derivative is
a map from k-forms to (k 4 1)-forms:

d : k-forms — (k + 1)-forms.

A differential 0-form is just another name for a differentiable function.

Given a 0-form f(zy,...,2,), its exterior derivative, denoted by df, is:
n
of
df = i
1= 2o

For example, if f(x1,z2) = 122 + =3, then

df = zodzy + (21 + 323)d2s.
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Note that the gradient of f is the similar looking (z2,z; + 323). We will
see in the next section that this is not chance.
. Given a k-form w = Zall possible I frdzy, the exterior derivative dw
is:
dw= Y  dfiAdz.
all possible 1

For example, in R32, let
w = fidz1 + fadze + fadzs
be some 1-form. Then

dw = dfidz; +dfadzs + dfzdzs

= (Ohyy, 4 004y, 00
- (aml dz + 925 dzs + a—m?’di%) Adz,y

+(%d$1 + %diBg + %dwg) A dzs

15271 Oy O3
+(g—£dx1 + g—ﬁdm + g—gdmg) A dzs
= (g% — g—i)dxl Adzs + (g—ﬁ — g—g)dxl A dzo
+ g—iz - g—g)dxz A dxs.

Note that this looks similar to the curl of the vector field

(flafZaf3)'

Again, we will see that this similarity is not just chance.
Key to many calculations is:

Proposition 6.2.1 For any differential k-form w, we have
d(dw) = 0.

The proof is one of the exercises at the end of the chapter, but you need to
use that in R™ the order of differentiation does not matter, i.e.,

o of o of

5 0z ~ Ba; 027

and that dz; A dxj = —dxj A dz;.
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6.3 Differential Forms and Vector Fields

The overall goal for this chapter is to show that the classical Divergence
Theorem, Green’s Theorem and Stokes’ Theorem are all special cases of one
general theorem. This one general theorem will be stated in the language
of differential forms. In order to see how it reduces to the theorems of last
chapter, we need to relate differential forms with functions and vector fields.
In R3, we will see that the exterior derivative, under suitable interpretation,
will correspond to the gradient, the curl and the divergence.

Let z,y and z denote the standard coordinates for R3. Our first step is
to define maps

Ty : O-forms — functions on R?
T, : 1-forms — vector fields on R3
T, : 2-forms — vector fields on R3

Ty : 3-forms — functions on R3.

We will see that Tp,7) and T3 have natural definitions. The definition for
Ty will take a bit of justification.

In the last section, we saw that differential 0-forms are just functions.
Thus Tp is just the identity map. From last section, we know that there
are three elementary 1-forms: dz, dy and dz. Thus a general differential
1-form will be

w= fl(w;y7z)dm + fz(-’B, y’z)dy + f?,(ill, y,Z)dZ,

where f;, f» and fs are three separate functions on R®. Then define

Th(w) = (f1, f2, f3)-

The definition for T is just as straightforward. We know that on R? there
is only a single elementary 3-form, namely dx A dy A d2. Thus a general
differential 3-form looks like:

w = f(z,y,z)dz Ady Adz,
where f is a function on R3. Then we let
Ts(w) = f(z,y,2).

As we mentioned, the definition for 7% is not as straightforward. There
are three elementary 2-forms: dz A dy, dx A dz and dy A dz. A general
differential 2-form looks like:

w= fl(a:: y:Z)dx A dy + f2(x7yxz)dx Adz + f3(x7 y:z)dy A dZ,
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where, as expected, fi, f and f3 are functions on R3. Define the map T%
by:
T2(w) = (f37 _f27 fl)

One method for justifying this definition will be that it will allow us to
prove the theorems needed to link the exterior derivative with the gradient,
the curl and the divergence. A second method will be in terms of dual
spaces, as we will see in a moment.

We want to show:

Theorem 6.3.1 On R3, let wy, denote a k-form. Then
T1(dwo) = grad(To(wo)),
To(dwy) = curl(Ty(w1)),

and
T3 (dwz) = d’L’U(T2 (UJ2)).

Each is a calculation (and is an exercise at the end of this chapter). We
needed to define T5 as we did in order to make the above work; this is one
of the ways that we can justify our definition for the map T%.

There is another justification for why 7% must be what it is. This
approach is a bit more abstract, but ultimately more important, as it gen-
eralizes to higher dimensions. Consider R™ with coordinates zi,...,Zy.
There is only a single elementary n-form, namely dz; A ... A dz,. Thus
the vector space A"(R") of n-forms on R™ is one-dimensional and can be
identified to the real numbers R. Label this map by

T:A™R") = R.

Thus T'(adzy A ... Adx,) = a.

We now want to see that the dual vector space to A*(R") can be natu-
rally identified with the vector space A" ¥(R™). Let wn_g bein A" F(R™).
We first show how an (n — k)-form can be interpreted as a linear map on
AF(R™). If wy, is any k-form, define

Wn—k(wk) =T (Wn—k A wg).

It is a direct calculation that this is a linear map. From Chapter One we
know that the dual vector space has the same dimension as the original
vector space. By direct calculation, we also know that the dimensions for
AF(R™ and A" F(R") are the same. Thus A" *(R™) is the dual space
to AF(R™).

Now consider the vector space A\'(R?®), with its natural basis of dz, dy
and dz. Its dual is then A’(R®). As a dual vector space, an element of
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the natural basis is that which sends one of the basis vectors of A*(R?) to
one and the other basis vectors to zero. Thus the natural basis for A\*(R?),
thought of as a dual vector space, is dy A dz (which corresponds to the 1-
form dz, since dy Adz Adz = 1-dz Ady Adz), -dz Adz (which corresponds
to dy) and dz A dy (which corresponds to dz). Then identifying dz with
the row vector (1,0,0), dy with (0,1,0) and dz with (0,0, 1), we see that
dy Adz should be identified with (1, 0,0), dzAdz with (0, —1,0) and dzAdy
with (0,0, 1). Then the 2-form

w= fidze Ady + fodz Adz+ fsdy Adz

should indeed be identified with (f3,—f2, f1), which is precisely how the
map T3 is defined.

6.4 Manifolds

While manifolds are to some extent some of the most natural occurring
geometric objects, it takes work and care to create correct definitions. In
essence, though, a k-dimensional manifold is any topological space that, in
a neighborhood of any point, looks like a ball in R*. We will be at first
concerned with manifolds that live in some ambient R™. For this type of
manifold, we give two equivalent definitions: the parametric version and
the implicit version. For each of these versions, we will carefully show that
the unit circle S! in R2

is a one-dimensional manifold. (Of course if we were just interested in circles
we would not need all of these definitions; we are just using the circle to
get a feel for the correctness of the definitions.) Then we will define an
abstract manifold, a type of geometric object which need not be defined in
terms of some ambient R"™.

Consider again the circle S!. Near any point p € S! the circle looks
like an interval (admittedly a bent interval). In a similar fashion, we want
our definitions to yield that the unit sphere $? in R3 is a two-dimensional
manifold, since near any point p € 52,
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the sphere looks like a disc (though, again, more like a bent disc). We want
to exclude from our definition of a manifold objects which contain points
for which there is no well-defined notion of a tangent space, such as

which has tangent difficulties at p, and the cone

Y/

p

which has tangent difficulties at the vertex p. As a technical note, we
will throughout this section let M denote a second countable Hausdorff
topological space.

For k < n, a k-dimensional parametrizing map is any differentiable map

¢ : (Ball in R¥) —» R"

such that the rank of the Jacobian at every point is exactly k. In local
coordinates, if u1, . .., ux are the coordinates for R* and if ¢ is described by
the n differentiable functions ¢, ..., ¢, (i.e., ¢ = (d1,...,¢s)), we require
that at all points there is a k x k minor of the n x k Jacobian matrix

9 . 941
BSuq Suy
Dé=1| : :
O¢n ., On
Ouy Oup

that is invertible.
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Definition 6.4.1 (Parametrized Manifolds) The Hausdorff topological
space M in R"™ is a k-dimensional manifold if for every point p € M in R™,
there is an open set U in R™ containing the point p and a parametrizing
map ¢ such that

#(Ball in R¥) = M N U.

Consider the circle S'. At the point p = (1,0), a parametrizing map is:

¢(u) = (V 1 _uzau)a

while for the point (0, 1), a parametrizing map could be:

¢(u) = (u, V1—u?).

Given the parametrization, we will see in section five that it is easy
to find a basis for the tangent space of the manifold. More precisely the
tangent space is spanned by the columuns of the Jacobian D¢. This is indeed
one of the computational strengths of using parametrizations for defining
a manifold.

Another approach is to define a manifold as the zero locus of a set of
functions on R™. Here the normal vectors are practically given to us in the
definition.

Definition 6.4.2 (Implicit Manifolds) A set M in R" is a k-dimensional
manifold if, for any point p € M there is an open set U containing p and
(n — k) differentiable functions p1,...,pn—k such that

L. MNU=(p1=0)N---N{pn—g =0).
2. At all points in M NU, the gradient vectors
Vpl, ey Vpn_k
are linearly independent.

It can be shown that the normal vectors are just the various Vp;.
For an example, turn again to the circle S*. The implicit method just
notes that
St = {(z,y) : 2® +y2 - 1=0}.

Here we have p = 22 + y? — 1. Since
V(z? + 9% — 1) = (2z,2y)

is never the zero vector, we are done.



6.4. MANIFOLDS 129

The two definitions are equivalent, as discussed in the section on the
implicit function theorem. But both of these definitions depend on our
set M being in R™. Both critically use the properties of this ambient R".
There are situations where we still want to do calculus on a set of points
which do not seem to live, in any natural way, in some R™. Historically
this was first highlighted in.Einstein’s General Theory of Relativity, in
which the universe itself was described as a 4-dimensional manifold that is
neither R* nor living in any natural way in a higher dimensional R”. By all
accounts, Einstein was amazed that mathematicians had built up the whole
needed machinery. Our goal here is to give the definition of an abstract
manifold and then to show, once again, that S* is a manifold. Throughout
this we will be using that we already know what it means for a function
f:R™ =5 R™ to be differentiable.

Definition 6.4.3 (Manifolds) A second countable Hausdorff topological
space M is an n-dimensional manifold if there is an open cover (U,) such
that for each open set, Uy, we have a continuous map

¢o : Open ball in R™ = U,
that is one-to-one and onto a‘nd such that the map
by b : b5 (Us NUg) = 65, (Ua N Up)
is differentiable.

" e

P Pp

A

Ball in IR" Ball in R
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Note that ¢§1(Ua N Ug) and ¢ (Uy N Ug) are both open sets in R™ and
thus we do know what it means for ¢ '¢g to be differentiable, as discussed
in Chapter Three. The idea is that we want to identify each open set
U, in M with its corresponding open ball in R™. In fact, if zq,...,z,
are coordinates for R™, we can label every point p in U, as the n-tuple
given by ¢51(p). Usually people just say that we have chosen a coordinate
system for U, and identify it with the coordinates z1,...,z, for R®. It
is this definition that motivates mathematicians to say that a manifold is
anything that locally, around each point, looks like an open ball in R™.

Let us now show that S satisfies this definition of a manifold. We will
find an open cover of S! consisting of four open sets, for each of these write
down the corresponding map ¢; and then see that ¢1 ¢9 is differentiable.
(It is similar to show that the other ¢ qSJ are differentiable.)

-4
SR

Set
U = {(z,y) € S* : = > 0}
and let
é1:(-1,1) > Uy
be defined by
$1(w) = (V1—v?,u)
Here (—1,1) denotes the open interval {z : —1 < z < 1}. In a similar

fashion, set

Uz = {(z,y)eS':y>0}
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Us = {(z,9)€8*:2<0}
Uy = {(z,y) €8 :y<0}

and

pa(u) = (u,V1-1u?)
d3(u) = (—V1-—u?u)
¢pa(u) = (u,—V1-—u?).

Now to show on the appropriate domain that ¢1"1q52 is differentiable. We

have
o7 o (w) = 67 (u, V1 — ) = V1— 0

which is indeed differentiable for —1 < u < 1. (The other verifications are
just as straightforward.)

We can now talk about what it means for a function to be differentiable
on a manifold. Again, we will reduce the definition to a statement about
the differentiability of a function from R™ to R.

Definition 6.4.4 A real-valued function f on a manifold M is differen-
tiable if for an open cover (Uy) and maps ¢, : Open ball in R™ — U,, the
composition function

fody:Openballin R™ -+ R
is differentiable.

There is still one difficulty with our abstract definition of a manifold.
The definition depends upon the existence of an open cover of M. Think
of our open cover of the circle S!. Certainly there are many other open
covers that will also place a manifold structure on S*, such as:

F

but still, it’s the same circle. How can we identify these different ways
of putting a manifold structure on the circle? We are led to the desire
to find a natural notion of equivalence between manifolds (as we will see,
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we will denote this type of equivalence by saying that two manifolds are
diffeomorphic). Before giving a definition, we need to define what it means
to have a differentiable map between two manifolds. For notation, let M
be an m-dimensional manifold with open cover (U,) and corresponding
maps ¢, and let N be an n-dimensional manifold with open cover (V) and
corresponding maps 7.

Definition 6.4.5 Let f : M — N be a map from M to N. Let p € M with
U, an open set containing p. Set ¢ = f(p) and suppose that Vg is an open
set containing q. Then f is differentiable ot p if the map 7751 o fody is
differentiable in a neighborhood of the point ¢, (p) in R™. The map f is
differentiable if it is differentiable at all points.

We can now define our notion of equivalence.

Definition 6.4.6 Two manifolds M and N are diffeomorphic if there ez-
ists a map f : M — N that is one-to-one, onto, differentiable and such that
the inverse map, f!, is differentiable.

Finally, by replacing the requirement that the various functions involved
are differentiable by continuous functions, analytic functions, etc., we can
define continuous manifolds, analytic manifolds, etc.

6.5 Tangent Spaces and Orientations

Before showing how to integrate differential k-forms along a k-dimensional
manifold, we have to tackle the entirely messy issue of orientability. But
before we can define orientability, we must define the tangent space to a
manifold. If we use the implicit or parametric definition for a manifold, this
will be straightforward. The definition for an abstract manifold is quite a
bit more complicated (but as with most good abstractions, it is ultimately
the right way to think about tangent vectors).

6.5.1 Tangent Spaces for Implicit and Parametric
Manifolds

Let M be an implicitly defined manifold in R™ of dimension k. Then by
definition; for each point p € M there is an open set U containing p and
(n — k) real-valued functions py,..., pn—k defined on U such that

(pr=0)N...N(pn—kr =0)=MNU
and, at every point ¢ € M NU, the vectors
Vp1 (Q), ce - )Vpn—k(q)
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are linearly independent. We have

Definition 6.5.1 The normal space Ny(M) to M at the point p is the
vector space spanned by the vectors

Vp1(p),.-+> Von-i(p).

The tangent space Tp(M) to the manifold M at the point p consists of all
vectors v in R™ that are perpendicular to each of the normal vectors.

If z,,...,z, are the standard coordinates for R?, we have

Lemma 6.5.1 A vector v = (v,...,Vy) is in the tangent space Tp(M) if
foralli=1,...,n—k we have

n

Opi
0=v Vol =3 20,
2

=1

The definition for the tangent space for parametrically defined manifolds
is as straightforward. Here the Jacobian of the parametrizing map will be
key. Let M be a manifold in R", with the parametrizing map

¢ : (Ball in R*) - R®

given by the n functions

¢: (¢17~-7¢n)-
The Jacobian for ¢ is the n x k& matrix
91 91
Buy cte Buy
D¢ = : :
On 9¢n
Ouy Tt Oug

Definition 6.5.2 The tangent space T,(M) for M at the point p is spanned
by the columns of the matriz Do.

The equivalence of these two approaches can, of course, be shown.

6.5.2 Tangent Spaces for Abstract Manifolds

Both implicitly and parametrically defined manifolds live in an ambient R",
which carries with it a natural vector space structure. In particular, there
is a natural notion for vectors in R” to be perpendicular. We used this
ambient space to define tangent spaces. Unfortunately, no such ambient
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R™ exists for an abstract manifold. What we do know is what it means for
a real-valued function to be differentiable.

In calculus, we learn about differentiation as a tool to both find tangent
lines and also to compute rates of change of functions. Here we concentrate
on the derivative as a rate of change. Consider three-space, R3, with the
three partial derivatives %, 6—3?} and 6—‘1. Each corresponds to a tangent
direction for R3 but each also gives a method for measuring how fast a

function f(z,y,z) is changing, i.e.,

%f- = how fast f is changing in the x-direction,
z
of . . o
0= how fast f is changing in the y-direction
Y
and 9
8_f = how fast f is changing in the z-direction.
z

This is how we are going to define tangent vectors on an abstract mani-
fold, as rates of change for functions. We will abstract out the algebraic .
properties of derivatives (namely that they are linear and satisfy Leibniz’s
rule). :

But we have to look at differentiable functions on M a bit more closely.
If we want to take the derivative of a function f at a point p, we want this to
measure the rate of change of f at p. This should only involve the values of
f near p. What values f achieves away from p should be irrelevant. This is
the motivation behind the following equivalence relation. Let (f,U) denote
an open set on M containing p and a differentiable function f defined on
U. We will say that :
(£,U) ~ (9,V)

if, on the open set U NV, we have f = g. This leads us to defining
C> ={(f,U)}/ ~.

We will frequently abuse notation and denote an element of C° by f. The
space C° is a vector space and captures the properties of functions close to
the point p. (For mathematical culture sake, C2° is an example of a germ
of a sheaf, in this case the sheaf of differentiable functions.)

Definition 6.5.3 The tangent space Tp(M) is the spdce of all linear maps
v:C° = CF
such that
v(fg) = fulg) + gv(f).

To finish the story, we would need to show that this definition agrees
with the other two, but this we leave as nontrivial exercises.
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6.5.3 Orientation of a Vector Space

Our goal is to see that there are two possible orientations for any given
vector space V. QOur method is to set up an equivalence relation on the
possible bases for V and see that there are only two equivalence classes,
each of which we will call an orientation.

Let vyi,...,v, and wy,...,w, be two bases for V. Then there exists
unique real numbers a;;, with 4,7 = 1,...,n such that
W1 = anvi+--o-+aiave
Wn = AuV1+ o+ AppVa.

Label the n x n matrix (a;;) by A. Then we know that det(A4) # 0. We
say that the bases vy,...,v, and wy,..., w, have the same orientation if
det(A4) > 0. If det(A4) < 0, then we say that they two bases have opposite
orientation. It can be shown via matrix multiplication that

Lemma 6.5.2 Having the same orientation is an equivalence relation on
the set of bases for a vector space.

The intuition is that two bases vi,...,v, and wy,...,w, should have
the same orientation if we can continuously move the basis vi,...,v, to
wi,..., Wp 50 that at each step we still have a basis. In pictures for R?,
the bases {(1,0),(0,1)} and {(1,1),(—1,1)} have the same orientation but
different from the basis {(—1,0), (0, 1)}.

vo=(-1,1)
v2={0,1) vi1=(1.1)
same orientation as:
vi=(10)
not the same
orientation as: vz=(0,1)
vi=(-1,0)

Choosing an orientation for a vector space means choosing one of the
two possible orientations, i.e., choosing some basis.
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6.5.4 Orientation of a Manifold and its Boundary

A manifold M has an orientation if we can choose a smoothly varying
orientation for each tangent space T,(M). We ignore the technicalities of
what ‘smoothly varying’ means, but the idea is that we can move our basis
in a smooth manner from point to point on the manifold M.

Now let X° be an open connected set in our oriented manifold M such
that if X denotes the closure of X, then the boundary 9(X) =X — X is
a smooth manifold of dimension one less than M. For example, if M = R?,
an example of an X could be the open unit disc

D = {(z,y): 2* +y% < 1}.
Then the boundary of D is the unit circle

St ={(z,y) : 2* +y* =1},

-
o

L\D
\

4

N

which is a one-dimensional manifold. The open set X° inherits an orienta-
tion from the ambient manifold M. Our goal is to show that the boundary
9(X) has a canonical orientation. Let p € 8(X). Since (X) has dimen-
sion one less than M, the normal space at p has dimension one. Choose a
normal direction n that points out of X, not into X. The vector n, while
normal to 8(X), is a tangent vector to M. Choose a basis vq,...,0p—1
for T,(0(X)) so that the basis n,vq,...,v,—1 agrees with the orientation
of M. It can be shown that all such chosen bases for T,,(8(X)) have the
same orientation; thus the choice of the vectors vy, ...,v,_1 determines an
orientation on the boundary manifold 8(X).

For example, let M = R2. At each point of R?, choose the basis

{(1,0),(0,1)}.
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A
]

For the unit circle S?, an outward pointing normal is always, at each point
p = (z,y), just the vector (z,y). Then the tangent vector (—y,z) will give
us a basis for R? that has the same orientation as the given one. Thus we
have a natural choice of orientation for the boundary manifold.

6.6 Integration on Manifolds

The goal of this section is to make sense out of the symbol

M

where M will be a k-dimensional manifold and w will be a differential %-
form. Thus we want to (finally) show that differential k-forms are the things
that will integrate along k-dimensional manifolds. The method will be to
reduce all calculations to doing multiple integrals on R¥, which we know
how to do.

We will first look carefully at the case of 1-forms on R2. Our manifolds
will be 1-dimensional and hence curves. Let C be a curve in the plane R?
that is parametrized by the map:

o : [a,b] = R?,

with
o(u) = (z(u),y(w))

If f(z,y) is a continuous function defined on R2, then define the path
integral, [ f(z,y)dz, by the formula

b dx
/C f(zy)de = / () (o)) e
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Note that the second integral is just a one-variable integral over an interval
on the real line. Likewise, the symbol f, o f(z,y)dy is interpreted as

b
[t = [ flaw,vw) fhu

Usmg the chain rule, it can be checked that the numbers fC f(z,y)dz and
o f ¢ f(@,y)dy are independent of the chosen parametrizations. Both of these
are hlghly suggestive, as at least formally f(z,y)dz and f(z,y)dy look
like differential 1-forms on the plane R2. Consider the Jacobian of the
parametrizing map o(u), which is the 2 x 1 matrix

_ (dz/du
b= (dy/ dU> '
Letting f(z,y)dz and f(z,y)dy be differential 1-forms, we have by defini-
tion that at each point of o(u),

$(a,)de(Do) = o, sl 2144 )) = Flatu), vu) T

and

f(z,y)dy(Do) = f(x,y)dy((gz;g;j)) = f(x(u),y(u))j—z.
Y

Thus we could write the integrals [ ¢ f(z,y)dz and fc f(z,y)d

b
[ o= [ 1e)de(Doau

C a

and ,
/ f(z,y)dy = / §(2,4)dy(Do)du.

C a

This suggests how to define in general f,, w. We will use that w, as a k-
form, will send any n X k matrix to a real number. We will parametrize
our manifold M and take w of the Jacobian of the parametrizing map.

Definition 6.6.1 Let M be a k-dimensional oriented differentiable mani-
fold in R™ such that there is a parametrizing one-to-one onto map

¢:B—> M

where B denotes the unit ball in R*. Suppose further that the parametrizing
maep agrees with the orientation of the manifold M. Let w be a differential
k-form on R™. Then

/A;w = /Bw(DqS)dul---duk
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Via a chain rule calculation, we can show that [, w is well-defined:

Lemma 6.6.1 Given two orientation preserving parametrizations ¢, and
1 of a k-dimensional manifold M, we have

/ w(Dey)duy - - - duyg =/ w(D¢s)duy - - - dug.
B B

Thus [ u W s independent of parametrization.

We now know what [,,w means for a manifold that is the image of a
differentiable one-to-one onto map from a ball in R*. Not all manifolds can
be written as the image of a single parametrizing map. For example, the
unit sphere S? in R? needs at least two such maps (basically to cover both
the north and south poles). But we can (almost) cover reasonable oriented
manifolds by a countable collection of non-overlapping parametrizations.
More precisely, we can find a collection {U, } of nonoverlapping open sets in
M such that for each « there exists a parametrizing orientation preserving
map

o : B = U,

and such that the space M — |JU, has dimension strictly smaller than k.
Then for any differential k-form we set

/Mw:;/aw.

Of course, this definition seems to depend on our choice of open sets, but
we can show (though we choose not to) that:

Lemma 6.6.2 The value of [,,w is independent of choice of set {Ua}.

While in practice the above summation could be infinite, in which case
questions of convergence must arise, in practice this is rarely a problem.

6.7 Stokes’ Theorem

We now come to the goal of this chapter:

Theorem 6.7.1 (Stokes’ Theorem) Let M be an oriented k-dimensional
manifold in R™ with boundary OM, a smooth (k-1)-dimensional manifold
with orientation induced from the orientation of M. Let w be a differential

(k-1)-form. Then
/M dw = /{9M w.
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This is a sharp quantitative version of the intuition:
Average of a function on boundary = Average of derivative on interior.

This single theorem includes as special cases the classical results of the Di-
vergence Theorem, Green’s Theorem and the vector-calculus Stokes’ The-
orem.

We will explicitly prove Stokes’ Theorem only in the special case that
M is a unit cube in R* and when

w:f(zl,...,zk)dxz/\.../\dzk.

After proving this special case, we will sketch the main ideas behind the
proof for the general case.
Proof in unit cube case: Here

M = {(z,...,a): foreachi,0 < w; <1}

The boundary 8M of this cube consists of 2k unit cubes in R¥~1, We will
be concerned with the two boundary components

S1 ={(0,2s,...,2x) € M}

and
Se = {(1;w27"')$k) € M}
For w = f(z1,...,zx)dza A ... Adzy, we have
of i Adas A ... Adayg,
8mi
= —a—fdwl Adxy A ... ANdxg,
dzy

since it is always the case that dz; A dz; = 0.
Now to integrate dw along the unit cube M. We choose our orientation
preserving parametrizing map to be the identity map. Then

/dw—/ / 6m1d(L‘1 Ty

By the Fundamental Theorem of Calculus we can do the first integral, to

get
1 1
/dw = // f(l, @2, ..., ¢5)des - - - day,
M 0 0

1 1
—/ / f(0,z2,...,zx)dzs - - - dzy,.
0 0
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Now to look at the integral [, w. Since w = f(x1,...,z)dza A... Adxy,
the only parts of the integral along the boundary that will not be zero will be
along S, and S, both of which are unit cubes in R¥~!, with coordinates
given by zs,...,z;. They will have opposite orientations though. (This
can be seen in the example for when M is a square in the plane; then S,
is the bottom of the square and S, is the top of the square. Note how the
orientations on 57 and S induced from the the orientation of the square
are indeed opposite.)

Then

/w:/w+/w
oM Cy C2

1 1
= / / —f(0,z2,...,zk)dzs - - - dzp,
0 0

1 1
+/ / fQl,zo,... ,z5)dze - - - dag,
0 0

which we have just shown to equal to [, dw, as desired. O

Now to sketch a false general proof for a manifold M in R™. We will use
that the above argument for a unit cube can be used in a similar fashion
for any cube. Also, any general differential (k — 1)-form will look like:

W = ZfIde:

where each I is a (k-1)-tuple from (1,...,n).

Divide M into many small cubes. Adjacent cubes’ boundaries will have
opposite orientation.
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Then

/ dw & Sum over the cubes / dw
M little cube

= Sum over the cubes / w

a(little cube)
[ w
8(M)

The last approximation is from the fact that since the adjacent boundaries
of the cubes have opposite orientations, they will cancel out. The only
boundary parts that remain are those pushed out against the boundary of
M itself. The final step would be to show that as we take more and more
little cubes, we can replace the above approximations by equalities.

It must be noted that M cannot be split up into this union of cubes.
Working around this difficultly is non-trivial.

Q

6.8 Books

An excellent recent book is Hubbard and Hubbard’s Vector Calculus, Linear
Algebra, and Differential Forms: A Unified Approach [64], which contains a
wealth of information, putting differential forms in the context of classical
vector calculus and linear algebra. Spivak’s Calculus on Manifolds [103] is
for many people the best source. It is short and concise (in many ways
the opposite of Spivak’s leisurely presentation of ¢ and § real analysis in
[102]). Spivak emphasizes that the mathematical work should be done
in getting the right definitions so that the theorems (Stokes’ Theorem in
particular) follow easily. Its briefness, though, makes it possibly not the
best introduction. Fleming’s Functions of Several Variables [37] is also a
good introduction.
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6.9 Exercises

1. Justify why it is reasonable for shuffles to indeed be called shuffles.
(Think in terms of shuffling a deck of cards.)

2. In R3, let dz, dy and dz denote the three elementary 1-forms. Using
the definition of the wedge product, show that

(dz Ady) Adz =da A (dy Adz)

and that these are equal to the elementary 3-form dz A dy A dz.
3. Prove that for any differential k-form w, we have

d(dw) = 0.
4. In R", let do and dy be one-forms. Show that
dz Ady = —dy A dz.

5. Prove Theorem 6.3.1.
6. Show that the map

Wn—k(wr) = T(wn—k A we),

with T : A" R® — R as defined in the chapter, provides a linear map from
A" ¥ R™ to the dual space A* R*.

7. Prove that the unit sphere S? in R? is a two-dimensional manifold, using
each of the three definitions.

8. Consider the rectangle

Y
4

\i
: 4

with opposite sides identified. Show first why this is a torus

and then why it is a two-manifold.
9. The goal of this problem is to show that real projective space is a
manifold. On R™*T! — 0, define the equivalence relation

(mOaxlw-'ymn) ~ ()‘$07)‘w1’-~-7>‘xn)
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for any nonzero real number A. Define real projective n-space by
P" = RO —(0)/ ~.

Thus, in projective three-space, we identify (1,2,3) with (2,4,6) and with
(—10,—20,—30) but not with (2,3,1) or (1,2,5). In P", we denote the
equivalence class containing (xo,...,Z,) by the notation (zg : ... : zy).
Thus the point in P3 corresponding to (1,2,3) is denoted by (1 : 2 : 3).
Then in P3, we have (1:2:3) = (2:4:6) # (1:2:5). Define

¢o :R" - P"
by
do(ur, . yun) =1 :uyt.. i up),
define
¢1 ZRn —)Pn
by
dr1(ury .. up) =(ur i liug ...t uy),

etc., all the way up to a defining a map ¢,. Show that these maps can be
used to make P™ into an n-dimensional manifold.
10. Show that the Stokes’ Theorem of this chapter has as special cases:

a. the Fundamental Theorem of Calculus. (Note that we need to use
the Fundamental Theorem of Calculus to prove Stokes’ Theorem; thus we
cannot actually claim that the Fundamental Theorem of Calculus is a mere
corollary to Stokes’ Theorem.) ‘

b. Green’s Theorem.

c. the Divergence Theorem.

d. the Stokes’ Theorem of Chapter Five.



Chapter 7

Curvature for Curves and
Surfaces

Basic Objects: Curves and surfaces in space
Basic Goal: Calculating curvatures

Most of high school mathematics is concerned with straight lines and planes.
There is of course far more to geometry than these flat objects. Classically
differential geometry is concerned with how curves and surfaces bend and
twist in space. The word “curvature” is used to denote the various measures
of twisting that have been discovered.

Unfortunately, the calculations and formulas to compute the different
types of curvature are quite involved and messy, but whatever curvature is,
it should be the case that the curvature of a straight line and of a plane
must be zero, that the curvature of a circle (and of a sphere) of radius r
should be the same at every point and that the curvature of a small radius
circle (or sphere) should be greater than the curvature of a larger radius
circle (or sphere) (which captures the idea that it is easier to balance on
the surface of the earth than on a bowling ball).

The first introduction to curvature-type ideas is usually in calculus.
While the first derivative gives us tangent line (and thus linear) informa-
tion, it is the second derivative that measures concavity, a curvature-type
measurement. Thus we should expect to see second derivatives in curvature
calculations.

7.1 Plane Curves

We will describe a plane curve via a parametrization:
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r(t) = (z(t),y(8))
and thus as a map
r:R = R

rt) = (x(),y(t)

-
t-axis

Y

The variable t is called the parameter (and is frequently thought of as
time). An actual plane curve can be parametrized in many different ways.
For example,

r1(t) = (cos(t),sin(t))

and
ro(t) = (cos(2t), sin(2t))

both describe a unit circle. Any calculation of curvature should be inde-
pendent of the choice of parametrization. There are a couple of reasonable
ways to do this, all of which can be shown to be equivalent. We will take
the approach of always fixing a canonical parametrization (the arc length
parametrization). This is the parametrization r : [a,b] — R such that the
arc length of the curve is just b — a. Since the arc length is

T

2
we need 4/ (3—;’)2 + (%) = 1. Thus for the arc length parametrization,

the length of the tangent vector must always be one:

|- (@) - (@) -

Back to the question of curvature. Consider a straight line

dr

()| = | -
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4
Y

Note that each point of this line has the same tangent line.
Now consider a circle:

Here the tangent vectors’ directions are constantly changing. This leads
to the idea of trying to define curvature as a measure of the change in the
direction of the tangent vectors. To measure a rate of change we need to
use a derivative. This leads to:

Definition 7.1.1 For a plane curve parametrized by arc length

r(s) = (z(s),y(s)),

define the principal curvature k at a point on the curve to be the length of
the derivative of the tangent vector with respect to the parameter s, i.e.,

- ‘dT(s) '

ds

Consider the straight line r(s) = (as + b, cs + d), where a,b,c and d are
constants. The tangent vector is:

dr
T(s) = = (a,c).
Then the curvature will be
_|dT(s) | _
o= |2 = 10,01 =0,
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as desired.
Now consider a circle of radius a centered at the origin; an arc length

parametrization is
s . /8
r(s) = (a coS (—) ,asin (—)) ,
a a

giving us that the curvature is

%
\

( 1 /8 1. /s
—=cos (—) ,——sin (—)
a a a a
1 1
= \/— cos? (f) + — sin? (f)
a? a a? a
1
e

Thus this definition of curvature does indeed agree with the intuitions about
lines and circles that we initially desired.

7.2 Space Curves

Here the situation is more difficult; there is no single number that will cap-
ture curvature. Since we are interested in space curves, our parametriza-
tions will have the form:

r(s) = (2(s),y(s), 2(s))-

As in last section, we normalize by assuming that we have parametrized by
arc length, i.e.,

dr| |(dz dy dz
ds| |\ds'ds’ds

- (&) (&) ()

= 1L

IT(s)|

Again we start with calculating the rate of change in the direction of the
tangent vector.
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Definition 7.2.1 For a space curve parametrized by arc length

r(s) = (z(s),y(s), 2(s)),
define the principal curvature & at a point to be the length of the derivative
of the tangent vector with respect to the parameter s, i.e.,

_|dT(s)
n—i R,

The number & is one of the numbers that captures curvature. Another is
the torsion, but before giving its definition we need to do some preliminary
work.

Set

The vector N is called the principal normal vector. Note that it has length
one. More importantly, as the following proposition shows, this vector is
perpendicular to the tangent vector T(s).

Proposition 7.2.1
N-T=0

at all points on the space curve.

Proof: Since we are using the arc length parametrization, the length of
the tangent vector is always one, which means

T -T=1

Thus d d
a—g(T -T) = a;(l) =0.

By the product rule we have

d dT 4T dT
G T D=T -+ T=2T
Then 4T
T ’Eg—:'o.

Thus the vectors T and dT

vector N is a scalar multlple of the vector
Set

are perpendicular. Since the principal normal
dT, we have our result. O

B=TxN,
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a vector that is called the binormal vector. Since both T and N have length
one, B must also be a unit vector. Thus at each point of the curve we have
three mutually perpendicular unit vectors T, N and B. The torsion will be
a number associated to the rate of change in the direction of the binormal
B, but we need a proposition before the definition can be given.

Proposition 7.2.2 The vector %133 is a scalar multiple of the principal nor-
mal vector N.

Proof: We will show that % is perpendicular to both T and B, meaning
that %lsé must point in the same direction as N. First, since B has length
one, by the same argument as in the previous proposition, just replacing
all of the Ts by Bs, we get that‘-fg -B=0.

Now
2 - LrxN)
= S xN+HTx T
— (kN xd11:)+(Tx%)
= (Txg.

Thus gd—? must be perpendicular to the vector T. O

Definition 7.2.2 The torsion of a space curve is the number T such that

dB

ds
We need now to have an intuitive understanding of what these two numbers
mean. Basically, the torsion measures how much the space curve deviates
from being a plane curve, while the principal curvature measures the cur-
vature of the plane curve that the space curve wants to be. Consider the
space curve

—7N.

r(s) = (3cos (%) ,3sin (%) ,5),

which is a circle of radius three living in the plane z = 5. We will see that
the torsion is zero. First, the tangent vector is

T(s) = % = (—sin (%) ,COS (%) ,0).

Then d 1 1
d_'f = (_§ cos (g) "3 sin (%) ,0),
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which gives us that the principal curvature is 5. The principal normal
vector is

Then the binormal is

B=TxN=(0,0,1),
and thus

dB

ds
The torsion is indeed zero, reflecting the fact that we are actually dealing

with a plane curve disguised as a space curve.
Now consider the helix

r(t) = (cos(t), sin(t),t).

= (0,0,0) =0 - N.

(cos(t),sin(t),t)

4

It should be the case that the principal curvature should be a positive
constant, as the curve wants to be a circle. Similarly, the helix is constantly
moving out of a plane, due to the ¢ term in the z-coordinate. Hence the
torsion should also be a nonzero constant. The tangent vector

dr

= (—sin(t), cos(t), 1)

does not have unique length. The arc length parametrization for this helix

is simply
r(t) = (cos (%t) i (—\%t) ,—-\}—ﬁ-t).

Then the unit tangent vector is

w0 =g (). ()
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The principal curvature & is the length of the vector

% hon () o ()

1

Thus

kR =
Then the principal normal vector is

N(t) = 2%% = (—cos (\}_it) —sin (—\%t) ,0).
The binormal vector is
B=TxN

- () ()

The torsion 7 is the length of the vector

-(!E—(lco Lt lsi it 0)
a 2\ e )\ e )

and hence we have 1
T = 5

7.3 Surfaces

Measuring how tangent vectors vary worked well for understanding the cur-
vature of space curves. A possible generalization to surfaces is to examine
the variation of the tangent planes. Since the direction of a plane is de-
termined by the direction of its normal vector, we will define curvature
functions by measuring the rate of the change in the normal vector. For
example, for a plane ax + by + ¢z = d, the normal at every point is the
vector

(I
(R B

<a,bc>.
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The normal vector is a constant; there is no variation in its direction. Once
we have the correct definitions in place, this should provide us with the
intuitively plausible idea that since the normal is not varying, the curvature
must be zero.

Denote a surface by

X ={(z,y,2) : f(z,y,2) = 0}.

Thus we are defining our surfaces implicitly, not parametrically. The normal
vector at each point of the surface is the gradient of the defining function,

ie.,
_,0f 9f of

Yoz’ oy’ 027

Since we are interested in how the direction of the normal is changing and
not in how the length of the normal is changing (since this length can be
easily altered without varying the original surface at all), we normalize the
defining function f by requiring that the normal n at every point has length
one:

n=vyf

|n| = 1.
We now have the following natural map:

Definition 7.3.1 The Gauss map is the function
g: X = 8?2,
where S? is the unit sphere in R?, defined by

of )8f

o(p) =n(p) = vf = (5 o1

As we move about on the surface X, the corresponding normal vector moves
about on the sphere. To measure how this normal vector varies, we need
to take the derivative of the vector-valued function ¢ and hence must look
at the Jacobian of the Gauss map:

do: TX — TS?,

where TX and T'5? denote the respective tangent planes. If we choose
orthonormal bases for both of the two dimensional vector spaces T X and
TS?, we can write do as a two-by-two matrix, a matrix important enough
to carry its own name:

Definition 7.3.2 The two-by-two matrixz associated to the Jacobian of the
Gauss map is the Hessian.
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While choosing different orthonormal bases for either 7X and T'92 will
lead to a different Hessian matrix, it is the case that the eigenvalues, the
trace and the determinant will remain constant (and are hence invariants
of the Hessian). These invariants are what we concentrate on in studying
curvature.

Definition 7.3.3 For a surface X, the two eigenvalues of the Hessian are
the principal curvatures.  The determinant of the Hessian (equivalently
the product of the principal curvatures) is the Gaussian curvature and the
trace of the Hessian (equivalently the sum of the principal curvatures) is
the mean curvature.

We now want to see how to calculate these curvatures, in part in order
to see if they agree with what our intuition demands. Luckily there is an
easy algorithm that will do the trick. Start again with defining our surface
X as {(z,y,2) : f(z,y,2) = 0} such that the normal vector at each point
has length one. Define the extended Hessian as

3 O%f)0x* O*f)0xOy O%f/Ox0=
H=|08%f/oxby &*f/Oy* O%f)Oyd=
0%f|0x0z2 O%f)Oy0z O?f]022

(Note that H does not usually have a name.)
At a point p on X choose two orthonormal tangent vectors:

Io}
vy = al'a“:; +bl—a’y‘+01$ =(a1 b )
19} 0 0
vV = 0255 + bz—a’y' +Cza (az b2 c2)
Orthonormal means that we require
a;
V,;-ij(ai bz Ci) bj :61'_7'7
Cj

where ;5 is zero for ¢ # j and is one for ¢ = j. Set
)
hij:(a,- bi Ci)H bj

¢

Then a technical argument, heavily relying on the chain rule, will yield
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Proposition 7.3.1 Coordinate systems can be chosen so that the Hessian
matriz s the matriz H. Thus the principal curvatures for a surface X at
a point p are the eigenvalues of the matriz

ki1 Rz
H =
(h21 hao
and the Gaussian curvature is det(H) and the mean curvature is trace(H).

We can now compute some examples. Start with a plane X given by
(az + by +cz—d=0).

_Since all of the second derivatives of the linear function az - by + cz — d are
zero, the extended Hessian is the three-by-three zero matrix, which means
that the Hessian is the two-by-two zero matrix, which in turn means that
the principal curvatures, the Gaussian and the mean curvature are all zero,
as desired.

Now suppose X = {(z,y,2) : 5=(2® +y? + 2% — r?) = 0}, a sphere of
radius r.

The normal is the unit vector

(x & 5
and the extended Hessian is
VAR
H=|0 Lt 0|==1
o0 ) T

Then given any two orthonormal vectors v, and vs, we have that
Y 1
h,-j=(ai bz C,;)H bJ =;Vi'Vj,
. , o
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and thus that the Hessian is the following diagonal matrix
1
g=(r %)=1r
0 - r

The two principal curvatures are both % and are hence independent of which
point is considered on the sphere, again agreeing with intuition.
For the final example, let X be a cylinder :

X = {(e,,7) : 5@+ = 7%) = 0}.

Since the intersection of this cylinder with any plane parallel to the zy
plane is a circle of radius », we should suspect that one of the principal
curvatures should be the curvature of a circle, namely % But also through
each point on the cylinder there is a straight line parallel to the z-axis,
suggesting that the other principal curvature should be zero. We can now
check these guesses. The extended Hessian is

(oo
H=[0 L 0}.
000

We can choose orthonormal tangent vectors at each point of the cylinder
of the form

vnn=_(a b 0)
and
1)2:(0 0 1).

Then the Hessian is the diagonal matrix

19
7=(5 )
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meaning that one of the principal curvatures is indeed % and the other is
0.

7.4 The Gauss-Bonnet Theorem

Curvature is not a topological invariant. A sphere and an ellipsoid are
topologically equivalent (intuitively meaning that one can be continuously
deformed into the other; technically meaning that there is a topological
homeomorphism from one onto the other) but clearly the curvatures are
different. But we can not alter curvature too much, or more accurately,
if we make the appropriate curvature large near one point, it must be
compensated for at other points. That is the essence of the Gauss-Bonnet
Theorem, which we only state in this section.

We restrict our attention to compact orientable surfaces, which are topo-
logically spheres, toruses, two-holed toruses, three-holed toruses, etc.

N

The number of holes (called the genus g) is known to be the only topolog-
ical invariant, meaning that if two surfaces have the same genus, they are
topologically equivalent.

Theorem 7.4.1 (Gauss-Bonnet) For a surface X, we have
/ Gaussian curvature = 2m(2 — 2g).
X

Thus while the Gaussian curvature is not a local topological invariant, its
average value on the surface is such an invariant. Note that the left-hand
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side of the above equation involves analysis, while the right-hand side is
topological. Equations of the form

Analysis information = Topological information

permeate modern mathematics, culminating in the Atiyah-Singer Index
Formula from the mid 1960s (which has as a special case the Gauss-Bonnet
Theorem). By now, it is assumed that if you have a local differential in-
variant, there should be a corresponding global topological invariant. The
work lies in finding the correspondences.

7.5 Books

The range in texts is immense. In part this is because the differential geom-
etry of curves and surfaces is rooted in the nineteenth century while higher
dimensional differential geometry usually has quite a twentieth century feel
to it. Three long time popular introductions are by do Carmo [29], Mill-
man and Parker [85] and O’Neil [91]. A recent innovative text, emphasizing
geometric intuitions is by Henderson [56]. Alfred Gray [48] has written a
long book built around Mathematica, a major software package for mathe-
matical computations. This would be a good source to see how to do actual
calculations. Thorpe’s text [111] is also interesting.

McLeary’s Geometry from a Differentiable Viewpoint [84] has a lot of
material in it, which is why it is also listed in the chapter on axiomatic
geometry. Morgan [86] has written a short, readable account of Riemannian
geometry. Then there are the classic texts. Spivak’s five volumes [102]
are impressive, with the first volume a solid introduction. The bible of
the 1960s and 70s is Foundations of Differential Geometry by Kobayashi
and Nomizu [74]; though fading in fashion, I would still recommend all
budding differential geometers to struggle with its two volumes, but not as
an introductory text.

7.6 Exercises

1. Let C be the plane curve given by r(¢) = (x(t),y(t)). Show that the
curvature at any point is

3 z! y// _ y/ "
((@')? + (y')2)3/%
(Note that the parametrization r(¢) is not necessarily the arc length parametriza-
tion.)
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2. Let C be the plane curve given by y = f(x). Show that a point p =
(%0, o) is a point of inflection if and only if the curvature at p is zero. (Note
that p is a point of inflection if f"(zp) = 0.)

. 3. For the surface described by

2
z=1z°+ yz_,

find the principal curvatures at each point. Sketch the surface. Does the
sketch provide the same intuitions as the principal curvature calculations?
4. Consider the cone

2 =a+ yz.
Find the image of the Gauss map. (Note that you need to make sure that
the normal vector has length one.) What does this image have to say about
the principal curvatures?
5. Let

A(t) = (a1(t), a2(2), a3(?))
and
B(t) = (bi(t), b2(2), b3(t))

be two 3-tuples of differentiable functions. Show that

d

d A dB
S(AW) - B@) = 22 BE + AW -

d_t.






Chapter 8

Geometry

Basic Objects: Points and Lines in Planes
Basic Goal: Axioms for Different Geometries

The axiomatic geometry of Euclid was the model for correct reasoning from
at least as early as 300 BC to the mid 1800s. Here was a system of thought
that started with basic definitions and axioms and then proceeded to prove
theorem after theorem about geometry, all done without any empirical in-
put. It was believed that Euclidean geometry correctly described the space
that we live in. Pure thought seemingly told us about the physical world,
which is a heady idea for mathematicians. But by the early 1800s, non-
Euclidean geometries had been discovered, culminating in the early 1900s
in the special and general theory of relativity, by which time it became
clear that, since there are various types of geometry, the type of geometry
that describes our universe is an empirical question. Pure thought can tell
us the possibilities but does not appear able to pick out the correct one.
(For a popular account of this development by a fine mathematician and
mathematical gadfly, see Kline’s Mathematics and the Search for Knowledge
73].)

Euclid started with basic definitions and attempted to give definitions
for his terms. Today, this is viewed as a false start. An axiomatic system
starts with a collection of undefined terms and a collection of relations (ax-
ioms) among these undefined terms. We can then prove theorems based
on these axioms. An axiomatic system “works” if no contradictions occur.
Hyperbolic and elliptic geometries were taken seriously when it was shown
that any possible contradiction in them could be translated back into a con-
tradiction in Euclidean geometry, which no one seriously believes contains
a contradiction. This will be discussed in the appropriate sections of this
chapter.
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8.1 Euclidean Geometry

Euclid starts with twenty-three Definitions, five Postulates and five Com-

mon Notions. We will give a flavor of his language by giving a few examples

of each (following Heath’s translation of Euclid’s Elements [32]; another ex-

cellent source is in Cederberg’s A Course in Modern Geometries [17]).
For example, here is Euclid’s definition of a line:

A line 4s breadthless length
and for a surface:
A surface is that which has length and breadth only.

While these definitions do agree with our intuitions of what these words
should mean, to modern ears they sound vague.

His five Postulates would today be called axioms. They set up the basic
assumptions for his geometry. For example, his fourth postulate states:

That all right angles are equal to one another.

Finally, his five Common Notions are basic assumptions about equalities.
For example, his third common notion is

If equals be subtracted from equals, the remainders are equal.

All of these are straightforward, except for the infamous fifth postulate.
This postulate has a different feel than the rest of Euclid’s beginnings.

Fifth Postulate: That, if a straight line folling on two straight lines makes
the interior angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which are the
angles less than the two right angles.

Certainly by looking at the picture

necessary peint
/ of intersection

b\

interior
angles
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we see that this is a perfectly reasonable statement. We would be surprised
if this were not true. What is troubling is that this is a basic assumption.
Axioms should not be just reasonable but obvious. This is not obvious.
It is also much more complicated than the other postulates, even in the
superficial way that its statement requires a lot more words than the other
postulates. In part, it is making an assumption about the infinite, as it
states that if you extend lines further out, there will be an intersection
point. A feeling of uneasiness was shared by mathematicians, starting with
Euclid himself, who tried to use this postulate as little as possible.

One possible approach is to replace this postulate with another one that
is more appealing, turning this troubling postulate into a theorem. There
are a number of statements equivalent to the fifth postulate, but none that
really do the trick. Probably the most popular is Playfair’s Axiom:

Given o point off of a line, there is a unique line through the point
parallel to the given line.

pont p

R @ e »
unique line parallel
to I through p

oy .

linel

Certainly a reasonable statement. Still, it is quite bold to make this a basic
assumption. It would be ideal if the fifth postulate could be shown to be
a statement provable from the other axioms. The development of other
geometries stemmed from the failed attempts in trying to prove the fifth
postulate.

8.2 Hyperbolic Geometry

One method for showing that the fifth postulate must follow from the other
axioms is to assume it is false and find a contradiction. Using Playfair’s
Axiom, there are two possibilities: either there are no lines through the
point parallel to the given line or there are more than one line through the
point parallel to the given line. These assumptions now go by the names:

Elliptic Axiom: Given a point off of a given line, there are no lines through
the point parallel to the line.

This is actually just making the claim that there are no parallel lines,
or that every two lines must intersect (which again seems absurd).
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Hyperbolic Axiom: Given a point off of a given line, there is more than
one line through the point parallel to the line.

What is meant by parallel must be clarified. Two lines are defined to
be parallel if they do not intersect.

Geroloamo Saccheri (1667-1773) was the first to try to find a contra-
diction from the assumption that the fifth postulate is false. He quickly
showed that if there is no such parallel line, then contradictions occurred.
But when he assumed the Hyperbolic Axiom, no contradictions arose. Un-
fortunately for Saccheri, he thought that he had found such a contradiction
and wrote a book, Euclides ab Omni Naevo Vindicatus (Euclid Vindicated
from all Faults), that claimed to prove that Euclid was right.

Gauss (1777-1855) also thought about this problem and seems to have
realized that by negating the fifth postulate, other geometries would arise.
But he never mentioned this work to anybody and did not publish his
results.

It was Lobatchevsky (1793-1856) and Janos Bolyai (1802-1860) who,
independently, developed the first non-Euclidean geometry, now called hy-
perbolic geometry. Both showed, like Saccheri, that the Elliptic Axiom was
not consistent with the other axioms of Euclid, and both showed, again like
Saccheri, that the Hyperbolic Axiom did not appear to contradict the other
axioms. Unlike Saccheri though, both confidently published their work and
did not deign to find a fake contradiction.

Of course, just because you prove a lot of results and do not come up
with a contradiction does not mean that a contradiction will not occur the
next day. In other words, Bolyai and Lobatchevsky did not have a proof
of consistency, a proof that no contradictions could ever occur. Felix Klein
(1849-1925) is the main figure for finding models for different geometries
that would allow for proofs of consistency, though the model we will look
at was developed by Poincaré (1854-1912).

Thus the problem is how to show that a given collection of axioms forms
a consistent theory, meaning that no contradiction can ever arise. The
model approach will not show that hyperbolic geometry is consistent but in-
stead show that it is as consistent as Euclidean geometry. The method is to
model the straight lines of hyperbolic geometry as half circles in Euclidean
geometry. Then each axiom of hyperbolic geometry will be a theorem of
Euclidean geometry. The process can be reversed, so that each axiom of
Euclidean geometry will become a theorem in hyperbolic geometry. Thus,
if there is some hidden contradiction in hyperbolic geometry, there must
also be a hidden contradiction in Euclidean geometry (a contradiction that
no one believes to exist).

Now for the details of the model. Start with the upper half plane
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H = {(z,y) € R? : y > 0}.

.

4 3 2 4 0 1 2 3 4

Our points will be simply the points in H. The key to our model of hy-
perbolic geometry is how we define straight lines. We say that a line is
either a vertical line in H or a half-circle in H that intersects the z-axis
perpendicularly.

line

line

S SLCEEREEPEE PRSP PEPE BEPL U

To see that this is indeed a model for hyperbolic geometry we would have
to check each of the axioms. For example, we would need to check that
between any two points there is a unique line (or in this case, show that
for any two points in H, there is either a vertical line between them or a
unique half-circle between them).

unique line through
p and q
q

3
5

The main thing to see is that for this model the Hyperbolic Axiom is
obviously true.
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What this model allows us to do is to translate each axiom of hyperbolic ge-
ometry into a theorem in Euclidean geometry. Thus the axioms about lines
in hyperbolic geometry become theorems about half-circles in Euclidean
geometry. Therefore, hyperbolic geometry is as consistent as Euclidean
geometry.

Further, this model shows that the fifth postulate can be assumed to
be either true or false; this means that the fifth postulate is independent of
the other axioms.

8.3 Elliptic Geometry

But what if we assume the Elliptic Axiom. Saccheri, Gauss, Bolyai and
Lobatchevsky all showed that this new axiom was inconsistent with the
other axioms. Could we, though, alter these other axioms to come up with
another new geometry. Riemann (1826-1866) did precisely this, showing
that there were two ways of altering the other axioms and thus that there
were two new geometries, today called single elliptic geometry and double
elliptic geometry (named by Klein). For both, Klein developed models and
thus showed that both are as consistent as Euclidean geometry.

In Euclidean geometry, any two distinct points are on a unique line.
Also in Euclidean geometry, a line must separate the plane, meaning that
given any line [, there are at least two points off of I such that the line
segment connecting the two points must intersect [.

For single elliptic geometry, we assume that a line does not separate the
plane, in addition to the Elliptic Axiom. We keep the Euclidean assumption
that any two points uniquely determine a line. For double elliptic geometry,,
we need to assume that two points can lie on more than one line, but now
keep the Euclidean assumption that a line will separate the plane. All of
these sound absurd if you are thinking of straight lines as the straight lines
from childhood. But under the models that Klein developed, they make
sense, as we will now see.

For double elliptic geometry, our “plane” is the the unit sphere, the
points are the points on the sphere and our “lines” will be the great circles
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on the spheres. (The great circles are just the circles on the sphere with
greatest diameter.)

Note that any two lines will intersect (thus satisfying the Elliptic Ax-
iom) and that while most pairs of points will uniquely define a line, points
opposite to each other will lie on infinitely many lines. Thus statements
about lines in double elliptic geometry will correspond to statements about
great circles in Euclidean geometry.

For single elliptic geometry, the model is a touch more complicated. Our
“plane” will now be the upper half-sphere, with points on the boundary
circle identified with their antipodal points, i.e.,

{(z,y,2) : 2° + y* + 2° = 1,2 > 0}/{(=, y,0) is identified with (—z, —y,0)}.

line

L

line

Thus the point on the boundary (<=, —-L-, 0) is identified with the point
V2l V2

(—%, %, 0). Our “lines” will be the great half-circles on the half-sphere.

Note that the Elliptic Axiom is satisfied. Further, note that no line will
separate the plane, since antipodal points on the boundary are identified.
Thus statements in single elliptic geometry will correspond to statements
about great half-circles in Euclidean geometry.

8.4 Curvature

One of the most basic results in Euclidean geometry is that the sum of the
angles of a triangle is 180 degrees, or in other words, the sum of two right
angles.
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Recall the proof. Given a triangle with vertices P, () and R, by Playfair’s
Axiom there is a unique line through R parallel to the line spanned by P
and . By results on alternating angles, we see that the the angles o, §
and - must sum to that of two right angles.

Note that we needed to use Playfair’s axiom. Thus this result will not
necessarily be true in non-Euclidean geometries. This seems reasonable if
we look at the picture of a triangle in the hyperbolic upper half-plane and
of a triangle on the sphere of double elliptic geometry.

<>~ (A
S Sy

What happens is that in hyperbolic geometry the sums of the angles of
a triangle are less than 180 degrees while, for elliptic geometries, the sum
of the angles of a triangle will be greater than 180 degrees. It can be
shown that the smaller that the area of the triangle is, the closer the sum
of the triangle’s angles will be to 180 degrees. This in turn is linked to
the Gaussian curvature. It is the case (though it is not obvious) that
methods of measuring distance (i.e., metrics) can be chosen so that the
different types of geometry will have different Gaussian curvatures. More
precisely, the Gaussian curvature of the Euclidean plane will be zero, of
the hyperbolic plane will be —1 and of the elliptic planes will be 1. Thus
differential geometry and curvature are linked to the axiomatics of different
geometries.

8.5 Books

One of the best popular books in mathematics of all time is Hilbert and
Cohn-Vossens’ Geometry and the Imagination [58]. All serious students
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should study this book carefully. One of the 1900s best geometers (someone
who actually researched in areas that nonmathematicians would recognize
as geometry), Coxeter, wrote a great book, Introduction to Geometry [23].
More standard, straightforward texts on various types of geometry are by
Gans [44], Cederberg [17] and Lang and Murrow [81] . Robin Hartshorne’s
Geometry: Euclid and Beyond [55] is an interesting recent book. Also,
McLeary’s Geometry from a Differentiable Viewpoint [84] is a place to see
both non-Euclidean geometries and the beginnings of differential geometry.

8.6 Exercises

1. This problem gives another model for hyperbolic geometry. Our points
will be the points in the open disc:

D ={(z,y): 2 +y* < 1}.

The lines will be the arcs of circles that intersect perpendicularly the bound-
ary of D. Show that this model satisfies the Hyperbolic Axiom.

2. Show that the model in problem 1 and the upper half plane model are
equivalent, if, in the upper half plane, we identify all points at infinity to a
single point.
3. Give the analogue of Playfair’s Axiom for planes in space.
4. Develop the idea of the upper half space so that if P is a “plane” and p
is a point off of this plane, then there are infinitely many planes containing
p that do not intersect the plane P.
5. Here is another model for single elliptic geometry. Start with the unit
disc

D ={(z,y): 2* +y* < 1}.
Identify antipodal points on the boundary. Thus identify the point (a,b)

with the point (—a, —b), provided that a? 4+ 5% = 1. Our points will be the
points of the disc, subject to this identification on the boundary.
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(a,b)

('a:'b)

Lines will in this model be Euclidean lines, provided they start and end at
antipodal points. Show that this model describes a single elliptic geometry.
6. Here is still another model for single elliptic geometry. Let our points
be lines through the origin in space. Our lines in this geometry will be
planes through the origin in space. (Note that two lines through the origin
do indeed span a unique plane.) Show that this model describes a single
elliptic geometry.

7. By looking at how a line through the origin in space intersects the top
half of the unit sphere

{(xayaz):x2+y2+zz =landz_>_0},

show that the model given in problem 6 is equivalent to the model for single
elliptic geometry given in the text.
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Complex Analysis

Basic Object: The complex numbers
Basic Map: Analytic functions
Basic Goal: Equivalences of analytic functions

Complex analysis in one variable studies a special type of function (called
analytic or holomorphic) mapping complex numbers to themselves. There
are a number of seemingly unrelated but equivalent ways for defining an
analytic function. Each has its advantages; all should be known.

We will first define analyticity in terms of a limit (in direct analogy
with the definition of a derivative for a real-valued function). We will then
see that this limit definition can also be captured by the Cauchy-Riemann
equations, an amazing set of partial differential equations. Analyticity will
then be described in terms of relating the function with a particular path
integral (the Cauchy Integral Formula). Even further, we will see that a
function is analytic if and only if it can be locally written in terms of a
convergent power series. We will then see that an analytic function, viewed
as a map from R? to RZ, must preserve angles (which is what the term
conformal means), provided that the function has a nonzero derivative.
Thus our goal is:

Theorem 9.0.1 Let f : U — C be a function from an open set U of the
complex numbers to the complex numbers. The function f(2) is said to be
analytic if it satisfies any of the following equivalent conditions:

a) For all zo € U,

lim f(2) = f(20)

2=r20 zZ—20

exists. This limit is denoted by f'(20) and is called the complex derivative.
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b) The real and imaginary parts of the function f satisfy the Cauchy-
Riemann equations:

ORe(f)  OIm(f)
or Oy

and
ORe(f) _ _aIm(f).

oy oz
¢) Let o be a counterclockwise simple loop in U such that every interior

point of o is also in U. If zg is any complex number in the interior of o,
then

1 f(z)
=— | —~da2.
f(z0) 2mi J, 2 — 20 ?
d) For any complex number zo, there is an open neighborhood in U of
2o in which

fz) = an(z—20)",
n=0

a uniformly converging series.
Further, if f is analytic at a point zo and if f'(25) # 0, then at 2o, the
function f is conformal (i.e., angle-preserving), viewed as a map from R?
to R>.

There is a basic distinction between real and complex analysis. |Real
analysis studies, in essence, differentiable functions; this is not a major re-
striction on functions at all. Complex analysis studies analytic functions;
this is a major restriction on the type of functions studied, leading to the
fact that analytic functions have many amazing and useful properties. An-
alytic functions appear throughout modern mathematics and physics, with
applications ranging from the deepest properties of prime numbers to the
subtlety of fluid flow. Know this subject well.

9.1 Analyticity as a Limit

For the rest of this chapter, let U denote an open set of the complex numbers
C.

Let f : U — C be a function from our open set U of the complex
numbers to the complex numbers.

Definition 9.1.1 At a point zp € U, the function f(z) is analytic (or
holomorphic) if

Lo 1) = (o)

zZ—rz0 z — 20
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exists. This limit is denoted by f'(2¢) and is called the derivative.

Of course, this is equivalent to the himit

g TG0+ 1) = £ (20)
h—0 h

existing for h € C.

Note that this is exactly the definition for a function f : R =+ R to
be differentiable if all C’s are replaced by R’s. Many basic properties
of differentiable functions (such as the product rule, sum rule, quotient
rule, and chain rule) will immediately apply. Hence, from this perspective,
there does not appear to be anything particularly special about analytic
functions. But the involved limits are not limits on the real line but limits in
the real plane. This extra complexity creates profound distinctions between
real differentiable functions and complex analytic ones, as we will see.

Our next task is to give an example of a nonholomorphic function. We
need a little notation. The complex numbers C form a real two dimensional
vector space. More concretely, each complex number z can be written as
the sum of a real and imaginary part:

z=z+1y.

4y .

X+Hy

y+ .

2T 1tai
} t } t =X
-2 1 X
-2-.3| .l
The complex conjugate of z is

Z=1x—1y.

Note that the square of the length of the complex number z as a vector in
R? is
z + y2 = 2Z.
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Keeping in tune with this notion of length, the product zZ is frequently
denoted by:
2z =|z|.
Fix the function
f)=z=z—1y.

We will see that this function is not holomorphic. The key is that in the
definition we look at the limit as A — 0 but A must be allowed to be any
complex number. Then we must allow h to approach 0 along any path in
C, or in other words, along any path in R2. We will take the limit along
two different paths and see that we get two different limits, meaning that
Z is not holomorphic.

For convenience, let zg = 0. Let h be real valued. Then for this A we
have [ =F©) _ . h

AT R0 AR

Now let h be imaginary, which we label, with an abuse of notation, by hi,
with A now real. Then the limit will be:

. f(hi)—f(0) .. —hi _
W im0 AR ¢

Since the two limits are not equal, the function Z cannot be a holomorphic
function.

9.2 Cauchy-Riemann Equations

For a function f : U — C, we can split the image of f into its real and
imaginary parts. Then, using that

z=z+ 11y = (z,y),

we can write f(z) = u(z) +iv(z) as

f(@,y) = u(z,y) + iv(z,y).

For example, if f(z) = 22, we have
fz) = 2
= (z+iy)’®
= 22 —y% + 2zyi.

Then the real and imaginary parts of the function f will be:

u(z,y) = z°—y°
v(z,y) = 2zy.
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The goal of this section is to capture the analyticity of the function f by
having the real-valued functions u and v satisfy a special system of partial
differential equations.

Definition 9.2.1 Real-valued functions u,v : U = R satisfy the Cauchy-
Riemann equations if

Ou(z,y) _ Ov(z,y)
oxr Oy

and

Ou(x,y) _ Ov(z,y)
oy or

Though not at all obvious, this is the most important system of partial
differential equations in all of mathematics, due to its intimate connection
with analyticity, described in the following theorem.

Theorem 9.2.1 A complez-valued function f(z,y) = u(z,y) + iv(z,y) is
analytic at a point zg = g + iye if and only if the real-valued functions
u(z,y) and v(z,y) satisfy the Cauchy-Riemann equations at 2.

We will show that analyticity implies the Cauchy-Riemann equations

and then that the Cauchy-Riemann equations, coupled with the condition
that the partial derivatives ‘g;‘, %, ‘gZ and Ql’- are continuous, imply analyt-

icity. This extra assumption requiring the contmulty of the various partials
is not needed, but without it the proof is quite a bit harder.

Proof: We first assume that at a point zp = zg + iyo,

g £ G0+ ) = £(z0)

=0 h

exists, with the limit denoted as usual by f'(2¢). The key is that the number
h is a complex number. Thus when we require the above limit to exist as
h approaches zero, the limit must exist along any path in the plane for A
approaching zero.
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4 A
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possible paths to zg

A
4

The Cauchy-Riemann equations will follow by choosing different paths for
h.
First, assume that h is real. Then

f(zo +h) = f(xo + h,y) = uw(zo + h,y) + iv(zo + h,y).

By the definition of analytic function,

. flzo+ h) — f(20)
1 _
f (ZO) - }{1_;1’% h
~  lim u(xo + h,y0) + iv(zo + h, yo) — (u(zo, yo) + iv(zo, o))
- h—0 h
- m u(xo + h,Yo) — u(o, Yo) +ilim v(zo + h,yo) ~ v(z0, Yo)
h—0 h h—0 h

0 .0
= 8_Z(x0)y0)+7’8_;):(x0)y0)7

by the definition of partial derivatives.
Now assume that h is always purely imaginary. For ease of notation we
denote h by hi, h now real. Then

f(zo0 + hi) = f(zo,y0 + h) = u(zo, yo + h) + iv(zo, yo + h).
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We have, for the same complex number f'(zo) as before,

f(zo +ih) — f(z0)

/ _
flz) = h—>0 ih
— lim u(2o, o + h) +iv(zo, Yo + h) — (u(zo, yo) + iv(Zo, Yo))
) ih '
_ 1, ulzoyt+h) - u(ﬂfo,yo) o 20,50 + h) — v(zo, %)
1 h—>0 h h—>0 h
, ov
= —Za—y(xo,yo) + %(l’o,yo),
by the definition of partial differentiation and since % = —1.

But these two limits are both equal to the same complex number f'(zp).

Hence
du . Ov Ou  Ov

_Z'_

%—1-2‘(9—1:: ay-i-‘@-

Since g;‘, g:, gZ’ and are all real-valued functions, we must have
Ou _ 0Ov
dxr Oy
ou ov
dy Oz’

the Cauchy-Riemann equations.

Before we can prove that the Cauchy-Riemann equations (plus the extra
assumption of continuity on the partial derivatives) imply that f(z) is an-
alytic, we need to describe how complex multiplication can be interpreted
as a linear map from R? to R? (and hence as a 2 x 2 matrix).

Fix a complex number a+bi. Then for any other complex number z+iy,
we have

(a + b)(z +y) = (az — by) +i(ay + bx).

Representing  + ¢y as a vector (7) in R?, we see that multiplication by
a + bi corresponds to the matrix multiplication

a —=b z\  faz—by
b a y) \br+ay)’
As can be scen, not all linear transformations (52) : R* — R? correspond

to multiplication by a complex number. In fact, from the above we have

(¢n)

Lemma 9.2.1 The matriz
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corresponds to multiplication by a complex number a + bi if and only if
A=D=aqaand B=-C = —-b.

Now we can return to the other direction of the theorem. First write
our function f: C — C asamap f: R? - R? by

e = (o)

As described in Chapter Three, the Jacobian of f is the unique matrix

Df = ( g_(xo’yo) g—(wo,yo) )
5 (2 o

zo,%0) g (Z0,Yo)
satisfying
| ( w(z,y) > _ ( u(Zo, Yo) ) —Df. ( T —Zo ) l
. ’l)(l',y) v($07y0) Yy—Y%
hrr% = 0.
Pl |(z ~ @0,y — yo)|
But the Cauchy-Riemann equations, %’3—:— = 3 Y and a’; = ——~ , tell us that

this Jacobian represents multiplication by a complex number Call this
complex number f'(zp). Then, using that z = z + iy and zp = zo + iyo, we
can rewrite the above limit as

lm | f(z) — f(z0) — f'(20)(z —20) | _ 0.

z—rzo | 2 — 2o |

This must also hold without the absolute value signs and hence

f(2) = f(z0) — f'(20)(# ~ 20)

0 = lim
z—20 z— 2
= i 12200 gy
Thus
f(eo) = Jigy LEL=1LC0)

will always exist, meaning that the function f : C — C is analytic. O
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9.3 Integral Representations of Functions

Analytic functions can also be defined in terms of path integrals about
closed loops in C. This means that we will be writing analytic functions as
integrals, which is what is meant by the term integral representation. We
will see that for a closed loop o,

4

the values of an analytic function on interior points are determined from the
values of the function on the boundary, which places strong restrictions on
what analytic functions can be. The consequences of this integral represen-
tation of analytic functions range from the beginnings of homology theory
to the calculation of difficult real-valued integrals (using residue theorems).

We first need some preliminaries on path integrals and Green’s Theorem.
Let o be a path in our open set U. In other words, ¢ is the image of a
differentiable map

o:[0,1] = U.

o(1)=(x(1).y(1))

0)=(x(0}.y(0
— O0)={X(0)¥(0) )

- -
% l Lo

Writing o () = (2(¢),y(t)), with z denoting the real coordinate of C and y
the imaginary coordinate, we have:

Definition 9.3.1 If P(z,y) and Q(z,y) are real-valued functions defined
on an open subset U of R® = C, then

/de—i—Qdy:/O P(Il;(t)’y(t))fl_::dt-i_/o Q(x(t)’y(t))%dt



180 CHAPTER 9. COMPLEX ANALYSIS
If f:U — Cis a function written as

f(2) = f(z,y) = u(z,y) + iv(z,y) = u(z) +iv(2),
then
Definition 9.3.2 The path integral [ f(z)dz is defined by

/f(z)dz = /(u(m,y)+iv(x,y))(dm+idy)
/(U(fl?,y)‘*'iv(x,y))dw‘*‘/(iu(w,y)—v(x,y))dy

o

The goal of this section is to see that these path integrals have a number
of special properties when the function f is analytic.

A path o is a closed loop in U if there is a parametrization o : [0,1] - U
with ¢(0) = o(1).

o(0)=0(1)

Note that we are using the same symbol for the actual path and for the

parametrization function. The loop is simple if o(t)#o(s), for all s#t,
except for when ¢ or s is zero or one.

notsimple

We will require all of our simple loops to be parametrized so that they are
counterclockwise around their interior. For example, the unit circle is a
counterclockwise simple loop, with parametrization

a(t) = (cos(2nt),sin(2nt)).
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A

o(t)=(cos(27tt) sin(271))
A

We will be interested in the path integrals of analytic functions around
counterclockwise simple loops. Luckily, there are two key, easy examples
that demonstrate the general results. Both of these examples will be in-
tegrals about the unit circle. Consider the function f : C — C defined
by

fR)Y=z=z+1y.

Then

./Uf(z)dz = /ozdz

= /(x + iy)(dz +idy)

= /(x +iy)dz + /(:m —y)dy

= /1 (cos(2nt) + i sin(27rt))% cos(2nt)dt
0

1
+ / (i cos(2nt) — sin(27rt))§z sin(2nt)d¢
0
= 0,
when the integral is worked out.

On the other hand, consider the function f(z) = . On the unit circle
we have |2|> = 2Z = 1 and hence L =Z. Then

/af(z)dz = /a g;— = /dez = /(cos(27rt) — isin(2nt))(dz + idy)

= 2mi,
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when the calculation is performed. We will soon see that the reason that the
path integral fg d7z equals 277 for the unit circle is that the function % is not

well-defined in the interior of the circle (namely at the origin). Otherwise
the integral would be zero, as in the first example. Again, though not at
all apparent, these are the two key examples.

The following theorems will show that the path integral of an analytic
function about a closed loop will always be zero if the function is also
analytic on the interior of the loop.

We will need, though, Green’s. Theorem:

Theorem 9.3.1 (Green’s Theorem) Let o be a counterclockwise simple
loop in C and Q its interior. If P(z,y) and Q(z,y) are two real-valued
differentiable functions, then

/,de+Qdy://gz(%§——%§) dzdy.

'y

The proof is exercise 5 in Chapter Five.
Now on to Cauchy’s Theorem:

Theorem 9.3.2 (Cauchy’s Theorem) Let ¢ be a counterclockwise sim-
ple loop in an open set U such that every point in the interior of o is
contained in U. If f : U — C is an analytic function, then

/af(z)dz =0.

Viewing the path integral [ f(z)dz as some sort of average of the values
of f(2) along the loop o, this theorem is stating the average value is zero
for an analytic f. By the way, this theorem is spectacularly false for most
functions, showing that those that are analytic are quite special.
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Proof: (under the additional hypothesis, which can be removed with some
work, that the complex derivative f'(z) is continuous).

Write f(2) = u(z) + iv(z), with u(2) and v(z) real-valued functions.
Since f(z) is analytic we know that the Cauchy-Riemann equations hold:

ou _ov
dx Oy
and
ou_o
Oy Oz’
Now

/of(z)dz = /U(u + iv)(dz + idy)
= /(udm —vdy) +1 /(udy + vdz)

[ [ (G- 5) =

by Green’s Theorem, where as before € denotes the interior of the closed
loop o. But this path integral must be zero by the Cauchy-Riemann equa-
tions. O

Note that while the actual proof of Cauchy’s Theorem was short, it used
two major earlier results, namely the equivalence of the Cauchy-Riemann
equations with analyticity and Green’s Theorem.

This theorem is at the heart of all integral-type properties for analytic
functions. For example, this theorem leads (nontrivially) to the following,
which we will not prove:

Theorem 9.3.3 Let f : U — C be analytic in an open set U and let o
and & be two simple loops so that o can be continuously deformed to & in
U (i.e., o and & are homotopic in U). Then

/Uf(z)dz:/&f(z)dz.

Intuitively, two loops are homotopic in a region U if one can be continuously
deformed into the other within U. Thus
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o1 and o9 are homotopic to each other in the region U but not to o3 in this
region (though all three are homotopic to each other in C). The technical
definition is:

Definition 9.3.3 Two paths o1 and o2 are homotopic in a region U if
there is a continuous map

T:[0,1]x[0,1] > U

with
T(t,0) = o1()

and
T(t,1) = o0a(t).

O1(t)=T(1,0)

O2(t)=T(1,1)

\\

T(t1)

In the statement of Cauchy’s Theorem, the requirement that all of the
points in the interior of the closed loop ¢ be in the open set U can be
restated as requiring that the loop ¢ is homotopic to a point in U.

We also need the notion of simply connected. A set U in C is simply
connected if every closed loop in U is homotopic in U to a single point.
Intuitively, U is simply connected if U contains the interior points of every
closed loop in U. For example, the complex numbers C is simply connected,
but C—(0,0) is not simply connected, since C—(0,0) does not contain the
unit disc, even though it does contain the unit circle.
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We will soon need the following slight generalization of Cauchy’s The-
orem:

Proposition 9.3.1 Let U be a simply connected open set in C. Let f :
U — C be analytic except possibly at a point zp but continuous everywhere.
Let o be any counterclockwise simple loop in U. Then

/a f(z)dz =0,

The proof is similar to that of Cauchy’s Theorem; the extension is that we
have to guarantee that all still works even if the point zg lies on the loop o.
All of these lead to:

Theorem 9.3.4 (Cauchy Integral Formula) Let f : U — C be ana-
lytic on a simply connected open set U in C and let o be a counterclockwise
simple loop in U. Then for any point zg in the interior of o, we have

fl) = = [ L8 4,

2wt J, 220

The meaning of this theorem is that the value of the analytic function f at
any point in the interior of a region can be obtained by knowing the values
of f on the boundary curve.

Proof: Define a new function g(z) by setting

g(z) = M,

z— 20

when z # z¢ and setting
9(2) = f'(z0)

when z = zp.
Since f(z) is analytic at zg, by definition we have

fl(zo) — lim f(Z) - f(zo),
z—rzg Z - 20
meaning that the new function g(z) is continuous everywhere and analytic
everywhere except for possibly at z.

Then by the last theorem we have [ g(z)dz = 0. Thus

0= f(2) —f(Zo)dz _ f(2) 4z f(z0) dz.

s Z—20 - 220 ¢ 220
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Then
1@, [ )

e 2 — 20 e Z— 20

= f(ZO)/ z_lzodz,

since f(zg) is just a fixed complex number. But this path integral is just
our desired 27i f(zo), by direct calculation, after deforming our simple loop
o to a circle centered at 29. O

In fact, the converse is also true.

Theorem 9.3.5 Let o be a counterclockwise simple loop and f : 0 — C
any continuous function on the loop o. Extend the function f to the interior
of the loop o by setting

G

277@ - Z— zo

f(z0) =

for points zy in the interior. Then f(z) is analytic on the interior of o.
Further, f is infinitely differentiable with

k! z
fk(zo) = %‘/a —(z _in;k+1 dz.

Though a general proof is in most books on complex analysis, we will
only sketch why the derivative f'(zp) is capable of being written as the path

integral
1 f(z)
27i /a (2 — 20)? dz.

For ease of notation, we write

Then

16 = ofG)

- él(zm u{(iU)z )
- &3 (.

= 2m / (w —z)2
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as desired.

Note that in this theorem we are not assuming that the original function
f o0 — C was analytic. In fact the theorem is saying that any continuous
function on a simple loop can be used to define an analytic function on the
interior. The reason that this can only be called a sketch of a proof was
that we did not justify the pulling of the derivative % inside of the integral.

9.4 Analytic Functions as Power Series

Polynomials a,z" +ap—12"" 1 +- - -+ag are great functions to work with. In
particular they are easy to differentiate and to integrate. Life would be easy
if all we ever had to be concerned with were polynomials. But this is not
the case. Even basic functions such as e?, log(z) and the trig functions are
just not polynomials. Luckily though, all of these functions are analytic,
which we will see in this section means that they are almost polynomials,
or more accurately, glorified polynomials, which go by the more common
name as power series. In particular the goal of this section is to prove:

Theorem 9.4.1 Let U be an open set in C. A function f : U — C is
analytic at zg if and only if in a neighborhood of zy, f(z) is equal to a
uniformly convergent power series, i.e.,

f(z) = Z an(z — 29)".
n=0

Few functions are equal to uniformly convergent power series (these “glo-
rified polynomials”). Thus we will be indeed showing that an analytic
function can be described as such a glorified polynomial.

Note that if

1@ = Y an(z—20)"

= a0+a1(z—zo)+a2(z—zo)2+~-,

we have that

f (Zo) = ag,
fz0) = a,
F@(20) = 2as,

f(k) (20) = k!ak.
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Thus, if f(2) =Y. or,an(z — 20)", we have

n=0

the function’s Taylor series. In other words, the above theorem is simply
stating that an analytic function is equal to its Taylor series.

We first show that any uniformly convergent power series defines an
analytic function by reviewing quickly some basic facts about power series
and then sketching a proof.

Recall the definition of uniform convergence, given in Chapter Three.

Definition 9.4.1 Let U be a subset of the complex numbers C. A sequence
of functions, f, : A = C, converges uniformly to a function f : U — C if
given any € > 0, there is some positive integer N such that for alln > N,

1fn(2) — f(2)] <e,
for all points z in U.

In other words, we are guaranteed that eventually all the functions f,(z)
will fall within any e-tube about the limit function f(z).

The importance of uniform convergence for us is the following theorem,
which we will not prove here:

Theorem 9.4.2 Let the sequence {f.(2)} of analytic functions converge
uniformly on an open set U to a function f : U — C. Then the function
f(2) is also analytic and the sequence of derivatives (f,,(z)) will converge
pointwise to the derivative f'(z) on the set U.

Now that we have a definition for a sequence of functions to converge
uniformly, we can make sense out of what it would mean for a series of func-
tions to converge uniformly, via translating series statements into sequence
statements using the partial sums of the series.

Definition 9.4.2 A series Y . an(2—20)", for complez numbers a,, and

zp, converges uniformly in an open set U of the complex numbers C if the
. N n ) )

sequence of polynomials {d,_, an(z — 20)"} converges uniformly in U.

By the above theorem and since polynomials are analytic, we can con-
clude that if

f2) = anlz —20)"
n=0

is a uniformly convergent series, then the function f(z) is analytic.
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Now to sketch why any analytic function can be written as a uniformly
convergent power series. The Cauchy Integral Formula from last section
will be critical.

Start with a function f which is analytic about a point zo. Choose a
simple loop ¢ about zg. By the Cauchy Integral Formula,

10 = 5 [ 24w,

for any z inside .

*z

F
¥

Knowing that the geometric series is

for | r | <1, we see that, for all w and z with |z — 2| < |w — 2|, we have

1 1 1
w—2z w—zy 1—Z22

w—20
o0
1 Z zZ— 20 "
- w— 2y w— 29

n=0

Restrict the numbers w to lie on the loop ¢. Then for those complex
numbers z with |z — zo| < |w — 20/,
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{z such that 1z-zpl< dis(zg,O)}

we have

1) = %/——“w’d
_ flw 1
o 271'2/ —zo 1— £2=20 duw

- o[ (52 w
- 2—7”./ zwf:".io (222)
- fi"zo(Z:z‘;)"dw
f(

Z - 0)n7

1

2T

oo
a convergent power series.

Of course the above is not quite rigorous, since we did not justify the

switching of the integral with the sum. It follows, nontrivially, from the
n
fact that the series 3 o (;;_ZZ%) converges uniformly.
Note that we have also used the Cauchy Integral Formula, namely that

n n! f(w)
f¢ )( 0) = 2_m/(w—zo)”+1dw'
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9.5 Conformal Maps

We now want to show that analytic functions are also quite special when one
looks at the geometry of maps from R? to R2. After defining conformal
maps (the technical name for those maps that preserve angles), we will
show that an analytic function will be conformal at those points where its
derivative is nonzero. This will be seen to follow almost immediately from
the Cauchy-Riemann equations.
Before defining angle-preserving, we need a description for the angle

between curves. Let

o1 :[-1,1] = R?,
with 01(t) = (z1(¢),91(t)), and

o3 : [-1,1] = R?,

with g2(t) = (z2(t), y2(¢)), be two differentiable curves in the plane which
intersect at

01(0) = 02(0).
The angle between the two curves is defined to be the angle between the
curves’ tangent vectors.

angle belween
O4 and O
»

Thus we are interested in the dot product between the tangent vectors of

the curves:
d0'1 d0'2 _ d.’I)l dy1 dwz dy2
@@ (E’E)'(E’E)
_ dz; dzo dyx dys
dt dt ' dt dt

Definition 9.5.1 A function f(z,y) = (u(z,y),v(z,y)) will be conformal
at a point (o, yo) if the angle between any two curves intersecting at (xg,yo)
is preserved, i.e., the angle between curves oy and oo is equal to the angle
between the image curves f(o1) and f(o2).
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Thus

Y

B

is conformal while

f
™

not conformal
Oz

C1 i(o2)

KO1)

3
¥
I Y

Y

is not.

Theorem 9.5.1 An analytic function f(z) whose derivative at the point
zo is not zero will be conformal at zg.

Proof : The tangent vectors are transformed under the map f by multi-
plying them by the two-by-two Jacobian matrix for f. Thus we want to
show that multiplication by the Jacobian preserves angles. Writing f in its
real and imaginary parts, with z = z + iy, as

f(Z) = f(xay) = u(wﬁl/) + z'v(ac,y),

the Jacobian of f at the point z¢ = (zo,yg) will be

D f(zo,y0) = ( g:gxo,yo) gy(mo,yo) )

0sY0) 3y Y (z0,Y0)
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But the function f is analytic at the point zy and hence the Cauchy-
Riemann equations

Ou ov

a—m(xo,yo) = a—y(wo,yo)
15} 15}
—'B_Z(mo,yo) = gg(wo,yo)

hold, allowing us to write the Jacobian as

5y (@o,y0)  Gu(wo,v0)
Df(zo,y0) =\ 8, O 1y, '
f(zo, 7o) < — %4 (z0,90)  §L(20,%0)

fw

Note that the columns of this matrix are orthogonal (i.e., their dot product
is zero). This alone shows that the multiplication by the Jacobian will
preserve angle. We can also show this by explicitly multiplying the Jacobian
by the two tangent vectors %L and d—;’tl and then checking that the dot
product between ‘%‘ and %2- is equal to the dot product of the image
tangent vectors. O

This proof uses the Cauchy-Riemann equation approach to analyticity.
A more geometric (and unfortunately a more vague) approach is to look
carefully at the requirement for

lim f(zo+h) — f(z)

h—0 h

to exist, no matter what path is chosen for A to approach zero. This
condition must place strong restrictions on how the function f alters angles.

This also suggests how to approach the converse. It can be shown
(though we will not) that a conformal function f must satisfy either the
limit for analyticity

lm f(z0 + 1) — f(20)

h—0 h

or that the limit holds for the conjugate function f

Yim Fz0 +h) — f(20) ’
h—0 h

where the conjugate function of f(2) = u(z) + iv(2) is

f(2) = u(z) — iv(z).
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9.6 The Riemann Mapping Theorem

Two domains Dy and Dy are said to be conformally equivalent if there is a
one-to-one onto conformal map

f:Dy o Ds.

If such a function f exists, then its inverse function will also be conformal.
Since conformal basically means that f is analytic, if two domains are
conformally equivalent, then it is not possible to distinguish between them
using the tools from complex analysis. Considering that analytic functions
are special among functions, it is quite surprising that there are clean results
for determining when two domains are conformally equivalent. The main
result is:

Theorem 9.6.1 (Riemann Mapping Theorem) Two simply connected
domains, neither of which are equal to C, are conformally equivalent.

(Recall that a domain is simply connected if any closed loop in the
domain is homotopic to a point in the domain, or intuitively, if every closed
loop in the domain can be continuously shrunk to a point.) Frequently this
result is stated as: for any simply connected domain D that is not equal to
C, there is a conformal one-to-one onto map from D to the unit disc. Thus

A

is conformally equivalent to

F 3

N

N\
\
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The Riemann Mapping Theorem, though, does not produce for us the de-
sired function f. In practice, it is an art to find the conformal map. The
standard approach is to first find conformal maps from each of the domains
to the unit disc. Then, to conformally relate the two domains, we just
compose various maps to the disc and inverses of maps to the disc.

For example, consider the right half plane

D —{z € C:Re(z) > 0}.

N

= .\\=

1—2

The function

f(z) =

provides our conformal map from D to the unit disc. This can be checked
by showing that the boundary of D, the y-axis, maps to the boundary of
the unit disc. In this case, the inverse to f is f itself.

The Riemann Mapping Theorem is one reason why complex analysts
spend so much time studying the function theory of the disc, as knowledge
about the disc can be easily translated to knowledge about any simply
connected domain.

In several complex variables theory, all is much more difficult, in large
part because there is no higher dimensional analogue of the Riemann Map-
ping Theorem. There are many simply connected domains in C™ that are
not conformally equivalent.
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9.7 Several Complex Variables: Hartog’s

Theorem
Let f(z1,...,2,) be a complex-valued function of n complex variables. We
say that f is holomorphic (or analytic) in several variables if f(z1,...,2n)

is holomorphic in each variable z; separately. Although many of the basic
results for one variable analytic functions can be easily carried over to the
several variable case, the subjects are profoundly different. These differ-
ences start with Hartog’s Theorem, which is the subject of this section.

Consider the one-variable function f(z) = . This function is holomor-
phic at all points except at the origin, where it is not even defined. Tt is
thus easy to find a one-variable function that is holomorphic except for at
one point. But what about the corresponding question for holomorphic
functions of several variables? Is there a function f(z1,...,z,) that is holo-
morphic everywhere except at an isolated point? Hartog’s theorem is that
no such function can exist.

Theorem 9.7.1 (Hartog’s Theorem) Let U be an open connected re-
gion in C" and let V be a compact connected set contained in U. Then any
function f(z1,...,2,) that is holomorphic on U —V can be extended to a
holomorphic function that is defined on all of U.

This certainly includes the case when V is an isolated point. Before
sketching a proof for a special case of this theorem, consider the following
question that is now quite natural, namely, is there a natural condition on
open connected sets U so that there will exist holomorphic functions on U
that cannot be extended to a larger open set. Such sets U are called domains
of holomorphy. Hartog’s Theorem says that regions like U — (isolated point)
are not domains of holomorphy. In fact, a clean criterion does exist and
involves geometric conditions on the boundary of the open set U (techni-
cally, the boundary must be pseudoconvex). Hartog’s Theorem opens up a
whole new world of phenomena for several complex variables.

One way of thinking about Hartog’s Theorem is in considering the func-
tion H, where both f and g are holomorphic, as a possible coun-
terexarmple. If we can find a holomorphic function g that has a zero at an
isolated point or even on a compact set, then Hartog’s Theorem will be
false. Since Hartog’s Theorem is indeed a theorem, an analytic function in
more than one variable cannot have a zero at an isolated point. In fact,
the study of the zero locus g(z1,...,2,) = 0 leads to much of algebraic and
analytic geometry.

Now to sketch a proof of Hartog’s Theorem, subject to simplifying as-
sumptions that U is the polydisc

U={(z,w):|z| <1,|w| <1}
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and that V is the isolated point (0,0). We will also use the fact that if two
functions that are holomorphic on an open connected region U are equal
on an open subset of U, then they are equal on all of U. (The proof of this
fact is similar to the corresponding result in one-variable complex analysis,
which can be shown to follow from exercise three at the end of this chapter.)

Let f(z,w) be a function that is holomorphic on U — (0,0). We want to
extend f to be a holomorphic function on all of U. Consider the sets z = ¢,
where ¢ is a constant with |¢| < 1. Then the set

(z=9) (U - (0,0))

is an open disc of radius one if ¢ # 0 and an open disc punctured at the
origin if ¢ = 0. Define a new function by setting

F(z,w) = L/l - Mdv.

T 2w 1 V—w
2

This will be our desired extension. First, the function F is defined at all
points of U, including the origin. Since the z variable is not varying in the
integral, we have by Cauchy’s Integral Formula that F'(z,w) is holomorphic
in the w variable. Since the original function f is holomorphic with respect
to the z variable, we have that F is holomorphic with respect to z; thus F
is holomorphic on all of U. But again by Cauchy’s Integral Formula, we
have that F' = f when z # 0. Since the two holomorphic functions are
equal on an open set of U, then we have equality on U — (0,0).

The general proof of Hartog’s Theorem is similar, namely to reduce the
problem to slicing the region U into a bunch of discs and punctured discs
and then using Cauchy’s Integral Formula to create the new extension.

9.8 Books

Since complex analysis has many applications, there are many beginning
textbooks, each emphasizing different aspects of the subject. An excellent
introduction is in Marsden and Hoffman’s Basic Complex Analysis [83].
Palka’s An Introduction to Complex Function Theory [92] is also an excellent
text. (I first learned complex analysis from Palka.) A recent beginning book
is Greene and Krantz’ Function Theory of One Complex Variable [49]. For
a rapid fire introduction, Spiegels’ Complexz Variables [101] is outstanding,
containing a wealth of concrete problems.

There are a number of graduate texts in complex analysis, which do
start at the beginning but then build quickly. Ahlfors’ book [1] has long
been the standard. It reflects the mathematical era in which it was written
(the 1960s) and thus approaches the subject from a decidedly abstract point
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of view. Conway’s Functions of One Complez Variable [21] has long been
the prime competitor to Ahlfors for the beginning graduate student market
and is also quite good. The recent book by Berenstein and Gay [8] provides
a modern framework for complex analysis. A good introduction to complex
analysis in several variables is Krantz’ Function Theory in Several Variables
[77].

Complex analysis is probably the most beautiful subject in undergradu-
ate mathematics. Neither Krantz’ Complex Analysis: The Geometric View-
point [78] nor Davis’ The Schwarz Function and its Applications [25] are
textbooks but both show some of the fascinating implications contained in
complex analysis and are good places to see how how analytic functions
can be naturally linked to other parts of mathematics.

9.9 Exercises

1. Letting z = z + ¢y, show that the function
f(z) = f(z,y) = ¢

is not analytic. Show that it does not satisfy the Cauchy Integral Formula

1 (2)
=— | ——d
f(z0) i J, 2 — 20 “
for the case when 2y = 0 and when the closed loop ¢ is the circle of radius
one centered at the origin.
2. Find a function f(z) that is not analytic, besides the function given in
problem one. If you think of f(2) as a function of the two variables

fz,y) = u(z,y) + iv(z,y),

almost any choice of functions u and v will work.

3. Let f(2) and g(z) be two analytic functions that are equal at all points
on a closed loop o. Show that for all points z in the interior of the closed
loop we have the two functions equal. As a hint, start with the assumption
that g(z) is the zero function and thus that f(z) is zero along the loop o.
Then show that f(z) must also be the zero function inside the loop.

4. Find a one-to-one onto conformal map from the unit disc {(z,y) : % +
y% < 1} to the first quadrant of the plane {(z,y) : z > 0 and y > 0}.

—.
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5. Let z1, 22 and 23 be three distinct complex numbers. Show that we can
find numbers a, b, ¢ and d with ad — bc = 1 such that the map

az+b
cz +d

T(z) =

maps z; to 0, 22 to 1 and z3 to 2. Show that the numbers a,b, ¢ and d are
uniquely determined, up to multiplication by —1.

6. Find ffooo —1%5 as follows:
/ dz
y 1+2%

a. Find
where v = 7 + 72 is the closed loop in the complex plane

Y1

- [
o P

-R l Y2 R

4

consisting of the path
"= {Re"o :0 < On}

and
¥y = {(z,0) € R*: —R < z < R}.

b. Show that

lim dz

=0.
R—o0 - 1+ 22

¢. Conclude with the value for ffooo 13‘_22.
(This is a standard problem showing how to calculate hard real integrals
easily. This is a hard problem if you have never used residues before; it
should be straightforward if you have.)
7. The goal of this problem is to construct a conformal map from the unit
sphere (minus the north pole) to the complex numbers. Consider the sphere
2 = {(5,9,2) : 0 + 4% +2° = 1}.

a. Show that the map

7:8%—(0,0,1) = C

defined by

T .Y
1—z+21—z

n(x,y,z) =
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is one-to-one, onto and conformal.

b. We can consider the complex numbers C as sitting inside R?® by
mapping z + iy to the point (z,y,0). Show that the above map 7 can be
interpreted as the map that sends a point (z,y,2) on S% — (0,0,1) to the
point on the plane (z = 0) that is the intersection of the plane with the line
through (z,y,z) and (0,0,1).

(0,0,1)

&

c. Justify why people regularly identify the unit sphere with CUoco.



Chapter 10

Countability and the
Axiom of Choice

IBasic goal: Comparing infinite setsl

Both countability and the axiom of choice grapple with the elusive notions
behind “infinity”. While both the integers Z and the real numbers R are
infinite sets, we will see that the infinity of the reals is strictly larger than
the infinity of the integers. We will then turn to the Axiom of Choice,
which, while straightforward and not an axiom at all for finite sets, is deep
and independent from the other axioms of mathematics when applied to
infinite collections of sets. Further, the Axiom of Choice implies a number
of surprising and seemingly paradoxical results. For example, we will show
that the Axiom of Choice forces the existence of sets of real numbers that
cannot be measured.

10.1 Countability

The key is that there are different orders or magnitudes of infinity. The
first step is to find the right definition for when two sets are of the same
size. -

Definition 10.1.1 A set A is finite of cardinality n if there is a one-to-
one onto function from the set {1,2,3,---,n} to A. The set A is countably
infinite if there is a one-to-one onto function from the natural numbers
N ={1,2,3,...,} to A. A set that is either finite or countably infinite is
said to be countable. A set A is uncountably infinite if it is not empty and
not countable.
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For example, the set {a,b, c} is finite with 3 elements. The more troubling
and challenging examples appear in the infinite cases.
For example, the positive even numbers

2N = {2)4-7 6,8)' : '},

while properly contained in the natural numbers IN, are of the same size as
N and hence are countably infinite. An explicit one-to-one onto map

f:N—=2N
is f(n) = 2 - n. Usually this one-to-one correspondence is shown via:

10 12

—_ e D
e
W e— e
S o
e
o r—w e

N

The set of whole numbers {0,1,2,3,...} is also countably infinite, as seen
by the one-to-one onto map

F:N=1{0,1,2,3,..}

given by
f(n)=n-1.

Here the picture is

o
N
(&)
S
o

—_ s
e ¢ —
¢ ——— o
Dot
U e ———
o) ¢t ——

N
W

The integers Z are also countably infinite. The picture is

1]
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while an explicit one-to-one onto function

f:N->Z
is, for even n,
n
f(n)= 3
and, for odd n,
n—1

It is typical for the picture to be more convincing than the actual function.
The rationals

Q={1—q):p,q_€Z,q9é0}

are also countably infinite. The picture for showing that the positive ratio-
nals are countably infinite is as follows:

Every positive rational appears in the above array and will eventually be
hit by a natural number.
In fact

Theorem 10.1.1 Let A and B be two countably infinite sets. Then the
Cartesian product A X B is also countably infinite.
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Proof: Since both A and B are in one-to-one correspondence with the
natural numbers IN, all we need show is that the product N x N is countably
infinite. For N x N = {(n,m) : n,m € N}, the correct diagram is:

(1.5) (1.6)

More algebraically, but less clearly, an explicit one-to-one onto map
F:NxN->N

is
f(m,n) = (n+m_2)2(n+m—1) +m

Note that the fact that N x N is the same size as N is of course in
marked contrast to the finite case. To make this painfully obvious, consider
A = {a,b,c}, a set with three elements. Then A x A is the nine element
set {(a,a), (a,b),(a,c), (b,a),(b,b),(b,c), (c,a), (c,b),(c,c) }.

There are infinite sets which, in some sense, are of size strictly larger
than the natural numbers. Far from being esoteric, the basic example is
the set of real numbers; the reals, while certainly not finite, are also not
countably infinite.

We will give the famed Cantor diagonalization argument showing that
the real numbers [0,1] = {z € R: 0 < z < 1} cannot be countable.

. a

Theorem 10.1.2 The interval [0,1] is not countable.

Proof : The proof is by contradiction. We assume that there is a one-to-
one onto map f : N — [0,1] and then find a real number in [0, 1] that is
not in the image, contradicting the assumption that f is onto. We will use
that every real number in [0, 1] can be expressed as a decimal expansion

0..’1?1(1)2.’173(1)4 ey
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where each zx is 0,1,2,3,... or 9. To make this expansion unique, we will
always round up, except for the case 0.99999... which we leave as is. Thus
0.32999... will always be written as 0.3300.

Now let us take our assumed one-to-one correspondence f : N — [0, 1]
and start writing down its terms. Let

f(1) = .ayazaz---,
f(2) = .bibgbs---,
f@) = .aces-,
f4) = .didads---,
f(5) = .ejezez---,

and so forth. Note that the a;, b;, etc. are now fixed numbers between 0
and 9, given to us by the assumed one-to-one correspondence. They are
not variables.

We will construct a new real number .N; No N3Ny ... which will never
appear in the above list, forcing a contradiction to the assumption that f

is onto. Set
N, ={ 4 ifthe kthentry of f(k) # 4
= 5, if the ktPentry of f(k) =4

(The choice of the numbers 4 and 5 are not important; any two integers
between 0 and 9 would do just as well.)
Note that N; is 4 if a; # 4 and is 5 if a; = 4. Thus, no matter what,

.N1N2N3 e ;é a1ag ... = f(l)
Likewise Ny is 4 if by # 4 and is 5 if b2 = 4 and hence
.N1N2N3 .o 75 .b2b2b3 cae = f(2)

This continues. Since our decimal expansions are unique, and since each
Ny, is defined so that it is not equal to the k" term in f(k), we must have
that .N; Ny N3 - - - is not equal to any f(k), meaning that f cannot be onto.
Thus there can never be an onto function from the natural numbers to
the interval [0,1]. Since the reals are certainly not finite, they must be
uncountably infinite.

10.2 Naive Set Theory and Paradoxes

The question of what is a mathematical object was a deep source of debate
in the last part of the eighteenth and first part of the nineteenth century.
There has only been at best a partial resolution, caused in part by Gédel’s
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work in logic and in part by exhaustion. Does a mathematical object exist
only if an algorithm can be written that will explicitly construct the object
or does it exist if the assumption of its existence leads to no contradictions,
even if we can never find an example? The tension between constructive
proofs versus existence proofs has in the last thirty years been eased with
the development of complexity theory. The constructive camp was led by
Kronecker (1823-1891), Brouwer (1881-1966) and Bishop (1928-1983). The
existential camp, led by Hilbert (1862-1943), won the war, leading to most
mathematicians’ belief that all of mathematics can be built out of a correct
set-theoretic foundation, usually believed to be an axiomatic system called
Zermelo-Fraenkel plus the Axiom of Choice (for a list of those axioms, see
Paul Cohen’s Set Theory and the Continuum Hypothesis [20] Chapter II,
Sections 1 and 2). This is in spite of the fact that few working mathemati-
cians can actually write down these axioms, which certainly suggests that
our confidence in our work does not stem from the axioms. More accurately,
the axioms were chosen and developed to yield the results we already know
to be true. In this section we informally discuss set theory and then give
the famed Zermelo-Russell paradox, which shows that true care must be
exercised in understanding sets.

The naive idea of a set is pretty good. Here a set is some collection of
objects sharing some property. For example

{n : nis an even number}

is a perfectly reasonable set. Basic operations are union, intersection and
complement. We will see now how to build integers out of sets.

First for one subtlety. Given a set A, we can always form a new set,
denoted by {A}, which consists of just one element, namely the set A. If
A is the set of all even integers and thus containing an infinite number of
elements, the set {A} has only one element. Given a set A, we define the
successor set A as the union of the set A with the set {A}. Thus z € A*
if either z € A or x = {A}.

We start with the empty set @, the set that contains no elements. This
set will correspond to the integer 0. Then we label the successor to the
empty set by 1:

1=0%={0},

the successor to the successor of the empty set by 2:
2= (®+)+ = {0, {0}}>

and in general the successor to the set n by n + 1.
By thinking of the successor as adding by one, we can recover by recur-
sion addition and thus in turn multiplication, subtraction and division.
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Unfortunately, just naively proceeding along in this fashion will lead
to paradoxes. We will construct here what appears to be a set but which
cannot exist. First, note that sometimes a set can be a member of itself
and sometimes not (at least if we are working in naive set theory; much of
the mechanics of Zermelo-Fraenkel set theory is to prevent such nonchalant
assumptions about sets). For example, the set of even numbers is not itself
an even number and hence is not an element of itself. On the other hand,
the set of all elements that are themselves sets with more than two elements
is a member of itself. We can now define our paradoxical set. Set

X = {A:Ais aset that does not contain itself}
= {A:A¢ A}

Is the set X an element of itself? If X € X, then by the definition of X,
we must have X ¢ X, which is absurd. But if X ¢ X, then X € X, which
is also silly. There are problems with allowing X to be a set. This is the
Zermelo-Russell paradox

Do not think this is just a trivial little problem. Russell (1872-1970)
reports in his autobiography that when he first thought of this problem
he was confident it could easily be resolved, probably that night after din-
ner. He spent the next year struggling with it and had to change his whole
method of attack on the foundations of mathematics. (Russell, with White-
head 1861-1947), did not use set theory but instead developed type theory;
type theory is abstractly no better or worse than set theory, but mathe-
maticians base their work on the language of set theory, probably by the
historical accident of World War II, which led US mathematicians to be
taught by German refugees, who knew set theory, as Zermelo (1871-1953
was German.)

Do not worry too much about the definitions of set theory. You should
be nervous, though, if your sets refer to themselves, as this is precisely what
led to the above difficulty.

10.3 The Axiom of Choice

The axioms in set theory were chosen and developed to yield the results we
already know to be true. Still, we want these axioms to be immediately ob-
vious. Overall, this is the case. Few of the actual axioms are controversial,
save for the Axiom of Choice, which states:

Axiom 10.3.1 (Axiom of Choice) Let {X,} be a family of nonempty
sets. Then there is a set X which contains, from each set X, exactly one
element.



208 CHAPTER 10. COUNTABILITY AND THE AXIOM OF CHOICE

For a finite collection of sets, this is obvious and not at all axiomatic
(meaning that it can be proven from other axioms). For example, let X; =
{a,b} and X5 = {c,d}. Then there is certainly a set X containing one
element from X, and one element from Xs; for example, just let X = {a,c}.

The difficulties start to arise when applying the axiom to an infinite
(possibly uncountably infinite) number of sets. The Axiom of Choice gives
no method for finding the set X; it just mandates the existence of X. This
leads to the observation that if the Axiom of Choice is needed to prove the
existence of some object, then you will never be able to actually construct
that object. In other words, there will be no method to actually construct
the object; it will merely be known to exist.

Another difficulty lies not in the truth of the axiom of choice but in the
need to assume it as an axiom. Axioms should be clear and obvious. No
one would have any difficulty with its statement if it could be proven to
follow from the other axioms.

In 1939, Kurt Godel showed that the Axiom of Choice is consistent with
the other axioms. This means that using the Axiom of Choice will lead to
no contradictions that were not, in some sense, already present in the other
axioms. But in the early 1960s, Paul Cohen [20] showed that the Axiom
of Choice was independent of the other axioms, meaning that it cannot be
derived from the other axioms and hence was truly an axiom. In particular,
one can agsume that the Axiom of Choice is false and still be confident that
no contradictions will arise.

A third difficulty with the Axiom of Choice is that it is equivalent to any
number of other statements, some of which are quite bizarre. To see some
of the many equivalences to the Axiom of Choice, see Howard and Rubin’s
Consequences of the Aziom of Choice [62]. One of these equivalences is the
subject of the next section.

10.4 Non-measurable Sets

Warning: This section will assume a working knowledge of Lebesgue mea-
sure on the real numbers. In particular, we will need that

o If a set A is measurable, its measure m(A) is equal to its outer
measure m*(A4).

o If A;, As,... are disjoint sets that are measurable, then the union is
measurable, with
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This last condition corresponds to the idea that if we have two sets with
lengths a and b, say, then the length of the two sets placed next to each
other should be a + b. Also, this example closely follows the example of a
nonmeasurable set in Royden’s Real Analysis [95].

We will find a sequence of disjoint sets Ay, Aa, ..., all of which have the
same outer measure and hence, if measurable, the same measure, whose
union is the unit interval [0,1]. Since the Lebesgue measure of the unit
interval is just its length, we will have

If each A; is measurable, since the measures are equal, this would mean
that we can add a number to itself infinitely many times and have it sum
to one. This is absurd. If a series converges, then the individual terms in
the series must converge to zero. Certainly they cannot all be equal.

The point of this section is that to find these sets A;, we will need to use
the Axiom of Choice. This means that we are being fairly loose with the
term “find”, as these sets will in no sense actually be constructed. Instead,
the Axiom of Choice will allow us to claim their existence, without actually
finding them.

We say that z and y in € [0, 1] are equivalent, denoted by z = y, if z—y
is a rational number. It can be checked that this is an equivalence relation
(see Appendix A for the basic properties of equivalence relations) and thus
splits the unit interval into disjoint equivalency classes.

We now apply the Axiom of Choice to these disjoint sets. Let A be the
set containing exactly one element from each of these equivalency classes.
Thus the difference between any two elements of A cannot be a rational
number. Note again, we do not have an explicit description of A. We have
no way of knowing if a given real number is in A, but, by the Axiom of
Choice, the set A does exist. In a moment we will see that A cannot be
measurable.

We will now find a countable collection of disjoint sets, each with the
same outer measure as the outer measure of the set A, whose union will be
the unit interval. Now, since the rational numbers in [0, 1] are countable,
we can list all rational numbers between zero and one as rg,r1,72,.... For
convenience, assume that ro = 0. For each rational number r;, set

A;i=A+r;(mod1).
Thus the elements of A; are of the form

a + r; — greatest integer part of (a + r;).
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In particular, A = Ap. It is also the case that for all 2
m*(A) = m*(4;),

which is not hard to show, but is mildly subtle since we are not just shifting
the set A by the number r; but are then modding out by one.

We now want to show that the A; are disjoint and cover the unit interval.
First, assume that there is a number z in the intersection of A; and A;.
Then there are numbers a; and a; in the set A such that

z =a;+7; (mod 1) = a; +r; (mod 1).

Then a;—a; is a rational number, meaning that a; = a;, which forces ¢ = j.
Thus if 7 # 7, then
AN Aj ={.

Now let = be any element in the unit interval. It must be equivalent to
some element a in A. Thus there is a rational number 7; in the unit interval
with either

r=a+riora=x47;.

In either case we have x € A;. Thus the A; are indeed a countable collection
of disjoint sets that cover the unit interval. But then we have the length of
the unit interval as an infinite series of the same number:

1= Zm(A,) = Zm(A)a

which is impossible. Thus the set A cannot be measurable.

10.5 Godel and Independence Proofs

In the debates about the nature of mathematical objects, all agreed that
correct mathematics must be consistent (i.e., it should not be possible to
both prove a statement and its converse). Eventually it was realized that
most people were also implicitly assuming that mathematics was complete
(meaning that any mathematical statement must ultimately be capable
of being either proven or disproven). David Hilbert wanted to translate
both of these goals into precise mathematical statements, each capable of
rigorous proof. This attempt became known as Formalism. Unfortunately
for Hilbert’s school, K. Godel (1906-1977) in 1931 destroyed any of these
hopes. Godel showed:

Any aziomatic system strong enough to include basic arithmetic must have
statements in it that can be neither proven nor disproven, within the system.
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Further, the example Gédel gave of a statement that could be neither proven
nor disproven was that the given aziomatic system was itself consistent.

Thus in one fell swoop, G&del showed that both consistency and com-
pleteness were beyond our grasp. Of course, no one seriously thinks that
modern mathematics has within it a hidden contradiction. There are state-
ments, though, that people care about that are not capable of being proven
or disproven within Zermelo-Fraenkel set theory. The Axiom of Choice is
an example of this. Such statements are said to be independent of the other
axioms of mathematics. On the other hand, most open questions in math-
ematics are unlikely to be independent of Zermelo-Fraenkel set theory plus
the Axiom of Choice. One exception is the question of P=NP (discussed in
Chapter Sixteen), which many are now believing to be independent of the
rest of mathematics.

10.6 Books

For many years the best source for getting an introduction to set theory has
been Halmos’ Naive Set Theory [53], which he wrote, in large part, to teach
himself the subject. A more recent text is Moschovakis’ Notes on Set Theory
[87]. - An introduction, not to set theory, but to logic is Incompleteness
Phenomenon by Goldstern and Judah [46]. A slightly more advanced text,
by a tremendous expositor, is Smullyan’s Gddel’s Incompleteness Theorems
[100]. A concise, high level text is Cohen’s Set Theory and the Continuum
Hypothesis [20].

A long time popular introduction to Gédel’s work has been Nagel and
Newman’s Gédel’s Proof [89]. This is one of the inspirations for the amazing
book of Hofstadter, Gédel, Escher and Bach [61]. Though not precisely a
math book, it is full of ideas and should be read by everyone. Another
impressive recent work is Hintikka’s Principles of Mathematics, Revisited
[60]. Here a new scheme for logic is presented. It also contains a summary
of Hintikka’s game-theoretic interpretation of Gédel’s work.

10.7 Exercises
1. Show that the set

{az® + bz +c:a,b,c € Q}

of all one variable polynomials of degree two with rational coefficients is
countable.
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2. Show that the set of all one variable polynomials with rational coefficients
is countable.
3. Show that the set

{ao + a1z + azz® + ... : ag, a1, 0a9,... € Q}

of all formal power series in one variable with rational coefficients is not
countable.
4. Show that the set of all infinite sequences consisting of zeros and twos
is uncountable. (This set will be used to show that the Cantor set, which
will be defined in Chapter Twelve, is uncountable.)
5. In section two, the whole numbers were defined as sets. Addition by one
was defined. Give a definition for addition by two and then a definition in
general for whole numbers. Using this definition, show that 2+ 3 =3 + 2.
6.(Hard) A set S is partially ordered if there is an operation < such that
given any two elements z and y, we have z < y, y < ¢, £ = y or = and
y have no relationship. The partial ordering is a total ordering if it must
be the case that given any two elements = and y, it must be the case that
z <y, y <zxorz=y. For example, if S is the real numbers, the standard
interpretation of < as less than places a total ordering on the reals. On the
other hand, if S is the set of all subsets of some other set, then a partial
ordering would exist if we let < denote set containment. This is not a total
ordering since given any two subsets, it is certainly not the case that one
must be contained in the other. A partially ordered set is called a poset.

Let S be a poset. A chain in S is a subset of S on which the partial
ordering becomes a total ordering. Zorn’s Lemma states that if S is a poset
such that every chain has an upper bound, then S contains a maximal
element. Note that the upper bound to a chain need not be in the chain
and that the maximal element need not be unique.

a. Show that the Axiom of Choice implies Zorn’s Lemma.

b. Show that Zorn’s Lemma implies the Axiom of Choice (this is quite
a bit harder).
7. (Hard) The Hausdorff Maximal Principle states that every poset has a
maximal chain, meaning a chain that is not strictly contained in any other
chain. Show that the Hausdorfl Maximal Principle is equivalent to the
Axiom of Choice.
8. (Hard) Show that the Axiom of Choice (via the Hausdorfl Maximal
Principle) implies that every field is contained in an algebraically closed
field. (For the definitions, see Chapter Eleven.)



Chapter 11

Algebra

Basic Objects: Groups and rings
Basic Maps: Group and ring homomorphisms

While current abstract algebra does indeed deserve the adjective abstract,
it has both concrete historical roots and modern day applications. Central
to undergraduate abstract algebra is the notion of a group, which is the
algebraic interpretation of the geometric idea of symmetry. We can see
something of the richness of groups in that there are three distinct areas
that gave birth to the correct notion of an abstract group: attempts to
find (more accurately, attempts to prove the inability to find) roots of
polynomials, the study by chemists of the symmetries of crystals, and the
application of symmetry principles to solve differential equations.

The inability to generalize the quadratic equation to polynomials of
degree greater than or equal to five is at the heart of Galois Theory and
involves the understanding of the symmetries of the roots of a polynomial.
Symmetries of crystals involve properties of rotations in space. The use
of group theory to understand the symmetries underlying a differential
equation leads to Lie Theory. In all of these the idea and the applications
of a group are critical.

11.1 Groups

This section presents the basic definitions and ideas of group theory.

Definition 11.1.1 A nonempty set G that has a binary operation

GxG—d,



214 CHAPTER 11. ALGEBRA

denoted for all elements a and b in G by a - b, is a group if:
i)There is an element e € G such thate-a=a-e = a, for all a in G.
(The element e is of course called the identity.)
ii) For any a € G, there is an element denoted by a™! such that aa™! =
a"la =e. (Naturally enough, a=! is called the inverse of a.)
iii) For all a,b,c € G, we have (a-b)-c=a" (b-c) (i.e., we must have
associativity).

1

Note that commutativity is not required.

Now for some examples. Let GL(n,R) denote the set of all n x n
invertible matrices with real coefficients. Under matrix multiplication, we
claim that GL(n,R) is a group. The identity element of course is simply

the identity matrix
1 --- 0

0 --- 1

The inverse of an element will be its matrix inverse. The check that matrix
multiplication is associative is a long calculation. The final thing to check
is to see that if A and B are invertible n X n matrices, then their product,
A-B, must be invertible. From the key theorem of linear algebra, a matrix is
invertible if and only if its determinant is nonzero. Using that det(A-B) =
det(A) det(B), we have

det(A - B) = det(A) - det(B) # 0.

Thus GL(n,R) is a group.
Note that for almost any choice of two matrices

A-B#B-A.

The group is not commutative. Geometrically, we can interpret the ele-
ments of GL(n,R) as linear maps on R™. In particular, consider rotations
in three-space. These do not commute (showing this is an exercise at the
end of this chapter). Rotations can be represented as invertible 3 x 3 matri-
ces and hence as elements in GL(3,R). If we want groups to be an algebraic
method for capturing symmetry, then we will want rotations in space to
form a group. Hence we cannot require groups to be commutative. (Note
that rotations are associative, which is why we do require groups to be
associative.)

The key examples of finite groups are the permutation groups. The
permutation group, S,,, is the set of all permutations on n distinct elements,
The binary operation is composition while the identity element is the trivial
permutation that permutes nothing.
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To practice with the usual notation, let us look at the group of permu-
tations on three elements:
Sz = {e, (12), (13), (23), (123), (132)}.

Of course we need to explain the notation. Fix an ordered triple (a1, as, as)
of numbers. Here order matters. Thus (cow, horse,dog) is different from
the triple (dog, horse, cow). Each element of S3 will permute the ordering
of the ordered triple. Specifically, the element (12) permutes (a1, as,a3) to
(a2, a, a3):

12
(a17a2)a3) ('_)) (a2) ay, a3)'

For example, the element (12) will permute (cow, horse,dog) to the triple
(horse, cow, dog). The other elements of the group S3 act as follows: (13)
permutes (a1, az,as3) to (as,az,a1) :

13
(a1,02,a3) (3 (a3,asz,a1),

(23) permutes (a1, a2,a3) to (a1, as,az):

23
(a1,02,03) ¥ (a1, a3, 02),
(123) permutes (a1, as,as) to (a3, a1, as):

123

(alaa2aa3) ('_)) (a3aa1,a'2),

(132) permutes (a1, a2, ag) to (as,az,a1):
132
(a17a27a3) ('_)) (0/2,0/3,041),
and of course the identity element e leave the triple (a1, as, as) alone:

(a1,a2,a3) “ (a1, 02, a3).

By composition we can multiply the permutations together, to get the
following multiplication table for Ss:

e | (12) | (13) | (23) | (123) | (132)

e e | (12) | (13) | (23) [ (123) | (132)

12) [ 12) | e | (123) | 132) | (13) | (23)

(13) | (13) | (132) | e | (123) ] (23) | (12)

(23) 7 (@3) (@) [ 1B | e | 1@ | (13)
(123) | (123) | (23) | (12) | (13) | (132) | e

(132) | (132) | (13) | (23).| (12) | e | (123)




216 CHAPTER 11. ALGEBRA

Note that Ss is not commutative. In fact, S is the smallest possible non-
commutative group. In honor of one of the founders of group theory, Niels
Abel, we have:

Definition 11.1.2 A group that is commutative is abelian.

The integers Z under addition form an abelian group. Most groups are
not abelian.

We want to understand all groups. Of course, this is not actually doable.
Hopefully we can at least build up groups from possibly simpler, more basic
groups. To start this process, we make the following definition:

Definition 11.1.3 A nonempty subset H of G is a subgroup if H is itself
a group, using the binary operation of G.

For example, let

H = a1 a2 O

ann a2 O (
0 0 1

1 ‘“2) € GL(2,R))
a22

Then H is a subgroup of the group GL(3,R) of invertible 3 x 3 matrices.
Definition 11.1.4 Let G and G be two groups. Then a function

c:G—= G
is a group homomorphism if for all g1,92 € G,
o(g1 - g2) = a(g1) - o(g2)-
For example, let A € GL(n,R). Define ¢ : GL(n,R) - GL(n,R) by
o(B) = AT'BA.
Then for any two matrices B,C € GL(n,R)), we have
o(BC)=A"'BCA
= A"'BAATICA
=o(B) - o(C).

There is a close relationship between group homomorphisms and a spe-
cial class of subgroup. Before we can exhibit this, we need:

Definition 11.1.5 Let H be a subgroup of G. The (left) cosets of G are
all sets of the form
gH ={gh:he H},

for g € G.
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This defines an equivalence class on G, with
g~4g

if the set gH is equal to the set gH, i.e., if there is an h € H with gh = g.
In a natural way, the right cosets are the sets

Hg={hg:he H},
which also define an equivalence relation on the group G.
Definition 11.1.6 A subgroup H is normal if for all g in G, gHg™! = H.

Theorem 11.1.1 Let H be a subgroup of G. The set of cosets gH, under
the binary operation

gH -gH = ggH,

will form a group if and only if H is a normal subgroup. (This group is
denoted by G/H and pronounced G mod H.)

Sketch of Proof: Most of the steps are routine. The main technical
difficulty lies in showing that the binary operation

(gH) - (§H) = (99H)

is well defined. Hence we must show that the set gH - §H, which consists
of the products of all elements of the set gH with all elements of the set
gH, is equal to the set ggH. Since H is normal, we have

gH(9)™' = H.

Then as sets
gH = Hjg.
Thus
gHgH = ggH - H = ggH,

since H - H = H, as H is a subgroup. The map is well defined.

The identity element of G/H is e - H. The inverse to gH is g71H.
Associativity follows from the associativity of the group G. O

Note that in writing gH - §H = ggH, one must keep in mind that H
is representing every element in H and thus that H is itself not a single
element.

As an application of this new group G/H, we now define the cyclic
groups Z/nZ. Here our initial group is the integers Z and our subgroup
consists of all the multiples of some fixed integer n:

nZ ={nk: k € Z}.
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Since the integers form an abelian group, every subgroup, including nZ, is
normal and thus Z/nZ will form a group, It is common to represent each
coset in Z/nZ by an integer between 0 and n — 1:

Z/nZ ={0,1,2,...,n—1}.

For example, if we let n = 6, we have Z/6Z = {0, 1, 2, 3,4, 5}. The addition
table is then

oy i W o= O]+
Ulwlo|—iolo
Q| OY x| GO bO| | =
= OO ] L2 D DN
N = Of Ot o[ O] W2
WD) = D) O ]
] o DN O Oy O

An enjoyable exercise is proving the following critical theorem relating
normal subgroups and group homomorphisms.

Theorem 11.1.2 Let o : G — G be a group homomorphism. If
ker(c) = {g € G : o(g) = &, the identity of G},

then ker(o) is a normal subgroup of G. (This subgroup ker(o) is called the
kernel of the map o.)

The study of groups is to a large extent the study of normal subgroups.
By the above, this is equivalent to the study of group homomorphisms and
is an example of the mid-twentieth century tack of studying an object by
studying its homomorphisms.

The key theorem in finite group theory, Sylow’s Theorem, links the
existence of subgroups from the knowledge of the number of elements in a

group.

Definition 11.1.7 The order of a group G, denoted by | G |, is equal to
the number of elements in G.

For example, | S3 |= 6.

Theorem 11.1.3 (Sylow’s Theorem) Let G be a finite group.
a) Let p be a prime number. Suppose that p® divides | G |. Then G has
a subgroup of order p®.
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b) If p™ divides | G | but p"T1 does not, then for any two subgroups H
and H of order p™, there is an element g € G with gHg™! = H.

c) If p™ divides | G | but p™*! does not, then the number of subgroups
of order p™ is 1+ kp, for some k a positive integer.

Proofs can be found in Herstein’s Topics in Algebra [57], Section 2.12.
The importance lies in that we gather quite a bit of information about
a finite group from merely knowing how many elements it has.

11.2 Representation Theory

Certainly one of the basic examples of groups is that of invertible n x
n matrices. Representation theory studies how any given abstract group
can be realized as a group of matrices. Since n X n matrices, via matrix
multiplication on column vectors, are linear transformations from a vector
space to itself, we can rephrase representation theory as the study of how
a group can be realized as a group of linear transformations.

If V is a vector space, let GL(V) denote the group of linear transfor-
mations from V to itself.

Definition 11.2.1 A representation of a group G on a vector space V is
a group homomorphism
p:G = GL(V).

We say that p is o representation of G.

For example, consider the group S; of permutations on three elements.
There is quite a natural representation of S; on three space R3. Let

a1
as € R3.

as

If o € S3, then define the map p by:

ay - Ao (1)
p(o) | a2 | =| ao(2)
as Gy (3)

For example, if 0 = (12), then

ai as
,0(12) as = ax
as as
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As a matrix, we have:

01 0
p12)=(1 0 0
001

If o = (123), then since (123) permutes (a1, a2,as3) to (as,a1,as2), we
have

ay as
p(123) [ a2 | =| @
as as
As a matrix,
0 0 1
p(123) =11 0 0
010

The explicit matrices representing the other elements of Sz are left as an
exercise at the end of the chapter.

The goal of representation theory is to find all possible representations
for a given group. In order to even be able to start to make sense out of
this question, we first see how to build new representations out of old.

Definition 11.2.2 Let G be a group. Suppose we have representations of
G:
p1 - G- GL(V1)

and
P2 - G- GL(VQ),

where Vi and Vs are possibly different vector spaces. Then the direct sum
representation of G on Vi @ Vs, denoted by

(p1 ® p2) : G = GL(V1) & GL(V>),
is defined for all g € G by:
(m ® p2)(9) = p1(9) ® p2(g)-

Note that when we write out p1(g) @ p2(g) as a matrix, it will be in block
diagonal form.

If we want to classify representations, we should concentrate on finding
those representations that are not direct sums of other representations.
This leads to:
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Definition 11.2.3 A representation p of a group G on a nonzero vector
space V is irreducible if there is no proper subspace W of V such that for
allge G and allw € W,

plg)w € W.

In particular if a representation is the direct sum of two other representa-
tions, it will certainly not be irreducible. Tremendous progress has been
made in finding all irreducible representations for many specific groups.

Representation theory occurs throughout nature. Any time you have
a change of coordinate systems, suddenly representations appear. In fact,
most theoretical physicists will even define an elementary particle (such
as an electron) as an irreducible representation of some group (a group
that captures the intrinsic symmetries of the world). For more on this,
see Sternberg’s Group Theory and Physics [106], especially the last part of
Chapter 3.9.

11.3 Rings

- If groups are roughly viewed as sets for which there is an addition, then
rings are sets for which there is both an addition and a multiplication.

Definition 11.3.1 A nonempty set R is a ring if there are two binary
operations, denoted by - and +, on R such that

a) R with + forms an abelian group. The identity is denoted by 0.

b) (Associativity) for all a,b,c € R, a-(b-c) = (a-b)-c.

¢) (Distributivity) for all a,b,c € R,

a-(b+c)y=a-b+a-c

and
(a+b)-c=a-c+b-c.

Note that rings are not required to be commutative for the - operation or,
in other words, we do not require a-b="5"a.

If there exists an element 1 € R with 1-a =a-1 = a for all a € R,
we say that R is a ring with unit element. Almost all rings that are ever
encountered in life will have a unit element.

The integers Z = {...,—3,-2,-1,0,1,2,3,...}, with the usual addition
and multiplication, form a ring. Polynomials in one variable z with complex
coefficients, denoted by C|z], form a ring with the usual addition and mul-
tiplication of polynomials. In fact, polynomials in n variables {z1,...,Zn}
with complex coefficients, denoted by Clzy,...,z,], will also form a ring
in the natural way. By the way, the study of the ring theoretic properties
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of Clz1,...,2n] is at the heart of much of algebraic geometry. While poly-
nomials with complex coefficients are the most common to study, it is of
course the case that polynomials with integer coeflicients (Z[z1,...,z)]),
polynomials with rational coeflicients (Q|z1, ..., z»]) and polynomials with
real coefficients (R[z1,...,%,]) are also rings. In fact, if R is any ring, then
the polynomials with coefficients in R form a ring, denoted by R[z1,...,z,).

Definition 11.3.2 A function o : R — R between rings R and R is a ring
homomorphism if for all a,b € R,

o(a+b) =o(a) + o(b)

and

o(a-b) =o(a)-o(b).

Definition 11.3.3 A subset I of a ring R is an ideal if I is a subgroup of
R under + and if, for anya € R, al C I and Ia C I.

The notion of an ideal in ring theory corresponds to the notion of a
normal subgroup in group theory. This analogy is shown in the following
theorems:

Theorem 11.3.1 Leto: R— R be a ring homomorphism. Then thé set
ker(o) = {a € R:0(a) = 0}

is an ideal in R. (This ideal ker(c) is called the kernel of the map o.)

Sketch of Proof: We need to use that for all z € R,

z-0=0-2=0,

which is an exercise at the end of the chapter. Let b € ker(c). Thus
o(b) = 0. Given any element a € R, we want a - b € ker(s) and b-a €
ker(c). We have

o(a-b) = o(a)-o(b)

Il
Q
—~
o
N’
o

implying that a - b € ker(o).
By a similar argument, b- a € ker(o), showing that ker(o) is indeed an
ideal. O

Theorem 11.3.2 Let I be an ideal in R. The sets {a +1 : a € R} form
a ring, denoted R/I, under the operations (a+I)+ (b+1I)=(a+b+1)

and (a+1I)-(b+1)=(a-b+1).
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The proof is left as a (long) exercise at the end of the chapter.

The study of a ring comes down to studying its ideals, or equivalently, its
homomorphisms. Again, it’s a mid-twentieth century approach to translate
the study of rings to the study of maps between rings.

11.4 Fields and Galois Theory

We are now ready to enter the heart of classical algebra. To a large extent,
the whole point of high school algebra is to find roots of linear and quadratic
polynomials. With more complicated, but in spirit, similar techniques, the
roots for third and fourth degree polynomials can also be found. One of
the main historical motivations for developing the machinery of group and
ring theory was in showing that there can be no similar techniques for
finding the roots of polynomials of fifth degree or higher. More specifically
the roots of a fifth degree or higher polynomial cannot be obtained by a
formula involving radicals of the coeflicients of the polynomial. (For an
historical account, see Edwards’ Galois Theory [31].)

The key is to establish a correspondence between one variable polynomi-
als and finite groups. This is the essence of Galois Theory, which explicitly
connects the ability to express roots as radicals of coefficients (in analogue
to the quadratic equation) with properties of the associated group.

Before describing this correspondence, we need to discuss fields and field
extensions.

Definition 11.4.1 A ring R is a field if

1. R has a multiplicative unit 1,

2 foralla,b€e R we have a-b=0b-a and

3. for any a # 0 in R, there is an element denoted by a™! witha-a™1 = 1.

For example, since the integers Z do not have multiplicative inverses, Z
is not a field. The rationals Q, the reals R and the complexes C are fields.
For the ring C[z] of one variable polynomials, there corresponds the field

Cz) = {513 : P(),Q(=) € Cla],Q(2) # 0}.

Definition 11.4.2 A field k is a field extension of a field k if k is contained
ink.

For example, the complex numbers C is a field extension of the real numbers
R.

Once we have the notion of a field, we can form the ring k[z] of one
variable polynomials with coefficients in k. Basic, but deep, is:
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Theorem 11.4.1 Let k be a field. Then there is o field extension k of k
such that every polynomial in k[z] has a root in k.

Such a field % is said to be algebraically closed. For a proof, see Garling’s A
Course in Galois Theory [45), Section 8.2. As a word of warning, the proof
uses the Axiom of Choice.

Before showing how groups are related to finding roots of polynomials,

recall that the root of a linear equation ez + b = 0 is simply = = —%. For
second degree equations, the roots of ax? + bz + ¢ = 0 are of course

_ —b++vb?—4ac

= 52 .

Already interesting things are happening. Note that even if the three co-
efficients a,b and ¢ are real numbers, the roots will be complex if the dis-
criminant 4?2 — 4ac < 0. Furthermore, even if the coefficients are rational
numbers, the roots need not be rational, as v b® — 4ac need not be rational.

Both of these observations lead naturally to extension fields of the field
of coefficients. We will restrict to the case when the coefficients of our
(monic) polynomial are rational numbers.

Let

P(x)=2" + ap_12™ ' + ...+ ao,

with each ar € Q. By the Fundamental Theorem of Algebra (which states
that the algebraic closure of the real numbers is the complex numbers),
there are complex numbers oy, ..., a, with

Plz)=(z—a)(z—az) - (z—ay).

Of course, the whole problem is that the fundamental theorem does not
tell us what the roots are. We would like an analogue of the quadratic
equation for any degree polynomial. As mentioned before, such analogues
do exist for cubic and quartic polynomials, but the punchline of Galois
Theory is that no such analogue exists for degree five or higher polynomials.
The proof of such a statement involves far more than the tools of high school
algebra.

Here is a rapid fire summary of Galois Theory. We will associate to
each one variable polynomial with rational coeflicients a unique finite di-
mensional vector space over the rational numbers that is also a field exten-
sion of the rational numbers contained in the complex numbers. Namely,
if oy, ..., ay, are the roots of the polynomial P(z), the smallest field in the
complex numbers that contains both the rationals and the roots ay, ..., a,
is the desired vector space. We then look at all linear transformations from
this vector space to itself, with the strong restriction that the linear trans-
formation is also a field automorphism mapping each rational number to
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itself. This is such a strong restriction that there are only a finite number
of such transformations, forming a finite group. Further, each such linear
transformation will not only map each root of P(z) to another root but
is actually determined by how it maps the roots to each other. Thus the
finite group of these special linear transformations are a subgroup of the
permutation group on n letters. The final deep result lies in showing that
these finite groups determine properties about the roots.

Now for some details. We assume that P(z) is irreducible in Qz],
meaning that P(z) is not the product of any polynomials in Q[z]. Hence
none of the roots o; of P(z) can be rational numbers.

Definition 11.4.3 Let Q(aq,...,a,) be the smallest subfield of C con-
taining both Q and the roots o, ..., 0n.

Definition 11.4.4 Let E be a field extension of Q but contained in C.
We say E is a splitting field if there is a polynomial P(z) € Q[z] such that
E =Q(a1,...,an), where ai,...,an are the roots in C of P(z).

A splitting field F over the rational numbers Q is in actual fact a vector
space over Q. For example, the splitting field Q(+/2) is a two-dimensional
vector space, since any element can be written uniquely as a + bv/2, with
a,be Q.

Definition 11.4.5 Let E be an extension field of Q. The group of auto-
morphisms G of E over Q is the set of all field automorphisms o : E — E.

By field automorphism we mean a ring homomorphism from the field £
to itself that is one-to-one, onto, maps unit to unit and whose inverse is a
ring homomorphism. Note that field automorphisms of an extension field
have the property that each rational number is mapped to itself (this is an
exercise at the end of the chapter).

Such field automorphisms can be interpreted as linear transformations
of E to itself. But not all linear transformations are field automorphisms,
as will be seen in a moment.

Of course, there is needed here, in a complete treatment, a lemma show-
ing that this set of automorphisms actually forms a group.

Definition 11.4.6 Given an extension field E over Q with group of au-
tomorphisms G, the fixed field of G is the set {e € E : o(e) = e, for all
o €G}.

Note that we are restricting attention to those field automorphisms that
contain Q in the fixed field. Further it can be shown that the fixed field is
indeed a subfield of E.
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Definition 11.4.7 A field extension E of QQ isnormal if the fized field of
the group of automorphisms G of E over Q is ezactly Q.

Let G be the group of automorphisms of Q(ai,...,a,) over Q, where
Q(aq,...,ay) is the splitting field of the polynomial

P(z) (z—a)(z—az)...(z —ap)

= 2"+ an_lx“_l + ...+ ag,

with each a;, € Q. This group G is connected to the roots of the polynomial
P(z), as seen in:

Theorem 11.4.2 The group of automorphisms G is a subgroup of the per-
mutation group S, on n elements. It is represented by permuting the roots
of the polynomial P(z).

Sketch of Proof: We will show that for any automorphism ¢ in the
group G, the image of every root ¢; is another root of P(z). Therefore the
automorphisms will merely permute the n roots of P(z). It will be critical
that o(a) = a for all rational numbers a. Now

P(o(ai)) = (o(e))™ + an—1(o(e))™ ™  + -+ ag
= ()" +0o(an_1(0)" 1) + -+ +0(ap)

(o)™ + ap_1 ()L 4 -+ ap)

= o(P(a;))

= 0(0)

= 0

Thus o(a;) is another root. To finish the proof, which we will not do, we
would need to show that an automorphism ¢ in G is completely determined
by its action on the roots . O

All of this culminates in:

Theorem 11.4.3 (Fundamental Theorem of Galois Theory) Let
P(z) be an irreducible polynomial in Q[z] and let E = Q(au,...,a,) be its
splitting field with G the automorphism group of E.
i) Each field B containing Q and contained in E is the fized field of a
subgroup of G. Denote this subgroup by Gp.
ii) The field extension B of Q is normal if and only if the subgroup Gp
is a normal subgroup of G.
i) The rank of E as a vector space over B is the order of Gg. The
rank of B as a vector space over Q is the order of the group G/Gp.
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Unfortunately, in this brevity, none of the implications should be at all
clear. It is not even apparent why this should be called the Fundamental
Theorem of the subject. A brief hint or whisper of its importance is that
it sets up a dictionary between field extensions B with Q C B C E and
subgroups Gp of G. A see-saw type diagram would be

E=@Q(A4,...,0) G
U U
Eq G,
U U
E> G,
U U
Q (e)

Here the lines connect subgroups with the corresponding fixed fields.

But what does this have to do with finding the roots of a polynomial.
Our goal (which Galois Theory shows to be impossible) is to find an ana-
logue of the quadratic equation. We need to make this more precise.

Definition 11.4.8 A polynomial P(z) is solvable if its splitting field
Qlay,...,ay,) lies in an extension field of Q obtained by adding radicals of
integers.

As an example, the field Q {3v/2,5+/7} is obtained from 3+/2 and 5v/7,
both of which are radicals. On the other hand, the field Q() is not obtained
by adding radicals to Q; this is a rewording of the deep fact that 7 is
transcendental.

The quadratic equation z = shows that each root of a sec-
ond degree polynomial can be written in terms of a radical of its coefficients;
hence every second degree polynomial is solvable. To show that no ana-
logue of the quadratic equations exists for fifth degree or higher equations,
all we need to show is that not all such polynomials are solvable. We want
to describe this condition in terms of the polynomial’s group of automor-
phisms.

=btv/b2—4ac
2a

Definition 11.4.9 A finite group G is solvable if there is o nested sequence
of subgroups G1,...,Gp withG = Gy D G1 2 G2 2 ... D G, = (e), with
each G; normal in G;—1 and each G;—1/G; abelian.

The link between writing roots as radicals and groups is contained in:
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Theorem 11.4.4 A polynomial P(z) is solvable if and only if its associated
group G of automorphisms of its splitting field is solvable.

The impossibility of finding a clean formula for the roots of a high degree
polynomial in terms of radicals of the coeflicients now follows from showing
that generically the group of automorphisms of an nth degree polynomial
is the full permutation group S, and

Theorem 11.4.5 The permutation group on n elements, S,, is not solv-
able whenever n is greater than or equal to five.

Of course, these are not obvious theorems. An excellent source for the
proofs is Artins’ Galois Theory [3].

Though there is no algebraic way of finding roots, there are many meth-
ods to approximate the roots. This leads to many of the basic techniques
in numerical analysis.

11.5 Books

Algebra books went through quite a transformation starting in the 1930s.
It was then that Van der Waerden wrote his algebra book Modern Algebra
[113], which was based on lectures of Emmy Noether. The first undergrad-
uate text mirroring these changes was A Survey of Modern Algebra [9], by
Garrett Birkhoff and Saunders Mac Lane. The undergraduate text of the
sixties and seventies was Topics in Algebra by Herstein [57]. Current pop-
ular choices are A First Course in Abstract Algebra by Fraleigh [41], and
Contemporary Abstract Algebra by Gallian [43]. Serge Lang’s Algebra [79]
has been for a long time a standard graduate text, though it is not the place
to start learning algebra. You will find, in your mathematical career, that
you will read many texts by Lang. Jacobson’s Basic Algebra [68], Artin’s
Algebra [4] and Hungerford’s Algebra [65] are also good beginning graduate
texts.

Galois Theory is definitely one of the most beautiful subjects in math-
ematics. Luckily there are a number of excellent undergraduate Galois
Theory texts. One of the best (and cheapest) is Emil Artin’s Galois The-
ory [3]. Other excellent texts are by Ian Stewart [107) and by Garling [45].
Edwards’ Galois Theory [31] is an historical development. For beginning
representation theory, I would recommend Hill’s Groups and Characters
[59] and Sternberg’s Group Theory and Physics [106).
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11.6 Exercises

1. Fix a corner of this book as the origin (0,0,0) in space. Label one of
the edges coming out of this corner as the z-axis, one as the y-axis and the
last one as the z-axis. The goal of this exercise is to show that rotations do
not commute. Let A denote the rotation of the book about the z-axis by
ninety degrees and let B be the rotation about the y-axis by ninety degrees.
Show with your book and by drawing pictures of your book that applying
the rotation A and then rotation B is not the same as applying rotation B
first and then rotation A.

2. Prove that the kernel of a group homomorphism is a normal subgroup.
3. Let R be a ring. Show that for all elements z in R,

z-0=0-2=0,

even if the ring R is not comrmutative.
4. Let R be a ring and I an ideal in the ring. Show that R/I has a ring
structure. (This is a long exercise, but it is an excellent way to nail down
the basic definition of a ring.)
5. Show that the splitting field Q(+/2) over the rational numbers C is a
two dimensional vector space over C.
6. Start with the permutation group Ss.

a. Find all subgroups of Ss.

b. Show that the group Sj is solvable. (This allows us to conclude that
for cubic polynomials there is an analogue of the quadratic equation.)
7. For each of the six elements of the group Sg3, find the corresponding
matrices for the representation of S;z as described in section two of this
chapter.
8. If H is a normal subgroup of a group G, show that there is a natural
one-to-one correspondence between the left and the right cosets of H.
9. Let E be a field containing the rational numbers Q. Let ¢ be a field
automorphism of E. Note that this implies in particular that o(1) = 1.
Show that o(Z) = £ for all rational numbers 2.

10. Let T : G — G be a group homomorphism. Show that T(g™1) =
(T(g))~" for all g € G.

11. Let T : G — G be a group homomorphism. Show that the groups
G/ker(T) and Im(T) are isomorphic. Here Im(T') denotes the image of
the group G in the group G. This result is usually known as one of the
Fundamental Homomorphism Theorems.






Chapter 12

Lebesgue Integration

Basic Object: Measure Spaces
Basic Map: Integrable Functions
Basic Goal: Lebesgue Dominating Convergence Theorem

In calculus we learn about the Riemann integral of a function, which cer-
tainly works for many functions. Unfortunately, we must use the word
‘many’. Lebesgue measure, and from this the Lebesgue integral, will allow
us to define the right notion of integration. Not only will we be able to
integrate far more functions with the Lebesgue integral but we will also
understand when the integral of a limit of functions is equal to the limit of
the integrals, i.e., when

lim /fn = / lim f,,

n—00 n—oo
which is the Lebesgue Dominating Convergence Theorem. In some sense,
the Lebesgue integral is the one that the gods intended us to use all along.

Our approach will be to develop the notion of Lebesgue measure for the
real line R, then use this to define the Lebesgue integral.

12.1 Lebesgue Measure

The goal of this section is to define the Lebesgue measure of a set F of real
numbers. This intuitively means we want to define the length of E. For

intervals
E:[a,b]:{:EERZaSQTSb}

the length of E is simply:
{E)y=b—a.
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length b-a
| |
! !
| 1
a b

¥

r

The question is to determine the length of sets that are not intervals, such
as
E = {z €[0,1] : » is a rational number}.

We will heavily use that we already know the length of intervals. Let E
be any subset of reals. A countable collection of intervals {I,,}, with each

I, = [Gn, bn],

covers the set E if
Ec|JI.

EC I1U12U13

Whatever the length or measure of E is, it must be less than the sum of
the lengths of the I,.

Definition 12.1.1 For any set E in R, the outer measure of E is
m*(E) = inf{Z(bn—-an) : The collection of intervals {[an, bn]} covers E}.
Definition 12.1.2 A set E is measurable if for every set A,

m*(A) =m*(ANE)+m"(A—-E).
The measure of a measurable set E, denoted by m(E), is m*(E).

The reason for such a convoluted definition is that not all sets are mea-
surable, though no one will ever construct a nonmeasurable set, since the
existence of such a set requires the use of the Axiom of Choice, as we saw
in Chapter Ten.
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There is another method of defining a measurable set, via the notion of
inner measure. Here we define the inner measure of a set E to be

m,(E) = sup(Z(bn ~ap):ED UI" and I, = [an, by] with ap, < by}

Thus instead of covering the set E by a collection of open intervals, we fill
up the inside of E with a collection of closed intervals.
If m*(E) < oo, then the set E can be shown to be measurable if and
only if
m*(E) = m.(E).

In either case, we now have a way of measuring the length of almost all
subsets of the real numbers.

As an example of how to use these definitions, we will show that the
measure of the set of rational numbers (denoted here as E) between 0
and 1 is zero. We will assume that this set E is measurable and show its
outer measure is zero. It will be critical that the rationals are countable.
In fact, using this countability, list the rationals between zero and one as
ai,as,as,.... Now choose an € > 0. Let I; be the interval

€ €
I ={a1 — 501 + 5].
Note that £(I3) = €. Let

€ €
I =[a; — 7 ® + Z]

Here £(I2) = §. Let
Ja = [a —_ E as + E]
3 3~ g @t gl

Here £(I3) = £. In general let

€ €
I = [ag — 550 0k 2_k]‘

I1 Ia IE
b ) (
a1—§ a a1+§ a3-§

Certainly the rationals between zero and one are covered by this countable
collection of open sets :
EC |
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Then

m(E) < 3 UL)

= 2e.

By letting € approach zero, we see that m(E) = 0.
A similar argument can be used to show that the measure of any count-
able set is zero and in fact appears as an exercise at the end of this chapter.

12.2 The Cantor Set

While long a source of examples and counterexamples in real analysis, the
Cantor set has recently been playing a significant role in dynamical systems.
It is an uncountable, nowhere dense measure zero subset of the unit interval
[0,1]. By nowhere dense, we mean that the closure of the complement of
the Cantor set will be the entire unit interval. We will first construct the
Cantor set, then show that it is both uncountable and has measure zero.

For each positive integer k, we will construct a subset C} of the unit
interval and then define the Cantor set C' to be

C=()Cs.
k=1

For k = 1, split the unit interval {0,1] into thirds and remove the open

middle third, setting
12

C, = [0’1] - (31 g)
- [0, %] U[§,1].
l,____i. ................ I_______i
0 1 z 1

Ci
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Take these two intervals and split them into thirds. Now remove each of
their middle thirds to get

¢ =10,3Ut 31U g1 UL 1

Co

To get the next set Cj, split each of the four intervals of C; into three equal
parts and remove the open middle thirds, to get eight closed intervals, each
of length % Continue this process for each k&, so that each C}, consists of
2% closed intervals, each of length gr. Thus the length of each Cj will be

k

2
length = 35

The Cantor set C is the intersection of all of these Cj:

Cantor set = C = ﬂ C.

k=1

Part of the initial interest in the Cantor set was it was both uncountable
and had measure zero. We will show first that the Cantor set has measure
zero and then that it is uncountable. Since C is the intersection of all of
the Cj, we get for each k that

2k
m(C) < m(Ci) = -

Since the fractions %—:— go to zero as k goes to infinity, we see that

m(C) = 0.

It takes a bit more work to show that the Cantor set is uncountable.
The actual proof will come down to applying the trick of Cantor diagonal-
ization, as discussed in Chapter Ten. The first step is to express any real
number « in the unit interval [0, 1] in its tri-adic expansion

(o]
a=3 3k
k=1
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where each ny is zero, one or two. (This is the three-analog of the decimal
expansion @ = Y p 16, where here each ny = 0,1,...,9.) We can write
the tri-adic expansion in base three notation, to get

Q= .MNaMN3zg ...

As with decimal expansion, the tri-adic expansion’s coefficients n; are
unique, provided we always round up. Thus we will always say that

102222, .. =.11000...

The Cantor set C' has a particularly clean description in terms of the
tri-adic or base three expansions. Namely

C = {.ninang ... | each ny is either zero or two}.

Thus the effect of removing the middle thirds from all of the intervals
corresponds to allowing no 1’s among the coefficients. But then the Cantor
set can be viewed as the set of infinite sequences of 0’s and 2’s, which was.
shown to be uncountable in the exercises of Chapter Ten.

12.3 Lebesgue Integration

One way to motivate integration is to try to find the area under curves. The
Lebesgue integral will allow us to find the areas under some quite strange
curves.

By definition the area of a unit square is one.

1 area 1

Hence the area of a rectangle with height b and base a will be ab.

b area ab
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Let E be a measurable set on R. Recall that the characteristic function of
E, xE, is defined by

=[1 e
XE\) =10 ifteR-E

X2
i B )

- l i

Since the height of xg is one, the area under the function (or curve) xg
must be the length of E, or more precisely, m(E). We denote this by [, x&.
Then the area under the function a - x g must be a - m(E),

Y

N 4

a aXg

area a-m(E)

oy A -
1

7 SN .

which we denote by [, axe.
Now let E and F' be disjoint measurable sets. Then the area under the
curve a- Xg + b+ xr must be a-m(E) + b- m(F),

4 total area = a-m(E) + b-m(F)
a+ aXE
Y

denoted by
/ axs + byr = - m(E) + b-m(F).
EUF
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For a countable collection of disjoint measurable sets A;, the function

Z i X Ai
is called a step function. Let E be a measurable set. Let
> aixai

be a step function. Then define

/E(Z aixai) = Z a;m(4; N E).

We are about ready to define [, f.

Definition 12.3.1 A function f : E — R U (00) U(—00) is measurable if
its domain E is measurable and if, for any fized oo € R U (00) U (—00),

{z€E: f(z)=a}
is measurable.

Definition 12.3.2 Let f be a measurable function on E. Then the Lebesgue
integral of f on E is

/Ef = inf{/EZaiXA* :forallz € B, aixa;(z) > f(2)}.

In pictures:

—

oy

F

A1 Az Az A4 As Ag

E

Thus we use that we know the integral for single step functions and then
approximate the desired integral by summing the integrals of these step
functions.
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Every function that is integrable in beginning calculus is Lebesgue in-
tegrable. The converse is false, with the canonical counterexample given
by the function f : [0,1] — [0, 1] which is one at every rational and zero at
every irrational. The Lebesgue integral is

f = 0$
[0,1]

which is one of the exercises at the end of the chapter, but this function
has no Riemann integral, which is an exercise in Chapter Two.

12.4 Convergence Theorems

Not only does the Lebesgue integral allow us to integrate more functions
than the calculus class (Riemann) integral, it also provides the right con-
ditions to judge when we can conclude that

/ lim fr = lim /fk
k—o0 k—o0
In fact, if such a result were not true, we would have chosen another defi-

nition for the integral.
The typical theorem is of the form:

Theorem 12.4.1 (Lebesgue Dominating Convergence Thm.) Let
g(x) be a Lebesgue integrable function on a measurable set E and let { fp(z)}
be a sequence of Lebesgue integrable functions on E with |fi(z)] < g(z) for
all © in E and such that there is a pointwise limit of the fr(x), i.e., there
is a function f(x) with

flz) = klim Tie(z).
—>c0
Then
/ lim fk(:l:) = lim / fk(a:)
E k—o0 k—00 E
For a proof, see Royden’s Real Analysis [95], Chapter 4, in section 4. We

will just give a sketch here. Recall that if fi(x) converges uniformly to
f(z), then we know from € and ¢ real analysis that

lim [ 5@ = [ 1@

(i.e., the sequence of functions fi(z) converges uniformly to f(z) if given
any € > 0, there exists a positive integer N with

|f(z) — fe(z)] <,
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for all z and all ¥ > N. More quaintly, if we put an e—tube around y = f(z),
eventually the y = f(z) will fall inside this tube.) The idea in the proof is
that the fi(z) will indeed converge uniformly to f(z), but only away from
a subset of E of arbitrarily small measure. More precisely, the proposition
we need is:

Proposition 12.4.1 Let {f,(z)} be a sequence of measurable functions
on a Lebesgue measurable set E, with m(E) < co. Suppose that {fn(z)}
converges pointwise to a function f(x). Then given € > 0 and § > 0, there
is a positive integer N and a measurable set A C E with | fr(z)— f(z) |<e
forallz € E— A and k > N and m(A) < 4.

The basic idea of the proof of the original theorem is now that

/ lim f, = / lim fn-l—/ lim f,
| oo F_p 00 A N—0o0

= lim fn +maz | g(z) | - m(A).

Since we can choose our set A to have arbitrarily small measure, we can
let m(A) — 0, which gives us our result.

The proposition can be seen to be true from the following. (After Roy-
den’s proof in Chapter 3, Section 6.) Set

Gn={z € E:| fu(z) — f(2) |> €}
Set

En = |J Ga={z€ E:| fu(z) — f(z) |> ¢,n > N}.
n=N

Then En4+1 C En. Since we have fi(z) converging pointwise to f(z),

we must have NE,, which can be thought of as the limit of the sets E,,
be empty. For measure to have any natural meaning, it should be true
that imy_co m(En) = 0. Thus given § > 0, we can find an Eny with

m(EN) < 4.

This is just an example of what can be accomplished with Lebesgue
integration. Historically, the development of the Lebesgue integral in the
early part of the twentieth century led quickly to many major advances.
For example, until the 1920s, probability theory had no rigorous founda-
tions. With the Lebesgue integral, and thus a correct way of measuring,
the foundations were quickly laid.
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12.5 Books

One of the first texts on measure theory was by Halmos [54]. This is still an
excellent book. The book that I learned measure theory from was Royden’s
[95] and has been a standard since the 1960s. Rudin’s book [96] is another
excellent text. Frank Jones, one of the best teachers of mathematics in the
country, has recently written a fine text [70]. Folland’s recent text [40] is
also quite good.

12.6 Exercises

1. Let E be any countable set of real numbers. Show that m(F) = 0.
2. Let f(z) and g(z) be two Lebesgue integrable functions, both with
domain the set E. Suppose that the set

A={z € E: f(z) # g9(z)}

has measure zero. What can be said about [ f(z) and [, g(z)?
3. Let f(z) = z for all real numbers z between zero and one and let f(x)
be zero everywhere else. We know from calculus that

/01 f(z)dz = %

Show that this function f(z) is Lebesgue integrable and that its Lebesgue
integral is still .
4. On the interval [0, 1], define

@) = 1 if z is rational
1 0 ifzis not rational *

Show that f(z) is Lebesgue integrable, with

/01 f(z)dz = 0.






Chapter 13

Fourier Analysis

Basic Object: Real-valued functions with a fixed period
Basic Maps: Fourier transforms
Basic Goal: Finding bases for vector spaces of periodic functions

13.1 Waves, Periodic Functions and
Trigonometry

Waves occur throughout nature, from water pounding a beach to sound
echoing off the walls at a club to the evolution of an electron’s state in
quantum mechanics. For these reasons, at the least, the mathematics of
waves is important. In actual fact, the mathematical tools developed for
waves, namely Fourier series (or harmonic analysis), touch on a tremen-
dous number of different fields of mathematics. We will concentrate on
only a small sliver and look at the basic definitions, how Hilbert spaces
enter the scene, what a Fourier transform looks like and finally how Fourier
transforms can be used to help solve differential equations.
Of course, a wave should look like:

or
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Both of these curves are described by periodic functions.

Definition 13.1.1 A function f : R — R is periodic with period L if for
allz, f(x+ L) = f(z).

In other words, every L units the function must start to repeat itself. The
quintessential periodic functions are the trigonometric functions cos(z) and
sin(z), each with period 2r. Of course, functions like cos(22) and sin(22%)
are also periodic, both with period L.

Frequently people will say that a function f(z) has period L if not only
do we have that f(z + L) = f(z), but also that there is no smaller number
than L for which f(z) is periodic. According to this convention, cos(z)
will have period 27 but not period 4w, despite the fact that, for all z,
cos(z + 4m) = cos(z). We will not follow this convention.

The central result in beginning Fourier series is that almost every peri-
odic function is the, possibly infinite, sum of these trigonometric functions.
Thus, at some level, the various functions cos(%%) and sin(2£2) are not
merely examples of periodic functions; they generate all periodic functions.

13.2 Fourler Series

Now to see how we can write a periodic function as an (infinite) sum of these
cosines and sines. First suppose that we have a function f : [-7,7] = R
that has already been written as a series of sines and cosines, namely as

agp + Z(an cos(nz) + by, sin(nz)).

n=1

We want to see how we can naively compute the various coefficients a; and
by, ignoring all questions of convergence for these infinite series (convergence
issues are faced in the next section). For any given k, consider

_W f(z) cos(kz)dz = /_ i (ap + Z(ancos(nx) + bpsin(nz))) cos(kz)dz

n=1
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= / ap cos(kzx)dz

-

+Z/ cos(nz) cos(kz)dz
+Z/ sin(nz) cos(kz)dx

By direct calculation we have

" 2n ifk=0
/_Wcos(kac)da; = { 0 ifk£0
ifk=n

/7r cos(nz) cos(kz)dr = { g itk#n

-7

/w sin(nz) cos(kz)dz = 0.

-

Then we would expect

4 _f 2map ifk=0
f(z) cos(kz)dx = { ran ifk#n

bt
By a similar calculation, using, though, the integrals ffﬂ f(z) sin(nz)dz,
we can get similar formulas for the b,. This suggests how we could try to

write any random periodic function as the infinite sum of sines and cosines:

Definition 13.2.1 The Fourier series for a function f : [-m, 7] = R is

ap + Z(an cos(nz) + by, sin(nc))

n=1
where | g
ap = —/ f(z)dz
2T J_,
and L
an = — f(z) cos(nz)dz
and

by, = L/ f(z) sin(nz)dz.
T

i

The coefficients a; and b; are called the amplitudes, or Fourier coefficients
for the Fourier series.
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Of course, such a definition can only be applied to those functions for
which the above integrals exist. The punchline, as we will see, is that most
functions are actually equal to their Fourier series.

There are other ways of writing the Fourier series for a function. For
example, using that ¢?® = cosz + isinz, for real numbers z, the Fourier
series can also be expressed by

0o
inz
E Cre'?,

n=—oo

where

1 " ing
Cn = %/_7{ f(z)e™dx.

The C), are also called the amplitudes or Fourier coefficients. In fact, for
the rest of this section, but not for the rest of the chapter, we will write
our Fourier series as > oo Cpe™®

The hope (which can be almost achieved) is that the function f(z) and
its Fourier series will be equal. For this, we must first put a slight restriction

on the type of function we allow.

Theorem 13.2.1 Let f : [~m,7] — R be a square-integrable function.
(i.e.,

[ @ <o)

-7

Then at almost all points,

its Fourier series.

Note that this theorem contains within it the fact that the Fourier series
of a square-integrable function will converge. Further, the above integral is
the Lebesgue integral. Recall that almost everywhere means at all points
except possibly for points in a set of measure zero. As seen in exercise 2 in
Chapter Twelve, two functions that are equal almost everywhere will have
equal integrals. Thus, morally, a square-integrable function is equal to its
Fourier series.

What the Fourier series does is associate to a function an infinite se-
quence of numbers, the amplitudes. It explicitly gives how a function is
the (infinite) sum of complex waves €®. Thus there is a map S from
square-integrable functions to infinite sequences of complex numbers,
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Certain vector space of in-
— finite sequences of com-
plex numbers

o . Vector Space of square-
" integrable functions

or

o . Vector Space of square- Vector space of infinite se-
. . — .
integrable functions quences of amplitudes

which, by the above theorem, is one-to-one, modulo equivalence of functions
almost everywhere.

We now translate these statements into the language of Hilbert spaces,
an extremely important class of vector space. Before giving the definition
of a Hilbert space, a few definitions must be made.

Definition 13.2.2 An inner product {-,-) : V. xV — C on a complez
vector space V is a map such that

1. {avy + bug, v3) = a(vy,vs) + b{va,vs) for all complex numbers a,b € C
and for all vectors vy,vs,vs3, € V.

2. (v,w) = (w,v) for all v,w e V.

3. (v,v) >0 for allv €V and (v,v) =0 only if v =0.

Note that since (v,v) = (v,v), we must have, for all vectors v, that (v, v)
is a real number. Hence the third requirement that (v, v) > 0 makes sense.

To some extent, this is the complex vector space analogue of the dot
product on R™. In fact, the basic example of an inner product on C” is
the following: let

v = (v1,...,0p)
w = (wi,...,wn)

be two vectors in C™. Define

n
(v,w) = kam.
k=1
It can be checked that this is an inner product on C",

Definition 13.2.3 Given an inner product (-,-) : V. xV — C, the induced
norm on V is given by:
|v] = (v, v)"/*.
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In an inner product space, two vectors are orthogonal if their inner product
is zero (which is what happens for the dot product in R™). Further, we
can interpret the norm of a vector as a measure of the distance from the
vector to the origin of the vector space. But then, with a notion of distance,
we have a metric and hence a topology on V, as seen in Chapter Four, by
setting

p(v,w) = |v—wl.
Definition 13.2.4 A metric space (X, p) is complete if every Cauchy se-
quence converges, meaning that for any sequence {v;} in X with p(v;,v;) —
0 as i,j — oo, there is an element v in X with v; —» v (i.e., p(v,v;) = 0
as i — 00).

Definition 13.2.5 A Hilbert space is an inner product space which is com-
plete with respect to the topology defined by the inner product.

There is the following natural Hilbert space.

Proposition 13.2.1 The set of Lebesgue square-integrable functions

L3[—m, 7] = {f : [-m, 7] = C| i If|? < oo}

is a Hilbert space, with inner product

(f,9) = _W f(z) - g(z)dz.

This vector space is denoted by L*[—, 7.

We need to allow Lebesgue integrable functions in the above definition in
order for the space to be complete.

In general, there is, for each real number p > 1 and any interval [a, b],
the vector space:

b
L7[a,b] = {f : [a,}] —)R|/ 1£(z)[Pdz < oo}

The study of these vector spaces is the start of Banach Space theory.
Another standard example of a Hilbert space is the space of square-
integrable sequences, denoted by 12:

Proposition 13.2.2 The set of sequences of complex numbers

2 = {(a0,a1,..) | 3 lasl? < oo}

J=0
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is o Hilbert space with inner product
0 —
((ao,al, .o .), (bo, bl, .. )) = Z (ljbj.
J=0

We can now restate the fact that square-integrable functions are equal to
their Fourier series, almost everywhere, into the language of Hilbert spaces.

Theorem 13.2.2 For the Hilbert space L2[—m, x|, the functions

1 einw
\/571'
are an orthonormal (Schauder) basis, meaning that each has length one,

that they are pairwise orthogonal and that each element of LZ[—m, w| is the
unique infinite linear combination of the basis elements.

Note that we had to use the technical term of Schauder basis. These are not
quite the bases defined in Chapter One. There we needed each element in
the vector space to be a unique finite linear combination of basis elements.
While such do exist for Hilbert spaces, they do not seem to be of much
use (the proof of their existence actually stems from the Axiom of Choice).
The more natural bases are the above, for which we still require uniqueness
of the coefficients but now allow infinite sums.

While the proof that the functions #zﬂei"’” are orthonormal is simply
an integral calculation, the proof that they form a basis is much harder
and is in fact a restatement that a square-integrable function is equal to its
Fourier series, namely:

Theorem 13.2.3 For any function f(z) in the Hilbert space L2[—m, 7], we
have

i 1 . 1 .
) = T , emw emx,
f&)= 3 U@ e
almost everywhere.

Hence, the coefficients of a function’s Fourier series are simply the inner
product of f(z) with each basis vector, exactly as with the dot product

1 0
for vectors in R® with respect to the standard basis | 0 |,| 1 | and
0 0

0
0 | . Further, we can view the association of a function with its Fourier
1
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1

coefficients (with its amplitudes) as a linear transformation
L?[—m, @] = 12

Naturally enough, these formulas and theorems have versions for func-
tions with period 2L, when the Fourier series will be:

Definition 13.2.6 A function f : [-L,L] — R has Fourier series

(o2}
> Gt
o

n=—oo

where

inme

1 L
Cn=2—L/_Lf(w)e L dz.

We have ignored, so far, a major subtlety, namely that a Fourier series
is an infinite series. The next section deals with these issues.

13.3 Convergence Issues

Already during the 1700s mathematicians were trying to see if a given
function was equal to its Fourier series, though in actual fact the theoretical
tools needed to talk about such questions were not yet available, leading to
some nonsensical statements. By the end of the 1800s, building on work of
Dirichlet, Riemann and Gibbs, much more was known.

This section will state some of these convergence theorems. The proofs
are hard. For notation, let our function be f(x) and denote its Fourier
series by

o
ap + Z(an cos(nz) + by, sin(nz)).
n=1
We want to know what this series converges to pointwise and to know when
the convergence is uniform.

Theorem 13.3.1 Let f(z) be continuous and periodic with period 2rw. Then

- N
A}i_r)noo g (f(z) — [ao + Z;(an cos(nz) + by sin(nz))])dz = 0.

Thus for continuous functions, the area under the curve

y = partial sum of the Fourier series
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will approach the area under the curve y = f(z). We say that the Fourier
series converges in the mean to the function f(x).

This is telling us little about what the Fourier series converges to at
any given fixed point . Now assume that f(z) is piecewise smooth on the
closed interval [—m, ], meaning that f(z) is piecewise continuous, has a
derivative at all but a finite number of points and that the derivative is
piecewise continuous. For such functions, we define the one sided limits

flz+) = lim f(z + h)
r—0 and r>0

and

flz=) = lim flz—h).

h—o and a>0

Theorem 13.3.2 If f(z) is piecewise smooth on [—m, 7], then for all points
z, the Fourier series converges pointwise to the function

flz+) + f(z=)
5 .

At points where f(z) is continuous, the one sided limits are of course
each equal to f(x). Thus for a continuous, piecewise smooth function,
the Fourier series will converge pointwise to the function.

1)
-

But when [ is not continuous, even if it is piecewise smooth, the above
pointwise convergence is far from uniform. Here the Gibbs’ phenomenon
becomes relevant. Denote the partial sum of the Fourier series by

N
Sn(z) = 22(1 + Z(an cos(nz) + by, sin(nz))

n=1

and suppose that f has a point of discontinuity at zo. While the partial
sums Sy (z) do converge to ﬂﬁ%m—_l, the rate of convergence at different
z is wildly different. In fact, the better the convergence is at the point of
discontinuity xg, the worse it is near xo. In pictures, what happens is:



252 CHAPTER 13. FOURIER ANALYSIS

Sk(x)
f(x)

A Sk+1(X)

f(x)

Note how the partial sums soar away from the function f(z), destroying
any hope of uniform convergence.

Luckily this does not happen if the function is continuous and piecewise
smooth.

Theorem 13.3.3 Let f(x) be continuous and piecewise smooth on [—m, ),
with f(—m) = f(w). Then the Fourier series will converge uniformly to f(z).

Thus for reasonably decent functions, we can safely substitute their Fourier
series and still do basic calculus.

For proofs of these results, see Harry F. Davis’ Fourier Series and Or-
thogonal Functions [24], chapter 3.

13.4 Fourier Integrals and Transforms
Most functions f : R — R will of course not be periodic, no matter what

period L is chosen. But all functions, in some sense, are infinitely periodic.
The Fourier integral is the result when we let the period L approach infinity
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(having as a consequence that %7% approaches zero). The summation sign
in the Fourier series becomes an 1ntegra1. The result is:

Definition 13.4.1 Let f: R — R be a function. Its Fourier integral is

/oo(a(t) cos(tz) + b(t) sin(tz))dt
0

where

a(t) = / f(x) cos(tx)dx

ond

b(t) = / f(z)sin(tz)dx

The Fourier integral can be rewritten as

w .
/ C(t)e"dt,

C(t) = % /_0:0 flz)e**dz.

where

There are other forms, all equivalent up to constants.
The main theorem is:

Theorem 13.4.1 Let f : R — R be integrable (i.e., [ |f(z)|dz < o0).
Then, off of a set of measure zero, the function f(x) is equal to its Fourier
integral.

As with Fourier series, this integral is the Lebesgue integral. Further, again
recall that by the term ‘a set of measure zero’, we mean a set of Lebesgue
measure zero and that throughout analysis, sets of measure zero are rou-
tinely ignored.

As we will see, a large part of the usefulness of Fourier integrals lies in
the existence of the Fourier transform.

Definition 13.4.2 The Fourier transform of an integrable function f(x)
18:

S(f(z))(t) = /_00 flz)e~#®dz.
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The idea is that the Fourier transform can be viewed as corresponding to
the coefficients a,, and b, of a Fourier series and hence to the amplitude of
the wave. By a calculation, we see that

o0
f@) =5 [ SU@)wee,
21 J_»
provided we place suitable restrictions on the function f(z). Thus indeed
the Fourier transform is the continuous analogue of the amplitudes for
Fourier series, in that we are writing the original function f(z) as a sum (an
integral) of the complex waves e** with coefficients given by the transform.
(Also, the constant % is not fixed in stone; what is required is that the
product of the constants in front of the integral in the Fourier transform
(here it is 1) and the above integral be equal to 2—17;)

As we will see in the next section, in applications you frequently know
the Fourier transform before you know the original function.

But for now we can view the Fourier transform as a one-to-one map

& @ Vector Space of Functions — Different Vector Space of Functions.
Thinking of the Fourier transform as an amplitude, we can rewrite this as:
& : Position Space — Amplitude Space.

Following directly from the linearity of the Lebesgue integral, this map is
linear.

Much of the power of Fourier transforms is that there is a dictionary
between the algebraic and analytic properties of the functions in one of
these vector spaces with those of the other vector space.

Proposition 13.4.1 Let f(z,t) be an integrable function with f(z,t) = 0
as € —= too. Let $(f(z))(u) denote the Fourier transform with respect to
the variable x. Then

) S{3}w) = uS(F@)W.
it) ${ gk} (w) = —w*S(f(2))(u).
iii) S{2LG Y (u) = Z{S(/(z,0)}(w).
We will show (i), where the key tool is simply integration by parts and

sketch the proof of (iii).
By the definition of the Fourier transform, we have

0 <9 ;
Salw = [ Setveas,
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which, by integration by parts, is
m « w .
e e f(z,1) |®, +zu/ flz,t)e ™ *dx = zu/ f(z,t)e* dz,
0 —00
since f(z,t) = 0 as £ = +o00, and hence equals
uS(f).
For (iii), we have

Since this integral is with respect to x and since the partial derivative is
with respect to £, this is equal to:

d oo —iuz
E/—oo f(z,t)e " *dz.

But this is just: 5
S (@ )} w),

and thus (iii) has been shown. O

In the next section we will use this proposition to reduce the solving of a
partial differential equation to the solving of an ordinary differential equa-
tion (which can almost always be solved). We need one more preliminary
definition.

Definition 13.4.3 The convolution of two functions f(z) and g(zx) is

(fx9)(z) = /—oo fwg(z — w)du.

By a direct calculation, the Fourier transform of a convolution is the prod-
uct of the Fourier transforms of each function, i.e.,

I(f *g9) = 3(f) - S(g).

Thus the Fourier transform translates a convolution in the original vec-
tor space into a product in the image vector space. This will be important
when trying to solve partial differential equations, in that at some stage
we will have the product of two Fourier transforms, which we can now
recognize as the Fourier transform of a single function, the convolution.
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13.5 Solving Differential Equations

The idea is that the Fourier transform will translate a differential equation
into a simpler one (one that is, vaguely, more algebraic). We will apply
this technique to solving the partial differential equation that describes the
flow of heat. Here the Fourier transform will change the partial differential
equation into an ordinary differential equation, which can be solved. Once
we know the Fourier transform, we can almost always recover the original
function.

In the next chapter, we will derive the heat equation, but for now we
will take as a given that the flow of heat through an infinitely thin, long
bar is described by

Oh _ 0%h

ERC
where h(z,t) denotes the temperature at time ¢ and position z and where ¢
is a given constant. We start with an initial temperature distribution f(x).

Thus we want to find a function h(z,t) that satisfies

on _ o
ot 9z’
given the initial condition,
h(z,0) = f(a).

Further, assume that as z — $o00, we know that f(z) — 0. This just
means basically that the bar will initially have zero temperature for large
values of z. For physical reasons we assume that whatever is the eventual
solution h(z,t), we have that h(z,t) = 0 as z — *oo.

Take the Fourier transform with respect to the variable z of the partial
differential equation

on _, oh
ot 8x?’
to get )
Oh(z,t) 9%h(z,t)
S = Bl ek R
=) ) = Sk —5 ) (w),
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yielding
2 S(h(a, ) () = ~ku*S(h(a, ) (w).

Now S(h(z,t))(u) is a function of the variables v and ¢. The z is a mere
symbol, a ghost reminding us of the original PDE.

Treat the variable v as a constant, which is of course what we are doing
when we take the partial derivative with respect to t. Then we can write
the above equation in the form of an ODE:

.dd_ts(h(m, £)(w) = —ku?S(h(z, 1)) (w).

The solution to this ODE, as will be discussed in the next section but which
can also be seen directly by (unpleasant) inspection, is:

S(h(z, 1) (u) = Clu)e ",

where C(u) is a function of the variable u alone and hence, as far as the
variable ¢ is concerned, is a constant. We will first find this C(u) by using
the initial temperature f(z). We know that h(z,0) = f(z). Then for ¢t =0,

S(h(z, 0)(u) = S(f())(w).

When ¢ = 0, the function C(u)e“k”2t is just C'(u) alone. Thus when ¢ = 0,
we have

(£ (@) (u) = C(w).

Since f(z) is assumed to be known, we can actually compute its Fourier
transform and thus we can compute C(u). Thus

S(h(z, 1) () = S(f(2))(u) - e~

Assume for a moment that we know a function g(z,t) such that its
Fourier transform with respect to z is:

S(g(z, ) () = e,
If such a function g(z,t) exists, then

S(h(z, ) (u) = S(f(2))(u) - S(g(=, 1)) ().

But a product of two Fourier transforms can be written as the Fourier
transform of a convolution. Thus

S(h(z,t))(u) = S(F (=) * g(=, t))-
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Since we can recover that original function from its Fourier transform, this
means that the solution to the heat equation is

h(z,t) = f(z) * g(z,1).

Thus we can solve the heat equation if we can find this function g(z,t) whose
Fourier transform is e=*u’t, Luckily we are not the first people to attempt
this approach. Over the years many such calculations have been done and
tables have been prepared, listing such functions. (To do it oneself, one
needs to define the notion of the inverse Fourier transform and then to take
the inverse Fourier transform of the function e"““zt; while no harder than
the Fourier transform, we will not do it.) However it is done, we can figure

out that
ut tha 1

Varkt

Thus the solution of the heat equation will be:

h(z,t) = f(z) * \/;W_me%g‘.

( e T ) = ghu't,

13.6 Books

Since Fourier analysis has applications ranging from CAT scans to ques-
tions about the distribution of the prime numbers, it is not surprising that
there are books on Fourier series aimed at wildly different audiences and
levels of mathematical maturity. Barbara Hubbard’s The World Accord-
ing to Wavelets [63] is excellent. The first half is a gripping nontechnical
description of Fourier series. The second half deals with the rigorous math-
ematics. Wavelets, by the way, are a recent innovation in Fourier series that
have had profound practical applications. A solid, traditional introduction
is given by Davis in his Fourier Series and Orthogonal Functions [24]. A
slightly more advanced text is Folland’s Fourier Analysis and its Applica-
tions [38]. A brief, interesting book is Seeley’s An Introduction to Fourier
Series and Integrals [98]. An old fashioned but readable book is Jackson’s
Fourier Series and Orthogonal Polynomials [67]. For the hardcore student,
the classic inspiration in the subject since the 1930s has been Zygmund’s
Trigonometric Series [116].

13.7 Exercises

1. On the vector space

Plemm = {7 -l > €| [ IS < oo,
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show that

™
(fLre) =1 [f(=z) g(z)dz
-
is indeed an inner product, as claimed in this chapter.
2. Using Fourier transforms, reduce the solution of the wave equation
oy k82y
otz T oz?’
with k a constant, to solving an ordinary (no partial derivatives involved)
differential equation.
3. Consider the functions

_fom ifl<r<i
falz) = { 0  otherwise

Compute the Fourier transforms of each of the functions f,(z). Graph each
of the functions f,, and each of the Fourier transforms. Compare the graphs
and draw conclusions.






Chapter 14

Differential Equations

Basic Object: Differential Equations
Basic Goal: Finding Solutions to Differential Equations

14.1 Basics

A differential equation is simply an equation, or a set of equations, whose
unknowns are functions which must satisfy (or solve) an equation involving
both the function and its derivatives. Thus

dy

dr

is a differential equation whose unknown is the function y(z). Likewise,
%y 0% Oy

[ — —— 3
prolaly e riul b A L

is a differential equation with the unknown being the function of two vari-
ables y(z,t). Differential equations fall into two broad classes: ordinary
and partial. Ordinary differential equations (ODEs) are those for which the
unknown functions are functions of only one independent variable. Thus
%% = 3y and

3y

d? d
d—xg + —&% +sin(z)y =0
are both ordinary differential equations. As will be seen in the next section,
these almost always have, in principle, solutions.
Partial differential equations (PDEs) have unknowns that are functions

of more than one variable, such as
8%y % _
gz o2
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and ) 5
g?‘z + (%) = cos(xt).
Here the unknown is the function of two variables y(z,t). For PDEs, every-
thing is much murkier as far as solutions go. We will discuss the method
of separation of variables and the method of clever change of variables (if
this can be even called a method). A third method, discussed in Chapter
Thirteen, is to use Fourier transforms.

There is another broad split in differential equations: linear and non-
linear. A differential equation is homogeneous linear if given two solutions
f1 and f5 and any two numbers A; and Aq, then the function

Afi+ e fo

is another solution. Thus the solutions will form a vector space. For ex-
ample, % - % = 0 is homogeneous linear. The differential equation is
linear if by subtracting off from the differential equation a function of the
independent variables alone changes it into a homogeneous linear differen-
tial equation. The equation %% — % = z is linear, since if we subtract
off the function z we have a homogeneous linear equation. The important
fact about linear differential equations is that their solution spaces form
linear subspaces of vector spaces, allowing linear algebraic ideas to be ap-
plied. Naturally enough a nonlinear differential equation is one which is
not linear.

In practice, one expects to have differential equations arise whenever
one quantity varies with respect to another. Certainly the basic laws of
physics are written in terms of differential equations. After all, Newton’s
second law:

Force = (mass) - (acceleration)

is the differential equation

2 g
Force = (mass) - (d—@ﬁ—@> .

14.2 Ordinary Differential Equations

In solving an ordinary differential equation, one must basically undo a
derivative. Hence solving an ordinary differential equation is basically the
same as performing an integral. In fact, the same types of problems occur
in ODEs and in integration theory.

Most reasonable functions (such as continuous functions) can be inte-
grated. But to actually recognize the integral of a function as some other,
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well-known function (such as a polynomial, trig function, inverse trig func-
tion, exponential or log) is usually not possible. Likewise with ODEs, while
almost all have solutions, only a handful can be solved cleanly and explicitly.
Hence the standard sophomore-level engineering-type ODE course must in-
herently have the feel of a bag of tricks applied to special equations.}

In this section we are concerned with the fact that ODEs have solutions
and that, subject to natural initial conditions, the solutions will be unique.
We first see how the solution to a single ODE can be reduced to solving a
system of first order ODEs, which are equations with unknown functions

y1(z), .. ., yn(z) satisfying

d
dill: = fl(m7y17'-'7yn)
d
di; = fn(m,yla"'ayn)

Start with a differential equation of the form:

an(x)—((iZ—y +...+ al(m)g—z + ao(2)y(z) + b(z) = 0.

n

We introduce new variables:

0@ = ¥
nw = W
pae) = oz 8w

Then a solution y(z) to the original ODE will give rise to a solution of the
following system of first order ODEs:

dyo _
Fx_ = W
dy
dz Y2

1There are reasons and patterns structuring the bag of tricks. These involve a
careful study of the underlying symmetries of the equations. For more, see Peter
Olver’s Applications of Lie Groups to Differential Equations [90].
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e - 1( ) (an—1(2)Yn—1 + an—2(2)yn—2 + . .. + ao(z)yo + b(2)).

dz an(x

If we can solve all such systems of first order ODEs, we can then solve
all ODEs. Hence the existence and uniqueness theorems for ODEs can be
couched in the language of systems of first order ODEs.

First to define the special class of functions we are interested in.

Definition 14.2.1 A function f(z,y1,...,yn) defined on a region T in
R™! is Lipschitz if it is continuous and if there is a constant N such that
for every (z,y1,...,yn) and (,41,...,4n) n T, we have

lf(mayla1yn)_f(§:ay\l”y’\n)| SN(lyl _?j\1]++|yn_yﬁn|)

It is not a major restriction on a function to require it to be Lipschitz. For
example, any function with continuous first partial derivatives on an open
set will be Lipschitz on any connected compact subset.

Theorem 14.2.1 A system of first order ordinary differential equations

dy;

d.fL' — fl(xaylr“)yn)

dy

d_; = fn(maylr"ayn))
with each function fi,..., f, being Lipschitz in a region T', will have, for
each real number xg, an interval (xo—e€, zo+€) on which there are solutions
y1(z),...,yn(x). Further, given numbers ay,...,an, with (zg,a1,...,0n) N

the region T, the solutions satisfying the initial conditions

Y (370) = aq

Yn (170) = an
are unique.
Consider a system of two first order ODEs:

d
% = fl(maylay2)

d
Hyf = fz(fb‘,yl,yz)-
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Then a solution (y; (z),y2(z)) will be a curve in the plane R2. The theorem
states that there is exactly one solution curve passing through any given
point (a1,az). In some sense the reason why ODEs are easier to solve
than PDEs is that we are trying to find solution curves for ODEs (a one-
dimensional type problem) while for PDEs the solution sets will have higher
dimensions and hence far more complicated geometries.

We will set up the Picard Iteration for finding solutions and then briefly
describe why this iteration actually works in solving the differential equa-
tions.

For this iterative process, functions yi, (), . . . , Yn, () will be constructed
that will approach the true solutions y; (), ...,yn(z). Start with setting

Yio(T) = ai

for each i. Then, at the k** step, define

@) =a+ [ A (O Y ()

m (@) = an+ [ a6 1en (O Umes (D).

The crucial part of the theorem is that each of these converges to a solution.
The method is to look at the sequence, for each i,

0
yu) + Z ylk — Yir_1 (13)),
k=1

which has as its N** partial sum the function y;, (x). To show that this
sequence converges comes down to showing that

lyik (IL') —Yir_y (Jl)l

approaches zero quickly enough. But this absolute value is equal to

S PRO RN R O PIR O NS L

< /x Ifi(t? Y1 (t)7 cv s Ynpa (t)) - fi(t, Y152 (t)r v rynk—z(t))ldt'

The last integral’s size can be controlled by applying the Lipschitz condi-
tions and showing that it approaches zero.
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14.3 The Laplacian

14.3.1 Mean Value Principle

In R™, the Laplacian of a function u(z) = u(xy,...,z,) is
5%u &u
Au=——=+...+ —.
u Ox12 tee Ox,2

One can check that the PDE
NAu=0

is homogeneous and linear and thus that the solutions form a vector space.
These solutions are important enough to justify their own name.

Definition 14.3.1 A function u(z) = u(z1,...,%,) is harmonic if u(z)
s a solution to the Laplacian:
Ay =0.

Much of the importance of the Laplacian is that its solutions, harmonic
functions, satisfy the Mean Value Principle, which is our next topic. For
any point @ € R", let

Se(r) ={x € R": |z —a| =r},
be the sphere of radius r centered at a.

Theorem 14.3.1 (Mean Value Principle) If u(z) = u(zi,...,2,) is
harmonic, then ot any point o € R",

1
w(e) = area of Su(r) /Sa(,.) u(®)-

Thus u(a) is equal to the average value of u(z) on any sphere centered at
a. For a proof of the case when n is two, see almost any text on complex
analysis. For the general case, see G. Folland’s Introduction to Partial
Differential Equations [39], section 2.A.

Frequently, in practice, people want to find harmonic functions on re- . .

gions subject to given boundary conditions. This is called:

The Dirichlet Problem: Let R be a region in R” with boundary OR.
Suppose that g is a function defined on this boundary. The Dirichlet Prob-
lem is to find a function f on R satisfying

Af=0
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on R and

on OR.

One way this type of PDE arises naturally in classical physics is as a
potential. It is also the PDE used to study a steady-state solution of the
heat equation. We will see in the next section that heat flow satisfies the
PDE:

0%u P Ou . Ou
R R T
where u(z1, . . ., Zn, t) denotes the temperature at time ¢ at place (zy,...,%x,).

By a steady-state solution, we mean a solution that does not, change over
time, hence a solution with

Ou
— =0.
ot
Thus a steady state solution will satisfy
&*u 0*u
Au—a—aﬁ++@—0,

and hence is a harmonic function.

14.3.2 Separation of Variables

There are a number of ways of finding harmonic functions and of solving
the Dirichlet Problem, at least when the involved regions are reasonable.
Here we discuss the method of separation of variables, a method that can
also frequently be used to solve the heat equation and the wave equation.
By the way, this technique does not always work.
We will look at a specific example and try to find the solution function
u(z,y) to
Pu  O%u
=— + -5 =0,
or? = Oy?

on the unit square, with boundary conditions

_ [ (@) ify=1
U(fﬂ,y)—{o ifz=0,z=10ory=0

where h(z) is some initially specified function defined on the top side of the
square.
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i u(x,1) = h(x)
t L
u(o,y)=0 BN
( y\) u(ty)=0
- | -
v uix,0)=0

The key assumption will be that the solution will be of the form

u(z,y) = f(z) - g(y),

where
f(0)=0, g(0) =0, f(1) =0, f(z)-9(1) = h(=).

This is wild. Few two-variable functions can be written as the product
of two functions, each a function of one-variable alone. The only possible
justification is if we can actually find such a solution, which is precisely
what we will do. (To finish the story, which we will not do, we would need
to prove that this solution is unique.) If u(z,y) = f(z)-g(y) and if Au =0,
then we need @ ) ‘

2 9W) + f(w)d—; = 0.

Thus we would need

o
(x) g(y)’

Each side depends on totally different variables, hence each must equal to
a constant. Using the boundary conditions f(0) = f(1) = 0, one can show
that this constant must be negative. We denote it by —c?. Thus we need

d?f
and
d?g
a?g = ng(y),

both second order ODEs, which have solutions

f(z) = A1 cos(ez) + Az sin(cz)

and
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9(y) = pe” + poe™ Y.

We now apply the boundary conditions. We have that f(0) = 0, which
implies that
/\1 = O

Also ¢(0) = 0 forces
H1 = —H2

and f(1) = 0 means that
Az sin(cz) = 0.

This condition means that the constant ¢ must be of the form
c=km, with k=0,1,2,....

Hence the solution must have the form

u(z,y) = f(z) - g(y) = Crsin(knz) ("™ — ™),

with Cp some constant.

But we also want u(z, 1) = h(z). Here we need to use that the Laplacian
is linear and thus that solutions can be added. By adding our various
solutions for particular ¢ = kw, we set

= Ci(e"™ — e~ sin(knz).

All that is left is to find the constants Cj. Since we require u(z, 1) = h(z),
we must have

= Z Cr(e*™ — e *™)sin(knz).
But this is a series of sines. By the Fourier analysis developed in the last
chapter, we know that

2h(z)(1 — coskm)
km '

1
Cr(ef™ —e™Fm) = 2/ h(z) sin(krz)dz =
0

Thus the solution is

ad ]. - COS kﬂ- k:7ry —kﬂ'y
u(z,y) = Z F(chr — =) sin(kwz)(e*™ —e )-
k=1

While not pleasant looking, it is an exact solution.
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14.3.3 Applications to Complex Analysis

We will now quickly look at an application of harmonic functions. The goal
of Chapter Nine was the study of complex analytic functions f : U — C,
where U is an open set in the complex numbers. One method of describing
such f = u + ¢v was that the real and imaginary parts of f had to satisfy
the Cauchy-Riemann equations:

du(z,y) _ dv(z,y)

oz Oy

and
Ou(z,y) _ Ov(z,y)
oy o
Both real-valued functions « and v are harmonic. The harmonicity of «

(and in a similar fashion that of v) can be seen, using the Cauchy-Riemann
equations, via:

u  O*u
Au = @_{-B_y?—
_ 0w 00
9z dy Oy Oz
= 0.

One approach to complex analysis is to push hard on the harmonicity of
the real-valued functions u and v.

14.4 The Heat Equation

We will first describe the partial differential equation that is called the Heat
Equation and then give a physics-type heuristic argument as to why this
particular PDE should model heat flow. In a region in R3 with the usual
coordinates x,y, 2, let

u(z,y, z,t) = temperature at time ¢ at (z,y, 2).
Definition 14.4.1 The heat equation is:

Gu o Fu_ ou
ox?  Oy?> 022 - B

where ¢ is a constant.
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Frequently one starts with an initial specified temperature distribution,
such as

u(z,y,2,0) = f(z,y,2),
with f(z,y,z) some known, given function.

Surprisingly, the heat equation shows up throughout mathematics and
the sciences, in many contexts for which no notion of heat or temperature is
apparent. The common theme is that heat is a type of diffusion process and
that the heat equation is the PDE that will capture any diffusion process.
Also, there are a number of techniques for solving the heat equation. In fact,
using Fourier Analysis, we solved it in the one-dimensional case in Chapter
Thirteen. The method of separation of variables, used in last section to
solve the Laplacian, can also be used.

Now to see why the above PDE deserves the name ‘heat equation’. As
seen in the last section,

O 0 0%

M=srmteE T e

is the Laplacian. In non-rectilinear coordinates, the Laplacian will have
different looking forms, but the heat equation will always be:

Au=c—

ot

For simplicity, we restrict ourselves to the one-dimensional case. Con-
sider an infinitely long rod, which we denote by the z-axis.

Ax

X-axis

Though the basic definitions of heat and temperature are and were fraught
with difficulties, we will assume that there is a notion of temperature and
that heat is measured via the change in temperature. Let u(z,t) denote the
temperature at position z at time {. We now denote the change in a variable
by Au, Az, At, etc. Note that here A is not denoting the Laplacian of
these variables.

There are three important constants associated to our rod, all coming
from the real world: the density p, the thermal conductivity £ and the
specific heat 0. The density arises in that the mass m of the rod over a
distance Az will be the product p- Az. The specific heat is the number
o that, if a length Az of the rod has its temperature u raised to u + Au,
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then its heat will change by o - (mass) - Au. Note that this last number
is the same as ¢ - p - Az - Au. Here we are using the notion that heat is a
measure of the change in temperature. Finally, the thermal conductivity &
is the constant that yields

A
as the amount of heat that can flow through the rod at a fixed point z. Via
physical experiments, these constants can be shown to exist.

We want to see how much heat flows in and out of the interval [z, z+ Az].
By calculating this heat flow by two different methods, and then letting -
Az — 0, the heat equation will appear. First, if the temperature changes
by Auw, the heat will change by

k'Au

o-p- Az Au.

Second, at the point z + Az, the amount of heat flowing out will be,

over time At,
Au
k- A_wla:-l-Aa:At-

-kA—: At = heatflow outxend

X
Ax —-
..... .l—‘, - - - e .
X X+ Ax
g Au At = heat flow out x+Ax end
X+AX

At the point z, the amount of heat flowing out will be, over time At,
Au
—k - — | At
Az =

Then the heat change over the interval Az will also be

Au Au
(kﬂlz—FAm - kﬂl:ﬂ)At-

Thus

Au Ay
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Then

A A
(A_zlz-!—Aw - A_:lw) = U_p__A_’u_

Az Tk At
Letting Az and At approach 0, we get by the definition of partial differen-

tiation the heat equation

Fu_op ou
dz2 kOt
In fact, we see that the constant c is
_9r
=4

Again, there are at least two other methods for solving the heat equation.
We can, for example, use Fourier transforms, which is what we used to
solve it in Chapter Thirteen. We can also use the method of separation of
variables, discussed in the previous section.

14.5 The Wave Equation

14.5.1 Derivation

As its name suggests, this partial differential equation was originally derived
to describe the motion of waves. As with the heat equation, its basic
form appears in many apparently non-wave-like areas. We will state the
wave equation and then give a quick heuristic description of why the wave
equation should describe waves.

A transverse wave in the x — y plane travelling in the 2-direction should
look like:

The solution function is denoted by y(z,t), which is just the y coordinate
of the wave at place z at time ¢t. The wave equation in two independent
variables is

&%y %

52 op =
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where ¢ is a positive number. Usually we start with some type of knowledge
of the initial position of the wave. This will of course mean that we are
given an initial function f(z) such that

i(x) = initial position

Y

’

y(z,0) = f(z).
In general, the wave equation in n variables zy, .. ., z, with initial condition
fxy,. . zp) is
62 82 2
Oy L0 %% _,
0z, ? Oxp? ot?

with initial condition

y(@1,. o 20,0) = f(Z1,...,20).
In nonrectilinear coordinates, the wave equation will be:

Py
otz

Now to see the heuristics behind why this partial differential equation is
even called the wave equation. Of course we need to make some physical as-
sumptions. Assume that the wave is a string moving in an ‘elastic’ medium,
meaning that subject to any displacement, there is a restoring force, some-
thing trying to move the string back to where it was. We further assume
that the initial disturbance is small. We will use that

Ay(zy,...,zp,t) —C =0.

Force = (mass) - (acceleration).

We let our string have density p and assume that there is a tension T in
the string (this tension will be what we call the restoring force) which will
act tangentially on the string. Finally, we assume that the string can only
move vertically.

Consider the wave
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&

As

Let s denote the arc length of the curve. We want to calculate the restoring
force acting on the segment As of the curve in two different ways and then
let As — 0. Since the density is p, the mass of the segment As will be the
product (p - As). The acceleration is the second derivative. Since we are
assuming that the curve can only move vertically (in the y-direction), the

acceleration will be %i—zy. Thus the force will be

0%y
-AS) - —.
(p-Bs) 55
By the assumption that the displacement is small, we can approximate the
arc length As by the change in the z-direction alone.

A
43 As~Ax
Ax

Hence we assume that the restoring force is

2

0%y
(pAz) - =5

Now to calculate the restoring force in a completely different way. At
each point in the picture

Y
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the tension 1" gives rise to an acceleration tangent to the curve. We want
the y component. At the point z + Az, the restoring force will be

Tsinbs.
At the point z, the restoring force will be
—T'sinb,.
Since both angles 8, and 6, are small, we can use the following approxima-

tion

0
sind, ~ tanb, =—yl,;.

Oz

: 9y
sinfy ~ tanfy = a—x]x+Ax.

i ~ ~ A [~ S
sin(8) ~ tan(e) K)V( 3¥(

¥

Then we can set the restoring force to be

Oy

As we have now calculated the restoring force in two different ways, we can
set the two formulas equal:

0
T('é%lm+Am -

2
T ne—S210) = iz 2L,
or
%lw+Aw - g}élm B?f_?i
Az T ot2
Letting Az — 0, we get
622/ p 52

_ P Yy
8z2 T 612’
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the wave equation.

Now to see what solutions look like. We assume that y(0) = 0 and
y(L) = 0, for some constant L. Thus we restrict our attention to waves
which have fixed endpoints.

An exercise at the end of the chapter will ask you to solve the wave equa-
tion using the method of separation of variables and via Fourier transforms.
Your answer will in fact be:

o0
. /NnTX nmt
y(z,t) = 1; knsin (T) cos (T)
where

kp = %/OL F(z)sin ("Lﬂ) de.

14.5.2 Change of Variables

Sometimes a clever change of variables will reduce the original PDE to a
more manageable one. We will see this in the following solution of the
wave equation. Take an infinitely long piece of string. Suppose we pluck
the string in the middle and then let go.

VAN

0

After a short time, we should get:

with seemingly two waves moving in opposite directions but at the same
speed. With much thought and cleverness, one might eventually try to
change coordinate systems in an attempt to capture these two waves.
Thus suppose we want to solve
Oy 10% _

82 2otz
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subject to the initial conditions
(@,0) = 9(a) and 2(z,0) = h(a)

for given functions g(z) and h(z). Note that we have relabelled the constant
in the wave equation to be 01—2 This is done solely for notational convenience,
as we will in a moment.

Now to make the change of variables. Set

u=x+ctand v =z — ct.

Using the chain rule, this coordinate change transforms the original wave
equation into:
52
y -— 0
Oudv
We can solve this PDE by two straightforward integrations. First integrate
with respect to the variable u to get
Jy
— =av
S = alv),
where a(v) is an unknown function of the variable v alone. This new func-
tion a(v) is the ‘constant of integration’, constant with respect to the u
variable. Now integrate this with respect to v to get

y(u,v) = A(v) + B(u),

where A(v) is the integral of a(v) and B(u) is the term representing the
‘constant of integration’ with respect to v. Thus the solution y(u,v) is the
sum of two, for now unknown, functions, each a function of one variable
alone. Plugging back into our original coordinates means that the solution
will have the form:

y(u,v) = A(z — ct) + B(z + ct).

We use our initial conditions to determine the functions A(z — ct) and
B(z + ct). We have

9(z) = y(z,0) = A(z) + B()

and
h(z) = ==(z,0) = —cA'(z) + c¢B'(z).

For this last equation, integrate with respect to the one variable z, to get
that

/x h(s)ds + C = —cA(z) + cB(z).
0
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Since we are assuming that the functions g(z) and h(z) are known, we can
now solve for A(z) and B(z), to get:

C

Alz) = %g(w) — 2—16-/075 h(s)ds — %

and ) L e c
B(z) = 39(0) + o /0 A(s)ds + 2.

Then the solution is:

y(z,t) = Az —ct)+ Bz +ct)
glz—ct)+g(z+ct) 1 /””"‘Ct
= + — h(s)ds,
2 2¢ z—ct ( )

This is called the d’Alembert formula. Note that if the initial velocity
h(z) = 0, then the solution is simply

(z — ct) + g(z + ct)
2 h

y(:z:,t) = g

which is two waves travelling in opposite directions, each looking like the
initial position. (Though this is a standard way to solve the wave equa-
tion, I took the basic approach from Davis’ Fourier Series and Orthogonal
Functions [24].)

This method leaves the question of how to find a good change of coor-
dinates unanswered. This is an art, not a science.

14.6 The Failure of Solutions: Integrability
Conditions

There are no known general methods for determining when a system of
partial differential equations has a solution. Frequently, though, there are
necessary conditions (usually called ‘integrability conditions’) for there to
be a solution.

We will look at the easiest case. When will there be a two-variable
function f(z,y), defined on the plane R2, satisfying:

g—g = g1(z,y)
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where both ¢; and g» are differentiable functions? In this standard re-
sult from multivariable calculus, there are clean necessary and sufficient
conditions for the solution function f to exist:

Theorem 14.6.1 There is a solution f to the above system of partial dif-
ferential equations if and only if

991 _ 992
dy Oz

In this case, the integrability condition is %"i = %’f. As we will see, this is
the easy part of the theorem; it is also the model for integrability conditions
in general.

Proof: First assume that we have our solution f satisfying gﬁ = g1(z,y)

and %5 = go(z,y). Then

391_ aaf_ 38f_392

Oy  Oydx Ixdy Oz’
Thus the integrability condition is just a consequence that the order for
taking partial derivatives does not matter.

The other direction takes more work. As a word of warning, Green’s
Theorem will be critical. We must find a function f(z,y) satisfying the
given system of PDEs. Given any point (2,y) in the plane, let v be any
smooth path from the origin (0,0) to (z,y). Define

flz,y) = /gl(w,y)dw+gz(w,y)dy-

We first show that the function f(z,y) is well-defined, meaning that its
value is independent of which path  is chosen. This will then allow us to
show that %ﬁ = g1(z,y) and %5 = g2(,y). Let T be another smooth path

from (0,0) to (z,y).

T (X-Y)
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We want to show that
/ g1(z,y)dz + g2(z, y)dy = / g1(z,y)dz + g2(z, y)dy.
v T

We can consider v — 7 as a closed loop at the origin, enclosing a region E.
(Note: it might be the case that v — 7 encloses several regions, but then
just apply the following to each of these regions.) By Green’s Theorem we
have

/mw+w®—/mm+w®
Y

T

/ g1dz + gody
Y—T

_ 992 O
= /R ( 5 By Ydzdy
=0

by the assumption that %’;j—l = %’f. Thus the function f(z,y) is well-defined.

Now to show that this function f satisfies %ﬁ = ¢i(z,y) and %5 =
g2(z,y). We will just show the first, as the second is similar. The key is
that we will reduce the problem to the Fundamental Theorem of Calculus.
Fix a point (zo,yo). Consider any path v from (0,0) to (zo,¥0) and the
extension 4’ = v + 7, where 7 is the horizontal line from (zo, o) to (z,yo)-

X0,
(%0.Yo) (x.y0)
T

B

Y

Then 5
Of _ i £(®90) — F(2o,30)
T 2o r— T
. f;o 0 (t’yO)dt
= lim e
T—=>20 r— 0

since there is no variation in the y-direction, forcing the go part of the
path integral to drop out. This last limit, by the Fundamental Theorem of
Calculus, is equal to g, as desired. O

14.7 Lewy’s Example

Once you place any natural integrability conditions on a system of partial
differential equations, you can then ask if there will always be a solution.
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In practice, often such general statements about the existence of solutions
can be made. For example, in the middle of the twentieth century it was

shown that given any complex numbers a4, ..., a, and any smooth function
g(z1,...,Ty), there always exists a smooth solution f(z,...,z,) satisfying
of of
aGi——+...tapn+— =
' oz, "own  C

Based in part on these types of results, it was the belief that all reasonable
PDEs would have solutions. Then, in 1957, Hans Lewy showed the amazing
result that the linear PDE
gi+lgl_(x+ )—_:g(may:z)

will have a solution f only if g is real-analytic. Note that while this PDE
does not have constants as coefficients, the coefficients are about as rea-
sonable as you could want. Lewy’s proof, while not hard (see Folland’s
book on PDEs [39]), did not give any real indication as to why there is no
solution. In the early 1970s, Nirenberg showed that the Lewy PDE did not
have a solution due to that there existed a three-dimensional CR, structure
(a certain type of manifold) that could not be embedded into a complex
space, thus linking a geometric condition to the question of existence of
this PDE. This is a common tack, namely to concentrate on PDEs whose
solutions have some type of geometric meaning. Then, in trying to find the
solution, use the geometry as a guide.

14.8 Books

Since beginning differential equations is a standard sophomore level course,
there are many beginning text books. Boyce and Diprima’s book [12] has
long been a standard. Simmon’s book [99] is also good. Another approach
to learning basic ODEs is to volunteer to TA or teach such a class (though
I would recommend that you teach linear algebra and vector calculus first).
Moving into the realm of PDEs the level of text becomes much harder and
more abstract. I have learned a lot from Folland’s book [39]. Fritz John’s
book [69] has long been a standard. I have heard that Evans’ recent book
[33] is also excellent.

14.9 Exercises

1. The most basic differential equation is probably

dy _
dx_y,
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subject to the boundary condition y(0) = 1. The solution is of course the
exponential function y(z) = e®. Use Picard iteration to show that this is
indeed the solution to % = y. (Of course you get an answer as a power
series and then need to recognize that the power series is e*. The author
realizes that if you know the power series for the exponential function you
also know that it is its own derivative. The goal of this problem is see
explicitly how Picard iteration works on the simplest possible differential
equation.)

2. Let f(z) be a one variable function, with domain the interval [0, 1],
whose first derivative is continuous. Show that f is Lipschitz.

3. Show that f(z) = e® is not Lipschitz on the real numbers.

4. Solve the wave equation

oy Oy
Oz? ot?

subject to the boundary conditions y(0,¢) = 0 and y(L,t) = 0 and the
initial condition y(z,0) = f(z) for some function f(z).

a. Use the method of separation of variables as described in the section
on the Laplacian.

b. Now find the solutions using Fourier transforms.

=0






Chapter 15

Combinatorics and
Probability Theory

Basic Goals: Cleverly Counting Large Finite Sets
Central Limit Theorem

Beginning probability theory is basically the study of how to count large
finite sets, or in other words, an application of combinatorics. Thus the
first section of this chapter deals with basic combinatorics. The next three
sections deal with the basics of probability theory. Unfortunately, counting
will only take us so far in probability. If we want to see what happens
as we, for example, play a game over and over again, methods of calculus
become important. We concentrate on the Central Limit Theorem, which is
where the famed Gauss-Bell curve appears. The proof of the Central Limit
Theorem is full of clever estimates and algebraic tricks. We include this
proof not only due to the importance of the Central Limit Theorem but
also to show people that these types of estimates and tricks are sometimes
needed in mathematics.

15.1 Counting

There are many ways to count. The most naive method, the one we learn
as children, is simply to explicitly count the elements in a set, and this
method is indeed the best one for small sets. Unfortunately, many sets are
just too large for anyone to merely count the elements. Certainly in large
part the fascination in card games such as poker and bridge is that while
there are only a finite number of possible hands, the actual number is far
too large for anyone to deal with directly, forcing the players to develop
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strategies and various heuristical devices. Combinatorics is the study of
how to cleverly count. Be warned that the subject can quickly get quite
difficult and is becoming increasingly important in mathematics.

We will look at the simplest of combinatorial formulas, ones that have
been known for centuries. Start with n balls. Label each ball with a
number 1,2,...,7n and then put the balls into an urn. Pull one out, record
its number and then put the ball back in. Again, pull out a ball and record
its number and put it back into the urn. Keep this up until & balls have
been pulled out and put back into the urn. We want to know how many
different k-tuples of numbers are possible.

To pull out two balls from a three-ball urn (here n = 3 and k = 2), we
can just list the possibilities:

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2), (3,3).

But if we pull out seventy-six balls from a ninety-nine ball urn (here n = 99
and k = 76), it would be ridiculous to make this list.

Nevertheless, we can find the correct number. There are n possibilities
for the first number, n possibilities for the second, n for the third, etc. Thus
all told there must be n* possible ways to choose k-tuples of n numbers.
This is a formula that works no matter how many balls we have or how
many times we choose a ball.

For the next counting problem, return to the urn. Pull out a ball, record
its number and keep it out. Now pull out another ball, record its number
and keep it out. Continue pulling out balls and not replacing them. Now
we want to find out how many k-tuples of n numbers there are without
replacement. There are n possibilities for the first number, only (n — 1)
possibilities for the second, (n — 2) for the third, etc. Thus the number of
ways of choosing from n balls k times without replacement is:

nn—1n—-2)---(n—k+1).

For our next counting problem, we want to find out how many ways
there are for pulling out & balls from an urn with n balls, but now not only
not replacing the balls but also not caring about the order of the balls.
Thus pulling out the balls (1,2,3) will be viewed as equivalent to pulling
out the balls (2,1,3). Suppose we have already pulled out & of the balls.
We want to see how many ways there are of mixing up these k balls. But
this should be the same as how many ways are there of choosing from &
balls k times, which is '

k(k—1)(k—2)---2-1=kL.

Since n(n—1)(n—2)--- (n—k+1) is the number of ways of choosing from n
balls k times with order mattering and with each ordering capable of being
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mixed up k! ways, we have
nn—1)...(n—k+1) n!
k! K (n—k)

which is the number of ways of choosing k balls from n balls without re-
placement and with order not mattering. This number comes up so often

it has its own symbol
ny _ n!
k) kl(n-k)

pronounced ‘n choose k’. It is frequently called the binomial coefficient,
due to its appearance in the Binomial Theorem:

n
a+b" = n)akbn“k.
@i =3 (;
The idea is that (a+b6)" = (a+b)(a+b)...(a+b). To calculate how many
different terms of the form a*b"* we can get, we note that this is the same
as counting how many ways we can choose k things from n things without
replacement and with ordering not mattering.

15.2 Basic Probability Theory

We want to set up the basic definitions of elementary probability theory.
These definitions are required to yield the results we all know, such as that
there is a fifty-fifty chance of flipping a coin and getting heads, or that there
is a one in four chance of drawing a heart from a standard deck of 52 cards.
Of course, as always, the reason for worrying about the basic definitions
is not just to understand the obvious odds of getting heads but that the
correct basic definition will allow us to compute the probabilities of events
that are quite complicated.

We start with the notion of a sample space w, which technically is just
another name for a set. Intuitively, a sample space w is the set whose
elements are what can happen, or more precisely, the possible outcomes of
an event. For example, if we flip a coin twice, w will be a set with the four
elements -

{(heads, heads), (heads, tails), (tails, heads), (tails, tails)}.

Definition 15.2.1 Let w be a sample space and A a subset of w. Then the
probability of A, denoted by P(A), is the number of elements in A divided
by the number of elements in the sample space w. Thus

P = 12],
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where |A| denotes the number of elements in the set A.
For example, if
w = {(heads, heads), (heads, tails), (tails, heads), (tails, tails)},

and if A = {(heads, heads)}, then the probability of flipping a coin twice
and getting two heads will be
[A] 1
PA) =~ =~
which agrees with common sense.

In this framework, many of the basic rules of probability reduce to rules
of set theory. For example, via sets, we see that

P(AUB) = P(A) + P(B) — P(AN B).

Frequently, a subset A of a sample space w is called an event.

There are times when it is too much trouble to actually translate a
real-world probability problem into a question of size of sets. For example,
suppose we are flipping an unfair coin, where there is a 3/4 chance of getting
a head and a 1/4 chance of getting tails. We could model this by taking
our sample set to be

w = {heads;, headss, headss, tails},

where we are using subscripts to keep track of the different ways of getting
heads, but this feels unnatural. A more natural sample space would be

w = {heads, tails},

and to somehow account for the fact that it is far more likely to get heads
than tails. This leads to another definition of a probability space:

Definition 15.2.2 A probability space is a set w, called the sample space,
and a function

P:w—[0,1]
such that

> Pla)=1.

acCw

We say that the probability of getting an ‘a’ is the value of P(a).
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If on a sample space w it is equally likely to get any single element of w,
i.e., for all a € w we have

P(a) = w I

then our ‘size of set’ definition for probability will agree with this second
definition. For the model of flipping an unfair coin, this definition will give
us that the sample set is:

w = {heads, tails},

but that P(heads) = 3/4 and P(tails) = 1/4.
We now turn to the notion of a random variable.

Definition 15.2.3 A random variable X on a sample space w is a real-
valued function on w:

X:w—=R.

For example, we now create a simplistic gambling game which requires two
flips of a coin. Once again let the sample space be

w = {(heads, heads), (heads, tails), (tails, heads), (tails, tails)}.
Suppose that, if the first toss of a coin is heads, you win ten dollars. If
it is tails, you lose five dollars. On the second toss, heads will pay fifteen

dollars and tails will cost you twelve dollars. To capture these stakes (for
an admittedly boring game), we define the random variable

X:w—=R

by
X(heads, heads) =10+ 15 = 25

X(heads, tails) = 10 — 12 = —2

X(tails, heads) = —5 + 15 = 10

X(tails,tails) = —5 — 12 = —17.
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15.3 Independence

Toss a pair of dice, one blue and one red. The number on the blue die
should have nothing to do with the the number on the red die. The events
are in some sense independent, or disjoint. We want to take this intuition
of independence and give it a sharp definition.

Before giving a definition for independence, we need to talk about con-
ditional probability. Start with a sample space w. We want to understand
the probability for an event A to occur, given that we already know some
other event B has occurred. For example, roll a single die. Let w be the
six possible outcomes on this die. Let A be the event that a 4 shows up.

Certainly we have
Al 1
pay=H_1
(4) ol =6
But suppose someone tells us, before we look at the rolled die, that they
know for sure that on the die there is an even number. Then the probability
that a 4 will occur should be quite different. The set B = {2,4,6} is the
event that an even number occurs. Then the probability that a 4 shows up
should now be 1/3, as there are only three elements in B. Note that

1_|anB_ %57 _PnB
3 |B] JI%L - PB)

This motivates the definition:

Definition 15.3.1 The conditional probability that A occurs given that B

has occurred is:
P(ANB)

PAIB) = 55

What should it mean for an event A to be independent from an event
B7? At the least, it should mean that knowing about the likelihood of event
B occurring should have no bearing on the likelihood that A occurs, i.e.,
knowing about B should not effect A. Thus if A and B are independent,
we should have

P(A|B) = P(A).

Using that P(A|B) = 5}.%2731, this means that a reasonable definition for
independence is:

Definition 15.3.2 Two events A and B are independent if

P(ANB) = P(A) - P(B).
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15.4 Expected Values and Variance

In a game, how much should you be expected to win in the long run? This
quantity is the expected value. Further, how likely is it that you might lose
big time, even if the expected value tells you that you will usually come
out ahead? This type of information is contained in the variance and in its
square root, the standard deviation. We start with some definitions.

Definition 15.4.1 The expected value of a random variable X on a sample
space w 18:
E(X) =) X(a)- P(a).
acw

For example, recall the simplistic game defined at the end of section two,
where we flip a coin twice and our random variable represents our win-
nings: X(heads, heads) = 10 + 15 = 25,X(heads,tails) = 10 — 12 =
—2,X (tails, heads) = —5 + 15 = 10, and X(tails, tails) = —5 — 12 = —17.
The expected value is simply:

() rca () 0(E) ()

= 4.

E(X)

Intuitively, this means that on average you will win four dollars each time
you play the game. Of course, luck might be against you and you could
" lose quite a bit.

The expected value can be viewed as a function from the set of all
random variables to the real numbers. As a function, the expected value is
linear.

Theorem 15.4.1 On a probability space, the expected value is linear, mean-
ing that for all random variables X and Y and all real numbers A and p,
we have

EQX 4+ pY) = AE(X) + pE(Y).

Proof: This is a straightforward calculation from the definition of expected
value. We have

EQX +uY) = Y (X +pY)(a)- P(a)

aCw

= ) (\X(a) +pY(a)) - P(a)

aCw

= 3 XX(a)-P(a)+ Y n¥Y(a) - P(a)

aCw a€Cw
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= XY X(a)-P(a)+p Y Y(a)- Pa)

aCw aCw

= AE(X)+pE(Y).O

The expected value will only tell a part of the story, though. Consider
two classes, each with ten students. On a test, in one of the classes five
people got 100s and five got 50s, while in the other everyone got a 75. In
both classes the average was a 75 but the performances were quite different.
Expected value is like the average, but it does not tell us how far from
the average you are likely to be. For example, in the first class you are
guaranteed to be 25 points from the average while in the second class you
are guaranteed to be exactly at the average. There is a measure of how
likely it is that you are far from the expected value:

Definition 15.4.2 The variance of a random variable X on a sample space
w 18
V(X) = E[X — EX)]%.
The idea is we set up a new random variable,
X - EX).

Note that the expected value F(X) is just a number. The farther X is from
its expected value E(X), the larger is [X — E(X)]?. Thus it is a measure of
how far we can be expected to be from the average. We square X — E(X)
in order to make everything non-negative.

We can think of the variance V' as a map from random variables to the
real numbers. While not quite linear, it is close, as we will now see. First,
though, we want to show that the formula for variance can be rewritten.

Lemma 15.4.1 For a random variable X on a probability space, we have
V(X) = B(X?) - [EX))?

Proof: This is a direct calculation. We are interested in the new random
variable
X — EQX)J2.
Now
[X — BE(X)]? = X% - 2XE(X) + [E(X)}%.
Since E(X) is just a number and since the expected value, as a map from
random variables to the reals, is linear, we have
V(X) = E[X-EX)}

= E[X®-2XEX)+[EX)]

= E(X?)-2E(X)E(X) +[EX)P

= BX?) - [EX)P,
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as desired. O
This will allow us to show that the variance is almost linear.

Theorem 15.4.2 Let X and Y be any two random variables that are in-
dependent on a probability space and let X be any real number. Then

VOX) = A22V(X)

and
VIX+Y)=V(X)+ V(Y).

It is the A? term that prevents the variance from being linear.

Proof: Since the expected value is a linear function, we know that E(AX) =
AE(X). Then

V(X) = E[MX)]-[EOX)P
MEX?) - MEX))?
M[EX?) - [E(X)]?]
= MV(X).

For the second formula, we will need to use that the independence of X
and Y means that

E(XY) = E(X)E(Y).
By the above lemma’s description of variance, we have

VX+Y) = E[X+Y)?-[EX+Y)?
E[X? + 2XY + Y?] - [E(X) + E(Y))?
= E[X?]+2E[XY]+ E[Y?
—[E(X)? —2E(X)E(Y) — [E(Y)}?
= (EX*-[EX)P) + 2EXY)
—2E(X)E(Y)) + (E[Y?] - [E(Y)])
= V(X)+V(Y),

as desired. O

A number related to the variance is its square root, the standard devi-
ation:

standard deviation(X) = o(X) = /V(X).
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15.5 Central Limit Theorem

In the last section we defined the basic notions of probability in terms of
counting. Unfortunately, combinatorics can only take us so far. Think
about flipping a coin. After many flips, we expect that the total number
of heads should be quite close to one half of the total number of flips. In
trying to capture this notion of flipping a coin over and over again, we need
to introduce the following:

Definition 15.5.1 Repeated independent trials are called Bernoulli trials if
there are only two possible outcomes for each trial and if their probabilities
remain the same throughout the trials.

Let A be one of the outcomes and suppose the probability of A is P(A) = p.
Then the probability of A not occurring is 1 — p, which we will denote by
q. Let the sample space be

w = {A,not A}.
We have

P(A) =p,P(not A) = q.

We now want to see what happens when we take many repeated trials.
The following theorem is key:

Theorem 15.5.1 (Central Limit Theorem) Consider a sample space
w = {A,not A} with P(A) = p and P(not A) = 1—p = q. Given n
independent random variables Xy, ...,X,, each taking

X;(A) =1, X;(not A) =0,

set n
Sn = ZXz
i=1
and
. Sp — E(Sy,)
" V(Sn)

Then for any real numbers a and b,

1 b .2
lim P{a < S <b} = — e 2 dz.
A, Pla < 5, < b} \/g/a
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What this is saying is that if we perform a huge number of repeated
Bernoulli trials, then the values of S,, will be distributed as:

'y

Sn

¥y

But we have even more. Namely, by normalizing S,, to the new random
variable S} (which, as we will see in a moment, has mean zero and variance
one), we always get the same distribution, no matter what the real world
situation we start with is, just as long as the real world problem can be
modelled as a Bernoulli trial. By the way, the distribution for any Bernoulli
trial is simply the graph of the function lim, . S,. We call S}, the normal
distribution. Its graph is the Gauss-Bell curve.

Before sketching a proof of the Central Limit Theorem (whose general
outline is from [18]), let us look at the random variables S, and S;;.

Lemmma 15.5.1 The expected value of S, is np and its variance is npgq.
The expected value of Sy, is 0 and its variance is 1.

Proof of Lemma: We know that for all &,
E(X}) = Xy (A)P(A) + Xg(not A)P(not A)=1-p+0-9g=0p.
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Then by the linearity of the expected value function

E(S,) = EXi+...+X,)
E(X1) +... + E(Xp)
np.

As for the variance, we know that for any k,

V(Xy) = E(X}) - [EXe)?
X2(A)P(A) + X2 (not A)P(not A) — p?
1>-p+0%-g—p

= p—p°
= p(l-p)
= pg.

Then we have

V(Sn) = VXi+...+X,)
VX)) +...+V(X,)
npq.

Now

. Sn — E(Sp)
(5 ( V(S )
S T E(S, — E(Sn))

V'V (Sn)

1
V'V (Sn)

which, since E(S,) is just a number, is zero.

Now for the variance. First, note that for any random variable that
happens to be a constant function, the variance must be zero. In particular,
since the expected value of a random variable is a number, we must have
that the variance of an expected value is zero:

(E(Sn) — E(E(Sn))),

V(E(X)) = 0.

Using this, we have that

. Sn — E(Sn)
V(s = v |2 _=\ns
(Sk) ( VvV (Srn) )
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1 2
= 7 )) (Sn — E(Sh))
1

as desired. O
Before discussing the proof of the Central Limit Theorem, let us look
at the formula

nlgrolo Pla< S, <b) \/?37 /
It happens to be the case that for any particular ch01ce of a and b, it is im-

possible to explicitly calculate the integral —— f ez dx, instead people
must numerically approximate the answers, Wthh of course can easily be
done with standard software packages like Maple or Mathematica. Surpris-
ingly enough, \/-17—# J2° €75 dz can be shown to be exactly one. We first
show why this must be the case if the Central Limit Theorem is true and
then we will explicitly prove that this integral is one.

For any sequence of events and for any n, S} must be some number.
Thus for all n,

P(—o0 £S5 <o0) =1,
and thus its limit as n goes to infinity must be one, meaning that our
o2

integral is one. Thus if \/—12—; [ e™*dz is not one, the Central Limit

Theorem would not be true. Thus we need to prove that this integral is
one. In fact, the proof that this integral is one is interesting in its own
right.

Theorem 15.5.2
o2
e 2 dr=1.

7l

Proof: Surprisingly, we look at the square of the integral:

e [P [ [

Since the symbol z just denotes what variable we are integrating over, we
can change the z in the second integral to a y without changing the equality:

(= [ Fws [ Fay,

5.
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Since the  and the y have nothing to do with each other, we can combine
these two single integrals into one double integral:

(1 /oo :_wid)g 1/m/wiﬂidd
— e 2 dzx = — ez e 2 dz
V2T J o 21 J oo J—oo Y
1 oo o0 (22442
= —/ / e(2+y dzdy,
2m —oco J —o0

which is now a double integral over the real plane. The next trick is to
switch over to polar coordinates, to reduce our integrals to doable ones.
Recall that we have dzdy = rdrdf and z2 + y? = r?

4
A (r,8) = (x.y)

2
in polar coordinates. Then we have

27 (o)

L (7 = 402 ! % rdrdf
T — e 2 dx = — —e” 2 rdr
(\/27r /—oo 27w Jo 0

1 27 .2
= 2— ez |80 de
T Jo
1 27
= — dé
2r Jy

= 1,

as desired. O
Proof of Central Limit Theorem: (Again, we got this argument from
[18].) At a critical stage of this proof, there will be a summation of terms

of the form
n k. _n—k
(7)a

2
1 i
2

which we will replace by

__._.__e_ ,

V2mnpq
where the z; will be defined in a moment. We will see that the justification
for this replacement is a corollary of Stirling’s formula for n!, next section’s
topic.
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We are interested in P(a < S} < b). But, at least initially, the random
variable S, is a bit easier to work with. We want to link S, with S}.
Suppose that we know that S, = k, which means that after n trials, there
have been exactly k occurrences of A (and thus n—k occurrences of not A).
Let x denote the corresponding value for S;;. Then

_ k—E(S,)

Since E(Sy) = np and V(S,) = npq, we have

A k—mnp
k — \/n—(—]— )
and thus
k = np+ \/npqxy.
Then

Pla<S;<b)= Y  P(S,=k)
{a<ze<b}

First we need to show that
AN
H&=M=(Q#$V

Now S, = k means that after n trials there are exactly £ A’s. Since
P(A) = p and P(not A) = ¢, we have that the probability of any particular
pattern of k A’s is p*¢™* (for example, if the first k trials yield A’s and the
last n — k trials yield not A’s). But among n trials, there are (’,:) different
ways for there to be k A’s. Thus P(S, = k) = (})p*¢"*.

Then we have

1:2
We now replace (})p*q™* with \/ZJque“’zk“ (which, again, will be justified

in the next section), giving us

1 =
Pla<S,<b) = Z ———e" 2
{o<ercey VITPL

«2

- 3 v %
V2. /npq

{a<zr <b}
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Note that
- w_k+1—np_k—np_ 1
T TR Vbl /Apd
Thus

1 =%
Pla<S,<b)= Y. \/T—We_—'-’h(wkﬂ — ).

As we let n approach infinity, the interval [a, b] is split into a finer and finer
partition by the z;. The above sum is a Riemann sum and can thus be
replaced, as n approaches infinity, by our desired integral:

b .
lim P(aSSZSb):—\/lT/ e dz. O
T Ja

n—>+00

15.6 Stirling’s Approximation for n!

Stirling’s formula tells us that for large n we can replace n! by vV2rnn"e™".
We need this approximation to complete the proof of the Central Limit
Theorem. (We are still following [18].)

First, given two functions f(n) and g(n), we say that

f(n) ~ g(n)
if there exists a nonzero constant ¢ such that

o _,

| b

n—oo g(n) o

Thus the functions f(n) and g(n) grow at the same rate as n goes to infinity.
For example
n® ~5n —2n + 3.

Theorem 15.6.1 (Stirling’s Formula)
n! ~2rnn"e™"

Proof: This will take some work and some algebraic manipulations.
First note that

V2rnnTe " = V2rnttie ™,

We will show here that

. n!
lim — =k,
n—00 ptze—n
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for some constant k. To show that k = v/27, we use the following convo-
luted argument. Assume that we have already shown that n! ~ kn"t3e=n,
Use this approximation in our replacement of (7)p*¢™* in the following
corollary and, more importantly, in the proof in the last section of the Cen-
tral Limit Theorem. If we follow the steps in that proof, we will end up
with

oy P8 < 8n <) k/

Since for each n, we must have S} equal to some number, we know that
P(—o00 < S5} < o0) = 1 and thus lim,_,oo P(—00 < S < o0) = 1. Then we

must have
1 [ _.2
E/—oo e 2 dr=1.

But in the last section we calculated that ffo o e_Tﬂdx = v/2x. From this
calculation, we see that k& must be v/27.

Now for the meat of the argument, showing that such a k exists. This
will take some work and involve various computational tricks. Our goal is
to show that there is a nonzero constant & such that

lim L— =k.

n—oo nn+ 2~

Since we have no clue for now as to what % is, save that it is positive, call it
e, with ¢ some other constant (we will be taking logarithms in a moment,
so using e® will make the notation a bit easier). Now,

n!
lim —— =e€
n—oo nn+2 e~ "n

Cc

exactly when

. n!
lim log{ ——— ) =
n—oco nttze—n

Using that logarithms change multiplications and divisions into sums and
differences, this is the same as

lim (log(n!) — (n + %) log(n) +n) =c.

n—ro0

For notational convenience, set

dn, =log(n!) — (n + %) log(n) + n.
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We want to show that d,, converges to some number ¢ as n goes to co. Here
we use a trick. Consider the sequence

n

> (di = dig1) = (dy — da) + (d2 — d3) + ... (dn — dpy1) = di — dpya.

i=1

We will show that the infinite series Yo~ (d;—d; ;1) converges, which means
that the partial sums Z:.L:l(di —d;jy1) = di — dpyq converge. But this will
mean that d,,; will converge, which is our goal.

We will show that Y 2 (d; — d;41) converges by the comparison test.
Specifically, we will show that

2n+1 1

[dn — dnt1| < ond T It

Since both 372, 2L and Y22, -7 converge, our series will converge.
This will be a long calculation. We will need to use that, for any = with
lz| < %,

22
log(l+z) =2 — -t 0(z)
where () is a function such that for all |z| < %,
6()] < |=f.

This follows from the Taylor series expansion of log(1+z). The requirement
that |z| < £ is not critical; all we must do is make sure that our |z| are
sufficiently less than one.

Now,

dn — dnis] = llog(n!) — (n+ 3)log(n) +n] -
log((n+ D) —(n+1+ %) log(n+ 1) +n + 1]

= [log(n)+ ... +1log(1) — (n+ %) log(n) + n]
—{log(n + 1) +--- +log(1)
—(n+1+ %)Iog(n+ 1) +n+1]

= —(n+ %)log(n) —I—(n-i—%)log(n—%—l)—l
= (n-i—%)log (n:l) -1

1 1
= (n+§)log(1+ﬁ)—1
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1.1 1 1
= (3G g TG 1
1.1 1
= ) - g
(n+3) 1
< -
= n? 4n?’

which gives us our result. O
While Stirling’s formula is important in its own right, we needed to use
its following corollary in the proof of the Central Limit Theorem:

Corollary 15.6.1.1 Let A be a constant. Then for x;, < A, we have

22
n phgn ~ 1 o5
k V2mnpq
Here the notation is the same as that used in the last section. In particular,
if S, =k, we set S}, = z. Then we have

k = np + /npqgxy,

and subtracting both sides of this equation from n, we have

n—k=mn-—np— /npqrr = ng — /NPGTy.
If, as in the corollary, zx < A, then we must have
k~np

and
n—k~ng.

In the following proof, at a critical stage we will be replacing & by np and
n — k by ng.
Proof of Corollary: By definition

W\ kak _ " kg
(k:)p T T WMa—mt

(%)nV 2mn pk n—=k

EVVamh(EE )k S - B)

using Stirling’s formula, which in turn yields

e () (%)

Ve () ()"
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using here that k£ ~ np and n — k ~ ng. This in turn equals

1 np\* n—k
eyt (_ng
2mnpq ( k n—k )
If we can show that
n—=k 2
np\* [ ngq _%k
(—k—) (n - k) ¢

we will be done. Using that we can replace log(1 + ) by  — 3”;, for small
z, we will show that

o () (7))~
Now
log ((n_é_p)" (n?k)n_k> = klog (Ekg) + (n — k) log <nn_qk)

_ _ /apgay,
= klog (1 -
+(n — k) log <1 + ____ﬁflsz) ,

using that the equality k = np + /npgx implies
np _k—/npqzy _ 1 \/IpaTy
- k

k k

and a similar argument for the (n — k). But then we can replace the log
terms in the above to get

ok (_\/npqwk B npqxi) +(n—k) (\/npqwk __npqa} )

k 2k2 n—k 2(n — k)?
_npgzi  npge}
2k 2(n—k)
2
_ _npqx _1_ 1
= T <k gy k)
B _npqm% n
B 2 k(n—k)/
= Tk (mpy [ ™
B 2 ( k ) (n - k)
Ti
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since earlier we showed that np ~ k and ng~n —%. 0

The proof of Stirling’s formula and of its corollary were full of clever
manipulations. Part of the reason that these steps are shown here is to
let people see that despite the abstract machinery of modern mathematics,
there is still a need for cleverness at computations.

15.7 Books

From informed sources, Brualdi’s book [14] is a good introduction to com-
binatorics. An excellent, but hard, text is by van Lint and Wilson [115].
Cameron’s text [16] is also good. Polya, Tarjan and Woods’ book [93] is
fascinating. To get a feel of how current combinatorics is used, Graham,
Knuth and Patashnik’s [47] book is great. Stanley’s text [105] is a standard
text for beginning graduate students in combinatorics.

For probability theory, it is hard to imagine a better text than Feller
[34]. This book is full of intuitions and wonderful, nontrivial examples.
Grimmett and Stirzaker [50] is also a good place to begin. Another good
source is Chung’s book [18], which is where, as mentioned, I got the flow of
the above argument for the Central Limit Theorem. More advanced work
in probability theory is measure theoretic.

15.8 Exercises

1. The goal of this exercise is to see how to apply the definitions for prob-
ability to playing cards.

a. Given a standard deck of fifty-two cards, how many five card hands
are possible (here order does not matter).

b. How many of these five card hands contain a pair? (This means
that not only must there be a pair in the hand, but there cannot be a
three-of-a-kind, two pair, etc.)

c. What is the probability of being dealt a hand with a pair?

2. The goal of this exercise is to see how the formulas for (}) are linked to
Pascal’s triangle.
a. Prove by induction that

ny (n-1 + n—1
k) k -1/
b. Prove this formula by counting how to choose k objects from n
objects (order not mattering) in two different ways.

¢. Prove that the binomial coefficients (Z) can be determined from
Pascal’s triangle, whose first five rows are:
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d. Give a combinatorial proof of the identity
5(0)-r
k=0

4. Find a formula for determining how many monomials of degree k can
be made out of n variables. (Thus for the two variables z,y, the number of
monomials of degree two is three, since we can simply count the list

(@*,2y,9%).)

5. The pigeonhole principle states:
If (n+1) objects are placed into n different bozes, at least one box must have
al least two objects in it.

Let ai,...,an41 be integers. Show that there is at least one pair of
these integers such that a; — a; is divisible by the integer n.
6. The goal of this problem is to prove the Inclusion-Exclusion Principle,
the statement of which is part c.

a. Let A and B be any two sets. Show that

|[AUB| =|A|+|B|-|ANB.
b. Let A;, As and A3 be any three sets. Show that
[A1UAUA3| = |A1|+]A2|+]As|—|A1NA2]|—|A1NAs|—|A2NAs|+]|A1NA2NAs]|.
c. Let A;,..., A, be any n sets. Show that
41U .. UA,| = S|4 —SJAin Al + ...+ (=D)AL N .. N Al

(2") ~ (wn)~H/222m,

n

7. Show that



Chapter 16

Algorithms

Basic Object: Graphs and Trees
Basic Goal: Computing the Efficiency of Algorithms

The end of the 1800s and the beginning of the 1900s saw intense debate
about the meaning of existence for mathematical objects. To some, a math-
ematical object could only have meaning if there was a method to compute
it. For others, any definition that did not lead to a contradiction would be
good enough to guarantee existence (and this is the path that mathemati-
cians have overwhelmingly chosen to take). Think back to the section on
the Axiom of Choice in Chapter Ten. Here objects were claimed to exist
which were impossible to actually construct. In many ways these debates
had quieted down by the 1930s, in part due to Godel’s work, but also in part
due to the nature of the algorithms that were eventually being produced.
By the late 1800s, the objects that were being supposedly constructed by
algorithms were so cumbersome and time-consuming, that no human could
ever compute them by hand. To most people, the pragmatic difference
between an existence argument versus a computation that would take a
human the life of the universe was too small to care about, especially if the
existence proof had a clean feel.

All of this changed with the advent of computers. Suddenly, calcula-
tions that would take many lifetimes by hand could be easily completed in
millionths of a second on a personal computer. Standard software pack-
ages like Mathematica and Maple can outcompute the wildest dreams of
a mathematician from just a short time ago. Computers, though, seem to
have problems with existence proofs. The need for constructive arguments
returned with force, but now came a real concern with the efficiency of the
construction, or the complexity of the algorithm. The idea that certain
constructions have an intrinsic complexity has increasingly become basic in
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most branches of mathematics.

16.1 Algorithms and Complexity

An accurate, specific definition for an algorithm is non-trivial and not, very
enlightening. As stated in the beginning of Cormen, Leiserson and Rivest’s
book Introduction to Algorithms [22],

Informally, an algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some values, or
set of values, as output. An algorithm is thus a sequence of computational
steps that transform the input into the output.

Much of what has been discussed in this book can be recast into the
language of algorithms. Certainly, much of the first chapter on linear alge-
bra, such as the definition of the determinant and Gaussian elimination, is
fundamentally algorithmic in nature.

We are concerned with the efficiency of an algorithm. Here we need to
be concerned with asymptotic bounds on the growth of functions.

Definition 16.1.1 Let f(x) and g(z) be two one-variable real-valued func-
tions. We say that f(z) is in O(g(x)) if there exists a positive constant C
and a positive number N so that for oll x > N, we have |f(z)] < Clg()].

This is informally known as big O notation.

Typically we do not use the symbol “x” for our variable but “n”. Then
the class of functions in O(n) will be those that grow at most linearly, those
in O(n?) grow at most quadratically, etc. Thus the polynomial 3n*+7n—19
is in O(n?).

For an algorithm there is the input size, n, which is how much informa-
tion needs to be initially given, and the running time, which is how long
the algorithm takes as a function of the input size. An algorithm is linear
if the running time r(n) is in O(n), polynomial if the running time r(n) is
in O(n*) for some integer k, etc.

There are further concerns, such as the space size of an algorithm, which
is how much space the algorithm requires in order to run as a function of
the input size.

16.2 Graphs: Euler and Hamiltonian Circuits

An analysis of most current algorithms frequently comes down to study-
ing graphs. This section will define graphs and then discuss graphs that
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have Euler circuits and Hamiltonian circuits. We will see that while these
two have similar looking definitions, their algorithmic properties are quite
different.

Intuitively a graph looks like:

JE Do P ETY [

The key is that a graph consists of vertices and edges between vertices.
All that matters is which vertices are linked by edges. Thus we will want
these two graphs, which have different pictures in the plane, to be viewed
as equivalent.

NI

Definition 16.2.1 A graph G consists of a set V(g), called vertices, and
a set E(G), called edges, and a function

o: E(G) = {{u,v} :u,v € V(G)}.

We say that elements v; and v; in V(G) are connected by an edge e if
a(e) = {vi,v;}-

Note that {v;,v;} denotes the set consisting of the two vertices v; and v;.
For the graph G:

V4
€4 eg
ve €o V3
we have
V(G) = {v1,v2,v3}
E(G) = {e1,e2,e3}
and

o(e1) = {v1,v2},0(e2) = {va,v3},0(e3) = {v1,v3}.

Associated to a graph is its adjacency matrix A(G). If there are n
vertices, this will be the following n x n matrix. List the vertices:
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V(G) = {v1,v2, ..., 0}

For the (7, j)-entry of the matrix, put in a & if there are &k edges between v;
and v; and a 0 otherwise. Thus the adjacency matrix for:

will be the 4 x 4 matrix:

AG) =

OO NO
— O N
o = O
—_ e = O

The ‘1’ in the (4,4) entry reflects that there is an edge from vy to itself and
the ‘2’ in the (1,2) and (2, 1) entries reflects that there are two edges from
v1 1O Vo,
A path in a graph G is a sequence of edges that link up with each other.
A circuit is a path that starts and ends at the same vertex. For example,
in the graph:
V3

Vo €2

€3
€4
V4
Vi «
[S3 €4

V5

the path ege; starts at vertex v, and ends at vy while e;esezeqes is a circuit
starting and ending at vy.

We can now start to talk about Euler circuits. We will follow the tradi-
tional approach and look first of the Kénigsberg bridge problem. The town
of Konigsberg had the following arrangement;:
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Here A, B, C and D denote land.

The story goes that in the 1700s, the people of Konigsberg would try
to see if they could cross every bridge exactly once so that at the end they
returned to their starting spot. Euler translated this game into a graph
theory question. To each connected piece of land he assigned a vertex and
to each bridge between pieces of land he assigned an edge. Thus Kénigsberg
became the graph

D

Then the game will be solved if in this graph there is a circuit that contains
each edge exactly once. Such circuits have a special name, in honor of
Euler:

Definition 16.2.2 An Euler circuit on a graph is a circuit that contains
each edge exactly once.

To solve the Konigsberg bridge problem, Euler came up with a clean crite-
rion for when any graph will have an Euler circuit.

Theorem 16.2.1 A graph has an Euler circuit if and only if each vertex
has an even number of edges coming into it.
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Thus in Konigsberg, since vertex A is on three edges (and in this case every
other vertex also has an odd number of edges), no one can cross each bridge
just once.

The fact that each vertex must be on an even number of edges is not
that hard to see. Suppose we have an Euler circuit. Imagine deleting each
edge as we transverse the graph. Each time we enter, then leave, a vertex,
two edges are deleted, reducing the number of edges containing that vertex
by two. By the end, there are no edges left, meaning that the original
number of edges at each vertex had to be even.

The reverse direction is a bit more complicated but is more important.
The best method (which we will not do) is to actually construct an algo-
rithm that produces an Euler circuit. For us, the important point is that
there is a clean, easy criterion for determining when an Euler circuit exists.

Let us now make a seemingly minor change in the definition for an Euler
circuit. Instead of finding a circuit that contains each edge only once, now
let us try to find one that contains each vertex only once. These circuits
are called:

Definition 16.2.3 A graph has a Hamiltonian circuit if there is a circuit
that contains each vertex exactly once.

For example, for the graph:

€1

=¥ [52)

€3

the circuit ejeqsegey is Hamiltonian, while for the graph:

>

there is no Hamiltonian circuit. In this last graph, one can simply list all
possible circuits and then just check if one of them is Hamiltonian. This
algorithm of just listing all possible circuits will work for any graph, as
there can only be a finite number of circuits, but this listing unfortunately
takes O(n!) time, where n is the number of edges. For any graph with a fair
number of edges, this approach is prohibitively time-consuming. But this
is fairly close to the best known method for determining if a Hamiltonian
circuit exists. As we will see in section four, the problem of finding a
Hamiltonian circuit seems to be intrinsically difficult and important.
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16.3 Sorting and Trees

Suppose you are given a set of real numbers. Frequently you want to
order the set from smallest number to largest. Similarly, suppose a stack
of exams is sitting on your desk. You might want to put the exams into
alphabetical order. Both of these problems are sorting problems. A sorting
algorithm will take a collection of elements for which an ordering can exist
and actually produce the ordering. This section will discuss how this is
related to a special class of graphs called trees and that the lower bound
for any sorting algorithm is O(nlog(n)).

Technically a tree is any graph that is connected (meaning that there
is a path from any vertex to any other vertex) and contains within it no
circuits. Thus

SO N 92
-

are not. Those vertices contained on exactly one edge are called leaves.
These are in some sense the vertices where the tree stops. We will be
concerned with binary trees, which are constructed as follows. Start with a
vertex called the root. Let two edges come out from the root. From each of
the two new vertices at the end of the two edges, either let two new edges
stem out or stop. Continue this process a finite number of steps. Such a
tree looks like:
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where v, is the root and vy, vs, v7, Vg, ¥10, ¥12 and vy3 are the leaves. We
will draw our binary trees top down, with the root at the top and the leaves
at the bottom. At each vertex, the two edges that stem down are called
the left edge and right edge, respectively. The two vertices at the ends of
these edges are called the left child and the right child, respectively. The
height of a tree is the number of edges in the longest path from the root to
a leaf. Thus the height of

is three while the height of

is six.
We now want to see why sorting is linked to binary trees. We are given
a collection of elements {a1,...,a,}. We will assume that all we can do is

compare the size of any two elements. Thus given, say, elements a; and aj,
we can determine if a; < a; or if a; < a;. Any such sorting algorithm can
only, at each stage, take two a; and a; and, based on which is larger, tell
us what to do at the next stage. Now to show that any such algorithm can
be represented as a tree. The root will correspond to the first pair to be
compared in the algorithm. Say this first pair is a; and a;. There are two
possibilities for the order of a; and a;. If a; < aj, go down the left edge
and if a; < a;, go down the right edge. An algorithm will tell us at this
stage which pair of elements to now compare. Label the new vertices by
these pairs. Continue this process until there is nothing left to compare.
Thus we will have a tree, with each vertex labeled by a pair of elements in
our set and each leaf corresponding to an ordering of the set.

For example, take a three element set {a;,az2,as}. Consider the fol-
lowing simple algorithm (if anything this easy deserves to be called an
algorithm):

Compare a; and as. If a1 < aq, compare az and as. If as < a3, then the
ordering is a1 < as < az. If as < ag, compare a; and as. If a1 < agz,
then the ordering is a1 < a3 < as. If we had a3z < a3, then the ordering
is ag < a1 < a2. Now we go back to the case when a; < a;. Then we
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next compare a; and az. If a3 < as, the ordering is a2 < a1 < a3. If
we have a3 < a;, we compare az and a3. If az < a3, then the ordering is
a2 < ag < a1. If ag < ag, then the ordering is a3 < a2 < a1 and we are
done. Even for this simple example, the steps, presented in this manner,
are confusing. But when this method is represented as a tree it becomes
clear:

Ax<ai<as

ds<ai <A<y az<az<a

<3<y az<acd;

We now want to show that for a binary tree there is an intrinsic lower
bound on its height, which means that there is an intrinsic lower bound on
the time needed to sort.

Theorem 16.3.1 A binary tree of height n has at most 2" leaves.

Proof: By induction. Suppose the height is zero. This means that the tree
is a single vertex and thus has 2° = 1 leaf, which of course in this case is
also the root and is easy to sort.

Now suppose that we know the theorem is true for any tree of height
n — 1. Look at a tree of height n. Thus there is at least one path from
the root to a leaf with length n. Remove all leaves, and their attaching
edges, that are of length n from the root. We have a new tree of height
n — 1. The induction hypothesis kicks in, so we know that for this new tree
there are at most 2"~ leaves. Let two edges stem out from each of these
271 Jeaves, forming still another new tree which has height n and which
contains our original tree. But we are adding two new vertices for each of
the 2771 leaves of the tree of height n — 1. Thus this final new tree has at
most 2 - 2"! = 27 leaves. Since each leaf of our original tree is a leaf of
this.tree, we have our result. O

This allows us to finally see that any algorithm that sorts n objects
must be in at least O(n log(n)).

Theorem 16.3.2 Any sorting algorithm based on pairwise comparisons
must be in at least O(nlog(n)).

Proof: Given a set of n elements, there are n! different ways they can be
initially ordered. For any sorting algorithm, for the corresponding tree there
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must be a way, starting with the root, to get to one of these n! different
initial orderings. Thus the tree must have at least n! leaves. Thus from the
previous theorem, the tree must have height at least h, where

2" > nl.

Thus we must have

h > log,(n!).
Any sorting algorithm must take at least h steps and hence must be in at
least O(log,(n!)). Now we have, for any number K, log(K) = log(2) log,(K),
where of course, log is here the natural log, log,. Further, by Stirling’s for-
mula, we have for large n that

n! ~ V2rnn"e ™.

Then
log(n!) ~ log(v2mn) + nlog(n) — nlog(e),

which gives us that

O(log(n!)) = O(log(v2rn) + nlog(n) — nlog(e))
O(nlog(n)),

since nlog(n) dominates the other terms. Thus the complexity of any
sorting algorithm is in at least O(log,(n!), which equals O(nlog(n)), as
desired. O

To show that sorting is actually equal to O(nlog(n)), we would need
to find an algorithm that runs in O(nlog(n)). Heapsort, merge and other
algorithms for sorting do exist that are in O(nlog(n)).

16.4 P=NP?

The goal of this section is to discuss what is possibly the most important
open problem in mathematics: “P=NP7”. This problem focuses on trying
to determine the difference between the finding of a solution for a problem
and the checking of a candidate solution for the problem. The fact that it
remains open (and that it could well be independent of the other axioms
of mathematics) shows that mathematicians do not yet understand the full
meaning of mathematical existence versus construction.

A problem is in polynomial time if, given input size n, there is an
algorithm that is in O(n*), for some positive integer k. A problem is in NP
if, given input size n, a candidate solution can be checked for accuracy in
polynomial time. The N in the NP is somewhat of a joke; NP stands for
“not polynomial”.
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Think of a jigsaw puzzle. While it can be quite time consuming to put
a jigsaw puzzle together, it is easy and quick to tell if someone has finished
such a puzzle. For a more mathematical example, try to invert an n x n
matrix A. While doable, it is not particularly easy to actually construct
AL, But if someone hands us a matrix B and claims that it is the inverse,
all we have to do to check is to multiply out AB and see if we get the
identity I. For another example, start with a graph G. It is difficult to
determine if G contains a Hamiltonian circuit. But if someone hands us a
candidate circuit, it is easy to check whether or not the circuit goes through
every vertex exactly once. Certainly it appears that the problem of finding
a solution should be intrinsically more difficult than the problem of checking
the accuracy of a solution.

Amazingly enough, people do not know if the class of NP problems is
larger than the class of polynomial time problems (which are denoted as P
problems). “P=NP” is the question:

Is the class of problems in P equal to the class of problems in NP?

This has been open for many years. While initially the smart money
was on P#NP, today the belief is increasingly that statement ‘P=NP’ is
independent of the other axioms of mathematics. Few believe that P=NP.

Even more intriguing is the existence of NP complete problems. Such a
problem is not only in NP but also must be a yes/no question and, most
importantly, every other NP problem must be capable of being translated
into this problem in polynomial time. Thus if there is a polynomial time
solution to this NP yes/no problem, there will be a polynomial time solution
of every NP problem.

Every area of math seems to have its own NP complete problems. For
example, the question of whether or not a graph contains a Hamiltonian cir-
cuit is a quintessential NP complete problem and, since it can be explained
with little high level math, is a popular choice in expository works.

16.5 Numerical Analysis: Newton’s Method

Since the discovery of calculus, there has been work on finding answers to
math questions that people can actually use. Frequently this comes down
to only finding approximate solutions. Numerical Analysis is the field that
tries to find approximate solutions to exact problems. How good of an
approximation is good enough and how quickly the approximation can be
found are the basic questions for a numerical analyst. While the roots of
this subject are centuries old, the rise of computers has revolutionized the
field. An algorithm that is unreasonable to perform by hand can often
be easily solved for a standard computer. Since numerical analysis is ulti-
mately concerned with the efficiency of algorithms, I have put this section
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in this chapter. It must be noted that in the current math world, numer-
ical analysts and people in complexity theory are not viewed as being in
the same subdiscipline. This is not to imply that they don’t talk to each
other; more that complexity theory has evolved from computer science and
numerical analysis has always been a part of mathematics.

There are certain touchstone problems in numerical analysis, problems
that are returned to again and again. Certainly efficient algorithms for
computations in linear algebra are always important. Another, which we
will be concerned with here, is the problem of finding zeros of functions.
Many problems in math can be recast into finding a zero of a function.
We will first look at Newton’s method for approximating a zero of a real
valued differentiable function f : R — R, and then quickly see how the
ideas behind this method can be used, at times, to approximate the zeros
of other types of functions.

Let f : R — R be a differentiable function. We will first outhne the
geometry behind Newton’s method. Suppose we know its graph (which of
course in real life we will rarely know; otherwise the problem of approxi-
mating zeros would be easy) to be:

A

y=i(x)

aliIN {
/ X~

We thus want to approximate the point zo. Choose any point z;. Draw
the tangent line to the curve y = f(z) at the point (z1, f(z1)) and label its
intersection with the x-axis by (z2,0).

A
slope = f (x4)

-~ Nym o/

X2

X1

Then we have
0— f(z1)

T2 — 1 ’

fl(z1) =
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which, solving for x5, yields

f(z1)
fiz)

In the picture, it looks like our newly constructed zs is closer to our desired
zo than is x;. Let us try the same thing but replacing the z;’s with xs.
We label z3 as the x-coordinate of the point of intersection of the tangent
line of y = f(x) through the point (z3, f(z2)) and get:

Tg =Ty —

Again, it at least looks like x3 is getting closer to zg. Newton’s method is
to continue this process, namely to set

f(zr)

Tkt = Tk i)

For this to work, we need z; — zo. There are difficulties. Consider the
picture:

)

With this choice of initial z,, the z; will certainly not approach the zero
zp, though they do appear to approach a different zero. The problem of
course is that this choice of z; is near a local maximum, which means that
the derivative f'(x;) is very small, forcing xo = @3 — f(x1)/f'(x1) to be far
from xzg.

We will now make this technically correct. Here we will see many ideas
from calculus playing a critical role in proving that Newton’s method will,
subject to specific conditions, always produce an approximation to the true
zero. We will look at functions f : [a,b] — [a,b] which have continuous
second derivatives, i.e., functions in the vector space C?[a,b]. As an aside,
we will be using throughout the Mean Value Theorem, which states that
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for any function f € C?[a,b], there exists a number ¢ with a < ¢ < b such

that
JO) - fla)

" b—a

file)=
Our goal is:

Theorem 16.5.1 Let f € C*[a,b]. Suppose there exists a point z¢ € [a, b]
with f(zo) = 0 but f'(xz0) # 0. Then there exists a § > 0 such that, given
any point 1 in [xo — 6,20 + 0], if for all k we define

f(xk—l)

T = Tp—3 —
k k-1 fl(xk_l),

we have that x, — To.

This theorem states that Newton’s method will produce an approximation
of the zero provided our initial choice x; is close enough to the zero.
Proof: We will alter the problem from finding a zero of a function f to the
finding of a fixed point of a function g. Set

f(=)
- Fi(@)

Note that f(zo) = 0 if and only if g(zg) = zo. We will show that Newton’s
method will produce an approximation to a fixed point of g.

We first need to see how to choose our § > 0. By taking derivatives and
doing a bit of algebra, we have

g(z) =

f(@)f"(z)
(f'@@)?

Since the second derivative of f is still a continuous function, we have that
¢'(z) is a continuous function. Further, since f(zg) = 0, we have that
g' (o) = 0. By continuity, given any positive number «, there exists a
d > 0 such that for all z € [zg — d,zo + 8], we have

g'(x) =

lg' ()] < e

We choose a to be strictly less than one (the reason for this restriction will
be clear in a moment).
We will reduce the problem to proving the following three lemmas:

Lemma 16.5.1 Let g : [a,b] = [a,b] be any continuous function. Then
there is a fized point in [a,b).
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Lemma 16.5.2 Let g : [a,b] — [a,b] be any differentiable function such
that for all z € [a,b] we have

9’ () <a<1
for some constant a. Then there is a unique fized point in the interval [a, b)].

Lemma 16.5.3 Let g : [a,b] — [a,b] be any differentiable function such
that for all z € [a,b] we have

lg' ()] <a<1
for some constant o. Then given any x1 € [a,b], if we set

Tk+1 = g(mk)a
then the xj will approach the fized point of g.

Assume briefly that all three lemmas are true. Note by our choice of
d, we have the function g(z) =  — }j,(%% satisfying each of the conditions
in the above lemma. Further we know that the zero xy of the function
f(z) is the fixed point of g(z). Then we know that iterating any point in
[zo — 6,20 + 0] by g, we will approach zo. But writing out this iteration is
precisely Newton’s method.

Now to prove the lemmas.
Proof of first lemma: This will be a simple application of the Intermedi-
ate Value Theorem. If g(a) = a or if g(b) = b, then a or b is our fixed point
and we are done. Suppose neither holds. Since the range of ¢ is contained
in the interval [a, ], this means that

a < g(a) and b > g(b).

Set
h{z) =z — g(x).

This new function is continuous and has the property that
h{a) =a—g(a) <0

and
h(d) =b—g(b) > 0.

By the Intermediate Value Theorem, there must be a ¢ € [a,b] with
h(c)=c—g(c) =0

giving us our fixed point. O
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Proof of second lemma: We will now use the Mean Value Theorem.
Suppose there are two distinct fixed points, ¢; and ¢y. Label these points
so that ¢; < ¢2. By the Mean Value Theorem, there is some number ¢ with
¢ < ¢ < ¢y such that
g(Cg) - g(cl) _ I(C)
ca—a

Since g(c1) = ¢; and g(c2) = c2, we have

C2—C

!
g'(c) P 1.
Here is our contradiction, as we assumed that at all points that the absolute
value of the derivative was strictly less than one. There cannot be two fixed
points. O
Proof of third lemma: This will be another application of the Mean
Value Theorem. By the second lemma, we know that g has a unique fixed
point. Call this fixed point z¢. We will regularly replace zo by g(zo).

Our goal is to show that |zy — z¢| = 0. We will show that for all &

|z — 20| < a|zp—1 — 20
Then by shifting subscripts we will have
|zk—1 — To| < alzr—2 — o),
which will mean that
lzr — o] < alzr_1 — 2] < AP|Tp—2— 2] < ... < ak]:z;l — Zg|.

Since a is strictly less than one, we will have |z — zo] — 0.
Now
|zk — 20| = |g(zr—1) — g(20)|-
By the Mean Value Theorem, there is some point ¢ between zy and zj—;
with

g(zr—1) ~ g(zo) _
- 2 = g'(c)

which is equivalent to

g(z-1) = g(w0) = g'(c) (w1 — Zo)-

Then
lg(zr—1) = g(wo)| = lg'()||Tr—1 — @0]-

Now we just have to observe that by assumption |¢’'(c)] < «, and we are
done. O
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All this theorem is telling us is that if we start with an initial point close
enough to the zero of a function, Newton’s method will indeed converge to
the zero. It does not tell us how to make our initial choice and does not
tell us the speed of the convergence.

Now let us see how to try to use Newton’s method in other contexts.
Suppose we have a map L : V — W from one vector space to another. How
can we approximate a zero of this map? Let us assume that there is some
notion of a derivative for the map L, which we will denote by DL. Then
just formally following the Newton’s method, we might, starting with any
element v, € V, recursively define

Vk41 = Vg — DL(vg) "' L(vg)

and hope that the v, will approach the zero of the map. This could be at
least an outline of a general approach. The difficulties are in understanding
DL and in particular in dealing with when DL has some type of inverse.

For example, consider a function F' : R? — R2, given in local coordi-
nates by

F(:E,y) = (f1($,y),f2($,y))-

The derivative of F' should be the two-by-two Jacobian matrix

Starting with any (z;,4:1) € R2, we set

Thtr ) _ [ Th -1 | Fi(zr,ye)
(yk+1> B (?ﬂa) DE™ (e, yi) <f2(37k;yk)) '
Newton’s method will work if the (zx,yr) approach a zero of F. By
placing appropriate restrictions on the zero of F', such as requiring that
det(DF(zo0,40)) # 0, we can find an analogous proof to the one-dimensional
case. In fact, it generalizes to any finite dimension.

More difficult problems occur for infinite dimensional spaces V and W.
These naturally show up in the study of differential equations. People
still try to follow a Newton-type method, but now the difficulty of dealing
with the right notion for DL becomes a major stumbling block. This is
why in trying to solve differential equations you are led to the study of
infinite dimensional linear maps and are concerned with the behavior of the
eigenvalues, since you want to control and understand what happens when
the eigenvalues are, or are close to, zero, for this is the key to controlling
the inverse of DL. The study of such eigenvalue questions falls under the
rubric of Spectral Theorems, which is why the Spectral Theorem is a major
part of beginning Functional Analysis and a major tool in PDE theory.
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16.6 Books

The basic text for algorithms is Introduction to Algorithms by Cormen, Leis-
erson and Rivest [22]. Another source is Data Structures and Algorithms
by Aho, Hopcroft, and Ullman [2].

Numerical Analysis has a long history. Further, many people, with
widely varying mathematical backgrounds, need to learn some numerical
analysis. Thus there are many beginning texts (though it must be stated
that my knowledge of these texts is limited).

Atkinson’s Introduction to Numerical Analysis [5] comes highly recom-
mended. Another basic text that has long been the main reference for
people studying for the numerical methods part of the actuarial exams is
Numerical Methods by Burden and Faires [15). Trefethon and Bau’s text
[112] is a good source for numerical methods for linear algebra. For numeri-
cal methods for differential equations, good sources are the books by Iserles
[66) and Strikwerda [110]. Finally, for links with optimization theory, there
is Ciarlet’s Introduction to Numerical Linear Algebra and Optimization [19)].

16.7 Exercises

1. Show that there are infinitely many nonisomorphic graphs, each having
exactly k vertices.

2. How many nonisomorphic graphs with exactly three vertices and four
edges are there?

3. Assume that the time for multiplying and adding two numbers together
is exactly one. ,

a. Find an algorithm that runs in time (n-1) that adds n numbers
together.

b. Find an algorithm that computes the dot product of two vectors in
R? in time (2n-1).

c. Assume that we can work in parallel, meaning that we allow algo-
rithms that can compute items that do not depend on each other simulta-
neously. Show that we can add n numbers together in time log,(n — 1).

d. Find an algorithm that computes the dot product of two vectors in
R? in parallel in time log,(n).

4. Let A be the adjacency matrix for a graph G.

a. Show that there is a nonzero (i, j) entry of the matrix A? if and only
if there is a path containing two edges from vertex i to vertex j.

b. Generalize part (a) to linking entries in the matrix A* to the existence
of paths between various vertices having exactly k edges.
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c. Find an algorithm that determines whether or not a given graph is
connected.
5. Use Newton’s method, with a calculator, to approximate v/2 by approx-
imating a root of the polynomial z2 — 2.
6. Let f: R™ — R"™ be any differentiable function from R” to itself. Let
zo be a point in R" with f(zg) = 0 but with det(D f(zo)) # 0, where Df
denotes the Jacobian of the function f. Find a function g : R"® — R" that
has the point z as a fixed point.






Appendix A

Equivalence Relations

Throughout this text we have used equivalence relations. Here we collect
some of the basic facts about equivalence relations. In essence, an equiva-
lence relation is a generalization of equality.

Definition A.0.1 (Equivalence Relation) An equivalence relation on a
set X s any relation ‘x ~y’ for x,y € X such that

1. (Reflexivity) For any x € X, we have z ~ x.
2. (Symmetry) For all x,y € X,ifx ~y theny ~ z.
3. (Transitivity) For all z,y,z € X, ifc ~y and y ~ z, then ¢ ~ z.

The basic example is that of equality. Another example would be when
X = R and we say that £ ~ y if £ — y is an integer. On the other hand, the
relation z ~ y if z < y is not an equivalence relation, as it is not symmetric.

We can also define equivalence relations in term of subsets of the ordered
pairs X x X as follows:

Definition A.0.2 (Equivalence Relation) An equivalence relation on a
set X is a subset R C X x X such that

1. (Reflezivity) For any x € X, we have (z,x) € R.
2. (Symmetry) For all z,y € X, if (z,y) € R then (y,z) € R.

3. (Transitivity) For all z,y,z € X, if (z,y) € R and (y,2) € R, the

(z,2) € R.

The link between the two definitions is of course that £ ~ y means the
same as (z,y) € R.

An equivalence relation will split the set X into disjoint subsets, the
equivalence classes.
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Definition A.0.3 (Equivalence Classes) An equivalence class C is a
subset of X such that if x,y € C, thenx ~y and ifx € C and if x ~ y,
theny € C.

The various equivalence classes are disjoint, a fact that follows from tran-
sitivity.

Exercises: 1. Let G be a group and H a subgroup. Define, for 2,y € G,
z ~ y, whenever zy~! € H. Show that this forms an equivalence relation
on the group G.

2. For any two sets A and B, define A ~ B if there is a one-to-one, onto
map from A to B. Show that this is an equivalence relation.

3. Let (v1,v2,v3) and (w1, ws, ws) be two collections of three vectors in R3.
Define (vy,ve,v3) ~ (w1, ws,ws) if there is an element A € GL(n,R) such
that Avy = wi, Avs = w- and Avs = ws. Show that this is an equivalence
relation.

4. On the real numbers, say that x ~ y if x — y is a rational number.
Show that this forms an equivalence relation on the real numbers. (This
equivalence was used in Chapter Ten, in the proof that there exists non-
measurable sets.)
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