
www.cambridge.org/9781107003637

INTRODUCTION TO BISIMULATION AND
COINDUCTION

Induction is a pervasive tool in computer science and mathematics for defining objects
and reasoning on them. Coinduction is the dual of induction, and as such it brings in
quite different tools. Today, it is widely used in computer science, but also in other fields,
including artificial intelligence, cognitive science, mathematics, modal logics, philosophy
and physics. The best-known instance of coinduction is bisimulation, mainly employed
to define and prove equalities among potentially infinite objects: processes, streams, non-
well-founded sets, and so on.

This book presents bisimulation and coinduction: the fundamental concepts and tech-
niques, and the duality with induction. Each chapter contains exercises and selected solu-
tions, enabling students to connect theory with practice. A special emphasis is placed on
bisimulation as a behavioural equivalence for processes. Thus the book serves as an intro-
duction to models for expressing processes (such as process calculi) and to the associated
techniques of operational and algebraic analysis.

Davide Sangiorgi is Full Professor in Computer Science at the University of Bologna,
Italy, and Head of the University of Bologna/INRIA team ‘Focus’.

INTRODUCTION TO
BISIMULATION AND

COINDUCTION

DAVIDE SANGIORGI
University of Bologna (Italy)

and INRIA (France)

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107003637

C© D. Sangiorgi 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-00363-7 Hardback

Additional resources for this publication at www.cs.unibo.it/∼sangio/Book Bis Coind.html

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

Contents

List of illustrations page ix
Preface xi

General introduction 1
0.1 Why bisimulation and coinduction 1
0.2 Objectives of the book 4
0.3 Use of the book 5
0.4 Structure of the book 6
0.5 Basic definitions and mathematical notation 7

Acknowledgments 10

1 Towards bisimulation 11
1.1 From functions to processes 11
1.2 Interaction and behaviour 13
1.3 Equality of behaviours 16
1.4 Bisimulation 19

2 Coinduction and the duality with induction 28
2.1 Examples of induction and coinduction 30
2.2 The duality 37
2.3 Fixed points in complete lattices 40
2.4 Inductively and coinductively defined sets 45
2.5 Definitions by means of rules 47
2.6 The examples, continued 50
2.7 Other induction and coinduction principles 57
2.8 Constructive proofs of the existence of least and greatest fixed points 66
2.9 Continuity and cocontinuity, for rules 71
2.10 Bisimilarity as a fixed point 73
2.11 Proofs of membership 79
2.12 Game interpretations 83
2.13 The bisimulation game 86
2.14 A simpler bisimulation game 86

v

vi Contents

3 Algebraic properties of bisimilarity 89
3.1 Basic process operators 90
3.2 CCS 92
3.3 Examples of equalities 94
3.4 Some algebraic laws 96
3.5 Compositionality properties 98
3.6 Algebraic characterisation 103

4 Processes with internal activities 108
4.1 Weak LTSs and weak transitions 109
4.2 Weak bisimulation 110
4.3 Divergence 115
4.4 Rooted weak bisimilarity 118
4.5 Axiomatisation 120
4.6 On the bisimulation game for internal moves 123
4.7 Bisimulation with divergence 124
4.8 Dynamic bisimulation 126
4.9 Branching bisimulation, η-bisimulation and delay bisimulation 126

5 Other approaches to behavioural equivalences 133
5.1 A testing scenario 135
5.2 Bisimulation via testing 136
5.3 Tests for weak bisimilarities 144
5.4 Processes as testers 146
5.5 Testing preorders 147
5.6 Examples 149
5.7 Characterisations of the may, must and testing relations 150
5.8 Testing in weak LTSs 152
5.9 Refusal equivalence 156
5.10 Failure equivalence 157
5.11 Ready equivalence 159
5.12 Equivalences induced by SOS formats 160
5.13 Non-interleaving equivalences 165
5.14 Varieties in concurrency 165

6 Refinements of simulation 168
6.1 Complete simulation 168
6.2 Ready simulation 169
6.3 Two-nested simulation equivalence 171
6.4 Weak simulations 173
6.5 Coupled simulation 174
6.6 The equivalence spectrum 180

Contents vii

7 Basic observables 182
7.1 Labelled bisimilarities: examples of problems 184
7.2 Reduction congruence 185
7.3 Barbed congruence 188
7.4 Barbed equivalence 191
7.5 The weak barbed relations 192
7.6 Reduction-closed barbed congruence 194
7.7 Final remarks 196

Appendix A Solutions to selected exercises 199

List of notation 231
References 235
Index 244

Illustrations

1.1 The LTS of a vending machine page 14
1.2 Non-isomorphic LTSs 17
1.3 Example for trace equivalence 18
1.4 Another example for trace equivalence 18
1.5 Two vending machines 19
1.6 Graphical representation of a bisimulation 21
1.7 Examples of non-bisimilar processes 23
2.1 Upper bounds and meet in poset 42
2.2 A complete lattice 43
2.3 Monotone, continuous and cocontinuous functions 67
2.4 More non-bisimilar processes 78
2.5 Some well-founded trees 81
2.6 A non-well-founded tree 81
3.1 An infinite behaviour, using constants 93
3.2 The axiom system SB 104
4.1 Example of weak bisimilarity with divergence 116
4.2 Another example of weak bisimilarity with divergence 116
4.3 The τ -laws 120
4.4 The bisimulation game in ≈, ≈d, ≈η and ≈br 127
4.5 Processes in ≈ and ≈d, but not in ≈η or ≈br 127
4.6 Processes in ≈ and ≈η, but not in ≈d or ≈br 129
5.1 Two testing equivalent weak LTSs 154
5.2 Ready, but not refusal, equivalent processes 160
5.3 Refusal, but not ready, equivalent processes 160
6.1 Atomic vs gradual commitment 175
6.2 Relationship among the main behavioural equivalences 180

ix

Preface

This book is an introduction to bisimulation and coinduction and a precursor to the
companion book on more advanced topics. Between them, the books analyse the most
fundamental aspects of bisimulation and coinduction, exploring concepts and techniques
that can be transported to many areas. Bisimulation is a special case of coinduction, by far
the most studied coinductive concept. Bisimulation was discovered in Concurrency Theory
and processes remain the main application area. This explains the special emphasis on
bisimulation and processes that one finds throughout the two volumes.

This volume treats basic topics. It explains coinduction, and its duality with induction,
from various angles, starting from some simple results of fixed-point theory. It then goes on
to bisimulation, as a tool for defining behavioural equality among processes (bisimilarity),
and for proving such equalities. It compares bisimulation with other notions of behavioural
equivalence. It also presents a simple process calculus, both to show algebraic techniques
for bisimulation and to illustrate the combination of inductive and coinductive reasoning.

The companion volume, Advanced Topics in Bisimulation and Coinduction, edited by
Davide Sangiorgi and Jan Rutten, deals with more specialised topics. A chapter recalls
the history of the discovery of bisimulation and coinduction. Another chapter unravels
the duality between induction and coinduction, both as defining principles and as proof
techniques, in terms of the duality between the mathematical notions of algebra and coal-
gebra and properties such as initiality and finality. A third chapter analyses the profound
implications of the concept of bisimulation in modal logics, with some beautiful results
on the expressiveness of the logics. Two further chapters are devoted to the bisimulation
proof method, a major ingredient for success of bisimulation: the algorithmic content of
the method, showing striking separation results between bisimilarity and other behavioural
equivalences; and enhancements of the bisimulation proof method, whose goal is to further
facilitate the proof of bisimilarity results. Finally, separate chapters discuss two important
refinements of bisimulation, which have to do with probabilities and higher-order linguistic
constructs.

Bisimulation and coinduction offer us powerful tools for defining, understanding and
reasoning about objects and structures that are common in Computer Science. Today,
bisimulation and coinduction are also used in other fields, e.g., Artificial Intelligence,
Cognitive Science, Mathematics, Modal Logics, Philosophy and Physics.

xi

xii Preface

Although the history of bisimulation and coinduction is fairly short, interest in them has
rapidly grown and will certainly continue to grow in the years to come. However, one does
not find textbooks that offer comprehensive treatments, allowing a newcomer to be exposed
to the basic concepts and to learn how to use and apply them. I hope that these two volumes
can contribute to fill this gap.

I intend to maintain a Web page for general information and auxiliary material about the
volumes. At the time of writing, this page is located at

www.cs.unibo.it/∼sangio/Book Bis Coind.html.

Davide Sangiorgi

General introduction

0.1 Why bisimulation and coinduction

Induction is a pervasive tool in Computer Science and Mathematics for defining objects and
proving properties of them. Coinduction is less known. It has been discovered and studied
only in recent years. It is therefore not part of the standard scientific culture. The interest
in coinduction is, however, growing: more and more application areas are suggested, and
with compelling evidence.

Coinduction brings in tools for defining and reasoning on objects that are new and quite
different from the tools provided by induction. This is because coinduction is the dual of
induction. Induction has to do with least fixed points, coinduction with greatest fixed points.
Greatest fixed points are as natural as least fixed points; in the same way coinduction is as
natural as induction.

In the world of induction, constructions are stratified. Objects are hereditarily con-
structed, starting from basic atoms or primitive objects at the bottom, and then iteratively
moving upward through higher or composite objects. Coinduction liberates us from the
constraints of stratification. An immediate consequence is that the objects can be cir-
cular; more generally, they can be infinite. Examples of infinite structures are streams,
as infinite sequences of elements, and real numbers, as infinite digit streams or Cauchy
sequences. Another example is a process that continuously accepts interactions with the
environment: semantically it is an infinite object, as it can engage in an infinite number of
interactions. Indeed, any non-terminating program, as a computation that goes through an
infinite sequence of steps, may be viewed as an infinite object. Infinity may also appear in
chains of dependencies among the objects. For instance, in programming languages with
store, memory cells with pointers to each other may produce cycles in the store. More
generally, infinity may arise from cycles in any data structure that can be represented as a
graph (as opposed to a tree); the structure could even be finitary, i.e., composed of a finite
number of elements. Infinity may even be assumed for convenience when representing the
objects, because we are unable to place bounds on them: for instance bounds on the size
of a database, of an XML document, or of a stack. Sometimes infinity arises because the
objects, or the environments in which they operate, are not fixed or may undergo mutations
during their life time. This is frequent in modern distributed systems: a given component

1

2 General introduction

may be used in different environments, or may move from an environment to another one,
or may be required to adapt itself to modifications in the surrounding environment. The set
of possible configurations, as pairs (object state, environment), may be infinite. In all the
situations above, if we wish to define the objects, or analyse them (i.e., proving invariance
properties), notions and techniques from coinduction can be fruitful.

Coinduction is important in constructive mathematics. The most visible difference
between constructive and classical mathematics (and logics) is the treatment of negation. In
constructive mathematics, the limitations on the use of negation have led to the introduction
of coinductive tools to reason on concepts that in classical mathematics are studied as the
complements of inductive concepts. For instance, in classical topology closed sets may be
defined as the complements of open sets, and open sets are inductively defined. In intuition-
istic topology, one prefers a more informative definition of closed sets, as sets satisfying
certain closure properties; coinductive definitions are then very natural and elegant, and
particularly convenient for computer-formalised mathematics [Val05, HH06]. Similarly, in
constructive formalisation of the λ-calculus, the set of ‘divergent terms’ is not defined as
the complement of the inductive set of ‘convergent terms’. One looks for an informative
way of describing the meaning of divergence, and for this coinductive methods are very
appropriate (see, e.g., Section 2.1.2).

The best known coinductive concept is bisimulation. In Computer Science, bisimulation
and coinduction have been discovered in Concurrency Theory. Here, the bisimulation
equality, called bisimilarity, is the most studied form of behavioural equality for processes,
and is widely used for a number of reasons, notably the following ones.

� Bisimilarity is accepted as the finest extensional behavioural equivalence one would
like to impose on processes. An extensional property is one whose definition only takes
into account the interactions that the processes may, or may not, perform. An example
of extensional property is ‘after receiving a query, the process produces an answer’.
Examples of non-extensional properties are ‘the state space of the process has cardinality
8’ (where the state space of a process is the set of states reachable from the process),
and ‘the set of states of the process has a Hamiltonian cycle’. Being ‘the finest’ means
that one may argue that bisimilarity makes too many distinctions; but it also means that
bisimilarity is a robust equality (see, e.g., Sections 5.12 and 5.14).

� The bisimulation proof method is exploited to prove equalities among processes. This
occurs even when bisimilarity is not the behavioural equivalence chosen for the processes.
For instance, one may be interested in trace equivalence and yet use the bisimulation
proof method since bisimilarity implies trace equivalence and computing bisimilarity is
efficient.

� The efficiency of the algorithms for bisimilarity checking and the compositionality prop-
erties of bisimilarity are exploited to minimise the state-space of processes.

� Bisimilarity, and variants of it such as similarity, are used to abstract from certain details
of the systems of interest. For instance, we may want to prove behavioural properties of
a server that do not depend on the data that the server manipulates. Abstracting from the
data may also turn an infinite-state server into a finite one.

0.1 Why bisimulation and coinduction 3

Further discussions on the strengths of bisimilarity are found in the book, e.g., in
Section 5.14.

Bisimulation and coinduction are indeed considered as one of the most important con-
tributions of Concurrency Theory to Computer Science. Aside from concurrency, coin-
duction is employed today in a number of areas of Computer Science, including Type
Theory, Domain Theory, databases, program analysis and verification. For instance, in
Type Theory bisimulation and coinductive techniques have been proposed to prove the
soundness of type systems [MT91], to define the meaning of equality between (recur-
sive) types and then to axiomatise and prove such equalities [AC93, BH97] and to define
coinductive types and manipulate infinite proofs in theorem provers [Coq94, Gim96]. In
databases, coinduction is used to formulate, optimise and decompose queries for non-
structured data [BDHS96, BGMM99, ABS99]. In program analysis coinduction is used
to formalise, and reason about, invariance properties [NNH99], e.g., security properties
such as confidentiality and non-interference [Sab03, Smi08], to prove compiler correct-
ness and compiler optimisations [LJWF02, LG09], to reason about elements of recursively
defined domains and data types [Fio93, Pit94] and to reason about equivalence in sequential
programs [Pit97].

In Mathematics, bisimulation and coinduction have been introduced in the study of the
foundations of theories of non-well-founded sets. Non-well-founded sets are, intuitively,
sets that are allowed to contain themselves; they are ‘infinite in depth’. More precisely, the
membership relation on sets may give rise to infinite descending sequences

. . . An ∈ An−1 ∈ . . . ∈ A1 ∈ A0.

For instance, a set � which satisfies the equation � = {�} is circular and as such non-well-
founded. A set can also be non-well-founded without being circular; this can happen if there
is an infinite membership chain through a sequence of sets all different from each other.
Bisimulation was derived from the notion of isomorphism with the objective of defining
the meaning of equality on non-well-founded sets; in other words, for understanding what
it means for two infinite sets to have ‘the same’ internal structure. A major motivation for
the study of non-well-founded sets in Mathematics has been the need of giving seman-
tics to processes, following Robin Milner’s work in Concurrency Theory. Similarly, the
development of Final Semantics [Acz88, RT94, RJ12], an area of Mathematics based on
coalgebras and category theory and used in the semantics of programming languages, has
been largely motivated by the interest in bisimulation. As a subject, Final Semantics is today
well developed, and gives us a rich and deep perspective on the meaning of coinduction
and its duality with induction.

Bisimulation is also popular in Philosophical Logic, specifically in Modal Logics; some
of the most interesting results in the expressiveness of Modal Logics rely on the notion
of bisimulation [BRV01]. Bisimulation and coinduction have also found applications in
Artificial Intelligence, Cognitive Science, Epistemic Logics and Philosophy, mainly when
there is a need to explain phenomena involving some kind of circularity. In Physics,
coinductive tools have been advocated to model quantum systems [Abr10].

4 General introduction

Today, coinduction appears to us so natural that it is surprising that it was discovered
so late, roughly at the beginning of the 1980s [San12]. This has probably a lot to do
with the fear of circularity and paradoxes, which has been strong in mathematicians and
logicians throughout most of the twentieth century. Circularity was perceived as the culprit
for paradoxes such as Burali-Forti’s and Russell’s, which had made the set theory studied by
Cantor and Frege shaky, as well as for paradoxes known in other fields. Against circularity,
at the beginning of the twentieth century, Bertrand Russell advocated a ‘stratified’ approach
to science, which was followed by all logicians in the first half of the twentieth century, with
very few isolated exceptions. Under the stratified approach, the constructions are inductive,
and the obvious reasoning techniques are inductive.

Another explanation for the late discovery of coinduction is probably the lack of suffi-
ciently strong motivations. Russell’s stratified approach seemed in line with common sense
and perception, which denies the existence of circular or infinite objects. On this aspect,
the establishment of Computer Science has been influential: as discussed above, Computer
Science frequently brings in needs that have to do with circularity and infinity.

0.2 Objectives of the book

This book is an introduction to bisimulation and to the more general notion of coinduction.
The book explains what coinduction is, and its duality with induction, using simple math-
ematical structures: complete lattices. These are sets with an ordering on their elements
that satisfies a few simple properties. We need only a few elementary results for complete
lattices, dealing with fixed points. A complete lattice is dualisable: turning it upside-down
(that is, reversing the order relation) yields another complete lattice. This duality will give
shape to the duality between coinduction and induction.

Bisimulation was introduced in Concurrency Theory, and concurrency remains the main
application area. The book therefore puts a special emphasis on processes, by presenting
the basics of the theory of bisimulation on processes.

Bisimilarity, the equality of bisimulation, is a behavioural equivalence: it tells us what
it means for two process behaviours to be the same. Several other forms of behavioural
equivalence have, however, been proposed in the literature. The book makes detailed
comparisons between bisimilarity and the other main notions of behavioural equivalence,
both coinductive and inductive. Thus the book can also serve as an introduction to the topic
of behavioural equivalences for processes.

For a better grasp of the theory of processes and of behavioural equivalences, the book
introduces a process calculus, essentially Milner’s Calculus of Communicating Process.
Process calculi are small ‘core concurrent languages’, embodying the essential ingredients
of concurrent systems. Process calculi are useful to provide succinct descriptions of the
interaction and synchronization capabilities of processes. In the book, the purpose of
introducing a process calculus is twofold. The first reason is to see how inductive and
coinductive techniques can be profitably intertwined. The terms of a process calculus – the
processes – are defined from a grammar; hence, syntactically, they are inductive objects. The

0.3 Use of the book 5

equality on processes will be bisimilarity; hence, semantically, they are coinductive objects.
The connection between syntax and semantics is tight; for instance, one needs to show that
bisimilarity is preserved by the operators of the calculus. The second reason for introducing
a process calculus is that the terms have a structure, resulting from the way they are
assembled from the operators in the calculus. We can thus analyse the algebraic properties
of bisimilarity. For instance, we will discuss algebraic characterisations of bisimilarity as a
set of algebraic laws that allow us to derive all and only those equalities on processes that
are valid for bisimilarity.

In summary, the objectives of the book are:

� to familiarise the reader with bisimulation and coinduction, so as to make him/her capable
of using and applying them;

� to explain the duality between induction and coinduction;
� to introduce behavioural equivalences, in particular the differences between bisimilarity

and other behavioural equalities;
� to initiate the reader to process calculi and their basic operational and algebraic techniques

of analysis.

0.3 Use of the book

The book, integrated with parts of the second volume [SR12], could be the basis for courses
on bisimulation, or coinduction, or on behavioural equivalences and process calculi.

The reader only interested in bisimulation, not coinduction, may safely skip Chapter 2.
Exceptions may be the initial Sections 2.1 and 2.2, which informally introduce coinduction
and its duality with induction by means of examples, and Section 2.10, which presents the
characterisations of bisimilarity via fixed points and via inductive approximants.

Concerning behavioural equivalences, for an introduction to the topic the more technical
parts could be omitted, notably the second parts of Chapters 4 (Section 4.6 to 4.9) and 5
(Sections 5.7 to 5.13), and Chapter 6.

Induction is explained and then applied in many examples and results. The book should
therefore also be useful for understanding induction. However, induction in itself is not a
goal of the book. We will not dwell on explaining how to write inductive definitions and
carry out inductive proofs. Thus a reader that has no experience with induction should
integrate the parts on induction with other material, especially examples of applications.
An excellent textbook for this is Winskel [Win93]. Aside from this, and some elementary
acquaintance with discrete mathematics, the book aims to be self-contained.

Exercises

All chapters contain several exercises. Solutions, or sketches of solutions, to most of the
exercises are provided in an appendix; the exercises with a solution in the appendix are
marked ‘↪→’. Solving an exercise should not take much time; those that may require a
little more time are marked with the asterisk ‘*’. Sometimes (e.g., Chapter 2) exercises

6 General introduction

with solutions have been preferred to examples; the less experienced reader may take these
solutions as developed examples. This especially concerns the recommended exercises,
which are those marked as ‘Recommended’. The exercises without solutions are those
considered either very easy or not fundamental to the understanding of the contents of the
book.

0.4 Structure of the book

In Chapter 1 bisimulation and bisimilarity are gently introduced, as a way of setting
equality on processes, beginning with the general question of the meaning of ‘pro-
cess’ and of ‘process behaviour’. Bisimilarity is compared with trace equivalence from
Automata Theory, and with isomorphism from Graph Theory. The basic properties of
bisimilarity are explained and the reader begins to get practice with the bisimulation proof
method.

In Chapter 2 the bisimulation proof method and bisimilarity are shown to be instances
of the broader notions of ‘coinductive proof method’ and ‘coinductively defined set’. Other
such instances are discussed. Fixed-point theory is used to explain coinduction and its
duality with induction. A number of characterisations of inductive and coinductive sets are
derived.

In Chapter 3 some common process operators are introduced. They impose a structure
on processes and bring in concepts from algebra. The chapter offers numerous examples
of the bisimulation proof method. An important result is an axiomatisation of bisimilarity,
that is, an algebraic characterisation of bisimilarity on the term algebra generated by the
operators.

In Chapter 4 bisimilarity is relaxed so as to allow some of the internal behaviour of
systems to be ignored. The properties of the resulting notion – called weak bisimilarity –
are examined and examples of the associated proof method are given. Weak bisimilarity is
the form of bisimilarity mostly used in applications.

Chapters 5 and 6 delve into the topic of behavioural equivalences of processes. The
main goal is to compare and contrast bisimilarity with other notions, for instance testing
equivalence and failure equivalences, but also coinductive relations such as simulation (the
asymmetric version of bisimilarity). It is interesting to see the different viewpoints that
these other notions take on equality of behaviours. For instance, in testing equivalence two
processes are deemed equal unless there is an experiment, or a test, that can separate them.
Another goal of the chapters is to show that bisimilarity is mathematically stable and robust.
For instance, the bisimilarity between the two processes of a language is not broken – under
mild conditions – by extensions of the language; and equalities such as testing and failure
equivalences may collapse to bisimilarity if the set of process operators allowed is rich
enough. Chapter 6 is specifically devoted to simulation and like notions. In contrast with
bisimilarity, similarity is a preorder, which is sometimes more handy than an equivalence.
For instance, when comparing a specification and an implementation of a system, it may

0.5 Basic definitions and mathematical notation 7

be that the specification has more non-determinism than the implementation: thus moving
to the implementation involves a kind of deterministic reduction of the specified behaviour
that is captured by a preorder but not by an equivalence.

The actions performed by the processes in the book are very simple: they just represent
process synchronisations. When the actions are more complex, for instance involving
exchange of values (e.g., exchange of communication ports, or exchange of processes), the
meaning of bisimilarity may not be obvious. In Chapter 7 a method is shown for deriving
bisimilarity that can be applied to virtually all languages whose terms are described by
means of a grammar. The crux of the method is to set a bisimulation game in which the
observer has a minimal ability to observe actions and/or states, and then to take the closure
of this bisimulation under all contexts.

The concluding appendix offers solutions to most exercises in the book.

0.5 Basic definitions and mathematical notation

We adopt standard definitions and notations from set theory. A set is often defined by a
property of its elements, and we write {x | x has the property} to denote the set consisting
of all elements that enjoy the property. Moreover, x ∈ X means that x is an element of the
set X. Set union and set intersection are denoted by the symbols ∪ and ∩, respectively. The
difference X−Y between two sets X and Y is the set of elements that appear in X but not
in Y . The cartesian product of two sets X and Y is written X × Y and denotes the set of
all ordered pairs (x, y) where x ∈ X and y ∈ Y . For a set X, we write Xn (with n ≥ 1) for
the cartesian product of n copies of X; the elements of Xn are the tuples (x1, . . . , xn) with
each xi ∈ X. We write ℘ to denote the powerset construct: if X is a set then ℘(X) is the
set of all subsets of X. A predicate, or a property, on a set X is subset of X.

We use the symbol
def= for definitions. For instance, P

def= E, where E is some expression,
means that P is defined to be, or stands for, the expression E. We use the symbol = for
syntactic equality; for instance, if P and Q are process expressions, then P = Q means that
the two expressions are syntactically identical. On sets (hence also on relations), equality
is the standard set-theoretical notion; thus if X and Y are sets, then X = Y means that X

and Y have exactly the same elements.
A relation R between a set X and a set Y is a subset of X × Y , that is, an element of

℘(X × Y). We often use the infix notation for relations; hence P R Q means (P,Q) ∈ R.
We use R,S to range over relations. As relations are special sets, relational inclusion,
R1 ⊆ R2, simply means that (x, y) ∈ R1 implies (x, y) ∈ R2. The inverse of a relation R
is written R−1 and is the set {(x, y) | (y, x) ∈ R}; thus if R ⊆ X × Y , then R−1 ⊆ Y × X.
The composition of relations R1 ⊆ X × Y and R2 ⊆ Y × Z is the relation R1R2 ⊆ X × Z

defined thus:

R1R2
def= {(x, z) | there is y such that x R1 y and y R2 z}

8 General introduction

We often consider relations on a set X; these are subsets of X × X. Such a relation is

� reflexive if x R x, for all x ∈ X;
� symmetric if x R x′ implies x ′ R x;
� transitive if x R x ′ and x ′ R x ′′ imply x R x′′;
� irreflexive if there is no x with x R x;
� antisymmetric if x R y and y R x implies x = y;
� total if any pair of elements in the set are comparable (x R y or y R x holds, for all x

and y);
� an equivalence if it is reflexive, symmetric and transitive;
� a total order if it is antisymmetric, transitive and total;
� a partial order if it is reflexive, antisymmetric and transitive;
� a preorder if it is reflexive and transitive;
� well-founded if there are no infinite descending chains

. . .R xi R . . .R x1 R x0;

� non-well-founded if there are infinite descending chains.

The requirement of totality is the difference between total order and partial order; in the
latter totality is replaced by the weaker reflexivity condition (totality implies reflexivity,
hence any total order is a partial order). On preorders, antisymmetry is not needed; hence all
partial orders are also preorders. Note that if R is well-founded then R must be irreflexive.
Moreover, if R is a well-founded relation on X, then any non-empty subset S of X has at
least one minimal element (an element x with x ∈ S and such that there is no y ∈ S with
y R x). This is an immediate consequence of the well-foundedness of R: if no elements in
S were minimal, then R would not be well-founded, because, starting from any element x0

of S we could build an infinite descending chain

. . . R xn . . . x1 R x0

Special relations are indicated by means of dedicated symbols. For instance, I will
be the identity relation, and ∼ the bisimilarity relation. If ↔ is a relation symbol, then
↔ indicates the complement relation. For instance, P ∼ Q means that P and Q are not
bisimilar.

The transitive closure of a relation R, written R+, is the least transitive relation that
contains R. It is obtained by composing R with itself in all possible ways. Thus x R+ x ′

if there are n ≥ 1 and x0, . . . , xn with x = x0, x ′ = xn and xi R xi+1 for all 0 ≤ i < n.
Similarly, the reflexive and transitive closure of a relationR, writtenR�, is the least relation
that is reflexive, transitive and contains R. We have R� = R+ ∪ I.

A partition of a set X is a set S of non-empty subsets of X such that each x ∈ X belongs
to exactly one member of S. An equivalence relation R on X determines a partition on X:
a member of this partition is obtained by picking an element x of X and then taking the set
{x ′ | x ′ R x} (this set is also called the equivalence class of x with respect to R in X).

0.5 Basic definitions and mathematical notation 9

A function f from a set X to a set Y is written as f : X → Y ; then X is the domain
of the function, and Y its codomain. The result of applying f to an argument x is written
f (x). A function f may also be seen as a relation, namely the relation with all pairs (x, y)
such that f (x) = y. This view may be convenient in the case of partial functions, that is,
functions that may be undefined on certain elements of their domain, as opposed to the
total functions, which are defined on all elements of the domain. A function f : X → Y is

� injective if for all x, x′ ∈ X, if f (x) = f (x ′) then also x = x′;
� surjective if for all y ∈ Y there is x ∈ X with f (x) = y;
� bijective if it is both injective and surjective (that is, it establishes a one-to-one corre-

spondence between the domain and the codomain sets).

An endofunction on a set X is a function from X to X. A function f : X × X → X is
sometimes written in infix notation as x f x′, in place of f (x, x ′). The function is:

� commutative if for all x, x′ it holds that x f x ′ = x ′ f x;
� associative if for all x, x ′, x ′′ it holds that (x f x′) f x ′′ = x f (x ′ f x ′′).

When f is associative, we can omit brackets in iterated applications of f as in
x1 f x2 f . . . f xn.

A few times in the book we use constructions that operate on the ordinal numbers. We
therefore recall here a few facts about the ordinals. These are an extension of the natural
numbers to account for infinite sequences of objects. More precisely, they are used to reason
on well-ordered sets, that is, sets equipped with a relation ≤ that is a well-founded total
order.

The natural numbers, {0, 1, . . .} are the finite ordinals. The first infinite ordinal is written
ω, and is the least ordinal above all natural numbers. It is a limit ordinal because it is not the
successor of another ordinal: the set of all ordinals smaller than ω does not have a maximal
element. From ω we can then go on with the sequence

ω + 1, ω + 2, . . . , ω + n, . . .

which leads to the next limit ordinal, ω × 2. Similarly we obtain ω × 3, ω × 4, and so
forth. The first ordinal above all ordinals of the form ω × n + m, where n and m are natural
numbers, is ω2. We can then continue with ω3, ω4, and so on to ωω; and then with the
sequence

ωω, ωωω

, ωωωω

, . . . ;

and then again we can continue indefinitely far towards larger ordinals.
Leaving aside the initial ordinal 0, the ordinals can be divided into successor ordinals

(those that can be written as α + 1, for some ordinal α) and limit ordinals (those for which
the successor construction does not apply; a limit ordinal is the limit of its smaller ordinals,
in a certain topological sense). This distinction is important for definitions and proofs by
transfinite induction.

10 General introduction

We sometimes use, informally, the term extensional equality. An equality on a set is
extensional if it equates elements of the sets precisely when no observation can distinguish
them. Of course, this hinges upon the meaning of observation, which in turn depends on
the intended use of the elements in the set. For instance, on sets of lists of integers, an
extensional equality should identify two lists if the sequences of integers they contain
are the same. If the set contains processes, then an extensional equality should identify
processes that cannot be distinguished by observing them, i.e., by interacting with them.
There are different ways, however, of formalising the notion of observation, and these may
lead to different equalities; an example is bisimilarity, other examples are discussed in
Chapter 5 and the following chapters.

Acknowledgments

I am grateful to the following people for reading parts of a draft of the book and offering
comments: Luca Aceto, Ferdinanda Camporesi, Yuxin Deng, Marcelo Fiore, Roberto Gor-
rieri, Sławomir Lasota, Fabrizio Montesi, Joachim Parrow, Jorge A. Perez, Andrew Pitts,
Jan Rutten and Alan Schmitt. A special thank you to Claudio Sacerdoti Coen and to the
students of the Bertinoro International Spring School (Bertinoro, Italy, 1–12 March 2010),
in particular Livio Bioglio, Valerio Genovese, Lino Possamai and Enrico Scala. Thank you
also to Emilka Bojanczyk for the cover design idea.

I would also like also to express my appreciation for the work of David Tranah and his
colleagues at Cambridge University Press in guiding the book into print.

1

Towards bisimulation

We introduce bisimulation and coinduction roughly following the way that led to their
discovery in Computer Science. Thus the general topic is the semantics of concurrent
languages (or systems), in which several activities, the processes, may run concurrently.
Central questions are: what is, mathematically, a process? And what does it mean that
two processes are ‘equal’? We seek notions of process and process equality that are both
mathematically and practically interesting. For instance, the notions should be amenable
to effective techniques for proving equalities, and the equalities themselves should be
justifiable, according to the way processes are used.

We hope that the reader will find this way of proceeding helpful for understanding the
meaning of bisimulation and coinduction. The emphasis on processes is also justified by
the fact that concurrency remains today the main application area for bisimulation and
coinduction.

We compare processes and functions in Section 1.1. We will see that processes do not
fit the input/output schema of functions. A process has an interactive behaviour, and it is
essential to take this into account. We formalise the idea of behaviour in Section 1.2 via
labelled transition systems (LTSs), together with notations and terminology for them. We
discuss the issue of equality between behaviours in Section 1.3. We first try to re-use notions
of equality from Graph Theory and Automata Theory. The failure of these attempts leads
us to proposing bisimilarity, in Section 1.4. We introduce the reader to the bisimulation
proof method through a number of examples. More examples will be given in the following
chapters, in particular Chapter 3, where we introduce a core language of processes. This
will also serve us to see how an LTS can be associated with a language defined by means
of a grammar. In the same Section 1.4 we establish a few basic properties of bisimilarity
such as being an equivalence relation.

1.1 From functions to processes

If we begin investigating the semantics of concurrent languages, it is natural to check first
whether we can adapt to these languages the concepts and techniques that are available
for the sequential languages, i.e., the languages without constructs for concurrency. This

11

12 Towards bisimulation

is indeed what researchers did in the 1970s, as the work on the semantics of sequential
languages had already produced significant results, notably with Scott and Stratchey’s
denotational semantics. In sequential languages, a program is interpreted as a function
which transforms inputs into outputs. This idea is clear in the case of functional languages
such as the λ-calculus, but it can also be applied to imperative languages, viewing a program
as a function that transforms an initial store (i.e., a memory state) into a final store.

The interpretation of programs as functions, however, in general is unsatisfactory in
concurrency. Take, as an example, the following two program fragments in an imperative
language:

X := 2 and X := 1; X := X + 1.

They yield the same function from stores to stores, namely the function that leaves the store
unchanged, except for the variable X whose final value must be 2. Therefore, in this view of
programs-as-functions, the two fragments above are ‘the same’ and should be considered
equal.

However, the above equality is troublesome if the language to which the two fragments
belong is concurrent. For instance, suppose the language has a construct for parallelism,
say P |Q, which, intuitively, allows the parallel execution of the two program arguments P

and Q (this rough intuition is sufficient for the example). Then we may want to try running
each fragment together with another fragment such as X := 2. Formally, one says that the
two fragments are used in the context

[·] |X := 2

to fill the hole [·]. Now, if we place in the hole the first fragment, X := 2, we get

X := 2 |X := 2,

which always terminates with X = 2. This is not true, however, when the hole is filled with
the second fragment, X := 1; X := X + 1, resulting in

(X := 1; X := X + 1) |X := 2,

as now the final value of X can be different from 2. For instance, the final value can be 3 if
the command X := 2 is executed after X := 1 but before X := X + 1.

The example shows that by viewing programs as functions we obtain a notion of program
equality that is not preserved by parallel composition: equal arguments to the parallel
construct can produce results that are not equal any more. In other words, we cannot
define the meaning of a compound term based on the meaning of its constituent subterms.
Formally, one says that the semantics is not compositional, or that the equality on programs
is not a congruence.

A semantics of a language that is not compositional would not allow us to exploit
the structure of the language when reasoning. We cannot, for instance, use properties of
components to infer properties of larger systems, or optimise a program component by

1.2 Interaction and behaviour 13

replacing it with an equal but simpler component, as the meaning of the whole program
might change.

Another reason why viewing a concurrent program as a function is not appropriate is
that a concurrent program may not terminate, and yet perform meaningful computations
(examples are an operating system, the controllers of a nuclear station or of a railway
system). In sequential languages, for instance in the λ-calculus, programs that do not termi-
nate are undesirable; they are ‘wrong’, perhaps because of a loop for which the termination
condition is erroneous. Mathematically, they represent functions that are undefined – hence
meaningless – on some arguments.

Also, the behaviour of a concurrent program can be non-deterministic, as shown in the
examples above. In sequential languages, operators for non-determinism, such as choice,
can be dealt with using powersets and powerdomains. For instance, in the λ-calculus, the
term λx.(x ⊕ x + 1), where ⊕ indicates the (internal) choice construct, could be interpreted
as the function that receives an integer x and returns an element from the set {x, x + 1}.
This approach may work (and anyhow can become rather complicated) for pure non-
determinism, but not for the parallelism resulting from the parallel execution of activities
of the kind seen above.

If parallel programs are not functions, what are they? They are processes. But what
is a process? When are two processes equal? These are very fundamental questions for
a model of processes. They are also hard questions, and are at the heart of the research
in concurrency theory. We shall approach these questions in the remainder of the book.
Without the presumption of giving single and definitive answers, we shall strive to isolate
the essential concepts.

1.2 Interaction and behaviour

In the example of Section 1.1, the program fragments

X := 2 and X := 1; X := X + 1

should be distinguished because they interact in a different way with the memory. The
difference is harmless within a sequential language, as only the initial and final states are
visible to the rest of the world. But if other concurrent entities have access to the same
memory locations, then the patterns of the interactions with the memory become significant
because they may affect other activities.

This brings up a key word: interaction. In concurrency, computation is interaction.
Examples are: an access to a memory cell, a query to a database and the selection of a
programme in a washing machine. The participants of an interaction are the processes (for
instance, in the case of the washing machine, the machine itself and the person selecting
the programme are the involved processes). The behaviour of a process should tell us when
and how the process can interact with the outside world – its environment. Therefore we
first need suitable means for representing the behaviour of a process.

14 Towards bisimulation

P3

tea

��
P1

1c �� P2

request-tea
��

request-coffee

��
P4

coffee

��

Fig. 1.1 The LTS of a vending machine.

In the book, we will consider a particularly simple case: the interactions of the process
with its environment are pure handshake synchronisations, without exchange of values. We
hope this will make the material easier to understand. The transport of the bisimulation
concept to other interaction models is the main topic of Chapter 7.

1.2.1 Labelled transition systems

As another example of interactions, we consider a vending machine capable of dispensing
tea or coffee for 1 coin (1c). The machine has a slot for inserting coins, a button for
requesting coffee, another button for requesting tea, and an opening for collecting the
beverage delivered. The behaviour of the machine is what we can observe, by interacting
with the machine. This means experimenting with the machine: pressing buttons and seeing
what happens. We can observe which buttons go down and when, which beverages we can
get and when. Everything else, such as the colour or the shape of the machine, is irrelevant.
We are interested in what the machine does, not in what it looks like. We can represent
what is relevant of the behaviour of the machine as a labelled transition system (LTS), as
shown graphically in Figure 1.1.

An LTS tells us what are the states in which a system can be and, for each state, the
interactions that are possible from that state. An interaction is represented by a labelled
arc; in the LTS terminology it is called a transition. In the case of the vending machine
of Figure 1.1, there are four states. Initially the machine is in state P1. The arc labelled
1c between P1 and P2 indicates that on state P1 the machine accepts a coin and, in doing
so, it evolves into the state P2; in P2 two further transitions are possible, one representing
the request for coffee, the other the request for tea; and so on. Other examples of LTSs, in
graphical form, are given in Figures 1.2–1.5.

LTSs are the most common structures used to represent the interactions that a system
can produce. They are essentially labelled directed graphs. Variant structures that one finds
in Computer Science are relational structures (i.e., unlabelled directed graphs) and Kripke
structures (i.e., relational structures with an additional labelling function that specifies for

1.2 Interaction and behaviour 15

each state a set of properties that hold at that state), and it is easy to adapt the concepts we
will introduce, notably bisimulation, to them.

Definition 1.2.1 (Labelled transition system) A labelled transition system (LTS) is a
triple (Pr, Act,−→) where Pr is a non-empty set called the domain of the LTS, Act is the
set of actions (or labels), and −→⊆ Pr × Act × Pr is the transition relation. �

In the LTS of Figure 1.1, the domain is {P1, P2, P3, P4}, the actions are {1c, request-
tea, request-coffee, tea, coffee}, the transition relation is {(P1, 1c, P2), (P2, request-
tea, P3), (P2, request-coffee, P4), (P3, tea, P1), (P4, coffee, P1)}.

In the definition above, the elements of Pr are called states or processes. We will usually
call them processes as this is the standard terminology in concurrency. We use P,Q,R to
range over such elements, and μ to range over the labels in Act.

Remark 1.2.2 Sometimes students find puzzling the identifications between states and
processes, and possibly also their relationship to the notion of behaviour. For instance, they
may find it puzzling, on the vending machine of Figure 1.1, to say that ‘P1 is a process that
by an interaction labelled 1c becomes the process P2’. Any interacting system, that is, a
system that may interact with its environment, is a process. The behaviour of the process
specifies how and when the process may evolve into another one. At the beginning, the
vending machine is an interacting system, hence a process, named P1; after receiving a coin
it is still an interacting system, hence a process, named P2. The two processes P1 and P2

have different behaviours because they interact in different ways with the environment. �

1.2.2 Notation and terminologies for LTSs

We write P
μ−→ Q when (P,μ,Q) ∈ −→; in this case we call Q a μ-derivative of P , or

sometimes simply a derivative of P . A transition P
μ−→ Q indicates that process P accepts

an interaction with the environment, in which P performs action μ and then becomes
process Q. For each μ,

μ−→ is a binary relation on processes; we will therefore apply to it
notations and terminologies for relations.

The transition relation is extended to finite sequences of actions in the expected way.
If s is the sequence μ1 · · ·μn, then P

s−→ P ′ holds if there are P1, . . . , Pn−1 such that
P

μ1−→ P1 · · ·Pn−1
μn−→ P ′. In this case we say that P ′ is a derivative of P under μ1 · · ·μn,

or simply a multi-step derivative of P .
We write P

μ−→ to mean that P
μ−→ P ′ holds, for some P ′, and P μ−→ if no such P ′ exists.

Also, P
s−→ μ−→ P ′ holds if there is some P ′′ such that P

s−→ P ′′ and P ′′ μ−→ P ′.

Definition 1.2.3 Given an LTS L, the LTS generated by a process P of L has as states the
multi-step derivatives of P , as actions those of L, and as transitions those in L that relate
the multi-step derivatives of P . �

We introduce some special classes of LTSs that we will occasionally use.

16 Towards bisimulation

Definition 1.2.4 (Image-finite relation) A relation R on a set S is image-finite if for all
s ∈ S, the set {s ′ | s R s′} is finite. �

Definition 1.2.5 (Classes of LTSs and processes) An LTS is:

� image-finite if for each μ the relation
μ−→ is image-finite (that is, for all P and μ, the set

{P ′ |P μ−→ P ′} is finite);
� finitely branching if it is image-finite and, moreover, for each P , the set {μ |P μ−→} is

finite;
� finite-state if it has a finite number of states;
� finite if it is finite-state and acyclic (in other words, there is no infinite sequence of

transitions P0
μ0−→ P1

μ1−→ P2
μ2−→ · · ·);

� deterministic when all processes are deterministic, where a process P is deterministic if
for each μ, P

μ−→ P ′ and P
μ−→ P ′′ imply P ′ = P ′′.

The above definitions are extended to processes by considering the LTSs generated by the
processes. (For instance, a process P of an LTS L is image-finite if the LTS generated by
P is image-finite.) �

Exercise 1.2.6 Show that finite-state implies finitely branching, if the set of actions is
finite; and deterministic implies image-finite. Show also that the converse of each such
implication does not hold and, similarly, image-finite does not imply finitely branching.

�

In the literature sometimes the definitions of ‘finite’ and ‘finite-state’ include a finiteness
assumption on the actions that can be performed (e.g., the ‘finitely-branching’ condition).
This difference does not affect the contents of the book.

Definition 1.2.7 (Sort) We say that μ is in the sort of P , written μ ∈ sort(P), if there is a
sequence of actions s and a process P ′ such that P

s−→ μ−→ P ′. �

In the remainder, we usually do not explicitly indicate the LTS for the processes we
write.

1.3 Equality of behaviours

LTSs tell us what the behaviour of processes is. The next question now is: when should
two behaviours be considered equal? That is, what does it mean that two processes are
equivalent? Intuitively, two processes should be equivalent if they cannot be distinguished
by interacting with them. In the following sections we try to formalise this – very vague –
statement.

1.3.1 Equality in Graph Theory: isomorphism

We have observed that LTSs resemble graphs. We could therefore draw inspiration for
our notion of behavioural equality from Graph Theory. The standard equality on graphs

1.3 Equality of behaviours 17

P1

a

��
P2

b

�� Q1
a �� Q2

b

		
Q3

a

��

Fig. 1.2 Non-isomorphic LTSs.

is graph isomorphism. (In mathematics, two structures are isomorphic if a bijection can
be established on their components; on graphs the components are the states and the
transitions.) Is this notion satisfactory for us?

Certainly, if two LTSs are isomorphic then we expect that the corresponding states
give rise to the same interactions and should indeed be regarded as equal. What about
the converse, however? Consider the LTSs in Figure 1.2, and the interactions that are
possible from the initial processes P1 and Q1. Both processes just allow us to repeat the
sequence of interactions a, b, ad infinitum. It is undeniable that the two processes cannot
be distinguished by interactions. However, there is no isomorphism on the two LTSs, as
they have quite different shapes.

We have to conclude that graph isomorphism is too strong as a behavioural equiva-
lence for processes: it prevents us from equating processes like P1 and Q1 that should be
considered equal.

1.3.2 Equality in Automata Theory: trace equivalence

LTSs also remind us of something very important in Computer Science: automata. The
main difference between automata (precisely, we are thinking of non-deterministic automata
here) and LTSs is that an automaton has also a distinguished state designated as initial, and
a set of distinguished states designated as final. Automata Theory is well established in
Computer Science; it is therefore worth pausing on it for a moment, to see how the question
of equality of behaviours is treated there.

Automata are string recognisers. A string, say a1, . . . , an, is accepted by an automaton if
its initial state has a derivative under a1, . . . , an that is among the final states. Two automata
are equal if they accept the same language, i.e., the same set of strings. (See, e.g., [HMU06],
for details on automata theory.)

The analogous equivalence on processes is called trace equivalence. It equates two
processes P and Q if they can perform the same finite sequences of transitions; precisely,
if P has a sequence P

μ1−→ P1 · · ·Pn−1
μn−→ Pn then there should be Q1, . . . ,Qn with

Q
μ1−→ Q1 · · ·Qn−1

μn−→ Qn, and the converse on the transitions from Q. Examples of
equivalent automata are given in Figures 1.3 and 1.4, where P1 and Q1 are the initial states,
and for simplicity we assume that all states are final. As processes, P1 and Q1 are indeed
trace equivalent. These equalities are reasonable and natural on automata.

18 Towards bisimulation

P3

d

��
P1

a �� P2

b
��

c

P2

e

��

Q2

b
��
Q3

d

�����������������������

Q1

a

a �� Q4
c

�� Q5

e

�����������������������

Fig. 1.3 Example for trace equivalence.

P2

P1

a
���������

a ���
��

��
��

P3
b

�� P4

Q1
a �� Q2

b �� Q3

Fig. 1.4 Another example for trace equivalence.

However, processes are used in a quite different way with respect to automata. For
instance, a string is considered ‘accepted’ by an automaton if the string gives us at least
one path from the initial state to a final state; the existence of other paths that fail (i.e.,
that lead to non-final states) is irrelevant. This is crucial for the equalities in Figures 1.3
and 1.4. For instance, in Figure 1.4, the automaton on the left has a successful path for the
string ab, in which the bottom a-transition is taken. But it has also a failing path, along the
upper a-transition. In contrast, the automaton on the right only has a successful path. Such
differences matter when we interpret the machines as processes. If we wish to press the
button a and then the button b of the machine, then our interaction with the machine on the
right will always succeed. In contrast, our interaction with the machine on the left may fail.
We may indeed reach a deadlock, in which we try to press the button b but the machine
refuses such interaction. We cannot possibly consider two processes ‘the same’ when one,
and only one of them, can cause a deadlock!

As another example, the equality between the two automata in Figure 1.3 is rewritten in
Figure 1.5 using the labels of the vending machine of Figure 1.1. It is certainly not the same
to have the first or the second machine in an office! When we insert a coin in the machine
on the right, the resulting state can be either Q2 or Q4. We have no control over this: the
machine, non-deterministically, decides. At the end, if we want to have a beverage at all,
we must accept whatever the machine offers us. In contrast, the machine on the left always

1.4 Bisimulation 19

P3

tea

��
P1

1c �� P2

request-tea
��

request-coffee

��
P4

coffee

��

Q2

request-tea
��
Q3

tea
�����������������������

Q1

1c

1c
�� Q4

request-coffee
�� Q5

coffee

�����������������������

Fig. 1.5 Two vending machines.

leaves us the choice of our favourite beverage. In concurrency, in contrast with automata
theory, the timing of a branch in the transition graph can be important.

In conclusion, we also reject trace equivalence as behavioural equality for processes.
(Trace equivalence has, however, applications in concurrency. For instance, on deterministic
processes and for verification of so-called ‘safety’ properties, see Exercise 5.7.8.)

1.4 Bisimulation

In the previous sections we saw that the behavioural equality we seek should:

� imply a tighter correspondence between transitions than trace equivalence;
� be based on the information that the transitions convey, as opposed to the shape of the

LTSs as in LTS isomorphism.

Intuitively, what does it mean then that two machines have the same behaviour? When
we do something with one machine, we must be able to do the same with the other and,
on the two states that the machines evolve to, the same is again true. This is the idea of
equality that we are going to formalise. It is called bisimilarity.

Definition 1.4.1 A process relation is a binary relation on the states of an LTS. �

Definition 1.4.2 (Bisimilarity) A process relationR is a bisimulation if, whenever P R Q,
for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ R Q′;
(2) the converse, on the transitions emanating from Q, i.e., for all Q′ with Q

μ−→ Q′, there
is P ′ such that P

μ−→ P ′ and P ′ R Q′.

Bisimilarity, written ∼, is the union of all bisimulations; thus P ∼ Q holds if there is a
bisimulation R with P R Q. �

20 Towards bisimulation

Note in clause (1) the universal quantifier followed by the existential one: P , on all its
transitions, challenges Q; and in each one of these transitions Q is called to find a match.
The same occurs in clause (2), with the roles of P and Q swapped.

The definition of bisimilarity immediately suggests a proof technique: to demonstrate
that P and Q are bisimilar, find a bisimulation relation containing the pair (P,Q). This is
the bisimulation proof method, and is, by far, the most common method used for proving
bisimilarity results. It is useful to examine some examples, and to get some practice with
the proof method, before exploring the theory of bisimilarity.

Remark 1.4.3 Note that bisimulation and bisimilarity are defined on a single LTS, whereas
in the previous (informal) examples the processes compared were taken from two distinct
LTSs. Having a single LTS is convenient, for instance to ensure that the alphabet of actions
is the same, and to compare processes from the same LTS. Moreover, we do not lose
generality, as the union of two LTSs is again an LTS. �

Example 1.4.4 Suppose we want to prove that P1 ∼ Q1, for P1 and Q1 as in Figure 1.2.
We have to find a relation R containing the pair (P1,Q1). We thus place (P1,Q1) in R.
For R to be a bisimulation, all (multi-step) derivatives of P1 and Q1 must appear in R –
those of P1 in the first component of the pairs, those of Q1 in the second. We note that P2

does not appear; hence at least we should add a pair containing it. For this, it is natural to
pick (P2,Q2). Thus we have R = {(P1,Q1), (P2,Q2)}. Is this a bisimulation? Obviously
not, as a derivative of Q2, namely Q3, is uncovered. Suppose, however, we did not notice
this, and tried to prove that R is a bisimulation. We have to check clauses (1) and (2)
of Definition 1.4.2 on each pair in R. As an example, we consider clause (1) on the pair
(P1,Q1). The only transition from P1 is P1

a−→ P2; this is matched by Q1 via transition
Q1

a−→ Q2, for (P2,Q2) ∈ R as required. However, the checks on (P2,Q2) fail, since,

for instance, the transition P2
b−→ P1 cannot be matched by Q2, whose only transition is

Q2
b−→ Q3 and the pair (P1,Q3) does not appear in R. (Note: if we added to the LTS

a transition Q2
b−→ Q1 this problem would disappear, as (P1,Q1) ∈ R and therefore the

new transition could now match the challenge from P2; however R would still not be a
bisimulation; why?) We realise that we have to add the pair (P1,Q3) to R. We let the reader
check that now R is indeed a bisimulation.

The reader may also want to check that the relation R above remains a bisimulation also

when we add the transition Q2
b−→ Q1. �

In the example above, we found a bisimulation after an unsuccessful attempt, which,
however, guided us towards the missing pairs. This way of proceeding is common: trying
to prove a bisimilarity P ∼ Q, one starts with a relation containing at least the pair (P,Q)
as an initial guess for a bisimulation; then, checking the bisimulation clauses, one may find
that the relation is not a bisimulation because some pairs are missing. These pairs (and
possibly others) are added, resulting in a new guess for a bisimulation; and so on, until a
bisimulation is found.

1.4 Bisimulation 21

M1

a
��

N1a

��

a

��
M2

b

��

a
��

N2

a
��

b

��

N3

a
��

b

��

M3

b

��

N4

b

��

N5

b

��

Fig. 1.6 Graphical representation of a bisimulation.

An important hint to bear in mind when using the bisimulation proof method is to look
for bisimulations ‘as small as possible’. A smaller bisimulation, with fewer pairs, reduces
the amount of work needed for checking the bisimulation clauses. For instance, in the
example above, we could have used, in place of R, the relation R ∪ I ∪ {(Q1,Q3)}, where
I is the identity relation. This also is a bisimulation, and contains the pair {(P1,Q1)} we are
interested in, but it has more pairs and therefore requires more work in proofs. Reducing
the size of the relation to exhibit, and hence relieving the proof work needed to establish
bisimilarity results, is the motivation for the enhancements of the bisimulation proof method
discussed in [PS12].

When one has little familiarity with the bisimulation method and is trying to understand
whether two processes are bisimilar, it may be convenient to draw the connections among
the related states of the LTSs. This is done in Figure 1.6, where the bisimulation drawn to
prove M1 ∼ N1 is

{(M1, N1), (M2, N2), (M2, N3), (M3, N4), (M3, N5)}.

Example 1.4.5 Suppose we want to prove Q1 ∼ R1, for Q1 as in Figure 1.2 and R1 as
below.

R1
a �� R2

b �� R3

a
��
R4

b��

b

��

Proceeding as Example 1.4.4, our initial guess for a bisimulation is the following relation:

{(Q1, R1), (Q2, R2), (Q3, R3), (Q2, R4)}.
This may seem reasonable, as all the states in the LTS are covered. However, this relation is
not a bisimulation: clause (2) of Definition 1.4.2 fails on the pair (Q2, R4), for the transition

R4
b−→ R1 has no match from Q2. We thus add the pair (Q3, R1). The reader may check

that this produces a bisimulation. �

Example 1.4.6 Suppose we want to prove that processes P1 and Q1 in Figure 1.4 are
not bisimilar. We can show that no bisimulations exist that contain such a pair. Suppose R

22 Towards bisimulation

were such a bisimulation. Then it should also relate the derivative P2 of P1 to a derivative
of Q1; the only possible such derivative is Q2; but then, on the pair (P2,Q2), clause (2) of
Definition 1.4.2 fails, as only Q2 has a transition.

Other useful methods for proving results of non-bisimilarity will be shown in
Section 2.10.2, using the approximants of bisimilarity, and in Section 2.12, using games.

�

Notation 1.4.7 In the remainder we often depict LTSs as rooted graphs (or just trees) in
which the nodes have no names, as in Figure 1.7. When we discuss whether two such
trees are behaviourally equivalent, it is intended that we refer to the roots of the trees. For
instance, in Figure 1.7 asserting that P2 and Q2 are not bisimilar means that the roots of
the two trees are non-bisimilar processes. �

Exercise 1.4.8 Reasoning as in Example 1.4.6, show that the processes P2, Q2 and R2 of
Figure 1.7 are pairwise non-bisimilar. �

Exercise 1.4.9 The same as Exercise 1.4.8, for the processes P3, Q3 and R3 of Figure 1.7.
�

Exercise 1.4.10 (↪→) Find an LTS with only two states, and in a bisimulation relation with
the states of following LTS:

R1

a

��

b

���
��

��
��

�

R2
c ��

b
����������

R3

b��

c

�

The next exercise involves processes with some non-trivial non-determinism, and may
therefore be helpful (together with the following Exercise 1.4.12) for understanding the
roles of the universal and existential quantifiers in the the definition of bisimulation.

Exercise 1.4.11 (↪→) Consider the following LTSs:

R1

a

���
��

��
��

�
a

!!��
��

��
��

R2
b �� R3

c��

c

Q1

a

���
��

��
��

�
a

""

Q2
b �� Q3

c��

c
�������������������������

Q4
b

�� Q5

c

##

c

�������������������������

Show that R1 and Q1 are bisimilar. �

1.4 Bisimulation 23

•
a
$$•

b

!!		
		

		
		 c

���
��

��
��

�

• •

P2

•
a

%%

 a

�
��

��
��

�

•
b
$$

•
c
$$• •

Q2

•
a
$$

a

&&��������������
a

''

•
b
$$

•
b

%%		
		

		
		 c

�
��

��
��

� •
c
$$• • • •

R2

•
a

!!		
		

		
		 a

���
��

��
��

�

•
b
$$

•
b
$$•

c
$$

•
d
$$• •

P3

•
a
$$•

b

%%

 b

�
��

��
��

�

•
c
$$

•
d
$$• •

Q3

•
a
$$•
b
$$•

c

%%		
		

		
		 d

�
��

��
��

�

• •

R3

Fig. 1.7 Examples of non-bisimilar processes.

Exercise 1.4.12 (↪→) Suppose the existential quantifiers in the definition of bisimulation
were replaced by universal quantifiers. For instance, clause (1) would become:

� for all P ′ with P
μ−→ P ′, and for all Q′ such that Q

μ−→ Q′, we have P ′ R Q′;

and similarly for clause (2). Would the process Q2 of Figure 1.7 be bisimilar with itself?
What do you think bisimilarity would become? �

24 Towards bisimulation

Two features of the definition of bisimulation make its proof method practically
interesting:

� the locality of the checks on the states;
� the lack of a hierarchy on the pairs of the bisimulation.

The checks are local because we only look at the immediate transitions that emanate from
the states. An example of a behavioural equality that is non-local is trace equivalence (that
we encountered when discussing automata). It is non-local because computing a sequence
of transitions starting from a state s may require examining other states, different from s.

There is no hierarchy on the pairs of a bisimulation in that no temporal order on the
checks is required: all pairs are on a par. As a consequence, bisimilarity can be effectively
used to reason about infinite or circular objects. This is in sharp contrast with inductive
techniques, that require a hierarchy, and that therefore are best suited for reasoning about
finite objects. For instance, here is a definition of equality that is local but inherently
inductive:

� P = Q if, for all μ:
– for all P ′ with P

μ−→ P ′, there is Q′ such that Q
μ−→ Q′ and P ′ = Q′;

– the converse, on the transitions from Q.

This definition requires a hierarchy, as the checks on the pair (P,Q) must follow those on
derivative pairs such as (P ′,Q′): the meaning of equal on (P,Q) requires having already
established the meaning of equal on the derivatives. Hence the definition is ill-founded if
the state space of the derivatives reachable from (P,Q) is infinite or includes loops. We
shall find hierarchical characterisations of ∼, refining the idea above, in Section 2.10.2.

Exercise 1.4.13 (Recommended, ↪→)

(1) Show that the union of two bisimulations on a given LTS is also a bisimulation. (We
require that the LTS is the same to ensure the consistency the two bisimulations: if
a state appears in both bisimulations then the transitions assumed for it must be the
same.) Generalise the statement to show that if {Ri}i is a set of bisimulations on the
LTS, then ∪iRi is also a bisimulation.

(2) Show that, in contrast, the intersection of two bisimulations need not be a bisimulation.
�

Some (very) basic properties of bisimilarity are exposed in Theorems 1.4.14 and 1.4.15.
Their proofs are good examples of application of the bisimulation proof method.

Theorem 1.4.14

(1) ∼ is an equivalence relation, i.e. the following holds:
(a) P ∼ P (reflexivity);
(b) P ∼ Q implies Q ∼ P (symmetry);
(c) P ∼ Q and Q ∼ R imply P ∼ R (transitivity);

(2) ∼ itself is a bisimulation.

1.4 Bisimulation 25

Proof

(1) For reflexivity, one shows that the identity relation, that is the relation
{(P,P) |P is a process}, is a bisimulation.

For symmetry, one shows that if R is a bisimulation then so is its converse R−1; we
let the reader prove this fact. Then if P ∼ Q, by definition of ∼ there is a bisimulation
R with P R Q. We also have Q R−1 P . By the previous fact, R−1 is a bisimulation.
Hence Q ∼ P .

For transitivity, one shows that if R1 and R2 are bisimulations, then so is their
composition, that is the relation

R def= {(P,R) | there is Q with P R1 Q and Q R2 R}.
The proof is simple. Take (P,Q) ∈ R. Suppose P

μ−→ P ′ (the case when R makes
the challenge is similar). Then, as P R1 Q and R1 is a bisimulation, there is Q′ with
Q

μ−→ Q′ and P ′ R1 Q′. As R2 is a bisimulation too and Q R2 R, there must also be
R′ with R

μ−→ R′ and Q′ R2 R′. We have thus found a transition from R matching the
initial one from P ; moreover the derivatives are in R.

Having proved that the composition of bisimulations is again a bisimulation we can
conclude the proof of transitivity. If P ∼ Q and Q ∼ R, there must be bisimulations
R1 and R2 with P R1 Q and Q R2 R. The composition of R1 and R2 is again a
bisimulation, and contains the pair (P,R). We can therefore conclude P ∼ R.

(2) Follows from Exercise 1.4.13(1), as bisimilarity is the union of all bisimulations.

�

The second item of Theorem 1.4.14 brings us the impredicative flavour of the definition
of bisimilarity: bisimilarity itself is a bisimulation and is therefore part of the union from
which it is defined.1 The item thus also gives us:

Theorem 1.4.15 ∼ is the largest bisimulation, i.e., the largest relation ∼ on processes
such that P ∼ Q implies, for all μ:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ ∼ Q′;
(2) for all Q′ with Q

μ−→ Q′, there is P ′ such that P
μ−→ P ′ and P ′ ∼ Q′. �

Bisimulation can also be defined on sequences of actions, but we then lose the benefits
of the local checks.

Exercise 1.4.16 (Recommended, ↪→) Show that R is a bisimulation if and only if the
following holds. Whenever P R Q:

(1) for all P ′ and sequences s with P
s−→ P ′, there is Q′ such that Q

s−→ Q′ and P ′ R Q′;
(2) the converse, on the actions from Q. �

1 In logic, a definition is called impredicative when it involves quantification over a set containing the very object being
defined.

26 Towards bisimulation

Exercise 1.4.17 (∗, Recommended, ↪→) (Similarity) A process relation R is a simula-
tion if, whenever P R Q:

(1) for all P ′ and μ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ R Q′.

Similarity, written ≤, is the union of all simulations; thus we say that Q simulates P if
P ≤ Q. The equivalence ≤≥ induced by ≤ is called simulation equivalence; P ≤≥ Q

holds if both P ≤ Q and Q ≤ P .

The difference with bisimulation is that in a simulation the converse of clause (1) is
missing. Show that:

(1) R is a bisimulation iff R and R−1 are both simulations.
(2) If P is a process without transitions, then P ≤ Q, for all Q.
(3) Q2 ≤ P2, where P2,Q2 are the processes in Figure 1.7.
(4) Does the converse of the two points above hold?
(5) ≤ is reflexive and transitive.
(6) ∼ is strictly included in ≤≥.
(7) ≤≥ is strictly included in trace equivalence. (Hint: consider again P2,Q2 of Figure 1.7.)

�

Exercise 1.4.18 (∗,Recommended, ↪→) (Bisimulation up-to ∼) A process relation R
is a bisimulation up-to ∼ if, whenever P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ ∼R∼ Q′;
(2) the converse, on the transitions emanating from Q, i.e., for all Q′ with Q

μ−→ Q′, there
is P ′ such that P

μ−→ P ′ and P ′ ∼R∼ Q′.

(We recall that, following the notation for relational composition, P ′ ∼R∼ Q′ holds if
there are P ′′ and Q′′ such that P ′ ∼ P ′′, P ′′ R Q′′, and Q′′ ∼ Q′.)

Show that if R is a bisimulation up-to ∼, then R ⊆ ∼. (Hint: Prove that ∼ R ∼ is a
bisimulation.) �

The result of Exercise 1.4.18 can be used to make the bisimulation proof method more
powerful. It is in fact an example of the enhancements of the bisimulation proof method,
called ‘up-to techniques’, discussed in [PS12].

1.4.1 Towards coinduction

The assertion of Theorem 1.4.15 could even be taken as the definition of ∼ (though we
should first show that the largest relation mentioned in the statement does exist). It looks,
however, like a circular definition. This seems strange: what kind of proof technique is it?
Also, we claimed that we can prove (P,Q) ∈ ∼ by showing that (P,Q) ∈ R and R is a
bisimulation relation, that is, a relation that satisfies the same clauses as ∼. This seems
strange: what kind of proof technique is it?

1.4 Bisimulation 27

There is a sharp contrast with the usual, familiar inductive definitions and inductive
proofs. In the case of induction, there is always a basis, i.e., something to start from, and
then, in the inductive part, one builds on top of what one has obtained so far. Indeed, the
above definition of ∼, and its proof technique, are not inductive, but coinductive.

It is good to stop for a while, to get a grasp of the meaning of coinduction, and a
feeling of the duality between induction and coinduction. This will be useful for relating
the idea of bisimilarity to other concepts, and it will also allow us to derive a few results
for bisimilarity. We do this in Chapter 2.

2

Coinduction and the duality with induction

After introducing bisimulation on processes in the previous chapter, we see here other
examples of predicates and relations that are defined in a similar style, and proof techniques
for them. This style is quite different with respect to that of ordinary inductive definitions
and proofs. It is in fact the style of coinduction. Through the examples we will begin to
build up some intuition about the difference between coinduction and induction. Then we
will make these intuitions formal, using fixed-point theory.

Intuitively, a set A is defined coinductively if it is the greatest solution of an inequation
of a certain form; then the coinduction proof principle just says that any set that is solution
of the same inequation is contained in A. Dually, a set A is defined inductively if it is the
least solution of an inequation of a certain form, and the induction proof principle then
says that any other set that is solution to the same inequation contains A. As we will see,
familiar inductive definitions and proofs can be formalised in this way.

An abstract formalisation of the meaning of coinduction is not necessary for applications.
In the previous chapter, for instance, we have seen that bisimulation can be defined on
processes without talking about fixed points. But the theory of fixed points allows us to
understand what we are doing, and to understand the analogies among different worlds.
It is also useful to re-use results: an example is the characterisation of bisimilarity via an
inductive stratification that can be derived from a theorem of fixed-point theory; the same
theorem underpins similar stratification results for other coinductive definitions.

The central ingredient for our explanation of induction and coinduction is the Fixed-
point Theorem, which says that monotone functions in complete lattices have a least and a
greatest fixed point. Inductive and coinductive sets will be special cases of such fixed points.
The theorem also immediately gives us induction and coinduction proof principles. These
schemata for induction and coinduction can be used to justify the definition of bisimulation
and its proof method, as well as familiar inductive concepts such as mathematical induction
and rule induction.

Other characterisations of inductive and coinductive sets are derived throughout the
chapter: as limits of sequences of points obtained by repeatedly applying certain functions
to the bottom or top elements of complete lattices; as sets defined by means of rules; as sets
of elements with a well-founded or a non-well-founded proof; and finally characterisations

28

Coinduction and the duality with induction 29

in terms of games. Different characterisations contribute to a better grasp of the concepts
and may play a role on their own in applications.

In the chapter we discuss forms of induction and coinduction produced by mono-
tone functions. A theory of induction and coinduction could also be developed for non-
monotone functions, but it would be more complex. It is ignored in this book; see, however,
Remarks 2.4.4 and 2.5.1.

We introduce examples of inductive and coinductive definitions in Section 2.1: finite and
ω-traces of processes, convergence and divergence in the (call-by-name) λ-calculus, finite
and infinite lists. Thus the duality between induction and coinduction begins to emerge;
we comment on this in Section 2.2. We formalise the duality in Section 2.3, by means
of the theory of fixed points in complete lattices. We can thus state, in Section 2.4, the
meaning of inductively and coinductively defined sets and formulate the induction and
coinduction proof principles. In Section 2.5, we show how a set of axioms and inference
rules defines monotone functions on complete lattices. This allows us to derive inductive
and coinductive interpretations for the rules, from fixed-point theory. Similarly we derive
proof principles for the rules, called rule induction and rule coinduction. In Section 2.6,
we go back to the examples considered earlier in the chapter (process traces, convergence
and divergence in the λ-calculus, and lists). These examples had been presented in terms
of rules, and only discussed informally. We can now revise the examples in the light
of the formalisation of induction and coinduction for rules in the previous sections. In
Section 2.7, first we show that, similarly to what we did for rule induction, we can use
fixed-point theory to justify common inductive techniques such as mathematical induction
(induction on the natural numbers), structural induction (induction on the structure of
objects), induction on derivation proofs (induction on the proof tree with which some
object is derived), transition induction (induction on the derivation of the transition of a
process), well-founded induction (induction on a well-founded relation). Then we discuss,
by means of examples, how induction and coinduction allow definitions of functions by
recursion and corecursion. We conclude with examples of variants of the characterisations
of least and greatest fixed points in the Fixed-point Theorem, with the purpose of obtaining
enhancements of the basic induction and coinduction principles.

The Fixed-point Theorem in Section 2.3 talks about least and greatest fixed points of
monotone functions, but does not tell us how to reach such fixed points. We show how to
obtain, constructively, these fixed points in Section 2.8, via iterations over the natural and
the ordinal numbers. For this we make extensive use of inductive principles introduced in
the previous sections. We examine the meaning of the iterative constructions in the case of
definitions by means of rules in Section 2.9.

In Section 2.10 we describe how the fixed-point theory in the earlier sections applies
to bisimulation, the main coinductive object in the book. Thus we derive bisimilarity
and the bisimulation proof methods as instances of a definition by coinduction and of
its corresponding proof method. We also examine the iteration schemata for constructive
characterisations of bisimilarity.

30 Coinduction and the duality with induction

We conclude the chapter with two further perspectives on inductively and coinductively
defined sets: in Section 2.11 we examine their duality from the point of view of the proof
of the membership of an element in the set; and in Section 2.12 we present game-theoretic
perspectives. In Sections 2.13 and 2.14 we discuss the meaning of the game-theoretic
characterisation of bisimulation.

The chapter contains many exercises with solutions. We invite the reader novel to fixed-
point theory to try them, or anyhow to consult the solutions.

2.1 Examples of induction and coinduction

We begin with some examples, described informally, in which we contrast induction with
coinduction. We will continue the examples, with a formal treatment, in Section 2.6.

2.1.1 Finite traces and ω-traces on processes

As an example of an inductive definition, we consider a property akin to termination.
For simplicity, we assume some finiteness condition on the LTS of the processes, such
as image-finiteness. A stopped process cannot do any transitions (i.e., P μ−→ for all μ). A
process P has a finite trace, written P �, if P has a finite sequence of transitions that lead
to a stopped process as final derivative. Predicate � has a natural inductive definition, using
the following rules:

P stopped

P �
P

μ−→ P ′ P ′ �
P �

When we say that � is the predicate inductively defined by the rules, we mean that P �
holds if P is generated by the rules, in the usual inductive way: P can be derived from
the rules in a finite number of steps. We can indeed obtain the set of all processes with a
finite trace by means of the following construction. We start with the empty set ∅. Then
we add to the set the conclusions of the the first rule of �, the axiom; these are the stopped
processes. Then we continue with the second rule of �, the inference rule, by repeatedly
adding to the set a process P if it has a transition P

μ−→ P ′ to a process P ′ that is already
in the set. If the LTS is finite-state, this iteration terminates and the final set is �. (We will
prove in Section 2.9 that if the number of processes is infinite, the construction is still valid
but � is found as the limit of an infinite iteration.)

An equivalent formulation is to say that � is the smallest set of processes that is closed
forward under the rules; i.e., the smallest subset T of Pr (the processes) such that:

� all stopped processes are in T ;
� if there is μ such that P

μ−→ P ′ for some P ′ ∈ T , then also P ∈ T .

2.1 Examples of induction and coinduction 31

The closure is ‘forward’ because we follow the rules in the direction from the premises to
the conclusion: whenever the premises of a rule are satisfied, then its conclusion must be
satisfied too.

We will prove later that this formulation is equivalent to the above iterative construction.
But we can already grasp something of it: it is not difficult to see that the set resulting from
the iteration is closed forward under the rules, and that all processes in the set are necessary
for the closure.

While the iterative presentation is useful for constructing the inductive set, the new
formulation gives us a proof principle for �: given a predicate T on the processes, to prove
that all processes in � are also in T it suffices to show that T is closed forward under the
above rules.

We will see that we obtain a proof principle of this kind whenever we have a set of rules
and, moreover, it precisely gives us the familiar inductive proof method for sets generated
by rules. For this, the examples with lists in Section 2.6.3, and with natural numbers
in Section 2.7.1, should be most enlightening. Here is, however, an example with finite
traces. Consider a partial function f , from processes to integers, that satisfies the following
conditions:

f (P) = 0 if P is stopped,

f (P) = min{f (P ′) + 1 | P
μ−→ P ′ for some P ′

and f (P ′) is defined} otherwise,

with the understanding that f can have any value, or even be undefined, if the set on
which the min is taken is empty (for instance f could be undefined on all processes
of Figure 1.2). Suppose we wish to prove that f must be defined on processes with a
finite trace, that is dom(�) ⊆ dom(f), where dom indicates the domain of a function or
predicate. For this, it suffices to show that the set dom(f) is closed forward under the
rules defining �. This requires ensuring that f (P) is defined whenever P is stopped; and
that, if there are μ,P ′ with P

μ−→ P ′ and f (P ′) is defined, then also f (P) is defined.
Both requirements immediately follow from the definition of f . The reader familiar with
induction will recognise this as a proof by rule induction (rule induction is formally
introduced in Section 2.5).

Remark 2.1.1 A proof of the result above by induction on the derivation proof of P �
would have been very similar. In this form of induction (discussed in Section 2.7.1), a
property is proved to hold at all P such that P � by reasoning on the shape of the proof with
which P � is derived from the rules. First, one has to check the property for the derivation
proofs consisting of a single node, that is, when P � is derived from the axiom; in our case
this means checking that f (P) is defined if P is stopped. Second, one considers any larger
derivation proof, when the conclusion node is derived from the inference rule; one checks
that the property holds at the conclusion under the assumption that the property holds at
all internal nodes; in our case this means precisely checking that, when P

μ−→ P ′, if we
assume f (P ′) defined, then also f (P) is defined. �

32 Coinduction and the duality with induction

In summary, the set inductively defined by the rules is the smallest set satisfying a
certain forward closure. This formulation yields a proof principle that corresponds to the
usual technique for reasoning inductively with rules. Moreover, the set can also be obtained
as the limit of a certain increasing sequence produced by an iterative construction, or as the
set of processes derivable from the rules with a finite proof.

We now turn our attention to coinductive definitions. As an example we consider a
property akin to non-termination. Informally, given an action μ, a process P has an ω-trace
under μ (more simply, an ω-trace, when μ is clear), written P �μ, if it is possible to observe
an infinite sequence of μ-transitions starting from P . The set �μ has a natural coinductive
definition. We only need the following inference rule:

P
μ−→ P ′ P ′ �μ

P �μ

(∗)

An object is in the set coinductively defined by a set of rules if there is a finite or infinite
proof of that object using the rules. In the case of �μ we have no axioms, so all valid proofs
are infinite (as we shall see in Section 2.1.3, coinductive definitions can use axioms too, and
then proofs may be finite). For instance, suppose that we have two processes P1,P2 with
transitions P1

a−→ P2 and P2
a−→ P1. The following infinite proof shows that P1 �a holds:

P1
a−→ P2

P2
a−→ P1

P1
a−→ P2

...

P2 �a

P1 �a

P2 �a

P1 �a

If a process P is not in �μ then an attempt of proof for P eventually reaches a point where

the proof, still incomplete, cannot be further continued. For instance, if Q1
a−→ Q2

a−→ Q3

and Q3 a−→ then a proof attempt for Q1 is blocked on the third step:

Q1
a−→ Q2

Q2
a−→ Q3

??

Q3 �a

Q2 �a

Q1 �a

Thus if we wish to obtain, constructively, the set �μ we can proceed as follows. We
start with the set Pr of all processes. Then we repeatedly remove a process P from the
set if P has no μ-transitions, or if all μ-transitions from P lead to derivatives that are not
anymore in the set. If the LTS is finite-state, this decreasing iteration terminates and the
final set is �μ. (Again, we will see in Section 2.9 that if the number of processes is infinite,
the construction is still valid but �μ is found as the limit of an infinite iteration, assuming
image-finiteness; and if even image-finiteness is not guaranteed then the iteration has to be
transfinite, that is, on the ordinals.)

2.1 Examples of induction and coinduction 33

Equivalently, �μ is the largest predicate on processes that is closed backward under the
rule (∗); i.e., the largest subset T of processes such that if P ∈ T then

� there is P ′ ∈ T such that P
μ−→ P ′.

The closure is ‘backward’ because the rules are used in the direction from the conclusion to
the premises: we require that each element in the closure be the conclusion of a rule whose
premises must also belong to the closure.

Here, too, we will prove later that these different formulations coincide. We can, however,
already see that the set resulting from the iterative construction is closed backward, and
that the closure is lost by adding more processes to the set.

The formulation with the closure gives us a proof principle: to prove that each process
in a set T has an ω-trace under μ it suffices to show that T is closed backward under the
rule above; this is the coinduction proof principle, for ω-traces. Thus, if we wish to prove
that a specific process P has an ω-trace under μ we should find some subset T of Pr that
is closed backward under the rule and with P ∈ T .

For instance, consider the processes P1, P2, P3 and P4 with the following transitions:

P1

a
((

b
$$

P2

a
))

b
$$

P3 P4

a

**

The set T1
def= {P1, P2} is closed backward under the rules for �a , hence P1 �a and P2 �a

hold. Other such sets are T2 = {P4} and T1 ∪ T2. Note that on the processes P1 and P2 both
� and �a hold.

In summary, with coinduction the argument is dual to induction. Thus, the set coin-
ductively defined by the rules is the largest set satisfying a certain backward closure or,
equivalently, the limit of a certain decreasing sequence produced by an iterative construc-
tion, or as the set of processes derivable from the rules with a finite or infinite proof.
And the backward closure yields a proof principle for coinduction – again the dual of the
corresponding one for induction.

In the first example, the term ‘closed forward’ is to remind us that we are using the
rules top-down, from the premises to the conclusion: if T is closed forward, then whenever
the premises of a rule are satisfied by T , the resulting conclusion should be satisfied too.
Dually, the term ‘closed backward’ emphasises that we use the rules bottom-up: if T is
closed backward, then each element of T must match a conclusion of a rule in such a way
that its premises are satisfied by T .

Note also that in the first example we look for a smallest set, whereas in the second we
look for a largest set. And in the first example the iterative construction follows the rules in

34 Coinduction and the duality with induction

the forward direction starting with ∅, whereas in the second the iteration follows the rules
backward and starting from Pr (the maximal set).

Of course, the existence of the smallest set closed forward, or the largest set closed
backward, must be established. This will follow from the general framework of induction
and coinduction that will be introduced later. One can, however, also prove the existence
directly; for sets closed forward, showing that one such set exists (in the example, the set of
all processes), and that the intersection of sets closed forward is again a set closed forward.
One proceeds dually for sets closed backward: the empty set is closed backward, and the
union of sets closed backward is again a set closed backward.

2.1.2 Reduction to a value and divergence in the λ-calculus

For readers familiar with the λ-calculus, a variant of the previous examples (and probably
more enlightening) can be given using the relation of convergence and the predicate of
divergence on the λ-terms. Readers unfamiliar with the λ-calculus may safely skip the
example.

We recall that the set � of λ-terms is given by the following grammar (note: this is an
inductive definition!):

e ::= x | λx.e | e1 e2,

where, in λx.e, the construct λx is a binder for the free occurrences of x in e, and x ranges
over the set of variables. We omit the standard definitions of free and bound variables. The
set �0 of closed λ-terms is the subset of � whose elements have no free variables; e{e′

/x} is
the term obtained from e by replacing its free occurrences of x with e′. We identify terms
that are obtained one from the other with a renaming of bound variables (whereby a bound
variable is replaced by a variable that is fresh, that is, it does not occur anywhere else
in the term); for instance λx.x = λy.y, and ((λx.x)(λx.x))(λy.y) = ((λx.x)(λy.y))(λy.y).
We call a term of the form λx.e an abstraction and one of the form e1 e2 an application.

The relation ⇓ ⊆ �0 × �0 (reduction to a value, or convergence) for the call-by-name
λ-calculus, the simplest form of reduction in the λ-calculus, is defined with the following
two rules:

λx.e ⇓ λx.e

e1 ⇓ λx.e0 e0{e2/x} ⇓ e′

e1 e2 ⇓ e′

(The choice of x in the rules is irrelevant as bound variables can be renamed.) The pairs of
terms we are interested in are those generated by these rules; this is an inductive definition.
As in the example of finite traces of Section 2.1.1, so here the pairs we are interested in are
those obtained with a finite proof from the rules. And the set of all such pairs is produced
with an iterative construction that starts with the empty set similar to that described in
Section 2.1.1.

Equivalently, ⇓ is the smallest relation on (closed) λ-terms that is closed forward under
the rules; i.e., the smallest relation S ⊆ �0 × �0 such that

2.1 Examples of induction and coinduction 35

� λx.e S λx.e for all abstractions,
� if e1 S λx.e0 and e0{e2/x} S e′ then also e1 e2 S e′.

This immediately gives us a proof method for ⇓ (an example of the induction proof
method): given a relation R on λ-terms, to prove that all pairs in ⇓ are in R it suffices to
show that R is closed forward under the above rules. (What is the largest relation closed
forward?)

In contrast, the predicate ⇑ ⊆ �0 (divergence), in call-by-name λ-calculus, is defined
coinductively with the following two rules:

e1 ⇑
e1 e2 ⇑

e1 ⇓ λx.e0 e0{e2/x} ⇑
e1 e2 ⇑

As the processes with an infinite trace in Section 2.1.1, so here the divergent λ-terms are
those with an infinite proof. And the set ⇑ is obtained, iteratively, starting from �0 and
then repeatedly removing elements from it that do not fit the rules.

Equivalently, ⇑ is the largest predicate on (closed) λ-terms that is closed backward
under these rules; i.e., the largest subset T of �0 such that if e ∈ T then

� either (e = e1 e2 and e1 ∈ T),
� or (e = e1 e2, e1 ⇓ λx.e0 and e0{e2/x} ∈ T).

Hence, to prove that a given term e is divergent it suffices to find T ⊆ �0 that is closed
backward and with e ∈ T (an example of the coinduction proof method). (What is the
smallest predicate closed backward?)

Exercise 2.1.2 (↪→) Use induction, following the forward-closure argument, to show that
if e ⇓ e′ then e′ is an abstraction, that is, it has the form λx.e0, for some e0. �

Example 2.1.3 We use the coinduction proof method to show that if a closed term e does
not converge (that is, there is no e′ with e ⇓ e′) then e ⇑.

Let T be the set of non-converging terms; we show that it is closed backward with respect
to the rules defining ⇑. Take a term e ∈ T . This term cannot be an abstraction, otherwise
e ⇓ e would hold. Therefore e must be an application, say e1 e2, and then we distinguish
two cases. One case is when e1 ∈ T . In this case we are done, as we can match e against
the first of the rules defining ⇑. The second case is when e1 converges. By Exercise 2.1.2,
e1 is an abstraction, say λx.e0. Consider thus e0{e2/x}. If this term is in T , then we are done,
matching e against the second of the rules defining ⇑; otherwise e0{e2/x} converges and
therefore also e converges (according to the second of the rules for ⇓), which contradicts
the hypothesis e ∈ T . �

Exercise 2.1.4 (↪→) Show, using the forward-closure argument of induction, that if e ⇓ e′

then e ⇑ does not hold. �

Example 2.1.5 Let e1
def= λx.xx (application has precedence over abstraction, thus λx.xx

is λx.(xx)). We show that the term e1 e1 is divergent, using the coinduction proof method.

36 Coinduction and the duality with induction

We take the set T
def= {e1 e1}. We claim that T is closed backward under the rules for ⇑. This

holds because we can match the only element in T against the conclusion of the second
rule and then fulfill the premises, thus:

e1 ⇓ e1 e1 e1 ∈ T

e1 e1 ∈ T

From the backward closure of T we deduce that T ⊆ ⇑. �

Exercise 2.1.6 (↪→) Let e1 be as in Example 2.1.5, and e2
def= λx.xxx. Show that the terms

e2 e2, e1 e2 and e2 e1 are all divergent, using the coinduction proof method, proceeding as
in Example 2.1.5. �

Exercise 2.1.7 Consider the call-by-value λ-calculus, as in [Pit12]. What are the rules for
defining convergence and divergence there? Adapt Example 2.1.3 and Exercise 2.1.4 to
call-by-value. �

2.1.3 Lists over a set A

Let A be a set. The set of finite lists with elements from A is the set FinListsA inductively
generated by the rules below, for L = FinListsA:

nil ∈ L
s ∈ L a ∈ A

〈a〉 • s ∈ L
Once more, the finite lists, as an inductive set, is the set of all objects that can be obtained
with a finite proof from the rules. And it is also the smallest set closed forward under
these rules, where T is closed forward if: nil ∈ T and s ∈ T implies 〈a〉 • s ∈ T , for each
a ∈ A.

In contrast, the set of finite and infinite lists,1 FinInfListsA, is the set coinductively
defined by the rules, for L = FinInfListsA; i.e., it is the set of all objects that can be
obtained with a finite or infinite proof from the rules (a proof can be finite because the rules
include an axiom; when an axiom is used, a branch of the proof is completed successfully,
as no new subgoals are produced); the set of finite and infinite lists is also the largest set
closed backward under the same rules.

Example 2.1.8 We show that the infinite list

s1
def= 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · ·

is in the set coinductively defined by the two rules above, assuming a, b ∈ A. For this we

take T
def= {s1, s2}, where

s2
def= 〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • · · ·

1 In programming languages, infinite lists are often called streams.

2.2 The duality 37

and show that T is closed backward under the rules. Thus we have to check that each element
of T can match the conclusion of a rule in such a way that its premises are satisfied. Let’s
begin with s1; as s1 = 〈a〉 • s2, and s2 ∈ T , we can match the second rule thus:

s2 ∈ T a ∈ A

〈a〉 • s2 ∈ T

Similarly, with s2 = 〈b〉 • s1, since s1 ∈ T , we match the same rule thus:

s1 ∈ T b ∈ A

〈b〉 • s1 ∈ T

The reader may check that also T ∪ {nil, 〈a〉 • nil} is closed backward. �

Other examples and exercises of coinductive reasoning with lists will be given in
Section 2.6.4.

2.2 The duality

From the examples of the previous section, although informally treated, the pattern of the
duality between induction and coinduction begins to emerge.

� An inductive definition tells us what the constructors are for generating the elements:
this is the forward closure of the previous section.

� A coinductive definition tells us what the destructors are for decomposing the elements:
this is the backward closure. The destructors show what we can observe of the elements.
If we think of the elements as black boxes, then the destructors tell us what we can do with
them; this is clear in the case of infinite lists, and also in the definition of bisimulation.

We discuss the pattern of the dualities in this section. Examining the dualities between
the world of induction and the world of coinduction is useful for understanding the concepts.
It also strengthens the importance of coinduction, if we accept induction as a fundamental
mathematical tool.

In the examples of Section 2.1, the inductive and coinductive sets are defined by means
of rules. In such cases:

� if the definition is inductive, we look for the smallest universe in which such rules live;
this is the set of all objects that can be constructed in a finite number of steps following
the rules in the forward direction;

� if the definition is coinductive, we look for the largest universe; this is the set of all
objects that never produce a ‘contradiction’ (i.e., a blockage) following the rules in the
backward direction;

� the inductive proof principle allows us to infer that the inductive set is included in a given
set (i.e., has a given property) by proving that the property satisfies the forward closure;

� the coinductive proof principle allows us to infer that a given set is included in the
coinductive set by proving that the given set satisfies the backward closure.

38 Coinduction and the duality with induction

A set T being closed forward intuitively means that

for each rule whose premises are satisfied in T

there is an element of T

such that the element is the conclusion of the rule.

In the backward closure for T , the order between the two quantified entities (those under-
lined) is swapped:

for each element of T

there is a rule whose premises are satisfied in T

such that the element is the conclusion of the rule.

In the fixed-point theory of Section 2.3, the duality between forward and backward closure
will be the duality between pre-fixed points and post-fixed points.

There is also a duality between the concepts of congruence and bisimulation equivalence
(a bisimulation that is also an equivalence), as well as between the identity relation and
bisimilarity. This is a duality on relations, and once more, it stems from the duality between
forward and backward closures. In a language whose terms have a structure (i.e., they are
constructed from a set of operators), a congruence is an equivalence relation that respects
the structure (i.e., the relation is preserved by the operators of the language). If we consider
the rules that formalise the notion of syntactic equality in the language, then a congruence
is an equivalence relation that is closed forward under the rules, and the identity relation
is the smallest such relation. For instance, in the λ-calculus the rules for syntactic equality
are:

x = x

e1 = e2

λx.e1 = λx.e2

e1 = e2 e′1 = e′2
e1 e2 = e′1 e′2

where x is any variable. A relation R is closed forward under these rules if: R relates any
variable with itself; whenever R relates two terms it also relates all abstractions derived
from those terms; whenever R relates to pairs of terms, it also relates the application
obtained from them.

In contrast, consider some rules that express the notion of semantic equality on the
elements of a set by stipulating what are observables of such elements. A bisimulation is a
relation that is closed backward under the rules (for bisimulation on processes, this will be
proved in Section 2.10); and bisimilarity is the largest such relation.

The duality between the inductive definition of identity and the coinductive definition
of bisimilarity is the duality between syntactic and semantic equalities; or, more broadly
but tentatively, between syntax and semantics.

In the above reasoning on congruence, the equivalence requirement is not necessary. We
can leave it aside, obtaining the duality between bisimulations and substitutive relations (a
relation is substitutive if whenever two terms t and s are related, then a term t ′ must be
related to any term s ′ obtained from t ′ by replacing occurrences of t with s).

Whenever we define bisimilarity on a term language, we can ask ourselves the question
whether bisimilarity is a congruence. We will indeed do so in the language for processes in

2.2 The duality 39

Chapter 3. This inevitably leads us to proofs where inductive and coinductive techniques
are intertwined. In certain languages, for instance higher-order languages, such proofs may
be hard, and how to best combine induction and coinduction remains a research topic (see
[Pit12]). What makes the combination delicate is that the rules on which congruence and
bisimulation are defined – the rules for syntactic and semantic equality – are different.

The characterisations of least and greatest fixed points via iterative constructions evokes
also a duality between semi-decidable and cosemi-decidable sets. A subset S of a set
U is semi-decidable if there is an algorithm that enumerates all the members of S (or,
equivalently, there is an algorithm that halts on the members of S with a positive answer,
and does not halt, or halts with a negative answer, on elements in the complement of S);
whereas S is cosemi-decidable if its complement set, U−S, is semi-decidable. Recall that
in the iteration construction an inductive set is obtained from the empty set by progressively
adding elements; when this procedure is computable, the resulting set is semi-decidable.
Dually, a coinductive set is obtained from the top set by progressively removing elements
(the elements of the complement set); under computability hypothesis, the coinductive set
is therefore cosemi-decidable. While we are not aware of results that formally relate the
duality between induction and coinduction to that between semi-decidable and cosemi-
decidable sets, the relationship with semi-decidability and cosemi-decidability should be
beared in mind when one considers algorithms for computing inductive or coinductive
sets.

In the discussion after Example 1.4.4 we mentioned how bisimulations are often found
by enlarging an initial candidate set, when the proof for the initial candidate could not
be completed (because the backward closure fails). This weakening of the candidate is
frequent with coinduction, and has a dual for induction: it is the strengthening of the
inductive assumption (or strengthening of the candidate, to make the contrast with the
terminology for coinduction). Anybody who has made inductive proofs has met it: one
wishes to prove that the elements of an inductive set have a property, and starts with a
candidate statement (i.e., trying to prove that the inductive set is included in a certain
candidate set); then one realises that the proof cannot be completed (because the forward
closure fails), and thereby make the statement of the induction stronger (i.e., one proves
inclusion into a smaller set).

Table 2.1 gives a summary of the dualities. Some dualities mentioned in the table are
useful but informal analogies, whereas others are precise mathematical dualities. Examples
of informal dualities are those between constructors and observations, and between syntax
and semantics; examples of mathematical dualities are those between least and greatest
fixed points, between induction and coinduction, and between algebra and coalgebra.

A final remark on rules is worthwhile. The presentation in Section 2.1 of only examples
of sets inductively and coinductively defined from rules is not limiting. As we shall see
(Exercises 2.5.2 and 2.5.3), under very mild conditions all inductive and coinductive sets
can be expressed in terms of rules; this also includes bisimilarity, though this may not be
obvious at first sight.

In the next sections we use fixed-point theory to explain the meaning of induction and
coinduction. We will thus be able to see why induction and coinduction are related to

40 Coinduction and the duality with induction

Table 2.1 The duality

inductive definition coinductive definition
induction proof principle coinduction proof principle

constructors observations
smallest universe largest universe

‘forward closure’ in rules ‘backward closure’ in rules
congruence bisimulation equivalence

substitutive relation bisimulation
identity bisimilarity

least fixed point greatest fixed point
pre-fixed point post-fixed point

algebra coalgebra
syntax semantics

semi-decidable set cosemi-decidable set
strengthening of the candidate in proofs weakening of the candidate in proofs

least and greatest fixed points, and prove the equivalence of the different formulations
of inductively and coinductively defined sets discussed in the examples in Section 2.1:
as sets of elements with finite and infinite proofs, as sets resulting from certain iterative
constructions, and as smallest and largest sets satisfying a forward and backward closure.
We will also show further formulations in terms of games. Most importantly, we will give
a formal meaning to the induction and coinduction proof principles. We refer to [RJ12] for
the explanation of induction and coinduction in terms of algebras and coalgebras.

2.3 Fixed points in complete lattices

In this section we recall a few important results of lattice theory that will then be used
to explain induction and coinduction. A relation R is antisymmetric if x R y and y R x

implies x = y.

Definition 2.3.1 (Poset) A partially ordered set (or poset) is a non-empty set equipped
with a relation on its elements that is a partial order (that is, the relation is reflexive,
antisymmetric and transitive). �

We usually indicate the relation in a poset by ≤. Here is a simple poset:

a b

c

++ ,,��������
d

++

--

e

++

f

++

2.3 Fixed points in complete lattices 41

An arrow represents an inequality (thus f ≤ d), and the other inequalities (such as f ≤ f

or f ≤ a) are derived from the reflexivity and transitivity axioms of a poset. The relation
in a poset need not be total – there may be pairs of unrelated elements, such as (a, b) and
(d, e) in the figure.

Other examples of posets are the sets of natural numbers and of real numbers, with
the usual ordering relation on numbers. We can obtain a poset from the natural and real
numbers in other ways. For instance, we can set the ≤ relation on the natural numbers
as follows: n ≤ m if n divides m. The reader may check that the product L1 × L2 of two
posets L1 and L2 is a poset (the elements in this set are pairs (a1, a2) with ai ∈ Li , and
(a1, a2) ≤ (a′

1, a
′
2) holds in L1 × L2 if ai ≤ a′

i holds in Li , for i = 1, 2); similarly if S is a
set and L a poset, then the set of functions from S to L is a poset, where f ≤ g holds if for
all a ∈ S we have f (a) ≤ g(a). Further examples of posets will be given in the remainder
of the chapter.

Example 2.3.2 A preordered set is a non-empty set equipped with a relation on its elements
that is a preorder (i.e., reflexive and transitive). If L is such a set, and ≤ the relation, then
we can define an equivalence relation �� on L thus:

x �� y if x ≤ y and y ≤ x.

The equivalence classes of L under �� form the set

L/��
def= {[x] | x ∈ L} , where [x]

def= {y | x �� y}.
(Note that if x �� y then [x] = [y].) Then L/�� is a poset, with a relation ≤′ that stipulates
[x] ≤′ [y] if x ≤ y in L. �

Exercise 2.3.3 (↪→) Use Exercise 1.4.17 to define a poset from the similarity relation. �

When a set L with relation ≤ is a poset, we often simply say that L is a poset. If x ≤ y

we sometimes say that x is below y, and y is above x. We also write y ≥ x when x ≤ y

holds. We sometimes call the elements of a set points.
Turning a poset upside-down (that is, reversing the partial order relation) gives us another

poset. Thus statements about a poset have a dual, in which each of the relations ≤ and ≥ is
replaced by the other in the statement.

Definition 2.3.4 Let L be a poset. For a set S ⊆ L, a point y ∈ L is an upper bound of S if
x ≤ y for all points x ∈ S. The dual of an upper bound of S is a lower bound of S: a point
y ∈ L with y ≤ x for all x ∈ S. �

Definition 2.3.5 Let L be a poset. The least element of a subset S ⊆ L is an element y ∈ S

that is a lower bound of S. The least upper bound of S (that is, an upper bound y with y ≤ z

for all upper bounds z of S) is also called the join of S.
The dual of these concepts gives us the greatest element of S (an element of S that is an

upper bound of S) and the meet of S (the greatest lower bound of S). �

42 Coinduction and the duality with induction

U

t

S

L

Fig. 2.1 Upper bounds and meet in poset.

In Figure 2.1, L is the poset, S a subset of L, U the set of upper bounds for S and t the
least upper bound, or join, of S (the join t could also be an element of S; this would mean
that S has a top element).

An element y of a subset S of a poset could have the property that no element x ∈ S

exists with x ≤ y without y being the least element of S (in the literature such elements
are usually called minimal). Thus the least element of a subset S may not exist; if it exists,
however, then it is unique, by the antisymmetry property. Similarly, a greatest element may
not exist (an element y for which no element x ∈ S exists with y ≤ x without y necessarily
being the greatest element of S is usually called maximal).

Exercise 2.3.6 If L is a poset, call Lop the dual poset, obtained by reversing the relation
on L (that is, x ≤ y in Lop if y ≤ x in L). Check that meets (respectively joins) in L

corresponds to joins (respectively meets) in Lop. �

Exercise 2.3.7 Let L be a poset. Show that, for all x, y ∈ L, we have x = ∩{x, y} iff x ≤ y

iff y = ∪{x, y}. �

An endofunction on a set L is a function from L onto itself.

Definition 2.3.8 Let F be an endofunction on a poset L.

� F is monotone if x ≤ y implies F (x) ≤ F (y), for all x, y.
� An element x of the poset is a pre-fixed point of F if F (x) ≤ x. Dually, a post-fixed point

of F is an element x with x ≤ F (x).
� A fixed point of F is an element x that is both a pre-fixed point and a post-fixed point, that

is, F (x) = x. In the set of fixed points of F , the least element and the greatest element
are respectively called the least fixed point of F and the greatest fixed point of F . �

We write ∪S (or ∪x∈SS) for the join of a subset S of a poset, and ∩S (or ∩x∈SS) for its
meet. We also write lfp(F) and gfp(F) for the least and greatest fixed points of F .

2.3 Fixed points in complete lattices 43

Fig. 2.2 A complete lattice.

Example 2.3.9 We take the poset of the (positive) natural numbers with n ≤ m if n divides
m. If S = {4, 8, 16} then {1, 2, 4} is the set of lower bounds of S, and 4 is the least element
in S and also its meet; 16 is the greatest element and also the join of S. If S = {2, 3, 4}
then 1 is the only lower bound and is also the meet; there is no least element, as 2 and 3 are
both minimal; any multiple of 12 is an upper bound, 12 is the join, and there is no greatest
element.

Consider then the endofunction F on the same poset where F (n) is the sum of the
factors of n that are different from n, with the exception of 1 that is mapped onto itself;
thus F (1) = 1, F (2) = 1, F (3) = 1, F (4) = 3, F (6) = 6. Then 1, 2, 3, 6 are examples of
pre-fixed points, and 1, 6 examples of fixed points. �

Definition 2.3.10 (Complete lattice) A complete lattice is a poset with all joins (i.e., all
the subsets of the poset have a join). �

The above implies that a complete lattice has also all meets; see Exercise 2.3.17. Further,
taking the meet and the join of the empty set, it implies that there are bottom and top
elements, i.e., a least and greatest element in the lattice. This because if S = ∅, then every
element x of the lattice is both a lower bound and an upper bound of S, as x ≤ y and x ≥ y

for all y ∈ S is vacuously true; hence the meet of ∅ is an element that is below all elements
of the lattice, and the join of ∅ is an element that is above all elements.

We indicate the bottom and top elements of a complete lattice by ⊥ and �, respectively.

Exercise 2.3.11 Derive the existence of the bottom and top elements for a lattice L using
meet and join on the whole set L. �

Example 2.3.12 Figure 2.2 shows an example of a complete lattice. Two points x, y are
in the relation ≤ if there is a path from x to y following the directional edges (a path may
also be empty, hence x ≤ x holds for all x).

Some edges can be removed while remaining with a complete lattice; we should not,
however, remove all the outgoing edges or all the ingoing edges of a node because such
node would not be anymore related to the bottom node or to the top node. �

44 Coinduction and the duality with induction

Example 2.3.13

� The set of all natural numbers i with n ≤ i ≤ m, for n,m given, is a complete lattice,
with n and m as bottom and top elements.

� If S is a set, then ℘(S), the powerset of S, is a complete lattice, ordering the elements
of ℘(S) by means of the set inclusion relation ⊆. In this complete lattice, ∅ (the empty
set) and S are the bottom and top elements; join is given by set union, and meet by set

intersection. For instance, given S, take T
def= {T1, . . . , Tn} where each Ti is a subset of

S. Thus each Ti is an element of ℘(S), and T a set of elements of ℘(S); an upper bound
of T is a set T ′ with Ti ⊆ T ′ for all i; and ∪iTi is the join of T . �

The powerset constructions are the kind of complete lattice we mainly use in this chapter.
This explains the union and intersection notations adopted for joins and meets.

Exercise 2.3.14 (Recommended, ↪→) Is the set of all natural numbers a complete lattice?
Is it a lattice (that is, is a poset in which all pairs of elements have a join)? Can we add
elements to the set of natural numbers so as to make it a complete lattice? �

Exercise 2.3.15 (↪→) Show that the set of all equivalence relations over a given set S is a
complete lattice, where the ordering on relations is given by the usual relational inclusion.
What is the bottom element of the complete lattice? And the top element? �

Exercise 2.3.16 Suppose L is a complete lattice and X, Y ⊆ L. Show that if for each x ∈ X

there is y ∈ Y with x ≤ y then ∪X ≤ ∪Y ; whereas if for each x ∈ X there is y ∈ Y with
y ≤ x then ∩Y ≤ ∩X. �

Exercise 2.3.17 (∗, ↪→) Show that in the definition of complete lattice the existence of all
joins implies the existence of all meets. (As usual, the dual is also true, exchanging meets
and joins in the definition of complete lattice.) �

Remark 2.3.18 A lattice (as in Exercise 2.3.14) is complete if and only if every monotone
endofunction on the lattice has a fixed point. Other characterisations of the difference
between lattices and complete lattices exist, see books on lattice theory such as [DP02] for
details. �

Exercise 2.3.19 (Recommended, ↪→)

(1) Show that if F is a monotone endofunction on a complete lattice, and x and y are
post-fixed points of F , then also ∪{x, y} is a post-fixed point.

(2) Generalise the previous point to an arbitrary set S of post-fixed points: ∪S is also a
post-fixed point. Then dualise the result to pre-fixed points.

(3) Show that, in contrast, ∩{x, y} need not be a post-fixed point. �

For our developments in the book, the second part of the Fixed-point Theorem below,
relating least and greatest fixed points to the sets of pre-fixed and post-fixed points, is
most relevant. On complete lattices generated by the powerset construction, the statement

2.4 Inductively and coinductively defined sets 45

becomes: if F : ℘(X) → ℘(X) is monotone, then

lfp(F) =
⋂

{S |F (S) ⊆ S},

gfp(F) =
⋃

{S | S ⊆ F (S)}.
Its proof is simpler than that of the Fixed-point Theorem.

Exercise 2.3.20 (Recommended, ↪→) Prove the above statement. (Hint: use Exercise
2.3.19(2).) �

Theorem 2.3.21 (Fixed-point Theorem) On a complete lattice, a monotone endofunction
has a complete lattice of fixed points. In particular the least fixed point of the function is the
meet of all its pre-fixed points, and the greatest fixed point is the join of all the post-fixed
points. �

Thus the least fixed point is also the least pre-fixed point, and the greatest fixed point is
also the greatest post-fixed point.

Exercise 2.3.22 (↪→)(Proof of the Fixed-point Theorem) This exercise invites the
reader to carry out a proof of the Fixed-point Theorem.

(1) Let L be the lattice, F the monotone endofunction and S the set of fixed points of L.
Consider a subset X ⊆ S, and take the set Y of pre-fixed points that are also upper
bounds of X:

Y
def= {y ∈ L |F (y) ≤ y and, ∀x ∈ X, x ≤ y}.

Take now the meet z of Y (which exists because L is a complete lattice). Show that
this is also the join of X in S. (Hint: this is similar to the proof of Exercise 2.3.17.)

(2) Using the previous result, complete the proof of the theorem. �

Exercise 2.3.23 Another equivalent formulation of the first part of the Fixed-point Theorem
can be given in terms of pre-fixed points: the monotone endofunction has a complete lattice
of pre-fixed points. Similarly for post-fixed points. Prove these assertions. (Hint: it is similar
to the proof of the Fixed-point Theorem.) �

Remark 2.3.24 Exercise 2.3.20 actually shows that the existence of the least and greatest
fixed points of a monotone function F can be guaranteed also in structures that are weaker
than complete lattices, namely posets in which the sets of pre-fixed and post-fixed points
of F have a meet and join, respectively. See the proof of the exercise in the Appendix. �

2.4 Inductively and coinductively defined sets

Definition 2.4.1 (Sets inductively and coinductively defined by F) For a complete lattice
L whose points are sets (as in the complete lattices obtained by the powerset construction),

46 Coinduction and the duality with induction

and an endofunction F on L, the sets

Find
def=

⋂
{x |F (x) ≤ x},

Fcoind
def=

⋃
{x | x ≤ F (x)}

(the meet of the pre-fixed points, and the join of the post-fixed points) are, respectively, the
sets inductively defined by F and coinductively defined by F . �

Hence the following rules hold.

Corollary 2.4.2 (Induction and coinduction proof principles) In the hypothesis of
Definition 2.4.1, we have:

if F (x) ≤ x then Find ≤ x (induction proof principle);

if x ≤ F (x) then x ≤ Fcoind (coinduction proof principle).
�

The above principles are also sometimes referred to as the principle of induction and
principle of coinduction. By the Fixed-point Theorem, we know that, when F is monotone,
Find is the least fixed point (and the least pre-fixed point) of F , and dually for Fcoind.
More generally, we know that the meet of pre-fixed points is itself a pre-fixed point, and
dually so. We can thus re-state the principles as follows.

Corollary 2.4.3 (Induction and coinduction proof principles for monotone functions)
For a monotone endofunction F on a complete lattice, we have:

if F (x) ≤ x then lfp(F) ≤ x;

if x ≤ F (x) then x ≤ gfp(F).
�

To understand the definitions of induction and coinduction given above, in Section 2.6
we revisit the examples from Section 2.1. These examples were expressed by means of
rules: rules for generating the elements of an inductive set, or for ‘observing’ a coinductive
element. So we first show in what sense a set of rules produces monotone operators on
complete lattices.

Remark 2.4.4 (Non-monotone functions and other fixed points) It is possible to give
coinductive and inductive definitions even for functions F that are not monotone. The basis
in the study of non-monotone induction was set in the 1970s, in the works of, e.g., Aczel,
Gandy, Moschovakis, Richter, and others, see [Acz77, Mos74]. An example of a form of
bisimulation (on a higher-order functional language) that corresponds to a non-monotone
function can be found in [SKS07b].

2.5 Definitions by means of rules 47

There are also situations where one is interested in fixed points other than the least or
the greatest. In Computer Science, this happens for instance in finite model theory and in
databases; see, e.g. [GK03]. �

2.5 Definitions by means of rules

In this section we introduce rule induction and rule coinduction. They are among the most
pervasive inductive and coinductive concepts in Computer Science. We show how to derive
and justify them from the theory of fixed points.

Given a set X, a ground rule on X is a pair (S, x) with S ⊆ X and x ∈ X. In the inductive
(forward) reading, it intuitively says that from the premises S we can derive the conclusion
x; in the coinductive (backward) reading, it says that x can be observed and thus reduced to
the set S. A set R of ground rules on X is a subset of ℘(X) × X; it allows us, inductively,
to obtain elements of X from subsets of X or, coinductively, to reduce elements of X to
subsets of X.

Note that what is usually called an inference rule corresponds, in the above terminology,
to a set of ground rules, namely the set of all instances of the inference rule. As an example,
consider the inference rule for ⇑:

e1 ⇑
e1 e2 ⇑

on closed λ-terms (�0) that we saw in Section 2.1.2. Here, e1 and e2 are metavariables: there
is an implicit universal quantification on e1 and e2, which are supposed to be instantiated
with concrete λ-terms in applications of the rule. The rule relates any closed term e1 in the
premise to any term of the form e1 e2 in the conclusion, where e2 is also closed. We call a
rule like this, which uses metavariables, open. Moving to ground rules, we have to take all
concrete instances of the open rule. This yields the set of all pairs of the form ({e}, e e′),
with e, e′ ∈ �0.

Similarly, the other open rule for ⇑, namely

e1 ⇓ λx.e0 e0{e2/x} ⇑
e1 e2 ⇑ ,

when moving to ground rules becomes the set of all pairs of the form ({e}, e1 e2), with
e, e1, e2 ∈ �0 and such that e1 ⇓ λx.e0 for some e0 with e0{e2/x} = e.

Remark 2.5.1 Proceeding as above, the (open) inference rules employed for the inductive
and coinductive definitions in the examples of Section 2.1 can be straightforwardly trans-
formed into ground rules. Can we always transform the kind of inference rules commonly
used to define inductive or coinductive sets into ground rules? The translation is immedi-
ate if, as in the examples of Section 2.1, the relation (or predicate) being defined is used
in the premises of the inference rules in a ‘first-order’ manner. That is, the premises do
not contain functions, or similar constructions, that manipulate the relation being defined.
The translation may not be possible for rules in which the relation being defined appears

48 Coinduction and the duality with induction

in ‘negative’ (contravariant) position, for instance as input argument of a function. The
reason is that such definitions may correspond to fixed points of non-monotone functions,
whereas, as we shall see soon, ground rules yield monotone functions; we are thus beyond
the fixed-point theory examined in this chapter. An example is the rule

f ∈ P → P Q ∈ P
f P ∈ P

(we are defining P while using it in contravariant position). Rules of this kind may be found
in certain formalisations of the λ-calculus or in (the rule characterisation of) bisimulations
for higher-order languages. See also Remark 2.4.4. �

A ground rule in which the first component is empty is called an axiom. In the remainder
of the section we often omit the adjective ‘ground’. We sometimes write a rule (S, x) as

x1 . . . xn . . .

x
where {x1, . . . , xn, . . .} = S.

A set R of rules on X yields a monotone endofunction �R, called the functional of R
(or rule functional, when R is clear), on the complete lattice ℘(X), where

�R(T) = {x | (T ′, x) ∈ R for some T ′ ⊆ T }

(the set of conclusions derived from the subsets of T according to the rules in R). We will
see examples of this in Section 2.6.

Exercise 2.5.2 Show that �R above is indeed monotone. �

The relationship between rule functionals and monotone functions is in fact tight, as the
following exercise shows.

Exercise 2.5.3 (↪→) Show that every monotone operator on the complete lattice ℘(X) can
be expressed as the functional of some set of rules, and vice versa. Try then to obtain rules
that are ‘minimal’, in that the number of the rules is as small as possible and, in each rule,
the set of the premises is as small as possible. �

As the functional �R of a set of rules R is monotone, by the Fixed-point Theorem it has
a least fixed point and a greatest fixed point, lfp(�R) and gfp(�R). They are obtained
via the join and meet in Definition 2.4.1, and are indeed called the sets inductively and
coinductively defined by the rules. Such definitions of sets are also referred to as definitions
by rule induction and by rule coinduction.

We also get, from Corollary 2.4.3, induction and coinduction proof principles, respec-
tively stating:

if �R(T) ⊆ T then lfp(�R) ⊆ T ,

if T ⊆ �R(T) then T ⊆ gfp(�R).

2.5 Definitions by means of rules 49

It is useful to spell out concretely what all this means, beginning with the more familiar
induction. A set T being a pre-fixed point of �R (i.e., the hypothesis �R(T) ⊆ T) means
that:

for all rules (S, x) ∈ R, if S ⊆ T , then also x ∈ T .

That is,

(i) the conclusion of each axiom is in T ;
(ii) each rule whose premises are in T also has the conclusion in T .

This is precisely the ‘forward’ closure of Sections 2.1 and 2.2. Now, the Fixed-point
Theorem tells us that the least fixed point is the least pre-fixed point: the set inductively
defined by the rules is therefore the smallest set closed forward. The induction proof
principle, in turn, says:

for a given T ,

if for all rules (S, x) ∈ R,S ⊆ T implies x ∈ T

then lfp(�R) ⊆ T . (2.1)

That is, if we have a property T , and we wish to prove that all elements in the set inductively
defined by R have the property, we have to show that T is a pre-fixed point of �R.
Establishing (2.1) corresponds exactly to the familiar way of reasoning inductively on rules
that the reader may have already met in textbooks or papers. The assumption ‘S ⊆ T ’ is
the inductive hypothesis. The base of the induction is given by the axioms of R, where the
set S is empty.

In applications, sometimes T is taken to be a subset of lfp(�R), that is, a property
on lfp(�R), and one is interested in proving T = lfp(�R). We thus use (2.1) to obtain
lfp(�R) ⊆ T . In these cases, in the condition S ⊆ T of (2.1), S ranges over the subsets of
lfp(�R). We will use this variant of (2.1) in Section 2.6.3 to justify the familiar induction
principle for lists.

In the case of coinduction, the hypothesis is that T is a post-fixed of �R. This means
that

for all x ∈ T , there is a rule (S, x) ∈ R with S ⊆ T .

That is, each element of T is conclusion of a rule whose premises are satisfied in T . This is
precisely the ‘backward’ closure of Sections 2.1 and 2.2. By the Fixed-point Theorem, the
greatest fixed point is the greatest post-fixed point; therefore the set coinductively defined
by the rules is the largest set closed backward. The coinduction proof principle reads thus:

for a given T ,

if for all x ∈ T there is a rule (S, x) ∈ R with S ⊆ T ,

then T ⊆ gfp(�R) (2.2)

50 Coinduction and the duality with induction

In the literature, (2.1) and (2.2) are called the principles of rule induction and of rule
coinduction.

Exercise 2.5.4 Let R be a set of ground rules, and suppose each rule has a non-empty
premise. Show that lfp(�R) = ∅. �

The above explanations rely on the characterisation of least and greatest fixed points in
the Fixed-point Theorem. In the informal discussion of examples in Section 2.1, however,
we mentioned two other formulations of the sets inductively and coinductively defined by
means of rules. For induction, one formulation describes the elements of the set as those
‘with a finite proof’; the other formulation describes the set as the result of an iterative
construction that starts from the empty set. The two formulations for coinduction were
similar. These formulations can be justified from two further characterisations of least
and greatest fixed points. The first relies on the inductive and coinductive meaning of a
derivation proof, and is studied in Section 2.11; the second relies on iterative schemata to
reach least and greatest fixed points, and is studied in Section 2.8. Before doing this, we
revisit the examples of Section 2.1, as well as other well-known examples of induction, in
the light of the formal presentation of rules carried out in this section.

2.6 The examples, continued

In this section we show that the examples of induction and coinduction discussed in
Section 2.1 are instances of the concepts of rule induction and rule coinduction introduced
in Section 2.5.

2.6.1 Finite traces and ω-traces for processes as fixed points

We show how the predicates � and �μ, from Section 2.1.1, are obtained for suitable sets
of ground rules on the set Pr of all processes. In the case of �, the open rules given in
Section 2.1.1 were:

P stopped

P �
P

μ−→ P ′ P ′ �
P �

These rules are open, in that P and P ′ are used as metavariables, therefore, as such,
implicitly universally quantified. These open rules become the following set R� of ground
rules, where each rule is a pair of a subset of processes and a process (the first component
is actually always either the empty set or a singleton):

R�
def= {(∅, P) |P is stopped}⋃ {({P ′}, P) |P μ−→ P ′ for some μ}.

This yields the following functional, on the complete lattice ℘(Pr):

�R�(T)
def= {P |P is stopped, or there are P ′, μ with P ′ ∈ T and P

μ−→ P ′}.

2.6 The examples, continued 51

The sets ‘closed forward’, in the terminology of Section 2.1.1, are the pre-fixed points
of �R� . (In particular, in the case of the function f of Section 2.1.1, the proof that
dom(�) ⊆ dom(f) amounts to showing that dom(f) is such a pre-fixed point.) Thus the
smallest set closed forward and the proof technique mentioned in Section 2.1.1 become
examples of an inductively defined set and of the induction proof principle.

In the case of �μ, in Section 2.1.1 we used the open rule

P
μ−→ P ′ P ′ �μ

P �μ

This becomes the set of ground rules

R�μ

def= {({P ′}, P) |P μ−→ P ′},
which then yields the following functional:

�R�μ
(T)

def= {P | there is P ′ ∈ T and P
μ−→ P ′}.

Thus the sets ‘closed backward’ of Section 2.1 are the post-fixed points of �R�μ
, and

the largest set closed backward is the greatest fixed point of �R�μ
. Similarly the proof

technique for ω-traces is derived from the coinduction proof principle.

Exercise 2.6.1 Show that gfp(�R�) is the set of all processes, and lfp(�R�μ
) is the

empty set. �

Exercise 2.6.2 (↪→) Show that P ∈ gfp(�R�μ
) if and only if there are processes Pi (i ≥ 0)

with P0 = P and such that, for each i, Pi

μ−→ Pi+1. �

The meaning of lfp(�R�) is considered in Exercise 2.9.9.

2.6.2 Reduction to a value and divergence in the λ-calculus as fixed-points

Continuing Section 2.1.2, we show how convergence and divergence in the λ-calculus (⇓
and ⇑) can be formulated as least and greatest fixed points of rule functionals. We only
show the definition of the functionals, leaving the remaining details to the reader.

In the case of ⇓, the rules manipulate pairs of closed λ-terms, thus they act on the set
�0 × �0. The rule functional for ⇓, written �⇓, is

�⇓(T)
def= {(e, e′) | e = e′ = λx.e′′, for some e′′ ∈ � and variable x}⋃ {(e, e′) | there are e1, e2 ∈ �0, e0 ∈ �, and a variable x with

e = e1 e2 and (e1, λx.e0) ∈ T and (e0{e2/x}, e′) ∈ T }.
In the case of ⇑, the rules are on �0. The rule functional for ⇑ is

�⇑(T)
def= {e1 e2 | e1 ∈ T , }⋃ {e1 e2 | there is e0 ∈ � and a variable x with

e1 ⇓ λx.e0 and e0{e2/x} ∈ T }.

52 Coinduction and the duality with induction

2.6.3 Lists over a set A as fixed points

We now consider the rules for lists over a set A in Section 2.1.3. We can take X to be the
set of all (finite and infinite) strings with elements from the alphabet A ∪ {nil, 〈, 〉, •}.
The ground rules are (∅,nil) and, for each s ∈ X and a ∈ A, the rule ({s}, 〈a〉 • s). The
corresponding rule functional �Alist is

�Alist(T)
def= {nil} ∪ {〈a〉 • s | a ∈ A, s ∈ T }.

We indicate with FinListsA the set of finite lists over A, that is, the set with elements of
the form

〈a1〉 • 〈a2〉 • · · · 〈an〉 • nil

for some n ≥ 0 (for n = 0 we get nil); and we indicate with FinInfListsA the set of
finite and infinite lists over A, that is, the set that adds to FinListsA the infinite lists, of
the form

〈a1〉 • 〈a2〉 • · · · 〈an〉 • · · ·
The reader may check that FinListsA and FinInfListsA are indeed fixed points
of �Alist. We defer proving that they are the least and the greatest fixed points to Exer-
cise 2.9.11, after discussing continuity and cocontinuity.

Exercise 2.6.3 (↪→) Suppose that A has more than one element. Does �Alist have other
fixed points, besides FinListsA and FinInfListsA? (Hint: think about the infinite
lists in which all elements are identical and what �Alist does on them.) �

From Corollary 2.4.3, we infer: suppose S is a property on FinListsA, that is, a subset
of FinListsA; if �Alist(S) ⊆ S then FinListsA ⊆ S (hence S = FinListsA).
Proving �Alist(S) ⊆ S requires proving

� nil ∈ S;
� s ∈ FinListsA ∩ S implies2 〈a〉 • s ∈ S, for all a ∈ A.

This is the familiar inductive proof technique for finite lists: to prove that a property on lists
holds on all lists, prove that the property holds on the empty list, and assuming the property
on a list s, prove that the property holds on 〈a〉 • s.

Exercise 2.6.4 (↪→) Suppose we remove the first of the rules for lists in Section 2.1.3 (the
axiom). What are the least and greatest fixed points of the resulting functional? �

Remark 2.6.5 In this section we have used the set X to ‘bootstrap’, via the powerset
construction, thus assuming that X is already given. The choice of the specific X is not
mandatory: any set in which the lists exist would do. This bootstrap essentially means that

2 The condition s ∈ FinListsA ∩ S could be simplified to s ∈ S, as we are assuming S ⊆ FinListsA; it is so written to
remind us that s is a finite list, and to make the analogy with the familiar inductive technique for lists clearer.

2.6 The examples, continued 53

we have already a vague idea of the universe in which the objects of interest – in our case
the lists – live, so that the goal becomes identifying the relevant portion of this universe.

An alternative would be to define lists taking the functional �Alist on the universe of
all sets. This would, however, take us beyond complete lattices and the fixed-point theory
described in the present chapter – the universe of all sets is not a complete lattice because
of paradoxes such as Russell’s. Indeed, in this approach the natural mathematical tool to
define lfp and gfp of �Alist would be the algebra/coalgebra machinery explained in
[RJ12], which generalises the theory of fixed points. �

2.6.4 Bisimulation on lists

An interesting issue is the proof of equality between lists. For finite lists, the problem is
simple, because the proofs with which the lists are derived are finite: we can thus establish
equalities by inspecting such proofs. Moreover, as finite lists are inductive objects, we
can reason on them, for equality or other properties, using various inductive techniques,
e.g., those discussed in Section 2.7.1. For instance, we can use induction on the depth of
derivation proofs (the number of steps with which the finite lists are obtained).

These methods do not apply to infinite lists, and more generally to coinductively defined
sets, in which derivation proofs can have infinite paths (i.e., generate a non-well-founded
relation on nodes moving upward, from a node towards one of its children). We can still
hope to employ inductive methods to prove equalities, since a list, be it finite or infinite,
is uniquely identified by the sequence of elements from A it contains. Thus, writing sn for
the n-th element of a list s (and extracted from s in the expected way), on two infinite lists
t and t ′ we have t = t ′ when tn = t ′n for all n. We can then use mathematical induction on
n to infer t = t ′.3 However, on coinductively defined sets, coinductive techniques are more
natural and effective. In particular, we can prove equalities adapting the idea of bisimulation
that we have earlier examined on LTSs. We show this for FinInfListsA; the same idea
applies to any data type coinductively defined via some rules.

The coinductive definition of a set tells us what can be observed of these elements. We
can make this explicit in FinInfListsA defining an LTS on top of the lists. The domain
of the LTS is the set FinInfListsA, the labels are elements of A, and the transitions are
given by the following rule:

〈a〉 • s
a−→ s

(2.3)

The rule says that we can observe the head of a list and the result is its tail. As usual we
write ∼ for the resulting bisimilarity, as by Definition 1.4.2. The next lemma shows that
bisimilarity coincides with syntactic identity.

Lemma 2.6.6 For s, t ∈ FinInfListsA, it holds that s = t if and only if s ∼ t .

3 Sometimes this method may, however, be difficult to apply; for instance in programming languages with higher-order features,
see [Fio93].

54 Coinduction and the duality with induction

Proof Bisimilarity is reflexive, which proves the implication from left to right in the lemma.
For the converse, one shows, by induction on n, that s ∼ t implies sn = tn for all n; this
means that the sequence of elements from A in the definitions of s and t are the same, that
is, s = t . �

The property stated in Lemma 2.6.6 is often referred to as (strong) extensionality for
FinInfListsA, to indicate that the identity relation is the maximal bisimulation on the
set.

Of course it is not necessary to define an LTS from lists. We can directly define a kind of
bisimulation on lists, as follows. A relation R ⊆ FinInfListsA × FinInfListsA is
a list bisimulation if whenever (s, t) ∈ R then

(1) s = nil implies t = nil;
(2) s = 〈a〉 • s ′ implies there is t ′ such that t = 〈a〉 • t ′ and (s ′, t ′) ∈ R.

Then we obtain list bisimilarity as the union of all list bisimulations.
To see how natural the bisimulation method on lists is, it may also be useful to consider

the following characterisation of equality between lists, by means of rules (on X):

nil = nil

s1 = s2 a ∈ A

〈a〉 • s1 = 〈a〉 • s2

The inductive interpretation of the rules gives us equality on FinListsA, as the least fixed
point of the corresponding rule functional. In contrast, the coinductive interpretation gives
us equality on FinInfListsA, and list bisimulation as associated proof technique. To
see this, it suffices to note that the post-fixed points of the rule functional are precisely the
list bisimulations; hence the greatest fixed point is list bisimilarity and, by Lemma 2.6.6, it
is also the equality relation.

The exercises and example below show applications of the bisimulation method for lists.

Exercise 2.6.7 Let A be a set, and map : (A → A) → (FinInfListsA →
FinInfListsA) be defined by the following equation:

map f nil
def= nil,

map f 〈a〉 • s
def= 〈f (a)〉 • (map f s).

These equations are satisfied by the function G that, given a function f and a list, replaces
each element a in the list with f (a). Show the unicity of the function satisfying the
equations: for any other function G′ that satisfies the same equations, and for any function
f : A → A and list s ∈ FinInfListsA, it holds that Gf s ∼G′f s. �

Remark 2.6.8 In Exercise 2.6.7, the definition of a function G satisfying the equations
for map was sketchy. The argumentcan be refined as follows. We have already mentioned

2.6 The examples, continued 55

that a list on a set A is uniquely identified by the sequence of elements from A it contains.
We can therefore associate a list s with a function, say s, from natural numbers to A, that
can be undefined on a suffix of the naturals (i.e., s(n) undefined and m > n imply s(m)
undefined). Call such functions list functions on A. Given a list function s and a function
f : A → A, the composition of f and s is another list function, f ◦ s, mapping n onto
f (s(n)). Now, the function G in Exercise 2.6.7 is the function that, on arguments f and s,
returns the list associated with the list function f ◦ s.

Instead of identifying a list with a list function, we could identify a list with the set
of all the prefixes of the list (a prefix-closed set of finite sequences of characters). These
sets could then be manipulated using induction, since the sequences they contain are finite,
so that G can be defined using recursion (see Section 2.7.2). This representation may
be more convenient in the case of data types more sophisticated than lists (see, e.g., the
representation of proof trees in Remark 2.11.1). �

In the examples and exercises below we use other systems of equations that, as map,
define functions onto FinInfListsA. These are functions defined by corecursion (dis-
cussed in Section 2.7.2). The proofs that such functions exist and are unique can be done
as for map (Exercise 2.6.7 and Remark 2.6.8).

Moreover, to enhance readability, in the remainder of the section we avoid some brackets
by adopting the following conventions. Expressions such as

〈a〉 • map f s

(a function symbol on the right of the append symbol ‘•’) read as 〈a〉 • (map f s); expres-
sions such as

map f 〈a〉 • s

(append underneath a function) read as map f (〈a〉 • s); expressions such as

map f g(a)

(a function application, g(a), in the argument of another function, map) read as
map f (g(a)) (the two arguments required by the outermost function, map, are f and
g(a)).

Example 2.6.9 Consider the function

iterate : (A → A) → (A → FinInfListsA)

defined by:

iterate f a
def= 〈a〉 • iterate f f (a).

Thus iterate f a builds the infinite list

〈a〉 • 〈f (a)〉 • 〈f (f (a))〉 • · · ·

56 Coinduction and the duality with induction

We show that, for all a ∈ A, we have

map f (iterate f a) = iterate f f (a).

For this, we consider the relation

R def= {(map f (iterate f a),iterate f f (a)) | a ∈ A}.
We prove that this is a bisimulation, using the LTS and the bisimulation for lists defined
above, so that we can derive the final result from Lemma 2.6.6. Let (P,Q) ∈ R, for

P
def= map f (iterate f a),

Q
def= iterate f f (a).

Applying the definition of iterate, we have

Q = 〈f (a)〉 • iterate f f (f (a)),

hence (using the LTS rule (2.3) at page 53)

Q
f (a)−−→ iterate f f (f (a))

def= Q′.

Similarly, using also the definition of map,

P = map f 〈a〉 • (iterate f f (a))
= 〈f (a)〉 • map f (iterate f f (a))

f (a)−−→ map f (iterate f f (a))
def= P ′.

We have P ′ R Q′, as f (a) ∈ A. Summarising, we have showed that P and Q have a single
transition, with the same label, and with derivatives that are in R. This concludes the proof
that R is a bisimulation. �

The two exercises below are due to Pitts [Pit93]. They make use of proofs and definitions
of functions by induction on the natural numbers. These are common concepts, and we
assume that the reader has already some familiarity with them. Their justification from
fixed-point theory is treated in Section 2.7.

Exercise 2.6.10 (↪→) Let +1 be the function that returns the successor of a natural number.
Consider the infinite list nats of natural numbers, and the function from that takes a
natural number and returns a list of natural numbers, recursively defined as follows:

nats
def= 〈0〉 • (map +1 nats),

from (n)
def= 〈n〉 • from (n + 1).

Show that

nats = from (0).

2.7 Other induction and coinduction principles 57

(Hint: write (map +1)nnats, with n ≥ 0, for

map +1 (map +1 (. . . (map +1 nats) . . .))︸ ︷︷ ︸
n times

.

That is, (map +1) is applied n times starting from nats, with (map +1)0nats = nats.
Show that

R def=
⋃
n

{((map +1)nnats,from (n))}

is a bisimulation, proceeding as in Example 2.6.9.) �

Exercise 2.6.11 (∗, ↪→) Consider the Fibonacci function f on natural numbers defined
recursively thus:

f (0)
def= 0, f (1)

def= 1, f (n + 1)
def= f (n) + f (n − 1).

Let now fibs be the infinite list of natural numbers recursively defined thus:

fibs
def= 〈0〉 • 〈1〉 • plus (fibs,tail (fibs)),

where plus adds componentwise the elements of two infinite lists, thus producing another
infinite list, and tail takes a list, strips off its first element, and returns the remaining list.
Proceed as in Example 2.6.9 and Exercise 2.6.10 to prove

fibs = map f nats

for nats defined as in Exercise 2.6.10. (Hint: use a property of (map +1)nnats in the
proof of Exercise 2.6.10, and try to develop plus (fibs,tail (fibs)) so as to find some
recurring pattern.) �

2.7 Other induction and coinduction principles

In this section we consider other induction and coinduction principles, and show how to
justify them from fixed-point theory. First, we consider a few induction principles that
are common in Mathematics and Computer Science. Then we touch on definitions of
functions by recursion and corecursion. Finally, we discuss examples of variants of the
characterisations of least and greatest fixed points in the Fixed-point Theorem and their
associated principles.

2.7.1 Common induction principles: mathematical induction, structural induction,
and others

We have seen that the examples of induction and coinduction in Section 2.1 can be formally
explained as definitions and proofs by rule induction and rule coinduction and these, in turn,
can be derived as instances of the general schema for induction and coinduction that was set
up using fixed-point theory. We consider here other examples of well-known inductive proof
principles: mathematical induction, structural induction, induction on derivation proofs,

58 Coinduction and the duality with induction

transition induction, well-founded induction and transfinite induction. We show how to
derive them from rule induction and the corresponding principle (2.1) in Section 2.5.

The goal of the section is to illustrate the relationship between these principles and the
general concept of induction as defined in terms of fixed-point theory. We do this via rule
induction, since we have already derived this from fixed-point theory. Two observations
are worthwhile here. First, reducing all the principles to rule induction is not necessary:
we could derive, for instance, well-founded induction directly from fixed-point theory, and
reduce all the other principles to well-founded induction. Second, the soundness of the
principles can also be proved directly, without appeal to fixed-point theory. An example of
such a proof is given in Exercise 2.7.1.

We do not discuss the coinductive versions of these principles, which are not well-
established; see, however, the comments at the end of the section.

Mathematical induction

Similarly to the example of finite lists, one can treat the best known example of inductive
set: the natural numbers.

The rules on the set {0, 1, . . .} of natural numbers, or any other set containing the natural
numbers, are:

0
and

n

n + 1
for all n ≥ 0.

The set inductively defined by these rules is indeed the set of natural numbers. And the
principle of rule induction then says: if a property on the naturals holds at 0 and, whenever
it holds at n, it also holds at n + 1, then the property is true for all naturals. We have thus
obtained the natural numbers and the standard proof method by induction on the natural
numbers, also called mathematical induction, from rule induction.

In a variant of mathematical induction, the inductive step uses the assumption that the
property holds at all numbers less than or equal to n and requires proving the property
at n + 1. This reasoning is useful when the proof for n + 1 makes use of several smaller
integers. Such induction corresponds to a variant presentation of the natural numbers, where
the rules are

0
and

0 1 . . . n

n + 1
for all n ≥ 0.

These rules are the ground-rule translation of the following (open) inference rule, where S

is a property on the natural numbers:

i ∈ S , ∀ i < j

j ∈ S

This is the common rule with which mathematical induction is used.

Structural induction

The rules for lists, in Section 2.1.3, interpreted inductively, allow us to build up objects
that have a structure, in the sense of being composed of simpler objects. Other examples

2.7 Other induction and coinduction principles 59

of rules that produce structured objects are those of a grammar, such as that for λ-terms
in Section 2.1.2 and that for CCS in Chapter 3. In these cases, the object obtained can
be atomic, if derived from an axiom, or composite. A composite object is of the shape
f (t1, . . . , tn), where the tis are immediate subobjects, and f is the operator that puts them
together and determines the final shape. The principle of structural induction says that,
given a property on the objects produced by the rules, if

(i) the property holds at all atomic objects, and
(ii) for any composite object t , if the property holds of the immediate subobjects of t then

it also holds at t ,

then the property is true in the whole set inductively defined by the rules. That is, the
reasoning in structural induction consists in proving that the act of building up complex
structures from simpler ones preserves the property of interest. The peculiarity of structural
induction is that the validity of the inductive steps relies on a syntactic check.

In the case of lists, the structural induction principle is the same as the proof principle
derived in Section 2.6.3 following rule induction. Similarly, structural induction can be
justified from rule induction in other cases.

Induction on derivation proofs

When playing with rules, one often finds results proved by induction on derivation proofs.
In this case the reasoning focuses on the derivation trees with which the rules generate
elements. The root of the tree is the element produced by the concluding rule in the
derivation. The principle says that if a property holds at the atomic trees (those with only
one node) and, for any other tree t , whenever the property holds at the immediate subtrees
of t then it also holds at t , then the property holds for all derivation trees. A proof by
induction on derivation proofs proceeds by a case analysis on the concluding rule of the
derivation. One considers each rule (S, x) and proves that, if the derivation tree of each
s ∈ S has the desired property, then the whole derivation tree has it too. The case when S

is empty corresponds to the basis of the induction.
The trees have a structure and therefore this form of induction is a special case of

structural induction. One can also obtain it as a special form of rule induction, by defining
appropriate rules that manipulate derivation trees.

If the derivation trees are finitely branching (each node has only finitely many children)
then the height of a tree can be defined and an induction on derivation trees can be turned
into a mathematical induction. In general, however, derivation trees need not be finitely
branching.

Transition induction

In the book, beginning in Chapter 3, we will often consider transition relation on processes
defined by means of rules. The corresponding induction on derivation proofs is called
transition induction. It is frequently used in concurrency theory, hence the special name
given to it.

60 Coinduction and the duality with induction

Well-founded induction

Well-founded induction says that, given a relation R that is well-founded on a set X (recall
that a relation is well-founded if it does not give rise to infinite descending chains) and a
property T on X, to show that X ⊆ T (the property T holds at all elements of X), it suffices
to prove that, for all x ∈ X: if y ∈ T for all y with y R x, then also x ∈ T .

Mathematical induction is a special case of well-founded induction, where X is the
set of natural numbers, and R is the predecessor relation. Another obvious special case
is structural induction, where X is the set of all expressions and R is the ‘immediate
subexpression’ relation (where e R f if e is an immediate subexpression of f). Well-
founded induction is indeed the natural generalisation of mathematical induction to sets
and, as such, it is frequent to find it in Mathematics and Computer Science. For instance,
we can use it to prove a property reasoning on the lexicographical order of pairs of natural
numbers (whereby (n,m) < (n′,m′) if either n < n′ or n = n′ and m < m′), which is a
well-founded relation. A nice application of this is proving that the algorithmic recursive
definition of the Ackermann’s function terminates.

We can derive well-founded induction from fixed-point theory in the same way as we did
for rule induction. In fact, we can reduce well-founded induction to rule induction taking as
rules, for each x ∈ X, the pair (S, x) where S is the set {y | y R x} and R the well-founded
relation. The set inductively defined by the rules is precisely X (Exercise 2.7.2); that is, any
set equipped with a well-founded relation is an inductive set.

Exercise 2.7.1 (↪→) Prove the validity of well-founded induction directly: given a well-
founded relation on a set X and a property T on X that satisfies the requirements of
well-founded induction, assume that y ∈ T for some y ∈ X and derive a contradiction. �

Exercise 2.7.2 Prove formally the reduction of well-founded induction to rule induction,
in particular that X is the set inductively defined by the rules given above. (Hint: you may
find useful the initial observation in the proof of Exercise 2.7.1, in the Appendix.) �

Transfinite induction

Transfinite induction is the extension of mathematical induction to ordinals (introduced in
Section 0.5). Transfinite induction says that to prove that a property T on the ordinals holds
at all ordinals, it suffices to prove, for all ordinals α: if β ∈ T for all ordinals β < α then
also α ∈ T . In proofs, this is usually split into three cases, according to whether α is 0, a
successor ordinal, or a limit ordinal. This means proving:

(i) 0 ∈ T ;
(ii) for each successor ordinal α, if α − 1 ∈ T then also α ∈ T ;
(iii) for each limit ordinal α, if β ∈ T for all β < α then also α ∈ T .

In a variant of transfinite induction, (ii) and (iii) are merged by requiring that for each
ordinal α above 0, if β ∈ T for all β < α then also α ∈ T .

2.7 Other induction and coinduction principles 61

Transfinite induction acts on the ordinals, which form a proper class rather than a set.
As such, we cannot derive it from the fixed-point theory presented. However, in practice,
transfinite induction is used to reason on sets, in cases where mathematical induction is
not sufficient because the set has ‘too many’ elements. We will see an example of this in
Theorem 2.8.8. In these cases, in the transfinite induction each ordinal is associated with
an element of the set. Then the < relation on the ordinals yields a well-founded relation
on the set, so that transfinite induction becomes a special case of well-founded induction
on sets. Another possibility for justifying transfinite induction would be to lift the theory
of induction to classes. While this is possible, we do not pursue it in the book, where we
always work with sets.

Exercise 2.7.3 (↪→) Let X be the set of all (finite and infinite) strings over the alphabet
{a, b}, and consider the following rules:

(∅, ε) ({s}, a.s.b) ({s1, s2}, s1.s2)

where ‘.’ is the concatenation of strings, ε is the empty string, and for all s we assume that:
ε.s = s.ε = s; if s ′ is infinite then s ′.s = s ′. Let S be the set of strings inductively defined
from such rules. What does the principle of rule induction say in this case? Prove that in
any string in S the number of a symbols is equal to that of b symbols. What is S? And the
set coinductively defined by the rules?

Suppose now we replace the rule (∅, ε) with the rule (∅, a.b). Is there anything that
changes in the previous answers? What if we also remove ε from X? �

Exercise 2.7.4 (Reflexive and transitive closure) Consider an LTS with a special action
τ (something we will study in Chapter 4). Define rules that produce, as least fixed point of
the corresponding functional, the reflexive and transitive closure of

τ−→ (i.e., prove that such
least fixed point is the relation =⇒ of Definition 4.1.1, and is also the smallest relation that
is reflexive, transitive, and contains

τ−→). �

Having seen all the above variants of induction, a question that naturally arises is: what
is their counterpart for coinduction? A tentative answer for the case of structural induction
is the following. In structural induction, we assume a property for simple terms, and we
have to derive the same property for complex terms, where the relationship between ‘simple
term’ and ‘complex term’ is syntactical. In coinduction, given a set of terms, we have to
‘decompose’ any such term or, more generally, we have to extract observations from it,
possibly thus producing other terms in the set. When the validity of this step is justified
by a syntactic argument, we could call the coinduction ‘structural’. For instance, in the
coinductive reading of the rules for finite and infinite lists, a list is decomposed into a
head and a tail; in applications of the rules, a syntactic check ensures the occurrence of
a decomposition step. A less trivial example of syntactic conditions in coinduction is the
formalisation of corecursion (a coinductive concept discussed in the next section) in the
theorem prover Coq; see [BC04].

62 Coinduction and the duality with induction

2.7.2 Function definitions by recursion and corecursion

One often finds (total) functions defined by means of systems of equations. Such definitions
may follow the schema of recursion or corecursion.

In a definition by recursion the domain of the function is an inductive set. One specifies
the result of the function on a given argument by exploiting the results of the functions
on smaller arguments. The meaning of ‘smaller’ depends on the nature of inductive set in
the domain, analogously to the different forms of inductive proof and inductive definition
discussed in earlier sections. For instance, in well-founded recursion, the domain is a set
equipped with a well-founded relation and ‘a smaller than b’ means ‘a in relation with b’;
in structural recursion, the domain is a set whose elements have a structure, being built
from atomic objects by means of appropriate constructors, and ‘a smaller than b’ means ‘a
is a subterm of b’. Well-founded recursion is the most interesting case, and entails structural
recursion as a special case.

Examples on the well-founded set of the natural numbers are the Fibonacci function of
Exercise 2.6.11, and the factorial function recursively defined thus:

f (0)
def= 1, f (n + 1)

def= (n + 1) × f (n),

where × is multiplication.

Example 2.7.5 We sketch a proof of the existence and of the unicity of the the function
satisfying the above equations for the factorial. We can establish existence by appealing to
rule induction. Consider the following rules on pairs of natural numbers:

(0, 1)

(n,m)

(n + 1, (n + 1) × m)

where n,m are arbitrary natural numbers. Now, let G be the set of pairs of naturals
inductively defined by these rules. One shows that G is the graph of a function, say g,
whereby g(n) = m if (n,m) ∈ G. For this, one has to check that G is

� single-valued, in that for all n,m,m′ if both (n,m) ∈ G and (n,m′) ∈ G then m = m′;
� total, in that for all n there is m with (n,m) ∈ G.

Both statements are proved by induction on n; the details are simple and are left to the
reader. Having proved that G indeed yields a function, one checks that such a function
satisfies the equations of the factorial.

Now, it remains to prove unicity: there is only one function satisfying the equations of
the factorial. For this one uses mathematical induction to show that for any two functions
h and h′ on the natural numbers satisfying the equations, it holds that h(n) = h′(n) for all
n. Again, the details are straightforward. �

An example of structural recursion is the function f that defines the number of λ-
abstractions in a λ-term:

f (x)
def= 0, f (λx.e)

def= 1 + f (e), f (e e′) def= f (e) + f (e′).

2.7 Other induction and coinduction principles 63

It is possible to define patterns of equations for well-founded recursion, and prove that
whenever the patterns are respected the functions specified exist and are unique. The proof
makes use of well-founded induction, both to prove that such functions exist and to prove
their unicity, along the lines of the proof in the Example 2.7.5 of the factorial. The interested
reader may find details in [Win93].

While a function defined by recursion acts on the elements of an inductive set, one defined
by corecursion produces an element of a coinductive set. An equation for a corecursive
function specifies the immediate observables of the element returned by the function; for
instance, if the element is an infinite list, the equation must tell us what is the head of the
list. Examples are the definitions of the functions map, iterate, nats, from and fibs

from Section 2.6.4 (we can regard nats and fibs as functions with a singleton domain).
We considered the existence and unicity of map in Exercise 2.6.7 and Remark 2.6.8, and
pointed out that the other functions can be treated similarly. As in the case of recursion, so
for corecursion one can produce general equation schemata, and prove that any system of
equations satisfying the schemata defines a unique function (or unique functions, in case of
mutually recursive equations); see for instance [BM96], for equations on non-well-founded
sets.

2.7.3 Enhancements of the principles

The induction and coinduction principles in Corollary 2.4.3 have been derived as straight-
forward corollaries of the Fixed-point Theorem. With a bit of work, we can also derive
more powerful principles, which may sometimes be useful. Applications of induction and
coinduction are about finding points that are above the least fixed point or below the greatest
fixed point. The new principles are more powerful because they are derived from charac-
terisations of least and greatest fixed points as meet and join of sets that are larger than the
sets mentioned in the Fixed-point Theorem. As the sets in the characterisations have more
points, the search for them in applications may be easier.

Below are some examples, in the case of coinduction, from [Len98]. These and other
more sophisticated constructions will be the basis, in [PS12], for the study of enhancements
of the bisimulation proof method. We sometimes use an infix notation for the join on two
points.

Theorem 2.7.6 Let F be a monotone endofunction on a complete lattice L, and y a
post-fixed point of F (i.e., y ≤ F (y)). Then

gfp(F) =
⋃

{x | x ≤ F (x ∪ y)}.

Proof Let S1
def= {x | x ≤ F (x)} be the set of all post-fixed points of F , and S2

def= {x | x ≤
F (x ∪ y)}. By the Fixed-point Theorem 2.3.21, gfp(F) = ∪S1. We show that ∪S1 = ∪S2.
First, since by monotonicity of F for any points z1, z2, we have F (z1) ≤ F (z1 ∪ z2), any
point x ∈ S1 is also in S2, which proves ∪S1 ≤ ∪S2.

For the opposite, take x ∈ S2. We show that x ∪ y ∈ S1. From the hypothesis y ≤
F (y) and using monotonicity as above, we derive y ≤ F (x ∪ y); from x ∈ S2 we know

64 Coinduction and the duality with induction

x ≤ F (x ∪ y). Thus F (x ∪ y) is an upper bound for both x and y, and we can conclude
x ∪ y ≤ F (x ∪ y), that is, x ∪ y ∈ S1. Since this holds for all x in S2, and x ≤ x ∪ y, we
can conclude that ∪S1 is an upper bound of S2, therefore ∪S2 ≤ ∪S1. �

From the theorem we derive the principle of coinduction up-to ∪:

Let F be a monotone endofunction on a complete lattice,
and suppose y ≤ F (y);
then x ≤ F (x ∪ y) implies x ≤ gfp(F).

The advantage of this principle is that it may be easier to prove x ≤ F (x ∪ y), instead of
x ≤ F (x) as by Corollary 2.4.3, since F (x ∪ y) is above F (x) (on the lattices of powersets,
F (x ∪ y) will be a set larger than F (x)). The most useful instance of Theorem 2.7.6 is
when y = gfp(F) (it is the most useful because, F (x ∪ gfp(F)) is ‘larger’ than F (x ∪ y),
for any post-fixed point y, i.e., we have F (x ∪ y) ≤ F (x ∪ gfp(F))). Thus the principle
becomes:

If F is a monotone endofunction on a complete lattice,
then x ≤ F (x ∪ gfp(F)) implies x ≤ gfp(F).

We discuss the meaning of this, for bisimulation, in Exercise 2.10.7.

Exercise 2.7.7 (↪→) Prove the following variant of Theorem 2.7.6. Let F be a monotone
endofunction on a complete lattice L, and y a post-fixed point of F . Then

gfp(F) =
⋃

{x | x ≤ F (x) ∪ y}.
(Hint: proceed as in the proof of Theorem 2.7.6; some more care is needed to establish
x ∪ y ≤ F (x ∪ y).) �

Theorem 2.7.8 Let F be a monotone endofunction on a complete lattice L, and � :
L × L → L an associative function such that:

(1) for all x, y, x ′, y ′ ∈ L, whenever both x ≤ F (x′) and y ≤ F (y ′), then x � y ≤
F (x ′ � y′);

(2) for all x with x ≤ F (x) we have both x ≤ x � gfp(F) and x ≤ gfp(F) � x.

Then

gfp(F) =
⋃

{x | x ≤ F (gfp(F) � x � gfp(F))}.
Proof We write gfp as an abbreviation for gfp(F), and we use the associativity of �
without mentioning it. As in the proof of Theorem 2.7.6, it suffices to prove:

(i) x ≤ F (x) implies x ≤ F (gfp � x � gfp); and
(ii) x ≤ F (gfp � x � gfp) implies there is y with x ≤ y and y ≤ F (y).

Property (i) follows from assumptions (1) and (2), using x ≤ F (x) and gfp ≤ F (gfp).
We now consider (ii). First, using the greatest fixed-point property of gfp and assump-

tion (2), we note that gfp ≤ gfp � gfp. Using assumption (1), we derive gfp � gfp ≤

2.7 Other induction and coinduction principles 65

F (gfp � gfp); thus gfp � gfp is a post-fixed point, and hence gfp � gfp ≤ gfp.

We have therefore proved gfp = gfp � gfp. We now prove (ii) taking y
def= F (gfp �

x � gfp), for which x ≤ y holds by hypothesis. From x ≤ F (gfp � x � gfp) and
gfp ≤ F (gfp), using assumption (1) twice, we derive gfp � x � gfp ≤ F (gfp � gfp �
x � gfp � gfp). Since gfp = gfp � gfp, also gfp � x � gfp ≤ F (gfp � x � gfp).
Finally, by monotonicity of F , we conclude F (gfp � x � gfp) ≤ F (F (gfp � x � gfp)).

�

From this theorem we derive the principle of coinduction up-to gfp:

Let F be a monotone endofunction on a complete lattice L,
and � : L × L → L an associative function
for which the assumptions (1) and (2) of Theorem 2.7.8 hold;
then x ≤ F (gfp(F) � x � gfp(F)) implies x ≤ gfp(F).

We show in Exercise 2.10.8 that in the case of bisimilarity this principles precisely
corresponds to the ‘bisimulation up-to ∼’ technique of Exercise 1.4.18.

Exercise 2.7.9 (↪→) Show that Theorem 2.7.8 also holds when assumption (2) is replaced
by

gfp(F) ≤ gfp(F) � gfp(F).

�

Of course the dual versions of the theorems and the principles, for induction, also hold.
For instance, the dual of coinduction up-to ∪ is the principle of induction up-to ∩:

Let F be a monotone endofunction on a complete lattice,
and suppose F (y) ≤ y;
then F (x ∩ y) ≤ x implies lfp(F) ≤ x.

Exercise 2.7.10 (↪→) Prove the principle of induction up to ∩ above. �

The (very simple) principles examined in this section are, by themselves, not extremely
important: a proof that uses them can be turned into a proof that uses the original principles
of Corollary 2.4.3 with a little extra effort. What this section is meant to suggest is the
possibility of enhancing the induction and coinduction principles. In certain cases, notably
with bisimulation, one can derive powerful principles. We do not pursue the topic here. The
details are examined in [PS12], where a rich theory of enhancements of the bisimulation
proof method is defined, with strong implications on concrete proofs of bisimilarity.

As a final remark, note that the principles in this section are all complete, in that they
are derived from theorems that express characterisations of greatest and least fixed points.
However, when looking for inductive and coinductive proof techniques, completeness is
not mandatory. What we need are techniques for proving that points in the lattice are above
the least fixed point or below the greatest fixed point. It may be quite acceptable that in
certain cases the technique is not applicable.

66 Coinduction and the duality with induction

2.8 Constructive proofs of the existence of least and greatest fixed points

The proof of the Fixed-point Theorem 2.3.21 we have seen is not constructive (least
fixed point and greatest fixed point of a function are obtained from the sets of its pre-
and post-fixed points and we are not told how to find these). Theorems 2.8.5 and 2.8.8
give constructive proofs, by means of iterative schemata. Theorem 2.8.5 uses iteration
over the natural numbers, but needs additional hypotheses on the function; Theorem 2.8.8
avoids the additional hypotheses by iterating over the ordinals. The main advantage of
these iteration schemata is that they give us a means of approximating, and possibly even
computing, least fixed points and greatest fixed points. The constructions are indeed at
the heart of the algorithms used today for computing these fixed points, including those
for checking bisimilarity, see [AIS12]. The iteration schemata also offer us an alternative
way for reasoning about the fixed points. For instance, on greatest fixed point the schema
is useful to prove that a point is not below the greatest fixed point (see for bisimilarity
Examples 2.10.15 and 2.10.16).

The first iteration schema requires properties on functions – continuity and
cocontinuity – that are stronger than monotonicity. We write

⋃
i αi as abbreviation for⋃

i{αi}, and
⋃

i F (αi) for
⋃

i{F (αi)}; similarly for
⋂

i αi and
⋂

i F (αi).

Definition 2.8.1 (Continuity and cocontinuity) An endofunction F on a complete lattice
is:4

� continuous if for all sequencesα0, α1, . . . of increasing points in the lattice (i.e.,αi ≤ αi+1,
for i ≥ 0) we have F (

⋃
i αi) =

⋃
i F (αi);

� cocontinuous if for all sequences α0, α1, . . . of decreasing points in the lattice (i.e.,
αi ≥ αi+1, for i ≥ 0) we have F (

⋂
i αi) =

⋂
i F (αi). �

As a simple example, take the complete lattice made of the integers plus the points ω and
−ω, with the ordering −ω ≤ n ≤ ω for all n. Now take a function F that maps an integer
onto its successor, and the points ω and −ω onto themselves. For the increasing sequence
3, 4, 6, we have F (∪{3, 4, 6}) = F (6) = 7 and also ∪{F (3), F (4), F (6)} = ∪{4, 5, 7} = 7.
For the increasing sequence of the positive integers, we have F (∪ini) = F (ω) = ω =
∪ini+1 = ∪iF (ni). Dually, for the decreasing sequence of the negative integers, we have
F (∩i − ni) = −ω = ∩iF (−ni).

In the remainder of this section, we present the details for greatest fixed points and
cocontinuity, as they are related to coinduction. The dual statements, using least fixed
points and continuity, also hold.

Exercise 2.8.2 (Recommended, ↪→) If F is cocontinuous (or continuous), then it is also
monotone. (Hint: take x ≥ y, and the sequence x, y, y, y,) �

4 In some textbooks, continuity is called upper-continuity, the dual property lower-continuity.

2.8 Constructive proofs of the existence of least and greatest fixed points 67

Cont. Cocont.

Monotone

Fig. 2.3 Monotone, continuous and cocontinuous functions.

Exercise 2.8.3 (Recommended, ↪→) Show that a function can be cocontinuous without
being continuous, and conversely. �

Thus the relationship among the sets of monotone, continuous, and cocontinuous func-
tions is as in Figure 2.3.

Exercise 2.8.4 (Recommended, ↪→) Show that if F is monotone, then:

(1) for all sequences α0, α1, . . . of increasing points it holds that F (
⋃

i αi) ≥
⋃

i F (αi);
(2) for all sequences α0, α1, . . . of decreasing points it holds that F (

⋂
i αi) ≤

⋂
i F (αi).

�

For an endofunction F on a complete lattice, Fn(x) indicates the n-th iteration of F

starting from the point x:

F 0(x)
def= x,

F n+1(x)
def= F (Fn(x)).

Then we set:

F∪ω(x)
def= ⋃

n≥0 Fn(x),

F∩ω(x)
def= ⋂

n≥0 Fn(x).

Theorem 2.8.5 (Continuity/Cocontinuity Theorem) Let F be an endofunction on a
complete lattice, in which ⊥ and � are the bottom and top elements. If F is continuous,
then

lfp(F) = F∪ω(⊥);

if F is cocontinuous, then

gfp(F) = F∩ω(�).

�

The sequence F 0(⊥), F 1(⊥), . . . is increasing, whereas F 0(�), F 1(�), . . . is decreasing.
Least and greatest fixed points of F are the join and meet of the two sequences.

68 Coinduction and the duality with induction

As in the book we are mainly interested in coinduction, we will sometimes refer to
the second part of Theorem 2.8.5 as the ‘Cocontinuity Theorem’. In the remainder of the
section we focus on greatest fixed points; of course the dual statements for least fixed points
also hold.

Exercise 2.8.6 (Recommended, ↪→) Prove Theorem 2.8.5. (Hint: referring to the second
part, first show that F∩ω is a fixed point, exploiting the definition of cocontinuity; then
show that it is the greatest fixed point, exploiting the definition of meet.) �

If F is not cocontinuous, and only monotone, we only have gfp(F) ≤ F ∩ω(�). The
converse need not hold, as the following example shows.

Example 2.8.7 Let L be the set of negative integers plus the elements −ω and −(ω + 1),
with the expected ordering −n ≥ −ω ≥ −(ω + 1), for all n. Let now F be the following
function on L:

F (−n) = −(n + 1),
F (−ω) = −(ω + 1),

F (−(ω + 1)) = −(ω + 1).

The top and bottom elements are −1 and −(ω + 1). The function F is monotone but not
cocontinuous, and we have F ∩ω(−1) = −ω and gfp(F) = −(ω + 1). �

However, if it happens that F ∩ω(�) is a fixed point, then we are sure that it is indeed
the greatest fixed point. Having only monotonicity, to reach the greatest fixed point using
induction, we need to iterate over the transfinite ordinals.

Theorem 2.8.8 Let F be a monotone endofunction on a complete lattice L, and define
Fλ(�), where λ is an ordinal, as follows:

F 0(�)
def= �,

F λ(�)
def= F (

⋂
β<λ F β (�)) for λ > 0.

Define also F∞(�)
def= ⋂

λ F λ(�). Then F∞(�) = gfp(F).

Proof In the proof, we abbreviate gfp(F) as gfp, and F λ(�) as F λ, for any λ. First, using
transfinite induction, and exploiting the monotonicity of F , we derive

gfp ≤ F λ for all λ. (2.4)

For λ = 0 we have gfp ≤ � = F 0 by definition of �. For λ > 0, by induction we have
gfp ≤ F β for all β < λ. Thus gfp is a lower bound for {Fβ}β<λ and therefore also
gfp ≤ ⋂

β<λ F β . By the fixed-point property of F and monotonicity of F ,

gfp = F (gfp) ≤ F (
⋂
β<λ

F β) = Fλ.

Secondly, we show that

β < λ implies F β ≥ Fλ. (2.5)

2.8 Constructive proofs of the existence of least and greatest fixed points 69

The assertion is straightforward if β or λ is 0. Otherwise S1
def= {F β ′ |β ′ < β} is a subset

of S2
def= {Fλ′ | λ′ < λ}, hence

⋂
S1 ≥ ⋂

S2. By monotonicity of F , F (
⋂

S1) ≥ F (
⋂

S2),
which is to say Fβ ≥ F λ.

Using the two points above, we can now prove that if β < λ and Fβ = Fλ, then
Fβ = gfp. Indeed, if β < λ, from (2.5) we have F β ≥ F β+1 ≥ F λ. And since F β = F λ,
also Fβ = F β+1. However,

F β+1 = F (
⋂

α<β+1

Fα)

and, using (2.5), also

= F (F β).

Thus Fβ is a fixed point of F and then, by definition of greatest fixed point, F β ≤ gfp.
This and (2.4) yield Fβ = gfp.

Moreover, as L is a set, there must be an ordinal α with Fα = Fα+1. (If it were not the
case, take the first ordinal α with cardinality strictly greater than that of L; by the previous
points it would follow that F is injective on all the ordinals up to α, which is impossible by
a cardinality argument.)

Summing up, there must be an ordinal on which F reaches a fixed point, and this fixed
point must be the greatest fixed point. �

As the ordinals are linearly ordered, and each ordinal is either the successor of another
ordinal or the least upper bound of all its predecessors, the above definition can also be
given thus:

F 0(�)
def= �,

F λ+1(�)
def= F (F λ(�)) for successor ordinals,

F λ(�)
def= ⋂

β<λ F β(�) for limit ordinals.

Having separated successor and limit ordinals, the definition of F on a limit ordinal λ is
simpler: ⋂

β<λ

F β(�),

in place of F (
⋂

β<λ F β(�)) as in Theorem 2.8.8. The latter value, F (
⋂

β<λ F β (�)), is
reached on the following successor ordinal λ + 1, so that the final value of F∞(�) does
not change. On the naturals, the definitions of the F n used in Theorem 2.8.5 coincides with
those used in Theorem 2.8.8, which explains why the notation is the same.

The proof of Theorem 2.8.8 shows that there is an ordinal α of cardinality less than or
equal to that of the lattice such that for all β ≥ α the greatest fixed point of F is F β (�). That
is, at α the function reaches its greatest fixed point; on ordinals larger than α, of course,
the function remains on such a fixed point. In other words, Fλ(�) returns the greatest

70 Coinduction and the duality with induction

fixed point of F for all sufficiently large ordinals λ. In the case when F is cocontinuous,
the Cocontinuity Theorem 2.8.5 assures us that we can take α to be the first ordinal limit,
ω (not counting 0 as an ordinal limit).

Exercise 2.8.9 generalises (the second part of) Theorem 2.8.5, for an arbitrary pre-fixed
point in place of �. It is a generalisation because the top element � of a complete lattice is a
pre-fixed point of any function on the lattice, and, as a top element, it is above all post-fixed
points of the lattice.

Exercise 2.8.9 (↪→) Let F be a cocontinuous endofunction on a complete lattice L, and x

a pre-fixed point of F , and let Fn(x), F ∩ω(x) be defined as above in Theorem 2.8.5. Show
that:

(1) F 0(x), F 1(x), . . . is a decreasing sequence, and F∩ω(x) is a fixed point of F ;
(2) F ∩ω(x) is the greatest fixed point of F that is below x;
(3) this fixed point is also the join of all post-fixed points of F that are below x, i.e.,

F ∩ω(x) =
⋃

{y | y ≤ x and y ≤ F (y)}.

�

In Exercise 2.8.9 the use of sequences defined from F and starting on a pre-fixed point
is necessary: if we take an arbitrary decreasing sequence x0, x1, . . ., then its meet need not
be a fixed point. For a counterexample, take x that is not a fixed point and the sequence
constant to x. Similarly, the join of the post-fixed points below x need not be a fixed point,
as is seen by taking a function for which ⊥ is not a fixed point, and x = ⊥.

Exercise 2.8.10 In the same manner as Exercise 2.8.9 is a generalisation of the Cocontinuity
Theorem 2.8.5, state the corresponding generalisation of Theorem 2.8.8, and then prove
it. �

Exercise 2.8.11 State and prove the dual of Theorem 2.8.8, for least fixed points. �

Remark 2.8.12

� Theorems 2.8.5 and 2.8.8, and the dual of the latter, just mention least and greatest fixed
points. It is possible to give similar constructive proofs, using iteration schemata, of the
full statement of the Fixed-point Theorem 2.3.21; see, e.g., [CC79].

� In Theorem 2.8.5 and 2.8.8, and related results, it is the existence of greatest lower bounds
of decreasing sequences of points, and the dual property, that matter; the existence of
arbitrary meets and joins is not needed. Thus the theorems also hold on structures that
are weaker than complete lattices. �

Exercise 2.8.13 (∗, ↪→) Use Theorem 2.8.8 to show that if L is the complete lattice of
binary relations on a given set A, and F is a monotone endofunction on L (that is, a function
from relations on A to relations on A) and such that

2.9 Continuity and cocontinuity, for rules 71

(1) I ⊆ F (I) (where I is the identity relation),
(2) for all R,R′, F (R)F (R′) ⊆ F (RR′),
(3) for all R, (F (R))−1 ⊆ F (R−1),

then gfp(F) is an equivalence relation (we recall that for relations S1 and S2, we write
S1S2 for their relational composition). �

We will see concrete examples of the computations produced by the iterative schemata
in the following section (proofs of Exercises 2.9.8 and 2.9.11) and, for bisimilarity, in
Section 2.10.2.

2.9 Continuity and cocontinuity, for rules

The functional given by a set of rules need not be continuous or cocontinuous. As an
example, consider a rule

a1 . . . an . . .

a

and call φ the associated functional. Let Tn = {a1, . . . , an}. We have a ∈ φ(
⋃

n Tn), but
a ∈ ⋃

n φ(Tn), which proves that φ is not continuous. We can recover continuity and
cocontinuity for rule functionals adding some conditions. Here the duality is less obvious,
and needs some care. For continuity, the condition is that in each rule the set of premises is
finite.

Definition 2.9.1 A set R of rules is finite in the premises, briefly FP, if for each rule
(S, x) ∈ R the premise set S is finite. �

In the literature, rules with the property above are sometimes called finitary. The need
for the FP condition comes out clearly in the proof of the following exercise.

Exercise 2.9.2 (Recommended, ↪→) Show that if the set of rules R is FP, then the rule
functional �R is continuous; conclude that lfp(�R) = �∪ω

R (∅). �

However, surprisingly at first sight, the statement of Exercise 2.9.2 does not hold for
cocontinuity. As a counterexample, take X = {b} ∪ {a1, . . . , an, . . .}, and the set of rules
({ai}, b), for each i, and let � be the corresponding rule functional. Thus �(T) = {b} if
there is i with ai ∈ T , otherwise �(T) = ∅. Consider now the sequence of decreasing sets
T0, . . . , Tn, . . ., where

Ti
def= {aj | j ≥ i}.

We have �(
⋂

n Tn) = ∅ (because
⋂

n Tn = ∅), but
⋂

n �(Tn) = {b}.
To obtain cocontinuity we need some finiteness conditions on the conclusions of the

rules (rather than on the premises as for continuity). The condition was violated in the
previous example, where b is the conclusion of infinitely many rules.

72 Coinduction and the duality with induction

Definition 2.9.3 A set of rules R is finite in the conclusions, briefly FC, if for each x, the
set {S | (S, x) ∈ R} is finite (i.e., there is only a finite number of rules whose conclusion is
x; note that, by contrast, each premise set S may itself be infinite). �

Theorem 2.9.4 If a set of rules R is FC, then �R is cocontinuous. �

Exercise 2.9.5 (Recommended, ↪→) Prove Theorem 2.9.4. �

Corollary 2.9.6 If a set of rules R on X is FC, then gfp(�R) = �∩ω
R (X). �

Without FC, and therefore without cocontinuity, we have nevertheless gfp(�R) ⊆
�∩ω

R (X).
With the FP or FC hypothesis we are thus able to apply the Continuity/Cocontinuity

Theorem 2.8.5. For FP and continuity, the theorem tells us that given some rules R, the set
inductively defined by R can be obtained as �∪ω

R (∅), that is, as the limit of the increasing
sequence of sets

∅,�R(∅),�R(�R(∅)),�R(�R(�R(∅))),

This means that we construct the inductive set starting with the empty set, adding to it
the conclusions of the axioms in R (i.e., �R(∅)), and then repeatedly adding elements
following the inference rules in R in a ‘forward’ manner. This corresponds to the usual
constructive way of interpreting inductively a bunch of rules, as discussed informally in the
examples in Section 2.1. As usual, the case for coinductively defined sets is dual.

In the exercises below we examine the continuity and cocontinuity of some of the
examples in Section 2.1, and use this, via the iteration schemata, to understand the inductive
and coinductive sets obtained from the rules.

Exercise 2.9.7 (↪→) Are the functionals �R� and �R�μ
of Section 2.6.1 continuous?

Show that �R�μ
is cocontinuous if the processes are image-finite. Show that, without

image-finiteness, �R�μ
need not be cocontinuous, and indeed it may be the case that

gfp(�R�μ
) is not �∩ω

R�μ
(Pr), where Pr is the set of all processes. (Hint: use the process P

of Example 2.10.11 with μ = a.) �

Exercise 2.9.8 (Recommended, ↪→) Continuing Exercise 2.9.7, show that:

(1) P ∈ �n
R� (∅), for 0 ≤ n, if and only if there are 0 ≤ m ≤ n, processes P0, . . . , Pm,

and actions μ1, . . . , μm with P = P0 and such that P0
μ1−→ P1 . . .

μm−→ Pm and Pm is
stopped.

(2) P ∈ �n
R�μ

(Pr), for 0 ≤ n, if and only if there are processes P0, . . . , Pn with P = P0

and such that P0
μ−→ P1 · · · μ−→ Pn. �

Exercise 2.9.8 well shows the computation involved with the iteration approximants.
With �R� , at step 0 we have the empty set; then at step 1 we add the stopped processes; at
step 2 we add the processes that have a stopped derivative; and so on. At step n we have
obtained all processes that reach a stopped process in at most n transitions. In applications

2.10 Bisimilarity as a fixed point 73

in which the set of all processes is finite, the sequence {�n
R� (∅)}n will not increase forever,

and we are therefore sure that the set inductively defined by the rules will be obtained.
With �R�μ

, in contrast, at step 0 we have the set Pr of all processes; at step 1 we remove
the processes that do not have a μ-derivative; at step 2 the processes that cannot perform
two consecutive μ-transitions; and so on. Here too, if the set of processes is finite, the
sequence will eventually produce the set coinductively defined by the rules.

Exercise 2.9.9 (↪→) Continuing Exercise 2.9.8, show that P ∈ lfp(�R�) if and only if
there are n ≥ 0, processes P0, . . . , Pn, and actions μ1, . . . , μn with P = P0 and such that
P0

μ1−→ P1 · · · μn−→ Pn and Pn is stopped. �

Example 2.9.10 The rules defining �Alist in Section 2.6.3 are both FP and FC, hence
�Alist is both continuous and cocontinuous. �

Exercise 2.9.11 (Recommended, ↪→) Show that lfp(�Alist) = FinListsA, and
gfp(�Alist) = FinInfListsA. �

2.10 Bisimilarity as a fixed point

In this section we revise the example of bisimulation and bisimilarity, in the light of the
fixed-point theory in earlier sections of the chapter. Precisely, we refer to Sections 2.3 and
2.4, where we set the meaning of coinductively defined set and of the coinduction proof
principle, and to Section 2.8, where we derived constructive characterisations of greatest
fixed points. We instantiate the concepts in those sections to the case of bisimulation.

2.10.1 The functional of bisimilarity

To see how bisimulation and its proof method fit the coinductive schema, consider the
function F∼ : ℘(Pr × Pr) → ℘(Pr × Pr) defined thus.

F∼(R) is the set of all pairs (P,Q) such that:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ R Q′;
(2) for all Q′ with Q

μ−→ Q′, there is P ′ such that P
μ−→ P ′ and P ′ R Q′.

We call F∼ the functional associated to bisimulation, for it gives us precisely the clauses
of a bisimulation.

Lemma 2.10.1 R is a bisimulation iff R ⊆ F∼(R). �

Moreover, F∼ is monotone on the complete lattice of the relations on Pr × Pr.

Lemma 2.10.2 F∼ is monotone. �

Since the bisimulations are precisely the post-fixed points of the monotone functional
F∼, from the Fixed-point Theorem 2.3.21 (or, better, Exercise 2.3.20), we infer:

74 Coinduction and the duality with induction

Theorem 2.10.3

(1) ∼ is the greatest fixed point of F∼;
(2) ∼ is the largest relation R such that R ⊆ F∼(R); thus R ⊆ ∼ for all R with R ⊆

F∼(R). �

For the functional F∼, the coinduction principle of Corollary 2.4.3 asserts that any
bisimulation only relates pairs of bisimilar states.

Exercise 2.10.4 (↪→)

(1) Show that if R is an equivalence relation on the processes of a given LTS, then also
F∼(R) is so;

(2) Use point (1) and Theorem 2.8.8 to conclude that ∼ is an equivalence relation;
(3) Prove that ∼ is an equivalence relation using Exercise 2.8.13. �

Exercise 2.10.5 (↪→) What does Exercise 2.3.19(1-2) say from the bisimulation point of
view? �

Exercise 2.10.6 (↪→) In this exercise, assume for simplicity that the LTS is finitely branch-
ing (Definition 1.2.5). What is the least fixed point of F∼? What is the difference between
least and greatest fixed points of F∼ on finite LTSs? �

Exercise 2.10.7 (↪→) What is the operational meaning of the principle of coinduction up-to
∪ (page 64) in the case of bisimulation? Write the corresponding bisimulation clauses. �

Exercise 2.10.8 Show that the principle of coinduction up-to gfp (page 65), instantiated
to the case of bisimulation, yields the ‘bisimulation up-to ∼’ technique of Exercise 1.4.18.

�

2.10.2 Approximants of bisimilarity

We can approximate, and even characterise, coinductively defined sets using the iteration
schemata of Theorems 2.8.5 and 2.8.8. In this section we examine the operational meaning
of these iterations, and related concepts, in the case of bisimilarity.

Definition 2.10.9 (Stratification of bisimilarity, on the natural numbers) Let Pr be the
states of an LTS. We set:

� ∼0
def= Pr × Pr;

� P ∼n+1 Q, for n ≥ 0, if for all μ:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ ∼n Q′;
(2) the converse, i.e., for all Q′ with Q

μ−→ Q′, there is P ′ such that P
μ−→ P ′ and

P ′ ∼n Q′;

� ∼ω
def= ⋂

n≥0 ∼n. �

2.10 Bisimilarity as a fixed point 75

Exercise 2.10.10 (Recommended, ↪→)

(1) Show that ∼0, . . . ,∼n, . . . is a decreasing sequence of relations.
(2) Show that for all 0 ≤ n < ω, we have ∼n = Fn

∼(Pr × Pr), and ∼ω = F∩ω
∼ (Pr × Pr),

where F n
∼ and F ∩ω

∼ are the iterations of F∼ following the definitions used in the
Cocontinuity Theorem 2.8.5. �

The characterisation in the Cocontinuity Theorem 2.8.5 required cocontinuity. In general
the functional of bisimilarity is not cocontinuous; and ∼ω does not coincide with ∼, as the
following example shows.

Example 2.10.11 Suppose a ∈ Act, and let a0 be a state with no transitions, aω a state
whose only transition is

aω a−→ aω,

and an, for n ≥ 1, states with only transitions

an a−→ an−1.

Also, let P,Q be states with transitions

P
a−→ an for all n ≥ 0

and

Q
a−→ an for all n ≥ 0.

Q
a−→ aω

It is easy to prove, by induction on n, that P ∼n Q for all n, hence also P ∼ω Q. However,
it holds that P ∼ Q: the transition Q

a−→ aω can only be matched by P with one of the
transitions P

a−→ an. But, for all n, we have aω ∼ an, as only from the former state n + 1
transitions are possible. �

Exercise 2.10.12 (↪→) Use Example 2.10.11 to show formally that the function F∼ is not
cocontinuous. �

We can obtain ∼ by iteration over the natural numbers if we add some finiteness
hypothesis on the branching structure of the LTS. We begin with the finitely-branching
condition, then, in exercises, we examine weaker conditions.

In Example 2.10.11, the LTS is not finitely-branching. It becomes so if we remove all
transitions P

a−→ an and Q
a−→ an, for all n ≥ m, where m is any given number. The LTSs

76 Coinduction and the duality with induction

in Figures 1.1–1.5 are finitely-branching (as the LTS itself has only a finite number of
states).

Theorem 2.10.13 On finitely-branching LTSs, relations ∼ and ∼ω coincide.

Proof The inclusion ∼ ⊆ ∼ω is easy: one proves that ∼ ⊆ ∼n for all n, using the fact that
∼ is a bisimulation (or, using the fact that ∼ is a fixed point of F∼, monotonicity of F∼,
and ∼n+1= F∼(∼n); we can also directly derive it from Exercise 2.10.10(2) and fixed-point
theory).

Now the converse. We show that the set

R def= {(P,Q) |P ∼ω Q}

is a bisimulation. Thus, take (P,Q) ∈ R, and suppose P
μ−→ P ′. We need a matching

transition from Q. For all n, as P ∼n+1 Q, there is Qn such that Q
μ−→ Qn and P ∼n Qn.

However, as the LTS is finitely-branching, the set {Qi |Q μ−→ Qi} is finite. Therefore there
is at least a Qi for which P ′ ∼n Qi holds for infinitely many n. As the relations ∼n are
decreasing with n, P ′ ∼n Qi holds for all n. Hence P ′ ∼ω Qi and therefore (P ′,Qi) ∈ R.

�

Exercise 2.10.14 gives us another proof of Theorem 2.10.13, appealing to the coconti-
nuity of F∼ and Theorem 2.8.5 (see also Exercise 2.10.23). The proof technique used in
the direct proof above is, however, a useful one to know.

Exercise 2.10.14 Check that under the finitely-branching hypothesis the functional F∼ is
cocontinuous. �

The approximants of bisimilarity can be usefully employed to prove non-bisimilarity
results. For some (very simple) examples, we revisit Example 1.4.6 and Exercise 1.4.9.

Example 2.10.15 (Continues Example 1.4.6) We show that the processes P1 and Q1

in Figure 1.4 are not bisimilar, via approximants. We have to find n such that P1 ∼n Q1.
We construct the relations ∼i , starting from 0 and going up. For i = 0, we have Pr × Pr.
At i = 1 we have the pairs of states with the same labels in their immediate transitions:
(P1,Q1), (P3,Q2), (P2,Q3), (P4,Q3). Thus i = 1 is not sufficient, for (P1,Q1) is still
present. However, i = 2 breaks the pair: the transition P1

a−→ P2 cannot be matched by Q1,
whose only transition is Q1

a−→ Q2 but P2 and Q2 are not related in ∼1. �

Example 2.10.16 (Continues Exercise 1.4.9) In the approximant method it is sufficient to
recall, at each step, the pairs of non-bisimilar processes discovered that are relevant for the
final non-bisimilarity result. For instance, suppose we want to prove the inequality between
the processes P3 and Q3 of Figure 1.7 that, for convenience, are reported below with names
in all nodes:

2.10 Bisimilarity as a fixed point 77

P3

a

!!		
		

		
		 a

���
��

��
��

�

P 1
3

b
$$

P 2
3

b
$$

P 3
3

c
$$

P 4
3

d
$$

P 5
3 P 6

3

Q3

a
$$

Q1
3

b

!!��
��

��
�� b

���
��

��
��

�

Q2
3

c
$$

Q3
3

d
$$

Q4
3 Q5

3

At n = 0 there is no non-bisimilar pair. At n = 1 we discover that P 3
3 ∼1 Q3

3 and P 4
3 ∼1 Q2

3,
as their only transitions have different labels. At n = 2 we find P 1

3 ∼2 Q1
3 and P 2

3 ∼2 Q1
3;

for instance, Q1
3 has a transition Q1

3
b−→ Q3

3 that cannot be matched by P 1
3

b−→ P 3
3 because

we already know that P 3
3 and Q3

3 are different. Finally, and reasoning similarly, at n = 3
we obtain P3 ∼3 Q3. �

Exercise 2.10.17 Use the approximant method to show that the processes P4 and Q4 of
Figure 2.4 are not bisimilar. �

Theorem 2.10.13 can be strengthened, requiring finiteness on single labels rather than
on all transitions; that is, replacing ‘finitely-branching’ with ‘image-finite’.

Exercise 2.10.18 Modify the proof of Theorem 2.10.13, if needed, so as to use the weaker
hypothesis of image-finiteness. �

The theorem can be further strengthened by requiring image-finiteness up-to ∼.

Definition 2.10.19 (Image-finiteness up-to ∼) An LTS is image-finite up-to ∼ if for each
process P and action μ the following holds: there are finitely many processes P1, . . . , Pn

such that for all P ′ with P
μ−→ P ′ there is Pi with P ′ ∼ Pi . A process P is image-finite

up-to ∼ if the LTS generated by P is image-finite up-to ∼. �

Exercise 2.10.20 (∗, ↪→) Prove the variant of Theorem 2.10.13 on the set of processes that
are image-finite up-to ∼ rather than finitely-branching. �

In general, however, as by Theorem 2.8.8, in order to reach ∼ we need to replace the ω-
iteration that defines ∼ω with a transfinite iteration, using the ordinal numbers. At successor
ordinals and at 0 the definition of ∼λ (for λ ordinal) is as in Definition 2.10.9; for limit
ordinals we have:

∼λ
def=

⋂
β<λ

∼β if λ is a limit ordinal

and then ∼∞
def= ⋂

λ ∼λ.

78 Coinduction and the duality with induction

•
a

&&��������������
a

..��������������

•
b

//��
��

��
�

a

00�
��

��
��

•
a

//��
��

��
�

a

00�
��

��
��

• • •
a
$$

•

•
P4

•
a

&&��������������
a

..�������������

•
b

//��
��

��
�

a

00�
��

��
��

•
a
$$• • •

a
$$•

Q4

Fig. 2.4 More non-bisimilar processes.

Theorem 2.10.21 Relations ∼ and ∼∞ coincide.

Proof The result follows from Theorem 2.8.8. �

We have seen that every monotone function on the complete lattice ℘(X) can be
expressed as the rule functional of some set of rules on X (Exercise 2.5.3). Thus this
also applies to F∼:

Exercise 2.10.22 (Recommended, ↪→) Instantiate the statement of Exercise 2.5.3 to the
case of F∼, showing precisely what is a ‘minimal’ set of rules that has F∼ as its functional.

�

Viewing F∼ as a rule functional, we can derive the cocontinuity of F∼ for finitely-
branching LTSs as a special case of the more general theorem relating cocontinuity of rule
functionals to the FC property, thus also deriving Theorem 2.10.13 from Corollary 2.9.6
(and, in turn, from the Cocontinuity Theorem 2.8.5). This is done in Exercise 2.10.23; the
proof is simpler than directly deriving the cocontinuity of F∼ as done in Exercise 2.10.14.

Exercise 2.10.23 (Recommended, ↪→) Use Exercise 2.10.22 to show that finitely-
branching of the LTS implies FC (and FP) of the rules for F∼ and therefore derive Theo-
rem 2.10.13. Show also that image-finiteness does not imply FC. �

2.11 Proofs of membership 79

Exercise 2.10.24 (Recommended, ↪→) Define coinductively the set of processes in an
LTS that are image-finite. What is the corresponding set of rules? �

Exercise 2.10.25 The same as Exercise 2.10.24, for the set of processes in an LTS that are
image-finite up-to ∼. �

Exercise 2.10.26 (↪→) Analogously to what was done for ∼ and F∼, define the functional
for the similarity relation of Exercise 1.4.17 and prove the analogue of Theorem 2.10.3 and
Exercise 2.10.23. �

2.11 Proofs of membership

A set of ground rules is used to derive elements, by composing the rules into proof trees.
Then an element is derivable from the rules if there is a proof tree whose root is that element.
We have seen examples of this throughout the chapter. Here is another one, in the case of
lists of Section 2.6.3 where the ground rules are (∅,nil) and ({s}, 〈a〉 • s) for each s ∈ X

and a ∈ A. A proof tree that derives the list 〈a〉 • 〈a〉 • 〈b〉 • nil is

nil

〈b〉 • nil

〈a〉 • 〈b〉 • nil

〈a〉 • 〈a〉 • 〈b〉 • nil

For the infinite list 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · · the proof tree is infinite:

. . .

〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · ·
〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · ·

〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · ·

In the case of rules for lists, each node of a proof tree that is not a leaf has exactly one child.
In general, however, a node can have several children, due to rules whose premises are sets
with more than one element (e.g., the rules for bisimulation in Section 2.13).

The list 〈a〉 • 〈a〉 • 〈b〉 • nil belongs both to the set inductively defined by the rules
for list, and to the coinductive set. The infinite list 〈a〉 • 〈b〉 • 〈a〉 • 〈b〉 • · · ·, in contrast,
only belongs to the coinductive set. There is, therefore, a difference between induction and
coinduction on the meaning of ‘correct’ proof tree. This is what we look at in this section:
we examine the duality between sets inductively and coinductively defined from a set of
ground rules from the point of view of the proofs of the membership of an element in such
sets. Thus we will justify the informal explanations of the examples of inductively and
coinductively defined sets in Section 2.1 as the sets of elements with a finite proof, and with
a finite or infinite proof. We will actually make the conditions on the derivation proofs more
precise, using well-foundedness and non-well-foundedness. In the proofs of the results in
the section, we assume that the rules are both FP and FC, as this makes some technicalities
simpler.

80 Coinduction and the duality with induction

The set of trees over X is the set of all trees, possibly infinite both in depth and in
breadth, in which each node is labelled with an element from the set X and, moreover, the
labels of the children of a node are pairwise distinct. If T is such a tree, then the root of T
is the only node without a parent.

Remark 2.11.1 The definition of trees over X above is informal because we assume that
the reader knows what a tree is. For a formal definition, we can take a tree over X to be a
set of sequences of elements of X, namely all sequences obtained by picking up a node h

in the tree and reading the sequence of labels in the path that goes from the root of the tree
to h. Thus a tree over X is a set T of non-empty finite sequences of elements in X such that

(1) there is only one sequence of length one (corresponding to the root of the tree);
(2) if the sequence x1 . . . xn+1 is in T then also x1 . . . xn is in T .

In this formulation, a sequence x1 . . . xn uniquely identifies a node of the tree; and the
children of this node are identified by the set of sequences

⋃
x{x1 . . . xnx}.

In the remainder, in proofs we sometimes refer to this definition of a tree. �

For now, the form of trees allowed is very general: for instance, a node can have infinitely
many children; and there can be paths of infinite length in the tree that start from the root of
the tree and continue moving from a node to one of its children. However, we will see that
the trees that we obtain for proofs of rules under the FP condition or for induction are more
constrained. Below we usually omit reference to X, and simply call tree over X a tree.

A tree is non-well-founded if it has paths of infinite length; that is, the relation on the
nodes that contains a pair of nodes (h, k) if k is the parent of h is non-well-founded (there
are nodes hi , for i > 0, with (hi+1, hi) in the relation, for each i). The tree is well-founded
if the relation is well-founded; thus all the paths have a finite length. Referring to the
definition of a tree in Remark 2.11.1, a tree T is non-well-founded if there is an infinite
sequence x1 . . . xi . . . whose prefixes (i.e., all finite sequences x1 . . . xi , i > 0) are all in T .
See Figures 2.5 and 2.6 for examples. In the tree (c) of Figure 2.5, the root of the tree has
infinitely many children, one for each natural number, and the i-th child leads to a path
with i nodes; each path is finite, but there are infinitely many of them, hence their length is
not bounded.

Now, let R be a set of ground rules. A tree T is a proof tree for x ∈ X under R if x is
the label of the root of T and, for each node h with label y, if S is the set of the labels of
all children of h, then (S, y) is a rule in R.

Theorem 2.11.2 x ∈ lfp(�R) iff there is a well-founded proof tree for x under R. �

We discuss the proof of the theorem supposing that R is FP. This allows us to use
continuity and therefore to apply the approximants of least fixed points over the natural
numbers. The FP hypothesis may be dropped, by iterating over the ordinal numbers (the
extension is easy, with some acquaintance of transfinite iteration).

2.11 Proofs of membership 81

�� ��
�� �	h4

�� ��
�� �	h1

�� ��
�� �	h2

�� ��
�� �	h3

�� ��
�� �	h0

�������

�������

(a)

�� ��
�� �	h1

�� ��
�� �	h2 ...

�� ��
�� �	hn

...

�� ��
�� �	h0

��������������

�������

�������

(b)

�� ��

�� �	h3,1

�� ��

�� �	h2,1
�� ��

�� �	h2,2

�� ��

�� �	h1,1
�� ��

�� �	h1,2
�� ��

�� �	h1,3 ...
�� ��

�� �	h1,n

�
�
�

...

�� ��

�� �	h0,1

��������

����������������������

(c)

Fig. 2.5 Some well-founded trees.

� �

�� ��
h3,2

�� ��

�� �	h2,1

�
�
�

 �� ��

�� �	h2,2

� �

�� ��
h1,1

 �� ��

�� �	h1,2

�� ��
�� �	h1

Fig. 2.6 A non-well-founded tree.

82 Coinduction and the duality with induction

The FP hypothesis ensures us that each node has only finitely many children, and
therefore a well-founded proof tree has a finite height, that is, there is a bound on the
maximal length of paths in the tree.5 In other words, with FP a proof tree is well-founded
iff it is finite, in that it has a finite number of nodes. In the examples of Section 2.1, the
rules are FP, which explains why in that section we referred to the inductive objects as
those with a ‘finite derivation proof’. Without FP, a well-founded proof tree need not have
a finite height, as in the tree (c) of Figure 2.5; in Figure 2.5, only (a) is a tree of FP rules.

We recall that �n
R is the n-th iteration of the functional for the rules R.

Lemma 2.11.3 x ∈ �n
R(∅) iff there is a proof tree for x under R whose height is less than

or equal to n. �

Exercise 2.11.4 (↪→) Prove Theorem 2.11.2, assuming that the rules are FP. (Hint: use
Lemma 2.11.3.) �

Theorem 2.11.2 shows that the set inductively defined by a set of rules has precisely
all those elements that are obtained from well-founded proofs. We show below that, in
contrast, the set coinductively defined has the elements obtained from the well-founded
and the non-well-founded proofs.

Theorem 2.11.5 x ∈ gfp(�R) iff there is a proof tree for x under R. �

Proof First, the direction from left to right. If x ∈ gfp(�R), then x belongs to some post-
fixed point of �R; that is, there is T with x ∈ T and T ⊆ �R(T). Now, as T ⊆ �R(T),
by definition of �R, for each y ∈ T there is at least one rule (S, y) in R with S ⊆ T ; we
pick one of these rules and call it Ry .

The proof tree for x is defined as follows. The root is x. The children of a node y in the
tree are the nodes y1, . . . , yn that form the premise of the rule Ry chosen for y. Formally,
the tree is defined as the set of all sequences of the form x1 . . . xn where x1 = x and for
each 1 ≤ i < n, xi+1 is in the premises of the rule Rxi

.
Conversely, suppose that there is a proof tree for x. Let T be the set of all the (labels of)

nodes in the tree. We show that T is a post-fixed point of �R. For this, we have to show
that any y ∈ T is in �R(T). If y ∈ T then there is a node in the tree that is labelled y. Let
{y1, . . . , yn} be the set of the labels of the children of such node. By definition of proof tree,
({y1, . . . , yn}, y) is a rule in R and, by definition of T , we have ({y1, . . . , yn} ⊆ T . Hence
we also have y ∈ �R(T). �

Remark 2.11.6 The proof of Theorem 2.11.5 does not follow the schema of the analogous
proof for least fixed points in Theorem 2.11.2, based on approximants. The problem is the
implication from left to right. One could define a notion of approximant for a (possibly
non-well-founded) proof tree: call a proof tree for x ∈ X under R up-to stage n (n ≥ 0) a
tree in which x is the label of the root and the tree is ‘correct’ only up to level n (we check

5 This is a consequence of König’s Lemma. On trees, König’s lemma says that if the number of nodes in a tree is infinite and
each of them has only finitely many outgoing edges then the tree has an infinite path.

2.12 Game interpretations 83

that the children of a node are the premises of a rule only for nodes whose distance from
the root is at most n). Then we do have: x ∈ �n

R(X) iff there is a proof tree for x under R
up-to stage n. However, combining the ‘partially correct’ trees resulting from these �n

R(X),
for all n (partially correct because the parent/children relationship is checked only up to
a certain level), into a single ‘totally correct’ tree is delicate because two partially correct
trees might be be incompatible, in that they may result from the application of different
rules. This may occur when more rules have the same conclusion; the root itself could be
the conclusion of different rules, for instance.

The approximant scheme works well for least fixed points because the trees obtained at
stage n are complete, and therefore also totally correct. On the other hand, the schema used
in the proof of Theorem 2.11.5 would be more difficult for least fixed points because a least
fixed point is obtained via an intersection operation (from the pre-fixed points), rather than
an union (from the post-fixed points) as for a greatest fixed point. �

When we progressively build a bisimulation starting from a given pair (P,Q), as in
Example 1.4.4, we are essentially building a proof of P ∼ Q, using the rules for ∼ ;
the only difference is that we do not repeat the analysis of pairs that we have already
encountered (the rules for ∼ are discussed in Exercise 2.10.22 and Section 2.13).

2.12 Game interpretations

We conclude this overview of induction and coinduction with game-theoretic characterisa-
tions of sets inductively and coinductively defined from rules. For this, we re-use some of
the ideas in the ‘proof-tree’ presentation of Section 2.11.

Consider a set R of ground rules (on X). A game in R involves two players, which we
indicate as V (the verifier) and R (the refuter), and an element x0 ∈ X with which a play
of the game begins. V attempts to show that a proof tree for x0 exists, while R attempts
to show that there is no such proof. A play begins with V choosing a set S0 such that x0

can be derived from S0, that is, (S0, x0) ∈ R. Then R answers by picking up an element
x1 ∈ S0, thus challenging V to continue with the proof on x1. Now V has to find a set S1

with (S1, x1) ∈ R; then R picks x2 ∈ S1, and so on. Thus a play for R and x0 is a sequence

x0, S0, . . . , xn, Sn, . . .

which can be finite or infinite. If it is finite, then the play may end with some xn (meaning
that R made the last move) or with some Sn (V moved last).

In the definition of win of a play we have to distinguish induction from coinduction. We
write Gind(R, x0) for the inductive game, and Gcoind(R, x0) for the coinductive game. In
both games, when the play is finite, and one of the players is supposed to make a move but
he/she is unable to do so, then the other player wins. This occurs if V’s last move was the
empty set ∅; V wins because R has no further element to throw in. The end of the game also
occurs if R’s last move was an element x that does not appear in conclusions of the rules R,
in which case R is the winner. The difference between induction and coinduction is in the

84 Coinduction and the duality with induction

interpretation of wins for infinite plays. In the inductive world an infinite play is a win for
R. This because, as seen in Section 2.11, the proof of an element of an inductive set must
be well-founded, and infinite plays represent non-well-founded paths in the proof tree. In
contrast, in the coinductive world an infinite play is a win for V as here non-well-founded
paths in proof trees are allowed.

Example 2.12.1 We have seen in Section 2.5 the rules that correspond to the divergence
predicate ⇑ of the λ-calculus. Each rule is either of the form ({e}, e e′) with e, e′ ∈ �0, or of
the form ({e}, e1 e2) with e, e1, e2 ∈ �0 and with e1 ⇓ λx.e0 for some e0 with e0{e2/x} = e.
Call R this set of rules.

For e1 = λx.xx, the following is an infinite play for e1 e1 in the game in R:

e1 e1, {e1 e1}, e1 e1,

And for e2 = λx.xxx, an infinite play for e2 e2 is

e2 e2, {(e2 e2) e2}, (e2 e2) e2, {e2 e2},

Both plays, in the coinductive game, represent a win for V. A finite play for e2 e2 is

e2 e2, {e2}, e2

and it is a win for R. �

Example 2.12.2 Consider the rules R� for the finite-trace predicate � described in Sec-

tion 2.6.1. Take then the process �a
b with transitions �a

b

b−→ �a
b and �a

b

a−→ P and �a
b

a−→ Q,
where P,Q have no further transitions. A play for R� and �a

b is

�a
b, {�a

b}, �a
b, . . . ,

where V follows the b-transitions from �a
b; another play is

�a
b, {P }, P , ∅,

where V follows an a-transition. The latter play is a win for V. In the inductive game, the
first play is a win for R. �

Both in a gameGind(R, x0) and in a gameGcoind(R, x0), however, one of the two players
has the possibility of carefully choosing his/her moves so to win all plays, irrespective of
the other player’s moves. We say that the winning player has a winning strategy in the
game, that is, a systematic way of playing that will produce a win in every run of the game.

Definition 2.12.3 (Strategy) In a game Gind(R, x0) or Gcoind(R, x0), a strategy for V is
a partial function that associates with each play

x0, S0, . . . , xn, Sn, xn+1

2.12 Game interpretations 85

a set Sn+1, with (Sn+1, xn+1) ∈ R, to be used for the next move for V; similarly, a strategy
for R in Gind(R, x0) or Gcoind(R, x0) is a partial function that associates with each play

x0, S0, . . . , xn, Sn

an element xn+1 ∈ Sn. The strategy of a player is winning if that player wins every play in
which he/she has followed the strategy. �

The strategies we need for inductively and coinductively defined sets can actually be
history-free, meaning that the move of a player is dictated only by the last move from the
other player, as opposed to the entire play as we have defined above. Both presentations of
the strategies can be useful. (In game theory, the move to history-free strategy is not always
possible.)

Example 2.12.4 In Example 2.12.1, in some steps V has two possible moves, reflecting
the two inference rules in the original definition of ⇑, whereas R at any time has only one
possible move. The two infinite plays shown also implicitly describe winning strategies for
V. In Example 2.12.2, at the beginning V has three possible moves. A winning strategy is
obtained by selecting {P }; after this, the remaining moves for V and R are fixed, and result
in the second play of the example. Another winning strategy for V is obtained by selecting
{Q} in the first move. �

Theorem 2.12.5

(1) x0 ∈ lfp(�R) iff player V has a winning strategy in the game Gind(R, x0);
(2) x0 ∈ gfp(�R) iff player V has a winning strategy in the game Gcoind(R, x0).

Proof We examine (1), as (2) is similar. We appeal to Theorem 2.11.2 and to the represen-
tation of trees as sets of sequences in Remark 2.11.1. Consider all the plays

x0, S0, . . . , xn, Sn

that can be obtained following the winning strategy of V. Each such play gives us a
sequence

x0 . . . xn.

The set of all these sequences is a proof tree for x0. It is easy to check that all conditions of
a tree and a proof tree hold. Moreover, the tree is well-founded because an infinite path in
the tree would yield an infinite play.

The converse is proved similarly, defining a winning strategy from a proof tree for x0.
�

86 Coinduction and the duality with induction

2.13 The bisimulation game

In Exercise 2.10.22 the reader has seen that the set of rules that correspond to the coinductive
definition of bisimulation has all elements of the form

Der(P,Q, f, g)

(P,Q)

where

� f is a function that maps a pair (μ,P ′) such that P
μ−→ P ′ into a process Q′ such that

Q
μ−→ Q′, and conversely function g maps a pair (μ,Q′) such that Q

μ−→ Q′ into a process
P ′ such that P

μ−→ P ′, and
� Der(P,Q, f, g) is the set of process pairs

{(P ′, f (μ,P ′)) |P μ−→ P ′} ∪ {(g(μ,Q′),Q′) |Q μ−→ Q′}.
There may be several rules with the same conclusion: it suffices that the processes in the
conclusion have non-determinism in their derivatives.

Call R the set of rules for bisimulation. In the game interpretation for R, given a pair
(P,Q), the verifier V essentially has to choose the functions f and g that determine the
pairs Der(P,Q, f, g) needed in the premise. If no such f and g exist, then V cannot
continue and R wins. If V’s move succeeds, the refuter R then picks up one of the pairs in
Der(P,Q, f, g) to continue the game. When Der(P,Q, f, g) is empty (which happens if
both P and Q are stopped), R cannot continue and V wins. As the game is coinductive, an
infinite play represents a win for V.

Example 2.13.1 Consider the processes P1 and Q1 of Figure 1.4. On the game for these
processes, there are plays that R wins, and plays that V wins. An example of a play in which
V wins is

(P1,Q1), {(P2,Q2), (P3,Q2)}, (P3,Q2), {(P4,Q3)}, (P4,Q3), ∅.

A play with a win for R is

(P1,Q1), {(P2,Q2), (P3,Q2)}, (P2,Q2).

R has a winning strategy, which consists in following the latter play, thereby always
selecting, in the first move, the pair (P2,Q2). �

2.14 A simpler bisimulation game

In the game for bisimulation in Section 2.13, given a pair (P,Q), V has to exhibit all
relevant derivatives Der(P,Q, f, g), from which R then selects a pair (P ′, f (μ,P ′))
or (g(μ,Q′),Q′). We can formulate the game a bit differently, letting R move first: R

first chooses a transition, say P
μ−→ P ′ or Q

μ−→ Q′, and then V has to find a matching
derivative, that is f (μ,P ′) or g(μ,Q′). While equivalent to the previous formulation, the

2.14 A simpler bisimulation game 87

new one is somewhat simpler and gives us a more vivid and immediate understanding of
the ‘bisimulation game’. A play for (P0,Q0) in the new game is a finite or infinite sequence
of pairs

(P0,Q0), (P1,Q1), . . . , (Pi,Qi),

R tries to show that the processes P0 and Q0 of the initial pair are not equal, and conversely
for V. When the game has reached a pair (Pi,Qi), the following pair is determined thus:
R makes the challenge by choosing either a transition Pi

μ−→ P ′ or a transition Qi

μ−→ Q′;
then V has to answer, in the former case with a transition Qi

μ−→ Q′, in the latter case with
a transition Pi

μ−→ P ′; the pair (P ′,Q′) is (i + 1)th one of the play. As expected, if at some
point V is unable to answer because there is no transition from the appropriate process
with the required label, then R wins. If this situation never occurs, that is, either the play
stops because there are no transitions from the processes in the current pair and therefore
R cannot formulate a challenge, or the play is infinite, then V is the winner.

As usual, we can define the notion of strategy for R and V. A strategy for R specifies, for
all possible current plays

(P0,Q0), (P1,Q1), . . . , (Pi,Qi),

which transition to choose as the next challenge. And a strategy for V specifies, for all
possible current plays and all possible next challenges from R, the transition to pick up as
an answer. (Again, the strategy can be history-free, i.e., based only on the last pair of the
current play.) A strategy, for R or V, is winning if it leads to a win in all possible plays.

Exercise 2.14.1 (∗, Recommended, ↪→) Show that P ∼ Q if and only if V has a winning
strategy for (P,Q). (Hint: in one direction, define the appropriate bisimulation; in the other
direction define a winning strategy, possibly also using the fact that the strategy can be
history-free.) �

Exercise 2.14.2 (∗, Recommended, ↪→) Show that P ∼ Q if and only if R has a winning
strategy for (P,Q). (Hint: use Exercise 2.14.1, and the stratification of bisimilarity over
the ordinals in Section 2.10.2.) �

The game interpretation is not useful only to explain bisimulation, but also to reason
about it, especially to prove non-bisimilarity results.

Example 2.14.3 We describe a winning strategy for the refuter R for the game on the
processes P3, Q3 of Example 2.10.16. The initial transition chosen by R is P3

a−→ P 1
3 . The

only answer for V can be via the transition Q3
a−→ Q1

3, and the resulting pair is (P 1
3 ,Q1

3).

Now R chooses the transition Q1
3

b−→ Q3
3, and V has only the transition P 1

3
b−→ P 3

3 , resulting

in the new pair (P 3
3 ,Q3

3). Finally, R makes the challenge on the transition Q3
3

d−→ Q5
3, and

V cannot answer. �

Exercise 2.14.4 Describe another winning strategy for R on the game of Example 2.14.3,
where R initially chooses a move from Q3. �

88 Coinduction and the duality with induction

Exercise 2.14.5 Describe a winning strategy for R on the game for the processes P4 and
Q4 of Figure 2.4. �

The reader may want to compare Example 2.14.3 with the solutions to Exercise 1.4.9
and Example 2.10.16, and similarly, the strategy in Exercise 2.14.5 with the solution of
Exercise 2.10.17.

Example 2.14.6 (A winning strategy for V) We give a winning strategy for the verifier
V on the game for the processes R1 and Q1 of Exercise 1.4.11. We define the strategy pair
by pair, according to the current pair of a play.

(R1,Q1) There are only a-transitions emanating from these processes, and R has four
possible choices, corresponding to the two transitions from R1 and the two from
Q1, leading to one of the processes R2, R3,Q3,Q4. The verifier answers by
making sure that the following pair in the play is (R2,Q4) or (R3,Q3).

(R2,Q4) R can choose R2
b−→ R3, and V answers using Q4

b−→ Q5. Conversely, if R chooses

Q4
b−→ Q5 then V picks R2

b−→ R3. The next pair is (R3,Q5).
(R3,Q5) R has four possibilities of choice, along c-transitions. V makes sure that the next

pair in the play is (R2,Q2) or (R1,Q1).
(R2,Q2) There is only one outgoing b-transition from each process. Regardless of R’s

choice, V can ensure that the next pair is (R3,Q3).
(R3,Q3) The reasoning is similar to that for (R3,Q5).

The reader may check that the pairs described also define a bisimulation. �

Exercise 2.14.7 Describe the analogue of the two game interpretations for bisimulation
(Sections 2.13 and 2.14) for case of the similarity relation (Exercise 1.4.17). �

For more details on this game interpretation of bisimulation, see [Sti01, Tho93]. In the
remainder of the book, we will not use the above game interpretations of bisimilarity. We
will occasionally use the term ‘bisimulation game’, but simply to refer to the challenge–
answer mechanism in the clauses of bisimulation (Definition 1.4.2).

3

Algebraic properties of bisimilarity

In this chapter we introduce some common process operators, which impose a structure
on processes and bring in concepts from algebra. The operators we consider are inspired
by those of the Calculus of Communicating Systems (CCS) [Mil89, AILS07], one of the
most studied process calculi. Given a process calculus (or a language), one obtains an
LTS by providing, for each operator, a set of inference rules that determine the possible
transitions of the processes in the syntax-driven fashion of Plotkin’s Structured Operational
Semantics (SOS) [Plo04a, Plo04b]. We restrain from going into a thorough discussion on
process calculi. We do present, however, nearly all the operators of CCS. What here, and
in the following chapters, is called CCS is in fact very close to the standard presentation
as in, e.g., [Mil89, AILS07]. The only technical differences are that we do not introduce
the relabelling operator, and, for writing processes with an infinite behaviour, we use
constant symbols instead of recursive process equations; each constant comes with its own
transitions. These differences are discussed in Remark 3.5.8 and following exercises, and
Remark 3.2.3.

The chapter offers a number of examples of the bisimulation proof method. The method
is used to prove that bisimilarity is preserved by the operators considered (and that therefore
it is a congruence in CCS), to prove some basic algebraic laws, and in various examples.
Another important result is an axiomatisation of bisimilarity, that is, an algebraic char-
acterisation of bisimilarity on the term algebra generated by the operators – roughly the
processes with a finite behaviour. In the literature, axiomatisations of bisimilarity can be
found for various sets of finite, or finite-state, processes. In general it is impossible to
axiomatise fully-fledged languages, as these are Turing complete and bisimilarity is not
even semi-decidable [AIS12].

The use of operators also allows us to see how to formalise the meaning of a construct
via an LTS using inference rules in the SOS style. Indeed, besides the basic CCS operators,
we will mention a few other operators, here and in the following chapters. We will also
consider classes of operators, defined in terms of the format of the SOS rules describing
their behaviour. One of the reasons is to show the robustness of the bisimilarity theory.

We introduce the basic CCS operators in Section 3.1. We define the CCS language,
and some basic notations for it, in Section 3.2. In Section 3.3 we show some examples
of equalities among CCS processes. In Section 3.4 we derive some important algebraic

89

90 Algebraic properties of bisimilarity

laws. In Section 3.5 we discuss the compositionality properties of bisimilarity. Finally, in
Section 3.6 we present the algebraic characterisation of bisimilarity.

3.1 Basic process operators

Our main operator is parallel composition, which allows us to run two processes in parallel,
and to make them interact. Following CCS, interaction for us is handshaking between
two processes. In doing so, no value is exchanged: interaction is just synchronisation.
This is very useful for simplification purposes, as value passing introduces additional and
orthogonal concerns.

An interaction occurs when a process can perform an action a and another process,
running in parallel, can perform the complementary action a. We call a a name, and a a
coname. The occurrence of the interaction is indicated by a transition labelled with the
special action τ . We assume, for convenience in the presentation of the SOS rules, that
a = a, and that τ is different from any name or coname. Thus in all the LTSs of this chapter
the set of actions is Act = Names ∪ Conames ∪ {τ } where Names and Conames are the
sets of names and conames, and the three sets (Names, Conames, {τ }) are disjoint. We use
a, b, c, . . . to range over the names. We can think of a name a as a communication port (or
a channel), and of actions a and a as inputs and outputs on such a port. Hence a transition
P

a−→ P ′ says that P is capable of offering an input at port a, and in doing so it evolves

into P ′; likewise for a transition P
a−→ P ′, where P offers an output at a. A transition

P
τ−→ P ′ says that P can internally do some work and then become P ′. This work can

be an interaction between two subcomponents of P , as explained above. More generally,
in the operational semantics of process calculi, τ represents a computation internal to a
process, including a synchronisation between components, but also an evaluation step on
an arithmetic expression, the access to a local memory, and so on. The work is ‘internal’
because the process does not require the intervention of the external environment. In
contrast, an input (or output) transition is an offer towards the environment: the environment
accepts it by contributing with the complementary action. We sometimes call input and
output actions the visible actions.

Below we present the five operators we consider (nil, prefixing, parallel composition,
choice, restriction) and, for each of them, its inference rules for transition. We then give
examples of equalities that make use of such operators.

Nil

The first, and simplest, operator is nil, written 0. It represents a terminated process, and
therefore has no transitions.

Prefixing

Prefixing allows us to turn an action μ and a process P into a new process μ.P in
which the action μ must be executed before any action from P . This imposes a temporal

3.1 Basic process operators 91

sequentialisation between μ and P . More complex forms of sequentialisation can be
derived, see for instance Exercise 4.5.6. The inference rule for prefixing is actually an
axiom, as the set of premises is empty:

Pre
μ.P

μ−→ P

For instance, the only transition for the process a.b.0 is a.b.0
a−→ b.0, and after this we

have b.0
b−→ 0.

Parallel composition

We have already introduced the operator of parallel composition above. Its behaviour is
described by three inference rules:

ParL
P1

μ−→ P ′
1

P1 |P2
μ−→ P ′

1 |P2

ParR
P2

μ−→ P ′
2

P1 |P2
μ−→ P1 |P ′

2

Com
P1

μ−→ P ′
1 P2

μ−→ P ′
2

P1 |P2
τ−→ P ′

1 |P ′
2

Rules ParL and ParR show that a component can still perform its own transitions, so to
interact with external processes, without affecting the parallel structure of the system. Rule
Com shows that the two components can interact with each other, when they are capable of
performing complementary actions. The notation convention for μ, namely a = a, allows
us to avoid the symmetric rule. Because of ParL and ParR , the interaction in Com is not
forced (but the addition of the operator of restriction can force it, see Exercise 3.3.4).

As an example, the process P
def= (a.0 | b.0) | a.0 has the transitions

P
a−→ (0 | b.0) | a.0,

P
b−→ (a.0 | 0) | a.0,

P
τ−→ (0 | b.0) | 0,

P
a−→ (a.0 | b.0) | 0.

Choice

The binary operator choice (sometimes also called sum), written +, gives us an alternative
between two behaviours. The process P + Q can behave as P or as Q, depending on which
of them performs the first transition. If P goes first, then Q is discarded, and conversely.
This is expressed by the two inference rules for choice:

SumL
P1

μ−→ P ′
1

P1 + P2
μ−→ P ′

1

SumR
P2

μ−→ P ′
2

P1 + P2
μ−→ P ′

2

92 Algebraic properties of bisimilarity

As an example, the process P
def= (a.Q1 | a.Q2) + b.R has the transitions

P
τ−→ Q1 |Q2,

P
a−→ Q1 | a.Q2,

P
a−→ a.Q1 |Q2,

P
b−→ R.

Restriction

Restricting a port a in a process P , written νa P , makes a private to P , hiding the port to
the external environment. The construct ν binds a, with scope P , much in the same way as
the construct λ of the λ-calculus binds name x with scope M in the term λx.M . There is
one inference rule for restriction:

Res
P

μ−→ P ′

νa P
μ−→ νa P ′

μ ∈ {a, a}

The rule shows that ν blocks any action that involves the restricted port, and has no effect

on the other actions. For instance, P
def= νa ((a.Q1 | a.Q2) + b.R) has transitions

P
τ−→ νa (Q1 |Q2) and P

b−→ νa R.

The notation we use for restriction is borrowed from the π -calculus; in the CCS literature
a restriction νa P is often written P \a.

Exercise 3.1.1

(1) Which transitions can the process P
def= νa ((a.0 + b.0) | a.0) make?

(2) Find a process Q in which there is no parallel composition and restriction and with
P ∼ Q. �

3.2 CCS

In summary, the CCS languages we use have a set of actions Act = Names ∪ Conames ∪
{τ }, and a set of processes Pr given by this grammar:

P ::= P1|P2 | P1 + P2 | μ.P | νa P | 0 | K,

where K is a constant. Each constant K has a behaviour specified by a set of transitions
of the form K

μ−→ P . The set of all constants is Cons, and the set of all transitions for
the constants in Cons is T Cons ⊆ Cons × Act × Pr. The transitions for the processes in Pr
are determined by TCons plus the inferences rules for the operators in Section 3.1. Such
a process language is called CCS(Act, Cons, TCons), but we always abbreviate it as CCS,
since either the specific sets of actions and constants are not important, or anyhow there are
no risks of ambiguities.

3.2 CCS 93

νc (K1 |K2)
a

11�������������

b ''�������������

νc (c.K1 |K2)

b ''������������� νc (K1 | c.K2)
a

11�������������

νc (c.K1 | c.K2)

τ

++

Fig. 3.1 An infinite behaviour, using constants.

Example 3.2.1 Figure 3.1 shows the LTS for the process νc (K1 |K2), where K1 and K2

are the constants with the transitions

K1
a−→ c.K1,

K2
b−→ c.K2.

�

The language obtained with the empty set of constants is finCCS. All processes in finCCS
are finite: they cannot perform an infinite sequence of transitions.

We assign choice the lowest syntactic precedence among the operators; prefixing
has the highest. For instance, b.P + c.R is (b.P) + (c.R), and a.b.P | c.Q + a.c.R is
((a.b.P) | c.Q) + (a.c.R). We shall see that both parallel composition and choice are asso-
ciative. Therefore we write compositions and choices involving multiple processes as
P1 | · · · |Pn and P1 + · · · + Pn, respectively, forgetting that the operators are binary. Fur-
ther, we sometimes abbreviate P1 | · · · |Pn as �1≤i≤nPi , and P1 + · · · + Pn as �1≤i≤nPi ,
and νa1 . . . νan P as νa1 . . . an P or (νa1 . . . an)P . We usually omit a trailing 0, for instance
abbreviating a.0 + b.0 as a + b.

Assumption 3.2.2 In all CCS languages, we assume that, for any process P , the set
{a | a or a is in sort(P) } is strictly included in the set of the names; that is, no process uses
all available names. (We recall, from Definition 1.2.7, that sort(P) is the set of actions that
P and its multi-step derivatives can perform.) �

The above assumption, which from a practical point of view is quite reasonable, allows
us, when manipulating processes, to be always capable of picking fresh names. This can be
formally achieved, for instance, by requiring that the set of transitions is countable whereas
the set of actions is uncountable; or that the former is finite, whereas the latter is infinite; or
also that the former is a set whereas the latter is a proper class (these conditions are achieved
by placing analogous conditions on the set of constant transitions). The availability of fresh
names is useful in Theorems 4.4.12 and 7.3.9.

Remark 3.2.3 (Recursive definitions) We briefly explain how infinite processes can be
defined by means of recursive process definitions, instead of constants with predefined
transitions. Basically, rather than saying that there is a symbol K with transitions K

μi−→

94 Algebraic properties of bisimilarity

Pi , for 1 ≤ i ≤ n, one defines K via the equation K
def= μ1.P1 + · · · + μn.Pn. The initial

prefixes in the body of the definition are the actions that can be immediately performed.
This form of recursive definition, where the body is a head standard form (Definition 3.4.7),

is usually called guarded. One can be more general, and allow recursive definitions K
def= P

where P is an arbitrary process. In both cases, one adds among the transition rules of the
calculus the following one

P
μ−→ P ′

K
μ−→ P ′

if K
def= P

The two methods of dealing with constants – defining their transitions or setting up
equations – are equivalent. The reader may check this, assuming for simplicity that the
set of constants is finite, and that each constant has only finitely many transitions. �

3.3 Examples of equalities

Example 3.3.1 We write �μ for the constant whose only transition is

�μ

μ−→ �μ.

Thus �μ perpetually performs the action μ. Having two, or more, copies of �μ has no
visible effect, that is, for all n ≥ 1, we have

�μ | . . . |�μ︸ ︷︷ ︸
n times

∼ �μ.

The result is proved, showing that for each n ≥ 1 the relation

{(�μ | . . . |�μ︸ ︷︷ ︸
n times

,�μ)}

is a bisimulation. �

Exercise 3.3.2 Show that μ |�μ ∼ �μ, for �μ as in Example 3.3.1. �

Example 3.3.3 Show that

� a.P | b.Q ∼ a.(P | b.Q) + b.(a.P |Q);
� a.P | a.Q ∼ a.(P | a.Q) + a.(a.P |Q) + τ.(P |Q). �

Exercise 3.3.4 Show that νa (a.P | a.Q) ∼ τ.νa (P |Q). The restriction forces an inter-
action between the two parallel components. �

Example 3.3.5 Semaphores are widely used, for instance in operating systems, to protect
access to resources. An example of resource is a critical region, that is, a piece of code that
manipulates program variables that are shared among several threads. Semaphores can be
used to ensure that at most one thread at a time is executing the region and can therefore

3.3 Examples of equalities 95

manipulate the shared variables. For this, binary semaphores are needed. In general, an
n-ary semaphore can be used to guarantee that at most n processes (or threads) have
concurrent access to a resource. A semaphore provides two operations, usually called p

and v. The former is invoked in order to obtain access to the resource, the latter to signal
the completion of the activity on the resource. (These operations are called p and v after
Edsger Dijkstra, who introduced semaphores in the 60s, and named the operations using
the initials of Dutch expressions for ‘try-and-decrease’ and ‘increase’.) With an LTS, the
behaviour of a binary semaphore is described by constants K0

2 and K1
2 with transitions

K0
2

p−→ K1
2 and K1

2
v−→ K0

2 ,

where K0
2 is the initial state, and K1

2 an auxiliary state indicating that one instance of the
resource is active. A 3-ary semaphore is then described by constants K0

3 , K1
3 , and K2

3 with
the following transitions:

K0
3

p−→ K1
3 K1

3
p−→ K2

3

K2
3

v−→ K1
3 K1

3
v−→ K0

3

where again the superscript indicates the number of resources presently active. We obtain
a 3-ary semaphore by composing two binary semaphores:

K0
2 |K0

2 ∼ K0
3 .

A bisimulation that proves the equality is

R def= {(K0
2 |K0

2 ,K0
3), (K1

2 |K0
2 ,K1

3), (K0
2 |K1

2 ,K1
3), (K1

2 |K1
2 ,K2

3)}.
We let the reader check that R is indeed a bisimulation.

More generally, we can describe the behaviour of an n-ary semaphore by constants K
j
n ,

for 0 ≤ j < n, with transitions

K0
n

p−→ K1
n, Kn−1

n

v−→ Kn−2
n

and, for 0 < j < n − 1,

K
j
n

p−→ K
j+1
n , K

j
n

v−→ K
j−1
n .

For n,m ≥ 2 and u ≥ 3, we have: if n + m = u + 1 then K0
n |K0

m ∼ K0
u . To prove this,

one takes, for each such n,m, u, the relation containing all pairs

(Kj
n |Ki

m,Kr
u)

with 0 ≤ j < n, 0 ≤ i < m, 0 ≤ r < u, and i + j = r . Then one shows that such a relation
is a bisimulation. We let the reader fill in the missing details. �

Exercise 3.3.6 Prove that νc (K1 |K2) ∼ H , where K1,K2 are defined as in Exercise 3.2.1,

and constant H has transitions H
a−→ b.τ.H and H

b−→ a.τ.H . �

96 Algebraic properties of bisimilarity

Exercise 3.3.7 Prove the following equalities:

� νa (c.a.P | a.Q) ∼ c.τ.νa (P |Q),
� νc (a.(c | c) + b.c.d) ∼ a.τ + b. �

3.4 Some algebraic laws

As the language of processes now has some structure, we can examine the algebraic theory
of bisimilarity. We begin with some basic laws for the operators. Parallel composition
satisfies the laws of a commutative monoid, with 0 being the neutral element.

Lemma 3.4.1 (Parallel composition)

P |Q ∼ Q |P,

P | (Q |R) ∼ (P |Q) |R,

P | 0 ∼ P.

Proof Each law is proved by exhibiting a suitable bisimulation. For instance, in the case of
commutativity, the bisimulation is the set of all pairs of the form

(P |Q,Q |P).

To see that this is a bisimulation, suppose P |Q μ−→ R. This transition may have been
obtained using one of the three rules: ParL , ParR or Com . We consider the first case,
and leave the others as exercises to the reader.

Thus suppose there is P ′ such that P
μ−→ P ′ and R = P ′ |Q. Then, using ParR , also

Q |P μ−→ Q |P ′. This is sufficient, because P ′ |Q and Q |P ′ are related.
The case when Q |P moves first is similar. �

The same monoidal laws hold for choice, which, in addition, is also idempotent.

Lemma 3.4.2 (Sum)

P + Q ∼ Q + P,

P + (Q + R) ∼ (P + Q) + R,

P + 0 ∼ P,

P + P ∼ P.

Proof Commutativity is proved using the relation

R def= I ∪
(⋃

P,Q

{(P + Q,Q + P)}
)
,

where I is the identity relation, and proving that R is a bisimulation. The checks for the
pairs in I are straightforward.

For a pair (P + Q,Q + P), suppose P + Q
μ−→ R (the case when Q + P moves first

is similar). This transition must have been derived using rule SumL or SumR . In the
former case, R = P ′ for some P ′ with P

μ−→ P ′. Using SumR , also Q + P
μ−→ P ′, and

3.4 Some algebraic laws 97

we are done because (P ′, P ′) ∈ I. In the latter case, rules SumL and SumR are used in
the opposite order.

The remaining laws are proved similarly. �

Exercise 3.4.3 (↪→)

(1) Show that parallel composition is not idempotent.
(2) Give an example of a process P with P ∼ 0 and for which P |P ∼ P nevertheless

holds. Can P be a finCCS process? �

Next we consider restriction (other laws for restriction, which are about its binder
properties, are in Lemma 3.6.9).

Lemma 3.4.4 (Restriction)

νa νb P ∼ νb νa P,

νa (μ.P) ∼
{

0 if μ = a or μ = a,

μ.νa P otherwise,
νa (P + Q) ∼ νa P + νa Q,

νa 0 ∼ 0.

�

Exercise 3.4.5 Fill the remaining details of Lemmas 3.4.1, 3.4.2 and 3.4.4. �

Exercise 3.4.6 (↪→) Is law νa (P |Q) ∼ (νa P) | (νa Q) valid? Explain why. �

The equalities of Example 3.3.3 are instances of the Expansion Lemma, which establishes
an important connection among the operators of parallel composition, sum and prefixing.
In concurrency theory, expanding, or unfolding, a process is a fundamental analytical
technique. Expanding a process involves transforming it into an equivalent summation in
which all of its capabilities for action are explicit. By iterating the procedure, the behaviour
of the process can be calculated to any desired depth.

Definition 3.4.7 (Head standard form) A process of the form �i∈Iμi.Pi is in head
standard form (note that I can also be empty, in which case we have the process 0). �

Lemma 3.4.8 (Expansion Lemma) If P
def= �iμi.Pi and P ′ def= �jμ

′
j .P

′
j , then

P |P ′ ∼ �iμi.(Pi |P ′) + �jμ
′
j .(P |P ′

j) + �μi opp μ′
j
τ.(Pi |P ′

j),

where μi oppμ′
j holds if they are complementary actions, that is, either μi = a and

μ′
j = a, or the converse. �

Exercise 3.4.9 (Recommended, ↪→) Prove Lemma 3.4.8. �

98 Algebraic properties of bisimilarity

The Expansion Lemma allows us to rewrite a composition of processes in head standard
form into a new head standard form whose summands represent the possible immediate
transitions of the parallel composition. The summands stem either from transitions of one
of the components or from interactions between the two components. This reflects the two
kinds of inference rule for the operator of parallel composition, one given by ParL and
ParR , the other by Com .

Exercise 3.4.10 (Recommended, ↪→) Is law μ.(P + Q) ∼ μ.P + μ.Q valid? What
about (P + Q) |R ∼ (P |R) + (Q |R)? �

Corollary 3.4.11 Suppose {P μi−→ Pi}i is the set of transitions emanating from P . Then

(1) P ∼ �iμi.Pi;

(2) if {P ′ μ′
j−→ P ′

j }j is the set of transitions emanating from P ′, we have

P |P ′ ∼ �iμi.(Pi |P ′) + �jμ
′
j .(P |P ′

j) + �μi opp μ′
j
τ.(Pi |P ′

j).

Proof (1) is easy; (2) follows from (1) and Lemma 3.4.8. �

Exercise 3.4.12 Refine Corollary 3.4.11(2) by adding some restrictions on top; i.e.,
describe the head normal form for a process of the form νa1 . . . an (P |P ′). �

3.5 Compositionality properties

We show that bisimilarity is preserved by all process constructs. This allows us to replace,
in any process expression, a subterm with a bisimilar one. An equivalence relation with
this property is called a congruence. A proof of congruence of bisimilarity involves both
inductive and coinductive arguments, as the syntax of the processes and of the contexts is
defined inductively, whereas bisimilarity is defined coinductively.

Lemma 3.5.1 If P ∼ Q then for all R, μ, and a:

(1) P |R ∼ Q |R;
(2) P + R ∼ Q + R;
(3) νa P ∼ νa Q;
(4) μ.P ∼ μ.Q.

Proof We only show the proof of (1); the other cases are easy and left to the reader. We
show that

R def= {(P |R,Q |R) |P ∼ Q}

is a bisimulation. Suppose P |R μ−→ S; there are three possibilities to consider, depending
on whether the transition has been derived using rule ParL , ParR or Com .

3.5 Compositionality properties 99

ParL Then P
μ−→ P ′ and S = P ′ |R. Since P ∼ Q there is Q′ with Q

μ−→ Q′ and P ′ ∼
Q′. Therefore, again using ParL , Q |R μ−→ Q′ |R and we have (P ′ |R,Q′ |R) ∈ R.

ParR Then R
μ−→ R′ and S = P |R′. We also have Q |R μ−→ Q |R′ and (P |R′,Q |R′) ∈

R.

Com Then μ = τ and for some λ, P
λ−→ P ′, R

λ−→ R′ and S = P ′ |R′. From P ∼ Q we

deduce Q
λ−→ Q′, for some Q′ with P ′ ∼ Q′. Thus again applying Com , Q |R τ−→ Q′ |R′

and (P ′ |R′,Q′ |R′) ∈ R.

The reasoning when Q |R moves first is similar. �

A context is a process expression with a single occurrence of a hole [·] in it, as a
subexpression. An example is νa (b.[·] |P). We use C to range over contexts, and write
C[P] for the process obtained by replacing the hole of C with process P ; similarly, if C ′

is another context then C[C ′] is the context in which C′ has replaced the hole of C.

Theorem 3.5.2 (Congruence) In CCS, ∼ is a congruence relation.

Proof We know that ∼ is an equivalence relation from Theorem 1.4.14. It remains to show
that P ∼ Q implies C[P] ∼ C[Q], for all process contexts C. This is done using induction
on the structure of C. The base case of the induction is given by the hypothesis P ∼ Q, the
inductive case by Lemma 3.5.1. �

Exercise 3.5.3 Prove, algebraically, νb
(
a.(b | c) + τ.(b | b.c)

)
∼ τ.τ.c + a.c. �

Remark 3.5.4 (Transformations on the body of recursive definitions) Theorem 3.5.2
allows us to modify subterms of process subexpressions. However, it does not allow us to
manipulate the body of constants. For instance, suppose we have constants K and H with
transitions

K
c−→ c.(a.a.K + b.K),

H
c−→ c.(b.H + a.a.H).

We may want to prove H ∼ K by appealing to the commutativity of sum and Theorem 3.5.2.
This can be done, but it requires a few more technicalities (e.g., introducing process
expressions with free variables and bisimilarity on them) that go beyond the scope of this
book. We refer the interested reader to [Mil89, chapter 4]. �

Bisimilarity is in fact extremely robust as far as being preserved by the operators
of a language. In fact it is generally recognised that a ‘good’ operator should preserve
bisimilarity. A number of formats of operators have been studied, where a format is roughly
a specification of the form that the transition rules of an operator should follow, and
compositionality results for bisimilarity in these formats have been established. Below is
an example of format and corresponding preservation result. More examples can be found
in Section 5.12.

100 Algebraic properties of bisimilarity

Example 3.5.5 (De Simone format) We consider a language whose terms (the processes)
are generated by some grammar (i.e., the language is the term algebra for a certain signature).
The transition relation for the terms is defined structurally, in the SOS style, assigning a
set of transition rules to each symbol in the grammar. Suppose that all the transition rules
follow the format below, called the De Simone format. (It is a simplified version of the
format introduced by De Simone [DS85], the main restriction being that only one action at
a time is observable.) We can then prove that ∼ is a congruence. In the rule below, Xr (for
1 ≤ r ≤ n), and Yj (for j ∈ J), are metavariables which are instantiated with processes
when the rule is applied.

A transition rule is in De Simone format if it has the form

Xj

μj−→ Yj (j ∈ J)

f (X1, . . . , Xn)
μ−→ T

where

(1) f is an operator symbol in the language, of arity n;
(2) J ⊆ {1, . . . , n};
(3) Xr (1 ≤ r ≤ n), and Yj (j ∈ J) are distinct variables;
(4) T is a term of the language possibly containing the variables X′

1, . . . , X
′
n, where for

r ∈ {1, . . . , n} we have X′
r = Yr if r ∈ J and X′

r = Xr otherwise; moreover each X′
i

occurs at most once in T .

For instance, the CCS rule ParL would be written thus, maintaining the infix notation
for parallel composition:

X1
μ−→ Y1

X1 |X2
μ−→ Y1 |X2

Indeed, all the rules for the CCS operators, in Section 3.1, follow the format. (The rule for
restriction we presented has a side condition, which is not mentioned in the format above;
it can be avoided using a set of rules, one for each restricted name and for each label.)

To prove that if all the operators of the language have transition rules in the De Simone
format then bisimilarity is a congruence, we take the relation

R def= {(C[P], C[Q]) |C is a context of the language and P ∼ Q} ∪ I,

where I is the identity relation, and show that R is a bisimulation. Consider a pair
(C[P], C[Q]) and a transition C[P]

μ−→ P1 (the case of a move from C[Q] is similar).
One finds a matching transition from C[Q] proceeding by induction on the structure of
C. The base of the induction is when C = [·], and can be dealt with using the hypothesis
P ∼ Q. In the inductive case, C is of the form f (R1, . . . , Ri−1, C

′, Ri+1, . . . , Rm), where
C ′ is another context. For simplicity of presentation (the extension to the general case is
straightforward, only notationally more complex, and we leave it to the reader) we assume

3.5 Compositionality properties 101

that m = 1 and that the rule applied for the transition of C[P] is as follows:

C ′[P]
μ′
−→ P ′

f (C ′[P])
μ−→ D[P ′]

where D[P ′] is P1, and D is some context. (The case when P ′ is not used in P1 is easier, and
is dealt with using the fact that I ⊆ R; we also omit the simple case in which the rule has
no premises.) Here we make use of the linearity on the occurrences of variables in condition
(4) of the De Simone format, ensuring that P ′ is not duplicated in the final derivative (see,

however, Exercise 3.5.6). Exploiting the inductive assumption, C′[Q]
μ′
−→ Q′ and either

(i) (P ′,Q′) ∈ I, or
(ii) there is a context D′ and processes P ′′,Q′′, with P ′′ ∼ Q′′ and P ′ = D′[P ′′], Q′ =

D′[Q′′].

In both cases, we infer f (C ′[Q])
μ−→ D[Q′]. In (i), we also have (D[P ′],D[Q′]) ∈ I and

we are done. In (ii), we have D[P ′] = D[D′[P ′′]] and D[Q′] = D[D′[Q′′]]. We can thus
conclude that the derivatives of C[P] and C[Q] are in R, using the context D[D′]. �

Exercise 3.5.6 (∗, ↪→) Extend the result in Example 3.5.5 to the case in which, in condition
(4) of the De Simone format, the restriction that each variable X′

i may occur at most once
in T is dropped. (Hint: you need to work with polyadic contexts.) �

Example 3.5.7 (A specification and an implementation of a counter, from [AILS07])
We specify a counter using constants Countern, for n ≥ 0, with transitions

Counter0
up−→ Counter1

and, for n > 0,

Countern

up−→ Countern+1, Countern
down−−−→ Countern−1.

The initial state is Counter0. We reach the state Countern if the number of up actions
performed exceeds by n the number of downs. In particular, the number of ups is always
greater than, or equal to, the number of downs. Consider now an implementation of the
counter in term of a constant C with transition

C
up−→ C |down.0.

It holds that Counter0 ∼ C. This can be proved using the relation

R def= {(C |�n
1 down.0,Countern) | n ≥ 0} ,

showing that R is a bisimulation up-to ∼, and then appealing to the soundness of this
technique (Exercise 1.4.18).

Take a pair (C |�n
1 down.0,Countern) in R. Suppose C |�n

1 down.0
μ−→ P . We find

P ′ and Q such that P ∼ P ′, Countern

μ−→ Q, and P ′ R Q (this is sufficient for the

102 Algebraic properties of bisimilarity

schema of the ‘up-to ∼’ technique, because ∼ is reflexive, and therefore Q ∼ Q). By
inspecting the inference rules for parallel composition, we find that μ can only be either
up or down.

μ = up. Then the transition from C |�n
1 down.0 originates from C, which performs the

transition C
up−→ C |down.0, and P = C |�n+1

1 down.0. Process Countern can answer

with the transition Countern

up−→ Countern+1. For P = P ′ and Q = Countern+1,
this closes the diagram.

μ = down. It must be n > 0. The action must originate from one of the down.0 com-

ponents of �n
1 down.0, which has made the transition down.0

down−−−→ 0. Therefore
P = C |�n

1 Pi , where exactly one Pi is 0 and all the others are down.0. Applying the third
law of Lemma 3.4.1, and using the compositionality of∼, we have P ∼ C |�n−1

1 down.0.

ProcessCountern can answer with the transition Countern
down−−−→ Countern−1. This

closes the diagram, for P ′ def= C |�n−1
1 down.0 and Q

def= Countern−1, as P ′ R Q.

The case when Countern moves first and C |�n
1 down.0 has to answer is similar. �

Remark 3.5.8 (Relabelling) The only CCS operator so far neglected is relabelling. It is
less elegant and fundamental than other operators, and indeed it is omitted in developments
of CCS such as the π -calculus. In [Mil89] relabelling is written P [f], where the function f :
Act → Act is the relabelling function. The effect is that of renaming the actions performed
by P according to f . A relabelling function should respect the name/coname ties, i.e.,
f (a) = f (a), and should not alter internal moves, i.e., f (τ) = τ . The transition rule for
relabelling is

P
μ−→ P ′

P [f]
f (μ)−−→ P ′[f]

�

Exercise 3.5.9 Show that ∼ is preserved by relabelling. �

Exercise 3.5.10 (↪→)

(1) Show that (P + Q)[f] ∼ (P [f]) + (Q[f]).
(2) Is it true that (P |Q)[f] ∼ (P [f]) | (Q[f])? If not, formulate conditions on f so that

the property holds. (Hint: consider the process P in Exercise 3.5.11.)
(3) Same question as in the point above for (νa P)[f] ∼ νa (P [f]). �

Exercise 3.5.11 (↪→)

(1) Relabelling looks like a substitution, but they are not the same. For instance, consider

the processes P
def= a | b, and the relabelling function that sends b into a and is the

identity on all other names. Show that P [f] is not bisimilar with the process a | a
obtained by replacing b with a in P .

3.6 Algebraic characterisation 103

(2) Continue by showing that bisimilarity is not preserved by substitution of names. For
this, exhibit two processes in finCCS and that do not use restriction that are bisimilar
but become different when a name substitution is applied to them (a name substitution
is a function σ from names to names that replaces each occurrence of a name a in a
process with σ (a) and each occurrence of the coname a with σ (a)). �

The fact that bisimilarity is not preserved by name substitutions, as indicated in
Exercise 3.5.11, becomes important in calculi such as the π -calculus whose semantics
involve name substitutions, see [SW01].

Exercise 3.5.12 (Recommended, ↪→) Consider the operator P ‖ Q defined as follows:

P ‖ Q
def= νa1 . . . an (P |Q),

where

{a1, . . . , an} = {a | a or a is both in sort(P) and in sort(Q)} .

Show that ‖ is commutative but not associative. �

3.6 Algebraic characterisation

In general, bisimilarity in process calculi is undecidable, indeed not even semi-decidable
if the calculi are Turing complete. In certain cases, however, decidability holds. In these
cases it may be possible to give algebraic characterisations of bisimilarity, in the form of
axiomatisations. We examine below finCCS, where the set of sequences of actions that
each process can execute is finite. More sophisticated examples of process calculi where
bisimilarity is decidable are discussed in [AIS12]. See [Mil89] for an axiomatisation of
finite-state processes (recall that ‘finite’ is different from ‘finite-state’).

By an axiomatisation of an equivalence on a set of terms, we mean some axioms that,
together with the rules of equational reasoning, suffice for proving all and only the equations
among the terms that are valid for the given equivalence. The rules of equational reasoning
are reflexivity, symmetry, transitivity and substitutivity rules that make it possible to replace
any subterm of a process by an equivalent term. (A proof system achieves the same goal,
but may have, in addition to axioms and some of the rules of equational reasoning, other
inference rules.)

Axiomatisations (and proof systems) are of interest for two main reasons. The first is
simply that axioms and rules contributing to completeness are often useful for reasoning
on terms. A good example of this is the Expansion Lemma. The second reason is that
axiomatisations are often good for contrasting equivalences: light can be shed on the
differences between equivalences by isolating small collections of axioms and rules that
distinguish them. We will see this in the following chapters, discussing other behavioural
equivalences.

104 Algebraic properties of bisimilarity

Summation S1 P + 0 = P

S2 P + Q = Q + P

S3 P + (Q + R) = (P + Q) + R

S4 P + P = P

. .
Restriction R1 νa 0 = 0

R2 if μ ∈ {a, a} νa μ.P = 0

R3 if μ ∈ {a, a} νa μ.P = μ.νa P

R4 νa (P + Q) = νa P + νa Q

. .
Expansion E

For P
def= ∑

0≤i≤n μi.Pi and P ′ def= ∑
0≤j≤m μ′

j .P
′
j infer:

P |P ′ = �0≤i≤nμi.(Pi |P ′) + �0≤j≤mμ′
j .(P |P ′

j) + �μi opp μ′
j
τ.(Pi |P ′

j)

where μi oppμ′
j holds if they are complementary actions, that is, either

μi = a and μ′
j = a, or the converse.

Fig. 3.2 The axiom system SB.

We write P ∈ finCCS to mean that P is a process of finCCS. We call the axiom system
in Figure 3.2 SB, and write SB � P = Q if we can derive P = Q from the axioms in SB
plus the laws of equational reasoning. The axioms can be partitioned into three groups:
the axioms of a commutative abelian monoid for choice; axioms about the commutativity
properties of restriction with respect to nil, prefixing and choice (in certain cases commu-
tativity fails and produces nil, in the case of choice it becomes a distributivity law); and the
Expansion law. We already considered these laws in Lemmas 3.4.2, 3.4.4 and 3.4.8. We
wish to prove the following algebraic characterisation of strong bisimilarity in finCCS.

Theorem 3.6.1 For P,Q ∈ finCCS, we have P ∼ Q iff SB � P = Q.

The proof of the theorem rewrites the processes from finCCS into a special form, called
full standard form, using the laws of SB. We first treat such rewriting, and prove it correct,
and then present the proof of Theorem 3.6.1.

Remark 3.6.2 (Axiom schema, finite axiomatisations and prime processes) The Expan-
sion in system SB is not an axiom, but an axiom schema. It is an abbreviation for countably
infinite axioms (one for each possible value of n and m, and for each choice of initial
prefixes). Hence the axiomatisation is not finite. Jan Bergstra and Jan Willem Klop [BK84]
have obtained a finite axiomatisation by introducing two auxiliary operators, called left
merge (see Exercise 4.4.4) and communication merge. Faron Moller [Mol90a, Mol90b] has
proved that bisimilarity is indeed not finitely axiomatisable without introducing such aux-
iliary operators. Moller’s results are based on beautiful unique decomposition properties of

3.6 Algebraic characterisation 105

processes as parallel compositions of prime processes up to ∼, where a process P is prime
if P ∼ 0 and P ∼ P1 |P2 implies P1 ∼ 0 or P2 ∼ 0. The first such decomposition result
is in [MM93]; see also [Mol89, Chr93, LvO05]. These decompositions are also exploited
in proofs of decidability of bisimilarity in various languages (e.g., [CHM93, HJ99]), and
are simpler and and sharper than the corresponding results for most of the behavioural
equivalences other than bisimilarity.

The results on axiomatisations have in turn inspired Aceto et al. [ABV94], who have
produced general algorithms for the generation of (finite) axiomatisations for bisimilarity
in process calculi. The axioms are based on the format of the SOS rules of the operators in
the calculus, and require the presence of the choice operator.

Strictly speaking, also laws R2 and R3 are not purely algebraic, as they have side
conditions. In a pure axiomatisation they would be replaced by a set of axioms, one for
each choice of names a and prefix μ. �

Definition 3.6.3 A process P ∈ finCCS is in full standard form if P and all its subterms
are in head standard form. If P is in full standard form, then the depth of P is the maximal
number of nested prefixes in P . �

Lemma 3.6.4 If P,Q ∈ finCCS are in full standard form, then SB � P |Q = R, for some
R in full standard form.

Proof The result is proved using the Expansion schema and reasoning by induction on the
sum of the depths of P and Q. Essentially, it is a matter of repeatedly applying Expansion
so as to push the parallel composition to smaller and smaller depths until it disappears when
applied to 0 components. �

Lemma 3.6.5 If P ∈ finCCS is in full standard form, then SB � νa P = Q, for some Q

in full standard form.

Proof It is similar to Lemma 3.6.4, using induction on the depth of P , but this time applying
the laws for restriction so as to push the restriction at a inside the structure of P (laws R3
and R4) until it disappears, because either the 0 process (law R1) or a prefix at a (law R2)
are met. We may also need S1 to clean up 0 summands. �

Lemma 3.6.6 If P ∈ finCCS, then SB � P = Q, for some Q in full standard form.

Proof We essentially have to remove all occurrences of parallel composition and restriction
from P . We proceed by structural induction on P . The interesting cases are when P is of
the form P1 |P2 or νa P ′, and for this we use Lemmas 3.6.4 and 3.6.5 plus the inductive
hypothesis. When P is of the form P1 + P2 law S1 may be needed. �

Exercise 3.6.7 Complete the proof of Lemma 3.6.6. �

We are now ready to prove the correctness of the axiomatisation.

106 Algebraic properties of bisimilarity

Proof (of Theorem 3.6.1) The soundness of SB (direction from right to left of the theorem)
follows from the validity of each axiom in SB and the congruence of ∼ (Lemmas 3.4.2,
3.4.4, 3.4.8 and Theorem 3.5.2).

For the completeness, by Lemma 3.6.6 we can assume that P,Q are full standard forms.
We then proceed by induction on the sum of the number of prefixes in P and Q. (We could
also use induction on the sum of the depths, or structural induction.) If this sum is 0, then
P = Q = 0, and the lemma holds because reflexivity is part of the laws for equational
reasoning.

Otherwise, we first show that each summand μ.P ′ of P is provably equal to some
summand μ.Q′ of Q, and conversely. Then we can conclude SB � P = Q using the laws
for sum to handle duplicates (law S4), and to rearrange summands (laws S2 and S3).

So, suppose μ.P ′ is a summand of P . We therefore have P
μ−→ P ′. As P ∼ Q, there is Q′

such that Q
μ−→ Q′ with P ′ ∼ Q′. Since Q is a full standard form, μ.Q′ is a summand of Q.

Furthermore, as P ′ and Q′ have fewer prefixes than P and Q, by induction SB � P ′ = Q′,
hence also (by equational reasoning) SB � μ.P ′ = μ.Q′. �

We conclude the section with some further laws for the restriction operator. While these
laws are not needed in the axiomatisation of finCCS, they are often useful for manipulating
scope and bound names of restrictions. The laws have some conditions, mentioning free
and bound names of processes, which we first introduce.

As in finCCS there are no constants, the syntax of the processes, precisely their prefixes,
determines the actions they can perform. We can then define, by structural induction, the
set fn(P) of free names in a process P :

fn(0) = ∅,

fn(P |Q) = fn(P + Q) = fn(P) ∪ fn(Q),
fn(a.P) = fn(a.P) = {a} ∪ fn(P),
fn(τ.P) = fn(P),

fn(νa P) = fn(P) − {a}.

Thus a name a is free in a process P if a appears in a prefix of P that is not underneath
a restriction at a. A name a is bound in P if a restriction νa appears in P . The set of
bound names of P is bn(P). For instance, if P = c.νa νb (a | b | d) then fn(P) = {c, d}
and bn(P) = {a, b}, and for Q = a.νa (a | b), we have fn(Q) = {a, b} and bn(Q) = {a}.

Lemma 3.6.8 If P ∈ finCCS and P
μ−→ P ′, then fn(P ′) ⊆ fn(P); further, if μ ∈ {a, a}

then a ∈ fn(P). �

Hence the sort of a processes is included in its free names. We write {b/a} for the name
substitution (as by Exercise 3.5.11) that sends a into b and is the identity elsewhere. Thus
P {b/a} is the process obtained from P by replacing each occurrence of a in P with b.

3.6 Algebraic characterisation 107

Lemma 3.6.9 (Further laws for restriction, in finCCS)

νa P ∼ P if a ∈ fn(P),
νa (P |Q) ∼ (νa P) |Q if a ∈ fn(Q),

νa P ∼ νb (P {b/a}) if b ∈ (fn(P) ∪ bn(P)).

�

The first and second laws show that a restriction does not affect a process in which
the restricted name is not used (note that law R1 is an instance of the first law, and so is
νa νa P ∼ νa P). The third law, often called the α-conversion law, shows that a restricted
name may be replaced by another name, provided this is fresh so as not to modify the
bindings in the process.

Exercise 3.6.10 Prove Lemma 3.6.9. �

Exercise 3.6.11 Show that the side conditions in the laws of Lemma 3.6.9 are necessary.
�

Remark 3.6.12 As constants have a behaviour but not a syntax, defining the free names of a
process that may contain constants requires some care. Also, the third law of Lemma 3.6.9
needs to be refined to make sure that the substitution is propagated, and modifies, the
behaviour of the constants. See, for instance, the definition of sort of a process in
[Mil89]. �

4

Processes with internal activities

In Section 3.1, defining CCS, we obtained LTSs in which the set of actions includes the
special symbol τ , representing internal activity. Internal activity is not directly observable
(also because we are not assuming time-related attributes for actions). It is then desirable
that the behavioural equality for the processes be insensitive to the number of τ -actions

they perform. As an example consider the CCS process P
def= νa (b.a | a.c). We have

P ∼ b.τ.c

and therefore, when we regard τ as internal, we would also like to consider P equal to
b.c. This does not hold for the bisimilarity ∼, which is deficient in this respect as it treats
internal action and visible actions equally.

For an analogy with ordinary sequential programming languages, consider the two
programs

print(5) and if true then print(5) else skip. (4.1)

The first program immediately performs the printing action. The second does so after
evaluation of the conditional, an act that represents some internal activity. Indeed, we can
describe the behaviours of those programs with the following transitions:1

if true then print(5) else skip
τ−→ print(5)

print(5)
print(5)−−−−−→ 0

where 0 indicates the successful termination of the evaluation of a program. Thus the
two programs have different transitions and are not equal according to the definition of
bisimilarity. This is disturbing, because the observable behaviour of the two programs is
the same: in both cases only the printing action is visible. For another example, consider
the λ-calculus terms

(λx.x)3 and 3.

1 In sequential languages, such an operational semantics is often called ‘small-step’, as opposed to the ‘big-step’ in which only

the final value produced by the programs is represented; moreover the relation
τ−→ is often written −→.

108

4.1 Weak LTSs and weak transitions 109

The first returns the value 3 after the reduction step

(λx.x)3
τ−→ 3

in which the initial λ term – the identity function – is consumed. Semantically, we wish to
identify the two terms. But again, only the first term has an internal transition, and therefore
the two terms are distinguished in behavioural equalities that treat all actions equally.

In this chapter we see how to modify the definition of bisimilarity in order to to give a
more satisfactory account of internal activity. The resulting forms of bisimulation are called
weak. The most studied and used is weak bisimilarity.

In Section 4.1 we introduce weak LTSs and weak transitions. We present weak bisim-
ilarity, and its basic properties, in Section 4.2. We discuss its treatment of divergence in
Section 4.3. As weak bisimilarity is not preserved by the choice operator, in Section 4.4
we refine the bisimilarity so to obtain a full congruence over CCS. In Section 4.5 we show
an algebraic characterisation of such a congruence, on finite CCS. We then discuss a few
variations of weak bisimilarity. The first variation, in Section 4.6, removes the challenge
on τ -moves; it is, however, mainly presented as a curiosity, due to a number of prob-
lems both in applications and in the theory. The second, in Section 4.7 makes bisimilarity
divergence-sensitive. The third, in Section 4.8, changes the weak transition used to answer
a challenge, so as to obtain a bisimulation relation that is a full congruence. The fourth, in
Section 4.9, actually comprises three sub-variations; they modify the requirements on weak
transitions so as to have bisimilarities that respect more closely the branching structure of
the LTSs.

The variations examined in Sections 4.6–4.9 are in fact orthogonal to each other. They
can also be combined, resulting in several possibilities (see, e.g., Exercise 4.9.14). Further,
most versions, including the bisimulation game on τ -moves, are not preserved by the choice
operator and we have therefore also the corresponding induced congruences. We will use
the adjective ‘rooted’ to identify these congruences, as they differ in the requirement on
the initial step, i.e., on the root of the computation tree associated with the behaviour of a
process.

4.1 Weak LTSs and weak transitions

We call an LTS in which a special action τ represents internal activity weak. Correspond-
ingly, we sometimes call the ordinary LTSs strong.

To abstract away from internal actions, a key ingredient is the weak transition relations,
=⇒ and

μ=⇒. We write P =⇒ Q to mean that P can evolve to Q by performing some
number, possibly zero, of internal actions; and P

μ=⇒ Q to mean that P can become Q as a
result of an evolution that includes an action μ, and that may involve any number of internal
actions before and after μ. The relation

τ=⇒ is different from=⇒, as the former indicates that
at least one τ action has been performed. Again, we sometimes call the ‘single’ transitions
μ−→ strong, to distinguish them from the weak ones.

110 Processes with internal activities

Definition 4.1.1 (Weak transitions)

� Relation =⇒ is the reflexive and transitive closure of
τ−→. That is, P =⇒ P ′ holds if there

is n ≥ 0 and processes P1, . . . , Pn with Pn = P ′ such that P
τ−→ P1 · · · τ−→ Pn. Further,

we say that n is a weight of P =⇒ P ′. (It can be n = 0, hence P =⇒ P holds for all
processes P .)

� For all μ ∈ Act, relation
μ=⇒ is the composition of the relations =⇒,

μ−→, and =⇒; that
is, P

μ=⇒ P ′ holds if there are P1, P2 such that P =⇒ P1
μ−→ P2 =⇒ P ′.

We extend the transition relations to finite sequences of actions as in the strong case:

� P
ε=⇒ P ′ (where ε is the empty sequence) holds if P =⇒ P ′;

� P
μs=⇒ P ′ holds if there is P ′′ such that P

μ=⇒ P ′′ and P ′′ s=⇒ P ′. �

On the meaning of =⇒, see also Exercise 2.7.4. There may be several weights for a
transition P =⇒ P ′. For instance, if P = τ.0 + τ.τ.0 then P =⇒ 0 can be derived in two
ways, with weights 1 and 2. The minimum weight for a transition is the least weight for
that transition. Note that the largest weight for a transition need not exist. For instance, on
the process �τ of Exercise 4.3.2, the transition �τ =⇒ �τ can be given weight n for each
n ≥ 0.

An example of a weak LTS is the one obtained from CCS. Indeed we will often use CCS
to write processes in examples. We will also use it to study the algebraic properties of the
weak behavioural relations.

Example 4.1.2 If Q
def= τ.a.τ.b, then Q

τ=⇒ a.τ.b; we also have Q
a=⇒ τ.b and Q

a=⇒ b.

Similarly, for P
def= a.c.d | a.b.c we have P

b=⇒ c.d | c and P
b=⇒ d | 0. �

Definition 4.1.3 An LTS is image-finite under weak transitions if for each μ the relation
μ=⇒ is image-finite. �

Exercise 4.1.4 (↪→) Suppose that each constant in CCS has only finitely many (strong)
transitions. Show that all CCS processes are image-finite but not necessarily image-finite
under weak transitions. �

4.2 Weak bisimulation

We define weak bisimulation and weak bisimilarity on top of the weak transitions. The
original bisimulation and bisimilarity of Definition 1.4.2 will be sometimes called strong.

We use � to range over the visible actions; i.e., P
�−→ P ′ means that P

μ−→ P ′ for some
μ = τ .

Definition 4.2.1 (Weak bisimilarity) A process relation R is a weak bisimulation if,
whenever P R Q, we have:

4.2 Weak bisimulation 111

(1) for all P ′ and � with P
�=⇒ P ′ there is Q′ such that Q

�=⇒ Q′ and P ′ R Q′;
(2) for all P ′ with P

τ=⇒ P ′, there is Q′ such that Q =⇒ Q′ and P ′ R Q′;
(3) the converse of (1) and (2), on the actions from Q (i.e., the roles of P and Q are

reversed).

P and Q are weakly bisimilar, written P ≈ Q, if P R Q for some weak bisimulation
R. �

Weak bisimilarity is the relation obtained by playing the bisimulation game on the graph
whose arrows are given by =⇒ and the

μ=⇒ relations. The only difference between strong
bisimilarity and weak bisimilarity is what counts as a move in the bisimulation game. It is
the special treatment accorded to τ transitions in defining the relations =⇒ and

μ=⇒ that
makes abstraction from internal action possible using the weak equivalence.

Note the use of relation =⇒, in place of
τ=⇒, for the answer from process Q in clause (2).

The use of
τ=⇒ would have given dynamic bisimilarity; see Definition 4.8.1 and following

results, such as Exercise 4.8.3, for explanations.

Exercise 4.2.2 Show that ≈ is an equivalence relation. (Hint: proceed as for the analogous
result for strong bisimilarity, Lemma 1.4.14.) �

Example 4.2.3 We have:

(1) τ.a ≈ a;
(2) νa (b.a | a.c) ≈ b.c.

To prove (1), we use the relation

R def= {(τ.a, a), (a, a), (0, 0)}
and show that this is a weak bisimulation. Consider the pair (τ.a, a). The process τ.a has
the two weak transitions τ.a

τ=⇒ a and τ.a
a=⇒ 0. The former is matched by a =⇒ a, as

a R a, and the latter by a
a=⇒ 0, as 0 R 0. Conversely, there is only one possible move for

a, namely a
a=⇒ 0, and τ.a can answer thus: τ.a

a=⇒ 0. The bisimulation game for the other
pairs in R is easy, as they are identity pairs.

For (2), we can show that the relation

R def= {(νa (b.a | a.c), b.c), (νa (a | a.c), c), (νa (0 | c), c), (νa (0 | 0), 0)}
is a weak bisimulation. We only show the details for the first pair, calling P

def= νa (b.a | a.c)

and Q
def= b.c. There are two weak transitions emanating from P , namely P

b=⇒ νa (a | a.c)

and P
b=⇒ νa (0 | c). The process Q can answer both of them with Q

b=⇒ c, as νa (a | a.c) R
c and νa (0 | c) R c. Conversely, Q

b=⇒ c is the only weak labelled transition from Q, and
P can answer in two ways as above. �

Exercise 4.2.4 (Recommended, ↪→) Suppose that P =⇒≈ Q and Q =⇒≈ P . Conclude
that P ≈ Q. �

112 Processes with internal activities

Exercise 4.2.5 (↪→) Suppose that P =⇒ R and R =⇒ Q with P ≈ Q. Conclude that
P ≈ R ≈ Q. �

Having introduced weak bisimilarity with the declared purpose of ‘ignoring’ τ -
transitions, it may be surprising to find clause (2) in Definition 4.2.1, as this expresses
a demand that only involves τ transitions. Indeed, τ moves cannot be completely disre-
garded in defining a weak equivalence because they can pre-empt other actions. To see

this, consider the processes P
def= τ.a.0 + τ.b.0 and Q

def= a.0 + b.0. They would become
bisimilar without clause (2). This is disturbing. Think of the processes as machines, in
which a and b are buttons that customers of the machines can press. The machine P has
a form of internal non-determinism: it can freely evolve into a.0 or b.0. In either case,
only one of the two buttons is available. In contrast, both buttons remain available in the
second machine, and the customer can indeed choose the button to press. We thus reject
the equality between the two machines, for the same reason that we did so with the two
vending machines of Figure 1.5. A more technical reason for requiring clause (2) is that
bisimilarity would not otherwise be preserved by fundamental process operators such as
parallel composition: see the discussion in Section 4.6 and Exercise 4.6.2(3).

Exercise 4.2.6 (Recommended, ↪→) Are the processes τ.0 + τ.a.0 and a.0 weakly
bisimilar? �

Exercise 4.2.7 (↪→) Can clause (2) be removed in the case of deterministic processes? �

Remark 4.2.8 In presence of internal transitions, we prefer weak bisimilarity to strong
bisimilarity as a behavioural equality. However, even when the goal is weak bisimilarity,
examining strong bisimilarity first has benefits. Strong bisimilarity is mathematically sim-
pler, and can thus represent a useful stepping-stone on the route to the weak equivalence.
Also, strong bisimulation can be helpful when working with weak bisimilarity, because
strong bisimilarity implies weak bisimilarity and many useful equalities can be established
using strong bisimilarity, and because the strong equivalence is often useful as auxiliary
relation in proof techniques (see [PS12], or just Exercise 4.2.15). Finally, the differences
between the strong and weak equivalences correspond to subtle points in the theory of the
weak equivalence. �

In contrast with strong bisimulation, the definition of weak bisimulation uses two dif-
ferent clauses (plus their converse) and transition relations of two different shapes. We can,
however, compact the definition by introducing a variant of the weak transitions. We set:

μ̂=⇒ def=
{

μ=⇒ if μ = τ

=⇒ otherwise.

Lemma 4.2.9 A process relation R is a weak bisimulation if and only if P R Q implies:

(1) whenever P
μ̂=⇒ P ′, there is Q′ such that Q

μ̂=⇒ Q′ and P ′ R Q′;
(2) the converse, on the actions from Q. �

4.2 Weak bisimulation 113

Using the clause of the lemma above, weak bisimulation becomes a strong bisimulation
played on different transition relations. Thus, we inherit the properties of strong bisimilarity
on LTSs; for instance the equivalence property, the fixed-point characterisation and the game
characterisation.

We cannot, however, completely blur the distinction between strong and weak bisimilar-
ity, and strong and weak transitions. First, we usually need strong transitions to express the
behaviour of process operators in the SOS style. Second, when establishing weak bisimilar-
ities between concrete processes, one prefers another characterisation of weak bisimulation,
where both strong and weak transitions appear. The problem with the clauses of Defini-
tion 4.2.1 (and similarly for Lemma 4.2.9) is the appearance of the weak transitions

μ=⇒
and =⇒ on the challenger side, which may engender a lot of work in proofs because there
are more =⇒ and

μ=⇒ transitions than
μ−→ transitions. For instance, take the process K with

a transition K
τ−→ a |K . For all n, we have

K =⇒ (a | . . . | a)︸ ︷︷ ︸
n

|K

and all these transitions have to be taken into account in the bisimulation game, when
we consider clause (2) of Definition 4.2.1 and K is the challenger process. Even more
significantly, the appearance of weak transitions on the challenger’s side can make a proof
of weak bisimulation rather awkward, as it might need an induction argument on the
minimum weight of a weak transition of the challenger. To see an example, the reader may
try the proof that weak bisimilarity is preserved by CCS parallel composition. All is not
lost, however, for by virtue of the recursive nature of bisimulation, the same relation is
obtained if in the bisimulation game the challenger’s moves are restricted to only single
transitions:

Lemma 4.2.10 A process relation R is a weak bisimulation if and only if P R Q implies:

(1) whenever P
μ−→ P ′, there is Q′ such that Q

μ̂=⇒ Q′ and P ′ R Q′;
(2) the converse of (1) on the transitions from Q.

Proof We sketch the proof. Let us call a relation that satisfies the clauses of the lemma
sw-bisimulation. Since

μ−→ ⊆ μ=⇒, every weak bisimulation is also an sw-bisimulation. For
the converse, first one shows that if R is an sw-bisimulation and P R Q, then whenever
P =⇒ P ′ there is Q′ such that Q =⇒ Q′ and P ′ R Q′. For this, one proceeds by induction
on the minimum weight of the transition P =⇒ P ′. If the weight is 0 there is nothing to
prove; in the inductive case, one uses the definition of sw-bisimulation.

Then the previous result is generalised to the case of transitions P
μ=⇒ P ′, using the

definition
μ=⇒ as the relation composition =⇒ μ−→=⇒. �

A more profound difference between strong and weak bisimilarity in process languages
is that whereas the

μ−→ relations are usually image-finite, this is often not true of =⇒ and
hence of the

μ=⇒ relations. For instance, this happens in calculi such as CCS (unless they
contain some infinitary operators like infinite choice or unguarded recursive definitions,

114 Processes with internal activities

in which case even the
μ−→ relations are not image-finite), see Exercise 4.1.4. This fact

has important consequences: most notably we lose the cocontinuity of the functional of
bisimilarity, and therefore we lose the possibility of characterising bisimilarity via the
approximants on the natural numbers.

Exercise 4.2.11 (↪→) Transport weak bisimilarity into the schema of coinduction discussed
in Chapter 2. Thus, give characterisations of weak bisimilarity in terms of fixed points over
complete lattices, akin to Theorem 2.10.3 for strong bisimilarity. What is the functional
for weak bisimilarity? Similarly, derive the two game interpretations for weak bisimilarity
(akin to the two interpretations for strong bisimilarity, in Sections 2.13 and 2.14). �

Exercise 4.2.12 (↪→) Here is another characterisation of weak bisimulation, where we
play with sequences of actions as we did for strong bisimulation in Exercise 1.4.16. The
result is thus theoretical more than practical, as the bisimulation checks required become
rather heavy. We write ŝ for the sequence obtained from s by deleting every τ (for instance,
τ̂ aτ = a). Show that R is a weak bisimulation if and only if whenever P R Q:

(1) for all P ′ and sequences s with P
s=⇒ P ′, there is Q′ such that Q

ŝ=⇒ Q′ and P ′ R Q′;
(2) the converse, on the actions from Q.

�

Exercise 4.2.13 (↪→) Let L be an LTS. Consider the LTS L′ that has the same set of states
as L, and all transitions of L plus those defined by the following rules:

P
τ−→ P

P
τ−→ P ′ P ′ μ−→ P ′′ P ′′ τ−→ P ′′′

P
μ−→ P ′′′

Show that two processes P and Q are weakly bisimilar in L if and only if they are strongly
bisimilar in L′. �

The ‘bisimulation up-to’ technique for strong bisimilarity examined in Exercise 1.4.18
cannot be directly generalised to the weak case. The experience from the strong case would
suggest the following definition.

Definition 4.2.14 A process relation R is a candidate weak bisimulation up-to ≈ if,
whenever P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ̂=⇒ Q′ and P ′ ≈R≈ Q′;
(2) the converse, on the transitions emanating from Q. �

However, it is not true in general that, if R is a candidate weak bisimulation up-to ≈,

then R ⊆ ≈. A counterexample is given by R def= {(τ.a.0, 0)}. It satisfies the clauses of

4.3 Divergence 115

Definition 4.2.14, as shown by the following diagram chasing:

τ.a.0 R 0
↓ ⇓

a.0 ≈ τ.a.0 R 0 ≈ 0

A solution is to replace the first occurrence of weak bisimilarity in the definition with strong
bisimilarity.

Exercise 4.2.15 (∗, ↪→) A process relation R is a weak bisimulation up-to ≈ if, whenever
P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ̂=⇒ Q′ and P ′ ∼R≈ Q′;
(2) the converse, on the transitions emanating from Q.

Show that if R is a bisimulation up-to ≈, then R ⊆ ≈. (Hint: prove that ≈ R ≈ is a weak
bisimulation.) �

Other solutions, and other enhancements of the proof method for weak bisimilarity, are
deferred to [PS12].

4.3 Divergence

Definition 4.3.1 (Divergence)

� A process P diverges (or is divergent), written P ⇑, if – using the terminology in
Section 2.1.1 – it has an ω-trace under τ . That is, divergence is the largest predicate ⇑ on
processes such that P ∈ ⇑ implies P

τ−→ P ′ for some P ′ ∈ ⇑.
� An LTS is divergence-free if no processes of the LTS diverge. �

For the above coinductive definition, we have assumed that the reader has acquired
sufficient familiarity with coinductive definitions to accept a definition directly in terms
of ‘the largest predicate (or relation) such that . . . ’. As pointed out in Section 2.1.2, this
requires that such a largest relation exists. One might prefer a more plain definition, first
introducing a notion of divergent set, as a set S of processes such that P ∈ S implies
P

τ−→ P ′ for some P ′ ∈ S. Then ⇑ is the union of all divergent sets, and one can prove that
⇑ is indeed the largest divergent set.

Exercise 4.3.2 (Recommended, ↪→) Let �τ be the ‘purely divergent’ process whose only
transition is

�τ
τ−→ �τ .

� Show that a |�τ ≈ a.0 (the LTSs of these processes are shown in Figure 4.1).
� Generalise the previous result by showing that P |�τ ≈ P , for all P . �

116 Processes with internal activities

•

τ

22
a �� •

τ

22 • a �� •

�a
τ

def= a |�τ Pa
def= a.0

Fig. 4.1 Example of weak bisimilarity with divergence.

�

τ
00

a
$$

�

τ

33

b
$$• •

�

a

//��
��

��
�

b

00�
��

��
��

• •
Fig. 4.2 Another example of weak bisimilarity with divergence.

The equalities in Exercise 4.3.2 may look surprising at first sight. In the first equality,
for instance, the process a |�τ can diverge – it has a complete run that is only made of
internal work. Furthermore, the divergence is persistent, that is, it remains even after the
action a has been consumed. In contrast, the other process, a.0, can never diverge. Here is
another example of a similar situation.

Exercise 4.3.3 Show that the three states marked � in Figure 4.2 are all weakly bisimilar.
�

Weak bisimilarity is indeed insensitive to τ -cycles (loops consisting only of τ -
transitions). This aspect of weak bisimilarity can be justified. First, referring again to
Exercise 4.3.2, the two components of the parallel composition a |�τ could be running on
different machines, therefore the existence of a τ -cycle in a process does not prevent the
execution of the other process. Second, even if the two components were running on the
same machine, or the same processor, under a fair implementation of parallel composition,
the right component cannot always prevail. Hence eventually the action a on the left-hand
side will be executed (provided that the environment accepts the interaction at a, of course).
More generally, if a process has a τ -cycle but with the possibility of escaping the cycle,
then weak bisimilarity assumes that indeed the process will eventually escape: it will exe-
cute the loop an arbitrary but finite number of times. This property is sometimes called
‘fair abstraction from divergence’ (it is often mentioned in the literature in connection to
the validity of Koomen’s fair abstraction rule, see the discussion by Baeten, Bergstra and
Klop [BBK87a]). The property is clearly expressed also by the equality in Exercise 4.3.5.
Third, we introduced weak bisimilarity to abstract from internal work. The equality indeed
abstracts from any finite amounts of internal work; as a consequence of this, however, in
some cases, it also abstracts from infinite amounts (i.e., divergences).

4.3 Divergence 117

Exercise 4.3.4 (↪→) A τ -cycle cannot always be removed. Show that a + �τ ≈ a + 0.
How should �τ be replaced so to obtain a finCCS process weakly bisimilar with a + �τ ?

�

There are variants of weak bisimilarity that treat divergence as a special event and where
therefore the equalities of Exercises 4.3.2 and 4.3.3 fail; see Section 4.7. However, the
theory becomes somewhat more cumbersome. Other forms of behavioural equality that are
not coinductive, such as testing equivalence or failure equivalence, are naturally sensitive
to divergence; see Chapter 5.

Exercise 4.3.5 Consider the constant KP with transitions

KP
τ−→ KP and KP

τ−→ P.

Show that KP ≈ τ.P . �

Exercise 4.3.6 (↪→) (Busy-waiting) This example is about the implementation of choice
using busy-waiting. The specification is

P
def= init.(b + c),

where init is some initialisation activity. The busy-waiting implementation is

BW
def= ν timeout (�timeout | (init.B + init.C)),

where B and C are the constants with the transitions

B
b−→ 0 B

timeout−−−−−→ C,

C
c−→ 0 C

timeout−−−−−→ B

and timeout indicates the occurrence of a timeout. The constant �timeout (defined as in
Example 3.3.1) and the restriction on timeout hide the timeout action from the outside.

Prove that P ≈ BW . �

Exercise 4.3.6 intends suggesting that ‘forgetting’ divergences can be useful in practice.
For instance, consider a protocol designed to operate on a lossy communication medium so
to tolerate message losses. The system composed by the protocol and the medium would
probably exhibit an infinite internal computation in which every message sent is lost by the
medium and then retransmitted. In practice, however, such a behaviour is unlikely to occur.
If the lossy medium is indeed capable of delivering some messages, then it will certainly
deliver some of the messages that it is supposed to carry, so that the divergence never
actually occurs. Proofs of protocol correctness that exploit these aspects may be found in
[BK86, Bri99, LM92].

118 Processes with internal activities

4.4 Rooted weak bisimilarity

In this and in the next section we discuss the basic algebraic properties of weak bisimilarity,
over CCS. The properties are similar to those of the strong equivalence. However, a striking
difference is that weak bisimilarity is not preserved by the choice operator. As a remedy
to this, we first introduce a simple refinement of the bisimilarity, called rooted weak
bisimilarity. (In some papers and textbooks, weak bisimilarity and rooted weak bisimilarity
are respectively called observational equivalence and observational congruence, or else
observation equivalence and observation congruence.)

Lemma 4.4.1 ≈ is preserved by the operators of parallel composition, restriction and
prefixing.

Proof We only treat parallel composition, the other operators are simple and the proof is
similar to the corresponding one for strong bisimilarity. We take

R def= {(P1 |Q,P2 |Q) | P1 ≈ P2}

and show that R is a weak bisimulation exploiting the characterisation in Lemma 4.2.10.
Suppose P1 |Q μ−→ R1 (the case of action from P2 |Q is similar). There are three cases to
consider, depending on the last rule used to infer the transition.

ParL Then R1 = P ′
1 |Q, for some P ′

1 with P1
μ−→ P ′

1. As P1 ≈ P2, there is P ′
2 such that

P2
μ̂=⇒ P ′

2 and P ′
1 ≈ P ′

2. Hence also P2 |Q μ̂=⇒ P ′
2 |Q and P ′

1 |Q R P ′
2 |Q.

ParR Then R1 = P1 |Q′, for some Q′ with Q
μ−→ Q′. We also have P2 |Q μ−→ P2 |Q′,

hence P2 |Q μ̂=⇒ P2 |Q′, and P1 |Q′ R P2 |Q′.

Com Then μ = τ , P1
�−→ P ′

1, Q
�−→ Q′, for some �, and R1 = P ′

1 |Q′. There is P ′
2 such

that P2
�=⇒ P ′

2 and P ′
1 ≈ P ′

2. Hence also P2 |Q τ=⇒ P ′
2 |Q′, and P ′

1 |Q′ R P ′
2 |Q′.

�

Exercise 4.4.2 Show that weak bisimilarity is preserved by the relabeling operator of
Remark 3.5.8. �

In contrast, ≈ is not preserved by the operator of sum, the reason for this being
the pre-emption caused by the τ -actions. For instance, we have τ.a ≈ a, but τ.a + b ≈
a + b.

The problems caused by this negative result are, however, rather limited. First, in practice
one normally uses guarded forms of summation, of the kind μ1.P1 + · · · + μn.Pn, and for
these sums we have the following preservation result.

Lemma 4.4.3 If P ≈ Q then μ.P + R ≈ μ.Q + R, for all R and μ. �

4.4 Rooted weak bisimilarity 119

Exercise 4.4.4 (↪→) Consider the left merge operator | [BK84], defined in terms of parallel
composition with the following SOS rule:

P1
μ−→ P ′

1

P1 | P2
μ−→ P ′

1 |P2

Show that weak bisimilarity is not preserved by this operator. �

Second, even with general summation we can avoid the congruence problem with a
simple modification of the bisimulation clause on the first step.

Definition 4.4.5 (Rooted weak bisimilarity) Two processes P and Q are rooted weakly
bisimilar, written P ≈c Q, if for all μ we have:

(1) for all P ′ with P
μ−→ P ′ there is Q′ such that Q

μ=⇒ Q′ and P ′ ≈ Q′;
(2) the converse, on the actions from Q. �

With ≈c, in the first step, we require a transition
τ−→ to be matched by

τ=⇒, rather than by
=⇒ as for ≈. However, after the initial step, the bisimulation game continues as with ≈.

Exercise 4.4.6 Show that:

(1) τ.a ≈c a;
(2) P | τ.Q ≈c τ.(P |Q). �

Lemma 4.4.7 ∼ ⊆ ≈c ⊆ ≈. �

Exercise 4.4.8 Give examples to illustrate that the above inclusions are strict. �

Exercise 4.4.9 (Recommended, ↪→) Show that ≈c is preserved by the sum operator.
Continue by showing that ≈c is a congruence relation in CCS. Show that ≈c is also
preserved by the left merge operator of Exercise 4.4.4. �

Exercise 4.4.10 P ≈ Q iff τ.P ≈c τ.Q. �

Exercise 4.4.11 (∗,Recommended, ↪→) P ≈ Q iff (P ≈c Q, or P ≈c τ.Q, or
τ.P ≈c Q). �

Theorem 4.4.12 P ≈c Q if and only if, for all contexts, C[P] ≈ C[Q].

Proof The implication from left to right follows from Exercise 4.4.9 and ≈c ⊆ ≈.
It is sufficient to prove the opposite implication for contexts of the form [·] + R.

Thus suppose for all R we have P + R ≈ Q + R. We wish to derive P ≈c Q. Take
a ∈ (sort(P) ∪ sort(Q)), and suppose P

μ−→ P ′. We also have P + a
μ−→ P ′, and Q + a

can match it, as P + a ≈ Q + a. As μ = a, there are two possibilities for such a matching
transition:

� μ = τ and the transition is Q + a =⇒ Q + a;
� the transition originates from Q, that is, there is Q′ such that Q

μ=⇒ Q′ and P ′ ≈ Q′.

120 Processes with internal activities

T1 (1st τ -law) μ.τ.P = μ.P

T2 (2nd τ -law) P + τ.P = τ.P

T3 (3rd τ -law) μ.(P + τ.Q) = μ.(P + τ.Q) + μ.Q

Fig. 4.3 The τ -laws.

The first case is not possible, because Q + a has an a-transition that P ′ does not have.
We conclude that the second case must be true. We have thus obtained clause (1) of the
definition of ≈c; clause (2) is similar. �

In the proof of the above theorem we make use of Assumption 3.2.2 that the set of
actions is large enough (as we need sort(P) ∪ sort(Q) = Act). The assumption can actually
be removed [Gla05], but it allows us a (much) simpler proof.

We call a process P stable if P cannot perform a τ -transition.

Exercise 4.4.13 (↪→) Show that on the set of processes that are not stable weak bisimilarity
does not imply rooted weak bisimilarity. �

4.5 Axiomatisation

We present an algebraic characterisation of ≈c over finCCS. (We are forced to consider
≈c rather than ≈, because the rules for equational reasoning require the relation to be a
congruence.) The difference between the strong and weak congruences is captured by three
simple axioms, the τ -laws, shown in Figure 4.3. The first and second law express absorption
properties of τ -prefixes and processes. It is tempting to replace them with the simpler law
τ.P = P but, as already noted (e.g., in Exercise 4.4.6(1)), this law is not valid for ≈c. The
third law shows that, under a prefix, a process reachable via τ s can be brought up at the
outermost level so to make explicit that possibility of evolution via a weak transition. We
call the system obtained by adding the τ -laws to the system SB for strong bisimilarity in
Figure 3.2 WB.

Lemma 4.5.1 (τ laws) The τ laws in Figure 4.3 are valid when = is interpreted to be ≈c

(and hence also for ≈).

Proof The laws are proved following the definition of ≈c, and using the facts that ≈ is
reflexive and τ.P ≈ P . �

Exercise 4.5.2 Show that WB � P + τ.(P + Q) = τ.(P + Q). �

Theorem 4.5.3 For P,Q ∈ finCCS, we have P ≈c Q iff WB � P = Q.

Proof As usual, soundness of system WB is established by showing that the axioms in
WB and the laws for equational reasoning are valid for ≈c. For the axioms of WB that
come from the system SB, this follows from the soundness of SB for ∼ and the inclusion

4.5 Axiomatisation 121

∼ ⊆ ≈c. The remaining τ -laws are proved valid in Lemma 4.5.1, and equational reasoning
in Exercise 4.4.9.

The difficult part is the completeness of WB. We sketch the proof. Thus suppose
P ≈c Q; we wish to conclude that also WB � P = Q holds. First, since the axioms in
WB include those in SB, proceeding as in the proof of Theorem 3.6.1 we can rewrite P and
Q into full standard forms (where only the operators nil, choice and prefixing may appear).
So there are full standard forms P ′ and Q′ such that WB � P = P ′ and WB � Q = Q′.

The second step consists of saturating the full standard forms so obtained; that is, we
add summands that represent all weak transitions the processes can perform. Precisely, say
that a process R is saturated if

R =
∑

0≤i≤m

μi.Ri, where:

� each Ri is saturated;
� whenever R

μ=⇒ R′ there is i such that μi = μ and Ri = R′.

We transform a process S in full standard form into a saturated process, proceeding by
induction on the structure of S. Here the crucial axioms are the second and third τ -laws.
We only report two examples, which should be enlightening enough, leaving the details of
the transformation to the reader. If the process is S = a.(b.0 + τ.0), which is not saturated
because the transition S

a=⇒ 0 has not a corresponding summand, then using the third τ -law
we have

WB � S = S + a.0,

resulting in a saturated process. And if S = τ.a.0, which is not saturated because of the
transition S

a=⇒ 0, then using the second τ -law we have

WB � S = S + a.0.

In general, the saturated form so obtained can be rather long, because of the ‘copying’
axioms (second and third τ -laws, and S4), which may be applied several times, in the
expanding direction.

So far we have obtained saturated forms P ′′ and Q′′ such thatWB � P = P ′′ andWB �
Q = Q′′. The final step consists of deriving WB � P ′′ = Q′′. This is done proceeding on
the sum of the depths of P ′′ and Q′′ (we recall that the depth of a process is the maximal
number of nested prefixes in its syntax). In the base case the sum is 0, and we have
P ′′ = Q′′ = 0; the result is then immediate. In the inductive case, one shows that for each
summand μ.P ′′′ of P ′′ there is a summand of Q′′ that is provably equal to μ.P ′′′, using
the property that P ′′ and Q′′ are saturated. A little care is needed in applying the induction
hypothesis because ≈c is defined in terms of ≈: after the first transitions the derivative
processes are related by ≈, and not necessarily ≈c. This problem is overcome by applying
the result of Exercise 4.4.11 and the first τ -law.

122 Processes with internal activities

One then proves the converse, on the summands of Q′′, and concludes WB � P ′′ = Q′′

using the axioms for sum to handle duplicates. �
Exercise 4.5.4 Complete the details of the proof above. �

Remark 4.5.5 In the proof of Theorem 4.5.3 we can apply Exercise 4.4.11 because,
following the result in the direction from left to right, the sum of the depths of the two
processes increases at most by one and this is sufficient to make use of the inductive
assumption. In contrast, we cannot appeal to Exercise 4.4.10 as this would increase the sum
of the depths by two. Deng [Den07] shows how to modify the proof schema so as to use (a
‘syntactic version’ of) Exercise 4.4.10. This makes the proof a bit more involved but gives
us a strategy that can be useful with behavioural equivalences in which Exercise 4.4.11
fails; see Remark 4.9.12. �

Exercise 4.5.6 (∗, ↪→) (Process sequentialisation)

(1) Let P
def= a.b | c, and Q be any process. Suppose we want to start Q only when P is

terminated (i.e., all its prefixes have been consumed). We can achieve this by using
some fresh name d as a trigger for Q, activated by the components of P . Thus P

becomes P ′ def= a.b.d | c.d. Show that

νd (P ′ | d.d.Q) ≈c a.(b.c.Q + c.b.Q) + c.a.b.Q.

(2) Guided by the above example, write down an encoding that transforms any finCCS
process P (for simplicity, assume also that P does not use the choice operator) into
a process [[P]]d , where d is a name fresh for P , such that [[P]]d behaves exactly as
P but emits an output at d when P is terminated. Using this encoding, the sequential
composition between two processes P and Q can be written as follows:

P ; Q
def= νd ([[P]]d | d.Q), where d ∈ fn(P,Q).

It can now be amusing to verify some properties of sequential composition. For instance,
prove, algebraically:

a.0; P ≈c a.P,

0; P ≈c τ.P .

More interesting properties of sequential composition are the following ones:

(P ; Q); R ≈c P ; (Q; R),
P ; 0 ≈c P.

Their proof is, however, rather complex; a sketch may be found in Appendix A. �

The reader who, at this stage, does not yet feel comfortable with weak bisimilarity may
want to try other (and larger) examples. For instance, the examples in [AILS07, Section
3.4], and the Scheduler and Alternating Bit Protocol examples in [Mil89, Sections 5.4–5.5

4.6 On the bisimulation game for internal moves 123

and 6.3–6.4]. To understand them, the reader should just bear in mind the different notation
for restriction (there written P \L, where L is the set of restricted names), the use of recur-
sive constant equations instead of constants with predefined transitions (as by Remark 3.2.3;
there are also parametrised recursive equations, with the expected meaning for the param-
eters), and the use of the relabelling operator (Remark 3.5.8). Further, the two examples in
[Mil89] make use of the restricted parallel composition operator ‖ of Exercise 3.5.12, of
the weak bisimulation up-to ≈ technique of Exercise 4.2.15, and use the symbol = in place
of ≈c.

4.6 On the bisimulation game for internal moves

We have seen a number of characterisations of ≈, where we played with the way strong
transitions are combined into weak transitions. In this and the following sections of the
chapter we present a few more variations. The resulting relations are, however, all differ-
ent from each other and from ≈ (and from its congruence ≈c). Whenever possible, the
definitions will follow the style of Lemma 4.2.10, mixing strong and weak transitions, for
reasons of efficiency.

First, we consider a form of bisimulation that completely ignores τ -actions: there is no
bisimulation game on τ -actions (clause (2) of Definition 4.2.1 and its converse; we cannot
follow Lemma 4.2.10 here).

Definition 4.6.1 A process relation R is a ≈τ -bisimulation if whenever P R Q:

(1) for all P ′ and � with P
�=⇒ P ′ there is Q′ such that Q

�=⇒ Q′ and P ′ R Q′;
(2) the converse of (1) on the actions from Q.

Then ≈τ -bisimilarity, written ≈τ , is the union of all ≈τ -bisimulations. �

Such a ≈τ -bisimilarity is the one proposed for weak LTSs in [HM85], under a different
name.

Exercise 4.6.2 (↪→)

(1) Show that ≈τ is preserved by the operators of restriction and sum.
(2) Show that τ.a + b ≈τ a + b.
(3) Show that ≈τ is not preserved by prefixing and parallel composition. (Hint: you might

find the processes at point (2) useful). �

One can argue that ≈τ is less natural than ≈ because of equalities such as those in Exer-
cises 4.6.2(2) (see also the discussion after Exercise 4.2.5). But the killing argument against
≈τ is the problem with parallel composition in Exercise 4.6.2(3). Parallel composition is
a fundamental operator, one that imposes a precise structure on a system as a set of com-
ponents running concurrently – the system could even be distributed and the components
running on different machines. A behavioural equivalence that is not preserved by parallel

124 Processes with internal activities

composition is not acceptable, as we lose the possibility of compositional reasoning on
such structures.

Exercise 4.6.3 (∗, ↪→) Show that the congruence induced by ≈τ on CCS (the largest
congruence contained in ≈τ) is ≈c. �

Exercise 4.6.4 Write P
μ=⇒s P ′ if P

μ=⇒ P ′ and P ′ is stable. Discuss whether we improve
the problems of ≈τ if the bisimulation clauses become as follows, at least on LTSs that do
not contain divergent states:

� for all P ′ and � with P
�=⇒s P ′ there is Q′ such that Q

�=⇒s Q′ and P ′ R Q′,

and the converse, on the actions from Q. (Hint: you may show that the processes c.(τ.a + b)
and c.a become equivalent, and that the bisimilarity is still not preserved by parallel
composition.)

�

4.7 Bisimulation with divergence

We have justified in Section 4.3 the property that weak bisimilarity is insensitive to diver-
gence. It is nevertheless technically possible to take divergence into account. In this section
we sketch this solution.

A process that diverges is treated as a process whose behaviour is not fully specified; thus
bisimilarity becomes a preorder, rather than an equivalence. Intuitively, P and Q bisimilar
now means that they have the same behaviour except that P may diverge where Q accepts
an action. The main modification is therefore in clause (3) of Definition 4.2.1 (or clause (2)
of Lemma 4.2.10), where the bisimulation game is required only if P is not divergent, in
which case, furthermore, Q should not be divergent either.

There are, however, two forms of divergence predicate that one may use. The first is
the predicate ⇑ of Definition 4.3.1. The second is a family of predicates ⇑μ, for μ ∈ Act,
detecting whether a process may diverge before or after the action μ. Formally:

P ⇑μ
def= P ⇑ or (there is P ′ with P

μ=⇒ P ′ and P ′ ⇑).

Now, within the standard schema of weak bisimilarity, as by Definition 4.2.1 or
Lemma 4.2.10, it is recommended that one use the predicates ⇑μ. We defer comments
on this to after the definition.

Definition 4.7.1 (Prebisimilarity with divergence) A process relation R is a prebisimu-
lation with divergence if, whenever P R Q, for each μ we have:

(1) for all P ′ with P
μ−→ P ′ there is Q′ such that Q

μ̂=⇒ Q′ and P ′ R Q′;
(2) if not P ⇑μ, then

(a) also not Q ⇑μ, and

(b) for all Q′ with Q
μ−→ Q′ there is P ′ such that P

μ̂=⇒ P ′ and P ′ R Q′.

4.7 Bisimulation with divergence 125

Prebisimilarity with divergence, written ≤⇑, is the union of all prebisimulations with
divergence.

Exercise 4.7.2 (∗) Show that ≤⇑:

(1) is a preorder;
(2) is preserved by the operators of prefixing and restriction. The enterprising reader may

also try the proof for parallel composition. This, however, requires some work: the
difficult part is to show that, when P ≤⇑ Q, if not P |R ⇑μ then also not Q |R ⇑μ,
for any R. Details may be found in [Wal90]. �

As usual, ≤⇑ is not preserved by the choice operator. We can re-use counterexamples
for ≈, as ≈ and ≤⇑ coincide on non-divergent processes. For instance, τ.0 ≤⇑ 0 but not
τ.0 + a.0 ≤⇑ 0 + a.0. We refer to [Wal90] for the rooted version of ≤⇑, whose definition
is not entirely standard.

Exercise 4.7.3 (↪→) Show that

(1) if P ⇑ then for all Q we have P ≤⇑ P + Q;
(2) �τ ≤⇑ P , for all P ; is the same true for 0 in place of �τ ?
(3) a.(b + �τ) ≤⇑ a.(b + �τ) + a.�τ ;
(4) if P ⇑, and P ≤⇑ Q, and there is no P ′ such that (P

τ=⇒ P ′ and not P ′ ⇑), then for all
R, we have P ≤⇑ Q + R. Show also that the last condition, on the derivatives P ′, is
necessary. �

The reason for using the predicates ⇑μ instead of ⇑ in Definition 4.7.1 has to do with

the appearance of weak transitions
μ̂=⇒ in the bisimulation game. Recall that

μ=⇒ stands
for =⇒ μ−→=⇒; the second =⇒ means that we can explore the behaviour of the process
after the action μ arbitrarily down along internal moves. If divergence matters, it is then
reasonable and natural to be able to detect also the existence of infinite paths of internal
moves after the μ action. Indeed, if in Definition 4.7.1 we replaced the predicates ⇑μ

with the single predicate ⇑, the resulting preorder, say ≤⇑′, would have a rather complex
algebraic theory; it would also be a mathematically deficient preorder, lacking properties
such as continuity [Wal90, Abr87] (see also [AH92]). It is easy to see that ≤⇑′ ⊆ ≤⇑. To

see that the containment is strict, consider the terms P
def= a.�b

τ (for �b
τ as in Figure 4.1)

and Q
def= P + a.�τ . We have P ≤⇑ Q but not P ≤⇑′ Q. See [Wal90] for more details on

≤⇑. The preorder also appears in [HP80, Sti87].
If we wish to use the single divergence predicate ⇑, then in the bisimulation game we

should only use weak transitions of the form=⇒ μ−→ or=⇒ (that is, the process immediately
stops after a visible action). This means adopting the ‘delay’ style of bisimulation, as by
Lemma 4.9.6; see Exercise 4.9.14. This preorder appears in [Mil81, Abr87, Wal90].

126 Processes with internal activities

4.8 Dynamic bisimulation

We have seen that ≈ is a bisimulation but not a full congruence in CCS (due to the
presence of the sum operator), whereas ≈c has the desired congruence properties but is
not a bisimulation (as it is defined in terms of another relation, ≈). The variation of weak
bisimulation in this section combines the ideas in the definitions of ≈ and ≈c to obtain a
relation that is at the same time a bisimulation and a congruence.

Definition 4.8.1 (Dynamic bisimilarity) A process relation R is a dynamic bisimulation
if, whenever P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ=⇒ Q′ and P ′ R Q′;
(2) the converse of (1) on the actions from Q.

Dynamic bisimilarity, written ≈dyn, is the union of all dynamic bisimulations. �

The above form of bisimulation first appears in [HM85, Appendix C1]. It has been
studied, and named dynamic bisimilarity, by Montanari and Sassone [MS92].

Exercise 4.8.2 Show that dynamic bisimilarity is a congruence in CCS. �

In dynamic bisimilarity we lose, however, some desirable equalities, such as μ.τ.P =
μ.P .

Exercise 4.8.3 Show that the equalities of Example 4.2.3 and the first τ -law (T1) fail for
dynamic bisimilarity. �

Exercise 4.8.4 Show that the second and third τ -laws remain valid for dynamic bisimilarity.
�

Exercise 4.8.5 (↪→) Are the following laws valid for dynamic bisimilarity?

(1) P = τ.P ;
(2) τ.(P |Q) = P | τ.Q. �

4.9 Branching bisimulation, η-bisimulation and delay bisimulation

In the weak-bisimulation game, a process Q, in answering a challenge from another process
P , may perform an arbitrary number of τ -transitions. Nothing is required of the intermediate
states attained along the sequence. Referring to Figure 4.4, the only relations required are
(1) and (4), involving the initial states P,Q and final states P ′ and Q′. It may indeed
happen that some of the intermediate states are behaviourally different with respect to the
initial or final states. For instance, consider the weakly bisimilar processes in Figure 4.5,

and the move P
b−→ 0. Process Q answers with the transition sequence Q

τ−→ b−→ 0; the
intermediate state, b.0, is unrelated to both Q and 0. In the variations of weak bisimulation

4.9 Branching bisimulation, η-bisimulation and delay bisimulation 127

Q

��
P

(1)
�������� (2)

μ

$$

Q1

μ
$$

P ′
(4)

��
��

��
��

(3)
Q2

��
Q′

Fig. 4.4 The bisimulation game in ≈, ≈d, ≈η and ≈br.

•
b

//��
��

��
�

τ
$$

d

00�
��

��
��

• •
b
$$

•

•

•
τ
$$

d

00�
��

��
��

•
b
$$

•

•
P

def= a.(b + τ.b + d) Q
def= a.(τ.b + d)

Fig. 4.5 Processes in ≈ and ≈d, but not in ≈η or ≈br.

in this section all, or parts of, the moves that abstract from τ -actions are not allowed to
change the bisimilarity class of a process.

We begin with branching bisimulation. It has been proposed by van Glabbeek and
Weijland [GW96, Gla01b]. Their motivating argument is that a bisimulation semantics,
while remaining coarser than graph isomorphism, should faithfully respect the branching
structure in the graph of an LTS, so to precisely take into account when a process has a
choice point among different possible future behaviours. On the basis of examples such as
that of Figure 4.5 discussed above, van Glabbeek and Weijland argue that weak bisimilarity
is not fully ‘branching time’. (In concurrency, the term ‘branching time semantics’ is used
in opposition to ‘linear time’ semantics, where the meaning of a process is determined by
its possible runs, or partial runs.) Branching bisimulation is then put forward as a remedy
for this. Referring to Figure 4.4, branching bisimulation also imposes the relations (2) and
(3). This is sufficient to guarantee that also all possible intermediate states between Q and
Q1 are equivalent to each other, and similarly for the states between Q2 and Q′.

Definition 4.9.1 (Branching bisimilarity) A process relation R is a branching bisimula-
tion if whenever P R Q, for all μ we have:

128 Processes with internal activities

(1) for all P ′ with P
μ−→ P ′, either

(a) μ = τ and P ′ R Q, or
(b) there are Q′,Q1,Q2 such that Q =⇒ Q1, Q1

μ−→ Q2, and Q2 =⇒ Q′

with P R Q1, P ′ R Q2, and P ′ R Q′;
(2) the converse of (1) on the actions from Q.

Branching bisimilarity, written ≈br, is the union of all branching bisimulations. �

The following lemma explains why, in Definition 4.9.1, the states between Q and Q1,
and those between Q2 and Q′, may be ignored: they are all equivalent.

Lemma 4.9.2 (Stuttering Lemma for ≈br) Suppose Pi
τ−→ Pi+1, for 0 ≤ i < n, and

P0 ≈br Pn. Then also Pi ≈br Pj , for all 0 ≤ i, j ≤ n.

Proof Suppose {Pi}i as in the assertion, and take

R def= {(P0, Pi) | 0 < i ≤ n} ∪ ≈br .

We show that R is a branching bisimulation. Consider a pair (P0, Pi). If Pi

μ−→ P ′
i then P0

can answer with the transition P0 =⇒ Pi

μ−→ P ′
i , as ≈br is reflexive and therefore we have

Pi R Pi and P ′
i R P ′

i .

Consider now a move from P0, P0
μ−→ P ′

0. To find a matching transition from Pi , we
first examine the matching transition from Pn, which must exist because P0 ≈br Pn by
hypothesis. There are two cases:

(i) μ = τ and P ′
0 ≈br Pn, or

(ii) there are P ′
n, P

′′
n , P ′′′

n with Pn =⇒ P ′
n

μ−→ P ′′
n =⇒ P ′′′

n and P0 ≈br P ′
n, P ′

0 ≈br P ′′
n , and

P ′
0 ≈br P ′′′

n .

In case (i), as i < n, we can take Pi =⇒ Pn−1
τ−→ Pn as the matching transition, for

P0 R Pn−1 and P ′
0 R Pn.

In case (ii), we can conclude that also Pi =⇒ P ′
n

μ−→ P ′′
n =⇒ P ′′′

n and we are done. �

Exercise 4.9.3 (↪→) State and prove the branching bisimilarity version of Exercise 4.2.4.
Then show that Lemma 4.9.2 is an immediate consequence of it. �

Branching bisimilarity has a pleasant axiomatisation [Gla93b, GW96], briefly discussed
at the end of this section, and logical characterisation [DV95], and is resistant to certain
refinements of actions [DD91, GW96] (while weak bisimilarity is not), and has efficient
checking algorithms (see [AIS12]). On the other hand, proofs of properties of branching
bisimilarity (as well as η and delay bisimilarities) can sometimes require more work than
the corresponding proofs for weak bisimilarity because the definition of the latter is simpler.
Examples of this are the transitivity property (see [Bas96]; the composition of two branching
bisimulations need not be a branching bisimulation), and the Stuttering Lemma 4.9.2 (its
proof for weak bisimilarity, in Exercise 4.2.5, is simpler).

4.9 Branching bisimulation, η-bisimulation and delay bisimulation 129

•
a
$$a//��

��
��

�

•
a
$$

•
τ
$$

b

00�
��

��
��

• •
a
$$

•

•

•
a
$$•
τ
$$

d

00�
��

��
��

•
a
$$

•

•
a.a + a.(τ.a + b) a.(τ.a + b)

Fig. 4.6 Processes in ≈ and ≈η, but not in ≈d or ≈br.

Referring again to Figure 4.4, one may also impose, besides (1) and (4), only the relation
(2), or only the relation (3). The resulting bisimulations are called η-bisimulation and delay
bisimulation.

Definition 4.9.4 (η-bisimilarity, delay bisimilarity) η-bisimulation and η-bisimilarity
(written ≈η) are defined as branching bisimulation and branching bisimilarity, in Defini-
tion 4.9.1, except that the requirement P ′ R Q2 is omitted.

Delay bisimulation and delay bisimilarity (written ≈d) are defined as branching bisimu-
lation and branching bisimilarity, in Definition 4.9.1, except that the requirement P R Q1

is omitted. �

The processes in Figure 4.5 are in the relation ≈d, but not in ≈η. On the other hand,
the processes of Figure 4.6 are in the relation ≈η, but not in ≈d. Both pairs of processes in
Figure 4.5 and in Figure 4.6 are in ≈; none of the pairs is in ≈br. The relationship among
these four bisimilarities is as follows, an arrow indicating a strict inclusion:

≈br

%%

�
��

��
��

�

≈η

�
��

��
��

�
≈d

%%��
��

��
��

≈
The name η for ≈η was coined in [BvG87], where η is a constant used for abstraction

similarly to τ . A form of delay bisimulation, though divergence-sensitive, first appears
in [Mil81] (under a different name, observation equivalence, which later, in the CCS
community, became the predominant name for weak bisimilarity). The name ‘delay’ is
first used in [Wei89], where delay bisimulation stems from a study of translations of
asynchronous into synchronous calculi.

While η-bisimilarity appears to have a limited practical interest, delay bisimilarity may
have a definite appeal, particularly on languages with exchange of values. To see why, we

130 Processes with internal activities

first have to make a simplification to its definition. The simplification is possible both for
delay and for branching bisimulation, and makes use of the Stuttering Lemma 4.9.2 and
its delay-bisimulation variant. In the definition of branching bisimulation, the transition
Q2 =⇒ Q′ can be eliminated.

Lemma 4.9.5 ≈br is the largest relation R such that whenever P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, either

(a) μ = τ and P ′ R Q, or
(b) there are Q′,Q1 such that Q =⇒ Q1 and Q1

μ−→ Q′ with P R Q1 and P ′ R Q′;
(2) the converse of (1) on the actions from Q. �

The same can be made for delay bisimulation.

Lemma 4.9.6 ≈d is the largest relation R such that P R Q implies:

(1) for all P ′ with P
τ−→ P ′ there is Q′ such that Q =⇒ Q′ and P ′ R Q′;

(2) for all P ′ and � with P
�−→ P ′, there is Q′ such that Q =⇒ �−→ Q′ and P ′ R Q′;

(3) the converse of (1) and (2), on the actions from Q. �

In the presentation of delay bisimulation in Lemma 4.9.6, the only difference with weak
bisimulation is on visible actions: abstraction from τ -actions is only permitted before the
visible action. In other words, in delay bisimulation we do not continue the evaluation of
a process when an intervention of the outside environment occurs. In higher-order calculi,
such as the λ-calculi of [Pit12], bisimulation is often presented in this style (for instance, the
applicative bisimulation in [Pit12] is a form of delay bisimulation). One might argue, more
generally, that delay bisimulation is reasonable in languages in which interaction involves
the exchange of values. If a process is expecting to receive a value in an interaction, then
in general we cannot continue with the evaluation of the process until the value is actually
received and substitutes the appropriate placeholder in the continuation. Delay bisimulation
fits well with a semantics in which the act of ‘allowing an interaction’ is separated from
the act of ‘receiving and substituting a value’; the delay style may even be necessary to
ensure important properties of the bisimulation such as transitivity, see ‘late bisimilarity’
in [San96, SW01].

Exercise 4.9.7 Define a fixed-point characterisation of branching bisimilarity, akin to the
one in Theorem 2.10.3; prove also the analogue of Lemma 2.10.1. �

Exercise 4.9.8 Show that, in CCS, branching, η and delay bisimilarity have the same
congruence properties as weak bisimilarity. �

As usual, to obtain equivalences that are preserved by the choice operator we must add
a ‘root condition’. Recall that in the case of weak bisimilarity the root condition for a
pair (P,Q) means that the first challenge transition, say P

μ−→ P ′, must be answered by a
composite weak transition of the form Q =⇒ μ−→=⇒ Q′, with derivatives P ′ and Q′ that
are weakly bisimilar. The possibility for Q of making τ -transitions both before and after

4.9 Branching bisimulation, η-bisimulation and delay bisimulation 131

the μ-transition comes from the lack of conditions (2) and (3) in the bisimulation game as
depicted in Figure 4.4. One or both possibilities of transitions are lost when (2) or (3) are
included. Thus, using <> to range over {≈,≈η,≈d,≈br}, the rooted equivalence is written
<>c and is defined thus:

� P <>c Q if for all μ and P ′ with P
μ−→ P ′ there is Q′ such that (� <>) and P ′ <> Q′

(plus the converse, on the actions from Q)

where (� <>) is, depending on how <> is instantiated:

(� ≈) Q =⇒ μ−→=⇒ Q′,
(� ≈η) Q

μ−→=⇒ Q′,
(� ≈d) Q =⇒ μ−→ Q′,
(� ≈br) Q

μ−→ Q′ .

In particular, in case of rooted branching bisimilarity, the answer to the first challenge is
‘strong’.

Exercise 4.9.9 Show that in each case the rooted equivalence <>c is indeed the largest
CCS congruence included in the equivalence <>, assuming, as usual, that fresh names are
always available. (For ≈c and ≈ this was already done in Theorem 4.4.12.) �

A uniform approach to defining the ‘root condition’ in behavioural equivalences is
proposed in [GW96], but it best applies to processes whose LTS is acyclic or, at least, LTSs
in which the root does not have ingoing transitions.

A major interest of the rooted relations is that, being congruence, they can be axiomatised
on finCCS. We have seen the axiomatisation of≈ in Section 4.5. We briefly discuss the others
here. As usual, axiomatisations are an enlightening means of understanding the relationships
among equivalences, their differences, and the meaning itself of the equivalences.

Exercise 4.9.10 (↪→) Show that:

(1) the first τ -law, T1, remains valid for ≈c
br, hence also for ≈c

η and ≈c
d;

(2) the second τ -law, T2, is valid for ≈br, hence also for ≈η, but not for ≈c
η, hence also

not for ≈c
br;

(3) the third τ -law, T3, is not valid for ≈d, and hence also not for ≈br.
�

The following axiom, which first appeared in [BvG87], weakens the τ -law T2, and is a
key axiom in the axiomatisations of ≈c

η and ≈c
br:

B μ.(τ.(P + Q) + P) = μ.(P + Q).

Exercise 4.9.11 (↪→) Show that, with the help of the axioms for strong bisimilarity, B
subsumes T1, and can be derived from T1 and T2. �

132 Processes with internal activities

The following table summarises the axioms to be added to those for strong bisimilarity
so as to obtain axiomatisations for the four rooted relations in finCCS. An entry X means
that the axiom is not valid for that equivalence, ok means the axiom is valid, and (ok)
means that the axiom is valid but is redundant in the axiom system. In certain languages,
in the axiomatisation of rooted branching bisimilarity the axiom B can be simplified and
replaced by T1 alone [Gla93b, GW96]. We refer to [GW96, Gla93b, Den07] for proofs and
more details.

T1 T2 T3 B
≈c ok ok ok (ok)
≈c

η (ok) X ok ok

≈c
d ok ok X (ok)

≈c
br (ok) X X ok

Remark 4.9.12 The proofs of the axiomatisations for ≈c
η and ≈c

br are more involved than
that for ≈c discussed in Section 4.5. This is partly due to the extra checks in the definitions
of these relations but, more importantly, it is caused by the failure of the analogue of
Exercise 4.4.11, which plays a key role in the proof for ≈c. In contrast, the result remains
valid for delay bisimilarity and its congruence ≈c

d; indeed the proof of the axiomatisation
for ≈c

d is similar to that for ≈c. See also Exercise 4.9.13 and Remark 4.5.5. In presence of
special operators, e.g., forms of iteration, the stronger demands of branching bisimilarity
can, however, make algebraic reasoning simpler; see for instance [AvGFI96]. �

Exercise 4.9.13 Show that the result in Exercise 4.4.11 remains valid for delay bisimilarity
and its congruence, whereas it fails for branching and η bisimilarities and their congruences.
(Hint: consider the processes a + τ.(a + b) and a + b.) �

Exercise 4.9.14 Define a divergence-sensitive version of delay bisimilarity, using the ideas
at the end of Section 4.7. Show that it is a preorder. �

5

Other approaches to behavioural equivalences

In the first part of this chapter we present (yet) another characterisation of bisimilarity,
namely bisimilarity as a testing equivalence. In a testing scenario two processes are equiva-
lent if no experiment can distinguish them. An experiment on a process is set up by defining
a test, that is, intuitively, a pattern of demands on the process (e.g., the ability of performing
a certain sequence of actions, or the inability of performing certain actions). Depending on
how the process behaves when such a test is conducted, the observer emits a verdict about
the success or failure of the experiment. The experiments are means of understanding how
the processes react to stimuli from the environment. A testing scenario has two important
parameters.

(1) How are observations about the behaviour of a process gathered? In other words, what
can the observer conducting the experiment do on a process? For instance, is he/she
allowed to observe the inability of a process to perform certain actions? Is he/she
allowed to observe whether a process can immediately perform two distinct actions?
Is he/she allowed to make a copy of a process? These decisions are embodied in the
language for the tests.

(2) How is the success or the failure of an experiment determined?

The choice for these parameters has an impact on the distinctions that can be made on the
processes. We will set up a testing scenario whose induced equivalence is precisely bisim-
ilarity. Weakenings of the scenario, where the control of the observer over the processes is
reduced, may, however, lead to coarser equivalences. Some of them have arguably a natural
justification; examples that we will consider are may, must and testing equivalences. We
will also touch on refusal and failure equivalences. The testing theme thus becomes an
excuse for pointing out the existence of several possible notions of behavioural equivalence
for processes. Comparing different equivalences within the same framework, in our case
the testing framework, is useful for understanding them and their discriminating power.

Another reason for defining a testing scenario for bisimilarity is investigating its con-
structivity, or effectiveness. Indeed, while it is hard to dispute that bisimilar processes
should be considered semantically equal (particularly in the case of strong bisimilarity),
one may wonder whether bisimilarity actually makes too many distinctions. A testing

133

134 Other approaches to behavioural equivalences

characterisation is informative, by revealing the form of tests that are needed to distinguish
all and only the non-bisimilar processes.

Failure equivalence, while the same as testing equivalence under certain assumptions,
stems from an approach different from that of testing. Roughly, the idea is that two processes
should be different only if they can be distinguished by finite linear observations, where
deadlock is included among the observables. The observations made on processes consist of
a trace and a set of actions that cannot be performed after that trace.1 Failure equivalence was
indeed developed, in the language CSP (Communicating Sequential Processes, [Hoa85]),
as a refinement of trace equivalence that respects deadlock. We will also see that, by
requiring compositionality of the same property with respect to classes of operators larger
than those given by the CCS or CSP operators, we can obtain equivalences finer than the
original failure equivalence. And if the class is large enough we end up with bisimilarity.
This characterisation of bisimilarity in terms of traces and deadlock is close in spirit, if not
in the technicalities, to that in terms of tests. We will briefly discuss also a variant of failure
equivalence, ready equivalence.

A class of operators can be formalised in terms of constraints on the format of the SOS
rules that specify the behaviour of the operators. We will see that, no matter how large the
class of operators is, bisimilarity cannot be broken: the bisimilarity between two processes is
maintained when the processes are placed inside a context built out of the operators allowed.
This property, which fails for the other equivalences discussed, confirms to us that bisimi-
larity is very robust and is the finest extensional equivalence one can impose on processes.

In summary, the main objectives of this chapter are:

� to present the testing framework;
� to show the characterisation of bisimilarity in this framework;
� to introduce a few well-established non-coinductive behavioural equivalences and pre-

orders and to contrast them with the coinductive ones;
� to discuss the consequences on behavioural equivalences of variations of the classes of

‘acceptable’ process operators when the only observables are traces and deadlock.

In Section 5.1 we set the basis of a testing scenario. In Section 5.2 we specialise the sce-
nario so as to obtain a characterisation of (strong) bisimilarity. In Section 5.3 we consider
weak bisimilarity. In Section 5.4 we motivate the move to less powerful test languages,
giving rise to the may, must and testing equivalences and preorders. We define them in
Section 5.5, illustrate them with examples in Section 5.6, present alternative characterisa-
tions, useful for proofs, in Section 5.7, and adapt them to weak LTSs in Section 5.8. In
Sections 5.9–5.11 we introduce refusal, failure and ready equivalences. In Section 5.12
we compare the discriminating power produced by classes of operators, following some of
the best known formats of SOS rules. All behavioural equivalences in the chapter explain
the parallelism between two independent processes as the interleaving of their actions.

1 In retrospective, one may even see the observations made in failure equivalence as special kinds of test. But the motivations for
failure equivalence are better understood differently, following the way it was discovered and developed.

5.1 A testing scenario 135

In Section 5.13 we briefly comment on non-interleaving equivalences. We conclude the
chapter, in Section 5.14, with a discussion on the variety of behavioural equivalences and
models that we find in concurrency theory.

Assumption 5.0.1 In this chapter we assume that the LTSs are image-finite. �

Assumption 5.0.1 is both to simplify the presentation and to have sharper results. Also,
in some cases there are different ways of extending the behavioural equivalences and
preorders to infinitely branching processes, to account for, e.g., infinite traces or divergences.
Such details would take us beyond the scope of the book. Image-finiteness is actually
necessary in the characterisation of bisimilarity via tests in Corollary 5.2.18 or via completed
traces in Section 5.12, as the proofs make use of the inductive stratification of bisimilarity
(Theorem 2.10.13 and Exercise 2.10.18).

5.1 A testing scenario

An experiment is the application of a test on a process. To define a testing scenario we
have to specify what the possible tests are and how the outcomes of the experiments are
obtained.

A particular run of a test on a process can lead to success or not. We use � for success,
and ⊥ for lack of success; ⊥ may indicate an explicit failure in the test, or may indicate that
the run never reached a success. However, because of non-determinism, different runs of
the same test on a process may produce different results: the process may react in different
ways to interactions proposed by the environment. Therefore the result of all possible runs
is a non-empty subset of {�,⊥}.

Now, if we write O(T , P) for the set of all the results of running test T on process P

(the outcomes of the experiment), then we can deem two processes P and Q behaviourally
equivalent if

O(T , P) = O(T ,Q), for all tests T . (∗)

The function O may be defined denotationally or operationally. To distinguish them, we
will write Oden for the former, and Oop for the latter. The denotational definition is typically
given by structural induction, following the grammar of the tests.

The operational definition describes the run of a test on a process in a step-by-step
fashion. For this, one first gives a grammar that specifies the possible states along the run of
a test on a process, and then presents rules of a reduction relation −→ among these states.
We call the states configurations.

Definition 5.1.1 A run of a test T on a process P is a (possibly infinite) sequence of
configurations E0, E1, . . . , where E0 is 〈T , P 〉 (the initial configuration), and Ei −→ Ei+1

for each i ≥ 0, meaning that Ei has evolved in one step into Ei+1. Further, the sequence is
maximal, in the sense that if it is finite then the last element, say Ek , has no further possible
reductions. �

136 Other approaches to behavioural equivalences

The configuration 〈T , P 〉 indicates the application of a test T to a process P ; the
initial configuration of a run should have such a form. The grammar for configurations
is also required to have the symbols � and ⊥, whose appearance in a run indicates,
respectively, success and explicit failure. Depending on the testing scenario, the grammar
of configurations may, however, have other productions. Configurations � and ⊥ should
be final, i.e., they cannot evolve further.

On configurations, =⇒ is the reflexive and transitive closure of −→, and ⇑ the usual
divergence predicate (the largest predicate ⇑ such that E ⇑ implies there is E′ with E −→
E′ and E′ ⇑). The set of the results of runs of an initial configuration 〈T , P 〉 is written
Oop(〈T , P 〉). For proofs, it is, however, convenient to define the results of running a generic
configuration E:2

Oop(E)
def= {� if E =⇒ �}

∪ {⊥ if E =⇒ ⊥}
∪ {⊥ if E ⇑}.

Thus, a run is successful only if it reaches the successful configuration; otherwise (case of
a finite run that reaches ⊥, or of an infinite run) it is considered unsuccessful. Success must
arise in a finite amount of time (the run is finite), and by exploring only a finite part of the
behaviour of the tested process (i.e., finitely many transitions). This is in accordance with
the meaning of computability in the theory of computable functions. It is needed for the
effectiveness of the testing scenario – the tests should be computable.

Of course, when both the denotational and the operational definitions of outcomes of
an experiment are given, they should coincide, i.e., Oden(T , P) = Oop(〈T , P 〉). Often, the
denotational definition has the benefit of being simpler and more concise. The operational
definition, however, may be more useful for understanding how the tests can be imple-
mented.

We shall see that in certain approaches the language for the tests is different with respect
to that of processes, whereas in other approaches the tests are a subset of the processes
(possibly with the exception of special success signals that may only appear in the tests).

The testing approach to behavioural equivalence was developed by De Nicola and
Hennessy [DH84, Hen88]. The characterisation of bisimilarity through tests in the next
section is due to Abramsky [Abr87].

5.2 Bisimulation via testing

We define a testing scenario for bisimilarity, following the schema in Section 5.1. The
language for the tests is the following:

T ::= SUCC | FAIL | μ . T | μ̃ . T | T1 ∧ T2 | T1 ∨ T2 | ∀ T | ∃ T ,

2 Thus Oop is formally a function on a single argument, a configuration, in contrast with Oden that takes two arguments. The
argument of Oop is a configuration and is often, but not always, a pair (see the grammar for configurations in Definition 5.2.10).

5.2 Bisimulation via testing 137

where μ ∈ Act (the set of actions of the tested processes). The test constructs can be
classified into four groups.

(1) The trace constructs comprise the first three productions in the grammar. SUCC and
FAIL are the primitive tests; all processes pass SUCC, and fail on FAIL. A process
passes the test μ . T if it can perform the action μ and the derivative then passes the
rest of the test T .

(2) The refusal construct, μ̃ . T , is used to check whether a process is unable to perform
the action μ. On processes with μ-transitions, test μ̃ . T is the same as test μ . T .

(3) The copying constructs, ∧ and ∨, allow us to make conjunctions and disjunctions of
tests. For instance, a process passes T1 ∧ T2 if it passes both T1 and T2. This implies
the ability of making two copies of the process, on each of which the subtests T1 and
T2 are run.

(4) The global testing constructs, ∀ and ∃ , allow us to check the results of all possible runs
of some subtests. A process passes ∀ T if all runs of T on the process are successful. And
∃ T is the dual: a process passes it if there is at least one successful run for the subtest T .

As far as the control required on the processes is concerned, the global testing constructs
∀ and ∃ are the most demanding ones. They amount to being able to make as many copies
as needed of the original process and its derivatives, so as to follow all non-deterministic
executions of the test. This could be achieved, for instance, if we have complete control
over the scheduler in the operating system of the machine that is executing the tests on the
processes, and we have enough memory to store all copies and all data structures needed.

Remark 5.2.1 A test like μ . SUCC is the requirement, on a process P , that it should
perform an action μ. We could thus view μ . SUCC as an attempt of interacting with P

along μ. Accordingly, if we took the CCS viewpoint and syntax for interaction, the test
should be better written as μ . SUCC, where μ is the co-action of μ. We have not done so
because we do not wish to bind ourselves to a specific process language, but rather remain
in the general setting of LTSs. In other words, one should simply think of a test μ . SUCC
as a means for detecting whether a given process can produce an action μ. �

We define the outcomes of an experiment first denotationally and then operationally.
The former is presented in Table 5.1, as a function Oden inductively defined on the structure
of the test applied. We explain the notation used. We recall that ℘(S) is the powerset of the
set S, and Sn is the product of n copies of S.

Notation 5.2.2

� Given a function f : Sn → S, its pointwise extension f � : (℘(S))n → ℘(S) (for n ≥ 1)
is defined as

f �(X1, . . . , Xn) = {f (x1, . . . , xn) | xi ∈ Xi for 1 ≤ i ≤ n}
(the result of all possible applications of f to tuples of elements of X1, . . . , Xn).

138 Other approaches to behavioural equivalences

Table 5.1 Denotational definition of the outcomes of
an experiment

Oden(SUCC, P) = {�}

Oden(FAIL, P) = {⊥}

Oden(μ.T , P) =
⎧⎨⎩

{⊥} if P ref(μ)⋃
{P ′ |P

μ−→P ′} Oden(T , P ′) otherwise

Oden(μ̃.T , P) =
⎧⎨⎩

{�} if P ref(μ)⋃
{P ′ |P μ−→P ′} Oden(T , P ′) otherwise

Oden(T1 ∧ T2, P) = Oden(T1, P) ∧� Oden(T2, P)

Oden(T1 ∨ T2, P) = Oden(T1, P) ∨� Oden(T2, P)

Oden(∀ T , P) =
⎧⎨⎩ {�} if ⊥ ∈ Oden(T , P)

{⊥} otherwise

Oden(∃ T , P) =
⎧⎨⎩ {�} if � ∈ Oden(T , P)

{⊥} otherwise

� P ref(μ) (pronounced ‘P refuses μ’) holds if P cannot perform a μ-transition, i.e.,
P μ−→. (On weak LTSs, the meaning of P ref(μ) will be more subtle, which explains
why we introduce a special notation for it.) �

In particular, ∧� and ∨� are the pointwise extensions to powersets of the binary operators
∧ and ∨ on {�,⊥}; as ∧ and ∨, so ∧� and ∨� will be written in infix notation. For instance,
{�,⊥} ∧� {�,⊥} is {�,⊥}, and {�,⊥} ∨� {�} is {�}.
Exercise 5.2.3 (Recommended, ↪→) Every test T has an inverse, T , defined thus:

SUCC
def= FAIL, FAIL

def= SUCC,

μ . T
def= μ̃ .T , μ̃ . T

def= μ .T ,

T1 ∧ T2
def= T1 ∨ T2, T1 ∨ T2

def= T1 ∧ T2,

∀ T
def= ∃ T , ∃ T

def= ∀ T .

Show that for each T we have:

� � ∈ Oden(T , P) iff ⊥ ∈ Oden(T , P);
� ⊥ ∈ Oden(T , P) iff � ∈ Oden(T , P).

�

Here are some examples.

5.2 Bisimulation via testing 139

Example 5.2.4 Let P2 and Q2 be the non-bisimilar processes of Figure 1.7. For T1
def=

a . (b .SUCC ∧ c . SUCC), we have Oden(T1, P2) = {�} and Oden(T1,Q2) = {⊥}. �

Exercise 5.2.5 (↪→) The two tests SUCC and μ . T allow us to build traces of tests of
the form μ1 μn . SUCC, which allow us to check whether a process may, or may
not, perform given sequences of actions. With such tests we can also observe some of the
branching structure of terms. Show that the tests indeed are sufficient to distinguish the
processes P2 and Q2 of Figure 1.7. �

Example 5.2.6 An example of a test that distinguishes the processes P1 and Q1 of

Figure 1.4 is T3
def= a . b .SUCC. We have Oden(T3, P1) = {⊥,�} and Oden(T3,Q1) = {�}.

Another example is T4 = a . b̃ .FAIL; we have Oden(T4, P1) = {⊥,�} and Oden(T4,Q1) =
{⊥}. �

Example 5.2.7 An example of a test that distinguishes P3 and Q3 in Figure 1.7 is

T
def= ∃ a .∀ b . c . SUCC. We have Oden(T , P3) = {�} and Oden(T ,Q3) = {⊥}. �

Exercise 5.2.8 (↪→) Define other tests that distinguish between P3 and Q3 of
Example 5.2.7. �

Exercise 5.2.9 (↪→) Define tests that distinguish between P4 and Q4 in Figure 2.4. �

We now complete the definition in Section 5.1 of the function Oop, which describes the
outcomes of an experiment operationally, with the grammar and the reduction relation −→
for the configurations.

Definition 5.2.10 (Grammar of configurations)

E ::= � | ⊥ | 〈T , P 〉 | E1 ∧ E2 | E1 ∨ E2 | ∀E | ∃E.

�

Configurations �,⊥, and 〈T , P 〉 are the base productions in a grammar for configurations,
as explained in Section 5.1. The operators on configurations, ∧,∨,∀ and ∃ , mimic the
corresponding operators on tests by allowing us to combine the results of subruns. (These
symbols are thus overloaded, operating on both tests and configurations; in each case the
context of use will allow us to make the distinction.) The reduction relation on configurations
is inductively defined by the rules of Table 5.2, where:

� E→ is the set of derivatives of E, that is

{E′ |E −→ E′}

(it is easy to check that, since the processes are image-finite, for each E the set E→ is
finite);

140 Other approaches to behavioural equivalences

Table 5.2 Rules for the evaluation of a configuration

〈SUCC, P 〉 −→ � 〈FAIL, P 〉 −→ ⊥
. .

P
μ−→ P ′

〈μ . T , P 〉 −→ 〈T , P 〉
P ref(μ)

〈μ . T , P 〉 −→ ⊥
. .

P
μ−→ P ′

〈μ̃ . T , P 〉 −→ 〈T , P 〉
P ref(μ)

〈μ̃ . T , P 〉 −→ �
. .

〈T1 ∧ T2, P 〉 −→ 〈T1, P 〉 ∧ 〈T2, P 〉 E1 −→ E′
1 E2 −→ E ′

2

E1 ∧ E2 −→ E′
1 ∧ E ′

2

�∧ E −→ E E ∧� −→ E

⊥∧ E −→ ⊥ E ∧⊥ −→ ⊥
. .

〈T1 ∨ T2, P 〉 −→ 〈T1, P 〉 ∨ 〈T2, P 〉 E1 −→ E′
1 E2 −→ E ′

2

E1 ∨ E2 −→ E′
1 ∨ E ′

2

�∨ E −→ � E ∨� −→ �
⊥∨ E −→ E E ∨⊥ −→ E

. .
〈∀ T , P 〉 −→ ∀ 〈T , P 〉 ∀� −→ �

∀⊥ −→ ⊥ E→ = {E1, . . . , En}
∀E −→ ∧n

i=1 ∀Ei

. .
〈∃ T , P 〉 −→ ∃ 〈T , P 〉 ∃� −→ �

∃⊥ −→ ⊥ E→ = {E1, . . . , En}
∃E −→ ∨n

i=1 ∃Ei

�

∧n
i=1 Ei is an abbreviation for

E1 ∧ (E2 ∧ (. . . ∧ En) . . .)

and similarly for
∨n

i=1 Ei .

In the table we have grouped rules that concern the same operator (on tests or on configura-
tions). We comment on some of the rules. In an experiment 〈μ . T , P 〉, if P cannot perform
a μ-action then ⊥ is reported immediately. Otherwise, the experiment continues as 〈T , P ′〉,
where P ′ is a μ-derivative of P . The rules for the refusal test μ̃ . T are similar.

In an experiment 〈T1 ∧ T2, P 〉, two copies of P are made, so to apply separately each
subtest Ti to P . The same is done in 〈T1 ∨ T2, P 〉. The remaining rules for ∧ and ∨
are the expected ones for boolean connectors. In the inference rules for ∧ and ∨, the

5.2 Bisimulation via testing 141

subconfigurations are required to evolve simultaneously; however, we could just as well
have required interleaved evolutions.

An experiment 〈∀ T , P 〉 first evolves into ∀ 〈T , P 〉. Then each possible continuations
of 〈T , P 〉 is considered (the set 〈T , P 〉→), and the construction is iterated on such con-
tinuations, combining the results conjunctively. This means following all possible runs of
〈T , P 〉, at an arbitrary depth; only if all runs are successful the final result will be �. The
case of 〈∃ T , P 〉 is dual: � is returned if at least one run is successful.

There are no rules for the configurations � and ⊥, and these are indeed the only possible
final configurations in a run.

Exercise 5.2.11 Show that for all tests T and processes P , any run of T on P is finite. �

In the proofs of the results in the remainder of this section we will not use the finiteness
property of Exercise 5.2.11, so that proofs are easier to adapt to cases in which runs may
be infinite, for instance when we take into account the internal moves of the processes in
Section 5.3.

We first prove that the operational and denotational definitions of outcomes coincide
(Theorem 5.2.14); then we show that they characterise bisimilarity (Corollary 5.2.18).

Lemma 5.2.12

(1) If � ∈ Oop(∀E) then {�} = Oop(E).
(2) If ⊥ ∈ Oop(∀E) then ⊥ ∈ Oop(E).

Proof

(1) We proceed by induction on the number of steps in a run from ∀E that produces �.
If this number is 1 then it must be E = � and the assertion is trivial. Otherwise, let
E→ = {E1, . . . , En}; we have

∀E −→
n∧

i=1

∀Ei

and, for each i, it must be � ∈ Oop(∀Ei); moreover, � is produced in fewer steps. We
can therefore apply induction and infer that {�} = Oop(Ei), for each i, from which it
follows that also {�} = Oop(E) holds.

(2) If ⊥ ∈ Oop(∀E), then either there is an infinite run from ∀E or there is a finite run that
ends with ⊥. In the former case, following the operational rules of ∀ we construct also
an infinite run for E; in the latter case, proceeding similarly, we construct a run for E

that ends with ⊥.

�

Corollary 5.2.13 Oop(∀E) is either {�} or {⊥}, for each E. �

Theorem 5.2.14 Oden(T , P) = Oop(〈T , P 〉).

142 Other approaches to behavioural equivalences

Proof We proceed by induction on the structure of T . The base case is when T is SUCC
or FAIL, and is trivial. Below we consider the cases of the induction.

T = ∀ T ′ This is the most interesting case (together with its analogue, T = ∃ T ′).
Suppose � ∈ Oop(〈∀ T ′, P 〉). Since 〈∀ T ′, P 〉 −→ ∀ 〈T ′, P 〉, this holds if � ∈
Oop(∀ 〈T ′, P 〉). By Lemma 5.2.12(1), {�} = Oop(〈T ′, P 〉). By induction, also {�} =
Oden(T ′, P); by the definition of Oden, we conclude {�} = Oden(∀ T ′, P).

Suppose now ⊥ ∈ Oop(〈∀ T ′, P 〉). We reason similarly; we have ⊥ ∈
Oop(∀ 〈T ′, P 〉) and then, by Lemma 5.2.12(2), ⊥ ∈ Oop(〈T ′, P 〉). By induction,
⊥ ∈ Oden(T ′, P), hence also ⊥ ∈ Oden(∀ T ′, P).

The proofs that � ∈ Oop(〈∀ T ′, P 〉) implies {�} = Oden(∀ T ′, P) and ⊥ ∈
Oop(〈∀ T ′, P 〉) implies ⊥ ∈ Oden(∀ T ′, P) conclude the case since, by definition of
Oden, it cannot be {�,⊥} = Oden(∀ T , P).

T = ∃ T ′ This case is similar to the previous one (requiring also the analogue of
Lemma 5.2.12, with ∃ in place of ∀).

T = μ . T ′ We have � ∈ Oop(〈T , P 〉) iff there is P ′ such that P
μ−→ P ′ and � ∈

Oop(〈T ′, P ′〉). By induction, � ∈ Oden(T ′, P ′) and therefore, since P
μ−→ P ′ holds,

also � ∈ Oden(μ . T , P).
On the other hand, ⊥ ∈ Oop(〈T , P 〉) if either P ref(μ) or P

μ−→ P ′ and ⊥ ∈
Oop(〈T ′, P ′〉). In both cases, we derive ⊥ ∈ Oden(T , P) (in the latter case, proceeding
as above).

We can reverse the steps, hence also Oden(T , P) ⊆ Oop(〈T , P 〉).
T = μ̃ . T ′ This is similar to the previous case.
T = T1 ∧ T2 or T = T1 ∨ T2 We leave these cases as an exercise to the reader.

�

If we use the denotational interpretation of tests, as in Table 5.1, then the language of
tests reminds us of the formulas of a logic. Indeed, the proof below that the equivalence
induced by the tests is bisimilarity reminds us of the proof of the modal characterisation of
bisimilarity in terms of the Hennessy–Milner logic (see [Sti12]).

Lemma 5.2.15 Suppose P ∼n Q. Then there is a test T such that Oden(T , P) = {�}
whereas Oden(T ,Q) = {⊥}.

Proof By induction on n. For n = 0 there is nothing to prove. In the inductive case, we
assume the assertion for n. If P ∼n+1 Q then either there is a move from P that Q cannot
match, or the converse. Suppose the former holds, for a transition P

μ−→ P ′. This means that

(1) either Q has no μ-derivatives,
(2) or Q has μ-derivatives Q1, . . . , Qn (there are only finitely many of them because the

LTS is image-finite), and P ′ ∼n Qi , for all i.

If (1) holds, then the lemma is proved using the test μ.SUCC. If (2) holds, then by induction
there are tests Ti such that Oden(Ti, P

′) = {�} whereas Oden(Ti,Qi) = {⊥}, for each i.

5.2 Bisimulation via testing 143

Then take the test T = ∃μ . (
∧

i Ti). The reader may check that with such a T the lemma
holds.

Finally, if P ∼n+1 Q because a move Q
μ−→ Q′ cannot be matched by P , then, reasoning

as above, we find a test T such that Oden(T ,Q) = {�} whereas Oden(T , P) = {⊥}. The
lemma is thus proved using the inverse test T (Exercise 5.2.3). �

Lemma 5.2.15 shows that there is a subset of the tests that allows us to separate all
processes that are not bisimilar. Note that the proof uses all the operators in the test
language; some of them are, however, implicit in the construction for the inverse tests. It
now remains to check that the tests do not allow one to go beyond bisimilarity.

We write P �test Q if P and Q cannot be distinguished by the tests, i.e., Oden(T , P) =
Oden(T ,Q) for each T .

Lemma 5.2.16 P ∼ Q implies P �test Q.

Proof The proof is by induction on the structure of a test T ; we leave the details to the
reader. �

It is actually possible to prove something more general than Lemma 5.2.16, using a
larger language of tests; that is, enriching the grammar of the tests with other operators,
provided that these tests are semantically defined, in the sense that they do not allow us
to inspect the syntax of the processes. An instance of this is Exercise 5.2.17. This kind of
result is similar to those about the compositionality of bisimilarity with respect to classes
of operators (Example 3.5.5 and Section 5.12).

Exercise 5.2.17 (From [Abr87]) Let f be a function from n non-empty subsets of {�,⊥}
to {�,⊥}, and Tf the n-ary operator on tests whose outcomes are so defined:

Oden(Tf(T1, . . . , Tn), P)
def= f (Oden(T1, P), . . . ,Oden(Tn, P)).

Show that the addition of Tf among the operators of the test language does not affect
Lemma 5.2.16. �

Using the two previous lemmas and Exercise 2.10.18, we derive:

Corollary 5.2.18 Relations ∼ and �test coincide. �

Remark 5.2.19 We exploited the image-finiteness Assumption 5.0.1 for LTSs in
Lemma 5.2.15, Corollary 5.2.18, and in Table 5.2 to guarantee that E→ is finite. �

Lemma 5.2.15 can also be derived using the translation [[.]] below of the formulas of
the Hennessy–Milner logic into the tests, and then exploiting the modal characterisation
of bisimilarity. The reader is referred to [Sti12] for the Hennessy–Milner logic and related

144 Other approaches to behavioural equivalences

results. We use F to range over the modal formulas.

[[true]] = SUCC, [[false]] = FAIL,

[[F1 ∧ F2]] = [[F1]] ∧ [[F2]], [[F1 ∨ F2]] = [[F1]] ∨ [[F2]],
[[[μ]F]] = ∀ μ̃ . [[F]], [[〈μ〉F]] = ∃μ . [[F]].

The logic is mapped onto a subset of the tests that, when applied to a process, only produce
one outcome.

Exercise 5.2.20 Show that for each formula F of the Hennessy–Milner logic, and for each
P , we have (again, see [Sti12] for the definition of satisfaction, |=, in the logic):

(1) P |= F iff Oden([[F]], P) = {�};
(2) P |= F iff Oden([[F]], P) = {⊥}.
(Hint: proceed by induction on the structure of F .) �
Remark 5.2.21 (Bisimilarity and similarity via probabilistic testing) The testing sce-
nario set up to characterise bisimilarity requires a tight control from the observer over the
tested processes. In particular, one is allowed (i) to make copies of the processes at any
stage of the run of an experiment (via the copying constructs), and (ii) to enumerate all
possible non-deterministic transitions of a process (via the global testing constructs). The
latter, which may be seen as a special option of the copying facility, is by far the strongest
demand. It also appears in [Mil81] and referred to as the ability of ‘controlling the weather
condition’. The simple copying feature of (i), in contrast, is more realistic. It can be realised,
for instance, using a standard core dump procedure.

Larsen and Skou [LS91] have showed that bisimilarity can also be obtained by retaining
(i) but forbidding (ii) and using, instead, probabilities. Intuitively, an observer can, with
arbitrary degree of confidence, assume that all non-deterministic transitions of a process
have been examined by repeating an experiment often enough. Thus one can distinguish
non-bisimilar processes with probability arbitrarily close to 1.

The discriminanting power of probabilistic testers can be surprising. For instance, Deng,
van Glabbeek, Hennessy and Morgan [DvGHM08] have shown that probabilistic testers
can even give some of the power of the copying constructs (i). They use probabilistic
LTSs (which are richer than the LTSs in [LS91]), and the testing framework of the testing
preorder examined in Sections 5.4 to 5.8. Under conditions of image-finiteness, they are
able to recover forms of similarity (similarity itself and failure similarity) – thus some-
thing weaker than bisimilarity but still coinductive and substantially finer than the testing
preorder. �

5.3 Tests for weak bisimilarities

The testing characterisation of bisimilarity presented in Section 5.2 can be adapted to weak
LTSs, which have a special action τ representing internal activity, and weak bisimilarities.
However, certain variants of weak bisimilarity may be difficult to recover while remaining
strict on the requirement of effectiveness for the testing scenario. We do not show the
details, but a few comments are mandatory.

5.3 Tests for weak bisimilarities 145

Some obvious additions are the production τ.T to the grammar for the tests, and rules
for allowing internal moves into Table 5.2, such as

〈τ.T , P 〉 −→ 〈T , P 〉
P

τ−→ P ′

〈μ.T , P 〉 −→ 〈μ.T , P ′〉
As a consequence, runs of configurations may now be infinite. Moreover, in the same table
the occurrences of μ should be replaced by � to indicate a visible action. Some modifica-
tions are also needed in the denotational definition of outcomes in Table 5.1. A major issue,
however, is guaranteeing that the tests be ascertained effectively. For instance, consider the
predicate P ref(�). Its use in Section 5.2 has a simple experimental interpretation as ‘I tried
to push the button � of the machine P and the machine refused’. The interpretation breaks

down if, in the definition of P ref(�), we simply replace the strong predicate �−→ with its

weak counterpart �=⇒ (the negation of
�=⇒). The reason is that a process could be capable of

both performing the action �, and avoiding it by silently evolving into a derivative in which
� is no longer available. An example is the CCS process τ.0 + �.0. Another tricky situation
is illustrated by the process �a

τ of Figure 4.1. Regardless of how it may internally evolve,
�a

τ is always capable of performing the action a. But �a
τ can also continuously avoid a by

performing τ moves. We are never sure that an action � (for any � = a) will be refused: as the
machine continues to perform internal work we can hope that � will be accepted at some later
stage. Thus it is natural to have⊥ as the only possible result of running the test �̃ . FAIL on �a

τ

(this test returns success only on the processes where ref(�) holds). Similarly, the diver-
gence of �a

τ produces an infinite run, and hence a ⊥ result, with the test a . SUCC. All this
is troublesome for weak bisimilarity, for �a

τ is weakly bisimilar with a.0 (the process Pa in
Figure 4.1) on which the tests �̃ . FAIL, for � = a, and a . SUCC always succeed. We would
need some fairness assumption to avoid the divergence of �a

τ in a run, ensure that the action
a is eventually taken, and therefore obtain only success with the tests �̃ . FAIL and a . SUCC.

The forms of weak bisimilarity obtained by means of tests in [Abr87] take process
divergences into account, along the lines of Definition 4.7.1, mainly to better address the
problems mentioned above. For instance, in [Abr87] P ref(�) holds if both P τ−→ and

P �−→; and in the denotational interpretation we have

Oden(� . T , P) = S1 ∪ S2 ∪ S3,

where

S1 = ⋃
{P ′ |P �=⇒P ′} Oden(T , P ′),

S2 =
{ {⊥} if P =⇒ P ′ and P ′ ref(�)

∅ otherwise,

S3 =
{ {⊥} if P ⇑

∅ otherwise.

A similar definition is given for the clause Oden(�̃ . T , P). Thus the divergent process
�a

τ above does not pass the test �̃ . FAIL, for any �; indeed, the divergence-sensitive

146 Other approaches to behavioural equivalences

bisimilarity of Definition 4.7.1 does not consider �a
τ equal to Pa (only �a

τ ≤⇑ Pa

holds).
A further limitation for weak bisimilarities is the image-finiteness Assumption 5.0.1,

which, when applied to weak LTSs and the relations
μ=⇒, becomes more demanding.

5.4 Processes as testers

We have pointed out that one may consider the testing scenario for bisimilarity as unrealistic,
especially for distributed systems. Another possible criticism is that the operators of the
test language look like logical connectors more than process connectors (indeed, we have
seen in Exercise 5.2.20 that they allow for a simple interpretation of the formulas of the
Hennessy–Milner logic).

A natural alternative is a scenario in which the testers are just processes, with a behaviour
given – as any other process – by some LTS. Thus performing a test amounts to observing
the interactions between the tester and the tested processes. We need, however, a device to
recognize success in an experiment. For this we assume the existence of a special action
ω, indicating success, which may be used only by the tester processes. Aside from the
special action ω, the sets of tester and tested processes could be the same (i.e., the two
sets become equal by a renaming of ω). This, however, is not mandatory. Indeed, from the
point of view of checking the behavioural equivalences obtained, it may be useful to reduce
the set of testers as much as possible. In general the choice of the set of testers affects the
discriminating power of the experiments, that is, the differences among the tested processes
that may be observed. For instance, two processes might not be distinguishable by a given
set of testers but they might become distinguishable in suitable extensions of the set.

We now set up, formally, this testing scenario; we only present the operational definitions
of outcomes, following the schema in Section 5.1. The interested reader may consult
[DH84, Hen88] for a denotational approach.

Let L1
def= (Pr1, Act,−→), with ω ∈ Act, be an LTS (the LTS of the tested processes, as

usual ranged over by P,Q) and L2
def= (Pr2, Act ∪ {ω},−→) another LTS (the LTS of the

tester processes, ranged over by T). We do not need special operators on configurations,
whose grammar has only the base productions:

E ::= 〈T , P 〉 | � | ⊥
for T ∈ Pr2 and P ∈ Pr1. The reduction relation −→ on configurations is defined by the
following three rules:

T
μ−→ T ′ P

μ−→ P ′

〈T , P 〉 −→ 〈T ′, P ′〉

T
ω−→ T ′

〈T , P 〉 −→ �
if no other rule is applicable

〈T , P 〉 −→ ⊥

5.5 Testing preorders 147

In the first rule, tester and process evolve simultaneously. This is so because we are on strong
LTSs – all actions are observable; in the Section 5.8, in the presence of silent transitions,
independent transitions will be allowed. We write P $test Q for the behavioural equivalence
so obtained, i.e., Oop(〈T , P 〉) = Oop(〈T ,Q〉) for all tests T .

Before giving examples of equalities and inequalities under$test we present a refinement
of the testing scenario that allows us to decompose the relation $test into more elementary
ones.

5.5 Testing preorders

The testing approach of Section 5.4 may be used not only to introduce behavioural equiv-
alences, but also behavioural preorders (process relations that are reflexive and transitive).
In this case we replace (∗) (in Section 5.1) as follows. Fixed a preorder ≤ on the non-empty
subsets of {�,⊥}, two processes P and Q are in the induced behavioural preorder if

for all tests T , we have O(T , P) ≤ O(T ,Q). (∗∗)

Intuitively, this means that the experiments on Q are ‘at least as successful as those on
P ’. Preorders may be regarded as more primitive than equivalences, since a preorder
≤ generates an equivalence % in a natural way, where % is (≤ ∩ ≥). The preorder ≤,
however, gives us more information than the equivalence %, as two points may be related
in ≤ without being related in %. Also, a preorder may be sometimes more handy than
an equivalence, for instance when comparing a specification and an implementation of a
system. Indeed, often a specification has more non-determinism than an implementation,
thus moving to an implementation involves a kind of deterministic reduction of the specified
behaviour.

But what should ≤ mean in (∗∗)? Presumably we wish to have {⊥} ≤ {�,⊥} ≤ {�}:
an experiment that always succeeds is better than one that may also fail, which in turn
is better than one that always fails. However, we may also wish to have {�} ≤ {�,⊥},
because in both experiments a success may be produced. Or else, we may wish to have
{�,⊥} ≤ {⊥}, if we consider the possibility of failure of an experiment as disastrous. Thus
three possible interpretations of ≤ emerge. They precisely correspond to the three possible
ways to construct a powerdomain from a given domain. In our case, the domain to start
from is the following two-point lattice, denoted |0 :

�

⊥

where the vertical line represents the partial order. Success is better than failure, hence the
ordering given. The three powerdomains that we obtain may be depicted thus:

148 Other approaches to behavioural equivalences

℘Must ℘May ℘Testing

{�}

{⊥} = {�,⊥}

{�} = {�,⊥}

{⊥}

{�}

{�,⊥}

{⊥}
In ℘Must a process passing a test means that the test on the process must produce a
success (i.e., no run can ever fail); in ℘May a process passing a test means that the test on
the process may produce a success (i.e., at least a run does so); and ℘Testing allows us
a more refined interpretation.

Remark 5.5.1 (Powerdomains) Powerdomains are to domains what powersets are to sets;
they are the ‘computable powersets’. Powerdomains were introduced by Plotkin [Plo76]
as a tool to give denotation to non-deterministic programs, which have a set of possible
results. Very roughly, given a partial order (D,≤) (more precisely, special partial orders
called domains), we obtain a powerdomain by first taking the set D of all finite non-empty
subsets of D; then lifting the order ≤ on D to D; finally, making a certain completion (called
ideal completion) on the resulting structure. There are, however, three ways of making the
lifting required in the second step. The interpretations, and the resulting powerdomains,
are called upper, lower and convex (they are also sometimes called, respectively, Smyth,
Hoare and Plotkin powerdomains). In the upper interpretation, X ≤ Y (for subsets X, Y of
D) if for all y ∈ Y there is x ∈ X with x ≤ y; in the lower, X ≤ Y if for all x ∈ X there is
y ∈ Y with x ≤ y; and the convex is the conjunction of the previous two. Intuitively, in the
upper interpretation, when comparing X and Y only their minimal elements matter; in the
lower, only their maximal elements matter; and in the convex, both minimal and maximal
elements matter. When powerdomains are used for the semantics of a non-deterministic
program, in the upper powerdomain only the worst results produced by the program are
retained and, dually, for the lower powerdomain; in the convex both the best and the worst
results are retained.

In the case of the two-point lattice |0 above (which is also one of the simplest examples
of a domain), ℘Must is the upper powerdomain, ℘May is the lower powerdomain, and
℘Testing is the convex one. The simplicity of |0 has allowed us to avoid the details of
the construction of the powerdomain and to directly depict the resulting orderings on the
subsets of |0 . �

Remark 5.5.2 In the testing scenario for bisimilarity we used the powerdomain
℘Testing. This was necessary. If the outcomes of experiments were elements of the
lattices ℘May or ℘Must, where there are only two elements, then the definitions of
Oden(∀ T , P) and Oden(∃ T , P) in Table 5.1 would collapse. We needed both these opera-
tors to characterise bisimilarity. �

5.6 Examples 149

The must may and testing preorders, respectively written ≤must,≤may and ≤test, are
obtained from (∗∗) by interpreting the ≤ preorder symbol in the corresponding powerdo-
main ℘Must, ℘May, ℘Testing. We write %must,%may and %test for the induced must,
may and testing equivalences.

Remark 5.5.3 We have:

(1) P ≤test Q iff (P ≤may Q and P ≤must Q);
(2) P %test Q iff (P %may Q and P %must Q);
(3) P %test Q iff P $test Q. �

We have thus obtained the equivalence $test of the previous section from a preorder, and
we have broken down this preorder into two more primitive ones. These two preorders,
≤may and ≤must, are in turn interesting on their own, as we will see better in the following
sections.

Remark 5.5.4 (Preorders for bisimilarity) There is no natural way of obtaining bisimi-
larity from a preorder. This incidentally explains why it may be hard to give denotational
semantics of processes based on bisimilarity – the mathematical constructions traditionally
used in denotational semantics are based on preorders (more precisely, partial orders). One
may hope to obtain bisimilarity from the similarity preorder of Exercise 1.4.17, or some of
its refinements of Chapter 6, but their induced equivalences are different from bisimilarity.

For instance, if we applied the preorder definition (∗∗) to the testing scenario for bisim-
ilarity in Section 5.2, since every test has an inverse (Exercise 5.2.3) the preorder would
coincide with its induced equivalence. (Recall also from Remark 5.5.2 that for bisimilarity
we must have the powerdomain ℘Testing.)

The main preorders used for bisimilarity in the literature are forms of bisimulation with
divergence of the kind described in Section 4.7 and that either treat divergent processes as
‘undefined’ processes, which are below any other process in the preorder, or explicitly add
a special ‘undefined’ process. �

Definition 5.5.5 A process P may pass a test T if � ∈ Oop(〈T , P 〉); and P must pass T

if {�} = Oop(〈T , P 〉). �

Then P ≤may Q holds if P may pass T implies Q may pass T , for all tests T ; similarly
for P ≤must Q.

5.6 Examples

The examples below illustrate the differences between the may, must and testing relations.
When two processes are not related, we provide a test that distinguishes them. The proofs
for the related processes are more tedious; they will become easier with the techniques in
Section 5.7, and are therefore deferred to Exercise 5.7.5. The examples also illustrate the
differences with bisimilarity.

150 Other approaches to behavioural equivalences

Assumption 5.6.1 For the examples and results in this section, and up to Section 5.8, we
assume that the LTS L1 and L2 for tester and tested processes are arbitrary (image-finite)
LTSs with labels from the sets of actions Act ∪ {ω} and Act. �

Example 5.6.2 The table below compares the three processes P3, Q3 and R3 of Figure 1.7
on the may, must and testing relations, and on bisimilarity (an ok means that the processes
of the column are in the relation of the row, a X means they are not).

P3, R3 P3,Q3 Q3, R3

%may ok ok ok

≤must ok ok ok

%must X ok X

%test X ok X

∼ X X X

As the processes are related by %may they are also related by ≤may. We have already
considered the non-bisimilarity among the three processes in Exercise 1.4.9. We have
R3 %must P3 because only the former must pass the test a.b.c.ω, and similarly for R3 %must

Q3. See Exercise 5.7.5 for the proof of the ok results. �

Example 5.6.3 Consider the processes P2, Q2 and R2 of Figure 1.7. We saw in Exer-
cise 1.4.8 that they are all distinguished by bisimilarity. We have P2 %may Q2 %test R2;
however P2 ≤must Q2, as only the former must pass the test a.b.ω. The other relationships
follow from Fact 5.5.3. �

Example 5.6.4 Let

P
def= a.b + a.c + a.(c + d),

Q
def= a.b + a.(c + d).

We have P %may Q and P ≤must Q; however Q ≤must P because Q must pass the test
a.(b.ω + d.ω) whereas with P there is a run that fails. �

Example 5.6.5 Let

P
def= a.b + a.c,

Q
def= a.b.

We have Q ≤may P but P ≤may Q because only P may pass the test a.c.ω. With ≤must,
the relationship is inverted: Q ≤must P (as only Q must pass a.b.ω), and P ≤must Q

(Exercise 5.7.5). �

5.7 Characterisations of the may, must and testing relations

In the testing approach it may be simple to prove that two processes are not equivalent:
one needs to find one test that distinguishes the two processes, though of course finding

5.7 Characterisations of the may, must and testing relations 151

it may require ingenuity. But it is in general long and tedious to prove that two processes
are equivalent following the definition, as one needs to consider all possible tests and all
possible results of such tests. However, in some cases alternative characterisations of the
equivalences and preorders can be derived that are easier to work with. They use special
enriched forms of traces, i.e., sequences of actions that the processes can take. We touch
on this topic below.

We recall that s ranges over sequences of actions, ε is the empty sequence, and μs is the
sequence obtained from s by adding μ on top.

Definition 5.7.1 Let s be a sequence of actions. Then:

� s ∈ Traces(P) if P
s−→;

� P after s
def= {P ′ |P s−→ P ′}.

If A is a finite (possibly empty) set of actions, then:

� P must A holds if there are P ′ and μ ∈ A such that P
μ−→ P ′.

� P after s must A holds if P ′ must A for all P ′ ∈ (P after s). �

If A is empty, then P must A is false, for all P . If P cannot perform the sequence of
actions s, then P after s is empty and therefore P after s must A holds for all A.

Definition 5.7.2 We set:

� P ≤′
may Q if Traces(P) ⊆ Traces(Q);

� P ≤′
must Q if for all sequences s and finite sets of actions A, if P after s must A then

also Q after s must A.

The preorder ≤′
may is trace inclusion, and its induced equivalence is trace equivalence. �

The preorder ≤′
must is harder to check than ≤′

may: the latter involves a quantification on
traces, the former involves a double quantification, on traces and sets of actions.

Theorem 5.7.3

(1) the preorders ≤may and ≤′
may coincide;

(2) the preorders ≤must and ≤′
must coincide. �

We refer to [DH84, De87] for the proof of the theorem. (The proof is actually not very
difficult; an enterprising reader might try it.)

It is easy to check that P after s must ∅ iff s ∈ Traces(P). From this, and
Theorem 5.7.3, it follows that P ≤must Q implies Q ≤may P (in accordance with, say,
Example 5.6.5), hence also:

152 Other approaches to behavioural equivalences

Corollary 5.7.4 The equivalences %must and %test coincide. �

The difference between the must and testing equivalences only shows up on weak LTSs,
more precisely on LTSs in which a divergence predicate may be defined on processes. See
Section 5.8.

Exercise 5.7.5 (Recommended, ↪→) Using the characterisation Theorem 5.7.3, prove the
relations and the non-relations of Examples 5.6.2–5.6.5. �

Exercise 5.7.6 (Recommended, ↪→) We have discussed in Exercise 3.4.10 the law a.(P +
Q) = a.P + a.Q under bisimilarity. Is it valid under %may? And under %must? What about
a.P + a.Q ≤must a.(P + Q)? �

Exercise 5.7.7 (∗, ↪→) Show that P ≤must Q holds iff for all s and Q′ such that Q
s−→ Q′

there is P ′ with P
s−→ P ′ and readies(P ′) ⊆ readies(Q′) (Definition 5.11.1 says what

readies is). �

On deterministic processes, bisimilarity coincides with trace equivalence.

Exercise 5.7.8 Show that for deterministic processes P,Q it holds that P ∼ Q iff P %may

Q. �

5.8 Testing in weak LTSs

Of course, on weak LTSs, in the reduction relation on configurations we need rules to allow
tester and tested processes to evolve silently and independently:

T
τ−→ T ′

〈T , P 〉 −→ 〈T ′, P 〉
P

τ−→ P ′

〈T , P 〉 −→ 〈T , P ′〉
We recall from Section 5.1 that an infinite run produces ⊥ as a result. In the examples

below for weak LTSs, we use CCS processes including some constants for expressing
divergent behaviours in the tested processes (for testers, finCCS is sufficient).

Example 5.8.1 Let

P
def= τ.a.0 + τ.b.0,

Q
def= a.0.

It is easy to see that Q ≤must P . We show that P ≤must Q. Suppose P must pass a test T .
Since 〈T , P 〉 −→ 〈T , a.0〉, it must be Oop(〈T , a.0〉) = {�}, i.e., also Q must pass the test.

In the may preorder, the converse relationship holds: Q ≤may P , and P ≤may Q. �

The distinction between the may and must relations, and consequently also the distinction
between these and the testing relations, becomes significant in presence of divergence.
While in the ≤must preorder a divergence is catastrophic, the ≤may preorder is insensitive to
it.

5.8 Testing in weak LTSs 153

Exercise 5.8.2 (Recommended, ↪→)

(1) Show that the equality

P + �τ = �τ

(where �τ is defined in Exercise 4.3.2) holds for %must for any P , whereas it does not
hold for %may.

(2) Conversely, show that

P + �τ = P

holds for %may but not for %must. �

Similarly to the first equality in the exercise, while �τ + a.0 %must �τ + b.0, the two
processes are unrelated in the ≤may preorder.

The treatment of divergence also sets apart testing equivalence and weak bisimilarity.
Consider for instance the processes �a

τ and Pa of Figure 4.1. The difference between them
is that only the former can produce an infinite sequence of τ -transitions. The two processes
are weakly bisimilar, but not testing equivalent.

Exercise 5.8.3 Show that �a
τ and Pa are not testing equivalent. �

The supporters of testing equivalence use examples like this to argue against bisimulation
because it is insensitive to divergence. The supporters of bisimulation would reply that the
example shows that testing is not ‘fair’. In a|�τ the divergence occurs when the right-hand
side of the parallel composition always prevails on the other side. An implementation of
the parallel composition that followed this schema could be blamed as unfair. See also the
discussion on divergence in Section 4.3 and Exercise 5.8.5.

Divergence is also the reason why testing equivalence is not strictly included in weak
bisimilarity. Notions of fair testing, also called should testing, have been proposed [NC95,
RV07]; then bisimilarity is indeed strictly included in testing. Fair testing is based on a
modified definition of success: the run of an experiment is successful if either the run
itself has produced the success event, or at any point the run could have been continued
so that success is produced later. Formally, the must preorder ≤must is replaced by the fair
must preorder ≤F

must defined as follows. Say that P must fairly pass the test T if whenever
〈T , P 〉 =⇒ E, then E =⇒ � (that is, either E is � or E can reach � after some steps).
Then P ≤F

must Q holds if, for all T , whenever P must fairly pass T then also Q must fairly
pass T (compare this with Definition 5.5.5).

In weak LTSs, Theorem 5.7.3 continues to hold, provided that the definitions of ≤′
may

and ≤′
must are made ‘weak’, and a check for divergences is introduced. Precisely, the

modifications to Definitions 5.7.1 and 5.7.2 are as follows:

� s should be a sequence of visible actions, and similarly A a set of visible actions;
� relations

s−→ and
μ−→ should be replaced by their weak counterparts

s=⇒ and
μ=⇒.

154 Other approaches to behavioural equivalences

•
τ

//��
��

��
�

a

00�
��

��
��

•
b
$$

•

•

•
τ

//��
��

��
�

τ

00�
��

��
��

•
b
$$

•
a

//��
��

��
�

b

00�
��

��
��

• • •

P Q

Fig. 5.1 Two testing equivalent weak LTSs.

� in the definition of P ≤′
must Q the requirement P ⇓ s implies Q ⇓ s is added, where s

is a sequence of visible actions, and a predicate ⇓ s holds of processes that never go
through a divergent state while performing the sequence s; the predicates are defined
inductively on the length of s:
– R ⇓ ε if not R ⇑ (where ⇑ indicates divergence);

– R ⇓ �s if not R ⇑ and for all R′ such that R
�=⇒ R′ also R′ ⇓ s.

Note that R ⇓ �s may hold even if {R′ |R �=⇒ R′} is empty.

Exercise 5.8.4 (↪→) Use the above weak version of Theorem 5.7.3 to prove that, on weak
LTSs, strong bisimilarity implies testing equivalence, weak bisimilarity implies may equiv-
alence and, if the LTSs are divergence-free, weak bisimilarity implies testing equivalence.

�

Exercise 5.8.5 (↪→) Show that the equality between the processes P and BW of Exer-
cise 4.3.6 holds for %may but not for %must and %test. �

Exercise 5.8.6 (↪→) Show that the processes in Figure 5.1 are testing equivalent. Show
that the process would remain must equivalent if we replaced the label a in P with c. �

Remark 5.8.7 (Internal vs external non-determinism) The process

τ.P1 + τ.P2

internally decides whether to continue as P1 or P2. This choice is called internal non-
determinism. In contrast,

a.Q1 + b.Q2

has external non-determinism: the choice is resolved following what the user proposes. If
the user requests an a, then the process will oblige and become Q1; whereas if b is requested
then the continuation will be Q2. In Figure 5.1, the process Q initially has an internal non-
determinism and then, on the right-hand branch, an external one; the non-determinism in
P , in contrast, is hybrid.

5.8 Testing in weak LTSs 155

The possibility of hybrid non-determinism in the sum operator of CCS causes the congru-
ence problems for weak bisimilarities, as well as for most of the behavioural equivalences
and preorders in the literature. For instance, τ.a and a are weakly bisimilar and testing
equivalent, but τ.a + b and a + b are neither weakly bisimilar nor testing equivalent.

In finCCS, under testing equivalence it is possible to remove all forms of hybrid
non-determinism, using some simple algebraic manipulations in which the main axiom
employed is

P + τ.Q = τ.(P + Q) + τ.Q, (5.1)

an instance of which is the equality between the processes of Figure 5.1 (Exercise 5.8.6).
The same property does not hold for (weak) bisimilarity. We can remove the hybrid

non-determinism in τ.(a + b) + a, since we have

τ.(a + b) + a ≈ a + b.

This transformation is an instance of the equality τ.(P + Q) + P ≈ P + Q, which relies
on the presence of the same process both underneath and outside the τ . Other kinds of
hybrid non-determinism may not be removed; an example is τ.a + b. �

Exercise 5.8.8 (∗, ↪→)

(1) Show that using axiom (5.1) of Remark 5.8.7, plus the monoidal axioms for sum and
equational reasoning, all hybrid non-determinism in the process a.c + τ + b.d can be
removed.

(2) Generalise the result above to any term in finCCS; you may find you need other laws.
(Hint: prove the result first for processes in full standard form, as by Definition 3.6.3.)

�

Exercise 5.8.9 Another interesting axiom of testing equivalence is μ.P + μ.Q =
μ.(τ.P + τ.Q). The axiom makes it explicit that the choice between P and Q is inter-
nal to the process, as the initial actions offered to the outside are the same. Show the
validity of the axiom. �

Exercise 5.8.10 (↪→) Show the validity of the law

(P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R)

for testing equivalence, where ⊕ is the internal choice operator, defined by the SOS rules:

P ⊕ Q
τ−→ P P ⊕ Q

τ−→ Q

As by Remark 5.8.7, in CCS internal choice is a derived operator and defined thus:

P ⊕ Q
def= τ.P + τ.Q.

Show that internal choice can also be written in CCS without the choice operator. �

156 Other approaches to behavioural equivalences

Exercise 5.8.11 Continuing with the internal choice of Exercise 5.8.10, show that the
equalities μ.P + μ.Q = μ.P ⊕ μ.Q = μ.(P ⊕ Q) (we assume that prefixing has prece-
dence over ⊕, in the same way it has over +) holds for testing equivalence. �

5.9 Refusal equivalence

Refusal equivalence was introduced by Phillips [Phi87]. We discuss it here only informally.
The basic approach in refusal equivalence is the same as in testing equivalence, but now

testers are more powerful: an observer is also allowed to see whether a process is unable
to perform a certain action, and then can continue accordingly. This capability of testers is
expressed by prefixes &μ . T , where μ is an action in the alphabet of the tested processes, and

transitions of the form T
&μ−→ T ′. The reduction relation for configurations includes now the

rule

T
&μ−→ T ′ P ref(μ)

〈T , P 〉 −→ 〈T ′, P 〉
In the rule, the tester notices that the tested process is unable to perform the action μ and

the run continues. For instance, if T
def= &μ .ω, then a run for 〈T , P 〉 is successful only if

P refuses μ. And a run for 〈a.&b.ω, P 〉 may lead to success only if P has an a-transition
after which there is no b transition, as for P = a.0 or P = a.0 + a.b.0. However, with the
former process the only result of a run is �, whereas with the latter the result can be � or
⊥. (The construct &μ . T is similar, but not the same, as the refusal construct μ̃ . T used in
the characterisation of bisimilarity; compare the rule above with the two rules for μ̃ . T in
Table 5.2.)

To see why the above capability makes the tests more powerful, consider the processes
P4 and Q4 of Figure 2.4. They are testing equivalent but not bisimilar. They are also different

for refusal equivalence. A test that distinguishes them is T
def= a . &b . a . &a . ω. This test is

successful on processes that have an a-transition, after which they have no b-transitions
but have however another a-transition not followed by a third a-transition. P4 exhibits
such a behaviour (following the rightmost path in its tree), whereas Q4 does not. Refusal
equivalence is in fact strictly between testing equivalence and bisimilarity. The difference
with bisimilarity is showed by the processes P3 and Q3 of Figure 1.7: they are equal for
testing equivalence but not for bisimilarity, and remain equal for refusal equivalence.

Remark 5.9.1 What is most prominently missing in the testing scenario for refusal equiv-
alence (or for testing equivalence) with respect to that for bisimilarity is a form of test that
allows us to make copies of the state of a process during its execution. This is clear in the
processes P3 and Q3 of Figure 1.7. They are different because in the latter after an a action
both the sequence bc and the sequence bd are possible. To observe this, we would need to
make two copies of the state of the processes after the initial a action. �

5.10 Failure equivalence 157

5.9.1 Weak LTSs

On weak LTSs, a tester may observe that a process refuses an action only if the process
is stable (i.e., it cannot perform τ -actions). This sensitiveness to τ -actions allows us to
separate the processes P and Q of Figure 5.1, which are also different for bisimilarity but
are equal for testing equivalence. They are, for instance, distinguished by the test &c.a.ω, as
only Q may pass the test. (The test is satisfied by processes that have a stable derivative
with an a transition.)

With τ -actions, another difference between testing and refusal equivalences is that the
latter distinguishes a divergent run from a run that explicitly produces a failure. Thus
in refusal equivalence the possible results for a run are three (success, failure, unsettled),
rather than two as in testing equivalence. Indeed, in the refusal scenario, a tester process can
perform, besides the special success action ω, also a special failure action, which determines
the failure of a run. In both testing and refusal equivalence, however, a divergent run counts,
and this breaks the inclusion in weak bisimilarity.

5.10 Failure equivalence

Refusal equivalence has also been inspired by failure equivalence. This equivalence, intro-
duced by Brookes, Hoare and Roscoe [BHR84], has been, historically, one of the first forms
of behavioural equivalence proposed for process languages, and it has quickly become the
predominant behavioural equivalence in the community that uses concurrency languages
based on CSP. On processes without divergences, failure equivalence coincides with testing
equivalence. The ideas that led to the introduction of the two equivalences are, however,
rather different.

Failure equivalence adopts the viewpoint that processes should be considered different
only if they can be distinguished by some finite sequence of events. A natural candidate
for such a behavioural equivalence would have been trace equivalence. Trace equivalence
adequately accounts for a number of useful properties of processes, such as ‘process P will
have an a-transition’, or ‘process P may take a b-transition after performing an a-transition’.
In presence of non-determinism, however, trace equivalence, as noted in Section 1.3.2, is
not suited to reasoning about deadlock. A possible solution is to take into account the
maximal sequences of actions that the processes can perform. We recall that a process P is
stopped if there is no μ such that P

μ−→.

Definition 5.10.1 A complete trace for a process P is a maximal sequence of actions that
P may perform, that is, either an infinite sequence, or a finite sequence s such that there is
P ′ stopped with P

s−→ P ′. Processes P and Q are complete trace equivalent if they have
the same sets of complete traces. �

For instance, the process a.b + c has ab and c as complete traces, but not a because
after performing a further transitions are possible.

158 Other approaches to behavioural equivalences

Remark 5.10.2 In (standard) trace equivalence, infinite sequences are not taken into
account. One can define an infinitary variant of it, where also infinite traces matter. On
image-finite processes, the two versions of trace equivalence coincide, essentially as a
consequence of König’s Lemma; the crux of the proof is to show that if if all prefixes of a
given infinite trace are in the traces of a process, then also that infinite trace can be executed
by the process; see [Gla01a, proposition 2.4]. �

Complete trace equivalence is included in trace equivalence. The inclusion is strict. The
trace equivalent processes P1 and Q1 of Figure 1.4 are not complete trace equivalent, since
only the former has a as a complete trace.

The main problem of complete trace equivalence is compositionality with respect to
many important operators, such as CCS restriction, or CSP synchronous parallel composi-
tion. For instance, the processes P2 and Q2 of Figure 1.7 have the same complete traces,
but νb P2 and νb Q2 have not (only the latter has a).

The solution adopted by Hoare and his CSP coworkers is to adopt a finer refinement of
trace equivalence, in which one is allowed to observe, at the end of a trace, a set of actions
that are refused. A pair of a trace and a refusal is called a failure.

Definition 5.10.3 A failure is a pair (s, A), where s is a finite sequence of actions and A

a set of actions. The failure (s, A) belongs to process P if, for some P ′:

� P
s−→ P ′;

� P ′ μ−→, for all μ ∈ A.

Two processes P and Q are failure equivalent if they have the same sets of failures. �

For instance, the process Q3
def= a.(b.c + b.d) of Figure 1.7 has the following failures:

� (ε,A) for all A with a ∈ A;
� (a,A) for all A with b ∈ A;
� (ab,A) for all A with {c, d} ⊆ A;
� (abc,A) and (abd,A), for all A.

Exercise 5.10.4 Show that:

� the process P3 of Figure 1.7 has the same set of failures as Q3 above;
� the processes P2 and Q2 of Figure 1.7, as well as P2 and R2, are not failure equivalent.

�

A failure (s, A) for a process indicates the possibility of a deadlock if the environment,
after allowing the trace s, only allows actions from A. (In the original proposal of failures
[BHR84], the refusal set A had to be finite, insisting on the finiteness of an environment
that, at any time, ‘realistically can only perform a finite number of events’. In later papers,
this finitary condition is dropped, as it seemed unnatural for processes with an infinite sort,
see e.g., [BR84].)

5.11 Ready equivalence 159

Exercise 5.10.5 Show that processes P1 and Q1 of Figure 1.4 are not failure equivalent.
�

Theorem 5.10.6 On (strong) LTSs, failure equivalence coincides with testing equivalence.
�

The above result follows from the characterisation of testing in Theorem 5.7.3, for we
have: P after s must A if and only if (s, A) is not a failure for P .

5.10.1 Weak LTSs

On weak LTSs, only refusals of stable processes are taken into account in failure equiv-
alence. That is, in Definition 5.10.3, besides using the weak transition P

s=⇒ P ′, we also
require that P ′ is stable. This is natural in failure equivalence, where deadlock is observable,
because a process that can perform a τ -transition is not deadlocked. In addition, failure
equivalence considers divergence as a catastrophic condition, somewhat alike to must test-
ing. Thus failure identifies all divergent processes, such as a|�τ (Figure 4.1) and �τ .
Technically, a divergent process is considered to have all possible failures. The motivation
is that processes that might diverge are ‘incorrect’ and therefore it does no further harm to
identify them all. As indicated by the equality between a |�τ and �τ , some interesting infor-
mation on the behaviour of processes is, however, thus lost. Variations of failure have been
proposed with a more subtle treatment of divergence, see, e.g., [BR84, BKO87, OH86]. For
instance, [BR84] takes into account, besides failures, also the divergence set of a process,
that is, the set of traces that lead to a divergent state.

The characterisation of Theorem 5.10.6 in terms of testing equivalence remains true,
provided that no states in the LTSs are divergent.

5.11 Ready equivalence

A variant of failure semantics is ready equivalence [OH86], in which one observes, after a
trace, the maximal set of accepted actions.

Definition 5.11.1 The ready set of a process P , written readies(P), is {μ |P μ−→}. Then
(s, A) is a ready pair for P if there is P ′ such that P

s−→ P ′ and A is the ready set for P ′.
Two processes are ready equivalent if they have the same sets of ready pairs. �

Ready equivalence implies failure equivalence: the failure set of a process is derivable from
its ready set. The inclusion is strict, as ready sets are maximal sets.

Exercise 5.11.2 (Recommended, ↪→) Show that the processes Q2 and R2 of Figure 1.7
are failure, but not ready, equivalent. �

160 Other approaches to behavioural equivalences

•
a

00�
��

��
��

a

//��
��

��
�

•
b

//��
��

��
�

c
$$

•
f

00�
��

��
��

c
$$• •

d
$$

•
e
$$

•

• •

•
a

00�
��

��
��

a

//��
��

��
�

•
b

//��
��

��
�

c
$$

•
f

00�
��

��
��

c
$$• •

e
$$

•
d
$$

•

• •
a.(b + c.d) + a.(c.e + f) a.(b + c.e) + a.(c.d + f)

Fig. 5.2 Ready, but not refusal, equivalent processes.

•
a

00�
��

��
��

a

//��
��

��
�

•
b
$$

•
c
$$• •

•
a

00�
��

��
��

a
$$

a

//��
��

��
�

•
b

//��
��

��
�

•
b

//��
��

��
�

c

00�
��

��
��

•
c

00�
��

��
��

• • • •
a.b + a.c a.b + a.(b + c) + a.c

Fig. 5.3 Refusal, but not ready, equivalent processes.

Testing equivalence coincides with failure equivalence. However, the two refinements of
these that we have discussed, refusal equivalence and ready equivalence, are incomparable;
see the two exercises below.

Exercise 5.11.3 (↪→) (From [Gla01a])

(1) Show that the processes in Figure 5.2 are ready equivalent but not refusal equivalent.
(2) The processes Q2 and R2 of Figure 1.7, which for convenience are reported in

Figure 5.3, are refusal equivalent but not ready equivalent. Show that the processes are
not ready equivalent. Given a test of the form α1.α2αn.ω, where each αi is either
an ordinary action μ or a refusal &μ, show that the process on the right passes the test
iff the process on the left does so.

5.12 Equivalences induced by SOS formats

We have presented failure equivalence as an improvement of complete trace equivalence
that avoids its compositionality problems. There is actually a tight relationship between the
two equivalences, at least in languages with CCS or CSP-like operators, which we explain
below.

5.12 Equivalences induced by SOS formats 161

However, even failure may not be compositional in the presence of operators that go
beyond CCS or CSP. An example, relevant for applications, is given by priority operators,
as first formalised in [BBK87b]. A priority operator assumes a strict (i.e., irreflexive) partial
order on the set of actions: actions higher in the ordering have a higher priority than those
lower in the ordering. When applied to a process P , the operator removes all transitions
emanating from P that are dominated by another transition, in the sense that the label of
the latter is higher than that of the former in the ordering. This behaviour is expressed by
the following SOS rule, where f is the priority operator and < the ordering:

P
μ−→ P ′ (P μ

′
−→, for all μ′ with μ < μ′)

f (P)
μ−→ f (P ′)

As a counterexample to compositionality of failure equivalence, consider the processes

P
def= a.b + a.(c + d),

Q
def= a.b + a.(c + d) + a.(b + c),

and suppose the partial order is b < c < d . Then P and Q are failure equivalent; but f (P)
and f (Q) are not even trace equivalent, as the former has the traces ab and ad, whereas
the latter has also ac. (Indeed, the counterexample shows that also trace equivalence is not
preserved by priorities.)

Exercise 5.12.1 Show that bisimilarity is preserved by the priority operator above; that is,
prove that if P ≈ Q then also f (P) ≈ f (Q). �

One may consider the congruence induced by complete traces (which essentially
amounts to considering the coarsest congruence sensitive to deadlock) for classes of opera-
tors, where a class is defined in terms of the format for the SOS rules defining the operational
behaviour of the operators. A number of formats have been studied in the literature. Some of
the best known are the De Simone [DS85], GSOS [BIM95], tyft/tyxt [GV92] and ntyft/ntyxt
[Gro91, Gro93, BG96] formats. We first describe the formats and then comment on the
induced congruences. As the formats become more generous (by allowing more operators),
the induced congruences become finer. The remainder of the section offers an informal
discussion on the main formats and their induced congruences; the interested reader should
follow the references for more comprehensive accounts.

We have described (a slightly simplified version of) the De Simone format in Exam-
ple 3.5.5. The format is sufficient to define the rules of the CCS and CSP operators. The
GSOS format goes beyond the structured rules needed for CCS and CSP – and captured in
the De Simone format – mainly in two aspects. The first is the use of negative premises,
which gives the possibility of performing a certain activity based on the absence of other
activities. Negative premises are needed for defining priority operators of the kind described
above [AI08]. The second additional aspect of GSOS is the possibility of copying the argu-
ment of an operator: a variable in the left-hand side of the conclusion may appear more
than once in the right-hand side of the conclusion or in the left-hand side of a premise.

162 Other approaches to behavioural equivalences

From a testing perspective, the contexts obtained from operators in the GSOS format allow
us to observe the traces and the refusals of processes, and to make copies of processes at
any moment; in contrast, referring to the terminology used for testing in Section 5.2, the
global testing capability is absent.

With some simplifications, a rule in the GSOS format is as follows:

{Xi

μij−→ Yij | 1 ≤ i ≤ r, 1 ≤ j ≤ mi} ∪ {Xi λik−−→ | 1 ≤ i ≤ r, 1 ≤ k ≤ ni}
f (X1, . . . , Xr)

μ−→ T

for some ni,mi ≥ 0, where the variables are all distinct, and T is a term of the language
possibly containing the variables {Xi, Yij | 1 ≤ i ≤ r, 1 ≤ j ≤ mi}, and r is the arity of the
operator f . GSOS is carefully crafted so to produce only finitely-branching LTSs.

With respect to the GSOS format, the most novel feature of the tyft/tyxt format is the
presence of operators that have a lookahead. Technically, this means that the rule may have
two premises with a variable in the target of one being present in the source of the other
premise, as in the following rule:

X
τ−→ Y Y

μ−→ Z

X
μ−→ Z

Rules like this can be used to reduce weak bisimilarity to strong bisimilarity, by mimicking
the absorption of τ -moves in weak bisimilarity, as done in Exercise 4.2.13. Lookahead also
can be useful when one wants to describe a system at different levels of abstraction, and
then express that an action on a certain level can be decomposed by several smaller actions
at a lower level.

In the tyft/tyxt format, all rules are either in tyft or in tyxt format. A rule in the tyft
format is as follows:

{Ti

μi−→ Yi | i ∈ I }
f (X1, . . . , Xr)

μ−→ T

where the variables Xi, Yi are all distinct (meaning that for all distinct i, i ′ ∈ I and distinct
j, j ′ with 1 ≤ j, j ′ ≤ r we have Yi = Xj , Yi = Yi ′ and Xj = Xj ′), I is a (possibly infinite)
set of indices, T , Ti are arbitrary terms, and r is the arity of the operator f . The tyxt format
is the same except that the source of the conclusion is a variable distinct from all variables
that appear in the target of the premises. The LTSs produced by the tyft/tyxt rules need not
be finitely branching.

The lookaheads of the tyft/tyxt format essentially allow us to test whether a process will
have certain actions in the future; one can even see whether a certain tree of actions occurs
in the future. This represents a kind of global testing capability. However, lookaheads do
not directly allow us to see negative information such as the absence of certain actions. As
a consequence, the congruence induced by complete traces on the tyft/tyxt format remains
below bisimilarity.

5.12 Equivalences induced by SOS formats 163

The addition of negative premises, as in the ntyft/ntyxt format, removes the gap, and
allows us to recover bisimilarity. The combination of copying, lookahead and negative
premises is quite powerful, and essentially allows one to define contexts that give us the
discriminating power of the formulas of the Hennessy–Milner logic, somewhat similarly to
the testing characterisation of bisimulation in Section 5.2 (although one does not explicitly
have operators for global testing here). A rule in the ntyft/ntyxt format is as in the tyft/tyxt
format, except that it may contain negative premises, in the following form:

{Tj λj−−→ | j ∈ J },

where J is a (possibly infinite) set of indices, and Tj is an arbitrary term. Due to the
sophisticated forms of negative premise allowed, some consistency conditions are added
to guarantee the well-definiteness of the LTS produced by a set of rules, as discussed in
Remark 5.12.2.

Remark 5.12.2 (Rules with negative premises) The use of negative premises in rules
and rule formats requires some care. When rules have only positive premises, the meaning
of ‘transitions produced by the rules’ is clear: these are all the transitions that can be
derived with a well-founded proof, using the rules as inference rules, in the usual inductive
way. Equivalently, the set is the least fixed point of a functional, as we did in Section 2.5
(where the functional is defined from all ground instances of the rules). If there are negative
premises, however, the functional need not be monotone and therefore a least fixed point
need not exist. This happens, for instance, with the following (self-contradictory) rule,
where f and f ′ are constants (any term could be used in place of f ′):

f a−→
f

a−→ f ′

The issue of negative premises in LTS rules is related to that of negation in logic
programming, and solutions to the latter problem can often be tailored to the former. An
example of solution is that of local stratification, proposed for logic programming by
Przymusinski [Prz88], and transported onto LTSs by Groote [Gro93]. The solution consists
of assigning a weight to all possible process transitions in such a way that in all ground
instances of a rule, the weight of the conclusion is greater than, or equal to, that of the
positive premises and strictly greater than that of all transitions that deny a negative premise.
Intuitively, this means that the validity of the transitions can be established in a step-by-step
manner, following the weights. At weight 0 one obtains the transitions that are provable in
the usual way, via rules that do not employ negative premises. Then at weight α one obtains
the transitions whose negative premises can be resolved by the transitions already available
at smaller weights. Thus, the weight of a transition is related to the maximal nesting of
rules with negative premises that appear in the proof of the transition. �

164 Other approaches to behavioural equivalences

Table 5.3 Congruences for traces and complete traces

format traces complete traces

De Simone trace equivalence failure equivalence
GSOS ready simulation equivalence ready simulation equivalence
tyft/tyxt simulation equivalence 2-nested simulation equivalence
ntyft/ntyxt bisimilarity bisimilarity

As GSOS, so tyft/tyxt extends the De Simone format. However, GSOS and tyft/tyxt
are incomparable, mainly due to the presence of negative premises in the former and of
lookaheads in the latter. The ntyft/ntyxt subsumes both the GSOS and the tyft/tyxt format.

Table 5.3, from [Gro91, Gro93], summarises the results about the congruence induced by
the contexts resulting from these formats with respect to trace equivalence (second column)
and complete trace equivalence (third column). More precisely, two processes P and Q are
in the congruence induced by trace equivalence (respectively complete trace equivalent) on
a format F if, for all languages whose operators have transition rules that respect the format
F , and for all contexts C in the language, the terms C[P] and C[Q] are trace equivalent
(respectively complete trace equivalence). It is assumed that the processes P and Q being
‘tested’ under the formats are finitely-branching. In the table, ready simulation equivalence
and two-nested simulation equivalence are refinements of simulation equivalence presented
in Chapter 6.

That complete traces produce failure equivalence on the De Simone format essentially
follows from results in [DS85] and in [BKO88]; see also [Mai87] for CCS and CSP. (A
direct proof is not very hard, in fact.) For the other results, as well as for more details
on formats and associated theory, see [Gro91, GV92, Gro93, AFV01, Gla93c, MRG07].
Both in tyft/tyxt and in ntyft/ntyxt, the use of lookahead allows us to define some bizarre
operators, rather far from the kind of operators one finds in practical concurrent systems or
languages. Because of this, the significance of the congruence results for these formats (in
particular, the possibility of recovering bisimilarity) has sometimes been questioned. Note
that bisimilarity is the only behavioural equivalence among those discussed in this and
other chapters that is compositional with respect to all formats. Indeed, compositionality
of bisimilarity is often taken as a ‘sanity requirement’ for a rule format.

On weak LTSs, the theory of formats is more difficult; more variations are possible and
therefore, overall, the results produced are less sharp and elegant. There is often a tension
between the elegance of the definition of a format and the simplicity of the congruence
induced by that format. In addition, there are the usual extra issues with weak equivalences,
such as their sensitiveness to divergence and the congruence problems with operators like
choice. For instance, Ulidowski’s ISOS format [Uli92], proposed as a weak version of the
GSOS format, yields a congruence that is similar, but not identical, to the ‘natural’ weak
version of ready simulation equivalence (Section 6.4). The interested reader may consult
[Uli92, AFV01, MRG07].

5.14 Varieties in concurrency 165

We have discussed congruences induced by complete traces. Indeed, the coarsest con-
gruence that preserves traces and deadlock is usually considered to be also the coarsest
useful form of behavioural equivalence. One may nevertheless consider other forms of con-
textual equivalences, using different notions of basic observables. For instance, Boreale,
De Nicola and Pugliese [BDP99b] consider contextual equivalences defined on top of may
and must predicates akin to the may and must success signals of testing equivalence, and
show that, in CCS, well-known testing-like relations can be recovered.

5.13 Non-interleaving equivalences

All behavioural equivalences we have considered reduce parallelism to interleaving, in that

a.0 | b.0 and a.b.0 + b.a.0 (5.2)

are considered equal. We have not discussed equivalences that reject the above equal-
ity, called non-interleaving (or true-concurrency) equivalences; the interested reader may
consult, for instance, [Gla90, BPS01].

Some of these equivalences take into account the causal dependencies in the transitions
performed. For instance, the two transitions

a.b.0 + b.a.0
a−→ b−→ 0

are causality related, as they emanate from the sequence of prefixes a.b.0 in which the firing
of the first prefix is necessary for that of the second. In contrast, there is no causality among
the prefixes of a.0 | b.0, and accordingly causality-based non-interleaving equivalences
reject the equality (5.2). Other non-interleaving equivalences reject (5.2) because of the
different degree of parallelism in the processes: the first process exhibit some parallelism,
whereas the second process is purely sequential.

It is possible to formulate also some non-interleaving equivalences coinductively, for
instance as forms of bisimulation in which transitions are enriched with information about
their dependencies; see [Cas01] for a survey.

5.14 Varieties in concurrency

We have begun with a characterisation of bisimilarity in terms of computable tests. We noted
that this requires considerable control over the processes being executed. This has been
a motivation for discussing coarser forms of behavioural equivalences and preorders. We
have first examined testing equivalence (and the associated may and must relations), which
has an appealing interpretation as indistinguishability under experiments in which the tests
applied to the processes are themselves processes. We have then considered testers with the
additional capability of observing, and reacting to, refusals of processes, and noticed that
the induced equivalence, refusal equivalence, is finer than testing equivalence. Finally, we

166 Other approaches to behavioural equivalences

have focused on the property of deadlock-sensitiveness. This has led to failure equivalence,
via complete traces, and then to ready equivalence. We have, however, observed that other
equivalences, including bisimilarity, may be derived in this way, insisting on the requirement
of compositionality and varying the set of process operators. The relationship among the
equivalences considered in this and other chapters is summarised in Figure 6.2.

The study of behavioural equivalences is a major topic in concurrency theory, with a long
history. Van Glabbeek lists more than 50 forms of behavioural equivalences (and preorders)
for strong LTSs [Gla01a], and many more for weak LTSs [Gla93a]. For applications, the
choice of behavioural equivalence may depend on:

(1) the desired level of abstraction;
(2) the process language used and the environment in which the processes should operate;
(3) the techniques for reasoning available;
(4) the tools available, and the efficiency that they guarantee.

In (1), for instance, one should take into account which properties of processes are con-
sidered relevant. The coarsest semantics that respects the properties will be particularly
appealing. In (2), if the processes are parts of an algebraic language, then the equivalence
should be preserved by the operators of the language. If, however, the environment for the
processes is not precisely known, or if the process language may be subject to extensions
or modifications, then the equivalence should have robust compositionality properties.

Bisimilarity is the finest among the equivalences examined. Hence there may be systems
that we wish to prove equal but they are not bisimilar. Bisimilarity is, however, very robust: it
is preserved by a very large class of operators. It is therefore always a safe choice, regardless
of the intended applications. A possible strategy is to try a verification under bisimulation
semantics first, and only if this fails – and the reasons for the failure are not compelling
enough – move to a coarser equivalence. On this line of reasoning, an even safer choice
would be graphs isomorphism. However, as argued in Section 1.3.1, graph isomorphism is
far too fine: a specification and an implementation of a system, for instance, would rarely
yield isomorphic graphs.

Looking for equivalences coarser than bisimilarity, an alternative to dropping coinduc-
tion altogether is to weaken the game constraints imposed by bisimilarity. We discuss this
alternative in Chapter 6, taking refinements, or variants, of simulation equivalence and also
weakening the bisimulation game on internal moves. The resulting coinductive relations
sometimes maintain reasonably efficient decision algorithms, see [AIS12].

The efficiency of its verification algorithms is indeed a major strength of bisimilarity.
Other advantages are its elegant coinductive definition and its solid mathematical roots.
See [AIS12] and [RJ12]. The benefits may be more significant on processes with subtle
or sophisticated mechanisms of interaction. A striking example is given by higher-order
process languages, in which processes may be exchanged or may move, as in the Higher-
Order π -calculus. As pointed out in Section 7.1.2, various forms of bisimulation have been
proposed and studied in these languages but, for reasons that have to do with the presence

5.14 Varieties in concurrency 167

of processes within actions, the meaning of equality between traces remains rather unclear.
All the characterisations of non-coinductive equivalences without a universal quantification
on contexts (or something similar) that we have seen in this chapter make appeal to forms of
trace equality. As a consequence, proving that two higher-order processes are, say, testing
equivalent, will require, roughly, following the definition of testing and going through a
tedious universal quantification on tests.

It is sometimes possible to define transformations on LTSs so as to reduce an equivalence
� to another one �′. That is, two processes are related by � in the original LTS if and
only if the transformed processes are related by �′ in the final LTS. In this way some
equivalences may be reduced to bisimilarity. It is thus possible, for instance, to exploit the
efficient algorithms for bisimilarity also for other equivalences. A good example of this
is Cleaveland and Hennessy [CH93], for testing equivalence. On finite-state processes, as
testing equivalence is PSPACE-complete, while bisimilarity is of polynomial complexity,
the transformation of the former into the latter in principle is heavy; in practice, however,
the transformation is rather efficient, and is indeed a standard method for computing testing
equivalence on processes in tools (see [AIS12]). For another example of transformation,
from weak to strong bisimilarity, see Exercise 4.2.13.

Today, after more than 25 years of process calculi and behavioural equivalences, we
can say that bisimulation (in its strong and weak forms) remains by far the most popular
behavioural equivalence for languages that follow the CCS tradition, whereas failure equiv-
alence plays this role for the languages on the CSP tradition. Discussing other behavioural
equivalences, as we have done in this chapter and in Sections 4.7–4.9 and will be done
in Chapter 6, is, however, important, both to the better understanding of the equivalences
themselves, and because other equivalences may indeed occasionally be useful.

Varieties are common in concurrency, and we find them not only in behavioural equiv-
alences, but also in process calculi (the CCS language of Section 3.1 is one of the most
studied, but many others have been proposed), and even in models for the behaviour of the
processes. Again, we used LTSs because they are very common, but one may also use Petri
Nets, Event Structures, I/O automata, and so on.

6

Refinements of simulation

The simulation equivalence of Exercise 1.4.17 drops the symmetry of the bisimulation
game: the challenge transitions may only be launched by one of the processes in the pairs.
We have seen that simulation equivalence is strictly coarser than bisimilarity. Unfortunately,
it does not respect deadlock. In this section we discuss a few refinements of simulation
equivalence without this drawback. They are coinductively defined, much like bisimilarity,
while being coarser than bisimilarity. Thus they can allow us to use coinduction in situations
where bisimilarity may be over-discriminating. Another possible advantage of a simulation-
like relation is that it naturally yields a preorder (with all the advantages mentioned in
Section 5.5). With respect to simulation-based relations, however, bisimilarity remains
mathematically more robust and natural. The most interesting refinements we examine are
represented by ready similarity and coupled similarity.

We begin in Section 6.1 with complete simulation, and continue in Section 6.2 with
ready simulation. They are to simulation what complete trace equivalence and failure
(or ready) equivalence are to trace equivalence. In Section 6.3 we discuss two-nested
simulation equivalence. In Section 6.4 we consider the weak versions of the relations in the
previous sections. In Section 6.5 we present coupled similarity, which aims at relaxing the
bisimulation requirements on the internal actions of processes. Finally, in Section 6.6, we
summarise the various equivalences discussed in this and previous chapters.

6.1 Complete simulation

The arguments about the deadlock-insensitivity of trace equivalence in Section 1.3.2, such
as the equality between the processes in Figure 1.4, apply to simulation equivalence too.
We discussed possible solutions for trace equivalence in Section 5.10. We can apply similar
solutions to simulation equivalence. Thus, first, as in complete trace equivalence, we add
the observation of deadlock.

Definition 6.1.1 (Complete similarity) A simulation R is a complete simulation if when-
ever P R Q:

� if P is stopped, then also Q is stopped.

168

6.2 Ready simulation 169

Complete similarity, written ≤comp, is the union of all complete simulations. Two processes
P and Q are complete simulation equivalent, written P ∼comp Q, if both P ≤comp Q and
Q ≤comp P hold. �

Exercise 6.1.2 Show that processes P2 and R2 of Figure 1.7 are complete simulation
equivalent. �

Like complete trace equivalence, complete simulation equivalence has compositionality
problems.

Exercise 6.1.3 Show that equality between the processes P2 and R2 in Exercise 6.1.2 is
broken by the restriction operator; i.e., νb P2 ∼comp νb Q2. �

Exercise 6.1.4 Show that complete simulation equivalence implies complete trace equiv-
alence. �

To see that complete simulation equivalence does not imply failure equivalence, or any
equivalence finer than it, we can use the processes P2 and R2 of Figure 1.7 (Exercises 6.1.2
and 5.10.4). Note that P2 and R2 are also complete simulation equivalent with the following
process:

•
a

00�
��

��
��

a

//��
��

��
�

•
b
$$

•
b

//��
��

��
�

c

00�
��

��
��

• • •
Again, this process is different from P2 and R2 under failure equivalence or any finer
semantics. On the other hand, recall that refusal, failure and ready equivalences equate
the processes P3 and Q3 of Figure 1.7. These processes are not simulation, or complete
simulation, equivalent.

6.2 Ready simulation

Continuing the analogy with traces, we can improve complete simulation equivalence by
moving to failure similarity and making visible the refusal sets of related states. This is the
same as observing the maximal refusal sets of related states, and, going to the complement
sets, it is also the same as observing their ready sets (Definition 5.11.1). Thus, the distinction
between failure and ready equivalences of trace-based semantics disappears on simulation-
based semantics, as the extra observations are made on single states, rather than on states
reached after a certain trace.

Definition 6.2.1 (Ready similarity) A simulation R is a ready simulation if whenever
P R Q, it also holds that readies(P) = readies(Q). Ready similarity, written ≤rs, is

170 Refinements of simulation

the union of all ready simulations. Two processes P and Q are ready simulation equivalent,
written P ∼rs Q, if both P ≤rs Q and Q ≤rs P hold. �

Ready simulation equivalence was introduced by Bloom, Istrail and Meyer [BIM95] as
the congruence induced by complete trace equivalence on the class of operators definable
in the GSOS format (Section 5.12). The authors argue that GSOS is the ‘largest reasonable
format’ that generalises CCS, and conclude that ready simulation equivalence is the finest
equivalence that ‘makes computationally meaningful distinctions’. Relational formulation
were first given, independently, by Larsen and Skou [LS91] (who call it 2/3 bisimilarity),
and van Glabbeek [Gla91]; see also [AV93].

Exercise 6.2.2 Show that a simulation R is a ready simulation if and only if P R Q

implies, for all μ:

� if there is Q′ such that Q
μ−→ Q′ then there is P ′ such that P

μ−→ P ′. �

Example 6.2.3 We have a.b ≤rs a.b + a.c. Indeed, for any process P and Q, we have
μ.P ≤rs μ.P + μ.Q, which is false for bisimilarity. �

The inequality μ.P ≤rs μ.P + μ.Q expresses precisely the difference from bisimilarity
on finCCS: indeed, together with the axioms for bisimilarity, the inequality yields a sound
and complete inequational axiom system for ready similarity on finCCS [Blo89].

Exercise 6.2.4 Show that ready simulation equivalence is included in ready equivalence.
�

Exercise 6.2.5 Show that the processes below are ready simulation equivalent but not
bisimilar.

•
a
$$•

b

//��
��

��
�

b

00�
��

��
��

•
c
$$

•
d
$$• •

•
a
$$

a

..��������������

•
b

//��
��

��
�

b

00�
��

��
��

•
b
$$•

c
$$

•
d
$$

•
d
$$• • •

�

Thus ready simulation equivalence is strictly coarser than bisimilarity. This property can
sometimes be useful, as the following example shows.

Example 6.2.6 We show two lossy delay links, from [BIM95], that are ready simulation
equivalent but not bisimilar. A lossy two-stage link repeatedly accepts an input v (from a
set V of possible inputs), waits a time unit (action d below), and produces as output either
the value v itself or the special signal z to indicate that v has been lost. The constants K1

6.3 Two-nested simulation equivalence 171

and K2 below represent two lossy delay links, written in CCS. The first, K1, receives inputs
correctly but may lose them during the delay, and has thus a transition

K1
v−→ d.v.K1 + d.z.K1

for each v ∈ V . The second, K2, may also lose the input during the reception step and has
therefore an additional transition, for each v:

K2
v−→ d.v.K2 + d.z.K2,

K2
v−→ d.z.K2.

Under ready similarity the two lossy links are equal, and could therefore be used inter-
changeably in any system. In contrast, with bisimilarity they are different and therefore
using one in place of the other in a system could be observable. �

Exercise 6.2.7 (Recommended, ↪→) Prove formally the equalities (for ready simulation
equivalence) and inequalities (for bisimilarity) in Example 6.2.6. �

6.3 Two-nested simulation equivalence

The final refinement of simulation equivalence that we present was obtained by Groote and
Vaandrager [GV92] as the congruence induced by complete trace equivalence on the class
of operators definable in the tyft/tyxt format.

Definition 6.3.1 (Two-nested simulation equivalence) A two-nested simulation is a
simulation contained in simulation equivalence. Two-nested similarity, written ≤2 n, is the
union of all two-nested simulations. Two processes P and Q are two-nested simulation
equivalent, written P ∼2 n Q, if both P ≤2 n Q and Q ≤2 n P hold. �

In practice the interest of two-nested simulation equivalence is very limited, as the dif-
ferences with ready simulation equivalence and bisimilarity are rather artificial. Moreover,
proving that two processes are two-nested simulation equivalent can be tedious as, besides
exhibiting two simulations, one may have to prove separately some simulation equivalence

results. For instance, consider the processes P
def= a.(b.c + b) and Q

def= P + a.b.c whose
behaviour is reported below:

•
a
$$•

b

//��
��

��
�

b

00�
��

��
��

•
c
$$

•

•

•
a

$$

a

..��������������

•
b

//��
��

��
�

b

00�
��

��
��

•
b
$$•

c
$$

• •
c
$$• •

172 Refinements of simulation

We can prove that P and Q are simulation equivalent using the two simulations R def=
{(P,Q)} ∪ I and S def= R−1 ∪ {(b.c, b.c + b)}. This is not sufficient to establish that P and
Q are also two-nested simulation equivalent. We do have R ⊆ S−1, and therefore all pairs
in R are also in simulation equivalence. However, S has an extra pair, (b.c, b.c + b), and
one has to prove separately that this pair is in simulation equivalence too (though in this
simple example it is easy).

A two-nested simulation is also a ready simulation, since two processes that are simu-
lation equivalent must also have the same ready sets.

Exercise 6.3.2 (↪→)

(1) Complete the proof that the processes P and Q above are two-nested simulation
equivalent. Show that they are not bisimilar.

(2) Show that the processes of Exercise 6.2.5 are not two-nested simulation equivalent.
�

One can actually define n-nested simulation equivalence, for all natural numbers n,
proceeding by induction as follows (one could even go further, using the ordinals rather
than the naturals), where Pr is the set of all processes:

� ≤0 n =∼0 n
def= Pr × Pr ;

� P ≤n+1 n Q if there is a simulation R ⊆ ∼n n with P R Q;
� P ∼n+1 n Q if (P ≤n+1 n Q and Q ≤n+1 n P).

The relations ∼0 n, ∼1 n, . . . form a decreasing sequence of relations with respect to set
containment.

Exercise 6.3.3 (↪→) Show that P ≤n+1 n Q iff there is a simulation R ⊆ (≤n n)−1 with
P R Q. �

Exercise 6.3.4 (∗, ↪→)

(1) Show that the processes P and Q of Exercise 6.3.2(1) are not three-nested simulation
equivalent. Are they in a three-nested similarity relation?

(2) Show that a.Q and a.P + a.Q are three-nested simulation equivalent but not four-
nested simulation equivalent. �

Exercise 6.3.5 (↪→) Consider the processes P
def= a.(a.(b + c) + a.b) and Q

def= P +
a.a.(b + c). Draw their behaviour. Are they two-nested simulation equivalent? Are they
three-nested simulation equivalent? Are they bisimilar? �

On image-finite transition systems, the intersection, on all n, of the ∼n n relations
coincides with bisimilarity.

6.4 Weak simulations 173

Exercise 6.3.6 (↪→) Prove the claim above. �

As in other forms of stratification results for bisimilarity, the image-finiteness condition
is necessary, see [GV92].

On the algebraic side, a negative result holds for the equivalences ∼n n (as well as for
the preorders ≤n n), n ≥ 2, in sharp contrast with most of the behavioural relations studied
in the literature: the relations cannot be finitely axiomatised (that is, no finite set of axioms
captures all and only the valid process relations), even on the very simple language of
finite trees (essentially, the sublanguage of CCS comprising the operators nil, prefixing and
choice) [AFvGI04]. On finite trees, bisimilarity is axiomatised with the axioms S1–S4 of
Figure 3.2.

6.4 Weak simulations

Weak simulation is to simulation what weak bisimulation is to bisimulation. As expected,
the process answering a challenge transition uses a weak transition.

Definition 6.4.1 (Weak simulation) Weak simulation is defined by replacing the strong

transition Q
μ−→ Q′ with the weak transition Q

μ̂=⇒ Q′ in Exercise 1.4.17. The union of all
weak simulations (and also the largest weak simulation) is weak similarity. Two processes
P and Q are weakly simulation equivalent, written P ≈se Q, if there are simulations R1

and R2 with P R1 Q and Q R2 P . �

Exercise 6.4.2 Show that in Definition 6.4.1:

(1) when μ is τ we can take Q
μ̂=⇒ Q′ to be Q =⇒ Q;

(2) we can take μ to range over visible actions only, replacing the challenge transition

P
μ−→ P ′ with P

�=⇒ P ′.

Neither (1) nor (2) affects the resulting weak similarity. �

Exercise 6.4.3 (↪→) In CCS, is weak similarity a precongruence (that is, a preorder pre-
served by the operators of the language)? Is weak simulation equivalence a congruence?

�

Both in the strong and the weak case, simulation equivalence strictly includes bisim-
ilarity, and is insensitive to deadlock. The proofs that we saw for the strong case can be
transported onto the weak one.

We only highlight modifications to be made to the refinements of similarity in the pre-
vious Sections 6.1–6.3 so as to adapt them to weak semantics. First, in each definition,
‘simulation’ should mean ‘weak simulation’. There is nothing else to modify in the defini-
tion of weak two-nested similarity. If we wish to maintain τ -actions invisible and, similarly,
maintain the ordering among the equivalences (Figure 6.2) then, in weak complete similar-
ity a stopped process should be one that will never perform visible actions (i.e., a process

174 Refinements of simulation

P for which there is no � and P ′ with P
�=⇒ P ′). And in weak ready similarity, the ready

set of a process P should be {� |P �=⇒}.

Exercise 6.4.4 (↪→) Show that the modifications of Exercise 6.4.2 do not apply to the
complete, ready and two-nested variants of weak simulation equivalence. �

Exercise 6.4.5 (↪→) Show that weak complete similarity is not preserved by the choice
operator. �

As usual with weak semantics [Gla93a], further variations are possible. In particular,
there are the orthogonal aspects of Sections 4.4 and 4.6–4.9 (such as congruence for +
and divergence), which one may wish to take into account. Consider also the definition of
a stopped process; in the connotation given above, the processes 0, τ.0, �τ and τ + �τ

are all stopped. Yet, only the first cannot do anything; the second thinks for a while before
doing nothing; the third thinks forever, and the fourth may or may not think forever. One
may prefer a different meaning for ‘stopped’ in which (some of) these behaviours are
distinguished. Similarity, in weak ready simulation, on related processes P and Q one may
want to take into account the ready sets of processes reachable from P and Q via internal
moves. Further, in such cases observing ready sets or refusal sets matters, so that the weak
versions of ready similarity and failure similarity may differ (we noticed in Section 6.2 that
they coincide for strong LTSs).

The significance of the refinements of simulation, however, in the weak case is less
compelling than in the strong case, notably in the motivations for the relations as the
congruences induced by certain SOS formats, for the reasons mentioned at the end of
Section 5.12. This criticism does not apply to the coupled simulation of the next section,
which makes a refinement of simulation specific to weak semantics as it only concerns
internal activity.

6.5 Coupled simulation

We now discuss coupled simulation. It was introduced by Parrow and Sjödin in [PS92],
and then refined in [Gla93a, PS94]. It has also been advocated, and studied, by Nestmann
and Pierce [NP00] in the π -calculus, and by Fournet [Fou98] in the Join-calculus.

Parrow and Sjödin [PS92] proposed coupled simulation equivalence to prove the cor-
rectness of a distributed implementation of multi-way synchronisations in an environment
supporting only asynchronous binary communications. The multi-party synchronisation
was achieved through the cooperation of several processes. The specification, in contrast,
was formalised, more abstractly, through a centralised synchroniser. In the specification
the centralised synchroniser is capable of selecting all participants of a synchronisation
in a single internal move. In the implementation more steps are needed to gradually nar-
row down the possible combinations. The implementation was not correct with respect to
the specification under weak bisimilarity. The reason is the bisimulation game on internal

6.5 Coupled simulation 175

M0

τ

%%��
��

��
��

τ
$$

τ

�
��

��
��

�

M1

a
$$

M2

b
$$

M3

c
$$

M4 M5 M6

N0

τ

%%��
��

��
��

τ
$$

N1

a
$$

BC

τ
$$

τ

�
��

��
��

�

N4 N2

b
$$

N3

c
$$

N5 N6

Fig. 6.1 Atomic vs gradual commitment

moves: if a process in one step resolves certain internal choices, then a weakly bisimilar
process should perform some internal moves that resolve exactly the same choices. The
obvious alternative to weak bisimilarity would have been a behavioural equivalence less
sensitive than bisimulation to the branching structure of processes. An example is the test-
ing equivalence of Section 5.4. Adopting testing would, however, imply reverting to the
coinduction proof method, in particular to the locality of the checks in proofs. Parrow and
Sjödin managed to stick to coinduction by adopting coupled simulation, which relaxes the
demand of weak bisimulation on internal choice points. More generally, coupled simu-
lation can be an alternative to weak bisimulation when reasoning on processes that have
sequences of internal moves in which some of the derivatives attained are not bisimilar
with the initial and the final processes. The example below, from [PS92, NP00], which is a
(very) simplified version of the multiway synchronisation in [PS92], illustrates the case.

Consider the processes M0 and N0:

M0
def= τ.a + τ.b + τ.c,

N0
def= (νe, f)(e.f | e.a | e.(f .b|f .c)).

Their behaviour is depicted in Figure 6.1, where symbolic names are used for the derivatives.
Both M0 and N0 internally commit to one out of three possible future behaviours. However,
the specification, M0, does so atomically, in one internal move. In contrast, the commitment
of the implementation, N0, is gradual, through competitions between pairs of processes for
the inputs at e and f . Thus N0 may need two steps to complete the commitment, which
appear as distinguished choice points in the LTS for N0.

The difference between M and N matters in all forms of weak bisimilarity examined in
Chapter 4: the transition of N0 =⇒ BC cannot be matched by M0. (We may consider an
exception: the variant of weak bisimilarity without the bisimulation game on τ -actions, in
Definition 4.6.1, which does relate M0 and N0. We however discarded this variant because
it is not preserved by important operators such as parallel composition.)

Exercise 6.5.1 Are M0 and N0 weakly ready similar? �

176 Refinements of simulation

Remark 6.5.2 The sensitiveness of weak bisimilarities to internal choice points may indeed
be disturbing in practice. For instance, we might be unable to use bisimulation to prove that
an implementation and a specification of a system are equal if a certain atomic step in the
specification requires some negotiations among components in the implementation. Situa-
tions like this, involving a gradual pre-emption or a gradual commitment, are particularly
relevant in protocols for distributed systems. �

Nevertheless M0 and N0 are simulation equivalent, as witnessed by the two relations

S1
def= ⋃

0≤i≤6{(Mi,Ni)}},
S2

def= {(M0, BC)} ∪ S1.

It is easy to see that S1 andS−1
2 are simulations. (Note thatS1 andS2 are different; were they

equal then we would have a bisimulation.) A result about simulation equivalence is in itself
not satisfactory, having rejected simulation equivalence as a behavioural equivalence for
processes. We can, however, prove that M and N are a bit more than simulation equivalent:
they are coupled simulation equivalent. Coupled simulation equivalence refines simulation
equivalence by adding check points that force certain ties between the two simulations.
These ties also remedy the deadlock problems of simulation equivalence.

Definition 6.5.3 (Coupled simulation) A coupled simulation is a pair (R1,R2) in which
R1 and R−1

2 are simulations and such that:

(1) P R1 Q implies there is Q′ with Q =⇒ Q′ and P R2 Q′;
(2) the converse on R2, that is: P R2 Q implies there is P ′ with P =⇒ P ′ and P ′ R1 Q.

Coupled similarity is the union of all coupled simulations. Two processes P and Q are
coupled simulation equivalent, written P ≈cs Q, if there is a coupled simulation (R1,R2)
with (P,Q) both in R1 and R2. �

The coupling property of a coupled simulation (R1,R2) is, pictorially, thus:

P
R1

R2

Q

��
Q′

P

��

R2
Q

R1

P ′

If P and Q are related in R1 then Q must exhibit a derivative Q′ that is related with P in
R2; in turn, P must exhibit a derivative P ′′ that is related to Q′ in R1; and so forth. Note
that pairs of stable processes should appear in both relations.

The pair of relations (S1,S2) above, used to prove that M0 and N0 are simulation equiv-
alent, is nearly a coupled simulation. The only pair that does not appear in both relations
is the pair (M0, BC) of S2; so this is the only case in which the coupling requirement has
to be checked. We have to find a derivative M ′ of M0 with (M ′, BC) ∈ S1. This forces us
to add an extra pair to S1; we can add either (M2, BC), or (M3, BC), or both. Suppose we

6.5 Coupled simulation 177

add the first one. Then we have to check the coupling requirement also on it. The check is
successful because for the derivative N2 of BC we have M2 S2 N2. Moreover, S1 remains
a simulation after the addition of the pair. We can therefore conclude that M0 and N0 are
coupled simulation equivalent. We write ≤cs for the ‘one-way’ coupled similarity, where
P ≤cs Q if P R Q for some coupled simulation (R,R′), and ≥cs for the inverse of ≤cs.

Exercise 6.5.4 Show that (≤cs,≥cs) is the largest coupled simulation, and that ≈cs=≤cs

∩ ≥cs. �

Exercise 6.5.5 (↪→) Show that ≈cs is transitive. �

Lemma 6.5.6 Coupled simulation equivalence is an equivalence relation. �

Exercise 6.5.7 Show that (P ⊕ Q) ⊕ R ≈cs P ⊕ (Q ⊕ R), where ⊕ is the internal choice
operator of Exercise 5.8.10. �

Exercise 6.5.8 (Recommended, ↪→) Show that the axiom of testing equivalence in
Exercise 5.8.9 (namely, μ.P + μ.Q = μ.(τ.P + τ.Q)) is not valid for weak ready simu-
lation or coupled simulation equivalence. Can we, however, use coupled similarity? �

Exercise 6.5.9 Define a fixed-point characterisation of coupled simulation equivalence,
akin to Theorem 2.10.3 for strong bisimilarity; prove also the analogue of Lemma 2.10.1.

�

As usual, to obtain a full congruence in CCS we have to add a ‘root’ condition. It can
be formulated differently with respect to the ordinary root conditions for bisimilarities, in
terms of stability. We recall that a process is stable if it cannot perform τ -actions.

Definition 6.5.10 (Rooted coupled simulation) Two processes P and Q are rooted
coupled simulation equivalent if

(1) P ≈cs Q;
(2) P is stable iff Q is stable. �

Exercise 4.4.13 shows that the analogous characterisation for weak bisimilarity fails.

Exercise 6.5.11 (∗, ↪→)

(1) Show that coupled simulation equivalence is preserved by all CCS operators but sum-
mation, and rooted coupled simulation equivalence is preserved by all CCS operators.
(The interesting and novel part here is to show that rooted coupled simulation equiva-
lence is preserved by summation, so the reader may want to try this point only.)

(2) Show that rooted coupled simulation equivalence is strictly included in coupled simu-
lation equivalence. �

Exercise 6.5.12 (↪→) Show that rooted coupled simulation equivalence is the largest con-
gruence included in coupled simulation equivalence. (Hint: follow the same proof strategy
as in the analogous result for rooted weak bisimilarity and weak bisimilarity.) �

178 Refinements of simulation

Exercise 6.5.13 Show that τ.(τ.P + Q) = τ.P + Q is valid for rooted coupled simulation
equivalence but not for rooted weak bisimilarity. �

The axiom in Exercise 6.5.13 tells us that certain internal choices in processes are
irrelevant: precisely, a τ -move may be ignored if the derivative has a further τ -move. In the
axiomatisation of rooted coupled simulation equivalence over finite CCS processes [PS94],
the above axiom captures precisely the difference between the rooted versions of coupled
simulation equivalence and weak bisimilarity.

The original definition of coupled similarity [PS92] requires the coupling only on stable
processes. It is also called S-coupled simulation equivalence, to remind us that it is ‘coupled
by stability’.

Definition 6.5.14 (S-coupled simulation) An S-coupled simulation is a pair (R1,R2) in
which R1 and R−1

2 are simulations and such that:

(1) P R1 Q and P stable implies P R2 Q;
(2) the converse on R2, that is: P R2 Q and Q stable implies P R1 Q.

S-coupled similarity is the union of all S-coupled simulations. Two processes P and Q

are S-coupled simulation equivalent, written P ≈Scs Q, if P and Q are related by both
components of an S-coupled simulation. �

In clause (1), P alone is stable. Without divergences, coupled and S-coupled simulation
equivalences coincide. We write ≤Scs the ‘one-way’ S-coupled similarity where P ≤Scs Q

if P R Q for some S-coupled simulation (R,R′).

Exercise 6.5.15 (∗, ↪→) On divergence-free LTSs, show that:

(1) ≤cs does not imply ≤Scs;
(2) ≈cs implies ≈Scs;
(3) ≈Scs implies ≈cs. �

In applications, however, S-coupled simulations may be more convenient to use than
coupled simulations because the former may have fewer pairs. For instance, on the processes
M0 and N0 of Figure 6.1, exactly the same relations S1 and S2 that we used to prove that
the processes are simulation equivalent also prove that they are S-coupled simulation
equivalent. For proving that they are coupled-simulation equivalent, in contrast, we had to
add at least one pair to S1.

The problem with ≈Scs is that it does not work well outside divergence-free LTSs. In
particular, transitivity can break.

Exercise 6.5.16 Show that transitivity of ≈Scs may break without the assumption on
divergence. (Hint: you may show that a.b ≈Scs a.b + a.�τ ≈Scs a.b + a, but a.b ≈Scs

a.b + a.) �

Exercise 6.5.17 Show that a.b + a.�τ ≈Scs a.(�τ + b). �

6.5 Coupled simulation 179

On divergence-free LTSs, ≈Scs is actually transitive, as follows from Exercises 6.5.5 and
6.5.15. However, ≤Scs is not transitive even on divergent-free LTSs.

Exercise 6.5.18 Show that 0 ≤Scs τ ≤Scs τ + a, but not 0 ≤Scs τ + a. �

Coupled simulation equivalence is strictly coarser than weak bisimilarity and, on
divergence-free LTSs, it is strictly finer than testing equivalence. It is, however, incompara-
ble with weak ready simulation equivalence and weak two-nested simulation equivalence.
On LTSs without internal moves, coupled simulation equivalence degenerates to bisim-
ilarity and is therefore strictly finer than ready and two-nested simulation equivalences.
However, on non-stable processes, the simulation game of coupled simulation may not be
sufficient to guarantee, for instance, that related processes have the same ready sets, see for
instance Exercise 6.5.7.

In comparison with bisimilarity, coupled simulation requires us to work with two rela-
tions. Proofs can therefore be more tedious. Proofs can also be conceptually more complex,
especially when coinductive arguments have to be combined with inductive ones. A good
example is the completeness proof of axiomatisations (for coupled simulation in [PS94],
for weak bisimulation in Theorem 4.5.3 or in [Mil89]).

Exercise 6.5.19 (∗, ↪→) (Stable bisimulation and contrasimulation, continuing
Exercise 4.6.4) Consider the following refinement of the bisimulation in Exercise 4.6.4,
using s for a sequence of visible actions. A process relation R is a stable bisimulation if,
whenever P R Q, for all s we have:

� for all P ′ with P
s=⇒ P ′ and P ′ is stable, there is Q′ such that Q

s=⇒ Q′ and P ′ R Q′,

and the converse on the actions from Q. Stable bisimilarity is the union of all stable
bisimulations. Show that on divergence-free LTSs:

(1) stable bisimilarity is an equivalence relation;
(2) the axiom μ.P + μ.Q = μ.(τ.P + τ.Q) of Exercise 6.5.8 is valid for stable bisimi-

larity;
(3) coupled simulation equivalence implies stable bisimilarity;
(4) if (S1,S2) is an S-coupled simulation, then S1 ∩ S2 is a stable bisimulation;
(5) stable bisimilarity is strictly between coupled simulation equivalence and testing

equivalence. �

As a note, the problems of stable bisimilarity of the above exercise are that it is defined
on sequences of transitions and therefore may be difficult to verify, and it is not transitive
on LTSs with divergences. A possible remedy to the latter problem is to use contrasimula-
tions. A contrasimulation R is a kind of simulation in which the simulation game on a pair
(P,Q) ∈ R requires that a challenge P

s=⇒ P ′ be matched by a transition Q
s=⇒ Q′ with

Q′ R P ′ (the order on the derivatives is reversed). The equivalence induced by the largest

180 Refinements of simulation

graph isomorphism

$$
bisimilarity

$$
two-nested bisimilarity

$$
ready sim. eq.

44�������������

((��������������

55������������������������

complete sim. eq.

$$

66������������������������������������� ready eq.

66������������ refusal eq.

77������������

sim. eq.

66���������������������������������

failure eq.
= test. eq.
= must eq.

$$
complete trace eq.

$$
trace eq.
= may eq.

Fig. 6.2 Relationship among the main behavioural equivalences.

contrasimulation (which, as usual, is also the union of all contrasimulations) is contrasimu-
lation equivalence. Both stable bisimulation and contrasimulation are due to van Glabbeek
[Gla88, Gla93a].

6.6 The equivalence spectrum

Figure 6.2 summarises the relationship among the equivalences for (strong) LTSs that we
have considered in this chapter and in the previous ones. An arrow from a relation to another
one means that the former is strictly finer than the latter. Recall that the non-coinductive
equivalences have been presented and discussed under the assumption of image-finiteness
for the LTSs. Hence this assumption applies to Figure 6.2.

On weak LTSs the full picture is more complicated: there are various ways of taking into
account silent transitions in the simulation or bisimulation game (e.g., delay, η, branching,

6.6 The equivalence spectrum 181

dynamic, coupled); there are congruence issues for the choice operator that bring in addi-
tional language-specific relations (the largest congruence included in the equivalences);
and finally there may be different ways of dealing with divergence (e.g., weak bisimula-
tion versus divergence-sensitive weak bisimulation). The effect of each of these aspects
has been discussed in the dedicated sections. On divergence-free (and image-finite) weak
LTSs, Figure 6.2 remains unchanged. Further details on comparisons among behavioural
equivalences and preorders may be found in [Gla01a, Gla93a].

7

Basic observables

A transition P
μ−→ P ′ of an LTS intuitively describes a pure synchronisation between the

process P and its external environment along port μ. In concurrent systems one finds many
other forms of interaction: asynchronous, with exchange of values, via broadcast, and so
on.

Therefore the question naturally arises about how to tune the schema of ordinary bisim-
ulation (Definition 1.4.2) to other interaction models. The issue is relevant also outside
concurrency theory. For instance, one may wish to define equality between terms of the
λ-calculus as a bisimilarity relation, so as to be able to exploit coinductive techniques. We
can then view the computation mechanism of the λ-calculus – functional application – as a
special form of interaction, between the function and its argument (see [Pit12]). Similarly,
we may want to use bisimulation on list-like structures, as we did in Section 2.6.4. In this
case, interaction is given by the operations available on lists, such as the extraction of the
head of a list.

However, not only do we look for a notion of equality based on bisimulation that can
be used on different interaction models. We also wish such an equality to be a natural one.
The distinctions on states that it makes must be justifiable in terms of observations that an
environment in which the states run can make. When the states are part of a term language,
this means that there should be contexts of the language that can separate the states.

In this chapter we present a method for deriving bisimilarity relations that can be applied
to virtually all languages whose terms are described by means of a grammar. The idea is
to set a bisimulation game in which the observer has a minimal ability to observe actions
and/or states. This yields a bisimilarity, namely indistinguishability under such observations,
which in turn induces a congruence over terms, namely bisimilarity in all contexts. The
bisimilarity is called barbed bisimilarity, the congruence barbed congruence.

The main assumption underpinning barbed bisimilarity and congruence is the existence,
in the language, of a reduction relation that expresses an evolution step of a term in which
no intervention from the environment is required. In CCS, this relation is

τ−→. The reduction
relation represents the most basic and fundamental notion in the operational semantics of
a language. In fact, there is an approach to the operational semantics of processes, referred
to as reduction semantics, which, borrowing ideas from term-rewriting systems, only gives
meaning to reductions; that is, it only explains how a system can evolve independently

182

Basic observables 183

of its environment. This approach is in contrast with the labelled transition semantics,
which explains both the activity within a system and interaction between a systems and its
environment, by describing all actions that processes can perform. A reduction semantics
can be more tedious than a labelled transition semantics to work with, but makes it easier to
grasp the meaning of a calculus or language. See [Mil99, SW01] for details and comparisons
of the two approaches. Another advantage of barbed congruence is that it fits well in a
reduction semantics.

In barbed bisimilarity the bisimulation game is only played on reductions. Equal pro-
cesses should, however, also exhibit the same barbs – certain predicates representing basic
observables of the states. The barbs are needed to obtain the appropriate discriminating
power. Barbed congruence is a contextual equivalence: it is the context-closure of barbed
bisimilarity. As we shall see, however, tuning the basic observables so to yield an equality
that is natural and robust (i.e., it is the ‘desired’ equality in all languages) requires some
care.

In Section 7.1 we further discuss why a method for uniformly deriving bisimilarity
in different languages is desirable. We show that adapting the bisimulation schema of
Definition 1.4.2 to a given language in an ad hoc manner may be troublesome. It may be
that different choices for a bisimulation are possible. Or it may be that a form of bisimulation
that looks reasonable turns out to be overdiscriminating or to lack desirable mathematical
properties such as congruence.

We begin to move towards barbed congruence in Section 7.2, with reduction congruence,
which is is an even simpler form of contextual bisimilarity than barbed congruence, as
no barbs are considered. We show that reduction congruence does not give the desired
discriminating power and this will pave the way to the introduction of barbed congruence.
We present barbed congruence in Section 7.3. The main result is the characterisation of
barbed congruence in terms of the ordinary labelled bisimilarity, on image-finite processes.
In Section 7.4 we show a Context Lemma that allows us to reduce the set of contexts
in the definition of barbed congruence. We also discuss, in Sections 7.5–7.6, variants of
barbed congruence, notably weak versions, intended to capture weak bisimilarity (and its
rooted variant), and reduction-closed barbed congruence, where the closure under contexts
is part of the definition itself of bisimilarity. Finally, Section 7.7 contains some concluding
remarks on the use and meaning of barbed congruence.

In the remainder of this section we use the term labelled bisimilarity to indicate a
bisimilarity that, as the ordinary one of Definition 1.4.2, is not contextual (i.e., it does not
use quantification over contexts) and has a bisimulation game in which the labels of the
transitions matter. The term serves to contrast these bisimilarities with barbed congruence,
which is contextual and its bisimulation game, being only played on reductions, does not
involve labels.

As the relations in this chapter are mostly contextual, they depend on the process
language chosen. It is intended that the language for the whole chapter is CCS (the choice
of the set of constants for infinite behaviour, in contrast, is not important; the set could also
be empty).

184 Basic observables

7.1 Labelled bisimilarities: examples of problems

To see the kind of problem that one may encounter in the quest of a satisfactory labelled
bisimilarity for a given language, we briefly discuss two cases: CCS with value passing and
higher-order process languages.

7.1.1 CCS with value passing

The difficulties already show up if we add a very simple form of value passing to CCS,
where boolean values may be communicated. The basic operators of CCS remain the same
but the input and output prefixes now take the form a(x).P and a〈e〉.P , and a conditional
construct if e then P else Q is added. The input a(x).P indicates a process that
is willing to receive at a a value that will replace the variable x in the continuation P .
The output a〈e〉.P indicates a process that is willing to emit at a the result of evaluating
the boolean expression e, with P being the derivative. Concerning the transitions that such
prefixes originate, a common approach is to stipulate that they are, respectively,

a(x).P
a(x)−−→ P and a〈v〉.P a〈v〉−−→ P,

where v ranges over the boolean values true and false. Accordingly, the input clause
for bisimilarity could be (we only examine the input clause because it is the delicate one):

� if P R Q and P
a(x)−−→ P ′, then there is Q′ such that Q

a(x)−−→ Q′ and for all v it holds that
P {v/x} R Q{v/x}.

However, the order of the quantifiers following the transition from the challenger P could
be swapped:

� if P R Q and P
a(x)−−→ P ′, then for all v there is Q′ such that Q

a(x)−−→ Q′ and
P {v/x} R Q{v/x}.

The bisimilarity resulting from the first choice is called late bisimilarity, the other early
bisimilarity. To see that the choice matters, consider the terms

P
def= a(x).b〈x〉.0 + a(x).0,

Q
def= a(x).b〈x〉.0 + a(x).0

+ a(x). if x = true then b〈x〉.0 else 0.

The two processes are early, but not late, bisimilar. In the early bisimilarity, the transition

Q
a(x)−−→ if x = true then b〈x〉.0 else 0

can be matched by P using the transition P
a(x)−−→ b〈x〉.0 or P

a(x)−−→ 0, depending on
whether the value v that should instantiate x is true or false. This is not possible with

7.2 Reduction congruence 185

late bisimilarity, where P is required to exhibit a single transition, to be used for all values
v. In general late bisimilarity is strictly included in the early one.

The example shows that in CCS with value passing it may not be clear which labelled
bisimilarity should be adopted. In languages such as the π -calculus, besides late and early,
other formats are possible, for instance the open bisimilarity [SW01]. In such situations,
barbed congruence can guide us in the choice of a bisimilarity. Incidentally, in CCS and
π -calculus barbed congruence corresponds to early bisimilarity, see [SW01].

7.1.2 Higher-order process languages

In ordinary bisimulation, as by Definition 1.4.2, two processes are bisimilar if any action by
one of them can be matched by an equal action from the other in such a way that the resulting
derivatives are again bisimilar. The two matching actions must be syntactically identical.
This condition is too strong in higher-order languages, where the values exchanged may
contain processes. Consider a simple process-passing calculus with operators similar to
those of CCS and an output primitive a〈P 〉.Q to indicate a term that can perform an output
action at a emitting a process P and then continues as Q. Now, if R1 and R2 are two
syntactically different processes, then the bisimilarity of Definition 1.4.2 would distinguish
processes a〈R1 |R2〉.0 and a〈R2 |R1〉.0, since the transitions they perform, namely

a〈R1 |R2〉.0 a〈R1 |R2〉−−−−−→ 0 and a〈R2 |R1〉.0 a〈R2 |R1〉−−−−−→ 0,

have different labels. This means that a basic algebraic law such as the commutativity of
parallel composition would not hold. (Furthermore, the bisimilarity so obtained would not
be a congruence relation.)

One might think of resolving the above problem by requiring that the processes emitted in
an output action be bisimilar, rather than identical. (This is the approach taken by Thomsen
[Tho90], following earlier ideas by Astesiano and Boudol [AGR88, Bou89].) This form of
bisimilarity, called higher-order bisimilarity, in general remains unsatisfactory: it still gives
congruence problems, and is over-discriminating. We refer to [San96] for more details.

In summary, in a higher-order process language it is not at all clear what the clauses
of a labelled bisimilarity should be, as matching transitions might have quite different
labels. Again, a contextually-defined equivalence such as barbed congruence can serve as
a guide; see [San92, JR03, MZ05, SKS07a, RS08] for examples of labelled bisimilarities
that characterise barbed congruence in higher-order process calculi.

7.2 Reduction congruence

In this section we address the following question, in CCS. What minimal power of observa-
tion on processes is needed so as to obtain a relation whose induced congruence coincides
with the familiar bisimilarity ∼?

186 Basic observables

We examine first the case in which only the silent action, the simplest forms of action,
appears.

Definition 7.2.1 (Reduction bisimulation) A process relationR is reduction bisimulation
if whenever P R Q:

(1) for all P ′ with P
τ−→ P ′, there is Q′ such that Q

τ−→ Q′ and P ′ R Q′;
(2) the converse, on the τ -transitions emanating from Q, i.e., for all Q′ with Q

τ−→ Q′,
there is P ′ such that P

τ−→ P ′ and P ′ R Q′.

Reduction bisimilarity, written ∼· τ , is the union of all reduction bisimulations. �

As a process equivalence, reduction bisimilarity is seriously defective: for instance, it
relates any two processes that have no τ transitions, such as a.0 and 0. Moreover it is not
even preserved by parallel composition.

Example 7.2.2 For P
def= a.0 and Q

def= b.0, it holds that P ∼· τ Q, but

P | a ∼· τ Q | a. �

The congruence induced by ∼· τ , in contrast, is more interesting.

Definition 7.2.3 (Reduction congruence) Two processes P and Q are reduction congru-
ent, written P ∼τ Q, if for each context C, it holds that C[P] ∼· τ C[Q]. �

Reduction congruence distinguishes, for instance, between a.0 and b.0: a context that

distinguishes them is C
def= [·] | a.0.

Notation 7.2.4 In this chapter we use a dot to denote an equivalence that is not necessarily
a congruence; so in this case, and for future equivalences, the absence of a dot means a
congruence. �

Lemma 7.2.5 ∼⊆∼τ .

Proof Clearly, ∼ ⊆ ∼· τ . Since ∼ is a congruence, P ∼ Q implies C[P] ∼ C[Q], which in
turns implies C[P] ∼· τ C[Q], for every context C. �

The converse of Lemma 7.2.5 is, however, false. For instance, reduction congruence
does not distinguish between �τ and �τ | a.0. Indeed since �τ

τ−→ �τ , for any P the
process �τ |P is reduction congruent to �τ . More generally, reduction congruence does
not distinguish between always-divergent processes.

Definition 7.2.6 The set of always-divergent processes is the largest set S of processes
such that P ∈ S implies P

τ−→ P ′, for some P ′, and P
μ−→ P ′′ implies P ′′ ∈ S, for any

μ,P ′′. �

Exercise 7.2.7 Show that a process is always-divergent iff all its multi-step derivatives are
divergent. �

7.2 Reduction congruence 187

Processes that are always-divergent are not necessarily bisimilar (see the proof of
Corollary 7.2.10). However, they are reduction congruent; intuitively since any state they
can reach is divergent, no CCS context can make the distinction between them as long as
only τ actions are taken into account.

Theorem 7.2.8 If P and Q are always-divergent, then P ∼τ Q.

Proof [Sketch] We prove that

R def= {(C[P], C[Q]) |C is a context, and P , Q are always-divergent}

is a reduction bisimulation.
Let C[P] R C[Q]. Suppose that C[P]

τ−→ C ′[P] and C itself has produced the τ -action
(i.e. P has not been ‘used’): then also C[Q]

τ−→ C ′[Q] and C ′[P] R C′[Q].
Suppose now that C[P]

τ−→ C ′[P ′] and P has contributed to such action (either with an
interaction with C or by simply performing itself the τ -action): then P ′ cannot appear as
a subterm in a summation and hence it cannot be discharged by C′. Since P ′ is always-
divergent, this means that also C ′[P ′] is always-divergent. It remains to find a process R

always-divergent such that C[Q]
τ−→ R, as this would yield C′[P ′] R R (in the definition

of R take the empty context [·]).
Now, since P has contributed to the action of C[P], P is not underneath a prefix in

C[P]. Therefore the same is true for Q, which can perform actions. Therefore if Q
τ−→ Q′,

then for some C ′′, also C[Q]
τ−→ C ′′[Q′]. Moreover, for the same reason as C′[P ′], also

C ′′[Q′] is always-divergent. For R
def= C′′[Q′], this concludes the proof. �

Exercise 7.2.9 Refine and complete the details of the proof sketch above. �

Corollary 7.2.10 ∼τ ⊆ ∼.

Proof Take �τ and the constant K with transitions K
a−→ �τ and K

τ−→ K . Then K is
always-divergent. By Theorem 7.2.8, �τ ∼τ K; however �τ ∼ K . �

Exercise 7.2.11 (Recommended, ↪→) Show that reduction congruence would distinguish
the processes �τ and K in the proof of Corollary 7.2.10 if we add to CCS a disabling
operator �, very similar in the intent to Lotos’s disrupting operator [BB89], and described
by the following rules:

Q
μ−→ Q′

P � Q
μ−→ P � Q′

P
μ−→ P ′ Q

μ−→ Q′

P � Q
τ−→ P ′

�

In the case of weak bisimilarities, where we abstract from internal activity by allowing
a τ -transition of one process to be matched by any number (even 0) of τ -transitions of

188 Basic observables

another, the problem with reduction congruence is worse: it makes no distinctions among
processes, and coincides with the universal relation.

7.3 Barbed congruence

To obtain a satisfactory notion in the vein of reduction congruence it is therefore necessary
to allow some properties of the states to be observable. It is natural in concurrency that the
extra power provided is in terms of action observability. We allow the observer to detect
whether a process can perform an observable action; this gives barbed bisimilarity. We
recall that � ranges over CCS names and conames (the visible actions).

Definition 7.3.1 (Observability predicates, barb-preserving relation)

(1) For each visible action �, the observability predicate (or barb) ↓� holds on a process

P if P
�−→.

(2) A process relation R is barb preserving if whenever P R Q, for all � it holds that P ↓�

iff Q ↓�. �

For instance, a.c.0 + b.0 has observables a and b – it is capable of receiving via a

and via b – while a.b.0 has observable a – it can send via a. The restricted composition
νa ((a.c.0 + b.0) | a.b.0) of these processes has only the observable b; its continuation after
a reduction, νa (c.0 | b.0) has the observables c and b.

We modify reduction bisimilarity to take observability into account in the following
definition.

Definition 7.3.2 (Barbed bisimilarity) A reduction bisimulation R is a barbed bisim-
ulation if it is barb preserving. Barbed bisimilarity, written

.∼, is the union of all barbed
bisimulations. �

Thus a relation is a barbed bisimulation just if it is a reduction bisimulation that respects
observability. That is, P

.∼ Q holds if P and Q have the same observables, and to each τ

transition of one there corresponds a τ transition of the other to a barbed-bisimilar process.
For example,

νb (b.0 | b.c.0)
.∼ τ.c.0.

Like reduction bisimilarity, barbed bisimilarity is unsatisfactory as a process equiva-
lence. For instance, we have a.b.0

.∼ a.c.0. Barbed bisimilarity, however, underpins barbed
congruence, which is a satisfactory equivalence.

Exercise 7.3.3 (↪→)

(1) Show that
.∼ is an equivalence relation, and is preserved by the CCS operators of

prefixing, sum, and restriction.
(2) Show that, however,

.∼ is not preserved by parallel composition. �

7.3 Barbed congruence 189

Definition 7.3.4 (Barbed congruence) Processes P and Q are barbed congruent, written
P % Q, if C[P]

.∼ C[Q] for every context C. �

Directly from the definition:

Lemma 7.3.5 % is the largest congruence included in
.∼. �

Exercise 7.3.6 Show that ∼ ⊆ %. �

The proof that P % Q is contained in ∼ is more difficult. The proof below requires
image-finiteness so as to be able to use the stratification of bisimilarity, that is, the fact that
∼ is the same as ∼ω. The crux of the proof is showing by induction on n that if P ∼n Q

then C[P] .∼ C[Q] for some context C (Lemma 7.3.7).
We recall that �i∈IPi abbreviates summation Pi1 + · · · + Pir where I = {i1, . . . , ir}.

We use M,N to range over summations. In a statement, we say that a name a is fresh if it
does not occur in the sort of the processes in the statement.

Lemma 7.3.7 Suppose that, for n ≥ 0, P ∼n Q and P,Q are image-finite. Then there is
a summation M such that for any fresh c,

P | (M + c) .∼ Q | (M + c).

Proof By induction on n. For n = 0 there is nothing to prove, so suppose that n > 0. Then
there are μ and P ′ such that P

μ−→ P ′ but P ′ ∼n−1 Q′ for all Q′ such that Q
μ−→ Q′ (or vice

versa, the argument is the same). Since
μ−→ is image-finite, {Q′ |Q μ−→ Q′} = {Qi | i ∈ I }

for some finite set I . Appealing to the induction hypothesis, for each i ∈ I let Mi be a
summation such that for any fresh name d,

P ′ | (Mi + d) .∼ Qi | (Mi + d). (7.1)

We distinguish the case in which μ is a visible action and that of τ -action.

Case 1 Suppose that μ is a visible action. Let ci (i ∈ I) be fresh names, and set

M
def= μ.�i∈I τ.(Mi + ci).

We show that M is as required in the claim. So suppose that c is fresh. Let

A
def= P | (M + c) and B

def= Q | (M + c), and suppose, for a contradiction, that
A

.∼ B. We have

A
τ−→ A′ def= P ′ |�i∈I τ.(Mi + ci).

Since A
.∼ B there is B′ such that B

τ−→ B ′ .∼ A′. Since A′ ↓c does not hold, B ′ ↓c

should not hold either. The only way this is possible is if I = ∅ and

B ′ def= Qj |�i∈I τ.(Mi + ci)

190 Basic observables

for some j ∈ I . We now exploit the inductive hypothesis on P ′, Qj and Mj . We
have

A′ τ−→ A′′
j

def= P ′ | (Mj + cj).

Since A′ .∼ B ′ there is B ′′
j such that B ′ τ−→ B ′′

j

.∼ A′′
j . In particular, since A′′

j ↓cj

we must have B ′′
j ↓cj

. The only possibility is

B ′′
j

def= Qj | (Mj + cj).

But A′′
j .∼ B ′′

j by (7.1), a contradiction. Hence A .∼ B, as required.
Case 2 Suppose that μ is τ . Let ci (i ∈ I) be fresh names, and set

M
def= �i∈I τ.(Mi + ci).

The argument is then similar.

�
Exercise 7.3.8 Complete case (2) of the above proof. �

Theorem 7.3.9 (Characterisation Theorem for barbed congruence) On image-finite
processes, relations % and ∼ coincide.

Proof The inclusion ∼ ⊆ % is in Exercise 7.3.6. For the opposite inclusion, suppose
that P ∼ Q. Then by Exercise 2.10.18, P ∼n Q for some n. Then let M be as given

by Lemma 7.3.7, let c be fresh, and set C
def= [·] | (M + c). Then C[P] .∼ C[Q], and so

P % Q. �
Exercise 7.3.10 (↪→) Prove the variant of Theorem 7.3.9 on the set of processes that are
image-finite up-to ∼ rather than just image-finite. �

It is not known whether Theorem 7.3.9 holds without the image-finiteness (or image-
finiteness up-to ∼) hypothesis. The hypothesis can, however, be dropped if we assume that
for each P the set

{P ′ |P μ−→ P ′ for some μ}
is countable and allow infinite sums in the calculus. That is, we replace the sum P + P ′ by

�i∈IPi,

where I is a countable set, as in the original CCS language of [Mil89]. See [SW01, Section
2.4.2] for more details. The main difference in the Characterisation Theorem 7.3.9 is that
one needs to apply the stratification of bisimilarity over the ordinals, rather than the natural
numbers.

Although the construction in the proof of Theorem 7.3.9 employs many observables, a
single observable is sufficient to establish the theorem, at least for processes that have a
finite sort. Let us write P ↓ to mean P ↓� for some visible action �. Consider the relation

7.4 Barbed equivalence 191

defined like barbed congruence except that in the Definition 7.3.1(2) of barb preserving,
the clause ‘P ↓� iff Q ↓μ’ is replaced by ‘P ↓ iff Q ↓’. The proof of Theorem 7.3.9 can
be adapted to the relation so obtained.

Exercise 7.3.11 (∗, ↪→) Prove the claim above. �

The proofs of Lemma 7.3.7 and Theorem 7.3.9 extensively use the + operator. This
operator is, however, not needed. What is needed is a form of internal choice, where a process
decides autonomously to follow one of several possible paths, and this can be expressed via
other operators (see the internal choice operator of Exercise 5.8.10). This fact is important
when one seeks similar results on calculi that lack +; for instance, asynchronous calculi
such as the asynchronous π -calculus or the Join calculus.

Exercise 7.3.12 (∗) Show that on processes that are image-finite and divergence-free (that
is, none of their derivatives is divergent) relations ∼τ and ∼ coincide. (Hint: try to modify
the proof of Lemma 7.3.7. The role of the fresh names used in the proof of the lemma
can be played by processes of the form τn.0. Note also that under the hypothesis of the
exercise, for each process P there is n such that P cannot perform more than n consecutive
τ -steps.) �

7.4 Barbed equivalence

A way of reducing the quantification over contexts in the definition of barbed congruence
is to prove context lemmas for it, that is, to show that a subset of all contexts is sufficient to
give all discriminating power. This may be useful in languages in which a characterisation
theorem in terms of a labelled bisimilarity akin to Theorem 7.3.9 is hard to obtain.

An example of context lemma, for CCS, is the following result. It asserts that two
processes are barbed congruent iff the systems obtained by composing with an arbitrary
process are barbed bisimilar.

Definition 7.4.1 (Barbed equivalence) Two processes P and Q are barbed equivalent,
written P %e Q, if P |R .∼ Q |R, for all R. �

Theorem 7.4.2 (Context Lemma for barbed congruence) Relations % and %e coincide.
�

We can re-use the proof of Theorem 7.3.9 to show that %e = ∼, and then from this
and Theorem 7.3.9 itself conclude that % and %e coincide. This would, however, prove
the result for image-finite processes, as this condition appears in Theorem 7.3.9. We can,
however, discard the condition by directly comparing % and %e.

Exercise 7.4.3 (Recommended, ↪→) Prove Theorem 7.4.2. (Hint: proceed by induction
on the structure of the context used in %.) �

192 Basic observables

7.5 The weak barbed relations

We briefly discuss how to adapt the barbed machinery to the weak case. The definition of
the weak relations is the expected one.

Definition 7.5.1 (Weak barbed bisimilarity and congruence) The definitions of weak
barbed bisimulation and weak barbed bisimilarity, written

.≈, are obtained by replacing,
in Definition 7.3.2, ‘reduction bisimulation’ with ‘weak reduction bisimulation’, and ‘barb
preserving’ with ‘weak-barb preserving’, where: ‘weak reduction bisimulation’ modifies
‘reduction bisimulation’ by replacing, in Definition 7.2.1(1) the strong transition Q

τ−→ Q′

with the weak transition Q =⇒ Q′, and similarly in clause (2) of the definition; ‘weak-
barb preserving’ modifies ‘barb preserving’ by replacing, in Definition 7.3.1(2), the strong

observability predicates ↓� with the weak predicates ⇓� defined as ⇓�
def==⇒↓�.

Processes P and Q are weakly barbed congruent, written P ∼= Q, if C[P]
.≈ C[Q] for

every context C. �

Exercise 7.5.2 Show that in Definition 7.5.1, weak-barb preserving can be set thus: a weak
reduction bisimulation R is weak-barb preserving if whenever P R Q, for all �:

(1) P ↓� implies Q ⇓�;
(2) conversely, Q ↓� implies P ⇓�. �

Since weak barbed congruence is, by definition, preserved by all operators, in CCS it
corresponds to rooted weak bisimilarity (≈c), rather than weak bisimilarity (≈), as the latter
is not preserved by the choice operator.

To recover weak bisimilarity we have to restrain the quantification over contexts, disal-
lowing, in summands, holes that are not underneath a prefix. It is more common, however,
to simply consider parallel composition contexts, i.e., contexts of the form [·] |R. This is
both mathematically handy (these contexts are easy to handle in proofs) and observationally
satisfactory (the process R acts as a tester for the processes compared, akin to the testers in
the testing equivalence of Section 5.4).

Definition 7.5.3 (Weak barbed equivalence) Two processes P and Q are weakly barbed
equivalent, written P ∼=e Q, if P |R .≈ Q |R, for all R. �

Exercise 7.4.3 showed that, in the strong case, barbed equivalence and congruence coincide.
In the weak case this only holds if we remove the sum operator, or we only allow guarded
forms of sum (see the discussion before Lemma 4.4.3).

Theorem 7.5.4

(1) P ≈ Q implies P ∼=e Q.
(2) P ≈c Q implies P ∼= Q.

Proof The first assertion follows from Lemma 4.4.1, and the fact that weak bisimilarity is
included in weak barbed bisimilarity. The second is similar, using Exercise 4.4.9. �

7.5 The weak barbed relations 193

The proof of the converse of Theorem 7.5.4 is very similar to that of the corresponding
result in the strong case: see Theorem 7.3.9. We indicate the main points of difference.
Corresponding to Lemma 7.3.7 we have:

Lemma 7.5.5 Suppose that for n ≥ 0, P ≈n Q, and P,Q are image-finite under weak
transitions. Then there is a summation M such that for any fresh name c, one of the following
holds:

(1) P ′ | (M + c) .≈ Q | (M + c) for all P ′ such that P =⇒ P ′;
(2) P | (M + c) .≈ Q′ | (M + c) for all Q′ such that Q =⇒ Q′.

Proof By induction on n. For n = 0 there is nothing to prove, so suppose that n > 0. Then

there are μ and P ′ such that P
μ−→ P ′ but P ′ ≈n−1 Q′′ for all Q′′ such that Q

μ̂=⇒ Q′′ (or

vice versa, with the roles of P and Q swapped). By image-finiteness, {Q′′ |Q μ̂=⇒ Q′′} =
{Qi | i ∈ I } for some finite set I . We prove that assertion (2) of the claim holds (in the case
when the roles of P and Q are swapped, one would prove assertion (1)). Appealing to the
induction hypothesis, for each i ∈ I let Mi be a summation such that P ′,Qi,Mi satisfy the
assertion of the lemma.

The argument is similar to that in Lemma 7.3.7. We give the details for the case when μ

is a visible action, and show the definition of the process M when μ = τ .

Case 1 Suppose that μ is a visible action. Let ci (i ∈ I) and c′ be fresh names, and set

M
def= μ.(c′ + �i∈I τ.(Mi + ci)).

Suppose that c is fresh, and let Q′ be any process such that Q =⇒ Q′. Let A
def=

P | (M + c) and B
def= Q′ | (M + c), and suppose, for a contradiction, that A

.≈ B.
We have

A
τ−→ A′ def= P ′ | (c′ + �i∈I τ.(Mi + ci))

and A′ ⇓c′ but not A′ ⇓c. Since A
.≈ B there is B ′ such that B =⇒ B ′ .≈ A′. In

particular it must be that B ′ ⇓c′ but not B ′ ⇓c. The only way this is possible is if
I = ∅ and

B ′ def= Qj | (c′ + �i∈I τ.(Mi + ci))

for some j ∈ I (a derivative of Q′ under
μ=⇒ is also a derivative of Q).

By the induction hypothesis, either (1) or (2) of the claim holds for P ′, Qj and
Mj . Suppose that (2) holds. We have

A′ τ−→ A′′
j

def= P ′ | (Mj + cj)

and A′′
j ⇓cj

but not A′′
j ⇓c′ . Then B ′ =⇒ B ′′

j for some B ′′
j with B ′′

j

.≈ A′′
j . We must

have

B ′′
j

def= Q′
j | (Mj + cj)

194 Basic observables

for some Q′
j such that Qj =⇒ Q′

j . But A′′
j

.≈ B ′′
j contradicts that (2) of the claim

holds for P ′, Qj and Mj .
Dually, if (1) of the claim holds for P ′, Qj and Mj , then we obtain a contradiction

by considering how A′ can match the transition

B ′ τ−→ B ′′
j

def= Qj | (Mj + cj).

Case 2 Suppose that μ = τ . Let ci (i ∈ I) be fresh names, and set

M
def= �i∈I τ.(Mi + ci).

�

Exercise 7.5.6 (↪→) Show that ∼= is the largest congruence included in ∼=e. �

Theorem 7.5.7 (Characterisation Theorem, weak case) On processes image-finite on
weak transitions,

(1) ∼=e and ≈ coincide;
(2) ∼= and ≈c coincide.

Proof The first assertion follows from Theorem 7.5.4(1) and Lemma 7.5.5, via the stratifi-
cation of ≈.

The second item follows from (1) since weak barbed congruence is the largest congruence
included in weak barbed equivalence, and rooted weak bisimilarity is the largest congruence
included in weak bisimilarity. �

As in the strong case, so here Theorem 7.5.7 can be strengthened using the hypothesis
of image-finiteness up-to ≈. In contrast, it is not known whether in the weak case having a
single observable is sufficient to establish the theorem (the analogue of Exercise 7.3.11 in
the strong case).

Exercise 7.5.8 (↪→) In the weak case, barbed congruence and barbed equivalence are
different, due to the congruence problems with the choice operator. Propose and prove a
context lemma for ∼=, in replacement of the Context Theorem 7.4.2 for the strong case. �

7.6 Reduction-closed barbed congruence

We briefly discuss a variant of barbed congruence in which the quantification over contexts
is pushed inside the definition of barbed bisimulation.

Definition 7.6.1 (Reduction-closed barbed bisimilarity) A reduction bisimulation R is
a reduction-closed barbed bisimulation if it is barb preserving and context-closed (i.e.,
P R Q implies C[P] R C[Q], for all contexts). Reduction-closed barbed congruence,
written %rc, is the union of all reduction-closed barbed bisimulations. �

7.6 Reduction-closed barbed congruence 195

Reduction-closed barbed congruence is, essentially by definition, both a congruence and
a barbed bisimulation; indeed, it is the largest barbed bisimulation that is a congruence.

The main advantage of reduction-closed barbed congruence over barbed congruence
is that a characterisation theorem in terms of labelled bisimilarity can be proved for all
processes, without the need of the image-finiteness hypothesis. This can be done using
reasoning similar to (in fact, simpler than) that in Theorem 7.3.9. Such a proof is possible
because the context surrounding the processes being compared can be changed at any point
in the reduction-closed barbed bisimulation game.

Theorem 7.6.2 Relations %rc and ∼ coincide.

Proof As usual, the inclusion ∼ ⊆ %rc is easy: ∼ is a bisimulation hence it is a reduction
bisimulation, preserves barbs, and is a congruence, hence is context-closed.

For the opposite inclusion, we show that %rc is a bisimulation. Suppose P %rc Q and
P

μ−→ P ′, for μ = τ . We have to find Q′ such that Q
μ−→ Q′ and P ′ %rc Q′. Consider

the context C
def= [·] | (μ.0 + a.0) where a is not in the sort of P,Q. We have C[P] ↓a

and C[P]
τ−→ P ′ | 0 ↓a . Since P %rc Q, process C[Q] should be able to reduce without

producing at the end a barb at a. This can only happen if the reduction consists of an
interaction between Q and μ.0 in which Q makes a transition Q

μ−→ Q′, for some Q′. We
then obtain

P ′ | 0 %rc Q′ | 0. (7.2)

We know that for any R, we have R | 0 ∼ R and ∼ ⊆ %rc; hence also R | 0 %rc R. Using
this property on (7.2) we conclude P ′ %rc Q′, and we are done. We leave the case μ = τ

to the reader. �

The main disadvantage of reduction-closed barbed congruence is to be less robust than
barbed congruence. In some calculi the former is indeed stronger and, arguably, less natural
than the latter. This happens for instance in the π -calculus [SW01]. It also happens for
weak bisimilarities in languages with dynamic operators such as choice that disappear after
producing an action (the weak version of reduction-closed barbed congruence is defined
in the expected way). For instance, in CCS, weak reduction-closed barbed congruence
violates the equation

μ.τ.P = μ.P.

Indeed, in CCS weak reduction-closed barbed congruence gives dynamic bisimilarity, rather
than the ordinary (rooted) weak bisimilarity. The reason why barbed congruence is more
robust is that it keeps the intervention of the external observer to a minimum. (Recall that we
started from reduction bisimilarity in Section 7.2.) In reduction-closed barbed congruence,
in contrast, the observer has the power to change the context surrounding the processes
being tested. Further, as we explain in Section 7.7, the fact that P % Q implies P ∼ Q for
a large class of processes (though not all processes) is satisfactory: the important point is
that P ∼ Q implies P % Q for all P and Q.

196 Basic observables

A way to remedy the problems of weak reduction-closed barbed congruence in languages
with the choice operator is to move to reduction-closed barbed equivalence where, analo-
gously to Definition 7.4.1, one only closes barbed bisimilarity with parallel composition
contexts. In CCS, we thus obtain weak bisimilarity.

Remark 7.6.3 (Other variations) The barbed relations have been used in the literature
to recover bisimilarity and weak bisimilarity, in various languages. The definitions of the
barbed relations can be rectified, in the expected way, to recover other coinductive labelled
relations examined in previous chapters. For instance, to recover the similarity preorder
it suffices to omit the symmetric clause (2) from Definition 7.2.1, and to replace the ‘iff’
demand of Definition 7.3.1(2) (barb preserving) with an ‘implies’. If the definition of barb
preserving is left unchanged, then we recover ready similarity. The changes in the proofs
are straightforward.

Somewhat more delicate are the modifications in the proofs needed to recover branching
bisimilarity (and the related η and delay bisimilarities). See Exercise 7.6.4 to get a flavour
of the kind of reasoning needed. �

Exercise 7.6.4 (↪→) Propose a ‘branching’ version of weak barbed congruence, in which
the bisimulation game on reductions of Definition 7.2.1 is replaced by the bisimulation
game on τ -actions as in branching bisimulation. Show that in the resulting branching
barbed congruence, the third τ -law, T3, is not valid. �

Remark 7.6.5 If in the definition of weak barbed congruence we omitted the requirement
about weak reduction bisimulation, that is, we took the context closure of weak barbed
preserving relations, then we would obtain essentially Morris’s contextual equivalence
[Mor68], generally taken as the reference equality in sequential languages such as the
λ-calculus. In CCS, this modified weak barbed congruence would coincide with trace
equivalence. �

7.7 Final remarks

Barbed congruence intuitively says that two processes are equal if they ‘evolve in the same
way in all contexts’. This is formalised using a bisimulation game – the barbed bisimilarity –
on the steps that the two systems, thought of as closed systems, may take. Along the game
the two systems must be able to produce the same success signals (the barbs).

Being the bisimulation game played only on internal action – the simplest form of
action – barbed congruence can be applied to virtually all languages, both concurrent
and sequential, including imperative and object-oriented programming languages. Several
examples of such applications can be found in the literature. They also serve us as evidence
of the robustness of barbed congruence: it gives us the desired discriminating power.
Further, being contextually defined, barbed congruence is ‘observational’, in the sense that
the distinctions it makes on processes can be explained in terms of the existence of suitable
contexts that can tell the processes apart.

7.7 Final remarks 197

The quantification over contexts also represents the main drawback of barbed congru-
ence: it makes it difficult to understand the meaning of the equality; and it can make
it awkward to prove equalities by applying the definition directly. These problems are
motivations for establishing characterisations on barbed congruence in terms of labelled
bisimilarities, as we did in Theorem 7.3.9 for CCS.

In general, one actually goes the opposite way: one first defines barbed congruence
as the behavioural equality on processes. Then one looks for a labelled bisimilarity that
characterises it, or approximates it as best as possible. It even becomes an excellent test for
the operators of the language to see whether they can express such labelled characterisations.

In certain languages, the labelled bisimilarity that characterises barbed congruence may
be quite different from that of Definition 1.4.2. For instance, it may be that the matching
transitions of two equal processes be syntactically quite different from each other. This
occurs when processes are first-class values, as discussed in Section 7.1. It may also
happen that only certain transitions of the processes are observable. That is, there may
be transitions that the processes can perform that should not be taken into account in the
labelled bisimilarity.

The above phenomena are prominent in languages with information hiding mechanisms,
such as polymorphic types, capability types, encryption, data abstraction or store. The
reason has to do with multiple ‘points of view’ about the values exchanged in a program.
For instance, in the case of typed π -calculus, when a value is transmitted from one process
to another, the receiver may have less type information about it – and so may use fewer
of its actual capabilities – than the sender. For this, in a labelled bisimilarity one has to
explicitly record, in each pair of related processes, the observer’s perspective – that is, the
observer’s current knowledge about the values he/she has acquired through interactions
with the process. Examples of this kind of labelled bisimilarity may be found, e.g., in
[BS98, PS00, AG98, BDP99a, SP04, SP05, KW06, SKS07a].

Finally, we comment on the image-finite hypothesis in the Characterisation Theo-
rem 7.3.9 (similar remarks apply to its weak counterpart Theorem 7.5.7). It is often very
hard to prove the theorem without such a hypothesis. Even though the theorem does not
cover all processes, the result expressed is important and satisfactory for two reasons.
First, Exercise 7.3.6 shows that bisimilarity is sound, in that it can be used to obtain proof
techniques for barbed congruence. Soundness alone, however, does not tell us whether the
techniques are applicable to many processes. (For instance, the identity relation is included
in barbed congruence and is therefore sound, but it does not give us interesting proof tech-
niques.) This is where we can appeal to Theorem 7.3.9 and Exercise 7.3.10, which show
that the techniques do apply to a very large class of processes. Second, the characterisation
holds for processes that are image-finite up-to ∼; processes not in this class tend to arise
rarely in practice.

An analogy can be drawn between barbed congruence and the testing approach to
behavioural equivalence examined in Section 5.4. In the testing theory, the basis for compar-
ing processes is the emission of success signals during experiments in which the processes
are tested by composing them with special terms, the testers. The contexts that appear in the

198 Basic observables

definition of barbed congruence play the role of the testers; and the observability predicates
of barbed bisimilarity play the role of the success signals of an experiment. In testing,
however, one considers linear runs of the experiments, whereas in barbed congruence one
can follow the branching structure of the tree of the possible evolutions of an experiment by
virtue of the bisimulation game. As we saw in Section 5.2, the same discriminating power
can also be obtained in the testing approach, but one needs rather sophisticated testers.
Another difference between barbed congruence and testing equivalence is in the set of con-
texts used. Barbed congruence is defined by quantification over all contexts, whereas testing
equivalence only uses parallel composition contexts. Thus testing equivalence requires the
existence of the CCS parallel composition operator in the language, and the equivalence
produced need not be a congruence. Definitions of testing-like relations that are fully con-
textual are proposed in [BDP99b]; with respect to barbed congruence, the bisimulation
game on internal moves is removed, and the barbs are may and must observables along the
lines of the may and must predicates of testing equivalence.

Appendix A

Solutions to selected exercises

The reader can find in this appendix solutions to most of the exercises in the book. Often a
solution is not fully worked out, but should anyhow be sufficient for the reader to fill in the
missing details.

Exercises in Chapter 1

Exercise 1.4.10 Take

R′
1

a

88

b
$$

R

c

99

b

A bisimulation is {(R1, R
′
1), (R2, R), (R3, R)}. We omit the details that show this relation

is a bisimulation. �

Exercise 1.4.11 Here the initial guess could be

{(R1,Q1), (R2,Q4), (R3,Q3)}.
In this way, the transitions emanating from (R1,Q1) and (R3,Q3) are matched. But when
examining the transitions emanating from (R2,Q4) one is forced to add the pair (R3,Q5)
first, and then also (R2,Q2). The resulting relation is a bisimulation, as the reader can easily
check.

In this exercise, when looking for the match for a given transition, there may be choices
possible, because a state may have different outgoing transitions with the same label; in
these cases, following the existential quantifier in the definition of bisimulation, we are
asked to pick one, and we have to be careful to pick a good one. For instance, the transition
R1

a−→ R3 is matched by Q1
a−→ Q3; it cannot be matched by Q1

a−→ Q4, as (R3,Q4) cannot
be in a bisimulation because R3 has a c-transition whereas Q4 has not. �

199

200 Solutions to selected exercises

Exercise 1.4.12 Bisimilarity would become the universal relation. In the case when the
process P has transitions with a label μ, whereas Q has no such transitions, the set
{Q′ |Q μ−→ Q′} is empty and therefore the demand

� “for all P ′ with P
μ−→ P ′, and for all Q′ such that Q

μ−→ Q′, we have P ′ R Q′”

becomes trivially true. �

Exercise 1.4.13

(1) We show that if each Ri is a bisimulation then also R def= ∪iRi is a bisimulation.
Suppose P R Q and P

μ−→ P ′. As P R Q, then also P Ri Q, for some Ri . As Ri

is a bisimulation, Q can match the transition from P , thus there is Q′ with Q
μ−→ Q′

and P ′ Ri Q′. Hence also P ′ R Q′, and we are done. The case of transition from Q is
similar.

(2) Consider the following processes:

P

a

���
��

��
��

a

!!��
��

��
�

P1 P2

Both I (the identity relation) and {(P,P), (P1, P2), (P2, P1)} are bisimulations. Their
intersection, however, is {(P,P)}, and this is not a bisimulation. �

Exercise 1.4.16 If a pair (P,Q) satisfies the clauses in the exercise, on sequences of
actions, then it also satisfies the bisimulation clauses, on single actions, as a single action
is a special case of a sequence.

The converse is proved by induction on the length of a sequence s. If s = ε, then there is

nothing to prove. Otherwise, s = s′μ, for some sequence s ′ and action μ. If P
s ′μ−→ P ′ then

this means that there is P ′′ with P
s′−→ P ′′ and P ′′ μ−→ P ′. By induction, there is Q′′ with

Q
s ′−→ Q′′ and P ′′ R Q′′, whereR is the bisimulation given. Now, asR is a bisimulation and

P ′′ μ−→ P ′, there is Q′ with Q′′ μ−→ Q′ and P ′ R Q′. Thus we have found that Q
s ′μ−→ Q′,

for some Q′ with P ′ R Q′, and we are done.
The case when Q launches the challenge is similar. �

Exercise 1.4.17

(1) Easy.
(2) For any such P and Q, the singleton relation {(P,Q)} is a simulation. There is nothing

to prove, as the process on the left, P , has no transitions.
(3) Easy.
(4) The converse of none of the points holds. In the case of P2 and Q2, it suffices to note

that P2 has an a-transition to a state in which both b and c can be performed. Q cannot
evolve into a state with both such observables.

(5) Similar to the analogous proof for bisimulation.

Solutions to selected exercises 201

(6) The inclusion follows from point (1). For the strictness, one can show that processes
in Figure 1.4 are simulation equivalent but not bisimilar.

(7) First one shows, by induction on the length of a sequence s of actions, that if P ≤ Q

and P
s−→, then also Q

s−→. One can thus conclude that simulation equivalence implies
trace equivalence.

For the strictness, the processes P2,Q2 of Figure 1.7 are trace equivalent: the
sequences of actions they can perform are the same, namely ε, a, ab, ac. We have seen
at point (4) that they are not simulation equivalent. �

Exercise 1.4.18 We prove that S def=∼ R ∼ is a bisimulation. Take P S Q and suppose
P

μ−→ P ′. We have to find a matching transition from Q. If P S Q then this means that
there are P1,Q1 with P ∼ P1, P1 R Q1 and Q1 ∼ Q. As ∼ is a bisimulation and P

μ−→ P ′,
there is P ′

1 with P1
μ−→ P ′

1 and P ′ ∼ P ′
1. Similarly, as R is a bisimulation up-to ∼, Q1 can

answer the transition P1
μ−→ P ′

1 with Q1
μ−→ Q′

1, for some Q′
1 with P ′

1 ∼ R ∼ Q′
1. Finally,

again from the fact that ∼ is a bisimulation and Q1
μ−→ Q′

1, we deduce that there is Q′ with

Q
μ−→ Q′ and Q′

1 ∼ Q′.
In summary, we have found Q′ with Q

μ−→ Q′ and P ′ ∼ P ′
1 ∼ R ∼ Q′

1 ∼ Q′. As ∼ is
transitive, this means P ′ ∼ R ∼ Q′; thus P ′ S Q′ and we are done.

The case when Q moves first is similar. �

Exercises in Chapter 2

Exercise 2.1.2 Let

R def= {(e, e′) | e ⇓ e′ and e′ is an abstraction}.

We prove ⇓ ⊆ R by showing that R is closed forward under the rules for ⇓. We have two
rules to check. The first rule is immediate: for any abstraction e we do have e R e. In the case
of the second rule, suppose e1 R λx.e0 and e0{e2/x} R e′. This means that e′ is abstraction;
it also means that e1 ⇓ λx.e0 and e0{e2/x} ⇓ e′, from which we derive e1 e2 ⇓ e′. We can
thus conclude e1 e2 R e′. �

Exercise 2.1.4 Let

R def= {(e, e′) | e ⇓ e′ and e ⇑ does not hold}.

One proves⇓ ⊆ R by showing thatR is closed forward under the rules for⇓. The reasoning
is similar to that for Exercise 2.1.2. If e is an abstraction, then indeed e R e; moreover not
e ⇑, as the rules for ⇑ require the conclusion to be an application. Suppose now e1 R λx.e0

and e0{e2/x} R e′. This means that e1 e2 ⇓ e′ (by definition of R and the rules for ⇓). It also
means that:

� not e1 ⇑;
� e1 ⇓ λx.e0 and not e0{e2/x} ⇑.

202 Solutions to selected exercises

These two facts mean that we cannot apply, backwards, any of the rules for ⇑ on e1 e2,
hence not e1 e2 ⇑. We can thus conclude e1 e2 R e′.

Note that the reasoning we have made corresponds to a proof of the statement by induc-
tion on the depth of a proof of e ⇓ e′ (the induction on derivation proofs of Section 2.7.1),
which is the proof strategy that a reader with some familiarity with induction would have
naturally followed if presented with the two rules for ⇓. �

Exercise 2.1.6 For e2 e2, use the set S
def= {e2 e2 , (e2 e2) e2)}. For e1 e2 use S ∪ {e1 e2}, for

e2 e1 use {e2 e1 , (e1 e1) e1 , e1 e1}. �

Exercise 2.3.3 Take the set of processes, quotiented by simulation equivalence. This is a
well-defined quotient because simulation equivalence is an equivalence relation. Define an
ordering on the resulting equivalence classes using similarity; the ordering can be given
on representatives of the classes, exploiting again the equivalence properties of simulation
equivalence. Using Exercise 1.4.17(5) it is easy to see that this is indeed a poset. �

Exercise 2.3.14 It is a lattice but not a complete lattice, as it does not have top and bottom
elements. It suffices to add two points, for top and bottom elements, to obtain a complete
lattice. �

Exercise 2.3.15 The meet is the usual intersection of relations. The join of relations is the
transitive closure of the union of the relations. The bottom element is the identity relation
(any equivalence relation is reflexive and therefore includes the identity); the top element
is the universal relation, that includes all pairs of points. �

Exercise 2.3.17 Let L be the complete lattice and X a set of points in the lattice. We have
to show that X has a meet. Consider the set

Y
def= {y | y ≤ x,∀x ∈ X}.

Note that if X is empty, then Y = L. We show that the join of Y , say z, is also the meet
of X. First, it holds that z ≤ x, for all x ∈ X. Indeed, if there were a point in X for which
the relation failed, then z could not be the join of Y (as the join of a set is smaller than all
upper bounds of that set). Further, z is the greatest point with this property, as any other
points with the property belong to Y and are therefore smaller than z, by definition of
join. �

Exercise 2.3.19
(1) In this proof we sometimes use an infix notation for the join. By definition of join,

x ≤ x ∪ y, therefore, as F is monotone, also F (x) ≤ F (x ∪ y). From this and using the
hypothesis that x is a post-fixed point, we get x ≤ F (x ∪ y). Similarly we derive y ≤
F (x ∪ y). Therefore F (x ∪ y) is an upper bound for {x, y}, hence x ∪ y ≤ F (x ∪ y),
by definition of join.

(2) In the case of a set {xi}i of post-fixed points the reasoning is similar. Let z = ∪{xi}i .
We first derive, for all i, F (xi) ≤ F (z): for this we use the definition of join, which
gives us xi ≤ z, and the monotonicity of F . As xi is a post-fixed point, we then obtain

Solutions to selected exercises 203

xi ≤ F (z). As this holds for all i, F (z) is an upper bound for the set {xi}i . As z is the
join (i.e., the least upper bound) we can finally conclude z ≤ F (z).

The dual statement for pre-fixed points is: given a set S of pre-fixed points, ∩S is a
pre-fixed point too. The proof is obtained by dualising that of post-fixed points above.

(3) Consider the complete lattice with five distinct points related as follows:

e

d

���������
c

::��������

b

,,��������

33�������

a

++

and a function F that is the identity everywhere except that F (b) = a. Then F is
monotone, c and d are post-fixed points, but ∩{c, d} is not.

For another counterexample see Exercise 1.4.13(2), since, as we show in Sec-
tion 2.10, the bisimulations are the post-fixed points of a monotone endofunction on
the complete lattice of the binary relations on processes. �

Exercise 2.3.20 We consider one part of the statement, namely

gfp(F)
def=

⋃
{S | S ⊆ F (S)}

(the other part is similar). Set T
def= ⋃{S | S ⊆ F (S)}. We first show that T ⊆ F (T), then

the converse.

� T ⊆ F (T) is proved as in Exercise 2.3.19(2).
� From T ⊆ F (T) and monotonicity of F , we derive F (T) ⊆ F (F (T)), hence F (T) is a

post-fixed point. We conclude F (T) ⊆ T by definition of join of the post-fixed points.

Finally, T is the greatest among the fixed points: any other fixed point is a post-fixed point,
hence below T by definition of join. �

Exercise 2.3.22 Here are the missing details for the proof.
We have to show that S is a complete lattice in itself, therefore it is non-empty, and it has

a join for all its subsets. We show the latter, as in doing so we will also prove the former.
Consider X and Y as defined in the exercise, and the meet z of Y . Note that, for x ∈ X and

y ∈ Y , as the points in X are fixed points and F monotone, x ≤ y implies also x ≤ F (y).
To show that z is also the join of X in S, we prove that z is a fixed point; this is sufficient,
because all points of X are below z (by definition of meet, as each point of X is below all
points of Y), thus showing that z is an upper bound; and any other fixed points with the

204 Solutions to selected exercises

same property would be in Y and therefore would be above z, thus showing that z is the
least upper bound.

The proof that z is a fixed point is similar to the proof of Exercise 2.3.20 (the part on
least fixed points). We first show F (z) ≤ z. This holds if F (z) ≤ y for all y ∈ Y . This in
turn holds if F (z) ≤ F (y) (as F (y) ≤ y, the pre-fixed point property), which then holds if
z ≤ y (as F is monotone). Now we are done, as z ≤ y is true by definition of z.

Now the converse. From F (z) ≤ z, by monotonicity, we infer that F (z) is a pre-fixed
point of L. Moreover, as z is an upper bound of X, again by monotonicity (and the fixed-
point property for X), we infer that also F (z) is an upper bound of X. Hence F (z) ∈ Y ,
from which we can conclude z ≤ F (z).

The above construction precisely shows that the meet of the pre-fixed points that are
above X is a fixed point, and it is exactly the least fixed point that is above X. Thus when
X is empty the construction shows that L has a least fixed point, which is obtained as the
meet of all pre-fixed points of L. �

Exercise 2.5.3 In one direction, it has already been shown that rule functionals give rise to
monotone functions. For the opposite, let F be the monotone function. If F (S) = T , then
add the rules (S, t) for all t ∈ T . The associated functional coincides with F , exploiting the
fact that F is monotone.

We can try to be more restrictive, or precise, adding the following constraint. For each t ,
suppose there are sets Si such that, for each i, F (Si) = t and Si is minimal, in that there is
no set S′

i smaller than Si with F (S ′
i) = t (such sets Si need not exist, though). Then the only

rules whose conclusion is t are (Si, t), for each i. Being more restrictive can be useful for
obtaining rules that are finite in the premises or in the conclusions, as by Definitions 2.9.1
and 2.9.3. �

Exercise 2.6.2 Let S be the set of all processes P for which there are Pi (i ≥ 0) with
P0 = P and, for each i, Pi

μ−→ Pi+1. One shows that S is a post-fixed point of �R�μ
, and

that any post-fixed point only contains processes in S. �

Exercise 2.6.3 The set of all finite lists plus the infinite lists that are almost constant
(meaning that all their elements are identical except for a finite number of them) also
satisfies the equation for �Alist. The important property is that the set of almost constant
lists is closed under append and tail operations; that is, if s is an almost constant list then
also 〈a〉 • s is almost constant, for any a; and conversely if 〈a〉 • s is almost constant then
s is so too. �

Exercise 2.6.4 The empty set and the set of all infinite lists. �

Exercise 2.6.10 First one shows that, for all n ≥ 0, we have

(map +1)nnats = 〈n〉 • (map +1)n+1nats

using induction on n. For n = 0, we have (map +1)0nats = nats, and then

nats = 〈0〉 • map +1 nats

Solutions to selected exercises 205

by definition of nats. For n > 0, we have:

(map +1)nnats =
map +1 (map +1)n−1nats = (by induction)

map +1 〈n − 1〉 • (map +1)nnats = (by definition of map)
〈n〉 • map +1 (map +1)nnats =

〈n〉 • (map +1)n+1nats.

Using this property, we show that R is a bisimulation. Take (map +1)nnats R from (n).
We have

(map +1)nnats = 〈n〉 • (map +1)n+1nats
n−→ (map +1)n+1nats

and

from (n) = 〈n〉 • from (n + 1)
n−→ from (n + 1).

Since (map +1)n+1nats R from (n + 1), we are done. �

Exercise 2.6.11 In this exercise, for readability, we omit the parentheses ‘〈’ and ‘〉’ in lists,
for instance writing b • s for 〈b〉 • s. We also recall that by our bracketing conventions,
expressions such as n • (map +1)n+1nats read as n • ((map +1)n+1nats).

First, using the property

(map +1)nnats = n • (map +1)n+1nats

shown in the proof of Exercise 2.6.10, and the definition of map, we derive, for n ≥ 0,

map f ((map +1)nnats) = map f n • (map +1)n+1nats

= f (n) • map f ((map +1)n+1nats) (A.1)

Now, consider the function h, from natural numbers to lists of natural numbers, defined by
recursion on n ≥ 1 as follows:

h(1)
def= plus (fibs,tail (fibs)),

h(n)
def= plus (f (n − 1) • h(n − 1), h(n − 1)) (for n > 1).

We prove that, for n ≥ 1

h(n) = f (n + 1) • h(n + 1). (A.2)

The proof is by induction on n. For n = 1 we have

h(1) = plus (fibs,tail (fibs))
= plus (0 • 1 • plus (fibs,tail (fibs)), 1 • plus (fibs,tail (fibs)))
= 1 • plus (1 • plus (fibs,tail (fibs)),plus (fibs,tail (fibs)))
= f (2) • plus (f (1) • h(1), h(1))
= f (2) • h(2).

206 Solutions to selected exercises

For n > 1 we have, using induction,

h(n) = plus (f (n − 1) • h(n − 1), h(n − 1))
= plus (f (n − 1) • f (n) • h(n), f (n) • h(n))
= f (n + 1) • plus (f (n) • h(n), h(n))
= f (n + 1) • h(n + 1).

Now we are ready to define the list bisimulation:

R def= { (fibs , map f nats) , (1 • h(1) , map f (map +1 nats)) }⋃
n≥1{(h(n), map f ((map +1)n+1nats))}.

We have to show that R is a list bisimulation. We consider the three kinds of pair in R:

� (fibs,map f nats). We have

fibs = 0 • 1 • plus (fibs,tail (fibs))
0−→ 1 • plus (fibs,tail (fibs))
= 1 • h(1)

and, using (A.1),

map f nats = map f ((map +1)0nats)
= f (0) • map f ((map +1)nats)
0−→ map f ((map +1)nats)

which closes the case, as 1 • h(1) R map f ((map +1)nats).
� (1 • h(1),map f (map +1 nats)). Similar to the previous one.
� (h(n), map f ((map +1)n+1nats)). We have, using (A.2):

h(n) = f (n + 1) • h(n + 1)
f (n+1)−−−−→ h(n + 1)

and, again using (A.1),

map f ((map +1)n+1nats) = f (n + 1) • map f ((map +1)n+2nats)
f (n+1−−−→ map f ((map +1)n+2nats)

and we are done, as h(n + 1) R map f ((map +1)n+2nats). �

Exercise 2.7.1 We use the property, discussed in Section 0.5, that given any well-founded
relation R on X, in any non-empty subset of X there is at least a minimal element.

Now, assume that the condition of well-founded induction holds for the well-founded
relation R on the set X and the property T on X and yet the set {y | y ∈ X and y ∈ T } is
non-empty. By the observation above, the set has at least one minimal element, say z. Thus
for all z′ with z′ R z we have z′ ∈ T , however z ∈ T . This contradicts the assumption that
the well-founded induction holds. �

Exercise 2.7.3 Rule induction says that if a property holds for the empty string, and
whenever it holds at s it also holds at a.s.b, and whenever it holds at s1 and s2 it also holds

Solutions to selected exercises 207

at s1.s2, then the property holds in all strings inductively produced by the rules. One can
show that the number of a and b is the same by structural induction or rule induction.

The set S inductively defined by the rules is the set of all strings s in which the number
of a and b symbols is the same and, moreover, in any prefix of s the number of bs is always
less than, or equal to, the number of as.

In the coinductive case, the results is the set of all strings. To see this, consider the
backward closure: given a string s, we can match it against the conclusion of the rule
({s1, s2}, s1.s2), taking s1 = ε and s2 = s. When the rule (∅, ε) is replaced by the rule
(∅, a.b): in the assertion of rule induction the assumption “a property holds for the empty
string” is replaced by “a property holds at a.b”; the only other thing that changes is that ε

itself is not anymore in the set S inductively defined by the rules (in contrast, ε remains in
the set coinductively defined, for in the backward closure we can expand ε as ε.ε, which
then is matched against the conclusion of the third rule). Suppose now that we also have
ε ∈ X. The set S does not change further, but the set T coinductively defined does change,
as we cannot play the above trick with the backward closure anymore. For instance, no
finite string beginning with a b is in T ; indeed the only finite strings in T are those that are
also in the inductive set. In contrast, all infinite strings remain in T , using the fact that on
an infinite string s we have s.s′ = s for any s ′. �

Exercise 2.7.7 The schema of the proof is as for Theorem 2.7.6. Thus the crux is proving
x ∪ y ≤ F (x ∪ y), under the assumption that x ≤ F (x) ∪ y, and we only show the details
for this. We prove that F (x ∪ y) is an upper bound for both x and y. For the case of y, use
the monotonicity of F and the hypothesis y ≤ F (y). For the case of x, since x ≤ F (x) ∪ y

it is sufficient to prove that F (x ∪ y) is an upper bound for F (x) and for y. Both cases
follow the monotonicity of F and the hypothesis on y being a post-fixed point (the latter
case had in fact been already considered earlier in the proof). �

Exercise 2.7.9 Referring to the proof of Theorem 2.7.8, the only points that need modifica-
tion are the proof of (i) and of gfp ≤ gfp • gfp. The latter is the new assumption. In place
of (i) we prove that x ≤ F (x) implies there is z with x ≤ z and z ≤ F (gfp • z • gfp). It
suffices to take z = gfp (by the Fixed-point Theorem, x ≤ gfp). Then the conclusion is
derived using assumption (1) and the property gfp = gfp • gfp. �

Exercise 2.7.10 One shows that x ∩ y is a pre-fixed point of F , i.e., F (x ∩ y) ≤ x ∩ y,
proving that F (x ∩ y) is a lower bound for both x and y. The remaining details are similar
to those of the proof of Theorem 2.7.6. �

Exercise 2.8.2 We consider cocontinuity. Suppose x ≥ y. We have ∩{x, y} = y, hence
F (∩{x, y}) = F (y).

Consider now the sequence x, y, y, y, It is decreasing, therefore we can apply
cocontinuity and infer F (∩{x, y}) = ∩{F (x), F (y)}. Since we have ∩{F (x), F (y)} ≤
F (x), we derive F (∩{x, y}) ≤ F (x).

We have therefore showed F (y) = F (∩{x, y}) ≤ F (x), which proves the monotonicity
of F . �

208 Solutions to selected exercises

Exercise 2.8.3 Cocontinuity does not imply continuity. Example: take the integers plus
the points ω,ω + 1,−ω, with the ordering −ω ≤ n ≤ ω, for all n, and ω ≤ ω + 1. This is
a complete lattice. Now take a function that is the identity on all points, except ω that is
mapped onto ω + 1. �

Exercise 2.8.4 We consider part (1), as (2) is similar. For each αi , we have αi ≤
⋃

i αi ;
hence, since F is monotone, F (αi) ≤ F (

⋃
i αi). Thus F (

⋃
i αi) is an upper bound for each

F (αi), and we can then conclude
⋃

i F (αi) ≤ F (
⋃

i αi). �

Exercise 2.8.6 First we show that
⋂

n≥0 Fn(�) is a fixed point. It is easy to check that
F 0(�), . . . , F n(�), . . . is a sequence of decreasing points, using the monotonicity of F .
Therefore, by cocontinuity:

F (
⋂
n≥0

Fn(�)) =
⋂
n≥0

F (Fn(�)) =
⋂
n>0

Fn(�)

and also

=
⋂
n≥0

Fn(�).

Now, if y is any fixed point of the lattice, from � ≥ y and monotonicity of F it follows
that also Fn(�) ≥ y, for any n. Thus y is a lower bound for the set {F n(�)}n, hence it is
below its meet. �

Exercise 2.8.9

(1) For the decreasing sequence, use monotonicity. By cocontinuity, and reasoning as in
Exercise 2.8.6, F (F ∩ω(x)) = ∩nF (Fn(x)), which is also = ∩nF

n(x) (since F 0(x) is
above each F n(x)), and, by definition, this is F∩ω(x).

(2) Each fixed point of L below x is also below Fn(x), for each n (by monotonicity), hence
also below their meet.

(3) Let Y
def= {y | y ≤ x and y ≤ F (y)}. If y ∈ Y , then y ≤ Fn(x), for each n (which is

proved by induction on n, using the monotonicity of F and the hypothesis y ≤ x and
y ≤ F (y)). Hence, y is also below the meet of these points, i.e, y ≤ F∩ω(x). Since this
holds for each y, it also holds for their join, i.e., ∪Y ≤ F ∩ω(x).

For the converse, we know (from point (2)) that F∩ω(x) is a fixed point below x,
hence it is in Y . Therefore F∩ω(x) is below the join of Y , i.e., F∩ω(x) ≤ ∪Y . �

Exercise 2.8.13 We use two facts:

� if {Ri}i is a set of equivalence relations, then also ∩iRi is so;
� if R is an equivalence relation, then also F (R) is an equivalence relation.

The first expresses a general property of relations, whose proof is simple and left to the
reader. To prove the second fact we need the properties (1)–(3) of the exercise.

For reflexivity, suppose I ⊆ R; then by monotonicity of F , also F (I) ⊆ F (R), from
which we derive I ⊆ F (R) using property (1).

Solutions to selected exercises 209

For transitivity, suppose R is transitive, i.e., RR ⊆ R. Using this, monotonicity and
property (2), we derive:

F (R)F (R) ⊆ F (RR) ⊆ F (R),

thus showing that F (R) is transitive too.
For symmetry, suppose R−1 ⊆ R. Then we have, using property (3),

(F (R))−1 ⊆ F (R−1)

and, from R−1 ⊆ R and monotonicity of F ,

⊆ F (R),

thus showing that also F (R) is symmetric.
Having the above two facts, the exercise is proved by applying Theorem 2.8.8. The

theorem tells us that

gfp(F) = F∞(�) =
⋂
λ

F λ(�).

Using the first of the facts above, it is then sufficient to prove that for all ordinal λ, relation
Fλ(�) is an equivalence. This is done by reasoning by (transfinite) induction, following
the definition of Fλ(�). The single steps are straightforward consequences of the two facts
above. �

Exercise 2.9.2 Take a sequence of increasing sets Si . We need to show that �R(∪iSi) =
∪i�R(Si).

Suppose x ∈ �R(∪iSi). This means that there is (S, x) ∈ R and S ⊆ ∪iSi . As R is FP,
S is finite, and since the sequence Si is increasing there must be Sn with S ⊆ Sm for all
m ≥ n. Hence x ∈ �R(Sm), and therefore also x ∈ ∪i�R(Si).

Conversely, if x ∈ ∪i�R(Si) then x ∈ �R(Sn), for some n, and hence also x ∈
�R(∪iSi), as Sn ⊆ ∪iSi and �R is monotone. (This implication also follows from Exer-
cise 2.8.3(1) and monotonicity of �R.)

Having continuity, the assertion lfp(�R) = �∪ω
R (∅) follows from Theorem 2.8.5. �

Exercise 2.9.5 Consider a sequence S0, . . . , Sn, . . . of decreasing sets. We have to show
that

�R(∩nSn) = ∩n�R(Sn).

First, the inclusion ⊆. Suppose x ∈ �R(∩nSn). This means that there is S ′ such that
(S ′, x) ∈ R and S ′ ⊆ Sn, for all n. Hence x is also in �R(Sn), for each n. (The inclusion
can also be derived from Exercise 2.8.3(2), since �R is monotone.)

Now, the converse inclusion ⊇. Suppose x ∈ ∩n�R(Sn). This means that, for each n,
there is S ′

n ⊆ Sn with (S′
n, x) ∈ R. Since R is FC and the Sns are decreasing, there is some

S ′
i that is contained in each Sn. Hence S ′

i ⊆ ∩nSn, and x ∈ �R(∩nSn). �

210 Solutions to selected exercises

Exercise 2.9.7 Both �R� and �R�μ
are continuous. To see that we need image-finiteness

for the cocontinuity of �R�μ
, we use the notation in Example 2.10.11. Let Si

def= ∪n≥i{an}.
Then P is in ∩i�R�a

(Si) but not in �R�a
(∩iSi). We also have P in �∩ω

R�a
(Pr) but not in

gfp(�R�a
). �

Exercise 2.9.8 Both assertions are proved by induction on n. �

Exercise 2.9.9 Call S the set of all P for which there are n ≥ 0, processes P0, . . . , Pn and
actions μ1, . . . , μn such that P = P0

μ1−→ P1 · · · μn−→ Pn and Pn is stopped.
One can either use the continuity of �R� and prove, using Exercise 2.9.8, that S is the

least fixed point via the iterative construction in (the first part of) Theorem 2.8.5; or one
can first show lfp(�R�) ⊆ S by proving that S is pre-fixed point of �R� , and then show
the converse by proving that any pre-fixed point of �R� must contain S (for this, reason
by mathematical induction on the shortest trace of actions that a process in S can perform
before reaching a stopped process). �

Exercise 2.9.11 We consider the assertion for the greatest fixed point, that for the least
fixed point being similar.

We can exploit the cocontinuity of �Alist, and show that for all n ≥ 0, �n
Alist(X) is

the set of all finite lists with a number of elements less than or equal to n plus the elements
of the form

〈a1〉 • 〈a2〉 • · · · 〈an〉 • x

for some x ∈ X. Then one concludes from the definition of �∩ω
Alist.

Alternatively, one can show FinInfListsA ⊆ gfp(�Alist) by proving that
FinInfListsA is a post-fixed point, and then the converse by showing that any post-
fixed point may only contain elements in FinInfListsA (for this, one uses mathematical
induction to show that for all n, the n-th character of an element in a post-fixed point, if it
exists, is correct; we also need to know that if 〈a1〉 • 〈a2〉 • · · · 〈am〉 • x is in the post-fixed
point then x is there too). �

Exercise 2.10.4 For (2), one needs the fact that if, for each i in a set I , relation Ri is an
equivalence relation, then also ∩i∈IRi is so. We used this fact also in Exercise 2.8.13.

For (3) the hypotheses of Exercise 2.8.13 are indeed satisfied. �

Exercise 2.10.5 We can use Lemmas 2.10.1 and 2.10.2 so as to derive Exercise 1.4.13(1)
from Exercise 2.3.19(1)–(2). �

Exercise 2.10.6 The set {(P,Q) |P ∼ Q and P,Q are finite}. Hence on finite LTSs, least
and greatest fixed points of F∼ coincide. �

Exercise 2.10.7 A relation R is a ‘bisimulation up-to ∪’ if there is a bisimulation S such
that whenever P R Q, for all μ we have:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and either P ′ R Q′ or P ′ S Q′;

Solutions to selected exercises 211

and similarly for the converse clause. The most interesting case is for S = ∼, since ∼ is
the largest bisimulation. �

Exercise 2.10.12 We use the process notations in Example 2.10.11. For i ≥ 1, consider
the relations

Si
def=

⋃
n≥i

{(an, aω)} ∪ {(P,Q)}.

We have:

� {Si}i is a decreasing sequence of relations;
� F∼(Si) = Si+1;
� ∩iSi = {(P,Q)};
� ∩iF∼(Si) = {(P,Q)};
� F∼(∩iSi) = ∅.

�

Exercise 2.10.20 The additional fact needed is that whenever P ∼n Q and Q ∼ Q′, then
also P ∼n Q′. �

Exercise 2.10.22 See the beginning of Section 2.13. �

Exercise 2.10.23 Finitely-branching implies that the possible matches among the deriva-
tives of two processes are finite. This need not hold with image-finiteness, for instance with
two processes that may perform transitions with infinitely many labels and with, for each
label, at least two different derivatives. In this case there are infinitely many rules whose
conclusion is that pair of processes. �

Exercise 2.10.24 Given an LTS with processes Pr, call a set S of processes image-finite
if, for all P ∈ S and all μ, the set of μ-derivatives of P is finite and contained in S. Now
call a process P image-finite if P ∈ S for some image-finite set S of processes.

This is a coinductive definition: the complete lattice is ℘(Pr), the endofunction F has
P ∈ F (S) if the above clause of image-finiteness holds. The image-finite sets are the
post-fixed points of F .

The definition can also be given by means of rules. We then have rules of the form
(SP , P), where P is a processes whose set of μ-derivatives is finite and contained in SP ,
for each μ.

The coinductive set so defined is the largest set of processes each of which is image-finite
according to Definition 1.2.5. �

Exercise 2.10.26 It is the function F : ℘(Pr × Pr) → ℘(Pr × Pr) where F (R) is the set
of all pairs (P,Q) such that:

� for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ−→ Q′ and P ′ R Q′.
�

212 Solutions to selected exercises

Exercise 2.11.4 The FP hypothesis allows us to prove the result from the Continuity
Theorem 2.8.5 (via Exercise 2.9.2) and Lemma 2.11.3. �

Exercise 2.14.1 Suppose V has a winning strategy. Consider all pairs (Pi,Qi) that represent
the current pair of a play

(P0,Q0), (P1,Q1), . . . , (Pi,Qi)

in which V has applied the strategy. Show that this is a bisimulation.
Conversely, given a bisimulation containing (P,Q) it is easy to define a winning strategy

for V. The strategy simply says that whenever the last pair in a play, say (P ′,Q′), is in the
bisimulation and R proposes a challenge transition P ′ μ−→ P ′′ or Q′ μ−→ Q′′, then V chooses
the answer transition suggested by the bisimulation clauses, so as to make sure that the two
final derivatives are again in the bisimulation. One then proves that this is indeed a winning
strategy. Call the bisimulation S, and consider a play of the game and a pair (Pi,Qi) in the
play. One shows, by induction on i, that the pair is also in S and moreover either both Pi

and Qi are stopped and therefore R has no further move, or both R and V can move and
therefore there is another pair in the play. �

Exercise 2.14.2 Suppose R has a winning strategy for (P,Q). Then we cannot have a
bisimulation containing (P,Q) because otherwise, by Exercise 2.14.1, there would be a
winning strategy for V (which is impossible, given the hypothesis and the definition of
winning strategy, as the set of plays for a game is always non-empty).

Conversely, suppose P ∼ Q. We define a winning strategy for R. Given a pair (P1, P2)
with P1 ∼ P2, by Theorem 2.8.8 (or Theorem 2.10.21) define ord(P1, P2) as the smallest
ordinal α such that P1 ∼α P2. This means that there is a transition P1

μ−→ P ′
1 or P2

μ−→ P ′
2

that the other process cannot match in ∼α−1. The strategy for R picks such as a transition.
We can show by transfinite induction that the strategy so defined is winning for all games
in which the initial processes (P,Q) are not bisimilar. To see this, let α = ord(P,Q). The
case α = 1 is straightforward. Otherwise, α > 1, and consider the following pair (P ′,Q′)
in the game, obtained from the moves by R and V. As R has followed the strategy, we have
ord(P ′,Q′) < α. Hence we can apply induction and infer that any play beginning with
(P ′,Q′) ends with a win for R.

Note that we cannot immediately infer Exercise 2.14.2 from Exercise 2.14.1 because
we would need to prove first that in any game either R or V has a winning strategy. And
for this we need to know that R has a winning strategy whenever P ∼ Q, which is indeed
what we have done above. �

Exercises in Chapter 3

Exercise 3.4.3

(1) Take P = a.
(2) See Example 3.3.1. The process cannot be in finCCS. One can show that if a process P

is in finCCS, then there is n such that P has a trace of transitions P
μ1−→ P1 · · · μn−→ Pn

Solutions to selected exercises 213

of length n but no traces of length greater than n. Then P |P is capable of performing
a trace of length 2n. A bisimulation cannot relate processes with traces of different
lengths. �

Exercise 3.4.6 Counterexample: P = a, Q = a. Having distributed the restriction, we
break the possibility of interactions between components. �

Exercise 3.4.9 The bisimulation consists of I ∪ {(P |P ′,Q)}, where

Q
def= �iμi.(Pi |P ′) + �jμ

′
j .(P |P ′

j) + �μi opp μ′
j
τ.(Pi |P ′

j).

Suppose P |P ′ μ−→ R. This can have been derived from one of the rules ParL , ParR , or

Com . We only consider the case of Com . Thus P
μ−→ Pi and P ′ μ−→ P ′

j , for some i, j , and
R = Pi |P ′

j . This means that μ.Pi is a summand of P and μ.P ′
j a summand of P ′. Since

μopp μ holds, τ.(Pi |P ′
j) is a summand of Q, and we have Q

τ−→ Pi |P ′
j . This closes the

case, since (Pi |P ′
j , Pi |P ′

j) ∈ I.
The challenge transitions from Q are treated similarly. �

Exercise 3.4.10 None of the laws is valid. As a counterexample to the first, we can use again
the processes a.(b + c) and a.b + a.c. For the second, take P = a, Q = b, R = c. Then
(P |R) + (Q |R)

c−→ P | 0, where b has been pre-empted, whereas the only c-transition
from (P + Q) |R takes to (P + Q) | 0, and b is still available. �

Exercise 3.5.6 We need n-hole contexts. An n-hole context is a process expression that
may contain the holes [·]1, . . . , [·]n, each of which may appear several (and possibly zero)
times; that is, the grammar for n-hole contexts is the same as the grammar for processes
with the addition of productions that make [·]1, . . . , [·]n process expressions. If C is an
n-hole context then C[P1, . . . , Pn] is the process obtained by replacing each [·]i in C by
Pi for each i. If n < m, then an n-hole context is also an m-hole context. In the remainder,
in context expressions such as C[P1, . . . , Pn] it is intended that C is an n-hole context;
moreover, in P̃ ∼ Q̃ it is intended that the vectors P̃ and Q̃ are of equal length and pairwise
bisimilar.

To prove the result, we take the relation

R def= {(C[P̃], C[Q̃]) |C is an n-hole context, for some n, and P̃ ∼ Q̃}

and show that R is a bisimulation (we do not need I, as an expression without holes
is an n-hole context). Consider a transition C[P̃]

μ−→ R (the case of a move from C[Q̃]
is similar). One finds a matching transition from C[Q̃] proceeding by induction on the
structure of C. The base of the induction is when C is an atomic expression; then the
interesting case is C = [·]i , for some i, and can be dealt with using the hypothesis Pi ∼ Qi .
In the inductive case, C = f (C1, . . . , Cm), for some m. For simplicity of presentation
we assume that m = 1 and that the rule applied for the transition f (C1[P̃])

μ−→ R is as

214 Solutions to selected exercises

follows:

C1[P̃]
μ′
−→ R′

f (C1[P̃])
μ−→ D[R′]

where D is some one-hole context. Exploiting the inductive assumption, C1[Q̃]
μ′
−→ S ′ and

there are P̃ ′, Q̃′, with P̃ ′ ∼ Q̃′ and some r-hole context D′ such that R′ = D′[P̃ ′] and
S ′ = D′[Q̃′]. We can therefore also infer

f (C1[Q̃])
μ−→ D[S ′]

and D[R′] R D[S ′], using the r-hole context D[D′]. �

Exercise 3.5.10

(1) The bisimulation contains the identity and has all pairs of the form ((P +
Q)[f], (P [f]) + (Q[f])). The details are easy.

(2) It is not true. A counterexample is P = a and Q = b with f (a) = a and f (b) = a.
Then (P |Q)[f] may not do a τ -transition, whereas (P [f]) | (Q[f]) can. A condition
for recovering the equality is the injectivity of f .

(3) This is not true either. As a counterexample, take P = b and f (b) = a. To recover the
equality we can impose f (a) = a and f (b) = a whenever b = a. �

Exercise 3.5.11 Take P
def= a | b and Q

def= a.b + b.a. We have P ∼ Q. However, if we
substitute b with a in P and Q we obtain, respectively, a | a and a.a + a.a, and these
processes are not bisimilar. �

Exercise 3.5.12 As a counterexample to associativity, consider (a.c ‖ a) ‖ a.b versus
a.c ‖ (a ‖ a.b). Only in the former case is the sequence of transitions

τ−→ c−→ possible. �

Exercises in Chapter 4

Exercise 4.1.4 To prove image-finiteness, proceed by structural induction. As a coun-
terexample to image-finiteness under weak transitions, take the process K defined before
Lemma 4.2.10. �

Exercise 4.2.4 Use the bisimulation {(P,Q)} ∪ ≈. �

Exercise 4.2.5 Use R def= {(P,R)} ∪ ≈ to show that P ≈ R. The details are easy (it is a
simplified version of the Stuttering Lemma for branching bisimilarity, Lemma 4.9.2). Then
conclude by transitivity that R ≈ Q holds too. �

Exercise 4.2.6 They are not, as τ.0 + τ.a.0 τ=⇒ 0, thus terminating without producing any
visible action. Hence one can derive that no weak bisimulation exists that contains the given
pair of processes. �

Solutions to selected exercises 215

Exercise 4.2.7 No. For instance, one would equate τ.b + a and b + a. However, the
meaning of deterministic process given in Definition 1.2.4 is questionable on weak LTSs:
one may well argue that a process such as τ.b + a should not be considered deterministic,
as the action a can be pre-empted by a silent transition. �

Exercise 4.2.11 If we take as the definition of weak bisimulation that in Lemma 4.2.9
there is nothing to prove, as weak bisimilarity becomes a form of strong bisimilarity.

More interestingly, we can take other definitions of weak bisimilarity, notably that in
Lemma 4.2.10. Then the functional F≈ associated with weak bisimulation is defined thus:

F≈(R) is the set of all pairs (P,Q) such that:

(1) for all P ′ with P
μ−→ P ′, there is Q′ such that Q

μ̂=⇒ Q′ and P ′ R Q′;
(2) for all Q′ with Q

μ−→ Q′, there is P ′ such that P
μ̂=⇒ P ′ and P ′ R Q′.

Little modification is needed in the proof of Theorem 2.10.3. The modifications for the
game interpretations are similar. �

Exercise 4.2.12 Reason as in the corresponding result for strong bisimilarity,
Exercise 1.4.16. �

Exercise 4.2.13 One shows:

(1) P
μ−→ P ′ in L′ implies P

μ̂=⇒ P ′ in L;
(2) P =⇒ P ′ in L implies P

τ−→ P ′ in L′;
(3) P

μ=⇒ P ′ in L implies P
μ−→ P ′ in L′.

From the last two points we derive that

� P
μ̂=⇒ P ′ in L implies P

μ−→ P ′ in L′.

We can thus conclude that strong bisimilarity in L′ is precisely weak bisimilarity in L,
using the characterisation of weak bisimilarity in Lemma 4.2.9. �

Exercise 4.2.15 First one shows that if R is a weak bisimulation up-to ≈, P R Q, and
P =⇒ P ′ then there is Q′ such that Q =⇒ Q′ and P ′ ∼R≈ Q′. This is proved by induction
on a weight for P =⇒ P ′.

Then this result is extended to transitions P
μ=⇒ P ′: there is Q′ such that Q

μ̂=⇒ Q′ and
P ′ ∼R≈ Q′. This is proved by decomposing the relation

μ=⇒ as =⇒ μ−→=⇒.
Finally, using such results, one proves that ≈ R ≈ is a bisimulation. �

Exercise 4.3.2 Show that the set of all pairs of the form {(P |�τ , P)} is a bisimulation. �

Exercise 4.3.4 We have a + �τ ≈ a + τ , as can be shown using the weak bisimulation
{(a + �τ , a + τ), (0, 0), (�τ , 0)}. �

216 Solutions to selected exercises

Exercise 4.3.6 First we check what the transitions from BW are. Set

B1
def= ν timeout (�timeout |B);

C1
def= ν timeout (�timeout |C);

D
def= ν timeout (�timeout | 0).

Then we have BW
init−−−→ B1, BW

init−−−→ C1, B1
b−→ D, B1

τ−→ C1, C1
b−→ D, C1

τ−→ B1.
The weak bisimulation to use is

R def= {(P,BW), (b + c, B1), (b + c, C1), (0,D)}.
Note that the transition B1

τ−→ C1 is matched by b + c =⇒ b + c, and similarly for
C1

τ−→ B1. �

Exercise 4.4.4 We have τ.a ≈ a, but not τ.a | b ≈ a | b, as only the former can do a
b-transition before an a-transition. �

Exercise 4.4.9 We only show the case of summation. Suppose P ≈c Q; we wish to prove
P + R ≈c Q + R. Consider P + R and the transition it can take. The case of transitions
from R poses no problem. Suppose P + R

μ−→ P ′ because P
μ−→ P ′. From P ≈c Q we

infer that there is Q′ with Q
μ=⇒ Q′ and P ′ ≈ Q′. Hence also Q + R

μ=⇒ Q′ and we are
done. �

Exercise 4.4.11 The implication from right to left is easy. For the converse, suppose
P ≈ Q. Recall that the difference between ≈ and ≈c is only the initial clause for τ -
transitions. Suppose there is P ′ such that P

τ−→ P ′ and P ′ ≈ Q. Then one can show that
P ≈c τ.Q, the details are simple. Conversely, if there is Q′ such that Q

τ−→ Q′ and P ≈ Q′,
then τ.P ≈c Q. If neither case holds, then one derives P ≈c Q. Suppose in fact P

τ−→ P ′.
As P ≈ Q, there is Q′ such that Q =⇒ Q′ and P ′ ≈ Q′. The weight of Q =⇒ Q′ cannot
be 0, otherwise we would be in one of the two previous cases; hence the weight is at least 1,
as required by the definition of ≈c. One reasons similarly when the challenge τ -transition
originates from Q. �

Exercise 4.4.13 Take P
def= τ + a, and Q

def= �τ |P . Then P and Q are not stable and are
both in ≈, but not in ≈c. �

Exercise 4.5.6

(1) The equality

νd (P ′ | d.d.Q) ≈c a.(b.c.Q + c.b.Q) + c.a.b.Q

may be proved by applying Corollary 3.4.11(1) and a few algebraic laws as follows.

As P ′ def= a.b.d | c.d, the only initial actions for νd (P ′ | d.d.Q) are a and c, thus

νd (P ′ | d.d.Q) ∼
a.νd (b.d | c.d | d.d.Q) + c.νd (a.b.d | d | d.d.Q)

def= R.

Solutions to selected exercises 217

Call the first summand R1 and the second R2. Consider R1; its only initial actions are
b and c, hence

R1 ∼ b.νd (d | c.d | d.d.Q) + c.νd (b.d | d | d.d.Q).

Call the two summands of R1 so obtained R′
1 and R′′

1 . Consider now the subterm
νd (d | c.d | d.d.Q) of R′

1. Reasoning similarly, and garbage-collecting 0 processes in
parallel, we have

νd (d | c.d | d.d.Q) ∼
c.νd (d | d | d.d.Q) + τ.νd (c.d | d.Q) ∼

c.τ.τ.νd Q + τ.c.τ.νd Q.

As d is fresh, we can apply the first law of Lemma 3.6.9 and eliminate the restriction.
Using also the first and second τ -laws, we continue

≈c c.Q + τ.c.Q

≈c c.Q.

By the compositionality properties of ∼ and ≈c and the inclusion ∼ ⊆ ≈c, we can
derive:

R ∼ R1 + R2

≈c a.(b.c.Q + R′′
1) + R2.

The final result is obtained by continuing the development of R′′
1 and R2.

(2) Here is an encoding:

[[0]]d
def= d;

[[a.P]]d
def= a.[[P]]d ;

[[P1 |P2]]d
def= νe ([[P1]]e | [[P2]]e | e.e.d) where name e is fresh;

[[νa P]]d
def= νa [[P]]d .

The proof of the laws for sequential composition indicated can be derived by reasoning
as at point (1).

The proof of the final two laws is delicate. We outline an argument. For a finCCS
process P , write P # for the LTS generated by P , whose states are the multi-step
derivatives of P (Definition 1.2.3). In P #, we call the state P root and the states whose
syntax has no prefix leaves (for instance νa (0 | 0) and 0 are leaves, but νa a.0 is not).
Call LTSs of this kind, where a state is identified as a root and certain states without
outgoing transitions are considered leaves, a rooted LTS. If A,B are rooted LTSs, write
A : B for the rooted LTS obtained by attaching onto the leaves of A the root of B (if
A has n leaves, we need n copies of B); in A : B, the root is that of A and the leaves
those of B.

One can now prove that for P ∈ finCCS and d,

[[P]]d ≈ P # : d. (A.3)

218 Solutions to selected exercises

This is proved by structural induction on P ; in the case of parallel composition, one
needs to show that for all finite Q1 and Q2, and name e fresh,

νe (Q#
1 : e |Q#

2 : e | e.e.d) ≈ (Q1 |Q2)
: d

(we take here the CCS operators and their SOS rules of Section 3.1 as general operator
on LTSs, rather than on CCS processes); the result can be established either by induction
on the sum of the number of prefixes in Q1 and Q2, or by directly proving a bisimulation.
One also needs the property that νa (P #) ∼ (νa P)#.

Having (A.3) at hand, one can now prove that for any P and Q,

P ; Q = νd ([[P]]d | d.Q) ≈ P # : Q#.

The proof is simple, also bearing in mind that if d is fresh and A is a rooted LTS, then

A : d
d−→ only if A has no transitions.

Finally, having reduced the sequential composition on processes to an operator on
graphs, the required properties, namely

(P ; Q); R ≈c P ; (Q; R),
P ; 0 ≈c P,

are immediate. �

Exercise 4.6.2 We have τ.a + b ≈τ a + b, but not (τ.a + b) | c ≈τ (a + b) | c; the former
process has a

c=⇒-transition to a | 0, which the latter process can only match with a
c=⇒-

transition to (a + b) | 0. The derivatives are not ≈τ -bisimilar because only (a + b) | 0 has
a b-transition. Similarly, we have not a.(τ.a + b) ≈τ a.(a + b), because only the former
process has an

a=⇒-transition to a. �

Exercise 4.6.3 Write ≈c
τ for the congruence induced by ≈τ . First of all, it is immediate to

derive ≈c ⊆ ≈c
τ , as ≈c ⊆ ≈τ holds and ≈c is a congruence (and as such contained in the

largest congruence contained in ≈τ). We prove now the converse.
We begin by showing that ≈c

τ ⊆ ≈. Take some processes in ≈τ that do not have a in

their sort. Recall that �a is the constant whose only transition is �a
a−→ �a . We show that

the set of all pairs (P,Q), without a in the sort of P and Q, and with P |�a ≈τ Q |�a , is
a weak bisimulation.

Suppose P
μ−→ P ′; we must show that there is Q′ such that Q

μ̂=⇒ Q′, and P ′ |�a ≈τ

Q′ |�a . The case when μ = τ is easy: we have P |�a

μ−→ P ′ |�a , and since �a may
only perform a-transitions and may not communicate with Q, the matching transition
from Q |�a must be of the form Q |�a

μ=⇒ Q′ |�a , for some Q′ with Q
μ=⇒ Q′ and

P ′ |�a ≈τ Q′ |�a .
Suppose now μ = τ . In this case we have P |�a

a=⇒ P ′ |�a; from P |�a ≈τ Q |�a

there should be R such that Q |�a
a=⇒ R and P ′ |�a ≈τ R. By the transition rules for

parallel composition, and since Q and �a may not communicate, R must be of the form
Q′ |�a , for some Q′ such that Q =⇒ Q′. Thus we have found the transition from Q

Solutions to selected exercises 219

matching the challenge from P . We can conclude that the relation defined above is a weak
bisimulation.

We now know that ≈c
τ is included in ≈; but the latter is not a congruence. The largest

congruence included in ≈ is ≈c. Hence also ≈c
τ ⊆ ≈c, as ≈c

τ is a congruence too. �

Exercise 4.7.3

(1) As P ⇑, clause (2.b) of Definition 4.7.1 is not applicable, hence {(P,P + Q)} ∪ I is
a prebisimulation with divergence.

(2) {(�τ, P)} is a prebisimulation with divergence. A transition �τ
τ−→ �τ is matched by

P =⇒ P ; transitions from P are not examined because �τ ⇑. The property is not true
for 0, which is not divergent, hence clause (2.b) of Definition 4.7.1 can be used.

(3) By showing that {(a.(b + �τ), a.(b + �τ) + a.�τ)} ∪ I is a prebisimulation with
divergence. The proof is easy; as a.(b + �τ) ⇑a , the transition a.(b + �τ) + a.�τ

a−→
�τ is not considered in the challenges.

(4) Use the following prebisimulation with divergence:

≤⇑ ∪ {(P,Q + R) | P ⇑, and P ≤⇑ Q, and
there is no P ′ with (P

τ=⇒ P ′ and not P ′ ⇑) }.

As a counterexample for the condition, take P = τ + �τ , Q = 0, and R = a. �

Exercise 4.8.5 They are not. For the first law, take P = a, and the transition τ.a
τ−→ a, that

a cannot match. For the second law, take P = a, Q = b and the transition a | τ.b a−→ 0 | τ.b,
that could only be matched by τ.(a | b)

a=⇒ 0 | b. Now, the transition 0 | τ.b τ−→ 0 | b, on the
first derivative, cannot be matched by the second one. �

Exercise 4.9.3 To see that Lemma 4.9.2 is an immediate consequence of the branching
bisimilarity version of Exercise 4.2.4, it is sufficient to note that for each i, P0 =⇒ Pi ≈br Pi

and Pi =⇒ Pn ≈br P0. �

Exercise 4.9.10

(1) First one shows that the law is valid for ≈br, then that the clause of ≈c
br on initial actions

is respected. The details are easy.
(2) The relation {(P + τ.P, τ.P)} ∪ ≈br is a branching bisimulation (one needs the fact that

≈br is reflexive). As a counterexample for ≈c
η, take P = a, and the move a + τ.a

a−→ 0.

(3) Take a.(b + τ.c) and a.(b + τ.c) + a.c, and the move a.(b + τ.c) + a.c
a−→ c.

�

Exercise 4.9.11 For the first question, take P = 0 in B, and use the axioms for choice in
Figure 3.2 (in particular S1). For the second item, we have, using T2, the axioms for choice

220 Solutions to selected exercises

in Figure 3.2 (in particular S4), again T2, and finally T1:

μ.(τ.(P + Q) + P) = μ.(τ.(P + Q) + P + Q + P)
= μ.(τ.(P + Q) + P + Q)
= μ.τ.(P + Q)
= μ.(P + Q). �

Exercises in Chapter 5

Exercise 5.2.3 The two assertions are proved simultaneously, by induction on the structure
of the tests. The base case is when T is SUCC or FAIL, and is immediate. We consider a
couple of cases in the induction, leaving the others to the reader.

Suppose T = μ .T ′; then T = μ̃ .T ′. We have � ∈ Oden(T , P) if there is P ′ with P
μ−→

P ′ and � ∈ Oden(T ′, P ′). By induction ⊥ ∈ Oden(T ′, P ′). Hence also ⊥ ∈ Oden(μ̃ .T ′, P).
On the other hand, ⊥ ∈ Oden(μ .T ′, P) means that either there is P ′ with P

μ−→ P ′ and
⊥ ∈ Oden(T ′, P ′), or P ref(μ); in the former case, reason as above, in the latter case we
immediately get � ∈ Oden(μ̃ .T ′, P).

Suppose now T = ∀ T ′. Then T = ∃ T ′. We have � ∈ Oden(T , P) if ⊥ ∈ Oden(T ′, P).
By induction, this means that � ∈ Oden(T ′, P). Hence ⊥ ∈ Oden(∃T ′, P).

In contrast, we have ⊥ ∈ Oden(∀ T ′, P) if ⊥ ∈ Oden(T ′, P). By induction, this means
that � ∈ Oden(T ′, P). Hence � ∈ Oden(∃ T ′, P). �

Exercise 5.2.5 Take the test T
def= a .b .SUCC. ThenOden(T , P2) = {�} andOden(T ,Q2) =

{�,⊥}. �

Exercise 5.2.8 Only Q3 passes the test a .((∃ b .̃c .FAIL) ∧ (∃ b .d̃ .FAIL)). �

Exercise 5.2.9 Use the test a .(̃b .FAIL ∧ a .̃a .FAIL); only P4 can give �. �

Exercise 5.7.5

Example 5.6.2. For the %may results, one checks that the processes are trace equivalent,
the details are easy. To see that P3 %must Q3, suppose that P3 after s must A; this
holds in one of the following cases:

� s = ε and a ∈ A;
� s = a and b ∈ A;
� s = ab and {c, d} ⊆ A.

These are also exactly the cases in which Q3 after s must A holds.
In any of the above choices for s and A, also R3 after s must A holds, which

gives P3 ≤must R3 and Q3 ≤must R3. There are additional possibilities, however, for
R3 (e.g., with s = ab and A = {c}), hence the converse is false.

Example 5.6.3. For the %may relations, and Q2 %must R2, reason as above. We have
P2 ≤must Q2 because only on the former process the predicate after a must {b}
holds.

Solutions to selected exercises 221

Example 5.6.4. P ≤must Q holds because P after s must A in one of the following
cases:

� s = ε and a ∈ A;
� s = a and {b, c} ⊆ A.

In all these cases, we have Q after s must A.
We also have Q after a must {b, d}, which fails for P , hence Q ≤must P .

Example 5.6.5. P ≤must Q because P after s must A in one of the following cases:

� s = ε and a ∈ A;
� s = a and {b, c} ⊆ A. In all these cases, we also have Q after s must A. The

converse is false, as Q after a must {b} but not P after a must {b}.
�

Exercise 5.7.6 The law is valid under%may, but not under%must, as shown in Example 5.6.3.
a.P + a.Q ≤must a.(P + Q) is true. Suppose after s must A holds with the former

process. Distinguishing the cases s = a and s = a, one proves that the same would hold
also on the latter process. �

Exercise 5.7.7 We use the characterisation of ≤must as ≤′
must.

Writing P ≤′′
must Q if for all s and Q′ such that Q

s−→ Q′ there is P ′ with P
s−→ P ′ and

readies(P ′) ⊆ readies(Q′), we have to show ≤′
must = ≤′′

must.
We first show that≤′′

must implies≤′
must. Suppose P after s must A, and not Q after

s must A. This means that there is Q′ with Q
s−→ Q′ and Q′ is unable to perform an action

in A; but from P ≤′′
must Q it follows that there is also an s-derivative of P with the same

property, against the assumption P after s must A.
Conversely, assume P ≤′

must Q and Q
s−→ Q′, for some Q′. The set P after s cannot

be empty; otherwise P after s must ∅ would be true, whereas Q after s must ∅ is
not (as Q has at least one s-derivative). Let {Pi}i = P after s. If none of the Pi had
readies included in those of Q′, we could find actions μi such that P after s must {μi}i
whereas not Q after s must {μi}i , against the initial assumption. �

Exercise 5.8.2 Under any test, both processes may yield an infinite run, originated by the
term �τ . Such a run has ⊥ as a result. In the “must” semantics, additional � results are
ignored. �

Exercise 5.8.4 We consider the assertion for weak bisimilarity.
Exercise 4.2.12 is useful here, showing that whenever P ≈ Q and P

s=⇒ P ′, where s is
a sequence of visible actions, we have Q

s=⇒ Q′, for some Q′ with P ′ ≈ Q′.
From Exercise 4.2.12 it follows that bisimilar processes perform the same sequences of

visible actions, hence P ≈ Q implies P %may Q.
We now prove that P ≈ Q also implies P %must Q if the LTS has no divergences. As the

processes are divergent-free, the predicates ⇓ s in the definition of ≤′
must are not needed.

Thus it is sufficient to prove that for all visible sequences s and sets A of visible actions:

if whenever P
s=⇒ P ′ there is � ∈ A with P ′ �=⇒, then the same holds for Q. Suppose this

222 Solutions to selected exercises

were not true. There would be Q′ with Q
s=⇒ Q′ and not Q′ �=⇒, for all � ∈ A. As P ≈ Q,

there must be a derivative P ′ of P with P
s=⇒ P ′ and P ′ ≈ Q′ (again by Exercise 4.2.12).

Moreover, as P ′ ≈ Q′, also not P ′ �=⇒ for all � ∈ A. This contradicts the initial assumption
on the s-derivatives of P . �

Exercise 5.8.5 Bisimilarity implies %may, also on weak LTSs (see Exercise 5.8.4) Thus
from P ≈ BW we can derive P %may BW .

The equality fails under %must and %test because process BW only may diverge, via a
computation along the internal channel timeout. Must and testing semantics are sensitive
to divergences. �

Exercise 5.8.6 The two processes have the same visible traces (ε, a, b), hence they are
in the relation %may. To see that they are also in %must, first note that they do not contain
divergences. The only predicates of the form “after s must A” they satisfy have s = ε

and b ∈ A. Note that in the must semantics the presence of the a-transition in the processes
is completely irrelevant, hence it could be replaced by any other label, except τ . �

Exercise 5.8.8 It is sufficient to prove the result for processes in full standard form, because,
by Lemma 3.6.6, any finCCS process can be rewritten in such a form using the laws of
Figure 3.2 (which are also the laws needed for the exercise; actually not all of them are
needed), and the laws are also valid for testing (as strong bisimilarity implies testing).

Thus suppose P is in full standard form. We prove the assertion using induction on the
number n of prefixes that appear in P . The case n = 0 is trivial. Consider now the inductive
case, with n > 1. In this case P is of the form �iμi.Pi . When all μi are different from τ , or
they are all τ , the result is immediate: there is no hybrid non-determinism at the outermost
level, and we only have to apply induction on the subterms Pi to make sure that also the
inner hybrid non-determinism is removed.

Suppose now that there is some hybrid non-determinism at the outermost level. Then,
using the monoidal laws of sum, we can rewrite P as τ.R + S. Using axiom (5.1), we then
have:

P = τ.(R + S) + τ.R.

Now, as the number of prefixes in R + S and in R is smaller than n, we can conclude using
induction on these terms. �

Exercise 5.8.10 For the second question, set

P ⊕ Q
def= νa (a | a.P | a.Q),

where a is fresh. �

Exercise 5.11.2 The processes have the same sets of failures, namely

� (ε,A) for all A with a ∈ A;
� (a,A) for all A with {b, c} ⊆ A;
� (ab,A) and (ac,A), for all A.

Solutions to selected exercises 223

However, R2 has an a-derivative in which both b and c are observables, whereas Q2 has
not. Hence they are not ready equivalent. �

Exercise 5.11.3

(1) The two processes have the same nine ready pairs. A test that distinguishes them is

T
def= a .&b .c .e .ω, which only the process on the left may pass.

(2) We sketch the argument. Call the process on the left P and that on the right Q. As the
processes initially have the same action available, and Q has more non-determinism,
a run of P on a given test can also be mimicked by Q. Hence the results obtained by
runs of tests on P are also obtained with Q.

For the converse, consider a run of Q on a test where the run exploits the branch
a.(b + c) that P does not have. Suppose this produces a success. This means that in
the test, before the success signal, we can only meet some refusals, different from &a,
then a, then some refusals not mentioning b and c, then b or c. In any case there is at
least one branch of P that can be used to reproduce the success.

Finally one shows that the extra branch of Q cannot produce a failure on tests that
only produce successes when run on P . In order to produce only successes on P the
test can only possibly have, before the final success signal: first refuses that do not
mention a, then an a prefix, then refuses that do not mention b and c (otherwise one of
the branches of P would yield a failure). Such a test yields only successes also when
run on Q, even if Q makes use of its extra branch.

The processes are not ready equivalent, as Q has an a-derivative in which both b

and c are observable, whereas P has not. �

Exercises in Chapter 6

Exercise 6.2.7 One can show K1 ≤rs K2 using the ready simulation

R1
def= { (K1,K2) , (d.v.K1 + d.z.K1, d.v.K2 + d.z.K2) ,

(v.K1, v.K2) , (z.K1, z.K2)}.
To prove the converse, we can use the ready simulation

R2
def= R−1

1 ∪ {(d.z.K2, d.v.K1 + d.z.K1)},
where in the latter pair the specific v chosen is irrelevant. �

Exercise 6.3.2 (2). The problem is that the process on the right has an a-transition with
derivative b.d . The only a-transition of the process on the left yields b.c + b.d . Now, b.d

and b.c + b.d are not simulation equivalent (only the latter has c in its sort). �

Exercise 6.3.3 The implication from left to right is immediate. For the converse, we proceed
by induction on n. For n = 0, the assertion holds because (≤0 n)−1 = ∼0 n = Pr × Pr.
Suppose the assertion holds for n − 1, and that there is a simulation R ⊆ (≤n n)−1. We

224 Solutions to selected exercises

have to show that we also have R ⊆ ≤n n. By induction, this is true if R ⊆ (≤n−1 n)−1. In
turn, this holds from the hypothesis R ⊆ (≤n n)−1 and the inclusion (≤n n)−1 ⊆ (≤n−1 n)−1

(which is a straightforward consequence of the definition of the ≤m n relations). �

Exercise 6.3.4

(1) P ∼n n Q means that P and Q should be able to match each other’s transitions in
a way that the derivatives are in ∼n−1 n. Now, on the processes of the exercise, the
transition Q

a−→ b.c may only be matched by P
a−→ b.c + b. Thus, if P and Q were

three-nested simulation equivalent, b.c and b.c + b should be two-nested simulation

equivalent. This, in turn, would mean that the transition b.c + b
b−→ 0 is matched by

b.c
b−→ c and that 0 and c are simulation equivalent. But the last claim is impossible,

as c has a transition whereas 0 has none.
However, we do have P ≤3 n Q, as the simulation R def= {(P,Q)} ∪ I is in ∼2 n.

(2) Reasoning as above, one shows that a.Q and a.P + a.Q are not four-nested simulation
equivalent: the transition a.P + a.Q

a−→ P may only be matched by a.Q
a−→ Q, and

we would need P ∼3 n Q, which at point (1) we have established to be false.
We prove that a.Q ∼3 n a.P + a.Q. Consider the two simulations

R1
def= {(a.Q, a.P + a.Q)} ∪ I,

R2
def= {(a.P + a.Q, a.Q), (P,Q)} ∪ I.

We needRi ⊆ ∼2 n, i = 1, 2. It is easy to see thatRi ⊆ ∼1 n. Therefore also Ri ⊆ ≤2 n.
This means a.Q ∼2 n a.P + a.Q (as the pair appears in both relations), and similarly
I ⊆ ∼2 n. There remains the pair (P,Q), which we have established to be in ∼2 n in
Exercise 6.3.2(1). �

Exercise 6.3.5 They are two-nested simulation equivalent, but not three-nested simulation
equivalent, hence also not bisimilar.

We prove that they are two-nested simulation equivalent. We call A
def= a.(b + c) + a.b,

and B
def= a.(b + c). Consider the two simulations

R1
def= {(P,Q)} ∪ I,

R2
def= {(Q,P), (B,A)} ∪ I.

As both relations are simulations, R1 ⊆∼1 n. One can also prove, separately, that A ∼1 n B

(the details are simple). Hence also R2 ⊆∼1 n. From this we deduce P ∼2 n Q.
The reason why the processes are not three-nested simulation equivalent is that the

transition Q
a−→ B is only matched by P

a−→ A, but we do not have A ∼2 n B, which can
be established by reasoning as in earlier exercises. �

Exercise 6.3.6 Show that the relation

{(P,Q) | for all n there is a simulation Rn ⊆ ∼n n with P R Q}

Solutions to selected exercises 225

is a bisimulation. The details are similar to the stratification result for bisimilarity (The-
orem 2.10.13 and Exercise 2.10.18), using the fact that relations ∼0 n, ∼1 n, . . . form a
decreasing sequence of relations with respect to set containment. �

Exercise 6.4.3 Surprisingly, weak similarity is indeed a precongruence, and weak simu-
lation equivalence is indeed a congruence. The usual counterexample for choice (τ and 0
related, but τ + a and 0 + a unrelated) does not apply. We omit the details. �

Exercise 6.4.4 We only explain the case for two-nested simulation equivalence. The first
clause does not apply, for otherwise we would not identify τ.a + τ.b with itself (a simulation
would have to relate a and τ.a + τ.b, which are not simulation equivalent). This would
break the reflexivity property of two-nested simulation equivalence.

With the second clause we would identify τ.a. + τ.b and a + b, which are not two-
nested simulation equivalent. �

Exercise 6.4.5 We can apply the usual counterexample: τ and 0 are related but not τ + a

and 0 + a. The former can evolve into 0, which is stopped, and this cannot be matched by
the latter. �

Exercise 6.5.5 Suppose P ≈cs Q and Q ≈cs R. This means that there are coupled sim-
ulations (S1,S2) and (R1,R2) with (P,Q) ∈ S1 ∩ S2 and (Q,R) ∈ R1 ∩R2. Take the
pair of relations (S1R1,S2R2). Clearly (P,R) ∈ S1R1 ∩ S2R2. So we have to show that
(S1R1,S2R2) is a coupled simulation. Relations S1R1 and (S2R2)−1 are simulations:
this follows from the fact that the composition of simulations is a simulation (note that
(S2R2)−1 = R−1

2 S−1
2).

Now, the coupling property; we consider clause (1) of Definition 6.5.3, as (2) is analo-
gous. Since (S1,S2) is a coupled simulation, there is Q′ with Q =⇒ Q′ and (P,Q′) ∈ S2.
Since (Q,R) ∈ R1 and R1 is a simulation, there is R′ with R =⇒ R′ and (Q′, R′) ∈ R1.
By the coupling requirement, however, there is also R′′ with R′ =⇒ R′′ and (Q′, R′′) ∈ R2.
Thus we have found a derivative R′′ of R with (P,R′′) ∈ S2R2, as required. �

Exercise 6.5.8 Take P = a and Q = b. In both cases the problem is matching the transition
μ.(τ.a + τ.b)

μ−→ τ.a + τ.b. We cannot even use coupled similarity: if μ is a visible action,
both processes are stable, hence coupled similarity (or its inverse) would imply coupled
simulation equivalence, yielding the same simulation problems as above. �

Exercise 6.5.11 In this exercise, we write ≈c
cs for rooted coupled simulation equivalence.

(1) We only consider the proof that ≈c
cs is preserved by summation, as the other proofs are

along the lines of the analogous results for weak bisimilarity and its rooted version. Let

S1
def=≤cs

∪ {(P + R,Q + R) |P ≈c
cs Q}

∪ {(P,Q + R) |P ≤cs Q and Q is not stable}

226 Solutions to selected exercises

and S2 be defined symmetrically. We show that (S1,S2) is a coupled simulation.
This proves the assertion, because if P ≈c

cs Q then we would have (P + R,Q + R) ∈
S1 ∩ S2 and, obviously, when (P is stable iff Q is stable) then also (P + R is stable iff
Q + R is stable). We consider S1, as the case for S2 is symmetric. The proof that S1 is
a simulation is easy. We only examine the coupling requirement.

For ≤cs, coupling holds because ≥cs ⊆ S2. For (P + R,Q + R) it holds because the
pair is also inS2. Thus we are left with (P,Q + R), where P ≤cs Q and Q is not stable.
Since P ≤cs Q, by the coupling condition for ≤cs there is Q′ such that Q =⇒ Q′ and
P ≥cs Q′. If Q′ is reached by performing some τ s, then also Q + R =⇒ Q′ and we
are then done, as ≥cs ⊆ S2.

Thus suppose Q′ = Q. As Q is not stable, there is Q′′ with Q
τ=⇒ Q′′. Hence also

Q + R
τ=⇒ Q′′. We use this transition for the coupling; i.e., we have to show that

P ≥cs Q′′ holds. For this we have to check the simulation and the coupling conditions.
� The simulation condition holds: if Q′′ μ=⇒ Q′′′ then, since P ≥cs Q (obtained from
P ≥cs Q′ and Q′ = Q) and Q

τ=⇒ Q′′, there is P ′ such that P
μ=⇒ P ′ and P ′ ≥cs Q′′′.

� Now the coupling condition. Since P ≥cs Q and Q
τ=⇒ Q′′, there is P ′ with P =⇒ P ′

and P ′ ≥cs Q′′. By the coupling requirement on P ′ ≥cs Q′′ there is P ′′ such that
P ′ =⇒ P ′′ ≤cs Q′′. We have thus derived the existence of some P ′′ with P =⇒ P ′′

and P ′′ ≤cs Q′′, which concludes the case.
(2) We can take the usual example: τ.a versus a. �

Exercise 6.5.12 Suppose P is stable, and Q is not, and that for all R we have P + R ≈cs

Q + R. Take now R
def= a, where a is not in the sort of P and Q. We have Q + a

τ−→ Q′,
for some Q′ with Q

τ−→ Q′. As P + a ≥cs Q + a and both P and R are stable, it must
be that P + R ≥cs Q′. By the coupling requirement, there is Q′′ with Q′ =⇒ Q′′ and
P + a ≤cs Q′′. This is, however, impossible, as P + a can take an a-transition, and a is
not in the sort of Q′′. �

Exercise 6.5.15

(1) A counterexample is given by the processes a and τ.a + τ.b, which is easy to prove
that are in the relation ≤cs but not in ≤Scs.

(2) We show that (R1,R2) is an S-coupled simulation, for

R1
def= {(P,Q) |P ≤cs Q and (P stable implies Q stable)},

R2
def= {(P,Q) |P ≥cs Q and (Q stable implies P stable)}.

We focus on R1, as the reasoning for R2 is symmetric. First we show that R1 is a
simulation.

Suppose P R1 Q and P
μ−→ P ′. As P ≤cs Q, we have Q

μ̂=⇒ Q′, for some Q′ with
P ′ ≤cs Q′. If P ′ is not stable, there is nothing else to prove. Otherwise, (P ′,Q′) is
not in R1. However, by the coupling requirement, there is Q′′ such that Q′ =⇒ Q′′

and P ′ ≥cs Q′′. Since the LTS is not divergent, there is Q′′′ stable with Q′′ =⇒ Q′′′,

Solutions to selected exercises 227

moreover P ′ ≥cs Q′′′, as P ′ is stable and ≥cs is a simulation. Again, by the coupling
requirement and the stability of P ′ also P ′ ≤cs Q′′′; as Q′′′ is stable too, P ′ R1 Q′′′.
Summarising, we have found Q′′′ such that Q

μ̂=⇒ Q′′′ and P ′ R1 Q′′′.
The S-coupling requirement for R1 is straightforward, as the stability of the first

process in the pair implies that of the second. The pair is thus related by ≈cs and is also
in R2.

(3) We show that (R1,R2) is a coupled simulation, for

R1
def= ≤Scs ∪ {(P,Q) | ∃Q′ with Q =⇒ Q′ and P ≈Scs Q′},

R2
def= ≥Scs ∪ {(P,Q) | ∃P ′ with P =⇒ P ′ and P ′ ≈Scs Q},

where ≥Scs is the inverse of ≤Scs.
As usual, we focus onR1, as the reasoning forR2 is symmetric. The proof thatR1 is

a simulation is straightforward. We consider the coupling requirement. If (P,Q) ∈ R1

because there is Q′ with Q =⇒ Q′ and P ≈Scs Q′ then we can take Q =⇒ Q′ to be
the coupling transition, as P R2 Q′ holds.

Otherwise, suppose (P,Q) ∈ R1 because P ≤Scs Q. If P is stable, then also P ≥Scs

Q, so Q =⇒ Q can be the coupling transition.
If P is not stable, as the LTS is divergence-free there is P ′ stable with P =⇒

P ′; there is also Q′ with Q =⇒ Q′ and P ′ ≤Scs Q′. As P ′ is stable, we actually
have P ′ ≈Scs Q′. Summarising, we have P =⇒ P ′ ≈Scs Q′; thus P R2 Q′ holds, and
Q =⇒ Q′ is a coupling transition. �

Exercise 6.5.19

(1) We only discuss transitivity. One shows that the composition of two stable bisimulations
R1,R2 is again a stable bisimulation. Suppose P R1 Q, Q R2 R and P

s=⇒ P ′ with
P ′ stable; we have to find R′ with R

s=⇒ R′ and P ′R1R2R
′. Since R1 is a stable

bisimulation, there is Q′ with Q
s=⇒ Q′ and P ′ R1 Q′. Since Q′ is not divergent there

is Q′′ stable with Q′ =⇒ Q′′. From P ′ R1 Q′, and since P ′ is stable, taking s to be
the empty sequence we derive P ′ R1 Q′′. As Q

s=⇒ Q′′, there is R′ with R
s=⇒ R′ and

Q′′ R2 R′. Thus also P ′R1R2R
′, and we are done.

(2) The relation {μ.P + μ.Q,μ.(τ.P + τ.Q)} ∪ I is a stable bisimulation.
(3) By showing that ≈cs is a stable bisimulation. Suppose P ≈cs Q and P

s=⇒ P ′ with
P ′ stable. Since ≈cs is a simulation, there is Q′ with Q

s=⇒ Q′ and P ′ ≤cs Q′; by the
coupling requirement, there is also Q′′ with Q′ =⇒ Q′′ and P ′ ≥cs Q′′. As P ′ is stable,
we derive P ′ ≈cs Q′′. Thus Q

s=⇒ Q′′ and P ′ ≈cs Q′′, and we are done.
The assertion is actually simpler using the characterisation of ≈cs in terms of ≈Scs

for divergent-free LTSs, as the following point of the exercise shows.
(4) Straightforward, as the coupling requirement in S-coupled simulations is on stable

processes.

228 Solutions to selected exercises

(5) The previous points show that coupled simulation equivalence implies stable bisim-
ilarity. We show that stable bisimilarity implies testing equivalence. We make use
of the weak version of Theorem 5.7.3, discussed in Section 5.8. Thus suppose P

and Q are stable bisimilar. Then they have the same visible traces. If P
s=⇒ P ′

then, as the LTSs are divergent-free, also P
s=⇒ P ′′, for some P ′′ stable. Therefore

also Q
s=⇒, and s is in the traces of Q. Now suppose P after s must A and not

Q after s must A. This means that Q has a stable derivative under s, say Q′ (the
existence of such a stable derivative uses the divergence-free hypothesis), and Q′ is
unable to perform any action in A. There is also P ′ with P

s=⇒ P ′ and P ′ stable bisim-
ilar with Q′. We have earlier shown that stable bisimilarity implies trace equivalence,
hence also P ′ is unable to perform any action in A, contradicting the assumption
P after s must A.

For the strictness of the inclusions: for coupled simulation equivalence, use the
axiom at point (2); for testing, we can use the examples that distinguish bisimilarity
and testing on strong LTSs.

Note that on LTSs with divergences, stable bisimilarity does not even imply may
testing, as the former equates, for instance, �a

τ and �b
τ . �

Exercises in Chapter 7

Exercise 7.2.11 For �τ and K as defined in Corollary 7.2.10 it holds that a.0 � �τ ∼· τ

a.0 � K . �

Exercise 7.3.3 (2) We have a.b
.∼ a.c, but not a.b | a.b

.∼ a.c | a.b. �

Exercise 7.3.10 We only have to make a few modifications to Lemma 7.3.7. In its assertion,
P,Q are image-finite up-to ∼. In the proof there are two places to modify. First since

μ−→
is image-finite up-to ∼, {Q′ |Q μ−→ Q′} is finite when quotiented by ∼. We can write this
quotient as

{Qi | i ∈ I } (A.4)

for some finite set I , where the processes Qi are representatives for each class in the
quotient.

Second, in Case 1 of the proof (and similarly in Case 2), we have to rectify the definition
of B ′. We have

B ′ def= Q′ |�i∈I τ.(Mi + ci)

for some Q′ such that Q
μ−→ Q′. Let Qj be the representative of the equivalence class that

Q′ belongs to, according to (A.4). Thus Q′ ∼ Qj . As ∼⊆ .∼ and
.∼ is transitive, it must

also be A′ .∼ B ′
�, for

B ′
�

def= Qj |�i∈I τ.(Mi + ci).

Then the proof continues as before, with B ′
� in place of B ′. �

Solutions to selected exercises 229

Exercise 7.3.11 Suppose that the finite set A contains all names that appear in the sorts of
P1 and P2, and let a be a fresh name. The idea is to hide all the names in A via restrictions
(that we write νA , with some abuse of notation), and then to define, using the visible name
a, a sequence of processes Ri (i ≥ 0) such that for all processes Q1,Q2 whose sorts use
only names in A we have: νA (Q1 |Ri)

.∼ νA (Q2 |Rj) implies i = j . The processes {Ri}i
will play the roles of the signal names used in the proof of Lemma 7.3.7 (e.g., name c in
the assertion of the lemma).

For this we can set

Ri
def= τ. . . . τ︸ ︷︷ ︸

i

.a.

�

Exercise 7.4.3 Obviously % ⊆ %e. For the converse, we show that for each context C and
processes P , Q, if P %e Q then C[P] %e C[Q], that is, C[P] |R .∼ C[Q] |R for all R.
We do this by structural induction on C.

The base case is when C = [·] and follows from the definition of %e. For the inductive
cases, we only show the details for parallel composition, the other operators are easy. Then
C = C ′ | S (the case C of the form S |C ′ is similar). We have to show that, for all R,

(C ′[P] | S) |R .∼ (C ′[Q] | S) |R.

Since ∼ ⊆ .∼ and we know that the law of associativity of parallel composition is valid for
∼, we infer

C ′[P] | (S |R)
.∼ (C′[Q] | (S |R)

and then we can appeal to the inductive hypothesis on C′. �

Exercise 7.5.6 Write ∼=e
� for the largest congruence included in ∼=e, thus P ∼=e

� Q holds if
for all C, C[P] ∼=e C[Q]. As ∼=e implies

.≈, ∼=e
� implies ∼=.

For the converse, suppose P ∼= Q, we have to show that P ∼=e
� Q, that is, for all contexts

C, C[P] ∼=e C[Q]. This means ensuring that, for all R, C[P] |R .≈ C[Q] |R. This holds
by definition of ∼=, taking C |R as a context. �

Exercise 7.5.8 The context lemma uses contexts of the form ([·] + P) |Q. The details of
the proof are similar to those for Exercise 7.4.3. �

Exercise 7.6.4 We sketch the definition of branching barbed bisimulation. In the definition
of weak reduction bisimulation, the bisimulation clause becomes:

� for all P ′ with P
τ−→ P ′, either

(1) P ′ R Q, or
(2) there are Q′,Q1,Q2 such that Q =⇒ Q1, Q1

τ−→ Q2, and Q2 =⇒ Q′ with
P R Q1, P ′ R Q2, and P ′ R Q′.

Moreover, the definition of weak-barb preserving in Exercise 7.5.2 becomes: whenever
P R Q, for all �:

230 Solutions to selected exercises

(1) P ↓� implies Q =⇒ Q′ ↓� for some Q′ with P R Q′;
(2) conversely, Q ↓� implies P =⇒ P ′ ↓� for some P ′ with P ′ R Q.

The τ -law T3, μ.(P + τ.Q) = μ.(P + τ.Q) + μ.Q, fails for branching barbed con-
gruence when we use a context [·] |μ; in this context, the latter process has a reduction
to Q | 0; the former process, in the same context, to match such a reduction may need to
go through the intermediate state (P + τ.Q) | 0 whose observables may be different from
those of Q | 0 (take P = a and Q = b). �

Notation

We report here the main notation under the following headings: miscellaneous, processes,
preorders and equivalences. The page number refers to the first occurrence of the notation.

Miscellaneous

S1 ∪ S2,∪iSi set union 7
S1 ∩ S2,∩iSi set intersection 7
S1 − S2 set difference 7
S × S′, Sn cartesian product of sets 7
℘ powerset construct 7
R,S relations 7
R−1 inverse of a relation 7
R ⊆ S relation inclusion 7
RS composition of relations 7
P R Q infix notation for relations 7
I identity relation 8
↔ complement of relation ↔ 8
R+ transitive closure of relation R 8
R� reflexive and transitive closure of relation R 8
= syntactic equality 7
e ⇓ convergent term in the λ-calculus 34
e ⇑ divergent term in the λ-calculus 35
≤ partial order relation 40
≥ inverse of ≤ 41
∪S join of S in a complete lattice 42
∩S meet of S in a complete lattice 42
gfp(F) greatest fixed points of F 42
lfp(F) least fixed points of F 42
⊥ bottom element of a complete lattice 43
� top element of a complete lattice 43

231

232 Notation

Fn(x) n-iteration of F from x 67
F∪ω(x) join of the iterations of F from x 67
F ∩ω(x) meet of the iterations of F from x 67
F∞(x) meet of the transfinite iteration of F from x 68
�R rule functional of a set R of rules 48
FP rules finite in the premises 71
FC rules finite in the conclusions 72
F∼ functional of bisimilarity 73
Gind(R, x0) inductive game for R and x0 83
Gcoind(R, x0) coinductive game for R and x0 83

Processes

Pr set of all processes 15
Act set of all actions 15
P,Q,R processes 15
μ action 15

P
μ−→ Q transition 15

P
μ−→ P

μ−→ P ′ for some P ′ 15

P
s−→ transition, for a sequence s of actions 15

P μ−→ not P
μ−→ 15

L Labelled Transition System (LTS) 15
sort(P) sort of P 16
Names set of all names 90
Conames set of all conames 90
a name 90
a coname 90
τ silent action 90
0 nil process 90
μ.P prefixing 90
P |Q parallel composition 91
P + Q choice 91
νa P restriction 92
Cons set of all constants 92
K constant 92
CCS the CCS language 92
finCCS finite CCS 93
�1≤i≤nPi indexed parallel composition 93
�1≤i≤nPi indexed choice 93
νa1 . . . an P multiple restrictions 93
P ⊕ Q internal choice 155

Notation 233

P � Q disabling operator 187
�μ a special constant 94
�a

τ a special constant 116
�τ ‘purely divergent’ process 115
C context 99
fn(P) free names of P 106
{b/a} name substitution 106
=⇒ weak silent transition 110
μ=⇒ weak transition 110
s=⇒ weak transition, for a sequence s of actions 110
μ̂=⇒ abbreviation for weak transition 112

� visible action 110
P ⇑ divergent process 115
P ⇑μ P diverges before or after μ 124
Oden(T , P) outcomes of an experiment, denotationally 135
Oop(〈T , P 〉) outcomes of an experiment, operationally 135
� success in a run of a test 135
⊥ lack of success in a run of a test 135
E configuration 135
P ref(μ) P refuses μ 138
ω success action in tests 146
P ↓μ observability predicate 188
P ↓ P ↓μ, for some μ 191
P ⇓� weak observability predicate 192

Preorders and equivalences

∼ bisimilarity 19
≤ similarity 26
≤≥ simulation equivalence 26
∼n stratification of bisimilarity 74
∼ω meet of the stratification of bisimilarity 74
∼∞ meet of the transfinite stratification of bisimilarity 77
≈ weak bisimilarity 111
≈c rooted weak bisimilarity 119
≈τ ≈τ -bisimilarity 123
≤⇑ prebisimilarity with divergence 125
≈dyn dynamic bisimilarity 126
≈br branching bisimilarity 128
≈η η-bisimilarity 129
≈d delay bisimilarity 129

234 Notation

�test indistinguishability under tests 143
≤must must preorder 149
≤may may preorder 149
≤test testing preorder 149
%must must equivalence 149
%may may equivalence 149
%test testing equivalence 149
≤′

may alternative characterisation of ≤may 151
≤′

must alternative characterisation of ≤must 151
≤comp complete similarity 169
∼comp complete simulation equivalence 169
≤rs ready similarity 169
∼rs ready simulation equivalence 170
≤2 n two-nested similarity 171
∼2 n two-nested simulation equivalence 171
≈se weak simulation equivalence 173
≈cs coupled simulation equivalence 176
≤cs ‘one-way’ coupled similarity 177
≈Scs S-coupled simulation equivalence 178
≤Scs ‘one-way’ S-coupled similarity 178
∼· τ reduction bisimilarity 186
∼τ reduction congruence 186
.∼ barbed bisimilarity 188
% barbed congruence 189
%e barbed equivalence 191
.≈ weak barbed bisimilarity 192
∼= weak barbed congruence 192
∼=e weak barbed equivalence 192
%rc reduction-closed barbed congruence 194

References

[Abr87] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical
Computer Science, 53:225–241, 1987.

[Abr10] S. Abramsky. Coalgebras, chu spaces, and representations of physical sys-
tems. In 25th Symposium on Logic in Computer Science (LICS’10), 411–420.
IEEE Computer Society, 2010.

[ABS99] S. Abiteboul, P. Buneman and D. Suciu. Data on the Web: from Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

[ABV94] L. Aceto, B. Bloom and F. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111(1):1–52, 1994.

[AC93] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631,
1993.

[Acz77] P. Aczel. An introduction to inductive definitions. In Jon Barwise, ed., Hand-
book of Mathematical Logic, 739–782. North-Holland, 1977.

[Acz88] P. Aczel. Non-well-founded Sets. CSLI lecture notes; no. 14, 1988.
[AFV01] L. Aceto, W. Fokkink and I. C. Verhoef. Structural operational semantics.

In A. Ponse, J. Bergstra and S. Smolka, ed., Handbook of Process Algebra,
197–292. Elsevier, 2001.

[AFvGI04] L. Aceto, W. Fokkink, R. J. van Glabbeek and A. Ingólfsdóttir. Nested
semantics over finite trees are equationally hard. Information and Computa-
tion, 191(2):203–232, 2004.

[AG98] M. Abadi and A. D. Gordon. A bisimulation method for cryptographic pro-
tocols. In C. Hankin, ed., ESOP’98: European Symposium on Programming,
volume 1381 of Lecture Notes in Computer Science, 12–26. Springer Verlag,
1998.

[AGR88] E. Astesiano, A. Giovini and G. Reggio. Generalized bisimulation in rela-
tional specifications. In STACS’88: Symposium on Theoretical Aspects of
Computer Science, volume 294 of Lecture Notes in Computer Science, 207–
226. Springer Verlag, 1988.

[AH92] L. Aceto and M. Hennessy. Termination, deadlock, and divergence. J. ACM,
39(1):147–187, 1992.

[AI08] L. Aceto and A. Ingólfsdóttir. On the expressibility of priority. Inf. Process.
Lett., 109(1):83–85, 2008.

[AILS07] L. Aceto, A. Ingólfsdóttir, K. Guldstrand Larsen and J. Srba. Reactive Sys-
tems: Modelling, Specification and Verification. Cambridge University Press,
2007.

235

236 References

[AIS12] L. Aceto, A. Ingólfsdóttir and J. Srba. The algorithmics of bisimilarity. In
Sangiorgi and Rutten [SR12].

[AV93] S. Abramsky and S. Vickers. Quantales, observational logic and process
semantics. Mathematical Structures in Computer Science, 3(2):161–227,
1993.

[AvGFI96] L. Aceto, R. J. van Glabbeek, W. Fokkink and A. Ingólfsdóttir. Axiomatizing
prefix iteration with silent steps. Information and Computation, 127(1):26–
40, 1996.

[Bas96] T. Basten. Branching bisimilarity is an equivalence indeed! Inf. Process.
Lett., 58(3):141–147, 1996.

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P. H. J. van Eijk, C. A. Vissers and M. Diaz, eds., The Formal
Description Technique LOTOS. North Holland, 1989.

[BBK87a] J. C. M. Baeten, J. A. Bergstra and J. W. Klop. On the consistency of
Koomen’s fair abstraction rule. Theoretical Computer Science, 51:129–176,
1987.

[BBK87b] J. C. M. Baeten, J. A. Bergstra and J. W. Klop. Ready-trace semantics for
concrete process algebra with the priority operator. Comput. J., 30(6):498–
506, 1987.

[BC04] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Devel-
opment. Coq’Art: The Calculus of Inductive Constructions. EATCS Series.
Springer Verlag, 2004.

[BDHS96] P. Buneman, S. B. Davidson, G. G. Hillebrand and D. Suciu. A query lan-
guage and optimization techniques for unstructured data. In H. V. Jagadish
and I. S. Mumick, eds., Proc. ACM Int. Conf. on Management of Data,
505–516. ACM Press, 1996.

[BDP99a] M. Boreale, R. De Nicola and R. Pugliese. Proof techniques for cryptographic
processes. In 14th Symposium on Logic in Computer Science (LICS’99),
157–166. IEEE Computer Society, 1999.

[BDP99b] M. Boreale, R. De Nicola and R. Pugliese. Basic observables for processes.
Information and Computation, 149(1):77–98, 1999.

[BG96] R. N. Bol and J. F. Groote. The meaning of negative premises in transition
system specifications. J. ACM, 43:863–914, 1996.

[BGMM99] E. Bertino, G. Guerrini, I. Merlo and M. Mesiti. An approach to classify
semi-structured objects. In ECOOP’99: European Conference on Object-
Oriented Programming, volume 1628 of Lecture Notes in Computer Science,
416–440. Springer, 1999.

[BH97] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type
equality and subtyping. In R. Hindley, ed., TLCA’97: Typed Lambda Cal-
culi and Applications, volume 1210 of Lecture Notes in Computer Science
(LNCS), 63–81. Springer-Verlag, April 1997.

[BHR84] S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, 1984.

[BIM95] B. Bloom, S. Istrail and A. R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60:109–137, 1984.

[BK86] J. A. Bergstra and J. W. Klop. Verification of an alternating bit protocol
by means of process algebra. In Proc. Int. Spring School on Mathematical

References 237

Methods of Specification and Synthesis of Software Systems ’85, volume 215,
9–23. Springer Verlag, 1986.

[BKO87] J. A. Bergstra, J. W. Klop and E.-R. Olderog. Failures without chaos: a
process semantics for fair abstraction. In M. Wirsing, ed., IFIP Formal
Description of Programming Concepts – III, pages 77–101. Elsevier Science
Publishers B.V., 1987.

[BKO88] J. A. Bergstra, J. Willem Klop and E.-R. Olderog. Readies and failures in the
algebra of communicating processes. SIAM J. Comput., 17(6):1134–1177,
1988.

[Blo89] B. Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-
like Languages. Ph.D. thesis, Massachusetts Institute of Technology,
1989.

[BM96] J. Barwise and L. Moss. Vicious Circles: on the Mathematics of Non-
Wellfounded Phenomena. CSLI (Center for the Study of Language and
Information), 1996.

[Bou89] G. Boudol. Towards a lambda calculus for concurrent and communicating
systems. In TAPSOFT’89: Theory and Practice of Software Development,
volume 351 of Lecture Notes in Computer Science, 149–161, Springer Ver-
lag, 1989.

[BPS01] J. Bergstra, A. Ponse and S. Smolka, eds. Handbook of Process Algebra.
Elsevier, 2001.

[BR84] S. D. Brookes and A. W. Roscoe. An improved failures model for commu-
nicating processes. In S. D. Brookes, A. W. Roscoe and G. Winskel, eds.,
Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science,
281–305. Springer Verlag, 1984.

[Bri99] E. Brinksma. Cache consistency by design. Distrib. Comput., 12(2/3):61–74,
1999.

[BRV01] P. Blackburn, M. de Rijke and Y. Venema. Modal Logic. Cambridge Univer-
sity Press, 2001.

[BS98] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi with-
out matching. In Proc. 13th Symposium on Logic in Computer Science
(LICS’98), 411–420. IEEE, Computer Society Press, 1998.

[BvG87] J. C. M. Baeten and R. J. van Glabbeek. Another look at abstraction in pro-
cess algebra (extended abstract). In T. Ottmann, ed., ICALP’87: Automata,
Languages and Programming, volume 267 of Lecture Notes in Computer
Science, 84–94. Springer Verlag, 1987.

[Cas01] I. Castellani. Process algebras with localities. In A. Ponse, J. Bergstra
and S. Smolka, eds., Handbook of Process Algebra, 945–1045. Elsevier,
2001.

[CC79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theo-
rems. Pacific Journal of Mathematics, 81(1):43–57, 1979.

[CH93] R. Cleaveland and M. Hennessy. Testing equivalence as a bisimulation equiv-
alence. Formal Asp. Comput., 5(1):1–20, 1993.

[CHM93] S. Christensen, Y. Hirshfeld and F Moller. Decomposability, decidability and
axiomatisability for bisimulation equivalence on basic parallel processes. In
Proc. 8th Symposium on Logic in Computer Science (LICS’93), 386–396.
IEEE Computer Society, 1993.

[Chr93] S. Christensen. Decidability and Decomposition in Process Algebras. Ph.D.
thesis, Department of Computer Science, University of Edinburgh, 1993.

238 References

[Coq94] T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
eds., 1st Int. Workshop TYPES, volume 806 of Lecture Notes in Computer
Science, 62–78. Springer Verlag, Berlin, 1994.

[DD91] P. Darondeau and P. Degano. About semantic action refinement. Fundam.
Inform., 14(2):221–234, 1991.

[De87] R. De Nicola. Extensional equivalences for transition systems. Acta Infor-
matica, 24:211–237, 1987.

[Den07] Y. Deng. A simple completeness proof for the axiomatisations of weak
behavioural equivalences. Bulletin of the EATCS, 93:207–219, 2007.

[DH84] R. De Nicola and R. Hennessy. Testing equivalences for processes. Theoret-
ical Computer Science, 34:83–133, 1984.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2002.

[DS85] R. De Simone. Higher level synchronising devices in MEIJE-SCCS. Theo-
retical Computer Science, 37:245–267, 1985.

[DV95] R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation.
J. ACM, 42(2):458–487, 1995.

[DvGHM08] Y. Deng, R. J. van Glabbeek, M. Hennessy and C. Morgan. Characteris-
ing testing preorders for finite probabilistic processes. Logical Methods in
Computer Science, 4(4), 2008.

[Fio93] M. Fiore. A coinduction principle for recursive data types based on bisim-
ulation. In Proc. 8th Symposium on Logic in Computer Science (LICS’93),
110–119. IEEE Computer Society, 1993.

[Fou98] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Program-
ming. Ph.D. thesis, Ecole Polytechnique, 1998.

[Gim96] E. Giménez. Un Calcul de Constructions Infinies et son Application á la
Verification des Systemes Communicants. Ph.D. thesis 96-11, Laboratoire de
l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, Decem-
ber 1996.

[GK03] E. Grädel and S. Kreutzer. Will deflation lead to depletion? On non-monotone
fixed point inductions. In Proc. 18th IEEE Symposium on Logic in Computer
Science (LICS 2003), 158–167. IEEE Computer Society, 2003.

[Gla88] R. J. van Glabbeek. De semantiek van eindige, sequentiële processen
met interne acties, syllabus processemantieken, deel 2 (in Dutch). Draft,
1988.

[Gla90] R. J. van Glabbeek. Comparative concurrency semantics and refinement of
actions. Ph.D. thesis, University of Amsterdam, 1990.

[Gla91] R. J. van Glabbeek. Characterisation GSOS congruence. Posting in the con-
currency mailing list, May 1991.

[Gla93a] R. J. van Glabbeek. The linear time-branching time spectrum II (the seman-
tics of sequential systems with silent moves). In E. Best, ed., CONCUR’93:
Concurrency Theory, volume 715. Springer Verlag, 1993.

[Gla93b] R. J. van Glabbeek. A complete axiomatization for branching bisimula-
tion congruence of finite-state behaviours. In A. M. Borzyszkowski and
S. Sokolowski, eds., Proc. 18th Symposium on Mathematical Foundations
of Computer Science (MFCS’93), volume 711 of Lecture Notes in Computer
Science, 473–484. Springer Verlag, 1993.

[Gla93c] R. J. van Glabbeek. Full abstraction in structural operational semantics
(extended abstract). In M. Nivat, C. Rattray, T. Rus and G. Scollo, eds., Proc.

References 239

3rd Conf. on Algebraic Methodology and Software Technology (AMAST ’93),
Workshops in Computing, 75–82. Springer Verlag, 1993.

[Gla01a] R. J. van Glabbeek. The linear time-branching time spectrum I. In A. Ponse,
J. Bergstra and S. Smolka, eds., Handbook of Process Algebra, 3–99.
Elsevier, 2001.

[Gla01b] R. J. van Glabbeek. What is branching time semantics and why to use it? In
G. Paun, G. Rozenberg and A. Salomaa, eds., Current Trends in Theoretical
Computer Science, 469–479. World Scientific, 2001.

[Gla05] R. J. van Glabbeek. A characterisation of weak bisimulation congruence. In
A. Middeldorp, V. van Oostrom, F. van Raamsdonk and R. C. de Vrijer, eds.,
Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated
to Jan Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of
Lecture Notes in Computer Science, 26–39. Springer Verlag, 2005.

[Gro91] J. F. Groote. Process Algebra and Structured Operational Semantics. Ph.D.
thesis, University of Amsterdam, 1991.

[Gro93] J. F. Groote. Transition system specifications with negative premises. Theo-
retical Computer Science, 118(2):263–299, 1993.

[GV92] J. F. Groote and F. W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
1992.

[GW96] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction
in bisimulation semantics. J. ACM, 43(3):555–600, 1996. An extended
abstract appeared in Information Processing 89, IFIP 11th World Computer
Congress, 1989, 613–618.

[HH06] P. Hancock and P. Hyvernat. Programming interfaces and basic topology
Ann. Pure Appl. Logic, 137(1–3):189–239, 2006.

[Hen88] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge,
Mass., 1988.

[HJ99] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for
normed process algebra. In J. Wiedermann, P. van Emde Boas and M.
Nielsen, eds., ICALP’99: Automata, Languages and Programming, , vol-
ume 1644 of Lecture Notes in Computer Science, 412–421. Springer Verlag,
1999.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. J. ACM, 32:137–161, 1985.

[HMU06] J. E. Hopcroft, R. Motwani and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edn.). Addison-Wesley, 2006.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HP80] M. Hennessy and G. D. Plotkin. A term model for CCS. In P. Dembinski, ed.,

Proc. 9th Symposium on Mathematical Foundations of Computer Science
(MFCS’80), volume 88 of Lecture Notes in Computer Science, 261–274.
Springer Verlag, 1980.

[JR03] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus
revisited. In Proc. MFPS XIX, volume 83 of ENTCS. Elsevier Science Pub-
lishers, 2003.

[KW06] V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-
order imperative programs. In J. G. Morrisett and S. L. Peyton Jones, eds.,
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 141–152, 2006.

240 References

[Len98] M. Lenisa. Themes in Final Semantics. Ph.D. thesis, Università di Pisa,
1998.

[LG09] X. Leroy and H. Grall. Coinductive big-step operational semantics. Infor-
mation and Computation, 207(2):284–304, 2009.

[LJWF02] D. Lacey, N. D. Jones, E. Van Wyk and C. C. Frederiksen. Proving correctness
of compiler optimizations by temporal logic. In 29th ACM Symposium on
Principles of Programming Languages, 283–294, 2002.

[LM92] K. G. Larsen and R. Milner. A compositional protocol verification using
relativized bisimulation. Information and Computation, 99(1):80–108,
1992.

[LS91] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94(1):1–28, 1991. Preliminary version in
POPL’89, 344–352, 1989.

[LvO05] B. Luttik and V. van Oostrom. Decomposition orders: Another generalisation
of the fundamental theorem of arithmetic. Theoretical Computer Science,
335(2–3):147–186, 2005.

[Mai87] M. G. Main. Trace, failure and testing equivalences for communicating
processes. Int. J. Parallel Program., 16(5):383–400, 1987.

[Mil81] R. Milner. A modal characterisation of observable machine-behaviour. In
E. Astesiano and C. Böhm, eds., Proc. 6th Colloquium on Trees in Algebra
and Programming (CAAP ’81), volume 112 of Lecture Notes in Computer
Science, 25–34. Springer Verlag, 1981.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Mil99] R. Milner. Communicating and Mobile Systems: the π -Calculus. Cambridge

University Press, 1999.
[MM93] R. Milner and F. Moller. Unique decomposition of processes. Theoretical

Computer Science, 107(2):357–363, 1993.
[Mol89] F. Moller. Axioms for concurrency. Ph.D. thesis, Department of Computer

Science, University of Edinburgh, 1989.
[Mol90a] F. Moller. The importance of the left merge operator in process algebras. In

M. Paterson, ed., ICALP’90: Automata, Languages and Programming, vol-
ume 443 of Lecture Notes in Computer Science, 752–764. Springer Verlag,
1990.

[Mol90b] F. Moller. The nonexistence of finite axiomatisations for CCS congruences.
In Proc. 5th Symposium on Logic in Computer Science (LICS’90), 142–153.
IEEE Computer Society, 1990.

[Mor68] J. H. Morris. Lambda-Calculus Models of Programming Languages. Ph.D.
thesis MAC-TR-57, MIT, project MAC, Dec. 1968.

[Mos74] Y. N. Moschovakis. On non-monotone inductive definability. Fund. Math.,
LXXXII(1):39–83, 1974.

[MRG07] M. R. Mousavi, M. A. Reniers and J. F. Groote. SOS formats and meta-
theory: 20 years after. Theoretical Computer Science, 373(3):238–272,
2007.

[MS92] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimu-
lation for CCS. Fundamenta Informaticae, XVI(2):171–199, 1992.

[MT91] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87:209–220, 1991.

[MZ05] M. Merro and F. Z. Nardelli. Behavioral theory for mobile ambients. J. ACM,
52(6):961–1023, 2005.

References 241

[NC95] V. Natarajan and R. Cleaveland. Divergence and fair testing. In ICALP’95:
Automata, Languages and Programming, volume 944 of Lecture Notes in
Computer Science, 648–659. Springer Verlag, 1995.

[NNH99] F. Nielson, H. R. Nielson and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, 1999.

[NP00] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and
Computation, 163(1):1–59, 2000.

[OH86] E.-R. Olderog and C. A. R. Hoare. Specification-oriented semantics for
communicating processes. Acta Informatica, 23(1):9–66, 1986.

[Phi87] I. Phillips. Refusal testing. Theoretical Computer Science, 50:241–284,
1987. A preliminary version in Proc. ICALP’86, Lecture Notes in Computer
Science 226, Springer Verlag.

[Pit93] A. M. Pitts. Tutorial talk on coinduction. 8th Symposium on Logic in Com-
puter Science (LICS’93), 1993.

[Pit94] A. M. Pitts. A co-induction principle for recursively defined domains. The-
oretical Computer Science, 124:195–219, 1994.

[Pit97] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dyb-
jer and A. M. Pitts, eds., Semantics and Logics of Computation, Publications
of the Newton Institute, 241–298. Cambridge University Press, 1997.

[Pit12] A. Pitts. Howe’s method. In Sangiorgi and Rutten [SR12].
[Plo76] G. D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–

487, 1976.
[Plo04a] G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr.

Program., 60–61:3–15, 2004.
[Plo04b] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60–61:17–139, 2004. Reprinted with corrections from Tech. Rep.
DAIMI FN-19, Comp. Sci. Dep. Aarhus University, Aarhus, Denmark,
1981.

[Prz88] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, ed. Foundations of Deductive Databases and
Logic Programming., 193–216. Morgan Kaufmann, 1988.

[PS92] J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled sim-
ulation. In R. Cleaveland, ed., CONCUR’92: Concurrency Theory, volume
630 of Lecture Notes in Computer Science, 518–533. Springer Verlag, 1992.

[PS94] J. Parrow and P. Sjödin. The complete axiomatization of cs-congruence. In
P. Enjalbert, E. W. Mayr and K. W. Wagner, eds., STACS’94: Symposium on
Theoretical Aspects of Computer Science, volume 775 of Lecture Notes in
Computer Science, 557–568. Springer Verlag, 1994.

[PS00] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-
calculus. J. ACM, 47(3):531–584, 2000.

[PS12] D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof method.
In Sangiorgi and Rutten [SR12].

[RJ12] J. Rutten and B. Jacobs. (Co)algebras and (co)induction. In Sangiorgi and
Rutten [SR12].

[RS08] J. Rathke and P. Sobocinski. Deconstructing behavioural theories of mobility.
In G. Ausiello, J. Karhumäki, G. Mauri and C.-H. Luke Ong, eds., Proc.
Fifth IFIP International Conference On Theoretical Computer Science (TCS
2008), IFIP 20th World Computer Congress, volume 273 of IFIP, 507–520.
Springer Verlag, 2008.

242 References

[RT94] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concur-
rency. In Proc. Rex School/Symposium 1993 “A Decade of Concurrency –
Reflexions and Perspectives”, volume 803 of Lecture Notes in Computer
Science. Springer Verlag, 1994.

[RV07] A. Rensink and W. Volger. Fair testing. Information and Computation,
205:125–198, 2007.

[Sab03] A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation.
In M. Broy and A. V. Zamulin, eds., Perspectives of Systems Informatics,
5th Ershov Memorial Conference, volume 2890 of Lecture Notes in Com-
puter Science, 260–274. Springer, 2003.

[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. Ph.D. thesis CST–99–93, Department of Com-
puter Science, University of Edinburgh, 1992.

[San96] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and
Computation, 131(2):141–178, 1996.

[San12] D. Sangiorgi. The origins of bisimulation and coinduction. In Sangiorgi and
Rutten [SR12].

[SKS07a] D. Sangiorgi, N. Kobayashi and E. Sumii. Environmental bisimulations for
higher-order languages. In Proc. 22nd Symposium on Logic in Computer
Science (LICS 2007), 293–302. IEEE Computer Society, 2007.

[SKS07b] D. Sangiorgi, N. Kobayashi and E. Sumii. Logical bisimulations and func-
tional languages. In F. Arbab and M. Sirjani, eds., FSEN’07: Symposium on
Fundamentals of Software Engineering, volume 4767 of Lecture Notes in
Computer Science, 364–379. Springer Verlag, 2007.

[Smi08] G. Smith. Adversaries and information leaks (tutorial). In G. Barthe
and C. Fournet, eds., TGC’07: Trustworthy Global Computing, volume
4912 of Lecture Notes in Computer Science, 383–400. Springer Verlag,
2008.

[SP04] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. In N. D. Jones
and X. Leroy, eds., 31st ACM Symposium on Principles of Programming
Languages, 161–172, 2004.

[SP05] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion.
In J. Palsberg and M. Abadi eds., 32nd ACM Symposium on Principles of
Programming Languages, 63–74, 2005.

[SR12] D. Sangiorgi and J. Rutten, eds. Advanced Topics in Bisimulation and Coin-
duction. Cambridge University Press, 2012.

[Sti87] C. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49:311–347, 1987.

[Sti01] C. Stirling. Modal and Temporal Properties of Processes. Springer Verlag,
2001.

[Sti12] C. Stirling. Bisimulation and logic. In Sangiorgi and Rutten [SR12].
[SW01] D. Sangiorgi and D. Walker. The π -calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.
[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. Ph.D. the-

sis, Department of Computing, Imperial College, 1990.
[Tho93] W. Thomas. On the Ehrenfeucht-Fraı̈ssé game in theoretical computer sci-

ence. In M.-C. Gaudel and J.-P. Jouannaud, eds., TAPSOFT’93: Theory and
Practice of Software Development, volume 668 of Lecture Notes in Computer
Science, 559–568. Springer Verlag, 1993.

References 243

[Uli92] I. Ulidowski. Equivalences on observable processes. In Proc. 7th Sympo-
sium on Logic in Computer Science (LICS 1992), 148–159. IEEE Computer
Society, 1992.

[Val05] S. Valentini. The problem of the formalization of constructive topology.
Arch. Math. Log., 44(1):115–129, 2005.

[Wal90] D. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990.

[Wei89] W. P. Weijland. Synchrony and Asynchrony in Process Algebra. Ph.D. thesis,
University of Amsterdam, 1989.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

Index

η-bisimilarity, 129
λ-calculus, 34
τ -laws, 120
≈τ -bisimilarity, 123
2/3 bisimilarity, 170

axiom, 48
axiomatisation, 103

backward closure under rules, 33
barb, 188
barbed bisimilarity, 188

weak, 192
barbed bisimulation, 188

reduction-closed, 194
weak, 192

barbed congruence, 189
reduction-closed, 194
weak, 192

barbed equivalence, 191
weak, 192

behavioural equivalence, 13, 165
bisimilarity, 19, 166

stratification of, 74
weak, 111

rooted, 119
bisimulation, 19, 38

equivalence, 38
functional associated to, 73
proof method, 20
up-to ∼, 26
up-to ≈

weak, 115
weak, 110

branching bisimilarity, 127

CCS, 89
Characterisation Theorem, 190

weak, 194
choice

internal, 13, 155, 191

choice operator, 91
cocontinuous function, 66
coinduction, 28

principle, see coinduction proof
principle

proof principle, 28, 46
coinduction up-to ∪

principle of, 64
coinduction up-to gfp

principle of, 65
complete lattice, 43
complete similarity, 169

weak, 173
complete simulation equivalence,

169
complete trace equivalence, 157
compositionality, 12
coname, 90
configuration, 135, 139

initial, 135
congruence, 12, 38, 98
constant, 92
context, 99
Context Lemma, 191
Continuity/Cocontinuity Theorem, 67
continuous function, 66
contrasimulation, 179
convergence, 34, 51
copying (test constructs), 137
corecursion, 55, 63
coupled similarity, 176
coupled simulation equivalence, 176

rooted, 177

delay bisimilarity, 129
denotational semantics, 12
derivative, 15

μ-derivative, 15
disabling operator, 187
divergence, 35, 51, 115, 152
dynamic bisimilarity, 126

244

Index 245

early bisimilarity, 184
Expansion Lemma, 97
extensionality, 10

strong, 54

failure, 158
failure action, 157
failure equivalence, 158
failure similarity, 144, 169, 174
fair testing, 153
fixed point, 42

greatest, 42
least, 42

Fixed-point Theorem, 45
format

De Simone, 100, 161
GSOS, 161
ISOS, 164
ntyft/ntyxt, 163
tyft, 162
tyft/tyxt, 162
tyxt, 162

forward closure under rules, 30
function, 9
functional of a set of rules, 48

game, 83
for bisimulation, 86

global testing constructs, 137
graph isomorphism, 17

higher-order language, 166
higher-order bisimilarity, 185

identity relation, 38
induction

mathematical, 58
on derivation proofs, 59
principle, see induction proof principle
proof principle, 28, 46
structural, 58, 59
transfinite, 60
transition, 59
well-founded, 60

induction up-to ∩
principle of, 65

join (in a poset), 41

König’s Lemma, 82, 158

labelled bisimilarity, 183, 197
labelled transition semantics, 183
Labelled Transition System (LTS), 15

deterministic, 16
divergence-free, 115

finite, 16
finitely-branching, 16
finite-state, 16
generated by a process, 15
image-finite, 16, 135
image-finite up-to ∼, 77
probabilistic, 144
strong, 109
weak, 109, 152, 157, 159, 164, 173,

192
late bisimilarity, 184
left merge operator, 104, 119
lists, 36, 52, 73
lower bound (in a poset), 41

may
equivalence, 149
preorder, 149

may pass (a test), 149
meet (in a poset), 41
monotone function, 42
must

equivalence, 149
preorder, 149

must pass (a test), 149
fairly, 153

name, 90
bound, 106
free, 106
fresh, 189

nil operator, 90
non-determinism, 13

external, 154
internal, 154

non-interleaving equivalence, 165

observability predicate, 188, 190,
194

observation congruence, 118
observation equivalence, 118
open bisimilarity, 185
ordinals, 9
outcomes of an experiment, 135

parallel composition operator, 91
partial order, see relation
partially ordered set, 40
points (of a set), 41
pointwise extension (of a function), 137
poset, see partially ordered set
post-fixed point, 42
powerdomain, 148
powerset, 7
pre-fixed point, 42
prebisimilarity with divergence, 124

246 Index

precongruence, 173
prefix operator, 90
preorder, see relation

behavioural, 147
priority (operator), 161
process, 15

always-divergent, 186
depth of, 105
deterministic, 16
finite, 16
finite-state, 16
finitely-branching, 16
image-finite, 16, 72, 197

under weak transitions, 110
image-finite up-to ∼, 77
prime, 105
saturated, 121
stable, 120, 157
stopped, 30, 173

process relation, 19
proof system, 103

ready equivalence, 159
ready pair, 159
ready set, 159
ready similarity, 169
ready simulation equivalence, 170
recursion, 62
recursive definition, 93
reduction bisimilarity, 186
reduction bisimulation

weak, 192
reduction congruence, 186
reduction semantics, 182
refusal (test constructs), 137
refusal equivalence, 156
relabeling operator, 102
relation, 7

antisymmetric, 8
barb preserving, 188
equivalence, 8
image-finite, 16
inverse, 7
irreflexive, 8
non-well-founded, 8
partial order, 8
partition, 8
preorder, 8
reflexive, 8
reflexive and transitive closure, 8
symmetric, 8
total, 8
total order, 8
transitive, 8
transitive closure, 8
well-founded, 8

restriction operator, 92
rule, 47

finitary, 71
finite in the conclusions, 72
finite in the premises, 71
ground, 47
with negative premises, 163

rule induction
definition, 48

rule coinduction
definition, 48
principle of, 29, 50

rule functional, 48
rule induction

principle of, 29, 50
run (of a test), 135

S-coupled similarity, 178
S-coupled simulation equivalence, 178
semantic equality, 38
set

coinductively defined, 46
coinductively defined by rules, 48
inductively defined, 46
inductively defined by rules, 48

should testing, 153
similarity, 26, 144

weak, 173
simulation, 26
simulation equivalence, 26

weak, 173
sort, 16
stable bisimilarity, 179
standard form

full, 105
head, 97

state, 15
strategy for a game, 84
stream, 36
strong bisimulation, 110
Structured Operational Semantics (SOS),

89
Stuttering Lemma, 128
substitutive relation, 38
sum operator, 91, 191

infinite, 190
syntactic equality, 38

test, 133
inverse, 138

testing
equivalence, 149, 197
preorder, 149

trace, 30, 72
ω-, 32, 50
complete, 157

Index 247

trace (cont.)
equivalence, 17, 24, 151
finite, 30, 50
inclusion, 151

trace (test constructs), 137
transition

strong, 109
weak, 109

transition relation, 15

two-nested similarity, 171
weak, 173

two-nested simulation equivalence, 171

upper bound (in a poset), 41

weight of a transition, 110
minimum, 110

well-ordered sets, 9

	INTRODUCTION TO BISIMULATION AND COINDUCTION
	Title
	Copyright
	Contents
	Illustrations
	Preface
	General introduction
	0.1 Why bisimulation and coinduction
	0.2 Objectives of the book
	0.3 Use of the book
	0.4 Structure of the book
	0.5 Basic definitions and mathematical notation

	Chapter 1 Towards bisimulation
	1.1 From functions to processes
	1.2 Interaction and behaviour
	1.2.1 Labelled transition systems
	1.2.2 Notation and terminologies for LTSs

	1.3 Equality of behaviours
	1.3.1 Equality in Graph Theory: isomorphism
	1.3.2 Equality in Automata Theory: trace equivalence

	1.4 Bisimulation
	1.4.1 Towards coinduction

	Chapter 2 Coinduction and the duality with induction
	2.1 Examples of induction and coinduction
	2.1.1 Finite traces and ω-traces on processes
	2.1.2 Reduction to a value and divergence in the λ-calculus
	2.1.3 Lists over a set A

	2.2 The duality
	2.3 Fixed points in complete lattices
	2.4 Inductively and coinductively defined sets
	2.5 Definitions by means of rules
	2.6 The examples, continued
	2.6.1 Finite traces and ω-traces for processes as fixed points
	2.6.2 Reduction to a value and divergence in the λ-calculus as fixed-points
	2.6.3 Lists over a set A as fixed points
	2.6.4 Bisimulation on lists

	2.7 Other induction and coinduction principles
	2.7.1 Common induction principles: mathematical induction, structural induction, and others
	2.7.2 Function definitions by recursion and corecursion
	2.7.3 Enhancements of the principles

	2.8 Constructive proofs of the existence of least and greatest fixed points
	2.9 Continuity and cocontinuity, for rules
	2.10 Bisimilarity as a fixed point
	2.10.1 The functional of bisimilarity
	2.10.2 Approximants of bisimilarity

	2.11 Proofs of membership
	2.12 Game interpretations
	2.13 The bisimulation game
	2.14 A simpler bisimulation game

	Chapter 3 Algebraic properties of bisimilarity
	3.1 Basic process operators
	3.2 CCS
	3.3 Examples of equalities
	3.4 Some algebraic laws
	3.5 Compositionality properties
	3.6 Algebraic characterisation

	Chapter 4 Processes with internal activities
	4.1 Weak LTSs and weak transitions
	4.2 Weak bisimulation
	4.3 Divergence
	4.4 Rooted weak bisimilarity
	4.5 Axiomatisation
	4.6 On the bisimulation game for internal moves
	4.7 Bisimulation with divergence
	4.8 Dynamic bisimulation
	4.9 Branching bisimulation, η-bisimulation and delay bisimulation

	Chapter 5 Other approaches to behavioural equivalences
	5.1 A testing scenario
	5.2 Bisimulation via testing
	5.3 Tests for weak bisimilarities
	5.4 Processes as testers
	5.5 Testing preorders
	5.6 Examples
	5.7 Characterisations of the may, must and testing relations
	5.8 Testing in weak LTSs
	5.9 Refusal equivalence
	5.9.1 Weak LTSs

	5.10 Failure equivalence
	5.10.1 Weak LTSs

	5.11 Ready equivalence
	5.12 Equivalences induced by SOS formats
	5.13 Non-interleaving equivalences
	5.14 Varieties in concurrency

	Chapter 6 Refinements of simulation
	6.1 Complete simulation
	6.2 Ready simulation
	6.3 Two-nested simulation equivalence
	6.4 Weak simulations
	6.5 Coupled simulation
	6.6 The equivalence spectrum

	Chapter 7 Basic observables
	7.1 Labelled bisimilarities: examples of problems
	7.1.1 CCS with value passing
	7.1.2 Higher-order process languages

	7.2 Reduction congruence
	7.3 Barbed congruence
	7.4 Barbed equivalence
	7.5 The weak barbed relations
	7.6 Reduction-closed barbed congruence
	7.7 Final remarks

	 Appendix A Solutions to selected exercises
	Exercises in Chapter 1
	Exercises in Chapter 2
	Exercises in Chapter 3
	Exercises in Chapter 4
	Exercises in Chapter 5
	Exercises in Chapter 6
	Exercises in Chapter 7

	Notation
	Miscellaneous
	Processes
	Preorders and equivalences

	References
	Index

