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Introduction

This is an unusual book. Its unusualness and complexity is appropriate for such an unusually
inventive scientist, who was personally unique, as are so many creative thinkers.

Of the writings of Alan Turing selected here – which comprise most of those to be found in the
Collected Works – a number have attracted a special interest, recognition and impact. And this is
reflected in the number of commentaries accompanying his “computable numbers” paper, or the late
great pieces on morphogenesis and the Turing test. But the collective power and energy of Turing
is in the theoretical coherence of this collection of diverse writings. They are diverse in content, in
style, in discipline, conveying different facets of a basic quest for understanding of ‘how the world
computes’.

You will find here no anonymous papers by committees of researchers. Even the occasional
unpublished writing by joint authors on closer inspection, turns out to be written by one man. The
rewards of a visceral engagement with these original writings are on various levels. A researcher
should always have first-hand experience of any writings referred to. But with Turing the sense
of the man behind the formal words is ever present. The organic involvement with the technical
material, the sense of its emergence – an important concept in relation to Turing – from some more
basic level of thought, is ever with us.

And just as the work and the person are unusually at one, there is a personal organic involvement
with the writings from many of those paying tribute to Turing’s thinking in this volume. We have
tried to tap a wide spectrum of responses to Turing, people touched in many different ways by this
strangely appealing man.

You will find here much to fascinate or surprise, both from Alan Turing and his commentators.
The book intends to show the great value and impact Alan Turing’s work continues to have.

There is a living heterogeneity to the content, formatted by a major academic publisher, with
the editors aiming at something with at least a hint of the newspaper’s immediacy and reporting of
events in progress.

In this context, we hope our readers will excuse some rough edges. If you go to the “Afterword”
first, you will see a candid description of the history of the “Collected Works of A.M. Turing”,
from which this book grew. That invaluable four-volume work took over 40 years to complete. The
present single volume, containing most of the Turing works and much else, had to be completed in
less than three years, much of it under pressure from an anxious publisher, and with doubly anxious
editors watching the pages of the calendar turn towards 2012 – and past. We are very grateful to
the publisher for initiating this major contribution to the Turing centenary celebrations, and to the
contributors and editorial support team at Elsevier for their enthusiasm for the project and their
patience with, and understanding of, the difficulties and delays.

With a few more years, we might have done much better, though the result might have been less
interesting, and certainly less timely! We took a decision early on to not try to subsume the Collected
Works. The Collected Works continues to have its own unique place in the Turing scholar’s library,
its value as an artefact matching the facsimile reproductions of Turing’s papers. And the editorial
work is by thinkers much closer to Turing and his contemporaries than us, and more often than not
no longer available to update their work.

So we have not tried to reproduce the style of an archive, rather aiming at a book to be read, to be
dipped into for pure pleasure, to be enjoyed and browsed in office, on train or bus, or accompanying
the proposer to some distant scientific meeting or place of relaxation. The rekeying of the historical
items presented special challenges, but we hope the benefits in terms of readability and sense of
contemporaneity made them worth taking on.

xi
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xii Introduction

One omission from the Collected Works, spread as it was over four volumes and a decade of
publishing, was a seriously comprehensive bibliography. This has been commented on by a number
of people, and was something we were anxious to rectify. Turing’s biographer, Andrew Hodges,
has provided a characteristically careful and insightful summary of the literature at his “The Alan
Turing Bibliography” webpage: http://www.turing.org.uk/sources/biblio.html.

We did think of asking Andrew for permission to reprint this. And then came an unexpected
discovery, which was the gargantuan work – “Bibliography of Publications of Alan Mathison
Turing” – by Professor Nelson Beebe of the University of Utah. This is a bibliography whose scope
and attention to detail, and current updated status, is beyond anything we could have provided. For
details, see the Bibliography page at the end of this book.

Sadly, we never met Alan Turing, though we have talked to those who did, some of them rep-
resented in this book. What we hope the reader will share with us is the excitement of an ongoing
exploration of ‘how the world computes’, and of a distinct sense of Turing’s visionary presence
accompanying us as we carry forward, in many different ways, his uncompleted work. In the much-
quoted words of the great man himself, from his 1950 Mind paper on Computing Machinery and
Intelligence:

We can only see a short distance ahead, but we can see plenty there that needs to be done.

S. Barry Cooper
Jan van Leeuwen

Spring 2013

http://www.turing.org.uk/sources/biblio.html
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Alan Mathison Turing by Max Newman
(Bibliographic Memoirs of the Fellows of the Royal Society,

vol. 1 (Nov. 1955), pp. 253–263)

Andrew Hodges Contributes

A COMMENT ON NEWMAN’S
BIOGRAPHICAL MEMOIR

Newman had to comply with official secrecy and said virtually nothing regarding Turing’s work
from 1939 to 1945. Although the words ‘Foreign Office’ would have conveyed ‘codes and ciphers’
to all but the most naive readers, nothing went beyond this to convey scale or significance or scien-
tific content. Indeed Newman’s account went further than suppressio veri and led into a suggestio
falsi. The expression ‘mild routine’ probably reinforced the prevalent impression of Bletchley Park
as the resort of leisured time-wasters. Turing’s work had been far from routine, involving real-time
day and night work on the U-boat messages, and hair-raising missions to France, the United States,
and Germany. It also required great intellectual originality. Newman could probably have given a
clue to its content by making a reference to I. J. Good’s 1950 book Probability and the weighing of
evidence. But there was no such hint, and the 1955 reader could never have guessed that Newman
had headed the section that used the most advanced electronic technology and Turing’s statistical
theory to break Hitler’s messages.

A more surprising feature of Newman’s account is the claim that ‘the designers’ of ‘the new auto-
matic computing machines’ had worked in ignorance of Turing’s universal machine. This is an odd
expression since Turing himself was one such designer, as Newman’s reference to ‘the first plan of
the ACE’ makes clear, and obviously he knew of his own theory. Moreover, this plan was a very
early one submitted to the NPL in March 1946. Newman can therefore only have meant that von
Neumann’s report of June 1945 was written in ignorance of Turing’s work. The origin of the digital
computer is a major point of interest in the history of science, and it seems strange that Newman
lent his authority to such an oblique and vague comment on it, with an implicit assertion about von
Neumann that is at variance with other evidence. Newman’s statement is also misleading in its impli-
cation that Turing only turned his attention to computers in the summer of 1945 after learning of von
Neumann’s design. As it happens, Newman had actually written to von Neumann on 8 February 1946
with a sharply worded statement about British developments, asserting their early start and intellectual
independence.1 Already he was applying to the Royal Society for a large grant to fund what became
the Manchester computer. ‘By about 18 months ago’, he wrote, ‘I had decided to try my hand at start-
ing up a machine unit... This was before I knew anything of the American work... I am of course in
close touch with Turing...’ The date of ‘18 months ago’ is that of August 1944. In the light of what
was revealed over 20 years later, it seems obvious that the success of the electronic Colossus after
D-Day prompted discussion between Turing and Newman of how the logic of the universal machine
could be implemented in a practical form. All this pre-1945 history was obliterated by Newman’s
account in 1955. It is of course very possible that the overpowering nature of official secrecy deterred
Newman from giving even the faintest hint of his own and Turing’s wartime experience at Bletchley
Park. Unfortunately this omission contributed to a distortion of the historical record.

1 Letter in the von Neumann archive, Library of Congress, Washington D.C. Quoted by A. Hodges Alan Turing: the
enigma, p. 341.
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ALAN MATHISON TURING

1912–1954

The sudden death of Alan Turing on 7 June 1954 deprived mathematics and science of a great
original mind at the height of its power. After some years of scientific indecision, since the end
of the war, Turing had found, in his chemical theory of growth and form, a theme that gave the
fullest scope for his rare combination of abilities, as a mathematical analyst with a flair for machine
computing, and a natural philosopher full of bold original ideas. The preliminary report of 1952,
and the account that will appear posthumously, describe only his first rough sketch of this theory,
and the unfulfilled design must remain a painful reminder of the loss that his early death has caused
to science.

Alan Mathison Turing was born in London on 23 June 1912, the son of Julius Mathison Turing,
of the Indian Civil Service, and of Ethel Sara Turing (née Stoney). The name ‘Turing’ is of Scottish,
perhaps ultimately of Norman origin, the final g being an addition made by Sir William Turing, of
Aberdeenshire, in the reign James VI and I. The Stoneys, an English-Irish family of Yorkshire
origin, produced some distinguished physicists and engineers in the nineteenth century, three of
whom became Fellows of the Society; and Edith A. Stoney was one of the early women equal-to-
wranglers at Cambridge (bracketed with 17th Wrangler, 1893).

Alan Turing’s interest in science began early and never wavered. Both at his preparatory schools
and later at Sherborne, which he entered in 1926, the contrast between his absorbed interest in sci-
ence and mathematics, and his indifference to Latin and ‘English subjects’ perplexed and distressed
his teachers, bent on giving him a well-balanced education. Many of the characteristics that were
strongly marked in his later life can already be clearly seen in remembered incidents of this time: his
particular delight in problems, large or small, that enabled him to combine theory with the kind of
experiments he could carry out with his own hands, with the help of whatever apparatus was at hand;
his strong preference for working everything out from first principles instead of borrowing from
others—a habit which gave freshness and independence to his work, but also undoubtedly slowed
him down, and later on made him a difficult author to read. At school homemade experiments in his
study did not fit well into the routine of the house: a letter from his housemaster mentions ‘Heaven
knows what witches’ brew blazing on a naked wooden window sill’. But before he left school
his abilities, and his obvious seriousness of purpose, had won him respect and affection, and even
tolerance for his own peculiar methods.

In 1931 he entered King’s College, Cambridge, as a mathematical scholar. A second class in
Part I of the Tripos showed him still determined not to spend time on subjects that did not interest
him. In Part II he was a Wrangler, with ‘b∗’, and he won a Smith’s Prize in 1936. He was elected a
Fellow of King’s in 1935, for a dissertation on the Central Limit Theorem of probability (which he
discovered anew, in ignorance of recent previous work).

It was in 1935 that he first began to work in mathematical logic, and almost immediately started
on the investigation that was to lead to his best known results, on computable numbers and the

Royal Society Memoir (Max Newman)
Reproduced from the Bibliographic Memoirs of the Fellows of the Royal Society, vol. 1 (November 1955) pp. 253–263
by kind permission of the Royal Society and of Edward and William Newman.
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‘Turing machine’. The paper attracted attention as soon as it appeared and the resulting correspon-
dence led to his spending the next two years (1936–8) in Princeton, working with Professor Alonzo
Church, the second of them as Proctor Fellow.

In 1938 Turing returned to Cambridge; in 1939 the war broke out. For the next six years he was
fully occupied with his duties for the Foreign Office. These years were happy enough, perhaps the
happiest of his life, with full scope for his inventiveness, a mild routine to shape the day, and a
congenial set of fellow-workers. But the loss to his scientific work of the years between the ages of
27 and 33 was a cruel one. Three remarkable papers written just before the war, on three diverse
mathematical subjects, show the quality of the work that might have been produced if he had settled
down to work on some big problem at that critical time. For his work for the Foreign Office he was
awarded the O.B.E.

At the end of the war many circumstances combined to turn his attention to the new automatic
computing machines. They were in principle realizations of the ‘universal machine’ which he had
described in the 1937 paper for the purpose of a logical argument, though their designers did not
yet know of Turing’s work. Besides this theoretical link, there was a strong attraction in the many-
sided nature of the work, ranging from electric circuit design to the entirely new field or organizing
mathematical problems for a machine. He decided to decline an offer of a Cambridge University
Lectureship, and join the group that was being formed at the National Physical Laboratory for the
design, construction and use of a large automatic computing machine. In the three years (1945–8)
that this association lasted he made the first plan of the ACE, the N.P.L’s automatic computer, and
did a great deal of pioneering work in the design of sub-routines.

In 1948 he was appointed to a Readership in the University of Manchester, where work was
beginning on the construction of a computing machine by F. C. Williams and T. Kilburn. The
expectation was that Turing would lead the mathematical side of the work, and for a few years
he continued to work, first on the design of the sub-routines out of which the larger programmes
for such a machine are built, and then, as this kind work became standardized, on more general
problems of numerical analysis. From 1950 onward he turned back for a while to mathematics and
finally to his biological theory. But he remained in close contact with the Computing Machine Lab-
oratory, whose members found him ready to tackle the mathematical problems that arose in their
work, and what is more, to find the answers, by that combination of powerful mathematical analysis
and intuitive short cuts that showed him at heart more of an applied than a pure mathematician.

He was elected to the Fellowship of the Society in 1951.
For recreation he turned mostly to those ‘home-made’ projects and experiments, self-contained

both in theory and practice, that have already been mentioned: they remained a ruling passion up
to the last hours of his life. The rule of the game was that everything was to be done with the
materials at hand, and worked out from data to be found in the house, or in his own head. This sort
of self-sufficiency stood him in good stead in starting on his theory of ‘morphogenesis’, where the
preliminary reading would have drowned out a more orthodox approach. In everyday life it led to
a certain fondness for the gimcrack, for example the famous Bletchley bicycle, the chain of which
would stay on if the rider counted his pedal-strokes and executed a certain manoeuvre after every
seventeen strokes.

After the war, feeling in need of violent exercise, he took to long distance running, and found
that he was very successful at it. He won the 3 miles and 10 miles championships of his club (the
Walton Athletic Club), both in record time, and was placed fifth in the A.A.A. Marathon race in
1947. He thought it quite natural to put this accomplishment to practical use from time to time, for
example by running some nine miles from Teddington to a technical conference at the Post Office
Research Station in North London, when the public transport proved tedious.

In conversation he had a gift for comical but brilliantly apt analogies, which found its full scope
in the discussions on ‘brains v. machines’ of the late 1940’s. He delighted in confounding those
who, as he thought, too easily assumed that the two things are separated by an impassable gulf,
by challenging them to produce an examination paper that could be passed by a man, but not by a
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machine. The unexpected element in human behaviour he proposed, half seriously, to imitate by a
random element, or roulette-wheel, in the machine. This, he said, would enable proud owners to say
‘My machine’ (instead of ‘My little boy’) ‘said such a funny thing this morning’.

Those who knew Turing will remember most vividly the enthusiasm and excitement with which
he would pursue any idea that caught his interest, from a conversational hare to a difficult scientific
problem. Nor was it only the pleasure of the chase that inspired him. He would take the greatest pains
over services, large or small, to his friends. His colleagues in the computing machine laboratory
found him still as ready as ever with his help for their problems when his own interests were fully
engaged with his bio-chemical theory; and, as another instance, he gave an immense amount of
thought and care to the selection of the presents which he gave to his friends and their children at
Christmas.

His death, at a time when he was fully absorbed in his scientific work, was a great and sad loss
to his friends, as well as to the wider world of science.

Scientific work

The varied titles of Turing’s published work disguise its unity of purpose. The central problem with
which he started, and to which he constantly returned, is the extent and the limitations of mechanistic
explanations of nature. All his work, except for three papers in pure mathematics (1935b, 1938a and
b) grew naturally out of the technical problems encountered in these inquiries. His way of tackling
the problem was not by philosophical discussion of general principles, but by mathematical proof
of certain limited results: in the first instance the impossibility of the too sanguine programme for
the complete mechanization of mathematics, and in his final work, the possibility of, at any rate, a
partial explanation of the phenomena of organic growth by the ‘blind’ operation of chemical laws.

1. Mathematical logic

The Hilbert decision-programme of the 1920’s and 30’s had for its objective the discovery of a
general process, applicable to any mathematical theorem expressed in fully symbolical form, for
deciding the truth or falsehood of the theorem. A first blow was dealt at the prospects of finding this
new philosopher’s stone by Gödel’s incompleteness theorem (1931), which made it clear that truth
or falsehood of A could not be equated to provability of A or not-A in any finitely based logic, chosen
once for all; but there still remained in principle the possibility of finding a mechanical process for
deciding whether A, or not-A, or neither, was formally provable in a given system. Many were
convinced that no such process was possible, but Turing set out to demonstrate the impossibility
rigorously. The first step was evidently to give a definition of ‘decision process’ sufficiently exact
to form the basis of a mathematical proof of impossibility. To the question ‘What is a “mechanical”
process?’ Turing returned the characteristic answer ‘Something that can be done by a machine, and
he embarked on the highly congenial task of analyzing the general notion of a computing machine.
It is difficult to-day to realize how bold an innovation it was to introduce talk about paper tapes
and patterns punched in them, into discussions of the foundations of mathematics. It is worth while
quoting from his paper (1937a) the paragraph in which the computing machine is first introduced,
both for the sake of its content and to give the flavour of Turing’s writings.

‘1. Computing machines

‘We have said that the computable numbers are those whose decimals are calculable by
finite means. This requires rather more explicit definition. No real attempt will be made
to justify the definitions given until we reach §9. For the present I shall only say that the
justification lies in the fact that the human memory is necessarily limited.
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‘We may compare a man in the process of computing a real number to a machine which
is only capable of a finite number of conditions q1, q2, . . ., qR which will be called “m-
configurations”. The machine is supplied with a “tape” (the analogue of paper) running
through it, and divided into sections (called “squares”) each capable of bearing a “sym-
bol”. At any moment there is just one square, say the r-th, bearing the symbol S(r) which
is “in the machine”. We may call this square the “scanned square”. The symbol on the
scanned square may be called the “scanned symbol”. The “scanned symbol” is the only
one of which the machine is, so to speak, “directly aware”. However, by altering its m-
configuration the machine can effectively remember some of the symbols which it has “seen”
(scanned) previously. The possible behaviour of the machine at any moment is determined
by the m-configuration qn and the scanned symbol S(r). This pair qn,S(r) will be called the
“configuration”: thus the configuration determines the possible behaviour of the machine. In
some of the configurations in which the scanned square is blank (i.e. bears no symbol) the
machine writes down a new symbol on the scanned square: in other configurations it erases
the scanned symbol. The machine may also change the square which is being scanned, but
only by shifting it one place to right or left. In addition to any of these operations the m-
configuration may be changed. Some of the symbols written down will form the sequence of
figures which is the decimal of the real number which is being computed. The others are just
rough notes to “assist the memory”. It will only be these rough notes which will be liable to
erasure.
‘It is my contention that these operations include all those which are used in the computation
of a number. The defence of this contention will be easier when the theory of the machines
is familiar to the reader.’

In succeeding paragraphs he gave arguments for believing that a machine of this kind could
be made to do any piece of work which could be done by a human computer obeying explicit
instructions given to him before the work starts. A machine of the kind he had described could
be made for computing the successive digits of π , another for computing the successive prime
numbers, and so forth. Such a machine is completely specified by a table, which states how it moves
from each of the finite sets of possible ‘configurations’ to another. In the computations mentioned
above, of π and of the successive primes, the machine may be supposed to be designed for its
special purpose. It is supplied with a blank tape and started off. But we may also imagine a machine
supplied with a tape already bearing a pattern which will influence its subsequent behaviour, and
this pattern might be the table, suitably encoded, of a particular computing machine, X. It could
be arranged that this tape would cause the machine, M, into which it was inserted to behave like
machine X. Turing proved the fundamental result that there is a ‘universal’ machine, U (of which
he gave the table), which can be made to do the work of any assigned special-purpose machine, that
is to say to carry out any piece of computing, if a tape bearing suitable ‘instructions’ is inserted into
it. The machine U is so constructed that, presented with a tape bearing any arbitrary pattern it will
move through a determinate, in general endless, succession of configurations; and it may or may
not print at least one digit, 0 or 1. If it does, the pattern is ‘circle-free’. It is therefore a problem, for
which a decision process might be sought, to determine from inspection of a tape, whether or not
it is circle-free. By means of a Cantor diagonal argument, Turing showed that no instruction-tape
will cause the machine U to solve this problem, i.e. no pattern P is such that U, when presented
with P followed by an arbitrary pattern ϒ , will print 0 if ϒ is ‘circle-free’, and 1 if it is not. If
Turing’s thesis is accepted, that the existence of a method for solving such a problem means the
existence of a machine (or an instruction-tape for the universal machine U) that will solve it, it
follows that the discovery of a process for discriminating between circle-free and other tapes is
an insoluble problem, in an absolute and inescapable sense. From this basic insoluble problem it
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was not difficult to infer that the Hilbert programme of finding a decision method for the axiomatic
system, Z, of elementary number-theory, is also impossible.

In the application he had principally in mind, namely, the breaking down of the Hilbert pro-
gramme, Turing was unluckily anticipated by a few months by Church, who proved the same result
by means of his ‘λ-calculus’. An offprint arrived in Cambridge just as Turing was ready to send
off his manuscript. But it was soon realised that Turing’s ‘machine’ had a significance going far
beyond this particular application. It was shown by Turing (1937b) and others that the definitions of
‘general recursive’ (by Gödel in 1931 and Kleene in 1935), ‘λ-definable’ (by Church in 1936) and
‘computable’ (Turing, 1937a) have exactly the same scope, a fact which greatly strengthened the
belief that they describe a fundamentally important body of functions. Turing’s treatment has the
merit of making a particularly convincing case for the acceptance of these and no other processes,
as genuinely constructive; and it turned out to be well adapted for use in finding other insoluble
problems, e.g., in the theory of groups and semi-groups.

Turing’s other major contribution to this part of mathematical logic, the paper (1939) on systems
logic based on ordinals, has received less attention than (1937a), perhaps owing to its difficulty.
The method of Gödel for constructing an undecidable sentence in any finitely based logic, L, i.e.
a sentence expressible, but neither provable nor disprovable, in L, has led to the consideration of
infinite families of ‘logics’, Lα , one for each ordinal α, where Lα+1 is formed from Lα by the
adjunction as an axiom of a sentence undecidable for Lα , if such exist, and Lα for limit ordinals
α has as ‘provable formulae’, the union of the sets Pβ(β < α), where Pβ is the set of provable
formulae in Lβ. The process must terminate for some γ < ω1, since the total set of formulae (which
does not change) is countable. This procedure opens up the possibility of finding a logic that is
complete, without violating Gödel’s principle, since Lα may not be finitely based if α is a limit
ordinal. Rosser investigated this possibility in 1937, using the ‘classical’ non-constructive theory
of ordinals. Turing took up the proposal, but with the proviso that, although some non-constructive
steps must be made if a complete logic is to be attained, a strict watch should be kept on them. He
first introduced a new theory of constructive ordinals, or rather of formulae (of Church’s λ-calculus)
representing ordinals; and he showed that the problem of deciding whether a formula represents an
ordinal (in a plausible sense) is insoluble, in the sense of his earlier paper. A formula L of the
λ-calculus is a logic if it gives a means of establishing the truth of number-theoretic theorems;
formally, if L(A) conv. 2 implies that A(n) conv. 2 for each n representing a natural number. The
extent of L is the set of A’s such that L(A) conv. 2, i.e., roughly speaking, the set of A’s for which L
proves A(n) is true for all n. An ordinal logic is now defined to be a formula 3, such that 3(�) is a
logic whenever � represents an ordinal; and 3 is complete if every number-theoretic theorem that is
true, is probable in 3(�) for some �, i.e. if given A such that A(n) conv. 2 for each n representing
a natural number, 3(�,A) conv. 2 for some � (depending on A). It is next shown, by an example,
that formulae �1, �2 may represent the same ordinal, but yet make 3(�1) and 3(�2) different
logics, in the sense that they have different extents. An ordinal logic for which this cannot happen
is invariant. It is only in invariant logics that the ‘depth’ of a theorem can be measured by the size
of the ordinal required for its proof. The main theorems of the paper state (1) that complete ordinal
logics and invariant ordinal logics exist, (2) that no complete and invariant ordinal logic exists.

This paper is full of interesting suggestions and ideas. In §4 Turing considers, as a system with
the minimal departure from constructiveness, one in which number-theoretic problems of some
class are arbitrarily assumed to be soluble: as he puts it, ‘Let us suppose that we are supplied with
some unspecified means of solving number-theoretic problems; a kind of oracle, as it were.’ The
availability of the oracle is the ‘infinite’ ingredient necessary to escape the Gödel principle. It also
obviously resembles the stages in the construction of a proof by a mathematician where he ‘has
an idea’, as distinct from making mechanical use of a method. The discussion of this and related
matters in §11 (‘The purpose of ordinal logics’) throws much light on Turing’s views on the place
of intuition in mathematical proof. In the final rather difficult §12 the idea adumbrated by Hilbert in
1922 of recursive definitions of order-types other than ω received its first detailed exposition.
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Besides these two pioneering works, and the papers (1937b, c), arising directly out of
them, Turing published four papers of predominantly logical interest. (A) The paper (1942a), with
M. H. A. Newman, on a formal question in Church’s theory of types. (B) A ‘practical form of
type-theory’ (1948b) is intended to give Russell’s theory of types a form that could be used in ordi-
nary mathematics. Since the more flexible Zermelo-von Neumann set-theory has been generally
preferred to type-theory by mathematicians, this paper has received little attention. It contains a
number of interesting ideas, in particular a definition of ‘equivalence’ between logical systems (p.
89). (C) The use of dots as brackets (1942b), an elaborate discussion of punctuation in symbolic
logic. Finally, (D) contains the proof (1950a) of the insolubility of the word-problem for semi-
groups with cancellation. A finitely generated semi-group without cancellation is determined by
choosing a finite set of pairs of words, (Ai, Bi)(i= 11 . . .k) of some alphabet, and declaring two
words to be ‘equivalent’ if they can be proved so by the use of the equations PAiQ= PBiQ, where
P and Q can be arbitrary words (possibly empty). The word-problem for such a semi-group is to
find a process which will decide whether or not two given words are equivalent. The insolubility
of this problem can be brought into relation with the fundamental insoluble machine-tape prob-
lem. The table of a computing machine states, for each configuration, what is the configuration that
follows it. Since a configuration can be denoted by a ‘word’, in letters representing the internal con-
figurations and tape-symbols, this table gives a set of pairs words which, when suitably modified,
determine a semi-group with insoluble word problem. So much was proved by E. L. Post in 1947.
The question becomes much more difficult if the semi-group is required to satisfy the cancellation
laws, ‘AC = BC implies A= B’ and ‘CA= CB implies A= B’ since now a condition is imposed on
account of its mathematical interest, and not because it arises naturally from the machine interpre-
tation. This was the step taken by Turing in (1950a). (For a helpful discussion and analysis of this
difficult paper see the long review by W. W. Boone, J. Symbolic Logic, 17 (1952) 74.)

2. Three mathematical papers

Shortly before the war Turing made his only contributions to mathematics proper.
The paper 1938a contains an interesting theorem on the approximation of Lie groups by finite

groups: if a (connected) Lie group, L, can for arbitrary ε > 0 be ε-approximated by a finite group
whose multiplication law is an ε-approximation to that of L, in the sense that the two products of
any two elements are within ε of each other, then L must be both compact and abelian. The theory
of representations of topological groups is used to apply Jordan’s theorem on the abelian invariant
subgroups of finite groups of linear transformations.

Paper (1938b) lies in the domain of classical group theory. Results of R. Baer on the extensions
of a group are re-proved by a more unified and simpler method.

Paper (1943)—submitted in 1939, but delayed four years by war-time difficulties—shows that
Turing’s interest in practical computing goes back at least to this time. A method is given for the
calculation of the Riemann zeta-function, suitable for values of t in a range not well covered by the
previous work of Siegel and Titchmarsh. The paper is a straightforward but highly skilled piece of
classical analysis. (The post-war paper (1953a) describes an attempt to apply a modified form of
this process, which failed owing to machine trouble.)

3. Computing machines

Apart from the practical ‘programmer’s handbook’, only two published papers (1948a and 1950b)
resulted from Turing’s work on machines. When binary fractions of fixed length are used (as they
must be on a computing machine) for calculations involving a very large number of multiplications
and divisions, the necessary rounding-off of exact products introduces cumulative errors, which
gradually consume the trustworthy digits as the computation proceeds. The paper (1948a) investi-
gates questions of the following type: how many figures of the answer are trustworthy if k figures
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are retained in solving n linear equations in n unknowns? The answer depends on the method of
solution, and a number of different ones are considered. In particular it is shown that the ordinary
method of successive elimination of the variables does not lead to the very large errors that had been
predicted, save in exceptional cases which can be specified.

The other paper (1950b) arising out of his interest in computing machines is of a very different
nature. This paper, on computing machines and intelligence, contains Turing’s views on some ques-
tions about which he had thought a great deal. Here he elaborates his notion of an ‘examination’ to
test machines against men, and he examines systematically a series of arguments commonly put for-
ward against the view that machines might be said to think. Since the paper is easily accessible and
highly readable, it would be pointless to summarize it. The conversational style allows the natural
clarity of Turing’s thought to prevail, and the paper is a masterpiece of clear and vivid exposition.

The proposals (1953b) for making a computing machine play chess are amusing, and did in fact
produce a defence lasting 30 moves when the method was tried against a weak player; but it is
possible that Turing underestimated the gap that separates combinatory from position play.

4. Chemical theory of morphogenesis

For the following account of Turing’s final work I am indebted to Dr N. E. Hoskin, who with
Dr B. Richards is preparing an edition of the material for publication.

The work falls into two parts. In the first part, published (1952) in his lifetime, he set out to
show that the phenomena of morphogenesis (growth and form of living things) could be explained
by consideration of a system of chemical substances whose concentrations varied only by means
of chemical reactions, and by diffusion through the containing medium. If these substances are
considered as form-producers (or ‘morphogens’ as Turing called them) they may be adequate
to determine the formation and growth of an organism, if they result in localized accumulations
of form-producing substances. According to Turing the laws of physical chemistry are sufficient
to account for many of the facts of morphogenesis (a view similar to that expressed by D’Arcy
Thompson in Growth and form).

Turing arrived at differential equations of the form

∂Xi

∂t
= fi(X1 . . . ,Xn)+µ∇

2Xi, (i= 1, . . . ,n)

for n different morphogens in continuous tissue; where fi is the reaction function giving the rate of
growth of Xi, and ∇2Xi is the rate of diffusion of Xi. He also considered the corresponding equations
for a set of discrete ceils. The function fi involves the concentrations, and in his 1952 paper Turing
considered the Xi’s as variations from a homogeneous equilibrium. If, then, there are only small
departures from equilibrium, it is permissible to linearize the fi’s, and so linearize the differential
equations. In this way he was able to arrive at the conditions governing the onset of instability.
Assuming initially a state of homogeneous equilibrium disturbed by random disturbances at t = 0,
he discussed the various forms instability could take, on a continuous ring of tissue. Of the forms
discussed the most important was that which eventually reached a pattern of stationary waves. The
botanical situation corresponding to this would be an accumulation of the relevant morphogen in
several evenly distributed regions around the ring, and would result in the main growth taking
place at these points. (The examples cited are the tentacles Hydra and whorled leaves.) He also
tested the theory by obtaining numerical solutions of the equations, using the electronic computer
at Manchester. In the numerical example, in which two morphogens were supposed to be present in
a ring of twenty cells, he found that a three or four lobed pattern would result. In other examples
he found two-dimensional patterns, suggestive of dappling; and a system on a sphere gave results
indicative of gastrulation. He also suggested that stationary waves in two dimensions could account
for the phenomena of phyllotaxis.

In his later work (as yet unpublished) he considered quadratic terms in the reaction functions
in order to take account of larger departures from the state of homogeneous equilibrium. He was
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attempting to solve the equations in two dimensions on the computer at the time of his death. The
work is in existence, but unfortunately is in a form that makes it extremely difficult to discover
the results he obtained. However, B. Richards, using the same equations, investigated the problem
in the case where the organism forms a spherical shell and also obtained numerical results on the
computer. These were compared with the structure of Radiolaria, which have spikes on a basic
spherical shell, and the agreement was strikingly good. The rest of this part of Turing’s work is
incomplete, and little else can be obtained from it. However, from Richards’s results it seems that
consideration of quadratic terms is sufficient to determine practical solutions, whereas linear terms
are really only sufficient to discuss the onset of instability.

The second part of the work is a mathematical discussion of the geometry of phyllotaxis (i.e.
of mature botanical structures). Turing discussed many ways of classifying phyllotaxis patterns and
suggested various parameters by which a phyllotactic lattice may be described. In particular, he
showed that if a phyllotactic system is Fibonacci in character, it will change, if at all, to a system
which has also Fibonacci character. This is in accordance with observation. However, most of this
section was intended merely as a description preparatory to his morphogenetic theory, to account
for the facts of phyllotaxis; and it is clear that Turing did not intend it to stand alone.

The wide range of Turing’s work and interests have made the writer of this notice more than
ordinarily dependent on the help of others. Among many who have given valuable information I
wish to thank particularly Mr R. Gandy, Mr J. H. Wilkinson, Dr B. Richards and Dr N. E. Hoskin;
and Mrs Turing, Alan Turing’s mother, for constant help with biographical material.
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– A Correction
(ibid. vol. 43 (1937), pp. 544–546)

Christos Papadimitriou on —

ALAN AND I

During my sad college years, I often dreamed of Alan. At the time I did not know it was Alan
Turing that I was dreaming of, but it was. I was studying a subject that did not excite me (electrical
engineering), in the inflexible educational system of an oppressive society (Greece of the colonels).
I had no access to a proper scientific library. My life as a fledgling scientist was one of frustration,
blind longing, and episodes of false epiphany. A few subjects (systems theory, communication the-
ory), even though they were taught at school in the most mundane way, enabled one to imagine a
courageous intellectual universe in which questions of the most fundamental nature are confronted
rigorously and head on, and I was aching to enter that universe.

I don’t remember when, in which outdated textbook, handed to me by whom, I got my first
glimpse of the Turing machine. I did not get it all at once, but I knew immediately that this abstract
device is an important exemplar of the higher sphere I had been dreaming. I looked up in the
dictionary the verb ‘to ture’ (I really did). I sought more information, every book I opened those
days I opened it on the index page where ‘Turing machine’ should be.

Eventually I did put it all together, how a British mathematician named Alan Turing answered
through his machine the world’s most fundamental question, ‘what can be computed?’ and did so
with amazing rigor, elegance, imagination and economy. But those days I was thinking of the Turing
machine as a singular breakthrough, the end of a story, something of the past. Two years later, in
1973 – after a year in the Greek army that was even bleaker than my tertiary studies – I was fortunate
to find myself at Princeton (Turing’s Princeton, by the way, where I lived for a year in room 2B of
the Graduate College rumored to be Alan’s room 35 years before). At Princeton I was introduced
to the Theory of Computation, the rich and vibrant scientific tradition essentially built on Turing’s
formalism. I remember how grateful I felt that my prayers had been answered, so to speak, and I was
finally entering the realm of my dreams, far more elegant and exciting than I could ever imagine.
And 5 years later, whilst teaching at Harvard with my friend Harry Lewis, we wrote a textbook on
the subject.

But even though my life now revolved around his intellectual heritage, the truth is, I did not
know Alan. I understood next to nothing about the man’s life, personality, and breadth of achieve-
ment. In 1983, 2 years after our textbook was published, I read one of the books that have influenced
me most: Turing’s powerful and definitive biography by Andrew Hodges. Alan became my hero,
a giant and relentless intellect, a fascinating and complex personality, a man of immense accom-
plishment, impact, and tragedy. When, more than a decade later, the second edition of our textbook
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was published, Harry and I decided that we must have Alan Turing’s image on the cover. Since
the mid-1980s, every time I teach about Turing machines and undecidability, I stop to tell the class
about Alan, about his ingenious work and about his tragic end. Once in a while I teach a course at
Berkeley on ‘Reading the Classics’, and in it we spend a month on Turing, because I believe that
every graduate student should be exposed directly to the exacting self-conscious greatness of Alan’s
opus.

There is a scene in Gibson’s Neuromancer, at the very end of Part Three, where the hero returns
to his hotel room to find it full of cops. ‘Turing’, they tell him. ‘You are under arrest’. They mean
‘Turing police’, a fictional force bent on rooting out AI from the planet, but it does not matter, for
me this line, read literally, contained the germ of an idea: What if Alan Turing were alive and turned
up some place, unbidden? This strange fantasy lived inside me for a few years.

Turing is not my only intellectual hero. In poetry, my hero is Constantine Cavafy, a Greek
from Alexandria who died when Alan Turing was 21. He wrote some of the greatest poems of the
twentieth century, a stunning opus sharply divided between subtle historical metaphor and rather
unsubtle eroticism. (I do not know why both my heroes happen to be homosexuals.) In 1997 I was
in Greece, and I went to see a film titled Cavafy. I liked it so-so, but I remember coming out of the
theatre impressed by the director’s gesture: to honor one’s hero by creating a work of art bearing his
name. And then, right there in the theatre lobby, I had a vision: there was a blue paperback hovering
above, and the title in front read Turing (A Novel).

Writing a novel had never occurred to me before. I had never written short stories or poetry. I
had of course noticed over the years that writing was not my weakest point, and neither was it for
me the hated chore that comes after research, as it was for many of my colleagues. That night I
thought about a plot.

This was 1997, when it was slowly becoming apparent to many computer scientists that the true
object of our science is not the computer, but the Internet (by which I mean both the network of
networks and the World Wide Web). In a sense, the Internet is the ultimate legacy of Alan Turing.
The reason it spread like wildfire ever since a physicist named Tim Burners-Lee invented ‘click’
in 1989 is because there were millions of computers on the desks of people at that time, and these
computers were all universal and so, in addition to everything else, they could be easily made to
click. But universality was a minority opinion among computer dreamers during the 1930s and
1940s. By making his universal machine so compelling, Turing influenced deeply von Neumann
and the way computers turned out to be. Universality and software would have probably taken root
at some point in computers no matter what, but we can only speculate about the setbacks and delays
this would have required without Turing.

But why did Turing envision universality? The reason is, he did not set out just to answer the
question ‘What can (and what cannot) be computed?’ per se, as I inaccurately mentioned above.
If he had only wanted to establish the existence of unsolvable problems, Turing could just use
diagonalisation or growth, and the universal Turing machine might never come to light. Fortunately,
he wanted to do something more ambitious and specific – and central to the scientific agenda of the
time – he wanted to show that the Entscheidungsproblem (the decision problem for sentences not of
arithmetic, but even of first-order logic) cannot be solved by computers. In other words, his goal was
to sharpen Gödel’s negative result, to extinguish the last glimmer of hope left by the Incompleteness
Theorem. And to accomplish this he needed the universal Turing machine.

The night after I saw that movie, all this was in my mind. If, through this long chain of logic,
the Internet is Alan’s ultimate creation, why would not the Internet return the favor, and bring its
creator back to life? The thought did not let me sleep. The Internet does confer a lame kind of
immortality (just search for ‘Alan Turing’ on the web). Imagining a more explicit form, an Inter-
net spirit residing somewhere and everywhere, a kind of impromptu, hacked-up SETI, was only a
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modest step forward. And if I were to bring my hero back to life, why wouldn’t I load him with
gifts of gratitude, especially focusing on things he missed in life? I could give him, for example, a
happy love life – after all obstacles are overcome, of course – make him a gifted teacher, give him
a faithful pupil who would be a Greek man my age, yes, an archeologist perhaps, pining for a lost
love, for an American woman, a software wiz maybe, why not? When I was a child, I happened
to visit the island of Corfu with my father during the same summer Alan Turing was there. As the
night advanced, the plot thickened. In the morning I recounted the story to my wife Martha, as I
always do when I want to rid myself of an idea – because she can be a pitiless critic – but she went
extra soft on it, she actually liked it. Two days later I was flying to California, and during that flight
I drafted the first chapter – taking place, as it happens, in an airplane. For the next two and a half
years I wrote every day, usually the first hours of my day, until the book was finished.

This book was a watershed. Whilst writing it, I understood things about myself that surprised
me utterly. One of them was, I would be writing fiction again. Once more, Alan Turing had changed
my life.

Alan inspires my papers and my stories, he fires my talks and my courses, inhabits my memories
and my dreams. And because he’s so intimate, impossible to examine anew and from a distance in
order to discern something fresh, I could only speak here of this intimacy.
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ON COMPUTABLE NUMBERS, WITH AN
APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING

[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable” numbers may be described briefly as the real numbers whose expressions
as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the
computable numbers, it is almost equally easy to define and investigate computable functions of an
integral variable or a real or computable variable, computable predicates, and so forth. The funda-
mental problems involved are, however, the same in each case, and I have chosen the computable
numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an
account of the relations of the computable numbers, functions, and so forth to one another. This will
include a development of the theory of functions of a real variable expressed in terms of computable
numbers. According to my definition, a number is computable if its decimal can be written down
by a machine.

In §§9,10 I give some arguments with the intention of showing that the computable numbers
include all numbers which could naturally be regarded as computable. In particular, I show that
certain large classes of numbers are computable. They include, for instance, the real parts of all
algebraic numbers, the real parts of the zeros of the Bessel functions, the numbers π , e, etc. The
computable numbers do not, however, include all definable numbers, and an example is given of a
definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to the class
of real numbers, it is nevertheless enumerable. In §8 I examine certain arguments which would
seem to prove the contrary. By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gödel1. These results have valuable applications.
In particular, it is shown (§11) that the Hilbertian Entseheidungsproblem can have no solution.

In a recent paper Alonzo Church2 has introduced an idea of “effective calculability”, which
is equivalent to my “computability”, but is very differently defined. Church also reaches similar
conclusions about the Entseheidungsproblem3. The proof of equivalence between “computability”
and “effective calculability” is outlined in an appendix to the present paper.

1. Computing machines

We have said that the computable numbers are those whose decimals are calculable by finite means.
This requires rather more explicit definition. No real attempt will be made to justify the definitions
given until we reach §9. For the present I shall only say that the justification lies in the fact that the
human memory is necessarily limited.

1 Gödel, “Über formal unentscheidbaro Sätze der Principia Mathematica und ver-wandter Systeme, I”, Monatshefte
Math. Phys., 38 (1931), 173–198.
2 Alonzo Church “An unsolvable problem of elementary number theory”, American J. of Math., 58 (1936), 345–363.
3 Alonzo Church “A note on the Entseheidungsproblem”, J. of Symbolic Logic, 1 (1936), 40–41.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 17 #5

On Computable Numbers, with an Application to the Entscheidungsproblem 17

We may compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions q1, q2, . . . , qR, which will be called “m-configurations”.
The machine is supplied with a “tape” (the analogue of paper) running through it, and divided into
sections (called “squares”) each capable of bearing a “symbol”. At any moment there is just one
square, say the r-th, bearing the symbol S(r) which is “in the machine”. We may call this square
the “scanned square”. The symbol on the scanned square may be called the “scanned symbol”. The
“scanned symbol” is the only one of which the machine is, so to speak, “directly aware”. However,
by altering its m-configuration the machine can effectively remember some of the symbols which
it has “seen” (scanned) previously. The possible behaviour of the machine at any moment is deter-
mined by the m-configuration qn and the scanned symbol S(r). This pair qn, S(r) will be called the
“configuration”: thus the configuration determines the possible behaviour of the machine. In some
of the configurations in which the scanned square is blank (i.e. bears no symbol) the machine writes
down a new symbol on the scanned square: in other configurations it erases the scanned symbol.
The machine may also change the square which is being scanned, but only by shifting it one place
to right or left. In addition to any of these operations the m-configuration may be changed. Some of
the symbols written down will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to “assist the memory”. It will only be
these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in the computation of
a number. The defence of this contention will be easier when the theory of the machines is familiar
to the reader. In the next section I therefore proceed with the development of the theory and assume
that it is understood what is meant by “machine”, “tape”, scanned”, etc.

2. Definitions

Automatic machines

If at each stage the motion of a machine (in the sense of §1) is completely determined by the
configuration, we shall call the machine an “automatic machine” (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion is
only partially determined by the configuration (hence the use of the word “possible” in §1). When
such a machine reaches one of these ambiguous configurations, it cannot go on until some arbitrary
choice has been made by an external operator. This would be the case if we were using machines to
deal with axiomatic systems. In this paper I deal only with automatic machines, and will therefore
often omit the prefix a-.

Computing machines

If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists entirely
of 0 and 1 (the others being called symbols of the second kind), then the machine will be called a
computing machine. If the machine is supplied with a blank tape and set in motion, starting from
the correct initial m-configuration, the subsequence of the symbols printed by it which are of the
first kind will be called the sequence computed by the machine. The real number whose expression
as a binary decimal is obtained by prefacing this sequence by a decimal point is called the number
computed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the complete
sequence of all symbols on the tape, and the m-configuration will be said to describe the complete
configuration at that stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.
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Circular and circle-free machines

If a computing machine never writes down more than a finite number of symbols of the first kind, it
will be called circular. Otherwise it is said to be circle-free.

A machine will be circular if it reaches a configuration from which there is no possible move, or
if it goes on moving, and possibly printing symbols of the second kind, but cannot print any more
symbols of the first kind. The significance of the term “circular” will be explained in §8.

Computable sequences and numbers

A sequence is said to be computable if it can be computed by a circle-free machine. A number is
computable if it differs by an integer from the number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable sequences than of computable
numbers.

3. Examples of computing machines

I. A machine can be constructed to compute the sequence 010101. . . The machine is to have the
four m-configurations “b”, “c”, “k” “e”, and is capable of printing “0” and “1”. The behaviour of the
machine is described in the following table in which “R” means “the machine moves so that it scans
the square immediately on the right of the one it was scanning previously”. Similarly for “L”. “E”
means “the scanned symbol is erased” and “P” stands for “prints”. This table (and all succeeding
tables of the same kind) is to be understood to mean that for a configuration described in the first
two columns the operations in the third column are carried out successively, and the machine then
goes over into the m-configuration described in the last column. When the second column is left
blank, it is understood that the behaviour of the third and fourth columns applies for any symbol
and for no symbol. The machine starts in the m-configuration b with a blank tape.

Configuration Behaviour

m-config. symbol operations final m-config.
b None P0,R c

c None R e

e None P1,R k

k None R b

If (contrary to the description in §1) we allow the letters L, R to appear more than once in the
operations column we can simplify the table considerably.

m-config. symbol operations final m-config.
None
0
1

P0 b

b R,R,P1 b

R,R,P0 b

II. As a slightly more difficult example we can construct a machine to compute the sequence
001011011101111011111. . . . The machine is to be capable of five m-configurations, viz. “o”, “q”,
“p”, “f” “b” and of printing “@”, “x”, “0” “1”. The first three symbols on the tape will be “@@0”; the
other figures follow on alternate squares. On the intermediate squares we never print anything but



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 19 #7

On Computable Numbers, with an Application to the Entscheidungsproblem 19

“x”. These letters serve to “keep the place” for us and are erased when we have finished with them.
We also arrange that in the sequence of figures on alternate squares there shall be no blanks.

Configuration Behaviour

m-config. symbol operations final
m-config.

b P@,R,P@,R,P0,R,R,P0,L,L o

o

{
1
0

R,Px,L,L,L o

q

q

{
Any (0 or 1)
None

R,R q

P1,L p

p


x

@

None

E,R q

R f

L,L p

f

{
Any
None

R,R f

P0,L,L o

To illustrate the working of this machine a table is given below of the first few complete con-
figurations. These complete configurations are described by writing down the sequence of symbols
which are on the tape, with the m-configuration written below the scanned symbol. The successive
complete configurations are separated by colons.

: @ @ 0 0 : @ @ 0 0 : @ @ 0 0 : @ @ 0 0 : @ @ 0 0 1 :

b 0 q q q p

@ @ 0 0 1 : @ @ 0 0 1 : @ @ 0 0 1 : @ @ 0 0 1 :

p p f f

@ @ 0 0 1 : @ @ 0 0 1 : @ @ 0 0 1 0 :

f f o

@ @ 0 0 1 x 0 : . . .

o

This table could also be written in the form

b : @ @ v 0 0 : @ @ q 0 0 : . . . , (C)

in which a space has been made on the left of the scanned symbol and the m-configuration written in
this space. This form is less easy to follow, but we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very useful: I shall always
make use of it. 1 shall call the one sequence of alternate squares F-squares and the other sequence
E-squares. The symbols on E-squares will be liable to erasure. The symbols on F-squares form a
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continuous sequence. There are no blanks until the end is reached. There is no need to have more
than one E-square between each pair of F-squares: an apparent need of more E-squares can be
satisfied by having a sufficiently rich variety of symbols capable of being printed on E-squares. If a
symbol β is on an F-square S and a symbol a is on the E-square next on the right of S, then S and β
will be said to be marked with α. The process of printing this a will be called marking β (or S) with
a.

4. Abbreviated tables

There are certain types of process used by nearly all machines, and these, in some machines, are
used in many connections. These processes include copying down sequences of symbols, compar-
ing sequences, erasing all symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use of “skeleton tables”. In
skeleton tables there appear capital German letters and small Greek letters. These are of the nature
of “variables”. By replacing each capital German letter throughout by an m-configuration and each
small Greek letter by a symbol, we obtain the table for an m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations: they are not essential. So
long as the reader understands how to obtain the complete tables from the skeleton tables, there is
no need to give any exact definitions in this connection.

Let us consider an example:

m-config. Symbol Behaviour Final m-config.

f(C,B,α)

@ L

not @ L

f1(C,B,α) From the m-configuration
f(C,B,α) the machine
finds the symbol of form
a which is farthest to the
left (the “first α”) and
the m-configuration then
becomes C. If there is no
α then the m-configuration
becomes B.

f(C,B,α)

f1(C,B,α)



α

not α R

None R

C

f1(C,B,α)

f2(C,B,α)

f2(C,B,α)



α

not α R

None R

C

f1(C,B,α)

B

If we were to replace C throughout by q (say), B by r, and a by x, we should have a complete
table for the m-configuration f(q,r, x). f is called an “m-configuration function” or “m-function”.

The only expressions which are admissible for substitution in an m-function are the m-
configurations and symbols of the machine. These have to be enumerated more less explicitly :
they may include expressions such as p(e, x); indeed they must if there are any m-functions used
at all. If we did not insist on this explicit enumeration, but simply stated that the machine had
certain m-configurations (enumerated) and all m-configurations obtainable by substitution of m-
configurations in certain m-functions, we should usually get an infinity of m-configurations; e.g., we
might say that the machine was to have the m-configuration q and all m-configurations obtainable
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by substituting an m-configuration for E in p(E). Then it would have q,p(q), p(p(q)), p(p(p(q))), . . .
as m-configurations.

Our interpretation rule then is this. We are given the names of the m-configurations of the
machine, mostly expressed in terms of m-functions. We are also given skeleton tables. All we want is
the complete table for the m-configurations of the machine. This is obtained by repeated substitution
in the skeleton tables.

Further examples

(In the explanations the symbol “→” is used to signify “the machine goes into the m-
configuration. . ..”)

e(C,B,α) f(e1(C,B,α)B,α) From e(C,B, α) the first α is erased

c1(C,B,α) E C and →B. If there is no α→B.

c(B,α) c(c(B,α),B,α) From e(B,α) all letters α are erased
and →B.

The last example seems somewhat more difficult to interpret than most. Let us suppose that in
the list of m-configurations of some machine there appears e(b,x) (= q, say). The table is

c(b,x) e(c(b,x),b,x)

or q c(q,b,x).

Or, in greater detail:

q c(q,b,x)
e(q,b,x) f(e1(q,b,x),b,x)
e1(q,b,x) E q.

In this we could replace e1(q,b,x) by q′ and then give the table for f (with the right substitutions)
and eventually reach a table in which no m-functions appeared.

pc(C,β) f(pc1(C,β),C,@) From pe(C,β) the machine

pe1(C,β)

{
Any R,R
None Pβ

pc1(C,β)
C

prints β at the end of the
sequence of symbols and → C.

l(C) L C From f′(C,B,α) it does the same
r(C) R C as for f(C,B,α) but moves to

the left before → C.

f′(C,B,α) f(l(C),B,α)
f′′(C,B,α) f(r(C),B,α)

c(C,B,α) f′(c1(C),B,α) c(C,B,α). The machine writes
c1(C) β pe(C,B) at the end the first symbol

marked α and → C.
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The last line stands for the totality of lines obtainable from it by replacing β by any symbol
which may occur on the tape of the machine concerned.

ce(C,B,α) c(e(C,B,α),B,α) ce(B,α). The machine copies down in
order at the end all symbols marked α
and erases the letters α;→B.

ce(B,α) ce(ce(B,α),B,α)

re(C,B,α,β) f1(re1(C,B,α,β)B,α) re(C,B,α,β). The machine replaces the
first α by β and→ C→B if there is no
α. re(B,α,β). The machine replaces all
letters α by β;→B

re1(C,B,α,β) E,Pβ C

re(B,α,β) re(re(B,α,β),B,α,β)

cr(C,B,α) c(re(C,B,α,α),B,α) cr(B,α) differs from ce(B,α) only in
that the letters a are not erased. The m-
configuration cr(C,α) is taken up when
no letters “α” are on the tape.

cr(B,α) cr(cr(B,α),re(B,α,α),α)

cp(C,A,E,α,β) f′(cp1(C1,A,β), f(A,E,β),α)

cp1(C,A,β) γ f′(cp2(C,A,γ ),A,α)

cp2(C,A,γ )

{
γ

not γ
C

A.

The first symbol marked α and the first marked β are compared. If there is neither α nor β,→ E.
If there are both and the symbols are alike,→ C. Otherwise→ A.

cpe(C,A,E,α,β) cp(e(e(C,C,β),C,α),A,E,α,β)

cpe(C,A,E,α,β) differs from cp(C,A,E,α,β) in that in the case when there is similarity the first α
and β are erased.

cpe(A,E,α,β) cpe(cpe(A,E,α,β),A,E,α,β).

cpe(A,E,α,β). The sequence of symbols marked α is compared with the sequence marked β.→ E
if they are similar. Otherwise→ A. Some of the symbols α and β are erased.

q(C)

Any R

None R

q(C) q(C,α). The machine
finds the last symbol
of form α.→ C.q1(C)

q1(C)

Any R

None

q(C)

C

q(C,α) q(q(C,α)

q1(C,α)

αnot α L

C

q1(C,α)

pe2(C,α,β) pe(pe(C,β),α) pe2(C,α,β). The
machine prints αβ at
the end
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ce2(B,α,β) ce(cc(B,β),α) ce3(B,α,β,γ ). The
machine copies down at
the end first the symbols
marked α, then those
marked β, and finally
those marked γ ; it erases
the symbols α, β, γ .

ce3(B,α,β,γ ) ce(cc2(B,β,γ ),α)

e(C)

@ R

Not @ L

c1(C) From c(C) the marks are
erased form all marked
symbols→ C.c(C)

e1(C)

Any R,E,R

None

e1(C)

C

5. Enumeration of computable sequences

A computable sequence γ is determined by a description of a machine which computes γ . Thus
the sequence 001011011101111. . . is determined by the table on p. 19, and, in fact, any computable
sequence is capable of being described in terms of such a table.

It will be useful to put these tables into a kind of standard form. In the first place let us suppose
that the table is given in the same form as the first table, for example, I on p. 18. That is to say,
that the entry in the operations column is always of one of the forms E : E, R : E, L : Pα;Pα, R :
Pα, L : R : L: or no entry at all. The table can always be put into this form by introducing more
m-configurations. Now let us give numbers to the m-configurations, calling them q1, . . . , qR, as
in §1. The initial m-configuration is always to be called q1. We also give numbers to the symbols
S1, . . . , Sm and, in particular, blank = S0,0= S1,1= S2. The lines of the table are now of form

m-config. Symbol Operations Final m-config.
qi Sj PSk, L qm (N1)

qi Sj PSk, R qm (N2)

qi Sj PSk qm (N3)

Lines such as

qi Si E,R qm

are to be written as

qi Sj PS0, R qm

and lines such as

qi Sj R qm

to be written as

qi Sj PSj, R qm

In this way we reduce each line of the table to a line of one of the forms (N1), (N2) (N3).
From each line of form (N1) let us form an expression qiSjSkLqm; from each line of form (N2)we

form an expression qiSjSkRqm; and from each line of form (N3) we form an expression qiSjSkNqm.
Let us write down all expressions so formed from the table for the machine and separate them

by semi-colons. In this way we obtain a complete description of the machine. In this description
we shall replace qi by the letter “D” followed by the letter “A” repeated i times, and Sj by “D3”
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followed by “C” repeated j times. This new description of the machine may be called the standard
description (S.D). It is made up entirely from the letters “A”, “C”, “D” “L”, “R”, “N”, and from “;”.

If finally we replace “A” by “1”, “C” by “2”, “D” by “3” “L” by “4”, R by “5” “N” by “6”, and
“;” by “7” we shall have a description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be called a description number (D.N) of the machine. The D.N
determine the S.D and the structure of the machine uniquely, The machine whose D.N is n may be
described as M(n).

To each computable sequence there corresponds at least one description number, while to no
description number does there correspond more than one computable sequence. The computable
sequences and numbers are therefore enumerable.

Let us find a description number for the machine I of §3. When we rename the m-configurations
its table becomes:

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1

Other tables could be obtained by adding irrelevant lines such as

q1 S1 PS1, R q2

Our first standard form would be

q1S0S1Rq2; q2S0S0Rq3; q3S0S2Rq4; q4S0S0Rq1; .

The standard description is

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

A description number is

31332531173113353111731113322531111731111335317

and so is

3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be called a satisfactory
number. In §8 it is shown that there can be no general process for determining whether a given
number is satisfactory or not.

6. The universal computing machine

It is possible to invent a single machine which can be used to compute any computable sequence.
If this machine U is supplied with a tape on the beginning of which is written the S.D of some
computing machine M, then U will compute the same sequence as M. In this section I explain in
outline the behaviour of the machine. The next section is devoted to giving the complete table for U.

Let us first suppose that we have a machine M′ which will write down on the F-squares the
successive complete configurations of M. These might be expressed in the same form as on p. 19
using the second description, (C), with all symbols on one line. Or, better, we could transform
this description (as in §5) by replacing each m-configuration by “D” followed by “A” repeated the
appropriate number of times, and by replacing each symbol by “D” followed by “C” repeated the
appropriate number of times. The numbers of letters “A” and “C” are to agree with the numbers
chosen in §5, so that, in particular, “0” is replaced by “DC”, “1” by DCC”, and the blanks by “D”.
These substitutions are to be made after the complete configurations have been put together, as in
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(C). Difficulties arise if we do the substitution first. In each complete configuration the blanks would
all have to be replaced by “D”, so that the complete configuration would not be expressed as a finite
sequence of symbols.

If in the description of the machine II of §3 we replace “o” by “DAA”, “@” by “DCCC”, “q” by
“DAAA”, then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : . . . (C1)

(This is the sequence of symbols on F-squares.)
It is not difficult to see that if M can be constructed, then so can M′. The manner of operation

of M′ could be made to depend on having the rules of operation (i.e., the S.D) of M. written
somewhere within itself (i.e. within M′); each step could be carried out by referring to these rules.
We have only to regard the rules as being capable of being taken out and exchanged for others and
we have something very akin to the universal machine.

One thing is lacking: at present the machine M′ prints no figures. We may correct this by print-
ing between each successive pair of complete configurations the figures which appear in the new
configuration but not in the old. Then (C1) becomes

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC . . . . (C2)

It is not altogether obvious that the E-squares leave enough room for the necessary “rough
work”, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as (C1) may be used as standard
descriptions of the complete configurations. When the letters are replaced by figures, as in §5, we
shall have a numerical description of the complete configuration, which may be called its description
number.

7. Detailed description of the universal machine

A table is given below of the behaviour of this universal machine. The m-configurations of which
the machine is capable are all those occurring in the first and last columns of the table, together with
all those which occur when we write out the unabbreviated tables of those which appear in the table
in the form of m-functions. E.g., e(anf) appears in the table and is an m-function. Its unabbreviated
table is (see p. 22)

e(anf)

{
@ R e1(anf)

not @ L e(anf)

e1(anf)

{
Any R,E,R e1(anf)

None (anf)

Consequently e1(anf) is an m-configuration of U.
When U is ready to start work the tape running through it bears on it the symbol a on an F-

square and again a on the next E-square; after this, on F-squares only, comes the S.D of the machine
followed by a double colon “::” (a single symbol, on an F-square). The S.D consists of a number of
instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) “D” followed by a sequence of letters “A”. This describes the relevant m-configuration.
(ii) “D” followed by a sequence of letters “C”. This describes the scanned symbol.

(iii) “D” followed by another sequence of letters “C”. This describes the symbol into which the
scanned symbol is to be changed.

(iv) “L”, “R”, or “N”, describing whether the machine is to move to left, right, or not at all.
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(v) “D” followed by a sequence of letters “A”. This describes the final m-configuration.

The machine U is to be capable of printing “A”, “C”, “D”, “0”, “1”, “u”, “v”, “w”, “x”, “y”, “z”.
The S.D is formed from “;”, “A”, “C”, “D”, “L”, “R”, “N”.

Subsidiary skeleton table

con(C,α)

Not A R,R

A L,Pα ,R

con(C,α)

con(C,α) Starting from an
F-square, S say, the sequence C of
symbols describing a configuration
closest on the right of S is marked
out with letters α.→ C.

con1(C,α)

con1(C,α)

A R,Pα ,R

D R,Pα ,R

con1(C,α)

con2(C,α)

con2(C,α)
C R,Pα ,R

Not C R,R

con2(C,α) con(C,α). In the final
configuration the machine is
scanning the square which is four
squares to the right of the last
square of C. C is left unmarked.

C

The table for U.

b f(b1,b2, ::,α) b. The machine prints: DA on the
F-squares after ::→ anf.

b1 R,R,P :,R,R,
PD,R,R,PA

anf

anf
g(anf1, :)

anf. The machine marks the
configuration in the last complete
configuration with y.→ kom.

anf1 con(kom,y)

kom


; R,Pz,L

z L,L
not z nor; L

con(kmp,x) kom. The machine finds the last
semi-colon not marked with z. It
marks this semi-colon with z and
the configuration following it with
x.

kom

kom

kmp cpe(e(kom,x,y), kmp. The machine compares the
sequences marked x and y. It
erases all letters x and y.→ sim if
they are alike. Otherwise→ kom.

sim,x,y)

anf. Taking the long view, the last instruction relevant to the last configuration is found.
It can be recognised afterwards as the instruction following the last semi-colon marked
z. → sim.
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sim f′(sim1,sim1,z) sim The machine marks out the
instructions. That part of the
instructions which refers to
operations to be carried out is
marked with u, and the final
m-configuration with y. The letters
z are erased.

sim1 con(sim2, )
sim2

A

notA R,Pu,R,R,R

sim3

sim2

sim3

notA L,Py

A L,Py,R,R,R

e(mf,z)
sim3

mf g(mf, :)

mf1
not A R,R

A L,L,L,L

mf1 mf. The last complete
configuration is marked out into
four sections. The configuration is
left unmarked. The symbol
directly preceding it is marked
with x. The remainder of the
complete configuration is divided
into two parts, of which the first is
marked with v and the last with w.
A colon is printed after the whole.
→ sh.

mf2

mf2


C R,Px,L,L,L
:
D R,Px,L,L,L

mf2

mf4

mf3

mf3
{

not : R,Pv,L,L,L
:

mf3

mf4

mf4 con(l(l(mp5)),)

mf5

{
Any R,Pw,R
None P:

mf5

sh

sh f(sh1, inst,u)

sh. The instructions (marked u)
are examined. If it is found that
they involve “Print 0” or “Print 1“,
then 0: or 1: is printed at the end.

sh1 L, L, L sh2

sh2

D R,R,R,R

not D

sh2

inst

sh3

C R,R

not C

sh4

inst

sh4

C R,R

not C

sh5

pe2(inst,0, :)

sh5

C

not C

inst

pe2(inst,1, :)
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inst
g(l(inst1),u)

inst The next complete
configuration is written down,
carrying out the marked
instructions. The letters u, v, w, x, y
are erased.→ anf.

inst1 α R,E inst1(α)

inst1(L) ce5(ov,v,y,x,u,w)

inst1(R) ce5(ov,v,y,x,u,w)

inst1(N) ec5(ov,v,y,x,u,w)

ov e(anf)

8. Application of the diagonal process

It may be thought that arguments which prove that the real numbers are not enumerable would also
prove that the computable numbers and sequences cannot be enumerable4. It might, for instance,
be thought that the limit of a sequence of computable numbers must be computable. This is clearly
only true if the sequence of computable numbers is defined by some rule.

Or we might apply the diagonal process. “If the computable sequences are enumerable, let an be
the n-th computable sequence, and let φn(m) be the m-th figure in an. Let β be the sequence with
1−φn(n) as its n-th figure. Since β is computable, there exists a number K such that 1−φn(n)=
φK(n) all n. Putting n= K, we have 1= 2φk(K), i.e. 1 is even. This is impossible. The computable
sequences are therefore not enumerable ”.

The fallacy in this argument lies in the assumption that β is computable. It would be true if
we could enumerate the computable sequences by finite means, but the problem of enumerating
computable sequences is equivalent to the problem of finding out whether a given number is the
D.N of a circle-free machine, and we have no general process for doing this in a finite number of
steps. In fact, by applying the diagonal process argument correctly, we can show that there cannot
be any such general process.

The simplest and most direct proof of this is by showing that, if this general process exists,
then there is a machine which computes β. This proof, although perfectly sound, has the disadvan-
tage that it may leave the reader with a feeling that “there must be something wrong ”. The proof
which I shall give has not this disadvantage, and gives a certain insight into the significance of the
idea“circle-free”. It depends not on constructing β, but on constructing β ′, whose n-th figure is
φn(n).

Let us suppose that there is such a process; that is to say, that we can invent a machine D which,
when supplied with the S.D. of any computing machine M will test this S.D and if M is circular
will mark the S.D with the symbol “u” and if it is circle-free will mark it with “s”. By combining
the machines D and U we could construct a machine H I to compute the sequence β ′. The machine
D, may require a tape. We may suppose that it uses the E-squares beyond all symbols on F-squares,
and that when it has reached its verdict all the rough work done by D is erased.

The machine H has its motion divided into sections. In the first N− 1 sections, among other
things, the integers 1, 2,. . .,N− 1 have been written down and tested by the machine D. A certain
number, say R(N− 1), of them have been found to be the D.N’s of circle-free machines. In the N-th
section the machine D tests the number N. If N is satisfactory, i.e., if it is the D.N of a circle-free
machine, then R(N)= 1+R(N− 1) and the first R(N) figures of the sequence of which a D.N is

4 Cf. Hobson,Theory of functions of a real variable(2nd ed., 1921),87,88.
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N are calculated. The R(N)-th figure of this sequence is written down as one of the figures of the
sequence β ′ computed by H. If N is not satisfactory, then R(N)= R(N− 1) and the machine goes
on to the (N+ 1)-th section of its motion.

From the construction of H we can see that H. is circle-free. Each section of the motion of H
comes to an end after a finite number of steps. For, by our assumption about D the decision as to
whether N is satisfactory is reached in a finite number of steps. If N is not satisfactory, then the
N-th section is finished. If N is satisfactory, this means that the machine M(N) whose D.N is N
is circle-free, and therefore its R(N)-th figure can be calculated in a finite number steps. When this
figure has been calculated and written down as the R(N)-th figure of β ′, the N-th section is finished.
Hence H is circle-free.

Now let K be the D.N of H. What does.1 H do in the K-th section of its motion ? It must test
whether K is satisfactory, giving a verdict “s” or “u”. Since K is the D.N of H and since H is circle-
free, the verdict cannot be “u”. On the other hand the verdict cannot be “s”. For if it were, then in the
K-th section of its motion H, would be bound to compute the first R(K− 1)+ 1= R(K) figures of
the sequence computed by the machine with K as its D.N and to write down the R(K)-th as a figure
of the sequence computed by H. The computation of the first R(K)− 1 figures would be carried out
all right, but the instructions for calculating the R(K)-th would amount to “calculate the first R(K)
figures computed by H and write down the R(K)-th”. This R(K)-th figure would never be found.
I.e., H is circular, contrary both to what we have found in the last paragraph and to the verdict “s”.
Thus both verdicts are impossible and we conclude that there can be no machine D.

We can show further that there can be no machine E which, when supplied with the S.D of an
arbitrary machine M, will determine whether. M ever prints a given symbol (0 say).

We will first show that, if there is a machine E, then there is a general process for determining
whether a given machine. M prints 0 infinitely often. Let M1 be a machine which prints the same
sequence as M, except that in the position where the first 0 printed by M stands, M1 prints 0. M2
is to have the first two symbols 0 replaced by 0 and so on. Thus, if. M. were to print

ABA01AAB0010AB . . . ,

then M1 would print

ABA01AAB0010AB . . .

and. M2 would print

ABA01AAB0010AB . . . .

Now let R be a machine which, when supplied with the S.D of M will write down successively
the S.D ofM, ofM1, ofM2 . . . (there is such a machine). We combineR with E. and obtain a new
machine, }. In the motion of R first R is used to write down the S.D of M, and then E tests it, : 0 :
is written if it is found that. M never prints 0; then R writes the S.D of M1, and this is tested, : 0 :
being printed if and only if M1 never prints 0, and so on. Now let us test } with E. If it is found that
}, never prints 0, then M prints 0 infinitely often; if } prints 0 sometimes, then M does not print 0
infinitely often.

Similarly there is a general process for determining whether M prints 1 infinitely often. By a
combination of these processes we have a process for determining whether M prints an infinity of
figures, i.e. we have a process for determining whether M is circle-free. There can therefore be no
machine E.

The expression “there is a general process for determining . . .” has been used throughout this
section as equivalent to “there is a machine which will determine . . .”. This usage can be justified
if and only if we can justify our definition of “computable”. For each of these “general process”
problems can be expressed as a problem concerning a general process for determining whether a
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given integer n has a property G(n) [e.g.G(n) might mean “n is satisfactory” or “n is the Gödel
representation of a provable formula”], and this is equivalent to computing a number whose n-th
figure is 1 if G(n) is true and 0 if it is false.

9. The extent of the computable numbers

No attempt has yet been made to show that the “computable” numbers include all numbers which
would naturally be regarded as computable. All arguments which can be given are bound to be,
fundamentally, appeals to intuition, and for this reason rather unsatisfactory mathematically. The
real question at issue is “What are the possible processes which can be carried out in computing a
number ?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.
(b) A proof of the equivalence of two definitions (in case the new definition has a greater intuitive

appeal).
(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all “ computable ” several other propositions of
the same character follow. In particular, it follows that, if there is a general process for determining
whether a formula of the Hilbert function calculus is provable, then the determination can be carried
out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of §1.

Computing is normally done by writing certain symbols on paper. We may suppose this paper
is divided into squares like a child’s arithmetic book. In elementary arithmetic the two-dimensional
character of the paper is sometimes used. But such a use is always avoidable, and I think that it will
be agreed that the two-dimensional character of paper is no essential of computation. I assume then
that the computation is carried out on one-dimensional paper, i.e. on a tape divided into squares. I
shall also suppose that the number of symbols which may be printed is finite. If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily small extent5. The effect
of this restriction of the number of symbols is not very serious. It is always possible to use sequences
of symbols in the place of single symbols. Thus an Arabic numeral such as 17 or 999999999999999
is normally treated as a single symbol. Similarly in any European language words are treated as
single symbols (Chinese, however, attempts to have an enumerable infinity of symbols). The dif-
ferences from our point of view between the single and compound symbols. is that the compound
symbols, if they are too lengthy, cannot be observed at one glance. This is in accordance with expe-
rience. We cannot tell at a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the symbols which he is observ-
ing, and his “state of mind” at that moment. We may suppose that there is a bound B to the number
of symbols or squares which the computer can observe at one moment. If he wishes to observe
more, he must use successive observations. We will also suppose that the number of states of mind
which need be taken into account is finite. The reasons for this are of the same character as those
which restrict the number of symbols. If we admitted an infinity of states of mind, some of them
will be “arbitrarily close” and will be confused. Again, the restriction is not one which seriously
affects computation, since the use of more complicated states of mind can be avoided by writing
more symbols on the tape.

5 If we regard a symbol as literally printed on a square we may suppose that the square is 0 6 x 6 1, 0 6 y 6 1. The
symbol is defined as a set of points in this square, viz. the Bet occupied by printer’s ink. If these sets are restricted to be
measurable, we can define the “distance”between two symbols as the cost of transforming one symbol into the other if
the cost of moving unit area of printer’s ink unit distance is unity, and there is an, infinite supply of ink at x= 2:y= 0.
With this topology the symbols form a conditionally compact space.
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Let us imagine the operations performed by the computer to be split up into “simple operations”
which are so elementary that it is not easy to imagine them further divided. Every such operation
consists of some change of the physical system consisting of the computer and his tape. We know the
state of the system if we know the sequence of symbols on the tape, which of these are observed by
the computer (possibly with a special order), and the state of mind of the computer. We may suppose
that in a simple operation not more than one symbol is altered. Any other changes can be split up
into simple changes of this kind. The situation in regard to the squares whose symbols may be
altered in this way is the same as in regard to the observed squares. We may, therefore, without loss
of generality, assume that the squares whose symbols are changed are always “observed” squares.

Besides these changes of symbols, the simple operations must include changes of distribution
of observed squares. The new observed squares must be immediately recognisable by the computer.
I think it is reasonable to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain fixed amount. Let us say
that each of the new observed squares is within L squares of an immediately previously observed
square.

In connection with “immediate recognisability”, it may be thought that there are other kinds of
square which are immediately recognisable. In particular, squares marked by special symbols might
be taken as immediately reognisable. Now if these squares are marked only by single symbols there
can be only a finite number of them, and we should not upset our theory by adjoining these marked
squares to the observed squares. If, on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a fundamental point and should
be illustrated. In most mathematical papers the equations and theorems are numbered. Normally the
numbers do not go beyond (say) 1000. It is, therefore, possible to recognise a theorem at a glance
by its number. But if the paper was very long, we might reach Theorem 157767733443477; then,
further on in the paper, we might find “. . .hence (applying Theorem 157767733443477) we have. . .”.
In order to make sure which was the relevant theorem we should have to compare the two numbers
figure by figure, possibly ticking the figures off in pencil to make sure of their not being counted
twice. If in spite of this it is still thought that there are other “immediately recognisable” squares, it
does not upset my contention so long as these squares can be found by some process of which my
type of machine is capable. This idea is developed in III below.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) CChanges of one of the squares observed to another square

within L squares of one of the previously observed squares.
It may be that some of these changes necessarily involve a change of state of mind. The most

general single operation must therefore be taken to be one of the following:

(A) A possible change (a) of symbol together with a possible change of state of mind.
(B) A possible change (b) of observed squares, together with a possible change of state of mind.

The operation actually performed is determined, as has been suggested on p. 30, by the state of
mind of the computer and the observed symbols. In particular, they determine the state of mind of
the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To each state of mind of the
computer corresponds an “m-configuration” of the machine. The machine scans B squares corre-
sponding to the B squares observed by the computer. In any move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another square distant not more
than L squares from one of the other scanned squares. The move which is done, and the succeed-
ing configuration, are determined by the scanned symbol and the m-configuration. The machines
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just described do not differ very essentially from computing machines as defined in §2 and corre-
sponding to any machine of this type a computing machine can be constructed to compute the same
sequence, that is to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculus6 is modified so as to be systematic, and so as
to involve only a finite number of symbols, it becomes possible to construct an automatic7 machine
K, which will find all the provable formulae of the calculus8.

Now let α be a sequence, and let us denote by Gα(x) the proposition “The x-th figure of α is 1”,
so that9 Gα(x) means “The x-th figure of α is 0. Suppose further that we can find a set of properties
which define the sequence α and which can be expressed in terms of Gα(x) and of the propositional
functions N(x) meaning “x is a non-negative integer” and F(x, y) meaning “y= x+ 1”. When we
join all these formulae together conjunctively, we shall have a formula, A say which defines α. The
terms of A must include the necessary parts of the Peano axioms, viz.,

(∃u)N(u)&(x)(N(x)→ (∃y)F(x,y))&(F(x, y)→ N(y)) ,

which we will abbreviate to P.
When we say “A defines α”, we mean that −A is not a provable formula, and also that, for each

n, one of the following formulae (An) or (Bn) is provable.

A & F(n)→ Gα(u(n)), (An)
10

A & F(n)→
(
−Gα(u(n))

)
, (Bn),

where F(n) stands for F(u, u′) & F (u′, u′′) & . . .F(u(n−1), u(n)).
I say that α is then a computable sequence: a machine Kα to compute α can be obtained by a

fairly simple modification of K.
We divide the motion of Kα into sections. The n-th section is devoted to finding the n-th figure

of α. After the (n− 1)-th section is finished a double colon :: is printed after all the symbols, and the
succeeding work is done wholly on the squares to the right of this double colon. The first step is to
write the letter “A” followed by the formula (An) and then “B” followed by (Bn). The machine Kα
then starts to do the work ofK, but whenever a provable formula is found, this formula is compared
with (An) and with (Bn). If it is the same formula as (An), then the figure “1” is printed, and the
n-th section is finished. If it is (Bn), then “0” is printed and the section is finished. If it is different
from both, then the work of K is continued from the point at which it had been abandoned. Sooner
or later one of the formulae (An) or (Bn) is reached; this follows from our hypotheses about α and
A, and the known nature of K. Hence the n-th section will eventually be finished. Kα . is circle-free;
α is computable.

It can also be shown that the numbers α definable in this way by the use of axioms include all
the computable numbers. This is done by describing computing machines in terms of the function
calculus.

6 The expression “the functional calculus” is used throughout to mean the restricted Hilbert functional calculus.
7 It is most natural to construct first a choice machine (§ 2) to do this. But it is then easy to construct the required
automatic machine. We can suppose t h a t the choices are always choices between two possibilities 0 and 1. Each
proof will then be determined by a sequence of choices i1, i2, . . . , in(i1 = 0 or 1, i2 = 0 or 1, . . . , in = 0 or 1), and hence the
number 2′′+ i12n−1

+ i22n−2
+ . . .+ in completely determines the proof. The automatic machine carries out successively

proof 1, proof 2, proof 3,. . . .
8 The author has found a description of such a machine.
9 The negation sign is written before an expression and not over it.
10 A sequence of r primes is denoted by (r).
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It must be remembered that we have attached rather a special meaning to the phrase “A defines
α”. The computable numbers do not include all (in the ordinary sense) definable numbers. Let δ be
a sequence whose n-th figure is 1 or 0 according as n is or is not satisfactory. It is an immediate
consequence of the theorem of §8 that δ is not computable. It is (so far as we know at present)
possible that any assigned number of figures of δ. can be calculated, but not by a uniform process.
When sufficiently many figures of δ have been calculated, an essentially new method is necessary
in order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we avoid introducing the
“state of mind” by considering a more physical and definite counterpart of it. It is always possible
for the computer to break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. This note is the counterpart of the “state of mind”.
We will suppose that the computer works in such a desultory manner that he never does more than
one step at a sitting. The note of instructions must enable him to carry out one step and write the
next note, Thus the state of progress of the computation at any stage is completely determined by the
note of instructions and the symbols on the tape. That is, the state of the system may be described
by a single expression (sequence of symbols), consisting of the symbols on the tape followed by 1
(which we suppose not to appear elsewhere) and then by the note of instructions. This expression
may be called the “state formula”. We know that the state formula at any given stage is determined
by the state formula before the last step was made, and we assume that the relation of these two
formulae is expressible in the functional calculus. In other words, we assume that there is an axiom
A which expresses the rules governing the behaviour of the computer, in terms of the relation of the
state formula at any stage to the state formula at the preceding stage. If this is so, we can construct
a machine to write down the successive state formulae, and hence to compute the required number.

10. Examples of large classes of numbers which are computable

It will be useful to begin with definitions of a computable function of an integral variable and of
a computable variable, etc. There are many equivalent ways of defining a computable function of
an integral variable. The simplest is, possibly, as follows. If γ is a computable sequence in which 0
appears infinitely7 often, and n is an integer, then let us define ξ(γ , n) to be the number of figures
1 between the n-th and the (n+ 1)-th figure 0 in γ . Then φ(n) is computable if, for all n and some
γ , φ(n)= ξ(γ ,n). An equivalent definition is this. Let H(x, y) mean φ(x)= y. Then, if we can find
a contradiction-free axiom Aφ , such that Aφ→ P, and if for each integer n there exists an integer
N, such that

Aφ & F(N)→ H(u(n), u(φ(n))),

and such that, if m 6= φ(n), then, for some N′,

Aφ & F(N
′)
→
(
−H(u(n), u(m)

)
,

then φ may be said to be a computable function.
We cannot define general computable functions of a real variable, since there is no general

method of describing a real number, but we can define a computable function of a computable
variable. If n is satisfactory, let γ n be the number computed by M(n), and let

an = tan
(
π(γn−

1
2 )
)

,

7 IfM computes γ , then the problem whetherM prints 0 infinitely often is of the same character as the problem whether
M is circle-free.
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unless γn = 0 or γn = 1, in either of which cases αn = 0. Then, as n runs through the satisfactory
numbers, αn runs through the computable numbers8. Now let φ(n) be a computable function which
can be shown to be such that for any satisfactory argument its value is satisfactory,9. Then the
function f , defined by f (an)= aφ(n), is a computable function and all computable functions of a
computable variable are expressible in this form.

Similar definitions may be given of computable functions of several variables, computable-
valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I shall prove only (ii) and a
theorem similar to (iii).

(i) A computable function of a computable function of an integral or computable variable is
computable.

(ii) Any function of an integral variable defined recursively in terms of computable functions is
computable. I.e. if φ(m, n) is computable, and r is some integer, then η(n) is computable,
where

η(0)= r,

η(n)= φ(n, η(n− 1)).

(iii) If φ(m, n) is a computable function of two integral variables, then φ(n, n) is a computable
function of n.

(iii) If ϕ(m, n) is a computable function of two integral variables, then ϕ(n, n) is a computable
function of n.

(iv) If φ(n) is a computable function whose value is always 0 or 1, then the sequence whose n-th
figure is φ(n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace “real” throughout by
“computable”. But it holds in the following form:

(v) If G(α) is a propositional function of the computable numbers and

(a) (∃α)(∃β){G(α) & (−G(β))} ,

(b) G(α) & (−G(β))→ (α < β),

and there is a general process for determining the truth value of G(α), then there is a
computable number ξ such that

G(α)→ α 6 ξ ,

−G(α)→ α > ξ .

In other words, the theorem holds for any section of the computables such that there is a general
process for determining to which class a given number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a computable bounded
increasing sequence of computable numbers has a computable limit. This may possibly be
understood by considering a. sequence such as

−1, − 1
2 , − 1

4 −
1
8 , − 1

16 , 1
2 , . . . .

On the other hand, (v) enables us to prove

8 A function αn may be defined in many other ways so as to run through the computable numbers.
9 Although it is not possible to find a general process for determining whether a given number is satisfactory, it is often
possible to show that certain classes of numbers are satisfactory.
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(vi) If α and β are computable and α < β and φ(α) < 0< φ(β), where φ(α) is a computable
increasing continuous function, then there is a unique computable number γ , satisfying α <
γ < β and φ(γ )= 0.

Computable convergence

We shall say that a sequence βn of computable numbers converges computably if there is a com-
putable integral valued function N(ε) of the computable variable ε, such that we can show that, if
ε > 0 and n> N(ε) and m> N(ε), then |βn−βm|< ε.

We can then show that

(vii) A power series whose coefficients form a computable sequence of computable numbers is
computably convergent at all computable points in the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of “uniformly computably convergent”:

(ix) The limit of a uniformly computably convergent computable sequence of computable functions
is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable sequence is a computable
function in the interior of its interval of convergence.

From (viii) and π = 4(1− 1
3 +

1
5 − . . .) we deduce that π is computable.

From e= 1+ 1+ 1
2! +

1
3! + . . . we deduce that e is computable.

From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions are computable.

Proof of (ii).

Let H(x, y)mean “η(x)= y′′, and let K(x, y, z)mean “φ(x, y)= z”. Aφ is the axiom for φ(x, y).
We take Aη to be

Aφ & P& (F(x, y)→ G(x,y)) & (G(x, y) & G(y, z)→ G(x, z))

&
(

F(r)→ H(u, u(r))
)

& (F(v, w) & H(v, x) & K(w, x, z)→ H(w, z))

& [H(w, z) & G(z, t)vG(t,z)→ (−H(w, t))] .

I shall not give the proof of consistency of Aη. Such a proof may be constructed by the meth-
ods used in Hilbert and Bernays, Grundlagen der Mathematik (Berlin, 1934), p. 209 et seq. The
consistency is also clear from the meaning.

Suppose that, for some n, N, we have shown

Aη & F(N)→ H(u(n−1), u(η(n−1))),

then, for some M,

Aφ & F(M)→ K(u(n), u(η(n−1)), u(η(n))),

Aη & F(M)→ F(u(n−1), u(n)) & H(u(n−1),u(η(n−1)))

& K(u(n), u(η(n−1)),u(η(n))),
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and

A & F(M)→ [F(u(n−1), u(n))& H(u(n−1), u(η(n−1)))

&K (u(n), u(η(n−1)), u(η(n)))→ H(u(n), u(η(n)))].

Hence An & F(M)→ H(u(n), u(η(n))).

Also An & F(r)→ H(u, u(η(0))).

Hence for each n some formula of the form

Aη & F(M)→ H(u(n), u(η(n)))

is provable. Also, if M′ > M and M′ > m and m 6= η(u), then

Aη & F(M
′)
→ G(uη((n)),u(m))νG(u(m), u(η(n)))

and

Aη & F(M
′)
→[{G(u(η(n)), u(m))νG(u(m), u(η(n)).

& H (u(n), u(η(m))} → (−H(u(n), u(m)))].

Hence Aη & F(M
′)
→ (−H(u(n), u(m))).

The conditions of our second definition of a computable function are therefore satisfied.
Consequently η is a computable function.

Proof of a modified form of (iii).

Suppose that we are given a machine N, which, starting with a tape bearing on it @ @ followed
by a sequence of any number of letters “F” on F-squares and in the m-configuration b, will compute
a sequence γn depending on the number n letters “F”. If φn(m) is the m-th figure of γn, then the
sequence β whose n-th figure is φn(n) is computable.

We suppose that the table for N has been written out in such a way that in each line only one
operation appears in the operations column. We also suppose that4, 2, 0, and 1 do not occur in the
table, and we replace @ throughout by 2, 0 by 0, and 1 by 1. Further substitutions are then made.
Any line of form

A α P0 B

we replace by

A α P0 re(B, u, h, k)

and any line of the form

A α P1 B

by A α P1 re(B, v, h, k)

and we add to the table the following lines:
u pe(u1,0)

u1 R,Pk,R,P2,R,P2 u2

u2 re(u3,u3,k,h)

u3 pe(u2,F)
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and similar lines with v for u and 1 for 0 together with the following line
c R, P4, R, Ph b.

We then have the table for the machine N′ which computes β. The initial m-configuration is c,
and the initial scanned symbol is the second @.

11. Application to the Entscheidungsproblem

The results of §8 have some important applications. In particular, they can be used to show that
the Hilbert Entscheidungsproblem can have no solution. For the present I shall confine myself to
proving this particular theorem. For the formulation of this problem I must refer the reader to Hilbert
and Ackermann’s Grundzüge der Theoretischen Logik (Berlin, 1931), chapter 3.

I propose, therefore, to show that there can be no general process for determining whether a
given formula A of the functional calculus K is provable, i.e. that there can be no machine which,
supplied with any one A of these formulae, will eventually say whether A is provable.

It should perhaps be remarked that what I shall prove is quite different from the well-known
results of Gödel10. Gödel has shown that (in the formalism of Principia Mathematica) there are
propositions A such that neither A nor−A is provable. As a consequence of this, it is shown that no
proof of consistency of Principia Mathematica (or of K) can be given within that formalism. On the
other hand, I shall show that there is no general method which tells whether a given formula A is
provable in K, or, what comes to the same, whether the system consisting of K with −A adjoined
as an extra axiom is consistent.

If the negation of what Gödel has shown had been proved, i.e. if, for each A either A or −A
is provable, then we should have an immediate solution of the Entscheidungsproblem. For we can
invent a machine K which will prove consecutively all provable formulae. Sooner or later K will
reach either A or −A. If it reaches A, then we know that A is provable. If it reaches −A, then, since
K is consistent (Hilbert and Ackermann, p. 65), we know that A is not provable.

Owing to the absence of integers in K the proofs appear somewhat lengthy. The underlying ideas
are quite straightforward.

Corresponding to each computing machine M we construct a formula Un (M) and we show
that, if there is a general method for determining whether Un (M) is provable, then there is a general
method for determining whether M ever prints 0.

The interpretations of the propositional functions involved are as follows:
RSl(x, y) is to be interpreted as “in the complete configuration x (ofM) the symbol on the square

y is S”.
I(x, y) is to be interpreted as “in the complete configuration x the square y is scanned”.
Kqm(x) is to be interpreted as “in the complete configuration x the m-configuration is qm.
F(x, y) is to be interpreted as “y is the immediate successor of x”.
Inst {qiSjSkLql} is to be an abbreviation for

(x, y, x′, y′)
{
(RSj(x, y) & I(x, y) & Kqi(x) & F(x, x′) & F(y′, y))

→ (I(x′,y′) & Rsk(x
′, y) & Kql(x

′)

& (z) [F(y′, z)v(RSj(x,z)→ RSk(x
′, z))])

}
.

Inst {qiSjSkRql} and Inst {qiSjSkNql}

are to be abbreviations for other similarly constructed expressions.
Let us put the description of M into the first standard form of §6. This description consists

of a number of expressions such as “qiSjSkLql” (or with R or N substituted for L). Let us form

10 Loc. cir.
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all the corresponding expressions such as Inst {qiSjSkLql} and take their logical sum. This we call
Des (M).

The formula Un (M) is to be

(∃u)[N(u) & (x)(N(x)→(∃x′)F(x, x′))

& (y,z)(F(y, z)→ N(y) & N(z)) & (y)RS0(u, y)

& I(u, u) & Kq1(u) & Des(M)]

→ (∃s)(∃t)[N(s) & N(t) & RS1(s, t)].

[N(u) & . . . & Des (M)] may be abbreviated to A(M).
When we substitute the meanings suggested on p. 37–38 we find that Un (M) has the interpre-

tation “in some complete configuration ofM, S1(i.e. 0) appears on the tape”. Corresponding to this
I prove that

(a) If S1 appears on the tape in some complete configuration of M, then Un (M) is provable.
(b) If Un (M) is provable. then S1 appears on the tape in some complete configuration of M.

When this has been done, the remainder of the theorem is trivial.

Lemma 1 If S1 appears on the tape in some complete configuration of M, then Un (M) is
provable.

We have to show how to prove Un (M). Let us suppose that in the n-th complete configuration
the sequence of symbols on the tape is Sr(n,0),Sr(n,1), . . . , Sr(n,n), followed by nothing but blanks,
and that the scanned symbol is the i(n)-th, and that the m-configuration is qk(n). Then we may form
the proposition

Rsr(n,0)(u
(n), u) & RSr(n,1)(u

(n), u′) & . . . & RSr(n,n,(u
(n), u(n))

& I(un,u(i(n))) & Kqk(n)(u
(n))

& (y)F((y, u′)vF(u, y)vF(u′, y)v . . . vF(u(n−1), y)vRS0(u
(n),y)),

which we may abbreviate to CCn.
As before, F(u, u′) & F(u′, u′) & . . . & F (u(r−1), u(r)) is abbreviated to F(r).
I shall show that all formulae of the form A(M) & F(n)→ CCn (abbreviated to CFn) are prov-

able. The meaning of CFn is “The n-th complete configuration of M is so and so”, where “so and
so” stands for the actual n-th complete configuration ofM. That CFn should be provable is therefore
to be expected.

CF0 is certainly provable, for in the complete configuration the symbols are all blanks, the
m-configuration is q1, and the scanned square is u, i.e. CC0 is

(y)RS0(u, y) & I(u, u) & Kq1(u).

A(M)→ CC0 is then trivial.
We next show that CFn→ CFn+1 is provable for each n. There are three cases to consider,

according as in the move from the n-th to the (n+ 1)-th configuration the machine moves to left or
to right or remains stationary. We suppose that the first case applies, i.e. the machine moves to the
left. A similar argument applies in the other cases. If

r(n, i(n))= a, r(n+ 1, i(n+ 1))= c, k(i(n))= b, and k(i(n+ 1))= d,

then Des (M) must include Inst {qaSbSdLqc} as one of its terms, i.e.

Des (M)→ Inst {qaSbSdLqc}.
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Hence A(M) & F(n+1)
→ Inst {qaSbSdLqc} & F(n+1).

But Inst {qaSbSdLqc} & F(n+1)
→ (CCn→ CCn+1)

is provable, and so therefore is

A(M) & F(n+1)
→ (CCn→ CCn+1)

and (A(M) & F(n)→ CCn)→ (A(M) & F(n+1)
→ CCn+1),

i.e. CFn→ CFn+1.

CFn is provable for each n. Now it is the assumption of this lemma that S1 appears somewhere,
in some complete configuration, in the sequence of symbols printed byM; that is, for some integers
N, K, CCN has RS1(u

(N), u(K)) as one of its terms, and therefore CCN→ RS1(u
(N),u(K)) is provable.

We have then

CCN→ RS1(u
(N), u(K))

and A(M) & F(N)→ CCN .

We also have

(∃u)A(M)→ (∃u)(∃u′) . . . (∃u(N
′))(A(M) & F(N)),

where N′ =max(N, K). And so

(∃u)A(.M)→ (∃u)(∃u′) . . . (∃u(N
′))RS1(u

(N), u(K)),

(∃u)A(M)→ (∃u(N))(∃u(K))RS1(u
(N), u(K)),

(∃u)A(M)→ (∃s)(∃t)RS1(s, t),

i.e. Un(M) is provable.
This completes the proof of Lemma 1.

Lemma 2 If Un (M) is provable, then S1 appears on the tape in some complete configuration of
M.

If we substitute any propositional functions for function variables in a provable formula, we
obtain a true proposition. In particular, if we substitute the meanings tabulated on pp. 37–38 in Un
(M), we obtain a true proposition with the meaning “S1 appears somewhere on the tape in some
complete configuration of M”.

We are now in a position to show that the Entscheidungsproblem cannot be solved. Let us sup-
pose the contrary. Then there is a general (mechanical) process for determining whether Un (M) is
provable. By Lemmas 1 and 2, this implies that there is a process for determining whether M ever
prints 0, and this is impossible, by §8. Hence the Entscheidungsproblem cannot be solved.

In view of the large number of particular cases of solutions of the Entscheidungsproblem for
formulae with restricted systems of quantors, it is interesting to express Un (M) in a form in which
all quantors are at the beginning. Un (M) is in fact, expressible in the form

(u)(∃x)(w)(∃u1) . . . (∃un)B, (I)

where B contains no quantors, and n= 6. By unimportant modifications we can obtain a formula,
with all essential properties of Un (M), which is of form (I) with n= 5.
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Added 28 August, 1936.

Appendix

Computability and effective calculability

The theorem that all effectively calculable (λ-definable) sequences are computable and its con-
verse are proved below in outline. It is assumed that the terms “well-formed formula” (W.F.F.)
and “conversion” as used by Church and Kleene are understood. In the second of these proofs
the existence of several formulae is assumed without proof; these formulae may be constructed
straightforwardly with the help of, e.g., the results of Kleene in “A theory of positive integers in
formal logic”, American Journal of Math., 57 (1935), 153–173, 219–244.

The W.F.F. representing an integer n will be denoted by Nn. We shall say that a sequence γ whose
n-th figure is φγ (n) is λ-definable or effectively calculable if I+φγ (µ) is a λ-definable function of
n, i.e. if there is a W.F.F. Mγ such that, for all integers n,

{Mγ }(Nn) conv Nφγ (n)+1,

i.e. {Mγ }(Nn) is convertible into λxy. x(x(y)) or into λxy.x(y) according as the n-th figure of λ is 1
or 0.

To show that every λ-definable sequence γ is computable, we have to show how to construct
a machine to compute γ . For use with machines it is convenient to make a trivial modification in
the calculus of conversion. This alteration consists in using x, x′, x′′, . . . as variables instead of
a, b, c, . . .. We now construct a machine L which, when supplied with the formula Mγ , writes down
the sequence γ . The construction of L is somewhat similar to that of the machine K which proves
all provable formulae of the functional calculus. We first construct a choice machine L1, which if
supplied with a W.F.F., M say, and suitably manipulated, obtains any formula into which M is con-
vertible. L1 can then be modified so as to yield an automatic machine L2 which obtains successively
all the formulae into which M is convertible (of. foot-note p. 32). The machine L includes L2 as a
part. The motion of the machine L when supplied with the formula Mγ is divided into sections of
which the n-th is devoted to finding the n-th figure of γ . The first stage in this n-th section is the
formation of {Mγ }(Nn). This formula is then supplied to the machine L2, which converts it succes-
sively into various other formulae. Each formula into which it is convertible eventually appears, and
each, as it is found, is compared with

λx[λx′[{x}({x}(x′))]], i.e.N2,

and with λx[λx′[{x}(x′)]], i.e.N1.

If it is identical with the first of these, then the machine prints the figure 1 and the n-th section is
finished. If it is identical with the second, then 0 is printed and the section is finished. If it is different
from both, then the work of L2 is resumed. By hypothesis, {Mγ }(Nn) is convertible into one of the
formulae N2 or N1; consequently the n-th section will eventually be finished, i.e. the n-th figure of
γ will eventually be written down.

To prove that every computable sequence γ is λ-definable, we must show how to find a formula
Mγ such that, for all integers n,

{Mγ }(Nn) conv N1+φr(n).

Let.M be a machine which computes γ and let us take some description of the complete config-
urations of M by means of numbers, e.g. we may take the D.N of the complete configuration as
described in §6. Let ξ(n) be the D.N of the n-th complete configuration of M. The table for the
machine M gives us a relation between ξ(n+ 1) and ξ(n) of the form

ξ(n+ 1)= ργ (ξ(n)),
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where ργ is a function of very restricted, although not usually very simple, form: it is determined
by the table for M. ργ is λ-definable (I omit the proof of this), i.e. there is a W.F.F. Aγ such that,
for all integers n,

{Aγ }(Nξ(n)) conv Nξ(n+1).

Let U stand for

λu[{{u}(Aγ )}(Nr)],

where r = ξ(0); then, for all integers n,

{Uγ }(Nn) conv Nξ(n).

It may be proved that there is a formula V such that

{{V}(Nξ(n+1))}(Nξ(n))



conv N1 if, in going from the n-th to the (n+1)-th
complete configuration, the figure 0 is
printed.

conv N2 if the figure 1 is printed.
conv N2 otherwise.

Let Wγ stand for

λu[{{V}
(
{Aγ }({Uγ }(u))

)
}({Uγ }(u))],

so that, for each integer n

{{V}(Nξ(n+1))}(Nξ(n)) conv {Wγ }(Nn),

and let Q be a formula such that

{{Q}(Wγ )}(Ns) conv Nr(z),

where r(s) is the s-th integer q for which {Wγ }(Nq) is convertible into either N1 or N2. Then, if Mγ

stands for

λw[{Wγ }({{Q}(Wγ )}(w))],

it will have the required property11

The Graduate College,
Princeton University,

New Jersey, U.S.A.

11 In a complete proof of the λ-definability of computable sequences it would be best to modify this method by replacing
the numerical description of the complete configurations by a description which can be handled more easily with our
apparatus. Let us choose certain integers to represent the symbols and the m-configurations of the machine. Suppose
that in a certain complete configuration the numbers representing the successive symbols on the tape are s1s2 . . . , sn,
that the m-th symbol is scanned, and that the m-configuration has the number t; then we may represent this complete
configuration by the formula

[[Ns1 ,Ns2 , . . . ,Nsm−1 ], [Nt,Nsm ], [Nsm+1 , . . . ,Nsn ]],

where [a,b] stands for λu [{{u}(a)}(b)]] ,

[a,b,c] stands for λu[{{{u}(a)}(b)}(c)],

etc.
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ON COMPUTABLE NUMBERS, WITH AN
APPLICATION TO THE

ENTSCHEIDUNGSPROBLEM. A CORRECTION

By A. M. TURING

In a paper entitled “On computable numbers, with an application to the Entscheidungsproblem”1

the author gave a proof of the insolubility of the Entscheidungsproblem of the “engere Funktio-
nenkalkül”. This proof contained some formal errors2 which will be corrected here: there are also
some other statements in the same paper which should be modified, although they are not actually
false as they stand.

The expression for Inst {qiSjSkLql} on p. 37 of the paper quoted should read

(x, y, x′,y′){(RSj(x, y) & I(x, y)&Kqi(x) & F(x,x′) & F(y′, y))

→ (I(x′, y′) & Rsk(x
′,y) & Kql(x

′) & F(y′,z)v[(Rs0(x,z)→ Rs0(x
′,z))

&(RS1(x, z)→ Rs1(x
′,z)) & . . .& (RsM (x,z)→ RsM (x

′,z))])},

S0, S1, . . . , SM being the symbols which. M can print. The statement on p. 39, line 4, viz.

“Inst {qaSbSdLqc} & F(n+1)
→ (CCn→ CCn+1)

is provable” is false (even with the new expression for Inst {qaSbSdLqc}): we are unable for example
to deduce F(n+1)

→
(
−F(u, u′′)

)
and therefore can never use the term

F(y′, z)v[(RS0(x, z)→ RS0(x
′, z) & . . .& (RSM (x,z)→ RSM (x

′,z))]

in Inst {qaSbSdLqc}. To correct this we introduce a new functional variable G[G(x,y) to have the
interpretation “x precedes y”]. Then, if Q is an abbreviation for

(x)(∃w)(y,z){F(x,w) & (F(x,y)→ G(x,y)) & (F(x,z) & G(x,y)→ G(x,y))

& [G(z,x)v(G(x,y) & F(y,z))v(F(x,y) & F(z,y))→ (−F(x,z))]

the corrected formula Un (M) is to be

(∃u)A(M)→ (∃s)(∃t)Rs1(s, t).

where A(M) is an abbreviation for

Q & (y)RS0(u, y)1 & I(u, u) & Kq1(u) & Des(M).

The statement on p. 39 (line 3) must then read

Inst {qaSbSdLqc} & Q & QF(n+1)
→ (CCn→ CCn+1),

and line 29 should read

1 Proc. London Math. Soc. (2), 42 (1936–7), 230–265.
2 The author is indebted to P. Bernays for pointing out these errors.
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r(n, i(n))= b, r(n+ 1, i(n))= d, k(n)= a, k(n+ 1)= c.

For the words “logical sum” on p. 38, line 4, read “conjunction”. With these modifications the
proof is correct. Un (M) may be put in the form (I) (p. 39) with n = 4.

Some difficulty arises from the particular manner in which “computable number” was defined
(p. 18). If the computable numbers are to satisfy intuitive requirements we should have:

If we can give a rule which associates with each positive integer n two rationals an,bn satisfying
an 6 an+1 < bn+1 6 bn,bn− an < 2−n, then there is a computable number a for which an 6 a 6 bn

each n. (A)

A proof of this may be given, valid by ordinary mathematical standards, but involving an
application of the principle of excluded middle. On the other hand the following is false:

There is a rule. whereby, given the rule of formation of the sequences, an,bn in (A) we can obtain
a D.N. for a machine to compute a. (B)

That (B) is false, at least, if we adopt the convention that the decimals of numbers of the form
m/2n shall always terminate with zeros, can be seen in this way. LetN be some machine, and define
cn as follows: cn =

1
2 if N has not printed a figure 0 by the time the n-th complete configuration is

reached cn =
1
2 − 2m−3 if 0 had first been printed at the m-th, complete configuration (m 6 n). Put

an = cn− 2−n−2,bn = cn+ 2−n−2. Then the inequalities of (A) are satisfied, and the first figure of α
is 0 ifN ever prints 0 and is 1 otherwise. If (B) were true we should have a means of finding the first
figure of a given the D.N. of N i.e. we should be able to determine whetherN ever prints 0, contrary
to the results of §8 of the paper quoted. Thus although (A) shows that there must be machines which
compute the Euler constant (for example) we cannot at present describe any such machine, for we
do not yet know whether the Euler constant is of the form m/2n.

This disagreeable situation can be avoided by modifying the manner in which computable
numbers are associated with computable sequences, the totality of computable numbers being left
unaltered. It may be done in many ways3 of which this is an example. Suppose that the first figure of
a computable sequence γ , is i and that this is followed by 1 repeated n times, then by 0 and finally
by the sequence whose r-th figure is cr; then the sequence γ , is to correspond to the real number

(2i− 1)n+
∞∑

r=1

(2cr − 1)( 2
3 )

r

If the machine which computes γ is regarded as computing also this real number then (B) holds.
The uniqueness of representation of real numbers by sequences of figures is now lost, but this is of
little theoretical importance, since the D.N.’s are not unique in any case.

The Graduate College,
Princetom, N.J., U.S.A.

3 This use of overlapping intervals for the definition of real numbers is due originally to Brouwer.
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Examining the Work and Its Later Impact

Stephen Wolfram on —

THE IMPORTANCE OF
UNIVERSAL COMPUTATION

In the long view of intellectual history, I believe universal computation will stand as the single most
important idea to emerge in the twentieth century. And this paper is where it first appeared with
clarity.

The paper certainly did not set out to have such significance. Instead, its purpose was to address
a technical question – albeit one thought to be important – about the foundations of mathematics.
But to address that question, Turing created the concept of a universal computer – which in time led
to the notion of software, the computer revolution, and an increasing fraction of all our technology
today.

In retrospect, it seems almost bizarre that it took until 1936 for such a basic idea to emerge. For
today, immersed as they are in modern technology, even quite young children seem to have a decent
grasp of the basic idea of programmability and universal computation.

Even in antiquity, there was already the notion that any single human language could describe
the same basic range of facts and processes. Leibniz tightened this up in the 1600s, imagining
a universal language based on logic, and even discussing encoding logic with numbers (Leibniz,
1966).

Then in the 1800s, there were punched-card machines that could be programmed for different
functions. And with the increasing abstraction and formalisation of mathematics, there emerged by
the 1920s ideas like combinators and string-rewrite systems.

But it was Gödel’s theorem (Gödel, 1931) that highlighted the importance of such abstrac-
tions. And in fact, inside the proof of Gödel’s theorem is in effect exactly the idea of universal
computation – but framed in the context of purely mathematical constructs.

The great significance of Turing’s paper was to give concreteness to universal computation: to
make it seem that universal computation might somehow be inevitable in any constructible system.

At the time, it was far from clear how general Turing’s results might be. After all, for example,
until the 1920s, there had been the idea that any reasonable mathematical function could be rep-
resented by primitive recursion – but that idea was immediately exploded by the discovery of the
Ackermann function (Wilhelm, 1928).

And indeed, after his 1936 paper, Turing himself set about looking at systems involving ora-
cles and so on, that would be more powerful than his universal Turing machine. But gradually an
increasing collection of ‘implementable’ abstract models seemed instead to be precisely equivalent
in their power to ordinary Turing machines.

Meanwhile, electronic computers were emerging. McCulloch and Pitts (1943) had used Turing’s
idea of a universal machine to argue that brains could in effect just be like networks of electronic
components. And von Neumann (Burks, Goldstine and von Neumann, 1947) then applied these
ideas to develop architectures for practical electronic computers.
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There continued to be some theoretical work on Turing machines, but for the most part, elec-
tronic computers were treated purely as technology, with little discussion of foundational issues.
And indeed, it was only in about the 1980s that Turing’s work began to become more widely
known.

And at that time, there tended to be the view that Turing machines were relevant as idealisations
of what could be implemented with electronics, and perhaps with mathematics, but not necessarily
much more. And indeed it was usually assumed (as it had been by Turing himself) that when it came
to typical systems in nature, traditional mathematical equations – and not something like discrete
Turing machines – would be the relevant models to use.

In the early 1980s, I became interested in a variety of natural systems that exhibited complex
behaviour, and that had never been very usefully described by traditional mathematical equations.
And I set about trying to find the simplest models that might describe such systems.

I had experience both with practical computers and with models in statistical physics based
on discrete components. And in trying to find the simplest possible model, I quickly settled on
one-dimensional cellular automata.

My main initial methodology for studying cellular automata was experimental: to just run
computer experiments and see how the cellular automata behaved (see Figure 1).

The results were remarkable, and to me deeply surprising. For I found that even when the under-
lying rules for the system were extremely simple, the behaviour of the system as a whole could be
immensely complex (see Figure 2).

And gradually, through my work (Wolfram, 2002) and the work of many others, it began to be
clear that a great many systems in nature could successfully be modelled using these kinds of simple
programs.

But as I searched for an understanding of the basic phenomenon by which complexity was
generated, I was quickly led to Turing machines and universal computation. And I came to speculate
that even in the simple cellular automata I was studying, there must be universal computation which
in turn I then argued led to perceived complexity, and a variety of other fundamental phenomena.

Before my work, one might have assumed that systems in nature would typically need to be
described by the standard continuous differential equations of mathematical physics – and would
therefore presumably not act like Turing machines. But after seeing so many examples of natural
systems successfully described by systems like cellular automata, it began to seem much more
plausible that nothing with power beyond Turing machines was needed.

I do not think that Alan Turing ever directly simulated a Turing machine. He was interested in
the theoretical issue of whether a Turing machine that is universal could be constructed. And indeed
in this paper he showed that that was possible – though with a machine of considerable complexity.
It was not until the beginning of the 1990s that I actually started simulating Turing machines in large
numbers. I decided to see if my results on cellular automata would carry over to Turing machines –
which operate in a sequential, rather than parallel, way.

And what I found was that much like in cellular automata, one does not have to go far in the
universe of possible Turing machines before one starts to find examples that exhibit highly complex
behaviour.

For a long time, it was not clear what the very simplest universal Turing machine might be. But
now we know. It is a machine with two states and three colors that I first identified in the mid-1990s
(see Figure 3), and that was finally proved universal in 2007 as a result of a competition we held
(Smith, 2007).

Traditional intuition from looking at practical computers might have suggested that to get uni-
versality would require a system with a complicated structure, typical of what might be set up by
human engineers. But from my studies in the computational universe of possible programs, I had
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Rule 0 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7

Rule 8 Rule 9 Rule 10 Rule 11 Rule 12 rule 13 Rule 14 Rule 15

Rule 16 Rule 17 Rule 18 Rule 19 Rule 20 Rule 21 Rule 22 Rule 23

Rule 24 Rule 25 Rule 26 Rule 27 Rule 28 Rule 29 Rule 30 Rule 31

Rule 32 Rule 33 Rule 34 Rule 35 Rule 36 Rule 37 Rule 38 Rule 39

Rule 40 Rule 41 Rule 42 Rule 43 Rule 44 Rule 45 Rule 46 Rule 47

Rule 48 Rule 49 Rule 50 Rule 51 Rule 52 Rule 53 Rule 54 Rule 55

Rule 56 Rule 57 Rule 58 Rule 59 Rule 60 Rule 61 Rule 62 Rule 63

Rule 64 Rule 65 Rule 66 Rule 67 Rule 68 Rule 69 Rule 70 Rule 71

Rule 72 Rule 73 Rule 74 Rule 75 Rule 76 Rule 77 Rule 78 Rule 79

Rule 80 Rule 81 Rule 82 Rule 83 Rule 84 Rule 85 Rule 86 Rule 87

Rule 88 Rule 89 Rule 90 Rule 91 Rule 92 Rule 93 Rule 94 Rule 95

Rule 96 Rule 97 Rule 98 Rule 99 Rule 100 Rule 101 Rule 102 Rule 103

Rule 104 Rule 105 Rule 106 Rule 107 Rule 108 Rule 109 Rule 110 Rule 111

Rule 112 Rule 113 Rule 114 Rule 115 Rule 116 Rule 117 Rule 118 Rule 119

Rule 120 Rule 121 Rule 122 Rule 123 Rule 124 Rule 125 Rule 126 Rule 127

Fig. 1: Evolution of the first 128 elementary cellular automata, starting in all cases from a single
black cell.

formulated a general principle that I called the Principle of Computational Equivalence, which pre-
dicted, among many other things, that universal computation should actually be very common, even
among systems with simple underlying structures.

The result of this is to even further enhance the importance of Turing’s paper.
At first, we might have thought that things like universal Turing machines would be relevant

only to specific kinds of mathematical-type systems. But gradually we came to learn that all sorts
of systems – including practical ones made with electronic components – could be set up to behave
like universal Turing machines.
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Fig. 2: A cellular automaton with a simple rule that generates a pattern, which seems in many
respects random. The rule used is of the same type as in the previous examples, and the cellular
automaton is again started from a single black cell. The pattern that is obtained is highly complex,
and shows almost no overall regularity.

Fig. 3: The first 50 steps in evolution (from a blank tape) of the simplest Turing machine capable of
universal computation.
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But what we learn now is that setup is in a sense not required. Instead, the phenomenon of
universality seems to be ubiquitous – in systems in nature, mathematics and elsewhere.

What is the significance of this? At a practical level, the occurrence of universality in so many
kinds of systems makes it easier to imagine creating practical computation systems in a much wider
variety of ways. But universality also implies some important limitations on science – particularly
a phenomenon I call computational irreducibility, which fundamentally limits the predictability of
processes.

In the past, one might have assumed that most systems in nature would be computationally much
simpler than universal Turing machines. But now we have evidence that essentially whenever we
see complex behaviour in nature, it is associated with processes that achieve universal computation.

But could the systems do more than universal Turing machines? We do not yet know for sure. But
as we successfully model more and more systems without the need to go beyond Turing machines,
it seems less and less plausible that this will be necessary.

The ultimate test, however, is whether we can model our whole physical universe using some-
thing equivalent to a universal Turing machine. We can certainly imagine a universe that operates
like some behaviour of a Turing machine. But the issue is whether our actual universe does so.

Until we know the ultimate theory of physics, we will not be sure of the answer. The history of
traditional physics might seem to suggest that as one goes to smaller and smaller scales, it must take
something more and more complicated to describe the physical world. But from my exploration
of cellular automata and similar systems, I have developed a quite different intuition – which now
makes it seem quite plausible that there could be a simple rule that underlies everything in our
universe.

The evidence I have increasingly seems to support this view. For more and more phenomena
familiar from known physics seem to emerge from extremely simple underlying rules – operating
underneath such traditional notions as space and time. And if it is true that there is a rule that in
effect reproduces our universe, then we will know for certain that everything in our universe can in
fact, in principle, be described by something equivalent to a universal Turing machine.

The Turing machine has then gone from a mathematical idealisation, to a model for computa-
tional processes – to a complete means of describing everything that can exist in our universe. It
also has gone from something of importance only for questions of mathematical or theoretical com-
putation to something whose features and properties must pervade all systems that we experience –
and that must be considered fundamental to science.

We can trace the foundations of so much modern technology to the idea of universal computation
set forth in Turing’s paper. Increasingly, universal computation seems destined to be central to all
sorts of issues in science. In a sense, though, I believe we are still early on the curve of seeing the
full significance of universal computation. Computers, for example, became widespread though the
development of first databases, then word processing, then the web – none of which make central
use of universal computation. But now, as we see knowledge begin to become computable on a large
scale, there is finally starting to be deeper use of universal computation. And there is still much more
to come.

Almost everything we build – whether with molecules, social systems, whatever – will rely on
universal computation. Our intuition about how the world works – and what we can know and
predict about the world – will be based on thinking about universal computation. Even the future of
the human condition will rely centrally on universal computation.

Newton’s Principia Mathematica is often cited as the most important single work in the history
of science – for it was the key milestone that enabled the development of the exact sciences and
the tradition of engineering that arose from them. And certainly Newton was more aware of the
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significance of his work than Turing. But in the modest paper by Alan Turing reproduced here
lie the seeds of what is surely the most important single intellectual development of the twentieth
century, and possibly of all of modern human history.
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Martin Davis illuminates —

THREE PROOFS OF THE UNSOLVABILITY
OF THE ENTSCHEIDUNGSPROBLEM

The Entscheidungsproblem

What is usually called first order logic is an encapsulation of logical reasoning, especially as it
occurs in proofs in mathematics. In this setup propositions become ‘sentences’ in which symbols
for basic logical notions (like and, not, all) are combined with non-logical symbols for the specific
items being reasoned about.

The Entscheidungsproblem may be stated in the following three equivalent ways:

(1) Find an algorithm to determine whether a given sentence of first order logic is valid, that is,
true regardless of what specific objects and relationships are being reasoned about.

(2) Find an algorithm to determine whether a given sentence of first order logic is satisfiable, that
is, true for some specific objects and relationships.

(3) Find an algorithm to determine given some sentences of first order logic regarded as premises
and another sentence, being a desired conclusion, whether that conclusion is provable from the
premises using the rules of proof for first order logic.

http://www.wolframscience.com/prizes/tm23/solved.html
http://www.wolframscience.com/prizes/tm23/solved.html


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 50 #38

50 Part I

That the first two are equivalent is clear because the sentence A is valid if and only if not-A is
not satisfiable. To show that the third formulation is equivalent to the first two, it suffices to note
that, according to the Completeness Theorem that Gödel established in his doctoral dissertation, a
sentence A is a logical consequence of premises P1,P2, . . . ,Pn if and only if the sentence

P1&P2&. . .&Pn⇒ A

is valid.
If we think of the premises as the axioms of some mathematical domain, we can see that an

actual algorithm solving the Entscheidungsproblem would reduce all of mathematics, at least in
principle, to mechanical calculation. Presumably it was this that led Hilbert to characterise the
Entscheidungsproblem as ‘the fundamental problem of mathematical logic’. This was enough to
convince G. H. Hardy that there could be no such algorithm. He declared:

There is of course no such theorem, and this is very fortunate, since if there were we should
have a mechanical set of rules for the solution of all mathematical problems, and our activities
as mathematicians would come to an end.1

In a different context, Poincaré made it clear that he found the whole idea of formalisation of
mathematics ridiculous:

Thus it will be readily understood that in order to demonstrate a theorem, it is not necessary
or even useful to know what it means. . . . we might imagine a machine where we should
put in axioms at one end and take out theorems at the other, like that legendary machine
in Chicago where pigs go in alive and come out transformed into hams and sausages. It is
no more necessary for the mathematician than it is for these machines to know what he is
doing.2

If indeed a solution of the Entscheidungsproblem would have reduced all of mathematics
to mechanical calculation, then from the existence of any mathematical problem provably algo-
rithmically unsolvable, the unsolvability of the Entscheidungsproblem itself should follow. The
unsolvability proofs of Church and of Turing each follow this approach.

1. Church’s Proof

Alonzo Church, in his historic (Church, 1936), provided a rigorous formal characterisation of what
it means to be solvable by means of an algorithm, what has come to be known as Church’s Thesis.
This made it possible for him to prove that one specific problem is algorithmically unsolvable. In
his work, Church (1936a) specified a finite set of premises that encapsulate this specific problem
so faithfully that an algorithm for testing whether a given conclusion follows from those premises
would also provide an algorithmic solution to that specific problem, although the problem is known
to be unsolvable. From this contradiction Church could conclude that the Entscheidungsproblem
itself is unsolvable.

Instead of indicating his satisfaction at having settled a fundamental problem, Church expressed
a doubt. He noted the fact that the proof of Gödel’s Completeness Theorem is necessarily non-
constructive, dealing as it must, with the notion of validity that refers to arbitrary sets and

1 Davis (2000), Chapter 7.
2 Davis (2000), Chapter 5.
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relations. And showing a surprisingly extreme constructivist stance, Church cast doubt on his own
accomplishment saying:

The unsolvability of [all three forms] of the Entscheidungsproblem . . . cannot, therefore, be
regarded as established beyond question.

2. Turing’s Proof

Alan Turing began working on the Entscheidungsproblem with no knowledge of what Church was
doing. He began with his own explication of algorithmic solvability, or as he called it, computability,
in terms of extremely simple abstract computing machines, what are now called ‘Turing machines’.
By analyzing what someone actually does when computing something, he provided a convincing
argument for the adequacy of his formulation. (Later he proved that his concept was equivalent
to Church’s.) Like Church, he used what he had done to prove that a certain specific problem is
unsolvable. In Turing’s case the unsolvable problem was to determine algorithmically whether one
of his given machines would ever produce a particular symbol, the so-called ‘printing problem’.
His remarkable paper (Turing, 1936) contained as a byproduct a construction showing that a par-
ticular one of his machines, his universal machine, could all by itself duplicate anything that any
of his machines could do, and thereby showed in schematic form the possibility of an all-purpose
computer.

By using sentences of first order logic to mimic the step-by-step behaviour of his machines he
was able to associate with any one of his machines a corresponding sentence of first order logic
that is valid if and only if that machine eventually produces the symbol 0. Thus an algorithm for
validity (the first form of the Entscheidungsproblem in our list of three) would automatically provide
a solution to the printing problem, although it is, in fact, unsolvable. Thus Turing could conclude
that the Entscheidungsproblem is algorithmically unsolvable. Turing’s method turned out to be quite
fertile and was later used successfully to obtain significant new results.3

3. The should-have-been Gödel–Kleene Proof

Church and Turing’s proofs were both published in 1936. Gödel’s epochal paper (Gödel, 1931)
in which he showed that formal logical systems in which a modicum of mathematics could be
developed would inevitably be incomplete: there would be straightforward mathematical statements
which could be neither proved nor disproved in that system. But the paper is extremely rich and, in
particular contains an application to the Entscheidungsproblem. This application involves a class of
functions from natural numbers to natural numbers called primitive recursive.4 The key thing about
this class is that included functions that can be defined recursively. As an example, we may consider
the function 2x which can be defined by the recursion:

20
= 1; 2k+1

= 2× 2k.

What Gödel proved relating to the Entscheidungsproblem in his remarkable 1931 paper is that cor-
responding to any given primitive recursive function f (x), there is a sentence of first order logic,
which is satisfiable if and only if f (x)= 0 for all x.5 So to get the unsolvability of the Entschei-
dungsproblem (in our second form) it suffices to show that there is no algorithm for determining of
a given primitive recursive function f (x) whether it is equal to 0 for all x.

3 See Börger et al. (1997).
4 Not quite the term Gödel used.
5 Gödel (1931) Theorem X.
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Stephen Kleene was a student of and collaborator with Church during the exciting period when
these dramatic results were being developed. Kleene’s paper (Kleene, 1936) is mainly remem-
bered for his Normal Form Theorem in which arbitrary computable functions on the natural
numbers are seen to be closely related to primitive recursive functions. Thus for any computable
function f (x). Kleene showed that there are a pair of primitive recursive functions g(x),h(x,y)
such that:

f (x)= g(min
y
(h(x,y)= 0)).

In addition, Kleene found a particular primitive recursive function t(z,x) such that the prob-
lem of determining for a given value of z whether t(z,x)= 0 for all x is algorithmically
unsolvable.6 From this special case, it is clear that there can be no general algorithm to determine
of an arbitrary given primitive recursive function f (x) whether it is equal to 0 for all x. So Gödel’s
result immediately yields the unsolvability of the Entscheidungsproblem.

It seems remarkable that Kleene, who certainly had studied Gödel’s 1931 paper and knew it very
well, apparently had not noticed this connection.
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Samson Abramsky detects —

TWO PUZZLES ABOUT COMPUTATION

1. Introduction

Turing’s classical analysis of computation Turing (1936) gives a compelling account of the nature
of the computational process; of how we compute. This allows the notion of computability, of what
can in principle be computed, to be captured in a mathematically precise fashion.

The purpose of this note is to raise two different questions, which are rarely if ever considered,
and to which, it seems, we lack convincing, systematic answers. These questions can be posed as:. Why do we compute?. What do we compute?

The point is not so much that we have no answers to these puzzles, as that we have no established
body of theory which gives satisfying, systematic answers, as part of a broader understanding. By
raising these questions, we hope to stimulate some thinking in this direction.

These puzzles were raised in Abramsky (2008); see also Adriaans and van Emde Boas (2011).

2. Why Do We Compute?

The first puzzle is simply stated:

Why do we compute?

By this we mean: why do we perform (or build machines and get them to perform) actual, physically
embodied computations?

There is, indeed, an obvious answer to this question:

To gain information (which, therefore, we did not previously have).

But — how is this possible?1 Two problems seems to arise, one stemming from physics, and one
from logic.

Problem 1: Doesn’t this contradict the second law of thermodynamics?

Problem 2: Isn’t the output implied by the input?

We shall discuss each of these in turn.

1 Indeed, I was once challenged on this point by an eminent physicist (now knighted), who demanded to know how
I could speak of information increasing in computation when Shannon Information theory tells us that it cannot! My
failure to answer this point very convincingly at the time led me to continue to ponder the issue, and eventually gave rise
to this discussion.
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Problem 1

The problem is that, presumably, information is conserved in the total system. The natural response
is that, nevertheless, there can be information flow between, and information increase in, subsys-
tems; just as a body can gain heat from its environment. More precisely, while the entropy of an
isolated (total) system cannot decrease, a sub-system can decrease its entropy by consuming energy
from its environment.

Thus if we wish to speak of information flow and increase, this must be done relative to sub-
systems. Indeed, the fundamental objects of study should be open systems, whose behaviour must
be understood in relation to an external environment. Subsystems which can observe incoming
information from their environment, and act to send information to their environment, have the
capabilities of agents.

Moral: Agents and their interactions are intrinsic to the study of information flow and increase
in computation. The classical theories of information do not reflect this adequately.

Observer-dependence of information increase? Yorick Wilks (personal communication) has
suggested the following additional twist. Consider an equation such as

3× 5= 15.

The forward direction 3× 5→ 15 is obviously a natural direction of computation, where we per-
form a multiplication. But the reverse direction 15→ 3× 5 is also of interest — finding the prime
factors of a number! So it seems that the direction of possible information increase must be
understood as relative to the observer or user of the computation!

Can we in fact find an objective, observer-independent notion of information increase? This
seems important to the whole issue of whether information is inherently subjective, or whether it
has an objective structure.

Problem 2

The second puzzle is the computational version of what has been called the scandal of deduction
DAgostino and Floridi (2009); Hintikka (1970); Sequoiah-Grayson (2008). The logical problem is
to find the sense in which logical deduction can be informative, since, by the nature of the process,
the conclusions are ‘logically contained’ in the premises. So what has been added by the derivation?
This is a rather basic question, which it is surprisingly difficult to find a satisfactory answer to.

Computation can be modelled faithfully as deduction, whether in the sense of deducing the steps
that a Turing maching takes starting from its initial configuration, or more directly via the Curry-
Howard isomorphism Curry, Feys and Craig (1958); Howard (1980), under which computation can
be viewed as performing cut-elimination on proofs, or normalization of proof terms. Thus the same
question can be asked of computation: since the result of the computation is logically implied by
the program together with the input data, what has been added by computing it?

The same issue can be formulated in terms of the logic programming paradigm, or of querying
a relational database: in both cases, the result of the query is a logical consequence of the data- or
knowledge-base.

It is, of course, tempting to answer in terms of the complexity of the inference process; but this
seems to beg the question. We need to understand first what the inference process is doing for us!

We can also link this puzzle to another well-known issue in logic, namely the principle of log-
ical omnisicience in epistemic logic, which is unrealistic yet hard to avoid. This principle can be
formulated as follows:

[Kaφ∧(φ→ ψ)]→Kaψ .

It says that the knowledge of agent a is deductively closed: if a knows a proposition φ, then he
knows all its logical consequences. This is patently untrue in practice, and brings us directly back
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to our puzzle concerning computation. We compute to gain information we did not have. We start
from the information of knowing the program and its input, and the computation provides us with
explicit knowledge of the output. But what does ‘explicit’ mean?

The computational perspective may indeed provide a usefully clarifying perspective on the issue
of logical omniscience, since it provides a context in which the distinction between ‘explicit’ and
‘implicit’ knowledge can be made precise. Let us start with the notion of a function. In the 19th
century, the idea of a function as a ‘rule’ — as given by some defining expression — was replaced
by its ‘set-theoretic semantics’ as a set of ordered pairs. In other terminology, a particular defining
expression is an intensional description of a function, while the set of ordered pairs which it denotes
is its extension.

A program is exactly an intensional description of a function, with the additional property that
this description can be used to explicitly calculate outputs from given inputs in a stepwise, mechan-
ical fashion.2 We can say that implicit knowledge, in the context of computation, is knowledge of
an intensional description; while explicit knowledge, of a data item such as a number, amounts to
possessing the numeral (in some numbering system) corresponding to that number; or more gener-
ally, to possessing a particular form of intensional description which is essentially isomorphic to the
extension.

The purpose of computation in these terms is precisely to convert intensional descriptions into
extensional ones, or implicit knowledge of an input-output pair into explicit knowledge. The cost of
this process is calibrated in terms of the resources needed — the number of computation steps, the
workspace which may be needed to perform these steps, etc. Thus we return to the usual, ‘common-
sense’ view of computation. The point is that it rests on this distinction between intension and
extension, or implicit vs. explicit knowledge.

Another important aspect of why we compute is data reduction—getting rid of a lot of the
information in the input. Note that normal forms are in general unmanagably big Vorobyov (1997).
Note also that it is deletion of data which creates thermodynamic cost in computation Landauer
(1961). Thus we can say that much (or all?) of the actual usefulness of computation lies in getting
rid of the hay-stack, leaving only the needle.

The challenge here is to build a useful theory which provides convincing and helpful answers to
these questions. In our view these puzzles, naive as they are, point to some natural questions which
a truly comprehensive theory of computation, incorporating a ‘dynamics of information’, should be
able to answer.

3. What Do We Compute?

The classical notion of computability as pioneered by Turing Turing (1936) focusses on the key
issue of how we compute; of what constitutes a computation. However, it relies on pre-existing
notions from mathematics as to what is computed: numbers, functions, sets, etc.

This idea also served computer science well for many years: it is perfectly natural in many
situations to view a computational process in terms of computing an output from an input. This
computation may be deterministic, non-deterministic, random, or even quantum, but essentially the
same general paradigm applies.

However, as computation has evolved to embrace diverse forms and purposes: distributed,
global, mobile, interactive, multi-media, embedded, autonomous, virtual, pervasive, . . . the ade-
quacy of this view has become increasingly doubtful.

Traditionally, the dynamics of computing systems — their unfolding behaviour in space and
time — has been a mere means to the end of computing the function which specifies the algorith-
mic problem which the system is solving.3 In much of contemporary computing, the situation is

2 We refer e.g. to Gandy (1980); Sieg (2002) for attempts to give a precise mathematical characterization of ‘mechanical’.
3 Insofar as the dynamics has been of interest, it has been in quantitative terms, counting the resources which the algo-
rithmic process consumes — leading of course to the notions of algorithmic complexity. Is it too fanciful to speculate
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reversed: the purpose of the computing system is to exhibit certain behaviour. The implementation
of this required behaviour will seek to reduce various aspects of the specification to the solution of
standard algorithmic problems.

What does the Internet compute?

Surely not a mathematical function . . .

Why Does It Matter?

We shall mention two basic issues in the theory of computation which become moot in the light of
this issue.

There has been an enormous amount of work on the first, namely the theory of concurrent pro-
cesses. Despite this huge literature, produced over the past four decades and more, no consensus has
been achieved as to what processes are, in terms of their essential mathematical structure. Instead,
there has been a huge proliferation of different models, calculi, semantics, notions of equivalence. To
make the point, we may contrast the situation with the λ-calculus, the beautiful, fundamental calcu-
lus of functions introduced by Church at the very point of emergence of the notion of computability
Church (1941). Although there are many variants, there is essentially a unique, core calculus which
can be presented in a few lines, and which delineates the essential ideas of functional computation.
In extreme contrast, there are a huge number of process calculi, and none can be considered as
definitive.

Is the notion of process too amorphous, too open to different interpretations and contexts of use,
to admit a unified, fundamental theory? Or has the field not yet found its Turing? See Abramsky
(2006) for an extended discussion.

The second issue follows on from the first, although it has been much less studied to date. This
concerns the Church-Turing thesis of universality of the model of computation. What does this
mean when we move to a broader conception of what is computed? And are there any compelling
candidates? Is there a widely accepted universal model of interactive or concurrent computation?

As a corollary to the current state of our understanding of processes as described in the previous
paragraphs, there is no such clear-cut notion of universality. It is important to understand what is
at issue here. If we are interested in the process of computation itself, the structure of interactive
behaviour, then on what basis can we judge if one such process is faithfully simulated by another?
It is not of course that there are no candidate notions of this kind which have been proposed in the
literature; the problem, rather, is that there are far too many of them, reflecting different intuitions,
and different operational and application scenarios.

Once again, we must ask: is this embarrassing multitude of diverse and competing notions a
necessary reflection of the nature of this notion, or may we hope for an incisive contribution from
some future Turing which will unify and organize the field?

References

Abramsky, S., 2006. What are the Fundamental Structures of Concurrency? We still dont know! Electronic
Notes in Theoretical Computer Science 162, 37–41.

Abramsky, S., 2008. Information, processes and games. In: van Benthem, J., Adriaans, P. (eds.), Handbook of
the Philosophy of Information, Elsevier Science Publishers, Amsterdam, pp. 483–549.

Adriaans, P., van Emde Boas, P., 2011. Computation, information, and the arrow of time. In: Cooper, S.B.,
Sorbi, A. (eds.), Computability in Context, World Scientific, Singapore, pp. 1–18.

that the lack of an adequate structural theory of processes has been an impediment to fundamental progress in complexity
theory?



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 57 #45

Turing Machines and Understanding Computational Complexity 57

Church, A., 1941. The Calculi of Lambda Conversion, Vol. 6 of Annals of Mathematics Studies, Princeton
University Press, Princeton.

Curry, H.B., Feys, R. and Craig, W., 1958. Combinatory Logic: Vol. 1. North-Holland, Amsterdam.
D’Agostino, M., Floridi, L., 2009. The enduring scandal of deduction. Synthese, 167(2), 271–315.
Gandy, R., 1980. Churchs thesis and principles for mechanisms, Studies in Logic and the Foundations of

Mathematics, 101, 123–148.
Hintikka, J., 1970. Information, deduction, and the a priori. Nous 4(2), 135–152.
Howard, W.A., 1980. The formulae-as-types notion of construction. In: Selden, J.P., Hindley, J.R. (eds.), To

HB Curry: essays on combinatory logic, lambda calculus and formalism, Academic Press, pp. 479–490.
Landauer, R., 1961. Irreversibility and heat generation in the computing process, IBM Journal of Research and

Development 5, 183–191.
Sequoiah-Grayson, S., 2008. The scandal of deduction, Journal of Philosophical Logic 37(1), 67– 94.
Sieg, W., 2002. Calculations by man and machine: Mathematical presentation. In: Gärdenfors, P., Wolenski,

J., and Kijania-Placek, K. (eds.): In the scope of logic, methodology, and philosophy of science: volume
two of the 11th International Congress of Logic, Methodology and Philosophy of Science, Cracow, August
1999, Kluwer Academic Publishers, Dordrecht, Boston, London, p. 247.

Turing, A.M., 1936. On computable numbers, Proc. of the Lond. Math. Soc. 2(42), 230–65, 1936.
Vorobyov, S.G., 1997. The “hardest” natural decidable theory. In: Proceedings of the 12th Symposium on Logic

in Computer Science, IEEE Press, 294–305.

Paul Vitányi illustrates the importance of —

TURING MACHINES AND UNDERSTANDING
COMPUTATIONAL COMPLEXITY

1. Introduction

A Turing machine refers to a hypothetical machine proposed by Alan M. Turing (1912–54) in 1936
(Turing, 1936) whose computations are intended to give an operational and formal definition of the
intuitive notion of computability in the discrete domain. It is a digital device and sufficiently simple
to be amenable to theoretical analysis and sufficiently powerful to embrace everything in the discrete
domain that is intuitively computable. As if that were not enough, in the theory of computation many
major complexity classes can be easily characterised by an appropriately restricted Turing machine;
notably, the important classes P and NP and consequently the major question whether P equals NP.

Turing gave a brilliant demonstration that everything that can be reasonably said to be com-
puted by a human computer using a fixed procedure can be computed by such a machine. As Turing
claimed, any process that can be naturally called an effective procedure is realised by a Turing
machine. This is known as Turing’s thesis. Enter Alonzo Church (1903–95). Over the years, all
serious attempts to give precise yet intuitively satisfactory definitions of a notion of effective proce-
dure (what Church called effectively calculable function) in the widest possible sense have turned
out to be equivalent – to define essentially the same class of processes. The Church–Turing thesis
states that a function on the positive integers is effectively calculable if and only if it is computable.
An informal accumulation of the tradition in S. C. Kleene (1952) has transformed it to the Com-
putability thesis: there is an objective notion of effective computability independent of a particular
formalisation. The informal arguments Turing sets forth in his 1936 paper are as lucid and convinc-
ing now as they were then. To us it seems that it is the best introduction to the subject. It gives
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the intuitions that lead up to the formal definition, and is in a certain sense a prerequisite of what
follows. The reader can find this introduction in Turing (1936) included in this volume. It begins
with:

“All arguments are bound to be, fundamentally, appeals to intuition, and for that reason rather unsat-
isfactory mathematically. The real question at issue is: ‘what are the possible processes which can be
carried out in computing (a number)?’ The arguments which I shall use are of three kinds.
(a) A direct appeal to intuition.

(b) A proof of equivalence of two definitions (in case the new definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.”

2. Formal definition of the Turing machine

We formalise Turing’s description as follows: A Turing machine consists of a finite program, called
the finite control, capable of manipulating a linear list of cells, called the tape, using one access
pointer, called the head. We refer to the two directions on the tape as right and left. The finite
control can be in any one of a finite set of states Q, and each tape cell can contain a 0, a 1, or a blank
B. Time is discrete and the time instants are ordered 0,1,2, . . . , with 0 the time at which the machine
starts its computation. At any time, the head is positioned over a particular cell, which it is said to
scan. At time 0 the head is situated on a distinguished cell on the tape called the start cell, and the
finite control is in a distinguished state q0. At time 0 all cells contain Bs, except for a contiguous
finite sequence of cells, extending from the start cell to the right, which contain 0’s and 1’s. This
binary sequence is called the input. The device can perform the following basic operations:

(1) It can write an element from A= {0,1,B} in the cell it scans; and

(2) it can shift the head one cell left or right.

When the device is active it executes these operations at the rate of one operation per time unit
(a step). At the conclusion of each step, the finite control takes on a state from Q. The device is
constructed so that it behaves according to a finite list of rules. These rules determine, from the
current state of the finite control and the symbol contained in the cell under scan, the operation to
be performed next and the state to enter at the end of the next operation execution.

The rules have format (p,s,a,q): p is the current state of the finite control; s is the symbol under
scan; a is the next operation to be executed of type (1) or (2) designated in the obvious sense by an
element from S= {0,1,B,L,R}; and q is the state of the finite control to be entered at the end of this
step.

For now, we assume that there are no two distinct quadruples that have their first two elements
identical, the device is deterministic. Not every possible combination of the first two elements has
to be in the set; in this way we permit the device to perform ‘no’ operation. In this case we say
that the device halts. Hence, we can define a Turing machine by a mapping from a finite subset of
Q×A into S×Q. Given a Turing machine and an input, the Turing machine carries out a uniquely
determined succession of operations, which may or may not terminate in a finite number of steps.

Strings and natural numbers are occasionally identified according to the pairing

(ε,0),(0,1),(1,2),(00,3),(01,4),(10,5),(11,6), . . . , (2.1)

where ε denotes the empty string (with no bits). In the following, we need the notion of a self-
delimiting code of a binary string. If x= x1 . . .xn is a string of n bits, then its self-delimiting code
is x̄= 1n0x. Clearly, the length |x̄| = 2|x| + 1. Encoding a binary string self-delimitingly enables a
machine to determine where the string ends reading it from left to right in a single pass and without
reading past the last bit of the code.
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2.1. Computable functions

We can associate a partial function with each Turing machine in the following way: The input
to the Turing machine is presented as an n-tuple (x1, . . . ,xn) consisting of self-delimiting versions
of the xi’s. The integer represented by the maximal binary string (bordered by blanks) of which
some bit is scanned, or 0 if a blank is scanned, by the time the machine halts, is called the output
of the computation. Under this convention for inputs and outputs, each Turing machine defines a
partial function from n-tuples of integers onto the integers, n≥ 1. We call such a function partial
computable. If the Turing machine halts for all inputs, then the function computed is defined for all
arguments and we call it total computable. (Instead of computable the more ambiguous recursive
has also been used.) We call a function with range {0,1} a predicate, with the interpretation that
the predicate of an n-tuple of values is true if the corresponding function assumes value 1 for that
n-tuple of values for its arguments and is false or undefined otherwise. Hence, we can talk about
partial (total) computable predicates.

2.2. Examples of computable functions

Consider x as a binary string. It is easy to see that the functions |x|, f (x)= x̄, g(x̄y)= x, and h(x̄y)= y
are partial computable. Functions g and h are not total since the value for input 1111 is not defined.
The function g′(x̄y) defined as 1 if x= y and as 0 if x 6= y is a computable predicate. Consider
x as an integer. The following functions are basic n-place total computable functions: the suc-
cessor function γ (1)(x)= x+ 1, the zero function ζ (n)(x1, . . . ,xn)= 0, and the projection function
π
(n)
m (x1, . . . ,xn)= xm(1≤ m≤ n). The function 〈x,y〉 = x̄y is a total computable one-to-one map-

ping from pairs of natural numbers into the natural numbers. We can easily extend this scheme to
obtain a total computable one-to-one mapping from k-tuples of integers into the integers, for each
fixed k. Define 〈n1,n2, . . . ,nk〉 = 〈n1, 〈n2, . . . ,nk〉〉. Another total recursive one-to-one mapping from
k-tuples of integers into the integers is 〈n1,n2, . . . ,nk〉 = n̄1 . . . n̄k−1n̄k.

3. Computability thesis and the universal Turing machine

The class of algorithmically computable numerical functions (in the intuitive sense) coincides with
the class of partial computable functions. Originally intended as a proposal to henceforth supply
intuitive terms such as ‘computable’ and ‘effective procedure’ with a precise meaning, the Com-
putability thesis has come into use as shorthand for a claim that from a given description of a
procedure in terms of an informal set of instructions we can derive a formal one in terms of Turing
machines.

It is possible to give an effective (computable) one-to-one pairing between natural numbers and
Turing machines. This is called an effective enumeration. One way to do this is to encode the table
of rules of each Turing machine in binary, in a canonical way.

The only thing we have to do for every Turing machine is to encode the defining mapping
T : Q×A→ S×Q. Giving each element of Q

⋃
S a unique binary code requires s bits for each such

element, with s= dlog(|Q| + 5)e. Denote the encoding function by e. Then the quadruple (p,0,B,q)
is encoded as e(p)e(0)e(B)e(q). If the number of rules is r, then r ≤ 3|Q|. We agree to consider the
state of the first rule as the start state. The entire list of quadruples,

T = (p1, t1,s1,q1),(p2, t2,s2,q2), . . . ,(pr, tr,sr,qr),

is encoded as

E(T)= s̄r̄e(p1)e(t1)e(s1)e(q1) . . .e(pr)e(tr)e(sr)e(qr).

Note that l(E(T))≤ 4rs+ 2logrs+ 4. (Moreover, E is self-delimiting, which is convenient in
situations in which we want to recognise the substring E(T) as prefix of a larger string.)
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We order the resulting binary strings lexicographically (according to increasing length). We
assign an index, or Gödel number, n(T) to each Turing machine T by defining n(T)= i if E(T) is the
i-th element in the lexicographic order of Turing machine codes. This yields a sequence of Turing
machines T1,T2, . . . that constitutes the effective enumeration. One can construct a Turing machine
to decide whether a given binary string x encodes a Turing machine, by checking whether it can be
decoded according to the scheme above, that the tuple elements belong to Q×A× S×Q, followed
by a check whether any two different rules start with the same two elements. This observation
enables us to construct universal Turing machines.

A universal Turing machine U is a Turing machine that can imitate the behaviour of any other
Turing machine T . It is a fundamental result that such machines exist and can be constructed effec-
tively. Only a suitable description of T’s finite program and input needs to be entered on U’s tape
initially. To execute the consecutive actions that T would perform on its own tape, U uses T’s
description to simulate T’s actions on a representation of T’s tape contents. Such a machine U is
also called computation universal. In fact, there are infinitely many such U’s.

We focus on a universal Turing machine U that uses the encoding above. It is not difficult, but
tedious, to define a Turing machine in quadruple format that expects inputs of the format E(T)p and
is undefined for inputs not of that form. The machine U starts to execute the successive operations
of T using p as input and the description E(T) of T it has found so that U(E(T)p)= T(p) for every
T and p. We omit the explicit construction of U.

For the contemporary reader there should be nothing mysterious in the concept of a general-
purpose computer which can perform any computation when supplied with an appropriate program.
The surprising thing is that a general-purpose computer can be very simple: M. Minsky (1967) has
shown that four tape symbols and seven states suffice easily in the above scheme. This machine can
be changed to, in the sense of being simulated by, our format using tape symbols {0,1,B} at the cost
of an increase in the number of states. The last reference contains an excellent discussion of Turing
machines, their computations and related machines. The effective enumeration of Turing machines
T1,T2, . . . determines an effective enumeration of partial computable functions ϕ1,ϕ2, . . . such that
ϕi is the function computed by Ti, for all i. It is important to distinguish between a function ψ and
a name for ψ . A name for ψ can be an algorithm that computes ψ , in the form of a Turing machine
T . It can also be a natural number i such that ψ equals ϕi in the above list. We call i an index for
ψ . Thus, each partial computable ψ occurs many times in the given effective enumeration, that is,
it has many indices.

4. Undecidability of the halting problem

Turing’s paper (Turing, 1936), and more so Kurt Gödel’s paper (Gödel, 1931), where such a result
first appeared, are celebrated for showing that certain well-defined questions in the mathemati-
cal domain cannot be settled by any effective procedure for answering questions. The following
‘machine form’ of this undecidability result is due to Turing and Church: ‘which machine compu-
tations eventually terminate with a definite result, and which machine computations go on forever
without a definite conclusion?’ This is sometimes called the halting problem.

Since all machines can be simulated by the universal Turing machine U, this question cannot be
decided in the case of the single machine U, or more generally for any other individual universal
machine. The following theorem due to Turing (1936), formalises this discussion. Let ϕ1,ϕ2, . . . be
the standard enumeration of partial computable functions and write ϕ(x) <∞ if ϕ(x) is defined and
write ϕ(x)=∞ otherwise. Define K0 = {〈x,y〉 : ϕx(y) <∞} as the halting set.

Theorem 4.1. The halting set K0 is not computable.

The theorem of Turing on the incomputability of the halting set was preceded by (and was
intended as an alternative way to show) the famous (first) Incompleteness Theorem of Kurt Gödel
in 1931. Recall that a formal theory T consists of a set of well-formed formulas, formulas for short.
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For convenience these formulas are taken to be finite binary strings. Invariably, the formulas are
specified in such a way that an effective procedure exists that decides which strings are formulas
and which strings are not.

The formulas are the objects of interest of the theory and constitute the meaningful statements.
With each theory we associate a set of true formulas and a set of provable formulas. The set of true
formulas is true according to some (often non-constructive) criterion of truth. The set of provable
formulas is provable according to some (usually effective) syntactic notion of proof.

A theory T is simply any set of formulas. A theory is axiomatisable if it can be effectively
enumerated. For instance, its axioms (initial formulas) can be effectively enumerated and there is
an effective procedure that enumerates all proofs for formulas in T from the axioms. A theory is
decidable if it is a recursive set. A theory T is consistent if not both formula x and and its negation
¬x are in T . A theory T is sound if each formula x in T is true (with respect to the standard model
of the natural numbers).

Hence, soundness implies consistency. A particularly important example of an axiomatis-
able theory is Peano arithmetic, which axiomatises the standard elementary theory of the natural
numbers.

Theorem 4.2. There is a computably enumerable set, say the set K0 defined above, such that for
every axiomatisable theory T that is sound and extends Peano arithmetic, there is a number n such
that the formula ‘n 6∈ K0’ is true but not provable in T.

In his original proof, Gödel uses diagonalisation to prove the incompleteness of any sufficiently
rich logical theory T with a computably enumerable axiom system, such as Peano arithmetic. By
his technique he exhibits for such a theory an explicit construction of an undecidable statement y
that says of itself I am unprovable in T . The formulation in terms of computable function theory is
due to A. Church and S. C. Kleene.

Turing’s idea was to give a formal meaning to the notion of ‘giving a proof.’ Intuitively, a
proof is a sort of computation where every step follows (and follows logically) from the previous
one, starting from the input. To put everything as broad as possible, Turing analyses the notion of
‘computation’ from an ‘input’ to an ‘output’ and uses this to give an alternative proof of Gödel’s
theorem.

Prominent examples of uncomputable functions are the Kolmogorov complexity function and
the universal algorithmic probability function. These are the fundamental notions in Li and Vitányi
(2008) and, among others, Downey and Hirschfeldt (2010); Nies (2009).

5. Complexity of computations

Theoretically, every intuitively computable (effectively calculable) function is computable by a per-
sonal computer or by a Turing machine. But a computation that takes 2n steps on an input of length n
would not be regarded as practical or feasible. No computer would ever finish such a computation in
the lifetime of the universe even with n merely 1000. For example, if we have 109 processors each
taking 109 steps/s, then we can execute 3.1× 1025 < 2100 steps/year. Computational complexity
theory tries to identify problems that are feasibly computable.

In computational complexity theory, we are often concerned with languages. A language L over
a finite alphabet 6 is simply a subset of 6∗. We say that a Turing machine accepts a language L if
it outputs 1 when the input is a member of L and outputs 0 otherwise. That is, the Turing machine
computes a predicate.

Let T be a Turing machine. If for every input of length n we have that T makes at most t(n)
moves before it halts, then we say that T runs in time t(n), or has time complexity t(n). If T uses
at most s(n) tape cells in the above computations, then we say that T uses s(n) space, or has space
complexity s(n).

For convenience, we often give the Turing machine in Fig. 1 a few more work tapes and designate
one tape as a read-only input tape. Thus, each transition rule will be of the form (p, s̄,a,q), where s̄
contains the scanned symbols on all the tapes, and p,a,q are as above, except that an operation now
involves moving maybe more than one head.
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We sometimes also make a Turing machine non-deterministic by allowing two distinct transition
rules to have identical first two components. That is, a non-deterministic Turing machine may have
different alternative moves at each step. Such a machine accepts if one accepting path leads to
acceptance. Turing machines are deterministic unless it is explicitly stated otherwise.

q5

q4

q3

q2

q1

q0

Finite control

Head

... ...BBBB B 1 0 110 0 0 1

Tape

Fig. 1: Turing machine.

. DTIME[t(n)] is the set of languages accepted by multitape deterministic Turing machines in
time O(t(n));. NTIME[t(n)] is the set of languages accepted by multitape non-deterministic Turing machines
in time O(t(n));. DSPACE[s(n)] is the set of languages accepted by multitape deterministic Turing machines in
O(s(n)) space;. NSPACE[s(n)] is the set of languages accepted by multitape non-deterministic Turing machines
in O(s(n)) space.. With c running through the natural numbers:

P is the complexity class
⋃

c DTIME[nc];
NP is the complexity class

⋃
c NTIME[nc];

PSPACE is the complexity class
⋃

c DSPACE[nc].

Languages in P, that is, languages acceptable in polynomial time, are considered feasibly com-
putable. The non-deterministic version for PSPACE turns out to be identical to PSPACE by Savitch’s
Theorem (Savitch, 1970), which states that NSPACE[s(n)]= DSPACE[(s(n))2]. The following
relationships hold trivially, P⊆ NP⊆ PSPACE. It is one of the most fundamental open questions
in computer science and mathematics to prove whether either of the above inclusions is proper.
Research in computational complexity theory focuses on these questions. In order to solve these
problems, one can identify the hardest problems in NP or PSPACE. The Bible of this area is the
works of Garey and Johnson (1979).

6. Importance of the Turing machine

In the last three quarters of a century, the Turing machine model has proven to be of priceless value
for the development of the science of data processing. All theory development reaches back to
this format. The model has become so dominant that new other models that are not polynomial-
time reducible to Turing machines are viewed as not realistic (the so-called polynomial-time
Computability thesis).

Without explaining terms, the random access machine (RAM) with logarithmic cost, or unit
cost without multiplications, is viewed as realistic, while the unit cost RAM with multiplications or
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the parallel random access machine (PRAM) are not so viewed. New notions, such as randomised
computations as in the works by Motwani and Raghavan (1995) (like the fast primality tests used
in Internet cryptographical protocols) are analysed using probabilistic Turing machines.

In 1980 the Nobelist Richard Feynman proposed a quantum computer, in effect an analogous
version of a quantum system. Contrary to digital computers (classical, quantum or otherwise), an
analogue computer works with continuous variables and simulates the system we want to solve
directly: for example, a wind tunnel with a model aircraft simulates the aeroflow and in particu-
lar non-laminar turbulence of the aimed-for actual aircraft. In practice, analogue computers have
worked only for special problems. In contrast, the digital computer, where everything is expressed
in bits, has proven to be universally applicable. Feynman’s innovative idea was without issue until
D. Deutsch (1985) put the proposal in the form of a quantum Turing machine, that is, a digital
quantum computer. This digital development exploded the area both theoretically and applied to the
great area of quantum computing.
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Gödel, K., 1931. Über formal unentscheidbare Stze der Principia Mathematica und verwandter Systeme, I.
Monatshefte für Mathematik und Physik, 38, 173–198.

Kleene, S.C., 1952. Introduction to Metamathematics, Van Nostrand, New York.
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Gregory Chaitin traces the path —

FROM THE HALTING PROBLEM
TO THE HALTING PROBABILITY

In this remarkable paper, Turing starts by observing that most real numbers are uncomputable –
indeed this is the case with probability one. Furthermore he observes that incompleteness is a corol-
lary of uncomputability, because if it is always possible to prove whether or not something is the
case using a fixed formal axiomatic theory, then there is in principle a mechanical procedure for
searching through all possible proofs and mechanically deciding the answer.

This makes incompleteness much more natural and fundamental than the assertion ‘I am unprov-
able!’ that is true if and only if it is unprovable, that was constructed by Gödel. So, following Turing
1936, we have a much bigger problem than following Gödel (1931).
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On the one hand he taketh away, on the other he giveth, for although Turing shows that for-
mal languages for mathematical reasoning are necessarily incomplete, he also shows that formal
programming languages can have a kind of completeness called universality. No formal language
can express all possible proofs, but programming languages are commonly universal, that is to say,
capable of expressing essentially any algorithm.

In our Search for the Perfect Language (to echo Umberto Eco), let us now consider how
expressive different programming languages can be. Given a particular programming language, two
important things to consider are the complexity H(x), namely the size in bits of the smallest program
to calculate x as a function of x, and the corresponding probability P(x) that a program whose bits
are chosen by using independent tosses of a fair coin will compute x.

We are thus led to select a subset of the Turing universal languages that minimise H and
maximise P; one way to define such a language is to consider a universal computer U that runs
self-delimiting binary computer programs πC p defined as follows:

U(πC p)= C(p).

In other words, the result of running πC p on U is the same as the result of running p on C.
Any two such universal languages U and V will necessarily have

|HU(x)−HV(x)|< c

and

PU(x) > PV(x)× 2−c, PV(x) > PU(x)× 2−c.

It is in this precise sense that such a universal U minimises H and maximises P.
Using such a U we can define the halting probability �, for example, as follows:

�=
∑

P(n)

over all positive integers n, or alternatively

�′ =
∑

2−H(n),

which has a slightly different numerical value but essentially the same paradoxical properties.
What are these properties?� is a form of concentrated mathematical creativity, or, alternatively,

a particularly economical Turing oracle for the halting problem, because knowing N bits of the
dyadic expansion of � enables one to solve the halting problem for all programs that compute
a positive integer that are up to N bits in size. It follows that the bits of the dyadic expansion of
� are irreducible mathematical information; they cannot be compressed into a theory smaller than
they are.

More precisely, it takes a formal theory of complexity ≥ N− c (one requiring a ≥ N− c bit
program to enumerate all its theorems) to enable us to determine N bits of �. From this it follows
that � is Borel normal, so that � is a particularly natural example of a normal number. In 1933,
Turing’s friend David Champernowne found a natural example of a number normal for blocks of
all size in base-ten; � provably has this property in any base.1

From a philosophical point of view, however, the most striking thing about � is that it pro-
vides a perfect simulation in pure mathematics, where all truths are necessary truths, of contingent,
accidental truths – i.e., of truths such as historical facts or biological frozen accidents.

1 Andrew Hodges conjectures that Turing’s work on normal numbers helped Turing to formulate the notion of a com-
putable real; see Hodges’ review of Copeland’s The Essential Turing in the November 2006 AMS Notices and Turing’s
A Note on Normal Numbers in Part II.
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Indeed, I have just recently come to understand that the most important property of � is that
it opens a door for us from mathematics to biology. The halting probability � contains infinite
irreducible complexity and in a sense shows that pure mathematics is even more biological then
biology itself, which merely contains extremely large finite complexity. For each bit of the dyadic
expansion of � is one bit of independent, irreducible mathematical information, while the human
genome is merely 3× 109 bases = 6× 109 bits of information.

Robert Irving Soare expands on —

TURING AND THE ART
OF CLASSICAL COMPUTABILITY

1. Mathematics as an art

Mathematics is an art as well as a science. It is an art in the sense of a skill as in Donald Knuth’s
series, The Art of Computer Programming, but it is also an art in the sense of an esthetic endeavor
with inherent beauty, which is recognised by all mathematicians.

One of the world’s leading art treasures is Michelangelo’s statue of David as a young man
displayed in the Accademia Gallery in Florence. There is a long aisle to approach the statue of
David. The aisle is flanked by the statues of Michelangelo’s unfinished slaves struggling as if to
emerge from the blocks of marble. These figures reveal Michelangelo’s work process. There are
practically no details, and yet they possess a weight and power beyond their physical proportions.
Michelangelo thought of himself not as carving a statue but as seeing clearly the figure within the
marble and then chipping away the marble to release it. The unfinished slaves are perhaps a more
revealing example of this talent than the finished statue of David.

Similarly, it was Alan Turing (1936) and (1939) who saw the figure of computability in the mar-
ble more clearly than anyone else. Finding a formal definition for effectively calculable functions
was the first step, but demonstrating that it captured effective calculability was as much an artistic
achievement as a mathematical one.

2. Defining the effectively calculable functions

The Entscheidungsproblem, the decision problem for first order logic, was described in the works
of Hilbert and Ackermann (1928). To show this problem unsolvable one first had to mathemat-
ically define the effectively calculable functions. From 1931 to 1934, Church and his student
Kleene developed the λ-definable functions. Church privately proposed to Gödel in 1934 that
λ-definable functions should be identified with the effectively calculable functions. Gödel rejected
this as ‘thoroughly unsatisfactory.’

Gödel (1934) defined the Herbrand–Gödel (HG) recursive functions, a class of functions as
a deductive formal system with initial functions and with two rules of inference to derive new
functions. Church (1936) proposed Church’s Thesis that a function is effectively calculable if and
only if it is Herbrand–Gödel recursive. Gödel still did not accept it. Kleene (1936) then defined
the µ-recursive functions by combining the (Gödel) numbering of syntax in Gödel’s Incomplete-
ness Theorem (1931) with the HG recursive functions. This definition is mathematically correct
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and prevailed for several decades in research papers from 1935 to 1965, but it is not intuitive,
being based on two unintuitive formalisms. By 1936 Gödel knew these definitions, and their formal
mathematical equivalence but he did not accept any of them. Indeed, Gödel suggested that it might
not be possible to give a mathematical definition of calculability, and he wrote in footnote 3 of
(1934) ‘. . . the notion of finite computation is not defined, but serves as a heuristic principle’.

Turing (1936) brought a new vision of human computability. Turing’s remarkable achieve-
ment consisted of several parts that we sketch only briefly because they are very well-known.
Turing: (1) defined an automatic machine (a-machine) based on his model of how a human being
might carry out a calculation; (2) defined a universal Turing machine whose inputs included both
programs and integers and could simulate any Turing machine on any input; (3) gave an extraor-
dinary demonstration that any function calculated by a human being could be computed by an
a-machine. Turing then stated what was later known as Turing’s Thesis that a function on the
integers is computable by a finite procedure if and only if it is computable by a Turing machine.

First, Turing gave a model based on a mechanistic approach to human computing, something the
previous models lacked. Perhaps, even more impressive was Turing’s careful analysis in component
parts of how a human being might calculate and then an argument why his Turing machine could
simulate this calculation. By comparison, Church (1936) tried to carry out a similar argument that
any calculable function is HG recursive, but Gandy (1988, p. 79) and Sieg (1994, pp. 80, 87) pointed
out the flaws in Church’s argument. Gödel never accepted Church’s Thesis, but he accepted Turing’s
Thesis at once, and stated:

‘That this is really the correct definition of mechanical computability was estab-
lished beyond any doubt by Turing’. Gödel Collected Works Volume III, 1995,
Section 3.3:

‘But I was completely convinced only by Turing’s paper’. Gödel: letter to Kreisel of May 1,
1968 (Sieg, 1994, p. 88).

‘The greatest improvement was made possible through the precise definition of the concept
of finite procedure, . . . This concept, . . . is equivalent to the concept of a ‘computable function of
integers’ Gödel (1951, pp. 304–305), Gibbs lecture.

Kleene (1981b, p. 49) wrote, ‘Turing’s computability is intrinsically persuasive’ but
‘λ-definability is not intrinsically persuasive’ and ‘general recursiveness scarcely so (its author
Gödel being at that time not at all persuaded).’ Kleene wrote in his second book (1967, p. 233),
“Turing’s machine concept arises from a direct effort to analyze computation procedures as we
know them intuitively into elementary operations. Turing argued that repetitions of his elementary
operations would suffice for any possible computation. For this reason, Turing computability sug-
gests the thesis more immediately than the other equivalent notions and so we choose it for our
exposition.”

Church, in his review (1937) of Turing (1936) wrote, Computability by a Turing machine, ‘has
the advantage of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately – i.e., without the necessity of proving preliminary theorems’.

3. Why Turing and not Church?

Why give so much credit to Turing and not to Church? In 1923–27 Church was explaining the
Hilbert papers to his Princeton thesis adviser, Oswald Veblen. Turing heard of them only a decade
later in the Cambridge seminar of M.H.A Newman. In 1936 when Church proposed Church’s The-
sis, he was a full professor at Princeton in 1936 when Turing was a mere graduate student. Church
used the model of the Herbrand–Gödel recursive functions, defined by Gödel, the most eminent logi-
cian at that time. They used the concept of recursion (induction) that had appeared in mathematics
since Dedekind (1888).
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Turing machines were a fanciful new invention without such a well-known, mathematical foun-
dation as recursion. By 1934 Church and Kleene had shown that most number theoretic functions
were λ-definable and therefore recursive, giving clear evidence for Church’s Thesis. Church was the
first to propose Church’s Thesis first in 1934 for the λ-definable functions and then in 1935–36 for
the Herbrand–Gödel recursive functions, even though Gödel did not believe it. Church got it right
and he got it first. The effectively calculable functions are the recursive functions.

If this had been the solution to a purely mathematical problem in number theory, Church would
have received at least half the credit and Turing would have been credited with a later but inde-
pendent solution to the problem. By any purely quantifiable evaluation Church’s contribution was
at least as important as Turing’s. Gödel’s Incompleteness Theorem (1931) and his proof (1940)
of the consistency of CH and AC were purely mathematical problems not requiring one to make
mathematically precise an informal concept like calculability. However, characterising human com-
putability was not a purely quantifiable process. Gödel (1946, p. 84) wrote, ‘one [Turing] has for
the first time succeeded in giving an absolute definition of an interesting epistemological notion,
i.e., one not depending on the formalism chosen’.

4. Why Michelangelo and not Donatello?

Donatello (1386–1466) was a sculptor in Florence. In 1430 he created the bronze statue of David,
his most famous work. This was a remarkable work, innovative in many ways, the first free-standing
nude statue since ancient times, the first major work of Renaissance sculpture. Now compare this
to Michelangelo’s David, in 1504, the most famous statue in the world. Michelangelo broke away
from the traditional way of representing David, with sword in hand and with the giant’s head at his
feet (as with Donatello). Michelangelo has caught David tense with increasing power as he is about
to go to battle. Michelangelo places him in perfect contraposto outdoing the Greek representations
of heros.

Michelangelo and Turing both completely transcended conventional approaches. They created
something completely new from their own visions, something that went far beyond the achievements
of their contemporaries. Second, both emphasised the human form. Michelangelo brought out the
human form in his statues and the Sistine ceiling. Turing invented a system that simulates how a
human being computes and then demonstrated that his creation did capture human computing.

Frank Zölner wrote in his book Michelangelo Life and Work (2010, p. 7)

“As innovative as Leonardo da Vinci, who was a generation older, as productive as his slightly
younger contemporary Raphael of Urbino, as secretive as Giorgione in Venice and blessed
like Titian with a long life and unbridled creativity, Michelangelo Buonarroti embodies,
perhaps most completely, the concept of the artist in the modern era.”

Likewise, Alan Turing embodies, perhaps most completely, the concept of human computability
in the modern era. Regarding the creative process, Turing 1939, Sec. 11 wrote,

“Mathematical reasoning may be regarded rather schematically as the exercise of a combina-
tion of two faculties, which we may call intuition and ingenuity. The activity of the intuition
consists in making spontaneous judgments which are not the result of conscious trains of
reasoning. These judgments are often but by no means invariably correct. . . .
The exercise of ingenuity in mathematics consists in aiding the intuition through suitable
arrangements of propositions, and perhaps geometrical figures or drawings.”

Turing’s first great contribution was by intuition. Although others were studying deductive sys-
tems like HG recursion, Turing’s intuition drew him to a completely new model more clearly
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reflecting in mechanical terms how a calculation is carried out. His second contribution was his exer-
cise of ingenuity which led him to a demonstration that anything computed by a human being could
be computed by a Turing machine. Gandy (1988, p. 82) observed, ‘Turing’s analysis does much
more than provide an argument for’ Turing’s Thesis, ‘it proves a theorem.’ Furthermore, as Gandy
(1988, pp. 83–84) pointed out, ‘Turing’s analysis makes no reference whatsoever to calculating
machines. Turing machines appear as a result, a codification, of his analysis of calculations by
humans.’ Sieg (1994, 2006, 2009), gives a full analysis of Turing’s contribution. Wittgenstein
remarked about Turing machines, ‘These machines are humans who calculate’.

5. Classical art and classical computability

The term ‘recursive’ to mean ‘computable’ began with Church (1936) and was developed by Kleene
to prevail for 60 years in the form, ‘recursive function,’ ‘recursively enumerable set’ and ‘recursive
function theory’. In June 1979, Gerald Sacks and I had each been invited to give a series of four
lectures at the Italian Mathematical Summer Center (C.I.M.E.). Gerald was to lecture on gener-
alised recursion theory (GRT) and I on recursion theory on the integers ω, at that time sometimes
called ordinary recursion theory (ORT). I began the trip with a few days in Florence revisiting the
Renaissance art treasures of the Uffizi gallery and Michelangelo’s statues in the Accademia. As the
train made its way to Bressanone at the very north of Italy in the Dolomite alps, I was still basking
in the memories of the art of the Renaissance.

As our courses began in Bressanone, Gerald kept repeating the term ‘ordinary recursion theory
(ORT)’. He was doing nothing wrong, simply using the term as it had come to be used in the
previous decade to distinguish ω-recursion theory from GRT. And yet as the phrase kept cascading
down it clashed more and more with my esthetic sense. It seemed far too impoverished to describe
the magnificent theory created by Turing(1936, 1939), Post (1944) and the others. My colleagues
at the University of Chicago, Alberto Calderone and Antoni Zygmund, worked in singular integrals
and classical analysis, but classical analysis was never called ‘ordinary analysis’ to distinguish it
from functional analysis. No one ever called the art of the Renaissance ‘ordinary art’ to distinguish
it from Baroque art or Impressionism.

By my third lecture it all came together. I coined the term ‘classical recursion theory (CRT)’ and
developed a whole lecture about the analogies between CRT and the classical art of the Italian High
Renaissance. The lectures and art analogies were published in the works done by Soare (1981), but
it is a rather obscure reference and not widely read. The lectures were expanded at the Cornell AMS
meeting in July 1982, but not published there. Some of the analogous characteristics are these.

5.1. Human scale

A Roman arch such as the Arch of Constantine next to the Colosseum in Rome is designed to arouse
awe and to dwarf the human figure. In contrast the Loggia della Signoria in Florence is on a human
scale and designed to display statues of human size. The art and sculpture of the High Renaissance
were designed to display the human form. Analogously, the computability theory of Turing and
Post works on the integers, which can be represented as in Turing by a finite sequence of ones and
blanks. GRT works on infinite ordinals or on functionals of higher type.

5.2. Composition and balance

The paintings of the Renaissance were characterised by highly complex compositions which were
balanced to keep the eye from leaving the painting. Leonardo’s The Virgin and Saint Anne has a very
complicated and carefully designed composition around the three figures, Mary, her mother, Anne
and her son Jesus. The heads and feet form one large triangle. The arms and child form an inner
rectangle. Everything holds the eye and prevents it from leaving the painting as it might in a Baroque
painting. In classical computability, theorems such as the Friedberg Muchnik theorem are proved by
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a delicate balance of opposing requirements, positive requirements wanting to enumerate elements
into a set A and negative requirements wanting to keep elements out. These constructions are often
defined with as much intricacy and balance as a Renaissance composition. Other characteristics will
be developed in later papers.

6. Computability and recursion

Church (1936) and Kleene began to use the term ‘recursive’ to mean ‘computable’ as well as ‘induc-
tively defined’. Since Kleene was the main figure in the subject after 1940, this term had became
standard for 60 years from 1936 to 1996. By the 1990s this usage had become problematic. When
one referred to a recursive function did one mean ‘inductively defined’ or ‘effectively computable?’
Also, the term ‘recursive’ was not well understood in the mathematical and scientific community
and, if understood at all, it was identified with the elementary methods of iteration and recursion
in a first programming course. Neither Turing nor Gödel ever used the word ‘recursive’ to mean
‘computable’ or ‘recursive function theory’ to name the subject. When others did, Gödel reacted
sharply negatively stating, ‘the term in question [recursive] should be used with reference to the
kind of work Rosza Peter did’.

Soare (1996, 1999a) analysed the history and meaning of computability and recursion and sug-
gested that the terms ‘Computability Theory’ and ‘computably enumerable set’ be used in place of
the recursive version. This was largely adopted within a few years.

7. The art of exposition

In the art of exposition it is not sufficient to have a correct theorem with a correct proof. It must be
the right theorem with the right proof, relating the results which came before and those which will
come after in an aesthetically pleasing mix. The entire work must be artistically beautiful and must
appeal to the imagination.

The initial expositions in the study by Turing (1936) and Post (1944) were clear, intuitive and
very well motivated. In contrast, Kleene (1936) had developed the Kleene T-predicate as a Gödel
coding of the Herbrand–Kleene recursive functions, which had little appeal to the imagination.
Kleene’s mathematical results were very difficult but his T-predicate notation was hard to read. It
dominated the proofs in the subject for over 30 years. For example, Friedberg (1957a) used the
Kleene T-predicate style proofs in his solution to Post’s problem and his completeness criterion
(Friedberg, 1957a), which made the proofs difficult to read. Compare these proofs with the informal
style of Rogers’ (1967) book’s written in a clear and intuitive style, which opened the subject to a
generation of students and which was continued in Soare’s (1987) book.

8. Conclusion

Mathematicians are not assigned projects like building bridges. Like artists, they choose which
problems to work on according to taste and beauty. Like artists, what they produce is evaluated on
the basis of beauty as well as mathematical results. The greatest results are those arising from a
completely new vision and a profound intuition into the area.
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Rainer Glaschick takes us on a trip back to —

TURING MACHINES IN MÜNSTER

In the University of Münster (Germany) existed a room with Alan Turing’s name, the Turingraum.
It contained documents and, as tangible objects, small machines made from post office relays,
designed and built by Gisbert Hasenjaeger and Dieter Rödding. While the Turingraum does no
longer exist, a number of the artefacts have been kept by the Hasenjaeger and Rödding families,
and now made accessible for analysis and maybe reconstruction.

One of these artefacts is a universal Turing machine with 16 relays, which has 4 states, 2 sym-
bols, and 3 non-erasable tapes, apparently smaller than any machine of this type known so far. Also,
it needs only 15 bits to encode a program to add a mark at the end of a chain of marks on the result
tape.

1. Introduction

The Institut für mathematische Logik und Grundlagenforschung of the University of Münster in
Germany had a Turingraum, dedicated to Alan Turing’s work and the Turing machine in particular,
initiated and run from 1960 until 1985 by Gisbert Hasenjaeger and Dieter Rödding.

The Institute in Münster was the first and for a longtime leading one in the area of mathematical
logic in Germany. It was established in 1936 by Heinrich Scholz, followed in 1953 by Hans Hermes
(until 1966) and Dieter Rödding (until 1985). H. Scholz was one of the two persons who asked Alan
Turing for a reprint of his “On computable numbers”, which, including a dedication, is still in the
archives of the University. H. Hermes is well known for his books on computability and logic, where
he established a prominent role for Turing machines. H. Hermes was also the first one who proved
under the title Die Universalität programmgesteuerter Rechenmaschinen (Hermes, 1954) that an
idealised programmable electronic computer could be programmed to duplicate the behaviour of
any Turing machine.

The Turingraum contained a collection of physical machines that were either Turing machines or
register machines.1 The devices in the Turingraum were conceived and built by Gisbert Hasenjaeger
and Dieter Rödding.

Unfortunately, the Turingraum does no longer exist, and no specific documents could be found
any more. Fortunately, Irmhild Hasenjaeger and Walburga Rödding have preserved several of those
objects. Norbert Ryska2 found this out and convinced the families to entrust us the objects for further
study, which we thankfully acknowledge here.3

2. The object

The device selected for in-depth analysis has a central box and three peripherals, one peripheral
obviously being a Turing tape, see Fig. 1. This object was shown in Oxford during 2012 and then
in Paderborn in the special exhibition on Alan Turing in the Heinz Nixdorf Museum.

As E. Börger wrote in his obituary for Dieter Rödding (Börger, 1987), a universal Turing
machine was built between 1958 and 1960, which is probably the machine covered here. He also

1 They are also called counter machines.
2 The director of the Heinz Nixdorf Museum.
3 Special thanks to E. Börger for his continuous support.
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reported from his own experience, confirmed by others, that machines of this kind were shown and
operated in lectures on computability.

The machine is shown in Fig. 1. It seemed to be a fairly complete and attractive object for
investigation. The detailed structure could be reconstructed now.

Fig. 1: Hasenjaeger’s machine.

2.1. Hardware layout

The machine has a main cabinet, with 16 relays, 3 connectors, a switch, 5 buttons and 4 lamps.
Three different kinds of ‘tapes’ can be plugged to the main box:. Tape P, the program tape. It is a circular tape with 18 positions, that can be set by small switches.

Using a selector switch, it can be ‘moved’ in only one direction.. Tape Q, the counter tape. Two selector switches are connected back-to-back, so that a signal is
generated iff both have the same position. It is thus a counter (modulo 18), that can be incre-
mented and decremented, and zero sensed. In terms of Turing tapes, it is an immutable tape with
a marker every 18th position.. Tape R, the result tape.4 It can be moved in both directions, but once marked, the mark cannot
be erased. Used was 35-mm film, split longitudinally, so that one border has a perforation. The
marks were punched as triangular notches at the opposite border. A lever sensed the marks, and
was raised by a magnet automatically whenever the tape was moved or punched.

The main cabinet has a fixed logic, where 4 of the 16 relays provide a two-phase clock, and the
remaining 12 relays are pairwise connected to provide 6 flipflops. Two pairs of flipflops were con-
nected in a master-slave mode, so that during one phase of the clock the information was transferred
from the master to the slave. In the other phase, the state table is evaluated using contact trees, either
moving (or marking) the tapes, and sets the master flipflops for state transitions.

Thus, the machine has a two-bit state memory; the states labelled with roman numerals I, II, III
and IV. Four lamps show the current state, and four of the push buttons allow to directly set a state.
The other push button allows single-step advance, and the switch allows to run in continuous mode.

4 Labelled Rechenband, i.e., calculating or computing tape.
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The reconstructed state table is shown in A. Slightly different from what Hasenjaeger wrote
(Hasenjaeger, 1987), the encoding is: 1=*, 01=R, 001=L, 000n1, where n stands for n zeroes and
* for mark. n is the the equivalent of the conditional transfer, that Wang (1957) denoted Cn, but
in our case it is a relative jump address, i.e., a skip of n instructions. As all instructions end in a
mark, the state machine skips marks on tape P, if tape R is marked; otherwise the n zeroes just read
are discarded. Because tape P is cyclic, a long-enough skip goes back, resulting in a program loop.
Because all instructions except mark have zeroes, forward jumps are possible.

2.2. Examples

The first example uses the bit pattern found on the machine, but this is not necessarily authentic, as
over the years someone may have flipped some switches just for fun.

The bit string 101101010000111100 found on the tape produces this sequence of operations:

* R * R R 1 **** L R * R R 1 **** ...

resulting in the sequence **_*_*_*... on tape R. Note that the first bit is interpreted only at the
beginning as a mark instruction; because in the other rounds, it is the end bit of the L instruction.
Also, the 1 is redundant on a blank tape, as the previous instruction has just reached a blank square.

Wang (1957) gives the following program to position onto the space at the end of a chain of
marks: 1.* 2.R 3.C2 4.R 5.L. The equivalent would be * R 3 R L, using 1+ 2+ 7+ 2+
3= 15 bits, but staying busy because of Wang’s convention using RL as stop or return.

Slightly modifying the machine (so that it stops if it tries to mark a marked tape), a program to
append a mark at the end of a (possibly empty) chain of marks could be done with 2 * * R, using
only 6+ 1+ 1+ 2= 10 bits.

When I began the analysis, I did not believe it would be possible to build a UTM with 16 relays
only, because according to the the very recent work of D. Woods and T. Neary (Neary, 2008; Woods
and Neary, 2009), a (4,2) UTM (in this configuration) is not yet known.5

The compactness of this machine description clearly demonstrates the superiority of Hasen-
jaeger’s and Rödding’s concept to use Wang’s programmatic method instead of the encoding of
state tables.

3. The papers

Two papers have been published by G. Hasenjaeger, which contain substantial information about
his and D. Rödding’s work on Turing machines. These papers were published relatively late;
Hasenjaeger left Münster to become professor in Bonn in 1962.

3.1. Universal Turing machines and Jones–Matiyasevich-masking

In the article with the above title, Hasenjaeger (1984) made several remarks that are related to our
objects.

The article starts with a section Background as follows:

When I learned from reports given by BÖRGER (spring 1982) and JONES (fall 1982) about
a new combination of coding of sequences with coding of Boolean algebras as a tool to
describe the behaviour of register machines, I tried to apply this tool on my earlier variants
of small universal Turing machines hoping these application should lead to some sufficiently
simple solutions for exponential diophantine predicates universal for r.e. sets.

5 T. Neary also accounts for the efficiency of a UTM, and I think, the number of bits to encode a certain problem is
important too.
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This confirms that Hasenjaeger desired to make a small universal Turing machine.
Section 4 in his paper has the title Universal Turing machines, and its complete text is as

follows:

As decoding a number (introduced as an additional argument indicating a program or a par-
ticular machine) certainly needs more states, smaller solutions are obtained by introducing
an additional program tape or program loop. Instead of targets for conditional jumps (or
”gotos”), an additional register to count the ”in between” for suspended operations seems
adequate. As besides conditional halt and jump three operations on the tape are sufficient (l,
r, print, or l, r, change sign) hence are to be transcribed, a similar code should also serve for
a multiple counter concept: Just one counter is on duty; operations are: add 1, take 1, change
of counters in a given cyclic order.

Not only does he write about a circular program tape, there is also an alternate use of tapes, like
explained above for the tapes P and Q for the Hasenjaeger machine.

Note also the indication that state changes are coded as a distance to the next entry on the
programme tape, accumulated to and then consumed from a counter tape, instead of absolute state
numbers.

Section 5 has the title From Turing tapes to counting registers and starts as follows:

As 25 years ago finding it harder to materialize a Turing tape with an operation: change
symbol (instead of: print 1, not erasing) we introduced a multitape version: one 1 on each
tape, and moving for counting. By changing the tape ”on duty” in a cyclic order all tapes can
be operated

It is not clear which machine was meant having tapes with a single mark and moving for counting,
i.e., if the tapes using selector switches were included.

More important appears the idea not to use 3n different instructions for n counter tapes to enlarge,
decrease and test, but instead 4 for enlarge, decrease, test and cyclic change. Whether this attempt
really is advantageous, depends on the problem and code, because switching to a specific register
may need up to n− 1 change instructions.

3.2. On the early history of register machines

In 1987, G. Hasenjaeger published a short note with the above title (Hasenjaeger, 1987) that had
the following footnote on the title page: This report on my collaboration with D. Rödding is not
restricted to the item on the title; but that item seems to be the most remarkable result of our
joint activities. Reading it in the context of the above device, this publication reveals important
information.

The second part, with the heading Turing Machines, reveals a lot of information in relation to
Alan Turing.6 In the first paragraph, the Turing machines to be built are characterised as theoretical,
i.e., not for practical use.

It is also mentioned that the people in Münster were not aware of the practical work of Alan Tur-
ing at that time, in particular the ACE.7 In the next paragraph, Hasenjaeger mentions that Wang’s
article (Wang, 1957) had a high influence on the following activities to materialise theoretical
machines.

6 G. Hasenjaeger had worked for the German military and been assigned the task of examining the security of Enigma. He
detected weak points, but he could not foresee that the Allies had long since been taking advantage of these weaknesses
(Schmeh, 2009).
7 Astonishing enough, that in 1987 Hasenjaeger mentioned the ACE, which is still unknown to many experts in this field.
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Note the remark that the unreliablitiy of the tape punch lead to the search for alternatives, and,
via Moore’s practical proposal (Moore, 1952), to the idea of separate counting and programme
tapes, and finally perhaps to Rödding’s theoretical work on register machines and decomposition
of automata. This clearly indicates that attempts to materialise theoretical constructs can lead to
fruitful advances in theory.

The idea of alternatively scanning tapes, as mentioned here, has already been present in Hasen-
jaeger’s machine, described in detail above. I originally suspected that the fact that tape Q could
only be used in states II and IV, and tape R only in states I and III, was caused by a lack of relays
and contacts, once the 16 relays were nicely assembled. Maybe we have the not so uncommon case
that the desire to use only 16 relays lead to the idea of using tapes alternatively, which was later
more extensively used.

Hasenjaeger mentioned that Rödding already reported his results in H. HERMES’ colloquium,
when similar results of M. MINSKY [1961] became known. And some sentences later: I think
we were angry enough not to go into MINSKY’s details. Thus, I realised only much later that
these details were quite different. This is quite a pity, as his (4,2) UTM should have been pub-
lished, not only for the small size, but also for the observation that using Wang’s programme
oriented encoding was also practically superior over the traditional attempt of encoding state tables.8

E. Börger remembered (Börger, 1987) in this context that the unreliability of the first tape drive rose
the desire to avoid punching, and became the abstract task to use a fixed, finite maximum of marks
on a tape, leading Hasenjaeger and Rödding to the idea of using a tape with a single immutable
marker as a counter.

Noting that using counters is a basic building block for Turing machines, D. Rödding followed
this idea to use (infinite) counters to define computability, not only because this model made it easier
to teach computability at elementary level. The final version used only two operations, increment
and decrement, with just a (backwards) loop if the decremented register is not yet zero. He published
a very clear and comprehensible description (Rödding, 1972) in German. Early publications on
register machines are by Minsky (1961), and Shepherdson and Sturgis (1963), the latter citing the
above mentioned proof of Hermes (1954) at the end of Section 1.

4. Conclusion

From the legacy of G. Hasenjaeger and D. Rödding, a small machine, made from old relays, was
obtained, which was used to practically demonstrate Turing machines. Restricted to really small
machines and due to difficulties in building tape drives, a machine was built with a mark-only
result tape, a counter tape and a read-only program tape. Using this configuration, a (4,2) UTM was
built that could encode a simple program in only 15 bits of the program tape. This was achieved
not by encoding state tables, but by following H. Wang’s theoretical proposal of using programs
instead. The use of relative instead of absolute (preferably backward) jumps mirrored the transi-
tion to structured programming, and influenced D. Röddings final concept of register (or counter)
machines.

5. State machine

The reconstructed state table is printed below. State numbers are in arabic digits, column 1 shows
the state number, column 2 the conditions for the tapes P, Q and R (dot means do not care), column
3 shows the actions (dot for no action) and column 4 the next state (dot for no state change):

S PQR PQR S’

8 In an early version of this paper, I started to argue that using state tables is more efficient, as it allows more actions to
be done in parallel. While this is true for hardware logic, it is obviously is wrong for programs on Turing tapes.
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I: P=1 is punch, P=0 other instruction
1 1.0 +.* . mark if not marked, next instruction 1 1.1 +.. . no
need to mark if marked, next instruction 1 0.. +.. 2 other
instruction, take the 0

II: R, L or other; Q is zero on entry
2 10. +.R 1 go right, next instruction 2 00. ++. . save 0 in
Q, check next P bit 2 11. +-L 1 next P bit is 1, go left, clear
Q, next inst. 2 01. +-. 3 next P bit is 0, this is a skip

III: skip part 1: count zeroes to Q, if mark
3 0.0 +.. . R has space, skip zeroes until P=1 3 0.1 ++. . R has
mark, count zeroes until P=1 3 1.0 +.. 1 end found; R has space:
next instruction 3 1.1 .+. 4 end found; R has mark, need to skip

IV: skip part 2: execute
4 01. +.. . while Q>0, skip zeroes on P, leave Q 4 11. +-. .
while Q>0, skip a one, decrement Q 4 .0. ... 1 Q=0, next
instruction

Remark:
Meanwhile, some of Hasenjaeger’s notes and a bidirectional uniselector have been found, show-

ing that the machine was built for a bidirectional tape P. Thus, in the state table for state 4 tape P is
advanced backwards instead of forwards:

S PQR PQR S’
4 01. -.. . while Q>0, skip zeroes backwards on P, leave Q
4 11. --. . while Q>0, skip a one backward, decrement Q
4 .0. +.. 1 Q=0, end of backjump

The machine still never did jump conditionally, until today, when we have built a new
bidirectional tape P from material left by Hasenjaeger.
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From K. Vela Velupillai —

REFLECTIONS ON WITTGENSTEIN’S DEBATES
WITH TURING DURING HIS

Lectures on the Foundations of Mathematics1

Andrew Hodges (2008) recalled Max Newman’s characterisation of Alan Turing as ‘at heart more
an applied than a pure mathematician’, and went on (p. 4; italics added):

“It might be more true to say that Turing had resisted this Cambridge classification from
the outset. He attacked every kind of problem – from arguing with Wittgenstein, to the
characteristics of electronic components, to the petals of a daisy.”

This prompts me to return to Turing’s ‘debates’ with Wittgenstein – now remembering Max
Newman’s characterisation – during the latter’s Lectures on the Foundations of Mathematics
(Wittgenstein, 1939) [1976]. It is little realised – indeed, to the best of this writer’s knowledge,
never mentioned – that when Turing attended these lectures, in the Lent and Easter terms of 1939,
he was the young (Turing was not quite 27 years old and Wittgenstein turning a vintage 40!) author
of Systems of logic based on ordinals (Turing, 1939) where ‘ways in which systems of logic may be
associated with constructive ordinals’ (couched in the language of the λ-calculus) was a main theme.
Feferman, in his perceptive Preface to ‘Systems of Logic’ (Turing, 2001, p. 79) observed, correctly
in my opinion: Turing never tried to develop an over-all philosophy of mathematics. . . ’ Yet, he
(Turing) was engaging one of the great philosophers of the twentieth century on his (Wittgenstein’s)
interpretation – even ‘deconstruction’ – of Cantor’s work on Transfinite Numbers!

It is a pity that in these famous lectures by Wittgenstein, Turing was ‘set up’ as the ‘strawman’
representing orthodox mathematics and mathematical logic, defending the conventional notion of
consistency (not related to its specialised version in the Gödel–Rosser work) in mathematics. Had

1 I write as an economist who is painfully aware that uninformed references to this dialogue between one of the great
philosophers and the pioneer of computability recur in the methodological literature of economics (cf., e.g., the muddled
invoking of a particular part of this famous dialogue by McCloskey (1991, pp. 13–4)).
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the protagonists been privy to the Newman–Hodges picture of Alan Turing, who ‘began (and ended)
with the physical world’ (Hodges, op.cit., p. 4), the subsequent misrepresentation of Wittgenstein’s
stance2 may have been prevented.

The context for the particularly (in)famous part of the Wittgenstein–Turing dialogue on consis-
tency/contradiction in mathematics (and mathematical logic), may well be the original few remarks
in Wittgenstein (op.cit, pp. 211–212, Lecture XXII; italics added):

It was suggested last time [i.e., Lecture XXI] that the danger with a contradiction in logic or
mathematics is in the application. Turing suggested that a bridge might collapse.

Now it does not sound quite right to say that a bridge might fall down because of a
contradiction [in logic or mathematics].”

Now, to place this in proper historical perspective, compare Stanislaw Ulam’s dialogue with Gian-
Carlo Rota on collapsing bridges and logical contradictions (Rota, 1986, p. 2; italics added):

“However, out of curiosity I [Rota] decided to play devil’s advocate, and watch his reaction.

But if what you [Ulam] say is right, what becomes of objectivity, an idea that is so defini-
tively formalized by mathematical logic and by the theory of sets, on which you [Ulam]
yourself have worked for many years of your youth?

There was a visible emotion in his [Ulam’s] answer. Really? What makes you [Rota] so sure
that mathematical logic corresponds to the way we think?3 You are suffering from what
the French call a ‘deformation professionelle.’ Look at the bridge over there. It was built
following logical principles. Suppose that a contradiction were to be found in a set theory.
Do you honestly believe that the bridge might fall down?

Do you [Ulam] then propose that we give up mathematical logic? said I [Rota], in fake
amazement.

Quite the opposite [said Ulam]. Logic formalizes only very few of the processes by which
we actually think4. The time has come to enrich formal logic by adding to itsome other
fundamental notions5.”

In the years before Laurent Schwartz elegantly encapsulated the Dirac delta function6 with his
notion of generalised functions, von Neumann had ‘banished’ it from ‘official’ use in physics and

2 Most egregiously represented by Charles Chihara (1977), only partially blunted by Shanker’s brilliant counterattack in
Shanker (1987).
3 Brouwer had been there, and Wittgenstein may have remembered it, long before them, and had remarked, in his
Inaugural Lecture of 1912 (Brouwer, 1913, p. 84; italics added), most perceptively:
“To the philosopher or to the anthropologist, but not to the mathematician, belongs the task of investigating why certain
systems of symbolic logic rather than others may be effectively projected upon nature. Not to the mathematician, but to
the psychologist, belongs the task of explaining why we believe in certain systems of symbolic logic and not in others,
in particular why we are averse to the so-called contradictory systems in which the negative as well as the positive of
certain propositions are valid.”
4 If, at this point, Ulam had added ‘and act’, he would have completely encapsulated Wittgenstein’s prescription for
circumventing contradictions in mathematics and logic by means of ‘rules’.
5 The original journal article has ‘motions’, but the context makes it clear that what is meant is ‘notions’.
6 Dirac himself attributed the origin of the idea to his ‘early engineering training’ (cf., Kragh, 1990, p. 41) – surely
paralleling both Wittgenstein’s early training as an aeronautical engineer and Turing’s above characterisation by Newman
and Hodges.
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quantum mechanics for being mathematically ‘improper’. Meanwhile, physicists, with princely
unconcern for the prestigious embargo placed on the delta function, went on happily using it for
calculations. Engineers, of course, were blissfully unaware of von Neumann’s prestige or embargo
and went on calculating with the Heaviside operational calculus.

So far as I know, neither the Feynman Integral, nor Bishop’s constructivism, have been axioma-
tised. This has not prevented perfectly valid calculations using Feynman integrals in quantum
electrodynamics. For all we know, there are, lurking in the inner recesses of the Platonic Universe,
the eventually discoverable logical foundations, which will show that the use of the Feynman inte-
gral entails contradictions. No quantum physicist in his right mind would pay the slightest attention
to such logical hair-splitting (cf., also Schwartz, 2001, Chapter VI).

I am suggesting, therefore, that a sympathetic reader (an always elusive creature), should
approach this famous dialogue between a great philosopher of, among other things, mathemat-
ics, and a great logician and founding father of computability theory, remembering that both of
these intellectual giants were also, fundamentally, wedded to the ‘physical world’ – one with an
explicit engineering background and the other as an ‘applied mathematician’, both camouflaging as
logicians and mathematicians perplexed by semantic paradoxes and grammatical nuances that they
thought could be sorted out by dialogue.
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Jan van Leeuwen and Jiřı́ Wiedermann on —

THE COMPUTATIONAL POWER OF TURING’S
NON-TERMINATING CIRCULAR A-MACHINES

1. Introduction

For readers familiar with the concept of Turing machines as described in contemporary textbooks,
reading the definition of a Turing machine in Turing’s original paper (Turing, 1936) may present a
surprise. It is not only the difference in notational style or in the vocabulary used when speaking
about these machines (called ‘automatic machines’, or simply ‘a-machines’), which may be surpris-
ing. Astonishing may be the fact that properly designed a-machines never halt. a-Machines of this
kind are called circle-free and their task is to output infinite sequences of binary digits representing
computable real numbers ∈ [0,1]. Obviously, for computing the infinite expansions of real numbers
such a behaviour is perfectly desirable. Nevertheless, Turing noted that there may also be machines
– so-called circular machines – which at some point stop producing output digits, i.e., they alto-
gether produce only a finite number of output digits. This may happen in two different ways. Either
the machine at hand reaches a configuration from which there is no possible further move, or the
machine goes on moving without producing any further output digits.

The modern versions of circle-free a-machines are still being used as a formal model in so-called
computable analysis, a field in which one studies the parts of real analysis and functional analysis
that can be carried out in a computable manner (cf. Weihrauch (2000)).

The circular a-machines that terminate, i.e. that halt after performing a finite number of steps
yield the basis of today’s computability and complexity theory. In fact, they are the forerunner of
the contemporary Turing machine model.

Non-terminating circular a-machines run forever but produce only a finite number of output
symbols. It seems that no special attention has been paid to such machines. From a classical compu-
tational point of view, the machines are strange: in spite of the fact that their computation is infinite,
they are doomed to produce but a finite number of outputs. Turing himself proved that the property
of circularity of a-machines cannot be tested effectively by any other a-machine. What could such
machines be good for?

Recently, we have investigated a new computational model of unbounded computational
processes – so-called red-green Turing machines (van Leeuwen and Wiedermann, 2012).

The motivation for considering red-green Turing machines comes from the modern, typical
computer applications in which the core mechanism is a multi-process system that is always up
and running. Control goes from process to process and, whenever a process has its turn, the pro-
cess computes until it executes an instruction that explicitly transfers control to another process.
We have studied and appraised computationally the mechanism of control passing among the pro-
cesses in the course of unbounded computation. The computing power of red-green Turing machines
goes beyond that of classical Turing machines, reaching up to the second levels of the arithmetical
hierarchy, viz. 12 or even 62.

We will show that red-green Turing machines can be seen as a modern variant of Turing’s
original circular non-terminating a-machines producing a finite number of output symbols. This
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connection between the two models gives a new link between Turing’s 1936 paper and contempo-
rary computing. The connection straightforwardly leads to the characterisation of the computational
power of the underlying a-machines and thus reveals an unexpected super-Turing computational
potential of an authentic, ‘old-fashioned’ machine model of Turing.

The rest of this short note is organised as follows. In Section 2 we describe both models –
circular non-terminating a-machines producing a finite number of output symbols and red-green
Turing machines – in more detail. Next we prove their computational equivalence. In Section 3 we
discuss the significance of our result. Some conclusions are given in Section 4.

2. a-Machines and red-green Turing machines

2.1. a-Machines

Using the contemporary terminology of Turing machines, an a-machine can be seen as a
deterministic single tape Turing machine with working alphabet 6 and input and output alphabet
A= {0,1}, with 6 ∩A 6= ∅. In Turing’s terminology, symbols from A are called ‘figures’ or symbols
of the first kind, whereas the symbols from 6 are called symbols of the second kind.

The input – a string from {0,1}∗ – is written on the tape at the beginning of the computation. The
computation of an a-machine now proceeds as usual, reading, writing and rewriting the symbols on
the tape and moving the head in accordance with the machine’s program. At each time, the sequence
of symbols from A printed on the tape (as a subsequence of all symbols printed by the machine) is
called the sequence computed by the machine (cf. Turing (1936)), or simply the result at that time.

In Turing’s own words (Turing, 1936): “If a computing machine never writes down more than a
finite number of symbols of the first kind it will be called circular. Otherwise it is said to be circle-
free. A machine will be circular if it reaches a configuration from which there is no possible move,
or if it goes on moving, and possibly printing symbols of the second kind, but cannot print any more
symbols of the first kind.”

Thus, a circular a-machine is a machine which on a given input prints a finite number of output
symbols (not necessarily into different cells), and then either halts, or goes on forever, performing
an infinite number of steps in which no output symbol is printed anymore.

2.2. Red-green Turing machines

A red-green Turing machine is formally almost identical to the classical model of Turing machines.
The only difference is that in red-green Turing machines the set of states is partitioned in two disjoint
subsets: the set of green states, and the set of red states, respectively. There are no halting states.
A computation of a red-green Turing machine proceeds as in the classical case, changing between
green and red states in accordance with the transition function. A moment of change in state color
is called a mind change. A formal language is said to be recognised just in case on the inputs of
this language and precisely those, the machine computations ‘stabilise’ in green states, i.e., from a
certain time on, the machine keeps entering only green states. Similarly, a language is said to be
accepted if and only if the inputs from the language are recognised, and the computations on the
inputs not belonging to this language eventually stabilise in red states.

The model captures in a neat way a main feature of the current thinking of computing: namely,
viewing computations as potentially infinite sequences of communications between processes,
oscillating between different states of mind but ultimately converging on a fixed behaviour.
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2.3. Relation between a-machines and red-green Turing machines

For our purpose – comparing red-green machines with a-machines – we will only consider deter-
ministic single tape red-green machines over input/output alphabet A computing partial functions
f : {0,1}∗→ {0,1}∗. The result of computation will be defined similarly as in the case of a-machines.
More specifically, if for input x f (x) is defined, f (x) will be written in binary as a finite sequence of
symbols over A, as a subsequence of all symbols printed on the tape. If f (x) is undefined then f (x)
is represented by an infinite sequence.

Theorem 2.1. Let A be a circular a-machine, let R be a red-green Turing machine, and let f :
{0,1}∗→ {0,1}∗ be a partial function. Then f is computed by A if and only if f is computed by R
with f (x) mind changes.

Proof. (Sketch.) We show that, if f is computed by a non-terminating circular a-machine A, then f
can be computed by a red-green machine R performing f (x) mind changes.

On input x, machineRworks as follows. Each timeA prints an output symbol,R prints the same
symbol, and changes state to red and then to green. IfA has no move from some configuration, then
R switches to a red state and starts cycling in that state.

If A prints a finite number f (x) of symbols without termination, then R accepts x in f (x)
mind changes and stabilises in a green state. If A keeps on producing an infinite number of out-
put symbols, then f (x) is undefined and obviously, R keeps changing its mind infinitely often as
well.

Obviously, R computes f and, if f (x) is a finite number, then R computes f (x) in f (x) mind
changes.

Conversely, let R be a machine accepting x with f (x) mind changes. Obviously, at the occasion
of each mind change R can add one to the current number of mind changes and the total number
presents R’s current output (we assume that output symbols can be rewritten). Thus, after f (x)
mind changes the output from R represents the value of f (x). Simulation of R by A is then a
straightforward matter.

If x is not accepted by R then R oscillates forever between red and green states and thus
A produces an infinite number of outputs, effectively rejecting the input x for which f (x) is
undefined.

3. Significance of the result

By equating the computations of non-terminating circular a-machines with those of red-green Tur-
ing machines, we have opened a way of appraising the computational power of the former model
via the latter. Results for this model are available.

The idea of the red-green computing goes back to the very notion of computability. This con-
nection is strengthened by the present result that links red-green computing to the authentic ideas
of Turing on computing. The original concept of computability, established in the middle of the
twentieth century, has been established in the period of ideas on function calculation. But com-
putational systems nowadays have a number of features that extend beyond pure function value
calculation. The concept of red-green computations specifically addresses one important feature of
contemporary usage of computers, viz. unbounded computations of multi-process systems. Sev-
eral models of infinite computations have been studied in the past, as a natural generalisation
of the classical notion of computations, without having any particular ‘realistic’ computational
model of infinite computations in mind. Along these lines, without entering into details, let us
mention Gold’s notion of limiting recursion (Gold, 1965, 1967), and Putnam’s related notion
of trial-and-error predicates, inductive computing (Burgin, 1983), various kinds of ω-automata
(Büchi, 1962; Rabin, 1969; Staiger, 1997; Thomas, 1990), tae-computing Hintikka and Mutanen
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Table 1 Approaches to Unbounded Computation.

Model of Computation Level Reference year

Non-term. circ. a-machines 62, 52 Turing (1936), this paper 1936

Number-theoretic predicates Arithmetic sets Kleene (1943) 1943

Oracle Turing machines All sets Turing (1939) 1939

Trial-and-error predicates 12 Putnam (1965) 1965

Limiting recursion 12 Gold (1965) 1965

Iterated limiting recursion 1k Schubert (1974) 1974

Alternating Turing machines Arithmetic sets Chandra et al. (1981) 1976

ω-Turing machines NA Cohen and Gold (1978) 1978

Inductive Turing machines Arithmetic sets Burgin (1983) 1983

Tae-computability 62 Hintikka and Mutanen (1988) 1988

Infinite time Turing machines Hyper-arithmetic sets Hamkins and Lewis (2000) 2000

Accelerating Turing machines NA Copeland (2002) 2002

Relativistic computing 12, 62 Etesi and Nemeti (2002) and
Wiedermann and van Leeuwen
(2002)

SAD computers Arithmetic sets Hogarth (2004) 2004

Zeno machines NA Potgieter (2006) 2006

Display Turing machines 13 Rovan and Steskal (2007, 2009) 2007

Red-green Turing machines 62, 52 van Leeuwen and Wiedermann (2012) 2012

(1988), and display Turing machines with control (Rovan and Steskal, 2007, 2009) . Also, so-called
hypercomputers have been inspired by relativistic physics, cf. Hogarth (2004), Welch (2008), Wie-
dermann and van Leeuwen (2002). At the heart of all these alternative approaches to unbounded
computations, the complexity classes of the arithmetical hierarchy have repeatedly emerged as
the classes characterising the computational power of the underlying models, in particular the
classes 12 and 62. An overview on various approaches to unbounded computations is given in
Table 1.

In preliminary studies we have investigated various aspects of red-green computations from the
viewpoint of the computability theory. For example, it appears (van Leeuwen and Wiedermann,
2012) that the computational power of red-green Turing machines increases with the number of
mind changes allowed (it climbs along the so-called Ershov hierarchy, cf. Cooper (2004), Ershov
(1968) and Rogers (1967)). Also, for any finite number of mind changes red-green Turing machines
recognise languages in 62 and accept languages from 12. In fact, computations of red-green
Turing machines exactly characterise the latter two classes. This, together with the similar results
achieved with the help of other machine or logical models of unbounded computation mentioned
in the beginning of this section, suggests that, due to their simplicity and mathematical elegance,
red-green Turing machines can serve as a bridging model among the various alternative models
of potentially infinite computations. Moreover, another interesting result is that red-green Turing
machines can elegantly and straightforwardly be simulated by relativistic Turing machines (Etesi
and Nemeti, 2002; Wiedermann and van Leeuwen, 2002); (and vice versa). This indicates the rela-
tion of red-green computing to hypercomputing. An overview of the known results on red-green
Turing machines can be found in van Leeuwen and Wiedermann (2012). The first results are encour-
aging and it is nice to see, retrospectively, that the core ideas essentially have their roots in the
Turing’s work.
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4. Conclusion

It is symptomatic that the hallmarks of modern computing have appeared in the mathematical work
of Turing whose primary aim initially was to define the notion of computability rather than to lay
down the theoretical fundamentals of computing machinery. (Turing himself was among the first to
realise the impact of the latter later on.) In particular, Turing’s a-machines were tailored to infinite
rather than finite computations. This, together with the prevailing use of computers nowadays, has
opened a way towards considering problems up to 12 or even 62 computable by unbounded pro-
cesses, as we have tried to show in this note. These considerations may change our attitude towards
what is computable. Would this trend lead to an extension of the notion of computability?
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Meurig Beynon puts an empirical slant on —

TURING’S APPROACH TO MODELLING
STATES OF MIND

In discussing Turing’s seminal 1936 paper, the Stanford Encyclopedia of Philosophy, http://plato
.stanford.edu/entries/turing/, highlights the way in which his conception of the ‘Turing Machine
(TM)’ was guided by the idea of modelling states of mind: ‘. . . in a bolder argument, the one he
placed first, he considered an “intuitive” argument appealing to the states of mind of a human
computer (Turing, 1936, p. 249). The entry of “mind” into his argument was highly significant, but
at this stage it was only a mind following a rule.’

There are two respects in which the subsequent treatment of TMs in mainstream computer
science has sidelined ‘intuitive’ elements:

. The TM is viewed as the fundamental mathematical abstraction in a theory of computer science
that is based on ‘computational thinking’.. Computer science has promoted the computational theory of mind, which proposes that
everything the human mind does is attributable to following rules.

In combination, these two viewpoints promote a narrow conception of computer science; they
respectively root computing in an abstract machine model with a strict formal semantics and set out
to show that such a model is enough to give a good account of its core applications.

Throughout the short history of computer science, it has suited the political purposes of an
emerging discipline to emphasise its connections with Turing’s work – one of the supreme intellec-
tual achievements of the twentieth century. But perhaps it is not so clear that computer science as
currently conceived truly fulfils Turing’s aspirations for a science of computing.

As Hodges (2004) points out, Turing’s vision was broader than that of a mathematical logician:
‘The essence of Turing’s achievement was the discovery of a concept with an application to logic,
rooted in ideas which lay outside mathematics’ and, unlike ‘Church’s Thesis’, ‘Turing’s definition

http://plato.stanford.edu/entries/turing/
http://plato.stanford.edu/entries/turing/
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[of computability] was modeled on what human beings could actually do’. Also, as Hodges (2004)
goes on to observe: ‘[After 1948] Turing did . . . surprisingly little . . . to build up the modern science
of computation’.

As for Turing’s stance on the contribution that computational abstractions make to our under-
standing of mind, there are many clues in his discussion of ‘The Imitation Game’ in Turing (1950).
It is clear that Turing sees the isssue of whether an interrogator might be deceived into attributing
a machine’s responses to a human as a limited question, and not one that decisively illuminates
the nature of mind. For instance, he acknowledges that other concerns about the mind might be
beyond the scope of his enquiry: ‘I don’t wish to give the impression that I think there is no mystery
about consciousness . . . [b]ut I do not think these mysteries necessarily need be solved before we
can answer the question with which we are concerned in this paper’. Even in relation to his con-
tention that a computer could succeed in ‘The Imitation Game’, Turing (1950) is careful to point out
that – despite the rebuttals he gives in response to objections to this possibility: ‘The reader will have
anticipated that I have no very convincing arguments of a positive nature to support my views’.

Hodges (1988) refers elsewhere to the ‘trenchant materialist and atheist Turing who emerged
after 1936’, and it is perhaps these characteristics that have been most emphasised in subsequent
building upon his legacy. In that context, it may seem surprising that, in rebutting counter-arguments
to the idea that a computer might successfully play ‘The Imitation Game’, Turing (1950) remarks:
‘The Argument from Extrasensory Perception] is to my mind quite a strong one’. But this is more
explicable if, as Hodges (1988) advocates, ‘we recognize [in Turing] the common thread – a great
seriousness about the sheer mystery of mental phenomena, and an equally serious conviction that
they must be reconciled with a scientific world view’.

As the Stanford Encyclopedia of Philosophy quotation above emphasises, Turing’s treatment of
states of mind was conceived with a view to modelling ‘a mind following rules’, as was appropriate
for addressing the Entscheidungsproblem: a Turing machine should model procedures ‘definite in
the sense that at every stage a completely explicit “note of instructions” could be written down
explaining what was to be done in such a way that another person could take up the work’
(Hodges, 1988). Beyond question, Turing’s insight informed the practical contributions he made
to the development of computer programming. For instance, it gives a deep meaning – deeper than
a programmer needed to appreciate – to the statement with which he prefaced his General Remarks
on Electronic Computers in his Manual for the Ferranti Mk. I computer Turing (1951): ‘Electronic
computers are intended to carry out any definite rule-of-thumb process which could have been done
by a human operator working in a disciplined but unintelligent manner’. It also led him to identify
the importance in programming of more disciplined use of mathematical notation (Turing, 1944–5).

But – to take nothing away from the extraordinary fertile nature of Turing’s insight, and
what has been, and can yet be, achieved within the framework of computational models in many
disciplines – it seems likely that Turing himself did not consider the broader issue of the nature
of mind to be closed. To quote Hodges (1988) once again: ‘. . . we cannot feel that Turing had
arrived at a complete theory of what he meant by modelling the mental functions of the brain by
a logical machine structure’. Significantly, in the spirit of an applied mathematician, Turing gave
high priority to squaring mathematical theory with empirical evidence and practical applicability.
In this connection, Hodges (2004) contrasts Turing’s approach to enhancing discrete computational
models as models of physical systems through introducing randomness with ‘that of some mod-
ern theorists, who seek to outdo discrete computation by exploiting the very elements that Turing
made little of’ and whose approaches lead to difficulties that render them ‘meaningless without
stability and robustness in the face of infinitesimal phenomena’. As further testimony to Turing’s
practical orientation, we need only consider the degree of direct involvement he wanted in building
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early computers, his contributions to code-breaking and speech recognition, and his concern to take
account of the inevitability of operational error in theorising about computers (Hodges, 2004).

It may be that, by imputing greater authority to mechanical models of mind than Turing himself
would have decisively endorsed, today’s students of computer science are in danger of identifying
mathematics with a blind process of inference such as can be carried out by a machine. Such a
concern is raised by Byers (2007), for instance, in motivating his account of mathematical practice.
Turing’s biographers describe him as a mathematician ‘[whose] native style was rough-and-ready
and prone to minor errors’ (Feferman, 2006) for whom the notion of ‘intuition’ had a particular
fascination (cf. his mathematical work on the Riemann hypothesis (Hodges, 1988)). If this seems
to be at odds with the demystification of effective procedures that he achieved in his own work,
an instructive parallel may be drawn with his older contemporary Emil Post, who concluded his
paper ‘Absolutely unsolvable problems and relatively undecidable propositions’ (written in 1941,
but only published posthumously (Post, 1965)) by expressing his amazement at the reaction to
Godel’s undecidability results in the following terms:

“... mathematical thinking is, and must be, essentially creative. It is to the writer’s continuing
amazement that ten years after Gödel’s remarkable achievement current views on the nature
of mathematics are thereby affected only to the point of seeing the need of many formal
systems, instead of a universal one. Rather has it seemed to us to be inevitable that these
developments will result in a reversal of the entire axiomatic trend of the late nineteenth and
early twentieth centuries, with a return to meaning and truth.”

To the end of his life – in the spirit of Post’s injunction – Turing seems to have been motivated
to seek significance beyond an abstract logical interpretation for his TM concept. In realising his
vision for computation, he felt the essential need to establish the connection with physical reality.
Hodges (1988) cites Penrose’s summary of Turing’s position in 1950: ‘It seems likely that he viewed
physical action in general – which would include action of a human brain – to be always reducible
to some kind of Turing-machine action’. As Hodges (1988) later goes on to relate, this was to be
an unresolved problem for Turing, who recognised the challenge presented by the indeterminacy
principle in quantum mechanics.

It is hard to imagine how the academic discipline of computer science would have emerged
without Turing’s contribution. In his work, Turing showed extraordinary prescience in relation to
many aspects of the ‘computer programming’ related activity that has been the central focus of
academic computer science throughout its history. But, at the time of his death, the transformative
impact of computers and programming could hardly have been predicted. And in the same way that
mathematics demands a broader account than formal systems can supply, so too does contempo-
rary computing. In concluding this brief review, it is appropriate to look at ways in which modern
computing and the science of computing to which we must now aspire is influenced by other per-
spectives on modelling human states of mind. This conclusion reflects the author’s own research
interest, under the auspices of the Empirical Modelling (EM) project http://www.dcs.warwick.ac.uk/
modelling, in seeking a broader alternative conceptual framework for computing.

Turing (1950) asserts that the problem of developing a digital computer that can succeed at The
Imitation Game ‘is mainly one of programming’. In the context of modern software development,
it has become apparent that ‘the problem of programming’ cannot be understood in a narrow sense.
One of the most critical aspects of software development is that of binding meanings to artefacts that
ostensibly are – or are to be – specified purely in computational terms. The idea that such seman-
tic considerations can be comprehensively addressed by formal computational semantics has been

http://www.dcs.warwick.ac.uk/modelling
http://www.dcs.warwick.ac.uk/modelling


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 88 #76

88 Part I

criticised by reviewers representing many different perspectives. They include the expert software
consultant Michael Jackson (2006), the distinguished computer scientist Peter Naur (1985) and the
philosopher Cantwell-Smith (2002). The common theme in these, and other critiques, is that formal
semantics can only go so far in mediating meanings in the software development process, especially
where the activity involves ‘radical design’ (cf. Jackson (2006); Vincenti (1993)).

Whereas it suited Turing’s (1936) purpose in addressing his mathematical objective to consider
human states of mind associated with carrying out a calculation, quite different kinds of states of
mind feature in modern software development involving radical design. Such a development process
has to take account of the perspectives of many human participants whose understanding is mediated
in quite different ways from those of the traditional ‘human computer’: they cannot be expected to
appreciate the full purposes or context for actions, to be able to interpret formal notations reliably,
or to be able to communicate their wishes abstractly without reference to actual experience that
can only be had and skills that can only be developed for instance by interacting with a prototype
system. And even though the functional goal and the process itself may be clearly specified, the
practical situated knowledge needed to enact the process may itself be difficult to access – as when
we try to make a pot of tea in a neighbour’s house, and have to contend with finding the ingredients
(‘where are the tea bags?’), identifying the utensils we need (‘is that a teapot?’), and determining
how to configure these (‘where do I plug this in?’). In developing software for reactive systems,
this exploratory activity may take yet more extreme forms: in configuring devices and tuning their
responses, it as if we are investigating the feasibility of constructing the very hardware on which
our programs are to be executed (Beynon et al., 2006).

The duality that separates ‘the given already engineered computing device’ from ‘the to-be-
specified abstract sequence of instructions to be performed on the device’ is characteristic of the
computational framework within which Turing was reasoning. Turing (1950) exploits this character-
istic when he identifies The Imitation Game as ‘drawing a fairly sharp line between the physical and
the intellectual capabilities of a man’, and stipulates that ‘the interrogator cannot demand practical
demonstration’.

An instructive comparison can be made between Turing’s approach to modelling the mind of a
human computer and that conceived by David Gooding (1990) in his account of Faraday’s seminal
experimental work on electromagnetic phenomena. In interpreting the way in which this activity
was conducted, Gooding (2001) introduced the notion of ‘construals’ as ‘proto-interpretative repre-
sentations which combine images and words as provisional or tentative interpretations of novel
experience . . . [that is] being created . . . through the interaction of visual, tactile, sensorimotor
and auditory modes of perception together with existing interpretative concepts including mental
images’. Such construals can be regarded as a means to knowledge representation in spirit similar
to that advocated by Rodney Brooks (cf. Brooks (1991a) and Brooks (1991b)). Gooding (2001)
invokes his research into Faraday’s use of construals in his critique of the ‘profoundly mistaken’
notion ‘that systematic, rational thought is or can be separate from the world that it seeks to under-
stand, manipulate or control’. In collaboration with Addis et al. (2008), Gooding builds on this work
to propose a broader notion of computer science embracing ‘irrational sets’ that ‘require the use of
an abductive inference system’.

Of the computer-based innovations that have been developed post-Turing, the spreadsheet
is perhaps the one that is most directly connected with the ‘modelling of states of mind’ that
Turing (1936) discussed. For instance, a spreadsheet can be viewed as a particularly effective way
to represent human states of mind at the interface between the user and the computational process.
Several of the characteristic themes that Hodges (1988) identifies in Turing’s vision of the TM also
seem to be relevant to the spreadsheet concept. The spreadsheet exemplifies ‘the blending of the
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mechanical and the psychological’ (Hodges, 1988). Through the dependency relations it character-
istically maintain, the spreadsheet embodies the notion of being determined (Hodges, 1988) as this
is understood in two complementary ways – as in the automatic recalculation of a cell value (e.g.
profit) from an arithmetic formula (e.g. profit = income − expenditure), and as in the mind of the
spreadsheet user, who apprehends ‘profit’ as indivisibly connected with ‘income’. What is more,
there is a closer correspondence between the current state of the spreadsheet and the mental state
of the spreadsheet user than in a conventional TM or procedural programming model, where the
variables that are intended to record meaningful quantities (e.g. ‘profit’ and ‘income’) are routinely
assigned intermediate values that are inconsistent with their real-world semantics. In keeping with
Turing’s aspirations for modelling states of mind, as characterised by Hodges (1988), this com-
mends the spreadsheet as ‘a new level of description based on the idea of discrete states [such that]
this level (rather than that of atoms and electrons, or indeed that of the physiology of brain tissue)
[is] the correct one in which to couch the description of mental phenomena’.

A spreadsheet captures the human calculator’s state of mind in a quite different sense from a TM.
For the user of a spreadsheet, the state of interest has to do with the real-world semantics (‘how will
the price of petrol affect my profit?’) rather than the routine computational semantics (‘how is the
formulae relating profit to the cost of petrol evaluated?’). The chief virtue of the spreadsheet is that
it renders the mechanics of computation invisible, throwing its significance to the user into sharper
relief.

Unlike a computational semantics, the real-world semantics of the spreadsheet is informal and
pragmatic in character. Appreciating its state requires knowledge of the context (e.g. ‘to what does
profit refer?’), skill in associating cells with their referents (e.g. ‘which cells record income and
profit?’) and in knowing how to carry out the interactions that disclose, maintain and probe mean-
ings (e.g. how to change the price of petrol, how to revise the formula that define income and profit
in response to changes in the tax laws, and how to carry out ‘what if?’ experiments). The speed
with which computational updates are effected, the way in which key values are disposed in the
spreadsheet grid and the level of familiarity of the user all contribute to the quality of the spread-
sheet as a model of a state of mind. Turing (1936) himself discusses such issues in motivating his
conception of the Turing machine: expressing concern in choosing his representations for numbers
about symbols that ‘cannot be observed at one glance’ and insisting that changes to the squares
being observed ‘must be immediately recognisable by the computer’. This is evidence that focusing
exclusively on formal mathematical interpretations of TMs fails to do justice to the subtlety of his
thinking. Indeed, Turing (1950, p. 15) himself expresses a related concern about facile interpreta-
tions of logic when he refers to ‘a fallacy to which philosophers and mathematicians are particularly
subject ... the assumption that as soon as a fact is presented to a mind all consequences of that fact
spring into the mind simultaneously with it’.

The goal of the EM project is to identify principles and develop tools to support a broader view of
computing. Such a view takes account of roles for human agents richer than those of a ‘human com-
puter’. EM puts its primary focus on computer-based artefacts, similar in character to the construals
introduced by Gooding in his work on the history of science, rather than ‘computer programs’.
An EM construal is framed with reference to three basic concepts: observables, dependencies and
agents. These concepts have approximate counterparts in spreadsheets in - respectively - the cells,
the relationships between cell values established by definitions, and the diverse modes of redefini-
tion that are associated with state changing actions, both manual and automated, in connection with
spreadsheet development and use. In keeping with the ‘what if?’ character of a spreadsheet, an EM
construal is archetypally associated with the state of mind of a human experimenter involved for
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example in the kind of activity that Friedrich Steinle (1997) identifies as ‘exploratory experimenta-
tion’ that ‘is driven by the elementary desire to obtain empirical regularities and to find out proper
concepts and classifications by means of which those regularities can be formulated’.

The relationship between the EM and TM models of states of mind is best understood by consid-
ering how exploratory activities can engineer functional machine-like entities in the world. This is
illustrated by the way in which – as conceived by Gooding (1990) – Faraday elaborated his constru-
als in engineering the first prototype electric motor. EM principles for software development exploit
construals in a similar way: first in enabling the exploratory sense-making activities that disclose
patterns of interaction, agency and interpretation that can be reliably revisited, and then in configur-
ing the situation and exercising discretion in interaction so as to establish program-like behaviours
(Beynon et al., 2006). The way in which a machine-like abstraction is here identified through a
conceptual shift of viewpoint on a situation that has first been suitably engineered is something that
Turing appreciated in relation to his ‘discrete-state machines’: ‘These are the machines which move
by sudden jumps or clicks from one quite definite state to another. These states are sufficiently differ-
ent for the possibility of confusion between them to be ignored. Strictly speaking, there are no such
machines. Everything really moves continuously. But there are many kinds of machine which can
profitably be thought of as being discrete-state machines. For instance in considering the switches
for a lighting system it is a convenient fiction that each switch must be definitely on or definitely
off. There must be intermediate positions, but for most purposes we can forget about them’.

In Addis et al. (2008) take inspiration from the use of construals in scientific practice but invoke
the Peircean notion of abduction to arrive at a computational framework that is framed, like Turing’s,
in logical terms. EM gives an account of computing similar in spirit to that of Addis and Gooding in
key respects but radically different in that – following William James (1912/1996) – the semantics
of model building is squarely rooted in experience. In line with James’s concept of ‘radical empiri-
cism’, the fundamental premise of EM is that every instance of knowing is a connection made in the
present experience of an individual, and all semantic relationships must be in some way traceable
to such instances. As a model for a state of mind, an EM construal is characterised by the patterns
of observables, agencies and dependencies that it embodies. This is unlike a logical specification
such as is expressed by abstracting variables and declaring the constraints to which they are subject.
Like a spreadsheet, an EM construal represents both a current state and latent germs of change that
express expectations that rely upon contextual guarantees that can never be absolute.

It is impossible to say whether Turing would have been sympathetic to such approaches to
placing his fundamental contribution in a broader conceptual frame. But beyond question, Turing’s
own style of thinking was in some respects well matched to a pragmatic philosophical stance. And
where some have made grand theoretical claims for the TM concept in relation to computer science
and the mind, Turing’s own outlook and working practices put the emphasis on real and topical
problems, on engaging with engineering issues and on ideas under construction, and appeal to the
empiricist as well as to the logician. The remark that concludes his paper on Computing Machin-
ery and Intelligence (Turing, 1950) testifies to the live, creative and adventurous qualities of his
imagination: ‘We can only see a short distance ahead, but we can see plenty there that needs to be
done’.
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Henk Barendregt and Antonio Raffone explore —

CONSCIOUS COGNITION AS A DISCRETE,
DETERMINISTIC AND

UNIVERSAL TURING MACHINE PROCESS1

1. Systems with states

It is often maintained that the brain-as-computer metaphor is ill taken. Nevertheless one can view
conscious cognition as a Turing machine process, with its discrete, deterministic and universal
aspects. Not being familiar to the language of science one may object to the claim that computation
plays an important role in the life of humans (and in fact all animals). Nevertheless, for goal-directed
movements fast and accurate (unconscious) computations are necessary. Sensory input has to be
transformed to output in the form of adequate action. Cognitive scientists, who are aware of the
need for computation, still may object to the computer metaphor. Indeed, our brain is not a network
of Boolean switches and it does neither have numerical input nor output. Our claim is that it is
nevertheless useful to interpret cognition as a hybrid Turing machine process.

Modelling systems (machines or living organisms) the notion of ‘state’ is important. Only
considering stimulus-reaction (Input, Action) transitions, we get

I 7→ A. (1.1)

This ‘behaviouristic’ view has limited possibilities. Actual systems can react differently to the same
input. To model this difference, inspired by Turing machines, one introduces states, modifying
(1.1) to

I× S 7→ A× S. (1.2)

Now the output may depend also on the state. This will be elaborated below.

2. The Turing machine: processes and computation

A Turing machine is a theoretical model of ad hoc computing devices, including the universal Turing
machine,2 after which the modern digital computers are built. It consists of a potentially two-sided
infinite tape3 with memory cells, a movable reading/writing head placed on one of the cells, and a
finite set S of states. The cells each contain a symbol from a finite input alphabet I (set of symbols).
Each specific Turing machine is determined by:

t1, . . . , tm : I× S 7→ A× S, (2.1)

1 Added in print. After acceptance for publication of this commentary we found out that in Zylberberg et al. (2011)
overlapping ideas have been presented.
2 The universality means that just one machine can simulate the behaviour of all other ones by giving it various programs.
3 In modern computers a disc or flash memory is used instead of a tape. The infinity of the tape was proposed by Turing
in order to be technology independent. But each computation on a Turing machine uses only a finite amount of memory.
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where we have the following

I =set of possible inputs (symbols)
the head may read on the tape at its location,

S=set of possible states,
A={L,R,W(a)}, the set of possible actions:
L=moving head left (or the tape moves right),
R=moving head right (or the tape moves left),

W(a)=overwriting present location with symbol a ∈ I.

For example a machine M can have a,b in I and s1,s2 in S, and transition rules

t1 : 〈a,s1〉7→〈R,s2〉

t2 : 〈b,s1〉7→〈W(a),s2〉

with the following meanings.

t1: if M reads an a in state s1, then
the reading head moves one cell to the right and M enters state s2;

t2: if M reads a b in state s1, then
it (over)writes (this b with) an a and M enters state s2.

With a Turing machine one can run processes and perform computations.
A computation starts with an input. In the Turing machine this is represented as a finite sequence

of data, elements of I, written on consecutive cells of the tape. The other cells are blank (also
considered as an element of the alphabet I). The read/write head is located at a particular cell of
the tape and the machine is in an initial state q0. The machine performs the actions according to its
transition rules, until no more rule applies and the machine ‘halts’. The resulting contents on the
tape is considered as the output of the computation.

Turing made it plausible that any kind of mechanical computation can be performed in such
a way. Moreover, he constructed a single Turing machine UM, the Universal Machine, that can
simulate an arbitrary Turing machine M. Wanting to simulate the computation of M on input i,
notation M(i), one can construct a program pM for M such that for all input i one has

UM(pM , i)=M(i).

This means that UM requires an extra argument, the program code pM , next to the given argu-
ment i. Turing used it to define a problem that cannot be answered by the computation of any Turing
machine and hence not by any computation.

A process is like a computation, but without the requirement that there is a final state in which the
machine comes to a halt. So computations are special processes focused on termination; processes
in general are focused on continuation. The usefulness of processes can be seen by giving some of
the cells on the tape a special status: for input (‘sensors’) and for output (‘actuators’) from and to
the outside world. A factory involving heating devices, thermometers, and safety valves, may be
controlled in this way by a Turing machine acting as process.

The process (or computation) taking place in a Turing machine is discrete and deterministic: it
consists of a stream of distinct steps, only depending on the input.

3. The neural Turing machine

From the description of a process it is clear that life (humans, animals and even plants) can be
thought of as processes. In artificial intelligence (AI) one tries to emulate these processes. There are
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the two views in AI, one the symbolic rule based Simon and Newell (1958), and the connectionist
one related to Turing (1948) and Hillis (1989). Simon and Newell state that intelligence works
in a discrete serial way following specific rules. The connectionists state that cognition uses the
parallelism of ‘neural nets’ and not a sequential system. In the hybrid version of Turing machines
presented below, the sequential machine will get transition rules programmed by a parallel neural
net, providing a useful unification for understanding human cognition.

Let us review the model of the Turing machine. A particular such machine is determined by a
finitely specified transition map (2.1). Now we slightly change the interpretation of this notation.

I = now stands for sensory input,
S= set of possible states,
A= now stands for actions, including neural excitation for

movement and focussing attention,
7→= the transition determined by a neural net.

We do have a non-essential extension. No longer is I a finite alphabet, but a virtually unbounded
set of inputs from the world. It still is essentially finite by the limitations of our senses. In a Turing
machine the set I is typically of size 2n, with n< 10; in human cognition it is orders of magnitude
bigger. The same applies to the set A. This set directs bodily movements, speech or mental action.

Another feature that happens in the brain is that whilst we are processing, our processor does
change. This includes development and is essential for homo sapiens. This seems like a proper
extension of the notion of a Turing machine. But thanks to the existence of a universal Turing
machine this is not so. Instead of (N stands for the neural net determining the transitions and A can
act on N)

I× S
N
// A× S (3.1)

one can employ the universal machine and write the equivalent

I× pN × S
UM

// A× S.

Now it becomes possible that the A act on the program pN . In ordinary computing this is not advis-
able, as it is difficult to reason about the resulting effects. But in the neural evolution it fits perfectly
well.

In the resulting model of cognition the set of states S plays an important role. Rather than seeing
human cognition in a stimulus response fashion like in (1.1), as was fashionable in the behaviourist
days of last century, the cognitive model (3.1) shows the essence of states. A ‘state’ is a mathe-
matical concept: giving the same input–output relation. We know empirically that attention and
emotions greatly influence these states. Under the same circumstances these inner state can make
of a human being a saint, a scientist, a Scrooge or worse. It should be noted that the model (3.1)
is discrete. Conscious cognition is a stream of separate phenomena, taking place in time. We will
come back to this in the next section.

4. Conscious cognition: discrete temporal frames

A currently influential model of human conscious cognition is the global workspace (GW) theory
(Baars, 1998; Baars et al., 2003). In this model, conscious cognition enables an access to a varying
subset of brain sources.

A neuronal underpinning for the GW model has been developed in Dehaene and Naccache
(2001). It is characterised by a winner-take-all dynamics, forming a ‘neural processing bottleneck’,
involving ‘broadcasting’ activity from prefrontal cortex to neurons on a global scale in the brain.
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Only one large-scale reverberating neural assembly is assumed to be active at any given moment.
This crucially involves the thalamocortical pulse and imposes a temporal resolution for the stream
of conscious cognition, needing at least 100 ms for a perceptual awareness moment.

Independently, based on psychophysical, neurophysiological and electrophysiological findings,
Varela et al. (2001) postulate that a specific large-scale neural assembly underlies the emergence
and operation of each conscious cognitive act. Such assemblies occur in the thalamocortical system,
using closed-loop signalling with periods of 100–300 ms, see Tononi and Edelman (1998). This is
consistent with the earlier behavioural evidence of the psychological refractory period, based on
minimal temporal resolutions (Welford, 1952), about 150 ms.

On the other hand, Efron (1973) suggested, based on psychophysical evidence, that conscious
cognition is temporally discrete and parsed into sensory sampling intervals or ‘perceptual frames’,
estimated to be about 70–100 ms in average duration. More recently, based on psychophysical and
electrophysiological evidence, the range 70–100 ms has been interpreted as an attentional object-
based sampling rate for visual motion (van Rullen and Koch, 2006). This rate could be related to
a sequence of shorter temporal processes, needed for unconscious treatment of sensory and other
input, see van Rullen and Koch (2003) for a review. It may provide an estimate of the rate at which
temporal representations at an unconscious level can be accessed (van Wassenhove, 2009).

To reconcile the framing of conscious cognition with the apparent continuity of perceptual expe-
rience, John (1990) suggested the following mechanism. A cortical convergence of a cascade of
momentary perceptual frames establishes a steady-state perturbation from baseline brain activ-
ity. This idea has received substantial support from electroencephalographic (EEG) studies. The
dynamics of the EEG field is represented by intervals of quasi-stability or ‘microstates’, with sudden
transitions between them (Strik and Lehmann, 1993).

5. Conscious cognition: mind states

According to Baars’ GW theory (Baars et al., 2003), sensory cognition works as follows. Input as
signals from the sensory cortex are amplified by attention and become ‘contents’ of consciousness.
After this amplification, feed back to the sensory cortex takes place to enable conscious access to
the contents themselves, in a recurrent GW process. See Dehaene and Naccache (2001) and Lamme
(2003).

In this process ‘contextual’ brain systems play a role in shaping conscious events. These include
the ‘where’ and ‘what’ pathways in the parietal cortex for visual processing, see Milner and Goodale
(2008). Regions of prefrontal cortex appear to do the same for other aspects of experience, including
emotional, goal-related and self-representation aspects (Baars et al., 2003). Also the insula appears
to play a crucial role as body- and feeling-related contextual system for awareness (Craig, 2009).
More in general, as shown by behavioural research, affective states, including moods and emotions,
provide a inner context guiding different forms of human judgment and cognitive processing, see
Clore and Huntsinger (2007) for a review. These contexts can be considered as mind states, not only
determining actions, but also the next input via selective attention. Selectivity in turn stems from
current goals represented in prefrontal cortex (Duncan, 2001) and can ultimately be related to the
current mind state. In a synthetic view, apart from inputs from sensory fields, inputs to the GW come
from the GW output itself, see also Maia and Cleeremans (2005), depending on a given mind state.

In a TM controlling an industrial process the input is determined solely by the world. This is
not so in human emotional cognition, where attention plays an input selecting role. Therefore mind
states are themselves the ground for conscious cognition, not just a context. By their broadcasting,
‘speaking to the audience’ in Baars’ theatre metaphor, they have the greatest influence on the brain
state as a whole, and on (intentions for) action and thinking.

The brain substrates for mind states are potentially wider than those for the GW, with an overlap
with the latter, and with the inclusion of various kinds of unconscious contextual systems supporting
conscious cognition. The neural substrates for longer lasting emotional mind states plausibly also
include the cerebrospinal fluid, as discussed in the paper by Veening and Barendregt (2010).
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6. Trained phenomenology

The temporally discrete view of conscious cognition stemming from psychophysical and neuro-
scientific experiments, and models of conscious cognition, can be related to Buddhist psychology,
based on trained phenomenology (insight meditation). Also in this theory, conscious cognition is
described as a deterministic stream of successive ‘pulses’, with object and a state, see von Rospatt
(1995).

Mindfulness, which can be conceived as a moment by moment reflexive awareness, is described
as providing psychologically wholesome mind states. Being meta-awareness it is universal (as in
a TM) and can bring flexibility in the co-determination of mind states and conscious processes.
Mindfulness plausibly is supported by adaptive coding regions in prefrontal cortex (Raffone and
Srinivasan, 2009). An effective way to influence the outcome of this deterministic process is to
choose the right input. This can be done by training our attention, which chooses input and thereby
the mind states. This is exactly what happens during the mental development of insight meditation:
training concentration and mindfulness.

7. Conclusion

Behavioural and neurophysiological experiments and also trained phenomenology all point in the
direction of conscious cognition as a discrete process depending on input and states. This is very
similar to the Turing model of general computability. In fact, the hybrid Turing machine model of
human conscious cognition captures well the recursive aspects mentioned in 5 and gives a logical
interpretation of the notion of determinacy, emphasised both in cognitive science and Buddhism.
This does not exclude free will, see, e.g. Dennett (2004).
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Aaron Sloman develops a distinctive view of —

VIRTUAL MACHINERY
AND EVOLUTION OF MIND (PART 1)

1. Virtual machines and causation

The idea of implementing one Turing machine in another can be seen as a precursor of the increas-
ingly important idea of a virtual machine running in a physical machine. Some features of virtual
machinery that are potentially relevant to explaining the evolution of mind and consciousness will be
discussed, including their causal powers and the differences between implementation and reduction.

One of Turing’s achievements was the specification of a Universal Turing Machine (UTM)
within which any other Turing machine could be emulated by specifying its properties on the tape
of a UTM (Turing, 1936). This led to proofs of important theorems, e.g. about equivalence, decid-
ability and complexity. It can also be seen as a precursor of what we now call virtual machinery
(not to be confused with virtual reality). I shall try to show how the combination of virtuality, causal
interaction and (relative) indefinability can produce something new to science. My part 2 (in Part 4
of this volume) will present implications regarding evolution of mind and consciousness.

2. Virtuality

The UTM idea established that a computing machine can run by being implemented as a virtual
machine in another machine. (I think the gist of this idea was understood by Ada Lovelace a century
earlier.) The mathematical properties of a Turing machine’s trajectory through its state space will
not depend on whether it is run directly in physical machinery or as a virtual machine implemented
in another computation. This has proved immensely important for theorems of meta-mathematics

http://www.cerebrospinalfluidresearch.com/content/7/1/1
http://dx.doi.org/10.1186/1743-8454-7-1
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and computer science and for some of the practicalities of using one computer for multiple pur-
poses, including time-sharing. One of the consequences is that a Turing machine implementing
another Turing machine can also be a virtual machine implemented in a UTM: so that layered
implementations are possible.

In the decades following publication of Turing’s paper, engineering developments emerged in
parallel with mathematical developments, with some consequences that have not received much
attention, but are of great philosophical interest and potentially also biological import. I will suggest
in Part 2 that biological evolution ‘discovered’ many of the uses of virtual machinery long before
we did. Unfortunately, the word ‘virtual’ suggests something ‘unreal’ or ‘non-existent’, whereas
virtual machines can make things happen: they can be causes, with many effects, including phys-
ical effects. To that extent they, and the objects and processes that occur in them, are real not
virtual!

A possible source of misunderstanding is the fact that among a subset of computer scientists the
label ‘virtual machine’ refers to software implementations of ‘real’, ‘physical’ machines which they
accurately simulate (Popek and Goldberg, 1974). The notion of ‘virtual machine’ used in this paper
includes machines whose operations cannot all be defined in terms of physical properties, although
they are all implemented in physical machinery, and can interact with and control physical machin-
ery. These virtual machines should not be regarded as surrogates for ‘real’ physical machines. They
are real enough, in their causal powers, despite being virtual.

3. Causation and computation

Causation is a crucial aspect of the engineering developments in computing, as I’ll now try to
explain. It is possible to take any finite collection of Turing machines and emulate them running
in parallel, in synchrony, on a UTM. This demonstrates that synchronised parallelism does not
produce any qualitatively new form of computation. The proofs are theorems about relationships
between abstract mathematical structures including sequences of states of Turing machines – and
do not mention physical causation. A running physical machine can be an instance of such an
abstract mathematical structure. However, being physical it can be acted on by physical causes, e.g.
causes that alter its speed. Moreover, as remarked in Sloman (1996), standard computability theo-
rems do not apply to physical Turing machines that are not synchronised. For example, if TM T1
repeatedly outputs ‘0’, and T2 repeatedly outputs ‘1’, and the outputs are merged to form a binary
sequence, then if something (e.g. a device controlled by a geiger counter) causes the speeds of T1
and T2 to vary randomly and they run forever, the result could (and most probably would) be a
non-computable infinite binary sequence, even though each of T1 and T2 conforms to theorems
about Turing machines. (This claim will be refuted if it ever turns out that the whole physical uni-
verse can be modelled on a single Turing machine. I know of no evidence that such a model is
possible.)

Likewise, if a machine has physical sensors and some of its operations depend on the sensor
readings, then the sequence of states generated may not be specifiable by any TM, if the environ-
ment is not equivalent to a TM. So the mathematical ‘limit’ theorems do not apply to all physically
implemented information-processing systems. In fact a machine with sensors and effectors con-
nected to physical objects in the environment is fundamentally different from a Turing machine
running its ‘closed’ world consisting only of its (infinite tape) and controlling transition table.

Mathematical entities, such as numbers, functions, proofs and abstract models of computation,
do not have spatio-temporal locations, whereas running instances of computations do, some of them
distributed across networks. Likewise, there are no causal connections, only logical connections,
between the TM states that form the subject matter of the mathematical theory of computation,
whereas there are causal connections in the running instances, depending on the physical machin-
ery used and the physical environment. So, notions like ‘reliability’ are relevant to the physical
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instances, but not the mathematical abstractions. From a mathematical point of view there is no
difference between three separate computers running the same program, and a single computer sim-
ulating the three computers running the program. However, an engineer aiming for reliability would
choose three physically separate computers with a voting mechanism as part of a flight control
system, rather than a mathematically equivalent, equally fast, implementation in a single computer
(Sloman, 1996), if all the computers use equally reliable components.

Physical details of time-sharing of the machines have other consequences. When the three sep-
arate machines running in synchrony switch states in unison, nothing happens between the states,
whereas in the time-shared implementation on one computer, the underlying machine has to go
through operations to switch from one virtual machine to another. Such ‘context switching’ pro-
cesses have intermediate sub-states that do not occur in the parallel implementation. A detailed
mathematical model of one machine running three virtual machines will need to include the interme-
diate states that occur during switching, but a model of three separate concurrently active machines
will not. A malicious intruder, or a non-malicious operating system, will have opportunities to inter-
fere with the time-shared systems during a context-switching process, e.g. modifying the emulated
processes, interrupting them, or copying or modifying their internal data.

Such opportunities for intervention (e.g. checking that a sub-process does not violate access
restrictions or transferring information between devices) are often used both within individual
computers and in networked computers causally linked to external environments, e.g. sensing or
controlling physical devices, chemical plants, air-liners, commercial customers, social or economic
systems, and many more. In some cases, analog-to-digital digital-to-analog converters, and direct
memory access mechanisms now allow constant interaction between processes. See also Dyson
(1997).

The technology supporting the causal interactions includes (in no significant order): memory
management, paging, cacheing, interfaces of many kinds, interfacing protocols, protocol con-
verters, device drivers, interrupt handlers, schedulers, privilege mechanisms, resource control
mechanisms, file-management systems, interpreters, compilers, ‘run-time systems’ for various lan-
guages, garbage collectors, mechanisms supporting abstract data types, inheritance mechanisms,
debugging tools, pipes, sockets, shared memory systems, firewalls, virus checkers, security systems,
operating systems, application development systems, name-servers, and more. All of these can be
seen as contributing to intricate webs of causal connections in running systems, including prevent-
ing things from happening, enabling certain things to happen in certain conditions, ensuring that if
certain things happen then other things happen, and in some cases maintaining mappings between
physical and virtual processes, e.g. in device drivers. Philosophers who think that different causal
webs at different levels of abstraction cannot coexist need to learn more engineering, unfortunately
not a standard component of a philosophy degree.

4. Causation in RVMs

A running virtual machine can have many effects, including causing its own structure to change.
Understanding how virtual machines can cause anything to happen requires a three-way distinction,
between: (a) Mathematical Models (MMs), e.g. numbers, sets, grammars, proofs, etc., (b) Physical
Machines (PMs), including atoms, voltages, chemical processes, electronic switches, etc., and (c)
Running Virtual Machines (RVMs), e.g. calculators, games, formatters, provers, spelling checkers,
email handlers, operating systems, etc., running in general-purpose computers.

MMs are static abstract structures, like proofs and axiom systems. Like numbers, they cannot do
anything. They include Turing machine executions whose properties are the subject of mathematical
proofs. Unfortunately some uses of ‘virtual machine’ refer to MMs, e.g. ‘the Java virtual machine’.
These are abstract, inactive, mathematical entities, not RVMs, whereas PMs and RVMs are active
and cause things to happen.
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Physical machines on our desks can now support varying collections of virtual machinery with
various kinds of concurrently interacting components whose causal powers operate in parallel with
the causal powers of underlying virtual or physical machines, and help to control those physical
machines. Some of them are application RVMs that perform specific functions, e.g. playing chess,
correcting spelling, handling email. Others are platform RVMs, like operating systems, or run-time
systems of programming languages, which are capable of supporting many different higher level
RVMs. Different RVMs have different levels of granularity and different kinds of functionality.
They all differ from the granularity and functionality of the physical machinery. Relatively simple
transitions in a RVM can use a very much larger collection of changes at the machine code level and
an even larger collection of physical changes in the underlying PM – far more than any human can
think about. Apart from the simplest programs even machine code specifications are unmanageable
by human programmers. Automatic mechanisms (including compilers and interpreters) are used to
ensure that machine-level processes support the intended RVMs.

Interpreted and compiled programming languages have important differences in this context. An
interpreter ensures dynamically that the causal connections specified in the program are maintained.
If the program is changed while running, the interpreter’s behaviour will change. In contrast, a
compiler statically creates machine code instructions to ensure that the specifications in the program
are subsequently adhered to, and the original program plays no role thereafter. Changing it has no
effect, unless it is recompiled (e.g. if an incremental compiler is used). In principle the machine
code instructions can be altered directly by a running program (e.g. using the ‘poke’ command in
Basic) but this is usually feasible only for relatively simple changes and would probably not be
suitable for altering a complex plan after new obstacles are detected, and modifying the physical
wiring would be out of the question. So some kinds of self-monitoring and self-modification are
simplest if done using process descriptions corresponding to a high level virtual machine specified
in an interpreted formalism and least feasible if done at the level of physical structure. Compiled
machine code instructions are an intermediate case.

There are two different benefits of using a suitable RVM, namely (a) the already mentioned
coarser granularity of events and states compared with a PM or low level RVM, and (a) the use
of an ontology related to the application domain (e.g. playing chess, making airline reservations).
Both of these are indispensable for processes of design, testing, debugging, extending, and also for
run-time self-monitoring and control, which would be impossible to specify at the level of physical
atoms, molecules or even transistors (partly because of explosive combinatorics, especially on time-
sharing, multi-processing systems where the mappings between virtual and physical machinery keep
changing). The coarser grain, and application-centred ontology makes self-monitoring (like human
debugging of the system) more practical when high-level interpreted programs are run than when
machine code compiled programs are run. This relates to the third aspect of some virtual machinery:
ontological irreducibility.

5. Implementable but irreducible

The two main ideas presented so far are fairly familiar, namely (a) a VM can run on another
(physical or virtual) machine, and (b) RVMs running in parallel can interact causally with one
another and with things in the environment. A third consequence of 20th century technology is not
so obvious, namely: some VMs include states, processes and causal interactions whose descriptions
require concepts that cannot be defined in terms of the language of the physical sciences: they are
non-physically describable machines (NPDMs). Virtual machinery can extend our ontology of types
of causal interaction beyond physical interactions.

This is not a form of mysticism. It is related to the fact that a scientific theory can use concepts
(e.g. ‘gene’, ‘valence’) that are not definable in terms of the actions and observations that scien-
tists can perform. This contradicts both the ‘concept empiricism’ of philosophers like Berkeley



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 17:02 Page 101 #89

Virtual Machinery and Evolution of Mind (Part 1) 101

and Hume, originally demolished in Kant (1781), and also its modern reincarnation, the ‘symbol
grounding’ thesis popularised by Harnad (1990), which also claims that all concepts have to be
derived from experience of instances. The alternative ‘theory tethering’ thesis, explained in Slo-
man (2007), is based on the conclusion in twentieth century philosophy of science that undefined
symbols used in deep scientific theories get their meanings primarily, though not exclusively, from
the structure of the theory, though a formalisation of such a theory need not fully determine what
exactly it applies to in the world. The remaining indeterminacy of meaning is partly reduced by
specifying forms of observation and experiment (e.g. ‘meaning postulates’ in Carnap (1947)) that
are used in testing and applying the theory, ‘tethering’ the semantics of the theory. The meanings
are never uniquely determined, since it is always possible for new observations and measurements
(e.g. of charge on an electron) to be adopted as our knowledge and technology advance.

Ontologies used in specifying VMs, e.g. concepts like ‘pawn’, ‘threat’, ‘capture’ etc. used in
specifying a chess VM, are also mainly defined by their role in the VM, whose specification
expresses an explanatory theory about chess. Without making use of such concepts, which are
not part of the ontology of physics, designers cannot develop implementations and users cannot
understand what the program is for, or make use of it. So, when the VM runs, there is a physical
implementation that is also running, but the two are not identical: there is an asymmetric relation
between them. The PM is an implementation of the VM, but the VM is not an implementation of
the VM, and there are many other statements that are true of one and false of the other. The RVM,
but not the PM, may include threats, and defensive moves. And neither ‘threat’ nor ‘defence’ can
be defined in the language of physics. Not all the concepts used to describe objects, events and pro-
cesses in a RVM are definable in terms of concepts of physics even though the RVM is implemented
in a physical machine. The physical machine could include some of the environment with which the
RVM interacts. The detailed description of the PM is not a specification of the VM, since the VM
could be the same even if it were implemented on a very different physical machine with different
physical processes occurring during the execution even of a particular sequence of chess moves. The
VM description is also not equivalent to any fixed disjunction of descriptions since the VM specifi-
cation determines which PMs are adequate implementations. Programmers can make mistakes, and
bugs in the virtual machinery are detected and removed, usually by altering a textual specification
of the abstract virtual machinery not the physical machinery. When a bug in the program is fixed it
does not have to be fixed differently for each physical implementation – a compiler or interpreter
for the language handles the mapping between virtual machine and physical processes and those
details are not part of the specification of the common virtual machine.

Neither can the VM machine states and processes be defined in terms of physical input-output
specifications, since very different technologies can be used to implement interfaces for the same
virtual machine, e.g. using mouse, keyboard, microphone or remote email for input. Moreover, some
VMs perform much richer tasks than can be fully expressed in input–output relations, e.g. the visual
system of a human (or future robot!) watching turbulent rapids in a river. (Compare the critique of
Skinner in Chomksy (1959).)

The indefinability of VM ontologies in terms of PM ontologies does not imply that RVMs include
some kind of ‘spiritual stuff’ that can exist independently of the physical implementation machinery,
as assumed by those who believe in immortal minds, or souls. Despite the indefinability there are
close causal connections between VM and PM states, but that includes things like detection of a threat
causing a choice of defensive move, which is a VM process that can cause changes in the physical
display and the physical memory contents. We thus have what is sometimes referred to as ‘downwards
causation’, in addition to ‘upwards causation’ and ‘sideways causation’ (within the RVM).

6. Implications

The complex collection of hardware, firmware, and software technologies, developed since Turing’s
time has made possible information-processing systems of enormous complexity and sophistication
performing many tasks that were previously performed only by humans and some that not even
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humans can perform. This has required new ways of thinking about non-physically describable
virtual machinery (NPDVM) with causal powers. The new conceptual tools are relevant not only
to engineering tasks but also to understanding what self-monitoring, self-controlling systems can
do. Philosophy now has the task of working out in detail metaphysical implications of multiple
coexisting causal webs with causation going sideways, upwards and downwards. Implications for
evolution of mind are discussed in Part 2 of this paper, included in Part III of this volume. Finally,
Part 3 of this paper, presenting the concept of meta-morphogenesis (the processes by which the
processes of change and development change) will be included in Part IV of this volume.
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Artur Ekert on the physical reality of —
√

NOT

One of many remarkable traits of Alan Turing was his ability to bridge the gap between the abstract
and the physical. His background in physics is clearly seen in his approach to the definition of
computability. Turing’s machines (Turing, 1936) captured the notion of effective computation in
a much more tangible and convincing way than, for example, the lambda calculus proposed by
Alonzo Church (this was generously acknowledged by Church (1937) himself ). Although Turing’s
machines were abstract constructs of his mathematical imagination there was nothing unphysical
about them. Indeed, Turing’s machines (with arbitrarily long tapes) can be built, but no one would
ever do so except for fun, as they would be extremely slow and cumbersome. The computer I am
working on at the moment is much faster and more reliable.

But wait a minute! Where does this reliability come from? My computer is a physical object,
made out of a vast number of electronic components. How do I know that the computer generates
the same outputs as the appropriate abstract Turing machine? How do I know that the machinery
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of electric currents must finally display the right answer? After all, nobody has tested the machine
by following all possible logical steps, or by performing all the arithmetic it can perform. If they
were able and willing to do that, there would be no need to build the computer in the first place. The
reason we trust the machine cannot be based entirely on logic; it must also involve our knowledge
of the physics of the machine. When relying on the machine’s output, we rely on our knowledge
of the laws of physics that govern the computation, i.e. the physical process that takes the machine
from an initial state (input) to a final state (output) (Deutsch et al., 2000).

Given that algorithms can now be performed by real automatic computing machines, the natural
question arises: what, precisely, is the set of logical procedures that can be performed by a physical
machine? The theory of Turing machines cannot, even in principle, answer this question, nor can
any approach based on formalising traditional notions of effective procedures. What we need instead
is to extend Turing’s idea of mechanising procedures. This would define logical procedures by the
mechanical procedures that effectively perform logical operations. But what does it mean to involve
real, physical machines in the definition of a logical notion? The discovery of quantum physics
has provided us with an excellent example. Consider the following, very simple, machine which
performs a computation mapping {0,1} to itself.

0 0

1 1

p00

p01

p10

p11

Here pab is the probability for the machine to produce the output b when presented with the input
a. It may seem obvious that if the pab are arbitrary apart from satisfying the standard probability
conditions

∑
b pab = 1, then the figure above represents the most general machine whose action

depends on no other input or stored information and which performs a computation mapping {0,1} to
itself. The deterministic limits are obtained by setting p01 = p10 = 0, p00 = p11 = 1 (which gives a
logical identity machine) or p01 = p10 = 1, p00 = p11 = 0 (which gives a negation (‘not’) machine).
Otherwise we have a randomising device. Let us assume, for the sake of illustration, that p01 =

p10 = p00 = p11 = 0.5. Again, we may be tempted to think of such a machine as a random switch
which, with equal probability, transforms any input into one of the two possible outputs. However,
that is not necessarily the case. When the particular machine we are thinking of is followed by
another, identical, machine the output is always the negation of the input.

not not

Identical

not

?

?

?

?

?

?

?

?

0 0 0 0 0

1 1 1 1 1

p=1

p=1

=

This is a very counter-intuitive claim – the machine alone outputs 0 or 1 with equal probabil-
ity and independently of the input, but the two machines, one after another, acting independently,
implement the logical operation not. That is why we call this machine

√
not. It may seem reason-

able to argue that since there is no such operation in logic,
√

not machines cannot exist. But they do
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exist! Physicists studying single-particle interference routinely construct them, and some of them
are as simple as a half-silvered mirror, i.e. a mirror which with probability 50% reflects a photon
that impinges upon it and with probability 50% allows it to pass through. In this particular case the
logical values, 0 and 1, are represented by paths taken by photons before and after travelling through
the mirror (Ekert, 2006; Nielsen and Chuang, 2000).

The reader may be wondering what has happened to the axiom of additivity in probability theory,
which says that if E1 and E2 are mutually exclusive events then the probability of the event (E1
or E2) is the sum of the probabilities of the constituent events, E1, E2. We may argue that the
transition 0→ 0 in the composite machine can happen in two mutually exclusive ways, namely,
0→ 0→ 0 or 0→ 1→ 0. The probabilities of the two are p00p00 and p01p10 respectively. Thus,
the sum p00p00+ p01p10 represents the probability of the 0→ 0 transition in the new machine.
Provided that p00 or p01p10 are different from zero, this probability should also be different from
zero. Yet we can build machines in which p00 and p01p10 are different from zero, but the probability
of the 0→ 0 transition in the composite machine is equal to zero. So what is wrong with the above
argument?

One thing that is wrong is the assumption that the processes 0→ 0→ 0 and 0→ 1→ 0 are
mutually exclusive. In reality, the two transitions both occur, simultaneously. We cannot learn about
this fact from probability theory or any other a priori mathematical construct. We learn it from the
best physical theory available at present, namely quantum mechanics.

The mathematical machinery of quantum mechanics, which can be used to describe quantum
computing machines ranging from the simplest, such as

√
not , to the quantum generalisation of the

universal Turing machine (Deutsch, 1985), involves basic operations on complex numbers. Indeed,
at the level of predictions, quantum mechanics introduces the concept of probability amplitudes –
complex numbers c such that the quantities |c|2 may under suitable circumstances be interpreted
as probabilities. When a transition, such as ‘a machine composed of two identical sub-machines
starts in state 0 and generates output 0, and affects nothing else in the process’, can occur in sev-
eral alternative ways, the overall probability amplitude for the transition is the sum, not of the
probabilities, but of the probability amplitudes for each of the constituent transitions considered
separately.

00

11

i/ 2

i/ 2

1/ 2

1/ 2

In the
√

not machine, the probability amplitudes of the 0→ 0 and 1→ 1 transitions are both
i/
√

2, and the probability amplitudes of the 0→ 1 and 1→ 0 transitions are both 1/
√

2. This means
that the

√
not machine preserves the bit value with probability amplitude c00 = c11 = i/

√
2 and

negates it with probability amplitude c01 = c10 = 1/
√

2. In order to obtain the corresponding prob-
abilities we have to take the modulus squared of the probability amplitudes, which gives probability
1/2 both for preserving and swapping the bit value. This describes the behaviour of the single

√
not

machine. When we concatenate the two machines then, in order to calculate the probability of out-
put 0 from input 0, we have to add the probability amplitudes of all computational paths leading
from input 0 to output 0. There are only two of them – c00c00 and c01c10. The first computational
path has probability amplitude i/

√
2× i/

√
2=−1/2 and the second one 1/

√
2× 1/

√
2=+1/2.

We add the two probability amplitudes first and then we take the modulus squared of the sum. We
find that the probability of output 0 is zero. Unlike probabilities, probability amplitudes can cancel
each other out!
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Quantum theory explains the behaviour of
√

not and correctly predicts the probabilities of all
the possible outputs no matter how we concatenate the machines. This knowledge was created as
the result of conjectures, experimentation, and refutations. Hence, reassured by the physical exper-
iments that corroborate this theory, logicians are now entitled to propose a new logical operation
√

not. Why? Because a faithful physical model for it exists in nature!
The story of the

√
not is just one example which illustrates the main point: whenever we improve

our knowledge about physical reality, we may also gain new means of improving our knowledge
of logic, mathematics and formal constructs. It seems that we have no choice but to recognise the
dependence of our mathematical knowledge (though not of mathematical truth itself) on physics,
and that being so, it is time to abandon the classical view of computation as a purely logical notion
independent of that of computation as a physical process (Deutsch, 1997; Deutsch et al., 2000).
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Cristian Calude, Ludwig Staiger and Michael Stay on —

HALTING AND NON-HALTING
TURING COMPUTATIONS

1. Introduction

Turing’s famous paper (Turing, 1936) proved that the halting problem – the problem of decid-
ing whether a given Turing machine ever reaches the halting state when provided with a given
tape – was undecidable. Turing machines give us a convenient way to talk about the time and space
necessary to carry out computations, and play a significant role in both classical recursion theory
and the theory of computational complexity (Cooper, 2004; Balcázar et al., 1995; Sipser, 2006;
Wagner and Wechsung, 1986).

Nowadays, the undecidability discovered by Turing need not be quite the fearsome phenomenon
it at first appears. To understand this we look in more detail at the time and space of Turing
computations.
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First, any Turing machine having an undecidable halting problem uses an infinite number of
cells on its working tape (Calude and Staiger, 2010). Accordingly, the halting behaviour of a Turing
machine M on input x can be divided into three categories:

(1) The machine M halts on x, in which case the number of cells used is necessarily finite.

(2) The machine M does not halt on x, but uses only finitely many distinct cells on its tapes.

(3) The machine M does not halt on x and uses infinitely many distinct cells on its tapes.

In the second case above, the halting problem for M on x is decidable, so Turing’s undecidability
result relies on the fact that machines with an undecidable halting problem necessarily use infinite
space.

Secondly, the critical time (Chaitin, 1987) can be used to yield a classification of Turing
computations into three categories:. The machine M halts on x in time bounded by the critical number of steps.. The machine M halts on x in time not bounded by the critical number of steps.. The machine M does not halt on x.

The last case, that is when M does not halt on x, can be refined in terms of space complexity. Finally,
the significance of these mathematical facts for hypercomputation and formal proofs in mathematics
will be briefly discussed.

2. Turing machines

A Turing machine is a formalisation of a mechanical device. The device has a long tape on which
a finite alphabet of symbols are read or written, and the tape can be shifted back and forth through
the machine, which can read symbols from and write symbols to the tape. The machine itself has
a finite set of internal states, and updates those states depending on what it finds on the tape. In
the formalisation, the tape is infinite and there are never any errors. Turing’s own description is
wonderfully lucid, and we refer the reader to his account for details.

The set of pairs (M,x), where M is a Turing machine and x is an input, can be computably
enumerated. We fix such an enumeration and we denote by code(M,x) the code, or description, of
the pair (M,x) in this enumeration.

3. Resources

Let M be a Turing machine and x an input word.
The function timeM(x) denotes the number of steps executed by M on input x (see

Balcázar et al. (1995)). By M(x) <∞ we denote the fact that M stops on x. The halting prob-
lem for a particular Turing machine M is the problem of deciding, given x, whether M(x) <∞.
The halting set or the domain of M is the set haltM = {x |M(x) <∞}. It is well known that the
halting problem for most Turing machines M is undecidable; more precisely, the halting set of M
is computably enumerable but not computable. A Turing machine whose domain is prefix-free is
called self-delimiting or prefix-free (Calude, 2002). Although many results presented below hold for
any Turing machine, for uniformity we study only prefix-free Turing machines, which from now on
we will simply call machines.

The computational space, or space function, spaceM(x) used by M on x is defined to be the
number – finite or infinite – of cells used by M during its computation with the input x; a cell used
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at least once is counted as used.4 Obviously, if spaceM(x) is finite, then the computation process as
described above can have only a finite number of different configurations.5

Clearly, spaceM(x) <∞ whenever M(x) <∞, and M(x)=∞ if and only if timeM(x)=∞.
Given a machine M, we can therefore classify input strings x according to timeM and spaceM

and get the following three sets:

haltM = {x | timeM(x) <∞},

{x | timeM(x)=∞, spaceM(x) <∞},

{x | spaceM(x)=∞}.

Calude and Staiger (2010) showed that if for every x, spaceM(x) <∞, then the halting problem
for M is decidable. This result does not contradict Turing’s undecidability of the halting prob-
lem because the set of descriptions code(M,x) – where M is a machine, x is a string – for which
spaceM(x) <∞, is computably enumerable but not computable.

4. Halting time

Let bin be the computable bijection that associates to every integer n≥ 1 its binary expansion with-
out the leading 1: bin(1) is the empty string, bin(2)= 0, bin(3)= 1, bin(4)= 00 etc. The natural
complexity of the string y (with respect to the machine M) is ∇M(y)=min{n≥ 1 |M(bin(n))= y}
(see Calude and Stay (2006)); ∇ is a relative of Kolmogorov complexity for partially computable
functions used in Manin and Zilber (2010).

The invariance theorem says that one can effectively construct a ‘universal machine’ that can
simulate any other machine. A machine U is universal if for every machine M there is a constant
ε > 0 (depending upon U and M) such that ∇U(x)≤ ε · ∇M(x), for all strings x. We fix a universal
machine U and define ∇ = ∇U .

Say a machine M gets an input x and runs for exactly t steps before halting. Chaitin (1987)
showed that there is a program y for the universal machine not much longer than code(M,x) such
that U(y)= t – or more formally, that there is a constant c such that if M(x) halts exactly in time t,
then ∇(bin(t))≤ 2|code(M,x)|+c.

A binary string x is algorithmically random if ∇(x)≥ 2|x|/|x|. A time t is called algorithmically
random if bin(t) is algorithmically random. Assume that M(x) has not stopped in time 22N+2c+1,
where N = |code(M,x)| and c comes from Chaitin’s statement above; then Calude and Stay (2008)
proved that M(x) cannot stop at any algorithmically random time t ≥ 22N+2c+1.

Therefore, if one runs a program for long enough (where ‘long enough’ depends on c above),
then either the program halts at a non-algorithmically random time or it does not halt at all. The
density of non-algorithmically random numbers near n is 1/n. Hence, most times are not halting
times for any machine and input.

Consider the set S= {0,1}R×N whose elements are pairs of an input string of length R and a
potential runtime. Let q(x) be the uniform probability distribution on strings of length R and p(n)
be any computable probability distribution on natural numbers. Given M,x and a positive integer m,
we can effectively compute a critical value Tcritical(|code(M,x)|,m) such that either M(x) stops in
time less than Tcritical(|code(M,x)|,m), or the probability given by q× p that M(x) eventually stops
is smaller than 2−m.

4 This definition differs slightly from the space complexity usually employed in computational complexity theory
(Balcázar et al., 1995), which treats the space as infinite if the time is infinite.
5 A configuration records the current state, tape contents and head location (Sipser, 2006, p. 140).
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Manin (2010) proved a general result of this kind valid for many complexity measures, including
time.

Given a probability bound 2−m, the halting behaviour of a machine M can be described by the
following three sets:

{x | timeM(x) < Tcritical(|code(M,x)|,m)},

{x | Tcritical(|code(M,x)|,m)≤ timeM(x) <∞},

{x | timeM(x)=∞}.

The last case can be refined using the computational space as follows:

{x | timeM(x)=∞,spaceM(x) <∞},

{x | timeM(x)=∞, ZFC proves spaceM(x)=∞},

{x | spaceM(x)=∞, but ZFC cannot prove spaceM(x)=∞}.

5. Final comments

What is the ‘real-world’ significance of this commentary?6

The bad news is that even an accelerated Turing machine (Copeland, 2002) needs infinite space
to solve the halting problem. This begs for more insight into the mysterious usefulness of analogue
computation which can bypass this limit (as Kreisel (1970) anticipated). The good news is that the
halting problem can be probabilistically solved with any probability less than one.

Hilbert’s formal proofs have been apparently killed for the practice of mathematics by Gödel’s
Incompleteness Theorem, so ultimately by the undecidability of the halting problem. Unexpect-
edly – at least from the theoretical view point – in the last decade, enormous progress has been
made on automating the production of formal proofs, with tools like Isabelle, Coq and others (Hales,
2008). In part, this successful story – which in our humble opinion will change the way mathemat-
ics is done – is due to the practical possibility of working with meaningful, computational resource
defined, approximations of the halting problem.
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Philip Welch leads us —

TOWARD THE UNKNOWN REGION:
ON COMPUTING INFINITE NUMBERS

Darest thou now, O Soul,
Walk out with me toward the
Unknown Region,
Where neither ground is for the feet,
nor any path to follow?

Whitman, Leaves of Grass

The story is told that Church, after presenting the λ-calculus as a means of addressing the Entschei-
dungsproblem, was told by Gödel, in effect, to go away and try again. Gödel in conversation with
Church said that he found the suggestion that effectively calculable be identified with the λ-calculus
as ‘thoroughly unsatisfactory’.1 However, Gödel immediately recognised Turing’s model as the
model for this problem. Why was this? Presumably the criteria, somewhat implicit in Hilbert’s
question, as to whether there is an algorithm, or ‘effective process’ to determine from an ‘effec-
tively’ given set of axioms in a deductive system, for any sentence ϕ of the system’s language,
whether or not ϕ was deducible from those axioms, would hinge crucially on the notion of algo-
rithm or ‘effectivity’. As Gödel had already shown the incompleteness of formal systems (satisfying
a modicum of some basic requirements and thereby introducing the primitive recursive functions),

1 This is recalled in a letter from Church to Kleene (Kleene, 1959). The conversation took place in early 1934 (Rosser,
1984).

http://arxiv.org/abs/0908.3430
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all that remained in one sense was this question of ‘decidability’. Was there a method for deter-
mining, given the axiom set A, which ϕ were deducible? The general recursive functions of Gödel
were also used by Church but as Gandy (1988) and Sieg (1994) have pointed out, Church did not
establish that the actual steps in this (or any other) calculus were themselves of a recursive nature.
Crucially Turing’s notion does this.

Turing’s paper solved this problem by way of introducing the now familiar, but still beautifully
simple, notion of an ‘automatic machine’ (or ‘a-machine’, but which I shall just abbreviate as ‘TM’).
As is well known, in a TM an infinite tape runs to the right (and if one wishes to the left too). Turing
analysed what he took to be a set of automaton like constructions/edits of a particular square or
cell of the tape that was being scanned by what we should now call a read/write head, under the
control of a finite instruction set. The machine would write marks from an alphabet (let us just say
0/1 here). If a computation halted there would then be an ‘output’ – meaning the tape’s contents.
Otherwise the machine would perform fruitlessly tasks for ever in an infinite sequence of moments
in time t0, t1, . . . , tn, . . .. The paper, although titled, and set up to prove, the unsolvability of the
Entscheidungsproblem, had of course done much more than that: it had captured the notion of an
automatic or mechanical behaviour, and moreover had deployed a notion of ‘universality’ – that
there was a universal machine that could mimic any other machine given the latter’s code as an
input, and this, together with the intensional aspects of Turing’s argument, are presumably what
Gödel (and we later) found persuasive. In a final section of the paper, Turing applies his concept of
machine to solving this problem. He further showed in an Appendix that the functions defined by
Church’s λ-calculus were coextensive with his computable functions.

This showed, when taken with the work of Church and Kleene, that the (Gödel–Herbrand) gen-
eral recursive functions can be simulated by the TM. We shall not discuss here the Church–Turing
thesis that any effective algorithmic process is simulable by Turing machines, or equivalently, as
Turing proved, by the general recursive functions. Rather we shall concentrate on the capabilities
of the machine model to compute such functions, and its generalisations.

Gödel had already drawn attention to the primitive recursive functions, which were then
extended to the general recursive functions. Kleene, whilst working with Church on the Decision
Problem, developed an equational calculus for the partial recursive functions: a set of basic equa-
tions and rules for recursion that allowed for the definition of the class of partial recursive functions
as that class closed under those equational schemata (see, e.g. Odifreddi (1989)). It is this equa-
tional approach that was formative for a mathematico-logical approach to the theory of recursive
functions, and indeed for a definability theory for sets of numbers. Whilst Turing had shown the
universality of his machines, the flexibility of the equational approach allowed Kleene to produce
a number of theorems analysing the computable functions. An Enumeration Theorem for the par-
tial recursive functions as well as the S-m-n Theorem which allowed for enumeration of the partial
recursive functions on m+ n variables to be re-enumerated as n-ary functions in m-parameters, and
the Recursion or Fixed-point theorem. These relied on his

Theorem 1. (Normal Form Theorem) (Kleene) There is a primitive recursive universal predi-
cate T1, and a primitive recursive function U satisfying ∀e∀x:

Pe(x) ↓ z ↔ ∃y ∈ N[T1(e,x,y)∧U(y)= z].

In Turing’s paper ‘On Ordinal Logics’ (discussed elsewhere) he somewhat quietly introduced
the notion of o-machine or ‘oracle’-machine. Such a machine added to the capabilities of the a-
machine the possibility of input during the course of computation via queries to an external oracle.
If we enumerate the programs of a such a TM (equipped now with a command querying member-
ship questions of a set A) as 〈PA

e | e ∈ N〉 then the halting set A′ =df {e | PA
e (e)↓} would come to be

named the Turing jump of the set A, and is a complete 6A
1 set, in that any set recursively enumer-

able in A is also (1-1) reducible to A′. This is the basis for Post’s analysis of such sets and their
relationship to the arithmetical hierarchy (here relativised to the set A). Thus definability becomes
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identified with the hierarchy of relativised halting sets. Moreover it is probably fair to say that the
beginnings of the theory of definability, although connected with halting sets as stated, become
increasingly divorced in conceptual terms from the TM model itself. It seems as if the machine
has done its work for us, and now we may proceed to the mathematics of analysis of recursive
sets, r.e. sets (which we might now want to call computably enumerable or c.e.), and hierarchies of
such and the concomitant degree theory. In particular definability over the natural number structure
later became extended to considering the notion of hyperarithmetic definability: sets of numbers
that whilst not recursive, or even obtainable by finitely many iterations of the Turing jump oper-
ator, (i.e. again the arithmetically definable sets, that is those definable over N= 〈N,+,×,0,S〉 in
the appropriate language), were definable by processes that themselves had computable, i.e., recur-
sively definable, procedures: a hyperarithmetic set was one seen as having a computable or recursive
protocol for describing its construction. By a definable version of Suslin’s theorem, Kleene showed
that such sets coincide with the 11

1-definable sets over N, that is those A⊆ N that were both 51
1-

and 61
1 -definable. Such notions then connect to the theory of inductive definitions over N as now

described.
Let 9 : P(N)→ P(N) be any arithmetic, or even 51

1 monotone operator (e.g., ‘n ∈9(X)’ is
arithmetic (or 51

1) as a relation of n and X); we define the following iterates of 9:

90(X)= X; 9α+1(X)=9(9α(X)); 9λ(X)=
⋃
α<λ

9α(X).

By sheer monotonicity, this process must reach a least α with 9α(X)=9α+1(X). For X =∅ then
Spector showed for 51

1 9, (Gandy for arithmetical) that this process must halt by ωck
1 the first non-

recursive ordinal (‘ck’ for ‘Church–Kleene’), and in general not sooner; the resulting fixed point
set, namely that with 9α(∅)=9(9α(∅)), was 51

1.
It is possible (see Rogers (1967)) to define a reducibility for x⊆ ω: ‘x is hyperarithmetic in

y’, writing this as ‘x≤h y’; further there is the notion of a complete hyperarithmetically ‘c.e.’ set
or ‘hyperjump’ xh corresponding to Turing jump x′. Spector was able to establish that the ordi-
nal assignment x 7→ ωx

1ck (where ωx
1ck is the least ordinal not recursive in x) satisfied the so-called

‘Spector Criterion’:

x≤h y→ (xh
≤h y↔ ωx

1ck < ω
y
1ck).

To very cursorily summarise the history (in a rather crude fashion), generalisations of recursion
away from the structure N tended in two directions in the 1960s: firstly via metarecursion theory
and the work of Kreisel and Sacks, into extending the domain to initial segments of the ordinals that
were admissible. The other direction initiated by Kleene, who published his equational system of
recursion in higher type objects in a series of papers from 1959 onwards. He himself devised a notion
that came to be called Kleene Recursion: this was a higher type recursion with a domain that of all
the real numbers, that allowed hyperarithmetic questions about membership of sets of such numbers
to be answered. This was a ‘boldface’ notion: the recursive sets of natural numbers became the Borel
(or boldface 11

1 sets by the Suslin Theorem) and the analogon of a computably enumerable set was
a co-analytic sets of reals. We shall return to this model later. However the science of higher type
recursion theory later became much developed by the work of Gandy, Moschovakis, Harrington,
Normann, Kechris, et al.

Indeed it did, but these formulations, and indeed much of the generalised theory of inductive def-
initions, and the later theory of Spector classes of Moschovakis became intimately involved with the
notion of admissible set. A transitive set M was an admissible set if it was a model of some modest
basic set theory, including schemes of11-Comprehension and 61-Replacement. In particular those
levels of (relativised) Gödel hierarchies of the form 〈Lα[A],∈ A〉 that were admissible came to play
a central role. The ordinal height of a transitive admissible set was named an admissible ordinal;
the first such above ω is indeed ω1ck: Lω1ck |= KP. The importance of admissible sets was that they
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were domains inside which certain natural 61-set theoretic recursions or constructions (rather than
number theoretic) could be effected.

Much of this may seem a million miles from the original conceptions of recursive set of inte-
gers and universality of the computation/recursion procedure that allowed for the Enumeration and
Recursion Theorems etc. mentioned above. However these founding theorems return, almost partly
as definitions, in the notion that Moschovakis singled out as encompassing a generalised theory of
inductive definability, that of the Spector class. We give the definition (with some details swept
under the rug) as it pertains to inductive definitions at the lowest type, those of sets of integers.

Definition 2. (Spector Class) (Moschovakis) A class of sets of integers 0 ⊆ P(ω) (or P(ωω), or
direct products of such) is a Spector Class if the following are satisfied:

(i) (Closure) 0 is closed under trivial substitutions and those by functions themselves in 0, and
universal quantification over numbers: ∀ω;

(ii) (Universality) There is a relation R ∈ 0 ∩ω×ω, which is universal for all relations in 0 on
ω: if P ∈ P(ω)∩0 then ∃e ∈ ω ∀k(k ∈ P↔ (e,k) ∈ R) (and similarly for other products of ω
and ωω).

(iii) (Norm Property) For any P ∈ 0 there is a function ϕ with ϕ : P → On satisfying certain
properties close to saying that the prewellordering induced on P by ϕ has both its graph and
its complement in 0.

The last property here is somewhat distractingly technical, and so has been left vague, but the
point is that the function into the ordinals, gives us a nice prewellordering of the set P and in a very
loose sense, we can think of it as saying that an n gets into P before m does if ϕ(n) < ϕ(m). Property
(ii) is recognisable as an Enumeration property; (i) hints at some initial basic closure properties.

There are countless examples of Spector classes, but the original basic such ur-class is obtained
by taking the class of 51

1 sets of integers (and this is the least such class). Such classes relate to
notions of definability over admissible sets, since to any Spector class 0 of sets of integers we may
find an admissible structure M0 over which the sets in 0 correspond to sets inductively definable
over M0 via some operator 9 as above.

So, on the one hand, the increasing generalisations of recursion theory to higher types, and espe-
cially those including infinite ordinals in their domain, were mostly mathematical generalisations
rather than machine model generalisations. This might lead one to think that with the increasing
sophistication of the approach, that the original intuition of machine or computer had been left far,
far behind. However running through this development was always a thread of machine-mindedness.
For Kleene Recursion this was for Rogers (1967) the ‘ℵ0-mind’: one could think of Kleene Recur-
sion as the notion of computability that might arise by taking hold of the TM model where a mind
could survey the whole tape, as one step; or rewrite an ω-sequence of bits, as one operation, and
further consult an oracle A (consisting of a set of subsets of N) and receive a 0/1 answer as to
whether the whole set of integers coded on a tape was or was not in A. In short anything that a mind
capable of comprehending, and acting on, an ℵ0=sized amount of information could do. The class
of wellfounded ‘computation trees’ is then a 51

1 subset of P(N) with the latter identified as R. A
computational process that outputs, e.g., answers to membership questions about whether the real x
belongs to a certain ‘generalised r.e’ set of real numbers, becomes then the problem of determining
the wellfoundedness of a certain tree within any transitive admissible set containing that real x. In
a realistic sense ( pace the countably infinite processes involved) this can still be construed as a
machine model.2

2 This would take us too far off course, but even in metarecursion theory, Platek said that he also thought of a formal-
ism involving a Shepherdson–Sturgess–Minsky like register machine containing countable ordinals in its registers, and
performing the appropriate machine like instructions (Platek, Private communication). This could have been extended
to α-recursion theory.
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The recent two decades however has seen an expansion of interest in generalising models of
computation, and this has led to mathematical investigations of models of computation where one
or more space or time parameters are relaxed: the model of the Infinite Time Turing Machine of
Hamkins and Lewis (2000) allows time to become transfinite. Time is still considered to tick away
in discrete steps for t = 0,1,2, . . ., but there are also now limit stages t = ω, then ω+ 1, . . ., ω+ω,. . .
One simply has to specify a behaviour at limit stages of time: thinking of the ordinary Turing
machine model, as the program is finite, if the machine does not halt but runs for an ω-sequence of
steps, then it is in a program loop; so at time ω put it at the beginning of the outermost loop or sub-
routine in which it was involved (in other words at the least instruction number it visited infinitely
often below ω). What is in the cells? We may specify, given an alphabet of 0’s, 1’s and B (for blanks)
that the i-th cell Ci contains the alphabet symbol j at time ω, if there was a time t = n< ω so that
for all later finite times m≥ n the cell constantly contained a j; however if the cell value changed
unboundedly often before ω then let it have value a B for ambiguity at time ω. Where is the R/W
head? It at time t cell Ck(t) is being read, we may place it at cell Ck(ω) where k(ω) is defined to be
the liminf of the k(t)’s for y< ω, unless this value is ω itself (because the head has wandered off to
infinity). In the latter case we define k(ω) to be 0. (This accords with our idea of putting the machine
at the start of the outermost loop entered into unboundedly often before time ω where possible.
Hamkins and Lewis (2000) does this differently, by having three tapes, a 0/1 alphabet only and by
taking limsups at limit ordinals, and placing the head back to cell C0 at all limit times. However
mathematically the functions produced are the same.) The same considerations are used at any limit
ordinal λ. We may now amuse ourselves by asking any of the myriad questions that have been
asked for the standard model TM. What are the ‘ITTM’-computable functions produced by such
machines? What are the decidable sets of integers? What is the halting set H = {Pe(e) ↓| e ∈ N}?
(Notice that we barely have to change notation to formulate the question.) Now computations may
halt after stage ω; but at what stages? Since an ITTM can now receive an infinite stream of input it
essentially can also compute on reals as well as integers. We can devise oracle machines that, like
Kleene Recursion, can quiz a set of reals. What can we do now? Lest one think that this is merely
an occupation for an idle hour on a rainy Sunday afternoon, one can show that the classes of ITTM
‘semi-decidable’ sets of numbers and reals produced form a Spector class. They are thus a particular
instance of a higher type recursion theory.

Consider another machine: if we are relaxing time, why not go the whole hog and relax space
considerations too? Let us consider an ITTM machine model with an uncountably long tape? Or
even a tape as long as the class of ordinal numbers. What then can such a machine create? Remark-
ably there is an ordinary standard Turing program that can in effect compute, given some finite
number of ordinals (input as 1’s at the appropriate ordinal places on the tape) the truth set in the
Gödel constructible universe L of the constructible set L-coded by those ordinals. In short, follow-
ing such considerations, we have another presentation, now a machine theoretic presentation, of the
set-theoretic Gödel L-hierarchy to set aside those alternatives of Jensen (1972) and Deutsch (1985)
Sec. 9 (See Dawson (2009) and Koepke (2005).)

One may wonder at the apparent strength of these machine models, but a moment’s reflection
shows it to be in the limit rules themselves. We may have ordinary Turing style-action at successor
stages, but the limit rule is a kind of infinitary logical rule integrating over this time dimension.
It may look innocuous to put B-blanks on tapes at infinite stages, or take a liminf of previous cell
values, but it is in these actions that the whole essence of the process inheres.

So what of these ‘liminf’ processes themselves? Consider then generalisations of the inductive
operators defined above. We now define for such a 9 (no longer required to be monotone):

90(X)= X; 9α+1(X)=9(9α(X));

9λ(X)= liminf
α→λ

9α(X)=df ∪α<λ ∩λ>β>α 9β(X) for limit λ.
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What kind of operators are these? Such do not necessarily reach a fixed point but instead (after
countably many iterations) reach a stability point: a least stage ζ = ζ(X) so that 9ζ (X) periodically
returns for ever after as α runs through all the ordinals. Elementary arguments show that ζ exists
and is countable. We thus may develop a theory of such quasi-inductive definitions. Starting with
the natural numbers the quasi-inductive sets defined by arithmetic (or hyperarithmetic) operators
9 again form a natural Spector class. Indeed this is to be expected: we can program an ITTM to
calculate them.

Other examples may occur to the reader: consider now Infinite Time Register Machines (Koepke,
2006; Koepke and Miller, 2008). We allow transfinite time on a standard register machine containing
integers. If co-finally at a limit stage a register has become unbounded we by fiat reset it to zero, and
otherwise register contents contain the liminf of the previous values; the instruction number about
to be performed at a limit stage is again the beginning of the outermost routine called unboundedly
before the limit time. Now ask the same questions as for ITTM’s. There is however a fundamental
difference between the Register machine model and the TM model, which does not show up at the
finite level. Universality fails, as there is no universal ITRM: as the numbers of registers increase,
their strength increases. (In fact the class considered as a whole is weaker by far than the ITTM
class.)

Instead of simply asking what the computational power of a transfinite computational model
is, one can approach the machine from another direction: that of reverse mathematics (Simpson,
1999). Even the assertion that every ITTM on zero input either halts or loops requires a proof that
can be effected only in a substantial fragment of second order number theory: 51

2-Comprehension
is insufficient, although 51

3-Comprehension suffices. For ITRMs the analogous assertion turns out
to be equivalent to 51

1-CA0, see Koepke and Welch (2011).
At the risk of a truism, the thing one must always be aware of in considering these generalisations

is the infinitary nature of the generalisation: in analysing ITTM’s Hamkins and Lewis (2000) stick
closely to questions and analogies with Turing jump and degree. However it is the analysis of the
new concept in terms of set theory, or already extant higher recursion theory, that renders a full
characterisation and delivers the deeper theorems. In the study by Hamkins and Lewis (2000) the
analogy with TM’s machines was thoroughly pursued, but ultimately the analogy of ITTM-degree
is closer to that of hyperdegree, or rather 11

2-degree, and the behaviour of such machines is closely
tied to that of low levels of the Gödel constructible hierarchy; it is this realisation that enables one
to actually answer some of the questions they asked: what are the semi-decidable sets of reals? How
long do computations really take? Indeed an analysis of the latter is necessary in order to prove the
analogue of Kleene’s Normal Form Theorem:

Theorem 3. (ITTM Normal Form Theorem) (Welch, 2009)

(a) For any program index e we may effectively (in the usual sense) find an index e′ so that:

∀x ∈ 2NPe(x) ↓ ⇒ ∃y ∈ 2N Pe′(x) ↓ y

where y is a code for the whole computation sequence for Pe(x).
(b) There is an ITTM-decidable universal predicate T1, and an arithmetical function U satisfying
∀e∀x:

Pe(x) ↓ z ↔ ∃y ∈ 2N[T1(e,x,y)∧U(y)= z].

Note that a y in part (a) has to be a real coding at the very least the ordinal length of the computation
Pe(x); in order for there to be any hope of such an e′ existing, we need to know that (a code for) the
length of any computation of the form Pe(x) can itself be computed from something decidable in
x. This length is of course a transfinite ordinal, and so we are in a very different ballpark from the
original Normal Form Theorem. Fortunately we can, and this length has a characterisation in terms
of the L-hierarchy; further, because of this analysis we can determine the decidable, semi-decidable
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sets etc. for this model. As evidence that we are doing the right kind of thing we see that we can
also obtain a Spector Criterion for the notion of ITTM-reducibility on sets of integers, x≤∞ y; using
ITTM-degrees, and ITTM-jump (denoted x∇ ), just as Spector had for hyperdegree:

x≤∞ y→ (x∇ ≤∞ y↔ ζ x < ζ y)

where now ζ x is the least ordinal after which the universal x-ITTM machine starts repeating.
We mention this here, as it typifies analyses of such proposed machine-theoretically inspired

models, that once they are allowed into the transfinite realm, then one uses set-theoretic, or analytical
methods to resolve such questions. Once one has started this kind of freeing oneself from the finite
realm, one sees all sorts of possibilities: for example consider the Blum-Shub-Smale machine –
again something certainly inspired by the Turing model. If we let this run transfinitely what may
that compute? Can we think of more general transfinite machines with different and perhaps more
complex limit rules? Friedman and Welch (2011) is one attempt to define such machines that run
through all the reals of the least β-model of analysis. Can one make sense in general of (some variant
of) dynamical systems allowed to run beyond ω? Usually such systems are restricted to continuous
functions on some interval or manifold – but what if we consider more general functions in some
higher Baire class?

It seems to me that there is little difference in the end between a system of equations recursively
applied (in some general sense), and a general machine. However, within the theory of Spector
classes and higher type recursion theory, these machine-inspired models occur sporadically as points
of illumination, as concrete, and so readily graspable, examples of that rather abstract theory.

And all of this ultimately we have Turing to thank for.
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On Computable Numbers, with an
Application to the Entscheidungsproblem

by A. M. Turing – Review by: Alonzo Church1

Andrew Hodges finds significance in —

CHURCH’S REVIEW
OF COMPUTABLE NUMBERS

This comment is stimulated by the very curious review of Turing’s paper by Alonzo Church in the
Journal of Symbolic Logic, 1937. This review introduced Turing’s work to the logicians’ world, and
in so doing used the expression ‘Turing machine’ for the first time. It was remarkable in several
ways, not least for the unstinting welcome offered to Turing’s revolutionary ideas, even though
Church had the reputation of being cautious to the point of pedantry. It was generous in spirit
despite the fact that it must have been disconcerting for Church that a young unknown, a complete
outsider, had given a more satisfactorily direct and ‘intuitive’ account of effective calculation than
the lambda calculus.

But the most curious thing is that Church was actually bolder in his physical imagery than Turing
was:

The author [Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be
“computable” that it shall be possible to devise a computing machine, occupying a finite
space and with working parts of finite size, which will write down the sequence to any num-
ber of terms if allowed to run for a sufficiently long time. As a matter of convenience, certain
further restrictions are imposed in the character of the machine, but these are of such a nature
as obviously to cause no loss of generality – in particular, a human calculator, provided with
pencil and paper and explicit instructions, can be regarded as a kind of Turing machine.

In a further sentence (in the review of Post’s work, immediately following)Church referred to
Turing’s concept as computability by an ‘arbitrary machine’, subject only to such finiteness
conditions.

Yet Turing’s paper did not actually refer to ‘arbitrary machines’. Turing certainly brought an idea
of physical action into the picture of computation. But his thorough and detailed analysis was of the
human calculator, with arguments for finiteness based not on physical space and size, but on human
memory and states of mind. It is odd that Church did not simply quote this model in his review,
but instead portrayed the human calculator as a particular case of an apparently more general finite
‘machine’ with ‘working parts’.

Nowadays, Church’s assertion about what could be computed by an arbitrary machine, empha-
sising its generality, and characterising it in terms of space and size, reads more like the ‘physical
Church-Turing thesis’, than the careful limitation to a human being, working to rule. It is unclear
whether Church was actually aware of this distinction.

1Church, A., 1937. Review of Turing 19367, J. Symbolic Logic 2, 42, with permission from Association for Symbolic
Logic.
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It is an interesting question as to what Turing himself, who was well acquainted with mathemati-
cal physics, thought were the physical connotations of his 1936 work. Firstly, there is the question
of the building of working Turing machines, and the universal machine in particular. Newman,
and Turing’s friend David Champernowne, later attested to discussions of it even at that time. But
no written material has reached us. It is certainly hard to see how Turing could have failed to
see that the atomic machine operations could be implemented with the sort of technology used in
automatic telephone exchanges and teleprinters. The second, more difficult, question is what Turing
thought the structure and limitations of computability had to say about the nature of the physical
world. In particular, it is a striking fact that Turing, far more than most mathematicians of 1936,
had an insight into the quantum-mechanical revolution in the description of physics. In 1932 he had
studied Neumann’s new axiomatisation of quantum mechanics, and it might well be that this work
had encouraged him in the work of logical analysis which flowered in 1936. So of all people, he
was well equipped to make some comment on Church’s idea of an ‘arbitrary machine’, if only to
emphasise that the changing nature of modern physics meant that this was not a simple concept. Yet
he gave no recorded reaction, and there seems to have been no debate around the question at this
period.

In his post-war writing, Turing made free use of the word ‘machine for describing mechanical
processes, and made no attempt to alert his readers to any distinction between human worker-to-rule
and physical system – a distinction which, nowadays, would be considered important. Thus Turing
(1948) referred to written-out programs, for a human to follow, as ‘paper machines’. The imagery
is that of a human acting out the part of a machine. Indeed, he stated that any calculating machine
could be imitated by a human computer, again the reverse of the 1936 image. He referred often to the
rote-working human calculator as a model for the way a computer worked and a guide as to what it
could be made to do in practice. But he also referred to the advantage of the universal machine being
that it could replace the ‘engineering’ of special-purpose machines. Most importantly, he appealed
to the idea of simulating the brain as a physical system. So in later years Turing readily appealed
to general ideas of physical mechanisms when discussing the scope of computability. Finally, in his
last years, he seems to have taken an interest in the implications of quantum mechanics. But as for
what he had in mind in 1936, we cannot know, and Church’s review only heightens the mystery.

Reference
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Proceedings of the London Mathematical Society, series 2, vol. 42 (1936–7), pp. 230–265.

The author proposes as a criterion that an infinite sequence of digits 0 and 1 be “computable”
that it shall be possible to devise a computing machine, occupying a finite space and with working
parts of finite size, which will write down the sequence to any desired number of terms if allowed to
run for a sufficiently long time. As a matter of convenience, certain further restrictions are imposed
on the character of the machine, but these are of such a nature as obviously to cause no loss of
generality – in particular, a human calculator, provided with pencil and paper and explicit instruc-
tions can be regarded as a kind of Turing machine. Thus, it is immediately clear that computability,
so defined, can be identified with (especially, is no less general than) the notion of effectiveness
as it appears in certain mathematical problems (various forms of the Entscheidungsproblem, vari-
ous problems to find complete sets of invariants in topology, group theory, etc., and in general any
problem which concerns the discovery of an algorithm).

The principal result is that there exist sequences (well defined on classical grounds), which
are not computable. In particular, the deducibility problem of the functional calculus of first order
(Hilbert and Ackermann’s engere Funktionenkalkül) is unsolvable in the sense that, if the formulas
of this calculus are enumerated in a straightforward manner, the sequence whose nth term is 0 or
1, according as the nth formula in the enumeration is or is not deducible, is not computable. (The
proof here requires some correction in matters of detail.)

In an appendix, the author sketches a proof of equivalence of “computability” in his sense
and “effective calculability” in the sense of the present reviewer (American Journal of Mathemat-
ics, vol. 58 (1936), pp. 345–363, see review in this Journal, vol. 1, pp. 73–74). The author’s result
concerning the existence of uncomputable sequences was also anticipated, in terms of effective cal-
culability, in the cited paper. His work was, however, done independently, being nearly complete
and known in substance to a number of persons at the time the paper appeared.

As a matter of fact, there is involved here the equivalence of three different notions: com-
putability by a Turing machine, general recursiveness in the sense of Herbrand-Gödel-Kleene and
λ-definability in the sense of Kleene and the present reviewer. Of these, the first has the advantage
of making the identification with effectiveness in the ordinary (not explicitly defined) sense evident
immediately – i.e., without the necessity of proving preliminary theorems. The second and third
have the advantage of suitability for embodiment in a system of symbolic logic.

ALONZO CHURCH
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Computability and λ-Definability
(J. Symbolic Logic, vol. 2 (1937), p. 153–163)

Henk Barendregt, Giulio Manzonetto and Rinus
Plasmeijer trace through to today —

THE IMPERATIVE AND FUNCTIONAL
PROGRAMMING PARADIGM

1. Models of computation

In Turing (1936) a characterisation is given of those functions that can be computed using a mechan-
ical device. Moreover it was shown that some precisely stated problems cannot be decided by such
functions. In order to give evidence for the power of this model of computation, Turing (1937)
showed that machine computability has the same strength as definability via λ-calculus, introduced
in Church (1936). This model of computation was also introduced with the aim of showing that
undecidable problems exist.

Turing machine computability forms a very simple model that is easy to mechanise. Lambda
calculus computability, on the other hand, is a priori more powerful. Therefore, it is not obvious
that it can be executed by a machine. In showing the equivalence of both models, Turing shows us
that λ-calculus computations are performable by a machine, so demonstrating the power of Turing
machine computations. This gave rise to the combined

Church-Turing Thesis The notion of intuitive computability is exactly captured by λ-definability
or by Turing computability.

Computability via Turing machines gave rise to imperative programming. Computability
described via λ-calculus gave rise to functional programming. As imperative programmes are more
easy to run on hardware, this style of software became predominant. We present major advantages
of the functional programming paradigm over the imperative one, that are applicable, provided one
is willing to explicitly deal with simple abstractions.

2. Functional programming

2.1. Features from lambda calculus

Rewriting. Lambda terms form a set of formal expressions subjected to possible rewriting (or
reduction) steps. For each term, there are in general several parts that can be rewritten. However,
if there is an eventual outcome, in which there is no more possibility to rewrite, it is necessarily
unique.

Application. An important feature of the syntax of λ-terms is application. Two expressions can be
applied to each other: if F and A are λ-terms, then so is FA, with as intended meaning the function F
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applied to the argument A. Both the function and the argument are given the same status as λ-terms.
This implies that functions can be applied to functions, obtaining higher-order functions.

Abstraction. Next to the application there is abstraction. This feature allows to create complex
functions. For example, given terms F and G intended as functions, then one may form F ◦G and
G ◦F ◦G with the rewriting rules

(F ◦G)a → F(Ga);

(G ◦F ◦G)a → G(F(Ga)).

It is interesting to note that there is one single mechanism, λ-abstraction, that can capture both
examples and much more. Given a λ-term M in which the variable x may occur, one can form
the abstraction λx.M. It has as intended meaning the function that assigns to x the value M. More
generally, λx.M assigns to N the value M[x:=N], where the latter denotes the expression obtained
by substituting N for x in M. Then one has

F ◦G , λx.F(Gx);

G ◦F ◦G , λx.G(F(Gx)).

β-reduction. Corresponding to this abstraction with its intended meaning, there is a single
rewriting mechanism. It is called β-reduction and is

(λx.M)N→M[x:=N],

giving the two rewrite examples mentioned above from the definition of F ◦G and G ◦F ◦G. One
can iterate the procedure and introduce the higher-order function C ‘composition’ as follows.

C , λfλgλx.f (gx).

Having C one can write F ◦G , C F G, where in the absence of parentheses, one should read this
C F G as (C F) G. Dually the iterated abstraction λfλgλx.f (gx) should be read as λf (λg(λx.f (gx))).

Instead of λ-abstraction, it is convenient to define functions by their applicative behaviour1.
One then writes compfgx=f(gx), obtaining ‘composition’ comp f g= f ◦g. One can even give
definitions that are ‘looping’, like L x= (x, L(x+1)), so that L0= (0,(1,(2,(3, . . .)))). Similarly,
one can construct the list of all prime numbers. Infinite lists are easier to describe than a list of say
28 elements.

Lazy evaluation. Expressions are evaluated as little as possible. Consider the program f (L 4): the
expression L 4 is computed only when f tries to read some input and is just evaluated for long
enough to return a value to f. This enables dealing with ‘infinite objects’, mentioned above.

2.2. Features beyond lambda calculus

For the pragmatics of functional programming, several features are added to the basic system of
λ-calculus.

Data. Although integers and ‘scientific’ real numbers can be represented as λ-terms, for efficiency
reasons they are given by special constants, together with the primitives for standard operations.

1 This method is called as heuristic application principle by Böhm.
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Names. The original λ-calculus formalism does not have names by design, as arbitrary
λ-abstractions can be made. However, for the pragmatics of using and reusing software compo-
nents, it is useful to introduce a naming construction let. For example, letcomp= λfλgλx.f(gx)
means that composition C , λfλgλx.f (gx) is now called comp and can be used later to
define

F ◦G ,compF G.

3. Types

In physics, constants have a ‘dimension’, e.g., speed is measured in kilometre per hour. When
we bike at v= 12km/h and we do this for t= 3h, we have gone vt= 12 ·3= 36km. Dimensions
prevent that we want to consider, e.g., vt2 to compute the distance.

Similarly, functional programming languages come with a type system helping to ensure cor-
rectness. A program expecting a number (: Int) should not receive a judgement (: Bool). Giving
module F a type A is denoted by F : A (read ‘F in A’). One starts typing the data, e.g., 3 : Int,
True : Bool. Functions with behaviour G x= y get as type A→ B, where x : A and y : B. An
application F a is only allowed if the types match, i.e., F : A→ B and a : A.

The functional programmer indicates the types of the data structures and basic functions, and
the machine performs type inferencing at compile time. This is a major help for combining software
modules in a correct way: many bugs are caught as the result will be an untypable program.

Algebraic Data Types. Next to basic data types, like Int, Bool, one likes to use common data
structures, like lists and trees of elements of type A. Such structures start small and grow. There is
the empty list Nil and one can extend a list tl (‘tail’) by chaining an element hd (‘head’) of type A,
obtaining Cons hd tl. The function that counts the number of elements in a list (of arbitrary type)
can be defined by specifying that on the empty list it is 0 and on an enlarged list it is the length of
the previous list plus 1.

count : List A→ Int
count Nil= 0
count (Cons hd tl)= 1+count tl

Using so-called Generalised Abstract Data Types, one introduces several such types simultaneously,
mutually depending on each other, keeping type inferencing possible, see Schrijvers et al. (2009).

Generic types. One can ‘code’ algebraic types enabling to write uniformly functions on these. For
example, there is a map on lists and on trees of data (hanging at the leaves), whereby a given function
f is applied to each element. The two functions can be obtained by specializing one program with
a generic type, including possible exceptions. With this feature, one can embed Domain Specific
Languages within a functional language, see Plasmeijer et al. (2007).

Dynamic types. A functional program P having type A is compiled to machine code and evalu-
ated. During this process, the original term, its type and context of definitions are forgotten. Using
‘dynamic types’, one may keep track of this syntactic data. This enables dynamic code, e.g., for
writing typed Operating System in a pure functional language and dealing with unknown plug-ins
or database specifications.

Efficiency. Considerable effort has been put into the compiler technologies for functional lan-
guages. The code generated by the state of art compilers for Haskell, OCaML and Clean is so good,
that efficiency is no longer an issue, see the URL <shootout.alioth.debian.org>.

An example. Using abstraction, application, algebraic data types and functions as arguments, one
can write compact software that can easily be modified. One can construct foldr with the following
specification.

foldr (•) [a1, . . . ,an] start= (a1 • (a2 • ( . . . (an •start) . . . )))

Here, ‘•’ is a binary operation used in infix position, and ‘(•)’ stands for • as argument. The program

http://shootout.alioth.debian.org
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foldr works on every kind of lists and subsequently can be applied to particular functions and data
structures, for example to obtain sumlist. As a comparison, the imperative code is also given. The
function foldr has the ‘schematic type’ (A→ B→ B)→ B→ List A→ B, which does not need to
be given by the programmer.

working Functional (Haskell-like) Imperative (C-like)

foldr f e Nil = e
foldr f e (Cons hd tl) =

f hd (foldr f e tl)

sumlist = foldr (+) 0

int sumlist(node *l){
node *cur = l;
int res = 0;
while not (curr = Nil){
res = res + curr->num;
curr = curr->next;

}
return res;

}

If one needs the product of the elements of a list, then in the functional case, one just adds a
new line prodlist= foldr (∗) 1, whereas in the imperative case, one needs to write another
procedure exactly like sumlist, except for the product that now replaces the sum, thus doubling
the lines of code.

4. Input/output

In applications, one needs to perform I/O to manipulate information available in peripherals (e.g.,
keyboard and mouse for input and the file system and screen for output). These characterise the
‘state’ of the machine and platform running a program. This may effect the content of the file,
which is imperative by nature. In pure2 functional languages, one has to deal with I/O in a special
way, while maintaining modularity, readability and typability.

In Haskell, the state has a particular type State. For output, one modifies the state (‘writing’),
and for input, one makes available to the main functional program a value from the state (‘reading’,
thereby also possibly changing the state). The programming environment of Haskell comes with a
collection of write and read operations having the following effect.

write a state= state′

read state= (a,state′)

Together these are called ‘actors’, with the following type and action.

actor : State→ A×State
actor state= (a,state′)

Here, ‘write a’ is interpreted as an actor, for which the A is not used. Actors can have an erasing
effect on the state. Therefore, the programmer has access to the actors, but not to the state. Otherwise
one could write

f state= (write 1 state, write 2 state), (1)

having a not well-defined effect (depending on execution order). The type State remains hidden
to the programmer, but not the actors having type Monad A = State → (A×State), parametrised
with a type A, on which the program can operate. The entire program is seen as a state modifying

2 A pure functional language is one without assignments, i.e., statements like [x := x+1].
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function of type Monad B, for some type B. Composing such functions, using a kind of composi-
tion3, one preserves modularity and compactness. In the meantime, any possible computations can
take place, by interleaving these with the actors. The monadic approach in Haskell has as advantage
that it does not require a special type system to deal with I/O.

In Clean, dealing with I/O is more general. Monads are used as well, but also the state on which
they act is given to the programmer. This is possible because a uniqueness type system warrants safe
usage that avoids situations like (1) above. As the state is available, one can split it into different
components, like files, the keyboard and whatever one needs. These can be modified separately, as
long as they are not duplicated. Explicit access to the state allows to write the actors within Clean
itself.

We see that in both Haskell and Clean, dealing with I/O comes at a certain price. But this is well
worth the advantages of pure functional programming languages: having arbitrarily high meaningful
information density, with modules that can be combined easily in a safe way.

5. Current research

5.1. Parallelism

Pure functional languages are better equipped for programming multi-cores than imperative lan-
guages, as the result of a function is independent of its evaluation order. Therefore, modules in a
functional program can be safely evaluated in parallel. As it costs overhead to send data between
processors, one should restrict parallel evaluation to those functions having time consuming com-
putations. Research on parallel evaluation of functional programs, see Hammond and Michaelson
(1999), has been revived by the advent of new multi-core machines (Marlow et al, 2009).

5.2. Certification

In languages like AGDA (Bove et al., 2009), or Coq , 2010, one can fully specify a program and prove
correctness. This demands even more skills from the programmer than pure functional languages
already done: programming becomes proving. But the ideal of ‘formal methods’ (fully specifying
software together with a proof of correctness) has become feasible. For example, Leroy (2009)
gives a full certification of an optimised compiler for the kernel of the (imperative) language C.

6. History and perspective

The first functional language was Lisp (McCarthy et al., 1962). There is no type system, and I/O
is done imperatively. By contrast, the language ML (Milner et al., 1997) and its modern variant F#

(Syme et al., 2007) are impure as well, but strongly typed. Miranda (Turner, 1985) was one of the
first pure functional programming languages, with lazy evaluation and type inference. Clean (Plas-
meijer and van Eekelen, 2002) and Haskell (Jones, 2003) are modern variants of Miranda. Haskell
has become the de facto standard pure functional language, which is widely used in academia.

Pure functional programming has not yet become mainstream, despite its expressive power and
increased safety. To make use of the power, one needs understanding the type systems and the use
of the right abstractions. Once mastered, functional programming enables writing applications in a
fraction of the usual development and debugging time.

3 As reading actors use the information obtained by modifying the state, it is a serial action with giving over a token, like
in a relay race.
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COMPUTABILITY AND λ-DEFINABILITY

A. M. TURING

Several definitions have been given to express an exact meaning corresponding to the intuitive
idea of ‘effective calculability’ as applied for instance to functions of positive integers. The purpose
of the present paper is to show that the computable1 functions introduced by the author are identical
with the λ-definable2 functions of Church and the general recursive3 functions due to Herbrand
and Gödel and developed by Kleene. It is shown that every λ-definable function is computable
and that every computable function is general recursive. There is a modified form of λ-definability,
known as λ-K-definability, and it turns out to be natural to put the proof that every λ-definable
function is computable in the form of a proof that every λ-K-definable function is computable;
that every λ-definable function is λ-K-definable is trivial. If these results are taken in conjunction
with an already available4 proof that every general recursive function is λ-definable we shall have
the required equivalence of computability with λ-definability and incidentally a new proof of the
equivalence of λ-definability and λ-K-definability.

A definition of what is meant by a computable function cannot be given satisfactorily in a short
space. I therefore refer the reader to Computable pp. 230–235 and p. 254. The proof that com-
putability implies recursiveness requires no more knowledge of computable functions than the ideas
underlying the definition: the technical details are recalled in §5. On the other hand in proving that
the λ-K-definable functions are computable it is assumed that the reader is familiar with the methods
of Computable pp. 235–239.

The identification of ‘effectively calculable’ functions with computable functions is possibly
more convincing than an identification with the λ-definable or general recursive functions. For
those who take this view the formal proof of equivalence provides a justification for Church’s cal-
culus, and allows the ‘machines’ which generate computable functions to be replaced by the more
convenient λ-definitions

1. Definition of λ-K-definability

In this section the notion of λ-K-definability is introduced in a form suitable for handling with
machines. There will be three differences from the normal, in addition to that which distinguishes
λ-K-definability from λ-definability. One consists in using only one kind [ ] of bracket instead of
three, {},(), [ ]; another is that x,x|,x||, · · · are used as variables instead of an indefinite infinite

Received September 11, 1937.
1 A. M. Turing, On computable numbers with an application to the Entscheidungsproblem, Proceedings of the London
Mathematical Society, ser. 2, vol. 42 (1936–7), pp. 230–265, quoted here as Computable. A similar definition was given
by E. L. Post, Finite combinatory processes—formulation 1, this JOURNAL, vol. 1 (1936), pp. 103–105.
2 Alonzo Church An unsolvable problem of elementary number theory, American journal of mathematics, vol. 58
(1936), pp. 345–363, quoted here as Unsolvable.
3 S. C. Kleene, General recursive functions of natural numbers, Mathematische Annalen, vol. 112 (1935–6), pp. 727–
742. A definition of general recursiveness is also to be found in Unsolvable pp. 350–351.
4 S. C. Kleene. λ-definability and recursiveness, Duke mathematical journal, vol. 2 (1936), pp. 340–353.
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list of the single symbols, and the third is a change in the form of condition (ii) of immediate
transformability, not affecting the definition of convertibility except in form.

There are five symbols which occur in the formulae of the conversion calculus. They are λ, x, |,
[ and ]. A sequence of symbols consisting of x followed by | repeated any number (possibly 0)
of times is called a variable. Properly- formed formulae are a class of sequences of symbols which
includes all variables. Also if M and N are5 properly-formed formula, then [M][N] (i.e. the sequence
consisting of [followed by M then by], [and the sequence N, and finally by]) is a properly-formed
formula. If M is a properly-formed formula and V is a variable, then λV[M] is a properly-formed
formula. If any sequence is a properly-formed formula it must follow that it is so from what has
already been said.

A properly-formed formula M will be said to be immediately transformable into N if either:
(i) M is of the form λV[X] and N is λU[Y] where Y is obtained from X by replacing the variable

V by the variable U throughout, provided that U does not occur in X.
(ii) M is of the form [λV[X]][Y] where V is a variable and N is obtained by substituting Y for V

throughout X. This is to be subject to the restriction that if W be either V or a variable occurring in
Y, then λW must not occur in X.

(iii) N is immediately transformable into M by (ii).
A will be said to be immediately convertible into B if A is immediately transformable into B or

if A is of the form X[L]Y and B is X[M]Y where L is immediately transformable into M. Either
X or Y may be void. A is convertible to B (A conv B) if there is a finite sequence of properly-
formed formulae, beginning with A and terminating with B, each immediately convertible into the
preceding.

The formulae,

λx[λx| [x|]] (abbreviated to 0),

λx[λx| [[x][x|]]] (abbreviated to 1),

λx[λx| [[x][[x][x|]]]] (abbreviated to 2), etc.,

represent the natural numbers. If n represents a natural number then the next natural number is
represented by a formula which is convertible to [S][n] where S is

λx||[λx [λx|[[x][[[x||][x]][x|]]]]].

A function f (n) of the natural numbers, taking natural numbers as values will be said to be λ-K-
definable if there is a formula F such that [F][n] is convertible to the formula representing f (n)
if n is the formula representing n. The formula [F][n] can never be convertible to two formulae
representing different natural numbers, for it has been shown6 that if two properly-formed formu-
lae are in normal form (i.e., have no parts of the form [λV[M]][N]) and are convertible into one
another, then the conversion can be carried out by the use of (i) only. The formulae representing the
natural numbers are in normal form and the formulae representing two different natural numbers
are certainly not convertible into one another by the use of (i) alone.

5 Heavy type capitals are used to stand for variable or undetermined sequences of symbols. In expressions involving
brackets and heavy type letters it is to be understood that the possible substitutions of sequences of symbols for these
letters is to be subject to the restriction that the pairing of the explicitly shown brackets is unaltered by the substitution;
thus in X[L]Y the number of occurrences of [in L must equal the number of occurrences of].
6 Alonzo Church and J. B. Rosser, Some properties of conversion, Transactions of the American Mathematical Society,
vol. 39 (1936), pp. 472–482. The result used here is Theorem 1 Corollary 2 as extended to the modified conversion on
p. 482.
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2. Abbreviations

A number of abbreviations of the same character as those in Computable (pp. 235–239) are intro-
duced here. They will be applied in connection with the calculus of conversion, but are necessary
for other purposes, e.g. for carrying out the processes of any ordinary formal logic with machines.
The abbreviations in Computable are taken as known.

‘The sequence of symbols marked with α (followed by α)’ will be abbreviated to S(α) in the
explanations. Sequences are normally identified by the way they are marked, and are as it were lost
when their marks are erased.

In the tables B will be used as a name for the symbol ‘blank.’

pem(A, α, β) pe(pem1, α)
pem1 R,Pβ A

pem1 here stands for pem1(A, α,β) and similar abbreviations must be understood throughout.

pem(A, α,β). The machine prints α at the end of the sequence of symbols on F-squares and marks
it with β. → A.

The tables for crm (B, γ , β) and cem(B, γ , β) are to be obtained from those for cr(B,γ ) and
ce(B, γ ) by replacing pe(A,α) by pem(A,α,β) throughout.

cpr(A,C,α,β) cp(cpr1,cpr2,cpr3,α,β)
cpr1 re(re(cpr,b,β,b),b,α,a)
cpr2 re(re(C,b,β),a,α)
cpr3 re(re(A,b,β),a,α)

cpr(A, C,α,β). The machine compares S(α) with S(β). → A if they are alike;→ C otherwise. No
erasures are made.

The letters a, b occurring in the table for cpr should not be used elsewhere in any machine whose
table involves cpr. This can be made automatic by using acpr and bcpr say, instead of a and b. We
shall however write a and b and understand them to mean acpr and bcpr. The same applies for the
letters a, · · · , z in all such tables.

f(A, γ )

{
γ L A

notγ R, R f

bf(A,α,β,γ ,δ) E, Pa f(bf1, γ )

bf1


α R, E, Pb f(bf2,γ )

β L bf3

others R, R, R, f(bf1,b,γ )

bf2


β R, E, Pb f(bf,b, a)

not β R, R, R f(bf2,γ )

bf3


γ or b E, Pδ, L, L bf3

α E, Pγ A

others L,L bf3
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bf(A, α, β, γ , δ). This describes the process of finding the partner of a bracket. If α and β are
regarded as left and right brackets, then if the machine takes up the internal configuration bf when
scanning a square next on the right of an α it will find the partner of this α in the sequence S(γ ), and
will mark the part of S(γ ) which is between the brackets with δ (instead of γ ). The final internal
configuration is A and the scanned square is that which was scanned when the internal configuration
bf was first taken up.

sb(A,α,β,γ ,δ,ε) f ′(sb1,crm(re(re(sb,a, j)b,β)γ ,ε),β)
sb1 σ R, E, Pb sb2(A, α, β, γ , δ, ε, σ)
sb2 f′(sb3,crm(re(re(re(A,b,β), j,α),a,α), a,δ), α)

sb3


σ R,E,Pa sb

not σ R,E,Pa re (f′(sb4, b, a)b,β)

sb4 τ R,E,Pj re(pem(sb,τ ,δ), a,α)
sub(A,α,β,γ ,δ) sb(A,α,β,γ , δ,δ)
dt(A, B,α,β) pem(sb(f(e(A,d),B, d), α,β,p,r, d), r,p)

sub(A, α,β, γ , δ). S(γ ) is substituted for S(β) throughout S(α). The result is copied down and

marked with δ. → A.
dt(A, B, α,β). It is determined whether the sequence S(β) occurs in S(α). → A if it does;→B
otherwise.

The tables which follow are particularly important in all cases where an enumeration of all
possible results of operations of given types is required. The enumeration may be carried out by
regarding the operation as determined by a number of choices, each between two possibilities, L
and M say. Each possible sequence of operations is then associated with a finite sequence of letters
L and M. These sequences can easily be enumerated. The method used here is to replace L by 0,
each M by 1, follow the whole by 1, reverse the order and regard the result as the binary Arabic
numeral corresponding to the given sequence. Thus the first few sequences (beginning with the one
associated with 1) are: the null sequence, L, M, LL, ML, LM, MM, LLL, MLL, LML, MML. In
the general table below ζ and η are used instead of L and M.

add(A,α,ζ ,η) f′(add1,pem(add2,ζ ,a),α)

add1

{
η R,E pem(add, ζ ,a)
ζ R,E pem(add2, η,a)

add2 cem(re(A, a, α), α,a)

add(A, α,ζ , η). The sequence S(α) consisting of letters ζ and η only is transformed into the next
sequence.→ A.

ch(A, B,C,α,ζ ,η) f′(ch1,re(C,b,α),α)

ch1

{
ζ R,E,Pb A

η R,E,Pb B

ch(A,B,C,α,ζ ,η) is an internal configuration which is taken up when a choice has to be made. S(α)
is the sequence of letters ζ and η determining the choices.→ A if the first unused letter is ζ ;→B
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if it is η: it is then indicated that this ζ or η has been used by replacing its mark by b. When the
whole sequence has been used up these marks are replaced by α again and→ E.

cch(A,B,C,α,ζ ,η) R cch1

cch1 σ E, Pa cch2(A, B, C, α,ζ ,η,σ)

cch2 ch(f(cch3, b, a), f(cch4, b, a), C, α,ζ , η)

cch3 E,Pσ ,L A

cch4 E,Pσ ,L B

cch(A, B,C,α,ζ ,η). This differs from ch in that the internal configurations A and B are taken up
when the same square is scanned as that which was scanned when the internal configuration cch was
first reached, provided that this was an F-square.

3. Mechanical conversion

We are now in a position to show how the conversion process can be carried out mechanically. It
will be necessary to be able to perform all of the three kinds of immediate transformation. (iii) can
be done most easily if we can enumerate properly-formed formulae. It is principally for this purpose
that we introduce the table for pff(A,α).

funf(A, α,β,γ ) pem(crm(pem2(crm(pem(A, ],γ ), β, γ ), ], [,γ ),α,γ ), [,γ )
funf(A,α,β,γ ). [S(α)][S(β)] is written at the end and marked with γ . → A.

ch(A, B,C, θ) ch(A,B,C,θ ,L,M)

cch(A, B,C, θ) cch(A,B, C, θ ,L, M)

The choices will be determined by a sequence made up of letters L and M.

pff(A,C, α,θ) pe5(c(h(af,pff1,C,θ), :, ; ,x, ; ,x)
pff1 q(pff2, :)

pff2


; R,R cch(pff3,pff2,C,θ)

B

af

others R,R pff2

pff3


; pff4

B

af

others R,Pa,R pff3

pff4


; R,R cch(pff5,pff4,C,θ)

B

af

others R,R pff4

pff5


; or B

ar

others R,Pb,R pff5
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ar ch(ne,ch(comp,ab,C,θ),C,θ)
ne pe2(ne1, ; ,x)
ne1 ch(pe(ne1,| ), af,C,θ)
comp pe(funk(af, a, b, B

), ;)
ab pe3(ab1, ; ,λ, x)

ab1 ch(pe(ab
|

1),ab2,C,θ)
ab2 pe(ce(pe(af, ]), a), [)
af e(e(ch(fin,pff1,C,θ),a),b)
fin q(r(r(fin1)), ;)

fin1


not B R,Pα,R fin1

B

A

pff(A,C,α,θ). A properly-formed formula is chosen, written down at the end and marked with
α. → A. This is done by writing down successive properly-formed formulae separated by semi-
colons, and obtaining others from them by abstraction (i.e., the process by which λV[M] is obtained
from M), by application of a function to its argument (i.e., obtaining [M][N] from M and N), and
by writing down new variables. Before writing down a new formula we have the alternative of
taking the last formula as the result of the calculation. In this case the internal configuration fin is
taken up. If a new formula is to be constructed then two of the old formulae are chosen and marked
with a and b: then one of the internal configurations ab, comp,ne is chosen and the new formula is
correspondingly λV[S(a)], [S(a)][S(b)], or V, where V is a new variable. The whole of the work is
separated by a colon from the symbols which were on the tape previously. The meanings of pe3 and
pe5 are analogous to pe2.

The occurrence of λ in this table is of course as a symbol of the conversion calculus, not as a
variable machine symbol.

The immediate transformations (i) and (ii) are described next.

va(A, C, α,β, θ) f′(va1, A,α)

va1


λ R,E,Pa f′(va2,b,α)

others crm (A,α,β)

va2


x or | R,E,Pb f′(va2,b,α)

others R bf(pe(va3,x), [, ],α,c)

va3 R, Pd ch(pe(va3, |),dt(va4, va5, c,d), C, θ)
va4 re(re(re(crm(e(A,d),α,β),b,α)a,α)c,α)
va5 crm(re(re(re(va6,a,α),b,α),c,α)b, f )
va6 sub(e(e(A,d), f ),α, f ,d,β)

va(A,C,α,β,θ). An immediate transformation (i) is chosen, and if permissible is carried out on
S(α), the result being marked with β. If the chosen transformation is not permissible then S(β) is
identical with S(α). → A.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 11:40 Page 133 #13

Computability and λ-Definability 133

red(A,α,β)

red1


[ R bf(red2, [, ],α,c)

not [ red13

red2 E,Pf re(f(red3, b,α),b, α, f )
red3 bf(red4,[, ],α,d)
red4 f′(red5,b, c)

red5


λ R, E, Pf f′(red6,b,c)

not λ red13

red6


x or | R,E,Pg f′(red6, b,c)

[ R,E, Pf q(red7, c)

red7 E, Pf red8

red8 f′(red9,red10,c)

red9


λ R,E,Pk f′(red11,b,c)

not λ R,E,Pk red8

red11


x or | R, E, Pj f′(red11,b,c)

[ cpr(red13, red12, j,g)

red12 dt(red13,re(red8, j,k),d, j)
red10 ∫ub(re(re(re(re(A, d, α), f , α), k, α),g, α)k, g,d, β)
red13 re(re(re(re(re(re(crm(A,α,β),d,α),g,α),c,α), f ,α),k,α), j,α)

red(A,α,β). An immediate transformation (ii) is carried out on S(α), supposing that S(α) is
properly-formed. The result is marked with β. → A. If the transformation is not possible or
permissible S(β) is identical with S(α). Considerable use is made of the hypothesis that S(α) is
properly-formed. Thus if its first symbol is [ then it must be of form [L][N] and if in addition the
second symbol is λ then it is of form [λV[M]][N]. The internal configuration red8 is never reached
unless S(α) is of this form, and in that case it first occurs when V has been marked with g, M with
c, and N with d, the remaining symbols of what was S(α) being now marked with α or f . It is then
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determined whether the immediate transformation (ii) is permissible: if it is then red10 is taken up
and the substitution carried out.

imc(A,C,α,β,θ) ch(f′(imc1, imc2, α),re(imc1,α,a), C, θ)

imc1,


[ R,E,Pc ch(imc, imc3, C,θ)

not [ R,E,Pc imc

imc2 re(crm(A,α,β),c,α)
imc3 q(bf(imc4, [, ], α,a), c)

imc4 ch(vc,ch(rc,ex, C,θ), C, θ)
vc va(imc5,C,a,b,θ)
rc red(imc5,a,b)
er pff(red(er1,b,d),G,b,θ)
er1 cpr(e(imc5,d),e(e(crm(imc5,a,b),d),b),d,a)
imc5 crm(crm(crm(re(re(e(A,b),c,α),a,α),α,β),b,β),c,β)

imc(A, C,α,β, θ). An immediate conversion is chosen and performed on S(α). The result is marked
with β. → A.

conv(A,α,β,θ) pe(crm(conv1,α,d), .)
conv1 ch(imc(conv2,au,d, f ,θ),re(A,d,β),au,θ
conv2 e(re(conv1, f ,d),d)
au q(au1, .)

au1

{ B

crm(A,α,β)
not B R,E,R au1

conv(A,α,β,θ). A conversion is chosen and performed on S(α). The result is marked with β.→ A.
The sequence determining the choices is S(θ). If it should happen that this sequence is exhausted
before the conversion is completed then the final formula is the same as the original, i.e. S(α). The
half finished conversion work is effectively removed from the tape by erasing the marks.

4. Computability of λ-K-definable functions

It is now comparatively simple to show that a λ-K-definable function is computable, i.e., that7 if
f (n) is λ-K-definable then the sequence γf in which there are f (n) figures 1 between the nth and the
(n+ 1)th 0, and f (0) figures before the first 0, is computable.

To simplify the table for the machine which computes γf we use the abbreviation Wr(A, M, α)
for an internal configuration starting from which the machine writes the sequence M of symbols
at the end, marking it with α and finishing in the internal configuration A. Thus the table for
Wr(A,λx|, α) would be:

Wr(A, λx |, α) pe(Wr1, B

)

Wr1, Pλ, R,Pα,R, Px,R,Pα,R, P|, R,Pα A

7 Computable p. 254.
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We use one more skeleton table:

pis(A, α,β) funf(e(re(A,a,α),α),β, α,a)

If F is the formula which λ-K-defines f (n) then the table for the machine which computes γf is:

b P e, R,P e

Wr(b1, F, h)

b1 Wr(b2, λx[λx|[x|]], i)
b2 crm(b3, i,k)
b3 Wr(ba,λx||[λx[λx|[[x][[[x||][x]][x|]]]]],u)
ba funf(cn1,h,k,v)
cn add(cn1,s, L, M)
cn1 crn(cn2, i,d)
cn2 ch(re(cn3,d,m),pl∫(cn2,d,u),cn6,s)
cn3 conv(cn4,v,w,s)
cn4 cpr(cn5,cn6,w,m)
cn6 e(e(e(cn10,w),m),d)
cn10 ch(cn10,cn10,cn,s)
cn5 q(cn7,m)
cn7 E q(cn8,m)
cn8 E q(l(cn9),m)

cn9

{
]
not ]

R,E pem(q(l(cn9),m),1,a)
pem(e(e(e(e(ba1,s),v),w),m),0,a)

ba1 pl∫(ba,k,u)

When the machine reaches the internal configuration ba for the (n+ 1)th time (n = 0) the tape bears
the formula F marked with h, the formula n representing the natural number n (or rather a formula
convertible into it) marked with kt0 marked with i, and S marked with u. A formula convertible into
one representing some natural number r is then chosen and marked with m. This brings us to the
internal configuration cn3. A conversion is then chosen and performed on S(v), i.e. on [F][n]. The
result is marked with w and compared with S(m). If they are not alike the letters w, m are erased
and we go back to cn1 after transforming the sequence S(s) which determines the choices into the
next sequence. If they are alike then 1 is written at the end repeated r times followed by 0, all of
which is marked with a. In order to have the correct number of figures we make use of the fact that
the number of brackets occurring consecutively at the end of S(m) is r+ 2. The machine is back in
the internal configuration ba as soon as S(k) has been changed to [S][S(k)].

No attempt is being made to give a formal proof that this machine has the properties claimed for
it. Such a formal proof is not possible unless the ideas of substitution and so forth occurring in the
definition of conversion are formally defined, and the best form of such a definition is possibly in
terms of machines.

If f (n)(n = 1) is λ-definable, i.e. if F is well-formed (Unsolvable p. 346), then the present argu-
ment shows also that f (n) is then computable in the sense that a function g(n) of positive integers
is computable if there is a computable sequence with g(n) figures 1 between the nth and (n+ 1)th
figure 0.
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5. Recursiveness of computable functions.

It will now be shown that every computable function f (n) of the natural numbers, taking natural
numbers as values, is general recursive. We shall in fact find primitive recursive functions j(x), φ(x)
such that if ξ(x) is the (x+ 1)th (x= 0, 1, 2, · · ·) natural number y for which j(y)= 0, then f (x) is
given by

f (x)= φ(ξ(x)).

It is easily seen that such a function is general recursive (cf. Unsolvable p. 353); also it can easily
be brought into the form,8

f (x)= φ(εy[i(x, y)= 0])

(where εy[i(x,y)= 0] means ‘the least natural number y for which i(x, y)= 0,’ and i(x, y) is primi-
tive recursive) which plays a central part9 in the theory of general recursive functions. It would be
slightly simpler to set up recursion equations for f (x) but in that case it would be necessary to show
that they were consistent; this is avoided by confining ourselves to primitive recursions (whose
consistency is not likely to be doubted) except at the step from j(x) to ξ(x).

We are given the description of a machine which computes f (x) The machine writes down sym-
bols on a tape:amongst these symbols occur figures 0 and 1. The number of figures 1 between
the nth and the (n+ 1)th figure 0 is f (n). At any moment there is one of the symbols on the tape
which is to be distinguished from the others and is called the ‘scanned symbol.’ The state (complete
configuration) of the system at any moment is described by the sequence of symbols on the tape,
with an indication as to which of them is scanned, and the internal configuration (m-configuration
in Computable) of the machine. As names for the symbols we take S0, S1, . . .SN−1 and for the
internal configurations q1,q2, · · · , qR. Certain of these are names of definite symbols and internal
configurations independent of the machine; in fact,

S0 always stands for ‘blank,’
S1 always stands for 0,
S2 always stands for 1,
q1,always stands for the initial internal configuration.

If at any time there is the sequence

Ss1 ,Ss2 , · · · , Ssk , . . . , Ssk+1 (k > 0, l = 0)

of symbols on the tape, with the kth symbol scanned and the internal configuration qt, this complete
configuration may be described by the four numbers,

w= sk−1+Nsk−2+ ·· · +Nk−2s1,

8 This may be done by defining i(x, y) as follows:

e(0) =0.
e(S(x))=S(e(x)) if j(x)= 0,

=e(x) otherwise,
i(x, y) =Max (0, x− e(y)),

S(x) as usual meaning x+1.
9 Compare the two papers by Kleene already quoted.
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sk, t, and

v= sk+1+Nsk+2+ ·· · +Nl−1sk+l

or by the single number,

u= p(w, sk, t, v),

where

p(x1, x2, x3, x4)= 2x13x25x37x4 .

Each complete configuration of the machine is determined by the preceding one. The manner
of this determination is given in the description of the machine, which consists of a number of
expressions each of one of the forms qtS8S8′Lqt′ or qtS8S8′Nqt′ or qtS8S8′Rqt′ . The occurrence of
the first of these means that if in any complete configuration the scanned symbol was S8 and the
internal configuration qt, then the machine goes to the next complete configuration by replacing the
scanned symbol by S8′ and making the new scanned symbol the symbol on the left of it and the new
internal configuration qt′ . In other words if a complete configuration be described by the number,

p(sk−1+Nsk−2+ ·· ·+Nk−2s1,s, t,sk+1+Nsk+2+ ·· ·+Nl−1sk+l)

= p(sk−1+Nf ,s, t,sk+1+Ng),

and if qtS8S8′Lqt′ occurs in the description of the machine, then the number describing the next
complete configuration is

p(f , sk−1, t′, s′+N(sk+1+Ng)).

In the case where we have qtS8S8′Nqt′ the next complete configuration will be described by

p(sk−1+Nf , s′, t′, sk+1+Ng),

and in the case of qtS8S8′Rqt′ by

p(s′+N(sk−1+Nf ), sk+1, t′,g).

We may define a primitive recursive function d1(s, t) (or d2(s, t) or d3(s, t)) to have the value 1
or 0 according as an expression of the form qtS8S8′Lqt′ (or qtS8S8′Nqt′ or qtS8S8′Rqt′ ) does or does
not occur in the description of the machine. In each of the three cases z(s, t) is to have the value
s′ and c(s, t) to have the value t′.q(x), r(x) are to be respectively quotient and remainder of x on
division by N, and $r(x)(r = 2,3,5,7) is to be the greatest integer k for which rk divides x. These
functions are primitive recursive.

Then if we put

θ(x)= d1($3(x),$5(x))p(q($2(x)),r($2(x)),c($3(x),$5(x)),z($3(x),$5(x))+N$7(x))

+ d2($3(x),$5(x))p($2(x),z($3(x),$5(x)),c($3(x),$5(x)),$7(x))

+ d3($3(x),$5(x))p(z($3(x),$5(x))+N$2(x),r($7(x)),c($3(x),$7(x)),q($7(x))),

and

u(0)= p(0, 0, 1, 0)= 5,

u(S(x))= θ(u(x)),

u(x) will be the number describing the (x+ 1)th complete configuration of the machine.
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g(x,y) is to be defined by

g(S(x),y)= 2 (allx,y = 0), g(0, 1)= 0,

g(0,0)= 2, g(0,2)= 1,

g(0,x)= 2 (x = 3),

and j(x) by,

j(x)= g($3(u(x)), z($3(u(x)),$5(u(x)))).

Then j(x)= 0 means that in going from the (x+ 1)th to the (x+ 2)th complete configuration the
machine prints a figure 0: if j(x)= 1 it prints 1 : j(x)= 2 otherwise. ξ(x) is defined to be the (x+ 1)th
natural number y for which j(y)= 0, and φ(x) as follows:

φ(0)= 0,

φ(S(x))= 0 if j(x)= 0,

7= φ(x) if j(x)= 2,

= S(φ(x) if j(x)= 1.

Then φ(x) is the number of times 1 has been printed since the last 0, reckoned at the (x+ 1)th
complete configuration. φ(ξ(x)) is the number of times 1 occurs between the xth and the (x+ 1)th
figure 0, its value when x= 0 being the number of figures 1 which precede all figures 0. But these
are the properties which define f (x).

PRINCETON UNIVERSITY
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The p-Function in λ-K Conversion
(J. Symbolic Logic, vol. 2 (1937), p. 164)

Henk Barendregt and Giulio Manzonetto point out the
subtleties of —

TURING’S CONTRIBUTIONS TO

LAMBDA CALCULUS

1. Fixed point combinators in untyped lambda calculus

The untyped lambda calculus was introduced in 1932 by Church as a part of an investigation in
the formal foundations of mathematics and logic. The two primitive notions of the lambda calcu-
lus are application and λ-abstraction. Application, written MN, is the operation of applying the
term M considered as an algorithm to the term N considered as an input. Lambda abstraction, writ-
ten λx.M, is the process of forming a function from the expression M (possibly) depending on x.
Refer to Barendregt et al. (2012) (this volume) for an intuitive account of the system relying on the
fundamental proof in Turing (1937), that lambda definability is equivalent to machine computability.

An important feature of lambda calculus is that it has fixed point combinators, namely pro-
grammes Y satisfying YM =M(YM) for all M’s. These constitute the main ingredient for writing
recursive programmes in functional style. Turing contributed to this subject by providing a fixed
point combinator 2 having the additional property that the equality between 2M and M(2M)
results simply by reducing the former to the latter (which is not the case, in general). Finally,
we report how Böhm and van der Mey gave a general receipt to generate many new fixed point
combinators starting from a fixed one. Turing’s fixed point operator can be obtained in this way.

The rest of the section consists of the technical details and may be skipped by readers not
interested.

1.1. Lambda terms, reduction, and conversion

Formally, the set 3 of λ-terms is defined inductively as follows:

Every variable x is in 3;
If M,N ∈3, then MN ∈3;
If M ∈3, then λx.M ∈3, for every variable x.

Lambda abstraction is a ‘binder’; therefore, a variable x in M is called bound if it occurs in the
scope of a ‘λx’ and is called free otherwise. As usual we consider λ-terms up to α-conversion, i.e.,
we consider equal those λ-terms only differing for the names of their bound variables. For example,
λx.x= λy.y.
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The β-reduction, which specifies how λ-terms compute, is defined as the contextual closure of
the following rule:

(λx.M)N→β M[x := N],

where M[x := N] denotes the result of substituting the term N for every occurrence of x in M, subject
to the usual proviso about renaming bound variables in M to avoid capture of free variables in N. A
term of the shape (λx.M)N is called redex and M[x := N] is its contractum.

Multistep β-reduction is denoted by �β . Thus M�β N if M =M0→β · · · →β Mn = N for
some n≥ 0. The β-conversion, written M =β N, is the equivalence relation generated by →β

(i.e., its reflexive-symmetric-transitive closure). The Church-Rosser theorem in lambda calculus
states that

M = βN if M and N have a common reduct.

1.2. Fixed points

Despite the fact that its syntax is very simple, the lambda calculus is a Turing complete programming
language. One aspect of the richness of its expressive power is the presence of fixed points that allow
to write recursive programmes.

Theorem 1.1 (Fixed Point Theorem). For all λ-terms F, there is a λ-term M, such that FM =β M.

Proof. Take M , ωFωF , where ωf , λx.f (xx). Then

M , ωFωF =β F(ωFωF), FM.

In fact one can show that a fixed point for F can be found uniformly, that is by a term that
takes F as input. If a λ-term Y satisfies YF =β F(YF) for all F ∈3, then it is called a fixed point
combinator (fpc).

Corollary 1.2 (Curry). Let Y, λf .ωfωf . Then Y is a fixed point combinator.

The term Y is also called the paradoxical combinator, as it abstracts the argument in Russell’s
paradox.

An fpc Y is reducing if for all M ∈3 one has YM�β M(YM). This notion is useful as in many
applications one needs for a fixed point M of F that M�β FM. It is easy to check that Y is not
reducing. Therefore, one cannot take M , YF to get M�β FM.

In the study by Turing (1937a), a more convenient fpc is constructed that is reducing.

Proposition 1.3 (Turing). There exists a reducing fpc.

Proof. Define 2, AA, where A, λxy.y(xxy). Then one has

2F , AAF , (λxy.y(xxy))AF→β (λy.y(AAy))F→β F(2F).

The next lemma shows how 2 arises naturally.

Lemma 1.4 (Böhm, van der Mey). A term Y is an fpc if it is a fixed point of the peculiar term
δ = λxy.y(xy).

Proof. If Y = δY , then YF = δYF = F(YF).

For the converse, see the monograph by Barendregt (1984), Lemma 6.5.3.
From Lemma 1.4, it follows that, starting from a given fpc Y , one can derive an infinite sequence

of fpc’s.

Y0 , Y , Yn+1 , Ynδ.
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A natural question is whether all these fpc’s are different. In the study by Endrullis et al. (2010), it
is proved, using ‘clocked Böhm-trees’, that starting from Curry’s fpc Y, there are no duplicates in
the sequence Y0, Y1, Y2, · · · (the Böhm sequence). The problem is open for sequences starting from
an arbitrary fpc Y . Note that Turing’s fpc occurs in the Böhm sequence: 2=β Y1, as

Y1 , Yδ→β (λx.δ(xx))(λx.δ(xx))→β (λxy.y(xxy))(λxy.y(xxy)),2.

2. Weak normalisation of simply typed lambda calculus

Both for programming and theory, the property of normalisation is crucial. Termination can be seen
as an issue of programme correctness. The problem of finding all possible inhabitants of a given
type in the simply typed lambda calculus relies on the fact that all typable terms have a normal
form. An early proof of this weak normalisation result for the simply typed lambda calculus is due
to Turing and is published posthumously in the study by Gandy (1980). The idea of the proof is to
find a reduction strategy and a measure function mapping terms into some well-founded set, such
that the measure is strictly decreasing throughout steps in the computation.

One can see nicely from the notes how Turing wrote them informally, for his own use (as we all
start doing). He states that he well-orders the terms, but uses a map f to multisets with the multiset
order (which indeed is a well-ordering of type ωω), but as the map is not injective, there is no
ordering on terms. Then he states – like thinking aloud – that if M→β N by reducing a redex of
highest order, then f (M) > f (N), which is not quite correct. Turing then adds ‘this at any [rate] will
be the case, if we choose the unreduced part of highest order whose λ lies furthest to the right’. This
indeed yields weak normalisation.

The rest of this section is devoted to give a sketch of the technical proof; the reader not interested
in technicalities can skip it until Theorem 2.5.

2.1. Simply typed lambda terms and reduction

Definition 2.1. Let us fix a non-empty set A of atoms.

(1) The set T= TA of simple types over A is defined inductively as follows:
(a) If α ∈ A, then α ∈ T.
(b) If σ ,τ ∈ T, then σ → τ ∈ T.

(2) The set 3(σ) of λ-terms of type σ is defined by induction as follows:
(a) For every variable x, one has xσ ∈3(σ).
(b) If M ∈3(σ → τ) and N ∈3(σ), then (MN) ∈3(τ).
(c) If M ∈3(τ), then (λxσ .M) ∈3(σ → τ) for every variable x.

(3) Finally, the set of simply typed λ-terms is given by 3= ∪σ∈T3(σ).

On 3, we define the β-reduction as the contextual closure of the rule

(λxσ .M)N→β M[x := N].

A term M is in β-normal form if there is no N, such that M→β N.

2.2. The proof of weak normalisation

Now following Turing in the study by Gandy (1980) define a measure | · | :3→ ω2 mapping every
simply typed λ-term into an element of ω2, which can be seen as the well-founded set N×N lex-
icographically ordered. For the sake of clarity, we will sometimes attach extra type information
to λ-terms, decorating each subterm with its type, writing, for example, (λxα .Mβ)α→β instead of
λxα .M.
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Definition 2.2

(i) The length `(α) of a type α ∈ T is defined as follows:
`(α)= 1, for α ∈ A; `(α→ β)= `(α)+ `(β)+ 1.

(ii) The length `(R) of a redex R= (λxα .Mβ)α→βNα is defined as `(R)= `(α→ β).

(iii) With each λ-term M ∈3, we associate an element of the ordinal ω2 by setting |M| = (k,n)
where k is the maximal length of a redex in M and n is the number of redexes of length k
occurring in M.

To associate a suitable reduction strategy→s guaranteeing that M→s N entails |M|> |N|, we
have to study how the contraction of a redex can duplicate other redexes or create new redexes.
Duplication of a redex R happens when contracting redexes of the form

(λxα .M[x,x]β)α→βRα→β M[R,R]β ,

where M[P,Q] is a notation to display subterm occurrences of M.
The duplication of R is not very dangerous, while the creation of new redexes might be

more problematic: a priori new redexes of higher length might be created indefinitely. The main
instrument to check that this is not possible is given by the following Lemma.

Lemma 2.3 (Creation of redexes (Lévy, 1978)). Contraction of a β-redex can only create a new
redex in one of the following ways:

(i) (λxα→β .M[xα→βPα]γ )(α→β)→γ (λyα .Qβ)→β M[(λyα .Qβ)α→βPα]γ ;

(ii) (λxα .(λyβ .M[xα ,yβ ]γ )β→γ )α→(β→γ )PαQβ→β (λyβ .M[Pα ,yβ ]γ )β→γQβ ;

(iii) (λxα→β .xα→β)(α→β)→(α→β)(λyα .Pβ)α→βQα→β (λyα .Pβ)α→βQα .

As proved by Lévy in his PhD thesis (§1.8.4, Lemma 3), the above lemma holds more generally
for the untyped lambda calculus. See also Exercise 14.5.3 in Barendregt (1984).

Lemma 2.4. Suppose M
R
→β N, i.e., N is obtained from M by contracting R, and let R′ be a

created redex in N. Then `(R) > `(R′).

Proof. Check that in each case of Lemma 2.3 the property holds.

This lemma is not explicitly mentioned in Turing’s proof, but it is stated that when reducing a
redex of highest length, no other redex of highest length is created.

The reduction strategy S taken by Turing for proving the weak normalisation property is as fol-
lows. If M is in β-normal form, then do nothing; otherwise S(M)= N by contracting the rightmost
redex of maximal length in M.

Theorem 2.5 (Weak Normalisation). The simply typed lambda calculus is weakly normalising,
i.e., every M∈3 has a β-normal form found by S.

Proof. Contracting a redex R can only duplicate redexes R′ to the right of R. Because the redex R
chosen by S is the rightmost of maximal length, it only duplicates redexes R′, such that `(R′) < `(R).
By Lemma 2.4, also the new redexes created by the reduction are of smaller length. Therefore,
S(M)= N entails |M|> |N|. As ω2 is well founded, we are done.

A recent discovery is that Gentzen already had a normalisation proof for derivations in natural
deduction, see von Plato (2008). This implies the normalisation of typed lambda terms. However,
the proof worked out for lambda calculus is more clear and understandable, thanks to the simple
linear syntax of λ-terms.
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2.3. Strong normalisation

Actually the simply typed lambda calculus enjoys strong normalisation, which means that all
β-reductions are terminating regardless of the strategy that is chosen. The classic proof of strong
normalisation by using the reducibility technique is due to the study by Tait (1967), already obtained
in 1963 and used by many authors. The proof of strong normalisation by Tait does not use a com-
plexity measure assigned to terms. In the study by de Vrijer (1987), it is shown that it is possible to
do this, assigning to a term M an ordinal |M| (in fact a natural number), in such a way that M→β N
entails |M|> |N|, regardless what redex is reduced. It is an open problem whether such ordinals can
be assigned in a natural and simple way.

3. Postscript

Lambda calculus was more often on Turing’s mind. The logician Robin Gandy, who had been a
student and associate of Turing, mentioned in 1986 at a conference for his retirement that in the
early 1950s, Turing had told him ideas to implement lambda reduction using graphs. This is now
commonly done when designing compilers for functional programming languages. Thereby, Turing
was not careful about the distinction between free and bound variables and Gandy could correct
him. Then Turing said: “That remark is worth 10 pounds a week!”, in those days enough for a
decent living.
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Böhm trees. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, 11–14 July 2010, IEEE Computer Society, Edinburgh, United Kingdom, pp. 111–119.

Gandy, R.O., 1980. An early proof of normalization by A. M. Turing. In: Seldin, J.P., Hindley, J.R. (Eds.), To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press Limited,
pp. 453–455.

Lévy, J.-J., 1978. Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis, Université Paris 7.
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THE p-FUNCTION IN λ-K-CONVERSION

A. M. TURING

In the theory of conversion it is important to have a formally defined function which assigns to
any positive integer n the least integer not less than n which has a given property. The definition
of such a formula is somewhat involved:1 I propose to give the corresponding formula in λ-K-
conversion,2 which will (naturally) be much simpler. I shall in fact find a formula p such that if T
be a formula for which T(n) is convertible3 to a formula representing a natural number, whenever
n represents a natural number, then p(T, r) is convertible to the formula q representing the least
natural number q, not less than r, for which T(q) conv 0.2 The method depends on finding a formula
2 with the property that 2 conv λu.u(2(u)), and consequently if M→2(V) then M conv V(M).
A formula with this property is,

2→ {λvu.u(v(v,u))}(λvu.u(v(v,u))).

The formula p will have the required property if p(T, r) conv r when T(r) conv 0, and p(T, r) conv
p(T,S(r)) otherwise. These conditions will be satisfied if p(T, r) conv T(r, λx.p(T, S(r)),r), i.e. if
p conv {λptr.t(r,λx.p(t, S(r)),r)}(p). We therefore put,

p→2(λptr.t(r,λx.p(t, S(r)),r)).

This enables us to define also a formula,

P→ λtn.n(λv.p(t, S(v)), 0),

such that P(T,n) is convertible to the formula representing the nth positive integer q for which T(q)
conv 0.

PRINCETON UNIVERSITY

Received April 23, 1937.
1 Such a function was first defined by S. C. Kleene, A theory of positive integers in formal logic, American journal of
mathematics, vol. 57 (1934), see p. 231.
2 For the definition of λ-K-conversion see S. C. Kleene, λ-definability and recursiveness, Duke mathematical journal,
vol. 2 (1936), pp. 340–353, footnote 12. In λ-K-conversion we are able to define the formula 0→ λfx.x. The same paper
of Kleene contains the definition of a formula L with a property similar to the essential property of 2 (p. 346).
3 “Convertible” and “conv” refer to λ-K-conversion throughout this note.
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Systems of Logic Based on Ordinals
(Proc. Lond. Math. Soc., series 2 vol. 45 (1939), pp. 161–228)

Solomon Feferman returns to —

TURING’S THESIS: ORDINAL LOGICS AND
ORACLE COMPUTABILITY

In the sole extended break from his life and varied career in England, Alan Turing spent the years
1936–8 doing graduate work at Princeton University under the direction of Alonzo Church, the
doyen of American logicians. Those two years sufficed for him to complete a thesis and obtain the
Ph.D. The results of the thesis were published in 1939 under the title, ‘Systems of logic based on
ordinals’ (Turing, 1939). That was the first systematic attempt to deal with the natural idea of over-
coming the Gödelian incompleteness of formal systems by iterating the adjunction of statements –
such as the consistency of the system – that ‘ought to’ have been accepted but were not derivable;
in fact, these kinds of iterations can be extended into the transfinite. As Turing put it beautifully in
his introduction (Turing, 1939):

The well-known theorem of Gödel (1931) shows that every system of logic is in a certain
sense incomplete, but at the same time it indicates means whereby from a system L of logic
a more complete system L′ may be obtained. By repeating the process we get a sequence
L, L1 = L′, L2 = L′1, . . . each more complete than the preceding. A logic Lω may then be
constructed in which the provable theorems are the totality of theorems provable with the
help of the logics L, L1, L2, . . . Proceeding in this way we can associate a system of logic
with any constructive ordinal. It may be asked whether such a sequence of logics of this kind
is complete in the sense that to any problem A there corresponds an ordinal α such that A is
solvable by means of the logic Lα .

Using an ingenious argument in pursuit of this aim, Turing obtained a striking yet equivocal partial
completeness result that clearly called for further investigation. But he did not continue that himself,
and it would be some twenty years before the line of research he inaugurated would be renewed by
others. The paper itself received little attention in the interim, though it contained a number of
original and stimulating ideas, and though Turing’s name had by then been well established through
his earlier work on the concept of effective computability. One of those ideas is that of oracle
computability, addressed elsewhere in this volume.

Here, in brief, is the story of what led Turing to Church, what was in his thesis, and what came
after, both for him and for the subject.1

1 Much of this note is adapted directly from my paper (Feferman, 2006) for the Notices of the American Mathematical
Society. Prior to that I had written about this material at somewhat greater length in my work (Feferman, 1988), and
that in turn was incorporated as an introductory note to Turing’s 1939 paper in the volume, Mathematical Logic (Turing,
2001) of his collected works. In its biographical part, I have drawn to a considerable extent on Andrew Hodges’ superb
biography, Alan Turing: The Enigma (Hodges, 1994).

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00006-0
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1. From Cambridge to Princeton

As an undergraduate at King’s College, Cambridge, from 1931 to 1934, Turing was interested in
many parts of mathematics, including mathematical logic. Toward the end of that period he began
attending a survey course on logic by the topologist M. H. A. (Max) Newman. One of the problems
mentioned in that course was the Entscheidungsproblem, the question whether there exists an effec-
tive method to decide, given any well-formed formula of the pure first-order predicate calculus,
whether or not it is valid in all possible interpretations. After completing his undergraduate work,
Turing stayed on as a fellow at King’s College and continued to think about that problem, which had
been solved in the affirmative for various special classes of formulas. However, Turing became con-
vinced that the answer to the problem must be negative in general, but that in order to demonstrate
the impossibility of a decision procedure, he would have to give an exact mathematical explanation
of what it means to be computable by a strictly mechanical process. He arrived at such an analysis
by mid-April 1936 via the fundamental idea of the Turing machine. As explained elsewhere in this
volume, that is his most famous and certainly most important contribution to mathematical logic
and the theory of computation. By its means, Turing showed that the sought for answer to the moti-
vating problem was indeed negative in general, and he quickly prepared a draft of his work entitled
‘On computable numbers, with an application to the Entscheidungsproblem’(Turing, 1936–7). After
some initial skepticism, Newman became convinced of Turing’s analysis and encouraged its pub-
lication. Neither Newman nor Turing were aware at that point that there were already two other
proposals under serious consideration for analyzing the general concept of effective computability:
one by Kurt Gödel, building on an idea of Jacques Herbrand, called general recursiveness, and the
other by Church, called definability in the lambda (λ)-calculus. Church and his student Stephen C.
Kleene proved the equivalence of these two notions, and what has come to be called ‘Church’s The-
sis’ was that general recursiveness constitutes an analysis of the concept of effective computability.
This claim was stated in the paper Church (1936a), in which various mathematical and logical prob-
lems were shown to be effectively undecidable. That was followed by Church (1936), in which the
general Entscheidungsproblem was answered in the negative, submitted 15 April 1936 just about the
same time as Turing was preparing his paper for publication. When Newman and Turing received
news about this work a month later, the first reaction was a great disappointment, but then it was
agreed that Turing’s analysis was sufficiently different to warrant publication. Moreover, after that
was submitted but before it appeared, Turing was able to add an appendix in which he proved the
equivalence of computability by his machines with lambda-definability.

A year later, in Church’s 1937 review for The Journal of Symbolic Logic of Turing’s paper, he
stated that:

As a matter of fact, there is involved here the equivalence of three different notions;
computability by a Turing machine, general recursiveness in the sense of Herbrand-Gödel-
Kleene, and λ-definability in the sense of Kleene and the present reviewer. Of these, the
first has the advantage of making the identification with effectiveness in the ordinary (not
explicitly defined) sense evident immediately . . . The second and third have the advantage of
suitability for embodiment in a system of symbolic logic.

Thus was born what is now called the Church–Turing Thesis, according to which the effectively
computable functions are exactly those computable by a Turing machine.2 This, of course, is not to
be confused with Turing’s thesis under Church, the main subject here.

On Newman’s recommendation, Turing decided to spend the academic year 1936–7 studying
with Church in Princeton. He applied for Princeton’s Procter fellowship, of which three were offered

2 Gödel accepted the Church–Turing Thesis in that form in a number of lectures and publications thereafter.
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each year, one for Oxford, one for Cambridge and one for the Collège de France in Paris, but did
not succeed in getting it. Still, he thought he could manage on his fellowship funds from King’s
College, and so Turing arrived there at the end of September 1936.

2. Turing in Princeton

The Princeton mathematics department was already a leader on the American scene when it was
greatly enriched in the early 1930s by the establishment of the Institute for Advanced Study. The two
shared Fine Hall until 1940, so that the lines between them were blurred and there was significant
interaction. Among the mathematical leading lights that Turing found on his arrival were Einstein,
von Neumann, Weyl at the Institute and Lefschetz in the department. In logic, he had hoped to
find – besides Church – Gödel, Paul Bernays, Church’s student Kleene and J. Barkley Rosser. As
it happened, none besides Church were there so Turing was reduced to attending Church’s lectures,
which he found ponderous and excessively precise; but this was an exposure that he needed since,
by contrast, Turing’s native style was rough-and-ready and prone to minor errors. They met from
time to time, but apparently there were no sparks, since Church was retiring by nature and Turing
was a ‘confirmed solitary’.

In the spring of 1936, Turing worked up for publication a proof in greater detail of the equiva-
lence of machine computability with λ-definability. He also published two papers on group theory,
one on finite approximations of continuous groups that was of interest to von Neumann. Dean Eisen-
hart of the Princeton mathematics department urged Turing to stay on for a second year and apply
again for the Procter fellowship. This time, supported by von Neumann, Turing succeeded in obtain-
ing the fellowship, and so decided to stay the extra year and do a Ph.D. under Church. Proposed as
a thesis topic was the idea of ordinal logics that had been broached in Church’s course as a way to
‘escape’ Gödel’s incompleteness theorems.

Turing made good progress on his thesis topic and devoted himself full time to it when he
returned to Princeton in the fall after a summer back in England, so that he ended up with a draft
by Christmas of 1937. Apparently Turing would have been satisfied with that as an essentially
finished product, since he wrote home that ‘Church made a number of suggestions which resulted
in the thesis being expanded to an appalling length’. One can well appreciate that Church would
not knowingly tolerate imprecise formulations or proofs, let alone errors, and the published version
shows that Turing went far to meet such demands while putting his own characteristic stamp on it.
Following an oral exam in May on which his performance was noted as ‘Excellent’, the Ph.D. itself
was granted in June 1938.

Von Neumann thought sufficiently highly of Turing’s mathematical talents to offer him a position
as his assistant at the Institute. Curiously, at that time von Neumann showed no knowledge or
appreciation of his work in logic. It was not until 1939 that he was to recognise the fundamental
importance of Turing’s work on computability. Then, during World War II, when von Neumann was
engaged in the practical design and development of general purpose electronic digital computers,
he was to incorporate the key idea of Turing’s universal computing machine in a direct way.

Von Neumann’s offer was quite attractive, but Turing’s stay in Princeton had not been a per-
sonally happy one, and he decided to return home despite the uncertain prospects outside of his
fellowship at King’s and in face of the brewing rumors of war. After publishing the thesis work he
did no more on that topic and went on to other things. Not long after his return to England, he joined
a course at the Government Code and Cypher School, and that was to lead to his top secret work
during the war at Bletchley Park on breaking the German Enigma Code. This fascinating part of the
story is told in full in Hodges’ biography (Hodges, 1994) and elsewhere in this volume, as is his
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subsequent career working to build actual computers, promote artificial intelligence, theorise about
morphogenesis and continue his work in mathematics. Tragically, this ended with his death in 1954,
a probable suicide.

3. The thesis: ordinal logics

What Turing calls a logic is nowadays more usually called a formal system, i.e., one prescribed
by an effective specification of a language, set of axioms and rules of inference. Where Turing
used ‘L’ for logics I shall use ‘S’ for formal systems. Given an effective description of a sequence
〈Sn〉n∈N [N = {0,1,2, . . . }] of formal systems all of which share the same language and rules of
inference, one can form a new system Sω, which is the union of the Sn for n in N. If the sequence
of Sn’s is obtained by iterating an effective passage from one system to the next, then that itera-
tion can be continued to form Sω+1, . . . and so on into the transfinite. This leads to the idea of an
effective association of formal systems Sα with ordinals α. Clearly that can only be done for denu-
merable ordinals, but to deal with limits in an effective way, it turns out that we must work not
with ordinals per se, but with notations for ordinals. Church and Kleene (1936) had introduced a
system O of constructive ordinal notations, given by certain expressions in the λ-calculus. A variant
of this uses numerical codes a for such expressions, and associates with each a ∈ O a countable
ordinal | a |.

In general, given any effective means of passing from a system S to an extension S′ of S, one
can form an ordinal logic S∗ = 〈Sa〉a∈O which is such that for each a ∈ O and b= the successor of
a, Sb = S′a, and is further such that whenever a is a notation for a limit ordinal given by a recursive
function with index e, then Sa is the union of the sequence of S{e}n for each n ∈ N. In particular, for
systems whose language contains that of Peano Arithmetic, PA, one can take S′ to be S∪ {ConS},
where ConS formalises the consistency statement for S; the associated ordinal logic S* thus iterates
adjunction of consistency through all the constructive ordinal notations. If one starts with PA as
the initial system it may be seen that each Sa is consistent and so S′a is strictly stronger than Sa by
Gödel’s second incompleteness theorem. The consistency statements are expressible in ∀(‘for all’)-
form, i.e., ∀xR(x) where R is an effectively decidable predicate, and so a natural question to raise is
whether S∗ is complete for statements of that form, i.e., whether whenever ∀xR(x) is true in N then
it is provable in Sa for some a ∈ O. Turing’s main result for this ordinal logic was that it is indeed
the case, in fact one can always choose such an a with | a | = ω+ 1. But, speaking informally, a can
only be recognised to be a notation in O by first recognising the truth of ∀xR(x). Turing realised that
this completeness proof is disappointing, because it shifts the question of whether a ∀-statement is
true to the question whether a number a actually belongs to O. In fact, the general question, given a,
is a ∈ O?, turns out to be of higher logical complexity than any statement formed by the unlimited
iteration of universal and existential quantifiers, ∀ and ∃. Another main result of Turing’s thesis
is that for quite general ordinal logics, S* cannot be both complete for statements in ∀-form and
invariant, i.e., is such that whenever | a | = | b | then Sa and Sb prove the same theorems. It is for
these reasons that I called his completeness results equivocal above. Even so, what Turing really
hoped to obtain was completeness for statements in ∀∃ (‘for all, there exists’)-form. His reason
for concentrating on these, that he called ‘number-theoretical problems’, rather than considering
arithmetical statements in general, is not clear. This special class certainly includes many number-
theoretical statements (in the usual sense of the word) of mathematical interest, e.g., those such as
the twin prime conjecture, that say that an effectively decidable set C of natural numbers is infinite.
Also, as Turing pointed out, the question whether a given program for one of his machines computes
a total function is in ∀∃-form.

In Section 4 of his thesis, Turing introduced a new idea that was to change the face of the general
theory of computation (a.k.a. recursion theory) but the only use he made of it there was curiously
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misguided. His aim was to produce an arithmetical problem which is not number-theoretical in his
sense, i.e., not in ∀∃-form. This is trivial by a cardinality argument, since there are only countably
many effective relations R(x,y) of which we could say that ∀x∃yR(x, y) holds. Turing’s way of
dealing with this, instead, is through the new notion of computation relative to an oracle. As he
puts it:

Let us suppose that we are supplied with some unspecified means of solving number-
theoretical [i.e., ∀∃] problems; a kind of oracle as it were. . . . With the help of the oracle we
could form a new kind of machine (call them o-machines), having as one of its fundamental
processes that of solving a given number-theoretic problem.

He then showed that the problem of determining whether an o-machine terminates on any given
input is an arithmetical problem not computable by any o-machine, and hence not solvable by the
oracle itself. Turing did nothing further with the idea of o-machines, either in this paper or afterward.
Post (1944) took it as his basic notion for a theory of degrees of unsolvability, crediting Turing with
the result that for any set of natural numbers there is another of higher degree of unsolvability.
This transformed the notion of computability from an absolute notion into a relative notion that
would lead to entirely new developments and eventually to vastly generalised forms of recursion
theory.3

4. Ordinal logics redux

The problems left open in Turing’s thesis were attacked in my 1962 paper, ‘Transfinite recursive
progressions of axiomatic theories’ (Feferman, 1962). The title contains my rechristening of ‘ordi-
nal logics’ in order to give a more precise sense of the subject matter. I showed there that Turing’s
progression based on iteration of consistency statements is not complete for true ∀∃ statements,
contrary to his hope. In fact, the same holds for the even stronger progression obtained by iterating
adjunction to a system S of the local reflection principle for S. This is a scheme that formalises, for
each arithmetical sentence A, that if A is provable in S then A holds. The uniform reflection princi-
ple is a generalisation of the local principle to arbitrary formulas. Then, I showed that a progression
based on the iteration of that is complete for all true arithmetical sentences. One can also find a path
P through O along which every true arithmetical sentence is provable in that progression. On the
other hand, invariance fails badly in the sense that there are paths P′ through O for which there are
true sentences in ∀-form not provable along that path, as shown in my paper with Clifford Spec-
tor (Feferman and Spector, 1962). The book Inexhaustibility (Franzén, 2004a) by Torkel Franzén
contains an accessible introduction to Feferman (1962), and his paper Franzén (2004b) gives an
interesting explanation of what makes Turing’s and my completeness results work.

The problem raised by Turing of recognising which expressions (or numbers) are actually nota-
tions for ordinals is dealt with in part through the concept of autonomous progressions of theories,
obtained by imposing a boot strapping process. That allows one to go to a system Sa only if one
already has a proof in a previously accepted system Sb that a ∈ O (or that a recursive ordering of
order type corresponding to a is a well-ordering). Such progressions are not complete but have
been used to propose characterisations of certain informal concepts of proof, such as that of finitist
proof (Kreisel, 1960, 1970) and predicative proof (Feferman, 1964). For more recent progress that
replaces the use of transfinite progressions via a concept of the unfolding of formal systems based
on suitable axiom schemata, see my article (Feferman, 1996), and (Feferman and Strahm, 2000).

3 See the relevant pieces in other parts of this volume. I have written at greater length of the significance of oracle
computability from several perspectives in my paper (Feferman, 1992).
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Feferman, S., 1996. Gödel’s program for new axioms: Why, where, how and what?. In: Hajek, P. (Ed.). Gödel
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The well-known theorem of Gödel (Gödel [1], [2]) shows that every system of logic is in a
certain sense incomplete, but at the same time it indicates means whereby from a system L of
logic a more complete system L′ may be obtained. By repeating the process we get a sequence
L, L1 = L′, L2 = L′1, . . . each more complete than the preceding. A logic Lω may then be con-
structed in which the provable theorems are the totality of theorems provable with the help of the
logics L, L1, L2, . . .. We may then form L2ω related to Lω in the same way as Lω was related to L.
Proceeding in this way we can associate a system of logic with any constructive ordinal‡. It may
be asked whether a sequence of logics of this kind is complete in the sense that to any problem
A there corresponds an ordinal α such that A is solvable by means of the logic Lα . I propose to
investigate this question in a rather more general case, and to give some other examples of ways in
which systems of logic may be associated with constructive ordinals.

† This paper represents work done while a Jane Eliza Procter Visiting Fellow at Princeton University, where the author
received most valuable advice and assistance from Prof. Alonzo Church.
‡ The situation is not quite so simple as is suggested by this crude argument. See pages 170–172, 178–179.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 16:56 Page 152 #8

152 Part I

1. The calculus of conversion. Gödel representations.

It will be convenient to be able to use the “conversion calculus” of Church for the description of
functions and for some other purposes. This will make greater clarity and simplicity of expression
possible. I give a short account of this calculus. For detailed descriptions see Church [3], [2], Kleene
[1], Church and Rosser [1].

The formulae of the calculus are formed from the symbols {, }, (, ), [, ], λ,δ, and an infinite
list of others called variables; we shall take for our infinite list a, b, . . . , z, x′, x′′, . . .. Certain
finite sequences of such symbols are called well-formed formulae (abbreviated to W.F.F.); we define
this class inductively, and define simultaneously the free and the bound variables of a W.F.F. Any
variable is a W.F.F. ; it is its only free variable, and it has no bound variables. δ is a W.F.F. and has no
free or bound variables. If M and N are W.F.F. then {M}(N) is a W.F.F., whose free variables are the
free variables of M together with the free variables of N, and whose bound variables are the bound
variables of M together with those of N. If M is a W.F.F. and V is one of its free variables, then
λV[M] is a W.F.F. whose free variables are those of M with the exception of V, and whose bound
variables are those of M together with V. No sequence of symbols is a W.F.F. except in consequence
of these three statements.

In metamathematical statements we use heavy type letters to stand for variable or undetermined
formulae, as was done in the last paragraph, and in future such letters will stand for well-formed
formulae unless otherwise stated. Small letters in heavy type will stand for formulae representing
undetermined positive integers (see below).

A W.F.F. is said to be in normal form if it has no parts of the form {λV[M]}(N) and none of the
form {{δ}(M)}(N), where M and N have no free variables.

We say that one W.F.F. is immediately convertible into another if it is obtained from it either by:

(i) Replacing one occurrence of a well-formed part λV[M] by λU[N], where the variable U does
not occur in M, and N is obtained from M by replacing the variable V by U throughout.

(ii) Replacing a well-formed part {λV[M]}(N) by the formula which is obtained from M by
replacing V by N throughout, provided that the bound variables of M are distinct both from
V and from the free variables of N.

(iii) The process inverse to (ii).
(iv) Replacing a well-formed part {{δ}(M)}(M) by

λf [λx [{f }({f }(x))]]

if M is in normal form and has no free variables.
(v) Replacing a well-formed part {{δ}(M)}(N) by

λf [λx [{f }(x)]]

if M and N are in normal form, are not transformable into one another by repeated application
of (i), and have no free variables.

(vi) The process inverse to (iv).
(vii) The process inverse to (v).

These rules could have been expressed in such a way that in no case could there be any doubt
about the admissibility or the result of the transformation [in particular this can be done in the case
of process (v)].

A formula A is said to be convertible into another B (abbreviated to “A conv B”) if there is a
finite chain of immediate conversions leading from one formula to the other. It is easily seen that
the relation of convertibility is an equivalence relation, i.e. it is symmetric, transitive, and reflexive.
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Since the formulae are liable to be very lengthy, we need means for abbreviating them. If we
wish to introduce a particular letter as an abbreviation for a particular lengthy formula we write the
letter followed by “→” and then by the formula, thus

I→ λx[x]

indicates that I is an abbreviation for λx[x]. We also use the arrow in less sharply defined senses, but
never so as to cause any real confusion. In these cases the meaning of the arrow may be rendered
by the words “stands for”.

If a formula F is, or is represented by, a single symbol we abbreviate {F}(X) to F(X). A formula
{{F}(X)}(Y) may be abbreviated to

{F}(X, Y),

or to F(X, Y) if F is, or is represented by, a single symbol. Similarly for {{{F}(X)}(Y)}(Z), etc. A
formula λV1[λV2 . . . [λVr[M]] . . .] may be abbreviated to λV1V2 . . .Vr ·M.

We have not as yet assigned any meanings to our formulae, and we do not intend to do so in
general. An exception may be made for the case of the positive integers, which are very conveniently
represented by the formulae λfx · f (x), λfx · f (f (x)) , . . . . In fact we introduce the abbreviations

1→ λfx · f (x)

2→ λfx · f (f (x))

3→ λfx · f (f (f (x))), etc.,

and we also say, for example, that λfx · f (f (x)), or in full

λf [λx[{f }({f }(x))]],

represents the positive integer 2. Later we shall allow certain formulae to represent ordinals, but
otherwise we leave them without explicit meaning; an implicit meaning may be suggested by the
abbreviations used. In any case where any meaning is assigned to formulae it is desirable that the
meaning should be invariant under conversion. Our definitions of the positive integers do not violate
this requirement, since it may be proved that no two formulae representing different positive integers
are convertible the one into the other.

In connection with the positive integers we introduce the abbreviation

S→ λufx · f (u(f ,x)).

This formula has the property that, if n represents a positive integer, S(n) is convertible to a formula
representing its successor†.

Formulae representing undetermined positive integers will be represented by small letters in
heavy type, and we adopt once for all the convention that, if a small letter, n say, stands for a positive
integer, then the same letter in heavy type, n, stands for the formula representing the positive integer.
When no confusion arises from so doing, we shall not trouble to distinguish between an integer and
the formula which represents it.

Suppose that f (n) is a function of positive integers taking positive integers as values, and that
there is a W.F.F. F not containing δ such that, for each positive integer n, F(n) is convertible to
the formula representing f (n). We shall then say that f (n) is λ-definable or formally definable, and

† This follows from (A) below.
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that F formally defines f (n). Similar conventions are used for functions of more than one variable.
The sum function is, for instance, formally defined by λabfx · a(f , b(f , x)); in fact, for any positive
integers m, n, p for which m+ n= p, we have

{λabfx · a(f , b(f , x))}(m, n) conv p.

In order to emphasize this relation we introduce the abbreviation

X+Y→ {λabfx · a(f , b(f , x))}(X,Y)

and we shall use similar notations for sums of three or more terms, products, etc.
For any W.F.F. G we shall say that G enumerates the sequence G(1), G(2), . . . and any other

sequence whose terms are convertible to those of this sequence.
When a formula is convertible to another which is in normal form, the second is described as a

normal form of the first, which is then said to have a normal form. I quote here some of the more
important theorems concerning normal forms.

(A) If a formula has two normal forms they are convertible into one another by the use of (i) alone.
(Church and Rosser [1], 479, 481.)

(B) If a formula has a normal form then every well-formed part of it has a normal form. (Church
and Rosser [1], 480–481.)

(C) There is (demonstrably) no process whereby it can be said of a formula whether it has a normal
form. (Church [3], 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive integers. The method used
here is due to Gödel (Gödel[1]). To each single symbol s of the calculus we assign an integer r[s]
as in the table below.

s {, (, or [ } , ) , or ] λ δ α · · · z x′ x′′ x′′′ · · ·

r[s] 1 2 3 4 5 · · · 30 31 32 33 · · ·

If s1, s2, . . . ,sk is a sequence of symbols, then 2r[s1]3r[s2] . . .pr[sk]
k where pk is the k-th prime

number) is called the Gödel representation (G.R.) of that sequence of symbols. No two W.F.F. have
the same G.R.
Two theorems on G.R. of W.F.F. are quoted here.

(D) There is a W.F.F. “form” such that if a is the G.R. of a W.F.F. A without free variables, then
form (a) conv A. (This follows from a similar theorem to be found in Church [3], 53, 66.
Metads are used there in place of G.R.)

(E) There is a W.F.F. Gr such that, if A is a W.F.F. with a normal form without free variables, then
Gr(A) conv a, where a is the G.R. of a normal form of A. [Church [3], 53, 66, as (D).]

2. Effective calculability. Abbreviation of treatment.

A function is said to be “effectively calculable” if its values can be found by some purely mechani-
cal process. Although it is fairly easy to get an intuitive grasp of this idea, it is nevertheless desirable
to have some more definite, mathematically expressible definition. Such a definition was first given
by Gödel at Princeton in 1934 (Gödel [2], 26), following in part an unpublished suggestion of Her-
brand, and has since been developed by Kleene [2]). These functions were described as “general
recursive” by Gödel. We shall not be much concerned here with this particular definition. Another
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definition of effective calculability has been given by Church (Church [3],356− 358), who identi-
fies it with λ-definability. The author has recently suggested a definition corresponding more closely
to the intuitive idea (Turing [1], see also Post [1]). It was stated above that “a function is effectively
calculable if its values can be found by some purely mechanical process”. We may take this state-
ment literally, understanding by a purely mechanical process one which could be carried out by a
machine. It is possible to give a mathematical description, in a certain normal form, of the structures
of these machines. The development of these ideas leads to the author’s definition of a computable
function, and to an identification of computability† with effective calculability. It is not difficult,
though somewhat laborious, to prove that these three definitions are equivalent (Kleene [3], Turing
[2]).

In the present paper we shall make considerable use of Church’s identification of effective calcu-
lability with λ-definability, or, what comes to the same thing, of the identification with computability
and one of the equivalence theorems. In most cases where we have to deal with an effectively calcu-
lable function, we shall introduce the corresponding W.F.F. with some such phrase as “the function
f is effectively calculable, let F be a formula λ defining it”, or “let F be a formula such that F(n)
is convertible to . . . whenever n represents a positive integer”. In such cases there is no difficulty
in seeing how a machine could in principle be designed to calculate the values of the function con-
cerned; and, assuming this done, the equivalence theorem can be applied. A statement of what the
formula F actually is may be omitted. We may immediately introduce on this basis a W.F.F.$ with
the property that

$(m, n) conv r,

if r is the greatest positive integer, if any, for which mr divides n and r is 1 if there is none. We also
introduce Dt with the properties

Dt(n, n) conv 3,

Dt(n+m, n) conv 2,

Dt(n, n+m) conv 1.

There is another point to be made clear in connection with the point of view that we are adopting.
It is intended that all proofs that are given should be regarded no more critically than proofs in
classical analysis. The subject matter, roughly speaking, is constructive systems of logic, but since
the purpose is directed towards choosing a particular constructive system of logic for practical use,
an attempt at this stage to put our theorems into constructive form would be putting the cart before
the horse.

Those computable functions which take only the values 0 and 1 are of particular importance,
since they determine and are determined by computable properties, as may be seen by replacing “0”
and “1” by “true” and “false”. But, besides this type of property, we may have to consider a different
type, which is, roughly speaking, less constructive than the computable properties, but more so than
the general predicates of classical mathematics. Suppose that we have a computable function of the
natural numbers taking natural numbers as values, then corresponding to this function there is the
property of being a value of the function. Such a property we shall describe as “axiomatic ” ; the
reason for using this term is that it is possible to define such a property by giving a set of axioms,

† We shall use the expression “computable function” to mean a function calculable by a machine, and we let “effectively
calculable” refer to the intuitive idea without particular identification with any one of these definitions. We do not restrict
the values taken by a computable function to be natural numbers; we may for instance have computable propositional
functions.
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the property to hold for a given argument if and only if it is possible to deduce that it holds from the
axioms.

Axiomatic properties may also be characterized in this way. A property ψ of positive integers is
axiomatic if and only if there is a computable property φ of two positive integers, such that ψ(x) is
true if and only if there is a positive integer y such that φ(x, y) is true. Or again ψ is axiomatic if
and only if there is a W.F.F. F such that ψ(n) is true if and only if F(n) conv 2.

3. Number-theoretic theorems.

By a number-theoretic theorem† we shall mean a theorem of the form “θ(x) vanishes for infinitely
many natural numbers x”, where θ(x) is a primitive recursive‡ function.

We shall say that a problem is number-theoretic if it has been shown that any solution of the
problem may be put in the form of a proof of one or more number-theoretic theorems. More accu-
rately we may say that a class of problems is number-theoretic if the solution of any one of them
can be transformed (by a uniform process) into the form of proofs of number-theoretic theorems.

I shall now draw a few consequences from the definition of “number theoretic theorems” and in
section 5. I shall try to justify confining our consideration to this type of problem.

An alternative form for number-theoretic theorems is “for each natural number x there exists a
natural number y such that φ(x,y) vanishes”, where φ(x, y) is primitive recursive. In other words,
there is a rule whereby, given the function θ(x), we can find a function φ(x,y), or given φ(x,y),
we can find a function θ(x), such that “θ(x) vanishes infinitely often” is a necessary and sufficient
condition for “for each x there is a y such that φ(x,y)= 0”. In fact, given θ(x), we define

φ(x,y)= θ(x)+α(x,y),

where α(x,y) is the (primitive recursive) function with the properties

α(x,y)= 1 (y≤ x),

= 0 (y> x).

If on the other-hand we are given φ(x,y) we define θ(x) by the equations

θ1(0)= 3,

θ1(x+ 1)= 2(1+$2(θ1(x)))σ (φ($3(θ1(x))−1, $2(θ1(x))))3$3(θ1(x))+1−σ(φ($3(θ1(x))−1, $2(θ1(x)))),

θ(x)= φ ($3 (θ1 (x))− 1, $2 (θ1 (x))) ,

† I believe that there is no generally accepted meaning for this term, but it should be noticed that we are using it in a rather
restricted sense. Tile most generally accepted meaning is probably this: suppose that we take an arbitrary formula of the
functional calculus of the first order and replace the function variables by primitive recursive relations. The resulting
formula represents a typical number-theoretic theorem in this (more general) sense.
‡ Primitive recursive functions of natural numbers arc defined inductively as follows. Suppose that
f (x1, . . . ,xn−1), g(x1, . . . ,xn), h(x1, . . . ,xx+1) are primitive recursive, then ϕ(x1, . . . , xn) is primitive recursive if it
is defined by one of the sets of equations (a) to (e).

(a) φ(x1, . . . , xn)= h((x1, . . . , xm−1),g(x1, . . . ,xn),xm+1, . . . ,xn−1,xn)(1≤ m≤ n);
(b) φ(x1, . . . , xn)= f (x2, . . . , xn);
(c) φ(x1)= a, where n= 1 and α is some particular natural number;
(d) φ (x1)= x1+ 1 (n= 1);
(e) φ(x1, . . . , xn−1, 0)= f (x1, . . . , xn−1); φ(x1, . . . , xn−1, xn+1)= h(x1, . . . , xn, φ(x1, . . . , xn)).

The class primitive recursive functions is more restricted than the class of computable functions, but it has the advan-
tage that there is a process whereby it can be said of a set of equations whether it defines a primitive recursive function
in the manner described above.
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where $r(x) is defined so as to mean “the largest s for which rs divides x”. The function σ(x) is
defined by the equations σ(0)= 0, σ(x+ 1)= 1. It is easily verified that the functions so defined
have the desired properties.

We shall now show that questions about the truth of the statements of the form “does f (x) vanish
identically”, where f (x) is a computable function, can be reduced to questions about the truth of
number-theoretic theorems. It is understood that in each case the rule for the calculation of f (x) is
given and that we are satisfied that this rule is valid, i.e. that the machine which should calculate
f (x) is circle free (Turing [1], 233). The function f (x), being computable, is general recursive in
the Herbrand-Gödel sense, and therefore, by a general theorem due to Kleene†, is expressible in
the form

ψ (εy[φ(x,y)= 0]) , (3.2)

where εy[A(y)] means “the least y for which A(y) is true” and ψ(y) and φ(x,y) are primitive recur-
sive functions. Without loss of generality, we may suppose that the functions φ, ψ take only the
values 0, 1. Then, if we define ρ(x) by the equations (3.1) and

ρ(0)= ψ(0)(1− θ(0)) ,

ρ(x+ 1)= 1− (1− ρ(x))σ [1+ θ(x)−ψ {$2 (θ1(x))}]

it will be seen that f (x) vanishes identically if and only if ρ(x) vanishes for infinitely many values
of x.

The converse of this result is not quite true. We cannot say that the question about the truth of
any number-theoretic theorem is reducible to a question about whether a corresponding computable
function vanishes identically; we should have rather to say that it is reducible to the problem of
whether a certain machine is circle free and calculates an identically vanishing function. But more
is true: every number-theoretic theorem is equivalent to the statement that a corresponding machine
is circle free. The behaviour of the machine may be described roughly as follows: the machine is
one for the calculation of the primitive recursive function θ(x) of the number-theoretic problem,
except that the results of the calculation are first arranged in a form in which the figures 0 and 1 do
not occur, and the machine is then modified so that, whenever it has been found that the function
vanishes for some value of the argument, then 0 is printed. The machine is circle free if and only if
an infinity of these figures are printed, i.e. if and only if θ(x) vanishes for infinitely many values of
the argument. That, on the other hand, questions of circle freedom may be reduced to questions of
the truth of number-theoretic theorems follows from the fact that θ(x) is primitive recursive when
it is defined to have the value 0 if a certain machine M prints 0 or 1 in its (x+ 1)-th complete
configuration, and to have the value 1 otherwise.

The conversion calculus provides another normal form for the number theoretic theorems, and
the one which we shall find the most convenient to use. Every number-theoretic theorem is equiva-
lent to a statement of the form “A(n) is convertible to 2 for every W.F.F. n representing a positive
integer”, A being a W.F.F. determined by the theorem; the property of A here asserted will be
described briefly as “A is dual”. Conversely such statements are reducible to number theoretic the-
orems. The first half of this assertion follows from our results for computable functions, or directly
in this way. Since θ(x− 1)+ 2 is primitive recursive, it is formally definable, say, by means of a
formula G. Now there is (Kleene [1], 232) a W.F.F. P with the property that, if T(r) is convertible
to a formula representing a positive integer for each positive integer r, then P (T, n) is convertible
to s, where s is the n-th positive integer t (if there is one) for which T(t) conv 2; if T(t) conv 2

† Kleene [3], 727. This result is really superfluous for our purpose, since the proof that every computable function is
general recursive proceeds by showing that these functions are of the form (3.2). (Turing [2], 161).
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for less than n values of t then P (T, n) has no normal form. The formula G(P (G, n)) is therefore
convertible to 2 if and only if θ(x) vanishes for at least n values of x, and is convertible to 2 for every
positive integer x if and only if θ(x) vanishes infinitely often. To prove the second half of the asser-
tion, we take Gödel representations for the formulae of the conversion calculus. Let c(x) be 0 if x is
the G.R. of 2 (i.e. if x is 23.310.5.73.1128.13.17.1910.232.29.31. 3710.412.43.4728.532.592.612.672)

and let c(x) be 1 otherwise. Take an enumeration of the G.R. of the formulae into which A(m) is
convertible: let a(m, n) be the n-th number in the enumeration. We can arrange the enumeration so
that a(m, n) is primitive recursive. Now the statement that A(m) is convertible to 2 for every posi-
tive integer m is equivalent to the statement that, corresponding to each positive integer m, there is
a positive integer n such that c(a(m, n))= 0; and this is number-theoretic.

It is easy to show that a number of unsolved problems, such as the problem of the truth of
Fermat’s last theorem, are number-theoretic. There are, however, also problems of analysis which
are number-theoretic. The Riemann hypothesis gives us an example of this. We denote by ζ(s) the

function defined for Rs= σ > 1 by the series
∞∑

n=1

n−s and over the rest of the complex plane with

the exception of the point s= 1 by analytic continuation. The Riemann hypothesis asserts that this
function does not vanish in the domain σ > 1

2 . It is easily shown that this is equivalent to saying
that it does not vanish for 2> σ > 1

2Is= t > 2, i.e. that it does not vanish inside any rectangle
2> σ > 1

2 + 1/T , T > t > 2, where T is an integer greater than 2. Now the function satisfies the
inequalities

∣∣∣∣∣ζ(s)−
N∑
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−

N1−s

s− 1

∣∣∣∣∣ < 2t(N− 2)−
1
2 2< σ < 1

2 , t ≥ 2,

|ζ(s)− ζ(s′)| < 60t|s− s′|, 2< σ ′ < 1
2 , t′ ≥ 2,


and we can define a primitive recursive function ξ(l, l′, m, m′,N, M) such that∣∣∣∣∣ξ(l, l′,m,m′,N,M)−M

∣∣∣∣∣
N∑
1

n−s
+

N1−s

s− 1

∣∣∣∣∣
∣∣∣∣∣< 2,

(
s=

l

l′
+ i

m

m′

)
,

and therefore, if we put

ξ(l, M, m, M,M2
+ 2, M) = X(l, m,M),

we have ∣∣∣∣ζ ( l+ϑ

M
+ i

m+ϑ

M

)∣∣∣∣≥ X(l,m,M)− 122T

M
,

provided that

1

2
+

1

T
≤

l− 1

M
<

l+ 1

M
< 2−

1

M
, 2<

m− 1

M
<

m+ 1

M
< T

(−1< θ < 1, −1< θ ′ < 1).

If we define B(M, T) to be the smallest value of X(l, m, M) for which

1

2
+

1

T
+

1

M
≤

l

M
< 2−

1

M
, 2+

1

M
<

m

M
< T −

1

M
,

then the Riemann hypothesis is true if for each T there is an M satisfying

B(M,T) > 122T .
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If on the other hand there is a T such that, for all M, B(M, T)≤ 122T , the Riemann hypothesis is
false; for let lM , mM be such that

X(lM , mM , M)≤ 122T ,

then ∣∣∣∣ζ ( lM + imM

M

)∣∣∣∣≤ 244T

M
.

Now if a is a condensation point of the sequence (lM + imM)/M then since ζ(s) is continuous
except at s= 1 we must have ζ(a)= 0 implying the falsity of the Riemann hypothesis. Thus we
have reduced the problem to the question whether for each T there is an M for which

B(M,T) > 122T .

B(M, T) is primitive recursive, and the problem is therefore number-theoretic.

4. A type of problem which is not number-theoretic*.

Let us suppose that we are supplied with some unspecified means of solving number-theoretic prob-
lems; a kind of oracle as it were. We shall not go any further into the nature of this oracle apart from
saying that it cannot be a machine. With the help of the oracle we could form a new kind of machine
(call them o-machines), having as one of its fundamental processes that of solving a given number-
theoretic problem. More definitely these machines are to behave in this way. The moves of the
machine are determined as usual by a table except in the case of moves from a certain internal con-
figuration o. If the machine is in the internal configuration o and if the sequence of symbols marked
with l is then the well-formed† formula A, then the machine goes into the internal configuration p

or t according as it is or is not true that A is dual. The decision as to which is the case is referred to
the oracle.

These machines may be described by tables of the same kind as those used for the description of
a-machines, there being no entries, however, for the internal configuration o. We obtain description
numbers from these tables in the same way as before. If we make the convention that, in assigning
numbers to internal configurations, o, p, t are always to be q2, q3, q4, then the description numbers
determine the behaviour of the machines uniquely.

Given any one of these machines we may ask ourselves the question whether or not it prints an
infinity of figures 0 or 1; I assert that this class of problem is not number-theoretic. In view of the
definition of “number theoretic problem” this means that it is not possible to construct an o-machine
which, when supplied‡ with the description of any other o-machine, will determine whether that
machine is o-circle free. The argument may be taken over directly from Turing [1], §8. We say that
a number is o-satisfactory if it is the description number of an o-circle free machine. Then, if there
is an o-machine which will determine of any integer whether it is o-satisfactory, there is also an o-
machine to calculate the values of the function 1−φn(n). Let r(n) be the n-th o-satisfactory number
and let φn(m) be the m-th figure printed by the o-machine whose description number is r(n). This o-
machine is circle free and there is therefore an o-satisfactory number K such that φK(n)= 1−φn(n)
for all n. Putting n= K yields a contradiction. This completes the proof that problems of circle
freedom of o-machines are not number-theoretic.

Propositions of the form that an o-machine is o-circle free can always be put in the form of
propositions obtained from formulae of the functional calculus of the first order by replacing some
of the functional variables by primitive recursive relations. Compare foot-note † on page 156.

* Compare Rosser [1].
† Without real loss of generality we may suppose that A is always well formed.
‡ Compare Turing [1], §6, 7.
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5. Syntactical theorems as number-theoretic theorems.

I now mention a property of number-theoretic theorems which suggests that there is reason for
regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature. We do not concern
ourselves at all in interpretations for the formulae of this system; they are to be regarded as of
interest for themselves. An example of what is in mind is afforded by the conversion calculus (§1).
Every sequence of symbols “A conv B”, where A and B are well formed formulae is a formula of
the axiomatic system and is provable if the W.F.F. A is convertible to B. The rules of conversion
give us the rules of procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield only formulae provable in
the original sense. We may ask ourselves whether such a rule is valid. The statement that such a
rule is valid would be number-theoretic. To prove this, let us take Gödel representations for the
formulae, and an enumeration of the provable formulae; let φ(r) be the G.R. of the r-th formula
in the enumeration. We may suppose φ(r) to be primitive recursive if we are prepared to allow
repetitions in the enumeration. Let ψ(r) be the G.R. of the r-th formula obtained by the new rule,
then the statement that this new rule is valid is equivalent to the assertion of

(r)(∃s)[ψ(r)= φ(s)]

(the domain of individuals being the natural numbers). It has been shown in §3 that such statements
are number-theoretic.

It might plausibly be argued that all those theorems of mathematics which have any signifi-
cance when taken alone are in effect syntactical theorems of this kind, stating the validity of certain
“derived rules ” of procedure. Without going so far as this, I should assert that theorems of this kind
have an importance which makes it worth while to give them special consideration.

6. Logic formulae.

We shall call a formula L a logic formula (or, if it is clear that we are speaking of a W.F.F., simply
a logic) if it has the property that, if A is a formula such that L(A) conv 2, then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of number-theoretic theo-
rems. For to each number-theoretic proposition there corresponds a W.F.F. A which is dual if and
only if the proposition is true. Now, if L is a logic and L(A) conv 2, then A is dual and we know
that the corresponding number-theoretic proposition is true. It does not follow that, if L is a logic,
we can use L to satisfy ourselves of the truth of any number-theoretic theorem.

If L is a logic, the set of formulae A for which L(A) conv 2 will be called the extent of L.
It may be proved by the use of (D), (E), p. 154, that there is a formula X such that, if M has a

normal form, has no free variables and is not convertible to 2, then X(M) conv 1, but, if M conv 2,
then X(M) conv 2. If L is a logic, then λx.X(L(x)) is also a logic whose extent is the same as that
of L, and which has the property that, if A has no free variables, then

{λx.X (L(x))}(A)

either is always convertible to 1 or to 2 or else has no normal form. A logic with this property will
be said to be standardized.

We shall say that a logic L′ is at least as complete as a logic L if the extent of L is a subset of
the extent of L′. The logic L′ is more complete than L if the extent of L is a proper subset of the
extent of L′.

Suppose that we have an effective set of rules by which we can prove formulae to be dual; i.e.
we have a system of symbolic logic in which the propositions proved are of the form that certain
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formulae are dual. Then we can find a logic formula whose extent consists of just those formulae
which can be proved to be dual by the rules; that is to say, there is a rule for obtaining the logic
formula from the system of symbolic logic. In fact the system of symbolic logic enables us to obtain†

a computable function of positive integers whose values run through the Gödel representations of the
formulae provable by means of the given rules. By the theorem of equivalence of computable and
λ-definable functions, there is a formula J such that J(1), J(2), . . . are the G.R. of these formulae.
Now let

W→ λjv.P (λu.δ (j(u),v) ,1, I, 2) .

Then I assert that W(J) is a logic with the required properties. The properties of P imply that
P (C, 1) is convertible to the least positive integer n for which C(n) conv 2, and has no normal
form if there is no such integer. Consequently P (C, 1, I, 2) is convertible to 2 if C(n) conv 2 for
some positive integer n, and it has no normal form otherwise. That is to say that W(J, A) conv 2 if
and only if δ (J(n), A) conv 2, some n, i.e. if J(n) conv A some n.

There is conversely a formula W ′ such that, if L is a logic, then W ′(L) enumerates the extent of
L. For there is a formula Q such that Q(L, A, n) conv 2 if and only if L(A) is convertible to 2 in
less than n steps. We then put

W ′→ λln. form
(
$
(
2,P (λx.Q(l, form($(2,x)) ,$(3,x)) ,n)

))
.

Of course, W ′ (W(J)) normally entirely different from J and W
(
W ′(L)

)
from L.

In the case where we have a symbolic logic whose propositions can be interpreted as number-
theoretic theorems, but are not expressed in the form of the duality of formulae, we shall again
have a corresponding logic formula, but its relation to the symbolic logic is not so simple. As
an example let us take the case where the symbolic logic proves that certain primitive recursive
functions vanish infinitely often. As was shown in §3, we can associate with each such proposition
a W.F.F. which is dual if and only if the proposition is true. When we replace the propositions of the
symbolic logic by theorems on the duality of formulae in this way, our previous argument applies
and we obtain a certain logic formula L. However, L does not determine uniquely which are the
propositions provable in the symbolic logic; for it is possible that “θ1(x) vanishes infinitely often”
and “θ2(x) vanishes infinitely often” are both associated with “A is dual”, and that the first of these
propositions is provable in the system, but the second not. However, if we suppose that the system
of symbolic logic is sufficiently powerful to be able to carry out the argument on pp. 157–158 then
this difficulty cannot arise. There is also the possibility that there may be formulae in the extent of
L with no propositions of the form “θ(x) vanishes infinitely often” corresponding to them. But to
each such formula we can assign (by a different argument) a proposition p of the symbolic logic
which is a necessary and sufficient condition for A to be dual. With p is associated (in the first way)
a formula A′. Now L can always be modified so that its extent contains A′ whenever it contains A.

We shall be interested principally in questions of completeness. Let us suppose that we have a
class of systems of symbolic logic, the propositions of these systems being expressed in a uniform
notation and interpretable as number-theoretic theorems; suppose also that there is a rule by which
we can assign to each proposition p of the notation a W.F.F. Ap, which is dual if and only if p is
true, and that to each W.F.F. A we can assign a proposition pA which is a necessary and sufficient
condition for A to be dual. pAp , is to be expected to differ from p. To each symbolic logic C we can
assign two logic formulae Lc and L′c. A formula A belongs to the extent of Lc if pA is provable in
C, while the extent of L′C consists of all Ap, where p is provable in C. Let us say that the class of
symbolic logics is complete if each true proposition is provable in one of them: let us also say that

† Compare Turing [1], 252, second footnote, [2], 156.
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a class of logic formulae is complete if the set-theoretic sum of the extents of these logics includes
all dual formulae. I assert that a necessary condition for a class of symbolic logics C to be complete
is that the class of logics Lc is complete, while a sufficient condition is that the class of logics L′c
is complete. Let us suppose that the class of symbolic logics is complete; consider pA, where A is
arbitrary but dual. It must be provable in one of the systems, C say. A therefore belongs to the extent
of Lc, i.e. the class of logics Lc is complete. Now suppose the class of logics L′c to be complete. Let
p be an arbitrary true proposition of the notation ; Ap must belong to the extent of some L′c, and this
means that p is provable in C.

We shall say that a single logic formula L is complete if its extent includes all dual formulae;
that is to say, it is complete if it enables us to prove every true number-theoretic theorem. It is a
consequence of the theorem of Gödel (if suitably extended) that no logic formula is complete, and
this also follows from (C), p. 154, or from the results of Turing [1], §8, when taken in conjunction
with §3 of the present paper. The idea of completeness of a logic formula is not therefore very
important, although it is useful to have a term for it.

Suppose Y to be a W.F.F. such that Y(n) is a logic for each positive integer n. The formulae of
the extent of Y(n) are enumerated by W(Y(n)), and the combined extents of these logics by

λr. W (Y($(2,r), $(3,r))).

If we put

0→ λy. W ′(λr. W(y($(2,r),$(3,r)))),

then 0(Y) is a logic whose extent is the combined extent of

Y(1), Y(2), Y(3), ... .

To each W.F.F. L we can assign a W.F.F. V(L) such that a necessary and sufficient condition for
L to be a logic formula is that V(L) is dual. Let Nm be a W.F.F. which enumerates all formulae with
normal forms and no free variables. Then the condition for L to be a logic is that L(Nm(r), s) conv
2 for all positive integers r, s, i.e. that

λa.L(Nm($(2,a)),$(3,α))

is dual. We may therefore put

V→ λla . l(Nm($(2,a)), $(3,a)).

7. Ordinals.

We begin our treatment of ordinals with some brief definitions from the Cantor theory of ordinals,
but for the understanding of some of the proofs a greater amount of the Cantor theory is necessary
than is set out here.

Suppose that we have a class determined by the propositional function D(x) and a relation G(x,y)
ordering its members, i.e. satisfying

G(x,y)&G(y,z)⊃ G(x,z), (i)
D(x)&D(y)⊃ G(x,y)∨G(y,x)∨ x= y, (ii)
G(x,y)⊃ D(x)&D(y), (iii)
∼ G(x,x). (iv)

 (7.1)
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The class defined by D(x) is then called a series with the ordering relation G(x,y). The series is said
to be well ordered and the ordering relation is called an ordinal if every sub-series which is not void
has a first term, i.e. if

(D′){(∃x)(D′(x))&(x)(D′(x)⊃ D(x))⊃ (∃z)(y)[D′(z)&(D′(y)⊃ G(z,y)∨ z= y)]}. (7.2)

The condition (7.2) is equivalent to another, more suitable for our purposes, namely the condition
that every descending subsequence must terminate formally

(x)
{
D′(x)⊃ D(x)&(∃y)(D′(y)&G(y,x))

}
⊃ (x)(∼ D′(x)). (7. 3)

The ordering relation G(x,y) is said to be similar to G′(x,y) if there is a one-one correspondence
between the series transforming the one relation into the other. This is best expressed formally, thus

(∃M)[(x){D(x)⊃ (∃x′)M(x, x′)}&(x′){D′(x′)⊃ (∃x)M(x, x′)}

&{(M(x, x′)&M (x, x′′))∨ (M(x′, x)&M (x′′, x))⊃ x′ = x′′}

&{M(x, x′)&M(y, y′)⊃ (G(x, y)= G(x′, y′))}]. (7.4)

Ordering relations are regarded as belonging to the same ordinal if and only if they are similar.
We wish to give names to all the ordinals, but this will not be possible until they have been

restricted in some way; the class of ordinals, as at present defined, is more than enumerable. The
restrictions that we actually impose are these: D(x) is to imply that x is a positive integer; D(x) and
G(x, y) are to be computable properties. Both of the propositional functions D(x), G(x, y) can then
be described by means of a single W.F.F. � with the properties:

�(m, n) conv 4 unless both D(m) and D(n) are true,

�(m, m) conv 3 if D(m) is true,

�(m, n) conv 2 if D(m), D(n), G(m, n),∼ (m= n) are true,

�(m, n) conv 1 if D(m), D(n),∼ G(m, n),∼ (m= n) are true.

In consequence of the conditions to which D(x), G(x,y) are subjected, � must further satisfy:

(a) if �(m, n) is convertible to 1 or 2, then �(m, m) and �(n, n) arc convertible to 3,

(b) if �(m, m) and �(n, n) are convertible to 3, then �(m,n) is convertible to 1, 2, or 3,

(c) if �(m, n) is convertible to 1, then �(n, m) is convertible to 2 and conversely,

(d) if �(m, n) and �(n, p) are convertible to 1, then �(m, p) is also,

(e) there is no sequence m1, m2, . . . such that �(mi+1, mi) conv 2 for each positive integer i,

(f) �(m,n) is always convertible to 1, 2, 3, or 4.

If a formula � satisfies these conditions then there are corresponding propositional functions
D(x), G(x,y). We shall therefore say that � is an ordinal formula if it satisfies the conditions
(a)−(f ). It will be seen that a consequence of this definition is that Dt is an ordinal formula; it
represents the ordinal ω. The definition that we have given does not pretend to have virtues such
as elegance or convenience. It has been introduced rather to fix our ideas and to show how it is
possible in principle to describe ordinals by means of well formed formulae. The definitions could
be modified in a number of ways. Some such modifications arc quite trivial; they are typified by
modifications such as changing the numbers 1, 2, 3, 4, used in the definition, to others. Two such
definitions will be said to be equivalent; in general, we shall say that two definitions are equivalent
if there are W.F.F. T, T′ such that, if A is an ordinal formula under one definition and represents
the ordinal α, then T′(A) is an ordinal formula under the second definition and represents the same
ordinal; and, conversely, if A′ is an ordinal formula under the second definition representing α, then
T(A′) represents α under the first definition. Besides definitions equivalent in this sense to our orig-
inal definition, there are a number of other possibilities open. Suppose for instance that we do not



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 16:56 Page 164 #20

164 Part I

require D(x) and G(x, y) to be computable, but that we require only that D(x) and G(x, y)&x< y
are axiomatic†. This leads to a definition of an ordinal formula which is (presumably) not equiva-
lent to the definition that we are using‡. There are numerous possibilities, and little to guide us in
choosing one definition rather than another. No one of them could well be described as “wrong”;
some of them may be found more valuable in applications than others, and the particular choice
that we have made has been determined partly by the applications that we have in view. In the case
of theorems of a negative character, one would wish to prove them for each one of the possible
definitions of “ordinal formula”. This programme could, I think, be carried through for the negative
results of §9, 10.

Before leaving the subject of possible ways of defining ordinal formulae, I must mention another
definition due to Church and Kleene (Church and Kleene [1]). We can make use of this definition in
constructing ordinal logics, but it is more convenient to use a slightly different definition which is
equivalent (in the sense just described) to the Church-Kleene definition as modified in Church [4].

Introduce the abbreviations

U→ λufx.u(λy.f (y(I,x))),

Suc→ λaufx.f (a(u, f , x)).

We define first a partial ordering relation “<” which holds 164 between certain pairs of W.F.F.
[conditions(1)− (5)].

(1) If A conv B, then A< C implies B< C and C< A implies C< B.

(2) A< Suc (A).

(3) For any positive integers m and n, λufx. R(n) < λufx.R(m) implies λufx. R(n) < λufx.u(R).
(4) If A< B and B< C, then A< C. (1)− (4) are required for any W.F.F. A, B, C, λufx. R.

(5) The relation A< B holds only when compelled to do so by (1)− (4).

We define C-K ordinal formulae by the conditions (6)–(10).

(6) If A conv B and A is a C-K ordinal formula, then B is a C-K ordinal formula.

(7) U is a C-K ordinal formula.

(8) If A is a C-K ordinal formula, then Suc (A) is a C-K ordinal formula.

(9) If λufx.R(n) is a C-K ordinal formula and

λufx.R(n) < λufx.R(S(n))

for each positive integer n, then λufx.u(R) is a C-K ordinal formula¶.

(10) A formula is a C-K ordinal formula only if compelled to be so by (6)−(9).

† To require G(x,y) to be axiomatic amounts to requiring G(x,y) to be computable on account of (7.1) (ii).
‡ On the other hand, if D(x) is axiomatic and (G(x,y) is computable in the modified sense that there is a rule for deter-
mining whether G(x,y) is true which leads to a definite result in all cases where D(x) and D(y) are true, the corresponding
definition of ordinal formula is equivalent to our definition. To give the proof would be too much of a digression. Probably
other equivalences of this kind hold.
¶ If we also allow λufx.u(R) to be a C-K ordinal formula when

λufx.n(R)convλufx.S(n,R)

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae can be much simplified. For
instance, if A and B represent α and β, then

λufx.B(u, f ,A(u, f ,x))

represents α+β. Property (6) remains true.
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The representation of ordinals by formulae is described by (11)–(15).

(11) If A conv B and A represents α then B represents α.

(12) U represents 1.

(13) If A represents α, then Suc(A) represents α+ 1.

(14) If λufx.R(n) represents αn for each positive integer n, then λufx.u(R) represents the upper
bound of the sequence α1, α2, α3, . . ..

(15) A formula represents an ordinal only when compelled to do so by (11)−(14).

We denote any ordinal represented by A by 4A without prejudice to the possibility that more
than one ordinal may be represented by A. We shall write A≤ B to mean A< B or A conv B.

In proving properties of C-K ordinal formulae we shall often use a kind of analogue of the
principle of transfinite induction. If φ is some property and we have:

(a) If A conv B and φ(A), then φ(B),
(b) φ(U),
(c) If φ(A), then φ(Suc(A)),
(d) If φ(λufx.R(n)) and λufx.R(n) < λufx.R(S(n)) for each positive integer n, then

φ(λufx.u(R));


(7.5)

then φ(A) for each C-K ordinal formula A. To prove the validity of this principle we have only
to observe that the class of formulae A satisfying φ(A) is one of those of which the class of C-K
ordinal formulae was defined to be the smallest. We can use this principle to help us to prove:–

(i) Every C-K ordinal formula is convertible to the form λufx.B, where B is in normal form.

(ii) There is a method by which for any C-K ordinal formula, we can determine into which of the
forms U, Suc (λufx.B), λufx.u(R) (where u is free in R) it is convertible, and by which we can
determine B, R. In each case B, R are unique apart from conversions.

(iii) If A represents any ordinal, 4A is unique. If 4A,4B exist and A< B, then 4A <4B.

(iv) If A, B, C are C-K ordinal formulae and B< A, C< A, then either B< C, C< B, or B conv
C.

(v) A formula A is a C-K ordinal formula if:
(A) U ≤ A,

(B) If λufx.u(R)≤ A and n is a positive integer, then

λufx.R(n) < λufx.R(S(n)),

(C) For any two W.F.F. B, C with B< A, C< A we have B< C, C< B, or B conv C, but
never B< B,

(D) There is no infinite sequence B1,B2, . . . for which

Br < Br−1 < A

for each r.

(vi) There is a formula H such that, if A is a C-K ordinal formula, then H(A) is an ordinal for-
mula representing the same ordinal. H(A) is not an ordinal formula unless A is a C-K ordinal
formula.
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Proof of (i). Take φ(A) to be “A is convertible to the form λufx.B, where B is in normal form”.
The conditions (a) and (b) are trivial. For (c), suppose that A conv λufx.B, where B is in normal
form; then

Suc(A) conv λufx.f (B)

and f (B) is in normal form. For (d) we have only to show that u(R) has a normal form, i.e. that R
has a normal form; and this is true since R(1) has a normal form.

Proof of (ii). Since, by hypothesis, the formula is a C-K ordinal formula we have only to perform
conversions on it until it is in one of the forms described. It is not possible to convert it into two of
these three forms. For suppose that λufx.f (A(u, f ,x)) conv λufx.u(R) and is a C-K ordinal formula; it
is then convertible to the form λufx.B, where B is in normal form. But the normal form of λufx.u(R)
can be obtained by conversions on R, and that of λufx.f (A(u, f , x)) by conversions on A(u, f ,x)
(as follows from Church and Rosser [1], Theorem 2); this, however, would imply that the formula
in question had two normal forms, one of form λufx.u(S) and one of form λufx.f (C), which is
impossible. Or let U conv λufx.u(R), where R is a well formed formula with u as a free variable.
We may suppose R to be in normal form. Now U is λufx.u(λy . f (y(I, x))). By (A), p. 154, R is
identical with λy.f (y(I,x)), which does not have u as a free variable. It now remains to show only
that if

Suc (λufx.B) conv Suc (λufx.B′) and λufx.u(R) conv λufx.u(R′),

then B conv B′ and R conv R′.

If Suc (λufx.B) conv Suc (λufx.B′),

then λufx.f (B) conv λufx.f (B′)

but both of these formulae can be brought to normal form by conversions on B, B′ and therefore B
conv B′. The same argument applies in the case in which λufx.u(R) conv λufx.u(R′).

Proof of (iii). To prove the first half, take φ(A) to be “4A is unique”. Then (7.5) (a) is trivial,
and (b) follows from the fact that U is not convertible either to the form Suc (A) or to λufx.u(R),
where R has u as a free variable. For (c): Suc (A) is not convertible to the form λufx.u(R); the
possibility that Suc (A) represents an ordinal on account of (12) or (14) is therefore eliminated. By
(13), Suc (A) represents α′+ 1 if A′ represents α′ and Suc (A) conv Suc (A′). If we suppose that A
represents α, then A, A′, being C-K ordinal formulae, are convertible to the forms λufx.B, λufx. B′

; but then, by (ii ), B conv B′, i.e. A conv A′, and therefore α = α′ by the hypothesis φ(A). Then
4Suc(A) = α

′
+ 1 is unique. For (d) : λufx.u(R) is not convertible to the form Suc (A) or to U if R

has u as a free variable. If λufx.u(R) represents an ordinal, it is so therefore in virtue of (14), pos-
sibly together with (11). Now, if λufx.u(R) conv λufx.u(R′), then R conv R′, so that the sequence
λufx.R(1), λufx, R(2), . . . in (14) is unique apart from conversions. Then, by the induction hypoth-
esis, the sequence α1, α2, α3 . . . is unique. The only ordinal that is represented by λufx.u(R) is the
upper bound of this sequence; and this is unique.

For the second half we use a type of argument rather different from our transfinite induction
principle. The formulae B for which A< B form the smallest class for which:
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Suc (A) belongs to the class.
If C belongs to the class, then Suc (C) belongs to it.
If λufx.R(n) belongs to the class and

λufx.R(n) < λufx.R(m),
where m, n are some positive integers, then λufx.u(R)belongs to it.
If C belongs to the class and C conv C′ then C′ belongs to it.


(7.6)

It will be sufficient to prove that the class of formulae B for which either 4B does not exist or
4A <4B satisfies the conditions (7.6). Now

4Suc(A) =4A+ 1 >4A, 4Suc(C) >4C >4A if C is in the class.

If 4λufx.R(n) does not exist then 4λufx.u(R) does not exist, and therefore λufx.u(R) is in the class. If
4λufx.R(n) exists and is greater than 4A, and λufx.R(n) < λufx.R(m), then

4λufx.u(R) ≥4λufx.R(n) >4A,

so that λufx.u(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take φ(A) to be “whenever B< A
and C< A then B< C or C< B or B conv C′”. φ(U) follows from the fact that we never have
B< U. If we have φ(A) and B< Suc (A), then either B< A or B conv A; for we can find D
such that B≤ D, and then D< Suc (A) can be proved without appealing either to (1) or (5); (4)
does not apply, so we must have D conv A. Then, if B< Suc (A) and C< Suc (A), we have four
possibilities,

B conv A, C conv A,

B conv A, C< A,

B< A, C conv A,

B< A, C< A.

In the first case B conv C, in the second C< B, in the third B< C, and in the fourth the induction
hypothesis applies.

Now suppose that λufx.R(n) is a C-K ordinal formula, that

λufx.R(n) < λufx.R(S(n)) and φ(R(n)),

for each positive integer n, and that A conv λufx.u(R). Then, if B< A, this means that
B< λufx.R(n) for some n; if we have also C< A, then B< λufx.R(q), C< λufx.R(q) for some q.
Thus, for these B and C, the required result follows from φ(λufx.R(q)).

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible formulae B,
B< A are well-ordered by the relation “<”. We prove (v) by (ordinary) transfinite induction with
respect to the order type α of the series formed by these classes; (α is, in fact, the solution of the
equation 1+α =4A, but we do not need this). We suppose then that (v) is true for all order types
less than α. If E< A, then E satisfies the conditions of (v) and the corresponding order type is
smaller: E is therefore a C-K ordinal formula. This expresses all consequences of the induction
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hypothesis that we need. There are three cases to consider:

(x) α = 0.

(y) α = β + 1.

(z) α is of neither of the forms(x), (y).

In case (x) we must have A conv U on account of (A). In case (y) there is a formula D such that
D< A, and B≤ D whenever B< A. The relation D< A must hold in virtue of either (1), (2), (3),
or (4). It cannot be in virtue of (4); for then there would be B, B< A, D< B contrary to (C),
taken in conjunction with the definition of D. If it is in virtue of (3), then α is the upper bound
of a sequence α1, α2, ... of ordinals, which are increasing by reason of (iii) and the conditions
λufx.R(n) < λufx.R(S(n)) in (B). This is inconsistent with α = β + 1. This means that (2) applies
[after we have eliminated (1) by suitable conversions on A, D] and we see that A conv Suc (D);
but, since D< A, D is a C-K ordinal formula, and A must therefore be a C-K ordinal formula by
(8). Now take case (z). It is impossible for A to be of the form Suc (D), for then we should have
B< D whenever B< A, and this would mean that we had case (y). Since U < A, there must be
an F such that F< A is demonstrable either by (2) or by (3) (after a possible conversion on A);
it must of course be demonstrable by (3). Then A is of the form λufx.u(R). By (3), (B) we see
that λufx.R(n) < A for each positive integer n; each λufx.R(n) is therefore a C-K ordinal formula.
Applying (9), (B) we see that A is a C-K ordinal formula.

Proof of (vi). To prove the first half, it is sufficient to find a method whereby from a C-K ordinal
formula A we can find the corresponding ordinal formula �. For then there is a formula H1 such
that H1(a) conv p if a is the G.R. of A and p is that of �. H is then to be defined by

H→ λa. form (H1(Gr(a))).

The method of finding � may be replaced by a method of finding �(m,n), given A and any two
positive integers m, n. We shall arrange the method so that, whenever A is not an ordinal formula,
either the calculation of the values does not terminate or else the values are not consistent with �

being an ordinal formula. In this way we can prove the second half of (vi).
Let Ls be a formula such that Ls(A) enumerates the classes of formulae B, B< A [i.e. if B< A

there is one and only one positive integer n for which Ls(A, n) conv B]. Then the rule for finding
the value of �(m, n) is as follows:—

First determine whether U ≤ A and whether A is convertible to the form r(Suc, U). This
terminates if A is a C-K ordinal formula.

If A conv r(Suc, U) and either m> r+ 1 or n> r+ 1, then the value is 4. If m< n≤ r+ 1, the
value is 2. If n< m≤ r+ 1, the value is 1. If m= n≤ r+ 1, the value is 3.

If A is not convertible to this form, we determine whether either A or Ls(A, m) is convertible
to the form λufx.u(R), and if either of them is, we verify that λufx.R(n) < λufx.R(S(n)). We shall
eventually come to an affirmative answer if A is a C-K ordinal formula.

Having checked this, we determine concerning m and n whether Ls(A, m) < Ls(A, n),
Ls(A, n) < Ls(A, m), or m= n, and the value is to be accordingly 1, 2, or 3.

If A is a C-K ordinal formula, this process certainly terminates. To see that the values so calcu-
lated correspond to an ordinal formula, and one representing 4A, first observe that this is so when
4A is finite. In the other case (iii) and (iv) show that 4B determines a one-one correspondence
between the ordinals β,1≤ β ≤4A, and the classes of interconvertible formulae B, B< A. If we
take G(m, n) to be Ls (A, m) < Ls(A, n), we see that G(m, n) is the ordering relation of a series of
order type† 4A and on the other hand that the values of �(m, n) are related to G(m,n) as on p. 163.

† The order type is β, where 1+β =4A; but β =4A since 4A is infinite.
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To prove the second half suppose that A is not a C-K ordinal formula. Then one of the conditions
(A)–(D) in (v) must not be satisfied. If (A) is not satisfied we shall not obtain a result even in the
calculation of �(1,1). If (B) is not satisfied, we shall have for some positive integers p and q,

Ls(A, p) conv λufx.u(R)

but not λufx.R(q) < λufx.R(S(q)). Then the process of calculating �(p, q) will not terminate. In
case of failure of (C) or (D) the values of �(m, n) may all be calculable, but if so conditions
(a)−(f ), p. 163, will be violated. Thus, if A is not a C-K ordinal formula, then H(A) is not an
ordinal formula.

I propose now to define three formulae Sum, Lim, Inf of importance in connection with ordinal
formulae. Since they are comparatively simple, they will for once be given almost in full. The
formula Ug is one with the property that Ug(m) is convertible to the formula representing the
largest odd integer dividing m: it is not given in full. P is the predecessor function; P(S(m)) conv m,
P(1) conv 1.

Al → λpxy.p(λguv . g(v,u),λuv.u(I,v),x,y),

Hf → λm.P(m(λguv . g(v,S(u)),λuv.v(I,u), 1, 2)),

Bd → λww′aa′x. Al (λf .w(a,a,w′(a′,a′, f )),x,4),

Sum→ λww′pq. Bd (w,w′, Hf (p), Hf (q),

Al (p, Al (q,w′(Hf (p), Hf (q)),1), Al (S(q),w( Hf (p), Hf (q)),2)) ,

Lim→ λzpq.{λab.Bd(z(a),z(b), Ug (p), Ug (q), Al (Dt(a,b)+ Dt (b,a),

Dt (a,b),z(a, Ug (p), Ug (q)))($(2,p),$(2,q)),

Inf→ λwapq. Al (λf .w(a,p,w(a,q, f )),w(p,q),4).

The essential properties of these formulae are described by:

Al (2r− 1,m,n) conv m, Al (2r,m,n) conv n,

Hf(2m) conv m, Hf(2m− 1) conv m

Bd (�,�′,a, a′,x) conv 4, unless both

�(a,a) conv 3 and �′(a′,a′) conv 3,

it is then convertible to x.

If �, �′ are ordinal formulae representing α,β respectively, then Sum(�, �′) is an ordinal
formula representing α+β. If Z is a W.F.F. enumerating a sequence of ordinal formulae represent-
ing α1, α2, . . ., then Lim (Z) is an ordinal formula representing the infinite sum α1+α2+α3, . . ..
If � is an ordinal formula representing α, then Inf(�) enumerates a sequence of ordinal formulae
representing all the ordinals less than α without repetitions other than repetitions of the ordinal 0.

To prove that there is no general method for determining about a formula whether it is an ordinal
formula, we use an argument akin to that leading to the Burali-Forti paradox; but the emphasis and
the conclusion are different. Let us suppose that such an algorithm is available. This enables us
to obtain a recursive enumeration �1, �2, . . . of the ordinal formulae in normal form. There is a
formula Z such that Z(n) conv �n. Now Lim (Z) represents an ordinal greater than any represented
by an �n, and it has therefore been omitted from the enumeration.
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This argument proves more than was originally asserted. In fact, it proves that, if we take any
class E of ordinal formulae in normal form, such that, if A is any ordinal formula. then there is a
formula in E representing the same ordinal as A, then there is no method whereby one can determine
whether a W.F.F. in normal form belongs to E.

8. Ordinal logics.

An ordinal logic is a W.F.F. 3 such that 3(�) is logic formula whenever � is an ordinal formula.
This definition is intended to bring under one heading a number of ways of constructing logics

which have recently been proposed or which are suggested by recent advances. In this section I
propose to show how to obtain some of these ordinal logics.

Suppose that we have a class W of logical systems. The symbols used in each of these systems
are the same, and a class of sequences of symbols called “formulae” is defined, independently of
the particular system in W. The rules of procedure of a system C define an axiomatic subset of the
formulae, which are to be described as the “provable formulae of C”. Suppose further that we have a
method whereby from any system C′ of W, we can obtain a new system C′, also in W, and such that
the set of provable formulae of C′ includes the provable formulae of C (we shall be most interested
in the case in which the y are included as a proper subset). It is to be understood that this “method”
is an effective procedure for obtaining the rules of procedure of C′ from those of C.

Suppose that to certain of the formulae of W we make number-theoretic theorems correspond:
by modifying the definition of formula, we may suppose that this is done for all formulae. We shall
say that one of the systems C is valid if the provability of a formula in C implies the truth of the
corresponding number-theoretic theorem. Now let the relation of C′ to C be such that the validity of
C implies the validity of C′, and let there be a valid system C0 in W. Finally, suppose that, given any
computable sequence C1,C2, . . . of systems in W, the “limit system” in which a formula is provable
if and only if it is provable in one of the systems Cj, also belongs to W. These limit systems are
to be regarded, not as functions of the sequence given in extension, but as functions of the rules
of formation of their terms. A sequence given in extension may be described by various rules of
formation, and there will be several corresponding limit systems. Each of these may be described
as a limit system of the sequence.

In these circumstances we may construct an ordinal logic. Let us associate positive integers with
the systems in such a way that to each C there corresponds a positive integer mC, and that mC

completely describes the rules of procedure of C. Then there is a W.F.F. K, such that

K(mC) conv mC′

for each C in W and there is a W.F.F.2 such that if D(r) conv mCr . for each positive integer r, then
2(D) conv mC, where C is a limit system of C1,C2, . . .. With each system C of W it is possible
to associate a logic formula LC: the relation between them is that, if G is a formula of W and the
number-theoretic theorem corresponding to G (assumed expressed in the conversion calculus form)
asserts that B is dual, then LC(B) conv 2 if and only if G is provable in C. There is a W.F.F. G such
that

G(mC) conv LC

for each C of W. Put

N→ λa.G(a(2,K,mC0)).

I assert that N(A) is a logic formula for each C-K ordinal formula A, and that, if A< B, then N(B)
is more complete than N(A), provided that there are formulae provable in C′ but not in C for each
valid C of W.
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To prove this we shall show that to each C-K ordinal formula A there corresponds a unique
system C[A] such that:

(i) A(2, K, mC0) conv mC[A],

and that it further satisfies:

(ii) C[U] is a limit system of C′0,C′0, . . .,

(iii) C [Suc (A)] is (C[A])′,

(iv) C[λufx.u(R)] is a limit system of C[λufx.R(1)],C[λufx.R(2)], . . .,

A and λufx.u(R) being assumed to be C-K ordinal formulae. The uniqueness of the system follows
from the fact that mC determines C completely. Let us try to prove the existence of C[A] for each
C-K ordinal formula A. As we have seen (p. 165) it is sufficient to prove

(a) C[U] exists,

(b) if C[A] exists, then C[Suc(A)] exists,

(c) if C[λufx.R(1)],C[λufx.R(2)], . . . exist, then C[λufx.u(R)] exists.

Proof of (a).

{λy.K(y(I,mC0))}(n) conv K(mC0) conv mC′0

for all positive integers n, and therefore, by the definition of 2, there is a system, which we call
C[U] and which is a limit system of C′0,C′0, . . ., satisfying

2(λy.K(y(I,mC0))) conv mC[U].

But, on the other hand,

U(2,K,mC0) conv (λy.K(y(I,mC0))).

This proves (a) and incidentally (ii).

Proof of (b).

Suc(A, 2, K, mC0) conv K(A(2,K,mC0))

conv K(mC[A])

conv m(C[A])′ .

Hence C[Suc(A)] exists and is given by (iii).

Proof of (c).

{{λufx.R}(2,K,mC0)}(n) conv {λufx.R(n)}(2,K,mC0)

conv mC[λufx.R(n)]

by hypothesis. Consequently, by the definition of 2, there exists a C which is a limit system of

C[λufx.R(1)], C[λufx.R(2)], . . . ,

and satisfies

2({λufx.u(R)}(2,K,mC0)) conv mC.

We define C[λufx.u(R)] to be this C. We then have (iv) and

{λufx.u(R)}(2,K,mC0) conv 2({λufx.R}(2,K,mC0))

conv mC[λufx.u(R)].
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This completes the proof of the properties (i)−(iv). From (ii), (iii), (iv), the fact that C0 is valid, and
that C′ is valid when C is valid, we infer that C[A] is valid for each C-K ordinal formula A: also
that there are more formulae provable in C[B] than in C[A] when A< B. The truth of our assertions
regarding N now follows in view of (i) and the definitions of N and G.

We cannot conclude that N is an ordinal logic, since the formulae A are C-K ordinal formulae;
but the formula H enables us to obtain an ordinal logic from N. By the use of the formula Gr we
obtain a formula Tn such that, if A has a normal form, then Tn(A) enumerates the G.R.’s of the
formulae into which A is convertible. Also there is a formula Ck such that, if h is the G.R. of a
formula H(B), then Ck(h) conv B, but otherwise Ck (h) conv U. Since H(B) is an ordinal formula
only if B is a C-K ordinal formula Ck (Tn (�,n)) is a C-K ordinal formula for each ordinal formula
� and each integer n. For many ordinal formulae it will be convertible to U, but, for suitable �, it
will be convertible to any given C-K ordinal formula. If we put

3→ λwa.0(λn.N(Ck(Tn(w,n))),a),

3 is the required ordinal logic. In fact, on account of the properties of 0, 3(�,A)will be convertible
to 2 if and only if there is a positive integer n such that

N(Ck (Tn (�,n)),A) conv 2.

If � conv H(B), there will be an integer n such that Ck (Tn(�,n)) conv B, and then

N(Ck (Tn (�,n)),A) conv N(B,A).

For any n, Ck (Tn (�,n)) is convertible to U or to some B, where � conv H(B). Thus 3(�,A)
conv 2 if � conv H(B) and N(B,A) conv 2 or if N(U,A) conv 2, but not in any other case.

We may now specialize and consider particular classes W of systems. First let us try to construct
the ordinal logic described roughly in the introduction. For W we take the class of systems arising
from the system of Principia Mathematica† by adjoining to it axiomatic (in the sense described on
p. 155) sets of axioms‡. Gödel has shown that primitive recursive relations§ can be expressed by
means of formulae in P. In fact, there is a rule whereby, given the recursion equations defining a
primitive recursive relation, we can find a formula¶ A[x0, . . . ,z0] such that

A[f (m1)0, ..., f (mr)0]

is provable in P if F(m1, . . . ,mr) is true, and its negation is provable otherwise. Further, there is a
method by which we can determine about a formula A[x0, . . . ,z0] whether it arises from a primitive
recursive relation in this way, and by which we can find the equations which defined the relation.
Formulae of this kind will be called recursion formulae. We shall make use of a property that they
possess, which we cannot prove formally here without giving their definition in full, but which is

† Whitehead and Russell [1]. The axioms and rules of procedure of a similar system P will be found in a convenient form
in Gödel [1], and I follow Gödel. The symbols for the natural numbers in P are 0, f 0, ff 0, . . . , f (n)0 . . .. Variables with the
suffix “0” stand for natural numbers.
‡ It is sometimes regarded as necessary that the set of axioms used should be computable, the intention being that it
should be possible to verify of a formula reputed to be an axiom whether it really is so. We can obtain the same effect
with axiomatic sets of axioms in this way. In the rules of procedure describing which are the axioms, we incorporate a
method of enumerating them, and we also introduce a rule that in the main part of the deduction, whenever we write
down an axiom as such, we must also write down its position in the enumeration. It is possible to verify whether this has
been done correctly.
§ A relation F(m1, . . . ,mr) is primitive recursive if it is a necessary and sufficient condition for the vanishing of a primitive
recursive function φ(m1, . . . ,mr).
¶ Capital German letters will be used to stand for variable or undetermined formulae in P. An expression such as 1[,]
stands for the result of substituting B and E for x0 and y0 in A.
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essentially trivial. Db [x0,y0] is to stand for a certain recursion formula such that Db [f (m)0, f (n)0]
is provable in P if m= 2n and its negation is provable otherwise. Suppose that A[x0],B[x0] are
two recursion formulae. Then the theorem which I am assuming is that there is a recursion relation
CA,B[x0], such that we can prove

CA,B[x0]≡ (∃y0)((Db[x0y0].A[y0])∨ (Db[fx0, fy0].B[y0])) (8.1)

in P.
The significant formulae in any of our extensions of P are those of the form

(x0)(∃y0)A[x0,y0], (8.2)

where A[x0,y0] is a recursion formula, arising from the relation R(m,n) let us say. The corresponding
number-theoretic theorem states that for each natural number m there is a natural number n such that
R(m,n) is true.

The systems in W which are not valid are those in which a formula of the form (8. 2) is provable,
but at the same time there is a natural number, m say, such that, for each natural number n,R(m,n)
is false. This means to say that ∼ A[f (m)0, f (n)0] is provable for each natural number n. Since (8.2)
is provable, (∃x0)A[f (m)0,y0] is provable, so that

(∃y0)A[f m)0,y0], ∼ A[f (m)0,0], ∼ A[f (m)0, f 0], . . . (8.3)

are all provable in the system. We may simplify (8.3). For a given m we may prove a formula of the
form A[f (m)0,y0]≡B[y0] in P, where B[x0] is a recursion formula. Thus we find that a necessary
and sufficient condition for a system of W to be valid is that for no recursion formula B[x0] are all
of the formulae

(∃x0)B[x0], ∼ B[0], ∼ B[f 0], . . . (8. 4)

provable. An important consequence of this is that, if

A1[x0], A2[x0], . . . An[x0]

are recursion formulae, if

(∃x0)A1[x0]∨ . . .∨ (∃x0)An[x0] (8.5)

is provable in C, and C is valid, then we can prove Ar[f (a)0] in C for some natural numbers r,a,
where 1≤ r ≤ n. Let us define Dr to be the formula

(∃x0)A1[x0]∨ . . .∨ (∃x0)Ar[x0]

and then define Er[x0] recursively by the condition that E1[x0] is A1[x0] and Er+1[x0] be EEr,Ar+1[x0].
Now I say that

Dr ⊃ (∃x0)Er[x0] (8.6)

is provable for 1≤ r ≤ n. It is clearly provable for r = 1: suppose it to be provable for a given r. We
can prove

(y0)(∃x0)Db[x0,y0]

and (y0)(∃x0)Db[fx0, fy0],

from which we obtain

Er[y0]⊃ (∃x0)((Db[x0,y0].Er[y0])∨ (Db[fx0, fy0].Ar+1[y0]))
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and

Ar+1[y0]⊃ (∃x0)((Db[x0,y0].Er[y0])∨ (Db[fx0, fy0].Ar+1[y0])).

These together with (8.1) yield

(∃y0)Er[y0]∨ (∃y0)Ar+1[y0]⊃ (∃x0)ECr ,Ar+1[x0],

which is sufficient to prove (8. 6) for r+ 1. Now, since (8. 5) is provable in C, (∃x0)En[x0] must
also be provable, and, since C is valid, this means that En[f (m)0] must be provable for some natural
number m. From (8.1) and the definition of En[x0] we see that this implies that Ar[f (a)0] is provable
for some natural numbers a and r, 1≤ r ≤ n.

To any system C of W we can assign a primitive recursive relation PC(m,n) with the intuitive
meaning “m is the G.R. of a proof of the formula whose G.R. is n”. We call the corresponding
recursion formula ProofC [x0,y0]. (ie. ProofC[f (m)0, f (n)0] is provable when PC(m,n) is true, and
its negation is provable otherwise). We can now explain what is the relation of a system C′ to its
predecessor C. The set of axioms which we adjoin to P to obtain C′ consists of those adjoined in
obtaining C, together with all formulae of the form

(∃X0)ProofC[x0, f (m)0]⊃ F, (8.7)

where m is the G.R. of F.
We want to show that a contradiction can be obtained by assuming C′ to be invalid but C to be

valid. Let us suppose that a set of formulae of the form (8.4) is provable in C′. Let A1,A2, . . . ,Ak be
those axioms of C′ of the form (8.7) which are used in the proof of (∃x0)B[x0]. We may suppose
that none of them is provable in C. Then by the deduction theorem we see that

(A1.A2 . . .Ak)⊃ (∃x0)B[x0] (8.8)

is provable in C. Let Al be (∃x0)ProofC[x0, f (ml)0]⊃ Fl. Then from (8.8) we find that

(∃x0)ProofC[x0, f (m1)0]∨ . . .∨ (∃x0)ProofC[x0, f (mk)0]∨ (∃x0)B[x0]

is provable in C. It follows from a result which we have just proved that either B[f (c)0] is provable
for some natural number c, or else ProofC[f (n)0, f (ml)0] is provable in C for some natural number u
and some l,1≤ l≤ k: but this would mean that Fl is provable in C (this is one of the points where
we assume the validity of C) and therefore also in C′, contrary to hypothesis. Thus B[f (c)0] must
be provable in C′ ; but we are also assuming ∼B[f (c)0] to be provable in C′. There is therefore a
contradiction in C′. Let us suppose that the axioms A′1, . . . ,A′k′ , of the form (8. 7), when adjoined to
C are sufficient to obtain the contradiction and that none of these axioms is that provable in C. Then

∼ A′1∨∼ A′2 ∨ . . .∨∼ A′k′

is provable in C, and if A′l is (∃x0) ProofC [x0, f (m
′
i)0]⊃ F′l, then

(∃x0]ProofC[x0, f (m
′

1)0]∨ ·· · ∨ (∃x0)Proof[x0, f (m
′

k′
)0]

is provable in C. But, by repetition of a previous argument, this means that A′l is provable for some
l, 1≤ l≤ k′, contrary to hypothesis. This is the required contradiction.

We may now construct an ordinal logic in the manner described on pp. 170–172. We shall,
however, carry out the construction in rather more detail, and with some modifications appropriate
to the particular case. Each system C of our set W may be described by means of a W.F.F. MC which
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enumerates the G.R.’s of the axioms of C. There is a W.F.F. E such that, if a is the G.R. of some
proposition F, then E(Mc,a) is convertible to the G.R. of

(∃x0)ProofC[x0, f (a)0]⊃ F.

If a is not the G.R. of any proposition in P, then E(MC,a) is to be convertible to the G.R. of 0= 0.
From E we obtain a W.F.F. K such that K(MC,2n+ 1) conv MC(n),K(MC,2n) conv E(MC,n). The
successor system C′ is defined by K(MC) conv M′C. Let us choose a formula G such that G(MC,A)
conv 2 if and only if the number-theoretic theorem equivalent to “A is dual” is provable in C. Then
we define 3P by

3P→ λwa.0(λy.G(Ck(Tn(w,y),λmn.m($(2,n),$(3,n)),K,MP)),a).

This is all ordinal logic provided that P is valid.

Another ordinal logic of this type has in effect been introduced by Church†. Superficially this
ordinal logic seems to have no more in common with 3P than that they both arise by the method
which we have described, which uses C-K ordinal formulae. The initial systems are entirely differ-
ent. However, in the relation between C and C′ there is an interesting analogy. In Church’s method
the step from C to C′ is performed by means of subsidiary axioms of which the most important
(Church [2], p. 88,1m) is almost a direct translation into his symbolism of the rule that we may
take any formula of the form (8.4) as an axiom. There are other extra axioms, however, in Church’s
system, and it is therefore not unlikely that it is in some respects more complete than 3P.

There are other types of ordinal logic, apparently quite unrelated to the type that we have so far
considered. I have in mind two types of ordinal logic, both of which can be best described directly
in terms of ordinal formulae without any reference to C-K ordinal formulae. I shall describe here a
specimen3H of one of these types of ordinal logic. Ordinal logics of this kind were first considered
by Hilbert (Hilbert [1], 183ff), and have also been used by Tarski (Tarski [1], 395ff); see also Gödel
[1], foot-note 48a.

Suppose that we have selected a particular ordinal formula �. We shall construct a modification
P� of the system P of Gödel (see foot-note † on p. 172. We shall say that a natural number n is a type
if it is either even or 2p− 1, where �(p,p) conv 3. The definition of a variable in P is to be modified
by the condition that the only admissible subscripts are to be the types in our sense. Elementary
expressions are then defined as in P: in particular the definition of an elementary expression of type
0 is unchanged. An elementary formula is defined to be a sequence of symbols of the form AmAn,
where Am, An are elementary expressions of types m,n satisfying one of the conditions (a),(b),(c).

(a) m and n are both even and m exceeds n,

(b) m is odd and n is even,

(c) m= 2p− 1,n= 2q− 1, and �(p,q) conv 2.

With these modifications the formal development of P� is the same as that of P. We want,
however, to have a method of associating number-theoretic theorems with certain of the formulae
of P�. We cannot take over directly the association which we used in P. Suppose that G is a formula
in P interpretable as a number-theoretic theorem in the way described in the course of constructing
3P (p. 172). Then, if every type suffix in G is doubled, we shall obtain a formula in P� which is
to be interpreted as the same number-theoretic theorem. By the method of §6 we can now obtain
from P� a formula L� which is a logic formula if P� is valid; in fact, given � there is a method of
obtaining L�, so that there is a formula 3H such that 3H(�) conv L� for each ordinal formula �.

Having now familiarized ourselves with ordinal logics by means of these examples we may
begin to consider general questions concerning them.

† In outline Church [1], 279–280. In greater detail Church [2], Chap. X.
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9. Completeness questions.

The purpose of introducing ordinal logics was to avoid as far as possible the effects of Gödel’s
theorem. It is a consequence of this theorem, suitably modified, that it is impossible to obtain a
complete logic formula, or (roughly speaking now) a complete system of logic. We were able, how-
ever, from a given system to obtain a more complete one by the adjunction as axioms of formulae,
seen intuitively to be correct, but which the Gödel theorem shows are unprovable† in the original
system; from this we obtained a yet more complete system by a repetition of the process, and so
on. We found that the repetition of the process gave us a new system for each C-K ordinal formula.
We should like to know whether this process suffices, or whether the system should be extended in
other ways as well. If it were possible to determine about a W.F.F. in normal form whether it was
an ordinal formula, we should know for certain that it was necessary to make extensions in other
ways. In fact for any ordinal formula 3 it would then be possible to find a single logic formula
L such that, if 3(�,A) conv 2 for some ordinal formula �, then L(A) conv 2. Since L must be
incomplete, there must be formulae A for which 3(�,A) is not convertible to 2 for any ordinal
formula �. However, in view of the fact, proved in §7, that there is no method of determining about
a formula in normal form whether it is an ordinal formula, the case does not arise, and there is still
a possibility that some ordinal logics may be complete in some sense. There is a quite natural way
of defining completeness.

Definition of completeness of an ordinal logic

We say that an ordinal logic 3 is complete if corresponding to each dual formula A there is an
ordinal formula �A such that 3(�A,A) conv 2.

As has been explained in §2, the reference in the definition to the existence of �A for each A is
to be understood in the same naı̈ve way as any reference to existence in mathematics.

There is room for modification in this definition: we might require that there is a formula X such
that X(A) conv �A, X(A) being an ordinal formula whenever A is dual. There is no need, however,
to discuss the relative merits of these two definitions, because in all cases in which we prove an
ordinal logic to be complete we shall prove it to be complete even in the modified sense; but in
cases in which we prove an ordinal logic to be incomplete, we use the definition as it stands.

In the terminology of §6, 3 is complete if the class of logics 3(�) is complete when � runs
through all ordinal formulae.

There is another completeness property which is related to this one. Let us for the moment
describe an ordinal logic 3 as all inclusive if to each logic formula L there corresponds an ordinal
formula �(L) such that 3(�(L)) is as complete as L. Clearly every all inclusive ordinal logic is
complete; for, if A is dual, then δ(A) is a logic with A in its extent. But, if 3 is complete and

Ai→ λkw.0
(
λra.δ

(
4,δ

(
2,k
(
w,V(Nm(r))

))
+ δ

(
2,Nm(r,a)

)))
,

then Ai(3)is an all inclusive ordinal logic. For, if A is in the extent of 3(�A) for each A, and we
put �(L)→�V(L), then I say that, if B is in the extent of L, it must be in the extent of Ai (3,�(L)).
In fact, we see that Ai (3,�V(L),B) is convertible to

0
(
λra.δ

(
4,δ
(
2,3

(
�V(L),V(Nm(r))

))
+ δ

(
2,Nm(r,a)

))
, B
)

.

† In the case of p we adjoined all of the axioms (∃x0) Proof [x0, f (m)0]⊃ F,where m is the G.R, of F; the Gödel theorem
shows that some of them are unprovable in P.
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For suitable n, Nm(n) conv L and then

3(�V(L),V(Nm(n))) conv 2,

Nm(n, B) conv 2,

and therefore, by the properties of 0 and δ

Ai(3, �V(L), B) conv 2.

Conversely Ai(3,�V(L), B) can be convertible to 2 only if both Nm (n,B) and
3(�V(L),V(Nm(n))) are convertible to 2 for some positive integer n; but, if
3(�V(L),V(Nm(n))) conv 2, then Nm(n) must be a logic, and, since Nm(n,B) conv 2, B
must be dual.

It should be noticed that our definitions of completeness refer only to number-theoretic theo-
rems. Although it would be possible to introduce formulae analogous to ordinal logics which would
prove more general theorems than number-theoretic ones, and have a corresponding definition of
completeness, yet, if our theorems are too general, we shall find that our (modified) ordinal logics
are never complete. This follows from the argument of §4. If our “oracle” tells us, not whether any
given number-theoretic statement is true, but whether a given formula is an ordinal formula, the
argument still applies, and we find that there are classes of problem which cannot be solved by a
uniform process even with the help of this oracle. This is equivalent to saying that there is no ordinal
logic of the proposed modified type which is complete with respect to these problems. This situation
becomes more definite if we take formulae satisfying conditions (a)− (e), (f ′) (as described at the
end of §12) instead of ordinal formulae; it is then not possible for the ordinal logic to be complete
with respect to any class of problems more extensive than the number-theoretic problems.

We might hope to obtain some intellectually satisfying system of logical inference (for the proof
of number-theoretic theorems) with some ordinal logic. Gödel’s theorem shows that such a system
cannot be wholly mechanical; but with a complete ordinal logic we should be able to confine the
non-mechanical steps entirely to verifications that particular formulae are ordinal formulae.

We might also expect to obtain an interesting classification of number-theoretic theorems accord-
ing to “depth ”. A theorem which required an ordinal α to prove it would be deeper than one which
could be proved by the use of an ordinal β less than α. However, this presupposes more than is
justified. We now define

Invariance of ordinal logics

An ordinal logic3 is said to be invariant up to an ordinal a if, whenever �, �′ are ordinal formulae
representing the same ordinal less than α, the extent of 3(�) is identical with the extent of 3(�′).
An ordinal logic is invariant if it is invariant up to each ordinal represented by an ordinal formula.

Clearly the classification into depths presupposes that the ordinal logic used is invariant.
Among the questions that we should now like to ask are

(a) Are there any complete ordinal logics?

(b) Are there any complete invariant ordinal logics?

To these we might have added “are all ordinal logics complete? ” : but this is trivial; in fact, there
are ordinal logics which do not suffice to prove any number-theoretic theorems whatever.

We shall now show that (a) must be answered affirmatively. In fact, we can write down a
complete ordinal logic at once. Put

Od→ λa.
{
λfmn.Dt(f (m), f (n))

}(
λs.P (λr.(I,a(s)),1,s)

)
and Comp→ λwa.δ

(
w,Od(a)

)
.
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I shall show that Comp is a complete ordinal logic.
For if, Comp (�,A) conv 2, then

� conv Od (A)

conv λmn. Dt
(
P
(
λr.r(I,A(m)), l,m

)
, P

(
λr.r(I,A(n)),1,n )

))
.

�(m,n) has a normal form if � is an ordinal formula, so that then

P (λr.r(I,A(m)),1)

has a normal form; this means that r(I,A(m)) conv 2 some r, i.e. A(m) conv 2. Thus, if Comp
(�,A) conv 2 and � is an ordinal formula, then A is dual. Comp is therefore an ordinal logic. Now
suppose conversely that A is dual. I shall show that Od(A) is an ordinal formula representing the
ordinal ω. For

P (λr.r(I,A(m)),1,m) conv P (λr.r(I,2),1,m)

conv 1(m) conv m,

Od(A,m,n) conv Dt(m,n),

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But

Comp (Od (A) A) conv δ( Od (A), Od (A)) conv 2.

This proves the completeness of Comp.

Of course Comp is not the kind of complete ordinal logic that we should really wish to use.
The use of Comp does not make it any easier to see that A is dual. In fact, if we really want to
use an ordinal logic a proof, of completeness for that particular ordinal logic will be of little value;
the ordinals given by the completeness proof will not be ones which can easily be seen intuitively
to be ordinals. The only value in a completeness proof of this kind would be to show that, if any
objection is to be raised against an ordinal logic, it must be on account of something more subtle
than incompleteness.

The theorem of completeness is also unexpected in that the ordinal formulae used are all formu-
lae representing ω. This is contrary to our intentions in constructing 3P for instance; implicitly we
had in mind large ordinals expressed in a simple manner. Here we have small ordinals expressed in
a very complex and artificial way.

Before trying to solve the problem (b), let us see how far 3P and 3H are invariant. We should
certainly not expect3P to be invariant, since the extent of3P(�) will depend on whether � is con-
vertible to a formula of the form H(A): but suppose that we call an ordinal logic 3 “C-K invariant
up to α” the extent of 3(H(A)) is the same as the extent of 3(H(B)) whenever A and B are C-K
ordinal formulae representing the same ordinal less than α. How far is 3P C-K invariant? It is not
difficult to see that it is C-K invariant up to any finite ordinal, that is to say up to ω. It is also C-K
invariant up to ω+ 1, as follows from the fact that the extent of

3P(H(λufx.u(R)))

is the set-theoretic sum of the extents of

3P(H(λufx.R(1))), 3P(H(λufx.R(2))), . . . .

However, there is no obvious reason for believing that it is C-K invariant up to ω+ 2, and in fact it
is demonstrable that this is not the case (see the end of this section). Let us find out what happens if
we try to prove that the extent of
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3P(H( Suc (λufx.u(R1))))

is the same as the extent of

3P(H(Suc (λufx.u(R2)))),

where λufx.u(R1) and λufx.u(R2) are two C-K ordinal formulae representing ω. We should have to
prove that a formula interpretable as a number-theoretic theorem is provable in C[ Suc (λufx.u(R1))]
if, and only if, it is provable in C[ Suc (λufx.u(R2))]. Now C[ Suc (λufx.u(R1))] is obtained from
C[λufx.u(R1)] by adjoining all axioms of the form

(∃x0) ProofC[λufx.u(R1)][x0, f (m)0)⊃ F, (9. 1)

where m is the G.R. of F, and C [Suc (λufx.u(R2))] is obtained from C[λufx.u(R2)] by adjoining all
axioms of the form

(∃x0) ProofC[λufx.u(R2)][x0,f (m)0] ⊃ F. (9. 2)

The axioms which must be adjoined to P to obtain C[λufx.u(R1)] are essentially the same as those
which must be adjoined to obtain the system C[λufx.u(R2)]: however the rules of procedure which
have to be applied before these axioms can be written down are in general quite different in the two
cases. Consequently (9.1) and (9.2) are quite different axioms, and there is no reason to expect their
consequences to be the same. A proper understanding of this will make our treatment of question
(b) much more intelligible. See also footnote ‡ on page 172.

Now let us turn to 3H . This ordinal logic is invariant. Suppose that �, �′ represent the same
ordinal, and suppose that we have a proof of a number-theoretic theorem G in P�. The formula
expressing the number-theoretic theorem does not involve any odd types. Now there is a one-one
correspondence between the odd types such that if 2m− 1 corresponds to 2m′− 1 and 2n− 1 to
2n′− 1 then �(m,n) conv 2 implies �′(m′,n′) conv 2. Let us modify the odd type-subscripts occur-
ring in the proof of G, replacing each by its mate in the one-one correspondence. There results a
proof in P�′ , with the same end formula G. That is to say that if G is provable in P� it is provable
in P�′ . 3H is invariant.

The question (b) must be answered negatively. Much more can be proved, but we shall first
prove an even weaker result which can be established very quickly, in order to illustrate the method.

I shall prove that an ordinal logic 3 cannot be invariant and have the property that the extent
of 3(�) is a strictly increasing function of the ordinal represented by �. Suppose that 3 has these
properties; then we shall obtain a contradiction. Let A be a W.F.F. in normal form and without free
variables, and consider the process of carrying out conversions on A(1) until we have shown it
convertible to 2, then converting A(2) to 2, then A(3) and so on: suppose that after r steps we are
still performing the conversion on A(mr). There is a formula Jh such that Jh (A,r) conv mr for each
positive integer r. Now let Z be a formula such that, for each positive integer n,Z(n) is an ordinal
formula representing �r, and suppose B to be a member of the extent of 3(Suc(Lim (Z))) but not
of the extent of 3(Lim (Z)). Put

K∗→ λa.3(Suc(Lim(λr.Z(Jh(a,r)))), B);

then K∗ is a complete logic. For, if A is dual, then

Suc (Lim(λr.Z(Jh(A,r))))

represents the ordinal ωω+ 1, and therefore K∗(A) conv 2; but, if A(c) is not convertible to 2, then

Suc (Lim(λr.Z(Jh(A,r))))

represents an ordinal not exceeding ωc
+ 1, and K∗(A) is therefore not convertible to 2. Since there

are no complete logic formulae, this proves our assertion.

We may now prove more powerful results.
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Incompleteness theorems.

(A) If an ordinal logic 3 is invariant up to an ordinal α, then for any ordinal formula � representing
an ordinal β, β < α, the extent of 3(�) is contained in the (set-theoretic) sum of the extents
of the logics 3(P), where P is finite.

(B) If an ordinal logic 3 is C-K invariant up to an ordinal α, then for any C-K ordinal formula A
representing an ordinal β, β < α, the extent of 3(H(A)) is contained in the (set-theoretic) sum
of the extents of the logics 3(H(F)), where F is a C-K ordinal formula representing an ordinal
less than ω2.

Proof of (A). It is sufficient to prove that, if � represents an ordinal γ ,ω ≤ γ < α, then the
extent of 3(�) is contained in the set-theoretic sum of the extents of the logics 3(�′), where �′

represents an ordinal less than γ . The ordinal γ must be of the form γ0+ ρ, where ρ is finite and
represented by P say, and γ0 is not the successor of any ordinal and is not less than ω. There are
two cases to consider; γ0 = ω and γ0 ≥ 2ω. In each of them we shall obtain a contradiction from the
assumption that there is a W.F.F. B such that 3(�, B) conv 2 whenever � represents γ , but is not
convertible to 2 if � represents a smaller ordinal. Let us take first the case γ0 ≥ 2ω. Suppose that
γ0 = ω+ γ1, and that �1 is an ordinal formula representing γ1. Let A be any W.F.F. with a normal
form and no free variables, and let Z be the class of those positive integers which are exceeded by
all integers n for which A(n) is not convertible to 2. Let E be the class of integers 2p such that
�(p,n) conv 2 for some n belonging to Z. The class E, together with the class Q of all odd integers,
is constructively enumerable. It is evident that the class can be enumerated with repetitions, and
since it is infinite the required enumeration can be obtained by striking out the repetitions. There is,
therefore, a formula En such that En (�,A,r) runs through the formulae of the class E+Q without
repetitions as r runs through the positive integers. We define

Rt→ λwamn. Sum (Dt w, En (w,a,m),En(w,a,n)).

Then Rt (�1,A) is an ordinal formula which represents γ0 if A is dual, but a smaller ordinal
otherwise. In fact

Rt (�1,A,m,n) conv {Sum (Dt, �1)}(En(�1,A,m), En (�1,A,n)).

Now, if A is dual, E+Q includes all integers m for which

{Sum (Dt, �1)} (m,m) conv 3.

(This depends on the particular form that we have chosen for the formula Sum.) Putting
“En (�1,A,p) conv q” for M(p,q), we see that condition (7. 4) is satisfied, so that Rt (�1,A) is
an ordinal formula representing γ0. But, if A is not dual, the set E+Q consists of all integers m for
which

{Sum (Dt, �1)} (m,r) conv 2,

where r depends only on A. In this case Rt (�1,A) is an ordinal formula representing the same
ordinal as Inf(Sum (Dt, �1), r), and this is smaller than γ0. Now consider K:

K→ λa.3(Sum(Rt(�1,A),P),B). (9.1)

If A is dual, K(A) is convertible to 2 since Sum (Rt (�1,A),P) represents γ . But, if A is not dual,
it is not convertible to 2, since Sum (Rt (�1,A),P) then represents an ordinal smaller than γ . In K
we therefore have a complete logic formula, which is impossible.

Now we take the case γ0 = ω. We introduce a W.F.F. Mg such that if n is the D.N. of a computing
machine M , and if by the m-th complete configuration of M the figure 0 has been printed, then
Mg (n,m) is convertible to λpq. Al (4(P,2p+ 2q),3,4) (which is an ordinal formula representing
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the ordinal 1, but if 0 has not been printed it is convertible to λpq.p(q, I,4) (which represents 0).
Now consider

M→ λn.3(Sum (Lim (Mg(n)), P), B).

If the machine never prints 0, then Lim (λr. Mg(n,r)) represents ω and Sum (Lim (Mg(n)), P)
represents γ . This means that M(n) is convertible to 2. If, however, M never prints 0,
Sum(Lim(Mg(n)),P) represents a finite ordinal and M(n) is not convertible to 2. In M we there-
fore have means of determining about a machine whether it ever prints 0, which is impossible†

(Turing[1], §8). This completes the proof of (A).

Proof of (B). It is sufficient to prove that, if C represents an ordinal γ , ω2
≤ γ < α, then the

extent of 3(H(C)) is included in the set-theoretic sum of the extents of A (H(G)), where G repre-
sents an ordinal less than γ . We obtain a contradiction from the assumption that there is a formula B
which is in the extent of 3(H(G)) if G represents γ , but not if it represents any smaller ordinal. The
ordinal γ is of the form δ+ω2

+ ξ , where ξ < ω2. Let D be a C-K ordinal formula representing δ
and λufx ·Q(u, f ,A(u, f ,x)) one representing α+ ξ whenever A represents α.

We now define a formula Hg. Suppose that A is a W.F.F. in normal form and without free
variables; consider the process of carrying out conversions on A(l) until it is brought into the form
2, then converting A(2) to 2, then A(3), and so on. Suppose that at the r-th step of this process we are
doing the nr-th step in the conversion of A(mr). Thus, for instance, if A is not convertible to 2, mr

can never exceed 3. Then Hg(A,r) is to be convertible to λf · f (mr,nr) for each positive integer r.
Put

Sq→ λdmn.n
(

Suc, m
(
λaufx · u

(
λy · y(Suc,α(u, f ,x))

)
, d(u, f ,x)

))
,

M→ λaufx ·Q
(
u, f ,u

(
λy ·Hg(a,y,Sq(D))

))
,

K1→ λa ·3
(
M(a), B

)
,

then I say that K1 is a complete logic formula. Sq (D,m,n) is a C-K ordinal formula representing
δ+mω+ n, and therefore Hg(A,r, Sq (D)) represents an ordinal ζr which increases steadily with
increasing r, and tends to the limit δ+ω2 if A is dual. Further

Hg(A,r,Sq(D)) < Hg(A,S(r),Sq(D))

for each positive integer r. therefore λufx · u(λy. Hg (A,y, Sq (D))) is a C-K ordinal formula
and represents the limit of the sequence ζ1, ζ2, ζ3, . . .. This is δ+ω2 if A is dual, but a smaller
ordinal otherwise. Likewise M(A) represents γ if A is dual, but is a smaller ordinal otherwise.
The formula B therefore belongs to the extent of 3(H(M(A))) if and only if A is dual, and this
implies that K1 is a complete logic formula, as was asserted. But this is impossible and we have the
requiredcontradiction.

As a corollary to (A) we see that3H is incomplete and in fact that the extent of3H (Dt) contains
the extent of 3H(�) for any ordinal formula �. This result, suggested to me first by the solution
of question (b), may also be obtained more directly. In fact, if a number-theoretic theorem can be
proved in any particular P�, it can also be proved in Pλmn·m(n,I,4). The formulae describing number-
theoretic theorems in P do not involve more than a finite number of types, type 3 being the highest
necessary. The formulae describing the number-theoretic theorems in any P� will be obtained by
doubling the type subscripts. Now suppose that we have a proof of a number-theoretic theorem G in

† This part of the argument can equally well be based on the impossibility of determining about two W.F.F. whether they
are interconvertible. (Church [3], 363.)
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P� and that the types occurring in the proof are among 0, 2, 4, 6, t1, t2, t3, . . .. We may suppose that
they have been arranged with all the even types preceding all the odd types, the even types in order
of magnitude and the type 2m− 1 preceding 2n− 1 if �(m,n) conv 2. Now let each tr be replaced
by 10+ 2r throughout the proof of G. We thus obtain a proof of G in Pλmn·(n,I,4).

As with problem (a), the solution of problem (b) does not require the use of high ordinals [e.g.
if we make the assumption that the extent of 3(�) is a steadily increasing function of the ordinal
represented by � we do not have to consider ordinals higher than ω+ 2]. However, if we restrict
what we are to call ordinal formulae in some way, we shall have corresponding modified problems
(a) and (b), the solutions will presumably be essentially the same, but will involve higher ordinals.
Suppose, for example, that Prod is a W.F.F. with the property that Prod (�1,�2) is an ordinal
formula representing α1α2 when �1,�2 are ordinal formulae representing α1,α2 respectively, and
suppose that we call a W.F.F. a l-ordinal formula when it is convertible to the form Sum (Prod( �,
Dt), P), where �,P are ordinal formulae of which P represents a finite ordinal. We may define l-
ordinal logics, l-completeness and l-invariance in an obvious way, and obtain a solution of problem
(b) which differs from the solution in the ordinary case in that the ordinals less than to ω2 take
the place of the finite ordinals. More generally the cases that I have in mind are covered by the
following theorem.

Suppose that we have a class V of formulae representing ordinals in some manner which we do
not propose to specify definitely, and a subset† U of the class V such that:

(i) There is a formula 8 such that if T enumerates a sequence of members of U representing an
increasing sequence of ordinals, then 8(T) is a member of U representing the limit of the
sequence.

(ii) There is a formula E such that E(m,n) is a member of U for each pair of positive integers m,n
and if it represents εm,n, then εm,n < εm′,n′ if either m< m′ or m= m′,n< n′.

(iii) There is a formula G such that, if A is a member of U, then G(A) is a member of U representing
a larger ordinal than does A, and such that G(E(m,n)) always represents an ordinal not larger
than εm,n+1.

We define a V-ordinal logic to be a W.F.F. 3 such that 3(A) is a logic whenever A belongs to
V. 3 is V-invariant if the extent of 3(A) depends only on the ordinal represented by A. Then it is
not possible for a V-ordinal logic 3 to be V-invariant and have the property that, if C1 represents a
greater ordinal than C2 (C1 and C2 both being members of U), then the extent of 3(C1) is greater
than the extent of 3(C2).

We suppose the contrary. Let B be a formula belonging to the extent of 3((8(λr ·E(r,1)))) but
not to the extent of 3(8(λr ·E(r,1))), and let K′→ λa.3(G(8(λr ·Hg(a,r,E))) ,B).

Then K′ is a complete logic. For

Hg (A,r,E) conv E(mr,nr).

E(mr,nr) is a sequence of V-ordinal formulae representing an increasing sequence of ordinals.
Their limit is represented by 8(λr. Hg (A,r,E)); let us see what this limit is. First suppose that A
is dual: then mr tends to infinity as r tends to infinity, and 8(λr. Hg (A,r,E)) therefore represents
the same ordinal as 8(λr.E(r,1)). In this case we must have

K′(A) conv 2.

Now suppose that A is not dual: mr is eventually equal to some constant number, a say, and 8(λr.
Hg (A,r,E)) represents the same ordinal as 8(λr.E(a,r)), which is smaller than that represented by

† The subset U wholly supersedes V in what follows. The introduction of V serves to emphasise the fact that the set of
ordinals represented by member of U may have gaps.
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8(λr.E(r,1)).B cannot therefore belong to the extent of 3(G(8(λr ·Hg(A,r,E)))), and K′(A) is
not convertible to 2. We have proved that K′ is a complete logic, which is impossible.

This theorem can no doubt be improved in many ways. However, it is sufficiently general to
show that, with almost any reasonable notation for ordinals, completeness is in compatible with
invariance.

We can still give a certain meaning to the classification into depths with highly restricted kinds
of ordinals. Suppose that we take a particular ordinal logic 3 and a particular ordinal formula 9

representing the ordinal α say (preferably a large one), and that we restrict ourselves to ordinal
formulae of the form Inf(9,a). We then have a classification into depths, but the extents of all the
logics which we so obtain are contained in the extent of a single logic.

We now attempt a problem of a rather different character, that of the completeness of3P. It is to
be expected that this ordinal logic is complete. I cannot at present give a proof of this, but I can give
a proof that it is complete as regards a simpler type of theorem than the number-theoretic theorems,
viz. those of form “θ(x) vanishes identically”, where θ(x) is primitive recursive. The proof will
have to be much abbreviated since we do not wish to go into the formal details of the system P.
Also there is a certain lack of definiteness in the problem as at present stated, owing to the fact
that the formulae G, E, MP were not completely defined. Our attitude here is that it is open to the
sceptical reader to give detailed definitions for these formulae and then verify that the remaining
details of the proof can be filled in, using his definition. It is not asserted that these details can be
filled in whatever be the definitions of G, E, MP consistent with the properties already required of
them, only that they can be filled in with the more natural definitions.

I shall prove the completeness theorem in the following form. If B[x0] is a recursion formula and
if B[0],B[f 0], . . . are all provable in P, then there is a C-K ordinal formula A such that (x0)B[x0]
is provable in the system PA of logic obtained from P by adjoining as axioms all formulae whose
G.R.’s are of the form

A(λmn ·m($(2,n),$(3,n)),K,MP,r)

(provided they represent propositions).
First let us define the formula A. Suppose that D is a W.F.F. with the property that D(n) conv 2 if

B[f (n−1)0] is provable in P, but D(n) conv 1 if ∼B[f (n−1)0] is provable in P ( P is being assumed
consistent). Let 2 be defined by

2→ {λvu · u(v(v,u))}(λvu.u(v(v,u))) ,

and let Vi be a formula with the properties

Vi (2) conv λu.u( Suc, U),

Vi (1) conv λu.u(I,2(Suc)).

The existence of such a formula is established in Kleene [ 1], corollary on p. 220. Now put

A∗→ λufx.u(λy.Vi(D(y),y,u, f ,x)),

A→ Suc(A∗).

I assert that A∗,A are C-K ordinal formulae whenever it is true that B[0],B[f 0], . . . are all provable
in P. For in this case A∗ is λufx · u(R), where

R→ λy.Vi(D(y),y,u, f ,x),
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and then

λufx.R(n) conv λufx. Vi (D(n),n,u, f ,x)

conv λufx. Vi (2,n,u, f ,x)

conv λufx.{λn.n (Suc, U) }(n,u, f ,x)

conv λufx.n(Suc, U,u, f ,x), which is a C-K ordinal formula,

and

λufx.S(n,Suc,U,u, f ,x) conv Suc (λufx ·n(Suc,U,u, f ,x)).

These relations hold for an arbitrary positive integer n and therefore A∗ is a C-K ordinal formula
[condition (9) p. 164]: it follows immediately that A is also a C-K ordinal formula. It remains to
prove that (x0)B[x0] is provable in PA. To do this it is necessary to examine the structure of A∗ in
the case in which (x0)B[x0] is false. Let us suppose that ∼B[f (a−1)0] is true, so that D(a) conv 1,
and let us consider B where

B→ λufx ·Vi(D(a),a,u, f ,x).

If A∗ was a C-K ordinal formula, then B would be a member of its fundamental sequence; but

B conv λufx ·Vi(1,a,u, f ,x)

conv λufx · {λu.u(I,2(Suc))}(a,u, f ,x)

conv λufx ·2(Suc,u, f ,x)

conv λufx · {λu · u(2(u))}(Suc,u, f ,x)

conv λufx ·Suc(2(Suc),u, f ,x)

conv Suc(λufx ·8(Suc,u, f ,x))

conv Suc(B) (9.3)

This, of course, implies that B< B and therefore that B is no C-K ordinal formula. This, although
fundamental in the possibility of proving our completeness theorem, does not form an actual step in
the argument. Roughly speaking, our argument amounts to this. The relation (9.3) implies that the
system PB is inconsistent and therefore that PA∗ is inconsistent and indeed we can prove in P (and
a fortiori in PA) that ∼ (x0)B[x0] implies the inconsistency of PA∗ . On the other hand in PA we
can prove the consistency of PA∗ . The inconsistency of PB is proved by the Gödel argument. Let us
return to the details.

The axioms in PB are those whose G.R.’s are of the form

B
(
λmn.m($(2,n),$(3,n)) ,K,Mp,r

)
.

When we replace B, by Suc (B), this becomes

Suc(B,λmn.m($(2,n),$(3,n)),K,MP,r)

conv K (B(λmn ·m($(2,n),$(3,n)),K,MP,r))

conv B(λmn.m($(2,n),$(3,n)) ,K,MP,p)

if r conv 2p+ 1,

conv E (B(λmn.m($(2,n),$(3,n)),K,MP),p)

if r conv 2p.
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When we remember the essential property of the formula E, we see that the axioms of PB include
all formulae of the form

(∃x0)ProofPB [x0, f (q)0]⊃ F,

where q is the G.R. of the formula F.
Let b be the G.R. of the formula A.

∼ (∃x0)(∃y0){ProofPB [x0,y0].Sb[z0,z0,y0]}. (A)

Sb [x0,y0,z0] is a particular recursion formula such that Sb [f (l)0, f (m)0, f (n)0] holds if and only if n
is the G.R. of the result of substituting f (m)0 for z0 in the formula whose G.R. is l at all points where
z0 is free. Let p be the G.R. of the formula C.

∼ (∃x0)(∃y0){ProofPB [x0,y0] ·Sb[f (b)0, f (b)0,y0]}. (C)

Then we have as an axiom in P

(∃x0)ProofPB [x0f (p)0]⊃ C,

and we can prove in PA

(x0){Sb[f (b)0, f (b)0,x0]≡ x0 = f (p)0}, (9.4)

since C is the result of substituting f (b)0 for z0 in A; hence

∼ (∃y0)ProofPB [y0, f (p)0] (9.5)

is provable in P. Using (9.4) again, we see that C can be proved in PB. But, if we can prove C in PB,

then we can prove its provability in PB, the proof being in P; i.e. we can prove

(∃x0)ProofPB [x0, f (p)0]

in P (since p is the G.R. of C). But this contradicts (9.5), so that, if

∼B[f (a−1)0]

is true, we can prove a contradiction in PB or in PA∗ . Now I assert that the whole argument up to
this point can be carried through formally in the system P, in fact, that,if c is the G.R. of ∼ (0= 0),
then

∼ (x0)B[x0)⊃ (∃v0) ProofPA∗ [v0, f (c)0] (9.6)

is provable in P. I shall not attempt to give any more detailed proof of this assertion.
The formula

(∃x0)ProofPA∗ [x0, f (c)0]⊃∼ (0= 0) (9.7)

is an axiom in PA. Combining (9.6), (9.7) we obtain (x0)B[x0] in PA.
The completeness theorem as usual is of no value. Although it shows, for instance, that is pos-

sible to prove Fermat’s last theorem with 3P (if it is true) yet the truth of the theorem would really
be assumed by taking a certain formula as an ordinal formula.

That 3P is not invariant may be proved easily by our general theorem; alternatively it follows
from the fact that, in proving our partial completeness theorem, we never used ordinals higher than
ω+ 1. This fact can also be used to prove that 3P is not C-K invariant up to ω+ 2.
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10. The continuum hypothesis. A digression.

The methods of §9 may be applied to problems which are constructive analogues of the continuum
hypothesis problem. The continuum hypothesis asserts that 2ℵ0 = ℵ1, in other words that, if ω1
is the smallest ordinal α greater than ω such that a series with order type α cannot be put into
one-one correspondence with the positive integers, then the ordinals less than ω1 can be put into
one-one correspondence with the subsets of the positive integers. To obtain a constructive analogue
of this proposition we may replace the ordinals less than ω1 either by the ordinal formulae, or by
the ordinals represented by them; we may replace the subsets of the positive integers either by
the computable sequences of figures 0,1, or by the description numbers of the machines which
compute these sequences. In the manner in which the correspondence is to be set up there is also
more than one possibility. Thus, even when we use only one kind of ordinal formula, there is still
great ambiguity concerning what the constructive analogue of the continuum hypothesis should be.
I shall prove a single result in this connection†. A number of others may be proved in the same way.

We ask “Is it possible to find a computable function of ordinal formulae determining a one-one
correspondence between the ordinals represented by ordinal formulae and the computable sequences
of figures 0,1?” More accurately, “Is there a formula F such that if � is an ordinal formula and n
a positive integer then F(�,n) is convertible to 1 or to 2, and such that F(�,n) conv F(�′,n) for
each positive integer n, if and only if � and �′ represent the same ordinal ?” The answer is “No”,
as will be seen to be a consequence of the following argument: there is no formula F such that
F(�) enumerates one sequence of integers (each being 1 or 2) when � represents ω and enumerates
another sequence when � represents 0. If there is such an F, then there is an a such that F(�,a)
conv (Dt, a) if � represents ω but F(�,a) and F(Dt, a) are convertible to different integers (1 or
2) if � represents 0. To obtain a contradiction from this we introduce a W.F.F. Gm not unlike Mg.
If the machine. M whose D.N. is n has printed 0 by the time the m-th complete configuration is
reached then

Gm (n,m) conv λmn.m(n, I,4);

otherwise Gm (n,m) conv λpq.Al (4(P,2p+ 2q),3,4). Now consider F(Dt,a) and F(Lim(Gm
(n)),a). If. M never prints 0, Lim(Gm(n)) represents the ordinal ω. Otherwise it represents 0.
Consequently these two formulae are convertible to one another if and onlyM never prints 0. This
gives us a means of determining about any machine whether it ever prints 0, which is impossible.

Results of this kind have of course no real relevance for the classical continuum hypothesis.

11. The purpose of ordinal logics.

Mathematical reasoning may be regarded rather schematically as the exercise of a combination of
two faculties‡, which we may call intuition and ingenuity. The activity of the intuition consists in
making spontaneous judgments which are not the result of conscious trains of reasoning. These
judgments are often but by no means invariably correct (leaving aside the the question what is
meant by “correct”). Often it is possible to find some other way of verifying the correctness of an
intuitive judgment. We may, for instance, judge that all positive integers are uniquely factorizable
into primes; a detailed mathematical argument leads to the same result. This argument will also
involve intuitive judgments, but they will be less open to criticism than the original judgment about
factorization. I shall not attempt to explain this idea of “intuition” any more explicitly.

† A suggestion to consider this problem came to me indirectly from F. Bernstein. A related problem was suggested by P.
Bernays.
‡ We are leaving out of account that most important faculty which distinguishes topics of interest from others; in fact,
we are regarding the function of the mathematician as simply to determine the truth or falsity of propositions.
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The exercise of ingenuity in mathematics consists in aiding the intuition through suitable
arrangements of propositions, and perhaps geometrical figures or drawings. It is intended that when
these are really well arranged the validity of the intuitive steps which are required cannot seriously
be doubted.

The parts played by these two faculties differ of course from occasion to occasion, and from
mathematician to mathematician. This arbitrariness can be removed by the introduction of a formal
logic. The necessity for using the intuition is then greatly reduced by setting down formal rules for
carrying out inferences which are always intuitively valid. When working with a formal logic, the
idea of ingenuity takes a more definite shape. In general a formal logic, will be framed so as to admit
a considerable variety of possible steps in any stage in a proof. Ingenuity will then determine which
steps are the more profitable for the purpose of proving a particular proposition. In pre-Gödel times
it was thought by some that it would probably be possible to carry this programme to such a point
that all the intuitive judgments of mathematics could be replaced by a finite number of these rules.
The necessity for intuition would then be entirely eliminated.

In our discussions, however, we have gone to the opposite extreme and eliminated not intuition
but ingenuity, and this in spite of the fact that our aim has been in much the same direction. We have
been trying to see how far it is possible to eliminate intuition, and leave only ingenuity. We do not
mind how much ingenuity is required, and therefore assume it to be available in unlimited supply.
In our metamathematical discussions we actually express this assumption rather differently. We are
always able to obtain from the rules of a formal logic a method of enumerating the propositions
proved by its means. We then imagine that all proofs take the form of a search through this enumer-
ation for the theorem for which a proof is desired. In this way ingenuity is replaced by patience. In
these heuristic discussions, however, it is better not to make this reduction.

In consequence of the impossibility of finding a formal logic which wholly eliminates the neces-
sity of using intuition, we naturally turn to “non-constructive” systems of logic with which not all
the steps in a proof are mechanical, some being intuitive. An example of a non-constructive logic
is afforded by any ordinal logic. When we have an ordinal logic, we are in a position to prove
number-theoretic theorems by the intuitive steps of recognizing formulae as ordinal formulae, and
the mechanical steps of carrying out conversions. What properties do we desire a non-constructive
logic to have if we are to make use of it for the expression of mathematical proofs? We want it to
show quite clearly when a step makes use of intuition, and when it is purely formal. The strain put
on the intuition should be a minimum. Most important of all, it must be beyond all reasonable doubt
that the logic leads to correct results whenever the intuitive steps are correct†. It is also desirable
that the logic shall be adequate for the expression of number-theoretic theorems˙in order that it may
be used in metamathematical discussions (cf. §5).

Of the particular ordinal logics that we have discussed, 3H and 3P certainly will not satisfy
us. In the case of 3H we are in no better position than with a constructive logic. In the case of 3P

(and for that matter also 3H) we are by no means certain that we shall never obtained any but true
results, because we do not know whether all the number-theoretic theorems provable in the system
P are true. To take 3P as a fundamental non-constructive logic for metamathematical arguments
would be most unsound. There remains the system of Church which is free from these objections. It
is probably complete (although this would not necessarily mean much) and it is beyond reasonable
doubt that it always leads to correct results‡ . In the next section I propose to describe another ordinal

† This requirement is very vague. It is not of course intended that the criterion of the correctness of the intuitive steps
be the correctness of the final result. The meaning becomes clearer if each intuitive step is regarded as a judgment that a
particular proposition is true. In the case of an ordinal logic it is always a judgment that a formula is an ordinal formula,
and this is equivalent to judging that a number-theoretic proposition is true. In this case then the requirement is that the
reputed ordinal logic is an ordinal logic.
‡ This ordinal logic arises from a certain system C0 in essentially the same way as 3P arose from P. By an argument
similar to one occurring in §8 we can show that the ordinal logic leads to correct results if and only if C0 is valid; the
validity of C0 is proved in Church [1], making use of the results of Church and Rosser [1].
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logic, of a very different type, which is suggested by the work of Gentzen and which should also be
adequate for the formalization of number-theoretic theorems. In particular it should be suitable for
proofs of metamathematical theorems (cf. §5).

12. Gentzen type ordinal logics.

In proving the consistency of a certain system of formal logic Gentzen (Gentzen [1]) has made
use of the principle of transfinite induction for ordinals less than ε0, and has suggested that it is to
be expected that transfinite induction carried sufficiently far would suffice to solve all problems of
consistency. Another suggestion of basing systems of logic on transfinite induction has been made
by Zermelo (Zermelo [1]). In this section I propose to show how this method of proof may be put
into the form of a formal (non-constructive) logic, and afterwards to obtain from it an ordinal logic.

We can express the Gentzen method of proof formally in this way. Let us take the system P
and adjoin to it an axiom A� with the intuitive meaning that the W.F.F. � is an ordinal formula,
whenever we feel certain that � is an ordinal formula. This is a non-constructive system of logic
which may easily be put into the form of an ordinal logic. By the method of §6 we make correspond
to the system of logic consisting of P with the axiom A� adjoined a logic formula L� : L� is an
effectively calculable function of �, and there is therefore a formula3G1 such that3G1(�) conv L�

for each formula �. 3G1 is certainly not an ordinal logic unless P is valid, and therefore consistent.
This formalization of Gentzen’s idea would therefore not be applicable for the problem with which
Gentzen himself was concerned, for he was proving the consistency of a system weaker than P.
However, there are other ways in which the Gentzen method of proof can be formalized. I shall
explain one, beginning by describing a certain logical calculus.

The symbols of the calculus are f , x, 1, 1, 0, S, R,0 ,1 ,E , | ,� , ! ,( ,) ,= , and the comma “,”. For
clarity we shall use various sizes of brackets (,) in the following. We use capital German letters to
stand for variable or undetermined sequences of these symbols.

It is to be understood that the relations that we are about to define hold only when compelled to
do so by the conditions that we lay down. The conditions should be taken together as a simultaneous
inductive definition of all the relations involved.

Suffixes.
1 a suffix. If S a suffix then S1 is a suffix.

Indices.
1 is an index. If = is an index then =1 is an index.

Numerical variables.
If S is a suffix then xS is a numerical variable.

Functional variables.
If S is a suffix and J is an index, then f SJ a functional variable of index J.

Arguments.
(,) is an argument of index 1. If (A) is an argument of index J and T is a term, then (AT,) is

an argument of index J1.

Numerals.
0 is a numeral.
If N is a numeral, then S(, N,) is a numeral.
In metamathematical statements we shall denote the numeral in which S occurs r times by

S(r)(, 0,).
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Expressions of a given index.
A functional variable of index J is an expression of index J.
R, S are expressions of index 111, 11 respectively.
If N is a numeral, then it is also an expression of index 1.
Suppose that G is an expression of index J, H one of index J1 and K one of index J111; then

(0G) and (1G) are expressions of index J, while (EG) and (G|H) and (G�K) and (G!H!K) are
expressions of index J1.

Function constants.
An expression of index J in which no functional variable occurs is a function constant of

index J. If in addition R does not occur, the expression is called a primitive function constant.

Terms.
0 is a term.
Every numerical variable is a term.
If G an expression of index J and A is an argument of index J, then G(A) is a term.

Equations.
If T and T′ are terms, then T= T′ is an equation.

Provable equations.
We define what is meant by the provable equations relative to a given set of equations as

axioms.

(a) The provable equations include all the axioms. The axioms are of the form of equations in
which the symbols 0, 1, E, |, �, ! do not appear.

(b) If G is an expression of index J11 and (A) is an argument of index J, then

(0G)(Gx1,x11, )=G(Ax11,x1, )

is a provable equation.

(c) If G is an expression of index J1, and (A) an argument of index J, then

(1G)(Ax1, )=G( ,x1A)

is a provable equation.

(d) If G is an expression of index J, and (A) is an argument of index J, then

(EG)(Ax1, )=G(A)

is a provable equation.

(e) If G is an expression of index J and H is one of index J1, and (A) is an argument of index J

then

(G|H)(A)= H(AG(A),)

is a provable equation.

(f) If N is an expression of index 1, then N( , )=N is a provable equation.

(g) If G is an expression of index J and K one of index J111, and (A) an argument of index J1,
then

(G�K)(A0,)=G(A)

and (G�K)(AS(,x1,),)= K(Ax1,S(,x1,), (G�K) (Ax1,),)
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are provable equations. If in addition H is an expression of index J1 and

R(,G(AS(,x1,),),x1,)= 0

is provable, then

(G!K!H)(A0,)=G(A)

and

(G!K!H)(AS(,x1),)

= K((AH(AS(,x1,),), S(,x1),(G!K!H)(AH(AS(,x1),),),)

are provable.

(h) If T= T′ and U= U′ are provable, where T, T′, U and U′ are terms, then U′ = U and the
result of substituting U′ for U at any particular occurrence in T= T′ are provable equations.

(i) The result of substituting any term for a particular numerical variable throughout a provable
equation is provable.

(j) Suppose that G, G′ are expressions of index J1, that (A) is an argument of index J not
containing the numerical variable X and that G(A0,)= G′(A0,) is provable. Also suppose
that, if we add

G(AX,)=G′(AX,)

to the axioms and restrict (i) so that it can never be applied to the numerical variable X, then

G(AS(,X,),)=G′(AS(,X),)

becomes a provable equation; in the hypothetical proof of this equation this rule (j) itself
may be used provided that a different variable is chosen to take the part of X.

Under these conditions G(AX,)= G′(AX, a provable equation.

(k) Suppose that G, G′, H are expressions of index J1, that (A) is an argument of index J not
containing the numerical variable X and that

G(A0,)=G′(A0,)andR(,H(AS(,X,),),S(,X),)= 0

are provable equations. Suppose also that, if we add

G(AH(AS(,X,),))=G′(AH(AS(,X,),))

to the axioms, and again restrict (i) so that it does not apply to X, then

G(AX,)=G′(AX,) (12. 1)

becomes a provable equation; in the hypothetical proof of (12.1) the rule (k)may be used if
a different variable takes the part of X.

Under these conditions (12.1) is a provable equation.
We have now completed the definition of a provable equation relative a given set of

axioms. Next we shall show how to obtain an ordinal logic from this calculus. The first step
is to set up a correspondence between some of the equations and number-theoretic theorems,
in other words to show how they can be interpreted as number-theoretic theorems.
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Let G be a primitive function constant of index 111. G describes a certain primitive
recursive function φ(m,n), determined by the condition that, for all natural numbers m,n,
the equation

G(,S(m)(,0,),S(n)(,0,),)= S(φ(m,n))(,0,)

is provable without using the axioms (a). Suppose also that H is an expression of index J.
Then to the equation

G(,x1,H(,x1,),)= 0

we make correspond the number-theoretic theorem which asserts that for each natural num-
ber m there is a natural number n such that φ(m,n)= 0. (The circumstance that there is
more than one equation to represent each number-theoretic theorem could be avoided by a
trivial but inconvenient modification of the calculus.)

Now let us suppose that some definite method is chosen for describing the sets of axioms
by means of positive integers, the null set of axioms being described by the integer 1. By
an argument used in §6 there is a W.F.F. 6 such that, if r the integer describing a set A
of axioms, then 6(r) is a logic formula enabling us to prove just those number-theoretic
theorems which are associated with equations provable with the above described calculus,
the axioms being those described by the number r.

I explain two ways in which the construction of the ordinal logic may be completed.
In the first method we make use of the theory of general recursive functions (Kleene [2]).

Let us consider all equations of the form

R(,S(m)(,0,),S(n)(,0,),)= S(p)(,0,) (12.2)

which are obtainable from the axioms by the use of rules (h), (i). It is a consequence of the
theorem of equivalence of λ-definable and general recursive functions (Kleene [3]) that, if
r(m,n) is any λ-definable function of two variables, then we can choose the axioms so that
(12.2) with p= r(m,n) is obtainable in this way for each pair of natural numbers m,n, and
no equation of the form

S(m)(,0,)= S(n)(,0,) (m 6= n) (12.3)

is obtainable. In particular, this is the case if r(m,n) is defined by the condition that

�(m,n) conv S(p) implies p= r(m,n),

r(0,n)= 1, all n> 0 r(0,0)= 2,

where � is an original formula. There is a method for obtaining the axioms given the
ordinal formula, and consequently a formula Rec such that, for any ordinal formula �,
Rec (�) conv m, where m is the integer describing the set of axioms corresponding to �.
Then the formula

3G2 → λw.6(Rec(w))

is an ordinal logic. Let us leave the proof of this aside for the present.
Our second ordinal logic is to be constructed by a method not unlike the one which

we used in constructing 3P. We begin by assigning ordinal formulae to all sets of axioms
satisfying certain conditions. For this purpose we again consider that part of the calculus
which is obtained by restricting “expressions” to be functional variables or R or S and
restricting the meaning of “term” accordingly; the new provable equations are given by
conditions (a), (h), (i), together with an extra condition (l).
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(l) The equation

R(,0, S(,x1,),)= 0

is provable.

We could design a machine which would obtain all equations of the form (12.2), with m 6= n,
provable in this sense, and all of the form (12.3), except that it would cease to obtain any more equa-
tions when it had once obtained one of the latter “contradictory” equations. From the description of
the machine we obtain a formula � such that

�(m,n) conv 2 if R( , S(m−1)(, 0,), S(n−1)(,0,),)= 0

is obtained by the machine,

�(m,n) conv 1 if R( , S(n−1)(0,), S(m−1)(,0,),)= 0

is obtained by the machine, and

�(m,m) conv 3 always.

The formula � is an effectively calculable function of the set of axioms, and therefore also of m:
consequently there is a formula M such that M(m) conv � when m describes the set of axioms.
Now let Cm be a formula such that, if b is the G.R. of a formula M(m), then Cm (b) conv m, but
otherwise Cm (b) conv 1. Let

3G3 → λwa.0(λn.6(Cm(Tn(w,n)),a).

Then 3G3(�,A) conv 2 if and only if � conv M(m), where m describes a set of axioms which,
taken with our calculus, suffices to prove the equation which is, roughly speaking, equivalent to
“A is dual”. To prove that 3G3 is an ordinal logic, it is sufficient to prove that the calculus with
the axioms described by m proves only true number-theoretic theorems when � is an ordinal for-
mula. This condition on m may also be expressed in this way. Let us put m� n if we can prove
R(,S(m)(,0,),S(n)(,0,))= 0 with (a),(h), (i), (l): the condition is that m� n is a well-ordering of the
natural numbers and that no contradictory equation (12.3) is provable with the same rules (a),(h),
(i), (l). Let us say that such a set of axioms is admissible. 3G3 is an ordinal logic if the calculus
leads to none but true number-theoretic theorems when an admissible set of axioms is used.

In the case of 3G2 , Rec (�) describes an admissible set of axioms whenever � is an ordinal
formula. 3G2 therefore is an ordinal logic if the calculus leads to correct results when admissible
axioms are used.

To prove that admissible axioms have the required property, I do not attempt to do more than
show how interpretations can be given to the equations of the calculus so that the rules of inference
(a)− (k) become intuitively valid methods of deduction, and so that the interpretation agrees with
our convention regarding number-theoretic theorems.

Each expression is the name of a function, which may be only partially defined. The expression
S corresponds simply to the successor function. If G is either R or a functional variable and has p+ 1
symbols in its index, then it corresponds to a function g of p natural numbers defined as follows. If

G(,S(r1)(,0,), S(r2)(,0,), . . . , S(rp)(,0,),)= S(l)(,0,)

is provable by the use of (a), (h), (i), (1) only, then g(r1,r2, . . . ,rp) has the value p. It may not be
defined for all arguments, but its value is always unique, for otherwise we could prove a “contra-
dictory” equation and M(m) would then not be an ordinal formula. The functions corresponding
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to the other expressions are essentially defined by (b)− (f ). For example, if g is the function
corresponding to G and g′ that corresponding to (0G), then

g′(r1,r2, . . . ,rp, l,m)= g(r1,r2, . . . ,rp,m, l).

The values of the functions are clearly unique (when defined at all) if given by one of (b)− (e).
The case (f ) is less obvious since the function defined appears also in the definiens. I do not treat
the case of (G�K), since this is the well-known definition by primitive recursion, but I shall show
that the values of the function corresponding to (G!K!H) are unique. Without loss of generality
we may suppose that (A) in (f ) is of index 1. We have then to show that, if h(m) is the function
corresponding to H and r(m,n) that corresponding to R, and k(u,v,w) is a given function and a a
given natural number, then the equations

l(0)= a, (α)

l(m+ 1)= k(h(m+ 1),m+ 1, l(h(m+ 1))) (β)

do not ever assign two different values for the function l(m). Consider those values of r for which
we obtain more than one value of l(r), and suppose that there is at least one such. Clearly 0 is
not one, for l(0) can be defined only by (a). Since the relation � is a well ordering, there is an
integer r0 such that r0 > 0, l(r0) is not unique, and if s 6= r0 and l(s) is not unique then r0� s. We
may put s= h(r0), for, if l(h(r0)) were unique, then l(r0), defined by (β), would be unique. But
r(h(r0),r0)= 0 i.e. s� r0. There is, therefore, no integer r for which we obtain more than one
value for the function l(r).

Our interpretation of expressions as functions gives us animmediate interpretation for equations
with no numerical variables. In general we interpret an equation with numerical variables as the
(infinite) conjunction of all equations obtainable by replacing the variables by numerals. With this
interpretation (h), (i) are seen to be valid methods of proof. In (j) the provability of

G(AS(,x1,),)=G′(AS(,x1,),)

when G(Ax1,)= G′(Ax1,) is assumed to be interpreted as meaning that the implication between
these equations holds for all substitutions of numerals for x1. To justify this, one should satisfy
oneself that these implications always hold when the hypothetical proof can be carried out. The
rule of procedure (j) is now seen to be simply mathematical induction. The rule (k) is a form
of transfinite induction. In proving the validity of (k) we may again suppose (A) is of index 1.
Let r(m,n),g(m),g1(m),h(n) be the functions corresponding respectively to R,G,G′,H. We shall
prove that, if g(0)= g′(0) and r (h(n),n)= 0 for each positive integer n and if g(n+ 1)= g′(n+ 1)
whenever g(h(n+ 1))= g′(h(n+ 1)), then g(n)= g′(n) for each natural number n. We consider the
class of natural numbers for which g(n)= g′(n) is not true. If the class is not void it has a positive
member n0 which precedes all other members in the well ordering�. But h(n0) is another member
of the class, for otherwise we should have

g(h(n0))= g′ (h(n0))

and therefore g(n0)= g′(n0), i.e. n0 would not be in the class. This implies n0� h(n0) contrary to
r(h(n0),n0)= 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact that � is an ordinal
formula. It suffices that � should satisfy conditions (a)− (e) (p. 163) for ordinal formulae, and in
place of (f ) satisfy (f ′).
(f ′) There is no formula T such that T(n) is convertible to a formula representing a positive

integer for each positive integer n, and such that �(T(n),n) conv 2, for each positive integer n for
which �(n,n) conv 3.
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The problem whether a formula satisfies conditions (a)− (e), (f ′) is number-theoretic. If we use
formulae satisfying these conditions instead of ordinal formulae with 3G2 or 3G3 , we have a non-
constructive logic with certain advantages over ordinal logics. The intuitive judgments that must
be made are all judgments of the truth of number theoretic-theorems. We have seen in §9 that the
connection of ordinal logics with the classical theory of ordinals is quite superficial. There seem to
be good reasons, therefore, for giving attention to ordinal formulae in this modified sense.

The ordinal logic 3G3 appears to be adequate for most purposes. It should, for instance, be
possible to carry out Gentzen’s proof of consistency of number theory, or the proof of the uniqueness
of the normal form of a well-formed formula (Church and Rosser [1]) with our calculus and a fairly
simple set of axioms. How far this is the case can, of course, only be determined by experiment.

One would prefer a non-constructive system of logic based on transfinite induction rather simpler
than the system which we have described. In particular, it would seem that it should be possible to
eliminate the necessity of stating explicitly the validity of definitions by primitive recursions, since
this principle itself can be shown to be valid by transfinite induction. It is possible to make such
modifications in the system, even in such a way that the resulting system is still complete, but no
real advantage is gained by doing so. The effect is always, so far as I know, to restrict the class of
formulae provable with a given set of axioms, so that we obtain no theorems but trivial restatements
of the axioms. We have therefore to compromise between simplicity and comprehensiveness.
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Index of definitions.

No attempt is being made to list heavy type formulae since their meanings are not always constant
throughout the paper. Abbreviations for definite well-formed formulae are listed alphabetically.

Page Page

Ai . . . . . . . . . . . . 176 Prod . . . . . . . . . 182
Al . . . . . . . . . . . . 169 Q . . . . . . . . . . . . 161
Bd . . . . . . . . . . . . 169 Rec . . . . . . . . . . . . 191
Ck . . . . . . . . . . . . 172 Rt . . . . . . . . . . . . 180
Cm . . . . . . . . . . . . 192 S . . . . . . . . . . . . 153
Comp . . . . . . . . . 178 Sum . . . . . . . . . . . . 169
Dt . . . . . . . . . . . . 155 Sq . . . . . . . . . . . . 181
E . . . . . . . . . . . . 175 Tn . . . . . . . . . . . . 172
form . . . . . . . . . 154 Ug . . . . . . . . . . . . 169
G . . . . . . . . . . . . 175 V . . . . . . . . . . . . 162
Gm . . . . . . . . . . . . 186 Vi . . . . . . . . . . . . 183
Gr . . . . . . . . . . . . 154 W . . . . . . . . . . . . 161
H . . . . . . . . . 165, 168 W ′ . . . . . . . . . . . . 161
H1 . . . . . . . . . . . . 168 X . . . . . . . . . . . . 160
Hf . . . . . . . . . . . . 169 Z . . . . . . . . . . . . 179
Hg . . . . . . . . . . . . 181
I . . . . . . . . . . . . 153 0 . . . . . . . . . . . . 162
Inf . . . . . . . . . . . . 169 δ . . . . . . . . . . . . 152
Jh . . . . . . . . . . . . 179 2 .. . . . . . . . . . . 183
K . . . . . . . . . . . . 175 3G1 . . . . . . . . . . . . 188
Lim . . . . . . . . . . . . 169 3G2 . . . . . . . . . . . . 191
Ls . . . . . . . . . . . . 168 3G3 . . . . . . . . . . . . 192
M . . . . . . . . . . . . 192 3H . . . . . . . . . . . . 175
MP . . . . . . . . . . . . 175 3P . . . . . . . . . . . . 175
Mg . . . . . . . . . . . . 180 $ .. . . . . . . . . . . 155
Nm . . . . . . . . . . . . 162 6 .. . . . . . . . . . . 191
Od . . . . . . . . . . . . 177 1, 2, 3 . . . . . . . . . 153
P . . . . . . . . . . . . 169 P . . . . . . . . . . . . 157

(The following refer to §§1–10 only.)

All-inclusive (logic formula) . . . . . . . . . . . . . . . . . . 176
Axiomatic (class or property) . . . . . . . . . . . . . . . . . . 155
Circle-free . . . . . . . . . . . . (Turing [1], 233)
Computable function . . . . . . . . . . . . . . . . . . 155
Completeness, of class of logics . . . . . . . . . . . . . . . . . . 161

of logic . . . . . . . . . . . . . . . . . . 162
of ordinal logic . . . . . . . . . . . . . . . . . . 176

Convertible . . . . . . . . . . . . . . . . . . 152
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Description number (D.N.) . . . . . . . . . . . . (Turing [1], 240)
Dual (W.F.F.) . . . . . . . . . . . . . . . . . . 157
Effectively calculable function . . . . . . . . . . . . . . . . . . 154
Enumerate (to) . . . . . . . . . . . . . . . . . . 154
Formally definable function . . . . . . . . . . . . . . . . . . 154
General recursive function . . . . . . . . . . . . . . . . . . 154
Gödel representation (G.R.) . . . . . . . . . . . . . . . . . . 154
Immediately convertible . . . . . . . . . . . . . . . . . . 152
lnvariance (of ordinal logics) . . . . . . . . . . . . . . . . . . 177

(see also 178, 179)
Limit system . . . . . . . . . . . . . . . . . . 170
Logic formula, logic . . . . . . . . . . . . . . . . . . 160
Normal form . . . . . . . . . . . . . . . 152, 154
Number-theoretic . . . . . . . . . . . . . . . . . . 156

(theorem or problem)
Oracle . . . . . . . . . . . . . . . . . . 159
Ordinal . . . . . . . . . . . . . . . . . . 163
Ordinal formula . . . . . . . . . . . . . . . . . . 163
C-K ordinal formula . . . . . . . . . . . . . . . . . . 164
Ordinal logic . . . . . . . . . . . . . . . . . . 170
Primitive recursive (function or relation) . . . . . . . . . 156, 172

(function or relation)
Recursion formula . . . . . . . . . . . . . . . . . . 172
Representation of ordinals, by ordinal formulae . . . . . . . . . 163

by C-K ordinal formulae . . . . . . 164
Standardized logic . . . . . . . . . . . . . . . . . . 160
Type . . . . . . . . . . . . . . . . . . 175
Validity of system . . . . . . . . . . . . . . . . . . 170
Well-formed formula (W.F.F.) . . . . . . . . . . . . . . . . . . 152
Well ordered series . . . . . . . . . . . . . . . . . . 163

Miscellaneous (in order of appearance).
→ . . . . . . . . . . . . . . . . . . 153
λ-definable function . . . . . . . . . . . . . . . . . . 154
G(x,y),D(x) . . . . . . . . . . . . . . . . . . 162
“<” between W.F. F . . . . . . . . . . . . . . . . . . 164
4A . . . . . . . . . . . . . . . . . . 165
Class C, systems W . . . . . . . . . . . . . . . . . . 170
C[A] (A a C-K ordinal formula) . . . . . . . . . . . . . . . . . . 171
System P . . . . . . . . . . . . (foot-note †) 172
ProofC[x0,y0] . . . . . . . . . . . . . . . . . . 174
Systems P� . . . . . . . . . . . . . . . . . . 175
Systems PA . . . . . . . . . . . . . . . . . . 183
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Examining the Work and Its Later Impact

Michael Rathjen looks at —

TURING’S ‘ORACLE’ IN PROOF THEORY

Turing’s paper on ordinal logics (Turing, 1939) greatly influenced research in proof theory in the
1960s, especially in Feferman’s (1964, 1968) and Schütte’s (1964, 1965) work on the limits of
predicativity. His idea to overcome Gödel’s incompleteness results by means of a hierarchy of
introspective theories is a very natural one.1 The essential difference between Turing’s ordinal log-
ics and the proof-theoretic hierarchies, though, is that the latter concern autonomous progressions
of theories. The most direct influence of Turing (1939) was on Feferman’s extension of it in his
paper (Feferman, 1962) on non-autonomous transfinite recursive progressions of axiomatic theo-
ries.2 Notably the idea of autonomous progressions holds a great deal of attraction and has seen
renewed interest in discussions on FOM (an automated e-mail list for discussing foundations of
mathematics) of the scope of predicative theories.3

It is perhaps less well-known that Turing’s oracle computations, which he introduced in the brief
Section 4 of Turing (1939), played a central role in another part of proof theory. The main passage
from Turing (1939) reads as follows:

“Let us suppose that we are supplied with some means of solving number-theoretic prob-
lems; a kind of oracle as it were ... With the help of the oracle we could form a new kind
of machine (call them o-machines), having as one of its processes that of solving a given
number-theoretic problem”.

Much later in the work of Goodman (1976), the oracle was going to be used in showing that the
axiom of choice can be eliminated from proofs of arithmetic statements in intuitionistic higher order
theories. By the same token, it can be put to use in proving that the axiom of dependent choices can
be removed from proofs of arithmetic statements in a number of intuitionistic set theories. This
paper is aimed at giving a brief presentation of the ideas leading to these results.

1. Realisability

In 1930, the nature of intuitionism was greatly clarified when Heyting published a formalisation
of intuitionistic predicate logic and intuitionistic arithmetic (later christened Heyting Arithmetic,
HA). A few years later in 1933, Gentzen and Gödel independently provided translations which
illuminated the relationship between classical and intuitionistic arithmetic.4 Their so-called negative
translations showed that, in a sense, Peano Arithmetic is contained in HA, and, moreover, that for

1 This is discussed in Sol Feferman’s contribution to this volume.
2 More recently, Nash seems to be concerned with just non-autonomous progressions of theories.
3 For example, Nik Weaver challenged the ‘traditional’ view on FOM and in his work Weaver (2005).
4 Apparently unbeknownst to Heyting, Gentzen, and Gödel, Kolmogorov (1925) had previously given a formalisation
(albeit an incomplete one) of intuitionistic logic and observed the translatability of classical into intuitionistic logic.
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formulas not containing∨ or ∃, provability in PA and HA amount to the same.5 One moral drawable
from this result is that (at least for the realm of arithmetic) rather than being a restriction, Brouwer’s
intuitionism turns out to be an extension of classical logic brought about by adding the constructive
∃ and ∨. Surprisingly, though none of this touched on the meaning of intuitionistic implication,
negation and ∀,6 which were still a matter of great concern to Dummett (1975, 2000) and thought
to be infelicitous by Bishop and Bridges (1985, p. 13). It appears that the nature of→,¬,∀ was not
viewed as problematic at all in the early days of intuitionism. The most common explanation of the
intuitionistic meaning of the logical connectives is the Brouwer–Heyting–Kolmogorov explanation
(BHK for short). Whereas BHK gives a valuable heuristics for the meaning of the connectives
in terms of constructions and is particularly good at explicating ∃ and ∨, on closer inspection it
provides at best an interpretation of→,¬,∀ by means of an as yet unexplained or primitive notion of
construction and at worst resolves into circularity.7 Thus, a deep contribution to the enlightenment
period of intuitionism, which started with Kolmogorov, is owed to Kleene (1945), who gave a
semantics or model for intuitionistic knowledge of a closed formula A of arithmetic in terms of
number codes that ‘realise’ A. In the case of an implication or universally quantified formula, these
realisers can be identified with (codes of) Turing machines. The definition of realisability is by
induction on the complexity of A:

A realiser of has the form
A atomic any e providing A is true.

A∧ B (a,b), where a is a realiser of A

and b is a realiser of B.
A→ B e, where e is the Gödel number of a Turing machine

Me such that Me halts with a realiser for B whenever a
realiser of A is run on Me.

¬ A any e providing there is no realiser for A.
A∨ B (0,a), where a is a realiser of A,

or (1,b), where b is a realiser of B

∀xB(x) e, where e is a Gödel number of a Turing machine Me

such that Me outputs a realiser for A(n̄) when run on n.
∃xB(x) (n,b), where b is a realiser of B(n̄).

Here (a,b) is some standard coding of pairs of natural numbers and n̄ is the standard numeral
corresponding to n.

There are now many different notions of realisability. They have become the most plentiful
source of models for intuitionistic theories, ranging from arithmetic to higher type systems and set
theories.

2. Heyting arithmetic in higher types

Hilbert in his paper Über das Unendliche from 1925 considered a hierarchy of functionals over the
natural numbers, not only of finite but also of transfinite type.8 The finite levels of this hierarchy

5 Kolmogorov already in 1925 drew from this the conclusion that, contrary to Brouwer’s views on the matter, a finitary
statement proved by classical means is intuitionistically true.
6 As witnessed by Gentzen’s negative translation that leaves these particles undisturbed.
7 Takeuti (1987, p.101) deprecated it as impredicative.
8 Intriguingly, Hilbert (1926) also defined dependent types, thereby introducing the germinal idea of Martin-Löf type the-
ory.
I owe this observation to Peter Hancock.
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where used by Gödel (1933) to give an interpretation (known as functional or Dialectica interpre-
tation) of first order arithmetic. The finite types are inductively defined by starting with the type o
of natural numbers and the rule that given types σ and τ , σ(τ) is a type, too. Here σ(τ) is the type
of functions from objects of type σ to objects of type τ . The objects of type 6= o are addressed as
functionals. HAω denotes the extension of HA by variables xσ ,yσ , . . . for each finite type σ as well
as constants for special functionals together with their defining axioms. Included among the latter
are recursor functionals Rσ for all finite types σ which allow one to define functionals by recursion
on N. Moreover, the schema of mathematical induction is extended to all formulae of the language.
It is also interesting to add choice principles for all type levels to HAω:

(ACστ ) ∀xσ ∃yτ A(xσ ,yτ ) → ∃f σ(τ) ∀xσ A(xσ , f σ(τ)(xσ )). (2.1)

Let ACFT := {ACστ | σ , τ types}.
Instead of HA one could also extend the classical theory PA to a version PAω with higher

type functionals. The theory PAω+ACFT is much stronger than PA. With aid of a realisability
interpretation, however, one can show that HAω+ACFT is not stronger than HA, but a much more
difficult question remains: Does HAω+ACFT prove more statements of arithmetic than HA? The
answer was given by Goodman.

Theorem 1. (Goodman, 1976, 1978). HAω+ACFT is conservative over HAω.

The proof used Goodman’s ‘theory of constructions”, and was rather long and involved
(Goodman, 1976). His second proof is more direct and also conceptually clearer (Goodman, 1978).
It combines the ideas of forcing and realisability. The technology was then used by Beeson (1979,
1985) and Gordeev (1988), and in more recent times by Ray-Ming Chen and the author of this note
to establish a plethora of conservativity results.

3. Realisability relative to an oracle

Realisability for HA is not co-extensive with deducibility in HA. Whilst all theorems of HA are
realisable, there are realisable sentences which have no proof in HA. In order to ensure conserva-
tivity results, one needs an abstract form of realisability that entails deducibility. The two steps of
Goodman’s second proof have been neatly separated by Beeson to construct a general methodol-
ogy for showing an intuitionistic theory T to be conservative over another theory S for arithmetic
statements. The idea is to find a sequence of interpretations:

T −−−→
realisability

SO−−−→
forcing

S

It is worth pointing out that the realisability interpretation of T in SO is very similar to Kleene’s
realisability by numbers as we have defined above, but instead of being based on ordinary Turing
machines it uses oracle Turing machines, where the oracle O is a fixed partial function from N to
{0,1}. Thus, as Beeson remarked, it could have been introduced by Kleene in 1945. In the course of
a computation the oracle may be consulted about the value of O(n) for some n. If O(n) is defined
it will return that value and the computation will continue, but if O(n) is not defined no response
will be coming forward and the computation will never come to a halt. The theory SO results from
S by adding a constant O to the language of S together with an axiom expressing that O is a partial
function from N to {0,1}, but no specifics about O. The idea of the second interpretation step is
that on account of O’s arbitrariness, forcing can be used in the background theory S to interpret the
constant by a generic partial function. Given an arithmetic statement A a partial function ψ can be
engineered so that in the forcing model realisability of A entails the truth of A. The final step, then,
is achieved by noticing that for arithmetic statements forceability (where the forcing conditions are
finite partial functions on N) and validity coincide.
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As an application of this technology one can show that Constructive Zermelo Fraenkel Set
Theory, CZF, augmented by the axiom of dependent choices, DC, is conservative over CZF with
respect to arithmetic sentences (cf. Gordeev (1988); Chen and Rathjen) and that the same obtains
for Intuitionistic Zermelo Fraenkel Set Theory, IZF, when separation is restricted to bounded for-
mulae (Chen and Rathjen). Another result obtainable in this way is that (full) IZF extended by the
Uniformity Principle

(UP) ∀x∃n ∈ Nϕ(x,n)→∃n ∈ N∀xϕ(x,n)

remains conservative over IZF with respect to arithmetic sentences (cf. Chen (2010); Chen and
Rathjen). UP roughly asserts that all (class) functions from the universe of sets into the set of
natural numbers are constant.

Since for classical ZF arithmetical conservativity of ZF+DC over ZF is an immediate con-
sequence of the fact that L is a model of ZF one might wonder why this method does not carry
over to the intuituitionistic setting. The answer is that albeit L can be defined in the same way in
the latter setting, the ordinals cannot be shown to be linearly ordered, rendering L a rather useless
construction.
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Philip Welch takes a set-theoretical view of —

TRUTH AND TURING

We should like to link Turing’s construction in Systems of logic based on ordinals on progressions
of theories, with some recent similar looking progressions of axiomatisations of truth sets. However,
we first set the scene by sketching the original paper. It is interesting for two fundamental reasons.
Firstly he introduces, in a rather understated fashion, the notion of a variant of his original Turing
Machine, which was to be the ‘o-machine’ for ‘oracle-machine.’ The latter is the well-known ver-
sion of the basic machine, the ‘a-machine’, introduced in his 1936 paper ‘On computable numbers’.
The a -machine is of course the standard Turing machine equipped with an oracle tape. In the paper,
Turing describes rather a program that is allowed input at a stage of the computation when a special
instruction is reached to ask for such input from the oracle tape. He envisaged then that in this way
‘non-computable’ functions could be introduced by calling for values. In the paper, after introducing
this idea, he then repeats the argument that the halting problem was undecidable by such machines.
He called this the ‘circularity question’: whether a particular TM M would eventually loop on a
particular input. [I shall use TM to abbreviate Turing machines (with or without oracle tapes).]

Just as the a -machine became the standard model for a computer (in Turing’s terms) so the
o -machine has become for us the standard model for relativised computability: the notion that a set
A⊆ N can be computed ‘relative to a set B⊆ N’ is that membership questions as to whether n ∈ A
or not can be ‘reduced’ to finitely many similar queries of the set B, where we imagine the oracle
tape of the machine to have the characteristic function of B written out as a series of 0’s and 1’s. We
write nowadays in this case ‘A≤T B’ for this relation. Sets A,B of numbers equivalent under≤T are
then declared to be in the same ‘Turing degree’ of incomputability. Thus, the whole theory of such
algorithmic degrees can be effected using this model.

This however only occupies a page and a half. This is not what the paper is about. It is only a
tool in his investigation of the second fundamental idea to emerge from the paper: the notion of an
‘ordinal progression’. One has to admire the sweep of the paper: merely eight years after Gödel’s
paper on the Incompleteness Phenomenon, and only three years after his own paper On Computable
Numbers he attempted to grapple with the incompleteness phenomena of formal systems by system-
atically extending theories T = T0 ⊆ T1 ⊆ ·· · by adding at each stage a consistency statement about
the preceding theory. The assumption is that our acceptance of a theory T somehow also impels us
to accept its consistency. Who would work in Peano Arithmetic (PA) if they believed Con(PA) was
false? And of course it is the consistency statement ‘Con(PA)’ that Gödel showed was a statement
unprovable in PA (assuming that it was itself consistent).

Martin Davis refers to the paper in his introduction in a volume of collected sources as ‘diffi-
cult’ and in several ways it is: the ideas are not immediately transparent; the notation sticks with
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that of Church’s λ-calculus (under whom Turing was at this time writing his Ph.D. thesis, which
contained this research); the underlying extensions take place along a system of notations, related
to one devised by Kleene. We now would use a system called ‘Kleene’s O’, but again the lan-
guage is different: instead of asking whether a certain integer n can be seen to be in O, Turing asks
whether a certain formula is an ‘ordinal formula’: the latter are formulae used to name (what will
be) constructive ordinals, and there is a list of seven conditions in terms of λ-conversion for them.
He also gives a definition of ‘C(hurch)–K(leene) ordinal formulae’, which contain in essence a defi-
nition (equivalent to that) ofO. Discussing this in today’s notation we have the following definition
(where suc(n) can be taken to be 2n and lim(n) to be 3n):

Definition 1. By simultaneous recursion we define ‘n ∈O’ and ‘n<O m’ for n,m ∈ N together
with an ordinal |n| for each n ∈O:

0 ∈O and |0| = 0;
If n ∈O, then suc(n) ∈O, n<O suc(n) and |suc(n)| = n+ 1;
If {e} is an index of a total recursive function, and ∀n({e}(n) <O {e}(n+ 1)) then lim(e) ∈O,
{e}(n) <O lim(e) for every n, and | lim(e)| = sup{|{e}(n)| : n ∈ N}.
If n<O m∧m<O p → n<O p.

By this means notations can be assigned to any constructive ordinal: that is any ordinal less than
the first non-recursive ordinal ωck

1 , with n<O m → |n|< |m| (but not conversely). However, the
relation ‘n ∈O’ is complex being necessarily 51

1. A totally ordered subset of Field(<O) is a path
and the restriction of <O to a path of the form {n : n<O m} allows us to see that the latter set is
actually recursively enumerable. Kleene’s O then gives us a constructive framework to which we
may attach objects, in this case theories.

Definition 2. A consistency progression based on a theory T is a primitive recursive map-
ping n → ϕn, where ϕn(v0) is a 61 formula that defines Tn and that PA proves: (i) T0 = T; (ii)
∀n
(
Tsuc(n) = Tn+Con(ϕn)

)
; (iii) Tlim(n) =

⋃
m T{n}(m).

Definition 3. A progressive (consistency) sequence is then the restriction of a consistency
progression to a path through O.

The existence of progressive sequences along paths has to be justified through the use of the
Recursion Theorem. With these tools, Turing proved a form of Completeness Theorem.

Theorem 1. (Turing’s Completeness Theorem) For any true 51 sentence of arithmetic, σ , there
is an a= a(σ ) ∈O with |a| = ω+ 1, so that Ta ` σ . The map σ � a(σ ) is given by a primitive
recursive function.

Thus, we may for any true σ find a path of length ω+ 1, T = T0,T1, . . . ,Tω+1 = Ta with the last
proving σ . At first glance it looks as if Turing’s theorem is giving us an insight into mathematical
knowledge, but this is illusory. There is a trick here: what one does is construct for any51 sentence
σ an extension Ta(σ ) proving σ with |a(σ )| = ω+ 1; then if σ is true we deduce that Ta(σ ) is
a consistency extension. The set O is, as we have remarked, a complex set of numbers, and the
argument draws on this complexity.

In the paper, Turing stated that he had tried to prove a theorem for statements at the level he
called that of ‘number theoretic problems’, which in effect are those expressible as52 sentences. He
expressed the hope that this might yet be proven. However, it was not until Feferman extended this
work much later in the fundamental paper (Feferman, 1962), which used the somewhat strengthened
Reflection Principles below, was it possible to prove a ‘Completeness Theorem’ in the above sense
for 52 sentences.

There is the possibility of adding other statements than just consistency alone to progressions.
The work of Feferman here has been far-reaching. Subsequent research of Beklemishev, Schmerl,
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Franzen and others have extended this, and no doubt will be commented on elsewhere in this
volume.

It is possible to formalise the notion that: ‘if T ` σ ,where σ ∈6n then σ is true’ and this
‘n-reflection’ may be abbreviated REFLn

T in that the theory T reflects the 6n truth of the mat-
ter. For T extending PA this can be expressed by a single 5n+1 formula. Full reflection for
all 6n formulae, REFLT is then the assertion of n-reflection for all n. Instead of consistency
sequences it is possible to talk of n-, or full-reflection progressions and so forth. These turn out
to have different properties from those of the simpler consistency statement studied by Turing,
and the extensive study of these has been developed by Feferman (1962), which, as mentioned,
showed how there were 52, and indeed full, Completeness Theorems concerning paths through
O, of the kind that Turing discussed. (See, e.g., the discussion of Kreisel (1972) on the subject
of such putative paths delivering mathematical knowledge.) There is also a broad literature on
the kinds of paths or progressions one have: autonomous progressions are those of a more self-
justifying flavour. We shall not go into these details, but refer the reader to the excellent surveys of
Franzen (2004a,b).

The notion of such progressions can be used in a number of arenas, with rather differing lev-
els of significance. I would like to highlight one current area of work: iterated reflection principles
in truth theories. In a truth theory one explicitly adds axioms concerning a truth predicate T say.
One typically takes a base language of interest (and it is almost always Peano Arithmetic PA, since
(i) mathematicians are very much interested in number theory and (ii) in PA the mechanisms of
coding effectively given languages by numbers or ‘Gödel codes’ is available. Let us call this lan-
guage L. To this is added a predicate symbol T and for numbers n that code sentences the intention
is that ‘T(n)’ is to be interpreted as the ‘sentence coded by n is true’. Truth theorists discuss the
interplay of notions of truth with various languages (for example we may extend L to LT and
allow n to range over codes of sentences not just of L but of LT ); we may also consider axioma-
tising truth: we add a selection of axioms, axiom schemes, deduction rules etc., to the axioms of
PA that express our beliefs about how the notion of ‘truth’ should behave. Depending on how
this is done, theories of various types and strengths emerge. (One such is specified in more detail
below.)

Just as Turing added consistency statements to make a progression of number theories, we may
do the same for truth theories. [For example, cf. the recent works done by Fujimoto (2011).] We
shall link this notion of progression with some current work in sequences of truth sets in a moment,
but we point out that although superficially looking like Turing’s progressions, the motivations are
admittedly rather different.

Let S0 = PA and S1 be an axiom set of the kind just roughly described in the languageL1 =df LT ,
using the new predicate symbol T0 =df T that is allowed into the induction scheme. S1 is now a
numerical theory, extending PA to which we can repeat this process: we add a new truth predicate
T1 so that T1(n) will be interpreted as saying that if n codes a sentence of L1, then that sentence
is true. Again extend the axiom set to include the induction scheme for properties in the language
with the new symbol T1. At the limit stage ω we obtain a language Lω ⊇

⋃
k∈NLk, and again take

the union of the previous axiom sets to obtain Sω. We then continue with adding a truth predicate
Tω in the next language Lω+1, and obtain thereafter Sω+1, . . . ,Sα , . . . etc. up to some ordinal λ say.
We ensure that the axioms of Sα are given by some 61-arithmetic formula ψα(v0) at each stage.
With some care this can be effected in a way that ensures, inductively, that the theories Sα are
arithmetically sound, that is assuming the axioms of S= S0 are true, every theorem of Sα is true
for α < λ.

As a simple example of how this can work, we define the axioms of Positive Friedman Sheard
which I shall call P for brevity. The first axiom set below is PAT , Peano Arithmetic extended into a
language LT containing T , the formulae of which are allowed into the induction scheme.
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1. PAT ;
2. ∀ atomic φ ∈ LPA : T(φ) coincides with truth and T(¬φ) with falsity;
3. ∀φ,ψ ∈ LT : T(φ ∧ψ)↔ (T(φ)∧T(ψ));
4. ∀φ,ψ ∈ LT : (T(¬φ)∨T(¬ψ))→ T(¬(φ ∧ψ));
5. ∀φ,ψ ∈ LT : (T(φ)∧ψ→ T(ψ);
6. ∀φ(x) ∈ LT : ∃xT(¬φ(x))→ T(¬∀xφ(x));
7. CONS: ∀φ ∈ LT : ¬(T(φ)∧T(¬φ));
8. (Deduction Schemes): From A (respectively T(A)) deduce T(A) (respectively A).

The axioms are dubbed positive because they only make claims as to which sentences are in
the extension of T . Note there is no direct clause concerning simple negations. It is important
for this axiomatisation that the Deduction Schemes are just that: schemes (the axiomatic ver-
sions would make the system inconsistent). ‘CONS’ asserts consistency. Tn(A) abbreviates n-fold
T(T(· · ·T(A) · · ·). The strength of this theory is known.

It is possible to iterate such theories: set A0 to be ‘0= 0’, and P0 to be P.

Definition 4. Set: (i) Pδ to be P∪ {Aβ | β < δ}; (ii) Aδ ≡ ∀φ ∈ LT [ProvPδ (φ)→ T(φ)].

As one can see by the subscripts to the predicate expressing provability in a recursively given
axiom system S, ProvS, we are considering extensions of the system P by adding iterations of
‘S-provability implying truth’. We have left vague what we mean by the ordinals there, or what the
statements Aα actually are. Also, although superficially resembling systems of axioms of increasing
strength in order to form the reflexive closure of a theory, we are not doing this so as to form, as
in that process, a theory encapsulating all of our commitments to the theory P. Rather we can use
it to axiomatise some truth sets, those that arise as various levels of a so-called Herzberger truth
sequence. Set H0 = ∅:

Hα+1 = {φ ∈ LT | 〈N,Hα〉 |= φ}. For limit λ : Hλ = {φ | ∃α < λ∀β ∈ (α,λ) φ ∈ Hα}.

Here, each Hα is the extension of the T predicate of each model in turn. Note the ‘liminf’ rule
for limit stages: ϕ is put in the λ’th set if from some point α onwards it is in. Such limit rules
have been used by a variety of philosophical logicians to build truth sets. Field (2008) constructs
a similar hierarchy 〈Fα〉. It would go too far into the theory to discuss these here, but essentially
these hierarchies run up to some ordinal ζ . The question has been asked: can we axiomatise in some
way the sets Hλ for λ≤ ζ? On general grounds a simple first order axiomatisation is ruled out, but
it might be possible to do so on an initial segment, or in some larger language. It turns out that for
λ < ζ some iterations of the theories P+Aλ axiomatise Hλ in that they become true first at Hλ and
no earlier Hµ. (And we may do the same for the Fλ.)

In view of the previous comments about building hierarchies of Reflection Principle theories Ta

for a ∈ N, where we thought of a as a notation, the reader may wonder as how one can precisely do
this, as the ‘α’ etc., above are not part of the language, (as they were not for Turing) but here they are
very much larger than the constructive ordinals, and were left vague. There are two possible answers
here: one can show that within the system of building up the H- or F-hierarchies for any α < ζ there
are certain sentences Bα that can themselves be construed as notations for those ordinals, and we
may use these as devices for referring indirectly to them, and incorporate these somehow into our
iterated truth theories. The other possibility is to extend Kleene’sO itself to a system Õ ⊃O. To do
this we extend the notion of ‘computability’: whereas O is a system of notation for the computable
ordinals; using ordinary Turing machines we now allow the system of notion to run transfinitely
and thus we have a new notion of ‘decidable’ corresponding to ‘having some fixed output, 0 or
1 from some point on’. The beauty of this is that we don’t even have to change Definition 1 at
all beyond replacing the word ‘recursive’ by ‘transfinitely computable’ in the above sense. The
Turing machines programs are not altered; the finite computations are just a special subclass of the
transfinite ones, and the resulting system subsumesO and then stretches out precisely to ζ . If we are
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willing to indulge in this use of ‘decidable’, we can use these members of Õ as notations applicable
for our theories Ta. Of course we no longer have the possibility of {a | a<Õ b} being c.e. in the
ordinary sense any more, for b ∈ Õ, but this set has to be ‘c.e.’ in this new, wider sense. This would
mean that any pursuit of analogies to the Turing/Feferman theorems would have to leave behind the
notion of theories being (ordinarily) computably axiomatised. However for the analysis of the truth
sets Hα , Fα , as explained by Horsten et al. (2012), through Turing-style iterations of the Positive
Friedman Sheard theory, these kind of notations look good enough.

Time will tell whether this kind of approach (or indeed the underlying truth set constructions)
will prove to be of any value.
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Alastair Abbott, Cristian Calude and Karl Svozil describe —

A QUANTUM RANDOM ORACLE1

1. Turing’s oracles

Turing’s oracles have been used for many years to successfully understand the world of the incom-
putable. Are these tools only pure mathematical constructs or are they more ‘real’? We will
show how quantum measurements performed in specifically designed environments can produce
incomputable sequences of bits, and discuss why they can hence be seen as physical Turing oracles.

An oracle is a black box capable of answering a set of questions, and an oracle Turing machine
is a Turing machine which can query an oracle. According to Turing (1939, p.173),

We shall not go any further into the nature of this oracle apart from saying that it cannot be a
machine.

In current terms, a Turing oracle is an incomputable set O of natural numbers or strings. The
oracle Turing machine can perform all of the usual operations of a Turing machine, and can also

1 We thank Mike Stay for illuminating discussions and Marcus Hutter for useful comments which improved the
commentary.
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query the oracle for an answer to finitely many questions of the form ‘is n in O?’. Because O is
incomputable, an oracle Turing machine is a hypercomputer: it performs tasks which no Turing
machine can do.

Turing studied oracles asserting the truth/falsity of ‘number-theoretic statements’, i.e., state-
ments of the form ‘θ(x) vanishes for infinitely many natural numbers’, where θ(x) is a primitive
recursive function. The class of number-theoretic statements includes, but does not coincide with,
the class of 51 statements, i.e., statements of the form ‘∀nP(n)’, where P(n) is a computable pred-
icate. Both Fermat’s Last Theorem and the Riemann Hypothesis are 51 statements, and hence
number-theoretic statements. Some number-theoretic statements are (trivially) computable, but
most of them are not, so they satisfy the Turing incomputability condition.

In cryptography, a ‘random oracle’ is a black box that responds to every query with a ‘randomly’
chosen response,2 picked uniformly from its output domain subject to the restriction that for any
fixed query the answer returned is the same every time it receives that query. In the framework
known as the ‘random oracle model’, random oracles are used in schemes where the system or
protocol is proved secure because an attacker is (seems to be) required to extract impossible infor-
mation from the oracle. This approach has known limits: e.g., in the works done by Canetti et al.
(1998), it is proved that there exist signature and encryption schemes that are secure in the random
oracle model, but for which any implementation of the random oracle results in insecure schemes.

Let O be a subset of the set of natural numbers and let x= x1x2 · · ·xn · · · be an infinite binary
sequence. The map x 7→ Ox defined by Ox = {i | xi = 1} is bijective, so we can equally speak about
oracles as infinite binary sequences or sets of natural numbers (or strings, by using, say, the quasi-
lexicographical bijective enumeration of strings over a finite alphabet). Incomputability is preserved
under this bijection. A query ‘is n in O?’ is equivalent to ‘is xn = 1?’.

The condition imposed in the ‘random oracle’ model requires that the oracle O is given by a
uniformly distributed binary sequence. Some ‘random oracles’ may be Turing oracles, others may
not. Champernowne’s sequence

01000110110000010100111001011101110000 . . .

is uniformly distributed, so it is a ‘random oracle’; this ‘random oracle’ is computable (primitive
recursive), so not a Turing oracle.

The set of codes of halting Turing machines (computably enumerable but not computable), as
well as the set of algorithmically random strings (immune, i.e., strongly incomputable) are examples
of Turing oracles (Calude, 2002).

Are Turing oracles ‘real’ or just pure theoretical mathematical notions?

2. Value indefiniteness and the Kochen–Specker Theorem

Computability is based on Turing’s model of a computing machine, a fundamentally determinis-
tic concept. Quantum mechanics, however, has confronted physicists with a world that appears
to behave randomly and is essentially non-deterministic. The failures of a deterministic view-
point to account for the predictions of quantum mechanics are exemplified by ‘no-go’ theorems,
which exclude the possibility of assigning ‘hidden variables’ that predict the outcome of quantum
measurements.

According to Bell’s Theorem, there is no hidden variable theory that gives the same statistical
predictions as quantum mechanics and satisfies value definiteness (i.e., all possible observables –

2 ‘True’ or ‘pure’ randomness does not exists from a mathematical point of view (Calude, 2002).
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including non-compatible ones – simultaneously have predefined values) and locality (i.e., two
space-like separated events cannot influence each other in any way).

Bell’s Theorem manifests itself in statistical inequalities – the class of which are called Bell-
type inequalities – which pose a bound on the possible correlation between outcomes of spatially
separated events subject to local realism, but of which quantum mechanics predicts violations. As
Bell’s Theorem deals with the statistical predictions of quantum mechanics, it might not be totally
unreasonable to ask whether there are ‘stronger’ no-go theorems, which can tell us something deeper
about the outcome of individual quantum measurements. The answer is affirmative.

A measurement context is a maximal set of pairwise co-measurable observables. For a mea-
surement context C = {A1,A2, . . . }, the values corresponding to outcomes of measurements of
observables A1,A2, . . . are v(A1,C), v(A2,C), . . . The Kochen–Specker Theorem states that for a
quantum mechanical system represented by a Hilbert space of dimension greater than two, it is
impossible for a hidden variable theory to fulfill the predictions of quantum mechanics and satisfy
the following two conditions: value definiteness and non-contextuality (i.e., the value corresponding
to the outcome of a measurement of an observable A, v(A), is independent of the other compatible
observables measured alongside it).

3. An example of a quantum random oracle

Consider a quantum random number generator that outputs bits produced by successive prepara-
tion and measurement of a state in which each outcome has probability one-half. By envisaging this
device running ad infinitum, we can consider the infinite sequence x it produces. If we assume a stan-
dard picture of quantum mechanics, i.e., a Copenhagen-like interpretation in which measurement
irreversibly alters the quantum state,3 that the experimenter has freedom in the choice of measure-
ment basis4 (the ‘free-will assumption’), and that we reject the notion of contextual hidden variables
and can hence, by the uniformity and symmetry of the Kochen–Specker construction conclude that
all observables are value indefinite, then some surprising conclusions about x can be made (Calude
and Svozil, 2008). If x were computable, then (in principle) it would be possible to predict the out-
come of each measurement in advance. This amounts to the existence of hidden variables for these
observables and hence is in contradiction with the value indefiniteness due to the Kochen–Specker
Theorem forbidding the existence of such a consistent, context-independent pre-assignment of mea-
surement outcomes. The free-will assumption guarantees that even for an unknown initial state
preparation the measurement basis in general is not pre-determined, thereby avoiding the possibil-
ity that only the measured observable together with a particular context had a definite pre-assigned
value (Hall, 2010). Put differently, if x were computable then the device would behave determinis-
tically (and hence classically) rather than quantum mechanically, and would contain infinitely many
computable correlations. Hence, we have to conclude that x must be incomputable. In fact, the
argument is readily seen to prove the stronger property of bi-immunity of x.5

Bi-immunity is the weakest possible notion of randomness: every binary sequence that is not
bi-immune contains an infinite computable subsequence, i.e., a computable subset. This fact allows
a computable martingale6 to succeed on this sequence, so the unpredictability of the sequence is
infinitely many times compromised (Kjos-Hanssen et al., 2010).

3 A ‘many-worlds’ interpretation is excluded.
4 In a truly deterministic theory – sometimes called superdeterminism – the experimenter might have the illusion of
exercising her independent free choice, but in reality she just obeys the rules of the theory.
5 A sequence x is bi-immune if only finitely many bits of x are computable. Every bi-immune sequence is incomputable,
but the converse is not true.
6 A martingale is a function M from binary strings to positive reals satisfying the following fairness condition: M(σ )=
(M(σ0)+M(σ1))/2. The martingale M succeeds on a sequence x if limsupn M(x � n)=∞.
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A sequence x is called Martin-Löf random if it is not contained in any effective null set.7 A
sequence x is called Kurtz random if it belongs to every computable open class of Lebesgue mea-
sure one. Every Omega number – or halting probability, cf. Calude (2002) – is Martin-Löf random
and every Martin-Löf random real is Kurtz random; the converse implications are not true. Open
question: Is the quantum random sequence previously described Kurtz random?

4. A quantum random number generator certified
by value indefiniteness

Can a quantum device generating a bi-immune sequence really be constructed? Many quantum ran-
dom number generators have been described and, while it is not readily clear which of the existing
devices do produce an incomputable sequence of bits, it is not difficult to conceive designs which
are explicitly certified by value indefiniteness to do so. One such device was proposed by Abbott
et al. (2010).

5. Hypercomputation via quantum random oracles

As noted before, an oracle Turing machine is a hypercomputer. In particular, a Turing machine
working with a bi-immune quantum random oracle (Abbott et al., 2010) is a hypercomputer.

The undecidability proof of the halting problem still applies to such machines; although they
determine whether particular Turing machines will halt on specific inputs, they cannot determine,
in general, if machines equivalent to themselves will halt. This fact creates a hierarchy of machines,
closely related to the arithmetical hierarchy in mathematical logic, each with a more powerful
halting oracle and an even harder halting problem.

Arguably the most important open question regarding quantum random oracles is: What is the
computational power of a Turing machine working with a bi-immune quantum random oracle? We
believe that such an oracle Turing machine cannot solve the halting problem, but it may solve a
weaker undecidable problem, for example, the lesser limited principle of omniscience which states
that, if the existential quantification of the conjunction of two decidable predicates is false, then one
of their separate existential quantifications is false (Bridges and Richman, 1987).
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Practical Forms of Type Theory
(J. Symbolic Logic, vol. 13 (1948), pp. 80–94)

Some background remarks1 from Robin Gandy’s —

PREFACE

The first draft of this paper (A Practical Form of type theory) shows that it was originally intended
as one of several. One aim, which became the main aim, is set out in The Reform of Mathematical
Notation. Turing wished to encourage ‘mathematicians-in-the-street’ to use notation and forms of
argument which would safeguard their work from ambiguity and inconsistency; but to do this with-
out forcing their work into the straitjacket of a particular logical system, or even requiring them to
have detailed knowledge of such a system. To the end of his life, he thought this aim a proper one
for a logician, and from time to time gave talks to mathematicians in which he would expound par-
ticular logical points. As a logician, however, he was interested in devising formal systems which
could act as bridges between the formal and the informal, and this motivated him to produce the
two systems set out in this paper. In Sl, besides describing the intended universe of the nested-type
system, he also explains a number of elementary logical points. He did not expect mathematicians
to use the system, but it looks as if he hoped that some mathematicians would read the paper, even
though ignorant of symbolic logic. In this, as in some of his other papers and lectures, he was overly
optimistic about the abilities of his intended audience. Not only is it not obvious that the rules and
axioms do correctly formalise the informal notions, but, more explicitly, a reader unfamiliar with
symbolic logic will not appreciate the vital distinction between mathematical and metamathemat-
ical statements. (When in 1948 Turing tried to explain the Deduction Theorem to me, I failed to
understand it because I did not distinguish between ‘B can be inferred from A’ and ‘A⊃ B’.)

Work on the nested-type theory, including the writing of A Practical Form of type theory had
mostly been done before the summer of 1945, when Turing moved from Hanslope Park to the
National Physical Laboratory. There, during the second half of 1945, he was fully occupied working
out his proposals for the ACE computer (The Collected Works, Mechanical Intelligence, pp. 1–86).
During 1946 he completed Practical Forms. I do not know whether he merely shelved or completely
abandoned further work on Reform and the project described in it.

The first two pages [of the first draft, A Practical Form of type theory] give a fuller account of
Turing’s motivation than does Practical Forms, so I quote them in full.

It is usual for mathematicians to pay-lip service to the theory of types, but they will not usu-
ally make any attempt to bring their mathematics into line with it. An occasional paradox
may perhaps be attributed to neglect of types, but no suggestions are made for the avoidance
of these paradoxes short of the expression of all mathematics in the formalism of Principia
Mathematica (say). In the present paper a system will be described which takes account of

1 These introductory remarks are extracted from the Preface to the 1948 Turing paper, pp. 179–185 of the Collected
Works of A. M. Turing: Mathematical Logic. See the Collected Works for further technical comments, and unpublished
material of Turing on the same topic.
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type theory, but at the same time follows very closely the normal mathematical outlook. The
type theory intrudes itself on the system only very slightly, and its effect may be summed
up in the form of one or two simple and natural cautions, which are easily carried over to
unformalised mathematics: this should, I hope, enable all such serious mathematics as is sup-
posedly based on the theory of types to be brought genuinely into line with it, at the cost of
very little additional trouble to mathematicians.
This paper will appear in two parts. The first part is written chiefly for the mathematician
who wishes to increase the rigour of his proofs along the lines indicated in the previous para-
graph, rather than for the logician. The emphasis will be on notation and meaning rather than
on axioms and rules of procedure; these will, however, be given for the sake of complete-
ness. The second part will be devoted to a little axiomatic development, and the justification
of the system in the case of the ‘finite universe’ i.e. the case where there is only a finite
number of individuals. It will establish a very complete connection between this system and
that of Church. This connection seems to be valuable because Church’s system has greater
theoretical simplicity than the proposed ‘practical system’, but is less convenient for the for-
malisation of proofs. Consequently, it will be natural to express proofs in the practical system,
but metamathematical results in terms of Church’s system.
The author wishes to repudiate any implication that may be suggested by this paper to the
effect that he believes the Russell philosophy of mathematics to be the truest. He does
believe, however, that it is the one which is most easily understood, and also that it describes
most closely the accepted form of present-day mathematical thinking. This paper is con-
cerned with giving accurate expression to that thinking. When that is done it will be easier to
see the limitations of the outlook which goes with this form of thinking.
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PRACTICAL FORMS OF TYPE THEORY

A. M. TURING

Russell’s theory of types,1 though probably not providing the soundest possible foundation for
mathematics, follows closely the outlook of most mathematicians. The present paper is an attempt
to present the theory of types in forms in which the types themselves only play a rather small part, as
they do in ordinary mathematical argument. Two logical systems are described (called the “nested-
type” and “concealed-type” systems). It is hoped that the ideas involved in these systems may help
mathematicians to observe type theory in proofs as well as in doctrine. It will not be necessary to
adopt a formal logical notation to do so.

1. The nested-type system for a finite universe

In this section the notation of the nested-type system will be explained. The explanation will be in
terms of the ‘finite universe,’ i.e. we start with a finite number of objects or ‘individuals’ and build
up other entities from these. We can then formulate certain rules which give valid results in this
case and hope that they will apply in the infinite case also. We cannot of course hope that all such
rules will work. We have to imagine that many rules of this kind have been tried, found wanting
and rejected, and that others are still in use. This rather unsatisfactory-sounding process is as good
an account as the author feels can be given of the way in which current mathematical procedure has
grown up. But whatever the truth of this may be the finite universe provides a first class ground on
which to describe the nested-type system, and we proceed accordingly.

Our finite universe has initially as its members the ‘individuals’ U1, · · · , UN . Although these
include all the individuals, they need not exhaust our stock-in-trade, for we can also bring in func-
tions taking the individuals as arguments and having them also as values. With our increased range
of commodities we can then go into business again and produce a still greater variety of objects,
and repeat without limit. There obviously arises a great variety of different kinds of functions which
may need to be distinguished, but for the present system we need only trouble ourselves with the
very broadest divisions, which will be called types. These divisions are described below.

The individuals U1, · · · ,UN form type 0.

The functions of individuals, taking individuals as values, together with the individuals them-
selves, form type 1.

The functions of arguments in type 1, taking values also in type 1, together with the members
of type 1, form type 2.

. . . . . .

The functions of arguments in type n, taking values also in type n, together with the members
of type n, form type n+ 1.

. . . . . .

It must be understood that by a “function” we mean the function itself and not merely one of its
values. To illustrate the point by analogy with functions of a real variable, we should say that “sin”

Received January 6, 1947.
1 A. N. Whitehead and Bertrand Russell, Principia mathematica, Cambridge, England, 1925.
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denotes a function, but that “sin 0.3” and “sin x” do not, although the latter is often used (incorrectly
in the author’s opinion) as if synonymous with “sin”.

It is convenient to require functions to be defined throughout the appropriate type, i.e. not to
permit such definitions as “f (0)= 0, but if x is different from 0 then f (x) is undefined.” In order to
cover such cases we shall set apart from the outset a particular individual U1, which we shall rename
“C ”, to be the value of a function in all cases where it would normally be regarded as undefined. So
far as possible we try to keep C on a par with the other individuals. We deviate from this principle
by adopting the convention that the value of a function is always C unless the function is of higher
type than the argument. (More strictly, if the function belongs to every type to which the argument
belongs.) We respect the principle by refraining from considering every expression containing “C”
to have the value C.

The functions and individuals together will be known as terms. With our finite universe it is
convenient to think of the functions as given by tables, consisting of two columns, in the first of
which appear all the necessary arguments, and opposite them in the second column the appropriate
values. Thus with N = 4 a typical member of type 1 would be represented by the table

U2 U3

U1 U1

U3 U1

U4 U4

(1)

It would be a convenience to have the table rearranged with the first column in natural order. In the
case of the above table (1) we should simply have to interchange the first two rows. Such a table
may be said to be in normal form. We can do this for all tables of type 1, and when we have done so
we are in a position to define a natural order for the members of type 1. With both tables in normal
form, the earlier table is to be the one which has the earlier value in the last row in which the two
tables differ. Thus the table (1) above precedes

U1 U1

U2 U4

U3 U3

U4 U4

(2)

since when (1) is put into normal form the two tables differ last in the third row, and there (1) has the
value U1 but (2) has the value U3. We shall also adopt the convention that the individuals in type 1
precede the tables. We may now continue the numbering of terms so as to include all type 1, simply
numbering them in the natural order just defined. The numbers will extend from 1 to N+NN . It
may be verified that the above tables (1) and (2) are U205 and U241 respectively. A similar process
may now be carried out for type 2 and then for type 3. In general when we are dealing with type n
we have already numbered the members of type n− 1. It is easily verified that those tables which
have already appeared as members of type n− 1 have the order which they had in that type, and
precede all the new tables. The order of any two tables (new or old) is that of the last pair of values
in which they differ.

Let us now introduce the notation (UV) to denote the result of looking up V in the table U; in
slightly different words it is the entry against V in the table U.2 In other words again it is the value

2 We shall use heavy type letters throughout to represent variables or undetermined formulas or tables. They occur
only in metamathematical discussions. All our statements are understood to be true whatever substitutions of formulas
(or tables, as the case may be) are made for the heavy type capital letters, and whatever substitutions of variables are
made for the small heavy type letters.
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of the function U for the argument V, and might therefore, in agreement with current mathematical
practice have been denoted by U(V). Our conventions require (UV) to be C in cases where the
table gives no information: these are just the cases where the lowest type to which U belongs does
not exceed the lowest for V. We may also introduce the notation U= V to denote the identity of
the terms U and V. It should be noticed that so long as U and V are tables known to belong to
some particular type n we can establish their identity by showing that they have the same values
throughout type n− 1 (this is known as the principle of extensionality and gives rise to the “axiom
of extensionality”). The principle fails for individuals, for if U and V are individuals then (UX) is
always identical with (VX), both being C, and yet U and V may well be different. The principle also
fails when the types of the terms are unknown, for we can never then be sure that we have examined
sufficient arguments for the functions. There may be some argument in a higher type than we have
yet considered for which the two functions differ.

The expression U= V which we have just introduced denotes a proposition, unlike (UV) which
was a term. Propositions may be thought of as having a value which is either true (T) or falsity (F).
By taking T and F to be individuals we could have arranged for the propositions to be included
amongst the terms, but we have not in fact done so.

There are several other ways of forming propositions. If P and Q are propositions then (∼P) is
a proposition whose value is opposite to that of P and (P⊃ Q) is one whose value is F if and only if
P is T and Q is F. We may read (∼P) as “not P” and (P⊃ Q) as “P implies Q.” If U is a term then
Dr U represents the proposition that U is in type r, i.e. it is T if and only if U is in type r.

We could of course introduce a great variety of further means for forming terms and proposi-
tions. We could for instance define (P & Q) as a proposition whose value is T if and only if both P
and Q are T. We shall be content however with comparatively few, namely those we have already
introduced, together with one further way of forming propositions and one of forming terms. These
cannot be described without bringing in the ideas of “variable” and “formula with variables.” Vari-
ables are of little importance except as parts of formulas. All we need say about them is that as a
matter of notation small italic letters with any number of primes will be used as variables. The letters
p, q, r, s, t, (possibly with primes) will be proposition variables and the others term variables. Small
heavy type letters may be used to stand for any variable, with an obvious convention concerning
the kind of variable. An example of a “formula with variables” is the expression x= U5. On sub-
stituting a term, e.g. U10 for the the term variable x it becomes a proposition. Similarly (U405x) is
a formula with variables: in this case substitution yields a term. In general a formula with variables
or more briefly a formula is an expression which yields a term or proposition on substituting terms
and propositions for the (free) term and proposition variables respectively. The formulas may be
called term formulas or proposition formulas according as they give rise to terms or propositions on
substitution. The word free in the definition should be ignored for the present.

We can now describe our remaining ways of forming terms and propositions. If P is a proposition
formula with only the one free term variable x and no proposition variables then ( ιx,r) P is a term
and (x, r) P is a proposition. Of these the term (

ιx,r)P has the value C unless there is one and only
one term U in type r for which the result Sx

UP | of substituting U for x in P is T: if there is a unique
U with this property then the value of ( ιx, r) P is that U. The value of the proposition (x,r) P is T
if and only if all the results of substitution, Sx

UP |, with U in type r, have the value T. We may read
(

ιx,r) P as “the x in type r such that P” and (x,r) P as “P, for all x in type r.”
Now consider the expression (x,3)(x = y). In it there occur the two variables x and y. If we

substitute a term, e.g. U6, for y we shall obtain a proposition, but if at the same time we substitute
U9 for x we shall obtain nonsense. We would like to excuse ourselves from making this second
substitution and admit (x,3)(x= y) to membership of the class of formulas. Our excuse is that
substitution should only be made for the free occurrences of a variable, and that the occurrences
of x in (x,3)(x= y) are not free but bound. We say that a variable u occurs bound in a formula if
the occurrence in question is in a part of form (

ιu,r)P or (u, r)P. Thus the first occurrence of x in
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(y, 1)[x= ( ιx, 0)(x= x)] is free and the others are bound. This expression is a proposition formula
according to our definition. To verify this, first note that x= x is a proposition formula with no free
variables other than x and that ( ιx, 0)(x= x) is therefore a term. Consequently U= ( ιx, 0)(x= x)
is a proposition, and a fortiori a proposition formula, for any term U. It has no free variables rather
than y (indeed it has none at all), and therefore (y, 1)[U= ( ιx, 0)(x= x)] must be a proposition for
any term U, i.e. (y, 1)[x= ( ιx,0)(x= x)] is a proposition formula.

It will now be seen that terms and propositions are just term formulas and proposition formulas
without free variables.

Free and bound variables are familiar in mathematics though they are seldom consciously rec-
ognized. A typical example of a bound variable is that of x in the integral

∫ 1
0 xdx; x occurs free

in the equation x(x− 1)= 0. A convenient method of distinguishing between bound and free vari-
ables is to make a substitution of a constant (of the appropriate kind) for the variable in question.
If nonsense results the variable is certainly bound: if sense results it is most probably free. Sense
may perhaps result from substitution for a bound variable if the result of the substitution and the
original expression are interpreted according to different conventions. The double suffix summation
convention of tensor theory provides an example of this. Using this convention the variable j in the
expression aijbjk is bound, but we can substitute 1 for j and obtain a perfectly sensible expression;
it is sensible because it is interpreted without applying the double suffix convention.

The outcome of our definition of “formulas” is that they will include terms, propositions, and
variables. Also if A and B are term formulas, P and Q proposition formulas, x a term variable,
and r a numeral representing a nonnegative integer, then (A B) and ( ιx,r)P are also term formulas
and (A= B), DrA, (∼P), (P⊃ Q), and (x,r)P are proposition formulas. Our use of the letter “r”
in these cases must not of course be confused with its use as a proposition variable. One further
method of constructing formulas is worth mentioning although it is possible to do without it, and
define it in terms already explained. This is “abstraction.” If A is a term formula then (λx,r)A is a
term formula of type r+ 1. It stands for the function whose value for the argument U in type r is
Sx

UA |, provided that Sx
UA | is in type r for every U in type r: if however there is a single argument

U in type r for which Sx
UA | is not in type r then (λx, r)A is C. We can define (λx,r)A in previously

explained terms as

(

ιy,r+ 1)(∼[(x, r)(yx = A)⊃ D0y])

where y is any variable not occurring free in A.
In the case of a finite universe the individuals U1, . . .UN form a part of the system. When dealing

with an infinite universe this does not seem to be necessary, but it is convenient to retain symbols
for three of them; these are U1 which is called C and which we have already mentioned, U2 which
is called T ′ and U3 which is called F′. . These last two may be regarded as unofficial representatives
of truth and falsity, looking after their interests amongst the terms: their official representatives are
T and F which are propositions. The chief use of T ′ and F′ is in connection with propositional
functions. If we wish to express ‘x is mortal’ we form a function M which is defined for individ-
uals (supposed to include mammals) and has the value T ′ for mortal arguments, F′ for immortal
arguments. Then “x is mortal” is written as Mx= T ′.

At this point we should pause and consider what we have done. We have defined a class of
expressions which we have called term-formulas and proposition-formulas, and which roughly cor-
respond to the terms and propositions of mathematics. These formulas are given interpretations in
the finite universe in terms of individuals and tables. Each term formula without free variables has
an interpretation as a particular individual or table, and each proposition formula has an interpre-
tation which is truth or falsity. We are able to determine whether a proposition formula without
free variables is true by working out its interpretation, although this will be a very lengthy business
unless the formula is very simple and N very small. The work involved in establishing the truth of
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formulas can be greatly reduced by the use of various rules, e.g. that if two formulas P, Q are true
then ∼(P⊃∼Q) is true. A process of application of such rules may be allowed to oust the process
of working out the interpretation.

Since the majority of the rules involved do not make any reference to the number N it is easy
to forget the finite universe, and to allow the various rules to become reflex action. Eventually we
break off almost all connection with the finite universe picture: in particular we repudiate such
propositions as

(x, r)(y, r)((x 6= y)⊃ (( fx) 6= ( fy)))⊃ (x, r)(∃y,r)(( fy)= x)

which are especially connected with such a picture. Finally we even repudiate the picture more
violently by adopting an “axiom of infinity.”

This, in my opinion, is a very idealised but essentially correct account of how the present math-
ematical argument-form has grown up. The last step or two may appear very lame, but I think this
cannot be helped: I think that these last steps are not really sound.

One set of rules which can replace the finite universe picture is given below in §2 (rules I–X,
XIn).

Abbreviations. At this point we are obliged to introduce a few conventions which permit us to
abbreviate our formulas. The unabbreviated formulas would be disagreeably cumbrous.

(a) We may introduce abbreviations by means of the arrow: a formula standing to the left of an
arrow is understood to be an abbreviation of that on the right of it. If heavy type letters appear
in these expressions it is understood that the formula on the left is an abbreviation of that on
the right for any meaningful substitutions of formulas for the heavy-type letters. With these
conventions we introduce the abbreviations:

(P & Q)→ (∼(P⊃ (∼Q)))

(P ∨ Q)→ ((∼P)⊃ Q)

(P≡ Q)→ ((P⊃ Q) & (Q⊃ P))

(∃x, r)P→ (∼((x, r)(∼P)))

(∃!x, r)P→ ((∃x, r)P & (x,r)(y,r)(P 6= Sx
yP| ⊃ x= y))

(A 6= B)→ (∼(A= B))

T→ (x, 0)x= x

F→ (∼T)

The variable y must not be free in P.
(b) formulas of form A & B &. . .& P we consider not to need any more brackets, since they have

the same meaning in whatever manner the brackets are put in. Strictly speaking this equivalence
only applies in virtue of rule IV below, and the reader may prefer to adopt some definite con-
vention of his own as to the way the missing brackets are to be supplied. Similar considerations
apply to formulas of form A ∨ B ∨ . . .∨ P.

(c) We shall often leave brackets out in cases where it is quite obvious how they should be replaced.
Excessive bracketing often makes the formulas difficult to read. It is not thought worth while to
introduce definite conventions in the present paper: we rely on common sense instead. Likewise
we permit alterations in the form of a pair of brackets. These common sense conventions have
already been applied to some extent.
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2. Formal account of the nested-type system

We now describe the practical system in the usual formal manner, specifying what series of symbols
are to be regarded as term-formulas, proposition formulas, variables, provable formulas, etc. We do
not follow this aspect very far in the present paper, believing that mathematics is suffering more
from lack of sound notation than from lack of rules of procedure.

Term variables. The symbols a,b, . . . , n,o,u,v,w,x,y,z,a′,b′, . . . are term variables.

Proposition variables. The symbols p,q,r,s, t,p,′ q′, . . . are proposition variables.

Term formulas, proposition formulas, and formulas. Term variables are term-formulas. Terms
(UH

1 ,UH
2 , . . .) are term formulas. Prosposition variables are proposition formulas. If A and B

are term formulas and P and Q are proposition formulas and x is a term-variable and r a
numeral representing a non-negative integer, then (AB) and ( ιx,r)P are term formulas and
(A= B),(∼P), (P⊃ Q),DrA, (x,r)P are proposition formulas. Term formulas and proposition
formulas are formulas. No expression is a term variables, term formula, proposition variable,
proposition formula, or formula unless compelled to be so by the foregoing.

Free and bound occurrences of variables. Each occurrence of a variable in a formula is either
a bound or a free occurrence, but cannot be both. Occurrences of proposition variables are
always free. The occurrence of the term variable X in the formula X is free. In the formulas
(AB),( ιX,r)P,(A= B),(∼P),(P⊃ Q),DrA,(X, r)P the occurrences of the various variables are
free or bound according as they were free or bound in their corresponding occurrences in A,B,P,
or Q except that the occurrences of X in (X,r)P,( ιX, r)P are bound.

It may be observed that all four possible combinations concerning the presence or absence
of a variable bound or free in a formula can occur. Examples are T ,′ x,( ιx,0)(x= x),x= ( ιx,0)
(x= x).

Formulas and tautological formulas of the propositional calculus. The formulas of the proposi-
tional calculus are defined to be the least class of formulas containing the propositional variables,
and containing (P⊃ Q) and (∼P) whenever it contains P and Q. Tautological formulas of the
propositional calculus are those which always give the value T if a substitution of values T
or F is made for the variables, and the result then evaluated as follows: T⊃ T is F, T⊃ F is
F, F⊃ T is T, F⊃ F is T,∼T is F,∼F is T.

The rules of procedure (provable formulas). We word our rules of procedure in the form of a
definition of the “provable formulas”. Throughout, r is any numeral representing a non-negative
integer.

Rule I (Change of bound variables). The formulas

(x,r)P≡ (y,r) Sx
yP|

( ιX,r)P≡ ( ιy,r)Sx
yP|

are provable if P is a proposition formula in which y does not occur free, and x is not free at
a place where y would be bound.
Rule II (Substitution). If P is provable, then Sx

AP| and Sq
QP| are provable, where A and Q are

respectively term and proposition formulas, and the bound variables of P are distinct both
from x and q and from the free variables of A and of Q.
Rule III (Quantifiers). If either of the two formulas H⊃ (Drx⊃ P),H⊃ (x,r)P is provable,
and x is not free in H, then the other is also provable.
Rule IV (Propositional calculus). Any tautologous formula of the propositional calculus is
provable.
Rule V (Modus ponens). If the formulas P⊃ Q and P are both provable then Q is provable.
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Rule VI (Descriptions). If P is a proposition formula in which x does not occur bound, then
the formulas

(∃!x, r)P⊃ Sx
( ιx, r)PP|

∼(∃!x,r) P⊃ ( ιx, r)P= C

Dr( ιx, r)P

are provable.
Rule VII. The formula

(x, r)DrA⊃ (∃y, r+ 1)(∼D0y & (x, r)yx= A)

is provable provided y does not appear free in the term formula A.
Rule VIII (Axioms). For any numeral r representing a non-negative integer the following
formulas numbered Al to C2 are provable:

Al. C 6= T ′ & C 6= F′ & T ′ 6= F′

A2. D0C & D0T ′ & D0F′

A3. [D0x ∨ (Dr+1x &∼Dry)]⊃ xy= C

A4. Drx⊃ Dr+1x

A5. Dr+1x⊃ Drxy

B1. x= x

B2. (y= x & y = z)⊃ x= z

B3. x= y⊃ (zx = zy & xz= yz)

C1. (x, r)fx= gx⊃ [f = g ∨ D0f ∨ D0g ∨ ∼Dr+1f ∨∼Dr+1g]

(Axiom of extensionality.)

C2. (∃i, r + 2)(f ,r+ 1)((∃x, r)fx= T ′)⊃ f (if )= T ′]

(Axiom of choice.)
Rule IX (Axiom of infinity). The following formula is provable:

C3. (∃h, 1)(∃v,0)(x, 0)(y, 0)[(hx= hy⊃ x= y) & v 6= hx]
If we have a finite universe with N individuals instead of an infinite one we must replace rule
IX by:

Rule IXN . The following, Dl and D2, are provable:

Dl. D0x≡ (x= UH
1 ∨ . . .∨ UH

N )

D2. UH
n 6= UH

m

where m and n are different and not greater than N.

We may make a number of remarks about these axioms and rules:

(1) Axioms D1, D2 are rather stronger than is really necessary. Instead we could use the one axiom

D0x⊃ (x= UH
1 ∨ . . .∨ x= UH

N )

which would be more nearly analogous to C3, but would admit the possibility of there being
fewer than N individuals.

(2) The second formula under rule VI might have been omitted. If this had been done it would have
been necessary to define a new description operator in terms of the old one in such a way that
the second formula would apply for the new operator.
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(3) It may be wondered why rules VI and VII do not appear under the axioms, yx= T ′ being written
for P and yx for A. If there had been any more rules of this kind they could have been replaced
by axioms, by making similar substitutions, but these axioms would only be equivalent to the
corresponding rule in the presence of rules VI, VII. It will now be clear why rules VI, VII
cannot themselves be written as axioms.

(4) A term Um and its corresponding formula UH
m are not regarded as identical as they were in §1.

We have introduced a distinction rather similar to the distinction between the real and complex
numbers π . This distinction will be of value in any attempt to provide a formal justification of
the system in terms of tables: it would then be very embarrassing to have the same notation
both for a formula and its interpretation. The author has carried through such a justification in
detail, together with a proof that the system is complete for the finite universe. This provides
a good check that no essential axioms have been omitted. The theorem mentioned in the next
section provides a similar check.

(5) Although rule III does not permit H⊃ (Drx⊃ P) to be deduced directly from H ⊃ (x,r)P if x
is free in H, the deduction may be made indirectly.

(6) The axiom of choice is optional, i.e. we may drop this axiom and still retain a system adequate
for the greater part of mathematics.

(7) We shall not carry out any proofs in this paper, but the following provable formulas are of
interest:

x= y⊃ (Drx⊃ Dry)

(x,r)(P≡ Q)⊃ ( ιx,r) P= ( ιx, r)Q

(x, r)A= B⊃ (λx, r)A= (λx,r) B

(x, r)DrA⊃ (x,r)[((λx,r)A)x= A]

Dr+1(λx,r) A

(f ,r)(g, r)[(x, r+ 1)(xf = xg)⊃ f = g]

Dr+1x≡ [(y,r+ 1)(Dry &(Dry ∨ xy= C)} & Dr+2x]

3. Equivalence with Church’s system

The nested-type system described above may be proved equivalent, in a certain sense, to Church’s
simplified theory of types.3 The proof is long and tedious, and would not justify publication, but it
may be of interest to give an exact statement of the equivalence theorem. The form of “equivalence”
used has a certain interest in itself.

Definition. A logical system 1 will be said to be equivalent to the logical system 2 if to each
proposition-like formula A of 1 we can make correspond a proposition-like formula A(1,2) of 2,
and conversely to each proposition-like formula P of 2 we can make correspond a proposition-like
formula P(2,1) of 1, in such a way that

(i) If A is provable in 1 then A(1,2) is provable in 2.
(ii) If P is provable in 2 then P(2,1) is provable in 1.

(iii) If A is a proposition-like formula of 1 then (A(1,2))(2,1)
≡ A is provable in 1.

3 Alonzo Church, A formulation of the simple theory of types, this JOURNAL, vol. 5 (1940), pp. 56–68.
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(iv) If P is a proposition-like formula of 2 then (P(2,1))(1,2)
≡ P is provable in 2.

(v) If A and B are proposition-like formulas of 1 then we can prove (A≡ B)(1,2)
≡ (A(1,2)

≡

B(1,2)) in 2.
(vi) If P and Q are proposition-like formulas of 2 then we can prove (P≡ Q)(2,1)

≡ (P(2,1)
≡

Q(2,1)) in 1.
The formula A(1,2) must be an effectively calculable function of A and P(2,1) of P.

It is understood that for each system there is defined a special kind of formulas called
‘proposition-like formulas’; that every provable formula is necessarily proposition-like, and that
it is a comparatively trivial matter to determine whether a formula is proposition-like or not. Specif-
ically we may say that the statement “A is a proposition-like formula” should be equivalent to some
statement of the form “ϕ(n)= 0” where n is the Gödel representation of A and ϕ is some primitive
recursive function. It is also understood that both systems “include the propositional calculus”: this
is required in connection with the logical equivalence signs in (iii) to (vi).

We are justified in describing this relation as the equivalence of the two systems, for the relation
is transitive, symmetric, and reflexive, as I shall now show. The symmetry of the relation follows at
once from the fact that interchange of systems 1 and 2 simply interchanges conditions (i) and (ii),
(iii) and (iv), (v) and (vi). Reflexiveness is proved by taking A(1,1) to be A. Transitivity is not quite
so easy. We shall have to bring in a third system 3. We will define A(1,3) to be (A(1,2))(2,3) and A(3,1)

to be (A(3,2))(2,1). We assume conditions (i) to (vi) to hold for the pairs 1, 2 and 2, 3 and attempt to
prove them for the pair 1,3. Because of the symmetry it is sufficient to prove (i),(iii),(v). To prove
(i) we must prove (A(1,2))(2,3) in 3 assuming A provable in 1. Now by (i) for the pair 1,2 we see that
A(1,2) is provable in 2, and then by (i) for the pair 2,3 we get (A(1,2))(2,3) in 3. To prove (iii) we must
prove (((A(1,2))(2,3))(3,2))(2,1)

≡ A in 1.
Using (iii) for the pair 2,3 gives us ((A(1,2))(2,3))(3,2)

≡ A(1,2) (in 2), whence by (ii) for the pair
1,2 we have

(((A(1,2))(2,3))(3,2)
≡ A(1,2))(2,1)

Also by (vi) for the pair 1,2 we have

(((A(1,2))(2,3))(3,2)
≡ A(1,2))(2,1)

≡ ((((A(1,2))(2,3))(3,2))(2,1)
≡ (A(1,2))(2,1))

and by (iii) for the pair 1,2 we have

(A(1,2))(2,1)
≡ A

Combining these last three results by the rules of the propositional calculus we obtain

(((A(1,2))(2,3))(3,2))(2,1)
≡ A

as required.
To prove (v) for the pair 1,3 we must prove

((A≡ B)(1,2))(2,3)
≡ ((A(1,2))(2,3)

≡ (B(1,2))(2,3))

By an application of (v) to the pair 1,2 followed by an application of (i) to the pair 2,3 we get

((A≡ B)(1,2)
≡ (A(1,2)

≡ B(1,2)))(2,3)

and by an application of (v) to the pair 2,3 we have

((A≡ B)(1,2)
≡ (A(1,2)

≡ B(1,2)))(2,3)
≡ (((A≡ B)(1,2))(2,3)

≡ (A(1,2)
≡ B(1,2))(2,3))
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Combining these by the propositional calculus gives

((A≡ B)(1,2))(2,3)
≡ (A(1,2)

≡ B(1,2))(2,3)

Condition (v) applied to 2,3 also gives

(A(1,2)
≡ B(1,2))(2,3)

≡ ((A(1,2))(2,3)
≡ (B(1,2))(2,3))

from which we now obtain the required result.
Our definition of the equivalence of two systems could be summed up by saying that they are

equivalent if we can translate from either system to the other in such a way that provable propo-
sitions translate into provable propositions again, and so that a double translation gives rise to a
proposition equivalent to the original. This explanation ignores the last two conditions (v) and (vi),
which are rather too tenuous for such rough handling.

The equivalence theorem then states that the nested-type system is equivalent to Church’s sys-
tem, if the proposition-like formulas of the nested-type system are taken to be the proposition
formulas without free variables, and the proposition-like formulas of Church’s system are those
of type o without free variables.

4. Relaxation of type notation

The form of type theory which we have described is one in which the types themselves do not
intrude very much. Even so they do still intrude to an appreciable extent, and it would be desirable
to see how much further they can be relegated to the background. A possible way of doing so will
be described in this section.

We could sum up the effect of type theory as it appears in this system by saying that we give
no meaning to the expressions ‘for all x, A,’ ‘there exists an x, such that A,’ ‘the x, such that
A,’ ‘the function whose value for argument x is A’ (usually expressed symbolically as (x)A,
(∃x)A,( ιx)A, (λx)A, respectively). Instead we give meaning to the expressions
(x,r)A, (∃x,r)A,( ιx,r)A,(λx,r)A. Nevertheless in a large class of cases we can assign meanings to
(x) A, (∃x)A,( ιx)A, (λx)A in a satisfactory manner. A typical case is that of a formula of the form
( ιx)P where P is such that we can prove P⊃ D10x, say. In this case for any integers r,s = 10 we can
prove ( ιx,r)P= ( ιx,s)P and it is therefore natural to stipulate that ( ιx)P shall stand for the common
value of ( ιx, 10)P,( ιx,11)P, · · · . We may say more generally that if ( ιx,r0)P= (

ιx,r)P is provable
for all r = r0 then ( ιx)P shall be said to be interpretable and to have the interpretation ( ιx,r0) P.
This is of course still only the beginning of a definition of “the interpretation of a formula with
some type bounds omitted.” In order to give the complete definition we must deal properly with
formulas having free variables: results such as P⊃ D10x (quoted above) are not normally provable
if P has free variables other than x. On this account we introduce the idea of “interpretability under
hypotheses”; the hypotheses involved are usually of the form Drx. The complete definition is as
follows:

All variables and C,T ′,F′ provide their own interpretations under any hypotheses.

If A, B, P, Q have interpretations A′,B′,P′,Q′ under certain hypotheses, then (AB), (A=
B), DrA,(P⊃ Q), (∼P) have the interpretations (A′B′),(A′ = B′), DrA′, (P′ ⊃ Q′),(∼P′)
respectively under the same hypotheses.

If, for each r = r0, P has the interpretation Pr under hypothesis H & Drx where H does not
contain x free and we can prove

(A) H⊃ ( ιx, r0)Pr0 = (

ιx,r)Pr

then ( ιx)P has the interpretation ( ιx, r0)Pr0 under hypothesis H. If instead of (A) we can prove

H⊃ [(x,r0)Pr0 ≡ (x, r)Pr]
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then (x)P has the interpretation (x, r0)P under H.

No formula has any interpretation unless compelled to by the foregoing.

It may be observed that every formula of the nested-type system is interpretable and provides
its own interpretation. Also that if H⊃ K is provable and a formula has a certain interpretation
under K then it has the same interpretation under H.

If P has the interpretation Pr under H & Drx and we wish to show either that ( ιx)P has the
interpretation ( ιx,r0)Pr0 , or that (∃x)P has the interpretation (∃x, r0)Pr0 under H, it is sufficient
to prove Pr ⊃ Dr0x(r = r0).

It will be seen that this definition does not provide an effective means of determining whether
or not an expression is interpretable. This need not be considered a serious drawback, as we seldom
need to establish that an expression is not interpretable.

The most natural cases where we can apply the above definitions are those of (x)(A⊃ B), (∃x)
(A & B), ( ιx)(A & B) where A⊃ Dr0x is provable for some r0. It is fairly easy to remember which
are the most important expressions A of this kind: e.g. in almost any formalisation we shall have “ ‘x
is a real number’⊃ Dr0x” with r0 = 10 say; this fact would be remembered in the form “the class of
real numbers is all right.” It is not so easy to remember the appropriate numbers r0, but it is hardly
necessary to do so if the notations (x)A etc. are adhered to throughout. When A is such that for
some r0 we can prove A⊃ Dr0x I shall call the class of x for which A is true a “noun-class.” “There
is a very close connection between the part played by the formulas A in our system and nouns in
ordinary language; so much so that one might say that type theory had been instinctively obeyed
for thousands of years before its discovery by Russell. This connection may be seen by translating
(x)(A⊃ B), (∃x) (A & B), ( ιx) (A & B) roughly as “All A satisfy B,” “There exists an A satisfying
B” and “The A which satisfies B.” In each case A is translated in the form of a noun. It seems that
the necessity to use nouns prevents us automatically from committing type fallacies in common
speech. We can probably only break down this ‘safety device’ by using nouns such as ‘thing’ or
‘object’ with the intended meaning ‘anything whatever.’ In the case of the Russell paradox (‘class
of all classes which are not members of themselves’) we use the word ‘class’ in very much that way.
We use it to mean ‘class of anythings whatever.’

There are various ways in which we might make use of the idea of interpretable formulas to
transform what we have called the ‘nested type system’ into something rather more closely anal-
ogous to common mathematical practice. One possibility is simply to regard the formulas without
types as abbreviations of the appropriate formulas of the nested-type system, such formulas only
being used when the appropriate metamathematical result justifying the interpretation has been
established. This does not seem to be really satisfactory because of the frequent need to prove such
metamathematical results. Alternatively we may set up some new symbolic system in which the for-
mulas form a considerably wider class than those of the nested-type system, and are all interpretable
as defined above. The author has investigated two such systems. In one of them the expression.
(x,A)P had the meaning which we have assigned to (x)(Ax= T ′ ⊃ P). This is always interpretable
if A is interpretable and without free variables. This scheme leads to rather heavy formulas in the
elementary stages, though it may have advantages when more advanced branches of mathematics
are reached. The second system appears rather more hopeful, and will now be described briefly. It
may be called the “concealed type” system.

The formulas in the concealed type system will be described as “admissible formulas” to dis-
tinguish them from the formulas of the nested-type system. The admissible formulas will in fact be
included amongst the interpretable formulas associated with the nested-type system. There will be
admissible term formulas (ATF) and admissible proposition formulas (APF). We define APF, ATF,
and provable formula by a simultaneous induction. Consequently there is no rule for determining
whether an expression is an admissible formula or not: this is not usual in logical systems, but there
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seems to be no good reason for a positive taboo on such an arrangement. We now give the inductive
definitions.

Every term variable is an ATF and every proposition variable is an APF.

The symbols E,C,T ′,F′ are ATF.

If A, B, F are ATF and P, Q, R, S are APF, and P⊃ Ax= T′,∼Q⊃ Ax= T′ are provable for-
mulas then (∃x)P,(x)Q, (B= F),(R⊃ S),∼R are APF, and ( ιx)P, (BF) are ATF. The variable
x must not occur free in A.

Free and bound occurrences of variables are defined as in the nested-type system.

The symbol E corresponds to (λx,0)T ′ of the nested type system. Its main purpose is to take
the place of D0 and indirectly to replace the other Dr. For any formula A we can prove
((λx,0)T ′)A≡ D0A in the nested-type system.

If A and B are ATF not containing x, y, or z free then the two expressions below are ATF, viz.

( ιy)(x)[(yx ∨ yx = C) &∼Ey & (yx≡ (Ax ∨ Bx))]

( ιy)(x)[(yx ∨ yx= C) &∼Ey & (yx≡ (z){(Bz⊃ A(xz) & (Bz⊃ xz= C)}]

They may be abbreviated respectively to Sum A B and Pot A B. In these formulas we have
adopted the useful convention that a formula of form A= T ′ may be abbreviated to A. The
context will always enable one to determine when this abbreviation has been applied. We shall
continue to use this convention.

Strictly speaking the definitions of Sum AB and Pot AB are invalid because the bound variables
x, y, z were not specified. This technical difficulty may be resolved by requiring x, y, z to be the
three earliest variables not appearing free in A, B.

The remainder of the definition consists of the axioms and rules of procedure. It may be
remembered that these took the form of a definition in the nested-type system also

Rules of procedure (concealed-type system).

Rule I. The formulas

(x)P≡ (y)Sx
yP|

( ιx)P= ( ιy)Sx
yP|

are provable if (x)P is an APF in which x is not bound in P,y does not occur free, x does not
occur at a place where y would be bound, and ( ιx)P is an ATF.

Rule II. If P is provable, then Sx
AP| and Sq

QP| are provable, where A and P are respectively an
ATF and an APF, and the bound variables of P are distinct both from x and q and from the free
variables of A and of Q.

Rule III. If H⊃ P and H⊃ (x)P are both APF and one of them is provable then the other is
provable also.

Rule IV. Any tautologous formula of the propositional calculus is provable.

Rule V. If the formulas P⊃ Q and P are both provable then Q is provable.

Rule VI. If P is an APF in which x does not occur bound, then the formulas

(∃!x)P⊃ Sx
(

ιx)PP|

∼(∃!x)P⊃ ( ιx)P= C

are provable provided they are APF.
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Rule VII. If A is an APF in which x, y, z, u do not occur free, then

(x)(ux⊃ zA)⊃ (∃y)[(Potzu)y & (x)(ux⊃ yx= A)]

is provable.

In rule VI the definition

(∃!x)P→ (∃x)P & (x)(y) (P& Sx
yP| ⊃ x= y)

is understood, y standing for a variable not occurring free in P.

The axioms are:
Al C 6= T ′&C 6= F′ & T ′ 6= F′

A2 EC & ET′ & EF′

A3 Ex⊃ xy= C

Bl x= x

B2 (y= x & y = z)⊃ x= z

B3 (x= y)⊃ (zx = zy & xz= yz)

Cl [(Pot yu)f & (Pot yu)g & (x)(ux ⊃ fx= gx)]⊃ f = g

C2 (∃i)[(Pot u(Pot Eu))i & (f ) {[(Pot Eu)f & (∃x)fx]⊃ f (if )}]

C3 (∃t)[(Pot E E)t & (∃v )[Ev & (x)(y){(Ex &Ey)
⊃ ((tx= ty⊃ x= y) & v 6= tx)}]]

To complete our inductive definition we need only add that no expression is an ATF, APF, or
provable formula unless compelled to be so by the foregoing.

We may say that roughly speaking type theory appears in the concealed type system only through
the condition that P⊃ Ax= T′ must be provable if ( ιx)P is to be an ATF, and a similar condition for
(x)P. The system is related to the nested-type system by the following metamathematical results:

(1) If we substitute (λx, 0)T ′ for E throughout an admissible formula without free variables we
obtain an interpretable formula.

(2) If in a provable formula of the concealed-type system without free variables we make the
substitution mentioned in (1) and then form an interpretation of the resulting formula we obtain
a provable formula of the nested-type system.

(3) Every provable formula of the nested-type system is obtainable as in (2).

A valuable aid in the proof of these is the following result which concerns the nested-type system
only:

(4) If A is a term formula containing only the variables x1, x2, . . . , xn free, and m1,m2, . . . , mn

are non-negative integers, then there is an integer k such that Dm1x1 &· · ·& Dmnxn ⊃ DkA is
provable.

NATIONAL PHYSICAL LABORATORY, TEDDINGTON
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The use of Dots as Brackets in Church’s System
(J. Symbolic Logic, vol. 7 (1942), pp. 146–156)

Lance Fortnow discovers —

TURING’S DOTS

Alan Turing’s rarely cited paper ‘The Use of Dots as Brackets in Church’s System’ defines a new
notation for Church’s λ-calculus using what Turing calls dots, the symbols ‘.’ and ‘:’.

Turing states that he intended to make use of this notation in forthcoming papers entitled ‘Some
theorems about Church’s systems’ and ‘The theory of virtual types’. I can find no record of those
later papers. Likely Turing’s activities during World War II curtailed his scientific research, and his
interests shifted after the war.

Even though this paper had little to no direct influence to logic and computer science, it shows
once again Turing’s ability to reason about important issues in computer science before there were
digital computers to reason about. In this case, Turing essentially studies an important aspect of
programming languages, a syntax for trees.

To understand the paper, consider precedence operations on formulas such as

4x− 3y2
+ 7

To parse this equation, we need to know that exponentiation has precedence over multiplication,
which has precedence over addition and subtraction. Operations with the same precedence occur
left to right. The expression above can be written with parenthesis as

(((4x)− (3(y2)))+ 7)

Turing creates virtual precedence operations he calls dots and shows how it can replace balance
parentheses used by Church (“A Formulation of the Simple Theory of Types,” J. Symbolic Logic 5,
pp. 56–68 (1940)).

Zero dots has highest precedence, then one dot (.), two dots (:), three dots (:.) etc. At the same
precedence, application is done left to right. So the expression

a : .cd : e . fg

is evaluated as

(a((cd)(e( fg)))).

Thanks to my student Arefin Huq for helping me with ‘breaking the code’ of Turing’s dot notation and to Robby Findler
for helpful discussions.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00008-4
c© 2013 Elsevier Inc. All rights reserved.
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Although Turing doesn’t discuss trees, both notations describe binary trees. In this case

Every binary tree can be expressed through dots or through parentheses. Turing acknowledges
that for simplicity, sometimes dot can be mixed with parenthesis or other precedence operators.

Today we have a common method for creating trees known as Extensible Markup Language
(XML). The tree above can be described by

<t1>
a
<t2>
<t3> c d</t3>
<t4> e
<t5> f g </t5>
</t4>
</t2>
</t1>

The tags (<t1>, <t2>...) act like parentheses. According to Northwestern Professor Robby
Findler, an expert in programming languages, no major system uses virtual precedence operations
akin to Turing’s dots.

The reason is modularity. Suppose we wanted to replace g with a subtree consisting of r and s.
With parentheses we can do a simple replacement

(a((cd)(e(fg))))

becomes

(a((cd)(e(f (rs))))).

With dots although we have to readjust the whole formula,

a : .cd : e . fg

becomes

a :: cd : .e : f .rs

In short, Turing’s dots gave him a way to think about the order of operations in a structure that
was more intuitive to him to prepare him for planned future work on Church’s λ-calculus. Unlike
the Turing machine, the dot notation did not catch on for reasons Turing did not appreciate: that
someone might want to modify the code.
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THE USE OF DOTS AS BRACKETS
IN CHURCH’S SYSTEM

A. M. TURING

Any logical system, if its use is to be carried beyond a rather elementary stage needs powerful
conventions about abbreviations: in particular one usually wants to modify the bracketing so as to
make the formulae more readable, and also possibly shorter. The present note has been written in
the belief that Church’s formulation of the simple theory of types1 is particularly suitable as a basis
for work on that theory, and that it is therefore worth while introducing special conventions which
take into account the needs of this particular system. The conventions which I shall describe are
ones which I have used a good deal myself, and have always found adequate. I intend to make use
of them in forthcoming papers.2 They may be regarded as an extension of Curry’s conventions.3

I shall begin with a general discussion of punctuation by means of groups of dots. This gen-
eral theory is applicable, with some modifications, to Russell’s,4 Quine’s,5 and Curry’s3 bracketing
systems as well as to the present one.

General bracketing theory

We consider a logical system in which every formula is either:

An irreducible formula (or token in Curry’s terminology).
Of form R(A) where R is a monadic operator and A a formula.
Of form (A)S(B) where S is a dyadic operator and A and B are formulae.

We need not of course enquire further into the nature of the irreducible formulae, monadic operators,
and dyadic operators, but to fix our ideas we may think of irreducible formulae as consisting of a
single letter with suffixes etc., e.g. xα , Jα,β

β(oα). Typical of monadic operators would be∼, [∃xα] and of
dyadic operators ⊃ and =. The formulae in this sense will be described in future as unabbreviated
formulae: the word ‘formula’ without qualification will be liable to be used of various kinds of
series of symbols.

We may also recognise another kind of formulae which we call abbreviated formulae and which
consist of series of symbols which are irreducible formulae, brackets, monadic and dyadic operators,
and a new kind of symbol called a point, which may be thought of as a group of dots. To be an
abbreviated formula the series of symbols must satisfy the conditions:

(a) The brackets must be properly paired, i.e., if we go on removing pairs of brackets which face
each other and have no other brackets between them there should eventually be no brackets left.

Received June 17, 1942.
1 Alonzo Church, A formulation of the simple theory of types, this JOURNAL, vol. 5 (1940), pp. 56–68.
2 A. M. Turing, Some theorems about Church’s system, and The theory of virtual types, forthcoming.
3 H. B. Curry, On the use of dots as brackets in logical expressions, this JOURNAL, vol. 2 (1937), pp. 26–28.
4 Whitehead and Russell, Principia mathematica, vol. 1, pp. 9–11.
5 W. V. Quine, Mathematical logic (New York 1940), pp. 37–42.
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The brackets appearing in an abbreviated formula will often be described as ‘explicitly shown
brackets.’

(b) Of a pair of brackets one must occur adjacent to an operator and one not. The expression ‘adja-
cent to an operator’ is used here and elsewhere to mean ‘adjacent to a dyadic operator or adjacent
to and on the right of a monadic operator.’

(c) If in the formula we replace dyadic operators by ‘D’, monadic operators by ‘M’, irreducible
formulae by ‘x’ and points by ‘:’, calling the result the ‘projected formula,’ then the first symbol
of a projected abbreviated formula must be ‘(’, ‘x’, or ‘M’ and the last, ‘)’ or ‘x’. A pair of
consecutive symbols in the projected formula must be ‘x)’, ‘(x’, ‘))’, ‘M(’, ‘D(’, ‘)D’, ‘(M’ or
‘((’ or else part of one of the following series of three: ‘x:D’, ‘D:x’, ‘M:x’, ‘):D’, ‘D:(’, ‘M:(’,
‘D:M’, ‘M:M’: in the latter case the whole series of three symbols must be part of the projected
formula.

We want one and only one formula to correspond to each abbreviated formula. Such a correspon-
dence is defined below in terms of an ordering of the points. I shall follow Russell’s terminology and
speak of the earlier of two points in the ordering as being of higher power than the other. Curry uses
the expression ‘senior to’ and Quine, whose points are called ‘joints,’ uses ‘looser than.’ The power
of a point may depend on any formal relationships between the point and the formula it occurs in,
and varies from system to system.

The rule for replacing the abbreviated formula by the unabbreviated may be put into two forms,
of which the first is the more natural theoretically, and the second, which seems rather arbitrary, is
the easier to apply.

First form of rule

The rule operates by reducing the number of points in the formula whose unabbreviated form is to
be found.

Suppose first that the formula has explicit brackets, e.g. that it is of form A(B) C, where A, B,
C are not required to be formulae in any special sense, but just rows of symbols, and the brackets
shown are properly paired. Then the unabbreviated form of A(B)C may be obtained from the unab-
breviated forms E of AwC and F of B by substituting (F) for w in E. The symbol w is to be some
symbol not occurring in A or C. In other words the interior of an explicitly shown bracket is to be
worked out as if it were a whole formula, and the part of the formula outside the bracket is to be
worked out as if the bracketed part were a single letter.

If the formula has no explicitly shown brackets we find the point of highest power and replace it
by a bracket. This bracket is to be right facing if the point is right facing, i.e., if it is on the right of
its operator: similarly the bracket is left facing if the point is left facing. Another bracket, oppositely
facing, must be put at one end of the formula to balance the first.

Second form of rule

We first define the enclosing brackets of a symbol other than an explicitly shown bracket. They are
paired explicitly shown brackets, enclosing the symbol in question, but not enclosing any other pair
of brackets which enclose the symbol. If the enclosing brackets are always to be defined there must
be a pair of brackets enclosing the whole formula. We imagine these supplied.

To find the unabbreviated formula we clearly have to replace each point by a similarly facing
bracket, and to put in a balancing bracket somewhere. The interval from the point to the balancing
bracket is called the scope of the point: in reckoning scopes, points and brackets will be neglected,
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so that for instance if two similarly facing points are to have their partnering brackets immedi-
ately following one another their scopes will be regarded as ending at the same place. The rule for
determining the scope is that it is to be as short as possible, subject to the following scope condition:

The balancing bracket β of a point π is either adjacent to one of the enclosing brackets of
π , or else to some point ρ facing oppositely to π and having the same enclosing brackets
as π in which case β must be on the side of ρ which is nearer to π . The point ρ must be of
higher power than π or any point between ρ and π facing similarly to π and having the same
enclosing brackets as π .

Equivalence theorem

There are three things to be proved about these rules:

(i) When we use the first rule it does not matter in what order the pairs of explicit brackets are
taken.

(ii) The result of applying the first rule to an ‘abbreviated formula’ (satisfying by definition
conditions (a), (b), (c) above) is to give us an ‘unabbreviated formula’ as originally defined.

(iii) The two rules are equivalent.

To prove (i) let A(B) C be one of the shortest formulae for which the result of applying the
rule is not unique. We are justified in assuming that explicit brackets occur for otherwise the first
step in applying the rule is uniquely determined and consists in introducing brackets. Whatever
transformation we apply to the formula it remains of the form A′(B′)C ′ where A′w C ′ is obtained
from AwC and B′ from B by a (possibly incomplete) application of the rule. In particular this is true
of the final result of applying the rule. In this case In this case AwC ′ contains no points: it is therefore
the final result of applying the rule to AwC and since AwC is shorter than A(B) C the formula must
be unique. Similarly B′ is unique, and therefore A′(B′)C ′ is unique.—The word ‘shortest’ as used
in this argument must be interpreted as ‘having the smallest number of symbols, points however
being reckoned as two symbols.’

To prove (ii) it is sufficient to show that the application of the transformations described in the
rule always leaves us with an abbreviated formula, and that if an abbreviated formula has no points
then it is an unabbreviated formula. The transformations always consist of the removal of a point
and the introduction of a pair of brackets. The brackets have no other brackets between them, so that
the brackets remain properly paired, i.e., (a) remains satisfied. One of the brackets replaces a point,
and therefore by (c) applied to the original formula is adjacent to an operator. The other bracket is
put in either at the end of the formula or adjacent to a similarly facing bracket, facing away from
it. It cannot be adjacent to an operator, for if it were there would have been an operator adjacent to
the end of the formula, or to a bracket facing towards it in the original formula, contradicting (c).
This shows that (b) remains true. To show that (c) remains true we have only to notice that when
we replace points by similarly facing brackets in the admissible combinations the results are made
up of admissible combinations, and that admissible combinations always result when a bracket is
introduced at the end of the formula or adjacent to a similarly facing bracket.

To prove the second requirement let us see what condition (c) amounts to when there are no
points in the formula. The allowable pairs of symbols in the projected formula are ‘x)’, ‘M(’, ‘D(’,
’)D’, ‘))’, ‘(x’, ‘(M’, ‘((’ and a formula must start with ‘(’, ‘M’, or ‘x’ and end with ‘x’ or ‘)’. If it
starts with ‘x’ it can only continue with ‘(’, and this bracket can have no partner: i.e., if the projected
formula starts with ‘x’ then ‘x’ is the whole of it. If it starts with ‘M’ it continues with ‘(’, and this
bracket has a partner, so that the whole is of form M(A)B, and by (b) of form M(A). If the formula
starts with ‘(’ this has a partner which by (b) is adjacent to an operator: i.e., the formula is of form
(A)DB and therefore of form (A)D(C)E. Applying (b) we see it is of form (A)D(C). Thus we have



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 14:13 Page 232 #6

232 Part I

shown that abbreviated formulae without points are always either irreducible formulae or of one of
the forms R(A) or (A)S(B), where R is a monadic and S a dyadic operator. The formulae A and B
necessarily satisfy the conditions (a), (b), (c) since the whole formula satisfies them, and the symbols
allowed at the ends of a formula by (c) are just the ones which may follow a right facing bracket
or precede a left facing bracket: these formulae are therefore themselves ‘abbreviated formulae.’
An induction over the length of the formula will now prove that every abbreviated formula without
points is an unabbreviated formula, as required.

To prove (iii) notice that the second rule agrees with the first as regards the replacement of the
points of highest power, for with either rule we may suppose that the enclosing brackets of the point
to be replaced are at the ends of the formula. It will therefore be sufficient to prove that the order of
replacement of two points may be interchanged when we are using the second rule.

The case when the two points did not originally have the same enclosing brackets is trivial, for
then the replacement of the one point does not alter the set of symbols having the same enclosing
brackets as the other, and therefore does not alter its scope. We may therefore suppose that the
enclosing brackets of both points are at the ends of the formula. We may also suppose that there are
no other brackets in the formula, for if any pair of brackets, together with what is between them, is
replaced by a single letter, the scope of neither of the points is altered.

The scopes of two points can never be strictly overlapping. Suppose that the scope of one point
is limited by brackets α and β of which α is the one further to the left, and the other by γ and δ of
which γ is to the left; also that α is to the left of β and that the scopes strictly overlap, so that the
brackets form a figure like this

(. . . (. . .) . . .)
α γ β δ

The points from which these brackets arise can be either at α and γ , or at α and δ, or at β and γ
or at β and δ. The consideration of the last alternative can be omitted as it is the same as the first
apart from interchange of left and right. In the case that the points are at α and γ the brackets α,β
must satisfy the scope condition, so that the point at β must be of higher power than those at α and
γ or any right facing point between α and β; in particular it is of higher power than those at γ and
between γ and β, and therefore by the scope condition the bracket δ partnering γ must have the
same position as β, in which case the scopes do not strictly overlap. Next suppose that the points
are at α and δ. Then applying the scope condition to the brackets α and β we find that the point at β
is stronger than that at γ , and this means that the scope condition cannot be satisfied for a point at δ
whose partnering bracket is at γ . Finally suppose that the points are at β and γ . Applying the scope
condition to γ and δ we see that either γ or some right facing point between it and β is of higher
power than β: but if this is so the scope condition cannot be satisfied for α and β.

This completes the proof that the scopes of two points can never be strictly overlapping, and we
now apply it to the interchange of order of removal of brackets under the second rule. Suppose that
the scope of the first point is from α to β, the point itself being at α, which we suppose to be to
the left of β, and the scope of the second from γ to δ;γ being to the left of δ, but no assumption
being made as to whether the point was at γ or δ. We wish to show that the scope of the first point
as calculated by the scope condition is unaltered if the other point is replaced by its brackets γ , δ.
To fix our ideas we suppose that the scopes α to β and γ to δ are as calculated before either pair of
brackets has been put in. The scope of the first point is certainly unaltered by the replacement of the
second in the case that the scopes do not overlap at all, for then neither the points within the interval
α to β, nor the left facing point (or possibly bracket) at β can be altered by the introduction of γ and
δ, and the application of the scope condition gives exactly the same result for the position of β. As
the scopes cannot strictly overlap we must suppose that either the interval α to β is wholly contained
in the interval γ to δ or wholly contains it. In the first case the data for the application of the scope
condition to the bracket β are again not relevantly altered. If the interval γ to δ is wholly contained
in the interval α to β we consider separately the possibilities that β might be moved farther to the
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right or farther to the left by the introduction of γ and δ. To show that β is not moved farther to the
right it will be sufficient to show that the interval still satisfies the scope condition. This is certainly
the case, for the effect of the introduction of γ and δ, so far from introducing new right facing points
is to enclose some in brackets, thereby as it were disqualifying them, and also to remove the point
from which γ and δ themselves arose. To show that β is not moved farther to the left we have to
show that there can be no left facing points ρ between α and β which satisfy the scope condition.
Such a point would certainly have to be between δ and β, for if it were between γ and δ it would
not have the same enclosing brackets as α, and if it were between α and γ the position of β would
have been at ρ regardless of whether the brackets γ and δ had been put in or not. If ρ between δ
and β satisfies the scope condition, then in the original formula there must have been a right facing
point σ either at γ , or in the interval γ to δ, which was more powerful than ρ and less powerful
than the point at β. However, as the scope of the bracket γ , δ, if it arises from a point at γ , extends
only as far as δ, there must have been a point at δ more powerful than σ and therefore than ρ and
all right facing points in the interval α to γ . The original position of β would therefore have been
the position of δ. If on the other hand the brackets γ and δ arise from a point at δ, then ρ must have
been less powerful than some right facing point σ in the interval γ to δ without the alternative of σ
being γ itself. We may suppose that σ is the right facing point of highest power in the interval γ to
δ. But then as the bracket from δ extends as far as γ , either the point at δ or some left facing point
T in the interval σ to δ must be of greater power than σ and therefore than ρ:τ would then be of
higher power than all right facing points in the interval α to γ and also in the interval γ to δ, and
therefore would have been the original position of β.

Jutaxposition and omitted points

In most systems there is some operation which is described simply by juxtaposition, without any
special operator. In Church’s system this is the application of a function to its argument; in Russell’s
it is conjunction and in algebra it is multiplication. In such systems the abbreviated formulae will
be less restricted than the abbreviated formulae in the sense defined here. It is also usual to omit
some of the points in the abbreviated formulae, it being understood that a point is to be introduced
wherever one is necessary in order to satisfy the conditions (a), (b), (c), above. The power of such
points may be settled at the same time as the other power conventions. There is one matter which
has been left doubtful about the introduction of these points. When a pair of brackets is adjacent to
operators at each end one of the brackets must be ‘protected’ from its operator by a point, but only
one, in order to satisfy (b); which bracket should it be? The following three rules are equivalent:

(1) One may put in a point in both places. In this case (b) is no longer satisfied, and the final result
of removing the points, by either of the rules, leaves an otiose pair of brackets which have to
be removed before we have an unabbreviated formula.

(2) Both points are put in and then the weaker one removed.
(3) If the conventions below are adopted one may put the point in after the brackets.

With this practical kind of system, where juxtaposition is used and some points are omitted,
the abbreviated formulae do not satisfy the conditions (b), (c) above: they satisfy (a), however, and
also (c′), below. To distinguish these formulae from the abbreviated formulae proper I will call
them practical formulae. The conditions (a), (c′) are necessary and sufficient for being a practical
formula.

(c′) No pair of consecutive symbols in the projected formula may be one of the following: ‘( )’,
‘(:’, ‘(D’, ‘:‘)’, ‘::’, ‘M)’, ‘MD’, ‘D)’, ‘DD’. No three consecutive symbols may be ‘M:D’ or ‘D:D’.
The projected formula may begin only with ‘(’, ‘x’, or ‘M’ and may end only with ‘)’ or ‘x’.

From a practical formula we can obtain an abbreviated formula by first introducing an operator
? to take the place of juxtaposition, and afterwards the omitted points. Wherever a point π is not
adjacent to an operator we replace it by ‘π ?π ’. We replace ‘)(’ by ‘) ? (’,‘)A’ by ‘) ?A’, ‘A(’ by
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‘A ? (’ and ‘AB’ by ‘A ?B’ if A and B are irreducible formulae. We then replace the omitted points.
We may use small circles to represent them: thus the sequences ‘xD’, ‘Dx’, ‘Mx’, ‘MM’, ‘DM’,
‘xM’, ‘)M’ in a projected formula become ‘x◦D’, ‘D◦x’, ‘M◦x’, ‘M◦M’, ‘D◦M’, ‘x◦M’, ‘)◦M’. The
last two of these must be again modified by the introduction of ?, giving ‘x◦ ?◦M’ and ‘)◦ ?◦M’ but
the process then comes to an end.

Application to Church’s system

In Church’s system the irreducible formulae are the variables and other single letter formulae,
including, if we wish, abbreviations such as Sι′ι′ . The monadic operators are∼, [xα], [∃xα], [ιxα],λxα
and [λxα], of which the last two may be regarded as the same so far as the unabbreviated formulae
are concerned. The dyadic operators are ⊃, v,≡,&,=, 6=, to which we may add ?. If we adopt the
conventions of the last section it is only necessary to decide on the relative powers of the points
in order that the unabbreviated form of a practical formula should be determined. The conventions
recommended are as follows:

We divide the operators into two classes:
Class of high power containing ⊃, v, &,≡,∼, [xα], [∃xα], [ιxα], [λxα],=, 6=, and others which

may be added from time to time such as >,<, /.
Class of low power containing λxα ,?, and others which may be added from time to time such

as +, −.
In the class of high power we distinguish some operators as handicapped: these are =, 6= (and

>,<). A point adjacent to an operator in the high power class is always of higher power than one in
the low power class. In the case of two points adjacent to operators of the same class the one with the
greater number of dots is of the higher power, with the provisos that if the operator is handicapped
the number of dots must be reduced by one, and that a point which is either omitted or represented
by ◦ counts as of ‘zero dots.’ Amongst points of the same class, and having the same (corrected)
number of dots the left facing points are of higher power than the right facing. There is no need to
decide which shall be the more powerful of two similarly facing points, since this is irrelevant to
the scope condition, but for definiteness let us say that the one on the left is the more powerful.

The ‘unabbreviated formula’ which results from a ‘practical formula’ by the application of one
of our rules is not strictly speaking a formula of Church’s system nor even an abbreviation of one
which would be recognised by Church. If A is the unabbreviated formula, and A(D) the correspond-
ing formula recognised by Church. then A(D) is A if it is an irreducible formula, and otherwise is
defined inductively by the conditions that:

((A ?B))(D) is (A(D)B(D)),

((A)⊃ (B))(D) is [A(D)
⊃ B(D)],

((A)v(B))(D) is [A(D)vB(D)],

etc.;

(∼(A))(D) is [∼A(D)],

([xα](A))(D) is [(xα)A(D)],

etc.;

([λxα](A))(D) is ((λxα)A(D)),

(λxα(A))(D) is (λxαA(D)).
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Discussion of the conventions

These power conventions appear to differ markedly from the Russell conventions because the oper-
ator against which a point is placed is made to be of greater effect in determining the power than the
number of dots. However in Russell’s system the operators in our class of low power do not occur
at all, and the difference must be thought of as a rejection of his distinctions between operators for
punctuation purposes, together with a special new treatment of the new operators. Our ‘handicap of
one dot’ convention for=,>, etc. may however be regarded as taking the place of some of Russell’s
distinctions.

It is easy to remember which are the operators in the class of high power. They are the ones which
normally either operate on propositions or form propositions. The ones which are handicapped are
those which form propositions but do not normally operate on propositions. The case of [λxα]
is exceptional, but again it is easy to remember its power because the notation has been made
analogous to that of the other high power operators. One would not normally use the form [λxα]
unless it is operating on a proposition.

The reason for adopting our high and low power class conventions is that in practice it is
extremely seldom that we want the scope of a bracket starting from one of the low power oper-
ators to include one of the high power operators. The low power operators are in fact just the ones
that we should use in formalising the mathematical formulae in a mathematical book. We should
use the high power operators in formalising the English connecting matter. It is hardly necessary to
point out that a bracket in one of the formulae never pairs with one in another formula, with English
intervening. Our convention has the desired effect of closing automatically all brackets outstanding
in the ‘mathematical formulae’ before going on to the English text. The reasons for adopting the
handicap convention are similar. A bracket starting from an equality sign will not usually enclose
another high power operator, although a bracket from an operator of low power will not enclose an
equality sign.

The convention by which left facing points are made more powerful than right facing is conve-
nient to complete the conventions, and is also in agreement with two of Church’s own conventions,
viz. that in the absence of other indication association is to the left, and that in the absence of dots
an omitted bracket has the minimum possible scope.

The use of square brackets in connection with some of the operators, e.g. [∃xα], is necessary
in a theoretical treatment, but it is not suggested that such a notation should be generally adopted.
With very few exceptions one can tell whether the round brackets are part of an operator or not. One
exception is the formula (poo)(qo).

Examples

(i) As a first example of the effects of our conventions I shall take a very simple formula and remove
the dots by the first rule. The formula which I shall take is ab.c and even this will be found quite
sufficiently complicated for the purpose. We must first transform the ‘practical formula’ into an
‘abbreviated formula’ by introducing the operator ?, and the points ◦. This gives us a◦ ?◦ b. ? .c. We
now take the point of highest power, which is the one following the b and replace it by a bracket
facing left, i.e., away from its operator, and balance it with a bracket at the left end, giving us
(a◦ ?◦ b) ? .c. We now have to evaluate separately a◦ ?◦ b and ξ ? .c. The stronger point in a◦ ?◦ b
is the left one and this formula is therefore equivalent to (a) ?◦ b, i.e., to the result of substituting
(a) for η in the unabbreviated form of η ?◦ b, i.e., in η ? (b). The unabbreviated form of (a◦ ?◦ b) is
therefore ((a) ? (b)): also the unabbreviated form of ξ ? .c is ξ ? (c), and therefore the unabbreviated
form of (a◦ ?◦ b) ? .c is the result of substituting ((a) ? (b)) for ξ in ξ ? (c), i.e., is ((a) ? (b)) ? (c).
Transforming this back to a formula of Church’s system, properly speaking, we get ((ab)c).

In the remaining examples we will always use the second rule. No type suffixes will be shown.
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(ii) We will first deal with formulae without operators, or at least without operators of high
power. As one example,

(a((cd)(e(fg))))

can be abbreviated to

a : . cd : e.fg.

As another,

a.cd.efg

is an abbreviation of

((a(cd))((ef )g)).

The association to the left rule has been used here: in other words we have had to apply the rule
that a dot is more powerful in its left facing than its right facing aspect. The structure of a formula
is often more easily taken in if we slightly increase the number of dots and do not rely on this rule,
e.g. the same formula may be written

a.cd : efg,

or again as

a.cd : ef .g.

Similarly it is often not advisable to replace all of the brackets in a formula by dots. As a group of
dots never replaces more than four brackets it can hardly ever be worth while having as many as six
dots, say, in a group. A few dots can however be made to go a long way by mixing them judiciously
with explicitly shown brackets e.g.

bc.d :: . e :: f : . g : h.ij

is the best form of a certain formula when expressed without any explicit brackets, but

bc.d : e.f (g : h.ij)

is a much better form of it.
As an example of a formula involving λ,

h : . λfλx fx : g

is an abbreviation of

(h((λf (λx(fx)))g)).

(iii) As an example of a more general type of formula,

[m] . Nm ⊃ [p] . Np⊃ m 6= S : pS.m

is an abbreviation of

[m]((Nm)⊃ ([p]((Np)⊃ (m 6= S((pS)m)))))).
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If we did not have the ‘handicap of one dot’ convention we should have to put in a dot after ‘Np⊃’.
In this case the effect is slight, but sometimes it can be considerable, e.g. without the convention

[x].x= y&y= z⊃ x= z

would have to become

[x] : x= y.&.y= z.⊃ .x= z.

(iv) The expressions

p⊃ .q⊃: r vs.& t : &u

and

p⊃ (q⊃ ((r vs)& t))&u

and

p⊃ (q⊃ .r vs& t)&u

are all abbreviations of the same formula. Notice that in the first of these expressions the bracket
starting after ‘p⊃’ does not close when we reach the stronger point on the left of ‘& t’, because the
former is reinforced by the even stronger point after ‘q⊃’. The most legible form of this formula,
if it is standing by itself, is probably

p⊃: q⊃: r vs. & t : & u.

(v) A formula similar to the last example in one respect is

p⊃ q & r,

which with our conventions is an abbreviation of

(p⊃ q) & r,

but with Russell’s or Church’s conventions would be an abbreviation of

p⊃ (q & r)

on account of the subdivision of our ‘class of high power’ into smaller classes of different powers.

(vi) Normally we shall not want to put dots against equality signs, or other operators which form
propositions but do not operate on propositions. A typical exception is

[ιxα].g◦αxα ⊃ f◦αxα := yα .

Another type of freak formula, difficult to abbreviate, occurs when we have functions which take
propositions as arguments, e.g.

hα◦(pα ⊃ q0).

The only way of avoiding explicit brackets in such a case is to express the implication, not with the
implication operator but with the implication function C◦◦◦, thus

hα◦.C◦◦◦p◦q◦.

KING’S COLLEGE, CAMBRIDGE
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The Reform of Mathematical Notation and
Phraseology

(unpublished manuscript ca. 1944)

Stephen Wolfram connects —

COMPUTATION, MATHEMATICAL
NOTATION AND LINGUISTICS

Much like ordinary natural languages, most of the mathematical notation we have today has grown
up over a long period of time by a kind of natural selection. Occasionally, explicit efforts to
systematise the notation have been made – though they have been remarkably few and far between.

In the late 1600s, Leibniz, for example, was quite concerned with mathematical notation – seeing
it as an opportunity to move toward a more universal language, free of the controversies of partic-
ular ordinary languages. He invented the integral sign, the d/dx notation for derivatives (where he
worried people would try to ‘cancel the d’s’), and attacked the use of * for multiplication (‘will be
confused with the letter x’).

Fig. 1: Leibniz was serious about developing notation for math. His most famous piece of notation
was invented in 1675. For integrals, he had been using ‘omn.’, presumably standing for omnium.
But on Friday 29 October 1675 he used, for the first time, the symbol that is used today.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00009-6
c© 2013 Elsevier Inc. All rights reserved.

239

http://dx.doi.org/10.1016/B978-0-12-386980-7.00009-6


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 18:55 Page 240 #2

240 Part I

In the 1800s Babbage wrote polemics about mathematical notation, and by the 1880s Frege,
Peano and others were trying hard to create more systematic ways to represent mathematical
processes. And no doubt that systematisation was a necessary precursor to Hilbert’s programme,
Gödel’s theorem, and ultimately Turing’s own work on defining what amounts to a universal
mechanism for mathematical processes.

In a sense, though, a Turing machine is a very low-level representation of mathematical pro-
cesses. And I suspect Turing was curious about what would be involved in creating a higher level
representation: a full systematic language for mathematics at the level people actually do it.

As it happens, I have spent a significant part of my life developing Mathematica – which among
other things aims to provide just such a language.

And in fact the core concept of Mathematica as such a language owes an important debt to the
paradigm initiated by Turing’s work. In the early 1900s, when people thought about systematising
mathematics, they had a definite idea about what had to be done: one had to find a way to represent
mathematical proofs – as a sort of modern version of something like logical syllogisms.

And, for example, Whitehead and Russell in their Principia Mathematica developed an elaborate
and arcane scheme for doing this (see Figure 2 below).

But is systematising proofs really the only meaningful way to systematise mathematical pro-
cesses? The Turing machine in a sense makes it clear that it is not. For a Turing machine provides a
representation not of a proof, but of a computation.

Of course, practical mathematics had involved computation ever since Babylonian times. But
pure mathematics – following the ideas of Euclid, and later of logic – had concentrated instead on
proof. The concept of a Turing machine connected pure mathematics to computation in a systematic
and universal way.

And when I came to develop Mathematica, I did so within the paradigm of computation rather
than proof.

Mathematica represents mathematics in an actionable way: its purpose is not to show, or find,
the steps in proofs, but rather to find results, and find what is true, by explicitly computing output
from input.

As a direct consequence of universal computation, Mathematica can internally represent any
possible computation. But then the challenge – as Turing in effect recognised – is to connect those
possible computations to ones that humans can describe.

I have spent more than three decades designing languages – most importantly Mathematica –
that allow computations to be specified conveniently. And in a sense the way I have worked is to try
to imagine all the computations that people might want to do, and then to identify repeated chunks
of computational work that occur in those – and then to give names to those chunks.

The result – if one succeeds – is an artificial language in which typical computations and
programs can be expressed in the shortest and clearest possible way. And indeed, after countless
millions of lines of Mathematica language have been written, I believe I can claim a certain degree
of success.

But what about traditional mathematics? How can we represent it, as Turing wondered, in a
systematic way?

If one is going to be able to automate mathematical computations, then ultimately one has to
have a precise and systematic representation of the mathematics.

And with all the precision traditional in pure mathematics, one might imagine that its notation
would somehow have evolved to a high degree of precision. But it has not. Traditional mathematical
notation is full of implicit conventions, strange elisions and historical accidents.
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Fig. 2: A page from Whitehead and Russell’s monumental work Principia Mathematica devoted to
showing how the truths of mathematics could be derived from logic.

In designing the mathematical components of the Mathematica language (Wolfram, 2010), how-
ever, I had to create a systematic form of the notation. But to make Mathematica easy for humans
to learn and understand, I wanted to stay as close as possible to traditional notation.

The result is that I undertook an extensive study of the way that mathematical notation is used
in practice. In a sense, this study was similar in character to the way a linguist might try to infer the
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grammar and syntax of some ordinary spoken human language. But the literature of mathematics
provides a somewhat more systematic corpus than is usually available.

And somewhat to my surprise, despite the diversity of the mathematical literature, there was a
remarkable degree of consistency in the way notation tended to be used – down even to consistent
unwritten conventions about the precedence of all sorts of mathematical operators.

And it took only a modest set of innovations to go from this notation to something completely
precise and computable. (It helped that Mathematica can support not just linear textual input, but
also full two-dimensional input, like traditional mathematical notation.)

Fig. 3: Mathematical and other notation in Mathematica. Note the two-dimensional character of the
input.

A great deal of mathematics has now been described in the precise notation of Mathematica (see
http://www.wolfram.com/mathematica/).

But a few years ago, I became curious about the extent to which it would be possible to handle
by computer completely free-form mathematical notation and input.

For in developing Wolfram|Alpha (see http://www.wolframalpha.com/) my goal was to
allow people to specify their queries – whether about mathematics or anything else – just in the way
that they think of them, without having to convert them to any kind of precise formal language (see
Figure 4).

At first, it seemed as if this kind of free-form linguistic input might simply be impossible, or
impractical. But thanks to a series of breakthroughs, we have been able to make this work in a
highly successful way.

http://www.wolfram.com/mathematica/
http://www.wolframalpha.com/
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Fig. 4: Wolfram|Alpha understands free-form natural language specifications of mathematical
operations.

Indeed, when it comes to textually typed mathematical input, we can now recognise what a
person meant in very close to 100% of all cases – at least those that a trained human would find
recognisable. Of course, it helps that we have been able to study many, many millions of inputs that
have been fed to Wolfram|Alpha.

And among the results of this is that we can say with some precision the extent to which people
do or do not use the various notational conventions that Turing describes in his notes.

In Mathematica, we try to do what Turing advocates: to create a completely systematic and
precise notation for mathematics. And indeed this is a very powerful thing. But in Wolfram|Alpha,
we have now succeeded in doing something that is in a sense maximally convenient for humans: just
taking mathematical notation in the form that humans think of it, and interpreting it into a precise
computable form.

I rather suspect – and hope – that Turing would appreciate the notation of Mathematica – set
up as it is to provide a precise and unambiguous representation that can immediately be computed
with.

And perhaps he would be surprised – as I was – that it is possible in Wolfram|Alpha to go
from the strange and inconsistent notation that has grown up in mathematics, and in a sense use
the sparsity of typical mathematical questions to be able to deduce what the corresponding precise
notation should be.
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In his work at the dawn of systematic computation, Turing could only begin to imagine what
it would be like to make mathematics computational. Today – especially with Mathematica and
Wolfram|Alpha – we have succeeded in making large swaths of mathematics computational.

One issue that has remained is the style of mathematics traditional in the twentieth century, which
centers around the creation of mathematical structures (‘Let F be a field. . .’). A recent realisation
is that the basic paradigm of Wolfram|Alpha is exactly what is needed to make such mathematics
computational.

In Wolfram|Alpha, it is common to enter some entity (say a city or a chemical), and then have
Wolfram|Alpha automatically generate a report on what might be considered ‘interesting’ about that
entity. The same can be done for mathematical structures.

In effect, Wolfram|Alpha must take the structure and then deduce what facts or theorems are
‘interesting’ about it. In part, this can be done from a curation of known mathematical theorems. In
part, it must be done by a collection of mathematical and meta-mathematical algorithms and heuris-
tics. But the result, I believe, will be that the vast majority of the parts of the human activity that
we call ‘mathematics’ will successfully be completely automated. The concept of systematisation –
and computation – that Turing had will have been realised.

And, as it happens, thanks to the likes of Wolfram|Alpha technology, there would not even be a
need to ‘reform’ mathematical notation in order for humans to successfully describe what they want
to do.
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THE REFORM OF MATHEMATICAL NOTATION
AND PHRASEOLOGY

A. M. TURING

It has long been recognised that mathematics and logic are virtually the same and that they may be
expected to merge imperceptibly into one another. Actually this merging process has not gone at all
far, and mathematics has profited very little from researches in symbolic logic. The chief reasons for
this seem to be a lack of liaison between the logician and the mathematician-in-the-street. Symbolic
logic is a very alarming mouthful for most mathematicians, and the logicians are not very much
interested in making it more palatable. It seems however that symbolic logic has a number of small
lessons for the mathematician which may be taught without it being necessary for him to learn very
much of symbolic logic.

In particular it seems that symbolic logic will help the mathematicians to improve their notation
and phraseology, which are at present exceedingly unsystematic, and constitute a definite handicap
both to the would-be-learner and to the writer who is unable to express ideas because the necessary
notation for expressing them is not widely known. By notation I do not of course refer to such
trivial questions as whether pressure should be denoted by p or P, but deeper ones such as whether
we should say ‘the function f (z) of z’ or ‘the function f ’.

It would not be advisable to let the reform take the form of a cast-iron logical system into which
all the mathematics of the future are to be expressed. No democratic mathematical community
would stand for such an idea, nor would it be desirable. Instead one must put forward a number
of definite small suggestions for improvement, each backed up by good argument and examples. It
should be possible for each suggestion to be adopted singly. Under these circumstances one may
hope that some of the suggestions will be adopted in one quarter or another, and that the use of all
will spread.

Although it is not desirable to try and put mathematics into the straight-jacket of a logical system,
it may be desirable to use such a system when investigating notation. One is likely to be taking
typical phrases from mathematical text-books and analysing their meaning. It is useful to have
a logical system for expressing these meanings in a fairly unambiguous way. It may not greatly
matter what system is used for this purpose, and it would be quite possible for different workers to
use different systems.

To be specific I am inclined to suggest the following programme

i) An extensive examination of current mathematical and physical and engineering books and
papers with a view to listing all commonly used forms of notation.

ii) Examination of these notations to discover what they really mean. This will usually involve
statements of various implicit understandings as between writer and reader, it may also include
the equivalent of the notation in question in a standard notation.

iii) Laying down a code of minimum requirements for desirable notations. These requirements
should be exceedingly mild. In my opinion the points which should be covered by this code
should include the following
a) Free and bound variables should be understood by all and properly respected.
b) Some sort of provision should be made for falling in line with the theory of types. This

assumes a Russelian Weltenscheung, as applies I think to the majority of mathematicians-
in-the-street.
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c) The deduction theorem should be taken account of, i.e. it should be recognised that
numerous forms of argument consist in one form or another of applications of the deduc-
tion theorem. The deduction theorem should therefore be as well known as the rule for
integration by parts.

d) Very clear statements of the fundamental nature of the symbols should be made. There
should be no danger of mistaking a real variable for a function taking real values.

iv) New notations suggested by symbolic logic.
v) Examples of the development of comparatively elementary parts of mathematics in obedience

to the new code and embodying the new notations. These examples should only incorporate the
new notations in cases where great advantage results. The effects of the various independent
reforms should be shown separately, so far as possible, to facilitate their independent adoption.

Free and bound variables. Deduction theorem. Constants and
parameters

In this section a) and c) of iii) above will be examined in greater detail.
The symbols used in mathematics may be classified as follows.

i) Symbols used entirely in punctuation, such as (,), ‘etc.
These do not concern us at the moment.

ii) Absolute constants, typified by 6, 1,=+ log etc, etc.
These also do not concern us at the moment.

iii) Letters representing constants, usually taken from the beginning of the alphabet, e.g., ‘Let a
be the radius of the sphere’.

iv) Letters representing genuine variables, for which substitution may be made, e.g., x in x= x.
v) Letters for which we can substitute other letters (most of them) to get a true result, but certainly

cannot substitute constants; in the latter case nonsense results. Examples are provided by the
occurrence of x in ∫ 1

0
xdx =

1

2

and in ‘for all numbers x greater than 2, x2 > 3’. Substitution of 1 for either of these yields
nonsense.

Letters described under iv) and v) above are known respectively as free and bound variables. Free
variables are really comparatively rare. This is because we do not often make statements such as
‘x= x’ but more often something like ‘for all real numbers x, x= x’: in this the opening phrase
‘binds’ the variable. Thus x is bound in the whole statement, but is free in the part x= x. The
difference between the constants iii) and the free variables is somewhat subtle. The constants appear
in the formula superficially as if they were free variables, but we cannot substitute for them. In these
cases there has always been some assumption made about the variable (or constant) previously; thus
we may have the equation

v=
4

3
πa3

in which we cannot substitute for v and a, these being constants because we have made these
assumptions about them ‘a is the radius and v is the volume of the sphere’. The ‘deduction the-
orem’ states that in such a case, where we have obtained a result by means of some assumptions, we
can state the result in a form where the assumptions are included in the result, e.g., ‘If a is the radius
and v is the volume of the sphere then v= 4

3πa3’. In this statement a and v are no longer constants.
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We are now able to substitute for them: we might substitute v for a and get a statement with the
same meaning, or we could substitute 2 for both a and v getting a true statement, but one of rather
unorthodox character. This process whereby we pass from P proved under an assumption H to ‘If
H then P’ may be called ‘absorption of hypotheses’. The process converts constants or ‘restricted
variables’ into free variables. Variables whose character changes in this way from restricted to free
usually seem to be described as ‘parameters’, although it is very difficult to give any very definite
meaning to the term.

Theory of types and domains of definition

We are taught that the theory of types is necessary for the avoidance of paradoxes, but we are not
usually taught how to work the theory of types into our day-to-day mathematics: rather we are
encouraged think that it is of no practical importance for anything but symbolic logic. This has a
most unfortunate psychological effect. We tend to suspect the soundness of our arguments all the
time because we do not know whether we are respecting the theory of types or not. Actually it is not
difficult to put the theory of types into a form in which it can be used by the mathematician-in-the-
street without having to study symbolic logic, much less use it. The statement of the type principle
given below was suggested by lectures of Wittgenstein, but its shortcomings should not be laid at
his door.

The type principle is effectively taken care of in ordinary language by the fact that there are
nouns as well as adjectives. We can make the statement ‘All horses are four-legged’, which can be
verified by examination of every horse, at any rate if there only a finite number of them. If however
we try to use words like ‘thing’ or ‘thing whatever’ trouble begins. Suppose we understand ‘thing’
to include everything whatever, books, cats, men, women, thoughts, functions of men with cats as
values, numbers, matrices, classes of classes, procedures, propositions,. . .Under these circumstances
what can we make of the statement ‘All things are not prime multiples of 6’. We are of course inclined
to maintain that it is true, but that is merely a form of prejudice. What do we mean by it? Under no
circumstances is the number of things to be examined finite. It may be that some meaning can be
given to statements of this kind, but for the present we do not know of any. In effect then the theory
of types requires us to refrain from the use of such nouns as ‘thing’, ‘object’ etc., which are intended
to convey the idea ‘anything whatever’. The most important places where this matters are

1) In connection with the word ‘all’. We may for instance say ‘All real numbers x have the
property. . .’ but not ‘All things. . .’. In particular we should avoid putting the former in the
form ‘For all things x, if x is a real number. . .’.

2) In connection with ‘there exists’. We allow ‘there exists a real number such that. . .’ but not
‘There exists a thing x, such that x is a real number and. . .’.

3) In connection with descriptions. We allow ‘The real number x such that. . .’ but not ‘The thing,
such that x is a real number and. . .’.

4) In connection with abstraction, but this may be considered a special case of 3).

All this leaves open the question as to what are to be regarded as appropriate nouns to take the
place of ‘real number’ in the above examples. This would probably be really treated on a fairly
common sense basis, but the following rules certainly apply. The word noun-class is used to mean
a class such as the class of real numbers in the examples above.

The sum of two noun-classes is a noun-class.
A sub-class of a noun-class is a noun-class.
The class of functions with arguments in one noun-class and values in another is a noun-class.

These rules do not lead to any noun-classes unless we know of some already. To many logicians it
will be sufficient to add ‘the null-class is a noun-class’, but such a procedure will not be satisfactory
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to the average mathematician, who has but little concern with the null class, and certainly does not
propose to build up the integers from it. The sensible thing to do seems to be to take for granted
certain noun-classes such as the integers, and possibly also the real numbers and the points of three-
dimensional space. In fact we may take as given noun-classes any classes of objects which, in
the branch of mathematics concerned are usually considered as given a priori. Such assumptions,
combined with the above three rules will be found quite adequate.

Although it is not intended that symbolic logic should take the place of English connecting
matter in proofs it is as well to be able to express anything symbolically if required. The usual form
of expression of ‘For all x, . . .’ is ‘(x) . . .’. As we have seen this is fundamentally unsound. Instead
we want a notation for ‘For all integers x, . . .’. For this I propose (x, Int). . ., where Int is the notation
used for the class of integers. Likewise we may use (∃x, Int) for ‘There exists an integer x’ and (x,
Int) for ‘The integer x’. It may also be desirable to have a notation for ‘The class of functions whose
arguments are integers and values real numbers’. No notation for this is suggested at the present
moment.

[the next 4 pages of the typescript are missing]

Discussion of the system and application to normal mathematics

Let us now try to picture what would happen if we try to develop such subjects as the theory of real
numbers or set theory in this system. How will it differ from the normal ‘straightforward rigorous’
development? Apart from the fact that implications etc. are symbolically expressed the only real
difference will be that instead of saying ‘for all x, . . .’ we shall have to say ‘for all x in segment
15.. .’ (say) which may be taken as the way we read (x, 15) . . . . Now in most cases the statements
to be transformed will be something more like ‘For all real numbers x, . . .’ or ‘For all x, if x is a
real number, then. . .’; in such a case it will not really be necessary to express the condition that
x belongs to any particular segment, for the real numbers will have already been defined so as
to be all included in some one segment. In all such cases therefore we agree to omit this phrase.
Likewise in descriptions instead of saying ‘The unique member of segment 15, which is a real
number and. . .’ we may say ‘The real number such that. . .’ on the ground that all real numbers are
members of segment 15. It may perhaps be objected that this omission will sometimes give wrong
results because the meaning of the formula may depend on the segment quoted. This is so, but it
will normally be the case that an increase in the values quoted will not affect the meaning of the
formula; by this I mean that the formula may be proved equivalent to any formula which can be
obtained from it by increasing the segment bounds. A formula without free variables, which can
be proved equal or equivalent to any formula obtained from it by increasing the segment bounds,
may be called a regular formula. It should be noticed that even if we had not explicitly excluded
them there would not usually be any reason for expecting formulae with free variables to be regular.
The explicit exclusion simplifies matters. We should try to avoid the use of formulae, which are
not regular. This can always be done essentially by the following device if necessary: suppose that
somewhere there occurs (x, s) and that increasing s alters the meaning; then we may write instead
(x, s)DsX ⊃ ·· · .

It may perhaps be argued that (x, r) . . .means just the same as (x)Drx⊃ ·· · , both being rendered
into English by the phrase ‘For all x in segment r . . .’ or ‘All members of segment r have the property
that. . .’ This is true, and the only reason for our using this different notation is that we thereby
automatically ensure that some condition Drx will be included in the proposition. It is perhaps
worth making a comparison here with the syntax of ordinary language, where we have two distinct
types of property, adjectives and nouns; the mathematician is inclined to regard this distinction as
unreal and arbitrary, and so in a sense it is, but it does have the effect that it is impossible to refer
to anything without associating a ‘noun property’ with it, and so if we compare the nouns with the
segments we see that ordinary language has a remarkable tendency to respect the theory of types.
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We can make use of this fact to help make mathematics sound from the point of type theory. If
each of the nouns used in mathematics defines a set completely contained in some segment, then
ordinary syntax will keep us straight. I shall not of course attempt to give a formal proof of this,
the informal character of language making it inappropriate: assuming however that this principle is
essentially correct let us go further and see how much modification in common practice will have
to be made; it actually amounts to surprisingly little. We have to be sure that the nouns used are
‘legitimate nouns’. It is probably best therefore to manage with comparatively few nouns. We can
make up some simple rules for the construction of legitimate nouns.

These rules may be taken to be
i) The set of functions of one noun that have values in another noun is a noun.

ii) The things, which are either one noun or another noun, may be collectively described by a
third.

iii) We may use a noun to describe a subset of the things described by another noun.

To this we might perhaps add that the word ‘individual’ may be used as a noun.
It may now be seen our nouns are essentially the ‘mengen’ of Zermelo and the ‘sets’ of Bernays

and of Gödel. However in this discussion I am not trying to set up a formal system, but merely
to suggest how normal rigorous mathematics can be made to take account of type theory without
serious upheaval.

A glance through a number of mathematical books provides the following examples of nouns.

a) Number, real number, integer, complex number, point, line, plane, manifold, operator, curve.
b) Group, ring, algebra, base, polynomial.
c) Set, class, pair, object, element.
d) Frontier, conjugate, derivative.
e) Integral, expression, equation, series, sequence, term.

The nouns listed under a) may be regarded as the most reasonable kind. Those under b) are like
those under a) but are more complex in meaning, and might in some contexts be used illegitimately.
Let us take the word group for example, and for the sake of argument let us pretend that it means
what is normally meant by ‘group of finite order’. If then we define a group as follows ‘A group is
a pair consisting of a finite class G of integers and a function K(x, y) defined for x and y in G, and
such that for all x, y, z in G, K(x, K(y, z))= K(K(x, y), z) and if K(x, y)= K(x, z) then y= z′ the
word group will be legitimate. If however the words ‘of integers’ are omitted such a wide range of
possibilities is admitted that the expression is no longer legitimate. Of course the inclusion of these
words does not vastly hamper group theory, but they are usually omitted for the sake of the extra
generality apparently obtained. It would of course also be legitimate to use instead of the phrase
‘of integers’ ‘of integers or classes of integers’ or restrict G by some other ‘legitimate noun’, but
to do so would not give the same intellectual satisfaction as leaving every possibility still open;
if however we take this last course the word group will not be a ‘legitimate noun’. The examples
given under c) are not normally legitimate unless used in such phrases as ‘set of points’, ‘pair of real
numbers’ etc. The word ‘object’ is of course the most serious offender, being in fact the outcome
of an attempt to evade the salutary restrictions of English syntax. The examples d) really represent
functions, because they are used in the form ‘the frontier of. . .’ etc. However these functions take
values restricted to one segment, and so may be regarded as legitimate. The examples e) may be
regarded as purely syntactical, i.e. they do not themselves describe mathematical entities, but rather
mathematical expressions, and therefore do not appear in the mathematical argument proper, and
may be ignored for our purposes.

The difficulty in the above example concerning ‘group of finite order’ may be resolved to some
extent by using the phrase ‘member of segment N’ in place of ‘integer’. It is then understood that
one is at liberty to substitute any object for N throughout the book (say).
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Examining the Work and Its Later Impact

Juliet Floyd explores —

TURING, WITTGENSTEIN AND TYPES:
PHILOSOPHICAL ASPECTS OF TURING’S

‘THE REFORM OF MATHEMATICAL NOTATION
AND PHRASEOLOGY’ (1944–5)

Turing is explicit that ‘the statement of the type principle’ in this essay ‘was suggested by lec-
tures of Wittgenstein’. The disputatious record of exchanges between them at Wittgenstein’s 1939
Cambridge lectures Diamond (1939) are deservedly well known, but Turing’s constructive uses of
Wittgensteinian ideas are not. The essay’s interest lies here, and in its articulation of a powerful
attitude toward the development of mathematical notation, an attitude that runs throughout Turing’s
and Wittgenstein’s works, but whose philosophical significance is easy to overlook.

Wittgenstein and Turing are often regarded, in a misleading caricature, as philosophical oppo-
nents. Wittgenstein is taken to be a humanistic philosopher of meaning and ‘forms of life’, hostile
to mathematical logic and the very idea of a Turing machine; Turing is taken to be a mechanistic or
behaviouristic theorist of the mind, intent on reducing the concept of meaning to that of information.
Neither picture is correct – see Floyd (2012).

Yet Wittgenstein and Turing shared, as they both explicitly acknowledged, a particular sort of
anti-reductionist attitude toward logical and conceptual analysis. On their view, it is the every-
day, purposeful uses we humans make of language that crucially animate and frame the notions of
meaning and information. Attention to ordinary ways of speaking is crucial for insight into, and
development of, those formal features of language that mathematical logicians are interested in sys-
tematising. As Turing put it already in 1933, in an undergraduate lecture to the Moral Sciences
Club, ‘The purely logistic view of mathematics is inadequate; mathematical propositions possess a
variety of interpretations, of which the logistic is merely one’ (Hodges, 1983, p. 86).

On this view, formal logic is simply one approach, a tool, neither good nor bad in itself. Its results
and significance should be articulable, ideally, in everyday scientific language, perspicuously and
intelligibly. Like Wittgenstein, Turing wished to ward off the ideal of a ‘cast-iron logical system into
which all the mathematics of the future are to be expressed’. Though a standardised notation ‘may’
be used in particular cases, transparency, opportunistic pluralism and usefulness for communication
in an informal sense are essential factors to consider in the design of notations.

This is far from the sort of logistic purity of method embraced in Carnap’s 1934 proposal to
transform philosophy into the logical syntax of the language of science via a generalisation of
Hilbert’s axiomatic method (Carnap, 2002). It is also distinct from the kind of information-theoretic
reductionism that construes Shannon’s isolation of a (quantitative) notion of information (a notion
purged of any articulable relation to the notion of meaning) as utterly fundamental.

Turing was perfectly aware of the importance of notational precision for rigor, and this essay
is intended to make a contribution to the use of formal logic. He hopes to revitalise the ‘liaison’
between the logician and ‘the mathematician-in-the-street’. But his attitude towards the development
and use of notation is, as he says, Wittgensteinian in flavor: look to everyday uses. Mathematical
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logicians have, Turing says, shown insufficient interest in explaining to ordinary mathematicians the
significance of what they do: for most ordinary mathematicians symbolic logic is ‘a very alarming
mouthful’. Turing’s means to a newfound liaison will be through an analysis of everyday (mathe-
matical and other) language. By this means a number of lessons may be drawn ‘without it being
necessary for [a mathematician] to learn very much of symbolic logic’.

Turing’s aim is to show that ‘normal rigorous mathematics’ can take account of the theory of
types without ‘serious upheaval’. ‘We are taught’, he says, ‘that the theory of types is necessary for
the avoidance of paradoxes, but we are not usually taught how to work the theory of types into our
day-to-day mathematics: rather we are encouraged to think that it is of no practical importance for
anything but symbolic logic’. This he wishes to change.

He assumes that a ‘Russellian Weltanschauung’ with regard to the theory of types is charac-
teristic of ‘the majority of mathematicians-in-the-street’. But he takes the elucidation of types to
originate in, and apply to, everyday language, which, unlike Russell, he respects as a locus of mean-
ing. In English, a chair may be said to be heavy, but not (in the same sense) a baby’s smile. A group
may be said to be non-abelian or Lie, but not said to be composed of integers alone. We do not won-
der whether the number one may or may not be identical with Barack Obama. Everyday language,
even in mathematics, distinguishes between nouns and adjectives, arriving on the scene already
typed, as the quantitative notion of information does not. This, for Turing, is logically relevant in a
fundamental way.

The method Turing endorses turns on accepting an ‘exceedingly mild’ set of minimal require-
ments on notations – mild in the sense that they may be seen to grow naturally out of everyday
ways of speaking in mathematics but may allow for the development of notations as complicated
or detailed as one might like. As the first step, one conducts ‘an extensive examination of current
mathematical and physical and engineering books and papers with a view to listing all commonly
used forms of notation’, examining these to discover ‘what they really mean’, that is, what ‘implicit
understandings as between writer and reader’ are at work. Then one develops types from there.

Turing’s Wittgensteinian approach to types offers a piecemeal conception of the justification of
notations, differing markedly from that of Carnap or Quine. They looked for the development of
notations to rationally reconstruct the ontological and metaphysical commitments of entire theories,
languages or conceptual schemes as a whole. On the view Turing shares with Wittgenstein, our
everyday ways of speaking and using language forms the place from which we begin, and the place
where we must end in developing formal systems. Interface with linguistic practice is fundamental
for the logician.

For this reason, Turing singles out the deduction theorem as a fundamental rule. This is not
only because it gives an assurance of the existence of rigorous formal derivations as counterparts to
metatheoretic claims, but because it illustrates in practice the importance of the interplay between
claims to theoremhood and formal derivations. Its use legitimates the informal but perspicuous
articulation of results by relieving us of the burden of having actually to write down every step of
the formal derivation when we accept the metatheoretic claim.

According to Gandy (2001), at the time he wrote this essay (1944), Turing was reading Quine’s
Mathematical Logic (1940) and took a strong dislike to what he regarded as the needlessly arcane
quality of Quine’s attention to syntax. Neither Russell in Principia nor Quine formulate the deduc-
tion theorem, for they interpret ‘B can be logically derived from A’ as ` A⊃ B. Thus, the steps in a
proof which would in everyday mathematical language be regarded as derivations from hypotheses
are instead assumed always to take the form A1 ⊃ A2 ⊃ A3 ⊃ . . .B, where the Ai are the hypotheses
or in force. By contrast Turing takes the theorem as a primitive rule.

A key practical role the deduction theorem plays in Turing’s eyes is its clarifying the ‘subtle’
roles of the free and the bound variable. For it can be used, through ‘absorption’ of hypotheses,
to make explicit assumptions governing the (informal or formal) use of parameters. The problem
had led Wittgenstein to conceive the role of certain apparent concept words (e.g. number words)
as grammatical rules concerning the use of variables, rather than second-order functions taking
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arbitrary concepts or properties as inputs (Wittgenstein, 1974, p. 348). The idea was to take all
uses of free variables to be governed, implicitly or explicitly, by parameters and/or types. Turing
uses the fact that a quantifier as used in ‘normal’ mathematics generally assumes parameters to
motivate his recognition of the deduction theorem’s central role and to develop Wittgenstein’s idea
in a constructive direction.

He shows, giving several everyday examples from mathematics, how free variables (e.g. ‘x= x’)
can in practice be eliminated in favour of typed bindings (e.g. ‘for all real numbers x, x= x’). There
is no expressive loss, he argues, because the general notion of a ‘thing’ or ‘object’ is, as Wittgen-
stein always maintained, a ‘serious offender’, having (anyway so far) no ordinary mathematical
use or point.

Turing’s proposals require, just as Wittgenstein’s do, an intensional understanding of the uses
of quantifiers. Frege worried that using his equivalence class construction for the natural numbers
invited the question whether the number one is or might possibly turn out to be identical to Julius
Caesar. Turing’s proposed solution is to take noun-classes as basic. For example, instead of ‘All
things. . .’ or ‘For all things x, if x is a real number. . .’ we may say ‘All real numbers x have the
property . . . ’. This, as Wittgenstein argued in the lectures Turing attended (Diamond, 1939, p. 167),
is closer to ordinary usage and avoids numerous confusions. Turing lays out rules governing the use
of ‘noun-classes’ echoing basic axioms of set theory (versions of union, separation and power set).
The final section of the paper, an ‘application to normal mathematics’, discusses ‘regular’ formulae
that may be proved to hold when lifted into wider domains. General notions like ‘group’, Turing
admits, will not be expressible by means of a ‘legitimate’ noun. This, he thinks, ‘does not vastly
hamper group theory’, for it leaves us with a choice: we can leave every possibility open (and have
the notion of ‘group’ not counted as a legitimate noun) or we can restrict the noun to a specific
domain (‘group of integers’) in which case it is admissible.

Turing realises that his account ‘leaves open’ the question as to what are to be regarded as
appropriate nouns to take the place of specific domains used to type statements (‘real number’,
‘abelian group’). But he remarks, here ‘a fairly common sense basis’ would ‘probably’ serve.

Is this a philosophically appropriate remark? Actually, Turing took what he repeatedly called
‘common sense’ quite seriously. Discussion of this arose explicitly with Wittgenstein, when Turing
suggested that he appeared to be relying on common sense in his philosophical remarks (Diamond,
1939, p. 219ff). Though Wittgenstein savagely denied this at first, he revisited the issue more sympa-
thetically in the next lecture, admitting that he did want to say something ‘similar’ to this (p. 223ff).

In an essay (Turing, 1954) published in the last year of his life, Turing states that one implication
of the incompleteness theorems is that an appeal to common sense is inevitable for a mathematician:

These [limitative] results, and some other results of mathematical logic may be regarded as
going some way towards a demonstration, within mathematics itself, of the inadequacy of
‘reason’ unsupported by common sense.

Wittgenstein sought other ways of articulating the significance of incompleteness results and was
inclined to subject the notion of ‘common sense’ to critical scrutiny. But he shared with Turing
an ideal of rigor that included concrete attention to what makes sense by the lights of our current
purposes, needs and uses of language.

Rather than a ‘common sense basis’ for developing mathematics, one might emphasise the value
for mathematics and science of making ‘very clear statements of the fundamental nature of the
symbols’, as Turing calls for here. This strong value placed on the vernacular, on lucidity and
communicability, on perspicuity, is one that Turing and Wittgenstein shared. Turing was a master
simplifier. His analysis of computability by means of the notion of Turing machine is more vivid,
more pertinent and (as Gödel himself maintained) more epistemologically satisfying than Church’s
or Gödel’s extensionally equivalent demarcations of the class of recursive functions (Gödel, 1986,
p. 195). This is because, as a way of thinking, it is not entangled with the limitations of any particular
formal system. It is everyday, perspicuous, simple, direct or ‘common sensical’.
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What was wanted, in the context in which Turing developed the notion of a Turing machine,
was a clarification. To resolve Hilbert’s famous Entscheidungsproblem what was required was not
merely the development of a new formal system, but a way of thinking about what formal systems
are and are used for. What was needed was a persuasive (perspicuous) analysis of the notion of a
formal system itself, that is, of a ‘definite method’ in a sense relevant to the problem context, i.e. to
the notion of a ‘mechanical’ or ‘effective’ ‘procedure’ that can be carried out by human beings, with
only limited cognitive steps (recognising a symbolic configuration, seeing that one of finitely many
rules applies, shifting attention stepwise to a new symbolic configuration and so on). An analysis
like Turing’s that intuitively analyses the very notion of a formal system by drawing an analogy
with certain limited aspects of possible human cognitive activity was precisely what was wanted.
The Turing machine offers us that way of thinking. It plays a role analogous to what Wittgenstein
called a ‘language game’: a simplified snapshot of a portion of human use of language, designed for
a particular purpose, to shed light on meaning.

It is sometimes held (for example, by Gödel (1990, p. 306)) that Turing’s analogy with a human
computer, drawing on the assumption that a (human) computer scans and works with only a finite
number of symbols and/or states, involves strong and questionable metaphysical, epistemological
and/or psychological assumptions that Turing relied upon to justify his analysis. And it is quite cor-
rect that at one pivotal point in developing the analysis in his famous paper, Turing claims that a
human computer can recognise only a bounded number of different discrete configurations ‘at a
glance’, or ‘immediately’, because human memory is limited (Turing, 1937, p. 231). But from the
perspective adopted here, this is hardly a metaphysically or epistemologically loaded remark. Tur-
ing is only resting upon an everyday observation, and not a theory. He is simply making explicit
certain characteristic features earmarking the concept that is being analysed in the Hilbertian con-
text, namely, the idea of a human making a recogniseable step in a computation or a formal system, a
human following a ‘definite procedure’ or rule in the relevant sense. His simplification does not turn
on a thesis in philosophy of mind or mathematics, nor is it a psychological theory of what is ‘really
going on’ in our minds when we compute. Instead, it is a model for clarification, taken up in a spirit
analogous to Wittgenstein’s idea that a proof must be perspicuous (Übersichtlich, Übersehbar), an
idea about which Wittgenstein wrote a great deal after Turing attended his lectures (Wittgenstein,
1978, Part III).
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Part II

Hiding and Unhiding Information:
Cryptology, Complexity and Number Theory
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On the Gaussian error function
(Fellowship Dissertation (1935), unpublished)

Sandy L. Zabell delivers an authoritative guide to —

ALAN TURING

AND THE CENTRAL LIMIT THEOREM1

Although the English mathematician Alan Mathison Turing (1912–1954) is remembered today pri-
marily for his work in mathematical logic (Turing machines and the ‘Entscheidungsproblem’),
machine computation and artificial intelligence (the ‘Turing test’), his name is not usually thought
of in connection with either probability or statistics. One of the basic tools in both of these subjects
is the use of the normal or Gaussian distribution as an approximation, one basic result being the
Lindeberg-Feller central limit theorem taught in first-year graduate courses in mathematical prob-
ability. No one associates Turing with the central limit theorem, but in 1934, Turing, while still
an undergraduate, rediscovered a version of the Lindeberg central limit theorem and much of the
Feller-Lévy converse to it (then unpublished).

1. Introduction

Turing went up to Cambridge as an undergraduate in the Fall Term of 1931, having gained a scholar-
ship to King’s College. (Ironically, King’s was his second choice; he had failed to gain a scholarship
to Trinity.) Two years later, during the course of his studies, Turing attended a series of lectures on
the Methodology of Science, given in the autumn of 1933 by the distinguished astrophysicist Sir
Arthur Stanley Eddington. One topic that Eddington discussed was the tendency of experimental
measurements subject to errors of observation to often have an approximately normal or Gaussian
distribution. But Eddington’s heuristic sketch left Turing dissatisfied; and Turing set out to derive a
rigorous mathematical proof of what is today termed the central limit theorem for independent (but
not necessarily identically distributed) random variables.

Turing succeeded in his objective within the short span of several months (no later than the end
of February 1934). Only then he did find out that the problem had already been solved, 12 years
earlier, in 1922, by the Finnish mathematician Jarl Waldemar Lindeberg (1876–1932). Despite this,
Turing was encouraged to submit his work, suitably amended, as a Fellowship Dissertation. (Turing
was still an undergraduate at the time; persons seeking to become a Fellow at a Cambridge college
had to submit evidence of original work, but did not need to have a Ph.D. or its equivalent.) This
revision, entitled ‘On the Gaussian Error Function’, was completed and submitted in November,
1934. On the strength of this paper, Turing was elected as a Fellow of King’s 4 months later (March
16, 1935) at the age of 22; his nomination supported by the group theorist Philip Hall and the
economists John Maynard Keynes and Alfred Cecil Pigou. Later that year, the paper was awarded
the prestigious Smith’s prize by the University (see Hodges, 1983).

1Turing’s dissertation was not published. Only the Preface is reproduced here and in the Collected Works. A scan of the
complete original dissertation is in the Turing Digital Archive.
Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00010-2
c© 2013 Elsevier Inc. All rights reserved.
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Turing never published his paper. Its major result had been anticipated, although, as will be seen,
it contains other results that were both interesting and novel at the time. But in the interim, Turing’s
mathematical interests had taken a very different turn, to mathematical logic, and thus Turing turned
from mathematical probability, never to return.

2. The central limit theorem

The earliest version of the central limit theorem (CLT) is due to Abraham de Moivre (1667–1754).
If X1,X2,X3, . . . is an infinite sequence of 1s and 0s recording whether a success (Xn = 1) or failure
(Xn = 0) has occurred at each stage in a sequence of repeated trials, then the sum Sn := X1+X2+

·· ·+Xn gives the total number of successes after n trials. If the trials are independent, and the
probability of a success at each trial is the same, say P[Xn = 1]= p,P[Xn = 0]= 1− p, then the
probability of seeing exactly k successes in n trials has a binomial distribution:

P[Sn = k]=
n!

k!(n− k)!
pk(1− p)n−k.

If n is large (e.g., 10,000), then as de Moivre noted, the direct computation of binomial proba-
bilities ‘is not possible without labour nearly immense, not to say impossible’; and for this reason,
he turned to approximate methods (see Diaconis and Zabell, 1991): using Stirling’s approximation
(including correction terms) to estimate the individual terms in the binomial distribution and then
summing, de Moivre discovered the remarkable fact that

lim
n→∞

P

[
a≤

Sn− np
√

np(1− p)
≤ b

]
=

1
√

2π

b∫
a

exp

[
−

1

2
x2
]

dx;

or 8(b)−8(a), where 8(x) is the cumulative distribution function of the standard normal (or
Gaussian) distribution:

8(x) :=
1
√

2π

x∫
−∞

exp

[
−

1

2
t2
]

dt.

During the 19th and 20th centuries, this result was extended far beyond the simple coin toss-
ing setup considered by de Moivre, important contributions being made by Laplace, Poisson,
Chebyshev, Markov, Liapunov, von Mises, Lindeberg, Lévy, Bernstein and Feller; see Le Cam
(1986), Stigler (1986) and Hald (1998) for further historical information. Such investigations
revealed that if X1,X2,X3, . . . is any sequence of independent random variables having the same
distribution, then the sum Sn satisfies the CLT provided suitable centering and scaling constants
are used: the centering constant np in the binomial case is replaced by the sum of the expectations
E[Xn]; the scaling constant

√
np(1− p) is replaced by the square root of the sum of the variances

Var[Xn] (provided these are finite).
Indeed, it is not even necessary for the random variables Xn contributing to the sum Sn to have the

same distribution, provided that no one term dominates the sum. Of course this has to be made pre-
cise. The best result is due to Lindeberg. Suppose E[Xn]= 0,0< Var[Xn]<∞,s2

n := Var[Sn], and

3n(ε) :=
n∑

k=1

E

[(
Xk

sn

)2

:
|Xk|

sn
≥ ε

]
.

(The notation E[X;Y ≥ ε] means the expectation of X is restricted to outcomes ω, such that
Y(ω)≥ ε). The Lindeberg condition is the requirement that

3n(ε)→ 0, ∀ε > 0; (2.1)
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and the Lindeberg central limit theorem (Lindeberg, 1922) states that if the sequence of random
variables X1,X2, . . . satisfies the Lindeberg condition (2.1), then for all a< b,

lim
n→∞

P

[
a≤

Sn

sn
≤ b

]
=8(b)−8(a). (2.2)

Despite its technical appearance, the Lindeberg condition (2.1) turns out to be a natural sufficient
condition for the CLT. There are two reasons for this. First, the Lindeberg condition has a simple
consequence: if σ 2

k := Var[Xk], then

ρ2
n :=max

k≤n

(
σ 2

k

s2
n

)
→ 0. (2.3)

Thus, if the sequence X1,X2,X3, satisfies the Lindeberg condition, the variance of an individual term
Xk in the sum Sn is asymptotically negligible. Second, for such sequences, the Lindeberg condition
is necessary as well as sufficient for the CLT to hold, a beautiful fact discovered (independently) by
William Feller and Paul Lévy in 1935. In short: (2.1)↔ (2.2) + (2.3).

If, in contrast, the Feller–Lévy condition (2.3) fails, then it turns out that convergence to the
normal distribution can only occur in a fashion markedly different from that of the CLT. If the
Feller–Lévy condition fails, then there exists a number ρ > 0, and two sequences of positive integers
{mk} and {nk}, such that {mk} is strictly increasing,

1≤ mk ≤ nk for all k, and Var

[
Xmk

snk

]
=
σ 2

mk

s2
nk

→ ρ2 > 0. (2.4)

Feller (1937) showed that if normal convergence occurs (that is, condition (2.2) holds), but
condition (2.4) also obtains, then (‘⇒’ denoting convergence in distribution, N(µ.σ 2) the normal
distribution with mean µ, variance σ 2)

1

ρ

Xmk

snk
⇒ N(0,1).

That is, there exists a subsequence Xmk whose contributions to the sums Sn are non-negligible
(relative to sn) and which, properly scaled, converges to the standard normal distribution.

3. Turing’s fellowship dissertation

3.1. Basic structure of the paper

The first seven sections of the paper (pp. 1–6) summarise notation and the basic properties of dis-
tribution functions. Section 1 summarises the problem; Section 2 defines the distribution function
F (abbreviated DF) of an ‘error’ ε; Section 3 summarises the basic properties of the expectation
and mean square deviation (MSD) of a sum of independent errors; rigorous proofs in terms of the
distribution function are given in Appendix C at the end of the paper. Section 4 discusses the distri-
bution function of a sum of independent errors, the sum distribution function (SDF), in terms of the
distribution functions of each term in the sum, and derives the formula for F⊕G, the convolution
of two distribution functions. Section 5 then introduces the concept of the shape function (SF); the
standardisation of a distribution function F to have zero expectation and unit MSD; thus, if F has
expectation µ and MSD σ 2(σ > 0), then the shape function of F is U(x) := F(σ (x−µ)). (Turing
uses the symbols ‘a’ and ‘k2’ to denote µ and σ 2; several other minor changes in notation of this
sort are used below.)
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In Section 6, Turing then states the basic problem to be considered: given a sequence of errors
εk, having distribution functions Gk, shape functions Vk, means µk, mean square deviations σ 2

k ,
sum distribution functions Fn and shape functions Un for each Fn, under what conditions do the
shape functions Un(x) converge uniformly to 8(x), the ‘SF of the Gaussian Error’? Turing then
assumes for simplicity thatµk = 0 and σ 2

k <∞. In Section 7 (Fundamental Property of the Gaussian
Error), he notes the only properties of 8 that are used in deriving sufficient conditions for normal
convergence are that it is an SF, and the self-reproductive property of8: that is, if X1 ∼ N(0,σ 2

1 ) and
X2 ∼ N(0,σ 2

2 ) are independent, then X1+X2 ∼ N(0,σ 2
1 + σ

2
2 ). (The notation X ∼ N(µ,σ 2) means

that the random variable X has the distribution N(µ,σ 2).)

3.2. The Quasi–necessary conditions

It is at this point that Turing comes to the heart of the matter. In Section 8 (The Quasi-Necessary
Conditions), Turing notes

The conditions we shall impose fall into two groups. Those of one group (the quasi–necessary
conditions) involve the MSDs only. They are not actually necessary, but if they are not
fulfilled Un can only tend to 8 by a kind of accident.

The two conditions that Turing refers to as the ‘quasi–necessary conditions’ are:

∞∑
k=1

σ 2
k =∞ and

σ 2
n

s2
n
→ 0. (3.1)

It is easy to see that Turing’s condition (3.1) is equivalent to condition (2.3). (That (2.3) ⇒ (3.1)
is immediate. To see (3.1)⇒ (2.3) : given ε > 0, choose M ≥ 1 so that σ 2

n /s
2
n < ε for n≥M, and

N ≥M so that s2
k/s

2
N < ε for 1≤ k ≤M; if n≥ N, then σ 2

k /s
2
n < ε for 1≤ k ≤ n.)

In his Theorems 4 and 5, Turing explores the consequences of the failure of either part of
condition (3.1). Turing’s proof of Theorem 4 requires his

Theorem 3.1. If X and Y are independent, and both X and X+Y are Gaussian, then Y is
Gaussian.

This is a special case of a celebrated theorem proven shortly thereafter by Harald Cramér (1936);
if X and Y are independent, and X+Y is Gaussian, then both X and Y must be Gaussian. Lévy had
earlier conjectured Cramér’s theorem to be true (in 1928 and again in 1935) but had been unable
to prove it. Cramér’s proof of this result in 1936 in turn enabled Lévy to arrive at necessary and
sufficient conditions for the CLT of a very general type (using centering and scaling constants other
than the mean and standard deviation), and this in turn led Lévy to write his famous monograph,
Théorie de l’Addition des Variables Aléatoires (Lévy, 1937); see Le Cam (1986, pp. 80–81, 90).

Cramér’s theorem is a hard fact; his original proof appealed to Hadamard’s theorem in the theory
of entire functions. The special case of the theorem needed by Turing is much simpler; it is an
immediate consequence of the characterisation theorem for characteristic functions. To see this, let
φX(t) := E[exp(itX)] denote the characteristic function of a random variable X; and suppose that
X and Y are independent, X ∼ N(0,σ 2) and X+Y ∼ N(0,σ 2

+ τ 2). Then

exp

(
−
σ 2
+ τ 2

2
t2
)
= φX+Y(t)= φX(t)φY(t)= exp

(
−
σ 2

2
t2
)
φY(t),

hence φY(t)= exp(−τ 2t2/2); thus, Y ∼ N(0,τ 2) because the characteristic function of a random
variable uniquely determines the distribution of that variable. Turing’s proof, which uses distribution
functions, is not much longer.
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It is an immediate consequence of Cramér’s theorem that if Sn/sn⇒ N(0,1), but limn→∞ s2
n <

∞, then all the summands Xj must in fact be Gaussian. But Turing did not have this fact at his
disposal, only his much weaker Theorem 3. His Theorem 4 (phrased in the language of random
variables) thus makes the much more limited claim that if (a)

∑
σ 2

n <∞, (b) Sn converges to a
Gaussian distribution, and (c) X0 is a random variable at once independent of the original sequence
X1,X2, . . . and having a distribution other than Gaussian, then the sequence S∗n = X0+ Sn cannot
converge to the Gaussian distribution. In other words, if

∑
σ 2

n <∞, then ‘the convergence . . . to
the Gaussian is so delicate that a single extra term in the sequence . . . upsets it’ (p. 17).

Turing’s Theorem 5 in turn explores the consequences of the failure of (3.1) in the case that∑
σ 2

n =∞, but ρ2
n := σ 2

n /s
2
n does not tend to zero as n→∞. The statement of the theorem is

somewhat technical in nature, but Turing’s later summary of it captures the essential phenomenon
involved:

If Fn [the distribution function of Sn] tends to Gaussian and σ 2
n /s

2
n does not tend to zero [but∑

σ 2
n =∞] we can find a subsequence of Gn [the distribution function of Xn] tending to

Gaussian.

Thus, Turing had by some 2 years anticipated Feller’s discovery of the subsequence phe-
nomenon. (In Turing’s typescript, symbols such as ‘Fn’ are entered by hand; in the above quotation,
the space for ‘Fn’ has by accident been left blank, but the paragraph immediately preceding this one
in the typescript makes it clear that ‘Fn’ is intended.)

3.3. The sufficient conditions

Turing states in his preface that he had been ‘informed that an almost identical proof had been
given by Lindeberg’. This comment refers to the method of proof used by Turing and not the result
obtained. Turing’s method is to smooth the distribution functions Fn(x) of the sum by forming
the convolution Fn ∗8(x/ρ), expand the result in a Taylor series to third order and then let the
variance ρ2 of the convolution term tend to zero. This is similar to the method employed by Lin-
deberg. (There is an important difference, however: Turing does not use Lindeberg’s ‘swapping’
argument. For an attractive modern presentation of the Lindeberg method, see Breiman (1968, pp.
167–170); for discussion of the method, Pollard’s comments in Le Cam (1986, pp. 94–95.)) Turing
does not, however, succeed in arriving at the Lindeberg condition (2.1) as a sufficient condition for
convergence to the normal distribution; the most general sufficient condition he gives (on p. 27) is
complex in appearance (although it necessarily implies the Lindeberg condition). Turing concedes
that his ‘form of the sufficiency conditions is too clumsy for direct application’, but notes that it
can be used to ‘derive various criteria from it, of different degrees of directness and of compre-
hensiveness’ (p. 28). One of these holds if the summands Xk all have the same shape (that is, the
shape functions Vk(x) := P[Xk/σk ≤ x] coincide) and thus includes the special case of identically
distributed summands having a second moment. (This was no small feat, because even this special
case of the more general Lindeberg result had eluded proof until the publication of Lindeberg’s
paper.)

One formulation of this criterion, equivalent to the one actually stated by Turing, is that there
exists a function J : R+→ R+, such that limt→∞ J(t)= 0, and

E

[(
Xk

σk
− t

)2

;

∣∣∣∣Xk

σk

∣∣∣∣≥ t

]
≤ J(t) for all k ≥ 1, t ≥ 0. (3.2)

In turn, one simple sufficient condition for this given by Turing (pp. 30–31) is that there exists

a function φ, such that φ(x) > 0 for all x, limx→±∞φ(x)=∞, and supk E

[(
Xk
σk

)2
φ
(

Xk
σk

)]
<∞.
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(Note that unfortunately one important special case not covered by either of these conditions is that
the Xk are uniformly bounded: |Xk| ≤ C for some C > 0 and all k ≥ 1.)

In assessing this portion of Turing’s paper, it is important to keep two points in mind. First,
Turing states in his preface that ‘since reading Lindeberg’s paper, I have for obvious reasons made
no alterations to that part of the paper which is similar to his’. The manuscript is thus necessarily
incomplete; it presumably would have been further polished and refined had Turing continued to
work on it; the technical sufficient conditions given represent how far Turing had gotten on the prob-
lem prior to seeing Lindeberg’s work. Second, in 1934, the Lindeberg condition was only known to
be sufficient, not necessary; thus even in discussing his results in other sections of the paper (where
he felt free to refer to the Lindeberg result), it may not have seemed important to Turing to con-
trast his own particular technical sufficient conditions with those of Lindeberg; the similarity in the
method must have seemed far more important.

3.4. One counterexample

In Section 14, Turing concludes by giving a simple example of a sequence X1,X2, . . . that satisfies
the quasi-necessary conditions (3.1), but not the CLT. This example turns out to be quite interesting;
see Zabell (1995).

4. Discussion

I. J. Good (1980, p. 34) has remarked that when Turing ‘attacked a problem he started from first
principles, and he was hardly influenced by received opinion. This attitude gave depth and original-
ity to his thinking, and also it helped him to choose important problems’. This observation is nicely
illustrated by Turing’s work on the CLT. His dissertation is, viewed in context, a very impressive
piece of work. Coming to the subject as an undergraduate, his knowledge of mathematical prob-
ability was apparently limited to some of the older textbooks such as ‘Czuber, Morgan Crofton
and others’ (Preface, p. ii). Despite this, Turing immediately realized the importance of working
at the level of distribution functions rather than densities; developed a method of attack similar to
Lindeberg’s; obtained useful sufficient conditions for convergence to the normal distribution; iden-
tified the conditions necessary for true central limit behaviour to occur; understood the relevance
of a Cramér-type factorisation theorem in the derivation of such necessary conditions; and discov-
ered the Feller subsequence phenomenon. If one realizes that the defects of the paper, such as they
are, must largely reflect the fact that Turing had ceased to work on the main body of it after being
apprised of Lindeberg’s work, it is clear that Turing had penetrated almost immediately to the heart
of a problem whose solution had long eluded many mathematicians far better versed in the subject
than he. (It is interesting to note that Lindeberg was also a relative outsider to probability theory and
only began to work in the field a few years before 1922.)

It is also interesting to note Turing’s approach to the problem in terms of convolutions of distri-
bution functions rather than sums of independent random variables. Feller had similarly avoided the
use of the language of random variables in his 1935 paper, formulating the problem instead in terms
of convolutions. The reason, as Le Cam (1986, p. 87) notes, was that ‘Feller did not think that such
concepts [as random variable] belonged in a mathematical framework. This was a common attitude
in the mathematical community’.
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Turing’s ‘Preface’ (1935) to
‘On the Gaussian error function’

The object of this paper is to give a rigorous demonstration of the “limit theorem of the theory of
probability”. I had completed the essential part of it by the end of February 1934 but when con-
sidering publishing it I was informed that an almost identical proof had been given by Lindeberg1.
The only important differences between the two papers is that I have introduced and laid stress on
a type of condition which I call quasi-necessary (Section 8). We have both used “distribution func-
tions” (§2) to describe errors instead of frequency functions (Appendix B) as was usual formerly.
Lindeberg also uses (D) of §12 and Theorem 6 or their equivalents.

Since reading Lindeberg’s paper I have for obvious reasons made no alterations to that part of
the paper which is similar to his (viz. §9 to §13), but I have added elsewhere remarks on points of
interest and the appendices.

So far as I know the results of §8 have not been given before. Many proofs of the completeness of
the Hermite functions are already available (footnote, p.33) but I believe that that given in Appendix
A is original. The remarks in Appendix B are probably not new. Appendix C is nothing more than
a rigorous deduction of well-known facts. It is only given for the sake of logical completeness and
it is of little consequence whether it is original or not.

My paper originated as an attempt to make rigorous the “popular” proof mentioned in Appendix
B. I first met this proof in a course of lectures by Prof. Eddington. Variations of it are given by
Czüber, Morgan, Crofton and others. Beyond this I have not used the work of others or other sources
of information in the main body of the paper, except for elementary matter forming part of one’s
general mathematical education, but in the appendices I may mention Liapounoff’s papers which I
discuss there.

I consider §9 to §13 is by far the most important part of this paper, the remainder being comment
and elaboration. At a first reading therefore §8 and the appendices may be omitted.

1 Math. Z. 15 (1922).
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Some Calculations of the Riemann
Zeta function

(Proc. Lond. Math. Soc., series 3 vol. 3 (1953), pp. 99–117)

On a Theorem of Littlewood
(Unpublished manuscript, with S. Skewes, c.1952–53)

Dennis Hejhal and Andrew Odlyzko take an in-depth
look at —

ALAN TURING
AND THE RIEMANN ZETA FUNCTION

1. Introduction

Turing encountered the Riemann zeta function as a student and developed a life-long fascination
with it. Though his research in this area was not a major thrust of his career, he did make a number
of pioneering contributions. Most have now been superseded by later work, but one technique that
he introduced is still a standard tool in the computational analysis of the zeta and related functions.
It is known as Turing’s method and keeps his name alive in those areas.

Of Turing’s two published papers (Turing, 1943, 1953) involving the Riemann zeta function
ζ(s), the second1 is the more significant. In that paper, Turing reports on the first calculation of
zeros of ζ(s) ever done with the aid of an electronic digital computer. It was in developing the
theoretical underpinnings for this work that Turing’s method first came into existence.

Our primary aim in this chapter is to provide an overview of Turing’s work on the zeta func-
tion. The influence that interactions with available technology and with other researchers had
on his thinking is deduced from Turing (1943, 1953) as well as some unpublished manuscripts of his
(available in Turing (1992)) and related correspondence, some newly discovered. To minimise any
overlap with other chapters, we do not discuss Turing’s contributions to computing in general,
even though they did influence the work on ζ(s) that he and those who followed in his footsteps
carried out.

The recent survey article of Booker (2006) has a significant overlap with what we say here and
is highly recommended as a collateral ‘read’.

2. Recollection of some basics

The Riemann zeta function ζ(s) is defined for complex s with Re(s) > 1 by

ζ(s)=
∞∑

n=1

1

ns
. (2.1)

1 Some calculations of the Riemann Zeta function, reproduced below.
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This function can be extended analytically to the entire complex plane except for the point s= 1,
at which there is a pole of order one. The extended function, which is again denoted by ζ(s), has so-
called trivial zeros at s=−2,−4,−6, . . . . The other zeros, called nontrivial zeros, are also infinite in
number and lie inside the critical strip 0< Re(s) < 1. The Riemann hypothesis (RH) is the assertion
that all the nontrivial zeros ρ lie in the centre of the critical strip, i.e., on the critical line Re(s)= 1

2 .
Any ρ’s lying off the critical line necessarily occur in symmetric quadruplets {ρ, ρ̄,1− ρ,1− ρ̄}.

The RH is widely regarded as the most famous unsolved problem in mathematics. It was one of
the 23 famous problems selected by Hilbert in 1900 as among the most important in mathematics,
and it is one of the seven Millennium Problems selected by the Clay Mathematics Institute in 2000
as the most important for the 21st century (Clay, 2000). For general background on the RH, we
shall be content to cite the survey article by Conrey (2003) and Clay (2000). For more technical
information about the zeta function, see Titchmarsh (1985).

The RH was posed by Bernhard Riemann in 1859. (See Clay (2000) for a copy of Riemann’s
paper and an English translation.) The importance of the RH stems from the connection observed
by Riemann between primes and the non-trivial zeros of the zeta function. If, as usual, we let π(x)
be the number of primes up to x, then Riemann showed that (for x = 2)

π(x)= Li(x)−
1

2
Li(x1/2)−

∑
ρ

Li(xρ)+W(x), (2.2)

where Li(x) is the logarithmic integral, a nice and smoothly growing function, and W(x) is of lower
order (relative to the three earlier summands). The terms Li(xρ) are special cases of the classical
analytic function Ei(ξ) defined for Im(ξ) 6= 0, which differs insignificantly from eξ/ξ whenever
|ξ | � 1. One simply puts ξ = ρ ln(x) for each ρ.

The main difficulty in using Eq. (2.2) to estimate π(x) is that the series is not absolutely con-
vergent. Since π(x) is a step function, and the individual terms on the right side of Eq. (2.2) are
continuous at each prime number p, the sum behaves somewhat like a Fourier series in producing
the discontinuities of π(x). Another difficulty is that the sizes of the individual terms depend on the
locations of the non-trivial zeros ρ.

The leading term in Eq. (2.2), Li(x), grows like x/ln(x) as x→∞. The Prime Number Theorem,
first proved in 1896 by Hadamard and de la Vallée Poussin using properties of zeros of the zeta
function, tells us that asymptotically π(x) grows like Li(x); hence like x/ln(x). The RH has been
shown to be equivalent to the difference function |π(x)−Li(x)| being bounded by a quantity close
to
√

x, where close means within logarithmic factors or (what amounts to the same thing) the square
root of the leading term in Eq. (2.2).

In his famous 1859 paper, Riemann asserted that most non-trivial zeros of the zeta function are
on the critical line and that it was likely that all of them lie there (which is what we now refer to as
the RH). Riemann did not provide even a hint of a proof for the first, positive, assertion. It remains
unproved to this day, although it is believed to be true, even by those who are skeptical of the truth
of the RH. The RH itself is known to be true for the first 1013 non-trivial zeros, as well as large
blocks of zeros much higher up, including some around zero number 1024.

At the end of his paper, Riemann also discussed another conjecture that played a significant
part in Turing’s research, namely π(x) < Li(x). As Riemann noted, computations by Gauss and
Goldschmidt had established the validity of this inequality for x< 105, and if the series over the
non-trivial zeros ρ in Eq. (2.2) was nicely behaved, the difference Li(x)−π(x) would tend to grow
roughly like

√
x/ln(x). From the tone of Riemann’s presentation, it appears that he suspected that

the inequality π(x) < Li(x) might well be true generally. (We say ‘suspected’ because Riemann’s
wording is vague.)

Today, we know that π(x) < Li(x) holds not just for x< 105, but even for x< 1014. In 1914,
however, Littlewood proved that there are infinitely many integers x = 2 for which the inequality
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fails! The most recent result in this area shows that the inequality fails for some x< 10317, but we
still do not know where the first counterexample occurs. There are heuristic arguments suggesting
there are no counterexamples within x< 1030 and likely even higher. Thus, this is one of the many
instances that occur in number theory of a conjecture that is supported by heuristics and extensive
numerical evidence, yet turns out to be false. In a similar way, the validity of the RH is definitely
not something that we can be assured of simply on the basis of its being true for the first 1013 cases.

Littlewood’s proof that π(x) > Li(x) holds infinitely often relied on Riemann’s expansion (2.2)
and required considerable technical virtuosity to deal with the infinite series that was not absolutely
convergent. In the mid-1930s, another approach became available through the work of Ingham,
which had the advantage of being both simpler and more explicit, but at the cost of requiring some
computations. In very loose terms, Littlewood’s result was shown to follow from knowledge of
some initial set of non-trivial zeros of the zeta function (cf. Section 5 below). This connected numer-
ical verifications of the RH to the π(x) < Li(x) conjecture. Turing was intrigued by both problems
and made contributions to each one.

Interestingly enough, it appears that Turing had doubts about the validity of the RH already at
an early stage and that, over time, his skepticism only increased.2

3. On Turing’s computations of the zeta function

The first computations of zeros of the zeta function were performed by Riemann and likely played
an important role in his posing of the RH as a result likely to be true. His computations were carried
out by hand, using an advanced method that is known today as the Riemann-Siegel formula. Both
the method and Riemann’s computations that utilised it remained unknown to the world-at-large
until the early 1930s, when they were found in Riemann’s unpublished papers by C. L. Siegel. In
the meantime, as both the significance and difficulty of the RH were recognised around the turn of
the 20th century, computations using a less efficient method, based on Euler-Maclaurin summation,
were carried out by several investigators. The calculations used tables of logarithms and trig func-
tions, paper and pencil, and mechanical calculators. The largest of those early computational efforts
was that of J. Hutchinson, who showed that there were exactly 138 zeros of the zeta function with
0< Im(s) < 300 and that they all satisfied the RH. (Hutchinson also provided modestly accurate
values for the 29 zeros in 0< Im(s) < 100.)

Aside from possible numerical mistakes, these computations are completely rigorous and do
establish the validity of the RH for all the zeros for which it is claimed. As was recognised already
by Riemann, there is a simple variant of the zeta function that is real on the critical line, so that a
sign change of this function has to come from a zero of the zeta function that is right on the critical
line. The final stage was the verification that the sign changes that have been found account for all
the zeros in a given Im(s)- range. Until Turing came out with his method, this step was done by
a rather messy, although in principle not very difficult, computation based on the principle of the
argument. Turing’s method obviates any need for using the argument principle. It involves only the
real-valued function on the critical line. See Turing (1953, Section 4) for a precise statement.

In the mid-1930s, after Siegel’s publication of the Riemann–Siegel formula, Titchmarsh
obtained a grant for a larger computation. With the assistance of L. J. Comrie, tabulating machines,
some ‘computers’ (as the mostly female operators of such machinery were called in those days),
and the recently published algorithm, Titchmarsh established that the 1041 non-trivial zeros in
0< Im(s) < 1468 all satisfied the RH (Titchmarsh, 1936).

Turing became interested in extending Titchmarsh’s results. He designed and started to build,
with the help of a £40 grant from the Royal Society, a special purpose analog computer to verify

2 Littlewood’s views followed a similar trajectory; see Littlewood (1962; 1982, p. 792)
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whether the RH is satisfied by all the zeros with 0< Im(s) < 6000 (of which there are 5598). More
details about this machine are available in Booker (2006) and Casselman (2006). Work on this
project was interrupted by the outbreak of World War II, and this computer was never constructed.

We do not know how well Turing’s zeta function machine would have worked, had it been
built. At least one special zeta function computer was constructed to a different design later by
van der Pol (1947). By that time, though, electronic digital computers were becoming available,
and Turing (1953) was the first one to utilise them to investigate the zeta function. In 1950, he used
the Manchester Mark 1 Electronic Computer to extend the Titchmarsh verification of the RH to
the first 1104 zeros of the zeta function, the ones with 0< Im(s) < 1540. This was a very small
extension, but it represented a triumph of perseverance over a promising new technology that was
still suffering from teething problems. In Turing’s words, ‘[i]f it had not been for the fact that the
computer remained in serviceable condition for an unusually long period from 3 P.M. one afternoon
to 8 A.M. the following morning it is probable that the calculations would never have been done at
all’. These days, when even our simple consumer devices have gigabytes of memory, it is instructive
to recall that the machine available to Turing had a grand total of 25,600 bits of memory and that
Turing worked directly with output ‘punched out on teleprint tape’ in base 32. That Turing stayed
up all through the night conveys some idea of how interesting he found this experiment.

More significant than the extension of the Titchmarsh verification of the RH to an additional 63
zeros was Turing’s earlier computation on that same occasion of the 1054 zeros in 2π632 5 Im(s)5
2π642, all of which turned out to lie on the critical line. (Note that 2π632 is about 25,000.) Not only
did this produce a substantial increase in the number of zeros that were known to obey the RH, but
it represented an innovation, a realisation that by jumping to larger heights one could obtain a better
view of the asymptotic behaviour of the zeta function.

Today, Turing’s pioneering use of the Manchester Mark 1 for computing the zeta zeros is a
historical footnote. Turing’s results were soon surpassed by a sequence of increasingly extensive
computations. His work was furthermore not an unexpected breakthrough. Development of digital
computers and growing interest in the zeta function would surely have led to someone else carrying
out similar calculations within a few years, even if he had not done so.

For several decades, progress came exclusively from faster computers and longer runs. Begin-
ning, however, in the mid-1980s, new algorithms started appearing, such as the one of Schönhage
and the second author of this chapter for computing large sets of zeros, as well the ones of
Schönhage, Heath-Brown, and Hiary for computation of individual values of ζ(s) when Im(s) is
very large. Combined with growing computing power, these algorithms have enabled calculations
far beyond the reach of Turing and his contemporaries. It is now known that the RH is true for the
first 1013 non-trivial zeros, for some tens of billions of zeros around zeros number 1023 and 1024,
and for some hundreds of zeros near zero number 1032. (All these projects have relied on Turing’s
method for proving that all zeros in a given range have been found and are on the critical line.) If
there was a strong motivation to obtain more data, these numbers could be increased by factors of
10 or 100 simply by harnessing more computing power. As machines become more powerful and
more plentiful, and still better algorithms are found, we can look forward to substantial growth in
information about non-trivial zeros.

Among recent computations of zeta zeros, the verifications of the RH – whether for initial
segments or for blocks of zeros high up – carry on traditions that were extended or started by
Turing. Other efforts have involved high precision computations of low zeros. Some of those are
done to obtain improved bounds for the counterexamples to conjectures such as that of Mertens,
or that π(x) < Li(x), and are related to projects Turing devoted quite a bit of time to, and where
had he lived he might have carried out such computations himself (cf. Section 5). Others reflect a
desire to test whether zeta zeros satisfy some algebraic relations among themselves or involving
other well-known constants, such as e or π . (One conjectures that no such relations exist.) The
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main motivation, however, for recent computations of zeta zeros, as well as zeros of related func-
tions, comes from a conjectured relation between those zeros and eigenvalues of random matrices.
A conjecture made by Hilbert and Pólya in the 1910s was that the RH is true because zeta zeros
correspond to eigenvalues of a positive operator. This initial conjecture was extremely vague and
hard to test. However, a variety of developments in the next half a century provided additional
motivation to consider the Hilbert and Pólya guess more seriously. A particularly important devel-
opment was a theorem of H.L. Montgomery from the early 1970s, which suggested that zeta zeros
should behave like eigenvalues of a particular family, the GUE, of random matrices that had been
explored intensively by mathematical physicists. Subsequent computations by the second author
provided extensive numerical evidence for this connection. Ever since, a large industry has grown
up, exploiting the (still conjectural and empirical) connection between zeta zeros and random matri-
ces. This is regarded by many researchers as the most promising road towards a proof of the RH.
More details and references can be found in Conrey (2003). This work is far from what Turing was
aware of, but one can expect that he would have found it exciting.

4. On Turing’s early work with zeta

Most readers will likely have at least some familiarity with Andrew Hodges’ definitive biography
(Hodges, 1983) of Turing. Pages 94, 133–135, 140–142, and 154–158 therein suffice to give a quick
overview of how Turing’s research interests with ζ(s) got started around 1936–7 or so.

By combining the contents of four letters in the Turing Digital Archive (two from Ingham and
one each from Skewes and Titchmarsh) with several other sources, it is possible to view these early
developments in substantially greater depth and, in the process, add some valuable context to the
overall picture. Our aim in the present section is to do this, albeit very succinctly.

The following timeline presents the essential points:. Turing matriculates at King’s College in 1931. He meets Ingham, one of the two mathemat-
ics supervisors there. Ingham’s now classic Cambridge tract (Ingham, 1932) on prime number
theory appears in 1932; Turing obtains a copy shortly thereafter (Hodges, 1983, p. 133).. In 1933, Littlewood’s student, Stanley Skewes (1933) proves that if the RH is true, the smallest
x = 2 for which π(x) > Li(x) must satisfy x< 10A, where A= 10B and B= 1034. The smallest
such integer x is often called the Skewes number; for ease of reference, we’ll denote this number
by xS. (Skewes and Turing rowed together regularly in Cambridge (Williams, 2007). As will
become clear in Section 5, Turing first heard about Skewes’ work in that setting, with Skewes
‘rowing two’ and Turing positioned at bow.). During his first year at Princeton (1936–7), Turing keeps in touch with Ingham; he also speaks
occasionally with Hardy, who was visiting for a semester (Hodges, 1983, p. 117). Sometime prior
to 1 June 1937, the date of Ingham’s first Archive letter, Turing mentions to Ingham that he has
become interested in trying to attack the xS - problem by sharpening the original reasoning used
by Littlewood in 1914; cf. Eq. (2.2) and (Ingham, 1932, p. 92ff). Ingham offers encouragement,
but suggests that his recent, alternate proof (Ingham, 1936) for Littlewood’s theorem may be
more amenable for this purpose. He encloses an offprint, noting that Skewes has apparently
tried the approach – only to come up with (a very likely improvable) upper bound 1019 for B, in
place of the original 1034.. Back in Cambridge during the Summer of 1937, Turing pursues Ingham’s suggestion with
ψ(x)− x, a function closely related to π(x)−Li(x) (still assuming the truth of the RH).
He obtains a bound much better than Skewes’ and communicates this to Ingham. The draft
manuscript for this, which appears to be (Turing, 1992, pp. 147–151) (or something quite simi-
lar) makes use of a variant of Ingham (1936) and several key ζ(s) estimates, including one from
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the paper of Titchmarsh (1936) on the numerical verification of the RH for Im(s) ranging up
to 1468. In his second letter (dated Sept. 18), Ingham reacts positively to Turing’s work [with-
out checking every calculation] and conveys the information that Littlewood and Skewes have
just about finished deriving a bound for xS wherein nothing is assumed about the truth of the
RH. Ingham refers Turing to a recent paper of Littlewood that obliquely touches on the matter;
see Littlewood (1982, pp. 838–843). (N.B. the “1948” appearing on p. 149 of Turing (1992) is
not present in the original Archive manuscript; Turing only wrote p. 324, which corresponds to
the 1933 edition of Jahnke/Emde, Funktionentafeln. See also the comment by Cohen in Turing
(1992, p. 272).). Now back in Princeton, Turing’s interests begin to shift more towards ζ(s) per se, especially
its zeros and the matter of extending Titchmarsh (1936) past t = 1468. Apart from the work’s
intrinsic merit (including in exploring further the skepticisms about the RH voiced on the final
pages in the study by Titchmarsh (1935, 1936)), Turing surely realised that gaining control on a
larger initial set of zeta zeros would facilitate a better bound for xS. The idea of building a special
purpose ‘gear-wheel’ computer (Hodges, 1983, p. 140ff) to evaluate the sum function called for
in the main numerical part of Titchmarsh (1936) probably arose during this period. Titchmarsh’s
letter (of 1 December) makes reference to this; he describes the idea as very interesting and
advises Turing that, in the work he proposes, higher-order correction terms may be needed to
secure proper accuracy in ρ. He also cautions ‘it may be that, like with π(x)−Li(x), ζ( 1

2 + it)
may go on for a very long time before revealing its true character’.. On 9 December 1937, Skewes writes from Cape Town, where he worked, and reacts positively to
Turing’s improved bound for xS from that summer. From the letter’s wording, it is evident that
both are occupied with other work at the moment (for Turing, this was his Ph.D. dissertation
(Hodges, 1983, p.145)). Skewes writes that he cannot get back to Cambridge for another 2
years – but promises to give some details about the ‘RH false case’ in his next letter. No such
letter is found in the Archive. (Although Skewes’ Cambridge dissertation was accepted in 1938,
it was not readied for journal publication until 15 years later (Skewes, 1955); an interesting
popular account can be found in Section 14 of Littlewood (1948).). Turing receives his Princeton Ph.D. in June 1938 and, shortly afterwards, returns to England. It
is not until 1939 that he resumes work on ζ(s). Turing (1943) is submitted for publication on 7
March 1939. In very loose terms, Turing (1943) seeks to address some of the ‘correction term
issue’ that Titchmarsh raised in his 1937 letter by passing to an alternate (smoother) version
of the ζ(s)-expansion utilised in Titchmarsh (1936) whose basic error term appears to be both
smaller and more readily estimable than the one employed previously. Emphasis is placed on
s-regions (both on and off the critical line) likely to be pertinent in a ‘gear-wheel’ setting. The
paper is very technical and, as noted by Heath-Brown in (Turing, 1992, p. 261), was soon made
unnecessary by the advances that occurred when electronic computers became available. The
influence of C. L. Siegel’s celebrated 1931 paper on ζ(s) based on material found in the Riemann
Nachlass is plainly visible at several places in Turing (1943). Expansions similar in spirit to
Turing (1943) continue to be useful in a variety of other contexts; cf., e.g., Berry and Keating
(1992), Paris (1994) and Rubinstein (2005, Section 3).. Turing submits his £40 proposal for construction of a ‘zeta function machine’ to the Royal Soci-
ety on 24 March 1939 (see Turing (1939)). Its stated aim is to extend the range of Titchmarsh’s
work on the RH by a factor of about 4. Due to the onset of World War II, the proposed machine
is never completed.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 21:26 Page 271 #7

Some Calculations of the Riemann Zeta function 271

5. A return to basics

As we just saw, Turing’s fascination with ζ(s) actually originated in a very basic question about
the ordinary prime numbers {2,3,5,7,11,13,17, . . .}. In light of their structural and aesthetic ‘stark-
ness’, it is not too surprising that, over the years, the primes would continue to retain a certain
attractiveness for Turing.

Most papers dealing with Skewes’ problem of trying to find xS, the smallest integer x for which
π(x) > Li(x), are very technical. The two drafts in Turing (1992) devoted to this topic (viz., pp. 147–
151, 153–174) are no exception. The second, ‘On a theorem of Littlewood’, ostensibly written
jointly with Skewes, is described by Britton on pp. XIV and 273 of Turing (1992) as having been
in all likelihood prepared solely by Turing. Ingham, who studied the manuscript carefully in the
early 1960s, expresses an equivalent view in Hardy (1967, p. 99). Since, as we shall see, the work
is a significant one [its unpolished state notwithstanding], it is only natural to want to understand its
background a little more clearly. 3 Our efforts in this direction have been aided in no small way by
the fortuitous help that we received from A. M. Cohen, K. Hughes, J. Webb, P. Sarnak, S. B. Cooper
and Stephen Skewes (Stanley Skewes’ son).

We have already outlined the pre-World War II situation in Section 4. To take things further,
we need to say just a few more words about Ingham (1936) . Riemann’s formula in Eq. (2.2) gives
an explicit representation for Li(x)−π(x) as a sum over the non-trivial zeros ρ and the point 1

2 .
(By abuse of language, we can temporarily regard 1/2 as a ρ.) As was mentioned in Section 2, the
ρ-sum requires technical virtuosity to handle and, even then, yields relatively poor results. Ingham’s
breakthrough was the observation that certain (sliding) weighted averages of Li(x)−π(x) can be
represented as sums over the ρ that are far more tractable, with terms that decline rapidly as the
heights of the ρ grow. Insofar as this type of mollified sum can be made negative, at least some
of the values of Li(x)−π(x) that go into the average have to be negative as well, provided that
the weights used in the averages are all non-negative. (When, as in Ingham (1936), the RH can be
assumed, the key issue ultimately boils down to arranging things so that many sinusoidal ρ-terms
‘all pull in the same direction’ so as to successfully overpower something positive.) As such, the
method usually does not produce any single counterexample to the π(x) < Li(x) conjecture, but
it does disprove it, and, if things are kept explicit enough, at least furnishes a region in which a
counterexample has to lie.

Similar approaches have been developed for other number theoretic conjectures, such as that of
Mertens. Typically, successful applications of such methods require high-precision values for some
initial set of non-trivial zeros ρ, and knowledge that a considerably larger [finite] set satisfies the
RH (the latter to help ensure the negligibility of all those terms past a certain ρ -threshhold).

It is interesting to observe that, already in the manuscript (Turing, 1992, pp. 147–151) from 1937,
the mollification factor adopted by Turing is one of Gaussian type – exactly as would be appropriate
as a ‘first guess’ in a setting in which there were some sporadically occurring off-line zeros in
need of suppression in Eq. (2.2). The mollification choices adopted in Turing’s second unpublished
manuscript on this problem, ‘On a theorem of Littlewood’ (Turing, 1992, pp. 153–174), OTL from
now on, can be seen as building on that used in 1937.4

As the letter reproduced in Figure 2 clearly shows, Ingham and Britton’s view about the
authorship of OTL is correct. (Skewes (1955) was submitted for publication in December 1953.
Consistent with the letter, his exposition makes no mention of OTL. The memorable phrase on

3 As of Spring 2011, neither the original nor Britton’s photocopy could be found in the Turing Digital Archive. Compare
Turing (1992, p. IX(bottom)). Notice, too, that no date is offered for this work in Turing (1992).
4 In Sections 2–5 of OTL, part of the idea is to imitate Ingham (1936) by using an ‘approximate identity’ interpretation
of the Gaussian; cf. the bottom half of p. 154, 158(top), and 166 (lines 10, 16, 20–21). In this connection, see also lines
22–23 in Ingham’s commentary, op. cit.
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p. 50, line 10 may hint at one of Skewes’ complications. 5) In light of the unhappy events of the first
part of 1952 (Hodges, 1983, pp. 471–473) and the inherent complexity of its estimates, it seems
reasonably safe to hypothesise that the preparation date of OTL falls somewhere between mid-1952
and early 1953.

Such a timeframe would also be consistent with Turing’s use of the phrases ‘digital computer’
and ‘ten to twenty hours of computation time’ on p. 168 of Turing (1992), not to mention the
general mathematical mindset of the surrounding lines. Also note that some similar ‘accounting-
type’ language occurs in Turing (1953, part II, pp. 112–116).

Although it is possible that the work for certain parts of OTL may actually have transpired some
time prior to the drafting of any manuscript, the general sloppiness of Turing’s typescript (we were
able to secure a copy of A. M. Cohen’s photocopy) tends to suggest that any ‘time gap’ is one
of relatively modest size. Having said this, however, there may still be some value in noting that,
during the 10-year period prior to 1953, there were five occasions on which a ‘rekindling of xS

ideas’ might well have occurred on one level or another:. Prior to moving to Manchester, Turing spent the 1947–8 academic year in Cambridge. As it turns
out, Skewes was also there on sabbatical for at least the first half of 1948, presumably doing some
(pre-publication) fine tuning of his xS thesis work with Littlewood. A letter dated 30 September
[1948] from Littlewood to Skewes (made available to us by courtesy of John Webb) implicitly
confirms the primary topic of their discussions, as well as Littlewood’s close involvement. After
a 10-year hiatus, one has to assume that Turing and Skewes occasionally talked.. Littlewood’s (1948, Section 14) popular account of the Skewes number also appeared in 1948
(July, to be more precise).. During the 1949–50 academic year, there is some hint that, beyond his actual June 1950 exper-
iment with the RH on the Manchester Mark 1, Turing may have also contemplated making
calculations to a bit higher accuracy. See p. 99 (lines 6, 21–24), 100 (line 4), 104 (lines 5–6),
and 114 (line 13) in Turing (1953); also Digital Archive item AMT/B/32/image 98 and Hodges
(1983, p. 406, footnote).. In Archive letters dated 19 December 1950 and 2 January 1951, Ingham raises a number of
machine-oriented computational issues closely tied to a possible disproof of Pólya’s conjecture,
a conjecture very similar in spirit to π(x) < Li(x). It is evident from the January letter that
Ingham has prompted Turing to start thinking about this matter.. In March 1952, Kreisel (1952) appears. Section VI therein is devoted to a discussion of how to
approach the Skewes problem along the lines that Turing originally wrote to Ingham about in
the Spring of 1937. Kreisel presents no bound for xS, however.

From a historical standpoint, it is fair to say that the significance of the first part of OTL (i.e.,
Sections 2-6) rests in Turing’s realisation, already 1952–3, that by a judicious choice of mollifica-
tion factor, it would prove feasible to eliminate the awkward quantitative dichotomy between the
RH being true or false (i.e., ‘H vs. NH’), which was introduced by Littlewood and was required
previously, including in Skewes (1955), to secure an unconditional bound for xS. And, further, that
in so doing, a substantially superior xS -bound would in fact accrue on the basis of using just several
hundred ρ’s.

Ingham offers a similar assessment in Hardy (1967, p. 99, lines 19–24) with a cautionary note
about the manuscript’s ‘very rough’ state. That Turing’s ideas were fundamentally sound was shown

5 Compare Burkill (1979, p.68, middle). The phrasing of item 4 in Turing (2001, p. 266) suggests that Turing may well
have apprised Robin Gandy about his predicament with Skewes at some point.
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Fig. 1: Professor Stanley Skewes. (Courtesy of the Department of Mathematics and Applied
Mathematics, University of Cape Town.)

by Cohen and Mayhew in their 1965 work (Cohen and Mayhew, 1968) or (Turing, 1992, pp. 183–
205) utilising about 450 zeros, albeit to greater precision than was available in the early 1950s.6

In the second half of OTL (i.e., Section 7), Turing derives a bound for xS on the basis of there
being an ‘appropriately isolated’ off-line zero ρ0 in Re(s) > 1

2 . Although the issue of obtaining an
optimal xS -bound in the specific setting of Theorem 3 may not have been looked at yet, results
similar in spirit – even in more general settings – have been available for some years now in con-
nection with the so-called Turán power sum method and comparative prime number theory. See, for
instance, Knapowski (1961), Knapowski and Turán (1976), and Pintz (1980). Somewhat curiously,
the latter two references make use of an idea (cf. Theorem H∗) found in the aforementioned work
on mathematical logic by Kreisel (1952).

Although the letter in Figure 2 may initially suggest an unsettled, uneasy state of affairs, in
stepping back from it, we find ourselves in agreement with a comment made to us by Andrew
Hodges, particularly vis à vis the period 1952 to early 1953, a time of clear personal difficulty for
Turing. Concerning the letter, Hodges writes:

...what it conveys to me is something else quite marvellous – the timelessness of pure math-
ematics, illustrated in the way AMT refers back to discussions while rowing many years
before. Despite everything that has happened, the war and computers, there are the prime
numbers and their mysteries just the same as ever, something he has thought about from time
to time ever since.

6 The situation calls to mind Robin Gandy’s comments in Turing (2001, p. 9) about Turing’s love of calculating, in
particular Turing’s quip ‘What’s a factor of two between friends’?
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Fig. 2: Copy of a 1953 letter from Turing to Stanley Skewes. (Courtesy of John Webb, University
of Cape Town.)
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Fig. 3: A sample page from the draft manuscript, ‘On a theorem of Littlewood.’ The corrections
noted in boxes were made by Ingham. (Reproduced from a photocopy, courtesy of Alan M. Cohen,
Cardiff University.)
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Fig. 4: A second page from the same typescript. Note Turing’s use of the phrases ‘digital computer’
and ‘ten to twenty hours of computation time.’
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6. Turing’s skepticism about the RH

In his pre-World War II work on ζ(s), Turing seems to have viewed the RH as an open question,
one that might easily be either true or false. In Turing (1943, p. 197), for instance, he remarks
rather nonchalantly that ‘[t]his may be of value for calculation of zeros not on the critical line’. As
suggested in Section 4, this attitude may have arisen partly from the numerically based skepticism
espoused by Titchmarsh (1935, 1936). Titchmarsh’s 1937 letter would have only reinforced this.
(Skeptical attitudes of this kind towards the RH were relatively common at the time.)

Based on the available evidence, it appears that by 1950 or so, Turing’s earlier uncertainty about
the truth of the RH had morphed into an outright skepticism.7 Thus, on p. 169 of OTL, it is hard
to ignore (even given the ambient ‘if’) the telling phrase that ‘[i]t seems very probable that the first
zeros off the critical line that are computed will satisfy the conditions . . .’ It is hard to imagine
anyone with serious doubts about the existence of zeros that violate the RH writing like this. And,
even more to the point, on the very first page of Turing (1953), Turing declares: ‘[t]he calculations
were done in an optimistic hope that a zero would be found off the critical line’. (The calculations
to which Turing refers are those with Im(s)≈ 25,000. The ones with Im(s) less than 1000π were
aimed more at simply extending (Titchmarsh, 1936); see Turing (1953, p. 116, bottom.)

What is a little puzzling is that Turing expected a counterexample to the RH to lie so low.
The work of A. Selberg during the mid-1940s showed that the root mean square of Im logζ( 1

2 + it),
which to a large extent controls the distribution of zeros, grows about like

√
(log logT)/2 over

any interval [T ,T +H] with, say, H ≈ T . Similarly for the real part and for higher moments. In
very rough terms, one also knows that large-scale irregularities in the ‘sequencing’ of ρ are linked
to large oscillations in the aforementioned imaginary part; see, for instance, the first equation in
Turing (1953, Section 4).

Accordingly, in order to reach regions wherein ‘relatively many pairs of ρ have popped off the
line’, it seems reasonable that one would need to have

√
(log logT)/2 fairly large. Since this radical

grows extremely slowly, expecting to ever see any type of systematic collapse in the RH using
machine calculation is probably out of the question. Phrased somewhat differently: any off-line
zeros in Turing’s experiment would likely have been sporadic in nature and required significant
luck to hit upon. It appears, based on Ingham’s January 1951 letter, that Turing was aware of at least
some of the work of Selberg on ζ(s) from the 1940s. Even without that input, however, one might
have thought that Turing, whose first research project was on random variables (Hodges, 1983, p.
88) and who had extensive experience with statistics in his cryptographic work, might have had
some concerns along these lines. If he did, there are no traces of them recorded in Turing (1953).8

As for skepticism about the RH, some distinguished number theorists, such as Littlewood and
Turán, died as disbelievers. In general, however, the climate of opinion appears to have moved
substantially towards embrace of the validity of the RH. This is well illustrated by Selberg. In 1946,
he expressed, if not outright disbelief, then at least a concern about the lack of evidence in support
of this conjecture (Selberg, 1946, Section 4). In 2005, however, towards the end of his life, when
he was interviewed by Baas and Skau, Selberg asserted ‘[i]f one believes that there is something in
this world that is as it should be, then I think that must be the truth of the Riemann Hypothesis’. See
Baas and Skau (2008, pp. 631, 618 paragraph 5).

The evolution in the thinking of Selberg and other researchers was driven by the accumulation
of numerical data for the RH as well as heuristics (some from random matrix approaches) and
proofs of analogs of the RH for somewhat similar functions (such as certain zeta functions defined

7 F.W.J. Olver recently informed the authors (in a private communication) that, in a conversation at NPL around 1947,
Turing expressed his disbelief quite explicitly.
8 Compare p. 168 (lines 27–32) in OTL, from a few years later.
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over finite number fields). Had Turing lived longer, he might have modified his opinions about the
validity of the RH and might well have become involved in some of these researches.

The zeta function was of course just one of Turing’s many interests and not a major one. As can
be seen from the record of his interactions with Skewes, say, he often put this subject aside for a
number of years to concentrate on other topics. Still, the fact that he came back to it several times
shows how interesting it was for him.

Had events transpired a bit differently in 1954, we like to think – as our own sort of ‘optimistic
hope’ – that circumstances would have evolved in such a way that Turing’s creativity would have
continued to become piqued from time to time, prompting him to return occasionally to develop-
ments involving ‘the zeros and primes’. With his insight and rare knowledge of the fields of number
theory, analysis, probability, and computing that go into studying the zeta function, Turing could
easily have emerged as a central player in this area.
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And Dennis Hejhal adds —

A FEW COMMENTS ABOUT
TURING’S METHOD

A short summary of Turing’s method is available on pp. 255 and 256 of Turing (1992).1 The remarks
that follow are intended as a supplement to that; their aim is to show that, by broadening one’s
perspective a bit, the core idea of the method turns out to be both simpler and more versatile than
might be originally suspected from examining just Turing (1953, Section 4).

In the context of the Riemann zeta function ζ(s), Turing’s method is best viewed as an algorithm
for rigorously establishing – without ever leaving the critical line – that all zeros in a certain Im(s)-
range have been found, are simple, and have real part exactly equal to 1/2. In its original form, the
method can be seen as hinging on three basic ingredients:

(a) A technical estimate (cf. Turing (1953, Theorem 4));
(b) An integration trick (cf. Turing (1953, Theorem 5));
(c) A blending of (b) with the calculation of a small number of auxiliary ζ( 1

2 + it) -values so as
to determine the total number of zeros (both online and off-line) in the given range, and then
verifying that a standard ‘twist’ of ζ(s) manifests at least this number of sign changes over the
relevant portion of {Re(s)= 1

2 }.

In (c), the relevant twist is just multiplication by exp[iϑ(t)], where ϑ(t) is a certain, explicitly
known, elementary function; cf. Turing (1953, Theorem 1). The resulting product with ζ( 1

2 + it) is
then real valued for t ∈ R. By its very nature, success in (c) is by no means pre-ordained.

1 In the reference list below.

http://www.turing.org.uk/sources/zetamachine.html
http://www.turing.org.uk/sources/zetamachine.html
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In regard to the item (a), the key thing to realise is that (Turing, 1953, Theorem 4) is simply
an ‘effectivisation’ of a very classical estimate due to Littlewood; cf. (Titchmarsh, 1985, Theorem
9.9(A)). Booker (2006) showed that Turing’s reasoning could be revamped so as to yield an analo-
gous effectivisation for a much broader class of ‘zeta-like’ functions L(s). If one is content to work
with constants ‘of merely modest size’, other (more direct) approaches are possible here; see, e.g.,
the line of thought suggested by Titchmarsh (1985, Section 9.6), Turing (1992, p. 170, Lemma 16),
Iwaniec and Kowalski (2004, Eqs (5.27)–(5.28), (5.31)–(5.33)) and Hejhal (1983, pp. 465 (middle)
and 466 (top)).

In item (b), the crucial thing to keep in mind is that, although complicated looking, Theorem 5
is in reality a special case of a very basic trick; cf. relations (4) and (9) below.

To better appreciate this last point, as well as indicate some wider forms of (what is generally
still referred to as) Turing’s method, it is helpful to ‘back up a bit’ and quickly sketch an alternative
certification procedure having a logical structure somewhat simpler than (a)–(c).

One begins by observing [via an integration by parts] that the scaling relation

sup
α<β

∣∣∣ β∫
α

g(t)φ′(t)dt
∣∣∣5 (max

[a,b]
φ′) sup

α<β

∣∣∣ β∫
α

g(t)dt
∣∣∣ (1)

holds anytime g(t) is piecewise continuous on a given interval [a,b] and the monotonic increasing
C2 function φ(t) has a second derivative whose sign remains fixed on [a,b]. Guided by the first
equation in Turing (1953, Section 4), we now consider any monotonically increasing sequence
of positive numbers xn in {x> c> 0} having an asymptotic mean spacing of 1. To control things
somewhat, we hypothesise that

N{c< xn 5 X} = A+X+R (X) (2)

holds with a right continuous remainder function R satisfying

sup
[α,β] j [c,X]

∣∣∣∣
β∫
α

R (y)dy

∣∣∣∣5 E(X) , (3)

wherein E(X) increases with X (for X = c) while the quotient δ(X)≡ E(X)/X tends to 0 monoton-
ically. The letter ‘E’ stands for explicit; cf., e.g, Turing (1953, Lemma 10). By elementary algebra,
one checks that

−
h

2
+

1

h

ξ∫
ξ−h

R (y)dy 5 R (ξ)5
h

2
+

1

h

ξ+h∫
ξ

R (y)dy (4)

for all 0< h< ξ − c. Taking h=
√
ξδ(ξ) gives |R (ξ)|5 2

√
E(ξ) for large ξ . In particular, for any

E of the aforementioned type, one automatically has R (X)= O(
√

X).
For the sake of argument, let us now temporarily assume that the numbers xn correspond to ordi-

nates of the non-trivial zeros of some zeta-like function L(s) in a certain half-plane {Im(s) > C }
under a transformation x= φ(t) akin to the x= ϑ(t)/π = 2κ(t/2π) appearing in Turing (1953,
Section 4). By virtue of (1) and our comments about item (a), one gets an immediate counterpart
of Lemma 10 in Turing (1953) and its associated function E(X). Let {ym} be the strictly monotonic
subsequence of {xn} associated with the list of distinct odd order zeros along {Re(s)= 1

2 } detected
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by the machine through its analysis of sign changes.2 From an algorithmic standpoint, successfully
verifying ‘RH + simple’ for all Im(s) up to some specific T0 is basically tantamount to showing that
N(c,ξ0]=M(c,ξ0] holds for a suitable ξ0, wherein N and M signify the obvious x and y cardinali-
ties. (Since machine precision is finite, it is prudent to tacitly assume that T0 and ξ0 are subject to
minor perturbation; we do so.)

Putting 1= N(c,ξ0]−M(c,ξ0], we now evaluate the functional

IH(ξ0)≡
1

H

ξ0+H∫
ξ0

{
M(c,y]−A− y

}
dy (5)

for suitable H > 1. From the obvious fact that

H15

ξ0+H∫
ξ0

{
N(c,y]−M(c,y]

}
dy , (6)

a simple rearrangement produces

1+ IH(ξ0)5
1

H

ξ0+H∫
ξ0

R (y)dy 5
E(ξ0+H)

H
. (7)

Keeping H large enough to make the final term less than 1
8 (say), we then encounter exactly two

possibilities:

(i) −
3

4
< IH(ξ0) <

3

4
; (ii) IH(ξ0)5−

3

4
.

Case (i) is the nicer; here, 1 can only be 0. Finding |IH(ξ0)|<
3
4 is thus a sufficient condition

for securing ‘RH+simple’ over (c,ξ0]. In this connection, it is also important to observe that if
‘RH+simple’ actually holds out to at least ξ0+H and the machine’s zero-detecting algorithm is
working flawlessly (i.e., lückenfrei), the computed value of |IH(ξ0)| will necessarily be less than
1/4. (This is seen by noting that N(ξ0−H,ξ0+ 2H] differs from 3H by a quantity having magnitude
at most 4

√
E(ξ0+ 2H) and remembering that the tolerance η is small.) When (ii) holds, one gets

instead a warning that N(c,ξ0+H]>M(c,ξ0+H] and a concomitant bound on the size of 1 (for
the original interval (c,ξ0]).

In situations where the focus centres on proving N(ξ0,ξ ?0 ]=M(ξ0,ξ ?0 ] rather than N(c,ξ0]=
M(c,ξ0], it is natural to replace IH(ξ0) by

IH(ξ0,ξ ?0 )≡
1

H

H∫
0

{
M(ξ0− v,ξ ?0 + v]− (2v+ ξ ?0 − ξ0)

}
dv . (8)

An analogous (i) - (ii) dichotomy clearly ensues.

2 For later use, we assume that each machine-identified ym is (subsequently) refined to some small tolerance η < 10−3.
Only the numerical value of ym has significance not the corresponding n and xn.
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The foregoing certification procedure [which makes crucial use of (3)] has the advantage that it
largely obviates any need for an initial estimate or determination of R (ξ0) (and R (ξ ?0 )) via some-
thing like Turing (1953, Theorem 5). In zeta-like settings,1 is of course even. We have intentionally
avoided any use of this fact in order to stress the technique’s applicability to more general types of
sequences {xn} and {ym}.3

To the best of our knowledge, the first use of an integration trick akin to (6) + (7) in certify-
ing a ‘Riemann Hypothesis’ of some kind is the one found in Section 1 of P. R. Taylor’s (1945)
posthumous paper. Whether Turing was aware of Taylor’s work while preparing Turing (1953) is
unclear.

We now return to Theorem 5 [with an eye on reverting to something closer to Turing’s original
set-up], but in the broader framework of R (X) and relations (2)+ (3). We assume that ξ0 ‘sits’ in
a grid

ξ0−H` < ξ−` < · · ·< ξ0 < · · ·< ξr < ξ0+H

having the property that each open interval (ξj−1,ξj) with j ∈ [1− `,r] is known to contain some
xn(j). Letting M(α,β] count the xn(j)’s it is only natural to imitate (6) by integrating

0 5 N(ξ0,y]−M(ξ0,y] and 0 5 N(v,ξ0]−M(v,ξ0]

via elementary calculus. Insofar as H` < ξ0− c, one readily finds that

C` 5 R (ξ0) 5 Dr, (9)

wherein

Dr =
r

2H
+
(r−H)2

2H
+

1

H

ξ0+H∫
ξ0

R (y)dy+
1

H

∑
[1,r]

δ(j)

C` =−
`

2H`
−
(`−H`)2

2H`
+

1

H`

ξ0∫
ξ0−H`

R (v)dv+
1

H`

∑
[−`,−1]

δ(k)

and ξν ≡ ξ0+ ν+ δ(ν). The bounds in (9) improve any time the grid is refined [in an obvious sense].
With empty sums being 0, the cases r = 0 and `= 0 are perfectly legitimate and simply reproduce
estimate (4). Letting (9E) signify the variant of (9) in which the R - integrals are replaced by
E(ξ0+H) and −E(ξ0), it is evident that Theorem 5 in Turing (1953) basically just corresponds to
(9E) with (H`,H,`,r)= (R1,R2,R1− 1,R2− 1). In prototypical cases of Theorem 5, the numbers
δ(ν) will either be zero or else fairly small.

In situations where the xn correspond (under a φ like before) to ordinates of the non-trivial zeros
of a ‘zeta-like’ function L(s), then just as in Turing (1953, Section 4), R (ξ0) will be known modulo
2 any time L≡ exp(iπ(A+ x))L( 1

2 + it) is non-zero and (at least approximately) computable at ξ0.
It is a curious fact that, if matters are secretly such that ‘RH+simple’ also holds near ξ0 and no
two of these nearby zeros are situated ‘maliciously close’ together, the value of R (ξ0) will then be
uniquely determined by (9E) whenever H` and H are taken appropriately big, and the grid {ξj} is
chosen in a manner consistent with knowledge of sgn(L) at a sufficiently fine level of granularity
in x.4

3 In a forthcoming work, Booker and Strömbergsson treat a case in which the xn correspond to eigenvalues of the
Laplacian associated with (vibrations of) the modular surface PSL(2,Z)\H. The relevant E(X) here is basically just
(const)X/(logX)2. Cf. Booker (2006, p. 1211) and Hejhal (1983, p. 466ff). Compare Then (2006, Section 5).
4 There is no need to limit oneself to situations in which the ‘hoped for’ R (ξ0) is small.
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[The proof rests on a minor augmentation of (9). The essential point is that once the granularity
level in x is sufficiently small, it becomes possible to derive a lower bound for R (ξ0) having format
very similar to Dr and an upper bound that resembles C`. When this new information is substituted
back into (9E) together with knowledge of the mod 2 situation, all values but one ultimately fall to
the wayside for R (ξ0) since 1+ 2( 1

8 ) < 2. Cf. near (7) concerning ‘1/8’.]
In light of these observations, estimate (9E) is actually slightly better suited than Theorem 5 is

for use in making numerical tests of the RH along the lines of (a)–(c).
In the case of ζ(s), one certainly expects that all but an infinitesimal proportion of the ρ’s lie on

the critical line. In view of the fact (due to Selberg) that logζ( 1
2 + it)/

√
1
2 log log t is distributed like

the Cartesian product of two standard Gaussians for large t, and the further fact (Conrey, 2003) that,
in accordance with the GUE law cited earlier, one expects to see a significant paucity of ‘nearly
multiple’ ρ’s (i.e., ‘a repulsion of levels’), any problems in the a priori determination of N(ξ0,ξ ?0 ]
for generically chosen ξ0 and ξ ?0 should tend to ensue chiefly from difficulties in computing ζ( 1

2 + it)

for t-values of the necessary size. Barriers on this front will occur long before
√

log log t ever has a
chance to get large.

Similarly for a broad class of ‘zeta-like’ functions L(s) whose zeros are also expected to satisfy
GUE statistics in the limit of large |s|. In all such cases, once the height becomes appropriately
large, Turing’s ‘abc’ method provides (what is in all likelihood) a nearly optimal machine-based
certification procedure for the associated RH.
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SOME CALCULATIONS OF THE
RIEMANN ZETA-FUNCTION

By A. M. TURING

[Received 29 February 1952—Read 20 March 1952]

Introduction

IN June 1950 the Manchester University Mark 1 Electronic Computer was used to do some calcu-
lations concerned with the distribution of the zeros of the Riemann zeta-function. It was intended
in fact to determine whether there are any zeros not on the critical line in certain particular inter-
vals. The calculations had been planned some time in advance, but had in fact to be carried out in
great haste. If it had not been for the fact that the computer remained in serviceable condition for
an unusually long period from 3 p.m. one afternoon to 8 a.m. the following morning it is probable
that the calculations would never have been done at all. As it was, the interval 2π .632 < t < 2π .642

was investigated during that period, and very little more was accomplished.
The calculations were done in an optimistic hope that a zero would be found off the critical line,

and the calculations were directed more towards finding such zeros than proving that none existed.
The procedure was such that if it had been accurately followed, and if the machine made no errors
in the period, then one could be sure that there were no zeros off the critical line in the interval in
question. In practice only a few of the results were checked by repeating the calculation, so that the
machine might well have made an error.

If more time had been available it was intended to do some more calculations in an altogether
different spirit. There is no reason in principle why computation should not be carried through with
the rigour usual in mathematical analysis. If definite rules are laid down as to how the computation
is to be done one can predict bounds for the errors throughout. When the computations are done
by hand there are serious practical difficulties about this. The computer will probably have his own
ideas as to how certain steps should be done. When certain steps may be omitted without serious loss
of accuracy he will wish to do so. Furthermore he will probably not see the point of the ‘rigorous’
computation and will probably say ‘If you want more certainty about the accuracy why not just
take more figures?’ an argument difficult to counter. However, if the calculations are being done
by an automatic computer one can feel sure that this kind of indiscipline does not occur. Even with
the automatic computer this rigour can be rather tiresome to achieve, but in connexion with such
a subject as the analytical theory of numbers, where rigour is the essence, it seems worth while.
Unfortunately, although the details were all worked out, practically nothing was done on these
lines. The interval 1414< t < 1608 was investigated and checked, but unfortunately at this point
the machine broke down and no further work was done. Furthermore this interval was subsequently
found to have been run with a wrong error value, and the most that can consequently be asserted
with certainty is that the zeros lie on the critical line up to t = 1540, Titchmarsh having investigated
as far as 1468 (Titchmarsh (5) ).

Proc. London Math. Soc. (3) 3 (1953)
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This paper is divided into two parts. The first part is devoted to the analysis connected with the
problem. All the results obtained in this part are likely to be applicable to any further calculations to
the same end, whether carried out on the Manchester Computer or by any other means. The second
part is concerned with the means by which the results were achieved on the Manchester Computer.

PART I. GENERAL

1. The 2 notation

In analysis it is customary to use the notation O{f (x)} to indicate ‘some function whose ratio to f (x)
is bounded’. In the theory of a computation one needs a similar notation, but one is interested in
the value of the bound concerned. We therefore use the notation 2(α) to indicate ‘some number
not greater in modulus than α’. The symbol 2 has been chosen partly because of a typographical
similarity to 0, partly because of the relation with the use of ϑ to indicate ‘a number less than 1’.

2. The approximate functional equation

We shall use throughout the notation of Ingham (1) and Titchmarsh (3) without special definition.
Our problem is to investigate the distribution of zeros of ζ(s) for large t. This will presumably
depend on being able to calculate ζ(σ + it) or some closely associated function for large t, and σ
not too far from 1

2 . We have to consider what formula to use and what associated function. For

σ > 1 it is possible to use the defining series ζ(s)=
∞∑
1

n−s, but this is too far from σ = 1
2 . For

0< σ < 1 there are other formulae which also involve calculating a number of terms of this series,
but it is always necessary to take at least t/2π terms.

Alteratively one can use the functional equation

ζ(s)0

(
1

2
s

)
π−

1
2 s
= ζ(1− s)0

(
1

2
−

1

2
s

)
π−

1
2+

1
2 s

and take t/2π terms of the series ζ(1− s)=
∞∑
1

ns−1. Another possible method which might suggest

itself is to calculate at a number of points in the region σ > 1 and extrapolate, but this again involves
much the same amount of work. However, if one considers an interpolation formula involving both
values from the region σ > 1 and from the region σ < 0 one finds that it is possible to calculate
the function by taking only about √(t/2π) terms of the series

∑
n−s and an equal number from∑

ns−1. This result is embodied in
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Theorem 1. Let m and ξ be respectively the integral and non-integral parts of τ
1
2 and

τ > 64,

κ(τ)=
1

4π i
log

0
(

1
4 +π iτ

)
0
(

1
4 −π iτ

) − 1

4
τ logπ ,

Z(τ )= ζ

(
1

2
+ 2π iτ

)
e−2π iκ(τ),

κ1(τ )=
1

2

(
τ logτ − τ −

1

2

)
,

h(ξ)=
cos2π

(
ξ2
− ξ − 1

16

)
cos2πξ

.

Then Z(τ ) is real and

Z(τ )= 2
m∑

n=1

n−
1
2 cos2π{τ logn− κ(τ)}+ (−)m+1τ−

1
4 h(ξ)+2

(
1.09τ−

3
4

)
,

κ(τ)= κ1(τ )+2
(

0.006τ−1
)

.

It will be seen that Z(τ ) may also be defined as being ζ( 1
2 + 2π iτ) for τ real, 0< τ < 1, and else-

where by analytic continuation. The theorem could be proved by the argument outlined above, but
is more conveniently proved by the method given as Theorem 22 of Titchmarsh (3). The numerical
details are given in Titchmarsh (4). A more elaborate remainder is given there and is valid for τ > δ.
The validity of the remainder given here follows trivially from it.

This formula can only give a limited accuracy, although it is nearly always adequate. If greater
accuracy is required the formula given in Turing (6) may be applied. These agree with Titchmarsh’s
expression in the sum of m terms, but h(ξ) is replaced by another sum.

The function h(ξ) is troublesome to calculate, largely because the numerator and denominator
both vanish at ξ = 1

4 and ξ = 3
4 , so that a special method would have to be applied for the neigh-

bourhood of these points. The alternative of using a table and interpolation suggests itself. This
possibility quickly leads to the suggestion of replacing the function by some polynomial which
approximates it well enough in the region concerned.

In fact the polynomial 0·373+ 2·160(ξ − 1
2 )

2 is quite adequate, for we have

Theorem 2. If |ξ − 1
2 |<

1
2 we have

h(ξ)= 0.373+ 2.160
(
ξ − 1

2

)2
+2(0.0153)

and if |ξ − 1
2 < 0.53, we have h(ξ)= 0.373+ 2.160

(
ξ − 1

2

)2
+2(0.0243).

This result is rather unexpectedly troublesome to prove. Its proof will be given in slightly more
detail than it deserves, treating it as an example of ‘rigorous computation’.

It may be said: ‘As this is a purely numerical result surely it can be proved by straight computa-
tion.’ This is in effect what is done, but it is not possible to avoid theory entirely. The function was
calculated for the values 0, 1

30 , 2
30 , . . . , 16

30 , 17
30 of ξ − 1

2 with an error2(10−4), and was found to sat-
isfy the inequality with some margin. But nothing further can be deduced even if the differences are
taken into account, unless something is known about the general behaviour of the function. An upper



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 21:26 Page 287 #23

Some Calculations of the Riemann Zeta-Function 287

bound for the second derivative would be sufficient, but the labour of even the formal differentiation
is discouraging, and the accidental singularities make the situation considerably worse. However,
the function is integral, and it is therefore possible to obtain an inequality for any derivative by
means of Cauchy’s integral formula, taken in combination with an inequality for the function itself
on a suitable contour. The method actually applied will be seen to be very similar to this. Instead of
Cauchy’s integral formula we use

f (ξ)−P(ξ)

=
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

2π i

∫
f (u)du

(u− ξ)(u− ξ1)(u− ξ2)(u− ξ3)(u− ξ4)
,

where the function f (ξ) is regular inside the anti-clockwise contour of integration, and P(ξ) is the
cubic polynomial agreeing with f (ξ) at ξ1, ξ2, ξ3, ξ4. This equation follows from the fact that the
right-hand side vanishes at the points ξ1, ξ2, ξ3, ξ4 and is of the form of f (ξ) added to a cubic
polynomial. We actually take the contour to be the square whose vertices are 1

2 ± i, 1
2 ± 1. One

can prove without difficulty that |h(ξ)|< coshπ on this square and that if f (ξ)= h(ξ)− 0·373−
2·160(ξ − 1

2 )
2 then |f (ξ)|< 14·3 on the square. Taking ξ1, ξ2, ξ3, ξ4 to be of form n/30 and two

of them to be on either side of ξ one easily deduces |f (ξ)−P(ξ)|< 0·0033 if |ξ − 1
2 |< 0·053, and

a consideration of the values at the calculated points and the differences gives |P(ξ)|< 0·021 if
|ξ − 1

2 |< 0·53 and |P(ξ)|< 0·012 if |ξ − 1
2 |<

1
2 . It will be seen that the use of this approximation

to h(ξ) gives an extra error in Z(τ ) of the order of τ−
1
4 whereas Titchmarsh’s formula has an error

of order only τ−
3
4 ; but the errors are not equal until τ is over 2000, and both are then quite small.

In the actual calculation described in Part II there were other errors of order as large as τ
5
4 .

Titchmarsh’s formula as stated is valid only when the right value of m is used, i.e. if τ
1
2 = m+ ξ

and |ξ − 1
2 |6

1
2 . This may be inconvenient as one may occasionally wish to go a little outside the

range. One may justify doing so by means of

Theorem 3. Theorem 1 is valid with the error2(1.09τ−
3
4 ) replaced by2(1.15m−

3
2 ) if the condi-

tion that m and ξ be the integral and non-integral parts of τ
1
2 is replaced by the condition that m be

an integer and

τ
1
2 = m+ ξ , |ξ − 1

2 |< 0.53.

The new error introduced is

(−)mτ−
1
4

cos2π

(
ξ2
− ξ −

1

16

)
cos2πξ

+

cos2π

{
(ξ − 1)2− (ξ − 1)−

1

16

}
cos2π(ξ − 1)

−
− 2(m+ 1)−

1
2 cos2π

[
(m+ ξ)2 log(m+ 1)− κ

{
(m+ ξ)2

}]
in the case that 1< ξ < 1.03. But we have

cos2π

(
ξ2
− ξ −

1

16

)
cos2πξ

+

cos2π

{
(ξ − 1)2− (ξ − 1)−

1

16

}
cos2π(ξ − 1)

= 2cos2π

(
ξ2
− 2ξ −

1

16

)
.

Also if we put

j(ξ)= (m+ ξ)2 log(m+ 1)− κ1{(m+ ξ)
2
}−

1

2
m2
−m+

1

2
+ ξ2
− 2ξ −

1

16
,
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then j(ξ) and its first two derivatives vanish at ξ = 1 and j′′′(ξ)= −2
m+ξ .

Hence by the mean value theorem |j(ξ)|< (ξ−1)3

3(m+1) . Using also

|κ{(m+ ξ)2}− κ1{(m+ ξ)
2
}|<

0.006

(m+ 1)2
,

we see that the new error is at most

4π(m+ 1)−
1
2

(
(ξ − 1)3

3(m+ 1)
+ 0.006(m+ 1)−2

)
+ 2|(m+ ξ)−

1
2 − (m+ 1)−

1
2 |,

which is less than 0.052(m+ 1)−
3
2 since m > 7, |ξ − 1|< 0.03. A similar argument applies for the

case −0.03< ξ < 0.

3. Principles of the calculations

We may now consider that with the aid of Theorems 1, 2, 3 we are in a position to calculate Z(τ ) for
any desired τ . How can we use this to obtain results about the distribution of the zeros? So long as
the zeros are on the critical line the result is clearly applicable to enable us to find their position to an
accuracy limited only by the accuracy to which we can find Z(τ ). If there are zeros off the line we
can find their position as follows. Suppose we have calculated Z(τ ) for τ1, τ2, . . . ,τN . Then we can
approximate Z(τ ) in the neighbourhood of these points by means of the polynomial P(τ ) agreeing
with Z(τ ) at these points. The accuracy of the approximation may be determined as in Theorem 2.
Suppose that in this way we find that |Z(τ )−P(τ )|< ε and |P′′(τ )|< ε′ for |τ − τ ′|< δ and that
|P(τ ′)|< ε′′ and |P′(τ ′)− a|< ε′′′, then we see that

|Z(τ )− a(τ − τ ′)|< ε+ ε′′+ 1
2ε
′δ2
+ ε′′′δ

for |τ − τ ′|< δ, and we may conclude by Rouché’s theorem that Z(τ ) has a zero within this circle
if |a|> ε′′′+ 1

2ε
′δ+ ε+ε′′

δ
. This, however, is a tiresome procedure, and should be avoided unless

we have good reason to believe that such a zero is really present. If there are any such zeros we
may expect that the first ones to appear will be rather close to the critical line, and they will show
themselves by the curve of Z(τ ) approaching the zero line and receding without crossing it: in other
words by behaving like a quadratic expression with complex zeros. In the absence of such behaviour
we wish to prove that there are no complex zeros without using this interpolation procedure. Let us
suppose that we have been investigating the range T0 < τ < T1 and that we have found a certain
number of real zeros in the interval. If by some means we can determine the total number of zeros
in the rectangle |I τ |< 2, T0 <R τ < T1 (say) and find it to equal the number of changes of sign
found, then we can be sure that there were no zeros off the critical line in this rectangle. This total
number of zeros can be determined by calculating the function at various points round the rectan-
gle. This might normally be expected to involve even more work than the calculations on the critical
line. Fortunately, with the function concerned, the calculations on the lines |I τ | = 2 are not neces-
sary. It is well known that the change in the argument of Z(τ ) on these lines can be calculated to
within 1

2π in terms of the gamma function. It remains to find the change on the lines R τ = T0 and
R τ = T1. In principle this could be done by approximating Z(τ ) with a polynomial, using an inter-
polation formula based on values calculated on the critical line. Since this interpolation procedure is
necessary only at the ends of the interval investigated this would be a considerably smaller burden
than the repeated application of it throughout the interval required by the method previously sug-
gested. It will, however, be shown later on that even this application of the interpolation procedure
is unnecessary, but for the sake of argument we will suppose for the moment that it is done. We may
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suppose then that the total number of zeros in the rectangle is known. If this differs from the number
of changes of sign which have been found, then the deficit must be ascribed to a combination of four
causes. Some may be due to pairs of complex zeros, some to pairs of changes of sign which were
missed due to insufficiently many values Z(τ ) being calculated, some to the accuracy of some of the
values being inadequate to establish that changes of sign had occurred. Finally there may be some
multiple zeros on the critical line. Each source accounts for an even number of zeros provided that
the accuracy is sufficient for there to be no doubt about the signs of Z(T0) and Z(T1). By calculating
further values and increasing the accuracy we can remove some of the discrepancies, but we cannot
do anything about the multiple zeros by mere calculation. Assuming that there are no multiple zeros
it is possible in principle to make sure that all the real zeros have been found by calculating Z(τ ) at
a sufficient number of real points, but the number of points would be many more than are required
for finding all the real zeros. It is better to find the complex zeros in the manner already described.

To summarize. The method recommended is first to find the total number of zeros in the rectangle
by methods to be described later. Then to calculate the function at sufficient points to account for all
the zeros, either by changes of sign or as complex zeros determined by the use of Rouché’s theorem.
We know no way of dealing with multiple zeros, and simply hope that none are present.

4. Evaluation of N(t)

For reasons explained in the last section it is desirable to be able to determine the number of zeros
of Z(τ ) in a region T0 < τ < T1. In practice this is best done by determining separately the numbers
in the regions 0<R τ < T0 and 0<R τ < T1. If we write πS(t) for the argument of ζ( 1

2 + it)
obtained by continuation along a line parallel to the real axis from∞+ it, where the argument is
defined to be zero, we have

N(T)= 2κ(
T

2π
)+ 1+ S(T),

where N(T) is the number of zeros of ζ(σ + it) in the region 0< t < T . The problem is thus reduced
to the determination of S(T). If the sign of Z( T

2π ) is known, the value of S(T) is known modulo 2. It
is not therefore necessary to obtain S(T) to any great accuracy. The principle of the method is that if

S1(t)=
t∫

0
S(u)du then S1(t) is known to be O(log t). If then the positions of the zeros are known in

an interval of length L, S(t) will be known modulo 2 in this interval, the additive even integer being
the same throughout. Hence S1(t0+L)− S1(t0) will be known modulo 2L, and if L is sufficiently
large this will determine it exactly and thereby determine S(t) throughout the interval. In order to
complete the details of this argument it is necessary to replace the O result by a 2 result. It would
also be desirable to try and arrange to manage with very limited knowledge of the positions of the
zeros.

Theorem 4. If t2 > t1 > 168π , then

S1(t2)− S1(t1)=2

(
2.30+ 0.128 log

t2
2π

)
.

The proof of this follows Theorem 40 of Titchmarsh (3). The essential step is

Lemma 1. If t2 > t1 > 0, then

π{S1(t2)− S1(t1)} =R
∞+it2∫

1
2+it2

logζ(s)ds−R
∞+it1∫

1
2+it1

logζ(s)ds.
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We apply Cauchy’s theorem to logζ(s) and the rectangle with vertices 1
2 + it1, 1

2 + it2, R+
it2, R+ it1 and appropriate detours round the branch lines from zeros within the rectangle. The
real part of the integral is

−R
R+it2∫

1
2+it2

logζ(s)ds+

1
2+it2∫

1
2+it1

argζ(s)(−ids)+R
R+it1∫

1
2+it1

logζ(s)ds−

R+it2∫
R+it1

argζ(s)(−ids),

no contribution arising from the detours. The last of these integrals tends to 0 as R→∞ and the
second is π{S1(t2)− S1(t1)}.

Lemma 2. If τ > 64, we have ∣∣∣∣ζ (1

2
+ 2π iτ

)∣∣∣∣< 4τ
1
4 .

Since |h(ζ )|< 0·95 we have, by Theorem 1,∣∣∣∣τ (1

2
+ 2π iτ

)∣∣∣∣= |Z(τ )|< 2
∑

16r6τ
1
2

r−
1
2 + 1.2τ−

3
4 + 0.95τ−

1
4

and

∑
16r6τ

1
2

r−
1
2 < 1+

τ
1
2∫

1

x−
1
2 dx= 2τ

1
4 − 1.

Lemma 3.

|ζ(1.25+ it)|< ζ(1.25) < 4.6,∣∣∣∣∣∣
∞∫

1.25+it

logζ(s)ds

∣∣∣∣∣∣<
∞∫

1.25

logζ(σ )dσ < 1.17,

∣∣∣∣ζ ′ζ (1.5+ it)

∣∣∣∣< ζ ′

ζ
(1.5) < 2.62,∣∣∣∣∣∣

2.5+it∫
1.5+it

logζ(s)ds

∣∣∣∣∣∣<
2.5∫

1.5

logζ(σ )dσ < 0.548,

∣∣∣∣∣∣
∞∫

1.5+it

logζ(s)ds

∣∣∣∣∣∣<
∞∫

1.5

logζ(σ )dσ < 0.997,

1
2 logπ > 0.572.

These results are all based on the tables in Jahnke-Emde (2), p. 323. An error of two units in the
last place is assumed. To the extent that we do not know how these tables were obtained we depart
from the principles of the ‘rigorous computation’.
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Lemma 4. If 1
2 < σ <

5
4 and t > 168π , then

|ζ(s)|< 4.5t3/8−
1
4σ .

Consider f (s):

f (s)= ζ(s)

(
s− 1

2

i

)−3/8+ 1
4σ

exp

[
−4π i

s− 1
2 − 127.5π i

]
.

Now

∣∣∣∣exp

[
−4π i

s− ξ − 127.5π i

]∣∣∣∣= exp

[
−4π(b− 127.5π)

(t− 127.5π)2+ (σ − 1
2 )

2

]
.

Hence, by Lemma 3, |f (s)|< 4 on the line σ = 1
2 . Elsewhere, if 1

2 < σ <
5
4 , t > 128π , we have

log

∣∣∣∣∣∣
(

s− 1
2

i

)−3/8+ 1
4 s
∣∣∣∣∣∣= 1

2

(
−

3

8
+

1

4
σ

)
log

{
t2+

(
σ −

1

2

)2
}
+

1

4
t tan−1 σ −

1
2

t

6−
1

32
log t2+

3

16
.

Hence on the line σ = 5
4 , t > 128π we have

| f (s)|< ζ

(
5

4

)
e

3
16 (128π)−

1
16 < 4.

Finally on the line t = 128π , 1
2 6 σ 6 5

4 we have

| f (s)|< |ζ(s)|exp

[
−2π2

1
4π

2+ 9
16

]
and |ζ(s)|< (128π)

1
2

by equation (8) on p. 27 of Ingham (1). Hence |f (s)|< 4 on the whole boundary of the strip t >
128π , 1

2 < σ <
5
4 , and, since certainly f (s)= O(t), we have |f (s)|< 4 throughout the strip by the

Phragmén-Lindelöf theorem. From this it follows that

|ζ(s)|< 4e0.1

∣∣∣∣∣∣
(

s− 1
2

i

) 3
8−

1
4 s
∣∣∣∣∣∣

< 4.5t
3
8−

1
4σ for t > 168π .

The purpose of the factor exp

[
−4π i

s− 1
2 − 127·5π i

]
is merely to enable us to do without accurate

knowledge of ζ(s) over the end of the strip.
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Lemma 5. If t > 168π , then

R
∞+it∫

1
2+it

logζ(s)ds 6 2.30+ 0.12log t.

For R
∞+it∫

1
2+it

logζ(s)ds 6 1.17+

1.25∫
0.5

log |ζ(s)|ds, by Lemma 3,

6 1.17+

1.25∫
0.5

{log4.5+

(
3

8
−

1

4
σ

)
log t}dσ , by Lemma 4,

= 1.17+ 0.75 log4.5+
15

128
log t

< 2.30+ 0.12log t.

It is certainly possible to improve the coefficient of log t in this result at the expense of the
constant. The coefficient of log t could be reduced at any rate to 0·052 using results stated on pp. 25,
26 of Titchmarsh (3).

Lemma 6.

ζ(s)ζ(s+ 2)

{ζ(s+ 1)}2
=

s2

s2− 1

{0( 1
2 s+ 3

2 )}
2

0( 1
2 s+ 1)0( 1

2 s+ 2)

∏
ρ

(s− ρ)(s− ρ+ 2)

(s− ρ+ 1)2
,

where the product is over the non-trivial zeros of the zeta-function.

This is an immediate consequence of the Weierstrass product for the zeta-function.

Lemma 7. If k = 1.49,R a > 0, then

R
(
ψ(a)+

k

a

)
=R

 a∫
a−1

log
z

z+ 1
dz+

k

a

> 0.

It is easily seen that if R a= 0 then R ψ(a)=R (k/a)= 0. Also that R (k/a)> 0 for R a >
0 and that ψ(a) is continuous at 0. ψ(a)+ (k/a)→ 0 as a→∞. Hence applying the maximum
modulus principle (or rather, the minimum real part principle) to ψ(a)+ (k/a) and various regions

R a > 0, 0< ε < |a|< R,

we see by allowing ε→ 0, R→∞ that the minimum real part must be achieved either on the
boundary R a= 0 or on the real axis (which may be a singularity). It only remains therefore to
establish our inequality for the real axis. At any stationary point we must have

0=R
(
ψ ′(a)−

k

a2

)
=− log

∣∣∣∣1− 1

a2

∣∣∣∣− k

a2
.

This equation only has solutions near to 0·91 and 1·2 both of which correspond to minima of
ψ(a)+ (k/a). There is no ordinary maximum separating them, but there is a singularity at a= 1.
By computations near to these minima, and knowledge of an upper bound for the second derivative
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of the function in intervals enclosing them, one can show that the values at the minima are positive.
The value at the lesser minimum (near 0·91) is about 0·0087. Hence ψ(a)+ (k/a) > 0 on the real
axis as required.

Lemma 8. If R z> 0, then

0′(z)

0(z)
= logz−

1

2z
+2

(
2

π2|(J z)2− (R z)2|

)
.

We use the formula

0′(z)

0(z)
= logz−

1

2z
+ 2

∞∫
0

u du

(u2+ z2)(e2πu− 1)

and take the line of integration to be R u= I u= v> 0. Then∣∣∣∣ u

e2πu− 1

∣∣∣∣< e−πv

π
√2

, |u2
+ z2
|> |(I z)2− (R z)2|.

No poles are encountered in the change of line of integration since R z> 0.

Lemma 9. If t > 50, then

−R
∞∫

1
2+it

logζ(s)ds< 4.9+ 0.245log
t

2π
.

We have

R
∞∫

1
2+it

logζ(s)ds=R
∞∫

1
2+it

log
ζ(s)ζ(s+ 2)

{ζ(s+ 1)}2
ds+R

∞∫
3
2+it

logζ(s)ds+R

5
2+it∫

3
2+it

logζ(s)ds

> R
∞∫

1
2+it

log
ζ(s)ζ(s+ 2)

{ζ(s+ 1)}2
ds− 1.545,

by Lemma 3.
Also, by Lemma 6,

∞∫
1
2+it

log
ζ(s)ζ(s+ 2)

{ζ(s+ 1)}2
ds=

∑
ρ

3
2+it∫

1
2+it

log
s− ρ

s− ρ+ 1
ds−

3
2+it∫

1
2+it

log
0
(

1
2 s+ 1

)
0
(

1
2 s+ 3

2

)ds+

3
2+it∫

1
2+it

log
s

s− 1
ds.

Now if 1
2 < σ <

3
2 , then |s− 1|< |s|, and therefore

R

3
2+it∫

1
2+it

log
s

s− 1
ds > 0.
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Also

R

3
2+it∫

1
2+it

log
0
(

1
2 s+1

)
0
(

1
2 s+ 3

2

)ds=− 1
2R 0′

0

(
1
2 it+ σ

)

for some σ , 5
4 < σ <

9
4 , by the mean value theorems,

6−
1

4
log

(
1

4
t2+

25

16

)
−

5

2

t2+
25

4

+
2

π2

(
1

4
t2−

81

16

)
by Lemma 8,

<−
1

2
log

1

2
t (since t > 50)

<−
1

2
log

t

2π
− 0.572, by Lemma 3

Finally,

R
∑
ρ

3
2+it∫

1
2+it

log
s− ρ

s− ρ+ 1
ds >−1.49R

∑
ρ

1

it− ρ+ 3
2

,

by Lemma 7,

=−1.49R
[
ζ ′

ζ

(
it+

3

2

)
−

1

2
logπ +

1

2

0′

0

(
1

2
it+

7

4

)]
,

by the Mittag-Leffler series for ζ
′

ζ
(s),

>−1.49

[
R ζ ′

ζ

(
it+

3

2

)
−

1

2
logπ +

1

4
log

(
1

4
t2+

49

16

)
−

7

4t2+ 49

]
,

by Lemma 8,

>−1.49

[
1

2
log

t

2π
+ 2.63

]
,

using Lemma 3 and t > 50.
Combining these results gives the asserted inequality.
A variant of this method enables us to reduce the coefficient of τ to 1

2 log2− 1
4 + ε, e.g., to

0.097, at the expense of the constant term.
Theorem 4 follows at once from Lemmas 1, 5, 9.
It is convenient to replace Theorem 4 by a similar result with κ(τ) or κ1(τ ) as the independent

variable. This is because κ(τ) describes the ‘expected’ position of the zeros, and is therefore more
informative than τ .
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Lemma 10. If τ1 > 84, then

τ2∫
τ1

S(2πτ)dκ1(τ )=2{0.184logτ2+ 0.0103(logτ2)
2
}.

For
τ2∫
τ1

S(2πτ)dκ1(τ )=
1

2π
κ ′1(τ1){S1(2πτ2)− S1(2πτ1)}

−
1

2π

τ2∫
τ1

{S1(2πτ2)− S1(2πτ)}κ
′′

1 (τ )dτ

=2

2.30+ 0.128logτ2

2π

κ ′1(τ1)+

τ2∫
τ1

|κ
′′

1 (τ )|dτ




=2

(
2.30+ 0.128logτ2

4π
logτ2

)
.

Theorem 5. Let

64< τ−R1 < τ1−R1 < .. . < τ0 < .. . < τR2−1 < τR2

and κ(τr)= cr,δr = cr − c0−
1
2 r,δR2 = δ−R1 = 0, and Z(τr)Z(τr+1) < 0 if 1−R1 6 r 6 R2− 2,

τ−R1 > 84. Then

−
1

2
+

2

R1

−1∑
r=1−R1

δr−
0.006

τ−R1

−
2

R1
{0.184logτ0+ 0.0103(logτ0)

2
}

6 N(2πτ0)− 2c0− 1

6
1

2
+

2

R2

R2−1∑
r=1

δr +
0.006

τ0
+

2

R1
{0.184logτR2 + 0.0103(logτR2)

2
}.

In the interval (τr,τr+1) we have N(2πτ)> N(2πτ0)+ r if 0 6 r 6 R2− 1 and therefore

τR∫
τ0

N(2πτ)dκ1(τ )>
R−1∑
r=0

(cr+1− cr){N(2πτ0)+ r}

=
1

2
R

[
N(2πτ0)+

1

2
(R− 1)

]
−

R∑
r=1

δr.

Also
τR∫
τ0

{2κ(τ)+ 1}dκ1(τ )= cR− c0+

(
c2

R− c2
0

)
+2

(
0.006(cR− c0)

τ0

)

=
1

2
R

(
1+ 2c0+

1

2
R

)
+2

(
0.003R

τ0

)
.
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The second inequality now follows since S(2πτ)= N(2πτ)− 1− 2κ(τ) and the first may be
proved similarly.

Example. It is known by computation that within distance 0·05 of each of the half-integers 547 1
2

to 554 1
2 there lie values of κ such that the corresponding value of Z has the same sign as cos2πκ .

It is required to show that if τ0 is that one of the points concerned which is within 0·05 of 551 then
N(2πτ0)= 1103.

We take the values concerned to be τ−7,τ−6, . . . , τ7 in Theorem 5, and define τ−8,τ8 to satisfy
δ−8 = δ8 = 0. Then |δr|< 0·1 for each r,−7 6 r 6 7. The conditions of Theorem 5 are satisfied and
it gives

−1·0 6 N(2πτ0)− 2c0− 1 6 1·0.

N(2πτ0) is odd since Z(τ0)cos2πκ(τ0) > 0 and we also have

|c0− 551|< 0·05.

The required conclusion now follows.

PART II. THE COMPUTATIONS

1. Essentials of the Manchester computer

It is not intended to give any detailed account of the Manchester Computer here, but a few facts must
be mentioned if the strategy of the computation is to be understood. The storage of the machine is
of two kinds, known as ‘electronic’ and ‘magnetic’ storage. The electronic storage consisted of
four ‘pages’ each of thirty-two lines of forty binary digits. The magnetic storage consisted of a
certain number of tracks each of two pages of similar capacity. Only about eight of these tracks
were available for the zeta-function calculations. It was possible at any time to transfer one or both
pages of a track to the electronic storage by an appropriate instruction. This operation takes about
60 ms. (milliseconds). Transfers to the magnetic store from the electronic were also possible, but
were in fact only used for preparatory loading of the magnetic store. The course of the calculations
is controlled by instructions each of twenty binary digits. These are normally magnetically stored,
but must be transferred to the electronic store before they can be obeyed. In the initial state of the
machine (with the magnetic store loaded) the electronic store is filled with zeros. A zero instruction,
however, has a definite meaning, and in fact results in a transfer of instructions to the electronic
store, thus initiating the calculation. Most instructions, such as transfer of ‘lines’ of forty digits,
take 1·8 ms., but transfers to or from the magnetic store take longer, as has been mentioned, and
multiplications take a time depending on the number of digits 1 in the multiplier, ranging from 3·6
ms. for a power of two to 39 ms. for 240

− 1.
The results of the calculations are punched out on teleprint tape. This is a slow process in

comparison with the calculations, taking about 150 ms. per character. The content of a tape may
afterwards automatically be printed out with a typewriter if desired. The significance of what is
printed out is determined by the ‘programmer’. In the present case the output consisted mainly of
numbers in the scale of 32 using the code

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/ E @ A : S I U 1

4 D R J N F C K T Z L W

20 21 22 23 24 25 26 27 28 29 30 31
H Y P Q O B G || M X V £
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and writing the most significant digit on the right. More conventionally the scale of 10 can be used,
but this would require the storage of a conversion routine, and the writer was entirely content to see
the results in the scale of 32, with which he is sufficiently familiar.

2. Outline of calculation method

The calculations had of course to be planned so that the total storage capacity used was within the
capacity of the machine. So long as this was fulfilled it was desirable to make the time of calculation
as short as possible without excessive trouble in programming. The most time-consuming part of
the calculations is of course the computation of the terms

n−
1
2 cos2π(τ logn− κ)

from given κ and τ . By storing tables of logn and n−
1
2 within the machine this was reduced

essentially to two multiplications and the calculation of a cosine, together with arrangements for
‘looking up’ the logarithm and reciprocal square root. The cosines were obtained from a table giv-
ing cos(rπ/128) for 0 6 r 6 64 by linear interpolation and reducing to the first quadrant. This gives
an error of less than 10−4, which is quite sufficient accuracy for the purpose. Very much greater
accuracy was of course required in the logarithms, for an error ε in logn gives rise to an error
approaching 2πτε in the cosine, and 2πτ may be very large, e.g. 25,000. These logarithms were
calculated by the machine in a previous computation, and were given with an error not exceeding
2.10−10. The reciprocal square roots were given with error not exceeding 10−5. Both the logarithms
and the reciprocal square roots were checked after loading into the magnetic store by automatic
addition, the results obtained being compared with values based respectively on Stirling’s formula
and on the known value of ζ( 1

2 ). The table only went as far as n= 63. The tabular cosines were
built up automatically from the values of cos(π/128) and sin(π/128) by using the addition for-
mula. The values of cos(π/128) and sin(π/128) were calculated both automatically and manually.
A hand-copying process was used in connexion with this table, but the final results when loaded
were automatically thrice differenced and the results inspected.

The routine as a whole was checked (amongst other methods) by comparing the result given
for a value of τ about 20,000 with an entirely different, slower, and simpler routine. This routine
had itself been checked against a hand-computed value for τ = 16 and against a value given by
Titchmarsh (5) for τ = 201·596.

Since it was only necessary to calculate κ(τ) once for each value of τ this calculation did not
have to be particularly quickly performed. It was considered sufficient to obtain the logarithm by

means of a slow but simple routine taking about 1·2 sec. The time for each term n−
1
2 cos2π(τ logn−

κ) was about 0·2 sec. With m= 63, and allowing for the calculation of κ1(τ ) this means about
14 secs. for each value of τ . The routine could be used for recording the results for given values of
τ , a typical entry obtained in this way being:

ZETAFASTG/F@Q 1
4 B$YNK@:ZSZ′′XVMX///SA///// 1

4 OTNR@O//.

This entry has to be divided into sequences of eight characters. In this case they are:

1. ZETAFAST. This occurs at the beginning of each entry. Its purpose is mainly to identify the
document as referring to this zeta-function routine.

2. G/F@Q 1
4 B$. This is a number useful in checking results and called the ‘cumulant’. It appears

in the scale of 32, with the most significant digit on the right. This is the standard method
of representing numbers on documents connected with the Manchester Computer (a decimal
method can also be used if desired).
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3. YNK@:ZSZ. This is also in the scale of 32 and gives the residue of 240κ1(τ ) modulo 240. Since
Z is the symbol for 17 it will be seen that κ1(τ ) is near to 1

2 mod 1.
4. ′′XVMX///. This gives the value of 217τ ; in this case τ is about 239·24.
5. SA ///// 1

4 . This was always included in the record due to a minor difficulty in the programming.
It did not seem worth while to take the trouble to eliminate it.

6. OTNR@O//. This is the value of 230Z(τ ) modulo 240. In this case Z(τ ) is about 0·75.

The routine was not, however, used mostly for the calculation of values of Z(τ )with individually
given τ . It was made to determine for itself appropriate values of τ , such as to give values of
2κ(τ) near to successive integers. This was done by making each τ depend on the immediately
previous one and on the previous κ by the formula τ ′ = τ + (1− δ)α, where τ ′,τ are the new and
old values of τ respectively, δ is the difference of 2κ1(τ ) from the nearest integer, and (α logτ)−1

=

1+2(0·1). This procedure ensured that if the initial value of κ(τ) differs from an integer by less
than 0·125, then the succeeding values will do likewise. It was decided not to record all the values
of Z(τ ), partly because the inspection and filing of the teleprint tape output would have a great
burden to the experimenters. Values were only recorded when the unexpected sign occurred, i.e.
when Z(τ )cos2πκ(τ) < 0. This reduced the amount of output data by about 90 per cent.

In order that there should be no doubt about the validity of the results it is necessary that one
should also record all cases where the sign of Z(τ ) is doubtful because of the limited accuracy of
the computation. The criterion actually used was Z(τ )H(κ) > 0·31E, where

H(κ)≡ κ − 1
4 (mod 1), |H(κ)|< 0·31.

The quantity H(κ) arises very naturally with the computer. The condition (α logτ)−1
= 1+2(0·1)

ensures that (except for one or two values at the beginning of a run), |H(κ)|< 0·31. The actual
errors involved in the calculation were:

Error arising from using Titchmarsh’s formula (Theorem 3) . . 1.15m−
3
2

Error due to replacing τ−
1
4 h(ξ) by m−

1
2 h(ξ) . . . . . 0.47m−

3
2

Error due to replacing ξ by 1
2τm−1

−
1
2 m . . . . . . 1.08m−

3
2

Error from using tabulated logarithms . . . . . . 5.1× 10−10m
5
2

Error in replacing κ(τ) by κ1(τ ) . . . . . . . 0.15m−
3
2

Error in calculating κ1(τ ) . . . . . . . 2 × 10−10m
5
2

Error from using tabulated reciprocal square roots . . . . 1.3× 10−4m

Error from using tabulated cosines and linear interpolations . . 3.2× 10−4m
1
2

Error of Theorem 2 . . . . . . . . 0.0243m−
1
2

There are also numerous rounding off errors which are very small. These and all the ‘cross terms’
have been absorbed into the above errors so that we may put the whole error as not more than

E = 2·85m−
3
2 + 0·0243m−

1
2 + 3·2 × 10−4m

1
2 + 1·3 × 10−4m+ 7·1 × 10−10m

5
2 ,

e.g. for m= 15

E < 0·057,

and for m= 65

E < 0·02.

The storage available was distributed as follows:
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Magnetic store

Logarithms routine (for κ) . . . . . . . . 1 page
Table of logarithms and reciprocal square roots . . . 4 pages

Routine for calculating the terms n−
1
2 cos2π(τ logn− κ) and

table of cosines . . . . . . . . . . 2 pages
Remainder of routine for calculating the function Z(τ ) . . 2 pages
Input routine . . . . . . . . . 2 pages
Output routine . . . . . . . . . 2 pages

Electronic store, as occupied during the greater part of the time
Instructions and cosines . . . . . . . . 2 pages
Logarithms and reciprocal square roots . . . . . . . 1 page
Miscellaneous data and working space . . . . . . . 1 page

The principal investigation concerned the range 632 6 τ 6 642, i.e. the interval in which m= 63.
Working at full efficiency it should have taken about 4 hours to calculate these values, the number of
zeros concerned being about 1070. Full efficiency was not, however, achieved, and the calculation
took about 9 hours. Only a small amount of this additional time was accounted for by duplicating the
work. The special investigations in the neighbourhood of points where the unexpected sign occurred
took a further 8 hours. The general reliability of the machine was checked from time to time by
repeating small sections. The recorded cumulants were useful in this connexion. These cumulants
were the totals of the values of Z(τ ) computed since the last recorded value. If a calculation is
repeated and there is agreement in cumulant value then there is a strong presumption that there is
also agreement in all the individual values contributing to it. The result of this investigation, so far
as it can be relied on, was that there are no complex zeros or multiple real zeros of Z(τ ) in the region

632 6 τ 6 642,

i.e. all zeros of ζ(s) in the region 2π .632 6 t 6 2π .642 are simple zeros on the critical line.
Another investigation was also started with a view to extending the range of relatively small

values of t for which the Riemann hypothesis holds. Titchmarsh has already proved that it holds
up to t = 1468, i.e. to about τ = 231. The new investigation started somewhat before τ = 225 to
allow a margin for the application of Theorem 5. It was intended to continue the work up to about
τ = 500, but an early breakdown resulted in its abandonment at τ = 256. After applying Theorem 5
it would only be possible to assert the validity of the Riemann hypothesis up to about τ = 250. All
this part of the calculations was done twice, the unrecorded values being confirmed by means of the
‘cumulants’.

Unfortunately 0·31E was given the inappropriate value of 1
128 and consequently we are only

able to assert the validity of the Riemann hypothesis as far as t = 1540, a negligible advance.
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ON A THEOREM OF LITTLEWOOD1

S. SKEWES and A.M. TURING

1. Introduction

We propose to investigate the question as to where π(x)− li x is positive.2 This quantity is positive
if x is less than about 1.42 and negative from there up to 107. The figures suggest that π(x)− li x∼
x1/2/ logx as x→∞ but Littlewood (1914) has proved that π(x)− li x changes sign infinitely often.
The argument proceeds by cases, according to whether the Riemann hypothesis is true or false. It
has been announced by one of us (Skewes, 1933) that in the case that the Riemann hypothesis is
true π(x)− li x> 0 for some x, 2< x< 10a, where a= 10b, b= 1034. In the present paper it is
proposed to establish that π(x) > li x for some x, 2< x< exp(exp661), without the restriction of
assuming the Riemann hypothesis. [Should 661 be 686?]

We shall also prepare the ground for the possibility of improving the bound to about 10a, a= 105

with the aid of extensive computations, and also consider the effect on the situation of discovering
zeros off the critical line.

2. Outline of the method

The necessity of using the functions 5(x) and logζ(s) somewhat complicates the argument. The
general outline of the method may be illustrated by dealing with the analogous problem of finding
where θ(x) > x. Since

ψ(x)= θ(x)+ θ(x1/2)+ θ(x1/3)+ ·· · ,

and θ(x)∼ x, this is essentially the question as to where ψ(x) > x+ x1/2. Now

ψ(x)− x=−
∑
%

x%/%− (ζ ′/ζ )(0)−
1

2
log(1− x−2),

so that the problem reduces essentially to the question: for what values of t does the inequality

G(t)=−
∑
%

%−1 exp(%−
1

2
)t > 1

1 Editors’ footnote: In the Collected Works, J. L. Britton remarks at this point: “I have not been able to locate the original
script but I had access to a photocopy of it. The article is in typescript with all mathematical symbols in manuscript. In
spite of the joint authorship, the handwriting and phrasing indicate that it was perhaps written by Turing alone. There are
handwritten comments by another person, probably A.E. Ingham. Such comments are here enclosed in square brackets
[ ]. Where necessary an earlier $ sign indicates the place in the text where the remark applies. If the remark refers
to a symbol or expression in the text, the relevant $ sign appears immediately before the symbol or expression.” See
pp. 272–273 of the Collected Works for additional remarks. We understand from A. M. Cohen of Cardiff that (a) Philip
Stein helped Ingham in trying to tidy up the manuscript around 1961, some of the points flagged may reflect this; and (b)
a scanned copy of Cohen’s fifty year old photocopy of this work should soon be available in the Turing Archive.
What follows is a “rekeyed” version of the text found in the Collected Works (1992). The two versions are identical apart
from some minor changes in punctuation, style, and layout.
2 Here π(x) is the number of primes less than x and li x is the logarithmic integral of x, i.e., the Cauchy principal value
of
∫ x

0 1/ log t dt. In these as in other matters of notation, we follow ?.
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hold, summation being over the complex zeros?
One may consider various expressions of the form

∫
∞

0 G(t)f (t)dt. Putting

1
√

2π

∞∫
0

f (t)eiutdt = F(u),

we have

I =

∞∫
0

G(t)f (t)dt =
1
√

2π

∑
%

%−1F

(
%− 1

2

i

)
.

If f (t) is positive for positive t, and decreases to zero sufficiently quickly, it is possible to argue back
from the value of I to the inequality G(t) > 1. For instance, it will suffice to have

∞∫
0

f (t)dt = 1, f (t) > 0, I >
5

4
,

∞∫
A

G(t)f (t)dt <
1

4
,

to infer G(t) > 1 for some t, 0< t < A. The value of t for which I is sufficiently large and positive
is to be obtained by Diophantine approximation. In carrying out the approximation, we try to adjust
the phases of the terms with small % to the appropriate values and to arrange that the remaining,
unadjusted, terms are small. We therefore wish F((%− 1

2 )/i) to be small for the large values of %.
By taking f (t)= ((sinβt)/t)2, Ingham ensured that, if the Riemann hypothesis is true, only a finite
number of terms were different from zero. In the present paper, we use instead a function

f (t)=

(
sinβt

t

)4

exp

(
−

1

2
α2t2

)
which is largely inspired by Ingham’s argument. It does not result in the vanishing of any of the
terms, but if α is small, the later terms are extremely small. The present function has various advan-
tages (for the present purpose) over that used by Ingham. The factor exp(− 1

2α
2t2) encourages the

quick convergence of the integral
∫
∞

0 G(t)f (t)dt, facilitating the inference of inequalities about G(t)
from values of I. This factor also causes F(u) to be an integral function (whereas otherwise it
would only be regular in two squares and two right angle segments). The use of the higher power
of (sinβt)/t results in a rather sharper transition from large to small values of f (u), leading to an
appreciable numerical improvement.

Essential to the whole method is the fact that the Riemann hypothesis has been tested in the
region |t|< 1468 (Titchmarsh,1936).

3. Formal preliminaries

Lemma 1. If

F(u)=
1
√

2π

∞∫
−∞

e−iutf (t)dt and ϕ(s)=

∞∫
0

x−sdh(x)

and the integrals

∞∫
0

x−3
|h(x)|dx and

3/2+i∞∫
3/2−i∞

|F(−is)||ds|
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are convergent and h(x)= o(x2) as x→∞ and x→ 0, then

∞∫
−∞

h(et)e−t/2f (t− t0)dt =
1

i
√

2π

2+i∞∫
2−i∞

ϕ(s)

s
exp

((
s−

1

2

)
t0

)
F

(
−i

(
s−

1

2

))
ds.

If σ = 2, then ϕ(s)= s
∫
∞

0 h(x)x−s−1dx by integration by parts and so

1

i
√

2π

2+i∞∫
2−i∞

ϕ(s)

s
exp

((
s−

1

2

)
t0

)
F

(
i

(
s−

1

2

))
ds

=
1

i
√

2π

2+i∞∫
2−i∞

 ∞∫
0

h(x)x−s−1dx

exp

((
s−

1

2

)
t0

)
F

(
−i

(
s−

1

2

))
ds

=
1

i
√

2π

∞∫
0

x−3/2h(x)

 2+i∞∫
2−i∞

x−s+1/2 exp

((
s−

1

2

)
t0

)
F

(
−i

(
s−

1

2

))
ds

dx

=

∞∫
0

x−3/2h(x)f (logx− t0)dx.

The inversion is admissible since the double integral is absolutely convergent. [?(t0− logx)]
[(t0− t)] [? conditions on f ] [or+ i(s− 1

2 ) and + is]

Lemma 2. If the functions f , F are subject to the restrictions of Lemma 1, we have

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)dt

=
1

$
√

2π

2+i∞∫
2−i∞

s−1(logζ(s)− g(s))exp((s− i)t0), [?i]

where

M(t)=
∫

t−1etdt, integration from 0.1 to max(t, 0.1),

and where

g(s)=

∞∫
0.1(s−1)

t−1e−tdt, [? Df. if s real< 1]

the integration to be along a line parallel to the real axis.

We apply Lemma 1 first with h(x)=5(x) and again with h(x)=M(logx) and combine the
results. Note that for R s> 1, one may also write g(s)=

∫
∞

0.1 t−1 exp(1− s)t dt.
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Lemma 3.
(a) If the logarithm has its principal value, the function g(s)+ log(s− 1) has no singularities.
(b) For any s, |g(s)|< π + $1exp ($− 0.1(1− σ)).

[1/|s− 1|;but g ambiguous] [?minus sign] [? logsing.|

(a) The function g(s)+ log(s− 1) may be defined as the indefinite integral of the regular function
(1− exp(−0.1(s− 1)))/(s− 1).

(b) The inequality may be proved by integrating along an arc of a circle and part of the positive
real axis.

Lemma 4. If the functions f and F are related as in Lemma 1 and g is the function defined in
Lemma 2 and if F(is) is bounded [?] in any strip σ1 6 σ 6 σ2, then

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)dt = I1+ I2$+
∑
%

I3,% + J, [? −]

where the summation is over the nontrivial zeros of the zeta function and 1> $ 0 [? 5
2 ] and

I1 =
1

i
√

2π

2+i∞∫
2−i∞

s−1(log(s+ 1)(s+ 2)ζ(s+ 2))× exp
((

s− 1
2

)
t0
)

F

(
$− i

(
s−

1

2

))
ds, [+i]

I2 =
1

i
√

2π

∫
s−1

(
log

ζ(s)

(s+ 1)(s+ 2)ζ(s+ 2)
− g(s)

)
exp

((
s−

1

2

)
t0

)
F

(
i

(
s−

1

2

))
ds,

integration from −1+ 1
2 − i∞ to −1+ 1

2 + i∞,

I3,% =
√

2π

%∫
%−2

s−1F

(
$− i

(
s−

1

2

))
exp

((
s−

1

2

)
t0

)
ds, [+i],

J =
√

2π

(
log

$− ζ(0)

2ζ(2)
− g(0)

)
F

(
1

2
i

)
. . . (illegible).

[? minus sign] [log and g(0) ambiguous]

Formally the result follows from Cauchy’s theorem by moving the line of integration from σ = 2
to σ = 1

2 −1 with the integrand of I2.
The integral is absolutely convergent on either of these lines, so that it is only necessary to prove

that there is a sequence Tr such that Tr→+∞ and I4,r→ 0, where

I4,r =

∫
s−1

(
log

sζ(s)

(s+ 1)(s+ 2)ζ(s+ 2)
− g(s)

)
exp

((
s−

1

2

)
t0

)
F

(
−i

(
s−

1

2

))
ds,

integration from 1
2 −1+ iTr to 2+ iTr, and a similar sequence with Tr→−∞. We shall only

consider the former case.
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(A handwritten paragraph:) The singularities of the integrand are the. . . lines from % to %− 2
together possibly with some singularities. . . However ζ(s)(s− 1)/(ζ(s+ 2)(s+ 1)(s+ 2)) may be
verified to have neither zero nor pole at any integer, and certainly has not at any other real point.
Hence the only real singularity is that at 0, giving rise to the residue J.

(Continuation of typescript:) We may choose our sequence Tr according to Theorem 26 of
Ingham. There will then exist A such that if 1

2 −16 σ 6 2, then |(ζ ′/ζ )(σ + iTr)|< A(logTr)
2.

The quantity A will depend on 1 only. Then

| logζ(σ + iTr)|6 | logζ(2+ iTr)| + (1.5+1)A(logTr)
2

< 1+ (1.5+1)A(logTr)
2,

and therefore

|I4,r|< T−1
r (1+ (1.5+1)A(logTr)

2)(1.5+1)M exp(1.5 t0),

where M is the upper bound of F
(
−i
(

s− 1
2

))
in the region 1

2 −1. Evidently I4,r→ 0 as r→∞.

[From ‘and therefore’ to ‘r→∞’: ? details; 2 ζ ’ s. Also s, s+ 1, s+ 2 and −g(s).]

4. Results with a special kernel

The function f has been relatively unrestricted until now, but we shall now put f (t)= f1(t)f2(t),
where

f1(t)=

(
sinµt

µt

)4

, f2(t)= exp

(
−

1

2
α2t2

)
,

and we shall also put α2t0 =1= 400 although these substitutions will not always be made. The
choice of values for µ and for t0 will not be made just yet, but we shall assume that 50< µ< 250
and 104 < t0. The functions F, F1, F2 will be Fourier transforms of f , f1, f2 as in Lemma 1.

Lemma 5. We have

F1(z)=
√

2π(2µ)−1κ(z/2µ) if z is real,

F2(z)= α
−1 exp

(
−z2/2α2

)
,

F(z)=
1
√

2π

∞∫
−∞

F2(z− u)F1(u)du,

where

κ(x)=


1−

1

2
|x|2, 0 6 |x|6 1,

[
−

2

3
(1− |x|)3+

1

6
(2− |x|)3

]
1

2
(2− |x|2), 1 6 |x|6 2,

[
1

6
(2− |x|)3

]
0, 2 6 |x|.

These are immediate applications of well-known results in the theory of Fourier transforms.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 21:26 Page 305 #41

On a Theorem of Littlewood 305

Lemma 6. If z= x+ iy, where x and y are real,

(a) |F(z)|6 α−1 exp
(

y2

2α2

)
,

(b) |F(z)|6 α−1 exp
(

y2
−(|x|−4µ)2

2α2

)
if |x|> 4µ,

(c)
∫ c+i∞

c−i∞ |F(iz)||dz|6
√

2πα exp
(

c2

2α2

)
, [c real]

(d) |F(z)−F1(z)|6
√

2πα(4µ2)−1 if z is real, [
√

2πα2(16µ3)−1?]

(e) |F′(z)|6 (αµ)−1 exp
(

y2

2α2

)
. [? multiplied by 2

3 ]

To prove (a) and (b), we use the inequality

|F(z)|6
1
√

2π

∞∫
−∞

|F2(z− u)||F1(u)|du,

and observe that since F1(u)> 0 we have

1
√

2π

∞∫
−∞

|F1(u)|du=
1
√

2π

∞∫
−∞

F1(u)du= f1(0),

and also that the integrand vanishes outside the range |u|6 4µ, so that |F(z)|<M[? 6], where M
is the maximum of |F2(z− u)| in this range.

To prove (c)

c+i∞∫
c−i∞

|F(iz)||dz|6
1
√

2π

∞∫
u=−∞

c+i∞∫
c−i∞

|F2(iz− u)||F1(u)|du |dz|

= f1(0)

c+i∞∫
c−i∞

|F2(iz)||dz| =
√

2πα exp

(
c2

2α2

)
.

[correct but obscure]

For (d)

|F(z)−F1(z)| =

∣∣∣∣∣∣ 1
√

2π

∞∫
−∞

(F1(z− u)−F1(z)$− uF′1(z))F2(u)du

∣∣∣∣∣∣ [+]

since F2 is an even function

6
1

4$µ2

∞∫
−∞

u2
|F2(u)|du [µ3in fact] [times 1

2 ]

since |F′′1 (z)|6
√

2π/4$µ2[µ3]

=
√

2π . . ./4µ2 (illegible). [Should 4µ2 be 16µ3?]
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To prove (e)
(This proof is missing from this copy of the typescript, but see Cohen and Mayhew, 1968,

p. 695, Lemma 2, part (iii).)

Lemma 7.∣∣∣∣∣∣ 1
√

2π

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)$− t−1
0

∑
|γ |64µ+50

( 1
2 + iγ )−1F(γ )exp(iγ t0)

∣∣∣∣∣∣
is less than µ−1t−3/2

0 if t0 > 104,50< µ< 250. [? +]

We shall show that with the notation of Lemma 4

(a) |J|< 10−8t−3/2
0 ,

(b) |I1|< 10−8t−3/2
0 ,

(c) |I2|< 10−8t−3/2
0 ,

(d) ∣∣∣∣∣∣
∑

|γ |<4µ+50

$
√

2π I3,% − t−1
0

(
1
2 + iγ

)−1
F(γ )exp(iγ t0)$

∣∣∣∣∣∣<
0.02

µ
+

0.052

µ

∑
|γ |<4µ+50

γ−1

 t0.

[left-hand side: ? left and right brackets] [right-hand side: ?]

(e)

∣∣∣∣∣ ∑
|γ |>4µ+50

I3,%

∣∣∣∣∣< 10−8t−3/2
0 .

By Lemma 3, |g(0)|< $4. [?] Also ζ(0)=− 1
2 , ζ(2)= 1

6π
2 whence |J|< 16 [true but useless;

?|J|< 2exp(− 1
4 t0)] and so (a) since t0 > 104.

To prove (b), we shift the line of integration onto σ = 1
4 and observe that on that line

|s−1 log((s+ 1)(s+ 2)ζ(s+ 2))|< 10. Hence

|I1|< 10e−t/4$

1/4+i∞∫
1/4−i∞

∣∣∣F($− i
(

s− 1
2

))∣∣∣ |ds|

[
1
√

2π

]
[?+]

< 10α exp(− 1
4 t0+

1
32α

2) by Lemma 6(e)

= $ 1
2 t−1/2

0 exp(t0(− 1
4 +

1
2800 )) < 10−8t−3/2

0 . [200]

To estimate I2, we first consider the behaviour of log(ζ(s)/((s+ 1)(s+ 2)ζ(s+ 2))). By the
functional equations of the zeta- and gamma-functions we have

ζ(s)

(s+ 1)(s+ 2)ζ(s+ 2)
=−

1

(2π)2

(
s

s+ 2

)
ζ(1− s)

ζ(−1− s)
,

and therefore, if R s 6−1, [?− 3]∣∣∣∣log
ζ(s)

(s+ 1)(s+ 2)ζ(s+ 2)

∣∣∣∣6 π + 2log$π + 2+

∣∣∣∣log
s

s+ 2

∣∣∣∣< 11. [?2]
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We also have |g(s)|< 4 [caret] by Lemma 3(b) and therefore, using Lemma 6(c),

|I2|< 15$α exp

(
12

2α2
−1t0

)
= 15$ α exp(−i1t0) [exp(0.1(1− σ)), twice]

$= 300t−1/2
0 exp(−200t0). [less than?]

(the ‘2’ in ‘200’ is also queried)
It remains to estimate I3,%. Since R % = 1

2 for |I%|< 4 we may put

1
√

2π
I3,% = %

−t0F(γ )exp(iγ t0)+K3,% +L3,% +M3,%,

[?F(−γ ) (= F(γ ) because F even)]

where

K3,% =−

$%∫
%−∞

%−1F(γ )exp((s− i)t0)ds=−%−t0F(γ )exp(iγ t0− 2t0), [?%− 2]

L3,% =

%∫
%−2

%−1(F(−i(s− 1
2 ))−F(−γ ))exp((s− 1

2 )t0)ds,

M3,% =

%∫
%−2

F(−i(s− 1
2 )) . . .exp((s− 1

2 )t0)ds. (illegible)

Then

|K3,%|6 γ−t0 exp(−2t0)|F(γ )|6 (20γ t1/20 )−1 exp(−2t0) < 0.001γ−1t−3/2
0 µ−1

[these three occurrences of the symbol γ are queried (not F(γ ))] and

|M3,%|6 γ−22α−1µ−1

2∫
0

xexp

(
x2

2α2
− xt0

)
[caret]

[the 2 and µ−1 outside the integral are also queried]

6
2µ−1

αγ 2

2∫
0

x exp(− 1
2 xt0)dx<

0.4 t−3/2
0

γ 2µ
,

[O.K. but not by L3; see Ingham, 1932, notes 22, 23, . . .]∑
|γ |<4µ+50

|M3,%|< µ
−10.02 t−3/2

0

since
∑
γ−2 < 1

20 .
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By an integration by parts, if |γ |< 4µ+ 50,

|L3,%| = (t0|%|)
−1 exp($− 2t0)(F(−γ )−F(−γ $+ 2i))$

+ i

%∫
%−2

F′($− i(s− 1
2 ))exp((s− 1

2 )t0)ds

[(iγ − 2)t0] [−?] [−?] [+]

6 (t0$γ )−1
(

2α−1 exp

(
2

α2
− 2t0

)

+ α−1µ−1

2∫
0

exp

(
x2

2α2
− xt0

)
dx

 [|γ |]

6 (t0αγ )
−1
(

2exp
(

t0
(
−2+ 1

200

))
+

1.01

µt0

)
[|γ | again.]

6 0.051γ−1t−3/2
0 µ−1.

(d) now follows by collection of results.
For the case |γ |> 4µ+ 50, we have, by Lemma 6(b)

|I3,%|6 2
√

2πα−1γ−1 exp( 1
2 t0+ (2α

2)−1(( 5
2 )

2
− (γ − 4µ)2))

6
6

αγ
exp(t0/?(400+ 25

4 − (γ − 4µ)2)). (illegible)

But since |γ |> 4µ+ 50 and µ> 50, we have

(γ − 4µ)2 > 50(|γ | − 4µ) > 1250+ 25(|γ | − 4µ)

and therefore

|I3,%|6
6

αγ
exp

(
−t0−

c0

32
(|γ | − 4µ)

)
<

24µ

αγ 2
exp(−t0)

for γ exp(−t0γ /32) is a decreasing function for γ > 32/t0, and 4µ> 200> 3/t0. Then∑
|γ |>4µ+50

|I3,%|< 1.2µα−1 exp(−t0) < $0.01t−3/2
0 since µ < 250.

[(e) says 10−8 (O.K. thus); but no relation to enunciation]

Lemma 8. If t0 > 104 and

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)dt > 1.0025
π

µt0

where, as previously mentioned,

f (t)= exp(− 1
2α

2t2)

(
sinµt

µt

)4

, α2
=

400

t0
, 50< µ< 250,

M(t)=
∫

t−1etdt, from 0.1 to max(t,0.1),
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then there is a t1, 0.974 t0 < t1 < 1.053 t0, such that

5(exp t1)− li exp t1 > 1.002 t−1
1 exp

(
1
2 t1
)

.

We have

1
√

2π

∞∫
−∞

(
sinµt

µt

)4

dt =

√
2π

2µ
,

1
√

2π

∞∫
−∞

t2
(

sinµt

µt

)4

dt =

√
2π

(2µ)3
[4µ3 ?]

and therefore
∞∫
−∞

exp

(
−

1

2
t

)
(5(et)−M(t))− $1.002 t−1 exp(iα2(t− t0)2)

1− (1− t/t0)3

× exp(−iα2(t− t0))

(
sin(µ(t− t0))

µ(t− t0)

)4

dt >
1.0025π

µt0
−

2π

µt0
−
π

. . .
(illegible).

Hence, for some t1,

5(exp t1)−M(t1) > 0.0025 t−1
1 exp(it1+ 1

2α
2(t1− t0)

2), 1−

(
1−

t

t0

)3

> at−1
1 eJ ,

where a= $ 3
4 (1.005)

[
9
8

]
and J = 1

2 t1+ 200(t1− t0)2/t0. Now we certainly have t1 > 0.1 for

otherwise 5(exp t1)= 0 and M(t1)= 0. But then

5(exp t1)= . . . (illegible)< exp t1+ t1 exp
(

1
2 t1
)
< 2exp t1,

and therefore

200(t1− t0)2

t0
< 1

2 t1+ log(3t0).

Now, if t1 > t0, we have log(3 t0) < 0.01 t0 < 0.01 t1 and hence

200(0.1275(t1− t0)
2) < 0.1275(t1+ t0)

2, t1 < 1.053 t0.

But if t1 6 t0, then

200(t1− t0)
2 < 0.051t20, t1 > 0.974 t0.

It only remains to prove that M(t)$<li et, and this will follow if li e0.1 < 0. [?>] But

lie0.1
=

−0.2∫
−∞

t−1etdt+

−0.1∫
−0.2

t−1etdt+

0.1∫
0

$sinh t

t dt

< e−0.2

−0.1∫
−0.2

t−1dt+ $sinh0.1< 0 [insert 2, twice].
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Lemma 9.

li x<
x

logx− 1.5
if x > e8.

We have

e−ali ea
=R

∞∫
0

(a− t)−1e−tdt

if the integration is along a contour which avoids a and a is real [and positive]

=R
∞∫

0

(
a−1
+

t

a2

)
e−tdt+R

∞∫
0

t2e−t

a2(a− t)
dt.

By taking the contour t = u(1+ 1
2 i) where u is real,∣∣∣∣∣∣

∞∫
0

t2e−t

a2(a− t)
dt

∣∣∣∣∣∣6√5a−3

∞∫
0

( 1
2

√
5a)$3e−ad

5

2
u=

6.25

a3
, [2 ?]

e−ali ea 6
1

a
+

1

a2
+

6.25

a3
6

1

a
+

1.5

a2
+

2.25

a3
if a > 8

< (a− 1.5)−1

Lemma 10. If either

(a) (5(x)− lix)x−1/2 logx> 1.002 and x> e2000

or

(b) (5(x)− lix)x−1/2 logx> 1.6 and x> e$16,

[16 queried] then either π(x) > li x or π(x1/2) > li x1/2.
We begin by estimating 5(x)−π(x)− 1

2π(x
1/2) for x> 16.

5(x)−π(x)−
1

2
π(x1/2)=

1

3
π(x1/3)+

∑
r−1π(x1/r)

6
1

9
x1/3
+

2

3
+

∑ 2

r
+

∑ x1/r

3r
,

summation from r = 4 to log2 x (since π(u) < 2 if 0< u< e and π(u) < 2+ 1
3 u if e< u). [O.K. but

obscure; π(u) < 2 used in terms with logx< r 6 log2 x]

6
1

9
x1/3
+ 2log

(
1

2
log2 x

)
+

4

3
x1/4

∞∑
r=4

r−2

(since rx1/r decreases with increasing r in the range 4 6 r 6 logx)

6
1

9
x1/3
+ 2 log log x+ 0.4x1/4.
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Then if π(x)$ > li x and π(x1/2)$> li x1/2, [? 6]

(5(x)− lix)x−1/2 logx<
1

2
x−1/2 li x1/2 logx

+
1

9
x−1/6 logx+ 0.4x−1/4 logx+ 2(log logx) logx,

1
2 x−1/2 li x1/2 logx<

(
1−

3

logx

)−1

[x > e16] by Lemma 9

and this denies both (a) and (b).

Theorem 1. If 50< µ< 250, 104 < t0,
∑
|γ |<4µ+50 γ

−1 < 3 and

R $
∑

0<γ<4µ+50

K(γ )
1
2 + iγ

exp(iγ t0)$> 0.502µ−1
(

1

2
π

)1/2

,

[left bracket and minus sign] [right bracket]
then there exists t1, 0.974 t0 < t1 < 1.053 t0 such that elther

π(exp t1) > li exp t1 or π

(
exp

1

2
t1

)
> li exp

1

2
t1.

t1/20

0.021+ 0.052
∑

|γ |<4µ+50

γ−1

< 0.177t−1/2
0 < 0.00177.

Hence

µt0
π

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)dt > 1.004− 0.00177

(
2

π

)1/2

> 1.00,

and the condition of Lemma 8 is satisfied, and consequently condition (a) of Lemma 10.

5. The Diophantine approximation

We have not until now made much use of the results of heavy computations on the zeta func-
tion. We have made use of the fact that for |γ |< 1468, the non-trivial zeros are all on the critical
line, although we could well have avoided doing so. We shall now go further and make use of
some information about the positions of the zeros in this range. Titchmarsh has mentioned [where?]
that if tn is defined by the condition argΓ ( 1

4 +
1
2 itn)= nπ , [def. θ(t)= π−1 arg(π−1/2itΓ ( 1

4 +
1
2

it))][θ(tn)= n− 1, tn > 0, n= 1,2, . . .] then if 0< tn < 1468, we have N(tn)− n=−1, 0 or 1,
and also that if N(tn)− n$= 0, [?] then N(tn+1)= n+ 1 and N(tn−1)= n− 1. Also argΓ ( 1

4 +
1
2

it) [θ(t)] is monotonic. [t > . . .] From these facts, it can easily be seen that if 0< t < 1468,
then π−1 argΓ ( 1

4 +
1
2 itn) < 2. We also have π−1 argΓ ( 1

4 +
1
2 it)− t/(2π) log(t/(2π))− 1< 1

4 for
t > 51 and |S∗(t)|< 2 1

4 for t 6 51 whence |S∗(t)|< 2 1
4 for 0< t < 1468. [the upper bound 1

4
may be replaced by a much smaller constant; see Titchmarsh, 1935, p. 238 (ii).] Here, S∗(t)=
N(t)− t/(2π) log(t/(2π))− 1. [2 1

4 is queried.]
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Lemma 12. If 1 6 h 6 220, then∣∣∣∣∣∣
∑

f
( γ

2π

)
−

h∫
1

f (v) logv dv

∣∣∣∣∣∣< 2
1

4

(
| f (h)| + [var f ]h

1

)
,

where the sum is over 2π < γ < 2πh.

We make use of the inequality |S∗(t)|< 9
4 , 0< t < 1468 justified above, and also observe that

S∗(2π)= 0. Then∣∣∣∣∣∣
∑

f
( γ

2π

)
−

h∫
1

f (v) logvdv

∣∣∣∣∣∣=
∣∣∣∣∣∣

h∫
1

f (v)dS∗(2πv)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ f (h)S∗(2πh)−

h∫
1

S∗(2πv)df (v)

∣∣∣∣∣∣
6 2

1

4
( f (h)+ [var f ]h

1).

In order to get a slightly better result, we shall use a modified form of Dirichlet’s theorem.

Lemma 13. Given real numbers a1, . . . , am, a positive real number τ and positive integers
n1, . . . , nm, we can find an integer r, 1 6 r 6

∏
ni, such that for each i, 1 6 i 6 m, τ rai differs

from an integer by at most n−1
i .

The proof is very similar to that of Dirichlet’s theorem (Ingham, 1932, Theorem J), and the
details will be left to the reader.

Lemma 14. If we choose µ= 60π in the functions f , F we can find t0 so that e20 < t0 < e660.9

and

2S= $
∑

|γ |<4µ+50

µ

(
2

π

)1/2

F(γ )

(
1

2
+ iγ

)−1

exp(iγ t0) > 1.004. [? minus]

We have

S= $
∑

0<γ<4µ+50

µ

(
2

π

)1/2(1

4
+ γ 2

)−1

F(γ )($− γ sin(γ t0)+ i cos(γ t0))

[? minus] [plus]

and we will put

S1 =−
∑

0<γ<4µ+50

(
γ 2
+

1

4

)−1

γ sin(γ t0)κ

(
γ

2µ

)
,

S2 = $
∑

0<γ<4µ+50

(
γ 2
+

1

4

)−1 1

2
cos(γ t0)κ

(
γ

2µ

)
, [? minus]

S3 =−
∑

0<γ<4µ+50

γ−1κ

(
γ

2µ

)
sin(γ t0).
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Then

|S3− S1|6
∑

0<γ<4µ+50

(
γ

(
γ 2
+

1

4

))−1 1

4
|sin(γ t0)|6

∑
0<γ

1
4γ 3 < 0.0004

and

|S− S1− S2|6
∑
|F(γ )−F1(γ )|µ

(
2

π

)1/2

[range of summation?]

6
α

2µ

∑
0<γ<4µ+50

1< (20t−1/2
0 )

600

120π
< 0.0035, t0 > e20

− 1.

We now choose τ so that for the first zero iγ0+
1
2 , τγ0/2π is an integer and e20

− 1< τ < e20.
We then choose t0 in accordance with Lemma 13, so that t0 [query] is a multiple of τ and for each
γ , 0< γ < 120π ,γ /(2π)(t0+ 1

20 ) differs from an integer by at most γ /(1920π). This t0 can be
found in the range

e20
+ 1< t0+

π

2β
< (e20

+ 2)
∏

γ0<γ<120π

(1+ 1920γ−1π).

[
should π/(2β) be

1

120
?

]
Now

log
∏

2π<γ<120π

(1+ 1920γ−1π) <
∑

2π<γ<120π

(
log1920γ−1π +

γ

1800π

)

<

60∫
1

(
log960− logu+

u

900

)
logu du

+
9

4

(
log960+

1

900

)
< 647 [?672]

log
(

1+ 1920γ−1
0 π

)
> 6.01, e20 < t0 < e660.9. [686]

We have

S3 > $−
∑

0<γ<120π

γ−1κ
( γ

120π

)
min
|η|<1/8

sin

(
(1+ η)γ

120

)

−

∑
120π<γ<240π

γ−1κ
( γ

120π

)
[sign queried]

and if we write

ϕ(v)=


(2πv)−1κ

( v

60

)
min
|η|<1/8

sin

(
πv(1+ η)

60

)
if 0< v< 60,

−(2πv)−1κ
( v

60

)
, if 60$< v$< 120 [6]
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we shall have by Lemma 12

S3 >
∑

ϕ
( γ

2π

)
(over 0< γ < 240π)

>

120∫
1

ϕ(v) logvdv$+ 9
4 (var ϕ)120

1

>

120∫
1

ϕ(v) logvdv$+ 0.0097. [signs queried]

But by direct computation, we find

120∫
1

ϕ(v) logvdv> 0.5080. [. . . lse with . . .correct . . .p.9]

Also

S2 > 0.49
∑

0<γ<120π

γ−2κ(γ )−
1

2

∑
120π<γ<240π

γ−2κ(γ )

− (240)−2
∑

0<γ<120π

κ(γ )max
···

(
sin(1+ η)γ

. . .

)/(
γ

(2 . . .)

)
(illegible) > 0.008.

Hence,

S> 0.5080+ 0.003− 0.0097− 0.0004− 0.0035= 0. 5026. [?]

We can now state our final result.

Theorem 2. There is an x, . . ., such that π(x) > li x.

(Here, ‘. . .’ represents one of two conditions, both of which are crossed out in the manuscript.
They are

2< x< exp exp a< 10b, b= 10c,

where (a,c)= (697,303) or (661,287).) This follows from Theorem 1 and Lemma 14.
Our results up to this point have also been characterised by the extreme smallness of the remain-

der terms, and our chief concern has been to obtain some definite remainder with a relatively brief
argument. From this point onwards, however, we shall be much more exacting.

6. Computational Diophantine approximation

If fairly accurate values of the γ ’s were available, it should be possible to find a value for t0 by direct
computation with a digital computer. It would be necessary first to obtain the first three hundred
zeros or so to say seven places of decimals. This might involve ten to twenty hours of computation
time. We should then choose 200 say, so that our sums would extend to 800. Owing to the small
values of (symbol missing) beyond 700 we would not have calculated the zeros there. A reasonable
method of procedure for the Diophantine approximation would be simply to try out successively
all values of t0 which make the value of sin(γ t0) for the first zero equal to 1. Let us make a rough
estimate of where, given reasonable freedom from bad luck, we might expect to find a solution on
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this basis. Let us assume that the sums of terms other than the first are independent and normally
distributed. The standard deviation of the distribution of S is easily calculated to be1

2

∑
γ 6=γ0

κ(γ )

1
4 + γ

2
−
κ(γ0)

. . .

1/2

, (illegible)

i.e., about 0.0091. We get a solution if the sum exceeds 1
2 − 1/γ0, i.e., 0.43. The probability of this

on the normal distribution is about 1.3 × 10−6, from which we may conclude that there is an even
chance of finding a value by this method in the first 500,000 trials, i.e., with t0 < 220,000, i.e., of
establishing that there is an x,2< x< exp 220 000 for which π(x) > li x.

7. Case where the Riemann hypothesis is . . . false (positively?)

In order to complete our investigation, it would be as well to obtain some result that can be applied
if the Riemann hypothesis is discovered to be false, by the . . . (illegible) not on the critical line. If
one is simply given that there is a zero in some large rectangle, not meeting the critical line (e.g.,
σ > 0.53,0< t < 108), it is not easy to prove any very satisfactory results about values of x for
which π(x) > li x. This is because of the possibility that there may be many other zeros near to the
given one; they may be sufficiently near to have much nuisance value, but not near enough to give
essentially the same effect as multiple zero. The present investigation ignores all these difficulties
by postulating a zero β1+ iγ1 off the critical line and at considerable distance from any other zeros
of this kind. It seems very probable that the first zeros off the critical line that are computed will
satisfy the conditions required. We shall again use Lemma 4, but this time we shall put

f (t)= α
1

2
(1+ cos(γ1t))exp

(
−

1

2
α2t2

)
, 1= 100,

and we therefore have

F(u)=
1

2
exp

(
−

u2

2α2

)
+

1

4
exp

(
−
(u− γ1)

2

2α2

)
+

1

4
exp

(
−
(u+ γ1)

2

2α2

)
.

We shall need to have an upper bound for the number of zeros in a given range of t.

Lemma 15. ∣∣∣∣(Γ ′Γ
)
(x+ iy)− log

(
x+ iy−

1

2

)∣∣∣∣< π

y− 1
.

We first obtain an inequality for |(d2/dz2) logΓ (z)|, z= x+ iy.

∣∣∣∣ d2

dz2
logΓ (z)

∣∣∣∣=
∣∣∣∣∣∑
n>0

(z− n)−2

∣∣∣∣∣6
∞∑

n=−∞

(y2
+ (n− x)2)−1

6
2

y2
+

∞∫
−∞

(y2
+ u2)−1du.
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Then

∣∣∣∣(Γ ′Γ
)
(x+ iy)− log

(
x+ iy−

1

2

)∣∣∣∣=
∣∣∣∣∣∣
(
Γ ′

Γ

)
(x+ iy)− log

Γ
(

x+ iy+ 1
2

)
Γ
(

x+ iy− 1
2

)
∣∣∣∣∣∣

6 max
Iz=y

∣∣∣∣ d2

dz2
log0(z)

∣∣∣∣6 π

y− 1
.

Lemma 16. Denoting the number of zeros of the zeta function with positive imaginary parts less
than t by N(t),

N

(
t+

3

2

)
−N

(
t−

3

2

)
6 1.6 log

t+ 8

2π
+ 1.7

∑ σ − 3

(t− γ )2+ (σ −β)2
=R

∑
(s− %)−1

=
1

2
R
(
0′

0

)(
1

2
s+ 1

)
−

1

2
logπ +R

(
ζ ′

ζ

)
(s)+R (s− 1)−1

6
1

2
log

∣∣∣∣ s+ 1

2π

∣∣∣∣+ σ − 1

t2+ (σ − 1)2
+

(
ζ ′

ζ

)
(σ )+

π

2t− 1
.

[‘2’ in ‘2t− 1’ queried]
Taking σ = 2, t > 10, we have (ζ ′/ζ )(2) < 0.53, and therefore,

∑ σ −β

(t− γ )2+ (σ −β)2
6

1

2
log

t+ 8

2π
+ 0.53.

Now if β = 1
2 , |t− γ |> 3

2 , then (σ −β)/((t− γ )2+ (σ −β)2) > 1
3 >

102
325 and if β +β ′ = 1, |t−

γ |< 3
2 , then

σ −β

(t− γ )2+ (σ −β)2
+

σ −β ′

(t− γ )2+ (σ −β)2
>

20

32
.

Hence

N

(
t+

3

2

)
−N

(
t−

3

2

)
6

325

102

(
1

2
log

t+ 8

2π
+ 0.53

)
6 1.6 log

t+ 8

2π
+ 1.7.

This inequality is also clearly valid for 0< t < 10 for the left-hand side is the . . . (remainder of
sentence missing).

Theorem 3. Suppose that β1+ iγ1, β1 >
1
2 , γ1 > 0, is a zero of the zeta function and that for

every other zero β + iγ either β = 1
2 or |γ − γ1|> 14. Then for some x, 2< x< (16γ1)

a, a=

1.12/(β1−
1
2 ), we have π(x) > li x.
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With f , F defined as above we have

|F(x+ iy)|< exp

(
y2

2α2

)
,

c+i∞∫
c−i∞

|F(is)||ds|6 (2π)1/2 exp

(
c2

2α2

)
,

and, with the notation of Lemma 4, may prove that |J|, |I1|, |I2| are each less than 10−8t−3/2
0 as in

Lemma 7. We now proceed to the estimation of I3,%. If % = β + iγ and 0<R a< 1

∣∣∣∣∣∣∣
%∫

%−2

%−1 exp

((
s−

1

2

)
t0

)
exp

(
(s− a)2

2α2

)
ds

∣∣∣∣∣∣∣
6 γ−1 exp

((
β −

1

2

)
t0+ (2α

2)−1R (%− a)2
) 0∫
−2

exp(ut0)

+
u

α2
R (%− a)+

u2

2α2
du

6 exp

((
β −

1

2

)
t0+

1

200
t0R (%− a)2

)
γ−1

(
t0+

1

200
t0R (%− a− 1)

)−1

6
1.02

γ t0
exp

((
β −

1

2

)
t0+

1

200
t0R (%− a)2

)
.

We shall deal separately with the zeros which are near to β1+ iγ1 and those which are relatively far
away. If ||γ | − |γ1||> 14, then (since in any case |γ |> 14) we have

(|γ | − |γ1|)
2 > 182+ ||γ | − |γ1||, |γ |

2 > 182+ |γ |,

and therefore,

|I3,%|< 1.02(γ t0)
−1et0/2

(
1

2
exp

(
−

1

200
t0γ

2
)

+
1

4
exp

(
−

1

200
t0(γ − γ1)

2
)
+

1

4
exp

(
−

1

200
t0(γ + γ1)

2
)

< 1.02(γ t0)
−1 exp(−0.405 t0)

(
3

4
exp

(
−

1

200
t0γ

)
+

1

4
exp

(
−

1

200
t0||γ | − |γ1||

))

We now suppose that t0 > 20.
(The remaining three pages of the paper are hand-written.)
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Then

∑
γ−1 exp

(
−

1
200 t0||γ | − |γ1||

)
6
∑

γ−1 exp(−0.1||γ | − |γ1||)

6
∑

n

1.6 log
(

1
2 (3 . . .+ 8)

)
exp

(
−0.1

(
|3n− γ1| −

3
2

))
by Lemma 15

6 2log( 1
2 (γ1+ 8))(1− exp(−0.3))−1

+ 2
∑
n>γ1

exp(−0.15|n− γ1|)max
n>γ |

log
(

1
2 (3n+ 8)

)
exp(−0.15(n . . .))

6 2log
(

1
2 (γ1+ 8)

)
,

∑
γ−1 exp
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−

1
200 t0γ

)
6 max

u>0

(
u exp

(
−

1
200 t0u

))∑
γ−2 <

2

t0
,∑

|I3,%|< 1.02exp(−0.405 t0)
(

3
2 t−2

0 + 12t−1
0

)
log

(
1
2 (γ1+ 8)

)
. . . ,

(sum over ||γ | − |γ1||> 14)∑
|I3,%|< 2

(
1.03

γ1t0

)
(
∑

1) since γ1 > 1100

(first sum over ||γ | − |γ1||6 14, second over |γ − γ1|< 14)

<
33

γ1t0
log

(
1
2 (γ1+ 22)

)
.

If %1 = β1+ iγ1

I%1,3 =R
0∫
−2

(4(%1+ u))−1 exp

((
%1−

1
2 + u

)
t0+

1
2α
−2
(
β1−

1
2 + u

)2
)

du.

If sin(γ1t0)= 1 and γ1 > 40, then

|arg((%1+ u)−1 exp(%1t0))|< .. . ,

cosarg((%1+ u)−1 exp(%1t0))>
4

4.05
,∣∣∣∣ γ1

%1+ u

∣∣∣∣> 4.05

4.1
,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 21:26 Page 319 #55

On a Theorem of Littlewood 319

I%1,3 > (4.1γ1)
−1 exp
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×
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(
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1
200

(
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1
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, if t0 > 5.

Collecting results

t0

∞∫
−∞

e−t/2(5(et)−M(t))f (t− t0)dt >

>−3.10−8t−1/2
0 − 1.02exp(−0.405 t0)

(
3
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−
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(
1
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)
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1
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1
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.

We now choose t0, so that sin(γ1t0)= 1 and

0< t0−
(
β1−

1
2

)−1
log(16γ1) <

2π

γ1
.

Since γ1 > 1468, the condition t0 > 5 is automatically satisfied, indeed t0 > 20. Then
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(

t0
(
β1−

1
2

))
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1
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−
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1468 log

(
1
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)
+ 3.8 > 3.5,
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α

∞∫
−∞

(e−t/2(5(et)−M(t))t0− 0.9exp(0.4α2(t− t0)
2))

× exp
(
−

1
2α

2(t− t0)
2
)

1
2 (1+ cos(γ1(t− t0)))dt

> 3.5− 0.9
( 5

2π
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1+ exp

(
−γ 2

1
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γ 2

1
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>
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> 10.

Then for some t1

t0
(

exp
(
−

1
2 t1
))
(5(exp t1)−M(t1)) > 0.9exp(0.4α2(t1− t0)

2)

= 0.9exp

(
4σ
(t1− t0)2

t0

)
,

40(t1− t0)
2 < 1

2 t1t0+ t0 log(3t0)

from which it follows that

0.8 t0 < t1 < 1.12 t0,(
exp

(
−

1
2 t1
))
(5(exp t1)−M(t1)) > 0.8t1.

Applying Lemma 10

π(exp t1) > li exp t1 or π
(

exp
(

1
2 t1
))
> li exp

(
1
2 t1
)

,

i.e., there exists x, 2< x< (16γ1)
A, where A= 1.12/

(
β1−

1
2

)
, (such that) π(x) > 1ix.
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Solvable and Unsolvable Problems
(Science News 31, (1954), pp 7–23)

Gregory Chaitin recommends —

TURING’S SMALL GEM

This lovely paper by Turing beautifully illustrates Hilbert’s remark in his 1900 Paris International
Congress of Mathematicians paper on Mathematical Problems that one does not truly understand
something until one can explain it to the first man that one meets on the street.1 At a more philosoph-
ical level, note that Hilbert, Turing and computer programming formalisms are often taken as the
justification for extreme formalism in presenting mathematics. Emil Post, on the contrary, insisted
that the work of Gödel and Turing argued against formal axiomatics and in favor of a return to
meaning and truth.2 And here is Turing himself explaining the basic ideas behind his work without
using any mathematical or programming formalism, in very clear, down to earth English with rather
concrete imagery.

1 My paraphrase. Hilbert actually states that ‘An old French mathematician said: “A mathematical theory is not to be
considered complete until you have made it so clear that you can explain it to the first man whom you meet on the
street”’.
2 See Post’s (1941) remarks quoted at the end of Jeremy Gray’s (2008) book Plato’s Ghost: The Modernist Trans-
formation of Mathematics.
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SOLVABLE AND UNSOLVABLE PROBLEMS

A. M. TURING, F. R. S.

IF one is given a puzzle to solve one will usually, if it proves to be difficult, ask the owner
whether it can be done. Such a question should have a quite definite answer, yes or no, at any rate
provided the rules describing what you are allowed to do are perfectly clear. Of course the owner of
the puzzle may not know the answer. One might equally ask, ‘How can one tell whether a puzzle is
solvable?’, but this cannot be answered so straightforwardly. The fact of the matter is that there is
no systematic method of testing puzzles to see whether they are solvable or not. If by this one meant
merely that nobody had ever yet found a test which could be applied to any puzzle, there would be
nothing at all remarkable in the statement. It would have been a great achievement to have invented
such a test, so we can hardly be surprised that it has never been done. But it is not merely that the
test has never been found. It has been proved that no such test ever can be found.

Let us get away from generalities a little and consider a particular puzzle. One which has been
on sale during the last few years and has probably been seen by most of the readers of this article
illustrates a number of the points involved quite well. The puzzle consists of a large square within
which are some smaller movable squares numbered 1 to 15, and one empty space, into which any
of the neighbouring squares can be slid leaving a new empty space behind it. One may be asked
to transform a given arrangement of the squares into another by a succession of such movements
of a square into an empty space. For this puzzle there is a fairly simple and quite practicable rule
by which one can tell whether the transformation required is possible or not. One first imagines
the transformation carried out according to a different set of rules. As well as sliding the squares
into the empty space one is allowed to make moves each consisting of two interchanges, each of
one pair of squares. One would, for instance, be allowed as one move to interchange the squares
numbered 4 and 7, and also the squares numbered 3 and 5. One is permitted to use the same number
in both pairs. Thus one may replace 1 by 2, 2 by 3, and 3 by 1 as a move because this is the same as
interchanging first (1, 2) and then (1, 3). The original puzzle is solvable by sliding if it is solvable
according to the new rules. It is not solvable by sliding if the required position can be reached by
the new rules, together with a ‘cheat’ consisting of one single interchange of a pair of squares.∗

Suppose, for instance, that one is asked to get back to the standard position –

∗It would take us too far from our main purpose to give the proof of this rule: the reader should have little difficulty
in proving it by making use of the fact that an odd number of interchanges can never bring a set of objects back to the
position it started from.
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One may, according to the modified rules, first get the empty square into the correct position by
moving the squares 15 and 12, and then get the squares 1, 2, 3, . . . successively into their correct
positions by the interchanges (1, 10), (2, 10), (3, 4), (4, 5), (5, 9), (6, 10), (7, 10), (9, 11), (10, 11),
(11, 15). The squares 8, 12, 13, 14, 15 are found to be already in their correct positions when their
turns are reached. Since the number of interchanges required is even, this transformation is possible
by sliding.† If one were required after this to interchange say square 14 and 15 it could not be done.

This explanation of the theory of the puzzle can be regarded as entirely satisfactory. It gives one
a simple rule for determining for any two positions whether one can get from one to the other or
not. That the rule is so satisfactory depends very largely on the fact that it does not take very long
to apply. No mathematical method can be useful for any problem if it involves much calculation.
It is nevertheless sometimes interesting to consider whether something is possible at all or not,
without worrying whether, in case it is possible, the amount of labour or calculation is economically
prohibitive. These investigations that are not concerned with the amount of work involved are in
some ways easier to carry out, and they certainly have a greater aesthetic appeal. The results are not
altogether without value, for if one has proved that there is no method of doing something it follows
a fortiori that there is no practicable method. On the other hand, if one method has been proved to
exist by which the decision can be made, it gives some encouragement to any one who wishes to
find a workable method.

From this point of view, in which one is only interested in the question, ‘Is there a systematic way
of deciding whether puzzles of this kind are solvable?’, the rules which have been described for the
sliding-squares puzzle are much more special and detailed than is really necessary. It would be quite
enough to say: ‘Certainly one can find out whether one position can be reached from another by a
systematic procedure. There are only a finite number of positions in which the numbered squares
can be arranged (viz. 20922789888000) and only a finite number (2, 3, or 4) of moves in each
position. By making a list of all the positions and working through all the moves, one can divide the
positions into classes, such that sliding the squares allows one to get to any position which is in the
same class as the one started from. By looking up which classes the two positions belong to one can
tell whether one can get from one to the other or not.’ This is all, of course, perfectly true, but one
would hardly find such remarks helpful if they were made in reply to a request for an explanation
of how the puzzle should be done. In fact they are so obvious that under such circumstances one
might find them somehow rather insulting. But the fact of the matter is, that if one is interested in the
question as put, ‘Can one tell by a systematic method in which cases the puzzle is solvable?’, this
answer is entirely appropriate, because one wants to know if there is a systematic method, rather
than to know of a good one.

The same kind of argument will apply for any puzzle where one is allowed to move certain
‘pieces’ around in a specified manner, provided that the total number of essentially different posi-
tions which the pieces can take up is finite. A slight variation on the argument is necessary in general
to allow for the fact that in many puzzles some moves are allowed which one is not permitted to
reverse. But one can still make a list of the positions, and list against these first the positions which
can be reached from them in one move. One then adds the positions which are reached by two
moves and so on until an increase in the number of moves does not give rise to any further entries.
For instance, we can say at once that there is a method of deciding whether a patience can be got out
with a given order of the cards in the pack: it is to be understood that there is only a finite number
of places in which a card is ever to be placed on the table. It may be argued that one is permitted

†It can in fact be done by sliding successively the squares numbered 7, 14, 13, 11, 9, 10, 1, 2, 3, 7, 15, 8, 5, 4, 6, 3, 10, 1,
2, 6, 3, 10, 6, 2, 1, 6, 7, 15, 8, 5, 10, 8, 5, 10, 8, 7, 6, 9, 15, 5, 10, 8, 7, 6, 5, 15, 9, 5, 6, 7, 8, 12, 14, 13, 15, 10, 13, 15, 11,
9, 10, 11, 15, 13, 12, 14, 13, 15, 9, 10, 11, 12, 14, 13, 15, 14, 13, 15, 14, 13, 12, 11, 10, 9, 13, 14, 15, 12, 11, 10, 9, 13,
14, 15.
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to put the cards down in a manner which is not perfectly regular, but one can still say that there is
only a finite number of ‘essentially different’ positions. A more interesting example is provided by
those puzzles made (apparently at least) of two or more pieces of very thick twisted wire which one
is required to separate. It is understood that one is not allowed to bend the wires at all, and when
one makes the right movement there is always plenty of room to get the pieces apart without them
ever touching, if one wishes to do so. One may describe the positions of the pieces by saying where
some three definite points of each piece are. Because of the spare space it is not necessary to give
these positions quite exactly. It would be enough to give them to, say, a tenth of a millimetre. One
does not need to take any notice of movements of the puzzle as a whole: in fact one could suppose
one of the pieces quite fixed. The second piece can be supposed to be not very far away, for, if it
is, the puzzle is already solved. These considerations enable us to reduce the number of ‘essentially
different’ positions to a finite number, probably a few hundred millions, and the usual argument
will then apply. There are some further complications, which we will not consider in detail, if we
do not know how much clearance to allow for. It is necessary to repeat the process again and again
allowing successively smaller and smaller clearances. Eventually one will find that either it can be
solved, allowing a small clearance margin, or else it cannot be solved even allowing a small margin
of ‘cheating’ (i.e. of ‘forcing’, or having the pieces slightly overlapping in space). It will, of course,
be understood that this process of trying out the possible positions is not to be done with the phys-
ical puzzle itself, but on paper, with mathematical descriptions of the positions, and mathematical
criteria for deciding whether in a given position the pieces overlap, etc.

These puzzles where one is asked to separate rigid bodies are in a way like the ‘puzzle’ of trying
to undo a tangle, or more generally of trying to turn one knot into another without cutting the string.
The difference is that one is allowed to bend the string, but not the wire forming the rigid bodies.
In either case, if one wants to treat the problem seriously and systematically one has to replace the
physical puzzle by a mathematical equivalent. The knot puzzle lends itself quite conveniently to this.
A knot is just a closed curve in three dimensions nowhere crossing itself; but, for the purpose we are
interested in, any knot can be given accurately enough as a series of segments in the directions of the
three coordinate axes. Thus, for instance, the trefoil knot (Figure 1a) may be regarded as consisting
of a number of segments joining the points given, in the usual (x,y,z) system of coordinates, as (1,
1, 1), (4, 1, 1,), (4, 2, 1), (4, 2, −1), (2, 2, −1), (2, 2, 2), (2, 0, 2), (3, 0, 2), (3, 0, 0), (3, 3, 0),
(1, 3, 0), (1, 3, 1) and returning again with a twelfth segment to the starting point (1, 1, 1). This
representation of the knot is shown in perspective in Figure 1b. There is no special virtue in the
representation which has been chosen. If it is desired to follow the original curve more closely a
greater number of segments must be used. Now let a and d represent unit steps in the positive and
negative X-directions respectively, b and e in the Y-directions, and c and f in the Z-directions: then
this knot may be described as aaabffddccceeaffbbbddcee. One can then, if one wishes, deal entirely
with such sequences of letters. In order that such a sequence should represent a knot it is necessary
and sufficient that the numbers of a’s and d’s should be equal, and likewise the number of b’s equal
to the number of e’s and the number of c’s equal to the number of f ’s, and it must not be possible to
obtain another sequence of letters with these properties by omitting a number of consecutive letters
at the beginning or the end or both. One can turn a knot into an equivalent one by operations of the
following kinds—

(i) One may move a letter from one end of the row to the other.
(ii) One may interchange two consecutive letters provided this still gives a knot.

(iii) One may introduce a letter a in one place in the row, and d somewhere else, or b and e, or c and
f , or take such pairs out, provided it still gives a knot.

(iv) One may replace a everywhere by aa and d by dd or replace each b and e by bb and ee or each
c and f by cc and ff . One may also reverse any such operation.

—and these are all the moves that are necessary.
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Fig. 1: (a) The trefoil knot (b) a possible representation of this knot as a number of segments joining
points.

These knots provide an example of a puzzle where one cannot tell in advance how many arrange-
ments of pieces may be involved (in this case the pieces are the letters a,b,c,d,e, f ), so that the usual
method of determining whether the puzzle is solvable cannot be applied. Because of rules (iii) and
(iv) the lengths of the sequences describing the knots may become indefinitely great. No systematic
method is yet known by which one can tell whether two knots are the same.

It is also possible to give a similar symbolic equivalent for the problem of separating rigid
bodies, but it is less straightforward than in the case of knots.

These knots provide an example of a puzzle where one cannot tell in advance how many arrange-
ments of pieces may be involved (in this case the pieces are the letters a,b,c,d,e, f ), so that the usual
method of determining whether the puzzle is solvable cannot be applied. Because of rules (iii) and
(iv) the lengths of the sequences describing the knots may become indefinitely great. No systematic
method is yet known by which one can tell whether two knots are the same.
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Another type of puzzle which we shall find very important is the ‘substitution puzzle’. In such
a puzzle one is supposed to be supplied with a finite number of different kinds of counters, perhaps
just black (B) and white (W). Each kind is in unlimited supply. Initially a number of counters are
arranged in a row and one is asked to transform it into another pattern by substitutions. A finite list
of the substitutions allowed is given. Thus, for instance, one might be allowed the substitutions

(i) WBW→ B

(ii) BW→WBBW

and be asked to transform WBW into WBBBW, which could be done as follows

WBW→WWBBW→WWBWBBW→WBBBW
(ii) (ii) (i)

Here the substitutions used are indicated by the numbers below the arrows, and their effects by
underlinings. On the other hand if one were asked to transform WBB into BW it could not be done,
for there are no admissible steps which reduce the number of B’s.

It will be seen that with this puzzle, and with the majority of substitution puzzles, one cannot set
any bound to the number of positions that the original position might give rise to.

It will have been realized by now that a puzzle can be something rather more important than just
a toy. For instance the task of proving a given mathematical theorem within an axiomatic system is
a very good example of a puzzle.

It would be helpful if one had some kind of ‘normal form’ or ‘standard form’ for describing
puzzles. There is, in fact, quite a reasonably simple one which I shall attempt to describe. It will be
necessary for reasons of space to take a good deal for granted, but this need not obscure the main
ideas. First of all we may suppose that the puzzle is somehow reduced to a mathematical form in
the sort of way that was used in the case of the knots. The position of the puzzle may be described,
as was done in that case, by sequences of symbols in a row. There is usually very little difficulty
in reducing other arrangements of symbols (e.g. the squares in the sliding squares puzzle) to this
form. The question which remains to be answered is, ‘What sort of rules should one be allowed to
have for rearranging the symbols or counters?’ In order to answer this one needs to think about what
kinds of processes ever do occur in such rules, and, in order to reduce their number, to break them
up into simpler processes. Typical of such processes are counting, copying, comparing, substituting.
When one is doing such processes, it is necessary, especially if there are many symbols involved,
and if one wishes to avoid carrying too much information in one’s head, either to make a number
of jottings elsewhere or to use a number of marker objects as well as the pieces of the puzzle itself.
For instance, if one were making a copy of a row of counters concerned in the puzzle it would be as
well to have a marker which divided the pieces which have been copied from those which have not
and another showing the end of the portion to be copied. Now there is no reason why the rules of
the puzzle itself should not be expressed in such a way as to take account of these markers. If one
does express the rules in this way they can be made to be just substitutions. This means to say that
the normal form for puzzles is the substitution type of puzzle. More definitely we can say:

Given any puzzle we can find a corresponding substitution puzzle which is equivalent to it in the
sense that given a solution of the one we can easily use it to find a solution of the other. If the original
puzzle is concerned with rows of pieces of a finite number of different kinds, then the substitutions
may be applied as an alternative set of rules to the pieces of the original puzzle. A transformation
can be carried out by the rules of the original puzzle if and only if it can be carried out by the
substitutions and leads to a final position from which all marker symbols have disappeared.

This statement is still somewhat lacking in definiteness, and will remain so. I do not propose,
for instance, to enter here into the question as to what I mean by the word ‘easily’. The statement is
moreover one which one does not attempt to prove. Propaganda is more appropriate to it than proof,
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for its status is something between a theorem and a definition. In so far as we know a priori what is
a puzzle and what is not, the statement is a theorem. In so far as we do not know what puzzles are,
the statement is a definition which tells us something about what they are. One can of course define
a puzzle by some phrase beginning, for instance, ‘A set of definite rules . . . ’, but this just throws us
back on the definition of ‘definite rules’. Equally one can reduce it to the definition of ‘computable
function’ or systematic procedure’. A definition of any one of these would define all the rest. Since
1935 a number of definitions have been given, explaining in detail the meaning of one or other of
these terms, and these have all been proved equivalent to one another and also equivalent to the
above statement. In effect there is no opposition to the view that every puzzle is equivalent to a
substitution puzzle.

After these preliminaries let us think again about puzzles as a whole. First let us recapitulate.
There are a number of questions to which a puzzle may give rise. When given a particular task one
may ask quite simply

(a) Can this be done?
Such a straightforward question admits only the straightforward answers, ‘Yes’ or ‘No’, or per-

haps ‘I don’t know’. In the case that the answer is ‘Yes’ the answerer need only have done the puzzle
himself beforehand to be sure. If the answer is to be ‘No’, some rather more subtle kind of argument,
more or less mathematical, is necessary. For instance, in the case of the sliding squares one can state
that the impossible cases are impossible because of the mathematical fact that an odd number of
simple interchanges of a number of objects can never bring one back to where one started. One may
also be asked

(b) What is the best way of doing this?
Such a question does not admit of a straightforward answer. It depends partly on individual

differences in people’s ideas as to what they find easy. If it is put in the form, ‘What is the solution
which involves the smallest number of steps?’, we again have a straightforward question, but now it
is one which is somehow of remarkably little interest. In any particular case where the answer to (a)
is ‘Yes’ one can find the smallest possible number of steps by a tedious and usually impracticable
process of enumeration, but the result hardly justifies the labour.

When one has been asked a number of times whether a number of different puzzles of similar
nature can be solved one is naturally led to ask oneself

(c) Is there a systematic procedure by which 1 can answer these questions, for puzzles of this
type?

If one were feeling rather more ambitious one might even ask
(d) Is there a systematic procedure by which one can tell whether a puzzle is solvable?
I hope to show that the answer to this last question is ‘No’. There are in fact certain types of

puzzle for which the answer to (c) is ‘No’.
Before we can consider this question properly we shall need to be quite clear what we mean

by a ‘systematic procedure’ for deciding a question. But this need not now give us any particular
difficulty. A ‘systematic procedure’ was one of the phrases which we mentioned as being equivalent
to the idea of a puzzle, because either could be reduced to the other. If we are now clear as to what
a puzzle is, then we should be equally clear about ‘systematic procedures’. In fact a systematic
procedure is just a puzzle in which there is never more than one possible move in any of the positions
which arise and in which some significance is attached to the final result.

Now that we have explained the meaning both of the term ‘puzzle’ and of ‘systematic proce-
dure’, we are in a position to prove the assertion made in the first paragraph of this article, that there
cannot be any systematic procedure for determining whether a puzzle be solvable or not. The proof
does not really require the detailed definition of either of the terms, but only the relation between
them which we have just explained. Any systematic procedure for deciding whether a puzzle were
solvable could certainly be put in the form of a puzzle, with unambiguous moves (i.e. only one
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move from any one position), and having for its starting position a combination of the rules, the
starting position and the final position of the puzzle under investigation.

The puzzle under investigation is also to be described by its rules and starting position. Each of
these is to be just a row of symbols. As we are only considering substitution puzzles, the rules need
only be a list of all the substitution pairs appropriately punctuated. One possible form of punctuation
would be to separate the first member of a pair from the second by an arrow, and to separate the
different substitution pairs with colons. In this case the rules

B may be replaced by BC

WBW may be deleted

would be represented by ‘ : B→ BC : WBW→:’ . For the purposes of the argument which follows,
however, these arrows and colons are an embarrassment. We shall need the rules to be expressed
without the use of any symbols which are barred from appearing in the starting positions. This can
be achieved by the following simple, though slightly artificial trick. We first double all the symbols
other than the punctuation symbols, thus ‘ : BB→ BBCC : WWBBWW → :’ . We then replace
each arrow by a single symbol, which must be different from those on either side of it, and each
colon by three similar symbols, also chosen to avoid clashes. This can always be done if we have
at least three symbols available, and the rules above could then be represented as, for instance,
‘CCCBBWBBCCBBBWWBBWWBWWW’. Of course according to these conventions a great variety
of different rows of symbols will describe essentially the same puzzle. Quite apart from the arbitrary
choice of the punctuating symbols the substitution pairs can be given in any order, and the same pair
can be repeated again and again.

Now let P(R,S) stand for ‘the puzzle whose rules are described by the row of symbols R and
whose starting position is described by S’. Owing to the special form in which we have chosen to
describe the rules of puzzles, there is no reason why we should not consider P(R,R) for which the
‘rules’ also serve as starting position: in fact the success of the argument which follows depends on
our doing so. The argument will also be mainly concerned with puzzles in which there is at most
one possible move in any position; these may be called ‘puzzles with unambiguous moves’. Such a
puzzle may be said to have ‘come out’ if one reaches either the position B or the position W, and the
rules do not permit any further moves. Clearly if a puzzle has unambiguous moves it cannot both
come out with the end result B and with the end result W.

We now consider the problem of classifying rules R of puzzles into two classes, I and II, as
follows:

Class I is to consist of sets R of rules, which represent puzzles with unambiguous moves, and
such that P(R,R) comes out with the end result W.

Class II is to include all other cases, i.e. either P(R,R) does not come out, or comes out with
the end result B, or else R does not represent a puzzle with unambiguous moves. We may also, if
we wish, include in this class sequences of symbols such as BBBBB which do not represent a set of
rules at all.

Now suppose that, contrary to the theorem that we wish to prove, we have a systematic procedure
for deciding whether puzzles come out or not. Then with the aid of this procedure we shall be able
to distinguish rules of class I from those of class II. There is no difficulty in deciding whether
R really represents a set of rules, and whether they are unambiguous. If there is any difficulty it
lies in finding the end result in the cases where the puzzle is known to come out: but this can be
decided by actually working the puzzle through. By a principle which has already been explained,
this systematic procedure for distinguishing the two classes can itself be put into the form of a
substitution puzzle (with rules K, say). When applying these rules K, the rules R of the puzzle under
investigation form the starting position, and the end result of the puzzle gives the result of the test.
Since the procedure always gives an answer, the puzzle P(K,R) always comes out. The puzzle K
might be made to announce its results in a variety of ways, and we may be permitted to suppose that
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the end result is B for rules R of class I, and W for rules of class II. The opposite choice would be
equally possible, and would hold for a slightly different set of rules K′, which however we do not
choose to favour with our attention. The puzzle with rules K may without difficulty be made to have
unambiguous moves. Its essential properties are therefore:

K has unambiguous moves.

P(K,R) always comes out whatever R.

If R is in class I, then P(K,R) has end result B.

If R is in class II, then P(K,R) has end result W.

These properties are however inconsistent with the definitions of the two classes. If we ask ourselves
which class K belongs to, we find that neither will do. The puzzle P(K,K) is bound to come out,
but the properties of K tell us that we must get end result B if K is in class I and W if it is in class
II, whereas the definitions of the classes tell us that the end results must be the other way round.
The assumption that there was a systematic procedure for telling whether puzzles come out has thus
been reduced to an absurdity.

Thus in connexion with question (c) above we can say that there are some types of puzzle
for which no systematic method of deciding the question exists. This is often expressed in the form,
‘There is no decision procedure for this type of puzzle’, or again, ‘The decision problem for this type
of puzzle is unsolvable’, and so one comes to speak (as in the title of this article) about ‘unsolvable
problems’ meaning in effect puzzles for which there is no decision procedure. This is the technical
meaning which the words are now given by mathematical logicians. It would seem more natural to
use the phrase ‘unsolvable problem’ to mean just an unsolvable puzzle, as for example ‘to transform
1, 2, 3 into 2, 1, 3 by cyclic permutation of the symbols’, but this is not the meaning it now has.
However, to minimize confusion I shall here always speak of ‘unsolvable decision problems’, rather
than just ‘unsolvable problems’, and also speak of puzzles rather than problems where it is puzzles
and not decision problems that are concerned.

It should be noticed that a decision problem only arises when one has an infinity of questions to
ask. If you ask, ‘Is this apple good to eat?’, or ‘Is this number prime?’, or ‘Is this puzzle solvable?’
the question can be settled with a single ‘Yes’ or ‘No’. A finite number of answers will deal with
a question about a finite number of objects, such as the apples in a basket. When the number is
infinite, or in some way not yet completed concerning say all the apples one may ever be offered,
or all whole numbers or puzzles, a list of answers will not suffice. Some kind of rule or systematic
procedure must be given. Even if the number concerned is finite one may still prefer to have a rule
rather than a list: it may be easier to remember. But there certainly cannot be an unsolvable decision
problem in such cases, because of the possibility of using finite list.

Regarding decision problems as being concerned with classes of puzzles, we see that if we have
a decision method for one class it will apply also for any subclass. Likewise, if we have proved
that there is no decision procedure for the subclass, it follows that there is none for the whole class.
The most interesting and valuable results about unsolvable decision problems concern the smaller
classes of puzzle.

Another point which is worth noticing is quite well illustrated by the puzzle which we considered
first of all in which the pieces were sliding squares. If one wants to know whether the puzzle is
solvable with a given starting position, one can try moving the pieces about in the hope of reaching
the required end-position. If one succeeds, then one will have solved the puzzle and consequently
will be able to answer the question, ‘Is it solvable?’ In the case that the puzzle is solvable one will
eventually come on the right set of moves. If one has also a procedure by which, if the puzzle is
unsolvable, one would eventually establish the fact that it was so, then one would have a solution
of the decision problem for the puzzle. For it is only necessary to apply both processes, a bit of
one alternating with a bit of the other, in order eventually to reach a conclusion by one or the other.
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Actually, in the case of the sliding squares problem, we have got such a procedure, for we know
that if, by sliding, one ever reaches the required final position, with squares 14 and 15 interchanged,
then the puzzle is impossible.

It is clear then that the difficulty in finding decision procedures for types of puzzle lies in estab-
lishing that the puzzle is unsolvable in those cases where it is unsolvable. This, as was mentioned
on page 16, requires some sort of mathematical argument. This suggests that we might try express-
ing the statement that the puzzle comes out in a mathematical form and then try and prove it
by some systematic process. There is no particular difficulty in the first part of this project, the
mathematical expression of the statement about the puzzle. But the second half of the project is
bound to fail, because by a famous theorem of Gödel no systematic method of proving mathe-
matical theorems is sufficiently complete to settle every mathematical question, yes or no. In any
case we are now in a position to give an independent proof of this. If there were such a sys-
tematic method of proving mathematical theorems we could apply it to our puzzles and for each
one eventually either prove that it was solvable or unsolvable; this would provide a systematic
method of determining whether the puzzle was solvable or not, contrary to what we have already
proved.

This result about the decision problem for puzzles, or, more accurately speaking, a number of
others very similar to it, was proved in 1936–7. Since then a considerable number of further decision
problems have been shown to be unsolvable. They are all proved to be unsolvable by showing that
if they were solvable one could use the solution to provide a solution of the original one. They
could all without difficulty be reduced to the same unsolvable problem. A number of these results
are mentioned very shortly below. No attempt is made to explain the technical terms used, as most
readers will be familiar with some of them, and the space required for the explanation would be
quite out of proportion to its usefulness in this context.

(1) It is not possible to solve the decision problem even for substitution processes applied to rows
of black and white counters only.

(2) There are certain particular puzzles for which there is no decision procedure, the rules being
fixed and the only variable element being the starting position.

(3) There is no procedure for deciding whether a given set of axioms leads to a contradiction or not.

(4) The ‘word problem in semi-groups with cancellation’ is not solvable.

(5) It has recently been announced from Russia that the ‘word problem in groups’ is not solvable.
This is a decision problem not unlike the ‘word problem in semi-groups’, but very much more
important, having applications in topology: attempts were being made to solve this decision
problem before any such problems had been proved unsolvable. No adequately complete proof
is yet available, but if it is correct this is a considerable step forward.

(6) There is a set of 102 matrices of order 4, with integral coefficients such that there is no decision
method for determining whether another given matrix is or is not expressible as a product of
matrices from the given set.

These are, of course, only a selection from the results. Although quite a number of decision prob-
lems are now known to be unsolvable, we are still very far from being in a position to say of a given
decision problem, whether it is solvable or not. Indeed, we shall never be quite in that position, for
the question whether a given decision problem is solvable is itself one of the undecidable decision
problems. The results which have been found are on the whole ones which have fallen into our laps
rather than ones which have positively been searched for. Considerable efforts have however been
made over the word problem in groups (see (5) above). Another problem which mathematicians are
very anxious to settle is known as ‘the decision problem of the equivalence of manifolds’. This is
something like one of the problems we have already mentioned, that concerning the twisted wire
puzzles. But whereas with the twisted wire puzzles the pieces are quite rigid, the ‘equivalence of
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manifolds’ problem concerns pieces which one is allowed to bend, stretch, twist, or compress as
much as one likes, without ever actually breaking them or making new junctions or filling in holes.
Given a number of interlacing pieces of plasticine one may be asked to transform them in this way
into another given form. The decision problem for this class of problem is the ‘decision problem
for the equivalence of manifolds’. It is probably unsolvable, but has never been proved to be so.
A similar decision problem which might well be unsolvable is the one concerning knots which has
already been mentioned.

The results which have been described in this article are mainly of a negative character, set-
ting certain bounds to what we can hope to achieve purely by reasoning. These, and some other
results of mathematical logic may be regarded as going some way towards a demonstration, within
mathematics itself, of the inadequacy of ‘reason’ unsupported by common sense.

FURTHER READING

Kleene, S. C. Introduction to Metamathematics, Amsterdam, 1952.
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Examining the Work and Its Later Impact

Wilfried Sieg focuses on —

NORMAL FORMS FOR PUZZLES:
A VARIANT OF TURING’S THESIS

If you have never read Solvable and unsolvable problems, you definitely should.1 It will make for
an intellectual encounter that is at first perhaps puzzling, but on reflection deeply rewarding. Turing
presents his ideas on computability from an unusual perspective and puts them in a distinctive
light. The essay is playful, yet serious; strange, yet familiar; informal, yet proves rigorously the
unsolvability of a decision problem. What is most surprising is the fact that it discusses The Thesis
without ever mentioning Turing’s machine model of computation. Instead, it uses the underlying
and more basic concept of an ‘unambiguous substitution puzzle’. The latter serves for Turing as the
mathematical notion corresponding to ‘systematic procedure’ and is modeled after Post’s produc-
tion systems. How can it do all those things, you may wonder. I will start in Section 1 by describing
the mathematical set-up of substitution puzzles and show in Section 2 how this approach is in
perfect harmony with the analysis Turing gave in his classical 1936 paper ‘On computable num-
bers’. Section 3 points to generalisations of substitution puzzles that provide ‘inductive’ support
for Turing’s Thesis, whereas Section 4 discusses briefly a different way of addressing the central
methodological problem.

1. Substitution puzzles

If we consider, as Turing does, ordinary puzzles like those concerning sliding squares or knots, then
a particular type of question can be raised immediately, namely, is it possible to transform a given
initial position into another configuration via the finitely many moves the puzzle allows? In the case
of sliding squares, take this configuration as the initial one:

1 2 15

3 14 4 13

5 12 6 11

7 10 8 9

Is it possible to rearrange this configuration, exploiting the empty square and sliding the
numbered squares, into the following one?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 The essay is presumably Turing’s last published paper and appeared in Science News 31 (1954), pp. 7–23.
Editors’ Note: Pages 322–331 in this volume.
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Concerning puzzles for knots, Turing asks (on p. 12; p. 325 this volume), whether we can deter-
mine the equivalence of two knots via some specified rules. As a final example, Turing considers
substitution puzzles. For these puzzles, one has an unlimited supply of counters, possibly only of
two distinct kinds, say B (lack) and W (hite). An initial configuration is a finite sequence of such
counters, and the puzzle task is to transform a given configuration into another one – by substitu-
tions from a fixed finite list. Thus, Turing observes, a puzzle can be something more important than
just a toy, as ‘the task of proving a mathematical theorem within an axiomatic system is a very good
example of a puzzle’. Indeed, it is an example of a substitution puzzle.

When facing a seemingly intractable puzzle, frustration might suggest the natural and general
question, how one can tell whether this or any other puzzle is solvable. The answer to the question
is given, in the end, by a mathematical theorem.

Theorem 1.1. There is no systematic procedure for determining whether a puzzle is solvable
or not.

How are the concepts in the statement of the theorem defined so that it can be proved by a rigorous
argument? – To prepare the answer to this question, Turing argues for two points: (i) positions of
puzzles can be described by finite sequences of symbols, and (ii) rules for puzzles can be reduced
to substitutions. That leads him to consider a normal or standard form for the description of puzzles
and then to claim, ‘the normal form for puzzles is the substitution type of puzzle’. The argument
for (i) and (ii) takes, as Turing puts it, ‘a great deal for granted’. In Section 2, I try to fill in some
conceptually significant parts and show how the 1954-presentation wonderfully dovetails with the
1936-analysis of (mechanical) calculability. In the present essay, Turing asserts, furthermore, that
when a puzzle is given, we can find a ‘corresponding substitution puzzle that is equivalent to it in
the sense that given a solution of the one we can easily find a solution of the other’.

The statement that any puzzle has a substitution puzzle as its normal form is, Turing understat-
edly admits, ‘still somewhat lacking in definiteness, and will remain so’. From a contemporary
perspective, it expresses an analogue of Church’s or Turing’s Thesis that is directly articulated
for Post’s concept of a production system. Turing views this not-quite-definite statement as being
situated between a theorem and a definition:

In so far as we know a priori what is a puzzle and what is not, the statement is a theorem. In
so far as we do not know what puzzles are, the statement is a definition that tells us something
about what they are. (p. 15; p. 327 this volume)

Turing claims that puzzles can be defined by appealing to a concept of ‘a set of definite rules’,
‘computable function’ or ‘systematic procedure’. A definition of any one of theses concepts ‘would
define all the rest’, as the definitions can be shown to be equivalent. Turing summarises the status
of the methodological discussion among logicians when asserting, ‘. . . there is no opposition to the
view that every puzzle is equivalent to a substitution puzzle’.

Mathematical logicians at the time were hardly moved by ‘puzzles’ but rather by the machine
model that had been introduced by Turing in 1936 and, in a more human form, by Post in the same
year. Let me briefly recall what a (two-letter) Turing machine is; in doing so I follow Post and Davis
rather than Turing.2 A Turing machine consists of a finite but potentially infinite tape. The tape is
divided into squares, and each square may carry a symbol from a finite alphabet, say, just the two-
letter alphabet consisting of 0 and 1 or, to emphasise the connection to substitution puzzles, B and
W. The machine is able to scan one square at a time and perform, depending on the content of the
observed square and its own internal state, one of four operations: print 0, print 1, or shift attention
to one of the two immediately adjacent squares. The operation of the machine is fixed by a finite
list of commands in the form of quadruples qiskclqm that express the following: If the machine is in

2 That is, I am following the development in Post (1947) and Davis (1958).
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internal state qi and finds symbol sk on the square it is scanning, then it is to carry out operation cl
and change its state to qm. The deterministic character of the machine’s operation is guaranteed by
the requirement that a program must not contain two different quadruples with the same first two
components.

Why does Turing (1954) expose his fundamental considerations on computability and unsolv-
ability via Post’s production systems that are renamed, in addition, as substitution puzzles? – There
is an important rhetorical element, as the essay was to reach the readership of a popular science mag-
azine, and the central issues certainly are more directly accessible to non-logicians when presented
in this way. For example, to realise that proving a theorem in an axiomatic system can be viewed as
solving a substitution puzzle is an easier task than to grasp the connection between theorem proving
and computations of a two-letter machine! However, there are also substantive reasons. First, the
reduction of substitution puzzles to Turing machines is not crucial for the central observations (and
can easily be established). Secondly and conversely, production systems allow the concise descrip-
tion of Turing machine computations and are a marvelous tool for obtaining unsolvability results.
Post recognised this possibility and exploited it (1947) to prove that the decision problem for Thue
systems is unsolvable (using the undecidability of the halting problem). Based on this result, Post
then proved the unsolvability of the word problem for semigroups. In his paper, Turing (1950) used
Post’s general approach and extended the unsolvability result from semigroups to semigroups with
cancellation. Lastly, and that is an aspect I am going to explore in Section 3, substitution puzzles
lend themselves readily to direct and directly meaningful generalisations.

2. Puzzles: analyzed

At the very beginning of his piece, Turing (1954) asserts that the unsolvability of the word problem
for semigroups will be shown and continues:

The method depends on reducing the unsolvability of the problem in question to a known
unsolvable problem connected with the logical computing machines introduced by Post
([1936]) and the author ([Turing 1936]). In this we follow Post ([1947]) who reduced the
problem of Thue to this same unsolvable problem. (p. 491)

Although Turing seems to point only to the structural similarity between the two-letter Turing
machine and the worker in Post’s (1936), there is a deeper coherence, as we will see. Let me first
describe how Post’s combinatory processes are generated by computation steps that are ‘identical’
with those of Turing’s machines. These steps are taken by a human worker who operates in a symbol
space consisting of a two-way infinite sequence of spaces or boxes.

The problem solver or worker is to move and work in this symbol space, being capable of
being in, and operating in but one box at a time. And apart from the presence of the worker,
a box is to admit of but two possible conditions, i.e., being empty or unmarked, and having a
single mark in it, say a vertical stroke.3

The worker can perform a number of primitive acts, namely, make a vertical stroke [V], erase a ver-
tical stroke [E], move to the box immediately to the right [Mr] or to the left [Ml] of the box he is in,
and determine [D] whether the box he is in is marked or not. In carrying out a particular combina-
tory process the worker begins in a special box, the starting point, and then follows directions from
a finite, numbered sequence of instructions. The i-th instruction, i between 1 and n, is in one of the

3 [Post 1936], p. 105. Post remarks, the infinite sequence of boxes can be replaced by a finite one that can be expanded
as necessary.
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following forms: (1) carry out act V, E, Mr or Ml and then follow direction ji, (2) carry out act D and
then, depending on whether the answer was positive or negative, follow direction j′i or j′′i . (Post has
a special stop instruction, but that can be replaced by stopping, conventionally, in case the number
of the next direction is greater than n.) Are there intrinsic reasons for this formulation, except for its
simplicity and Post’s expectation that it will turn out to be equivalent to general recursiveness? Post
writes at the very end of his paper:

The writer expects the present formulation to turn out to be equivalent to recursiveness in
the sense of the Gödel-Church development. Its purpose, however, is not only to present a
system of a certain logical potency but also, in its restricted field, of psychological fidelity.
In the latter sense wider and wider formulations are contemplated. On the other hand, our
aim will be to show that all such are logically reducible to formulation 1. We offer this
conclusion at the present moment as a working hypothesis. And to our mind such is Church’s
identification of effective calculability with recursiveness. (p. 291)

Investigating wider and wider formulations and reducing them to the above basic formulation would
change, for Post, this ‘hypothesis not so much to a definition or to an axiom but to a natural law’.
In Section 3, I discuss a dramatically wider formulation involving K-graphs and corresponding
‘substitution rules’.

As I mentioned, there actually is a deeper coherence between Post’s work and Turing’s. Post
investigated, already in the 1920s, operations on finite strings and reduced canonical production
systems to those in ‘normal form’; that is reported in his work (1941).4 It is surprising that Turing’s
(1936) analysis of calculability leads to exactly the same general approach and that the informal
discussion (1954) dovetails with it in the most direct way. Let me briefly review Turing’s analysis,
emphasising at the very outset that he is concerned with human mechanical calculability.5 He uses in
his 1936-paper ‘computer’ for a human computing agent who proceeds mechanically; his machines,
our Turing machines, consistently are just that, namely machines. Gandy suggested calling a human,
who is carrying out a calculation, a ‘computor’ and using ‘computer’ to refer to some computing
machine or other. Thus, with this new terminology, Turing analyses processes that computors can
carry out, and that is exactly the extraordinary aspect of his approach: idealised computing agents
are brought into the analysis of calculability. In addition, Turing formulates a crucial normative point
when explicitly striving to isolate computor operations that are ‘so elementary that it is not easy to
imagine them further divided’ (p. 136). Thus, it is obviously crucial that symbolic configurations
relevant to fixing the circumstances for a computor’s actions can be recognised immediately or at a
glance.

Turing (1936) imagines a computor writing symbols on paper that is divided into squares ‘like
a child’s arithmetic book’. Because the two-dimensional character of the paper is taken not to be an
‘essential of computation’ (p. 135), Turing takes a one-dimensional tape divided into squares as the
basic computing space. (Note that a corresponding step was taken also for puzzles!) Because of this
reductive step to a one-dimensional tape, we have to be concerned with the immediate recognisabil-
ity of either individual symbols or sequences of symbols. In the first case, only finitely many distinct
symbols should be written on a square. Turing argues (p. 135) for this restriction by remarking,
‘if we were to allow an infinity of symbols, then there would be symbols differing to an arbitrarily
small extent’, and the computor could not distinguish at a glance between symbols that are suf-
ficiently close. In the second case consider, for example, Arabic numerals like 178 or 99999999
as one symbol; then it is not possible for the computor to determine at a glance whether or not
9889995496789998769 is identical with 98899954967899998769.

4 Martin Davis describes the background for this publication in his paper (1994).
5 For a detailed exposition, see my (1994) or (2009, Section 3).
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The sensory limitation of computors leads thus quite directly to boundedness and locality
conditions: (B) there is a bound on the number of symbols or symbol sequences a computor can
observe at a glance, and (L) the operations a computor can carry out must consist in a local modifi-
cation (of an observed configuration). Since some of the operations may involve a change of state
of mind, Turing concludes:

The most general single operation must therefore be taken to be one of the following: (A) A
possible change (a) of symbol together with a possible change of state of mind. (B) A possible
change (b) of observed squares together with a possible change of state of mind. (p. 137)

With this restrictive analysis of a computor’s steps, it is rather straightforward to conclude that a
Turing machine operating on strings (a ‘string machine’) can carry out his computations. Indeed,
Turing first considers such machines that mimic directly the work of the computor; then he asserts
referring to ordinary Turing machines (‘letter machines’):

The machines just described [string machines] do not differ very essentially from computing
machines as defined in §2 [letter machines], and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence, that is to say the
sequence computed by the computer. (p. 138)

It is clear that the string machines, as Gandy asserted, ‘appear as a result, as a codification, of
his [Turing’s] analysis of calculations by humans’. It is equally apparent that string machines
are substitution puzzles (played by humans)! In a certain way, Turing’s (1954) takes for granted
central aspects of the earlier analysis, in particular, the imposition of boundedness and locality
conditions. These conditions are simply built into the very notion of a puzzle, whereas in 1936,
as we just saw, a sustained argument leads from a computor’s sensory limitations to the restric-
tive conditions. However, the sustained argument does not constitute a mathematical proof. Turing
himself views it as mathematically unsatisfactory as it ultimately relies on an appeal to intu-
ition.6 Given the analysis, an appeal to intuition is no longer needed wholesale for The Thesis,
but only for the more restricted judgment: string machines can carry out the mechanical opera-
tions of computors (satisfying the restrictive conditions). Let us call this judgment Turing’s Central
Thesis.

3. Substitution puzzles: generalised

Coming back to the proper understanding of the theorem (from Section 1) that has to be proved,
puzzle is now to be interpreted as substitution puzzle and systematic procedure is defined not inde-
pendently, but as a puzzle ‘in which there is never more than one possible move in any of the
positions which arise and in which some significance is attached to the final result’. (p. 17) With
these definitions in place, Turing gives a beautiful diagonal argument showing, that there is no sys-
tematic procedure for deciding whether a puzzle with unambiguous moves ‘comes out’ for an initial
configuration, i.e., ends after finitely many moves in the position B or W. (This is the usual Self-
halting problem expressed for the special puzzles with Turing’s self-conscious use of the letter K to
refer to it.) He also indicates, on pp. 21–22, an argument for Gödel’s first incompleteness theorem.

The significance of these theorems rests, of course, on the identification of the informal notion
of puzzle with the mathematically rigorous concept of a substitution puzzle. This formulation of the

6 This notion is discussed in Turing (1939); it is used for ‘setting down formal rules for inferences, which are always
intuitively valid’. He notes: ‘In pre-Gödel times, it was thought by some that it would be possible to carry this programme
to such a point that all the intuitive judgements of mathematics could be replaced by a finite number of these rules. The
necessity for intuition would then be entirely eliminated’. (p. 209)
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methodological issue brings out the parallelism with the standard formulation of Church’s or Tur-
ing’s Thesis, namely, that the informal notion of calculable number theoretic function is identified
with the mathematically rigorous concept of general recursive, respectively, Turing machine com-
putable function. It also describes the intellectual context for my first fortuitous and accidental
encounter with this paper of Turing’s when I was working with my student John Byrnes around
1994–5 on our lpaper, K-graph machines: generalising Turing’s machines and arguments. The
argument we generalised is quite literally that from Turing’s (1936) I sketched above using Post’s
production systems to describe machine computations. In order to make Turing’s Thesis induc-
tively more convincing, it seemed sensible to allow larger classes of symbolic configurations and
more general operations on them; at the time, I did not see how else one could possibly address the
methodological issue. That was clearly in accord with Post’s (1936) remarks at the end suggesting
that this type of work would be the basis for changing a hypothesis to a natural law. But was that
way of proceeding also in accord with Turing’s general approach?

We knew, of course, that Turing had given his 1936 analysis of mechanical procedures for
restricted two-dimensional configurations. The fact that he considered in 1954 quite open-ended,
even three-dimensional configurations and mechanical operations on them, lifted our spirits. It
allowed us to understand the statement, ‘Puzzles have substitution puzzles as their normal form’
as a variant of his Central Thesis, and to connect it systematically with Kolmogorov and Uspen-
sky’s work on algorithms. Our approach has three distinct components: the symbolic configurations
are finite connected and labelled graphs, we called K(olmogorov)-graphs; K-graphs contain a unique
distinguished element that corresponds to the scanned square of a Turing machine tape; the opera-
tions substitute neighborhoods of the distinguished element by other neighborhoods and are given
by a finite list of generalised Post production rules. Though broadening Turing’s (and Post’s) con-
siderations, we remain within his general analytic framework and prove that letter machines can
mimic K-graph machines. Turing’s Central Thesis expresses here that K-graph machines can do the
work of computors directly.7 In summary, a much more general class of symbolic configurations
and operations on them is considered, and the Central Thesis for K-graph machines seems even
more plausible than the one for string machines.

The diagram below gives a triangulated summary of these extended reflections. The left leg
of the triangle indicates the standard formulation of Turing’s Thesis, the class of calculable num-
ber theoretic functions is co-extensional with the Turing machine computable ones. The hypotenuse
connecting ‘Calculability of number theoretic functions’ with ‘Computations by a symcon machine’
indicates the crucial part of Turing’s extended argument: step 1 is given by conceptual analysis,
whereas step 2 applies the Central Thesis for a particular class of symbolic configurations or sym-
cons; here, letters, strings and K-graphs. The symcon machines are (generalised) Post systems
operating, of course, on symcons. Finally, the right leg of the triangle points to the mathematical
reduction, indeed equivalence between symcon and letter machines.

The separation of conceptual analysis and mathematical proof is essential for recognising that
the correctness of Turing’s Thesis rests on two pillars. The boundedness and locality conditions for
computors constitute the first pillar. However, what are symbolic configurations, and what changes
can mechanical operations effect? In order to complete the triangulation, we do have to appeal to
the pertinent Central Thesis, the second pillar. That may have been the reason why Turing thought
that the variant of his Thesis must remain indefinite and that this very statement is one ‘which one
does not attempt to prove’.

7 As a playful indication of how K-graph machines straightforwardly can carry out human and genuinely symbolic,
indeed diagrammatic algorithms, we programmed a K-graph machine to do ordinary, two-dimensional column addition.
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4. Epilog: abstract notion

The leading ideas of Section 3 can be generalised further to obtain an analysis of parallel machines.
To help the imagination a bit, one can consider Conway’s Game of Life as an example of a ‘discrete
mechanical device’ that carries out parallel computations. In any event, that is what Turing’s student
Robin Gandy did; he proposed such an analysis (1980) and used, as Turing did, a Central Thesis
to connect parallel computations satisfying informal restrictive conditions to particular kinds of
dynamical systems. The restrictive conditions are motivated by purely physical considerations. The
latter can be reduced to two, namely, (i) a lower bound on the size of physically distinguishable
‘atomic’ components justified by the uncertainty principle of quantum mechanics and (ii) an upper
bound on signal propagation grounded in the theory of special relativity. Together, these restrictions
form the basis of boundedness and locality conditions for machines in the way sensory limitations
do for computors.

That analogy, in turn, allows us to formulate crucial requirements simultaneously for computors
and parallel machines: (i) they operate on configurations that are finite, but of unbounded size; (ii)
they recognise, in each configuration, patterns that are represented in a fixed, bounded list of differ-
ent kinds of ‘stereotypes’; (iii) they locally and deterministically operate on the pattern(s) recognised
in the given configuration; and (iv) they assemble the next configuration from the original one
and the result of local operation(s). These requirements can be formulated precisely as axioms for
discrete dynamical systems and define the second-order, abstract notions of a Turing computor
and Gandy machine.8 (This is fully in-line with the way, in which notions like that of a group or
field were introduced at the beginning of modern abstract mathematics, i.e., in the second half of
the nineteenth century.) Furthermore, they allow proving representation theorems of the form: the
computations of any device satisfying the axioms can be reduced to those of Turing machines.

In this way, the methodological problems surrounding Turing’s Thesis have been lifted from
their unusual status in mathematics. They now concern ‘axiomatic definitions’ and (representation)
theorems, no longer statements whose status is somewhere between a definition and a theorem. They
are no longer unusual, but rather common and difficult: they require us to recognise the correctness
and appropriateness of axioms for intended concepts.
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K. Vela Velupillai connects –

TURING ON ‘SOLVABLE AND UNSOLVABLE
PROBLEMS’ AND SIMON ON ‘HUMAN

PROBLEM SOLVING’

Turing’s fundamental work on Solvable and Unsolvable Problems (Turing, 1954), Intelligent
Machinery (Turing, 1969) and Computing Machinery and Intelligence (Turing, 1950) had a pro-
found effect on the work of Herbert Simon, the only man to win both the ACM Turing Prize and the
Nobel Memorial Prize in Economics, particularly in defining boundedly rational economic agents
as information processing systems (IPS) solving decision problems.1

A comparison of Turing’s classic formulation of Solvable and Unsolvable Problems and Simon’s
variation on that theme, as Human Problem Solving (Newell and Simon, 1972), would be an inter-
esting exercise, but it must be left for a different occasion. This is partly because the human problem
solver in the world of Simon needs to be defined in the same way Turing’s approach to Solvable
and Unsolvable Problems was built on the foundations he had established in his classic of 1936–7.

It is little realised that four of what I call the Five Turing Classics2 – On Computable Numbers
(Turing, 1936–7), Systems of Logic (Turing, 1939), Computing Machinery and Intelligence and

1 In the precise sense in which this is given content in mathematical logic, metamathematics, computability theory and
model theory.
2 The fifth being, of course, The Chemical Basis of Morphogenesis (1952). It is interesting to note that the five contribu-
tions came in two clusters, the first two in 1936 and 1938/9; the last three in the fertile last four years of his tragically
brief life.
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Solvable and Unsolvable Problems – should be read together to glean Turing’s Philosophy3 of
Mind. Simon, as one of the acknowledged founding fathers of computational cognitive science was
deeply indebted to Turing in the way he tried to fashion what I have called Computable Economics
(Velupillai, 2000).4 It was not for nothing that Simon warmly acknowledged – and admonished
– him in his essay in the volume ‘memorializing Turing’ (Simon, 1996, p. 81), titled Machine as
Mind5:

“If we hurry, we can catch up to Turing on the path he pointed out to us so many years ago.”

Simon was on that path, for almost the whole of his research life.
Building a Brain, in the context of economic decision making, meant a mechanism for encap-

sulating human intelligence, underpinned by rational behaviour in economic contexts. This was
successfully achieved by Herbert Simon’s lifelong research program on computational behavioural
economics.6

From the early 1950s, Simon had empirically investigated evidence on human problem solv-
ing and had organised that evidence within an explicit framework of a theory of sequential
information processing by a Turing Machine. This resulted in (Simon, 1979, p. x; italics added):

“[A] general theory of human cognition, not limited to problem solving, [and] a methodol-
ogy for expressing theories of cognition as programs [for digital computers] and for using
[digital] computers [in general, Turing Machines] to simulate human thinking.

This was the first step in replacing the traditional Rational Economic Man with the computationally
underpinned Thinking, i.e., Intelligent – Man. The next step was to stress two empirical facts (ibid,
p. x; italics added):

(i) ‘There exists a basic repertory of mechanisms and processes that Thinking Man uses in all the
domains in which he exhibits intelligent behaviour’.

(ii) ‘The models we build initially for the several domains must all be assembled from this same
basic repertory, and common principles of architecture must be followed throughout’.

It is easy to substantiate the claim that the basic repertory of mechanisms and processes are those
that define, in the limit, a Turing Machine formalisation of the Intelligent Man, when placed in the
decision-making, problem-solving, context of economics – cf. Velupillai (2010).

The broad contours of this vision and method, and its basis in computability and computa-
tional complexity theory, were clearly outlined in a letter he wrote me, after reading my book on
Computable Economics (Simon, 2000):

“I want to share some first impressions on my reading of “Computable Economics.” . . . I
was delighted and impressed by the mileage you could make with Turing Computability in
showing how nonsensical the Arrow/Debreu formulation, and others like it, are as bases for
notions of human rationality.

3 Remembering Feferman’s (2001, p. 79) cautionary note that Turing never tried to develop an over-all philosophy of
mathematics . . . ’, but not forgetting that his above works were decisive in the resurrection of a particular vein of research
in the philosophy of mind, particularly in its cognitive, neuroscientific, versions pioneered by Simon.
4 I could as well have called it Turing’s Economics.
5 To which he added the caveat (ibid, p. 81):

“I speak of ‘mind’ and not ‘brain’. By mind I mean a system [a mechanism] that produces thought .. .’

I have always interpreted this notion of ‘mechanism’ with Gandy’s Principles for Mechanisms Gandy (1980) in mind
(sic!).
6 I refer to this variant of behavioural economics, which is underpinned by a basis in computational complexity theory, as
classical behavioural economics, to distinguish it from currently orthodox behavioural economics, sometimes referred
to as modern behavioural economics, which has no computational basis whatsoever.
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As the book makes clear, my own journey through bounded rationality has taken a
somewhat different path. Let me put it this way. There are many levels of complexity in
problems, and corresponding boundaries between them. Turing computability is an outer
boundary, and as you show, any theory that requires more power than that surely is irrele-
vant to any useful definition of human rationality. A slightly stricter boundary is posed by
computational complexity, especially in its common “worst case” form. We cannot expect
people (and/or computers) to find exact solutions for large problems in computationally
complex domains. This still leaves us far beyond what people and computers actually
CAN do. The next boundary, but one for which we have few results . . ., is computational
complexity for the “average case”, sometimes with an “almost everywhere” loophole. That
begins to bring us closer to the realities of real-world and real-time computation. Finally, we
get to the empirical boundary, measured by laboratory experiments on humans and by obser-
vation, of the level of complexity that humans actually can handle, with and without their
computers, and - perhaps more important – what they actually do to solve problems that lie
beyond this strict boundary even though they are within some of the broader limits.

The latter is an important point for economics, because we humans spend most of our lives
making decisions that are far beyond any of the levels of complexity we can handle exactly;
and this is where satisficing, floating aspiration levels, recognition and heuristic search, and
similar devices for arriving at good-enough decisions take over. A parsimonious economic
theory, and an empirically verifiable one, shows how human beings, using very simple pro-
cedures, reach decisions that lie far beyond their capacity for finding exact solutions by the
usual maximizing criteria.
. . .

So I think we will continue to proceed on parallel, but somewhat distinct, paths for exam-
ining the implications of computational limits for rationality – you the path of mathematical
theories of computation, I the path of learning how people in fact cope with their computa-
tional limits
. . .

While I am fighting on a somewhat different front, I find it greatly comforting that these outer
ramparts of Turing computability are strongly manned, greatly cushioning the assault on the
inner lines of empirical computability.”

Unfortunately, the ‘assaults’ by orthodoxy and its non-computable, non-constructive forces are
ceaseless and ‘cushioning’ the ‘inner lines of empirical computability’ from these persistent assaults
is no easy task.
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with Cancellation

(Annals of Mathematics, vol. 52, no. 2 (1950), pp. 491–505)

Gregory Chaitin on —

FINDING THE HALTING PROBLEM AND THE
HALTING PROBABILITY

IN TRADITIONAL MATHEMATICS

Following Turing’s 1936 discovery of the halting problem and how to derive incompleteness from
it as a corollary in On Computable Numbers, a great deal of work was done by many mathemati-
cians finding ‘natural’ versions of the halting problem in many traditional areas of mathematics,
that is, in pre-Turing mathematics. Turing describes some of this work in his lovely 1954 exposi-
tory paper Solvable and Unsolvable Problems, movingly published the year of his untimely death.
Turing’s word problem paper is a complicated piece of such work that was carried out by Turing
himself; obviously he wished to reassure himself that the halting problem was ubiquitous in real
mathematics, which is the current consensus.1

This very large body of work, which unfortunately has never been collected in a single book and
remains scattered in crumbling, dusty journals, can also be used to show that the halting probability
� is hiding in many fields of traditional mathematics. For example, using 1947 work of Emil Post, it
is easy to show2 that there is a semi-group without cancellation such that for each positive integer k
the number of words λqinitialakbnλwhich are equal to the word λqfinalλ is finite or infinite depending
on whether the kth bit of � is a 0 or a 1. Following work of Toby Ord and Tien D. Kieu (2004), one
can replace ‘finite’ or ‘infinite’ here by ‘even’ or ‘odd’.

Most unfortunately, Turing did not live long enough to see the most beautiful example of
the halting problem that occurs in a traditional field of mathematics, number theory: namely the
1970 Davis–Putnam–Robinson–Matiyasevich proof, that asking for a general method to determine
whether or not a diophantine equation has a solution is equivalent to solving the halting problem. In
particular, for any computer programming language, there is a diophantine equation with a parame-
ter k that has a solution if and only if the kth computer program in that language ever halts. Similarly,
there is a diophantine equation with a parameter k that has finitely or infinitely many solutions —
or alternatively an even or an odd number of solutions — depending on whether the kth bit of �
is 0 or 1.

1 See Stephen Wolfram’s A New Kind of Science and the February 2010 AMS Notices piece Can’t Decide? Undecide! by
Chaim Goodman-Strauss.
2 G.J. Chaitin, ‘An algebraic characterization of the halting probability’, Fundamenta Informaticae 79 (2007), pp. 17–23.
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While John L. Britton gives us a brief –

INTRODUCTION TO THE MATHEMATICS1

A semi-group is a set within which is defined an associative product. A semi-group with cancellation
(SWC) is a semi-group S such that for all a, b, c in S, ab= ac implies b= c and ba= ca implies
b= c. Let K denote ‘semi-group, SWC or group’. A K-presentation is a pair (S,D), where S is a
finite set of symbols s1, . . . , sn and D is a finite set of formal equations Ui = Vi(i= 1, . . . , r) where
Ui and Vi are words in the symbols; a word means a finite string of symbols in the semi-group or
SWC case, but means an expression of the form se1

i1
. . .sek

ik
where ej =±1(j= 1, . . . ,k) in the group

case. We say that W1 =W2, where W1, W2 are words, is a relation for (S,D) if, whenever X is a K
containing elements s1, . . . , sn such that Ui = Vi in X for all i, then W1 =W2 in X. In particular each
Ui = Vi is called a defining relation (or fundamental relation (FR)).

We say that the word problem is solvable for (S,D) if there is an algorithm which will determine
of any pair of words W1, W2 whether or not W1 =W2 is a relation for (S,D).

For any (S,D) one can construct [S,D], which is a K and which is unique up to isomorphism; it
contains elements s1, . . . ,sn, each element of it is a word in s1, . . . , sn and W1 =W2 is a relation for
(S,D) if and only if we have W1 =W2 in [S,D].

In 1947, Post and Markov independently showed that there is a semi-group presentation with
unsolvable word problem. The problem of extending this result to groups received a lot of attention
but proved difficult. In the present paper, Turing considers the half-way house of semi-groups with
cancellation; undoubtedly it influenced both Novikov who finally obtained the result for groups in
1955 and Boone, who proved the result independently at about the same time.

1 Extracted from the Introduction to volume 1 of the Collected Works.
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THE WORD PROBLEM IN SEMI-GROUPS
WITH CANCELLATION

BY A. M. TURING

(Received August 13, 1949)

It will be shown that the word problem in semi-groups with cancellation is not solvable. The
method depends on reducing the unsolvability of the problem in question to a known unsolvable
problem connected with the logical computing machines introduced by Post (Post, [1]) and the
author (Turing, [1]). In this we follow Post (Post, [2]) who reduced the problem of Thue to this
same unsolvable problem.

1. Semi-groups with cancellation

By a semi-group with cancellation we understand a set S within which is defined a function f (a, b)
described as a product and satisfying

(i) The associative law f (f (a, b), c)= f (a, f (b, c))
(ii) The cancellation laws f (a, b)= f (a, c)⊃ b= c

f (b, a)= f (c, a)⊃ b= c

for any a, b, c in S.

In view of the associative law we naturally write abc for both f (f (a, b), c) and f (a, f (b, c), and
similarly for strings of letters of any length. If A and B are two such strings (e.g. arghm and gog)
then AB represents the result of writing one after the other (i.e. arghmgog). We have here used the
convention (to be followed throughout) that capital letters are variables for strings of letters.

2. The word problem

One may construct a semi-group with cancellation by means of generators and relations as fol-
lows. We first define a certain finite set G of letters to be the generators. Strings of such letters are
described as words. A class F of pairs of words is chosen and described as the fundamental relations
(abbreviated sometimes to F.R.). The words are understood to represent members of a semi-group,
and pairs forming a fundamental relation to represent equal members, but no pairs of words to rep-
resent the same member unless obliged to by this condition. The object of the ‘word problem’ is
to find a method for determining whether a given pair of words do or do not represent the same
semi-group element. Such a pair of words will be described as a relation of the semi-group.

Treating the above explanation of the meaning of a relation as relatively informal and intuitive,
we may also give a more formal definition which is equivalent to the first. This greater formality
would in many applications tend to dryness and obscurity, but for our present purpose it gives
greater clarity, since we are not concerned so much with obtaining relations as with showing that
certain relations cannot be obtained. This requires a very unambiguous form of definition.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/9 0:50 Page 346 #4

346 Part II

Immediate deducibility and assertibility

We say that

(i) Any pair in F is immediately assertible.
(ii) Any pair of form (A, A) is immediately assertible.

(iii) (A, B) is immediately deducible from (B, A).
(iv) (A, B) is immediately deducible from (A, C) and (C, B).
(v) (AG, BG) is immediately deducible from (A, B) for any generator G.

(vi) (GA, GB) is immediately deducible from (A, B) for any generator G.
(vii) (A, B) is immediately deducible from (AG, BG) for any generator G.

(viii) (A, B) is immediately deducible from (GA, GB) for any generator G.

Note that we use a capital for G. If g is a generator it is a quite definite one.
Immediate deducibility and assertibility apply in no other cases but those listed above.

Semi-group relations

A pair (A, B) is a relation of the semi-group S arising from the fundamental relations F if there is
a ‘proof’ of (A, B) consisting of a sequence of pairs of which each is either immediately assertible
or immediately deducible from previous pairs of the sequence, and the last pair is (A, B).

We wish to find out whether the word problem for semi-groups is solvable or not. The
possibilities may be divided into three alternatives.

(a) There might be a general method applicable for all sets F of fundamental relations, and all pairs
(A, B).

(b) For any given set of fundamental relations there might be a special method which could be
used, but no general method applicable for all sets.

(c) There may be some particular set of F.R. such that no method will ap- ply with it: i.e., any
reputed method will give the wrong answer for some pair of words.

We shall show that (c) is the correct alternative.

3. Computing machines

As in Turing [1], Post [1], we identify the existence of a ‘general method for determining. . .’ with
that of a ‘computing machine constructed to determine. . .’. Numerous alterative definitions have
been given (Church [1], Kleene [1], see also Hilbert and Bernays, Appendix to vol. II) and proved
equivalent (Kleene [2], Turing [2]).

A computing machine is imagined as a mechanical device capable of a finite number of states
or internal configurations (I.C.) q1, q2, · · · ,qr, working on a (both ways) infinite tape divided into
squares on which symbols are printed. These symbols are drawn from the set s0, s1, s2, · · · ,sn. At
any moment one particular square is especially closely connected with the machine. It is called the
scanned square. The behavior of the machine at this moment is determined by its own I.C. and
the symbol on the scanned square. The behavior consists in altering this symbol and possibly also
shifting the scanned square one place to right or left. The state of the whole system at any moment
is called its complete configuration (C.C.). The C.C. could be described by giving the sequence
of symbols on the tape, starting with the first which is not blank and ending with the last, and
interposing the name of the I.C. on the left of the symbol on the scanned square. In Turing [1] the
expression configuration (unqualified) was used to describe the combination of I.C. with scanned
symbol, so that the behavior of the machine is determined by the configuration at each moment.
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For our present purpose many of the conventions of Turing [1] are not ideally chosen, but we
are to some extent bound by them since we have to use the results of that paper. We shall describe
a C.C. differently. We shall take the form described above and flank it with s4 at either end. Thus
for instance s4s1s3q2s1s4 represents a C.C. in which the I.C. is q2 and the tape bears s1s3s1 the
last of these symbols being on the scanned square. This device is due to Post (who uses h for s4)
and greatly facilitates the connection with the word problem and Thue systems. We shall divide the
internal configurations into two classes, the left-facing and the right-facing. The left-facing I.C.’s
will be l0, l1, l2, · · · , lR and the right facing will be r1, r2, · · · ,rR (some otiose ones may be included
in one of the classes to equalize numbers). If the I.C. is an ri the new convention requires the
machine’s behavior to be determined by it and the symbol next on its right, but in the case of an li it
is determined by li and the symbol on its left. It is easy to modify a machine constructed according to
the original conventions to give one with similar properties but satisfying the new conventions. We
leave the details to the reader. The new convention is not of course considered desirable in general,
but only where semi-groups (and perhaps groups) are concerned.

In accordance with these conventions we make the following definitions.
A complete machine is determined by giving a (finite) set of symbols, comprising tape symbols,

left-facing internal configurations, and right-facing internal configurations, and also a table.
A complete configuration is a word made up of tape symbols together with one internal con-

figuration. A table consists of a number of entries, each of which is a pair of words of one of the
following eight forms

(risk, sk′ri′) (s0li, s0s0li′)

(skli, li′sk′) (s0li, li′)

(skli,sk′ri′) (ris0,ri′s0s0)

(risk, li′sk′) (ris0, ri′ ,)

where the left-facing internal configurations are l0, l1, l2, · · · , lR and the right-facing are r1r2, · · · ,rP.
The tape symbols are s0, s1, · · · ,sN

A table must be so constructed that no C.C. has two subwords are first members of different
entries. As a consequence of this condition we may define the (unique if existent) successor of a
C.C. as follows. If (U,V) is an entry of a table then the successor of X U Y is X V Y. We say that B
is a descendant of A if it is possible to connect A to B by a finite sequence of words each of which
is the successor (in our technical sense) of the one which immediately precedes it in the sequence.

We might restrict the definition of a C.C. by insisting that a C.C. must begin and end with s4.
But it will appear shortly that it will make no difference for our purpose whether we do so or not.

Note that if B is a descendant of A in a machine M then (A, B) is a relation of the semi-group
whose F.R. are the entries of M.

The symbol s0 represents ‘blank’. If a machine following the new convention is made
to correspond in behavior with one following the old it is necessary that the entries
(s0li, s0s0li′), (s0li, li′), (ris0, ri′s0s0), (ris0, ri′) should only come into play when the machine
is scanning a blank square in one of the two continuous infinite sequences of blank squares at the
two ends of the tape. This would be ensured by appropriate entries in the machine’s table, and would
be made possible by the presence of the ‘end symbols’ s4. However so long as we are satisfied that
the behavior of the machines in Turing [1] can be modelled by machines following the present
conventions we need not consider these details any further.

There is no general method which can be used to determine, given a machine and a C.C., whether
that C.C. has any descendants in which a given generator occurs. The equivalent of this was stated
in Turing [1] (p. 248), but Post has exposed a weakness in the proof which was given there. Post
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pointed out that certain conventions which should only have been used in the construction of partic-
ular machines had actually been assumed to apply to arbitrary machines. This convention required
partial answers never to be erased, and to have a space order corresponding to he time order of
their printing. Such a restriction applied to machines in general would be most undesirable. Post
suggests over-coming the difficulty by considering the ‘answer’ to be given by the time sequence
of printings, and ignoring the space sequence altogether. Another possibility is to show that the
objectionable convention is in some sense inessential. This could be done by making use of the fact
that the ‘universal machine’ itself obeys the convention. However there is no intention to enter into
these questions in detail here, and we shall assume the theorem proved in the form in which it is
stated at the beginning of this paragraph.

If we were content to prove the unsolvability of the word problem in the weak form ((b) or (c)),
it would be natural to attempt to reduce it to the unsolvable problem just mentioned. For the strong
form (c) however we prefer a result about a particular machine which may be translated into a result
about a particular semi-group. This is made possible by the existence of the ‘universal machine’
U. This machine has the property that, given the table of any other machine M and a C.C. K of
M we can find a C.C. of U, c(M,K) say, such that a certain easily distinguishable subsequence
of the descendants of c(M, K) corresponds in a certain simple way to the descendants of K in
the motion of M. The details of U are to a very large extent arbitrary, and so are the details of
the above-mentioned correspondences. One possible convention is that the special subsequence of
descendants of c(M, K) consists of those whose penultimate symbol is s5, and that of the corre-
sponding descendant of K is obtained by omitting all symbols which are not symbols for M. (This
of course requires that there are certain symbols which are sacred to the use of U). However in
spite of the arbitrariness we shall speak of U as though it were a quite definite machine whose table
was before us. In order actually to obtain such a table we should have to take the description of
the universal machine in Turing [1] and modify it in several ways. Firstly it would be necessary to
expand all the abbreviations used: secondly it must be modified to accord with the conventions of
the present paper, and finally various matters of detail noted by Post (Post [2], p. 7, footnote) must
be corrected. As a consequence of the properties of U and the above mentioned unsolvable problem
concerning machines in general there is a machine B such that there is no general method by which
given a C.C. of B we can determine whether s4l0s4 is one of its descendants or not. B is such that
any C.C. containing l0 has no successor. Here B is a machine obtained by a small modification
of U. B behaves like U in its earlier steps, but as soon as it reaches a C.C. in which s3 appears it
behaves differently, proceeding quickly to the C.C. s4l0s4 by erasures, etc.

In what follows we shall not be concerned with any other machines than B, apart from some
parenthetical remarks about a machine B′. Our interest in machines in general, and the conventions
by which they are restricted, therefore fades. All we need to know is that B satisfies the above
italicized statement and that its table follows our new conventions.

4. The semi-group S0

The semi-group S0 is obtained from the table for B as follows. Let the tape symbols for B
be s0, s1, · · · , sN , the left-facing internal configurations l1, l2, . . . , lR and the right-facing ones
r1, r2, · · · , rR: let the entries of the table for B be E1, · · · , EM. Then the generators of S0 are
to be y, σm, τm , ji, ki, ni, pi, uk, vk, wk, zk(m= 1,2, · · · , M; i= 0,1, · · · , N;k = 1,2, · · · , R).
The F.R. of S0 will be classified into three kinds, principal relations, commutation relations, and
change relations.

Principal relations. For each entry of B we have two principal relations, called first phase and
second phase relations. A table is given below of the forms that these relations take for the entry Em

according to the eight different forms that this entry can have
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Entry Em First phase relation Second phase relation
(rish, sh′ri′) (vikh, σmjh, vi, τm) (σmnh, zi, τm, ziph)

(shli, li′sh′) (jhui, σmui, kh′τm) (σmwi, ph′τm, nhwi)

(shli, sh′ri′) (jhui, σmjh′vi′τm) (σmnh′zi′τm, nhwi)

(rish, li′sh′) (vikh, σmui′kh′τm) (σmwi′ph′τm, ziph)

(s0li, s0s0li′) (j0ui, σmj0j0ui′τm) (σmn0n0wi′τm, n0wi)

(s0li, li′) (j0ui,σmui′τm) (σmwi′τm, n0wi)

(ris0, ri′s0s0) (vik0, σmvi, k0k0τm) (σmzi′p0p0τm, zik0)

(ris0, ri′) (vik0, σmvi′τm) (σmzi′τm, zik0).

Commutation relations

(σmui, uiτm)

(viτm, σmvi)

(wiτm, σmwi)

(σmzi, ziτm)


(i= 1, · · · ,R
m= 1, · · · ,M).

Change relations

(j4u0, n4y)

(yk4, w0p4)

(yτm, σmy) (m= 1, · · · ,M).

The symbols which occur in first phase relations may be called first phase symbols. Words made up
of such symbols may be called first phase words. Second phase symbols and words may be defined
similarly.

The symbols ui, vi, wi, zi (which correspond to internal configurations) will be called active
symbols. The symbols jh,hh, σm which always appear to the left of the active symbols in the F.R.,
are called left symbols, and kh,ph,τm are called right symbols.

A word is described as normal if it contains exactly one active symbol and all the symbols to the
left of this active symbol are left symbols and all to the right of it are right symbols. Both members
of an F.R. are evidently normal.

It will be seen that the first phase relations are obtained from the corresponding entries by

(a) Substituting vi for ri and ui for li. Also substituting jh for sh when it occurs on the left of the
I.C. but substituting kh for it when it occurs on the right.

(b) Inserting σm on the left of the second term and τm on its right. The second phase entries are
obtained by

(c) Substituting zi for ri and wi for li. Also substituting nh for sh when it occurs on the left of the
I.C. but substituting ph for it when it occurs on the right.

(d) As (b).
(e) Interchanging the two terms.

The complete set of relations for S0 may be regarded as forming the table for a certain machine
B′. The movements of B correspond to the earlier steps in the movement of B′, which may be called
the first phase of the movement of B′. The C.C.’s of the two machines correspond if the generators
σm,τm are ignored and the substitutions (a) applied. This correspondence applies throughout if B
never reaches the C.C. s4l0s4. However if it does so the motion of B′ continues further. After the first
phase comes an ‘intermediate phase’ in which the C.C. 6j4u0T1K4T2 is changed to 6n4w0T1p4T2.
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Here 6 is a word formed entirely from the generators σ1,σ2, · · · ,σM and T1, T2 are formed entirely
from τ1,τ2, . . . , τM . Finally we have the second phase in which the motions of the first phase are
carried out again, but in reverse order and with different tape symbols and internal con figurations.
At the end of this we return to the original C.C. with certain substitutions applied. We intend to show
that the necessary and sufficient condition that s4l0s4 be a descendant of C is that (ϕ1(C), ϕ2(C)) be
a relation of S0 where ϕ1, ϕ2 represent the substitutions (a) and (c) above. The proof of the necessity
is easy and consists essentially in establishing the above properties of B′. This argument is in effect
reproduced in Lemmas 1–4 below, but without explicit reference to the machine B′. Indeed the
machine B′ is wholly fictitious since it does not obey either the old or the new conventions. It
has the power of “manufacturing tape” on which to write the symbols σm, τm. Such machines are
certainly worthy of consideration, but are not recognized here. The sufficiency is more difficult,
for we are permitted to do certain operations in semi-groups which do not correspond to motions
of the machines, e.g., cancellation. The generators σm, τm have been introduced into the F.R. to
ensure that any results which can be obtained by the application of these operations could also be
obtained without. This means that the permission to cancel becomes a dead letter. The introduction
of different sets of symbols for use on the right and the left of the active symbol has a similar
purpose. It ensures that relations which contain more than one active symbol in each term can be
split up into ones containing only one: this enables these relations to be interpreted in terms of
machines. More picturesquely we can say that when the left and right symbols are distinguishable
we can let two or more machines work on the same tape without danger of their interfering with one
another.

We shall eventually prove

THEOREM 1. The necessary and sufficient condition that (ϕ1(C), ϕ2(C)) be a relation of S0 is
that s4l0s4 be a descendant of C in the machine B.

As we have mentioned ϕ1, ϕ2 represent the substitutions (a) and (c). An equivalent definition is
given below. Combining Theorem 1 with the principle enunciated at the end of §3 we have

THEOREM 2. There is no general method by which we can determine whether a given pair of
words is · or is not a relation of S0. For if there were such a method we could apply it to pairs of
the form (ϕ1(C), ϕ2(C)) and so determine whether s4l0s4 is a descendant of C in B.

Since we shall be concerned with no other semi-groups than S0 we shall use the word ‘relation’
to mean ‘relation of S0’.

5. Sufficiency in Theorem 1

We begin by defining certain functions of words and C.C.’s. The null word is denoted by 3. The
functions ϕ1,ϕ2 (already mentioned above) are defined for all C.C.’s of B by the equations

ϕ1(li)= ui, ϕ1(ri)= vi, ϕ1(shX)= jhϕ1(X), ϕ1(Xsh)= ϕ1(X)kh

ϕ1(li)= wi, ϕ2(ri)= zi, ϕ2(shX)= nhϕ2(X), ϕ2(Xsh)= ϕ2(X)ph.

The functions ψ1, ψ2 are defined for first and second phase words respectively by equations

ψ1(XG)= ψ1(X)ψ1(G), ψ1(ui)= li, ψ1(vi)= vi, ψ1(3)=3

ψ1(kh) = ψ1(jh)= sh, ψ1(σm)= ψ1(τm)=3

ψ2(XG)= ψ2(X)ψ2(G), ψ2(wi)= li, ψ2(zi)= vi, ψ2(3)=3

ψ2(rh)= ψ2(ph)= sh, ψ2(σm)= ψ2(τm)=3.
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The function χ is defined for first phase words by the equations

χ(XG)= χ(X)χ(G), χ(ui)= wi, χ(vi)= zi, χ(3)=3

χ(jh)= rh, χ(kh)= ph, χ(σm)= σm, χ(τm)= τm.

The function τ is defined for words containing only σ1, σ2, · · · ,σM and σ for words containing only
τ1τ2, · · · ,τM by the equations

τ(3)=3, τ(Xσm)= τ(X)τm

σ(3)=3, σ(Xτm)= σ(X)σm.

In these definitions X is any word and G any generator.

LEMMA 1. For all arguments for which the functions are defined we have

ψ1(XY)= ψ1(X)ψ1(Y), ψ2(XY)= ψ2(X)ψ2(Y)

χ(ψ1(X))= ψ2(X) ϕ2(ψ1(X))= χ(X)

ψ1(ϕ1(V))= V

ψ2(ϕ2(V))= V .

These results are all trivial.

LEMMA 2. The fundamental relations corresponding to the mth entry (U, V) of the table for B
are (ϕ1(U), σmϕ1(V)τm) (first phase) and (σmϕ2(V)τm, ϕ2(U)) (second phase).

This merely requires verification in each of the eight cases.

LEMMA 3. If C = C0, C1, C2, · · · are the descendants of C in B (the sequence possibly termi-
nating), then for each Cr we can find a normal word Hr such that (H0, Hr) and (χ(Hr), χ(H0))

are relations and H0 = ϕ1(C0), ψ(Hr)= Cr.

In the case r = 0 the value ϕ1(C0) evidently satisfies all the requirements. Suppose Hr−1 has
been defined and satisfies the conditions. We may write Cr−1 as AUB and Cr as AVB where (U, V)
is one of the entries of the machine. Now if Hr−1 = PQR then A UB= ψ1(P)ψ1(Q)ψ1(R). If P and
R are sufficiently short, ψ1(P) and ψ1(R) are respectively contained in A and B. If we take them
as long as can be done consistently with this, we shall have ψ1(P)= A and ψ1(R)= B, for each
increase of P or R by one symbol does not increase the length of ψ1(P) or ψ1(R) by more than one
symbol. Hence ψ1(Q)= U. We now define Hr to be Pσmϕ1(V)τmR where (U, V) is the entry Em.
Then

ψ1(Hr)= ψ1(P)ψ1(σm)ψ1(ϕ1(V))ψ1(τm)ψ1(R)= AVB= Cr

The relation (Hr−1, Hr) then follows from (ϕ1(U),σm(ϕ1(V)τm) which is an F.R. by Lemma 2. The
F.R. (σmϕ2(V)τm, ϕ2(U)) can also be written as

(χ(ψ1(σm)ψ1(ϕ1(V))ψ1(τm)), χ(Q))

in virtue of the equation ψ1(Q)= U and Lemma 1. From this F.R. follows the relation
(χ(Hr), χ(Hr−1)).

LEMMA 4. If s4l0s4 is a descendant of C in B then (ϕ1(C), ϕ2(C)) is a relation.

Using the notation of Lemma 3 suppose that CR is s4l0s4. Then (ϕr(C), Hr) and (χ(HR), ϕ2(C))
are relations and it remains to obtain the relation (HR, χ(HR)). Since ψ1(HR)= s4l0s4 by
Lemma 3 we can write the relation (HR, χ(HR)) as (61j462u0T1K4T2, 61n462w0T1P4T2)

where 6162 contain only σ1, σ2, · · · , σM , and T1T2 contain only τ1, τ2, · · · ,τM .
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We obtain (62u0, u0τ (62)) and (σ (T1)w0, w0T1) from the commutation relations and
(j4u0, n4y), (yτ(62)T1,

∑
2 σ(T1)y), (yK4, w0P4) from the change relations. From these the

required relation follows.

6. The necessity in Theorem 1.

This completes the sufficiency part of Theorem 1, and it remains to prove the necessity. We are no
longer interested in the detailed form of ϕ2(C), but only in the fact that it is not a first phase word,
for this is in itself enough to ensure that B reaches s4l0s4. We proceed by an induction over the
steps of the proof of the semi-group relation. We shall show that this proof need not contain any
cancellations, and need only involve normal words.

Length of proof. Suppose that a proof contains a applications of (vii) or (viii), b applications of
(i), c of (ii), (iii) or (iv) and d of (v) or (vi). We describe the length of the proof by the polynomial
aω2
+ bω+ c+ 2d. We regard one polynomial as greater than another (and the corresponding proof

as longer) if its values are greater for all sufficiently large positive values of ω. Alternatively we may
regard aω2

+ bω+ c+ 2d as an ordinal, but this may be misleading since our addition will be the
addition of polynomials rather than the addition of ordinals. Thus for instance (ω+ 1)+ (ω2

+ω)

is ω2
+ 2ω+ 1 and not ω2

+ω.
We shall use the notation [A, B] to mean “the length of the proof of the relation (A, B)”.
The proofs are “well-ordered” when arranged according to their length in this sense. This means

that if we can show that a property which holds of all proofs shorter than the proof P must also hold
of P, then the property will hold of all proofs. Or in other words there is always a shortest proof not
having a given property if there is any not having it. This is the basis of the arguments below.

LEMMA 5. If a relation (A1B) satisfies nω 5 [A, B]< (n+ 1)ω, then there is a chain A=
A0, A1, · · · ,An = B of words such that each pair of consecutive members (or links) is either of
form (XUY , XVY) or of form (XVY , XUY) where (U, V) is an F.R. In the former case the pair is
described as a progressive joint, and in the latter as a retrogressive joint.

The notation of this lemma is used throughout what follows. Consider the relation for which the
lemma fails and for which the proof is shortest. The last step of the proof uses as premisses relations
with shorter proofs and therefore ones for which the lemma holds. This last step is not by (vii) or
(viii) for if it were the length would be at least ω2. If the last step is by (i) then the length is ω, and
the lemma holds with n= 1 by taking U = A, V = B and x, y void. If the last step is by (ii) then the
length is 1 and the lemma holds with n= 0. If the last step is by (iii) then the chain for (B, A) gives
ones for (A, B) when reversed in order. If it is by (iv) the chains for (A, C) and for (C, B) give one
for (A, B) when taken in combination. If it is by (v) and (F, H) has the chain F0, F1, · · · , Fn then
(FG, HG) has the chain F0G, F1G, · · · , FnG. Similarly if it is by (vi). In each case there is a chain
for the conclusion with the appropriate length, contrary to hypothesis. Hence the assumption that
the lemma fails for some proof is false.

LEMMA 6. If one link of a chain is normal then every link is normal.

It will suffice to show that the neighbors of a normal link are normal. Suppose XUY , XVY are
two consecutive links and XUY is normal, and either (U, V) or (V , U) is an F.R. Since XUY is
normal X consists of left symbols and Y of right symbols. Also V is normal being a term of an F.R.
Hence XVY is normal.

Chains such as those concerned in Lemma 6 will be called normal chains.
If (XUY , XVY) is a joint of a chain and (U, V) or (V , U) is an F.R. then the joint is said to be

justified by that F.R.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/9 0:50 Page 353 #11

The Word Problem in Semi-Groups with Cancellation 353

A two-generator word is described as a barrier if the proposition that the first generator is a left
symbol is logically equivalent to the proposition that the second is a right symbol. A word is said to
have a barrier if a barrier is a subword.

LEMMA 7. No barrier occurs as a subword of either term of an F.R.

This must be verified by detailed examination of the various F.R.

LEMMA 8. A word without barriers is either normal or else consists entirely of left symbols or
entirely of right symbols.

This follows at once from the fact that two consecutive generators which do not form a barrier
must form one of the four combinations left-left, left-active, active-right, right-right.

LEMMA 9. If one link of a chain has no barriers, then no link of the chain has a barrier.

We have only to show that if X UY has no barriers and either (U, V) or (V , U) is an F.R. then
XVY has no barriers. Any barrier which it has cannot be wholly contained in either X or Y , since
it would then appear in XUY; nor can it be contained in V by Lemma 7. If it overlaps from X to V
then its first generator is a left symbol, for it precedes a symbol in U which is not a right symbol.
The first generator of V must therefore be a right symbol, which is impossible. Likewise the barrier
cannot overlap from V to Y .

LEMMA 10. If [G1A, G2B]< ω2 and GG1 is a barrier then GG2 is a barrier. Likewise if
[AG1, BG2]< ω2 and G1G is a barrier then G2G is a barrier.

We will consider only the first assertion. There is a chain for (G1A,G2B) by Lemma 5, and
therefore one for (GG1A, GG2B), by preceding each link with G. The result follows by lemma 9.

LEMMA 11. Let AG1G2F and BG3G4H be abbreviated to P and Q, and let [P, Q]< ω2. Suppose
also that G1G2 and G3G4 are barriers and either AG1 and BG3 contain no barriers or G2F and G4H
contain no barriers. Suppose further that P, Q are not identical. Then [AG1, BG3]+ [G2F, G4H]+
1 5 [P, Q].

If the lemma is false we suppose that (P, Q) is the relation with the shortest proof consistent with
denying the lemma. We deal only with the case where AG1 and BG3 contain no barriers, the case
where G2F and G4H contain none being similar. Let us consider the last step in the proof of (P, Q).
The premisses to this last step must obey the lemma, if they are of appropriate form, i.e. if both
terms have a barrier and they are not identical. This last step could not be by (i) since an F.R. has no
barriers, nor by (ii) since P, Q are not identical. If it is by (iii) the proof could be reduced in length
by omitting the last step and adopting a modified conclusion, while still denying the lemma. Now
take the case where the last step is by (iv).We may suppose the premisses were (P, D) and (D, Q).
We may suppose that D is not identical with either P or Q for if it were we could omit the last step
and the identical premiss. If D contains a barrier it is of form EG5G6I where G5G6 is a barrier and
E contains no barriers. The lemma then applies to both premises, i.e., to (AG1G2F, EG5G6I) and
(EG5G6I, BG3G6H) so that

[AG1, EG5]+ [G2F, G6I]+ 1 5 [P, D].

[EG5, BG3]+ [G6I, G4H]+ 1 5 [D, Q].

But

[AG1, EG5]+ [EG5, BG3]+ 1 = [AG1, BG3]

[G2F, G6I]+ [G6I, G4H]+ 1 = [G2F1G4H]

[P, D]+ [D, Q]+ 1= [P, Q]
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and so

[AG1, BG3]+ [G2F, G4H]+ 1 5 [P, Q].

Hence D cannot contain a barrier. But this contradicts Lemma 9. If the last step is by (v) we may
write F′G and H′G for F and H. Then

[G2F, G4H] 5 [G2F′, G4H′]+ 1

[AG1, BG3]+ [G2F, G4H]+ 1 5 [AG1, BG3]+ [G2F′, G4H′]+ 2

5 [AG1G2F′, BG3G4H′]+ 1= [P, Q].

If the last step is by (vi) then (P, Q) is of form (GG5P′, GG6Q′) where G1G5G6 are generators and
P′, Q′ may possibly be void. If GG5 is a barrier then so is GG6 by Lemma 10 and we see that A, B
are void. (AG1, BG3) reduces to (G, G) whose proof is of length 1. The premiss of the last step is
(G2F, G4H) and

[G2F, G4H]+ 2= [P, Q]. Hence [AG1, BG3]+ [G2F, G4H]+ 1= [P, Q].

If GG5 is not a barrier then GG6 is not either and we see that A, B are not void. Put A= GA′, B=
GB′. A′ and B′ may be void. The premiss of the last step is (A′G1G2F, B′G3G4H) and so since
G1G2, G3G4 are barriers and A′G1, B′G3 have no barriers and A′G1G2F, B′G3G4H are not identical

[A′G1, B′G3]+ [G2F, G4H]+ 3 5 [A′G1G2F′, B′G3G4H]+ 2= [P, Q].

But

[A′G1, B′G3]+ 2 = [AG1, BG3]

so that

[AG1, BG3]+ [G1F, G4H]+ 1 5 [P, Q].

LEMMA 12. No normal first phase word can be expressed in more than one way in the form X
UY where U is the first term of an F.R. nor in more than one way in the form XV Y where V is the
second term of an F.R.

If X UY = X′U′Y ′ then ψ(X)ψ(U)ψ(Y)= ψ(X′)ψ(U′)ψ(Y ′). But then

ϕ−1
1 (ψ(X))ϕ−1

1 (ψ(U))ϕ−1
1 (ψ(Y))= φ−1

1 (ψ(X′))ϕ−1
1 (ψ(U′))ϕ−1

1 (ψ(Y ′))

and ϕ−1
1 (ψ(U)), ϕ−1

1 (ψ(U′)) are first terms in entries of the table for B, and
ϕ−1

1 (ψ(XUY)), ϕ−1
1 (ψ(X′U′Y ′)) are C.C.’s. Then by the restrictions to which all tables are

subject we have ϕ−1
1 (ψ(U))= ϕ−1

1 (ψ(U′)). Also U and U′ have no generators σm (being first
terms) and therefore U = ψ(U), U′ = ψ(U′). Hence U = U′. If XVY = X′V ′Y ′ then since both
sides are normal V and V ′ must overlap, and since they both terminate with a σm or τm they must
have a σm or τm in common. Hence the value of m is the same for both, i.e., V and V ′ are the
same relation. Since the words are normal they contain at most one active symbol each. Hence in
XVY , X′V ′Y′ the active symbol of V must occur at the same distance from the beginning of both
expressions, so that X = X′ and likewise Y = Y ′.

LEMMA 13. In a normal chain without repetitions there is no change of direction, i.e. the joints
are either all progressive or all retrogressive.

Suppose there is a link which is flanked both by a progressive and by a retrogressive joint.
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Then it is expressible in both the forms XUY and X′U′Y ′ where (U, V) and (U′, V ′) are F.R. or
else in both the forms XVY and X′V ′Y ′ In the former case the flanking links are XVY and X′V ′Y ′,
and in the latter they are XUY and X′U′Y ′. In either case they are identical, by Lemma 12 together
with the fact that an F.R. is uniquely determined by either of its terms. The chain therefore has a
repetition contrary to hypothesis.

LEMMA 14. If the end links of a chain are first phase words, and there is no change of direction,
then all links are first phase.

We will suppose the chain progressive. Consider the last link which is not first phase, and sup-
pose that the joint following it is justified by (U, V). Then V is first phase but U is not. But looking
through the fundamental relations we see that there is no such (U, V).

LEMMA 15. A normal chain without change of direction is completely determined by its first
link.

This is an immediate consequence of Lemma 12 and the definition of a chain.

LEMMA 16. Let 61, 62 be words formed from σ1σ2, · · · ,σM , and let G be a first phase symbol,
G′ a second phase symbol. Then 61G′X cannot precede 62GY in a progressive chain.

Every link can be written in the form
∑

FZ where 6 (and also 63, 64 etc.) contains only
σ1σ2, · · · ,σM , and the generator F is not a σm. If 63F′X′, 64FY ′ are two consecutive links of the
chain then the corresponding joint must be justified by an F.R. of the form 65F′X′′, 66FY ′′. If
63F′X′ is the last link for which F′ is second phase, then F′ is second phase but F is not. Clearly
such an F.R. is neither first phase nor second phase, and no such relation can be found among the
commutation relations or the change relations.

LEMMA 17. If G is a generator and there is a normal chain for (GA, GB) or for (AG, BG) then
there is one for (A, B).

Consider the case where the given chain is one for (GA, GB), and suppose that there is no chain
for (A, B). Let the chain for (GA, GB) be F0, F1, · · · , Fn Not all the links of the chain begin with
G, for if they did we could obtain a chain for (A, B) simply by omitting G from each link. Let the
first and last links which do not begin with G be Fr and Fs.We will assume the chain progressive.
Then (Fr−1, Fr) is justified by some F.R. of form (GU, V) and (Fs, Fs+1) by one of form (U′, GV ′)
where V and U′ do not begin with G. Thus G is both the leftmost symbol of the first member of
a relation and the leftmost symbol of a second member. The only symbols which can satisfy this
condition are σm. The first symbol of V must be of form zi, ui, or nh. If it is zi or ui then it is the
active symbol in V , and the link (Fr, Fr+1)must be justified by a relation whose first member begins
with that symbol. But there is no such relation, so that V begins with nh. Likewise U′ begins with
an jh. But there is a progressive chain from V to U′ contradicting Lemma 16. This completes the
proof for the case (GA, GB). The argument for the case (AG, BG) is similar; although there is not
complete symmetry in the change relations between left and right, it does not affect the argument at
any point.

LEMMA 18. If one term of a relation contains no active symbol and the proof of the relation
does not apply (vii) or (viii), then the relation is an identity.

We consider the last step of the shortest proof of such a relation which is not an identity. It is not
by (i) since every F.R. has an active symbol in each term, nor by (ii) since it is not an identity. If it is
by (iii) we could omit the last step and obtain a shorter proof denying the lemma. If it is by (iv) one
of the premisses has a term which contains no active symbol. This premiss has a shorter proof than
the relation in question and therefore is an identity, and the last step may be omitted. If it is by (v)
or (vi) the premiss must be an identity by a similar argument, and the conclusion is therefore also
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an identity. A step by (vii) or (viii) has been excluded by the conditions of the lemma. Hence there
is no such relation which is not an identity.

LEMMA 19. The shortest proof of a normal relation does not use (vii) or (viii) or words which
are not normal.

We consider the relation (P, Q) which denies the lemma and, consistently with this, has the
shortest possible proof. If there is an application of (vii) or (viii) consider the first one, and suppose
it is applied to (GA, GB) to obtain (A, B). Then either (A, B) is (P, Q) or else A, B are not normal
for in any other case (A, B) would deny the lemma and have a shorter proof than (P, Q). If (A, B) is
(P, Q) then (GA, GB) cannot be normal, for if it were its proof would use only normal words, being
shorter than that of (P, Q). There would therefore be a normal chain for (GA, GB) by Lemmas 5,
6 and one for (A, B) (i.e., for (P, Q)) by Lemma 17. Then (P, Q) satisfies the lemma contrary to
hypothesis. Equally if (A, B) is not normal (GA, GB) will not be normal. Then by Lemma 8 there
are either barriers in GA, GB or one of them contains no active symbol. In the latter case since
(vii) and (viii) are not used in the proof of (GA, GB) this relation must be an identity (Lemma 18).
But in this case we can shorten the proof of (A, B) since it is an identity. Hence there are barriers
in GA and GB. Applying Lemma 11 we see that either the barriers are right at the beginning and
[G, G]+ [A, B]+ 1 5 [GA, GB] or else (A, B) is of form (A′G1G2F, B′G3G4H) where G1G2 and
G3G4 are barriers and GA′G1, GB′G3 without barriers and

[GA′G1, GB′G3]+ [G2F, G4H]+ 1 5 [GA, GB] < [P, Q].

We may apply Lemma 17 to (GA′G, GB′G3): this shows that there is a chain for (A′G1, B′G3).
Combining this with the proof of (G2F, G4H) gives us a proof of (P, Q) which does not apply (vii)
or (viii) and is therefore shorter than the original one. The same is true if [G, G]+ [A, B]+ 1 5
[GA, GB]. Hence there is not any application of (viii) and likewise none of (vii). The whole proof
is therefore of length less than ω2, so that by Lemma 5 there is a chain for (P, Q). But then (P, Q)
does not deny the lemma, contrary to hypothesis. This establishes the lemma.

LEMMA 20. If for some W which is not first phase (ϕ1(C), W) is a relation, then s4l0s4 is a
descendant of C.

By Lemmas 19, 15 there is a chain for (ϕ1(C), TV). Let the last first phase link X UY and the
joint connecting it to the next link be ustified by (U, V). Then U is first phase but V is not. This
identifies (U, V) as (j4u0, n4y). Now consider the words Hr described in Lemma 3. As each Hr

consists only of first phase symbols the same is true of each link of its chain (Lemma 14). This chain
therefore is wholly contained in the chain for (ϕ1(C), XUY), which we will suppose is of length
n. Then r 5 n so that C has only a finite number of descendants. Let the last be Cs, and consider
the chain leading from Hs to XUY . Since it consists entirely of first phase symbols the fundamental
relations involved must be either first phase relations or commutation relations. I assert that they are
all commutation relations. For if one is a first phase relation then Cs has a successor. Since these
steps are all by commutation relations, Hs contains u0 and therefore Cs contains l0, and is therefore
s4l0s4 by the properties of B.

Theorem 1 follows at once from Lemmas 4, 20 and the fact that ϕ2(C) is not first phase.

VICTORIA UNIVERSITY

MANCHESTER, ENGLAND



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/9 0:50 Page 357 #15

The Word Problem in Semi-Groups with Cancellation 357

REFERENCES

ALONZO CHURCH, [1]. An unsolvable problem of elementary number theory, Amer. J. Math., 58 (1936),
345–363.

S. C. KLEENE, [1]. General recursive functions of natural numbers, Math. Ann., 112 (1935–6), 727–742.
S. C. KLEENE, [2]. λ-definability and recursiveness. Duke Math. J., 2 (1936), 340–353.
E. L. POST, [1]. Finite combinatory processes–formulation 1, J. Symbol lic Logic, 1 (1936), 103–105.
E. L. POST, [2]. Recursive unsolvability of a problem of Thue, J. Symbolic Logic, 12 (1947), 1–11.
A. M. TURING, [1]. On computable numbers, with an application to the Entscheidungsproblem, Proc. London

Math. Soc. (2), 42 (1937), 230–265. A correction to this paper has appeared in the same periodical, 43
(1937), 544–546.

A. M. TURING, [2]. Computability and λ-definability, J. Symbolic Logic, 2 (1937), 153–163.
D. HILBERT and P. BERNAYS, Grundlagen der Mathematik, 2 vols., Berlin, (1940).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/12 10:13 Page xxiii #11

This page intentionally left blank



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 22:16 Page 359 #1

On Permutation Groups
(unpublished manuscript)

John Leslie Britton’s informative —

INTRODUCTION

Although this paper was evidently motivated by Turing’s study of the Enigma machine (see Hodges:
Alan Turing – The Enigma, 1983), it is essentially an important piece of pure mathematics. Turing
was led to consider what turns out to be a formidable problem on permutation groups, which is as
follows.

Consider permutations of the objects a1, . . . ,aT . Let R be the T-cycle (a1a2 . . .aT). For any
permutation U, let H(U) denote the group of all permutations of the form

Rt0URt1 . . . URtρ ,
∑

ti = 0.

H(U) is called exceptional if it is not the symmetric or alternating group. The problem is to find all
exceptional groups or at least to find all U such that H(U) is exceptional.

Besides employing his usual ingenuity, Turing has to perform some really extensive calculations
in order to solve the problem for the cases T = 1,2, . . . , 8.

Clearly, this problem is a challenge to present day workers in permutation groups. Computer sci-
entists also may find it interesting to see if they can check Turing’s results and extend his calculations
beyond T = 8.

1Extracted from the Introduction to volume 1 of the Collected Works.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00014-X
c© 2013 Elsevier Inc. All rights reserved.
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ON PERMUTATION GROUPS

[The beginning of Turing’s typescript, including the title, is missing. The above title was suggested
by R. O. Gandy.]

. . . form Un1Un2 . . .UnM . It is easily seen that the parity of this permutation is that of UM and
therefore that the permutations from the same machine always have the same parity. For the present
we shall not however investigate the permutations obtainable with a given machine but those which
are obtainable with a given upright and any number of wheels.

Let H(U) or H be the set of permutations obtainable from the upright U. It is easily seen that H
is a group, for if P and Q are two permutations obtainable from the upright U, then PQ is obtainable
from it by putting the machines giving P and Q in series ; (an algebraic argument is almost equally
simple). Since H is finite and contained in the symmetric group, this is sufficient to prove it is a
group. H may be expressed as the group generated by U1, U2, . . . , UT or again as consisting of all
expressions of the form

Rt0URt1U . . .URtp ,

with any p and with the exponents of R totalling zero. It thus differs only slightly from the group
J(U) or J generated by U, R, which consists of similar expressions without the restriction on the
sum of the exponents. Every member of J(U) is of the form PRk, where P is in H. H is thus a
subgroup of J of index at most T. H is in fact a self-conjugate (or normal) subgroup of J, for it is
transformed into itself by the generators U, R of J, i.e., UHU−1 is H since U is in H and RUnU−1

is Un+1 so RHR−1 is H.
We shall say that H or H(U) is exceptional if H does not include the whole alternating group

A (all even permutations). If H is not exceptional, it will be either A or the symmetric group S (all
permutations), according as U is even or odd. It is so easy to see in this way whether H is A or S
that it is quite adequate in describing it to say that it is unexceptional.

We shall actually investigate J rather than H. J is obviously easier to deal with than H and results
for J may be translated into results for H by means of the next theorem.

Theorem I. The necessary and sufficient condition for H to be unexceptional is that J be
unexceptional, provided U 6= 1, T 6= 4.

We have shown that H is a self-conjugate subgroup of J. Now if J is unexceptional, it is either
A or S and the only self-conjugate subgroups of these if T 6= 4 are A, S and the group consisting of
the identity only, and so H must be one of these. The last alternative has been excluded by assuming
U 6= 1 so that H is A or S, i.e., H is unexceptional. Conversely, if H is unexceptional, so is J since J
contains H.

Technique for investigating any particular upright U

In order to prove H is unexceptional, it will suffice to prove J contains all 3-cycles, for if this is so,
J will be a self-conjugate subgroup of S and since it is not the identity, it must be either A or S. It
would also be sufficient to prove that J contains all 2-cycles. We shall prove the following theorem.

Theorem II. If J contains a member of the form (α,Rmα) or (α,Rmα, β) or (α,Rmα)(β, γ ),
where m is prime to T, then it contains all 3-cycles and, in the first of these cases, also all 2-cycles.
T must be greater than 4. (α, Rmα)(β, γ ) must not commute with RT/2 if T is even.

Suppose J contains (α, Rmα). We will write αk for Rmkα. The symbols α0, α1, . . . , αT−1
include all the T symbols. Then J contains Rms(α0, α1)R−ms, i.e., (αs, αs+1). It therefore con-
tains (α0, α2) since this is (α1, α2)(α0, α1)× (α1, α2)

−1(if T > 2). It contains (α0, α3), which
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is (α2, α3)(α0, α2)(α2, α3)
−1 if T > 3 and repeating this argument it contains (α0, αr) for every

0< r < T . Finally it contains (αp, αq) since this is Rmp(α0, αq−p)R−mp if q 6≡ p (T). Thus J contains
every 2-cycle (and every 3-cycle).

Now suppose J contains (α, Rmα,β) where m is prime to T . We may express β as Rmkα. The
first step is to prove that J contains an element of the form (α,Rm′α, R2m′α), where m′ is prime to T .
In the case that 2k ≡ 1(T) we may take m′ = k and (α, Rmα, Rkmα)−1 is (α, Rm′α, R2m′α). In the
case that k+ 1≡ 0 (T) we may take m′ = m and Rm(α, Rmα, Rmkα)R−m is (α, Rm′α, R2m′α). In the
remaining cases I propose to prove that (α, Rmα, R(k+1)mα) belongs to J, so that k may be increased
until either k+ 1≡ 0 (T) or 2k− 1≡ 0 (T), and then previous cases can be applied.

We are assuming that k+ 1 6≡ 0 (T) and 2k− 1 6≡ 0 (T). For the moment I will also suppose
2k 6≡ 0 (T). Then α,Rmα, Rmkα,Rm(k+1)α, R2mkα are all different and

[Rmk(α,Rmα,Rmkα)R−mk](α,Rmα,Rmkα)[Rmk(α,Rmα,Rmkα)R−mk]−1

= (Rmkα,Rm(k+1)α,R2mkα)(α,Rmα,Rmkα)(Rmkα,Rm(k+1)α,R2mkα)−1

= (α,Rmα,Rm(k+1)α)

belongs to J. If, however, 2k ≡ 0 (T) the left-hand side of this expression is equal to
(Rmkα, Rmα, Rm(k+1)α) or to (Rmkα, R(2k+1)mα, R(k+1)mα) so that

R−mk(Rmkα,R(2k+1)mα,R(k+1)mα)−1Rmk
= (α,R(k+1)mα,Rmα)−1

= (α,Rmα,R(k+1)mα)

belongs to J.
This proves the existence in J of (α,Rm′α, R2m′α)with m′ prime to T , and I will now write αk for

Rm′kα, so that (α0, α1, α2) belongs to J, and so does (αs, αs+1, αs+2) (by transforming with Rm′s).
Then transforming (α0, α1, α2) with (α2, α3, α4), we find that (α0, α1, α3) belongs to J provided
T ≥ 5 and transforming again with (α3, α4, α5), we have (α0, α1, α4) in J if T ≥ 6, and repeating
the argument (α0, α1, αr) belongs to J provided r < T − 1. (α0, α1, αT−1) may be seen to belong
to J by transforming (α0, α1, αT−2) with (αT−3, αT−2, αT−1) provided T > 4. Thus every 3-cycle
containing α0 and α1 belongs to J. But

(α0, α1, αr)(α0, α1, αs)
−1
= (αs, αr, α0)

and therefore every 3-cycle containing α0 belongs to J. Finally

(αs, α0, αr)(αs, α0, αt)
−1
= (αt, αr, αs)

and therefore every 3-cycle whatever belongs to J.
There remains the case when we are given that (α, Rmα)(β, γ ) belongs to J. We shall reduce

this to the case where it contains the 3-cycle. We may write αk for Rmkα as before. We also write
β ′ for Rmβ. We are then given that (α0, α1)(β, γ ) belongs to J. We may divide this into the cases
(remembering T > 4):

(a) (α0, α1)(β, γ ) belongs to J, where β, γ are different from α2, α−1;β is different from γ ′ and
γ from β ′;

(b) (α0, α1)(α2, γ ) belongs to J, where γ is different from α−1, α−2;
(c) (α0, α1)(α−1, γ ) belongs to J, where γ is different from α2, α3;
(d) (α0, α1)(β, β ′) belongs to J, where β is different from α2, α−1;
(e) (α0, α1)(α−1, α2) belongs to J;
(f) (α0, α1)(α2, α3) belongs to J;
[Following the instruction “P.T.O.”, the reader finds:]
(g) (α0, α1)(α2, α−2);
(h) (α0, α1)(α−1, α3). [See Fig. 1*]

* This consists of a circle passing through points α−3, α−2, α−1, α0, α1; a point α3 is inside the circle. A second circle
has diameter α0, α1. A third circle passes through α−2, α3 and surrounds the small circle.
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These are equivalent. (α0, α1)(α2, α−2). Then (α−3, α−2)(α−1, α−5) gives (α0, α1)(α2, α−3)

if T > 7. O.K. In any case we can take it . . . as (BC)(AE)
when T = 6

A B C D E F (AF)(EDB) O.K.
E C B D A F

when T = 5

A B C D E (EDB) O.K.
E C B D A

Thus only exception T = 7 when we get group of 7-point geometry.
[The main text now resumes:]
It is easily seen that cases (b) and (c) are essentially the same (by changing the sign of m). In

case (a), since (α1, α2)(β
′, γ ′) belongs to J

((α1, α2)(β
′,γ ′))(α0, α1)(β, γ )((α1, α2)(β

′, γ ′))−1
= (α0, α2)(β, γ )

belongs to J and so does

(α0, α1)(β, γ )((α0, α2)(β, γ ))−1
= (α0, α2, α1).

In case (b), supposing first γ 6= α2, (α2, α3)(α4, γ ′′) belongs to J and therefore, transforming
(α0, α1)(α2, γ )with this permutation, also (α0, α1)(α3, γ )which comes under case (a). If however
γ = α−2, the result of the same transformation is (α4, α1)(α2, α−2). But

((α4, α1)(α2, α−2))((α0, α1)(α2, α−2))= (α0, α4, α1)

and we can apply the case of the 3-cycles.
In case (d) put αr for β. Then if 2r 6≡ 0,1,−1 (T),

(α0, α1)(αr, αr+1)(αr+1, αr+2)(α2r+1, α2r+2)= (α0, α1)(αr, αr+1, αr+2)(α2r+1, α2r+2)

and so (αr, αr+1, αr+2) belongs to J and the case of 3-cycles applies.
If 2r ≡ 1 (T), then (α0, α1)(αr, αr+1) and

(αr, αr+1)(α2r, α2r+1)= (αr, αr+1)(α1, α2)

belongs to J and therefore their product (α1, α2, α0) also. Similarly if 2r ≡−1 (T). If 2r ≡ 0 (T),
then (α0, α1)(αr, αr+1) commutes with RT/2.

In case (e), (α0, α1)(α−1, α2) and (α1, α2)(α0, α3) belong to J and therefore (transforming)
(α3, α2)(α−1, α1) and (subtracting 3 from suffixes) (α0, α−1)(α−4, α−2). On changing the sign of
m this becomes (α0, α1)(α4, α2) and comes under case (b).

In case (f), (α0, α1)(α2, α3) and (α1, α2)(α3, α4) belong to J and therefore (α0, α2)(α1, α4)

and the product

((α0, α1)(α2, α3))((α0, α2)(α1, α4))= (α0, α3, α2)(α1, α4)

and its square (α2, α3, α0) to which the 3-cycle result applies.
This completes the proof of Theorem II, but we may notice the cases which have been expressly

excluded since they give rise to exceptional groups. In the case of a 2-cycle (α, Rmα) where
m is not prime to T , H is an intransitive group. The intransitivity sets are each of the form
(β, Rmβ, R2mβ, . . .). The same applies in the case that the generator is a 3-cycle (α, Rmα, Rm+pα)

when m, p, m+ p have a factor in common with T . We have omitted to give consideration to the
case where m, p, m+ p each have a factor in common with T , but there is no factor in common
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with all four. Probably Theorem II applies to these cases also. In the case where the generator is
(α, β)(γ , δ) and commutes with RT/2, each element of the group H also commutes with RT/2.

It is very easy to apply Theorem II. We may first express U, UR, UR2 etc. in cycles: this
may be done for instance by writing the alphabets out double and also writing out the sequence
UA, UB, . . . , UZ. By putting the former above the latter in various positions we get the permuta-
tions URs. Among these we may look for the permutations which have a 3-cycle and all other cycles
of length prime to 3. By raising this to an appropriate power we obtain a 3-cycle which may or may
not satisfy the conditions in Theorem II. If we are not successful we may use other permutations in
J. We may also be able in a similar way to generate a permutation which is a pair of 2-cycles.

The following upright was chosen at random

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

M N Y T F B G R S L A X O E W K P C J Q Z D H V U I

In cycles it is

(AMOWHRCYUZISJLXVDTQPK)(BNEF)(G) = U.

Then U22
= (BE)(NF).

The distance BE is 3, which is prime to 26. The distance NF is 8. Hence, Theorem II applies and
J includes the whole of A, and therefore H includes A.

Systematic search for exceptional groups. Theory

In examining all possible uprights for a given T the main difficulty lies in the large number of
uprights involved. Once it has been proved that a particular upright is unexceptional, the same will
follow for a great number of others.

More generally given any upright we can find a great number of others which generate either
the same group H or an isomorphic group. If we can classify these uprights together in some way
we shall enormously reduce the labour, since we shall only need to investigate one member of each
class. The chief principles which enable us to find equivalent uprights are:

(i) if U′ = RmURn, then H(U′)= H(U);
(ii) if V commutes with (R), then H(VUV−1)∼= H(U);

(N.B. If V commutes with (R), then VRV−1
= Rk, some k.)

(iii) if U′ = Um and U = U′n, then H(U)= H(U′).

The principle (i) is the one of which we make the most systematic use. Our method depends on the
fact that there are very few U for which none of the permutations RmURn leave two letters invariant
(in other words there are very few U without a beetle) and none if T is even. We therefore investigate
separately the U with no beetles and the U with beetles.

U with no beetle

We can find an expression which determines the classes of permutations obtainable from one another
by multiplication right or left by powers of R as follows.

Let URn+1Z= Rf (n)URnZ; (here Z represents the last letter of the alphabet however many char-
acters there may be in it). Then we take the numbers f (1)f (2) . . . f (T) as describing the classes
containing U. It may be verified that from these numbers and UZ it is possible to recover U, in
fact they describe what is in common between U, RU, R2U, . . . However if we move some of the
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numbers from the end of the sequence to the beginning, we shall be describing URm,RURm, . . . An
example may help. Consider the permutation U = (ABCDG) of seven letters. Write it as

A B C D E F G

B C D G E F A.

The numbers are the differences of consecutive letters in B C D G E F A, i.e., 1 1 3 5 1 2 1.
The permutation R2UR is

A B C D E F G

E F B G A C D

and the numbers 1 3 5 1 2 1 1 are obtainable by shifting the first figure to the end.
If then we take the various forms

f (1)f (2) . . . f (T), f (T)f (1)f (2) . . . f (T − 1), etc.,

and select that which, regarded as an arabic numeral, would be the smallest, we shall have a way of
describing all the permutations RmURn. We may call the resulting figures the invariant of U.

To a small extent we can combine this with the principle (ii) conveniently. If V satisfies VRV−1
=

R−1, then the invariant of VUV−1 is obtainable by reading that of U backwards and rearranging for
minimum.

When we are investigating the cases where U has no beetle, the invariant is very restricted. It
cannot contain Fig. 1. More generally the numbers

0, f (1)− 1, f (1)+ f (2)− 2, f (1)+ f (2)+ f (3)− 3, . . .

(essentially one of the “rods”) must be all different. These restrictions are so powerful that we
normally find very few cases other than where U is a power of R. When T is even there are no such
cases (as is well known): if there were the numbers 0, f (1)− 1, f (1)+ f (2)− 2, . . .would have to be
the numbers 0,1, . . . , T − 1 in some order and would total 1

2 T(T − 1)modulo T . But 0, f (1), f (1)+
f (2), . . . are also all different and must total 1

2 T(T − 1) modulo T , and likewise 0,1, . . . , T − 1 total
the same so that 0, f (1)− 1, f (1)+ f (2)− 2, . . . total 0 mod T , i.e., 1

2 T(T − 1) is 0 mod T , which
is not so if T is even.

U with a beetle

We select a permutation RmURn which leaves two letters invariant to represent U. One of these may
be taken to be A, if necessary by transforming with a further power of R. By means of principle
(ii) we can also reduce the possibilities for a second letter. If the letters which were originally fixed
were A and RtA, we can transform them to A and RsA provided that the highest common factor of T
and t is the same as the highest common factor of T and s, since there is a V satisfying VA= A and
VRtV−1

= Rs,V(R)V−1
= (R). We therefore have to consider various pairs of letters left invariant

such as A, RtA; the various t to be considered should run through the numbers which divide T , omit-
ting T itself but including 1. For each such t we then write down the permutations leaving A, RtA
invariant. We arrange them by classes of conjugates in S, and reduce them by means of principle (iii)
as we write them down. Further reduction may afterwards be done by principle (ii) in a very special
way: if V interchanges A and RtA we can apply it. It is best probably to number the permutations
and with each to give also the number t of that with which it is paired. Very many will be found
self-paired.
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The detailed search

T = 1, 2, 3, 4
It is not difficult to prove that there are no exceptional groups when T = 1,2 or 3. The case

T = 4 needs special investigation as it has been expressly excluded from Theorem I. The exceptional
uprights in this case are

(1) (13) (24) (13)(24)

(12)(34) (32)(14) (1234) (4321).

The exceptional groups H are the identity, the cyclic groups [(1234)] and [(13)(24)], the
4-group, consisting of the identity and all permutations of the form (αβ)(γ δ), and a group
isomorphic with the 4-group and generated by (13) and (24).

T = 5
With the theory we have developed, this case is also very trivial. There are no U without beetles

except
[Following the instruction “P.T.O.” we find:]
those with invariant

22222 33333 44444.

These together prove the numatizer of (R).
[Returning to the main text:]

and this leaves only the permutations leaving two letters invariant, and these are all covered by
Theorem II, since 5 is prime.

Thus the only exceptional U are the members of the numatizer of (R), 20 in number.

T = 6
Since 6 is even we do not need to consider U without beetles. Our representative U will then

always leave two letters invariant, and again will come under Theorem II immediately. U can only
be exceptional by being intransitive or commuting with R3. The total number which commute with
R3 is 48 and the number which have the intransitivity sets (ACE BDF) is 36. These include 6 which
commute with R3. Those with intransitivity set (AD, BE, CF) all commute with R3. Thus the total
number of exceptional U is 48+ 36− 6= 78 out of a possible 720.

T = 7
The uprights without beetles are the members of the numatizer of (R) and those with the invariant

2335564 and its reversal. The latter however are unexceptional. A representative U is (BCGEDF)
and U2R is (AG)(BEC)(DF) which is evidently unexceptional (square it).

For the uprights with beetles we may take t = 1 only, i.e., we can always suppose A and B
both invariant. Simple application of Theorem I shows that we need only consider cases of 5-cycles
and principle (iii) shows that we can take it that UC= G, i.e., we have reduced the representative
permutations U to the form (A)(B)(GαβγC). The permutation V which interchanges A and B is
(AB)(CG)(DF)(E). Thus, we need in the end only consider

(GDEFC) self paired
(GDFEC) paired
(GEDFC)
(GEFDC) paired
(GFDEC)
(GFEDC) self paired

By multiplying these with powers of R they may all be shown unexceptional.
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We have also the case of the group generated by (AE)(BC) specifically mentioned in Theorem II.
This gives the group of symmetry of the 7-point geometry [See Fig. 2*]. There are actually only two
isomorphic groups of this kind, generated by (BC)(AE) and by (BE)(FD).

Invariants involved

(BC)(AE) group (BE)(FD) group reverses
1556245 1542655
1323354 1453323
4444444 4444444
1264663 1366462
1111111 1111111
2222222 2222222

Invariants of numatizer of (R)

3333333
5555555 total elements
6666666 6× 49+ 6× 7= 6× 7× 8= 336
4444444 i.e., 336 exceptional uprights
1111111
2222222

T = 8
This needs rather more investigation than the previous cases partly because it is the largest

number yet considered and partly because it has more factors.
Obviously the permutations which commute with (R) or with a power of R or generate an

intransitive group will be exceptional. We will consider that we are looking for other forms of
exceptional upright.

We have various means for dealing with permutations:

(a) We may show that the group is the same as that generated by an upright to be considered later.
A special case of this occurs when t = 1. One of the forms RsU may be of a type to be consid-
ered under t = 2 or t = 4. This may be detected by writing down the figures m1, m2, . . . where
Rmr+rH = URrH. If any figure appears twice in this series at an even distance the conversion to
the case t = 2 is possible. It will be indicated by an “X”.

(b) One of the slides RsU may be one to be considered later under the same value of t; marked
“below”.

(c) The square or some other power may be proved unexceptional. This means that we need only
consider those 6-cycles whose squares and cubes are unexceptional. We may consider a 6-cycle
and its square and cube simultaneously; this is advantageous also because the transformations
V apply in the same way to all three.

(d) One of the slides RsU may be unexceptional. This will be indicated by “slide”, the value of the
slide in cycles and “O.K. ”

(e) One of the commutators URsUR−s may be unexceptional. This is indicated by the value of the
commutator and “O.K.”

When all these fail, a query will be shown and the upright investigated further later.

* Fig. 2. This consists of a triangle ABC with inscribed circle, centre E, meeting the sides BC, CA, AB in points G, D, F,
respectively.
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t = 1
We may first go over the main plan, considering separately what is to be done with the various

classes of conjugates in the symmetric group.

6-cycles. These are left aside till the double threes have been considered.
Double threes. These are arranged in pairs (as transformed by (CH)(EF)(DG) = V which leaves

A, B fixed and satisfies VRV−1
= R−1) and dealt with in detail.

Triple twos. Very few of these need to be considered in detail. Those with the pair (CH) give
(BAC) together with other cycles on a slide and so are either O.K. under (d) or
equivalent to a double three. Those with the pair (DH) are reduced to a t = 4 case
under (a) and those with the pair (CG) are paired with ones having (DH).

Four-and-twos. They need only be considered when their squares are intransitive or commute with
R4, by Theorem II.

Other cases They consist of ones where three or more letters are invariant and are immediately
reducible to t = 2 or t = 4.

Double threes.

(CDE)(FGH) (s.p.) (CDE)(FGH). (DEF)(GHA) = (DC)(EGF)(HA) O.K.
(CDE)(FHG) (s.p.) (CDE)(FHG). (DEF)(GAH) = (DC)(EHF)(AG) O.K.
(CDF)(EHG) (s.p.) slide (BAGC)(EFH) O.K.
(CDF)(EGH) (s.p.) ??
(CDG)(EFH) (CEF)(HDG) (CA)(DBE)(FG) slide O.K.
(CDG)(EHF) (CEF)(HDG) slide (BAFHC)(EG) O.K.
(CDH)(EFG) (CGH)(DEF) slide (BAC)(EH) O.K.
(CEG)(DFH) (s.p.) intransitive
(CEG)(DHF) (s.p.) intransitive
(CEH)(DFG) (CFH)(DEG) slide (BAC)(DEFH)
(CEH)(DGF) (CFH)(DGE) slide (DA)(EBF) O.K.
(CFG)(DEH) (s.p.) ??
(CFG)(DHE) (s.p.) slide (BAEHC)(DF), transform to (HG) O.K.
(CFH)(DEG) slide (BAC)(DFGH) O.K.

We have avoided using (a) and (b) owing to the inapplicability for the 6-cycles.
The upright (CDF)(EGH) is exceptional and the corresponding group consists of the elements

with the invariants

11111111 8 elements 11111111
12214554 64 elements 25527667
13272315 64 elements 13245423
16573756 64 elements 34657564
24636425 64 elements 14737415
33476674 64 elements 12216336
77777777 8 elements 77777777

336 elements

Transformation of the group with (AG)(CH)(EC), which commutes with R gives another group
which contains (CFG)(DEH).
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The invariants of this latter group are given in the last column. These in- variants are useful for
verifying that other exceptional uprights belong to these groups.

We have to investigate the 6-cycles whose squares are exceptional. They are shown below.

(CEDGFH) X
(CGDHFE) invariant 15132723 (above)
(CHDEFG) X
(CDFEGH) invariant 12216336 (above)
(CEFHGD) X
(CHFDGE) X
(CDEFGH) X
(CFEHGD) X
(CHEDGF) X
(CDEHGF) slide (ABDH)(CE) O.K.
(CHEFGD) X
(CFEDGH) X

It is not easy to prove directly that the elements with the above invariants form a group. However
in this case we can manage by guessing what the group is. The order of the group being 336 it is
natural to suppose that it is connected with the group of symmetry of the 7-point geometry, which
is a well-known simple group of order 168. The even permutations in our group will form a group
of order 168, which might with luck be isomorphic with the group of the 7-point geometry. This in
fact turns out to be so. In order not to confuse the notation we will denote the points of the 7-point
geometry by a, b, c, d, e, f, g; [See Fig. 3*]. We naturally try to express the group of symmetry
as a group of permutations of some eight objects, in order to tie it up with the groups found above.
These groups may perhaps be called K and K′. The standard technique for representing a group as a
group of permutations of m objects is to find a subgroup of index m, and to consider the cosets of the
subgroup as forming the m objects. In this case we want a subgroup of order 21, and such a subgroup
is the normalizer of [(abcegfd)]. The cosets of this group are enumerated below in shortened form.
Each line represents seven permutations, obtainable from one another by moving letters from one
end to the other. Each coset has been given a name which is a capital letter.

A B C D

abcegfd abgdcfe acdgfeb aefbged
acgdbef agcebdf adfbcge afgdebc
agbfcde acbfged afcedbg agecfdb

E F G H

acfbdeg abecdfg aegdfcb abdgefc
afgdebc aedgbcf agfbedc adecbgf
agecfdb adbfegc afecgbd aebfdcg

Now the symmetry group contains the permutation (abgc)(fe) which induces the permutation
(ACEG)(BDFH) of the cosets. It also contains (abc)(def) which induces (ADH)(BCG). Now if we
identify the cosets with the eight symbols permuted in the group J (as the notation is intended to
suggest), we see that (ACEG)(BDFH) is R2 and that (ADH)(BCG) has the invariant 14737415,
one of those of the group K′. It can then be easily verified that the symmetry group also induces

* Fig. 3. This consists of a triangle abc with inscribed circle, centre g, meeting the sides bc, ca, ab in d, e, f, respectively.
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in the cosets permutations with all the other invariants of K′, and also that (ACEG)(BDFH) and
(ADH)(BCG) generate the whole symmetry group. Since this is of order 168 and since it contains
the even permutations in K′, numbering 168, it must coincide with the intersection of K′ and A.

It now only remains to prove that the expressions of form S and SR, where S is in K′ ∩A, form a
group. This will follow if we can prove that R2 belongs to K′ ∩A and that RSR−1 belongs to K′ ∩A
whenever S be- longs to it. We know the former already and the latter follows at once from our
invariant system; K′ consists of complete sets of permutations having certain invariants.

Triple twos
As explained above we do not need to consider any except the ones without the pairs (CH), (DH)

or (GC). This leaves:

(CD)(EF)(GH) (CD)(EF)(GH). (EF)(GH)(AB) =
(CD)(AB) O.K.

(CD)(EG)(FH) (CD)(EG)(FH). (FG)(HB)(AC) =
(ADC)(BFEGH) O.K.

(CE)(DF)(GH) pair
(CD)(EH)(FG) slide (BAEC)(FH)

(CF)(DE)(GH) pair
(CE)(DG)(FH) (CE)(DG)(FH). (FH)(GB)(AC) =

(GBD)(AC) O.K.
(CF)(DG)(EH) (CF)(DG)(EH). (DG)(EH)(FA) =(ACF) O.K.

Fours-and-twos
Omitting those whose squares are unexceptional and those with UH= C and their pairs we have

only:

(CDEF)(HG) X
(CDGF)(HE) X
(CGHD)(FC) X
(DEHG)(FC) pair
(FEHG)(CD) pair

t = 2
We find it worthwhile to apply the principle (ii) on a rather large scale. There are four

permutations V which leave A and C fixed; they are

A B C D E F G H
C B A H G F E D
C F A D G B E H
A F C H E B G D

From a single permutation we thus obtain as many as four generating isomorphic groups J, e.g.,
from (BDEFHG):

(BDEFHG)
(BHGFDE)
(FDBGHE)
(FHEBDG)

These may be transformed into equivalent forms and the alphabetically earliest chosen. We
permit taking the reciprocal as a form of transforma - tion. Thus we get

(BDEFHG), (BEDFGH)?, (BGDFEH)?, (BDCFHE).
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By these means we reduce the 6-cycles that need be considered down to 18. As before we actually
consider first their squares (double threes) in the hope that they will be unexceptional and the 6-cycle
need not be specially investigated.

6-cycles and double threes

(BDEFGH) slide (ACF)(BFDHE) O.K. indirect
(BDEFHG) slide (AB)(CEFHD) O.K.
(BDEGFH) (BEF)(DGH). (CFG)(EHA) =(AFH)(CBEDG) O.K.
(BDEGHF) slide (AD)(FCB) O.K.
(BDEHFG) slide (BAG)(DCEH) O.K.
(BDEHGF) invariant 34657564, giving group K′

(BDFEHG) slide (BA)(DCFGH) O.K.
(BDFGHE) slide (BA)(CFD)(HEG) O.K.
(BDFHGE) slide (BAEH)(DCF) O.K.
(BDGFEH) invariant 34657564, giving group K′

(BDGHEF) slide (CAE)(FHDGB) O.K. indirect
(BDGHFE) (BGF)(DHE). (CHG)(EAF) =(ABGCE)(DHF) O.K. indirect
(BDHEFG) slide (BAFG)(DCH) O.K.
(BDHEGF) slide (AH)(BCEDF) O.K.
(BDHFGE) slide (DAEH)(FCG) O.K.
(BDHGEF) slide (AD)(HBFCE) O.K.
(BDHGFE) slide (CAE)(DHBFG) O.K. indirect
(BEDHGF) slide (AED)(CF) O.K.

Above analyses are done on the squares of the 6-cycles, i.e., on the double threes. We must now
investigate the cases of 6-cycles where the double threes were exceptional.

(BDEHGF) slide (BAG)(FH)(CD) O.K.
(BDGHEF) slide (BAEGH)(CD) O.K.
(BF)(DG)(EH) X
(BF)(DH)(EG) intransitive
(BG)(DF)(EH) slide (AGEDH)(BCF)
(BG)(DH)(EF) X
(BH)(DF)(EG) intransitive
(BH)(DG)(EF) (AH)(BCG)(DF) slide O.K.
(BE)(DH)(FG) X
(BG)(DH)(FE) X
(BH)(DG)(FE) slide (AH)(BCG)(DF)
(BF)(DE)(GH) X
(BH)(DE)(GF) slide (AH)(BCEG)
(BH)(DF)(GE) intransitive
(BE)(DF)(HG) slide (ACBFG)(EH)
(BE)(DG)(HF) slide (AEH)(BCGFD)
(BF)(DG)(HE) X
(BG)(DE)(HF) slide (ACDHG)(BE)
(BG)(DF)(HE) (AGEDH)(BCF) slide O.K.
(BH)(EG)(DF) intransitive
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Fours-and-twos and fours
We only need consider those whose squares are intransitive or commute with R4.

(EBGD) [(FH)] (FBGD) [(CE)] O.K.
(EBGF) [(DH)] (EBFC) O.K. (ABFC)(DG) O.K.
(EBGH) [(FD)] (EBGA) O.K. (GBAE)(CD) O.K.
(EDGB) [(FH)] (HDGB) O.K. (HDAB)(EC) O.K.
(EDGH) [(BF)] (HDGA) O.K. (HDCA)(BE) O.K.
(EFGH) [(DB)] (EGHA) O.K. (CGHA)(DB) O.K.

There are none which leave A, C fixed and commute with R4 except (BDFH), (BHFD) which is
intransitive anyway.

5-cycles
These 5-cycles are given in pairs which are equivalent by principle (ii).

(DEFGH) s.p. (DEFGH)(EFGHA)−1
=(DEA) O.K.

(DEFHG) slide (BAGDC)(FH) O.K. indirect
(DEHGF)

(DEGFH) slide (BADC)(FGH) O.K.
(DEHFG)

(DEGHF) s.p. slide (EAGCH)(DFB) O.K. indirect
(BEFGH) slide (BA)(CED) O.K.

(BEHFG)
(BEFHG) slide (BAGH)(CDE) O.K.

(BEGHF)
(BEGFH) s.p. slide (BA)(CED)(FGH) O.K.
(BEHGF) s.p. slide (BAG)(DCE) O.K.
(BEFGH) slide (AF)(BE)(CGDH) O.K.

(BDHGF)
(BDFHG) slide (BAGH)(DC)(EF) O.K.

(BDGFH)
(BDGHF) s.p. slide (BAFEG)(CD) O.K.
(BDHFG) s.p. slide (BAFEH)(CD) O.K.

t = 4
The permutations V which commute with (R) and leave A, E invariant or interchange them are:

A B C D E F G H

A D G B E H C F
E H C F A D G B
A H G F E D C B
E D C B A H G F
A F C H E B G D
E B G D A F C H
E F G H A B C D
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6-cycles and double threes
As usual we actually examine the double threes although we test the 6-cycles.

(BCDFGH) commutes with R4 (both (BCDFGH) and
(BDG)(CFH) and (EF)(CG)(DH))

(BCDFHG) slide (BA)(EHCDF) O.K.
(BCDGHF) slide (AB)(CDG)(HFE) O.K.
(BCDHGF) invariant 33476674 group K

6-cycle invariant 12214554 group K

triple two invariant 77777777 part of numatizer of (R)
(BCFDGH) slide (CAB)(EDFHG) O.K.
(BCFDHG) slide (BA)(CFEGH) O.K.
(BCFHGD) slide (BADH)(FEC) O.K.
(BCGDFH) slide (BACG)(EHF) O.K.
(BCGDHF) invariant 27652765 commutes with R4

6-cycle slide (CAD)(FHB) reducing to a t = 2 case
already considered
triple two slide (AHDG)(CEF) O.K.

(BCGFDH) invariant 33476674 group K

6-cycle slide (BA)(DG)(FEH) O.K.
triple two (BF)(CD)(GH) commutes with R4

(BCGFHD) slide (BA)(DFECG) O.K.
(BCGHDF) commutes with R4

6-cycle slide (AE)(HFC) O.K. triple two (AH)(CD)(GF)
slide (ABCDH)(EGF) O.K.

(BCGHFD) slide (CAF)(EHBDG) O.K.

Triple twos (remaining)

(BF)(CH)(DG) commutes with R4

(BG)(CH)(DF) slide (AHG)(BFCE) O.K.
(BD)(CG)(FH) commutes with R4

(BD)(CH)(FG) slide (AHDG)(CEF) O.K.
(BH)(CG)(DF) intransitive
(BD)(CF)(GH) (BD)(CF)(GH). (CE)(DG)(HA) =(AGBDH)(CEF) O.K.
(BF)(CH)(GD) commutes with R4

(BH)(CF)(GD) (BH)(CF)(GD). (DB)(EH)(AF) = (DHEBG)(FBC) O.K.

Fives

(CDFGH) slide (BAC)(EF) O.K.
(CDHFG)

(CDFHG) slide (BAGHC)(FE) O.K.
(CDHGF)

(CDGFH) slide (BAC)(EGDF) O.K.
(CDGHF)

The 5-cycles where two fixed letters were at distance 2 were considered under t = 2.
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The outcome for T = 8 is then that the exceptional uprights are all either

(a) intransitive, or product of an intransitive upright with R,
(b) commuting with R4,
(c) members of the groups K, K′.

Let us now calculate the number of exceptional uprights. The number in K and K′ omitting those
with invariants 11111111 and 77777777 is 2× 336− 32= 640. Those with invariants 11111111
and 77777777 are also intransitive, the condition for intransitivity being that all figures are even or
all odd. The condition for commuting with R4 is that the invariant is of the form abcdabcd. Thus
these 16 elements are also of this kind, but no other members of K, K′ are. There are 2× (4!)2

intransitive uprights or 1152 and there are 24
× (4!) or 384 that commute with R4. The intransitive

ones that commute with R4 are determined on giving the values of UA, UB (which must be of
opposite parity). They number 8× 4= 32.

Final account

K and K′ with 640
intransitive 1152
commute with R4 with omissions 352

2144
total of all uprights 40320

We now turn to a rather different topic in connection with the useof identical drums. Even if we
know that all permutations are possible, will they be equally frequent? Fortunately, we can answer
this in the affirmative. The problem will be examined under slightly more general conditions. No
assumptions will be made about the relationship between the generators U1, . . . , Uk and we will not
assume that the basic group is the symmetric group but some other finite group G.

Let us suppose that we feed a certain frequency distribution of group elements into a wheel; how
can we calculate the frequency distribution of the group elements at the output of the wheel? Let
g(a) be the proportion of the input elements which are a, and let f (a) be the proportion of group
elements effected by the wheel which are a, i.e., denoting the order of the group by h,

f (a)= h−1
∑

r

1, r = 1, . . . , k, Ur = a.

Then we get output a if the input is b and the wheel effects the group element ab−1, for any
b. The proportion of such cases is f (ab−1)g(b), or allowing for the different values of b, a total
proportion of ∑

b

f (ab−1)g(b).

If then we define the operator Rf by the equation

(Rf g)(a)=
∑

b

f (ab−1)g(b),

we can say that the frequency distribution for n wheels is given by Rn−1
f f . We wish to determine

how this function behaves with increasing n.
We consider the real-valued functions on the group as forming an Euclidean space of h

dimensions, where h is the order of the group H. We may put (g, k) for the scalar product
h−1∑

a g(a)k(a) and ‖g‖ for the distance (g, g)1/2 from the origin. We may also put g for the
mean value h−1∑

a g(a). Schwarz’ inequality gives at once ‖g‖ ≥ g, and if we suppose g(a)≥ 0 for
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all a, g(a) > 0 for some a, we shall have g> 0. We will also suppose f (a)≥ 0 for all a, f (a) > 0
for some a, f = 1. Then we have the next lemma.

Lemma (a). If f̄ = 1, then ‖Rf g‖ ≤ ‖g‖ and equality holds only if g(ab−1x)/g(x) is independent
of x for any a, b for which f (a) 6= 0 and f (b) 6= 0.

First note that (
h−1

∑
x

g(x)g(cx)

)2

≤ h−2
∑

(g(x))2
∑

(g(cx))2

= (h−1
∑

(g(x))2)2 = ‖g‖4,

equality holding if g(cx)/g(x) is independent of x. Then

‖Rf g‖2 = h−1
∑
a,b,x

f (ab−1)g(b)f (ax−1)g(x)

= h−1
∑
c,v,x

f (c)f (cv)g(vx)g(x) [v = bx−1, c= ab−1]

≤

∑
c,v

f (c)f (cv) ‖g‖2

= ‖g‖2,

equality holding in the case mentioned.
Let us define the limiting distribution for f as the condensation points of the sequence

g, Rf g, R2
f g, . . . .

Then Lemma (a) will enable us to prove the following theorem.

Theorem III. The limiting distributions for f are constant throughout the cosets of a certain self-
conjugate subgroup H1 of H. H1 consists of all expressions of the form Um1

r1 Um2
r2 . . .U

mp
rp , where the

sum
∑

mq of exponents is zero. The factor group H/H1 is cyclic. In the case that g is f , the limiting
distributions each have the value zero except in one coset of H1.

Let k be a limiting distribution. Let it be the limit of the sequence Rn1
f g,Rn2

f g, . . . Then

‖Rnr
f g‖ ≥ ‖Rnr+1

f g‖ ≥ ‖Rnr+1
f g‖ ≥ ‖k‖.

Now ‖Rnr
f g‖/‖k‖ tends to the limit 1 as r tends to infinity and therefore ‖Rnr+1

f g‖/‖Rnr
f g‖ tends

to 1. But ‖Rf u‖/‖u‖ is a continuous function of u and therefore taking the limit of the sequence
‖Rf k‖/‖k‖ = 1. Applying Lemma (a) to this we see that there is a function ϕ1(y) defined for all
expressions of the form ab−1 where f (a) 6= 0, f (b) 6= 0 such that k(yx)= ϕ(y)k(x) for all x. By
applying the same argument with Rm−1

f f in place of f we find that there is a function ϕu(y) defined

for all expressions of the form a1a2 · · · anb−1
n · · · b

−1
1 where f (a1), f (a2), . . . , f (b1) are all different

from 0 such that

k(yx)= ϕu(y)k(x), all x,

whenever ϕU(y) is defined. The various functions ϕu(y) must agree whenever their domains of
definition overlap, and they may therefore be all represented by one symbol ϕ. In fact we may
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say that ϕ(y) is defined and has value α whenever k(yx)= αk(x) for all x. It now appears that the
domain of definition of ϕ(y) is a group, for if k(y1x)= α1k(x) for all x and k(y2x)= α2k(x) for all
x, then k(y1y2x)= ϕ(y1)k(y2x)= ϕ(y1)ϕ(y2)k(x) for all x. Thus if y1 and y2 belong to the domain
of definition of ϕ, so does y1y2 and ϕ(y1y2)= ϕ(y1)ϕ(y2).

It is now immediately seen that the domain of definition is H1. The function ϕ is a one-
dimensional representation of H1 but it is real and positive and therefore has the value 1 throughout
H1. This last argument may also be expressed without the use of representation theory thus. Since
H1 is finite, any element y of it satisfies an equation ym

= 1 and therefore (ϕ(y))m = ϕ(ym)= 1.
But since g(x) is always non negative, ϕ(y)≥ 0 and so ϕ(y)= 1. This implies that g(x) is constant
throughout each coset of H1.

It now only remains to investigate the character of the group H1. It is easily seen to be self-
conjugate, since if aba−1 belongs to H1 and b to H, the total of exponents of group generators Ur in
aba−1 must be 0, those in a−1 cancelling with those in a; hence aba−1 belongs to H1 if b does; H1
is self-conjugate.

Now let us take a particular generator U1, say. Then the cosets H1Um
1 exhaust the group H. For if

p is an element of H, it will be a product of generators; let the total of exponents be m. Then pU−m
1

has total exponents 0 and so belongs to H1, i.e., p belongs to H1Um
1 , i.e., these cosets exhaust H.

If Us
1 is the lowest power of U1 which belongs to H1, then H/H1 is evidently isomorphic with the

cyclic group of order s.
In the case that g is f , all the group elements for which Rn−1

f f is not zero are products of n
generators and therefore belong to H1Un

1 .

Example As an example let us consider the quaternion group consisting of 1, i, j, k, 1′, i′, j′, k′

with the table

1 i j k 1′ i′ j′ k′

i 1′ k j′ i′ 1 k′ j

j k′ 1′ i j′ k 1 i′

k j i′ 1′ k′ j′ i 1
1′ i′ j′ k′ 1 i j k

i′ 1 k′ j i 1′ k j′

j′ k 1 i′ j k′ 1′ i

k′ j′ i 1 k j i′ 1′

and let U1 be i and U2 be j. The various functions Rn−1
f f are given in the table

n 1 i j k 1′ i′ j′ k′

1 0 1
2

1
2 0 0 0 0 0

2 0 0 0 1
4

1
2 0 0 1

4
3 0 1

4
1
4 0 0 1

4
1
4 0

4 1
4 0 0 1

4
1
4 0 0 1

4
5 0 1

4
1
4 0 0 1

4
1
4 0

6 1
4 0 0 1

4
1
4 0 0 1

4

It is seen that the group H1 is the group generated by k; it has a factor group which is cyclic of
order 2.
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Case of symmetric and alternating groups

In the case under consideration at the beginning of our analysis, H was either the symmetric or the
alternating group unless the upright U was exceptional. In this case H1 is also either the symmetric
or the alternating group, for it is self-conjugate in H. It will be the alternating group if the generators
are all of the same parity and the symmetric group otherwise. We therefore conclude that

when the upright is not exceptional the distributions with large numbers of wheels are uni-
form throughout the alternating group (even permutations). If odd permutations are possible
with the given upright and number of wheels the distribution is uniform throughout the
symmetric group (all permutations).
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Rounding-off Errors in Matrix Processes
(Quart. J. Mech. Appl. Math. 1 (1948), 287–308)

Lenore Blum brings into view —

ALAN TURING AND THE OTHER
THEORY OF COMPUTATION

1. Introduction

The two major traditions of the theory of computation, each staking claim to similar motivations
and aspirations, have for the most part run a parallel non-intersecting course. On one hand, we
have the tradition arising from logic and computer science addressing problems with more recent
origins, using tools of combinatorics and discrete mathematics. On the other hand, we have numer-
ical analysis and scientific computation emanating from the classical tradition of equation solving
and the continuous mathematics of calculus. Both traditions are motivated by a desire to under-
stand the essence of computation, of algorithm; both aspire to discover useful, even profound,
consequences.

While the logic and computer science communities are keenly aware of Alan Turing’s semi-
nal role in the former (discrete) tradition of the theory of computation, most remain unaware of
Alan Turing’s role in the latter (continuous) tradition, this notwithstanding the many references to
Turing in the modern numerical analysis/computational mathematics literature, e.g., Bürgisser
(2010), Higham (2002), Trefethen and Bau (1997) and Wilkinson (1971).

In 1948, in the first issue of the Quarterly Journal of Mechanics and Applied Mathematics,
sandwiched between a paper on ‘Use of Relaxation Methods and Fourier Transforms’ and ‘The
Position of the Shock-Wave in Certain Aerodynamic Problems’, appears the article ‘Rounding-Off
Errors in Matrix Processes’. This paper introduces the notion of the condition number of a matrix,
the chief factor limiting the accuracy in solving linear systems, a notion fundamental to numerical
computation and analysis, and a notion with implications for complexity theory today. This paper
was written by Alan Turing (1948).

‘Rounding-Off Errors in Matrix Processes’ was by no means an anomaly in Turing’s creative
pursuits. In his 1970 Turing Award Lecture, Wilkinson (1971) writes:

Turing’s international reputation rests mainly on his work on computable numbers but I like
to recall that he was a considerable numerical analyst, and a good part of his time from 1946
onwards was spent working in this field...

Wilkinson attributes this interest, and Turing’s decision to go to the National Physical Laboratory
(NPL) after the war, to the years he spent at Bletchley Park gaining knowledge of electronics and
‘one of the happiest times of his life’.

Wilkinson also credits Turing for converting him from a classical to numerical analyst. From
1946 to 1948, Wilkinson worked for Turing at the NPL on the logical design of Turing’s pro-
posed Automatic Computing Engine (ACE) and the problem of programming basic numerical

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00015-1
c© 2013 Elsevier Inc. All rights reserved.
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algorithms.1 ‘The period with Turing fired me with so much enthusiasm for the computer project
and so heightened my interest in numerical analysis that gradually I abandoned [the idea of returning
to Cambridge to take up research in classical analysis]’ (Wilkinson, 1971).

In 1946, with the anticipation of a programmable digital computing device on the horizon,2 it
was of great interest to understand the comparative merits of competing computational ‘processes’
and how accurate such processes would be in the face of inevitable round-off errors. Solving linear
systems is basic. Thus for Turing (as it was for von Neumann and Goldstine (1947)), examining
methods of solution with regard to the ensuing round-off errors presented a compelling intellectual
challenge.3

Here I would like to recognise Turing’s work in the foundations of numerical computation. In
an expanded version of this paper, I will expound more on its influence in complexity theory today,
and how it provides a unifying concept for the two major traditions in the theory of computation.

2. Rounding-off errors in matrix processes

This paper contains descriptions of a number of methods for solving sets of linear simultane-
ous equations and for inverting matrices, but its main concern is with the theoretical limits of
accuracy that may be obtained in the application of these methods, due to round-off errors.4

So begins Turing’s (1948) paper. (Italics are mine, I’ll return to this shortly.)
The basic problem at hand: Given the linear system, Ax= b where A is a real non-singular n× n

matrix and b ∈ Rn. Solve for x.
Prompted by calculations (Fox et al., 1948) challenging the arguments by Hotelling (1943) that

Gaussian elimination and other direct methods would lead to exponential round-off errors, Turing
introduces quantities not considered earlier to bound the magnitude of errors, showing that for all
‘normal’ cases, the exponential estimates are ‘far too pessimistic’.5

1 Turing (1945) submitted an 86-page proposal to the NPL for the ACE computer, an automatic electronic digital com-
puter with internal program storage. This was to be an incarnation of the universal machine envisioned by his theoretical
construct in ‘Computable Numbers’ (Turing, 1936), blurring the boundary between data and program. Thus, and in
contrast to other proposed ‘computing machines’ at the time, Turing’s computer would have simplified hardware, with
universality emanating from the power of programming.

Turing envisioned an intelligent machine that would learn from its teachers and from its experience and mistakes, and
hence have the ability to create and modify its own programs. Turing also felt that the most conducive environment for
realising such a machine was to have mathematicians and engineers working together in close proximity, not in separate
domains (Hodges, 1992).
2 Unfortunately, the ACE computer was never to see the light of day; a less ambitious non-universal machine, the PILOT
ACE, was constructed after Turing left the NPL for Manchester in 1948.
3 It is clear that Turing and von Neumann were working on similar problems, for similar reasons, in similar ways at the
same time, probably independently. However while Turing acknowledges von Neumann, as far as I know, von Neumann
never cites Turing’s work in this area.
4 Although Turing’s central passion during his time at the NPL was the promised realization of his universal computer, his
only published paper to come out of this period (1945-1948) was ‘Round-Off Errors in Matrix Processes’. The paper ends
with the cryptic acknowledgement: ‘published with the permission of the Director of the National Physical Laboratory’.
5 In their paper, Bargmann, Montgomery and von Neumann (1963) also dismissed Gaussian elimination as likely being
unstable due to magnification of errors at successive stages (pp. 430–431) and so turn to iterative methods for analysis.
However, von Neumann and Goldstine (1947) reassess noting, as does Turing, that it is the computed solution, not the
intermediate computed numbers, which should be the salient object of study. They re-investigated Gaussian elimination
for computing matrix inversion and now give optimistic error bounds similar to those of Turing, but for the special case
of positive definite symmetric matrices. Turing, in his paper, notes that von Neumann communicated these results to him
at Princeton (during a short visit) in January 1947 before his own proofs were complete.
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In this paper, Turing introduced the notion of condition number making explicit for the first time
a measure that helps formalise the informal notion of ill- and well-conditioned problems.

3. Turing and the matrix condition number

‘When we come to make estimates of errors in matrix processes, we shall find that the chief
factor limiting the accuracy that can be obtained is “ill-conditioning” of the matrices involved’
(Turing, 1948).

Turing provides an illustrative example:

1 · 4x+ 0 · 9y = 2 · 7
−0 · 8x+ 1 · 7y =−1 · 2

}
(8.1)

−0 · 786x+ 1 · 709y =−1 · 173
−0 · 800x+ 1 · 700y =−1 · 200

}
(8.2)

The set of equations (8.2) is fully equivalent to (8.1)6 but clearly if we attempt to solve (8.2)
by numerical methods involving rounding-off errors we are almost certain to get much less
accuracy than if we worked with equations (8.1). We should describe the equations (8.2) as an
ill-conditioned set, or, at any rate, as ill-conditioned compared with (8.1). It is characteristic
of ill-conditioned sets of equations that small percentage errors in the coefficients given may
lead to large percentage errors in the solution. . . .

Turing defines (N and M) condition numbers, which in essence measure the intrinsic magnifi-
cation of errors.7 He then analyzes various standard methods for solving linear systems, including
Gaussian elimination, and gets error bounds proportional to his measures of condition.8 Turing is
‘also as much interested in statistical behaviour of the errors as in the maximum possible values’
and presents probabilistic estimates; he also improves Hotellings worst case bound from 4n−1 to
2n−1 (Turing, 1948).

The following widely used (spectral) matrix condition number κ(A), wedged somewhat between
Turing’s condition numbers, is often attributed to Turing, though it is unclear who first defined it.
John Todd (1968), in his survey, is vague on its genesis although he specifically credits Turing with
recognising ‘that a condition number should depend symmetrically on A and A−1, specifically as a
product of their norms’.9,10 (See also the discussion in the postscript at the end of this paper.)

6 The third equation is the second plus .01 times the first.
7 The N condition number is defined as N(A)N(A−1) and the M condition number as nM(A)M(A−1), where N(A) is the
Frobenius norm of A and M(A) is the max norm.
8 In sections 3 and 4 of his paper, Turing also formulates the LU decomposition of a matrix (actually the LDU
decomposition) and shows that Gaussian elimination computes such a decomposition.
9 Turing defines the spectral norm in the ‘Rounding-Off Errors’ paper so he could have easily defined the spectral
condition number.
10 For the case of computing the inverse of a positive definite symmetric matrix A by Gaussian Elimination, von Neumann
and Goldstine (1947) give an error estimate bounded by 14.2n2(λ1/λ2)u. Here λ1 and λ2 are the largest and smallest
eigenvalues of A and u is the smallest number recognised by the machine. For the case of positive definite symmetric
matrices, λ1/λ2 is equal to κ(A). Thus, the spectral condition number appears implicitly in the von Neumann–Goldstine
paper.
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Definition 3.1. Suppose A is a real non-singular n× n matrix. The (spectral) condition number
of A is given by

κ (A)= ‖A‖
∥∥∥A−1

∥∥∥ ,

where

‖A‖ =max
y6=0

|Ay|

|y|
= max
|y|=1
|Ay|

is the operator (spectral) norm with respect to the Euclidean norm.11 For singular matrices, define
κ (A)=∞.

To see how natural a measure this is, consider a slightly more general situation. Let X and Y
be normed vector spaces with associated map ϕ : X→ Y. A measure of the ‘condition’ of problem
instance (ϕ,x) should indicate how small perturbations of the input x (the problem data) will alter
the output ϕ(x) (the problem solution).

So let 1x be a small perturbation of input x and 1ϕ = ϕ(x+1x)−ϕ(x). The limit as ‖1x‖
goes to zero of the ratio

‖1ϕ‖

‖1x‖
,

or of the relative ratio

‖1ϕ‖ / ‖ϕ(x)‖

‖1x‖ / ‖x‖

(favored by numerical analysts), will be a measure of the condition of the problem instance.12 If
large, computing the output with small error will require increased precision, and hence from a
computational complexity point of view, increased time/space resources.

Definition 3.2.13 The condition number of problem instance (ϕ,x) is defined by

κ̂ (ϕ,x)= lim
δ→0

sup
‖1x‖≤δ

‖1ϕ‖

‖1x‖

and the relative condition number by

κ (ϕ,x)= lim
δ→0

sup
‖1x‖≤δ‖x‖

‖1ϕ‖/‖ϕ(x)‖

‖1x‖/‖x‖
.

If κ (ϕ,x) is small, the problem instance is said to be well-conditioned and if large, ill-conditioned.
If κ (ϕ,x)=∞, the problem instance is ill-posed.

As Turing envisaged it, the condition number measures the theoretical limits of accuracy in
solving a problem. In particular, the logarithm of the condition number provides an intrinsic lower

11 This definition can be generalised using other norms. In the case of the Euclidean norm, κ(A)= σ1/σn, where σ1 and
σ2 are the largest and smallest singular values of A, respectively. It follows that κ(A)≥ 1.
12 All norms are assumed to be with respect to the relevant spaces.
13 Here I follow the notation in Trefethen and Bau (1997), a book I highly recommend for background in numerical
linear algebra.
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bound for the loss of precision in solving the problem instance,14 thus also providing a key intrinsic
parameter for specifying ‘input word size’ for measuring computational complexity over the reals.15

If ϕ is differentiable, then

κ̂(ϕ,x)= ‖Dϕ (x)‖

and

κ(ϕ,x)= ‖Dϕ (x)‖(‖x‖/‖ϕ (x)‖) ,

where Dϕ(x) is the Jacobian (derivative) matrix of ϕ at x and ‖Dϕ(x)‖ is the operator norm of Dϕ(x)
with respect to the induced norms on X and Y.

Here is where Turing meets Newton. The following theorem says the (spectral) matrix condition
number κ(A) is (essentially) the condition number for solving the linear system Ax= b.16

Theorem 3.1.
1. Fix A, a real non-singular n× n matrix, and consider the map ϕA : Rn

→ Rn where ϕA(b)=
A−1(b). Then κ(ϕA,b)≤ κ(A) and there exist b̂ such that κ(ϕA, b̂)= κ(A). Thus, with respect to
perturbations in b, the matrix condition number is the worst case relative condition for solving
linear system Ax= b.

2. Fix b ∈ Rn and consider the partial map ϕb : Rn×n
→ Rn where, for A non-singular, ϕb(A)=

A−1(b). Then for A non-singular, κ(ϕb,A)= κ(A).

4. Turing’s evolving perspective on computing over the reals

The Turing Machine is the canonical abstract model of a general purpose computer, studied in
almost every first course in theoretical computer science. What most students of theory are not aware
of, however, is that Turing defined his ‘machine’ in order to define a theory of real computation.
The first paragraph of his seminal paper (Turing, 1936) begins and ends as follows:

The “computable” numbers may be described briefly as the real numbers whose expres-
sions as a decimal are calculable by finite means. ... According to my definition, a number is
computable if its decimal can be written down by a machine.

Of course, the machine thus developed becomes the basis for the classical theory of computation
of logic and theoretical computer science.

In the same first paragraph Turing writes, ‘I hope shortly to give an account of the relation of
the computable numbers, functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of computable numbers’. As far as
I know, Turing never returned to computing over the reals using this approach; recursive analysis
(also known as computable analysis) was developed by others.

14 Velvel Kahan points out that ‘pre-conditioning’ can sometimes alter the given problem instance to a better conditioned
one with the same solution. (Convert equations (8.2) to (8.1) in Turing’s illustrative example.)
15 Computational complexity is measured as a function of input word size. Early on, when computational complexity
theorists analyzed algorithms for solving problems naturally defined over the real numbers, they replaced real coefficients
by rational approximations. This led to considering arbitrary input word sizes; ‘nearby’ problem instances could have
widely different input sizes, depending on the approximation chosen. This would allow for wide variations in the analysis
of algorithms on nearby instances, making no sense, particularly for well-conditioned instances. Thus, it is more natural
to replace the arbitrary ‘bit’ size approximation by the logarithm of the condition. Other natural parameters to add include
the problem instance dimension and the logarithm of output accuracy desired (Blum, 1990). Mike Shub proposes also to
include another parameter related to the condition, namely the inverse of the distance to ‘ill-posedness’.
16 This inspired in part the title of my paper, ‘Computing over the Reals: Where Turing meets Newton’ (Blum, 2004).
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When Turing does return to computing over the reals, as in ‘Rounding-Off Errors’ written while
he was preoccupied with the concrete problem of computing solutions to systems of equations,
his implicit real number model is vastly different. Now real numbers are considered as individual
entities and each basic algebraic operation is counted as one step. In the first section of this paper,
Turing considers the ‘measures’ of work in a process:

It is convenient to have a measure of the amount of work involved in a computing process,
even though it be a very crude one. . . . We might, for instance, count the number of additions,
subtractions, multiplications, divisions, recordings of numbers, . . .

This is the basic approach taken by numerical analysts, qualified as Turing also implies, by
condition and round-off errors. It is also the approach taken by Mike Shub, Steve Smale and myself
(Blum et al. (1989)), and later with Felipe Cucker in our book, Complexity and Real Computation
(Blum et al. (1998)).

5. Postscript: who invented the condition number?

It is clear that Alan Turing was the first to explicitly formalise a measure that would capture the
informal notion of condition (of solving a linear system) and to call this measure a condition number.
Formalising what’s in the air serves to illuminate essence and chart new direction. However, ideas
in the air have many proprietors.

To find out more about the origins of the spectral condition number, I e-mailed a number of
numerical analysts.

I also looked at many original papers. The responses I received, and related readings, uncover
a debate concerning the origins of the (concept of) condition number not unlike the debate sur-
rounding the origins of the general purpose computer – with Turing and von Neumann figuring
centrally to both. (For an insightful assessment of the latter debate see ‘Mysteries of mathematics
and computation’, Shub (1994).)

Gauss (1823) himself is referenced for considering perturbations and preconditioning. Pete
Stewart points to Wittmeyer (1936) for some of the earliest perturbation bounds where products
of norms appear explicitly. Todd (1950) explicitly focused on the notion of condition number, citing
Turing’s N and M condition numbers and the implicit von Neumann–Goldstine measure, which he
called the P-condition number (P for Princeton).

Beresford Parlett tells me that ‘the notion was “in the air” from the time of Turing and von
Neumann et al.’, that the concept was used by Forsythe in a course he took from him at Stanford
early in 1959 and that Wilkinson most surely ‘used the concept routinely in his lectures in Ann Arbor
(summer, 1958)’. The earliest explicit definition of the spectral condition number I could find in
writing was in Householder’s (1958) SIAM article (where he cites Turing) and then in Wilkinson’s
(1963, p. 91) book.

By far, the most informative and researched history can be found in Joe Grcar’s 76-page arti-
cle, ‘John von Neumann’s Analysis of Gaussian Elimination and the Origins of Modern Analysis’
(Grcar, 2011). Here he uncovers a letter from von Neumann to Goldstine (dated 11 January 1947)
that explicitly names the ratio of the extreme singular values as `. Why this was not included in their
paper or made explicit in their error bounds is a mystery to me.17 Joe chalks this up to von Neumann

17 Joe was also kind enough to illuminate for me in detail how one could unravel von Neumann’s and Goldstine’s error
analyses for the general case in their paper.

Many authors have cited the obtuseness and non-explicitness. For example, Alan Edelman (1989), in his PhD thesis,
recasts von Neumann’s and Goldstine’s ideas in modern notation given ‘the difficulty of extracting the various ideas from
their work’ and cites Wilkinson’s referring to the paper’s ‘indigestibility’.
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using his speeches (e.g., von Neumann (1989)) to expound on his ideas, particularly those given to
drum up support for his computer project at the Institute for Advanced Study.18

Grcar’s article definitely puts von Neumann at center stage; of von Neumann’s role as a key
player in this area there is no doubt. Grcar also implies, however, that Turing’s work on rounding
error, and the condition number, was prompted by Turing’s meeting with von Neumann in Princeton
in January 1947. Indeed on page 630 he says, ‘No less than Alan Turing produced the first derivative
work from the inversion paper’.

This flies in the face of all we know about Alan Turing’s singular individuality, both in person-
ality and in research (Hodges, 1992). In their personal remembrances of Turing, both Wilkinson,
who worked closely with him at the NPL in Teddington, and Newman (1955), earlier at Cambridge
and Bletchley and later in Manchester, point to Turing’s ‘strong predilection for working everything
out from first principles, usually in the first instance without consulting any previous work on the
subject, and no doubt it was this habit which gave his work that characteristically original flavor’.

It also flies in the face of fact. As recounted by Wilkinson (1971), Turing’s experience with his
team at the NPL, prior to meeting von Neumann in Princeton in 1947, was the stimulus for his
paper:

. . . some time after my arrival [at the NPL in 1946], a system of 18 equations arrived in
Mathematics Division and after talking around it for some time we finally decided to abandon
theorizing and to solve it. . . . The operation was manned by [Leslie] Fox, [Charles] Goodwin,
Turing, and me, and we decided on Gaussian elimination with complete pivoting. Turing was
not particularly enthusiastic, partly because he was not an experienced performer on a desk
machine and partly because he was convinced that it would be a failure. . . . the system was
mildly ill-conditioned, the last equation had a coefficient of order 10−4 . . . and the residuals
were . . . of order 10−10, that is of the size corresponding to the exact solution rounded to ten
decimals. . . .
. . . I’m sure that this experience made quite an impression on him and set him thinking afresh
on the problem of rounding errors in elimination processes. About a year later he produced
his famous paper ‘Rounding-off errors in matrix process’ . . .

Kahan (1966) (also a Turing Award recipient), in his paper and in a lengthy phone conversation
(August 2011), asserts that von Neumann and Goldstine were misguided in their approach to matrix
inversion (by computing A−1 from the formula A−1

= (ATA)−1AT ).
Kahan’s assessment of Turing is a fitting conclusion to this paper: ‘A more nearly modern error-

analysis was provided by Turing (1948) in a paper whose last few paragraphs foreshadowed much
of what was to come, but his paper laid unnoticed for several years until Wilkinson began to publish
the papers which have since become a model of modern error-analysis’.19

18 An unpublished and undated paper by Goldstine and von Neumann (1963) containing material presented by von
Neumann in various lectures going back to 1946, but clearly containing later perspectives as well, explicitly singles out
(on page 14) ` as the ‘figure of merit’. Also interesting to me, in the same paragraph, are the words ‘loss of precision’
connected to the condition number, possibly for the first time.
19 Kahan is referring to backward error analysis that, rather than estimating the errors in a computed solution of a given
problem instance (i.e., forward error analysis), estimates the closeness of a nearby problem instance whose exact solution
is the same as the approximate computed solution of the original. Grcar (2011) also points to the von Neumann–Goldstine
paper as a precursor to this notion as well.
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ROUNDING-OFF ERRORS IN MATRIX PROCESSES
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SUMMARY

A number of methods of solving sets of linear equations and inverting matrices are discussed. The theory of
the rounding-off errors involved is investigated for some of the methods. In all cases examined, including the
well-known ‘Gauss elimination process’, it is found that the errors are normally quite moderate: no exponential
build-up need occur.

Included amongst the methods considered is a generalization of Choleski’s method which appears to have
advantages over other known methods both as regards accuracy and convenience. This method may also be
regarded as a rearrangement of the elimination process.

THIS paper contains descriptions of a number of methods for solving sets of linear simultaneous
equations and for inverting matrices, but its main concern is with the theoretical limits of accuracy
that may be obtained in the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss’s elimination method.
This is the method almost universally taught in schools. It has, unfortunately, recently come into
disrepute on the ground that rounding off will give rise to very large errors. It has, for instance, been
argued by Hotelling (ref. 5) that in solving a set of n equations we should keep n log10 4 extra or
‘guarding’ figures. Actually, although examples can be constructed where as many as n log10 2 extra
figures would be required, these are exceptional. In the present paper the magnitude of the error is
described in terms of quantities not considered in Hotelling’s analysis; from the inequalities proved
here it can immediately be seen that in all normal cases the Hotelling estimate is far too pessimistic.

The belief that the elimination method and other ‘direct’ methods of solution lead to large errors
has been responsible for a recent search for other methods which would be free from this weakness.
These were mainly methods of successive approximation and considerably more laborious than the
direct ones. There now appears to be no real advantage in the indirect methods, except in connexion
with matrices having special properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to carry out this research largely by the practical work of L. Fox in
applying the elimination method (ref. 2). Fox found that no exponential build-up of errors such as
that envisaged by Hotelling actually occurred. In the meantime another theoretical investigation was
being carried out by J. v. Neumann, who reached conclusions similar to those of this paper for the
case of positive definite matrices, and communicated them to the writer at Princeton in January 1947
before the proofs given here were complete. These results are now published (ref. 6).

1. Measure of work in a process

It is convenient to have a measure of the amount of work involved in a computing process, even
though it be a very crude one. We may count up the number of times that various elementary oper-
ations are applied in the whole process and then give them various weights. We might, for instance,
count the number of additions, subtractions, multiplications, divisions, recordings of numbers, and
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extractions of figures from tables. In the case of computing with matrices most of the work consists
of multiplications and writing down numbers, and we shall therefore only attempt to count the num-
ber of multiplications and recordings. For this purpose a reciprocation will count as a multiplication.
This is purely formal. A division will then count as two multiplications; this seems a little too much,
and there may be other anomalies, but on the whole substantial justice should be done.

2. Solution of equations versus inversion

Let us suppose we are given a set of linear equations Ax= b to solve. Here A represents a square
matrix of the nth order and x and b vectors of the nth order. We may either treat this problem as it
stands and attempt to find x, or we may solve the more general problem of finding the inverse of the
matrix A, and then allow it to operate on b giving the required solution of the equations as x= A−1b.
If we are quite certain that we only require the solution to the one set of equations, the former
approach has the advantage of involving less work (about one-third the number of multiplications
by almost all methods). If, however, we wish to solve a number of sets of equations with the same
matrix A it is more convenient to work out the inverse and apply it to each of the vectors b. This
involves, in addition, n2 multiplications and n recordings for each vector, compared with a total
of about 1

3 n3 multiplications in an independent solution.There are other advantages in having an
inverse. From the coefficients of the inverse we can see at once how sensitive the solution is to
small changes in the coefficients of A and of b. We have, in fact,

∂xi

∂bj
= (A−1)ij,

∂xi

∂ajk
=−(A−1)ijxk.

This enables us to estimate the accuracy of the solution if we can judge the accuracy of the data,
that is, of the matrix A and the vector b, and also enables us to correct for any small changes which
we may wish to make in these data.

It seems probable that with the advent of electronic computers it will become standard practice
to find the inverse. This time has, however, not yet arrived and some consideration is therefore
given in this paper to solutions without inversion. A form of compromise involving less work than
inversion, but including some of the advantages, is also considered.

3. Triangular resolution of a matrix

A number of the methods for the solution of equations and, more particularly, for the inversion of
matrices, depend on the resolution of a matrix into the product of two triangular matrices. Let us
describe a matrix which has zeros above the diagonal as ‘lower triangular’ and one which has zeros
below as ‘upper triangular’. If in addition the coefficients on the diagonal are unity the expressions
‘unit upper triangular’ and ‘unit lower triangular’ may be used. The resolution is essentially unique,
in fact we have the following

THEOREM ON TRIANGULAR RESOLUTION. If the principal minors of the matrix A are non-
singular, then there is a unique unit lower triangular matrix L, a unique diagonal matrix D, with
non-zero diagonal elements, and a unique unit upper triangular matrix U such that A= LDU.
Similarly there are unique L′, D′, U′ such that A= U′D′L′.

The kth diagonal element of D will be denoted by dk. The 1k coefficient of the equation A=
LDU gives us l11d1u1k = a1k and since l11 = u11 = 1 this determines d1 to be a11 and u1k to be
a1k/d1; these choices satisfy the equations in question. Suppose now that we have found values of
lij, ujk with j< i0 (that is, we have found the first i0–1 rows of L and columns of U) and the first
i0–1 diagonal elements dk, so that the equations arising from the first i0–1 rows of the equation A=
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LDU are satisfied; and suppose further that these choices are unique and dk 6= 0. It will be shown
how the next row of L and the next column of U, and the next diagonal element dio 6= 0 are to be
chosen so as to satisfy the equations arising from the next row of A= LDU, and that the choice is
unique. The equations to be satisfied in fact state

li0i0di0ui0k = ai0k–
∑
j<i0

liojdjujk (k ≥ i0),

li0kdkukk = ai0k–
∑
j<k

liojdjujk (k < i0).

The right-hand sides of these equations are entirely in terms of quantities already determined. When
k = i0 the first equation is satisfied and can only be satisfied by putting dio = right-hand side, deter-
mining dio. The equations for k > i0 can then be satisfied by one and only one set of values of ui0k,
provided dio 6= 0. The equations for k < i0 can also be satisfied by one and only one set of values
of liok, since each dk is different from 0 The new diagonal element dio is not 0 because the i0th
principal minor of A is equal to the product of the first i0 diagonal elements dk.

4. The elimination method

Suppose that we wish to solve the equations Ax= b by the elimination method. The procedure is
as follows. We first add such multiples of the first equation to the others that the coefficient of x1
is reduced to zero in all of them (excepting the first). We then add multiples of the second equation
to the later ones until the coefficient of x2 is reduced to zero. After n− 1 steps of this nature we
shall be left with a set of equations of the form

∑
i≤J

vijxj = ci. From the equation vnnxn = cn the

unknown xn can then be found immediately, and by substituting it in the equation vn−1,n−1xn−1+

vn−1,nxn = cn−1 we then find xn−1, and so on until by repeated back-substitution we have found all
the coefficients of the (originally) unknown vector x. This description of the elimination process is
all that is required in order to apply it. We shall find it instructive, however, to look at it further from
a number of points of view.

(1) The process of replacing the rows of a matrix by linear combinations of other rows may be
regarded as left-multiplication of the matrix by another matrix, this second matrix having coef-
ficients which describe the linear combinations required. Each stage of the above-described
elimination process is of this nature, so that we first convert the equations Ax = b into J1Ax
= J1b and record J1A and J1b. We then convert them into J2J1Ax= J2J1b, and so on, until we
finally have Jn−1 . . .J1Ax= Jn−1 . . .J1b. In accordance with the theorem on triangular resolu-
tion we may write Jn−1 . . .J1 = L−1 and Jn−1 . . .J1A= DU. The matrix DU is upper triangular,
that is, it has no coefficients other than zeros below the diagonal. The matrix L−1 and its inverse
L are lower triangular.

(2) The matrix L can be very easily obtained from the matrices J1, . . . , Jn−1. We have in fact
L= 1+

∑n−1
r=1 (1− Jr). The proof of this will be left to the reader.

(3) There is no need for us to take either the equations or the unknowns in the order in which they
are given. In other words, if P, Q represent permutations we may solve instead A′x′ = b′, where
A′ = PAQ, b′ = Pb, x= Qx’. The permutations P,Q may be chosen bit by bit as we carry the
process through. One popular method is to let Q be the identity, that is, to take the variables
in the order given, and to choose P so that the coefficients in the matrices Jr do not exceed
unity in absolute magnitude. This is always possible, and for almost all matrices gives a unique
P. Alternatively, this variation of the method may be described by saying that P is chosen so
that d1 shall have the largest possible value, and subject to this, d2 to be as large as possible,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 23:29 Page 388 #12

388 Part II

and so on. This procedure is called ‘taking the largest coefficient in the column as pivot’. The
diagonal elements d1, d2, . . . , dn are known as the first, second, . . . , last pivots. There seems to
be a definite advantage in using the largest pivot in the column as it is likely to have smaller
proportionate errors than other possible pivots, and saves us from the embarrassment of getting
a pivot which is little different from zero. It is possible that there is also a further advantage in
choosing the largest coefficient in the matrix as pivot.

(4) The leading terms of the work involved in solving a set of n equations by the elimination method
are as follows: 1

3 n3
+O(n2) multiplications and recordings of which 1

2 n2
+O(n) recordings

involve the vector b.
(5) If, after we have solved one set of equations Ax= b, we are asked to solve a second set Ax′ = b′

with the same matrix A, we have only to operate on b with the matrices J1, . . . ,Jn−1 the values
of which may be supposed to have been kept for reference, and then solve DUx = Jn−1 . . .J1b.
In other words, if the matrices J1 . . . .,Jn−1 have been kept (amounting to 1

2 n(n− 1) numbers)
the work involved in solving a second set with the same A is that part of the original work
which involved b, namely, 1

2 n2
+O(n) multiplications and n recordings.

This process may also be expressed in another form, which appears to be quite different, but
actually is an identical calculation. As mentioned in (2), the triangle L in the resolution A=
LDU may be obtained immediately from the matrices J1, . . . ,Jn−1. If we put DUx’ = y′ we
shall then have Ly’= b′. The equations Ly’= b′ may be solved for y′ by one back-substitution
process and then the equation DUx’ = y′ solved by a second back-substitution.

(6) As we have described it, the matrices J1A, J2J1A, . . ., are all written down in full. Actually,
however, we are not really interested in all the coefficients of all these matrices. All we need in
the end are J1, . . . , Jn−1 and Jn−1 . . .J1 A. It is sufficient, therefore, to calculate all coefficients
of Jn−1 . . .J1A, and those coefficients of Jr . . .J1 A which are required for the determination of
Jr+1. If we write A(r) for Jr . . .J1 A we have

A(r)ij = A(r−1)
ij + (Jr)irA(r−1)

rj (i> r),

where

(Jr)ir =−
A(r−1)

ir

A(r−1)
rr

,

and by addition

A(r)ij = Aij+

r∑
s=1

(Js)isA
(s−1)
sj .

If i≤ r we have A(r)ij = A(r−1)
ij and so

A(n)ij = Aij+

n−1∑
s=1

(Js)isA
(n)
sj ,

(Jr)ir =−

Air +
r−1∑
s=1
(Js)isA(s−1)

sr

Arr +
r−1∑
s=1
(Js)rsA(s−1)

sr

.

Thus we can obtain the numbers actually required (A(n)ij , (Jr)ir) without recording intermediate
quantities. This variation of the elimination method will be seen to be identical with the method
(1) of §6 (the ‘unsymmetrical Choleski method’).
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This form of the elimination method is to be preferred to the original form in every way.
The recording involved in the work on the matrix is reduced from 1

3 n3
+O(n2) to n2

+O(n),
and the rounding off is at the same time made correspondingly less frequent.

(7) The elimination method may be used to invert a matrix. One method is to solve a succession of
sets of equations Ax(r) = b(r), where b(r) = δir. The total work involved in the inversion is then
n3
+O(n2) multiplications. Alternatively, we may invert the matrices L and DU separately by

back-substitution and then multiply them together. The work is still n3
+O(n2)multiplications.

(8) When the matrix A is symmetric, the matrices L and U are transposes, and it is therefore
unnecessary to calculate both of them. The best arrangement is probably to proceed as with an
unsymmetrical matrix, but to ignore all the coefficients below the diagonal in the matrices A(r).
These coefficients are all either zero or equal to the corresponding elements of the transpose.
This fact enables us to find the appropriate matrices Jr at each stage.

(9) The elimination method can be described in another, superficially quite unrelated form. We
may combine multiplication of rows and addition to other rows with multiplication of columns
and adding to other columns. In other words, we may form a product Jn−1 . . .J1 AK1 . . .Kn−1,
and try to arrange that it shall be diagonal. The matrix Jr is to differ from unity only in the
rth column below the diagonal, and Kr is to differ from unity only in the rth row above the
diagonal. If we carry out the multiplications by J1, . . . , Jn−1 before the multiplications by
K1 . . . ., Kn−1, then it is clear that we have only the elimination method, for in either case we
form J1A,J2J1A, . . . and the multiplications by K1, . . . , Kn−1 which come after actually involve
no computation; they merely result in replacing certain coefficients in the matrix Jn−1 . . .J1A
by zeros (compare note (2)). It is not quite so clear in the case where the order of calculation
is A, J1A, J1AK1, J2J1AK1, . . .. In this case, however, the right-multiplications do not alter
that part of the matrix which will be required later; in fact, they again do nothing but replace
certain coefficients by zeros. So far as the subsequent work is concerned, we may consider that
these right-multiplications were omitted, and that we formed Jn−1 . . .J1A as in the elimination
method.

When this method is used and we choose the largest pivot in the matrix, it is clear that all the
coefficients of Jr and of Kr do not exceed unity. This provides one proof that when the largest pivot
in the matrix is chosen the coefficients of L, U do not exceed unity (in absolute magnitude).

5. Jordan’s method for inversion

In §4 (1) we mentioned that the elimination process could be regarded as the reduction of a matrix
to triangular form by left-multiplication of it by a sequence of matrices J1, . . . , Jn−1. In the Jordan
method we left-multiply the matrix A by a similar sequence of matrices. The difference is that with
the Jordan method we aim at reducing A to a diagonal,† or preferably to the unit matrix, instead of
merely to a triangle.†

The process consists in forming the successive matrices J1A, J2J1A, . . ., where Jr differs from
the unit matrix only in the rth column, and where Jr . . .J1 A differs from a diagonal matrix only in
the columns after the rth.
Let us put A(r) = Jr . . .J1A, X(r) = Jr . . .J1,
we shall then have

A(r)ij = A(r−1)
ij + (Jr)irA(r−1)

rj (i 6= r),

(Jr)ir =−
A(r−1)

ir

A(r−1)
rr

(i 6= r)

† Hereafter ‘triangle’ and ‘diagonal’ will be written for triangular matrix’ and ‘diagonal matrix’
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(so that

A(r)ir = 0 if (i 6= r),

A(r)rj = (Jr)rrA(r−1)
rj ,

X(0)ij = δij,

X(r)ij = X(r−1)
ij + (Jr)irX(r−1)

rj .

The particular diagonal to which A is reduced is at our disposal. Possible choices include the
following. The diagonal may be the unit matrix. Or we may arrange that the diagonal elements of
the Jr are all unity and tolerate the non-unit diagonal elements in Jn . . .J1 A. A third alternative is
to arrange that the diagonal elements in Jn . . .J1 A shall be between 0 · 1 and 1 and that the diagonal
elements in Jr shall be powers of 10.

Jordan’s method is probably the most straightforward one for inversion. Although it can be used
for the solution of equations, it is not very economical for that purpose. For hand work it has the
serious disadvantage that the recording is very heavy and cannot be avoided by methods such as
that suggested in connexion with the elimination method. lt may be the best method for use with
electronic computing machinery.

6. Other methods involving the triangular resolution

There are several ways of obtaining the triangular resolution. When it has been obtained, it can be
used for the solution of sets of equations, or for the inversion of the matrix as has been described
under the elimination method. Possible methods of resolution are described below.

(1) We may use the formulae given in the proof of the theorem on triangular resolution. This
involves 1

3 n3
+O(n2) multiplications, n2

+O(n) recordings. This method is closely related to
Choleski’s method for symmetrical matrices ((7) below), and we may therefore describe it as
the ‘unsymmetrical Choleski method’.

(2) We may apply the elimination method, regarded as a means of obtaining the triangular
resolution; see notes (1), (2), (6) on the elimination method.

(3) We may obtain simultaneously, and bit by bit, the four triangles L, L−1, U, U−1 and the
diagonal D. The method makes use of the following simple facts about triangles:
(a) If we wish to invert a triangle, but only know the values in a subtriangle, we can obtain the

coefficients of the inverse in the corresponding subtriangle: for example, if we know the
first 5 rows of a lower triangle L, then we can obtain the first 5 rows of L−1.

(b) If we know the first r columns of a unit lower triangle then we know its first r+ 1 rows:
likewise, if we know the first r rows of a unit upper triangle we know also its first r+ 1
columns.

Let us suppose that we have carried the process to the point of knowing the first r rows of L, the
first r− 2 of L−1 and r− 1 of U and U−1. We carry on the inversion of L to obtain the (r− 1)th and
rth rows of L−1, and then multiply these rows into A to obtain the rth and (r− 1)th rows of L−1A,
i.e. of DU. From this we obtain at once the rth and (r− 1)th rows of D, and dividing obtain the rth
and (r− 1)th rows of U. By (b) we have the rth and (r+ 1)th columns of U and by (a) obtain those
of U−1. Multiplying we obtain the rth and (r+ 1)th columns of AU−1, i.e. of LD, and from this the
rth and (r+ 1)th elements of D and columns of L. By (b) we have the (r+ 1)th and (r+ 2)th rows
of L.

We can, of course, arrange to increase r by 1 instead of 2 at each stage.
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This is essentially Morris’s escalator method (ref. 4), so called because by breaking off the
work at any stage we obtain the solution for one of the principal minors of A; the order of
the minor increases in steps. Morris’s method differs in one small point. The diagonal ele-
ments D are not obtained as the diagonal of L−1A or of AU−1, but by using the identity dk =

akk−
∑
i<k
(AU−1)kid

−1
i (L−1A)ik, which follows from the (kk) coefficient of the matrix equationA=

(AU−1)D−1 (L−1A).
If Morris’s method is used for the inversion of a matrix the work involved consists of 5

3 n3
+

O(n2) multiplications (two triangle inversions each 1
6 n3
+O(n2), two multiplications of a triangle

by A, each 1
2 n3
+O(n2), and one multiplication of two triangles of opposite type, 1

3 n3
+O(n2)), and

3n3
+O(n2) recordings (this can be slightly reduced). It does not appear to be especially satisfactory

in either respect.
To relate the above account to Morris’s put

qk = dk, xi = (U
−1)1i, yi = (U

−1)2i, . . . , x′i = (L
−1)i1, y′i = (L

−1)i2, . . . .

(4) We may look for an upper triangular matrix M such that

M∗A∗AM= 1,

that is, so that AM is orthogonal. From the first r rows of M (which are also the first r columns
of M∗) we can obtain the first r rows of M∗ because of its triangular character, and hence the
corresponding rows of M∗A∗ and M∗A∗A. The equation M∗A∗A.M= 1 is then applied, using
the first r columns in the (r+ 1)th row of the product. This determines the ratios of the coeffi-
cients of M in the (r+ 1)th row. The (r+ 1)th diagonal element of the equation then determines
the multiplying factor. Having found M and AM we obtain the inverse as M(AM)∗, or we may
solve Ax = b by forming (AM)∗b and then M(AM)∗b. In the terminology of orthogonal vec-
tors, as described below, the formation of (AM)∗b would be ‘expressing b in terms of the base
of orthogonal vectors’.

This method is the orthogonalization process described in ref. (3), p. 9. It is closely related
to the Morris method for symmetrical matrices (see (5) below). We may apply Morris’s method
by forming A∗A and then looking for the upper triangular matrix M to satisfy M∗A∗AM= 1.
This would only involve A through the formation of A∗A and hence of MA ∗A. Thus Morris’s
method applied to the normalized matrix A∗A differs from the orthogonalization process only
in that M∗A∗A is obtained as M∗(A∗A) instead of as (M∗A∗)A.

We now come to methods for symmetrical matrices. These can all be made to provide meth-
ods for unsymmetrical matrices by normalizing the given matrix, that is, forming AA∗ from
A. For instance, if we wish to solve Ax = b, we may form A∗A and A∗b, and then solve
A∗Ax= A∗b by one of these methods. This normalizing technique is, however, of doubtful
value. The formation of A∗A involves 1

2 n3
+O(n2) multiplications, so that the work involved

is greater with normalization than without, in the case of solving equations, and is no less for
the case of inversion. Moreover, normalizing tends to make equations more ‘ill-conditioned’
(see §8 below).

(5) A scheme mentioned in note (8) under the elimination method.
(6) We may apply the method (1), but we shall only need to find L and D, since U= L*. As a slight

variation we may find LD.

(7) Another variation on (6) is to find LD
1
2 . This method is due to Choleski (ref. 1). The matrix

LD
1
2 may involve some pure imaginary numbers, but no strictly complex ones.

(8) Morris’s method simplifies considerably for symmetric matrices. From the first r rows of L we
can obtain the first r columns of L*−1, i.e. U−1, by inverting. Left-multiplication by A gives
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the first r columns of AU −1, i.e. of LD, and from this we obtain the first (r+ 1) rows of L.
Again Morris obtains D differently.

This method is identical with a variation of the orthogonalization method, applicable to sym-
metric matrices and due to L. Fox (ref. 2). Fox regards two vectors b and c as ‘orthogonal’ relative
to A if (c, Ab) = 0 (scalar product). Fox finds a set of vectors v1, v2, . . . , vn which are orthogonal
in this sense. The vectors Avr may be used as a base for other vectors: we have in fact

b=
∑

r

(b,vr)

(vr,Avr)
Avr.

The solution of equations is effected by means of the formula

A−1b=
∑

r

(b,vr)

(vr,Avr)
vr.

It is best to obtain v1, v2, . . . , vn by orthogonalizing the unit coordinate-axis vectors, that is, besides
the vectors being orthogonal, vr is restricted to be a linear combination of e1, e2, . . . , en, or in other
words, to have all coefficients after the rth equal to 0. In this case the vectors vr are the rows of L−1,
and the orthogonality relation is L−1(AL−1∗)= D. The orthogonalization process by which L−1 is
found is identical with the inversion of AL −1∗D−1.

7. Measure of the magnitude of a matrix

There are a number of ways in which the magnitude of a matrix may be measured by a real number.
They include:

The norm. The norm N (A) of the matrix A is given by

N(A)= (traceA∗A)
1
2 =

∑
i,j

a2
ij


1
2

.

The maximum expansion B(A). This is given by

B(A)=max
x

|Ax|
|x|
=max

x

(Ax,Ax)
1
2

(x,x)
1
2

.

The maximum coefficient M(A). This is the largest coefficient in the matrix:

M(A)=max
i.j
|aij|.

Of these measures one of the first two above is probably of greatest theoretical significance. In
this paper we deal chiefly with the maximum coefficient, since it is the most easily computed.
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A number of inequalities relating these are listed below.

M(X+Y)≤M(X)+M(Y) (7.1)

M(XY)≤ nM(X)M(Y) (7.2)

B(X+Y)≤ B(X)+B(Y) (7.3)

B(XY)≤ B(X)B(Y) (7.4)

N(X+Y)≤ N(X)+N(Y) (7.5)

N(XY)≤ N(X)N(Y) (7.6)

N(X)≤ nM(X) (7.7)

M(X)≤ N(X) (7.8)

M(X)≤ B(X) (7.9)

B(X)≤ n
1
2 M(X) (7.10)

B(X)≤ N(X) (7.11)

N(X)≤ n
1
2 B(X) (7.12)

8. Ill-conditioned matrices and equations

When we come to make estimates of errors in matrix processes we shall find that the chief fac-
tor limiting the accuracy that can be obtained is ‘ill-conditioning’ of the matrices involved. The
expression ‘ill-conditioned’ is sometimes used merely as a term of abuse applicable to matrices or
equations, but it seems most often to carry a meaning somewhat similar to that defined below.

Consider the equations

1 · 4x+ 0 · 9y = 2 · 7
−0 · 8x+ 1 · 7y =−1 · 2

}
(8.1)

and form from them another set by adding one-hundredth of the first to the second, to give a new
equation replacing the first

−0 · 786x+ 1 · 709y =−1 · 173
−0 · 800x+ 1 · 700y =−1 · 200

}
. (8.2)

The set of equations (8.2) is fully equivalent to (8.1), but clearly if we attempt to solve (8.2) by
numerical methods involving rounding-off errors we are almost certain to get much less accuracy
than if we worked with equations (8.1). We should describe the equations (8.2) as an ill-conditioned
set, or, at any rate, as ill-conditioned compared with (8.1). It is characteristic of ill-conditioned sets
of equations that small percentage errors in the coefficients given may lead to large percentage errors
in the solution. If we are required to solve the equations Ax = b. but the coefficients used are those
of A−S instead of those of A, S being a small matrix, then, to first order in S, the solution obtained
will be x0+A−1Sx0, where x0 is the correct solution. We may average the effect of this over a
random population of matrices S, and over the coefficients in the solution and matrix, and we shall
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find the

R.M.S. error of coefficients of solution

R.M.S. coefficient of solution

=
1

n
N(A)N(A−1)

R.M.S. error of coefficients of A
R.M.S. coefficient of A

.

This equation suggests that we might take either N(A)N(A−1) or 1
n N(A)

N(A−1) as a measure of the degree of ill-conditioning in a matrix. We will adopt the latter
and call 1

n N(A)N(A−1) the the N-condition number of A. We will also use nM(A)M(A−1) as
another measure of ill-conditioning and call it the M-condition number of A. There is substantial
agreement between the two measures, though the M-number tends to be the larger, especially with
diagonal or nearly diagonal matrices.

It should be noted that if all the coefficients of a matrix are multiplied by the same factor the
condition numbers are unaltered, but that if a row or column is multiplied by a very large or a very
small number the condition numbers are usually increased. For instance, the matrices(

0 · 8 0 · 6
−0 · 6 0 · 8

)
(8.3) and

(
0 · 008 0 · 006
−0 · 6 0 · 8

)
(8.4)

have the M-condition numbers 1 · 28 and 128 respectively and N-condition numbers 1 and 50 · 005.
This may be considered quite a satisfactory example of the application of the definition. In practice
one will tend to work with the same number of figures throughout a matrix. and the small values
in the first row of 8.4 will prejudice the accuracy obtainable, because of the number of significant
figures available. It is certainly true a trivial modification improves the conditioning, but we should
consider that until the possibility of this modification has been observed and action taken, the matrix
remains ill-conditioned.

It is often stated that ill-conditioned matrices are ones which have small determinants, that is,
small considering the magnitudes of the coefficients. This statement contains a certain amount of
truth. It is certainly the case that bad conditioning and small determinants tend to go together.
However, the determinant may differ very greatly from the above-defined condition numbers as a
measure of conditioning. This may be illustrated by the cases of the matrices 1 0 0

0 0.1 0
0 0 0.1

 ;

 1 0 0
0 1 1
0 0 0.01

 ;

 1 1 1
1 1.1 1
1 1 1.1

 ;

 1 1 1
1 2 1
1 1 1.01

 ;

all of which have the determinant 0 · 01, and which have the M-condition numbers 30, 300, 69 · 3,
612, respectively, and N-condition numbers 4 · 77, 47·1, 33 · 0, 232.

The best conditioned matrices are the orthogonal ones. which have N-condition numbers of
1. Their M-condition numbers are mostly of the order of magnitude of logn (for large order n).
If the coefficients of a matrix are chosen at random from a normal population we shall get N-

condition numbers of the order of n
1
2 and M-condition numbers about logn times greater. Thus

random matrices are only slightly ill-conditioned.
The matrices which occur in practical problems are by no means random in this sense. There is a

very large class of problems which naturally give rise to highly ill-conditioned equations. Suppose.
for example, that we have reason to believe that some function of position in two dimensions can
be represented by a polynomial of the fourth degree and that we wish to determine the coefficients.
To this end we measure the values of the function at 25 points, and so obtain 25 linear equations for
the desired coefficients. It may well happen that we are only able to make the measurements within
a small region, and this will certainly mean that the equations are ill-conditioned. In such a case the
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equations might be improved by a differencing procedure, but this will not necessarily be the case
with all problems. Preconditioning of equations in this way will always require considerable liaison
between the experimenter and the computer, and this will limit its applicability.

9. The classical iterative method

Suppose that B is an approximate inverse of A. Then we can obtain from it a better inverse B2 by the
formula B2 = 2B−BAB. If we write E= 1− AB, E2 = 1−AB2, so that E and E2 give a measure
of the incorrectness of the two inverses: we have E2 = E2, so that at each application of this process
the error is essentially squared.

The work involved in applying this method is considerable, since it involves 2n3 multiplications
at each stage. It may be useful in cases where a good approximate inverse is already available, and
1–AB has already been calculated, but found to be a little larger than can be tolerated. We may then
calculate B2 but carry the process no farther. This involves n3 multiplications, but since we may
write B2 = B+ BE, the number of figures in one of the factors (viz. in E) may be kept small.

A somewhat similar type of method applies for the improvement of solutions of sets of equa-
tions. Suppose, for example, we have to solve the equations Ax = b and that we have obtained a
resolution A= L. DU (say), somewhat inaccurately. By double back-substitution we obtain a solu-
tion x1 of L.DUx = b, which is an inaccurate solution of Ax = b. We may further test this solution
by forming the ‘residual’ vector b1 = b−Ax1’ and if this is too large we solve Ax = b1 to obtain a
correction. In this process we do not obtain ‘quadratic convergence’ but only convergence in geo-
metric progression. On the other hand, the method is very practical because the work involved per
stage is only 2n2 multiplications.

10. General remarks on error estimates: the error in a
reputed inverse

Error estimates can be of two kinds. We may wish to know how accurate a certain result is, and be
willing to do some additional computation to find out. A different kind of estimate is required if we
are planning calculations and wish to know whether a given method will lead to accurate results.
In the former case we do not care what quantities the error is expressed in terms of, provided they
are reasonably easily computed. With these estimates we wish to be absolutely sure that the error
is within the range stated, but at the same time not to state a range which is very much larger
than necessary. With the second type of estimate, the error is preferably expressed in terms of
quantities whose meaning is sufficiently familiar that the general run of values involved may at
least be guessed at. We are also as much interested in the statistical behaviour of the errors as in the
maximum possible value.

This paper is mainly concerned with estimates of the second kind, since those of the first kind
can be quickly dismissed. Let B be a reputed inverse of A. To determine its accuracy we form
E= 1−AB. Then in view of the inequalities (7.1), (7.2), and the equation

A−1
−B= B(E+E2

+ . . .)

we have

M(B−A−1)≤

∞∑
r=1

M(BEr)≤

∞∑
r=1

nrM(B){M(E)}r =
nM(B)M(E)
1− nM(E)

,

which is the required error estimate. In order to apply this inequality it is necessary to carry out
the matrix multiplication BA, involving n3 multiplications. However, if it is intended to apply the
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classical iteration method for improving the inverse at least once, we shall have to calculate E in
doing so, and we shall have 1–AB2 = E2 = E2 and therefore

M(B2−A−1)≤
nM(B2)M(E2)

1− nM(E2)
≤

n2M(B2){M(E)2}
1− n2{M(E)}2

.

It should be observed that this inequality is only applicable to the inversion of a matrix, and
not to the solution of equations. It is difficult to determine the accuracy of the solution of a set of
equations without inverting the matrix. This is another reason why it is preferable to treat inversion
rather than solution of equations as a standard process.

When making estimates of the effects of rounding-off errors we need the process under exam-
ination to be rather minutely described. If, for instance, a product abc is to be formed, we need to
know whether it is obtained as ab.c or as a.bc. If it is obtained as ab.c we shall need to know how
many figures are kept in ab. This may be either a definite number of decimal or binary places, or a
definite number of significant figures, or the number of figures kept may be made to depend on the
results of previous calculations. Usually, however, by a trivial modification of the quantity recorded,
these latter cases can be reduced to one of the former.

The variety of possible detailed calculation procedures is, of course, vastly greater than the list of
methods which we have considered, for these can be subdivided into numerous alternatives which
appear only trivially different at first sight, but which may differ very seriously from the point of
view of error estimates. We cannot here carry out the analysis for more than a very few of the
procedures. These have been chosen so as to give bounds of error which are both reasonably small
and also fairly simple in their analytical form. We have concentrated particularly on error estimates
which can be expressed in terms of the matrix A and its inverse. In practical work the details of the
procedure must be determined by other considerations. With any particular procedure it will usually
be found possible to obtain some estimate of the type proved in this paper, but usually quantities
such as M(L), M(D−1), etc., will be involved. These can be obtained conveniently as a by-product
in the calculation. Alternatively, one may find bounds of error by calculating 1–AB as above. In
this case the importance of the analysis which follows is to show that it is probable that the error
obtained will be reasonably small if a process is used which is somewhat similar to one of those here
considered, and that these methods are therefore reasonable ones to use. Our main purpose in this
paper is to establish that the exponential build-up of errors need not occur, and this will be proved
when we have found one method of inversion where it is absent.

11. Rounding-off errors in Jordan’s method

The Jordan method was described in §5, but we have now to specify the details of the rounding-off
and the diagonal. We shall consider the case where A is reduced to a unit matrix. We assume that in
the calculation of each quantity

A(r−1)
ij −

A(r−1)
rj A(r−1)

ir

A(r−1)
rr

,

an error of at most ε is made. How this is to be secured need not be specified, but it is clear that the
number of figures to be retained in A(r−1)

ir /A(r−1)
rr will have to depend on the values of the A(r−1)

rj .
Likewise, we assume that in the calculation of

X(r−1)
ij −

X(r−1)
rj A(r−1)

ir

A(r−1)
rr
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an error of at most ε′ is made. It is convenient to think of these errors as quantities deliberately
added after the accurate calculation has been made. If the quantities added after the calculation of
A(r), X(r) are the matrices Sr, S′r we shall have

Jn[. . . {J2(J1A+S1)+S2} . . .]+Sn = 1,

Jn[. . . {J2(J1+S′1)+S′2} . . .]+S′n =4,
(11.1)

where 4 represents the actual matrix obtained at the end of the calculation as the value of A−1.
The equations (11.1) give us

A+
∑

X−1
r Sr = X−1

n ,

1+
∑

X−1
r S′r = X−1

n 4
(11.2)

and hence 4=(1+A−1
∑

r

X−1
r Sr)A−1(1+

∑
r

X−1
r S′r). (11.3)

The matrix Xr A is the result of the first r stages of the reduction of A and agrees with D in the first
r columns. This fact may be expressed in the equation

(XrA− 1)Ir = 0, (11.4)

where Ir is that matrix which agrees with the unit matrix in the first r columns and with the zero
matrix elsewhere. It is also clear that Xr differs from the unit matrix only in the first r columns; this
fact may be expressed in the equation

(Xr − 1)(1− Ir)= 0. (11.5)

From (11.4) and (11.5) we now find X−1
r ;

X−1
r = AIr + 1− Ir. (11.6)

When we ignore the second-order terms in the rounding-off errors (11,3), (11.6) give us

4−A−1
=−A−1

(∑
r

X−1
r Sr

)
A−1
+A−1

∑
r

X−1
r S′r

=

∑
r

{Ir +A−1(1− Ir)}(SrA−1
−S′r). (11.7)

Let us now assume that each coefficient Sr is at most ε and each coefficient of S′r at most ε′. From
(11.7) we can estimate the error in M-measure

M(4−A−1)≤
∑

r

n{1+M(A−1)}M(SrA−1
−S′r)

≤

∑
r

n{1+M(A−1)}{nεM(A−1)+ ε′}

≤ n2
{1+M(A−1)}{ε′+ nεM(A−1)}, (11.8)
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or in B-measure,

B(4−A−1)≤
∑

r

B{Ir +A−1(1− Ir)}{B(SrA−1)+B(S’r)}

≤

∑
r

{1+B(A−1)}{εn
1
2 B(A−1)+ ε′n

1
2 }

≤ n
3
2 {1+B(A−1)}{εB(A−1)+ ε′}, (11.9)

or in N-measure,

N(4−A−1)≤
∑

r

N{Ir +A−1(1− Ir)}{N(SrA−1)+N(S’r)}

≤

∑
r

{r
1
2 + (1− r)

1
2 N(A−1)}{nεN(A−1)+ nε′}

≤
2
3 (n+ 1)

5
2 {1+N(A−1)}{ε′+ εN(A−1)}. (11.10)

If we use the relations SrIr = S′r(1− Ir)= 0, which follow from the restrictions on the coefficients
which can suffer rounding-off errors, (11.8) may be improvedto

M(4−A−1)≤ nε′+
n(n− 1)

2
M(A−1)

{
ε+ ε′+

2n− 1

3
εM(A−1)

}
. (11.11)

This result is best possible in the sense that given ε, ε′, M we can find Sr, S′r, A so that
M(Sr)≤ ε, M(S′r)≤ ε

′, M(A−1)=M and the error M(4−A−1), still ignoring second-order terms,
is exactly

nε′+
n(n− 1)

2
M

(
ε+ ε′+

2n− 1

3
εM

)
.

We may also use (11.7) to give us an estimate of the statistical error. Let the coefficients of the
matrices S1, . . . , Sn which are not obliged to be 0 be s1, . . . , sK in some order, and likewise let the
coefficients of S′1, . . . , S′n which are not necessarily zero be sK+1, . . . , sP. The equation (11.7) may
then be put in the form

(4−A−1)ij =

P∑
u=1

cijusu,

where ciju depends only on the coefficients of A−1. Suppose that the rounding-off errors su

are independent and have standard deviation σu and zero mean, then the mean square value of

(4−A−1)ij is
P∑

u=1
c2

ijuσ
2
u . Let us put σu = η for u≤ K, σu = η

′ for u> K and the mean square error

in A−1
ij becomes η2

K∑
u=1

c2
iju+ η

′2
P∑

u=K+1
c2

iju. When we substitute in the correct values for ciju we

obtain:
mean square error in (A−1)ij

= η2
∑
m,K

(A−1)2im(A
−1)2Kj min(K, i− 1)+ η2

∑
K>i

(A−1)2Kj(K− i)+

+ η′2

[∑
m

(A−1)2im min(j, m− 1)+
(n− 1)(n− i+ 1)

2

]
,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/7 23:29 Page 399 #23

Rounding-off Errors in Matrix Processes 399

where η is the standard deviation and zero the mean of each coefficient of Sr, and η′ is the standard
deviation and zero the mean of each coefficient of S′r.

Also
mean square error in (A−1)ij

≤ η2

[
{M(A−1)}4

n(n+ 1)(n− 1
2 )

3
+{M(A−1)}2

(n− 1)(n− i+ 1)

2

]
+

+ η
′2
[
{M(A−1)}2(n2−

1
2 −

1
2 j)+

(n− i)(n− i+ 1)

2

]
.

The leading term in the R.M.S. error in (A−1)ij is therefore at most

η
{

M(A−1)
}2 n

3
2

√3
.

The assumptions M(Sr) < ε, M(S’r) < ε
′ in the above analysis state in effect that we are work-

ing to a fixed number of decimal places both in the reduction of the original matrix to unity and in
the building up of the inverse. It is not easy to obtain corresponding results for the case where a
definite number of significant figures are kept, but we may make some qualitative suggestions.

The error when working with a fixed number of decimal places arose almost entirely from the
reduction of the original matrix, and very little from the building up of the inverse. This, at any rate,
applies for the inversion of ill-conditioned matrices with coefficients of moderate size.

However, the coefficients of the inverse are larger than those of the original matrix, so that if we
work to the same number of significant figures in both we may expect the discrepancy to disappear.
The general idea of this may be expressed by putting

M(Sr) < δM(A), M(S′r) < δ
′M(A−1),

so that
M(4−A−1)

M(A−1)
< n3M(A)M(A−1)

(
1+

1

M(A−1)

)(
δ+

δ′

M(A)

)
.

There still remains the factor 1
M(A) multiplying δ′. This could be removed by arranging to reduce A,

not to the unit matrix, 1, but to M(A).1. This would be a reasonable procedure in any case, though
it would be more convenient to choose the nearest power of 10 to take the place of M(A). We see
now that it is the M-condition number nM(A)M(A−1)which determines the magnitude of the errors
when we work to a definite number of figures.

In the case of positive definite, symmetric matrices it is possible to give more definite estimates
for the case where calculation is limited to a specific number of significant figures. Results of this
nature have been obtained by J. v. Neumann and H. H. Goldstine (ref. 6).

It is instructive to compare the estimates of error given above with the errors liable to arise from
the inaccuracy of the original matrix. If we desire the inverse of A, but the figures given to us are
not those of A but of A−S, then if we invert perfectly correctly we shall get (A−S)−1 instead of
A−1, that is, we shall make an error of (A−S)−1

−A−1, i.e. of

(1−A−1S)−1A−1SA−1.

If we ignore the second-order terms this is A−1SA−1. The leading terms in the error in the Jordan
method were A−1(

∑
r
(1− Ir)Sr)A−1 so that we might say that the greater part of the error is equal

to that error which would have been produced by an original error in the matrix of
∑
r
(1 − Ir)Sr.
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It is possible to give error estimates also for several others amongst the methods suggested
elsewhere in this paper. This is, for instance. the case for the elimination method.

The elimination method in its first phase proceeds similarly to the Jordan process, but we only
attempt to reduce A to a triangle and not to a diagonal: also the matrix representing the complete
operation in this first phase is triangular.

12. Errors in the Gauss elimination process

We will consider the errors in the Gauss elimination process as consisting of two parts, one arising
from the reduction of the matrix to the triangular form, and the other from the back-substitution.
Of these we are mainly interested in the error arising from the reduction, since this is the part of
the process which has been most criticized. We adopt the description of the process given in §4,
note (1), and observe that apart from a slight difference in the form of the matrices Jr, the reduction
is similar to the Jordan process. As in the Jordan process, we shall assume that we make matrix
errors S1, S2, . . . , Sn in the various stages of the reduction of A, and vector errors s1, s2, . . . , sn in
the operations on b. Assuming there are no back-substitution errors, and ignoring the second-order
terms in the errors we should have:

error in x= U−1Xn

n∑
r=1

X−1
r (s′r −SrU−1Xnb),

where Xr = Jr . . .J1. Now, assuming that the process has been done with the largest pivot chosen
from each column, we shall have M(X−1

r )= 1, for X−1
r = 1+

∑
s≤r
(1− Js) as mentioned in §4(2).

Then

|error in xm| = |(A−1
∑

X−1
r (s′r −SrA−1b))m|

=

∣∣∣∣∣∣∣∣
∑
j,k,r
j≥k

(A−1)mj(X−1
r )jk(s′r)k−

∑
l.p

(Sr)kl(A−1)lpbp

∣∣∣∣∣∣∣∣
≤

n2(n+ 1)

2
M(A−1)ε′+

n4(n+ 1)

2
{M(A−1)}2M(b)ε,

where M(s′r)≤ ε
′, M(Sr)≤ ε.

To these errors we have to add those which arise from the back-substitution. This consists in
solving the equations DUx= L−1b, where U is unit upper triangular and D diagonal. We obtain xn

first and then xr in order of decreasing r by means of the formula xr = d−1
r (L−1b)r −

∑
i>r
(DU)rixi.

Now if we make an error of tr in the calculation of xr from the previously obtained coefficients
of x, then we shall have solved accurately the equations DUx= L−1b+Dt, that is, we shall have
introduced an error of U−1t, or, since A= LDU, of A−1LDt. If we arrange that M|tr| ≤ εd−1

r , the
greatest error in any coefficient from this source is n2M(A−1)ε, and normally much smaller than the
error arising from the first part of the process. Furthermore, dr will normally tend to be less than 1.

It is interesting to note the value of the error in the last pivot, that is, the error in the (nn) coeffi-
cient of Jn . . .J1 A. The matrix error in Jn . . .J1A is Xn

∑
r

X−1
r Sr, that is, since XnL−1

= DUA−1, it

is DUA−1∑
r

X−1
r Sr. The(nn) coefficient is dn

∑
r

anj(X−1
r Sr)jn and since M(X−1

r )= 1, M(Sr)≤ ε it
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does not exceed n2dnM(A−1)ε in absolute magnitude, that is, the proportionate error in the last pivot
is at most n2M(A−1)ε. This cannot be very large unless the matrix is ill-conditioned. With worst
possible conditioning we find an error somewhat similar to Hotelling’s estimate. The matrix error in
Jn . . .J1A may be written L−1∑

r
X−1

r Sr, from which we find that the error in the last pivot cannot

exceed n2εM(L−1). But since M(L)= 1 we find M(L−1)≤ 2n−1 (and equality can be attained):
that this error may actually be as great as 2n−2ε may be seen by considering the inversion of a
matrix differing only slightly from

1 0 0 . . . 0
−1 1 0 . . . 0
−1 −1 1 . . . 0

. . . . . . . .
−1 −1 −1 . . . 1


It appears then that the error in the last pivot can only be large if L−1 is large, and that this can only
happen with ill-conditioned equations. Actually even then we may consider ourselves very unlucky
if L−1 is large. Normally, even with ill-conditioned equations we may expect the off-diagonal coef-
ficients of L to be distributed fairly uniformly between −1 and 1, possibly with a tendency to be
near 0. Only when there is a strong tendency for negative values will we find a large L−1.

13. Errors in the unsymmetrical Choleski method

When obtaining the triangular resolution of a matrix by the method of the theorem (§3) it is con-
venient to think of the process as follows. We are given a matrix A and the matrices L and DU (
=W, say). We form the product LW coefficient by coefficient. When calculating any one of the
coefficients of LW, we always find that the data are incomplete to the extent of one number, and we
therefore choose this number so as to give the required coefficient in A. The unknown quantity when
forming aij is always either lij or wij. Regarding the process in this way suggests the following rule
for deciding the number of figures to be retained. We always retain sufficient figures to give us an
error of not more than ε in the coefficient of A under consideration. In actual hand computation this
rule is extremely simple to apply. Suppose, for example, that ε is 1

2 10−7 and that we are forming the

product (LW)94, i.e.
4∑

j=1
l9jwj4. We first form

3∑
j=1

l9jwj4 accumulating the products in the machine.

All the relevant quantities should be available at this stage. We then set up the multiplicand w44
which should also be known and ‘turn the handle’ until the quantity in the product register, rounded
off to seven figures, first agrees with the given value of a94 (which is assumed to have zeros in the
eighth and later figures). All the figures in the multiplier register are then written down as the value
of l94.

The theoryof the errors in this method is peculiarly simple. The triangular resolution obtained
is an exact resolution of a matrix A−S, where M(S) < ε, and the resultant error in the inverse is
A−1 SA−1, and in any coefficient at most n2

{M(A−1)}2ε. A similar procedure is appropriate in the
inversion of the triangles L and W. When inverting W (say) we can arrange, by an exactly similar
computing procedure, that its product with its reputed inverse differs from unity by at most ε′ in each
coefficient, i.e. LK = 1−S′2 where M(S′) < ε and K is the reputed inverse. Note the order in the
product which is significant. Likewise we find a reputed inverse V for DU such that V.DU= 1−S′′

and M(S′′) < ε′. The error arising from using these reputed inverses is −(1−S′′)−1VK(1−S′)+
VK, or neglecting second-order terms, S′′A−1

+A−1S′. Finally, there is a possible source of error
due to rounding off in the actual formation of the product VK. If this does not exceed ε′ in any
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coefficient, the error in any coefficient of the reputed inverse of A is in all at most

n2ε{M(A−1)}2+ 2nε′M(A−1)+ ε′′.

This paper is published with the permission of the Director of the National Physical Laboratory.

REFERENCES
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A Note on Normal Numbers
(unpublished)

Andrew Hodges on an interesting connection between —

COMPUTABLE NUMBERS AND
NORMAL NUMBERS

Alan Turing’s famous 1936 paper hit the mathematical world entirely out of the blue, without any
published precursor. Nor did Turing leave any drafts, letters, journals of his ideas or accounts of the
development of his thought. Only in quite general terms can we see the background, his undergrad-
uate reading of Russell’s logic in 1933 combining with a lifelong fascination with the problem of
Mind.

There is one small exception to this otherwise complete lack of manuscript record. Some pages
of Turing’s final typescript for On computable numbers, with formulas in his handwriting, do sur-
vive. This is because he used their reverse sides as scrap paper on which to write his notes on normal
numbers, which are now held in the archive at King’s College, Cambridge.

This is an interesting connection. We know that Turing was acquainted as early as 1933
with Borel’s study of normal numbers. For in that year, his friend and fellow mathematics
undergraduate David Champernowne made (and published) the observation that the number
0.1234567891011121314 . . . is normal in base-10 decimals. Turing’s notes show him attempting
to build a more general theory, with results (Turing 1936?) which were unpublished in his time but
reproduced and reviewed by J. R. Britton in the Collected Works.

It seems very possible that Turing’s analysis of decimal expressions influenced his choice of
framework of ‘computable numbers’. Turing’s note on normal numbers uses the terms ‘mechanical
process’ and ‘constructive enumeration’ which show the closeness of this work to the ideas of On
computable numbers. In any case it is notable that the chosen title for his great paper put numbers
first, and the application to logic second.

This connection illustrates a wider point, which is that Turing in 1935 was not a specialised logi-
cian, but the product of a very strong Cambridge background in both pure and applied mathematics,
who in 1934 had devoted himself to a proof of the Central Limit Theorem. The rigorous analysis
of the real number system, as the foundation of continuous mathematics, was a central part of his
knowledge.

Indeed these notes were written on the reverse sides of pages of the typescript including those on
‘computable convergence’. This is the section he must have hoped to expand into a new constructive
treatment of analysis, judging by the hostage to fortune he left in the introduction saying that he
would ‘soon’ give a further paper on the computable definition of real functions. The difficulty
posed by the non-unique decimal representation of the reals seems to have stopped this project in its
tracks. Although Turing’s method in his correction note (Turing 1937) was the first step in modern
computable analysis, Turing himself never followed up this lead.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00016-3
c© 2013 Elsevier Inc. All rights reserved.
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It is perhaps more surprising that Turing never followed up the question underlying Borel’s
work, that of characterising a random number. Although Church later gave a definition based on
computability, Turing’s reference to randomness in his later work was curiously cavalier, leaving
the concept undefined in his 1948 discussion of machines with random elements. In (Turing 1950)
he used a pseudo-random sequence (the digits of π ) to illustrate the computer simulation of ran-
domness, without any discussion of the concept. This is even odder when one recalls that he had
spent 6 years of war on the work of distinguishing random from pseudo-random. As in so many
ways, the few details we have about the development of Alan Turing’s ideas only lead to more and
generally unanswerable questions.
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A NOTE ON NORMAL NUMBERS

A. M. TURING

Although it is known that almost all numbers are normal1 no example of a normal number has ever
been given. I propose to show how normal numbers may be constructed and to prove that almost all
numbers are normal constructively.

Consider the R-figure integers in the scale of t, t > 2. If γ is any sequence of figures in that scale
we denote by N(t,γ ,n,R) the number of these in which γ occurs exactly n times. Then it can be
proved without difficulty that(

R∑
n=1

n N(t,γ ,n,R)

)/(
R∑

n=1

N(t,γ ,n,R)

)
= R−1(R− r+ 1)t−r,

where l(γ )= r is the length of the sequence γ : it is also possible2 to prove that

∑
|n−Rt−r|>k

N(t,γ ,n,R) < 2tRe−k2tr/4R, (1)

provided ktr/R< 0.3.
Let α be a real number and S(α, t,γ ,R) the number of occurrences of γ in the first R

figures after the decimal point in the expression of α in the scale of t. α is said to be normal if
R−1S(α, t,γ ,R)→ t−r as R→∞ for each γ , t, where r = l(γ ).

Now consider sums of a finite number of open intervals with rational end points. These can be
enumerated constructively. We take a particular constructive enumeration: let En be the nth set of
intervals in the enumeration. Then we have the next theorem.

Theorem 1. We can find a constructive3 function c(k,n) of two integral variables such that
Ec(k,n+1) 6 Ec(k,n) and mEc(k,n) > 1− 1/k for each k, n and E(k)=

∏
∞

n=1 Ec(k,n) consists entirely
of normal numbers for each k.

Let B(∆,γ , t,R) be the set of numbers α(0< α < 1) for which

|S(α, t,γ ,R)−Rt−r
|<

R

∆tr
,

(
K =

R

∆tr

)
, ∆=

R

Ktr
. (2)

Then by (1)

m B(∆,γ , t,R) > 1− 2e−Rt−r/4∆2
if ∆< 0.3.

Let A(∆,T ,L,R) be the set of those α for which (2) holds whenever 2 6 t 6 T and l(γ )6 L, i.e.,

A(∆,T ,L,R)=
T∏

t=2

∏
l(γ )6L

B(∆,γ , t,R).
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The number of factors in the product is at most TL+1 so that

m A(∆,T ,L,R) > 1−TL+1e−RT−2/4∆2
.

Let

Ak = A([k1/4], [e
√

logk], [
√

logk− 1],k),

Ak = A(k, [e
√

logk], [
√

logk− 1],k4).

Then, if k > 1000, we shall have

m Ak > 1− ke−1/2k1/2
> 1− 1/k(k− 1).

c(k,n)(k > 1000) is to be defined as follows. c(k,0) is (0,1). c(k,n+ 1) is the intersection of an
interval (βn,1)(0 6 βn < 1) with Ak+n+1 and c(k,n),βn being chosen so that the measure of c(k,n+
1) is 1− 1/k+ (k+ n+ 1)−1. This is possible since the measure of c(k,n) is 1− 1/k+ 1/(k+ n)
and that of Ak+n+1 is at least 1− 1/((k+ n)(k+ n+ 1)). Consequently the measure of c(k,n)∩
Ak+n+1 is at least 1− 1/k+ 1/(k+ n+ 1). If k < 1000 we define c(k,n) to be c(1000,n). c(k,n) is
a finite sum of intervals for each k, n. When we remove the boundary points we obtain a set of the
form Ec(k,n) of measure 1− 1/k+ 1/(k+ n)(k > 1000). The intervals of which Ec(k,n) is composed
may be found by a mechanical process and so the function c(k,n) is constructive. The set E(k)=∏
∞

n=1 Ec(k,n) consists of normal numbers for if α ∈ E(k), then α ∈ Ak(all k > K, k > 1000). If γ is a
sequence of length r in the scale of t and if k0 be such that

[e
√

logk0 ]> t and [
√

logk0]> r+ 1,

then for k > k0

|S(β, t,γ ,k)− kt−r
|< k[k1/4]−1,

where β is in Ak (by the definition of Ak). Hence k−1S(α, t,γ ,k)→ t−r as k tends to infinity, i.e., α
is normal.

Theorem 2. There is a rule whereby given an integer k and an infinite sequence of figures 0 and
1 (the pth figure in the sequence being θ(p)) we can find a normal number α(k,θ) in the interval
(0,1) and in such a way that for fixed k these numbers form a set of measure at least 1− 2/k and so
that the first n figures of θ determine α(k,θ) to within 2−n.

With each integer n we associate an interval of the form (mn/2n
2,(mn+ 1)/2n)whose intersection

with E(k) is of positive measure, and given mn we obtain mn+1 as follows Put

m Ec(k,n) ∩

(
mn

2n
,
2mn+ 1

2n+1

)
= an,m,

m Ec(k,n) ∩

(
2mn+ 1

2n+1
,
mn+ 1

2n

)
= bn,m,

and let rn be the smallest m for which either an,m < k−12−2n or bn,m < k−12−2n or both an,m >

1/k(k+ n+ 1) and bn,m > 1/k(k+ n+ 1). There exists such an rn for an,m and bn,m decrease either
to 0 or to some positive number. In the case where an,rn < k−12−2n we put mn+1 = 2mn+ 1; if
an,rn > k−12−2n but bn,rn < k−12−2n, we put mn+1 = 2mn, and in the third case we put mn+1 = 2mn

or mn+1 = 2mn+ 1 according as θ(n)= 0 or 1.
For each n the interval (mn/2n,(mn+ 1)/2n+1) includes normal numbers in positive measure.

The intersection of these intervals contains only one number which must be normal.
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Now consider the set A(k,n) consisting of all possible intervals (mn/2n,(mn+ 1)/2n), i.e., the
sum of all these intervals as we allow the first n figures of θ to run through all possibilities. Then

m E(k)∩A(k,n+ 1)= m E(k)∩A(k,n)

−

2n
−1∑

m=0

m E(k)∩ (A(k, n)−A(k, n+ 1))∩

(
m

2n
,
m+ 1

2n

)
.

But

m (A(k,n)−A(k,n+ 1))∩

(
m

2n
,
m+ 1

2n

)
< 2−2nk−1,

so that

m E(k)∩A(k,n+ 1) > m E(k)∩A(k,n)− 2−n−1k−1

> mE(k)− k−1 > 1−
2

k
.

The set of all possible numbers α(K,θ) is therefore of measure at least 1− 2/k.
By taking particular sequences θ (e.g., θ(n)= 0 for all n) we obtain particular normal numbers.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 0:50 Page 408 #6

408 Part II

Examining the Work and Its Later Impact

Verónica Becher takes a closer look at —

TURING’S NOTE ON NORMAL NUMBERS

In an unpublished manuscript with title “A Note on Normal Numbers”, Alan Turing gives the first
explicit algorithm to compute a normal real number. Normality demands that the infinite expansion
of a real number be seriously balanced: a number is normal in a given scale (numbering base), if
every block of digits of the same length occurs with the same limit frequency in the expansion of
the number expressed in that scale. For example, if a number is normal in the scale of two, the digits
“0” and “1” occur, in the limit, half of the times; each of the blocks “00”, “01”, “10” and “11” occur
one fourth of the times, and so on. A real number that is normal to every scale is called absolutely
normal, or just normal.1 Émile Borel (1909) stated this definition and proved the existence of
normal numbers, showing that, indeed, almost all numbers are normal. Borel’s proof is based on
measure theory, and being purely existential, it provides no method of constructing an example of a
normal number.

With his note Turing solves the problem of finding examples of normal numbers, raised by Borel.
Turing gives, first, a constructive proof that almost all numbers are normal, and then, an algorithm
to produce normal numbers, which leads to his computable examples.

As defined by Turing in his breakthrough article “On computable numbers... ” (1936), the com-
putable real numbers are those whose infinite expansion can be generated by a mechanical (finitary)
method, outputting each of its digits, one after the other. There is no evident reason for the normal
numbers to have a non-empty intersection with the computable numbers. A measure-theoretic argu-
ment is not enough to see that these sets intersect: the set of normal numbers in the unit interval has
measure one, but the computable numbers are just countable, hence they form a measure-zero set.
Along his note Turing uses the term constructive, but never uses the term computable, which would
have better expressed the finitarily-based constructiveness he actually achieves.

Turing’s note remained unpublished until its inclusion in the Collected Works edited by J.R.
Britton (1992). A typewritten document together with a handwritten draft is in Turing’s archive
in King’s College, Cambridge; the scanned versions are available on the Web in http://www.
turingarchive.org. Turing’s note is undated. Presumably he wrote it not much after 1936,
because part of the handwritten manuscript is in the back of the galley proofs of “On computable
numbers...”. Turing’s calligraphy is hard to follow, there are numerous crossing outs, and each page
starts in small lettering that slightly grows towards the end of the page. The typewritten document
—only mathematical formulae are handwritten— is much more complete. In eleven lines of the
draft that Turing did not include in the typewritten document, he appraises the results of his note.
He cites David Champernowne’s2 example of normality in the scale of ten —but not proved normal

1 For a thorough presentation of normal numbers see Kuipers and Niederreiter (2006) or Bugeaud (2012).
2 David Champernowne was the first friend that Turing made when he entered King’s College Cambridge. This is reported
of Andrew Hodges’s superb biography (2000).

http://www.turingarchive.org
http://www.turingarchive.org
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in any other scale— and says that it may also be natural that an example of a normal number (i.e.,
normal in every scale) be demonstrated as such and written down. Then, he writes “this note cannot,
therefore, be considered as providing convenient examples of normal numbers”3.

Champernowne’s number (1933) is formed by writing down all the positive integers in order,
in decimal notation, 0.12345678910111213... 4 The reference to Champernowne’s number suggests
what Turing could have considered to be a convenient example: a number with a simple mathemati-
cal definition and easily computable. According to the modern theory of computational complexity,
which was only developed in the 1960’s and required the Turing machine as its computational
model, Turing’s algorithm has exponential complexity: the number of operations needed to com-
pute the n-th digit of the output sequence is exponential in n. We now know that this is intractable
for every past or present computer. One can interpret Turing’s negative assessment of the numbers
produced by his algorithm as a trail of his intuitive considerations on the computational complex-
ity of the algorithm. Years later, in “Solvable and unsolvable problems” (1954) he will write,
tangentially, about algorithmic solutions that cause combinatorial explosion .

Still in the handwritten draft Turing says that the purpose of his note is, rather, to counter the then
dominant idea that the existence proof of normal numbers provides no example of them. And he
adds that the arguments in the note, in fact, follow the existence proof fairly closely. Here Turing is
obviously referring to the proof of the measure of normal numbers —a version of this proof appears
in the book by G.H.Hardy and E.M.Wright (1979), which had its first edition in 1938—.

There is a letter exchange5 between Hardy and Turing, where Hardy recalls he searched the
literature when Champernowne was doing his work “but could not find anything satisfactory any-
where”. Hardy’s letter ends saying that his “feeling is that Lebesgue made a proof himself that never
got published”. Actually, Henri Lebesgue constructed a normal number in 1909, but didn’t publish
it until 1917. In the same journal issue, Wacław Sierpiński presented his example of a normal num-
ber, based on a seemingly simpler but equivalent characterization of normality Both, Lebesgue
and Sierpiński, gave a partially constructive proof of the measure of the set of normal numbers,
and defined their respective examples as the limit of a set that includes all non-normal numbers
—this limit point is outside the set—. Their examples were not finitarily defined. At that time com-
putability theory was not even born, so it is not surprising that neither Lebesgue nor Sierpiński used
a stronger notion of constructiveness. However, these antecedents may explain why Turing did not
publish his construction.

Although Turing’s note is incomplete, it is correct except for some minor technical errors. In
Becher et al. (2007) we completed it by giving full proofs and corrected the errors. In doing so
we tried to recreate Turing’s ideas as accurately as possible. Turing proves two theorems. The first
provides a finitarily based method to construct a set of normal real numbers in the unit interval, of
arbitrary large measure.

Theorem 2. We can find a constructive function c(k,n) of two integer variables with values in
finite sets of pairs of rational numbers such that, for each k and n, if Ec(k,n) = (a1,b1)∪ (a2,b2)∪

...(am,bm) denotes the finite union of the intervals whose rational endpoints are the pairs given by
c(k,n), then Ec(k,n) is included in Ec(k,n−1) and the measure of Ec(k,n) is greater than 1− 1/k. And
for each k, E(k)=

⋂
n Ec(k,n) has measure 1− 1/k and consists entirely of normal numbers.

3 Turing’s underlining.
4 To prove it normal in the scale of ten, Champernowne ingeniously bounds the number of occurrences of each block of
digits in the initial segments of the sequence. In this proof it is crucial to know, explicitly, the digit in each position of
the sequence. The technique is not relevant to Turing’s note.
5 Letter sent by G.H.Hardy to A.M.Turing, dated June 1, Trinity College, presumably in the late 1930s. Hardy answers
a letter from Turing of March 28, apologizing for not responding earlier and for not giving him a definitive satisfactory
response. It is in Turing’s archive in King’s College and available in the digital archive with code AMTD/D/5 image 6.
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The construction is uniform of the parameter k —devoted to fix the measure— and it is done
by computable approximations. The idea is as follows: Turing prunes the unit interval by stages.
It starts with the set Ec(k,0) equal to the whole unit interval. At stage n, the set Ec(k,n) is the finite
approximation to E(k) that results from removing from Ec(k,n−1) the points that are not candidates
to be normal, according to the inspection of an initial segment of their expansions. At the end of this
infinite construction all rational numbers have been discarded, because of their periodic structure.
All irrational numbers with an unbalanced expansion have been discarded. But also many normal
numbers are discarded, because their initial segments remain unbalanced for too long. Turing covers
all initial segment sizes, all scales, and all blocks, by increasing functions of the stage n. And
puts a decreasing bound on the acceptable discrepancy between the actual number of blocks in the
inspected initial segments and the perfect number of blocks expected by the property of normality.
These functions (initial segment size, scale, block length and discrepancy) must be such that, at
each stage n, the set of discarded real numbers has a small measure. To bound this measure Turing
uses a constructive version of the Strong Law of Large Numbers. Thus, at each stage, finitely many
intervals with rational endpoints and very small measure are removed. Turing tailors the sets Ec(k,n)
so as to have measure greater than 1− 1/k. The set E(k) is the limit of this construction, hence it is
the countable intersection of the constructed sets Ec(k,n), and it consists entirely of normal numbers.

In a general perspective, the proof of Theorem 1 conveys the impression that Turing intuitively
knew, ahead of his time, that traditional mathematical concepts specified by finite approximations,
such as measure or continuity, could be made computational. This line of research has become main-
stream and has developed under the general name of effective mathematics. In particular, Turing’s
construction in Theorem 1 is precursory in the theory of algorithmic randomness that started in the
1960’s. Although there are variants, the currently most accepted definition of randomness is due to
the different but equivalent formulations given by Per Martin-Löf and Gregory Chaitin. Intuitively,
a real number is random when when it exhibits the almost-everywhere properties of all reals. A
random real number must pass every test of these properties. Martin Löf had the idea to focus just
in properties definable in terms of computability: a test for randomness is a uniformly computably
enumerable sequence of sets whose measure converges to zero. A real number is not random if it
belongs to each of the sets of some test. Astonishingly, Turing’s construction in Theorem 1 leads
immediately to a test for randomness: the k-th set of the test is the complement of the set E(k) in
the unit interval. The measure of the k-th set is 1/k, which tends to zero as k increases. The set of
non-normal numbers is included in each set of the test because, for each k, E(k) consists entirely
of normal numbers. By this test, if a number is not normal, then is not random. Thus, randomess
implies normality.

Turing’s second theorem gives an affirmative answer to the then outstanding question of whether
there are computable normal numbers, and provides concrete instances. In fact, it gives much more:

Theorem 2. There is an algorithm that, given an integer k and an infinite sequence θ of zeros and
ones, produces a normal number α(k,θ) in the unit interval, expressed in the scale of two, such that
in order to write down the first n digits of α(k,θ) the algorithm requires at most the first n digits
of θ . For a fixed k these numbers α(k,θ) form a set of measure at least 1− 2/k.

Our reconstruction of the proof of Theorem 2 in the aforementioned publication Becher et al.
(2007) supersedes J.L. Britton’s editorial notes in the Collected Works (references 7 to 12 on page
119, elaborated in pages 264 and 265), where it is asserted that the proof given by Turing is
inadequate, and speculated that the theorem could indeed be false.

Turing’s algorithm is uniform in the parameter k and it receives as input an infinite sequence
θ of zeros and ones. The algorithm works by stages. The main idea is to split the unit interval by
halves, successively. It starts with the whole unit interval and at each stage it chooses either the
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left half or the right half of the current interval. The sequence α(k,θ) of zeros and ones output by
the algorithm is the trace of the left/right selection at each stage. The invariant of the algorithm is
that the intersection of the current interval with the set E(k) of normal numbers of Theorem 1 has
positive measure. To ensure this condition at stage n the algorithm uses the finite approximation
Ec(k,n) of the set E(k). The algorithm chooses the half of the current interval whose intersection with
Ec(k,n) reaches a minimum measure that avoids running out of measure in later stages. In case both
halves reach this minimum, the algorithm uses the n-th symbol of the input sequence θ to decide.
Since the chosen intervals at successive stages are nested and their measures converge to zero, their
intersection contains exactly one number. This is the number α(k,θ) output by the algorithm.

When the input θ is a computable sequence —Turing puts the infinite sequence of all zeros—
the algorithm produces a computable normal number. To prove that for a fixed k, the set of output
numbers α(k,θ) for all possible inputs θ has measure at least 1− 2/k, Turing bounds the measure
of the unqualified intervals up to stage n, as the n first symbols of the sequence θ run through all
possibilities. The algorithm can be adapted to intercalate the symbols of the input sequence at fixed
positions of the output sequence. Thus, one obtains non-computable normal numbers in each Turing
degree.

The time complexity of the algorithm is the number of needed operations to produce the n-th
digit of the output sequence α(k,θ). This just requires to compute, at each stage n, the measure
of the intersection of the current interval with the set Ec(k,n). Turing gives no hints on properties
of the sets Ec(k,n) that could allow for a fast calculation of their measure. The naive way does the
combinatorial construction of Ec(k,n), in a number of operations exponential in n. Turing’s algorithm
verbatim would have simple-exponential complexity, but its correctness proof is missing in Turing’s
note. Our reconstruction of the algorithm —that we give together with its correctness proof— has,
unfortunately, double-exponential time complexity —because the number of intervals we consider
in Ec(k,n) is exponentially larger than in Turing’s literal construction—.

The computable reformulation of Sierpiński’s normal number that we gave in Becher and
Figueira (2002) also has double-exponential time complexity. A theorem of Strauss (1997) asserts
that normal numbers computable in simple-exponential time do exist, but this purely existential
result yields no specific instances. The problem of providing an example of an easily computable
normal number (normal to every integer scale) is, still, unresolved.
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Turing’s Treatise on the Enigma (Prof’s Book)
(unpublished, ca. 1940)

Frode Weierud on Alan Turing, Dilly Knox, Bayesian statistics,
decoding machines and —

PROF’S BOOK: SEEN IN THE LIGHT
OF CRYPTOLOGIC HISTORY

1. Introduction

‘Turing’s Treatise on the Enigma’, also called Prof’s Book, was shrouded in secrecy for almost
60 years. Internal evidence suggests that Alan Mathison Turing wrote this Enigma Treatise during
the late autumn of 1940. Some of the material he refers to, such as the Railway Enigma – the
rewired version of the commercial, unsteckered Enigma machine used by the German railways,
was first broken into in August 1940. The attack is reported to have been made by Alan Turing and
Peter Twinn, and it took place in Hut 8, the Bletchley Park (BP) hut doing cryptanalytical work on
the German Naval Enigma, then under Turing’s command (Batey, 2009).

2. Turing declassified

On 4 April 1996, more than 1.3 million pages of declassified documents were released to the public
by the US National Archives and Record Administration. The collection was very varied in both
content and scope; there was a lot of trivia but also the occasional gold nugget, such as ‘Turing’s
Treatise on the Enigma’ and Patrick Mahon’s ‘The History of Hut Eight: 1939–1945’.

That Turing had worked at the Government Code and Cypher School (GC & CS) during the
war was well known in 1996. Andrew Hodges’ biography of Alan Turing (Hodges, 1983) that was
published in 1983 and the book by Gordon Welchman (1982) published the year before, had both
given Alan Turing the credit for developing the Turing–Welchman Bombe and for making the first
break into an intractable problem – German Naval Enigma. Apart from Turing’s unpublished paper
‘On Permutation Groups’, no documents relating to his work at GC & CS during the war had then
been discovered.

Welchman’s book explained how the Bombe worked and how cribs, probable words in the mes-
sage, were used to construct menus. The menu was the ‘program’ that told the operator how to
connect the electrical circuits such that the Bombe could attempt to find the Enigma key that had
been used to encipher the crib and produce the intercepted ciphertext. The groundbreaking work of
the Poles had also been revealed in several books (Bertrand, 1973; Kozaczuk, 1984; Paillole, 1985)
and articles, but very little was known about the actual cryptanalytical techniques. The only public
knowledge was that if two or more messages were enciphered on the same key, or if a very long
crib could be obtained, then the machine’s wheel wirings could be recovered. But by what ‘magic’
nobody fully knew, until the Prof’s Book released its secrets.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00017-5
c© 2013 Elsevier Inc. All rights reserved.
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3. The pre-war heritage

Initially, we considered the theories and methods as Turing’s own even if he never made such a
claim. At BP he worked with cryptanalysts such as Dillwyn (‘Dilly’) Knox, who initially was his
boss, Tony Kendrick, Peter Twinn, John Jeffreys, Gordon Welchman and others who would also
have contributed to this work. However, GC & CS had worked on the Enigma problem before Alan
Turing joined. In 1979 Sir Harry Hinsley revealed the existence of a pre-war Enigma history at
GC & CS; he says: ‘In 1937, GC and CS broke into the less modified and less secure model of this
machine [Enigma] that was being used by the Germans, the Italians and the Spanish nationalist
forces’ (Hinsley et al., 1979, p. 54).

Today our knowledge has improved. The first four chapters of ‘Turing’s Treatise on the Enigma’
are not original works by Alan Turing, but are based on work Hugh Foss and Dilly Knox did in
the late 1920s and early to mid 1930s. The English interest in the cipher machine Enigma invented
by Dr Arthur Scherbius in 1918 and commercialized in the early 1920s seems to have started at a
very early date. In 1949 Hugh Foss wrote a report where he tells of his study of the ‘small Enigma’,
an Enigma C, some time in 1927 (Erskine and Smith, 2011; Foss, 1949). Hugh Foss studied the
machine with the aim of assessing its security and to determine if it was suitable for adoption by
the British. He wrote it all up in a report (Foss, 1928) in which he showed that if the wiring was
known a crib of 15 letters would reveal the identity and setting of the right-hand wheel, and with
a crib of 180 letters it was possible to determine the unknown wiring of the right-hand and middle
wheels. As he says: The methods I used were rather clumsy as they were geometrical rather than
algebraical and, when Dilly Knox came to study the subject ten years later, he invented the ‘rods’
and the process known as ‘buttoning up’, which used the same properties as I had done, but did so
in a more effective way.

4. Rebuilding on old foundations

The comic strips Turing mentions in Chapter 1 are the paper strips that Hugh Foss used during his
study in 1927, and in Chapter 2 he introduces the more practical rods that Dilly Knox developed in
the mid 1930s. Chapter 3 is devoted to the more difficult method of ‘boxing’ and ‘buttoning up’ that
also were developed by Dilly Knox in this period, but which are based on the original geometrical
techniques using rectangles developed by Hugh Foss. Dilly attacked the commercial Enigma K
machines used by the Italians and the Spanish nationalist forces in 1937, and he recovered the
wiring of the three wheels being used in the Italian machine (Fuensanta et al., 2010). However, all
attempts to break into the Enigma traffic of the German Naval units that operated in the Spanish
waters during this period failed.

This new interest in the German service Enigma resulted in renewed contacts with the French
intelligence service. In the autumn of 1938, the French furnished two Enigma instruction manuals
from 1930 and some sample encipherments. The encipherments were made by successively enci-
phering every letter on the Enigma keyboard, a total of 26 letters, at different starting positions but
with the same internal machine settings. This gave the idea to the attack that Turing describes in
Chapter 3 as the Saga. One manual, on the direction for use of the Enigma keys, was of interest
as it contained a 90-letter sample plaintext message and its exact encipherment together with the
internal machine settings and the chosen message key (Batey, 2009, p. 170). One would expect such
a sample to be fictive, the ciphertext would be just random cipher groups, but against all rules it had
been enciphered on a real, operational Enigma machine.

In the autumn of 1938, well before the British learned that the Poles had broken the Enigma,
they attempted to use the ‘boxing’ and ‘buttoning up’ methods on this message to recover the wheel
wirings. The process involved taking the recovered wheel constatations after the boxing had been
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completed and transforming them with the diagonal of the machine, the wiring of the keyboard
letters to the entry wheel contacts. This would strip off the wiring of the entry wheel and result
in a pure wheel wiring. Everybody had a go at this; Knox, Foss, Kendrick, Twinn and Turing all
tried, but they all failed. It was only in July 1939 that they learned from the Poles that the diagonal
was ABCDEF etc. in strict alphabetical order instead of QWERTZU etc. in the German keyboard
order, as in the commercial machine. With this crucial information Peter Twinn recovered the wheel
wirings in a couple of hours.

Turing reported to BP on 4 September 1939 and there he immediately started to work under
Dilly Knox in the Cottage – a part of the stable-yard at the BP mansion. His great wish was to tackle
the German Navy Enigma, which due to its intricate indicating system was a lot more difficult. Until
May 1937 the German Navy used the same indicating system as the other two services with double
enciphered message settings, so-called ‘throw-on’ indicators, but from then on they started to use
message settings selected from a code book and to encipher the message indicator with changing
bigram tables. Turing got a place for himself in the stable loft of the Cottage where he could work
alone and in peace. He was not good at socializing. He did not attend the coffee breaks in the
Cottage or the meals in the mansion, so two of Dilly’s girls rigged up a pulley to send up coffee and
sandwiches in a basket (Batey, 2009). His relationship with Knox seems to have been cordial but
Dilly apparently had some difficulties in keeping him under his command, writing: Turing is very
difficult to anchor down. He is very clever but quite irresponsible and throws out suggestions of all
sorts of merit. I have just, but only just, enough authority and ability to keep his ideas in some sort
of order and discipline. But he is very nice about it all (Batey, 2009, p. 94).

5. Inventing modern tools

Turing not only worked on Naval Enigma; he also attacked the problem of mechanising the process
of finding the daily Enigma keys. The Polish Bomba, which was based on the peculiar ‘throw-on’
indicators, was very limited. He therefore embarked on designing a new key-finding machine, the
Turing–Welchman Bombe, which he describes in detail in Chapter 6. This must have started already
when he still was in the Cottage. While Knox and John Jeffreys were busy preparing the modified
Zygalski sheets, which Turing describes in Chapter 5, Turing was designing his modified Bombe.
On 1 November 1939, the Cottage team – Knox, Twinn, Welchman, Turing and Jeffreys – wrote a
memorandum setting out the required mechanical aids for solving the Enigma problem; a 30 Enigma
Bombe machine is one of the items.

This was probably Turing’s greatest contribution. While Knox and the others were very much
rooted in the manual cryptanalytical techniques, Turing was the visionary who was looking for
machines to do the work. However, Turing made another major contribution, which in term had a
much more profound and longer lasting influence on cryptanalysis than the Bombe; he introduced
Bayesian statistics in this field. He first applied Bayesian statistics on Naval Enigma where the
process Banburismus was used to identify the right-hand and middle wheels such as to cut down
the number of wheel orders that had to be run on the Bombe. Turing mentions Banburismus in
Chapters 6 and 7, but he does not give any description of it unless it has been lost in one of the few
missing pages of the treatise. However, Mahon (1945) and Alexander (1945) give reasonably good
explanations. The term Bayesian statistics had not yet been coined in 1940 and it probably would
not have been used as Bayes’ Rule was in ill repute with most statisticians at the time (Bertsch,
2011). But that it was Bayes’ Rule Turing used and that he was fully aware of this fact is illustrated
by the question his statistical assistant, Irving ‘Jack’ Good, asked Turing one day: ‘Aren’t you
essentially using Bayes’ theorem?’ Turing answered: ‘I suppose’ (Bertsch, 2011). Probably few
people at the time realized that Banburimus was Bayes’ Rule in disguise, hidden through the use of
Turing’s weight of evidence measured in his invented units of ban, centiban and deciban. His weight
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of evidence was also used in the method known as Turingery or Turingismus that he invented to
deduce the wheel patterns of the Lorenz cipher machine, SZ 42 or Tunny as it was called at BP. The
Bayesian seeds that Turing sowed in 1940 grew solid roots in the cryptanalytical community and
Jack Good, who became a high priest of Bayesian statistics, probably continued Turing’s work when
he was employed by Government Communications Headquarters (GCHQ) from 1948 to 1959. After
the war Jack Good tried to make Turing’s wartime statistical work better known, but unfortunately
in very heavy disguise. And Good probably did not tell us all, because some work of Alan Turing
still remains classified. Record group HW 25, at the British National Archives in Kew, lists two
reports by Alan Turing with the titles ‘Report on the applications of probability to cryptography’
(Turing, 1946b) and ‘Paper on statistics of repetitions’ (Turing, 1946a); both are retained by GCHQ
under section 3(4) of the Public Records Act 1958. What new surprises do they contain? With some
luck we might soon know.1
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EXCERPTS FROM THE ‘ENIGMA PAPER’2

1. Excerpt 1

Page 97 contains the heading ‘A mechanical method. The Bombe’ and reveals the crucial idea that
defeated the plugboard complication.

Turing first gives a sample 25-1etter Enigma cipher text with its ‘crib’ or guessed plaintext set
against it.

The ciphertext is D A E D A Q O Z S I Q M M K B I L G M P W H A I V
The plaintext is K E I N E Z U S A E T Z E Z U M V O R B E R I Q T
(keine Zusätze zum Vorbericht)

Turing explains: ‘. . . a method of solution will depend upon taking hypotheses about parts of
the keys and drawing what conclusions one can, hoping to get either a confirmation or a contra-
diction. . .’ The method depends absolutely upon making a correct guess about the corresponding
short piece of plaintext.

2 The accompanying descriptions are reproduced from Volume 4 of the Collected Works – see Andrew Hodges’ Preface
to the excerpts, pp. 225–229.
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2. Excerpt 2

Page 99 shows (in Fig. 59) Turing’s diagram of the logical chain of implications that could be
deduced from the piece of guessed plaintext as on page 97, and (in Fig. 60) the basic idea of a
Bombe to exploit such implications.

The closed cycles in Turing’s diagram, for instance Z-S-A-E-M-Z, correspond to chains of
logical implications that yield consistency conditions independent of the plugboard.

They make it possible to reject a rotor position, as inconsistent with the ciphertext and plaintext
data, even though the plugboard remains unknown.

When these chains of logical implications are exploited, almost every ‘wrong’ rotor position will
be rejected, leaving just a few to be tested in detail. Among them, if the plaintext has been guessed
correctly, will be the correct rotor setting.

Turing’s hazy sketch of the Bombe does not however explain the crucial ideas that he and G.W.
Welchman later used to mechanise the process of following chains of logical implications to the
full; these are described in the following pages.
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3. Excerpt 3

Page 104 describes the critical problem of how to ‘scan’ the electrical output from the Bombe to
detect the possibility of a correct rotor position. Turing first describes ‘serial scanning’, in which
each of the 26 different plugboard hypotheses (‘each Stecker value’) has to be tried in turn, and then
raises the possibility of ‘simultaneous scanning’.
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4. Excerpt 4

Page 107 describes how ‘simultaneous scanning’ can give rise to the ‘very useful’ principle that
‘all the deductions drawn will then be false, and those that remain will stand out clearly as possible
correct hypotheses’.
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5. Excerpt 5

Page 112 describes Welchman’s idea for exploiting the self-inverse property of the Enigma by using
the Diagonal Board.
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6. Excerpt 6

Pages 136–7 describe the context in which Turing made his successful deduction of the bigram
key-system in the Naval Enigma.
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Further Aspects of the Work and Its History

Tony Sale1 delves into the cryptographic background to —

ALAN TURING, THE ENIGMA AND THE BOMBE

The mathematician Alan Turing had been identified, at Cambridge, as a likely candidate for code-
breaking. He came to the Government Codes & Ciphers School, (GC&CS), in Broadway in London
a number of times in early 1938 to be shown what had already been achieved. He was shown the
rodding method and some intercepts of German signals enciphered on the German forces Enigma
that had the stecker board. Dilly Knox already knew that the German forces Enigma rotors were
wired differently to the commercial rotors, did not know the entry rotor order and apparently did
not know the double encipherment of the message key.

Alan Turing had been thinking for some time of ways to attack Enigma. The main thrust of his
ideas was based around what is now called ‘known plain text’ and what became known in Bletchley
Park as a ‘crib’.

Turing realised that if traffic analysis could be used to predict the text of some parts of the
enciphered messages, then a machine could then be used to test, at high speed, whether there were
any possible settings of the wheels, which translated the enciphered characters into the deduced
characters. More importantly, using his mathematical skills, he showed that it was far quicker to
prove that a transformation from ciphered to deduced text precluded a vast number of possible
wheel combinations and starting positions.

1. Letter pairs

GC&CS already had a few intercepts and at least one plain text/ciphertext pair, reputed to have been
smuggled to England by a Polish cipher clerk.

Among the characteristics that Turing had found was that occasionally the same cipher/plain text
pair of characters occurred at different places in the same message. These were known as ‘clicks’
in Bletchley Park.

. . . . . J Y C Q R P W Y D E M C J M R S R

. . . . . S P R U C H N U M M E R X E I N S

. . . . . . . | . | . . . . | . | . | . . .

Remember that because the Enigma machine is reversible, R→C is the same as C→R and M→E
the same as E→M.

1 We are very grateful to Tony for his permission to use this unpublished commentary from his webpages, and see its
inclusion here as a small memorial to his invaluable work for Bletchley Park.
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Whether such pairings occur is determined by the rotor order and the core rotor start positions.
Turing realised that conversely the actual rotor order and core rotor start position could be arrived
at by trying all configurations to see if these pairings were satisfied. This would only work for an
unsteckered Enigma or for a Steckered Enigma in which C and R were unsteckered. In the early
days of Enigma, only six letters were Steckered so this could happen.

Obviously, just setting up a single Enigma machine and trying by keying in would take an impos-
sibly long time. The next step was to consider how the tests could be carried out simultaneously for
a particular Enigma start configuration.

Testing for letter pairs required a method for rapidly determin-
ing whether such a configuration was true or false. This led to the
concept of electrically connecting together a number of Enigma
machines.

This was achieved by using an ‘opened out’ Enigma.

In the actual Enigma, electrical current enters and leaves by
the fixed entry rotor because of the reflector or Umkerwaltz
(∪) and this precluded connecting Enigmas together. In Turing’s
opened out Enigma, the reflector had two sides; the exit side being
connected to three rotors representing the reverse current paths
through the actual Enigma rotors. This gave separate input and
output connections and thus allowed a number of Enigmas to be
connected in series.

In the Letchworth (so-called because the British Tabulating
Machine factory that made them was in the town of Letchworth),
implementation, the clever thing was to include both forward and
backward wiring of an Enigma rotor in one drum. The connections
from one drum to the next were by four concentric circles of 26
fixed contacts and four concentric sets of wire brushes on the drum.
Three sets of fixed contacts were permanently wired together and to
the 26 way input and output connectors. Three drums, representing
the original Enigma rotors, could now be placed on shafts over the
contacts and this was an opened out Enigma with separate input and
output connectors.
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To return to the problem of checking whether C enciphers to R, (written as C→R), first an offset
reference from the start is required. A lowercase alphabet written over the ciphertext gives this.

a b c d e f g h i j k l m n o p q
J Y C Q R P W Y D E M C J M R S R
S P R U C H N U M M E R X E I N S
. . | . | . . . . | . | . | . . .

This shows that C→R at offset c, e and l from the start and M→E at j, k and n. The opened out
Enigma allows an electric voltage to be applied to the input connection ‘C’ and a set of 26 lamps
to be connected to the output connector. If the R lamp lights then the drums are in an order and
position such that C enciphers to R.

With a single Enigma this can occur at a
vast number of drum settings.

However, the crib allows an opened out
Enigma to be set up for each occurrence of
C→R and they can all be tested simultane-
ously.

The opened out Enigmas are all set up with the same drum order and the drums are then turned to
the same settings for the top (left hand) and middle drums but the bottom (right hand) drums are
turned to the offset letter along the crib at which the test is to be made. All the inputs are connected
in parallel and a voltage applied to the ‘C’ contact. Then a set of relays connected to each of the ‘R’
output contacts tests to see if all the R contacts have a voltage on at the same time. When they do, a
position of the drums has been found, which satisfies the crib at the points chosen for C→R.

If they do not, then all the bottom drums are advanced one position and the test is tried again.
After 26 positions of the bottom drum, the centre drum is advanced one position and this continues
until all drum positions have been tested. Then the drums are changed to try a different drum order.
A very long process by hand, which obviously asks to be automated.

This can be achieved by an electric
motor driving all the top drums simulta-
neously and then ‘carrying’ to the middle
drum every 26 positions, with a further
carry from the middle to bottom rotor
when this has turned through 26 posi-
tions. In this way, the drums can be driven
through all 17,576 possible positions and
the occurrence of a correct position for all
C→R in the crib can be checked.

But there are still a large number of positions that satisfy the C→R test.
What is needed is a better method for finding the rotor order and rotor setting.
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2. Letter loops

An extension of the concept of letter pairs is where letters enciphered from one to another at different
places in the crib resulting in loops of letters.

a b c d e f g h i j k l m n o p q
J Y C Q R P R Y D E M C J M R S R
S P R U C H N U M M E R X E I N S
. . . . . . | . . . . . . . . | |

For instance, R→N at g, N→S at p and S→R at q making a loop. A diagram showing such loops
was known as a menu. But if Steckers are being used this is actually:

R Steckered to S1 enciphers to S2 Steckered to N at g,

N Steckered to S2 enciphers to S3 Steckered to S at p,

S Steckered to S3 enciphers to S1 Steckered to R at q.

The problem now is to find the core positions Sl, S2, and S3. If these can
be found then they are the Steckers of the menu letters.

But Turing realised that there was another
way of looking at interconnected opened
out Enigmas and that this way found
Stecker connections.

Take the loop example above of R→N→S→R. Three opened out Enigmas are connected serially
one to the other and the bottom drums are turned to the offsets g, p and q. If the correct drum order
is being used, then there will be some start position of the top, middle and bottom drums, which
corresponds to the actual original Enigma core rotor positions having allowed for the difference
between the original Ringstellung and ZZZ. At this point, the core rotor positions will be the same
as the original Enigma core rotor positions and the encipherments will then be the same.

This means that a voltage placed onto the S1 input of the first opened out Enigma, which is the
Stecker of the input R, will come out on the S2 terminal, which is the Stecker of N. Since this is
connected to the next opened out Enigma, this goes in on its S2 terminal and comes out on the S3
terminal, which is the Stecker of S. This S3 input now goes through the third opened out Enigma
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and comes out at Sl, which is the Stecker of R. Thus, the drum positions correspond to the original
Enigma positions where S1→S2→S3→S1.

The magic trick is now to connect the output terminals of the last opened out Enigma back to
the input of the first Enigma. There is now a physical wired connection through the opened out
Enigmas from the S1 input terminal to the S1 output terminal, which is now connected to the S1
input terminal. This forms a loop of wire not connected to any other terminals on any opened out
Enigma.

Thus, if a voltage is placed on S1 at the input it goes nowhere else, just appears on the S1, S2
and S3 terminals. If a strip of 26 lamps is connected at the joins between opened out Enigmas then
the S1, S2 and S3 lamps will light confirming the voltage path through S1, S2 and S3.

Now comes Turing’s really clever bit. If S1 is not known and the voltage is placed on, say, A
then this voltage will propagate through the opened out Enigmas because they are joined around
from output to input, but CANNOT reach the S1, S2 and S3 loop because it is not connected to any
other terminals. The voltage runs around the wires inside the opened out Enigmas until it reaches a
terminal that already has the voltage on it. The complete vastly complex electrical network has then
reached a steady state.

Now, if the lamp strip is connected at the joins of the opened out Enigmas, lots of lamps will
light showing where the voltage has reached various terminals, but the appropriate S1, S2 and S3
lamps will not light. In favourable circumstances 25 of the lamps will light. The unlit lamp reveals
the core letters, S1, S2 or S3. These are interpreted as the Steckers of the letters on the menu.

When the drum order and drum positions are correct compared to that of the original core
Enigma encipherment, there is just the one wired connection through the opened out Enigmas,
at connections S1, S2 and S3. But Turing also realised that such a system of joined opened out
Enigmas could rapidly reject positions of the drums, which were not the correct ones.

If the drums are not in the correct position, then the loop S1, S2, S3 does not exists and the
voltage can propagate to these terminals as well. Thus it is possible for the voltage to reach all 26
terminals at the join of two of the opened out Enigmas. This implies that there is no possible Stecker
letter and therefore this position of the drums cannot be correct. But because of the way the cross
wiring inside real Enigma rotors is organised, closed loops of connections can occur, which are
not the loops corresponding to the actual Stecker connections being looked for. The configuration
of opened out Enigmas cannot distinguish between these spurious loops and the correct Stecker
loop.

The test for a loop of possible Steckers at a particular drum order and rotor position is to see if
either only one or 25 of the lamps are lit. If all 26 lamps light, then this position can be rejected and
this rejection can occur at very high speed. The voltage flows around the wires at nearly the speed
of light so that the whole complex network stabilises in a few microseconds. What was required
was some way of automating the changes of drum position for all the drums in synchronism and for
rapidly sensing any reject situation.

3. The Bombe

In 1939, the only technology available for achieving electrical connections from rapidly changing
drum positions was to use small wire brushes on the drums to make contact with fixed contacts
on the Test Plate. This was a proven technology from punched card equipment. High-speed relays
were initially the only reliable devices for sensing the voltages on the interconnections. Thermionic
valves were tried but were not reliable enough in 1939. Later, thyratron gas-filled valves were used
successfully and these were about 100 times faster than the high-speed relays.

The British Tabulating Machine Co (BTM) had designed the opened out Enigmas and built the
Test Plate. The project to now build a complete search engine, which became known as a Bombe,
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came under the direction of H H (Doc) Keen. The machine, known as Victory, was completed by
March 1940 and delivered to Bletchley Park. It was first installed in one end of Hut 1. Now the work
began on finding out how to use this new device. Results at first were not very encouraging. The
difficulties in finding cribs meant that when a menu was constructed between intercepted enciphered
text and a crib, it usually did not have enough loops to provide good rejection and therefore a large
number of incorrect stops resulted.

4. The Diagonal Board

Then Gordon Welchman came up with the idea of the Diagonal Board. This was an implementa-
tion of the simple fact that if B is Steckered to G, then G is also Steckered to B. If 26 rows of
26 way connectors are stacked up, then any connection point can be referenced by its row letter and
column letter. A physical piece of wire can now connect row B element G to row G element B. The
device was called a Diagonal Board because such a piece of wire is diagonally across the matrix of
connections.

Now the double-ended Enigma
configuration knows nothing about
Steckers. It can only deduce rotor
core wiring positions which sat-
isfy the menu. However the pos-
sible Steckers such as R↔S1, can
by exploited by the Diagonal Board.
If the joins between double-ended
Enigmas are also connected into
the Diagonal Board at the posi-
tion corresponding to the original
cipher/plain text pair on the menu,
say R, then this can significantly
increase the rejection of incorrect
double-ended Enigma drum posi-
tions.

It has already been shown that if a set of drum positions has been found where S1→S2→S3→S1,
then a physical wired connection has been made through the joins between opened out Enigmas at
S1, S2 & S3. The deduction from this is that R is Steckered to S1 etc. Now, if the join representing
R on the menu is plugged to the R row of the Diagonal Board, a physical piece of wire will connect
through the Diagonal Board from row R at position S1 to row S1 at position R. Since S1 is not
plugged to anything, the voltage on this wire goes nowhere else. Similarly for the other joining
positions between opened out Enigmas. Thus, the Diagonal Board does not affect the finding of the
correct drum positions.

But if the drums are not in the correct position to make the connection S1, S2 and S3, then a
voltage travelling around the network and finally arriving at say row N position S will be passed
via the Diagonal Board wire to row S position N and will thus continue through the wiring in the
opened out Enigmas on both sides of the join S. The Diagonal Board thus greatly contributes to the
voltage flow around the network of wires in the opened out Enigmas due to the extra connectivity
that it provides. This increases the rejection of drum positions, which do not satisfy the menu.
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Klaus Schmeh looks at –

WHY TURING CRACKED THE ENIGMA
AND THE GERMANS DID NOT

The success of Alan Turing and his fellows in cryptanalyzing the Enigma was only possible, because
the Germans ignored the weaknesses of their most important cipher machine. This work examines,
why they made this fatal mistake.

In October 1942, a young mathematics student named Gisbert Hasenjaeger started his work at
OKW-Chi, a cryptologic unit of the German Armed Forces in Berlin. After a training in cryptology,
Hasenjaeger was put into the newly founded department for security control of their own encryption
methods. In this department, four employees checked the three most important German encryption
machines of the time for possible weak spots. Hasenjaeger of all people, greenhorn at OKW-Chi,
attended to the Enigma, while another mathematician was to examine the Siemens & Halske T52
(also known as ‘Geheimschreiber’) and the Lorenz SZ-42 (also known as ‘Lorenz machine’).

The Enigma variant Hasenjaeger examined worked with three rotors and did not have a plug-
board. The Germans sold Enigmas of this type to neutral countries at that time, in order to procure
foreign currency. A message with a length of some hundred characters encrypted in this manner
was given to Hasenjaeger for analysis. Hasenjaeger indeed cracked the message: he found the cor-
rect rotor wiring and the correct rotor positions. After this succès d’estime Gisbert Hasenjaeger
continued to work on the Enigma, but made no further discoveries. Thus the most important weak
spot of the Enigma (the lack of fixed points due to the reflector) escaped the notice of the young
cryptologist.

As is well known, the British were much more successful in finding Enigma weaknesses. In
Bletchley Park near London, they cryptanalyzed several hundred thousand Enigma messages during
the war years. They used a special type of machine that simulated several Enigma copies simultane-
ously. The machine, which was loosely based on a Polish design named Bomba, is today sometimes
referred to as Turing Bombe (especially in Germany), because Alan Turing was the main constructor
of it. Apart from the Turing Bombes thousands of workers were involved.

1. Why did the Germans overlook Enigma weaknesses?

It is certainly an interesting question, why the British were so successful in cracking the Enigma,
whereas the Germans overestimated the security of their machine in a fatal way. One potential
explanation is that the Germans were generally not very good at codebreaking. However, this is
not correct. In fact, during World War II the Germans not only broke encryption machines like
the American M-209, the US voice encryption system A-3, a Russian voice encryption device
and some others, but they also deciphered numerous manual encryption systems including many
codes and nomenclators (Schmeh, 2007a). Like their rivals in Great Britain and the USA, Ger-
man cryptanalysts even constructed special machines that accelerated codebreaking processes
considerably.

Klaus Schmeh (born in 1970) is a German computer scientist and a leading expert on crypto history. His book
Codeknacker gegen Codemacher (W3L 2007) examines the history of cryptology; his book Versteckte Botschaften
(Dpunkt-Verlag 2008) deals with the history of steganography.

The author would like to thank Gisbert Hasenjaeger (1919–2006), Günter Hütter, Klaus Kopacz and Susanne Kisser.
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The story of Gisbert Hasenjaeger renders another possible explanation for the German failure:
The Germans did not put enough effort in challenging their own cipher machines. The discrep-
ancy is obvious: whereas at OKW-Chi one inexperienced cryptologist cared about potential Enigma
weaknesses, the British put forth their best mathematicians, including Alan Turing and Dilly Knox.
A workforce of several thousand people at Bletchley Park supported them.

The situation was similar for the two other important German encryption machines: the Lorenz
machine and the Geheimschreiber, as described, were examined by Hasenjaeger’s fellow – only
one person was responsible for two machines that were decisive for the outcome of the war. On
the British side John Tiltman, a leading cryptanalyst of his time, successfully dedicated himself to
the Lorenz machine. The Geheimschreiber, which played no important role for the British, raised
interest in Sweden, as the German Luftwaffe used it to protect the traffic between Germany and
Norway. Arne Beurling, a leading Swedish mathematics professor, cracked an early version of this
machine, while the Germans were not aware that it was seriously flawed.

Of course, it would be too easy to blame the failure of the Germans in detecting Enigma weak-
nesses just on the particular situation in one department at OKW-Chi. In fact, there is even evidence
showing that some German cryptologists knew that the Enigma could be cracked (Bauer, 2000).
However, even the critical experts had to admit that breaking the Enigma was only possible with
a huge amount of human resources and machine craft. Obviously, nobody expected the British to
actually employ this giant machinery. So, the main fault of the Germans was not that they overesti-
mated the security of the Enigma, but that they underestimated the efforts their enemies (particularly
the British) would take in order to break it.

Fig. 1: Gisbert Hasenjaeger was one of Turing’s opponents in World War II. However, the two did
not know about each other. (Source: Hasenjaeger)
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Nevertheless, in the last years of the war the doubts of some German cryptologists convinced the
military leaders to look for an Enigma replacement. The cipher machine that was developed now
was named Schlüsselgerät 41 (also known as Hitler Mill). However, the decision not only came too
late, but it was also difficult to put it into practice. As the war went on, it became more and more

Fig. 2: The Germans could have easily improved the security of the Enigma or replaced it by a
better design. If they had done so, Alan Turing may have never succeeded in breaking German
codes. (Source: NSA)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 1:39 Page 435 #23

Why Turing cracked the Enigma and the Germans did not 435

Fig. 3: The Hitler Mill, one of the best encryption machines of its time, was introduced to replace
the Enigma. However, it came too late. (Source: Schmeh)

difficult for the industry to produce, because raw material, energy and qualified staff were lacking.
At the end, only about 2000 Hitler Mills were built and delivered to the troops. The war was already
lost, when they were – if at all – put into service. So, the Hitler Mill did not bother the British,
although it was certainly one of the best cipher machines of its time and not breakable.

Although introducing an Enigma successor generally made sense, it obviously made the Ger-
mans blind to another serious mistake. Instead of replacing the Enigma, it would have been much
easier to improve it. In fact, this would even have been ridiculously easy. For instance, the Ger-
mans used an identical rotor wiring between the late 1920s and the end of World War II. If they
had changed the wiring once or twice a year, it would have made the cracking considerably harder.
Another, even simpler method, was also not employed: the Enigma had only one notch per rotor.
Had the Germans introduced additional ones (for instance two or three per rotor), it would have
improved security considerably.

There was even a more trivial way to improve the Enigma, as Gordon Welchman, a fellow expert
of Alan Turing, indicated: instead of using two-pole plug connections on the Enigma plugboard,
the Germans could have used one-pole ones (Welchman, 2000). The costs for this and other
improvements would have been close to zero, but the improvement in security would have been
considerable.

All in all, a number of small but fatal mistakes made the German encryption in World War II
insecure and thus affected the course of history. Without these mistakes the war might have lasted
longer and Germany might have become a victim of the atomic bomb (the attack on Hiroshima took
place only three months after the German surrender). Of course, Alan Turing also profited from the
German incompetence. His genius as a cryptanalyst is beyond controversy, but his abilities might
have been useless against an improved Enigma or a Hitler Mill.
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2. Too many cooks spoiled the broth

It is hard to determine in detail, why exactly the German cryptologists made such severe mistakes.
However, it is clear that there was a basic problem, which may have been the root of it all: the
Germans did not bundle their cryptologic efforts. While the British concentrated their codebreak-
ing activities in the GC&CS in Bletchley Park, the Germans did not have an equivalent institution.
In fact, there were at least 12 German cryptographic units that worked independently from each
other (Schmeh, 2007b). The most important German crypto group was the aforementioned OKW-
Chi. Similar units were operated by the Air Force (Luftwaffe), by German Post, by the secret
service (Abwehr) and other authorities. This separation led, among other things, to the situation
that OKW-Chi did not accept the Siemens Geheimschreiber because of security concerns, whereas
the Luftwaffe put it into service for highly secret information. For the same reason, Gisbert Hasen-
jaeger’s findings concerning the Enigma certainly were not known to many responsible German
cryptologists. It can only be imagined, what would have happened, if the Germans had concentrated
their Enigma expertise at one place. It is well possible that this would have led to improvements or
to an earlier replacement of the machine.

Only years after the war, when the Bundesrepublik was founded, the Germans proved to have
learned their lesson – although they still did not know that the Enigma had been broken. When in the
1950s a new German crypto authority was founded, all activities were concentrated at one place. The
authority was named ‘Zentralstelle für das Chiffrierwesen’ (ZfCh), which means ‘central authority
for cipher affairs’ – even the name indicated that it was planned as a centralized institution. It was
located in the new capital Bonn. This authority still exists, it is called ‘Bundesamt für Sicherheit in
der Informationstechnik’ (BSI) now. In the 1950s, some ZfCh staff members wanted to re-install
the Enigma (in a better version), but it was decided to use other machine designs instead.

Gisbert Hasenjaeger was not involved in these activities. In 1945, he resumed his studies of
mathematical logic in Münster. He became a scientific assistant before he qualified as a professor
in 1953. His further career led him to the University of Bonn and to Princeton University in the
United States. When details about Bletchley Park became public in the 1970s, Gisbert Hasenjaeger

Fig. 4: The Enigma plugboard worked with two-pole plug connections. One-pole ones would have
made the Enigma considerably more secure. (Source: Schmeh)
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Fig. 5: The Geheimschreiber and the Lorenz machine suffered from similar weaknesses as the
Enigma. The Germans used them anyway, and their enemies in World War II broke them.

finally learned that the British had cracked the Enigma in World War II. His comment: ‘I was very
impressed by the fact that Alan Turing, one of the greatest mathematicians of the 20th century, was
one of my main opponents.’
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Speech System ‘Delilah’ – Report on Progress
(A.M. Turing, 6 June, 1944, National Archives, box HW 62/6)

Andrew Hodges sets the scene for —

THE SECRETS OF HANSLOPE PARK 1944–19451

After March 1944 Turing was overall consultant for the work at Bletchley Park. But after August
1944, with the invasion of Europe secure, he spent more time with his hands on electronics, prepar-
ing himself for the design of an electronic computer. He did this at the MI6 base at Hanslope Park,
Buckinghamshire. With the assistance of Donald Bayley, a young electronic engineer, he built an
advanced speech scrambler of his own elegant design.

They called it the Delilah. This was at the suggestion of the young Cambridge mathematician
Robin Gandy, who was also working there. After 1948 Robin Gandy became Alan Turing’s student,
colleague and close friend.

Alan Turing was particular open about his being gay while working with Donald Bayley. The
young engineer was amazed at meeting someone who was open and ‘almost proud’ of it. He also
told me how in 1944 he left this as a private matter, but that if such a thing had happened after 1948
when new ‘security’ rules came into force, he would have had to report it. Donald Bayley spoke
further of this on the television programme made in 1992, The Strange Life and Death of Dr Turing,
and said how by 1952 homosexuality was ‘beyond the pale’ and disqualified anyone from secret
work. Alan Turing’s colleague Jack Good, however, said on the same television programme that
if the security authorities had known about Alan Turing’s homosexuality from the beginning, ‘we
might have lost the war’.

The author Arthur C. Clarke makes a similar claim in this foreword to a book on Artificial Intel-
ligence: ‘How ironic that Alan Turing, who perhaps contributed more than any other individual to
the Allied victory, would never have been allowed into Bletchley under normal security regulations.’

In a subsequent interview, Donald Michie has pointed out that the ‘security’ authorities did not
appear to worry about various other gay men at the Bletchley Park establishment, thus confirming
that such vetting only started after the Second World War.

1Editor’s note: The 1944 report on progress was followed by a final technical report, to be found in the National Archives.
It is not clear how much of the technical report is by Turing and how much by Donald Bayley. Andrew Hodges’
background comments are courtesy of the Alan Turing Scrapbook.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00018-7
c© 2013 Elsevier Inc. All rights reserved.
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TOP SECRET

Speech System ‘Delilah’ – Report on Progress

Research on ‘Delilah’ has been in progress since the beginning of May 1943. Up to now the work
has all been concentrated on the unit for combining the key with the speech to produce cipher (or
scrambled speech) and for recovering the speech from the cipher with the aid of the key. We have
now produced a unit for doing this; the same unit does duty both as scrambler and descrambler,
changing from the one to the other on throwing a switch. The unit uses seven valves and when
suitable rearranged will probably occupy a space of about 10′′× 8′′× 5′′. The greatest care has been
taken to avoid using more apparatus than is absolutely essential. It is possible that if this had not
been done, the present position might have been reached two or three months earlier, at the cost of
having an apparatus of about twice the present size.

Proposed Future Plans

(i) The most urgent job to be done now is the design of a unit for the production of key. How long
this will take is difficult to estimate, but it is hoped that it will not be so long as the making of
the combining unit. Six to nine months might be taken as a reasonable estimate.

(ii) When the time comes for point to point tests, a certain amount of work will have to be done
in testing the suitability of the audio stages of the wireless apparatus involved, and possibly
making some corresponding alterations. Some of this could be done concurrently with work
on the key unit.

(iii) The present combining unit, though reasonably satisfactory cannot be regarded as perfect. The
intelligibility could probably be improved by raising the frequency from 4 Kc/s to 6 Kc/s
(corresponding to changing the speech band passed from 2 Kc/s to 3 Kc/s). There will also
probably be small points to consider concerning production.

(iv) Whereas there may be some difficulty in the transmission of the speech scrambled by ‘Delilah’
she has another application where this question does not arise, viz. the scrambling of facsim-
ile. A facsimile scrambler would simply be a low frequency scrambler working at a pulse
frequency of about 300 cycles (say). To develop such a scrambler should be a matter of little
more than changing the values in the present unit.

It will be appreciated that these lines of action can only be followed one, or perhaps two, at a
time.

Suggested Form of Key

Some thought has been given to the problem of the form that they key should take. The original
plan that a ‘public key’ should be transmitted, which would be so hashed up before use as to be
unrecognisable, has now been abandoned, not so much for security reasons as on account of trans-
mission difficulties. It is now proposed to produce a periodic key with a rather long period e.g.

This text is c©Crown Copyright and is transcribed only for personal and academic research purposes.
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7× 8× 11× 13× 15× 17= 2,031,040 pulses or about 8 minutes. The nature of the key could be
set in advance by plugging to any one of a considerable number of alternative keys. There will
probably be something of the order of 1025 different possible keys. The key chosen will be changed
daily let us say, and also to some smaller extent before each conversation. Besides these changes
it is hoped to introduce an automatic partial key change whenever the transmit-receive key is oper-
ated. Without this device the various pieces of conversation would be in depth, and would in theory
present no difficulty to the cryptographer. For the same reason one speaker should be limited to at
most 8 minutes consecutive speech.

The period of key quoted above would be obtained by means of a number of multivibra-
tors synchronised with the main pulse of the scrambler itself, and having frequencies which are
1/7, 1/8 . . . 1/17 of the frequency of that pulse. The outputs of these multivibrators with the net-
works can be altered by the plugging. The outputs of the networks then go through another set of
networks, and the outputs of these are combined together with further plugging to give three differ-
ent signals. These three signals are then combined by intermodulation, and the result after limiting
is the key. This system has been devised to try and prevent any methods of breaking dependent
on separating the effects of the different multivibrators. It is thought that by methods of the type
described above a very high degree of security indeed can be obtained. There is certainly no com-
parison in security with any other scrambler of less than ten times the weight. For tank-to-tank and
plane-to-plane work a rather less ambitious form of key will probably be adequate. Such a key unit
might be of about the same size as the combining unit.

[ signed ] A. M. Turing

6th June 1944
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Examining the Work and Its Later Impact

Craig Bauer presents —

ALAN TURING AND VOICE ENCRYPTION:
A PLAY IN THREE ACTS

PROLOGUE

To properly understand Alan Turing’s involvement with voice encryption, it’s necessary to first
set the scene by describing earlier work carried out by others. Voice encryption, also known as
ciphony, goes back as far as the 1920s, when an analog system was put into use by AT&T. During
this decade inverters swapped high tones with low tones, and vice-versa. Expressing it more mathe-
matically, the frequency p of each component was replaced with s− p, where s is the frequency of a
carrier wave. A major weakness with this form of encryption is that tones near the middle are hardly
changed. So, that dull professor you remember not too fondly wouldn’t be able to speak securely
using an inverter, if his tone of choice was near the middle. Invertors only protected against casual
eavesdropping and could be easily inverted back by determined amateurs. There was no key as such
and inverters are not hard to build. In some cases, the devices were not even needed. With practice it
is possible to understand much inverted speech, even if it isn’t that old professor of yours speaking
in a montone.

AT&T and RCA offered a slightly more sophisticated scheme in 1937. Known as the A-3 Scram-
bler this system split the speech into five channels (a.k.a. subbands), each of which could be inverted,
and shuffled them before transmitting. However, this was still weak, and it was implemented in an
especially weak manner. Since there are only 5! = 120 ways to reorder the 5 subbands and 25

= 32
ways to decide which (if any) of the subbands will be inverted, we have a total of (120)(32) = 3,840
ways to scramble the speech Thus, the key space is way too small. If the attacker knows how the
system works, he could simply try all of the possibilities. Even worse, many of these keys failed to
garble the speech sufficiently to prevent portions of it from remaining understandable. Worst of all,
of the 11 keys deemed suitable for use, only 6 keys were used! They were applied in a cycle of 36
steps, each lasting 20 seconds, for a full period of 12 minutes.

Hence, like the inverters of the 1920s, the A-3 scrambler was understood to offer “Privacy, not
Security.” A good analogy is the privacy looks on interior doors of homes. If someone walks up to
a home bathroom that is in use, and the lock prevents the doorknob from turning, he’ll think,“Oh,
someone’s in there.” and walk away. Privacy is protected. However, there is no real security. Some-
one intent on entering that bathroom will not be stopped by the lock. In the same manner, a scrambler
would protect someone on a party line, but could not be expected to protect national secrets against
foreign adversaries.

When President Franklin D. Roosevelt and Prime Minister Winston Churchill spoke on the
phone, they needed real security, not just privacy, yet they initially used the A-3 Scrambler! It was
solved by the Germans by September 1941, after only a few months’ work. As the following quotes
show, allies on both sides of the Atlantic were aware of the problem.
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“The security device has not yet been invented which is of any protection whatever against the
skilled engineers who are employed by the enemy to record every word of every conversation
made.” - British foreign Office Memorandum, June 1942

“In addition, this equipment furnishes a very low degree of security, and we know definitely
that the enemy can break the system with almost no effort.” - Colonel Frank McCarthy,
Secretary to the Army General Staff, October 1943.

Given this knowledge, it’s natural to ask why they didn’t use something better. The answer is
that securing speech with encryption is much more difficult than encrypting text. There are several
reasons why this is so, but one of the most important is redundancy. Redundancy in speech allows
us to comprehend it through music, background noise, bad connections, mumbling, other people
speaking, etc. Text is about 50% redundant (in other words removing half of the letters from a given
paragraph does not prevent it from being reconstructed), but speech is much more redundant and it
is hard to disguise because of this.

Speech scrambled in the manner of the A-3 scrambler can be reconstructed using a sound spec-
trograph, which simply involves plotting the tones and reassembling them like a jigsaw puzzle. So,
although splitting the voice into more channels increases the number of possible keys, the attacker
could simply reassemble what amounts to a jigsaw puzzle with more pieces. A successful voice
encryption system would have to operate in a fundamentally different manner than inverting and
shuffling.

There was a very high cost associated with the lack of a secure voice system. Shortly before
the Japanese attack on Pearl Harbor, American cryptanalysts broke a message sent in the Japanese
diplomatic cipher known as Purple. It revealed that Japan would be breaking off diplomatic relations
with the United States. In the context of the times, this meant war. General Marshall knew he
needed to alert forces at Pearl Harbor to be prepared for a possible attack, but, not trusting the
A-3 scrambler, he refused to use the telephone. If the Japanese were listening in, they would learn
that their diplomatic cipher had been broken, and would likely change it. The United States would
thus lose the benefit of the intelligence those messages provided. The result was that the message
was sent by slower means and didn’t arrive until after the attack.

Act I: Sigsaly

Fortunately, the simpler problem of enciphering text had been mastered. A perfect system existed
and it was possible to create an analog of it for voice.

The perfect system for text is known as the one-time pad. They key for a one-time pad can be
presented in various ways, but for our purposes here it is simplest to show it as a random string
of integers between 0 and 25, inclusive. For example, 7, 4, 13, 2, 18, 21, etc. If we wish to send
the message ATTACK, we simply shift each letter forward as many positions as is indicated by
the number in the same position as that letter in our key. We have A+7, T+4, T+13, A+2, C+18,
K+21, which turns into HXGCUF. Observe that T+13 and K+21 both took us past the end of the
alphabet. When this happens, we simply start again at the beginning (imagining Z to be followed
by A, and the rest of the alphabet again). This system is referred to as the one-time pad because a
given key should only ever be used once. If it is reused, there are attacks that allow both messages
to be recovered. This has happened.

The voice analog of one-time pad encryption would have to add random values to the sound
wave. It’s a method completely different from inverting and reordering subbands. It’s the story of
SIGSALY.1 This system replaced the A-3 scrambler for Roosevelt and Churchill (and others).

1 SIGSALY was referred to by many other names over the course of its development and use. These included RC-220-T-1,
Project X (The Atomic Bomb was Project Y.), Project X-61753, X-Ray, Special Customer, and The Green Hornet.
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Fig. 1: A view of SIGSALY (from the National Archives and Records Administration).

Upon first seeing images like Figure 1, I asked, “So where in the room is SIGSALY?” I wasn’t
sure which item I should be looking at. The answer was, “It is the room!” The result of the quest
for secure voice communication led to a 55 ton system that took up 2,500 square feet. In fact, the
image above only shows part of SIGSALY. It literally filled a house. Some reflection makes sense
of why the project didn’t turn out a more compact device.

The need to keep voice communications secure from Nazi cryptanalysts motivated the design of
a secure system, but this impetus also meant that no time could be wasted. The designers didn’t have
the luxury of taking a decade to make a system of utmost elegance. Instead, they based it on earlier
technology that could be readily obtained, saving much time. The heart of the system was a vocoder,
which is a contraction of voice coder. The original intent of such devices was to digitize speech so
that it might be sent on undersea phone cables using less bandwidth, thus reducing costs. Due to the
aforementioned high redundancy of human speech, compression down to 10% of the original was
possible, while still allowing the original meaning to be recovered. For SIGSALY, compression was
a bonus. The goal was to digitize the voice, so that a random digital key could be added to it in the
manner of the one-time pad. Off-the-shelf vocoder technology took up much space!

For those interested in hearing how early vocoders transformed speech, a recording of a Bell
Labs vocoder from 1936 may be heard at http://www.complex.com/music/2010/08/the-50-greatest-
vocoder-songs/bell-telephone-laboratory. Middle-aged readers of this piece might find the sound
reminds them of the Cylons in the 1970s Battlestar Galactica series. Indeed, this effect was produced
using a vocoder. Decades earlier, Secretary of War Henry Stimson remarked of a vocoder, “It made
a curious kind of robot voice.”

The vocoder used by SIGSALY broke the speech into 10 channels (from 150 Hz to 2950 Hz)
and another two channels represented pitch. Each channel was 25 Hz, so the total bandwidth was
(12)(25) = 300 Hz. Ultimately, the communications were sent at VHF.

The digitization of each channel was done on a senary scale. That is, the amplitude of each signal
was represented on a scale from 0 to 5, inclusive. A binary scale was tried initially, but such rough
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approximation of amplitudes didn’t allow for an understandable reconstruction of the voice on the
receiving end. Pitch had to be measured even more precisely, on a scale from 0 to 35. Since this
scale was represented by a pair of numbers between 0 and 5, pitch required two channels.

When discretizing sound, it seems reasonable to represent the amplitude using a linear scale,
but the human ear doesn’t work in this fashion. Instead, the ear distinguishes amplitudes at lower
amplitudes more finely. Thus, if we wish to ease the ability of the ear to reconstruct the sound
from a compressed form, measuring the amplitude on a logarithmic scale is a wiser choice. This
allows for greater discernment at lower amplitudes. Thus, the difference in amplitude between sig-
nals represented by 0 and 1 (in our senary scale) is much smaller than the difference in amplitude
between signals represented by 4 and 5. This technique goes by the technical name “Logarithmic
Companding,” where companding is itself a compression of compressing/expanding.

Having discretized the signal, we’re ready to add the random key. With both the speech and the
key taking values between 0 and 5, the sum will always fall between 0 and 10. SIGSALY however
performed the addition modulo 6, so that the final result remained between 0 and 5. This was Harry
Nyquist’s idea. There are two reasons to add in this manner.

1) If we dont perform the mod 6 step, then a cipher level of 0 can only arise from both message
and key being 0. So, whenever a 0 is the output, an interceptor will know a portion of the signal.
Similarly, a cipher level of 10 can only arise from both message and key being 5. Hence, without
the mod 6 step, an interceptor would be able to immediately identify 2/36≈ 5.5% of the signal from
the simple analysis above.

2) Simply adding the key without the mod step would result in random increases in amplitude,
which may be described as hearing the message over the background noise of the key. Can you
understand someone despite the white noise produced by an air-conditioner in the background?

SIGSALY enciphered every channel in this manner, using a separate random key for each. Figure
2 provides a simplified overview of the encryption process.

Fig. 2: An incredibly simplified schematic overview of a SIGSALY transmit terminal (courtesy of
Donald E. Mehl).
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Figure 2 shows the speech entering the system on the left hand side and getting broken down into
a pitch channel (pitch detector) and ten voice channels (spectrum 1 through spectrum 10). There are
steps, not discussed here, both before and after the mod 6 (reentry) takes place. They can be found
in Donald E. Mehl’s book [3].

The source of SIGSALY’s one-time key was 16 inch records that only played for 12 minutes
each. With no pun intended, this component was codenamed SIGGRUV. As with text, the key was
added to encipher and subtracted to decipher. A built in safety mechanism caused communication
to cease if the record ever stopped. Otherwise, the speaker would suddenly be broadcasting in the
clear. The digitized speech was sampled 50 times per second, so to separately encipher all of the
channels, the record had to be simultaneously playing 12 tones at different frequencies, and these
tones had to change every fiftieth of a second.

It’s natural to ask why the sampling rate was 50 times per second and not higher or lower. The
fundamental unit of speech, known as a phoneme, has a duration of about a fiftieth of a second, so
the sampling rate is just high enough to allow it to be captured. A higher sampling rate is not needed
to make the digitized voice comprehensible and would worsen the synchronization problem (the
record at the receiving terminal, used to subtract the key, must be synchronized with the incoming
message, if there is to be any hope of recovering it). While we’re on the topic of synchronization,
it should be mentioned that the records contained tones for purposes other than encryption. For
example, a tone at one particular frequency was used for fine-tuning the synchronization.

Ideally the keys would be random, a condition simulated for SIGGRUV by recording thermal
noise backward. None of these records would become classic tunes, but the military was content
with one-hit wonders. Indeed, the system would become vulnerable if the same record were ever
replayed. Although not labeled as such, the implicit warning was “Don’t Play it Again Uncle Sam!”
and the records were destroyed after use.

Once the SIGSALY installations were in place, all that was necessary for communication was
that each location have the same record. Initially spares were made, but as confidence increased,
only two copies of each record were made. Over 1,500 distinct key sets were eventually produced.
Still, there was a Plan B. Figure 3 looks like a locker room, but it is simply SIGSALYs back-up
key, codenamed SIGBUSE. If for some reason the records couldn’t be used for keying purposes,
SIGBUSE could generate a pseudorandom key mechanically.

Since SIGSALY would link Roosevelt and Churchill, both the Americans and the British needed
to be satisfied that it was secure. The British had the added concern that the operating teams, which
would consist of Americans, even in London, would hear everything. Thus, in January 1943, the
British sent their top cryptanalyst, Alan Turing, to America to evaluate SIGSALY. After much
debate, probably reaching President Roosevelt, Turing was granted access to details of the closely
guarded secret project, entering Bell Labs on 19 January, 1943.2

Most of Turing’s time was spent on ciphony cryptanalysis (as a beta tester). He also offered
improvements to the SIGBUSE key, but SIGBUSE turned out to be wasted space. The records never
failed, so the alternate key never saw use. Following his examination of the system, Turing reported
to the British, “If the equipment is to be operated solely by U.S. personnel it will be impossible to
prevent them listening in if they so desire.” In reality, the Americans were often so focused on their
jobs they had no idea what was actually said. Ultimately, based on Turing’s endorsement, the British
accepted SIGSALY.

2 See Tompkins, p. 59, Hodges p. 245, Mehl p. 69. In any case, Secretary of War Stimson resolved the debate by insisting
that Turing be granted access.
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Fig. 3: SIGSALY’s back-up key SIGBUSE (courtesy of Donald E. Mehl).

In November 1942 an experimental station was installed in New York, and in July 1943 a final
version was activated linking Washington D.C. and London. This marked the first transmission of
digital speech and the first practical Pulse Code Modulation. Although the bandwidth compressing
vocoder was described earlier in this piece as pre-existing technology (which it was), it had not
become practical enough for use. Eventually there were a dozen SIGSALY installations. None of
the messages they conveyed were ever broken. In fact, the Germans didnt even recognize it as
enciphered speech. They thought it was just noise or perhaps a teletype signal. The sound they
heard was similar to the music played at the start of the Green Hornet TV show of that era. Although
they might not have been familiar with the program, Americans certainly were, and this is why the
system was sometimes referred to as The Green Hornet. SIGSALY wasn’t declassified until 1976,
at which time a slew of patents, applied for decades earlier, were finally granted. A mock-up of a
portion of SIGSALY may be seen today at the National Cryptologic Museum.3

Turing’s examination of SIGSALY served as his education in ciphony (the U.S. was ahead of the
U.K. in this area) and the experience inspired him to create his own (completely different) system,
Delilah. This brings us to Act II.

Act II: Delilah

During his trip back to England in March 1943, Turing came up with the idea for a voice encryp-
tion system that he thought would be superior to SIGSALY [1, p. 273]. His work on this system was
not done at Bletchley Park, but rather Hanslope Park (10 miles to the north). Turing was mostly
working alone, although he had help from an electrical engineer, Donald Bayley. The project seems

3 See http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml

http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml
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to have been for his own amusement! [1, p. 269-270] Since SIGSALY worked, there was no press-
ing need for another system. Yet, the rush to complete SIGSALY resulted in a system that was far
from ideal. Consider the following characteristics.

1) It weighed 55 tons and had a 70 ton shipping weight.

2) It took up 2,500 square ft.

3) It cost between $250,000 and $1,000,000 per installation.

4) It converted 30 kilowatts of power into 1 milliwatt of low quality speech.

5) The deciphered speech sounded like Donald Duck.

This is why SIGSALY received an (honorable) discharge not long after the war ended. Turing
thought he could do better. He didn’t name his system himself, but instead offered a prize to whoever
came up with the best suggestion. Delilah, after the biblical “deceiver of men,” was declared the
winner [1, p.273].

The short piece Speech System ‘Delilah’ Report on Progress reproduced in the present volume
was found by Ralph Erskine in the British National Archives (HW 62/6). In it Turing offered the
physical description, “The unit uses seven valves and when suitably rearranged will probably
occupy a space of about 10” x 8” x 5”.” Clearly he improved upon SIGSALY in the categories
of size and weight!4

Turing achieved his size reduction, in part, by eliminating the vocoder, Delilah sent an analog
signal, in contrast to the digital SIGSALY. Also, there was only one keying system. Doing away
with a back-up key saved much space. However, Turing’s keying system had more in common with
SIGBUSE than the records SIGSALY used as the primary key.

In 2009, a technical paper on Delilah by Turing and Bayley was released to the British National
Archives [5]. It saw print for the first time, near the end of the Turing Centennial, in the October
2012 issue of Cryptologia. Thanks to this paper, a more detailed presentation of Turing’s work on
ciphony may be presented here.

The most impressive feature of Delilah was that it sampled speech 4,000 times per second
(SIGSALY’s rate was 50). This seems like overkill, but Turing hadn’t arrived at this value with-
out justification. He had conversations with Claude Shannon at Bell Labs and knew Shannon’s
Bandwidth Theorem (actually due to Whittaker, 1915):

“If a signal time function is sampled instantaneously at regular intervals and at a rate at
least twice the highest significant signal frequency, the samples contain all of the original
message.”5

Delilah’s 2,000 Hz thus required 4,000 samples/sec. Today’s CD Audio is 44.1 kHz with a 16
bit (65,536 levels) sampling accuracy and DVD Audio is 192 kHz with a 24 bit (16,777,216 levels)
sampling accuracy. Still, for the time period, 4,000 samples/sec was an impressive rate.

The message amplitudes for Delilah were scaled to not exceed 1 and the key was added modulo
1, even though this approach didn’t work for SIGSALY. However, since delilah was an analog
system, the amplitude could be represented by a real number, and was not limited to just 0 and 1.
One similarity with SIGSALY is that without the mod step, cryptanalysis is possible.

One of the technical problem that arose was that the result of the encryption was too high fre-
quency for telephone circuits. Turing’s solution was to “feed each “spike” into a specially devised
electronic circuit with an orthogonal property” [1, p. 275]. Referred to as “Turing’s Orthogonal
Circuit” we know such devices today as matched filters. This approach is now common in high

4 To be fair, the Americans did develop a smaller mobile version of SIGSALY that fit in a van. Dubbed Junior X, it used
an 8 channel vocoder, but was never deployed [4, p. 54].
5 Taken here from [3, p. 71]
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speed digital communications systems; intersymbol interference (ISI) is prevented, since the zero
crossings, after passing through the filter, are at sampling points where they don’t interfere. Nyquist
originated this idea.6

Turing and Bayley considered two methods for keying Delilah, “(a) recording random noise on
discs or tape and using those recordings simultaneously at the ends of the transmission path and (b)
generating identical voltages at each end.” [5, p. 37] They noted that option (a) “has the disadvantage
that the mechanical difficulties of starting and maintaining the keys in synchronism are large, and,
furthermore, the number of discs or reels of tape required becomes prohibitive.” Of course, Turing
was aware that SIGSALY solved the synchronization problem, although not at the higher frequency
he desired. He moved on to plan (b), and had to confront the difficult problem of how to imitate
randomness. “Six multivibrators are locked with the pulse from the combiner and their outputs taken
to networks which serve both to isolate individual multivibrators and to differentiate the outputs (so
as to strengthen, relatively, the higher harmonics.) The fundamental frequency of each multivibrator
is some exact sub-multiple of the combiner pulse frequency, the various sub-multiples being:- 5, 7,
8, 9, 23, and 31.” [5, p. 37]

As the description continues, it is easy to see that SIGSALY wasn’t the only influence in his
thinking. Clearly Enigma played a role:

“The outputs of these networks (26 in all) pass through the cypher machine and are combined
at the output end to form seven inputs to seven distorting networks. The distorting networks
have differing phase characteristics so that the two out-puts which are produced by combining
their seven outputs at the plugboard depend enormously on what frequencies were fed into
the various networks i.e. on the setting of the cypher machine and the plugboard.” [5, p. 37]

“Note: It has been assumed above that the reader is familiar with the cypher machine used.
Should that not be the case it will be sufficient to understand that the machine is a device
enabling 26 contacts to be connected to 26 others in a pre-determined random manner and
that the mode of connection may be changed by pressing a key.” [5, p. 38]

Despite the relatively prime values, the key would eventually repeat:

“The multivibrators start simultaneously and since they have fundamental frequencies which
are prime to one another it follows that they will arrive back at the starting position after a
time 5x7x8x9x23x31 times the period of the locking pulse. That is, the key will repeat after
1,785,600 x 250 secs 7.48 mins.” [5, p. 38]

Thus, Delilah users were expected to stop and change keys every 7 minutes. Doing so was easy.
Any change to the rotor positions or the plugboard connections created a new key from the same
source.

Turing was working alone much of the time with very little funding or resources, so it is not
surprising that a number of probelms were present in Delilah. For example, it was too difficult to
synchronize the keys for transatlantic conversations, so the system was only workable for “local”
calls. Mod 1 sounds simpler than mod 6, but the amplitudes for Delilah needed precise measure
and transmission, unlike the senary system of SIGSALY. Also, the Signal to Noise ratio was 10 dB.
That is, the speech was only 10 times as powerful as the noise. This was “rather lower than desired”
according to Turing and Bayley. Most importantly, the system was not quite completed in time
(spring 1945) for the war and wasn’t high enough quality for commercial use. Hodges summed the
matter up. “As a contribution to British technology it had been a complete waste of time.” [1. p. 346]

John Harper is leading a project to rebuild Delilah. A report by Harper follows the present piece.
But this was not Turing’s last encounter with ciphony.

6 See p. 632 of Nyquist, Harry, Certain Topics in Telegraph Transmission Theory, Trans. AIEE, Vol. 47, pp. 617644, Apr.
1928, Presented at the Winter Convention of the AIEE, New York, N. Y., February 13-17, 1928.
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Act III: Feuerstein

This act is still in the process of being pieced together by historians. I received confirmation
from the GCHQ historian that Alan Turing did go on a mission to a Vocoder lab in Upper Franconia,
Bavaria, Germany shortly after the end of World War II. The exact site was Feuerstein, and Turing
was tasked with assessing how much progress the Germans had made on voice encryption. I was
skeptical that the British would send their top cryptologist on such a potentially dangerous mission,
but it did happen. The details have not yet been firmed up to the degree desired, but some are
provided below. According to Tompkins, Turing visited Feuerstein on May 15, 1945, and TICOM7

raided it that summer [4, p. 190-194]. Hodges described a Turing trip to Germany in July, but no
mention of Feuerstein is made [1, p. 311-312]. In any case. Tommy Flowers and others went with
Turing on at least one mission. There is not necessarily any contradiction in the dates here. Turing
was likely part of the TICOM raid that Tompkins mentions and that may be the July trip Hodges
describes. Possibly, Turing made several trips to Germany shortly after the war. Juliet Floyd learned
that Turing made trips to Göttingen late in his life. Hardly anything is publicly known about these
visits. Despite the intensive study that that Turing has received, there remains much room for more
research.
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John Harper reports on the —

DELILAH REBUILD PROJECT

The original Delilah Project came to the attention of the Bletchley Park Volunteers when one of
our team, who regularly visits the National Archive in Kew, discovered a very large report. It con-
sisted of 80 pages of text and formula plus circuit diagram blueprints and oscilloscope images. We
arranged to make copies of these using a camera. This was a start but later the GCHQ Archives
department made available a full copy in much better quality than ours.

We became quite excited about this project because it was a major piece of work carried out by
Alan Turing during 1943 and 1944 that few people had heard of.

The first record official record that has come to light appears to have been a report dated 6 June
1944 where Alan Turing is writing that research began in May 1943. A Combining Unit appears to
be in existence at this time but the ideas about the Key Stream are just coming together. The main
report appears to be undated but it must have taken many more months to build a Key Unit and
carry out the reported tests and measurements. One might speculate that the project would have run
until the end of 1944.

To be fair, Andrew Hodges had already ‘discovered’ the Delilah Project some years ago (Alan
Turing – The Enigma, pages 273–276 inclusive). In this he writes about Don Bayley, Turing’s part-
ner and co-author of the report. Also there is a picture and a brief reference by Dr. Robin Gandy
in a BBC TV Horizon documentary directed and produced by Christopher Sykes some years ago.
Although Turing was considered to still be based at Bletchley Park, he spent many months at Hans-
lope Park presumably because they had good workshop facilities away from the Hurly Burly of
Bletchley Park.

With the help of retired Hanslope Park Foreign Office staff we were able to track down Don
Bayley who now lives quietly in Yorkshire. I have visited him there and since corresponded.

What is common to many voice encipherment systems is a key stream that is unique for a given
transmission. This is ideally in a ‘one time pad’ form. It is believed that Alan Turing was shown
under strict security the workings of an American Voice Secrecy system called SIGSALI when
visiting the States (see http://en.wikipedia.org/wiki/SIGSALY etc.). These systems were extremely
large, about the size of a 1950s mainframe computer and extremely expensive. Even more expensive
were the ‘gramophone records’ that held the unique key stream. These had to be distributed very
securely to each end of the voice link and once used, destroyed. It is speculation, but assumed, that
Turing thought that he could improve dramatically on this at a fraction of the cost. In Delilah his
‘one time pad’ was the setting of five letter transposition wheels similar to an Enigma Machine plus
a seven-way patch panel. This modified the key stream. Not quite a ‘one time pad’ but as this key
stream changed with every send and receive change, breaking an enciphered voice message that
would change in minutes was considered at that time to be very secure. To add to this, wheels could
be reversed or alternatives fitted. As with Enigma, the weak spot would be the ‘Setting Sheet’.

http://en.wikipedia.org/wiki/SIGSALY
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Fig. 1:

The system is labelled MK 1 with the report detailing the need for further development. No
doubt this work could have continued but the war was being won and people were looking forward
to a civilian career. From what we read about Alan Turing he was also very keen to get back to
computing.

No doubt the authorities were no longer keen to fund further, war related, developments.
Whatever the reason, no further work was done on Delilah and it never went into production.

1. Delilah hardware

This consists of three separate units at each end of a link. These are connected together by power
and signal cables with an external connection to a landline or other link such as a VHF radio link.

2. Power supply

This works off the mains and supplies power to the Combiner and Key Unit.

3. Combiner

The voice signal is combined with the key stream to produce a signal to line that is no longer
intelligible and highly secure. The unit also works in reverse when set to ‘receive’ with the key unit
again providing the key. This when processed with the incoming signal recovers voice.
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Fig. 2:

Fig. 3:
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4. Key unit

The purpose of this unit is to provide a key stream at one end of the link. At the other end, an
identical key stream has to be produced that is precisely synchronised with the sending end.

A set of multi-vibrators all producing different frequency square wave signals are mixed in a
unique way depending on the settings of a cypher unit and a seven-way plugboard.

5. The project

Having studied the report, photographs and circuit diagrams, it was decided that to reproduce what
Turing and Bayley had achieved was possible. As with the previous Bombe Rebuild Project it was
necessary to identify things that would stop us succeeding. Manufacture of chassis etc., assem-
bly, premises, testing facilities, where to demonstrate and funding etc. whilst not being solved at
the onset were deemed to be solvable. The major issues were details of the Cypher Unit, detailed
manufacturing drawings and obsolete 1940s radio components.

Most components are obsolete and no longer available but good, used parts can still be found
by enthusiasts. We have been able to find most of what we need from donations made by such
organisations as the RAF Signals Museum at Henlow and various branches of the Radio Society of
Great Britain. As I write this in September 2011, we have over 95% of all the 1940s components
collected and over 90% of the valves (tubes). All together we need nearly 100 valves.

Manufacturing drawings for the chassis and covers were not in the report so they had to be
recreated. This activity is almost complete using Computer Aided Design techniques. Recreation
of accurate drawings is perhaps more easy that one might at first think. The report gives overall
dimensions for the three units. One photo has a ruler showing but most importantly it is possible to
identify the 1940s components and with these available and measured it is possible to reasonably
accurately draw the area where they are mounted.

Our most difficult problem is the Cypher Unit. Don Bailey said that this was an American CCM
unit. Comparing our photos with WWII American cryptography equipment it was possible to verify
this up to a point. What we have discovered is that what Delilah used was similar to the CCM but
as the CCM is of modular construction one can see that this has been modified to be ‘double ended’
as is necessary in the Delilah application. We have borrowed a CCM wheel from a kind gentleman
in the States and other Americans who have access to the National Security Agency Museum in
Washington DC are making detailed measurements that we will use to check our ‘speculative’
drawings.

Construction is under way in September 2011 with the Power Supply being used as a pilot. This
is to prove our drawing methods that involve laser cutting of the chassis parts before bending and
painting. This has proved successful and one Power Supply is assembled with its components fitted.

The remaining pairs of Key Unit and Combiner cabinets will be heading towards the sheet metal
people shortly. The current activity is to decide the best way to make the complex Cypher Unit
components.

One has to ask the question why embark on such a reconstruction? Having completed the Bombe
Rebuild Project that is now working well and regularly demonstrated, the team became fascinated
with the way that Alan Turing approached problems such as how to break Enigma. To see an Enigma
technique being used in voice encipherment was intriguing. When the discussion started about the
Turing Centenary we thought, what additional attraction could we display at Bletchley Park to add to
existing items including the Bombe Rebuild and Checking Machine, the slate statue and the Turing
Papers? Delilah seemed appropriate. The Bombe Rebuild team welcomed a new challenge – we had
worked so well together before and had obtained such satisfaction and recognition of what we had
achieved.
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(Paper, EDSAC Inaugural Conference, 24 June 1949.
In: Report of a Conference on High Speed Automatic Calculating

Machines, pp. 67–69)

Cliff B. Jones gives a modern assessment of —

TURING’S “CHECKING A LARGE ROUTINE”

Alan Turing gave a remarkable paper at the Cambridge meeting in June 1949 that marked the
inauguration of the EDSAC computer. Had this paper been more widely read and understood, it
could have accelerated the important area of reasoning about programs by a decade or more. Just
one of the impressive features of the paper is its brevity: it comprises less than three pages. Here,
after setting the context and outlining the achievement, a fuller assessment is attempted.

1. Context

Alan Turing’s (1936) paper is probably accepted as the paper which fixed the notion of what it means
to program a universal machine. Addressing the “Entscheidungsproblem”, Turing (1936)1 defined
what is today called the “Turing machine”, which is capable of performing any computation if only
provided with the right program. At this time, Turing was not concerned with the design of a realistic
computer but needed a fixed notion of computation to prove that there exist problems that are not
computable. In fact, programming a Turing machine was impossibly tedious and little advance in
practical computing would have been made using such a language.

By 1949, there were realistic general purpose computers.2 Although these machines exhibited all
of the key features of modern computers, people who have grown up during this exciting electronic
age would find them extremely primitive – they were physically huge, had small stores and by
today’s standards were both unreliable and extremely slow.

More importantly, they were essentially programmed in terms of the instruction set of the spe-
cific machine, so that if a storage cell was to be incremented, the programmer had to write one
instruction to bring that cell into an accumulator, a second instruction to add the incrementing value
into the accumulator and a final instruction to store the incremented value back into the original stor-
age location. Programs can do little without loops, but their construction was even more tedious.
Furthermore, the programmer was responsible for working out the addresses of instructions to which
jumps were required; this made program correction a messy process.

1 This paper is discussed in Samson Abramsky’s chapter of this book.
2 This is not the place to describe the progress from the EDVAC report through to the SSEM (“Baby”) computer from
Williams and Kilburn in Manchester and Wilkes’ EDSAC in Cambridge – nor even Turing’s own work on designing the
Pilot ACE at NPL; the interested reader is referred to Copeland (2011).
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455

http://dx.doi.org/10.1016/B978-0-12-386980-7.00019-9


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 1:02 Page 456 #2

456 Part II

2. The problem of correctness

Writing programs is one of the most exacting tasks undertaken by humans: a programmer has to
write a series of instructions that are followed blindly by an obedient but dumb servant. The fact that
programs are executed exactly as written is one of their virtues in that they can execute faultlessly for
decades but it also their Achilles’ heel. The whole issue about the ‘Y2K’ problem was that, having
allocated only two decimal places to store date information, programs would have been in danger of
subtracting 49 from 12 and deciding that it was −37 years since Turing gave his Cambridge paper;
any intelligent person would say it must obviously be 63 years.

This situation is compounded by the astronomical number of different states a program can
occupy. A tiny program that can take a few independent inputs might have an input state space of
296 values; if the instructions in the program include a few branches and loops, there might be only
one, or very few, input combination that delivers an answer that is not as expected by the user of the
program. Testing the whole input space for all but the most trivial programs is totally impossible.
One of the most often quoted aphorisms in computing is from Edsger Dijkstra who said ‘Program
testing can show the presence of bugs, never their absence’.

What then can be done? Mathematicians prove theorems for all possible cases. Euclid did not
prove his eponymous theorem about the lengths of the sides of right-angled triangles by testing a
large number of cases – the proof established the result for all such triangles that could be con-
structed at any time. In principle then, the task was clear, record in a succinct way the required
relation of the outputs of a program to its inputs and then reason about why a program would
always satisfy this ‘specification’.

Knowing the quantities involved in the first programs were all represented as (restricted) positive
integers might even make one suspect that the only tool needed to perform such arguments was
mathematical induction. Unfortunately, this is by no means a complete answer. At a minimum, it
is essential to have a precise way to reason about the meaning of the statements in the language
of programs. In addition, the reasoner needs some guidance as to how to organise the argument or
proof.

3. Turing’s contribution

Alan Turing’s paper (Turing, 1949) in the proceedings of the 1949 Cambridge event is just two
and a half pages long – admittedly the paper is the quaint English legal format that was known
as ‘foolscap’, but the paper has the equivalent of less than 300 lines. Moreover, into this short
length, it fits one of the clearest arguments given for a process which has been a cornerstone of
presenting arguments about programs for decades after Turing’s untimely death. Turing’s motiva-
tional analogy presents a column of four-digit numbers whose sum is sought. If the sum alone is
written below the numbers, anyone wishing to audit the addition has to repeat the whole calcula-
tion; if however the carry digits are recorded, the task is decomposed into four simpler checks;
furthermore, these four sums of single digits can even be undertaken in parallel by different
auditors.

The message was clear; what was needed was a way of recording steps of the argument for the
claim that a program satisfied its specification that split the task of checking individual steps in the
argument. The second paragraph of Turing (1949) is worth quoting in full:

In order that the man who checks may not have too difficult a task the programmer should
make a number of definite assertions which can be checked individually, and from which the
correctness of the whole program easily follows.
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Fig. 1: Turing’s original flowchart

Fig. 2: Turing’s original annotations

Turing chose to annotate a flow chart of a program with expressions that related the values which
could be contained in particular storage locations. A copy of the flowchart for his chosen program
is given in Fig. 1 with the expressions relating values in Fig. 2.

What was the specification of Turing’s example program? Well, as printed the paper states that
the task is to assign to the location 31 (given the helpful symbolic name v) the value of location
29 (n) – a single assignment in a modern programming language would achieve this and even in
the early machines would probably need only a load followed by a store command! The confusion
results from the fact that, however brilliant, Turing was a rather sloppy proofreader. He had elected
to write factorial n as |n but then omitted to handwrite in the box symbol anywhere in the text;3

furthermore, his choice of identifiers v,r etc. was less than optimal since his writing led to 10
further uncorrected transcription errors. Thus, even when Turing (1949) came to light, it was hard
to decipher. A careful decoding of the figures is contained in Morris and Jones (1984) together with
comments that relate the method to later research.

3 The more modern standard notation for factorial n is n!, which could have been typed.
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The factorial program – whose specification should have said ‘set v to n!’ – can be seen from the
flowchart in Fig. 1 to use a doubly nested loop: the inner loop computes multiplication by successive
addition (the early computers had a tiny repertoire of instructions), while the outer loop ensures that
the numbers from 1 to n are multiplied into v. To look at just one annotation: at point E in the
flowchart, u (line 30) is supposed to contain the product of s and r!; and v (line 31) contains r!.

The title of Turing (1949) talks of a ‘large routine’ and the use of factorial as an example might
surprise a modern reader. Two points are worth making. This example has in fact often been used
by (far) later authors to experiment with ways of presenting arguments. It is possible to argue that
it shows even more prescience on Turing’s part to have seen that ways of decomposing proofs that
programs satisfy their specifications would be required for ever larger programs.

Before looking at what might have happened had Turing’s 1949 paper been appreciated earlier,
there is one illuminating link to his groundbreaking 1936 paper that is worth mentioning. In Turing
(1936), the problem that Turing shows could not be solved in general was that no one could ever
write a debugging program that could decide whether any program provided as input would always
terminate. Anyone who has sat in front of a PC knows what it means for a program to go into a
loop – the whole machine locks up and the only thing to be done is to reboot the machine. Turing is
careful to argue that his specific program in Fig. 1 will always terminate and he uses a particularly
intriguing approach using ordinal numbers (but then concedes that 240 actually suffices).

4. What came after 1949?

The next significant papers on reasoning about programs came 17 long years after Turing spoke at
the Cambridge event. Aad van Wijngaarden recognised the full impact of a parenthetical remark
above: computers cannot contain ideal mathematical integers because the word length (or indeed
the overall store size) is necessarily restricted. In fact, in most machines, adding one to the largest
positive number that can be stored might well yield a negative number. In the paper of van Wijn-
gaarden (1966), a series of axioms are offered whose use makes it safe to reason about such finite
representations.

The step that is far closer to Turing’s idea came a year later when Bob Floyd (1967) was published.
This is one of those papers that is widely cited but read rather less often. It is a gem. Floyd proposes
a way of annotating programs to reason about their correctness and termination. Like Turing, Floyd
annotates flow charts (Floyd even uses the factorial example) but his assertions are more general
in that they are expressions in the logic known as ‘first-order predicate calculus’. Floyd goes much
further and he is using a modern programming language notation which makes programs clearer
and more succinct than early machine codes. He provides precise rules for when logical assertions
match the corresponding program statements. Floyd even described what later became known as
‘healthiness conditions’ that capture intuitive but important properties for the relationship that any
command can establish between the assertions preceding and following the statement.

A major step soon followed. Tony Hoare had been searching for a way to document the mean-
ing (semantics) of a programming language. After several attempts to break away from semantic
description styles that he found too closely linked to implementation details, he received a copy
of Floyd’s paper and immediately saw that this provided the key to an ‘axiomatic semantic’ style.
Hoare’s paper is probably one of the most influential in reasoning about programs. Not only is it
widely cited but it is also read by most researchers who reference it. The paper by Hoare (1969)
makes a major bold step. Superficially, there is a shift from annotated flowcharts to triples contain-
ing a command surrounded by its pre-and post-assertions; but Hoare’s shift opens up a far more
mathematical view of how to combine steps of an argument. Hoare’s (1969) paper also integrates
the axioms that van Wijngaarden had offered for restricted computer numbers.
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This excursion into what followed Turing’s 1949 paper has identified enough hills to triangulate
influences and missed opportunities; a fuller account of the development of program verification
can be found in Jones (2003) – in particular, it (describes other work omitted here to save space
and) describes the importance of data abstraction and the move to use Floyd/Hoare axioms in the
development of program designs.

5. Assessment

The temptation to ask what might have been? is irresistible. Neither Floyd nor Hoare was aware
of Turing’s 1949 paper until long after they made their own contributions at the end of the 1960s.
This author’s view is that a wider awareness of Turing’s early paper could have accelerated the
research on reasoning formally about programs by at least a decade. But there is an interesting
piece of counter evidence. Certainly neither Hoare nor Floyd were at any scientific conference in
the late 1940s because both were too young, but a check of the list of people at the Cambridge
meeting reveals that Aad van Wijngaarden attended the overall meeting. This does not guarantee
that he heard Turing’s talk – but let us assume he did. The clear inference is that by the time he
thought about the problems of reasoning about computer arithmetic, he had the pieces in his hands
to synthesise what Floyd and Hoare did.4 Perhaps science had to wait for minds as profound as
Floyd’s and Hoare’s to recreate and step beyond Turing’s ideas.

It is also reasonable to look for other links. As early as 1947, the massive report Goldstine and
von Neumann (1947) by von Neumann and Goldstine had some notion of annotating programs. It
has to be said that their notation is unintuitive, but it is clear from Hodges’ biography of Turing that
the latter did visit von Neumann during the second world war. Whether von Neumann influenced
Turing’s thought or vice versa is not known.

Another tantalising historical hint is Floyd’s generous acknowledgement in is his paper:

These modes of proof of correctness and termination are not original; they are based on ideas
of Perlis and Gorn, and may have made their earliest appearance in an unpublished paper by
Gorn.

Could this have been a development of von Neumann’s ideas? There is still detective work to
be done but this author can offer two points of warning: time should not be lost and the results
will not be universally popular. As evidence to the first point, the announcement of Saul Gorn’s
death reached this author just as he decided to contact Gorn with regard to the above question.
A small story about the after affects of publishing Morris and Jones (1984) illustrates the second
point. No lesser figure than Maurice Wilkes wrote in a private letter ‘I regard Floyd’s discovery
of loop invariants as one of very few really significant advances in programming science . . . I
would not like the idea to get around that Floyd’s great advance had been anticipated by Turing’.
Whilst thinking about a reply, relief followed from Lockwood’s perfect ‘We have no interest at all
in making or marring any reputations (not that either Turing’s or Floyd’s could be in any danger
from us)’.

Turing’s paper was clearly a ‘pre-echo’ of what came many years after his death; it had the
potential to accelerate a key avenue of research that has grown for half a century and is now having
real impact on industrial software development.

4 The current author knew van Wijngaarden reasonably well but only studied Turing’s paper (and noticed the atten-
dance list of the conference) after his death; subsequent questions to some who knew van Wijngaarden even better have
uncovered no mention he ever made about Turing’s talk.
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Friday, 24th June.

Checking a large routine. by Dr. A. Turing

How can one check a routine in the sense of making sure that it is right?

In order that the man who checks may not have too difficult a task the programmer should make
a number of definite assertions which can be checked individually, and from which the correctness
of the whole programme easily follows.

Consider the analogy of checking an addition. If it is given as:

1374
5906
6719
4337
7768

26104

one must check the whole at one sitting, because of the carries. But if the totals for the various
columns are given, as below:

1374
5906
6719
4337
7768

3974
2213

26104

the checker’s work is much easier being split up into the checking of the various assertions
3+ 9+ 7+ 3+ 7= 29 etc. and the small addition

3794
2213
26104

This principle can be applied to the process of checking a large routine but we will illustrate
the method by means of a small routine viz. one to obtain n without the use of a multiplier,
multiplication being carried out by repeated addition.

At a typical moment of the process we have recorded r and s r for some r, s. We can change s r
to (s+ 1) r by addition of r. When s= r+ 1 we can change r to r+ 1 by a transfer. Unfortunately
there is no coding system sufficiently generally known to justify giving the routine for this process
in full, but the flow diagram given in Fig. 1 will be sufficient for illustration.

Each ’box of the flow diagram represents a straight sequence of instructions without changes of
control. The following convention is used:

(i) a dashed letter indicates the value at the end of the process represented by the box:
(ii) an undashed letter represents the initial value of a quantity.
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One cannot equate similar letters appearing in different boxes, but it is intended that the
following identifications be valid throughout

s content of line 27 of store
r ” ” ” 28 ” ”
n ” ” ” 29 ” ”
u ” ” ” 30 ” ”
v ” ” ” 31 ” ”

It is also intended that u be s r or something of the sort e.g. it might be (s+ 1) r or s r−1 but not
e.g. s2

+ r2.

In order to assist the checker, the programmer should make assertions about the various states
that the machine can reach. These assertions may be tabulated as in Fig. 2. Assertions are only
made for the states when certain particular quantities are in control, corresponding to the ringed
letters in the flow diagram. One column of the table is used for each such situation of the control.
Other quantities are also needed to specify the condition of the machine completely: in our case it
is sufficient to give r and s. The upper part of the table gives the various contents of the store lines
in the various conditions of the machine, and restrictions on the quantities s, r (which we may call
inductive variables). The lower part tells us which of the conditions will be the next to occur.

The checker has to verify that the columns corresponding to the initial condition and the stopped
condition agree with the claims that are made for the routine as a whole. In this case the claim is that
if we start with control in condition D and with n in line 29 we shall find a quantity in line 31 when
the machine stops which is r (provided this is less than 240, but this condition has been ignored).

He has also to verify that each of the assertions in the lower half of the table is correct. In doing
this the columns may be taken in any order and quite independently. Thus for column B the checker
would argue. “From the flow diagram we see that after B the box v1

= u applies. From the upper
part of the column for B we have u= r. Hence v1

= r i.e. the entry for v i.e. for line 31 in C should
be r. The other entries are the same as in B”.

Finally the checker has to verify that the process comes to an end. Here again he should be
assisted by the programmer giving a further definite assertion to be verified. This may take the
form of a quantity which is asserted to decrease continually and vanish when thè machine stops. To
the pure mathematician it is natural to give an ordinal number. In this problem the ordinal might
be (n− r) w2

+(r− s) w + k. A less highbrow form of the same thing would be to give the integer
280(n− r)+ 240(r− s)+ k. Taking the latter case and the step from B to C there would be a decrease
from 280 (n− r)+ 240(r− s)+ 5 to 280(n− v)+ 240(r− s)+ 4. In the step from F to B there is a
decrease from 280 (n− r)+ 240(r− s)+ 1 to 280(n− r1)+ 240(r+ 1− s)+ 5.

In the course of checking that the process comes to an end the time involved may also be
estimated by arranging that the decreasing quantity represents an upper bound to the time till the
machine stops.
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Excerpt from: Programmer’s Handbook for the
Manchester Electronic Computer Mark II

(Printed ca. March, 1951.)

Local Programming Methods and Conventions
(Paper read at the Inaugural Conference for the
Manchester University Computer, July 1951.)

Toby Howard describes —

TURING’S CONTRIBUTIONS TO THE EARLY
MANCHESTER COMPUTERS

1. Introduction

In 1948, the world’s first stored program digital computer was designed and built at The University
of Manchester. It was a volatile assembly of cathode ray tubes, vacuum tubes (thermionic valves),
resistors and capacitors mounted on huge metal frames. Its official name was The Small-Scale
Experimental Machine, but it soon became known as the Baby.

Much has been written about the extraordinary early days in Manchester. My intention in this
short commentary is to focus on the specific contributions made by Alan Turing, and give a flavour
of what computer programming was like in those early days. I’ll look at two of Turing’s Manchester
publications, both from 1951: his talk ‘Local Programming Methods and Conventions’ at the Inau-
gural Computing Conference in Manchester, and his ‘Programmers’ Handbook for the Manchester
Electronic Computer Mark II (what we now call the Ferranti Mark 1)’. Both of these writings con-
tain very low-level detail, much of which is of interest only to specialist historians of computing.
My aim is to place Turing’s Manchester work in context, and paint the bigger picture. For readers
wishing to follow up and discover more detail, I suggest some ideas for further reading.

2. The Baby

A CRT store capable of holding 2048 bits had been demonstrated in December 1947, and the Baby
was built to find out if the store could function reliably as the memory of a practical computing
machine doing realistic work.

In a University building on Oxford Road, which still stands today, Freddie Williams, Tom
Kilburn and Geoff Tootill gave the machine shape. At the time there was little distinction between
understanding how the machine worked, and how to make the machine do something useful.
Programming as a discipline, like the computer itself, was in its infancy.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00020-5
c© 2013 Elsevier Inc. All rights reserved.
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Although it worked, at least for short periods, the Baby was sometimes unstable. It was an
experiment, after all, and it faltered when the trams thundered down Oxford Road, their electrical
systems upsetting the Baby’s delicate electronics.

Alas, no photographs of the Baby survive, but its successor, the Manchester Mark 1, from 1949,
gives an idea of the ‘look’ of the machine:

Fig. 1: The Manchester Mark 1 (1949).

Viewed from today’s technical perspective, the design of the Baby is familiar, although on a
vastly reduced scale. Like many modern computers, it manipulated its data in chunks of 32-bit
‘words’, and represented signed integers using the ‘2’s complement’ convention. It had a Random
Access Memory (RAM) of 32 words, making a total of 1024 bits, or 0.128 kilobytes (kb). A modern
laptop typically has 4 GB of RAM, about 32 million times more than the Baby.

Whilst modern computers have over 100 different types of instruction, the Baby had just 7.
Three things could be manipulated: the ‘accumulator’, A, where the result of the last computation
was stored; the contents of the word in RAM with address S; and the memory address of the current
program instruction being executed, CI. The instruction set was as follows (the notation P← Q
means ‘P is given the value of Q’):

1. A←−S
2. A← A− S
3. S← A
4. IF ( A < 0 ) THEN ( CI← CI+ 1 )
5. CI← S
6. CI← CI+ S
7. HALT

Each of the Baby’s storage units was a CRT, one for each of A, CI and the RAM. A fourth
CRT, called the ‘display tube’, could be assigned to view the contents of any of the other tubes.
The photograph below (taken from the Ferranti Mark 1) shows how the CRT RAM display looked
(bright dots are 1s, dim dots are 0s)1.

1 See http://www.computer50.org/kgill/williams/display.html.

http://www.computer50.org/kgill/williams/display.html
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Fig. 2: CRT RAM display from Ferranti Mark 1.

The Baby ran its first program on 21 June 1948. Written by Tom Kilburn, the program took
an integer N, and computed its highest factor – the largest integer that would divide into N with
no remainder. After a few weeks the program was run on much larger numbers, and as reported
in Nature, the program took 52 minutes to find the highest factor of N = 218, which involved
2.1 million instruction executions, and 3.5 million store accesses (Williams and Kilburn, 1948).

At this time, Turing was at Cambridge, on sabbatical from his post at the National Physical
Laboratory, where he had produced a design for an as-yet unbuilt computer called the Automatic
Computing Engine (ACE). Its memory would be a mercury acoustic delay line – a curious technol-
ogy based on a tube several feet long containing liquid mercury. A voltage representing a binary 0
or 1 was converted to an acoustic “ping”, and sent down the tube as a sound wave. The ping was
detected at the other end of the tube, converted back to a 0 or 1 voltage, and then fed back to the
start of the tube to repeat the process. With appropriate timing circuitry, this acoustic loop could
store hundreds of bits of binary data.

The building of ACE had stalled, and in May 1948 Turing, frustrated, accepted the offer of a
post at The University of Manchester. In July 1948, on hearing that the Baby was working, he wrote
a program for long division and sent it up to Manchester. He subsequently sent another program for
factorising numbers. Turing arrived in Manchester in October 1948, appointed to the Mathematics
Department as Deputy Director of the Royal Society Computing Laboratory.

3. The early Manchester machines

The pioneering work at Manchester attracted the attention of the Ministry of Supply, who saw the
potential for Britain to take the lead in the development of computing, and in 1948 commissioned
Ferranti Ltd to collaborate with the University. The project now became focused on developing
a general purpose computing machine. By the autumn of 1949 the Manchester Mark 1 had been
completed, expanding on the prototype ideas of the Baby, by including more memory, and what was
called a two-level’ store comprising the CRT memory used in the Baby, and a magnetic drum which
was slower to read and write, but much larger in capacity. This was the first time a combination of
small/fast and larger/slower stores had been used, and it remains the system of fast RAM/slower big
disk in most computers today.
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Turing made several contributions to the development of the Manchester Mark 1. In the summer
of 1949, working with Dai Edwards, he attached a paper tape reader to the machine, so programmers
need no longer key in their programs manually on the input switches. He also wrote what we would
today call the ‘driver software’ for the tape reader. Working with Geoff Tootill, Turing designed
hardware for generating Random Numbers. In October 1949 Cicely Popplewell was appointed Tur-
ing’s assistant, and shortly afterwards he took on Audrey Bates, the first of two M.Sc. students he
was to supervise. The second, in 1953, was Bernard Richards, working on Morphogenesis.

4. The Manchester University Inaugural Conference

“Since the instructions are held in the machine in a form intelligible to the programmer
it is very easy to follow what is going on by looking at the monitor tubes”

– Turing at the Inaugural Conference

The University of Manchester hosted a large conference (9–15 July 1951) to demonstrate the
production Ferranti Mark 1, which attracted 170 international delegates. It had been 3 years since
the Baby ran its first program.

Turing (1951) gave a short talk entitled ‘Local Programming Methods and Conventions’, in
which he described a scheme for writing down the instructions used to program the Mark 1, in
a convenient way for programmers. Discussing the use of a code to represent binary numbers,
he said: ‘The choice made at Manchester was the scale of 32. It is probable that a scale of 8 or 16
would be more convenient’. He was right. In later years, the scales of 8 (octal) and 16 (hexadecimal)
would become the norm.

Today the usual convention is to write binary numbers with the most significant (or ‘highest’)
bit on the left, so we would write decimal 5 as binary 00101. But in Turing’s scheme, the most sig-
nificant bit was on the right, so decimal 5 would be binary 10100. Turing had used 5-hole teleprinter
tape at Bletchley Park, and adopted that encoding for representing the bit patterns in the Mark 1’s
instructions and data, where a teleprinter character would stand for a group of 5 bits, according
to the International Telegraphy Alphabet. Using the example above, binary 10100 would be repre-
sented by the character with that code, in this case ‘S’. The full table of bit/letter assignments was
as follows:

0 00000 / 8 00010 1
2 16 00001 T 24 00011 O

1 10000 E 9 10010 D 17 10001 Z 25 10011 B

2 01000 @ 10 01010 R 18 01001 L 26 01011 G

3 11000 A 11 11010 J 19 11001 W 27 11011 "
4 00100 : 12 00110 N 20 00101 H 28 00111 M

5 10100 S 13 10110 F 21 10101 Y 29 10111 X

6 01100 I 14 01110 C 22 01101 P 30 01111 V

7 11100 U 15 11110 K 23 11101 Q 31 11111 £

The instructions in the Mark 1 were 20 bits in length, so to represent the instruction
‘01100010100000101110’ the programmer would split it into four groups of 5 bits, and use the
teleprinter code, to give ‘IRTC’. These four characters could then be input into the machine using
the console switches, or paper tape.

Turing believed that programmers should follow the execution of their programs by watching
the pattern of dots on the CRT screen. He called this ‘peeping’, and argued, somewhat eccentrically,



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 1:36 Page 469 #5

Programmer’s Handbook for the Manchester Electronic Computer Mark II 469

that programmers should practise the art until they could debug their programs simply by watching
for unexpected behaviour among the dancing bright and dim spots.

Turing’s conference talk is all about notational conventions, and is, frankly, rather dull. He
is discussing a low-level encoding that is relevant only to the Manchester machines. But despite
the parochial detail, Turing was addressing a universal problem: how we can use symbols to help
manage complexity.

5. The programmers’ handbook for the Ferranti Mark 1

“If it is desired to give a definition of programming, one might say that it is an activity by which a
digital computer is made to do a man’s will, by expressing this will suitably on punched tapes, or

whatever other input medium is accepted by the machine.” – Programmers’ Handbook, p. 50.

Following the Baby came the improved version, known as the Manchester University Mark 1
or MADM (Manchester Digital Machine). The subsequent fully engineered version of MADM was
produced by Ferranti and became known as the Ferranti Mark 1. During this period of intense activ-
ity, Turing contributed to the addition of new instructions. The production version of the Ferranti
Mark 1, the world’s first commercially available general purpose digital computer, was delivered to
the University in February 1951. It was for this machine that Turing wrote the programming hand-
book (confusingly for us, the book is actually entitled ‘Programmers’ Handbook for the Manchester
Electronic Computer Mark II’, that being Turing’s name for the machine we now refer to as the
Ferranti Mark 1) (Facsimile Scan , 1951; Thau, 2000). The first two models to be manufactured
were sold to the Universities of Manchester and Toronto. Subsequently the design was slightly
altered, and Ferranti sold seven more of the ‘Mark 1 star’ version of the machine.

An August 1952 Ferranti sales brochure for ‘The Manchester Universal Electronic Computer’
(i.e., the Ferranti Mark 1) trumpeted the selling points of the machine: ‘[it] can perform all the
operations of arithmetic exceedingly rapidly’, ‘[it] can remember a great many numbers’ and ‘[it]
can make decisions’. The machine comprised ‘about 4000 valves, 2500 capacitors, 15,000 resistors,
100,000 soldered joints and 6 miles of wire’ (Ferranti Sales Brochure, 1952).

What was it actually like to write programs for the Mark 1? First, the programmer had to decide
how to organise the program so that it could be correctly loaded into the computer. Turing, together
with Cicely Popplewell, devised a system called ‘Scheme A’, which was a set of conventions and
library subroutines, for moving the data used by the program between the fast CRT store and the
relatively slow magnetic drum store. Scheme A also dictated conventions for calling subroutines,
and inputting programs. Today we would refer to this as ‘system software’ – providing a standard
infrastructure to be used by programmers.

Turing’s 90-page handbook is a guide for programmers written by a mathematician. He alter-
nates between explanatory passages, and dense presentations of technical detail. Programming is
described at the raw, machine code level – at the time there was no concept of a ‘high-level’ lan-
guage. Below, for example, is a program from the handbook2 that multiplies two numbers together
by repeated additions:

2 See http://www.alanturing.net/turing_archive/archive/m/m01/M01-015.html

http://www.alanturing.net/turing_archive/archive/m/m01/M01-015.html
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Fig. 3: A program from Turing’s “Programmer’s Handbook”.

Here we can see the binary program instructions represented using the base-32 teleprinter code
described above. There are no mnemonics, as used in assembly-level languages. Instead, the pro-
grammer really is working in the binary of the machine’s instruction set. To read and write even
moderately complex programs would take considerable effort.

Programmers today would probably find this scheme impossibly slow and laborious, but such
comparisons are rarely helpful. At the time it was simply the only way to program, and Ferranti
employee Olaf Chedzoy, for example, has written of his fond memories of programming the Mark 1
(Chedzoy, 1952).

6. Conclusions

Turing’s hands-on contributions to the development of the Manchester computers lasted from
October 1948 to October 1951. For the next, and sadly final, two and a half years of his life, Turing
was programming the Manchester machine to support his biological research. He had become, as
we would say today, an ‘applications programmer’.

Campbell-Kelly (1980) takes the view that Turing’s work on the Mark 1, when compared to such
achievements as the Turing Machine (Turing, 1936), and his design of ACE, was ‘not an example
of his finest work’. His biographer Andrew Hodges makes a plausible case for a number of Turing’s
novel ideas which were never properly followed up, such as self-organising systems and artificial
life, chaos theory, mathematically proving programs correct, developing higher level programming
languages, and the lambda calculus which inspired McCarthy’s LISP in 1958 (Hodges, 1992; 2004).

Such observations, however, can never detract from the fact that Alan Turing was an extraordi-
nary man – a unique and brilliant thinker. And in 2012 we celebrate his life and achievements.

7. Suggestions for further reading

A primary source for material on the Baby and the early Manchester scene is the Computer50
Web site (Napper, 1998). Simon Lavington’s definitive ‘A History of Manchester Comput-
ers’ (Lavington, 1998) is essential reading, and beautifully illustrated with archive photographs. For
a detailed coverage of Mark 1 programming see Martin Campbell-Kelly’s ‘Programming the Mark
1: Early Programming Activity at the University of Manchester’ (Campbell-Kelly, 1980). See also
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the fascinating papers by Chris Burton, Brian Napper and Frank Sumner in ‘The First Computers:
History and Architecture’ (Rojas, 2002), and Mary Croarken’s ‘The beginnings of the Manchester
computer phenomenon: people and influences’, which traces the pre-history of the Baby (Croarken,
1993).
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EXCERPT FROM: PROGRAMMER’S HANDBOOK
FOR THE MANCHESTER ELECTRONIC

COMPUTER MARK II

Programming principles

Programming is a skill best acquired by practice and example rather than from books. The remarks
given here are therefore quite inadequate.

If it is desired to give a definition of programming, one might say that it is an activity by which
a digital computer is made to do a man’s will, by expressing this will suitably on punched tapes, or
whatever other input medium is accepted by the machine. This is normally achieved by working up
from relatively simple requirements to more complex ones. Thus for instance if it is desired to do
a Fourier analysis on the machine it would be as well to arrange first that one can calculate cosines
on it. For each process that one wishes the machine to be able to carry out one constructs a ‘routine’
for the process. This consists mainly of a set of instructions, which are obeyed by the machine in
the process. It is not usual however to reckon all the instructions obeyed in the process as part of
the ‘routine’. Many of them will belong to other routines, previously constructed and carrying out
simpler processes. Thus for instance the Fourier analysis process would involve obeying instructions
in the routine for forming cosines as well as ones in the analysis routine proper. In a case like this the
cosine’s routine is described as a ‘subroutine’ of the analysis routine. The subroutines of any routine
may themselves have subroutines. This is like the case of the bigger and lesser fleas. I am not sure
of the exact meaning the poet attached to the phrase ‘and so on ad infinitum’, but am inclined to
think that he meant there was no limit that one could assign to a parasitic chain of fleas, rather than
that he believed in infinitely long chains. This certainly is the case with subroutines. One always
eventually comes down to a routine without subroutines.

What is normally required of a routine is that a certain function of the state of the machine shall
be calculated and stored in a given place, the majority of the content of the store being unaffected by
the process, and the routine not being dependent on this part having any particular content. It is usual
also for the other part of the store to be divided into a part which is altered in the process but not
greatly restricted as to its original content, and a part which is unaltered in its content throughout,
and such that the correct working of the routine depends on this part having a particular content. The
former can be described as ‘the working space for the routine’ and the latter as ‘the space occupied
by the routine’.

Applying this to the Mark II machine, the routines usually ‘occupy’ various tracks of the mag-
netic store. The working space includes all the electronic store, with the exception of PERM1, which
can equally well be reckoned as working space which is never really altered, or as a part common
to all routines. The first two pages of the electronic store are also somewhat exceptional, if normal
conventions are used, as they are only altered when one is copying new routines from the magnetic
store onto them.

1 System code that was permanently kept in the electronic store; the space occupied was not therefore generally accessible
to the user.
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These definitions do not really help the beginner. Something more specific is needed. I describe
below the principal steps which I use in programming, in the hope they will be of some small
assistance.

i) Make a plan. This rather baffling piece of advice is often offered in identical words to the
beginner in chess. Likewise the writer of a short story is advised to ‘think of a plot’ or an
inventor to ‘have an idea’. These things are not the kind that we try to make rules about. In this
case however some assistance can be given, by describing the decisions that go to make up the
plan.

a) If it is a genuine numerical computation that is involved (rather than, e.g. the solution of
a puzzle) one must decide what mathematical formulae are to be used. For example if one
were calculating the Bessel function J0(x) one would have, amongst others, the alternatives
of using the power series in x, various other power series with other origins, interpolation
from a table, various definite integrals, integration of the differential equation by small
arcs and asymptotic formulae. It may be necessary to give some small consideration to a
number of the alternative methods.

b) Some idea should be formed as to the supply and demand of the various factors involved.
A balance must always be struck between the following incompatible desires:

To carry the process through as fast as possible
To use as little storage space as possible
To finish the programming as quickly as possible
To achieve the maximum possible accuracy

We may express this by saying that machine time, storage space, programmer’s time and
inaccuracy of results all cost something. The plan should take this into account to some
extent, though a true optimum cannot be achieved except by chance, since programmer’s
time is involved, so that a determination of the optimum would defeat its own ends. The
‘state of the market’ for these economic factors will vary greatly from problem to problem.
For instance there will be an enormous proportion of problems (40% perhaps) where there
is no question of using the whole storage capacity of the machine, so that space is almost
free. With other types of problem one could easily use ten million digits of storage and still
not be satisfied.
The space shortage applies mainly to working space rather than to space occupied by the
routines. Since these usually have to be written down by someone this in itself has a lim-
iting effect. Speed will usually be a factor worth consideration, though there are many
‘fiddling’ jobs where it is almost irrelevant. For instance the calculation of tabular values
for functions, which are to be stored in the machine and later used for interpolation, would
usually be in this class. Programmer’s time will usually be the main factor in special jobs,
but is relatively unimportant in fundamental routines which are used in most jobs. Accu-
racy may compete with machine time, e.g. over such questions as the number of terms to
be taken in a series, and with space over the question as to whether 20 or 40 digits of a
number should be stored.

c) The available storage space must be apportioned to various duties. This will apply both
to magnetic and electronic storage. The magnetic storage will probably be mainly either
working space or unused. It should be possible to estimate the space occupied by instruc-
tions to within say two tracks, for a large part will probably be previously constructed
programmes, occupying a known number of tracks. The quantities to be held in the work-
ing space should if possible be arranged in packets which it is convenient to use all at once,
and which can be packed into a track or a half-track or quarter-track. For instance when
multiplying matrices it might be convenient to partition the matrices into four-rowed or
eight-rowed square matrices and keep each either in a track or a quarter-track. The appor-
tionment of the electronic store is partly ruled by the conventions we have introduced, but
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there is still a good deal of freedom, e.g. if eight pages are available then pages 4, 5, 6 can
be used for systematic working space and may be used for various different purposes that
require systematic working space.
The beginner will do well to ask for advice concerning plans. Bad plans lead to
programmes being thrown away, wasting valuable programmer’s time.

d) If questions of time are at all critical the ‘plan’ should include a little detailed programming,
i.e. the writing down of a few instructions. It should be fairly evident which operations
are likely to consume most of the time, and help decide whether the plan as a whole is
satisfactory. Very often the ‘omission of counting method’ should be applied.

e) If one cannot think of any way, good or bad, for doing a job, it is a good thing to try and
think how one would do it oneself with pencil and paper. If one can think of such a method
it can usually be translated into a method which could be applied to the machine.

(ii) Break the problem down. This in effect means to decide which parts of the problem should be
made into definite subroutines. The purpose of this is partly to make the problem easier to think
about, the remaining work consisting of a number of ‘limited objective’ problems. Another
reason for breaking down is to facilitate the solution of other problems by the provision of
useful subroutines. For instance if the problem on hand were the calculation of Bessel functions
and it had already been decided to use the differential equation, it might be wise to make and
use a subroutine for the solution of linear second order differential equations. This subroutine
would in general be used in connection with other subroutines which calculate the coefficients
of the equation.

(iii) Do the programming of the new subroutines. It is better to do the programming of the sub-
routines before that of the main routine, because there will be a number of details which will
only be known after the subroutine has been made, e.g. scale factors applied to the results, num-
ber of pages occupied by the subroutines, etc. It also frequently happens in the making of the
subroutine that some relatively small change in its proposed properties is desirable. Changes
of these details may put the main routine seriously out if it were made first. There is a danger
that this procedure may result in one’s ‘not seeing the wood for the trees’, but this should not
happen if the original plan was well thought out. The programming of each subroutine can itself
be divided into parts:

a) As with programming a whole problem a plan is needed for a subroutine. A convenient aid
in this is the ‘block schematic diagram’. This consists of a number of operations described
in English (or any private notation that the programmer prefers) and joined by arrows. Two
arrows may leave a point where a test occurs, or more if a variable control transfer number
is used. Notes may also be made showing what is tested, or how many times a loop is to
be traversed.

b) The operations appearing as blocks in a) may be replaced by actual instructions. It is
usually not worth while at first to write down more than the last two characters of the
(presumptive) instruction, i.e. the B line and function parts. These are quite enough to
remind one of what was the purpose of the instruction.

c) One may then write the instructions into a page, deciding at the same time what are to be
the addresses involved.

d) When the programming is complete, check sheets must be made. It is often advisable to
start making check sheets long before the programme is complete; one should in fact begin
them as soon as one feels that one has got into a muddle. It is often possible to work out
most of the programme on the check sheets and afterwards transfer back onto the page or
pages of instructions.

(iv) Programme the main routine. This follows principles similar to (iii). Of course these remarks
merely represent one possible way of doing programming. Individuals will no doubt vary as to
the methods they prefer.
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Fig. 1: Reproduction of Turing’s INPUT routine, which was used to read programs into the machine
from punched paper-tape.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 1:36 Page 476 #12

476 Part II

Fig. 1: (continued)
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Fig. 1: (continued)
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Fig. 2: Turing’s only formal publication on programming techniques for the Manchester Mark I,
read at the Inaugural Conference for the Manchester University Computer in July 1951.
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Building a Brain:
Intelligent Machines, Practice and Theory
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Turing’s Lecture to the London Mathematical Society
on 20 February 1947

(A more readable guide to the ACE computer than Turing’s 1945 ACE report)

Anthony Beavers pays homage to —

ALAN TURING: MATHEMATICAL MECHANIST

I live just off of Bell Road outside of Newburgh, Indiana, a small town of 3000 people. A mile down
the street Bell Road intersects with Telephone Road, not as a modern reminder of a technology
belonging to bygone days, but as testimony that this technology, now more than a century and a
quarter old, is still with us. In an age that prides itself on its digital devices and in which the computer
now equals the telephone as a medium of communication, it is easy to forget the debt we owe to an
era that industrialised the flow of information, that the light bulb, to pick a singular example, which
is useful for upgrading visual information we might otherwise overlook, nonetheless remains the
most prevalent of all modern day information technologies. Edison’s light bulb, of course, belongs
to a different order of informational devices than the computer, but not so the telephone, not entirely
anyway.

Alan Turing, best known for his work on the Theory of Computation (1937), the Turing Machine
(also 1937) and the Turing Test (1950), is often credited with being the father of computer science
and the father of artificial intelligence. Less well known to the casual reader but equally important
is his work in computer engineering. The following lecture on the Automatic Computing Engine,
or ACE, shows Turing in this different light, as a mechanist concerned with getting the greatest
computational power from minimal hardware resources. Yet Turing’s work on mechanisms is often
eclipsed by his thoughts on computability and his other theoretical interests. This is unfortunate
for several reasons, one being that it obscures our picture of the historical trajectory of information
technology, a second that it emphasizes a false dichotomy between ‘hardware’ and ‘software’ to
which Turing himself did not ascribe but which has, nonetheless, confused researchers who study
the nature of mind and intelligence for generations. We are only today starting to understand the
error of our ways. Our ways . . . not Turing’s, as the following essay makes clear.

The second issue follows from the first, from understanding Turing independently of his mecha-
nistic tendencies and his connections to the industrial information revolution of the nineteenth cen-
tury. Thus, it is fitting to rescue the popular understanding of Turing from the two essays for which
he is most notably known (Turing, 1937, 1950) in order to shed some light on his genuine place in
history and, at the same time, to examine some of the implications that should have been clear to
the philosophers and psychologists that immediately followed him. He was, in more than one way,
ahead of his time, though oddly, as we shall see, because he was thoroughly connected to his past.

‘It is . . . quite difficult to think about the code entirely in abstracto without any kind of cir-
cuit’, Turing (p. 490) writes in this lecture suggesting that in a working machine there is no ‘code’,
just hardware, and that really what ‘computer code’ does is to configure circuitry within comput-
ing machinery to perform a particular information processing task. For ease of communication,
I will call the belief that software constitutes a separate level of machine processing, that ‘code’
can be understood in abstraction from circuitry, the ‘software seduction’. This position is most
famously advanced by Marr (1982). Though it was originally intended to assist him in the analy-
sis of vision, it set the stage for several theories in cognitive science and the philosophy of mind.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00021-7
c© 2013 Elsevier Inc. All rights reserved.
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Marr’s ‘Tri- Level Hypothesis’ decomposed an information processing system into three levels for
the sake of analysis, the computational, algorithmic and implementational levels. The first level
concerns the input/output specifications of the system, while the algorithmic level specifies the
processes and representations whereby inputs are transformed into their appropriate outputs. The
implementational level concerns how the algorithmic level is instantiated in something physical.

For Marr and several in the tradition that follows him, the real work of information process-
ing is best understood by examining algorithms, while the implementation is largely incidental. In
other words, the ‘code’ here is predominantly understood in abstraction from the circuits, or, in
modern terms, ‘software’ is deemed more important for understanding information processing than
‘hardware’. In turn, this tri-partite division led historically to a ‘computer analogy’ for understand-
ing human cognition in which mind is taken to be to software as brain (or body) is to hardware.
As a consequence, to understand mental function, we need only consider problem solving and other
cognitive tasks on the algorithmic level. The details of the neural substrate belong to another science.

Traditional cognitive scientists still ascribe to this distinction, which is deeply rooted in the
separation between cognitive psychology and neuroscience that has become part of the DNA of the
modern academy. Of course, as traditions tend to fall to the past and new conceptions take their
place, this paradigm too is on its way out. Embodied and situated cognition has made considerable
headway in producing explanations that are both more fruitful and biologically plausible than those
rooted in the aforementioned ‘software seduction’. We are coming to understand that mind cannot
be understood in abstraction from brain, body and environment just as code cannot be understood
in abstraction from circuitry. Regarding Turing and, in particular, the essay to follow, these new
explanations of cognition cannot be said to represent a turn away from the Turing paradigm, but
rather a turn towards it, once we understand Turing’s own mechanical tendencies. If mind is to brain
as software is to hardware, then a true rendition of the ‘computer analogy’ would suggest that in a
real working brain, mind is just more brain, more circuitry. We see why this is so in the subsequent
essay, which again connects Turing to his past and helps us understand his true contribution to the
history of information technology, a topic which I now address.

Though one common view is that the ‘information age’ begins with the birth of digital technolo-
gies and thus owes its debt to Turing (Floridi, 2008), when we explore the history of informational
mechanisms, we see that this is only partially correct. It is quite true that the recent explosion in
informational devices has increased dramatically since Time Magazine named the computer ‘person
of the year’ in 1982, but it belongs nonetheless to a trajectory that was firmly set in motion by the end
of the nineteenth century with what we might call the ‘multimedia revolution’ (Beavers, in press).
Such a view does not minimize Turing’s contribution, but helps to illustrate precisely where it lies.
It is obviously not insignificant.

By ‘multimedia revolution’, I mean to invoke here an era in which information was decoupled
from the exigencies of transportation technology and made to move on its own. Prior, if informa-
tion traveled from point A to B, it was because someone carried it there; but just as the industrial
revolution issued in a range of new mechanisms for everything from agriculture to textile manufac-
turing, it did the same for information. The casual reader, to be sure, is mostly aware of this fact,
but its significance might not readily be clear. Some inventions and their approximate dates might
add some clarity.

Though putting starting dates on such historical transformation is risky business, it is perhaps
not too much of a falsification to date the beginning of the industrialization of information with the
telegraph in 1836 and the Daguerreotype in 1839, which introduced practical photography. The tele-
graphic printer and the stock ticker followed soon after in 1856 and 1863, respectively. The years
between 1876 and 1881 were perhaps the most immediately transformative with the telephone in
1877, the phonograph in 1878, and the light bulb and the photophone in 1880. The latter, Bell’s
favorite invention, could mediate telephone communications by modulating wave forms on a beam
of light. Wireless telegraphy and the wax cylinder, which made Edison’s phonograph practical, both
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emerged in 1881 with the wax cylinder (invented by Bell) serving as a patent reminder that not
all of these technologies were electric. Many were not adopted for the same uses to which we put
them today. The telephone, for instance, was an early form of broadcasting prior to radio (which
is why a radio was originally referred to as a ‘wireless’), and of the 10 uses Edison enumerates
for the phonograph, recording music is listed fourth, with distance education suggested ninth and
then last, ‘connection with the telephone, so as to make that instrument an auxiliary in the transmis-
sion of permanent and invaluable records, instead of being the recipient of momentary and fleeting
communication’ (Edison, 1878).

Edison’s vision of connecting phonographs to the telephone system to aid in the preservation
and transmission of information anticipates Turing’s observations (p. 495) in the following essay
that ‘it would be quite possible to arrange to control a distant computer by means of a telephone
line’, costing ‘a few hundred pounds at most’. This would entail modulating wave forms over the
telephone to allow for digital transmission, which was easy enough to do. However, the important
thing is that for both men, hints of a networked world are present because of the invention and quick
adoption of the telephone. In fact, by 1910 the telephone had become so popular as to warrant its
own history. Herbert Casson’s The History of the Telephone paints a vivid picture of the societal
transformation in progress:

What we might call the telephonization of city life, for lack of a simpler word, has remark-
ably altered our manner of living from what it was in the days of Abraham Lincoln. It has
enabled us to be more social and cooperative. It has literally abolished the isolation of sepa-
rate families, and has made us members of one great family. It has become so truly an organ
of the social body that by telephone we now enter into contracts, give evidence, try lawsuits,
make speeches, propose marriage, confer degrees, appeal to voters, and do almost everything
else that is a matter of speech (199).

Indeed, long before the emergence of computing machinery, ‘human computers’, as Turing liked to
call people, were quickly interconnecting, and it is difficult to imagine the invention of the mechan-
ical computer (and a host of other technologies) without this affordance of the telephone. But there
are deeper technological connections between the telephone and computing machinery, which I will
discuss momentarily. Before doing so, it is worth sketching a bit more of the history that belongs to
the ‘multimedia revolution’ by reminding the reader of a few more dates.

In 1891, Edison made pictures move with his invention of the motion picture camera. Radio and
teletype would enter the scene in 1906, to be followed in 1914 by Edison’s ‘telescribe’, a precursor
to the answering machine that has now recently been replaced with ‘voice mail’. Pictures would take
to the airwaves with the public appearance of the television in 1926 and the National Broadcasting
System in 1928, the same year that magnetic tape would become available. The speed of information
transmission and its reach would continue with cable television in 1948, the cassette tape in 1958,
the touch tone phone in 1963, color television in 1966 and the VCR in 1969.

Turing belongs to this historical trajectory, which I have intentionally recounted without men-
tion of computing machinery to make a few points. The first is that the information revolution
was well underway prior to Turing, but without one affordance that will greatly alter its landscape.
Edison, Bell and several others could store information and move it around. They could not, how-
ever, capture it temporarily in a memory store, process it and then produce meaningful output.
Turing’s paper of 1937 introduces a theory of mechanical computation sufficient to put automated
information processors into the mix of inter-networked human computers, but it will not provide
the schematic for a practical piece of hardware. That work comes later, not solely by Turing, but
partly so, as we see in this 1947 lecture to the London Mathematical Society. Second, not all of
the technologies that belong to this information revolution were electric, as I previously noted, for
instance, the phonograph, early cameras, motion picture cameras, etc. Electricity is important for
computing machinery, but for practical reasons only, at least for what matters to the mathematician.
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Turing writes at the beginning of this lecture (p. 486) that ‘the property of being digital should be of
greater interest than that of being electronic. That [computing machinery] is electronic is certainly
important because these machines owe their high speed to this, and without the speed it is doubtful
if financial support for their construction would be forthcoming. But this is virtually all that there is
to be said on the subject’.

It is perhaps worth noting two things in regard to this quote. Computing machinery was not the
first of the digital information mechanisms to enter this revolution. At the very beginning, Samuel
Morse’s famous code (c. 1830) was digital; the telegraph worked by sending pulses of current across
an electrical line. Signals were encoded digitally, but not in binary, since the code used five ‘tokens’
not two, a short electric pulse, a long one, and less obviously the empty space between them that
used a short moment of silence to separate ‘dots’ and ‘dashes’, a longer one to separate letters and a
longer one still for words. More importantly, the quote from Turing makes reference to the necessity
of building economically feasible equipment. This concern is not trivial; not at all. In fact, as the
essay indicates, cost concerns are going to drive the architecture of the machine and the need for
‘subsidiary [instruction] tables’, that are stored in memory as early analogs to our functions or pro-
cedures. Getting the most computational power from minimal hardware resources, as I mentioned
earlier, is at the heart of this essay, but for economic and not mathematical reasons. ‘Code’ then
becomes a strategy for creating temporary circuitry inside of the machine that can be reconfigured
later for a different processing task. This highlights the notion that computer code is not essential
for information processing tasks; separate hardware (i.e., circuitry) could be built for each task, but
this would be both costly and inefficient. This makes it clear that one can, in fact, trade off software
for hardware as needed. Indeed, Turing’s goal in this lecture is to describe a machine that has mini-
mal circuitry, but that can be configured with code for any processing task that is computable. Here,
he does this (p. 489) with a 200KB memory store that is ‘probably comparable with the memory
capacity of a minnow’, quite a remarkable accomplishment even by today’s standards.

Code, then, is useful to the extent that it can reconfigure circuitry, and hence is not a necessary
condition for information processing tasks. However, such a machine could not get by without
easily accessible, writeable and erasable memory. This fact leads us to one of the central practical
insights of this lecture, the development of an accessible and efficient memory store. The infinite
tape suggested in the idealized Turing machine of 1937 will not do because of the time it would take
to jump around the tape. In explaining why, Turing ties himself again to the history of information
technology by referring back to the affordances of the book over papyrus scrolls, noting nonetheless
that even an automated memory structure based on the book would be highly inefficient, though the
memory store he will advocate here is based on an analogy with it. The book will be to the papyrus
scroll as memory circuitry will be to the infinite tape of the idealized machine. Here, the memory
circuitry will consist of 200 separate mercury acoustic delay lines (analogous to pages in a book)
that can each contain 1024 bits of information. I will not go into a complete description of how the
system works here, since the details are spelled out in the lecture. I will, however, make a few final
observations, that tie Turing to the history of information technology.

To start, many of the inventions of this era that industrialized the flow of information did so by
modulating wave forms of various sorts. I have already mentioned Bell’s experiments with light in
this regard, but it was his early experiments with electricity that made the telephone (prior to cell
phones) practical. Others, of course, were involved in a range of experiments (Tesla, Marconi, etc.)
that modulated radio waves to support both radio and television. In this lecture, Turing considers
the use of magnetic wires and cathode ray tubes before settling on the use of acoustic delay lines.
Though analog, a close inspection of the schematics of Bell, Marconi or Tesla shows sufficient sim-
ilarity to Turing’s designs to plot him on the same trajectory. So, of course, the idea of modulating
wave forms does not belong to Turing. In fact, some might even be surprised to learn that his early
work was this explicitly dedicated to such.
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What then is important about this lecture? It would seem to be its patently practical nature and
its mechanical commitments that challenge our picture of a mathematical Turing by presenting
another Turing, the mechanist, who gets into the nuts and bolts of computing machinery. In doing
so, as I have tried to make clear, he does not show a clean break that starts a new era, but strong
attachments to the preceding one. This is not to suggest that Turing did not issue in an unprecedented
era in the processing and storage of information and the speed of its dissemination. He did, along
with several others. In this regard, I wish to close with one final comment about technological
visionaries in general.

Turing foresaw the possibility of connecting the computer to the telephone in much the same
way that Edison did. Bell was already on the track of wireless telephony, so much so that in 1897,
William Ayrton could make a prediction about the future that is still so painted in the language and
technology of his past that today it reads like a 1930’s science fiction film:

There is no doubt that the day will come, maybe when you and I are forgotten, when copper
wires, gutta-percha coverings, and iron sheathings will be relegated to the Museum of Antiq-
uities. Then, when a person wants to telegraph to a friend, he knows not where, he will call
in an electro-magnetic voice, which will be heard loud by him who has the electro-magnetic
ear, but will be silent to everyone else. He will call, ‘Where are you?’ and the reply will
come, ‘I am at the bottom of the coal-mine’ or ‘Crossing the Andes,’ or ‘In the middle of the
Pacific’ (Fahie, 1900, vii).

No one back then, it seems, could imagine what would happen when the computer revolution,
inaugurated by Turing, and the telephone revolution, inaugurated by Bell, would come crashing
together at the end of the twentieth century to connect everyone to computers (both human and
mechanical) by way of hand-held computer/telephones and other devices that are both affordable
and have more computational power than Turing himself imagined practical.

We stand on the shoulders of giants, information visionaries of the past 200 years. Yet, if we
could somehow transport them into today’s information environment, I cannot help but think that
even with the grand visions that they had, they would nonetheless be in utter surprise over where
we have arrived. Shocked and baffled, amazed, they would perhaps feel both proud and humble.
This makes it all the more shameful that Turing himself was never permitted to experience the
appreciation of a world that owes him an incredible debt, not solely because of his brilliant mind,
but also because he was not afraid to get his hands dirty. We should never disparage those who are
willing to get dirty in the process of making the world a better place.
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LECTURE TO THE LONDON MATHEMATICAL
SOCIETY ON 20 FEBRUARY 1947

A. M. TURING

The automatic computing engine now being designed at N.P.L. is a typical large scale electronic
digital computing machine. In a single lecture it will not be possible to give much technical detail
of this machine, and most of what I shall say will apply equally to any other machine of this type
now being planned.

From the point of view of the mathematician the property of being digital should be of greater
interest than that of being electronic. That it is electronic is certainly important because these
machines owe their high speed to this, and without the speed it is doubtful if financial support for
their construction would be forthcoming. But this is virtually all that there is to be said on that sub-
ject. That the machine is digital however has more subtle significance. It means firstly that numbers
are represented by sequences of digits which can be as long as one wishes. One can therefore work
to any desired degree of accuracy. This accuracy is not obtained by more careful machining of parts,
control of temperature variations, and such means, but by a slight increase in the amount of equip-
ment in the machine. To double the number of significant figures used would involve increasing the
equipment by a factor definitely less than two, and would also have some effect in increasing the
time taken over each job. This is in sharp contrast with analogue machines, and continuous variable
machines such as the differential analyser, where each additional decimal digit required necessitates
a complete redesign of the machine, and an increase in the cost by perhaps as much as a factor of
10. A second advantage of digital computing machines is that they are not restricted in their appli-
cations to any particular type of problem. The differential analyser is by far the most general type
of analogue machine yet produced, but even it is comparatively limited in its scope. It can be made
to deal with almost any kind of ordinary differential equation, but it is hardly able to deal with par-
tial differential equations at all, and certainly cannot manage large numbers of linear simultaneous
equations, or the zeros of polynomials. With digital machines however it is almost literally true that
they are able to tackle any computing problem. A good working rule is that the ACE can be made
to do any job that could be done by a human computer, and will do it in one ten-thousandth of the
time. This time estimate is fairly reliable, except in cases where the job is too trivial to be worth
while giving to the ACE.

Some years ago I was researching on what might now be described as an investigation of the the-
oretical possibilities and limitations of digital computing machines. I considered a type of machine
which had a central mechanism, and an infinite memory which was contained on an infinite tape.
This type of machine appeared to be sufficiently general. One of my conclusions was that the idea
of a ‘rule of thumb’ process and a ‘machine process’ were synonymous. The expression ‘machine
process’ of course means one which could be carried out by the type of machine I was considering.
It was essential in these theoretical arguments that the memory should be infinite. It can easily be
shown that otherwise the machine can only execute periodic operations. Machines such as the ACE
may be regarded as practical versions of this same type of machine. There is at least a very close
analogy. Digital computing machines all have a central mechanism or control and some very exten-
sive form of memory. The memory does not have to be infinite, but it certainly needs to be very
large. In general the arrangement of the memory on an infinite tape is unsatisfactory in a practical
machine, because of the large amount of time which is liable to be spent in shifting up and down the
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tape to reach the point at which a particular piece of information required at the moment is stored.
Thus a problem might easily need a storage of three million entries, and if each entry was equally
likely to be the next required the average journey up the tape would be through a million entries,
and this would be intolerable. One needs some form of memory with which any required entry can
be reached at short notice. This difficulty presumably used to worry the Egyptians when their books
were written on papyrus scrolls. It must have been slow work looking up references in them, and
the present arrangement of written matter in books which can be opened at any point is greatly
to be preferred. We may say that storage on tape and papyrus scrolls is somewhat inaccessible. It
takes a considerable time to find a given entry. Memory in book form is a good deal better, and is
certainly highly suitable when it is to be read by the human eye. We could even imagine a comput-
ing machine that was made to work with a memory based on books. It would not be very easy but
would be immensely preferable to the single long tape. Let us for the sake of argument suppose that
the difficulties involved in using books as memory were overcome, that is to say that mechanical
devices for finding the right book and opening it at the right page, etc. etc. had been developed,
imitating the use of human hands and eyes. The information contained in the books would still be
rather inaccessible because of the time occupied in the mechanical motions. One cannot turn a page
over very quickly without tearing it, and if one were to do much transportation, and do it fast, the
energy involved would be very great. Thus if we moved one book every millisecond and each was
moved ten metres and weighed 200 grams, and if the kinetic energy were wasted each time we
should consume 1010 watts, about half the country’s power consumption. If we are to have a really
fast machine then, we must have our information, or at any rate a part of it, in a more accessible
form than can be obtained with books. It seems that this can only be done at the expense of compact-
ness and economy, e.g. by cutting the pages out of the books, and putting each one in to a separate
reading mechanism. Some of the methods of storage which are being developed at the present time
are not unlike this.

If one wishes to go to the extreme of accessibility in storage mechanisms one is liable to find that
it is gained at the price of an intolerable loss of compactness and economy. For instance the most
accessible known form of storage is that provided by the valve flip-flop or Jordan Eccles trigger
circuit. This enables us to store one digit, capable of two values, and uses two thermionic valves.
To store the content of an ordinary novel by such means would cost many millions of pounds. We
clearly need some compromise method of storage which is more accessible than paper, film etc,
but more economical in space and money than the straightforward use of valves. Another desirable
feature is that it should be possible to record into the memory from within the computing machine,
and this should be possible whether or not the storage already contains something, i.e. the storage
should be erasible.

There are three main types of storage which have been developed recently and have these prop-
erties in greater or less degree. Magnetic wire is very compact, is erasible, can be recorded on from
within the machine, and is moderately accessible. There is storage in the form of charge patterns
on the screen of a cathode ray tube. This is probably the ultimate solution. It could eventually be
nearly as accessible as the Jordan Eccles circuit. A third possibility is provided by acoustic delay
lines. They give greater accessibility than the magnetic wire, though less than the C.R.T type. The
accessibility is adequate for most purposes. Their chief advantage is that they are already a going
concern. It is intended that the main memory of the ACE shall be provided by acoustic delay lines,
consisting of mercury tanks.

The idea of using acoustic delay lines as memory units is due I believe to Eckert of Philadelphia
University, who was the engineer chiefly responsible for the Eniac. The idea is to store the informa-
tion in the form of compression waves travelling along a column of mercury. Liquids and solids will
transmit sound of surprisingly high frequency, and it is quite feasible to put as many as 1000 pulses
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into a single 5′ tube. The signals may be conveyed into the mercury by a piezo-electric crystal, and
also detected at the far end by another quartz crystal. A train of pulses or the information

which they represent may be regarded as stored in the mercury whilst it is travelling through it. If
the information is not required when the train emerges it can be fed back into the column again and
again until such time as it is required. This requires a ‘recirculating circuit’ to read the signal as it
emerges from the tank and amplify it and feed it in again. If this were done with a simple amplifier
it is clear that the characteristics of both the tank and the amplifier would have to be extremely good
to permit the signal to pass through even as many as ten times. Actually the recirculating circuit
does something slightly different. What it does may perhaps be best expressed in terms of point
set topology. Let the plane of the diagram represent the space of all possible signals. I do not of
course wish to imply that this is two dimensional. Let the function f b defined for arguments in
this signal space and have values in it. In fact let f (s) represent the effect on the signal s when it is
passed through the tank and the recirculating mechanism. We assume however that owing to thermal
agitation the effect of recirculation may be to give any point within a circle of radius δ of f (s). Then
a necessary and sufficient condition that the tank can be used as a storage which will distinguish
between N different signals is that there must be N sets E1 . . . EN such that if Fr is the set of points
within distance ε of Er

s ∈ Fr ⊃ f (s) ∈ Er

and the sets Fr are disjoint. It is clearly sufficient for we have only then to ensure that the signals
initially fed in belong to one or other of the sets Fr, and it will remain in the set after any number of
recirculations, without any

danger of confusion. It is necessary for suppose s1 . . . sN are signals which have different meanings
and which can be fed into the machine at any time and read out later without fear of confusion.

Let Er be the set of signals which could be obtained for sr by successive applications of f and
shifts of distance not more than ε. Then the sets Er are disjoint [two lines indecipherable—Ed.].
In the case of a mercury delay line used for N = 16 the set would consist of all continuous signals
within the shaded area.
One of the sets would consist of all continuous signals lying in the region below. It would represent
the signal 1001.
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In order to put such a recirculation system into effect it is essential that a clock signal be supplied
to the memory system so that it will be able to distinguish the times when a pulse if any should
be present. It would for instance be natural to supply a timing sine wave as shown above to the
recirculator.

The idea of a process f with the properties we have described is a very common one in con-
nection with storage devices. It is known as ‘regeneration’ of storage. It is always present in some
form, but sometimes the regeneration is as it were naturally occuring and no precautions have to be
taken. In other cases special precautions have to be taken to improve such an f process or else the
impression will fade.

The importance of a clock to the regeneration process in delay lines may be illustrated by an
interesting little theorem. Suppose that instead of the condition s ∈ Fr ⊃ f (s) ∈ Er we impose a
stronger one, viz f n(s)→ cr if s ∈ Er, i.e. there are ideal forms of the distinguishable signals, and
each admissible signal converges towards the ideal form after recirculating. Then we can show that
unless there is a clock the ideal signals are all constants. For let Uα represent a shift of origin, i.e.
Uαs(t)= s(t+α). Then since there is no clock the properties of the recirculator are the same at all
times and f therefore commutes with Uα . Then fUα(cr)= Uαf (cr)= Uαcr, for f (cr)= cr since cr

is an ideal signal. But this means that Uα(cr) is an ideal signal, and therefore for sufficiently small α
must be cr, since the ideal signals are discrete. Then for any β and sufficiently large u, β/u will be
sufficiently small and Uβ/u(c)= c. But then by iteration c= Uu

β/u(c)= Uβ(c) i.e. c(t+β)= c(t).
This means that the ideal signal c is a constant.

We might say that the clock enables us to introduce a discreteness into time, so that time for
some purposes can be regarded as a succession of instants instead of a continuous flow. A digital
machine must essentially deal with discrete objects, and in the case of the ACE this is made possible
by the use of a clock. All other digital computing machines except for human and other brains that
I know of do the same. One can think up ways of avoiding it, but they are very awkward. I should
mention that the use of the clock in the ACE is not confined to the recirculation process, but is used
in almost every part.

It may be as well to mention some figures connected with the mercury delay line as we shall use
it. We shall use five foot tubes, with an inside diameter of half an inch. Each of these will enable us
to store 1024 binary digits. The unit I have used here to describe storage capacity is self explanatory.
A storage mechanism has a capacity of m binary digits if it can remember any sequence of m digits
each being a 0 or a 1. The storage capacity is also the logarithm to the base 2 of the number of
different signals which can be remembered, i.e. log2 N. The digits will be placed at a time interval
of one microsecond, so that the time taken for the waves to travel down the tube is just over a
millisecond. The velocity is about one and a half kilometres per second. The delay in accessibility
time or average waiting for a given piece of information is about half a millisecond. In practice this
is reduced to an effective 150µs. The full storage capacity of the ACE available on Hg delay lines
will be about 200,000 binary digits. This is probably comparable with the memory capacity of a
minnow.
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I have spent a considerable time in this lecture on this question of memory, because I believe
that the provision of proper storage is the key to the problem of the digital computer, and certainly
if they are to be persuaded to show any sort of genuine intelligence much larger capacities than are
yet available must be provided. In my opinion this problem of making a large memory available at
reasonably short notice is much more important than that of doing operations such as multiplication
at high speed. Speed is necessary if the machine is to work fast enough for the machine to be com-
mercially valuable, but a large storage capacity is necessary if it is to be capable of anything more
than rather trivial operations. The storage capacity is therefore the more fundamental requirement.

Let us now return to the analogy of the theoretical computing machines with an infinite tape.
It can be shown that a single special machine of that type can be made to do the work of all. It
could in fact be made to work as a model of any other machine. The special machine may be called
the universal machine; it works in the following quite simple manner. When we have decided what
machine we wish to imitate we punch a description of it on the tape of the universal machine. This
description explains what the machine would do in every configuration in which it might find itself.
The universal machine has only to keep looking at this description in order to find out what it should
do at each stage. Thus the complexity of the machine to be imitated is concentrated in the tape and
does not appear in the universal machine proper in any way.

If we take the properties of the universal machine in combination with the fact that machine
processes and rule of thumb processes are synonymous we may say that the universal machine is
one which, when supplied with the appropriate instructions, can be made to do any rule of thumb
process. This feature is paralleled in digital computing machines such as the ACE. They are in fact
practical versions of the universal machine. There is a certain central pool of electronic equipment,
and a large memory. When any particular problem has to be handled the appropriate instructions
for the computing process involved are stored in the memory of the ACE and it is then ‘set up’ for
carrying out that process.

I have indicated the main strategic ideas behind digital computing machinery, and will now
follow this account up with the very briefest description of the ACE. It may be divided for the sake
of argument into the following parts

Memory
Control
Arithmetic part
Input and output

I have already said enough about the memory and will only repeat that in the ACE the memory
will consist mainly of 200 mercury delay lines each holding 1024 binary digits. The purpose of
the control is to take the right instructions from the memory, see what they mean, and arrange for
them to be carried out. It is understood that a certain ‘code of instructions’ has been laid down,
whereby each ‘word’ or combination of say 32 binary digits describes some particular operation.
The circuit of the control is made in accordance with the code, so that the right effect is produced. To
a large extent we have also allowed the circuit to determine the code, i.e. we have not just thought
up an imaginary ‘best code’ and then found a circuit to put it into effect, but have often simplified
the circuit at the expense of the code. It is also quite difficult to think about the code entirely in
abstracto without any kind of circuit. The arithmetic part of the machine is the part concerned with
addition, multiplication and any other operations which it seems worth while to do by means of
special circuits rather than through the simple facilities provided by the control. The distinction
between control and arithmetic part is a rather hazy one, but at any rate it is clear that the machine
should at least have an adder and a multiplier, even if they turn out in the end to be part of the control.
This is the point at which I should mention that the machine is operated in the binary scale, with
two qualifications. Inputs from externally provided data are in decimal, and so are outputs intended
for human eyes rather than for later reconsumption by the ACE. This is the first qualification. The
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second is that, in spite of the intention of binary working there can be no bar on decimal working
of a kind, because of the relation of the ACE to the universal machine. Binary working is the most
natural thing to do with any large scale computer. It is much easier to work in the scale of two than
any other, because it is so easy to produce mechanisms which have two positions of stability: the
two positions may then be regarded as representing 0 and 1. Examples are lever as diagram, Jordan
Eccles circuit, thyratron. If one is concerned with a

small scale calculating machine then there is at least one serious objection to binary working. For
practical use it will be necessary to build a converter to transform numbers from the binary form
to the decimal and back. This may well be a larger undertaking than the binary calculator. With the
large scale machines this argument carries no weight. In the first place a converter would become
a relatively small piece of apparatus, and in the second it would not really be necessary. This last
statement sounds quite paradoxical, but it is a simple consequence of the fact that these machines
can be made to do any rule of thumb process by remembering suitable instructions. In particular it
can be made to do binary decimal conversion. For example in the case of the ACE the provision
of the converter involves no more than adding two extra delay lines to the memory. This situation
is very typical of what happens with the ACE. There are many fussy little details which have to be
taken care of, and which, according to normal engineering practice would require special circuits.
We are able to deal with these points without modification of the machine itself, by pure paper work,
eventually resulting in feeding in appropriate instructions.

To return to the various parts of the machine. I was saying that it will work in the scale of two.
It is not unnatural to use the convention that an electrical pulse shall represent the digit 1 and that
absence of a pulse shall represent a digit 0. Thus a sequence of digits 0010110 would be represented
by a signal like

where the time interval might be one microsecond. Let us now look at what the process of binary
addition is like. In ordinary decimal addition we always begin from the right, and the same naturally
applies to binary. We have to do this because we cannot tell whether to carry unless we have already
dealt with the less significant columns. The same applies with electronic addition, and therefore it
is convenient to use the convention that if a sequence of pulses is coming down a line, then the
least significant pulse always comes first. This has the unfortunate result that we must either write
the least significant digit on the left in our binary numbers or else make time flow from right to left
in our diagrams. As the latter alternative would involve writing from right to left as well as adding
in that way, we have decided to put the least significant digit on the left. Now let us do a typical
addition. Let us write the carry digits above the addends.
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Carry 0 1 1 1 1 1 0 0 1 1
A 0 1 1 0 1 1 0 0 1 0 1 . . .
B 0 1 1 1 0 1 0 0 1 1 . . .

0 1 0 0 1 1 0 0 0

Note that I can do the addition only looking at a small part of the data. To do the addition
electronically we need to produce a circuit with three inputs and two outputs.

Inputs Outputs

Addend A α Sum δ

Addend B β Carry ε
Carry from last column γ

This circuit must be such that

If no. of 1’s on inputs α, β, γ is


0 The sum 0 and 0
1 δ 1 Carry 0
2 is 0 ε 1
3 1 is 1

It is very easy to produce a voltage proportional to the number of pulses on the inputs, and one
then merely has to provide a circuit which will discriminate between four different levels and put
out the appropriate sum and carry digits. I will not attempt to describe such a circuit; it can be quite
simple. When we are given the circuit we merely have to connect it up with feedback and it is an
adder. Thus:

It will be seen that we have made use of the fact that the same process is used in addition with
each digit, and also the fact that the properties of the electrical circuit are invariant under time shifts,
at any rate if these are multiples of the clock period. It might be said that we have made use of the
isomorphism between the group of these time shifts and the multiplicative group of real numbers to
simplify our apparatus, though I doubt if many other applications of this principle could be found.

It will be seen that with such an adder the addition is broken down into the most elementary
steps possible, such as adding one and one. Each of these occupies a microsecond. Our numbers will
normally consist of 32 binary digits, so that two of them can be added in 32 microseconds. Likewise
we shall do multiplications in the form of a number of consecutive additions of one and one or one
and zero etc. There are 1024 such additions or thereabouts to be done in a multiplication of one
32 digit number by another, so that one might expect a multiplication to take about a millisecond.
Actually the multiplier to be used on ACE will take rather over two milliseconds. This may sound
rather long, when the unit operation is only a microsecond, but it actually seems that the machine is
fairly well balanced in this respect, i.e. the multiplication time is not a serious bottleneck. Computers
always spend just as long in writing numbers down and deciding what to do next as they do in
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actual multiplications, and it is just the same with the ACE. A great deal of time is spent in getting
numbers in and out of storage and deciding what to do next. To complete the four elementary
processes, subtraction is done by complementation and addition, and division is done by the use of
the iteration formula

un = un−1+ un−1(1− aun−1)

un converges to a−1 provided |1− au0|< 1. The error is squared at each step, so that the conver-
gence is very rapid. This process is of course programmed, i.e. the only extra apparatus required is
the delay lines required for storing the relevant instructions.

Passing on from the arithmetic part there remains the input and output. For this purpose we
have chosen Hollerith card equipment. We are able to obtain this without having to do any special
development work. The speeds obtainable are not very impressive compared with the speeds at
which the electronic equipment works, but they are quite sufficient in all cases where the calculation
is long and the result concise: the interesting cases in fact. It might appear that there would be a
difficulty in converting the information provided at the slow speeds appropriate to the Hollerith
equipment to the high speeds required with the ACE, but it is really quite easy. The Hollerith speeds
are so slow as to be counted zero or stop for many purposes, and the problem reduces to the simple
one of converting a number of statically given digits into a stream of pulses. This can be done by
means of a form of electronic commutator.

Before leaving the outline of the description of the machine I should mention some of the tactical
situations that are met with in programming. I can illustrate two of them in connection with the
calculation of the reciprocal described above. One of these is the idea of the iterative cycle. Each
time that we go from ur to ur+1 we apply the same sequence of operations, and it will therefore be
economical in storage space if we use the same instructions. Thus we go round and round a cycle
of instructions:

It looks however as if we were in danger of getting stuck in this cycle, and unable to get out.
The solution of this difficulty involves another tactical idea, that of discrimination’ i.e. of deciding
what to do next partly according to the results of the machine itself, instead of according to data
available to the programmer. In this case we include a discrimination in each cycle, which takes us
out of the cycle when the value of |1− au| is sufficiently small. It is like an aeroplane circling over
an aerodrome, and asking permission to land after each circle. This is a very simple idea, but is of
the utmost importance. The idea of the iterative cycle of instructions will also be seen to be rather
fundamental when it is realised that the majority of the instructions in the memory must be obeyed a
great number of times. If the whole memory were occupied by instructions, none of it being used for
numbers or other data, and if each instruction were obeyed once only, but took the longest possible
time, the machine could only remain working for sixteen seconds.

Another important idea is that of constructing an instruction and then obeying it. This can be
used amongst other things for discrimination. In the example I have just taken for instance we could
calculate a quantity which was 1 if |1− au| was less than 2−3.1 and 0 otherwise. By adding this
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quantity to the instruction that is obeyed at the forking point the instruction can be completely
altered in its effect when finally 1 – au is reduced to sufficiently small dimensions.

Probably the most important idea involved in instruction tables is that of standard subsidiary
tables. Certain processes are used repeatedly in all sorts of different connections, and we wish
to use the same instructions, from the same part of the memory every time. Thus we may use
interpolation for the calculation of a great number of different functions, but we shall always use
the same instruction table for interpolation. We have only to think out how this is to be done once,
and forget then how it is done. Each time we want to do an interpolation we have only to remember
the memory position where this table is kept, and make the appropriate reference in the instruction
table which is using the interpolation. We might for instance be making up an instruction table
for finding values of Jo(x) and use the interpolation table in this way. We should then say that
the interpolation table was a subsidiary to the table for calculating Jo(x). There is thus a sort of
hierarchy of tables. The interpolation table might be regarded as taking its orders from the J0 table,
and reporting its answers back to it. The master servant analogy is however not a very good one, as
there are many more masters than servants, and many masters have to share the same servants.

Now let me give a picture of the operation of the machine. Let us begin with some problem
which has been brought in by a customer. It will first go to the problems preparation section where
it is examined to see whether it is in a suitable form and self-consistent, and a very rough computing
procedure made out. It then goes to the tables preparation section. Let us suppose for example that
the problem was to tabulate solutions of the equation

y′′+ xy′ = J0(x)

with initial conditions x= y= 0, y′ = a. This would be regarded as a particular case of solving the
equation

y′′ = F(x,y,y′)

for which one would have instruction tables already prepared. One would need also a table to pro-
duce the function F(x,y,z) (in this case F(x,y,z)= J0(x)− xz which would mainly involve a table
to produce J0(x), and this we might expect to get off the shelf). A few additional details about the
boundary conditions and the length of the arc would have to be dealt with, but much of this detail
would also be found on the shelf, just like the table for obtaining J0(x). The instructions for the
job would therefore consist of a considerable number taken off the shelf together with a few made
up specially for the job in question. The instruction cards for the standard processes would have
already been punched, but the new ones would have to be done separately. When these had all been
assembled and checked they would be taken to the input mechanism, which is simply a Hollerith
card feed. They would be put into the card hopper and a button pressed to start the cards moving
through. It must be remembered that initially there are no instructions in the machine, and one’s
normal facilities are therefore not available. The first few cards that pass in have therefore to be
carefully thought out to deal with this situation. They are the initial input cards and are always the
same. When they have passed in a few rather fundamental instruction tables will have been set up
in the machine, including sufficient to enable the machine to read the special pack of cards that
has been prepared for the job we are doing. When this has been done there are various possibili-
ties as to what happens next, depending on the way the job has been programmed. The machine
might have been made to go straight on through, and carry out the job, punching or printing all the
answers required, and stopping when all of this has been done. But more probably it will have been
arranged that the machine stops as soon as the instruction tables have been put in. This allows for
the possibility of checking that the content of the memories is correct, and for a number of variations
of procedure. It is clearly a suitable moment for a break. We might also make a number of other
breaks. For instance we might be interested in certain particular values of the parameter a, which
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were experimentally obtained figures, and it would then be convenient to pause after each parameter
value, and feed the next parameter value in from another card. Or one might prefer to have the cards
all ready in the hopper and let the ACE take them in as it wanted them, One can do as one wishes,
but one must make up one’s mind. Each time the machine pauses in this way a ‘word’ or sequence
of 32 binary digits is displayed on neon bulbs. This word indicates the reason for stopping. I have
already mentioned two possible reasons. A large class of further possible reasons is provided by the
checks. The programming should be done in such a way that the ACE is frequently investigating
identities which should be satisfied if all is as it should be. Whenever one of these checks fails the
machine stops and displays a word which describes what check has failed.

It will be seen that the possibilities as to what one may do are immense. One of our difficulties
will be the maintainence of an appropriate discipline, so that we do not lose track of what we are
doing. We shall need a number of efficient librarian types to keep us in order.

Finally I should like to make a few conjectures as to the repercussions that electronic digital
computing machinery will have on mathematics. I have already mentioned that the ACE will do the
work of about 10,000 computers. It is to be expected therefore that large scale hand-computing will
die out. Computers will still be employed on small calculations, such as the substitution of values
in formulae, but whenever a single calculation may be expected to take a human computer days of
work, it will presumably be done by an electronic computer instead. This will not necessitate every-
one interested in such work having an electronic computer. It would be quite possible to arrange
to control a distant computer by means of a telephone line. Special input and output machinery
would be developed for use at these out stations, and would cost a few hundred pounds at most. The
main bulk of the work done by these computers will however consist of problems which could not
have been tackled by hand computing because of the scale of the undertaking. In order to supply
the machine with these problems we shall need a great number of mathematicians of ability. These
mathematicians will be needed in order to do the preliminary research on the problems, putting
them into a form for computation. There will be considerable scope for analysts. When a human
computer is working on a problem he can usually apply some common sense to give him an idea
of how accurate his answers are. With a digital computer we can no longer rely on common sense,
and the bounds of error must be based on some proved inequalities. We need analysts to find the
appropriate inequalities for us. The inequalities need not always be explicit, i.e. one need not have
them in such a form that we can tell, before the calculation starts, and using only pencil and paper,
how big the error will be. The error calculation may be a serious part of the ACE’s duties. To an
extent it may be possible to replace the estimates of error by statistical estimates obtained by repeat-
ing the job several times, and doing the rounding off differently each time, controlling it by some
random element, some electronic roulette wheel. Such statistical estimates however leave much in
doubt, are wasteful in machine time, and give no indication of what can be done if it turns out that
the errors are intolerably large. The statistical method can only help the analyst, not replace him.

Analysis is just one of the purposes for which we shall need good mathematicians. Roughly
speaking those who work in connection with the ACE will be divided into its masters and its ser-
vants. Its masters will plan out instruction tables for it, thinking up deeper and deeper ways of using
it. Its servants will feed it with cards as it calls for them. They will put right any parts that go wrong.
They will assemble data that it requires. In fact the servants will take the place of limbs. As time
goes on the calculator itself will take over the functions both of masters and of servants. The ser-
vants will be replaced by mechanical and electrical limbs and sense organs. One might for instance
provide curve followers to enable data to be taken direct from curves instead of having girls read
off values and punch them on cards. The masters are liable to get replaced because as soon as any
technique becomes at all stereotyped it becomes possible to devise a system of instruction tables
which will enable the electronic computer to do it for itself. It may happen however that the masters
will refuse to do this. They may be unwilling to let their jobs be stolen from them in this way. In
that case they would surround the whole of their work with mystery and make excuses, couched in
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well chosen gibberish, whenever any dangerous suggestions were made. I think that a reaction of
this kind is a very real danger. This topic naturally leads to the question as to how far it is possible
in principle for a computing machine to simulate human activities. I will return to this later, when I
have discussed the effects of these machines on mathematics a little further.

I expect that digital computing machines will eventually stimulate a considerable interest in
symbolic logic and mathematical philosophy. The language in which one communicates with these
machines, i.e. the language of instruction tables, forms a sort of symbolic logic. The machine
interprets whatever it is told in a quite definite manner without any sense of humour or sense of
proportion. Unless in communicating with it one says exactly what one means, trouble is bound to
result. Actually one could communicate with these machines in any language provided it was an
exact language, i.e. in principle one should be able to communicate in any symbolic logic, provided
that the machine were given instruction tables which would enable it to interpret that logical system.
This would mean that there will be much more practical scope for logical systems than there has
been in the past. Some attempts will probably be made to get the machine to do actual manipulations
of mathematical formulae. To do so will require the development of a special logical system for the
purpose. This system should resemble normal mathematical procedure closely, but at the same time
should be as unambiguous as possible. As regards mathematical philosophy, since the machines will
be doing more and more mathematics themselves, the centre of gravity of the human interest will
be driven further and further into philosophical questions of what can in principle be done etc.

It has been said that computing machines can only carry out the processes that they are instructed
to do. This is certainly true in the sense that if they do something other than what they were
instructed then they have just made some mistake. It is also true that the intention in construct-
ing these machines in the first instance is to treat them as slaves, giving them only jobs which have
been thought out in detail, jobs such that the user of the machine fully understands what in principle
is going on all the time. Up till the present machines have only been used in this way. But is it nec-
essary that they should always be used in such a manner? Let us suppose we have set up a machine
with certain initial instruction tables, so constructed that these tables might on occasion, if good rea-
son arose, modify those tables. One can imagine that after the machine had been operating for some
time, the instructions would have altered out of all recognition, but nevertheless still be such that
one would have to admit that the machine was still doing very worthwhile calculations. Possibly it
might still be getting results of the type desired when the machine was first set up, but in a much
more efficient manner. In such a case one would have to admit that the progress of the machine
had not been foreseen when its original instructions were put in. It would be like a pupil who had
learnt much from his master, but had added much more by his own work. When this happens I feel
that one is obliged to regard the machine as showing intelligence. As soon as one can provide a
reasonably large memory capacity it should be possible to begin to experiment on these lines. The
memory capacity of the human brain is probably of the order of ten thousand million binary dig-
its. But most of this is probably used in remembering visual impressions, and other comparatively
wasteful ways. One might reasonably hope to be able to make some real progress with a few million
digits, especially if one confined one’s investigations to some rather limited field such as the game
of chess. It would probably be quite easy to find instruction tables which would enable the ACE
to win against an average player. Indeed Shannon of Bell Telephone laboratories tells me that he
has won games playing by rule of thumb: the skill of his opponents is not stated. But I would not
consider such a victory very significant. What we want is a machine that can learn from experience.
The possibility of letting the machine alter its own instructions provides the mechanism for this, but
this of course does not get us very far.

It might be argued that there is a fundamental contradiction in the idea of a machine with
intelligence. It is certainly true that ‘acting like a machine’, has become synonymous with lack
of adaptability. But the reason for this is obvious. Machines in the past have bad very little storage,
and there has been no question of the machine having any discretion. The argument might however
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be put into a more aggressive form. It has for instance been shown that with certain logical systems
there can be no machine which will distinguish provable formulae of the system from unprovable,
i.e. that there is no test that the machine can apply which will divide propositions with certainty into
these two classes. Thus if a machine is made for this purpose it must in some cases fail to give an
answer. On the other hand if a mathematician is confronted with such a problem he would search
around and find new methods of proof, so that he ought eventually to be able to reach a decision
about any given formula. This would be the argument. Against it I would say that fair play must be
given to the machine. Instead of it sometimes giving no answer we could arrange that it gives occa-
sional wrong answers. But the human mathematician would likewise make blunders when trying
out new techniques. It is easy for us to regard these blunders as not counting and give him another
chance, but the machine would probably be allowed no mercy. In other words then, if a machine
is expected to be infallible, it cannot also be intelligent. There are several mathematical theorems
which say almost exactly that. But these theorems say nothing about how much intelligence may
be displayed if a machine makes no pretence at infallibility. To continue my plea for ‘fair play for
the machines’ when testing their I.Q. A human mathematician has always undergone an extensive
training. This training may be regarded as not unlike putting instruction tables into a machine. One
must therefore not expect a machine to do a very great deal of building up of instruction tables on its
own. No man adds very much to the body of knowledge, why should we expect more of a machine?
Putting the same point differently, the machine must be allowed to have contact with human beings
in order that it may adapt itself to their standards. The game of chess may perhaps be rather suitable
for this purpose, as the moves of the machine’s opponent will automatically provide this contact.

Computational drawing of Alan Turing, page 479, by the Aikon Project, Goldsmiths, University of London.
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Intelligent Machinery
(Report written by Alan Turing for the National Physical Laboratory, 1948)

Rodney A. Brooks and —

THE CASE FOR EMBODIED INTELLIGENCE

For me Alan Turing’s 1948 paper Intelligent Machinery was more important than his 1950 paper
Computing Machinery and Intelligence.

At the begining of Intelligent Machinery Turing provided counter arguments to a number of
possible objections to the idea that machines could be intelligent. And right at the end he introduced
a precursor to the “Imitation Game”, now commonly referred to as the Turing Test, of his 1950
paper. In this earlier version one human not very good chess player would try to guess whether he
was playing against another human not very good chess player, or against an algorithm1. Expansion
of these bookends became the body of Computing Machinery and Intelligence.

Intelligent Machinery itself was not published until 1970, so many early computer science
researchers were unaware of it. I was fortunate to come in contact with it right as I was starting
my academic career.

The bulk of the paper gives examples of how simple computational mechanisms could be adap-
atable, could be taught, and could learn for themselves. The examples and mechanisms Turing used
in this exposition where networks of active computational elements. Although he connected them
back to the universal machines of his 1937 paper, it is remarkable in hindsight, how different this
abstraction was than the one that he had previously introduced, of the central processing element
with a tape memory–still the essential model for all modern digital computers. Here, instead, he
used a model inspired by brains. One can only wonder how different our technological world might
be if Turing had lived to fully develop this set of ideas himself. Others carried on this second tradi-
tion, but one must think that perhaps Turing’s intellectual influence might have been stronger as he
would have been arguing against the approach that was adopted from his earlier work.

For me, the critical, and new, insights in Intelligent Machinery were two fold.
First, Turing made the distinction between embodied and disembodied intelligence. While argu-

ing that building an embodied intelligence would be a ‘sure’ route to produce a thinking machine
he rejected it in favor of disembodied intelligence on the grounds of technical practicalities of the
era. Second, he introduced the notion of ‘cultural search’, that people’s learning largely comes from
the culture of other people in which they are immersed.

Modern researchers are now seriously investigating the emobodied approach to intelligence and
have rediscovered the importance of interaction with people as the basis for intelligence. My own
work for the last twenty five years has been based on these two ideas.

1 At the time the opponent person had to be not very good so that they didn’t outshine the then current abilities of
mechanical chess playing. Today the opponent person would have to be a world champion to have any chance at not
being outshone by the mechanical system!

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00022-9
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Turing justifies the possibility of making a thinking machine by “the fact that it is possible to
make machinery to imitate any small part of a man”. He uses the implicit idea of his universal
computing machines to dismiss the idea that it is necessary to emulate a person at the neural signal
level in order to have intelligence, and instead suggests a digital computer, “if produced by present
techniques, would be of immense size”, which would control a robot from a distance. That robot
would be built by “tak[ing] a man as a whole and to try to replace all parts of him by machines”.
In particular he suggests the parts would include “television cameras, microphones, loudspeakers,
wheels and ‘handling servo-mechanisms’ . . .”. Turing’s description from over sixty years ago, fairly
precisely describes what is done today in dozens of research labs around the world with our PR2
robots, or Mekabots, with their brains offboard in racks of Linux boxes, or even off in the computing
cloud.

Turing further rightfully notes that even in building such a robot “the creature would still have no
contact with food, sex, sport, and many other things of interest to the human being”. Nevertheless he
suggests that such an approach “is probably the ‘sure’ way of producing a thinking machine”, before
dismissing it as too slow and impractical. He suggests instead that it is more practical, certainly at
that time, to “see what can be done with a ‘brain’ which is more or less without a body”. He suggests
the following fields as ripe for exploration by disembodied intelligence:

(i) Various games, e.g., chess, noughts and crosses, bridge, poker
(ii) The learning of languages
(iii) Translation of languages
(iv) Cryptography
(v) Mathematics.

With these suggestions much of the early directions for the field of Artificial Intelligence were set,
and certainly the odd numbered of Turing’s suggestions formed a large part of the work in AI during
its first decade.

In one paper Turing both distinguished embodied versus disembodied approaches to building
intelligent machines, praised the former as more likely to succeed and either set or predicted the
disembodied directions that were actually followed for many years.

But later, towards the very end of Intelligent Machinery he comes back to the place of bodies
in the world. He distinguishes three kinds of search as ways to build intelligent systems: intellec-
tual searches, genetic search, and cultural search. The first is the direction that classical AI went,
where programs try to learn and improve their performance. Although he did not suggest that it be
mechanised, genetic search has become a thoroughly practical approach to design and optimisation.
And lastly, by cultural search, Turing means the way in which interactions with others contributes
to the development of intelligence. This developmental approach, using social robots, has only now
become practical in the last fifteen years, and is a rich source of both theoretical and practical
learning systems for robots.

It is humbling to read Alan Turing’s papers. He thought of it all. First.
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INTELLIGENT MACHINERY

A. M. TURING

Abstract
The possible ways in which machinery might be made to show intelligent behaviour are dis-
cussed. The analogy with the human brain is used as a guiding principle. It is pointed out that
the potentialities of the human intelligence can only be realized if suitable education is provided.
The investigation mainly centres round an analogous teaching process applied to machines. The
idea of an unorganized machine is defined, and it is suggested that the infant human cortex is of this
nature. Simple examples of such machines are given, and their education by means of rewards and
punishments is discussed. In one case the education process is carried through until the organization
is similar to that of an ACE.

I propose to investigate the question as to whether it is possible for machinery to show intelligent
behaviour. It is usually assumed without argument that it is not possible. Common catch phrases
such as ‘acting like a machine’, ‘purely mechanical behaviour’ reveal this common attitude. It is
not difficult to see why such an attitude should have arisen. Some of the reasons are:

(a) An unwillingness to admit the possibility that mankind can have any rivals in intellectual power.
This occurs as much amongst intellectual people as amongst others: they have more to lose.
Those who admit the possibility all agree that its realization would be very disagreeable. The
same situation arises in connection with the possibility of our being superseded by some other
animal species. This is almost as disagreeable and its theoretical possibility is indisputable.

(b) A religious belief that any attempt to construct such machines is a sort of Promethean
irreverence.

(c) The very limited character of the machinery which has been used until recent times (e.g. up to
1940). This encouraged the belief that machinery was necessarily limited to extremely straight-
forward, possibly even to repetitive, jobs. This attitude is very well expressed by Dorothy
Sayers (The Mind of the Maker p. 46) ‘. . . which imagines that God, having created his Uni-
verse, has now screwed the cap on His pen, put His feet on the mantelpiece and left the work
to get on with itself.’ This, however, rather comes into St Augustine’s category of figures of
speech or enigmatic sayings framed from things which do not exist at all. We simply do not
know of any creation which goes on creating itself in variety when the creator has withdrawn
from it. The idea is that God simply created a vast machine and has left it working until it runs
down from lack of fuel. This is another of those obscure analogies, since we have no experience
of machines that produce variety of their own accord; thenature of a machine is to ‘do the same
thing over and over again so long as it keeps going’.

(d) Recently the theorem of Gödel and related results (Gödel 1931, Church 1936, Turing 1937)
have shown that if one tries to use machines for such purposes as determining the truth or
falsity of mathematical theorems and one is not willing to tolerate an occasional wrong result,
then any given machine will in some cases be unable to give an answer at all. On the other hand
the human intelligence seems to be able to find methods of ever-increasing power for dealing
with such problems ‘transcending’ the methods available to machines.

(e) In so far as a machine can show intelligence this is to be regarded as nothing but a reflection of
the intelligence of its creator.
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Refutation of some objections

In this section I propose to outline reasons why we do not need to be influenced by the above-
described objections. The objections (a) and (b), being purely emotional, do not really need to be
refuted. If one feels it necessary to refute them there is little to be said that could hope to prevail,
though the actual production of the machines would probably have some effect. In so far then as
we are influenced by such arguments we are bound to be left feeling rather uneasy about the whole
project, at any rate for the present. These arguments cannot be wholly ignored, because the idea of
‘intelligence’ is itself emotional rather than mathematical.

The objection (c) in its crudest form is refuted at once by the actual existence of machinery
(ENIAC etc.) which can go on through immense numbers (e.g. 1060,000 about for ACE) of opera-
tions without repetition, assuming no breakdown. The more subtle forms of this objection will be
considered at length on pages 18–22.

The argument from Gödel’s and other theorems (objection d) rests essentially on the condition
that the machine must not make mistakes. But this is not a requirement for intelligence. It is related
that the infant Gauss was asked at school to do the addition 15+ 18+ 21+ ·· ·+ 54 (or something
of the kind) and that he immediately wrote down 483, presumably having calculated it as (15+
54)(54− 12)/2.3. One can imagine circumstances where a foolish master told the child that he
ought instead to have added 18 to 15 obtaining 33, then added 21, etc. From some points of view
this would be a ‘mistake’, in spite of the obvious intelligence involved. One can also imagine a
situation where the children were given a number of additions to do, of which the first 5 were
all arithmetic progressions, but the 6th was say 23+ 34+ 45+ ·· ·+ 100+ 112+ 122+ ·· ·+ 199.
Gauss might have given the answer to this as if it were an arithmetic progression, not having noticed
that the 9th term was 112 instead of 111. This would be a definite mistake, which the less intelligent
children would not have been likely to make.

The view (d) that intelligence in machinery is merely a reflection of that of its creator is rather
similar to the view that the credit for the discoveries of a pupil should be given to his teacher. In
such a case the teacher would be pleased with the success of his methods of education, but would
not claim the results themselves unless he had actually communicated them to his pupil. He would
certainly have envisaged in very broad outline the sort of thing his pupil might be expected to
do, but would not expect to foresee any sort of detail. It is already possible to produce machines
where this sort of situation arises in a small degree. One can produce ‘paper machines’ for playing
chess. Playing against such a machine gives a definite feeling that one is pitting one’s wits against
something alive.

These views will all be developed more completely below.

Varieties of machinery

It will not be possible to discuss possible means of producing intelligent machinery without
introducing a number of technical terms to describe different kinds of existent machinery.

‘Discrete’ and ‘continuous’ machinery. We may call a machine ‘discrete’ when it is natural to
describe its possible states as a discrete set, the motion of the machine occurring by jumping from
one state to another. The states of ‘continuous’ machinery on the other hand form a continuous
manifold, and the behaviour of the machine is described by a curve on this manifold. All machin-
ery can be regarded as continuous, but when it is possible to regard it as discrete it is usually best
to do so. The states of discrete machinery will be described as ‘configurations’.

‘Controlling’ and ‘active’ machinery. Machinery may be described as ‘con- trolling’ if it only
deals with information. In practice this condition is much the same as saying that the magnitude
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of the machine’s effects may be as small as we please, so long as we do not introduce confu-
sion through Brownian movement, etc. ‘Active’ machinery is intended to produce some definite
physical effect.

Examples A Bulldozer Continuous Active
A Telephone Continuous Controlling
A Brunsviga Discrete Controlling
A Brain (probably) Continuous Controlling, but is very

similar to much discrete machinery
The ENIAC, ACE, etc. Discrete Controlling
A Differential Analyser Continuous Controlling.

We shall mainly be concerned with discrete controlling machinery. As we have mentioned,
brains very nearly fall into this class, and there seems every reason to believe that they could
have been made to fall genuinely into it without any change in their essential properties. How-
ever, the property of being ‘discrete’ is only an advantage for the theoretical investigator, and serves
no evolutionary purpose, so we could not expect Nature to assist us by producing truly ‘discrete’
brains.

Given any discrete machine the first thing we wish to find out about it is the number of states
(configurations) it can have. This number may be infinite (but enumerable) in which case we say
that the machine has infinite memory (or storage) capacity. If the machine has a finite number N of
possible states then we say that it has a memory capacity of (or equivalent to) log2 N binary digits.
According to this definition we have the following table of capacities, very roughly

The memory capacity of a machine more than anything else determines the complexity of its
possible behaviour.

Brunsviga 90
ENIAC without cards and with fixed programme 600
ACE as proposed 60,000
Manchester machine (as actually working 8 August 1947) 1,100

The behaviour of a discrete machine is completely described when we are given the state (con-
figuration) of the machine as a function of the immediately preceding state and the relevant external
data.

Logical computing machines (LCMs)

In Turing (1937) a certain type of discrete machine was described. lt had an infinite memory capacity
obtained in the form of an infinite tape marked out into squares on each of which a symbol could
be printed. At any moment there is one symbol in the machine; it is called the scanned symbol. The
machine can alter the scanned symbol and its behaviour is in part described by that symbol, but the
symbols on the tape elsewhere do not affect the behaviour of the machine. However the tape can
be moved back and forth through the machine, this being one of the elementary operations of the
machine. Any symbol on the tape may therefore eventually have an innings.

These machines will here be called ‘Logical Computing Machines’. They are chiefly of interest
when we wish to consider what a machine could in principle be designed to do, when we are willing
to allow it both unlimited time and unlimited storage capacity.

Universal logical computing machines. It is possible to describe LCMs in a very standard way,
and to put the description into a form which can be ‘understood’ (i.e., applied by) a special machine.
In particular it is possible to design a ‘universal machine’ which is an LCM such that if the standard
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description of some other LCM is imposed on the otherwise blank tape from outside, and the (uni-
versal) machine then set going it will carry out the operations of the particular machine whose
description it was given. For details the reader must refer to Turing (1937).

The importance of the universal machine is clear. We do not need to have an infinity of different
machines doing different jobs. A single one will suffice. The engineering problem of producing
various machines for various jobs is replaced by the office work of ‘programming’ the universal
machine to do these jobs.

It is found in practice that LCMs can do anything that could be described as ‘rule of thumb’ or
‘purely mechanical’. This is sufficiently well established that it is now agreed amongst logicians
that ‘calculable by means of an LCM’ is the correct accurate rendering of such phrases. There are
several mathematically equivalent but superficially very different renderings.

Practical computing machines (PCMs)

Although the operations which can be performed by LCMs include every rule- of-thumb process,
the number of steps involved tends to be enormous. This is mainly due to the arrangement of the
memory along the tape. Two facts which need to be used together may be stored very far apart on
the tape. There is also rather little encouragement, when dealing with these machines, to condense
the stored expressions at all. For instance the number of symbols required in order to express a
number in Arabic form (e.g., 149056) cannot be given any definite bound, any more than if the
numbers are expressed in the ‘simplified Roman’ form (IIIII . . . I, with 149056 occurrences of I).
As the simplified Roman system obeys very much simpler laws one uses it instead of the Arabic
system.

In practice however one can assign finite bounds to the numbers that one will deal with. For
instance we can assign a bound to the number of steps that we will admit in a calculation performed
with a real machine in the following sort of way. Suppose that the storage system depends on
charging condensers of capacity C = 1µf, and that we use two states of charging, E = 100 volts
and −E =−100 volts. When we wish to use the information carried by the condenser we have to
observe its voltage. Owing to thermal agitation the voltage observed will always be slightly wrong,
and the probability of an error between V and V − dV volts is

2kT

πC
e−

1
2 V2C/kTVdV

where k is Boltzmann’s constant. Taking the values suggested we find that the probability of reading
the sign of the voltage wrong is about 10−1·2×1016

. If then a job took more than 101017
steps we

should be virtually certain of getting the wrong answer, and we may therefore restrict ourselves
to jobs with fewer steps. Even a bound of this order might have useful simplifying effects. More
practical bounds are obtained by assuming that a light wave must travel at least 1 cm between steps
(this would only be false with a very small machine), and that we could not wait more than 100 years
for an answer. This would give a limit of 1020 steps. The storage capacity will probably have a rather
similar bound, so that we could use sequences of 20 decimal digits for describing the position in
which a given piece of data was to be found, and this would be a really valuable possibility.

Machines of the type generally known as ‘Automatic Digital Computing Machines’ often make
great use of this possibility. They also usually put a great deal of their stored information in a form
very different from the tape form. By means of a system rather reminiscent of a telephone exchange
it is made possible to obtain a piece of information almost immediately by ‘dialling’ the position of
this information in the store. The delay may be only a few microseconds with some systems. Such
machines will be described as ‘Practical Computing Machines’.
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Universal practical computing machines. Nearly all of the PCMs now under construction have the
essential properties of the ‘Universal Logical Computing Machines’ mentioned earlier. In practice,
given any job which could have been done on an LCM one can also do it on one of these digital
computers. I do not mean that we can do any required job of the type mentioned on it by suitable
programming. The programming is pure paper work. It naturally occurs to one to ask whether, e.g.,
the ACE would be truly universal if its memory capacity were infinitely extended. I have investi-
gated this question, and the answer appears to be as follows, though I have not proved any formal
mathematical theorem about it. As has been explained, the ACE at present uses finite sequences of
digits to describe positions in its memory: they are actually sequences of 9 binary digits (September
1947). The ACE also works largely for other purposes with sequences of 32 binary digits. If the
memory were extended, e.g., to 1000 times its present capacity, it would be natural to arrange the
memory in blocks of nearly the maximum capacity which can be handled with the 9 digits, and from
time to time to switch from block to block. A relatively small part would never be switched. This
would contain some of the more fundamental instruction tables and those concerned with switching.
This part might be called the ‘central part’. One would then need to have a number which described
which block was in action at any moment. However this number might be as large as one pleased.
Eventually the point would be reached where it could not be stored in a word (32 digits), or even in
the central part. One would then have to set aside a block for storing the number, or even a sequence
of blocks, say blocks 1, 2, . . . n. We should then have to store n, and in theory it would be of indefi-
nite size. This sort of process can be extended in all sorts of ways, but we shall always be left with
a positive integer which is of indefinite size and which needs to be stored somewhere, and there
seems to be no way out of the difficulty but to introduce a ‘tape’. But once this has been done, and
since we are only trying to prove a theoretical result, one might as well, whilst proving the theorem,
ignore all the other forms of storage. One will in fact have a ULCM with some complications. This
in effect means that one will not be able to prove any result of the required kind which gives any
intellectual satisfaction.

Paper machines

It is possible to produce the effect of a computing machine by writing down a set of rules of pro-
cedure and asking a man to carry them out. Such a combination of a man with written instructions
will be called a ‘Paper Machine’. A man provided with paper, pencil, and rubber, and subject to
strict discipline, is in effect a universal machine. The expression ‘paper machine’ will often be used
below.

Partially random and apparently partially random machines

It is possible to modify the above described types of discrete machines by allowing several alter-
native operations to be applied at some points, the alternatives to be chosen by a random process.
Such a machine will be described as ‘partially random’. If we wish to say definitely that a machine is
not of this kind we will describe it as ‘determined’. Sometimes a machine may be strictly speaking
determined but appear superficially as if it were partially random. This would occur if for instance
the digits of the number π were used to determine the choices of a partially random machine, where
previously a dice thrower or electronic equivalent had been used. These machines are known as
apparently partially random.

Unorganised machines

So far we have been considering machines which are designed for a definite purpose (though the
universal machines are in a sense an exception). We might instead consider what happens when we
make up a machine in a comparatively unsystematic way from some kind of standard components.
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We could consider some particular machine of this nature and find out what sort of things it is
likely to do. Machines which are largely random in their construction in this way will be called
‘Unorganized Machines’. This does not pretend to be an accurate term. It is conceivable that the
same machine might be regarded by one man as organized and by another as unorganized.

A typical example of an unorganized machine would be as follows. The machine is made up
from a rather large number N of similar units. Each unit has two input terminals, and has an output
terminal which can be connected to the input terminals of ( 0 or more) other units. We may imagine
that for each integer r, 1≤ r ≤ N two numbers i(r) and j(r) are chosen at random from 1 . . .N
and that we connect the inputs of unit r to the outputs of units (r) and j(r). All of the units are
connected to a central synchronizing unit from which synchronizing pulses are emitted at more or
less equal intervals of time. The times when these pulses arrive will be called ‘moments’. Each unit
is capable of having two states at each moment. These states may be called 0 and 1. The state is
determined by the rule that the states of the units from which the input leads come are to be taken at
the previous moment, multiplied together and the result subtracted from 1. An unorganized machine
of this character is shown in the diagram below.

r i(r) j(r)
1 3 2
2 3 5
3 4 5
4 3 4
5 2 5

A sequence of six possible consecutive conditions for the whole machine is:

1 1 1 0 0 1 0
2 1 1 1 0 1 0
3 0 1 1 1 1 1
4 0 1 0 1 0 1
5 1 0 1 0 1 0

The behaviour of a machine with so few units is naturally very trivial. However, machines of this
character can behave in a very complicated manner when the number of units is large. We may
call these A-type unorganized machines. Thus the machine in the diagram is an A-type unorganized
machine of 5 units. The motion of an A-type machine with N units is of course eventually periodic,
as in any determined machine with finite memory capacity. The period cannot exceed 2N moments,
nor can the length of time before the periodic motion begins. In the example above the period is 2
moments and there are 3 moments before the periodic motion begins. 2N is 32.

The A-type unorganized machines are of interest as being about the simplest model of a nervous
system with a random arrangement of neurons. It would therefore be of very great interest to find
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out something about their behaviour. A second type of unorganized machine will now be described,
not because it is of any great intrinsic importance, but because it will be useful later for illustrative
purposes. Let us denote the circuit

by

as an abbreviation. Then for each A-type unorganized machine we can construct another machine
by replacing each connection in it by . The resulting machines
will be called B-type unorganized machines. It may be said that the B-type machines are all A-type.
To this I would reply that the above definitions if correctly (but drily!) set out would take the form
of describing the probability of an A- (or B-) type machine belonging to a given set; it is not merely
a definition of which are the A-type machines and which are the B-type machines. If one chooses
an A-type machine, with a given number of units, at random, it will be extremely unlikely that one
will get a B-type machine.

It is easily seen that the connection can have three conditions. It may (i)
pass all signals through with interchange of 0 and 1, or (ii) it may convert all signals into 1, or again
(iii) it may act as in (i) and (ii) in alternate moments. (Alternative (iii) has two sub-cases.) Which
of these cases applies depends on the initial conditions. There is a delay of two moments in going
through .

Interference with machinery. Modifiable and self-modifying
machinery

The types of machine that we have considered so far are mainly ones that are allowed to continue
in their own way for indefinite periods without interference from outside. The universal machines
were an exception to this, in that from time to time one might change the description of the machine
which is being imitated. We shall now consider machines in which such interference is the rule
rather than the exception.

We may distinguish two kinds of interference. There is the extreme form in which parts of the
machine are removed and replaced by others. This may be described as ‘screwdriver interference’.
At the other end of the scale is ‘paper interference’, which consists in the mere communication of
information to the machine, which alters its behaviour. In view of the properties of the universal
machine we do not need to consider the difference between these two kinds of machine as being so
very radical after all. Paper interference when applied to the universal machine can be as useful as
screwdriver interference.

We shall mainly be interested in paper interference. Since screwdriver interference can pro-
duce a completely new machine without difficulty there is rather little to be said about it. In future
‘interference’ will normally mean ‘paper interference’.
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When it is possible to alter the behaviour of a machine very radically we may speak of the
machine as being ‘modifiable’. This is a relative term. One machine may be spoken of as being
more modifiable than another.

One may also sometimes speak of a machine modifying itself, or of a machine changing its own
instructions. This is really a nonsensical form of phraseology, but is convenient. Of course, accord-
ing to our conventions the ‘machine’ is completely described by the relation between its possible
configurations at consecutive moments. It is an abstraction which, by the form of its definition, can-
not change in time. If we consider the machine as starting in a particular configuration, however, we
may be tempted to ignore those configurations which cannot be reached without interference from
it. If we do this we should get a ‘successor relation’ for the configurations with different properties
from the original one and so a different ‘machine’.

If we now consider interference, we should say that each time interference occurs the machine
is probably changed. It is in this sense that interference ‘modifies’ a machine. The sense in which
a machine can modify itself is even more remote. We may, if we wish, divide the operations of the
machine into two classes, normal and self-modifying operations. So long as only normal operations
are performed we regard the machine as unaltered. Clearly the idea of ‘self-modification’ will not be
of much interest except where the division of operations into the two classes is made very carefully.
The sort of case I have in mind is a computing machine like the ACE where large parts of the storage
are normally occupied in holding instruction tables. (Instruction tables are the equivalent in UPCMs
of descriptions of machines in ULCMs). Whenever the content of this storage was altered by the
internal operations of the machine, one would naturally speak of the machine ‘modifying itself’.

Man as a machine

A great positive reason for believing in the possibility of making thinking machinery is the fact that
it is possible to make machinery to imitate any small part of a man. That the microphone does this
for the ear, and the television camera for the eye are commonplaces. One can also produce remote-
controlled robots whose limbs balance the body with the aid of servo-mechanisms. Here we are
chiefly interested in the nervous system. We could produce fairly accurate electrical models to copy
the behaviour of nerves, but there seems very little point in doing so. It would be rather like putting a
lot of work into cars which walked on legs instead of continuing to use wheels. The electrical circuits
which are used in electronic computing machinery seem to have the essential properties of nerves.
They are able to transmit information from place to place, and also to store it. Certainly the nerve
has many advantages. It is extremely compact, does not wear out (probably for hundreds of years if
kept in a suitable medium!) and has a very low energy consumption. Against these advantages the
electronic circuits have only one counter-attraction, that of speed. This advantage is, how- ever, on
such a scale that it may possibly outweigh the advantages of the nerve.

One way of setting about our task of building a ‘thinking machine’ would be to take a man
as a whole and to try to replace all the parts of him by machinery. He would include television
cameras, microphones, loudspeakers, wheels and ‘handling servo-mechanisms’ as well as some sort
of ‘electronic brain’. This would be a tremendous undertaking of course. The object, if produced by
present techniques, would be of immense size, even if the ‘brain’ part were stationary and controlled
the body from a distance. In order that the machine should have a chance of finding things out for
itself it should be allowed to roam the countryside, and the danger to the ordinary citizen would be
serious. Moreover even when the facilities mentioned above were provided, the creature would still
have no contact with food, sex, sport and many other things of interest to the human being. Thus
although this method is probably the ‘sure’ way of producing a thinking machine it seems to be
altogether too slow and impracticable.
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Instead we propose to try and see what can be done with a ‘brain’ which is more or less without
a body providing, at most, organs of sight, speech, and hearing. We are then faced with the problem
of finding suitable branches of thought for the machine to exercise its powers in. The following
fields appear to me to have advantages:

(i) Various games, e.g., chess, noughts and crosses, bridge, poker
(ii) The learning of languages

(iii) Translation of languages
(iv) Cryptography
(v) Mathematics.

Of these (i), (iv), and to a lesser extent (iii) and (v) are good in that they require little contact
with the outside world. For instance in order that the machine should be able to play chess its only
organs need be ‘eyes’ capable of distinguishing the various positions on a specially made board,
and means for announcing its own moves. Mathematics should preferably be restricted to branches
where diagrams are not much used. Of the above possible fields the learning of languages would
be the most impressive, since it is the most human of these activities. This field seems however to
depend rather too much on sense organs and locomotion to be feasible.

The field of cryptography will perhaps be the most rewarding. There is a remarkably close par-
allel between the problems of the physicist and those of the cryptographer. The system on which
a message is enciphered corresponds to the laws of the universe, the intercepted messages to the
evidence available, the keys for a day or a message to important constants which have to be deter-
mined. The correspondence is very close, but the subject matter of cryptography is very easily dealt
with by discrete machinery, physics not so easily.

Education of machinery

Although we have abandoned the plan to make a ‘whole man’, we should be wise to sometimes
compare the circumstances of our machine with those of a man. It would be quite unfair to expect a
machine straight from the factory to compete on equal terms with a university graduate. The grad-
uate has had contact with human beings for twenty years or more. This contact has been modifying
his behaviour pattern throughout that period. His teachers have been intentionally trying to modify
it. At the end of the period a large number of standard routines will have been superimposed on the
original pattern of his brain. These routines will be known to the community as a whole. He is then
in a position to try out new combinations of these routines, to make slight variations on them, and
to apply them in new ways.

We may say then that in so far as a man is a machine he is one that is subject to very much
interference. In fact interference will be the rule rather than the exception. He is in frequent com-
munication with other men, and is continually receiving visual and other stimuli which themselves
constitute a form of interference. It will only be when the man is ‘concentrating’ with a view to
eliminating these stimuli or ‘distractions’ that he approximates a machine without interference.

We are chiefly interested in machines with comparatively little interference, for reasons given
in the last section, but it is important to remember that although a man when concentrating may
behave like a machine without interference, his behaviour when concentrating is largely determined
by the way he has been conditioned by previous interference.

If we are trying to produce an intelligent machine, and are following the human model as closely
as we can, we should begin with a machine with very little capacity to carry out elaborate operations
or to react in a disciplined manner to orders (taking the form of interference). Then by applying
appropriate interference, mimicking education, we should hope to modify the machine until it could
be relied on to produce definite reactions to certain commands. This would be the beginning of the
process. I will not attempt to follow it further now.
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Organizing unorganised machinery

Many unorganized machines have configurations such that if once that configuration is reached, and
if the interference thereafter is appropriately restricted, the machine behaves as one organized for
some definite purpose. For instance, the B-type machine shown below was chosen at random.

tuOnI 1

2

3

4

5

6

7

If the connections numbered 1, 3, 6, 4, are in condition (ii) initially and connections 2, 5, 7
are in condition (i), then the machine may be considered to be one for the purpose of passing on
signals with a delay of 4 moments. This is a particular case of a very general property of B-type
machines (and many other types), viz., that with suitable initial conditions they will do any required
job, given sufficient time and provided the number of units is sufficient. In particular with a B-type
unorganized machine with sufficient units one can find initial conditions which will make it into a
universal machine with a given storage capacity. (A formal proof to this effect might be of some
interest, or even a demonstration of it starting with a particular unorganized B-type machine, but I
am not giving it as it lies rather too far outside the main argument.)

With these B-type machines the possibility of interference which could set in appropriate initial
conditions has not been arranged for. It is however not difficult to think of appropriate methods by
which this could be done. For instance instead of the connection

one might use

B

A

Here A, B are interfering inputs, normally giving the signal ‘1’. By supplying appropriate other
signals at A, B we can get the connection into condition (i) or (ii), as desired. However this requires
two special interfering inputs for each connection.
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We shall be interested mainly in cases where there are only quite few independent inputs alto-
gether, so that all the interference which sets up the ‘initial conditions’ of the machine has to
be provided through one or two inputs. The process of setting up these initial conditions so that
the machine will carry out some particular useful task may be called ‘organizing the machine’.
‘Organizing’ is thus a form of ‘modification’.

The cortex as an unorganised machine

Many parts of a man’s brain are definite nerve circuits required for quite definite purposes. Exam-
ples of these are the ‘centres’ which control respiration, sneezing, following moving objects with the
eyes, etc.: all the reflexes proper (not ‘conditioned’) are due to the activities of these definite struc-
tures in the brain. Likewise the apparatus for the more elementary analysis of shapes and sounds
probably comes into this category. But the more intellectual activities of the brain are too varied
to be managed on this basis. The difference between the languages spoken on the two sides of the
Channel is not due to difference in development of the French-speaking and English-speaking parts
of the brain. It is due to the linguistic parts having been subjected to different training. We believe
then that there are large parts of the brain, chiefly in the cortex, whose function is largely indeter-
minate. In the infant these parts do not have much effect: the effect they have is uncoordinated. In
the adult they have great and purposive effect: the form of this effect depends on the training in
childhood. A large remnant of the random behaviour of infancy remains in the adult.

All of this suggests that the cortex of the infant is an unorganized machine, which can be orga-
nized by suitable interfering training. The organizing might result in the modification of the machine
into a universal machine or something like it. This would mean that the adult will obey orders given
in appropriate language, even if they were very complicated; he would have no common sense,
and would obey the most ridiculous orders unflinchingly. When all his orders had been fulfilled he
would sink into a comatose state or perhaps obey some standing order, such as eating. Creatures not
unlike this can really be found, but most people behave quite differently under many circumstance.
However the resemblance to a universal machine is still very great, and suggests to us that the step
from the unorganized infant to a universal machine is one which should be understood. When this
has been mastered we shall be in a far better position to consider how the organizing process might
have been modified to produce a more normal type of mind.

This picture of the cortex as an unorganized machine is very satisfactory from the point of
view of evolution and genetics. It clearly would not require any very complex system of genes to
produce something like the A- or B-type unorganized machine. In fact this should be much easier
than the production of such things as the respiratory centre. This might suggest that intelligent
races could be produced comparatively easily. I think this is wrong because the possession of a
human cortex (say) would be virtually useless if no attempt was made to organize it. Thus if a
wolf by a mutation acquired a human cortex there is little reason to believe that he would have
any selective advantage. If however the mutation occurred in a milieu where speech had developed
(parrot-like wolves), and if the mutation by chance had well permeated a small community, then
some selective advantage might be felt. It would then be possible to pass information on from
generation to generation. However this is all rather speculative.

Experiments in organizing: pleasure–pain systems

It is interesting to experiment with unorganized machines admitting definite types of interference
and try to organize them, e.g., to modify them into universal machines.

The organization of a machine into a universal machine would be most impressive if the arrange-
ments of interference involve very few inputs. The training of the human child depends largely on
a system of rewards and punishments, and this suggests that it ought to be possible to carry through
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the organizing with only two interfering inputs, one for ‘pleasure’ or ‘reward’ (R) and the other for
‘pain’ or punishment’ (P). One can devise a large number of such ‘pleasure–pain’ systems. I will use
this term to mean an unorganized machine of the following general character: The configurations
of the machine are described by two expressions, which we may call the character-expression and
the situation-expression. The character and situation at any moment, together with the input signals,
determine the character and situation at the next moment. The character may be subject to some
random variation. Pleasure interference has a tendency to fix the character, i.e., towards preventing
it changing, whereas pain stimuli tend to disrupt the character, causing features which had become
fixed to change, or to become again subject to random variation.

This definition is probably too vague and general to be very helpful. The idea is that when the
‘character’ changes we like to think of it as a change in the machine, but the ‘situation’ is merely the
configuration of the machine described by the character. lt is intended that pain stimuli occur when
the machine’s behaviour is wrong, pleasure stimuli when it is particularly right. With appropriate
stimuli on these lines, judiciously operated by the ‘teacher’, one may hope that the ‘character’ will
converge towards the one desired, i.e., that wrong behaviour will tend to become rare.

I have investigated a particular type of pleasure–pain system, which I will now describe.

The P-type unorganised machine

The P-type machine may be regarded as an LCM without a tape, and whose description is largely
incomplete. When a configuration is reached, for which the action is undetermined, a random choice
for the missing data is made and the appropriate entry is made in the description, tentatively, and
is applied. When a pain stimulus occurs all tentative entries are cancelled, and when a pleasure
stimulus occurs they are all made permanent.

Specifically. The situation is a number s= 1, 2, . . . , N and corresponds to the configuration of
the incomplete machine. The character is a table of N entries showing the behaviour of the machine
in each situation. Each entry has to say something both about the next situation and about what
action the machine has to take. The action part may be either

(i) To do some externally visible act A1 or A2 . . .AK

(ii) To set one of the memory units M1 . . .MR either into the ‘1’ condition or into the 0’ condition.

The next situation is always the remainder either of 2s or of 2s+ 1 on division by N. These may
be called alternatives 0 and 1. Which alternative applies may be determined by either

(a) one of the memory units
(b) a sense stimulus
(c) the pleasure–pain arrangements.

In each situation it is determined which of these applies when the machine is made, i.e., inter-
ference cannot alter which of the three cases applies. Also in cases (a) and (b) interference can have
no effect. In case (c) the entry in the character table may be either U (‘uncertain’), or T0 (tentative
0), T1, D0 (definite 0) or D1. When the entry in the character for the current situation is U then the
alternative is chosen at random, and the entry in the character is changed to T0 or T1 according as
0 or 1 was chosen. If the character entry was T0 or D0 then the alternative is 0 and if it is T1 or D1
then the alternative is 1. The changes in character include the above mentioned change from U to
T0 or T1, and a change of every T to D when a pleasure stimulus occurs, changes of T0 and T1 to
U when a pain stimulus occurs.

We may imagine the memory units essentially as ‘trigger circuits’ or switches. The sense stimuli
are means by which the teacher communicates ‘unemotionally’ to the machine, i.e., otherwise than
by pleasure and pain stimuli. There are a finite number S of sense stimulus lines, and each always
carries either the signal 0 or 1.
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A small P-type machine is described in the table below

1 P A
2 P B M1= 1
3 P B
4 S1 A M1= 0
5 M1 C

In this machine there is only one memory unit M1 and one sense line S1. Its behaviour can be
described by giving the successive situations together with the actions of the teacher: the latter
consist of the values of S1 and the rewards and punishments. At any moment the ‘character’ consists
of the above table with each ‘P’ replaced by either U, T0, D0 or D1. In working out the behaviour
of the machine it is convenient first of all to make up a sequence of random digits for use when the
U cases occur. Underneath these we may write the sequence of situations, and have other rows for
the corresponding entries from the character, and for the actions of the teacher. The character and
the values stored in the memory units may be kept on another sheet. The T entries may be made in
pencil and the D entries in ink. A bit of the behaviour of the machine is given below:

Random sequence 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0
Situations 3 1 3 1 3 1 3 1 2 4 4 4 3 2 . .
Alternative given by U T T T T T U U S S S U T

0 0 0 0 0 1 1 1 0
Visible action B A B A B A B A B A A A B B
Rew. & Pun. P
Changes in S1 1 0

It will be noticed that the machine very soon got into a repetitive cycle. This became externally
visible through the repetitive BABAB. By means of a pain stimulus, this cycle was broken.
It will be noticed that the machine very soon got into a repetitive cycle. This became externally
visible through the repetitive BABAB. . . By means of a pain stimulus this cycle was broken.

It is probably possible to organize these P-type machines into universal machines, but it is not
easy because of the form of memory available. It would be necessary to organize the randomly
distributed ‘memory units’ to provide a systematic form of memory, and this would not be easy. If,
however, we supply the P-type machine with a systematic external memory this organizing becomes
quite feasible. Such a memory could be provided in the form of a tape, and the externally visible
operations could include movement to right and left along the tape, and altering the symbol on the
tape to 0 or to 1. The sense lines could include one from the symbol on the tape. Alternatively, if
the memory were to be finite, e.g., not more than 232 binary digits, we could use a dialling system.
(Dialling systems can also be used with an infinite memory, but this is not of much practical interest.)
I have succeeded in organizing such a (paper) machine into a universal machine.

The details of the machine involved were as follows. There was a circular memory consisting of
64 squares of which at any moment one was in the machine (‘scanned’) and motion to right or left
were among the ‘visible actions’. Changing the symbol on the square was another ‘visible action’,
and the symbol was connected to one of the sense lines S1. The even-numbered squares also had
another function, they controlled the dialling of information to or from the main memory. This main
memory consisted of 232 binary digits. At any moment one of these digits was connected to the
sense line S2. The digit of the main memory concerned was that indicated by the 32 even positioned
digits of the circular memory. Another two of the ‘visible actions’ were printing 0 or 1 in this square
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of the main memory. There were also three ordinary memory units and three sense units S3, S4, S5.
Also six other externally visible actions A,B,C,D,E,F.

This P-type machine with external memory has, it must be admitted, considerably more ‘organi-
zation’ than say the A-type unorganized machine. Nevertheless the fact that it can be organized into
a universal machine still remains interesting.

The actual technique by which the ‘organizing’ of the P-type machine was carried through is
perhaps a little disappointing. It is not sufficiently analogous to the kind of process by which a child
would really be taught. The process actually adopted was first to let the machine run for a long
time with continuous application of pain, and with various changes of the sense data S3, S4, S5.
Observation of the sequence of externally visible actions for some thousands of moments made it
possible to set up a scheme for identifying the situations, i.e., by which one could at any moment
find out what the situation was, except that the situations as a whole had been renamed. A similar
investigation, with less use of punishment, enables one to find the situations which are affected by
the sense lines; the data about the situations involving the memory units can also be found but with
more difficulty. At this stage the character has been reconstructed. There are no occurrences of T0,
T1, D0, D1. The next stage is to think up some way of replacing the 0s of the character by D0, D1
in such a way as to give the desired modification. This will normally be possible with the suggested
number of situations (1000), memory units, etc. The final stage is the conversion of the character
into the chosen one. This may be done simply by allowing the machine to wander at random through
a sequence of situations, and applying pain stimuli when the wrong choice is made, pleasure stimuli
when the right one is made. It is best also to apply pain stimuli when irrelevant choices are made.
This is to prevent getting isolated in a ring of irrelevant situations. The machine is now ‘ready for
use’.

The form of universal machine actually produced in this process was as follows. Each instruction
consisted of 128 digits, which we may regard as forming four sets of 32, each of which describes
one place in the main memory. These places may be called P,Q,R,S. The meaning of the instruction
is that if p is the digit at P and q that at Q then 1− pq is to be transferred to position R and that
the next instruction will be found in the 128 digits beginning at S. This gives a UPCM, though with
rather less facilities than are available say on the ACE.

I feel that more should be done on these lines. I would like to investigate other types of unor-
ganized machines, and also to try out organizing methods that would be more nearly analogous to
our ‘methods of education’. I made a start on the latter but found the work altogether too laborious
at present. When some electronic machines are in actual operation I hope that they will make this
more feasible. It should be easy to make a model of any particular machine that one wishes to work
on within such a UPCM instead of having to work with a paper machine as at present. If also one
decided on quite definite ‘teaching policies’ these could also be programmed into the machine. One
would then allow the whole system to run for an appreciable period, and then break in as a kind of
‘inspector of schools’ and see what progress had been made. One might also be able to make some
progress with unorganized machines more like the A- and B-types. The work involved with these is
altogether too great for pure paper-machine work.

One particular kind of phenomenon I had been hoping to find in connection with the P-type
machines. This was the incorporation of old routines into new. One might have ‘taught’ (i.e., mod-
ified or organized) a machine to add (say). Later one might teach it to multiply by small numbers
by repeated addition and so arrange matters that the same set of situations which formed the addi-
tion routine, as originally taught, was also used in the additions involved in the multiplication.
Although I was able to obtain a fairly detailed picture of how this might happen I was not able to do
experiments on a sufficient scale for such phenomena to be seen as part of a large context.

I also hoped to find something rather similar to the ‘irregular verbs’ which add variety to lan-
guage. We seem to be quite content that things should not obey too mathematically regular rules. By
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long experience we can pick up and apply the most complicated rules without being able to enunci-
ate them at all. I rather suspect that a P-type machine without the systematic memory would behave
in a rather similar manner because of the randomly distributed memory units. Clearly this could
only be verified by very painstaking work; by the very nature of the problem ‘mass production’
methods like built-in teaching procedures could not help.

Discipline and initiative

If the untrained infant’s mind is to become an intelligent one, it must acquire both discipline and
initiative. So far we have been considering only discipline. To convert a brain or machine into a
universal machine is the extremest form of discipline. Without something of this kind one cannot
set up proper communication. But discipline is certainly not enough in itself to produce intelligence.
That which is required in addition we call initiative. This statement will have to serve as a definition.
Our task is to discover the nature of this residue as it occurs in man, and to try and copy it in
machines.

Two possible methods of setting about this present themselves. On the one hand we have fully
disciplined machines immediately available, or in a matter of months or years, in the form of various
UPCMs. We might try to graft some initiative onto these. This would probably take the form of
programming the machine to do every kind of job that could be done, as a matter of principle,
whether it were economical to do it by machine or not. Bit by bit one would be able to allow the
machine to make more and more ‘choices’ or ‘decisions’. One would eventually find it possible
to program it so as to make its behaviour be the logical result of a comparatively small number
of general principles. When these became sufficiently general, interference would no longer be
necessary, and the machine would have ‘grown up’. This may be called the ‘direct method’.

The other method is to start with an unorganized machine and to try to bring both discipline
and initiative into it at once, i.e., instead of trying to organize the machine to become a universal
machine, to organize it for initiative as well. Both methods should, I think, be attempted.

Intellectual, genetical and cultural searches

A very typical sort of problem requiring some sort of initiative consists of those of the form ‘Find a
number n such that . . .’. This form covers a very great variety of problems. For instance problems
of the form ‘See if you can find a way of calculating the function which will enable us to obtain
the values for arguments . . . to accuracy . . . within a time . . . using the UPCM . . .’ are reducible to
this form, for the problem is clearly equivalent to that of finding a program to put on the machine in
question, and it is easy to put the programs into correspondence with the positive integers in such
a way that given either the number or the program the other can easily be found. We should not go
far wrong for the time being if we assumed that all problems were reducible to this form. It will be
time to think again when something turns up which is obviously not of this form.

The crudest way of dealing with such a problem is to take the integers in order and to test
each one to see whether it has the required property, and to go on until one is found which has it.
Such a method will only be successful in the simplest cases. For instance in the case of problems
of the kind mentioned above, where one is really searching for a program, the number required
will normally be somewhere between 21000 and 21,000,000. For practical work therefore some more
expeditious method is necessary. In a number of cases the following method would be successful.
Starting with a UPCM we first put a program into it which corresponds to building in a logical system
(like Russell’s Principia Mathematica). This would not determine the behaviour of the machine
completely: at various stages more than one choice as to the next step would be possible. We might
arrange, however, to take all possible arrangement of choices in order, and go on until the machine
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proved a theorem, which, by its form, could be verified to give a solution of the problem. This
may be seen to be a conversion of the original problem into another of the same form. Instead of
searching through values of the original variable n one searches through values of something else.
In practice when solving problems of the above kind one will probably apply some very complex
‘transformation’ of the original problem, involving searching through various variables, some more
analogous to the original one, some more like a ‘search through all proofs’. Further research into
intelligence of machinery will probably be very greatly concerned with ‘searches’ of this kind.
We may perhaps call such searches ‘intellectual searches’. They might very briefly be defined as
‘searches carried out by brains for combinations with particular properties’.

It may be of interest to mention two other kinds of search in this connection. There is the geneti-
cal or evolutionary search by which a combination of genes is looked for, the criterion being survival
value. The remarkable success of this search confirms to some extent the idea that intellectual
activity consists mainly of various kinds of search.

The remaining form of search is what 1 should like to call the ‘cultural search’. As I have
mentioned, the isolated man does not develop any intellectual power. It is necessary for him to be
immersed in an environment of other men, whose techniques he absorbs during the first twenty years
of his life. He may then perhaps do a little research of his own and make a very few discoveries
which are passed on to other men. From this point of view the search for new techniques must be
regarded as carried out by the human community as a whole, rather than by individuals.

Intelligence as an emotional concept

The extent to which we regard something as behaving in an intelligent manner is determined as
much by our own state of mind and training as by the properties of the object under consideration.
If we are able to explain and predict its behaviour or if there seems to be little underlying plan, we
have little temptation to imagine intelligence. With the same object therefore it is possible that one
man would consider it as intelligent and another would not; the second man would have found out
the rules of its behaviour.

It is possible to do a little experiment on these lines, even at the present stage of knowledge.
It is not difficult to devise a paper machine which will play a not very bad game of chess. Now
get three men as subjects for the experiment A,B,C. A and C are to be rather poor chess players,
B is the operator who works the paper machine. (In order that he should be able to work it fairly
fast it is advisable that he be both mathematician and chess player.) Two rooms are used with some
arrangement for communicating moves, and a game is played between C and either A or the paper
machine. C may find it quite difficult to tell which he is playing. (This is a rather idealized form of
an experiment I have actually done.)

References

Church, Alonzo (1936) An unsolvable problem of elementary number theory. Amer. J. of Math. 58, 345–63.
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Examining the Work and Its Later Impact

Christof Teuscher proposes —

A MODERN PERSPECTIVE ON TURING’S
UNORGANISED MACHINES

1. Introduction

Most students who took a neural networks class will readily state that McCulloch and Pitts (1943)
presented the opening shot of connectionism and modern neural network research. Some may
remember that this early work was followed by the perceptron of Rosenblatt (1957), which was itself
inspired by the ideas of Hebb (1949). Do the test yourself and you will quickly realize that, alas,
neither students not their professors will mention Alan Turing’s connectionist ideas, which go back
to a 1948 National Physical Laboratory (NPL) report entitled ‘Intelligent Machinery’. The report
first appeared in an edited collection by Evans and Robertson (1968), 14 years after Turing’s death,
and one year later in “Machine Intelligence” (Turing, 1969). It is also reprinted in Copeland (2004)
and Ince (1992) and available in the Turing Digital Archive (Turing, 1948). Turing’s basic connec-
tionist machines were later revived and extended by Webster, Copeland and Proudfoot (1996, 1999)
and Teuscher (2002, 2004). Why were these ideas largely ignored and what importance – if any – do
they play today? Before we try to answer these questions, let us briefly delve into Turing’s unique
ideas first.

Connectionism, in simple words, is a movement that tries to explain the human mind with its
intellectual abilities by means of artificial neural networks (ANNs). The field was inspired by the
recognition that the human brain processes information in an entirely different way from the classi-
cal von Neumann digital computer. Over the last 60 years, a large number of connectionist models
were proposed, yet, they all have two things in common: they are built from simple basic pro-
cessing elements (also called neurons) working in parallel and interacting with each other through
(weighted or unweighted) connections. Both McCulloch and Pitts’ and Alan Turing’s work fit that
definition, yet, there are a number of differences. Traditional McCulloch and Pitts’s neurons can
have as many inputs as they like, each neuron is binary and has a finite threshold, synapses can
be excitatory and inhibitory, but the connections do not have any weights. Turing proposed three
types of what he called unorganised machines (see Teuscher (2002) for more details): A-type,
B-type, and P-type unorganised machines. A-type and B-type machines are Boolean networks made
up of extremely simple, randomly interconnected NAND gates (neurons), each receiving two input
signals from other neurons in the network (self-connections are allowed). The neurons are syn-
chronised by means of a global clock signal. In comparison to A-type networks, Turing’s B-type
networks have modifiable interconnections, and an external agent can therefore ‘organize’ these
machines – by enabling and disabling the connections – to perform a required job. An interest-
ing detail of the B-type machine is that it is in principle a special A-type machine in which each
connection is replaced by a small A-type machine that operates as a switch. The switch state (i.e.,
enabled or disabled) is either defined by the link’s internal state or by two external interfering
inputs.
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Turing’s idea behind the introduction of the B-type networks was to open the possibility of
enabling useful and disabling useless links to produce a required behaviour. His deeper motivation
was simply to build structures which allow for learning. The third type of machine – the P-type
machine – is not a connectionist machine but rather a modified tape-less Turing machine that has
two additional inputs: the pleasure and the pain input. The internal tables of an initially largely
incomplete machine would then be completed by the application of ‘pleasure’ and ‘punishment’
stimuli by an external teacher. This is very much alike to what is today known as reinforcement
learning. In this commentary, we will leave the P-type machine aside.

2. Context and significance

In his work, Turing makes no reference to the paper of McCulloch and Pitts (1943) nor do they
mention Turing’s work. It is an open question how much their work influenced each other, yet, we
have to assume that they were at least aware of each other’s ideas. We hypothesize that both bad
timing and the fact that Turing’s neurons are simpler and more abstract contributed to his work being
largely ignored. There is no doubt that Turing was inspired by the human nervous system when
he conceived his unorganised machines. However, at that time, when the foundations of modern
neuroscience started to be laid, it became quickly clear that neurons do not simply compute NAND
functions only, as Turing maybe rather naively proposed, simply because he knew that NAND gates
were universal and could therefore – given enough gates with the possibility to interconnect them
specifically – compute any logical function.

Alas, there is yet another proposition – possibly even more important – made by Turing in his
1948 report that was ignored. At the beginning, the machines are completely unorganised, compa-
rable to an ‘infants brain’. ‘Then, by applying appropriate interference, mimicking education [. . . ]’
(Turing, 1969), the machine will be organised to produce a required behaviour. To achieve this,
Turing proposed some sort of genetic algorithm – which he called genetical or evolutionary search:

“There is the genetical or evolutionary search by which a combination of genes is looked
for, the criterion being survival value. The remarkable success of this search confirms to some
extent the idea that intellectual activity consists mainly of various kinds of search” (Turing,
1969, p. 23).

The idea of organising an initially random network of neurons and connections is undoubtedly
one of the most significant aspects of Turing’s ‘Intelligent Machinery’ paper, yet, given today’s
widespread usage of genetic algorithms and the fact that early work in simulating evolution in
computers goes back to the mid to late fifties, Turing’s proposal – and its subsequent ignorance – is
even more remarkable. At his time, Turing was unfortunately unable to apply ‘genetical search’ to
the optimisation of his unorganised machines because of the lack of computing resources.

3. Contemporary impact

Turing’s work obtained a somewhat different meaning and importance with Stuart Kauffman’s intro-
duction of random Boolean networks (RBNs) (Kauffman, 1969). Kauffman studied the properties
of RBNs in the late sixties already. His studies revealed surprisingly ordered structures in randomly
constructed networks, in particular, the most highly organised behaviour appeared to occur in
networks where each node receives inputs from two other nodes on average. Astonishingly, Tur-
ing has also chosen – probably unintentionally, or to keep things as simple as possible – two inputs
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for his neurons. In modern terms, a Turing unorganised machine can therefore be considered as a
particular kind of RBN, where each node is a NAND function. Kauffman defined a random NK
Boolean network as a network where each of the N nodes has two possible states of activity and
receives on average K inputs from other nodes. Interestingly, the transition from order to chaos in
RBNs occurs either as K decreases to 2 (also called the ‘edge of chaos’) or as other parameters
are altered in simple ways. Kauffman (1993) wrote: ‘It has now been known for over 20 years that
boolean networks which are entirely random but subject to the simple constraint that each element
is directly controlled by K = 2 elements spontaneously exhibit very high order’.

More recently, Rohlf et al. (2007) systematically studied damage spreading at the sparse perco-
lation (SP) limit in RBN with perturbations that are independent of the network size N. This limit is
relevant to information and damage propagation in many technological and natural networks. They
found a critical connectivity (also called the ‘edge of stability’ or ‘edge of robustness’) close to
K = 2, where the damage spreading is independent of N. Goudarzi et al. (2011) went a step further
and studied information processing in populations of Boolean networks with evolving connectiv-
ity, then systematically explored the interplay between the learning capability, the robustness, the
network topology, and the task complexity. They used genetic algorithms to evolve networks to
perform required jobs (i.e., simple tasks), and therefore did in many ways exactly what Turing sug-
gested in 1948 by ‘genetical search’ and ‘appropriate interference’. Even more interestingly, they
solved a long-standing open question and found computationally that, for large system sizes N,
adaptive information processing drives the networks to a critical connectivity K = 2, which is the
connectivity that Turing – for whatever reason – proposed.

4. Future developments and conclusion

We have argued in the past (Teuscher et al., 2009) that random dynamical network automata, such
as RBN, may be interesting candidates for emerging nanoscale electronics. Among other things, our
argument is based on the expectation that such nanoscale computing devices will be built – or rather
self-assembled – in a bottom-up way from vast numbers of simple, densely arranged components
that exhibit high failure rates, are relatively slow, and are connected in an unstructured way. RBNs
therefore nicely fit into that definition. For nanoscale electronics, the robustness against faults and
defects, the wiring cost (which is directly related to the power consumption and the chip area used),
and the adaptiveness are often considered key properties. As seen above, K = 2 networks occupy a
unique spot in the design space of such architectures because they are robust against certain types
of failures (Rohlf et al., 2007); they reduce the wiring cost, are easier to manufacture because of
the sparse connectivity, and offer optimal learning and generalisation capabilities for information
processing (Goudarzi et al., 2011).

Turing may therefore unknowingly have laid the groundwork for future nanoscale computing
architectures that are ‘unorganised’ and ‘modifiable’ and for today’s reconfigurable hardware ideas.
He wrote about a ‘[. . . ] machine as being modifiable’ when it is possible to ‘[. . . ] alter the behaviour
of a machine very radically [. . . ]’ (Turing, 1969). He distinguished two kinds of interference with
machinery: (1) screwdriver interference and (2) paper interference. Screwdriver interference is the
extreme form in which parts of the machine are removed and replaced by others. Paper interfer-
ence consists in the mere communication of information to the machine, which alters its behaviour.
Turing also wrote about machines that modify themselves, and he classified the operations of a
machine into two classes: (1) normal operations and (2) self-modifying operations. Many of the
ideas of (self-) modifying hardware can be found in today’s Field Programmable Gate Arrays
(FPGAs) or in other unconventional reconfigurable architectures (Durbeck and Macias, 2001;
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Mange et al., 2000). All of these ideas are considered increasingly important for emerging massive-
scale electronic devices, which may rely heavily on self-assembly, reconfiguration and (self-)
adaptation.

Turing’s long-forgotten work on unorganised machines, initially dismissed as a ‘schoolboy
essay’ by his advisor, is more than ever current, influential, and deeply fascinating. We can only
hypothesise what would have happened if his advisor would not have dismissed the manuscript.
Students might now state that Turing played an important role on the connectionist stage.
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Nicholas Gessler connects past and future —

THE COMPUTERMAN, THE CRYPTOGRAPHER
AND THE PHYSICIST

The field of cryptography will perhaps be the most rewarding. There is a remarkably close
parallel between the problems of the physicist and those of the cryptographer. The system
on which a message is enciphered corresponds to the laws of the universe, the intercepted
messages to the evidence available, the keys for a day or a message to important constants
which have to be determined. The correspondence is very close but the subject matter of
cryptography is very easily dealt with by discrete machinery, physics not so easily. (Turing,
Intelligent Machinery, p. 509 above)

We recall the past because it serves the present. Today, it gives us fresh insights into ideas that we
may have overlooked, and it calls our attention to ideas that others may have missed in prior days.
It offers us new perspectives, larger vistas on a target of inquiry from points of view separated by
space, time, culture and preconception. Since those targets arose in contexts that were so different
than today’s, we can open past ideas to a larger audience. We open a dialog with yesteryears, an
exploration that challenges our understanding of the past and present that make us question whether
progress has been made, why or why not, and how. With humility, we reassess our own work in the
light of those that have come before us. With conceit, we enlist our antecedents as advocates for our
own agendas. We engage to give our present projects richer meaning. What then, are we to make of
Turing’s statement? What are the implications that arise from what we take Turing to mean?

1. Science as cryptanalysis

[Newton’s}experiments were always, I suspect, a means, not of discovery, but always of
verifying what he knew already . . . He looked on the whole universe and all that is in it
as a riddle, as a secret which could be read by applying pure thought to certain evidence,
certain mystic clues which God had laid about the world to allow a sort of philosopher’s
treasure hunt to the esoteric brotherhood . . . He regarded the Universe as a cryptogram set by
the Almighty—just as he himself wrapt the discovery of the calculus in a cryptogram when
he communicated with Leibniz. By pure thought, by concentration of mind, the riddle, he
believed, would be revealed to the initiate. (Keynes, pp. 313–314)

My first, probably superficial, interpretation of his claim was as a metaphor, an analogy, between
the practice we now call cryptology (the study of codes and ciphers), or more specifically cryptanal-
ysis (the breaking of encrypted communications), and the practices of science, or more generally
the epistemology and the philosophy of science. Physics has long been considered the King of the
sciences; the biological, social and cognitive sciences having been relegated to roles of Jacks or
knaves, all suffering, to some extent, from ‘physics envy’. Physics, in this interpretation, thus stands
in for our external world, for ultimate reality and for truth itself, revealed to us only through the veil
of our limited cognitions, conceptions and perceptions. The world is simply not what it appears to us
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to be. There is something hiding away from plain sight, beyond the surface of everyday experience.
We have adapted to comprehend the behaviours of things of roughly our own scales of space, that
move and change according to our own scales of time. We have difficulty comprehending things
that are too small or much too large, things that are too quick or much too slow. All things are thus
‘encryptions’ of reality in need of decipherment, especially those which lay outside our range of
easy understanding. Evolution presents us with reality on a need-to-know basis.

Leibniz long ago described the procedure of science as like the solving of a cryptogram; and
this is a deep and an exact remark. In a scientific research, we have to do the opposite to
transmitting information, so that we have to turn the theory of information backward. Instead
of sending messages in a known code, we receive messages in an unknown code. The aim of
science is to break the code of nature. (Bronowski, p. 429)

Like a cryptographer who has captured an enemy agent, [the scientist] can send searching
signals which are designed to evoke simple and decisive answers. (Bronowski, p. 432)

We must surveille nature with suspicion. Its truths are steganographically hidden and cryptographi-
cally scrambled secrets among the signals that bombard us in daily life. We must first become aware
of their existence before they can be found identified and ultimately revealed.

A hypothesis . . . is like the key to a cryptograph, and the simpler it is, and the greater the
number of events that can be explained by it, the more probable it is. But just as it is possible
to write a letter intentionally so that it can be understood by means of several different keys,
of which only one is the true one, so the same effect can have several causes. Hence no firm
demonstration can be made from the success of hypotheses. (Leibniz, quoted in Rescher,
p. 121)

But just as each effect can have several different causes, and each letter can several different under-
standings, so too should we suspect that Turing’s statement (as well as his entire report) have several
different meanings each keyed and targeted to different audiences.

2. At the National Physical Laboratory

Five years after Alan Turing’s death in 1954, his mother, Sara Turing, wrote a tribute to her
son. Recounting the context of Alan’s work at the National Physics Laboratory, an arc rising
with optimism and falling with disappointment, she recalled Sir Charles Darwin (grandson of the
evolutionist), Director of the NPL, broadcast on the BBC, in November 1946:

A young Cambridge mathematician, by name Turing, wrote a paper . . . in which he worked
out by strict logical principles how far a machine could be imagined which would imitate
processes of thought . . . Broadly we reckon that it will be possible to do arithmetic a hundred
times as fast as a human computer, and this, of course means that it will be practicable to do
all sorts of calculations outside the scope of human beings. (S. Turing, p. 79)

It might be worth noting Darwin’s emphasis on doing ‘arithmetic a hundred times as fast as a
human computer’. Notwithstanding the fact that a transcript of the entire broadcast was not available
to me, the project seemed focused on advancing the work of computers, who do calculations, not
computers, that do calculations. Computers in those days were those persons doing such tasks as
figuring actuarial, accountancy, statistical and engineering tables. The focus was not on emulating
creativity or intelligence. Sara introduced the difficulties that led to Turing’s resignation:

In August 1947 my husband died. Alan, disappointed with what appeared to him the slow
progress made with the construction of ACE, and convinced that he was wasting time since
he was not permitted to go on the engineering side, asked for a sabbatical year. (S. Turing
p. 86–87)
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While away in Cambridge he wrote a report on “learning machines” for the National Physical
Laboratory whither he returned about May 1948. As progress on the ACE had not come up to
his expectations he sent in his resignation from the Scientific Civil Service. (S. Turing, p. 89)

Soliciting a comment from the NPL, she received this ambivalent summary of Alan’s contribution
to the development of the ACE. E.T. Goodwin, Superintendent of the Mathematical Division of the
NPL, wrote to Sara Turing in 1957, three years after Alan’s death in 1954:

In the early years after the war Alan produced what we call the ‘logical design’ of a large
computer which was to be called ‘The ACE’ or Automatic Computing Engine. The Labo-
ratory was very doubtful of its ability to produce successfully what was then so ambitious
a machine and, at about the same time when Alan took his sabbatical year at Cambridge, it
was decided to produce a small version which would be entitled the Pilot Ace. Though the
basic ideas behind this machine were largely Alan’s, you will understand that the detailed
arrangement was decided by others. (S. Turing, p. 84)

Nine years earlier, Sir Charles Darwin, National Physics Lab Director, noted in the minutes of the
Executive Committee, was much less diplomatic:

[Turing’s report is a] schoolboy’s essay . . . not suitable for publication. (Darwin quoted in
Copeland, p. 401)

Turing quit the NPL after his sabbatical, breaking an agreement that he would return to work for
another two years. His ‘Intelligent Machinery,’ subtitled ‘A Report’, was clearly not viewed as such
by Darwin. It was a report on Turing’s vision of work he had wanted to complete, but could not
complete at the NPL.

Everyone had been slow to adjust to the realities of the post-war period. In expecting the
Post Office to cooperate on the [mercury] delay lines, Alan had been as unrealistic as any of
the administrators . . . Perhaps Darwin never really wanted a computer, just as the Admiralty
had not really wanted to know where German ships were. The ‘support’ of Travis and the
Ministry of Supply had not in fact made any difference to the bureaucratic inertia. Darwin
and Womersley had played at being commissars while Alan remained the humbler worker
and peasant . . . [Turing] was not given a chance to make a mess of it for himself, as was his
right as the creative worker . . . for in the end every successful computer project had to solve
the problem of integrating ‘mathematical’ and ‘engineering’ skills, which was exactly what
he [Turing] longed to do. (Hodges, p. 376)

It was also manifesto and critique. At the beginning of ‘Intelligent Machinery’, Turing outlines
‘some of the reasons’ why ‘it is assumed without argument’ that it is not ‘possible for machin-
ery to show intelligent behaviour’. This likely was an opening salvo aimed directly at Sir Charles
Darwin (Director of the NPL) and J.R. Womersley (Superintendent of the Mathematics Divi-
sion), a confrontation with his superiors who were skeptical of his agenda. Turing resented the
compartmentalisation of intellectual activity, in academia and at the NPL.

Despite his resignation, and all the embarrassment that surrounded it, he completed a report
for the NPL in July and August 1948. Its almost conversational style reflected the discussions
he had pursued, many at Bletchley, in advancing the ides of Intelligent Machinery. Although
nominally the work of his sabbatical year, and written for a hard-line technical establishment,
it was really a description of a dream of Bletchley Park, and reviewed in an almost nostalgic
way the course of his own life rather than contributing to any practical proposals that the
NPL might adopt. (Hodges, p. 377)
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During his sabbatical at Cambridge, he saw an example of how research should be done, which
furthered his frustrations with the NPL.

[Alan’s] mind still straddled mathematics, engineering and philosophy in a way that the aca-
demic structure could not accommodate. Temporarily the war had resolved his frustration,
giving him something to do that was intellectually satisfying, yet which actually worked. But
that was over now, and instead of being drawn in, he was being pushed out... At Cambridge,
the computer was firmly in the grasp of M.V. Wilkes . . . (Hodges, p. 374)

Turing’s correspondence between cryptography (mathematical designs) and physics (engineering
physical instantiations of those designs) can be seen as a manifesto to bring down the walls of
separation the administrators had erected at NPL. One can almost hear the call to unite theory
with practice, mental work with physical labour: ‘mathematicians and engineers unite’! He wanted
freedom to move freely between the conceptual world of mathematics with the physical world of
engineers. Turing was quick to appreciate and appropriate the structure of Wilkes project:

One point concerning the form of organization struck me very strongly. The engineering
development work was in every case being done in the same building with the more math-
ematical work. I am convinced that this is the right approach. It is not possible for the two
parts of the organization to keep in sufficiently close touch otherwise. They are too deeply
interdependent. We are frequently finding that we are held up due to ignorance of some point
which could be cleared up by a conversation with the engineers, and the Post Office find
similar difficulty; a telephone conversation is seldom effective because we cannot use dia-
grams. Probably more important are the points which are misunderstood, but which would
be cleared up if closer contact were maintained, because they would come to light in casual
discussion. It is clear that we must have an engineering section at the ACE site eventually,
the sooner the better, I would say. (Turing cited in Copeland p. 397)

[Wilkes] was in full control, without a Womorsley or a Darwin to get in the way, and working
much as Alan would have liked to. The barricade between mathematics and engineering
never arose. It was enough to show the folly of NPL policy . . . . (Hodges, p. 375)

The situation at the NPL was markedly different, design and engineering were separate:

Little progress had been made on the physical construction of the ACE. The actual engineer-
ing work was being carried out not at the National Physical Laboratory but at the Post Office
Research Station, under the supervision of Turning’s wartime Associate Flowers. (Copeland
395)

According to Sara Turing, Alan coped with the stresses of the logistics of this separation in an
uncustomary way.

When, after the war, the Post Office was engaged in research on computers Alan was some-
times required to attend conferences at Dollis Hill and visit the Post Office laboratories. He
disliked complicated cross-country journeys . . . so he usually ran the fourteen miles from
Teddington [the location of the NPL] to Dollis Hill. (S. Turing p. 86)

Alan’s passion to bridge the gap between theory and practice was acquired at an early age:

Unlike most mathematicians, Turing liked to get his hands dirty building things. To imple-
ment an automatic code machine he began building a binary multiplier using electromagnetic
relays, which were the primary building blocks of computers before vacuum tubes were
demonstrated to be sufficiently reliable. Turing even built his own relays in a machine shop
and wound the electromagnets himself. (Petzold, p. 127)
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The NPL was late to recognise its own lack of progress, and Womersley reported in the Executive
Committee of the NPL on 20 April 1948:

The present position of this project gives no cause for complacency and we were probably
as far advanced 18 months ago . . . There are several competitors to the ACE machine, and
of these, that under construction at Cambridge University under Professor (sic) Wilkes, will
probably be the first in operation. (Hodges, p. 375)

The cause was also recognised too late, at least for Turing:

“At the end of April an NPL minute spoke of the need for en electronics group working
‘together in one place as a whole in close contact with the planning staff at the Mathematics
Division.”’ (Copeland 397–98)

Cryptography’s correspondence to physics, discursive code for his desire to see the engineering
efforts of the Post Office electronics group re-established at NPL in house, was meant to press for
closer collaboration between the hardware developers, the engineers, and the software developers,
the designers in the mathematics department. He further conceded that developing the machine
itself (the engineering) would be much more difficult than producing the design and instructions
for it (the mathematics). Under this interpretation, Turing invoked the camaraderie that existed at
Bletchley Park during the development of the Bombe to decrypt Enigma messages.

It is interesting that Turing includes the Brunsviga pinwheel calculator at the bottom of his list
of capacities of various machines with a memory of 90. It may have served both as a reference
to a machine that everybody knew and simultaneously as a dig at the bureaucratic establishment
that frustrated his attempts to bring the ACE to life. The Brunsviga had long been advertised as
having ‘brains of steel’, and an icon riveted to each machine showed an image of a head in cutaway
revealing clockwork gears for brains. For most human computers of the time, the Brunsviga was
the workhorse they employed. Did the Brunsviga in that list stand in for Darwin’s limited vision
of Turing’s project as rote arithmetic (as expressed in his BBC broadcast of 1946)? Did it evoke a
limited and unimaginative future for intelligent machines, the equation being: (Brunsviga / thinking
machine) = (creative workplace / NPL)? Double and even triple Brunsvigas were not unheard of
but Turing chose the single as his example.

3. A computational world

If cryptography, i.e., cryptanalysis, is the search for the design of the Enigma machine and the
protocols of its use, the hardware and software of an electromechanical computer, then it is also
the search for the design of the natural world and the protocols that govern it, the hardware and the
software of the computer on which the world as we experience it is run.

The correspondence that Turing draws between cryptography and physics is much richer than
it first appears, much richer than that drawn by Newton or Leibniz. Based upon his secret work in
developing the Bombe at Bletchley Park, an electromechanical computer with a dedicated program,
invoking cryptography as ‘as perhaps the most rewarding application’ of the ACE, as well as the
correspondence between ‘cryptography’ and ‘physics’ in his report would have brought that entire
experience into the argument he was making. It’s uncertain whether Darwin, Womersley or others
knew about Turing’s work breaking the Enigma. Flowers, who was with him at Bletchley Park and
was now associated with the NPL, may have made the connection.

What Turing had done at Bletchley was to construct one enhanced electromechanical computer,
the Bombe, to predict the operation of another electromechanical computer, the Enigma. The Bombe
was a multiplicity of Enigmas and the project for the Bombe was to retrodict and discover the system
(construction), settings (initial configuration), and data (cleartext) fed into the Enigma which would
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produce the data (ciphertext) that the listening stations had intercepted. He was recursively using
one computer to mimic the behaviour of another, of machines represented inside other machines, of
mathematics contained inside other mathematics, or in modern parlance computations nested inside
computations. In his correspondences and parallels he is applying this same recursivity to physics,
suggesting in the discursive style of his time that ‘it’s mathematics all the way down’, or as we
might say now, ‘it’s computation all the way down’. From top to bottom, from thought to whatever
underlies physics, all science can be seen as mathematics writ large, that is, computation.

Dr. Warren McCulloch, professor of psychiatry at the University of Illinois College of
Medicine goes further: he says that the brain is actually a computer, and very like computers
built by men. (Anon, p. 56)

Alan may have felt some sense of vindication when that statement appeared, as it seems that was
the subtext of much of what he had to say in his report. The cover of TIME magazine on January 23,
1950, was adorned with Boris Artzybasheff’s illustration of a computer examining its own progress
and deciding what next to do and the caption, ‘Mark III, Can Man Build a Superman?’ ‘At work,
it roars louder than an Admiral’, (Anon, p. 55). In two short years the ‘computing machine’ was
taking on the appellation of ‘computer’ and the human ‘computers’ of the days before were now
becoming ‘human calculators’ or simply ‘human beings’. ‘Computation’ was gaining popularity.
Those who designed these devices no longer were solely among the ranks of mathematicians, but
were in the process of becoming ‘computermen’.

What is computer science and computation? Frequently they stand in for all the algorithmic
processes that we see in nature. Increasingly, the machines we build, computers, are seen merely as
technological instantiations of computational phenomena that we discover observe in nature.

Computer science is no more about computers than astronomy is about telescopes. – E.W.
Dijkstra (Flake p. 23)

Computer science is not about computers. It’s the first time . . . that we’ve begun to have ways
to describe the kinds of machinery that we are. (Minsky 1996)

We have an emerging computational philosophy and epistemology of science. The subject is taken
up explicitly as in Computational Philosophy of Science (Thagard). The possibility is quietly
implied by the emergence of readily apparent patterns from computational rules in nature, such as
The Computational Beauty of Nature (Flake), and Prusinkiewicz’s series, The Algorithmic Beauty
of: Plants (Prusinkiewicz), Seaweeds, Sponges and Corals (Kaandorp), and Seashells (Meinhardt).
It does not offend our sense of self importance to accept computation as motivating ‘lesser’ forms
of life, but it is still a controversial subject for the human and social sciences. Nevertheless, the
RechnenderGeist has spread raising new multiagent explanations in the form of Artificial Societies
from dying single-cause models in economics:

What “sort of science” are we doing? . . . [Our] aim is to provide initial microspecifications
(initial agents, environments, and rules) that are sufficient to generate the macrostructures of
interest. We consider a given macrostructure to be “explained” by a given microspecification
when the latter’s generative sufficiency has been established. (Axtell & Epstein, p. 177)

Horowitz carries this idea forward, from quark to quasar, in his compelling and ambitious book The
Emergence of Everything. My own field of Anthropology has been slow to follow suit, preferring
to privilege the influence the role of the individual and of top-down rational causation over that
of the population and of bottom-up emergence inhuman culture. Artificial culture has yet to gain
momentum (Gessler).

Among complex systems, we encounter the emergence of the entailments of processes operating
at one local scale (of space, agency or time) to forms taking shape at another global scale. We witness
global patterns of behaviour emerging from populations of local rules. It is only in the interaction
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of those local rules that the global pattern come into being. Nowhere among those individual rules
would we find any indication of what they will produce. Without those local rules in constant play,
the global world would not appear.

Reluctant to be seated among the advocates of ‘the world is computational from bottom
up’, Stephen Wolfram enlists ‘correspondences’ as did Alan Turing in defining his ‘Principle of
Computational Equivalence’:

Whenever one sees behavior that is not obviously simple [i.e. complex] — in essentially any
system — it can be thought of as corresponding to a computation of equivalent sophistication.
(Wolfram, p. 5)

The great historical successes of theoretical science have typically revolved around finding
mathematical formulas that . . . directly allow one to predict the outcome [of a particular
system] . . . The Principle of Computational Equivalence now implies that this will normally
be possible only for rather special systems with simple behavior... Other [more complex]
systems will tend to perform computations that are just as sophisticated as those we can
do, even with all our mathematics and computers. And this means that such systems are
computationally irreducible — so that in effect the only way to find their behavior is to trace
each of their steps, spending about as much computational effort as the systems themselves.
(Wolfram, p. 6)

Konrad Zuse, who designed and built the world’s first working electromechanical, programmable,
fully automatic computer, the Z-3, in 1941 tackled the problem of a computational universe head-on
by taking the offensive. In 1969 he introduced the term ‘automaton theoretical way of thinking’ in
his paper ‘Rechnender Raum’ or ‘calculating space’ (Zuse, p. 7). In it he takes up the proposition
that the cosmos might operate as a cellular automaton. He examines the foundational principles of
physics one by one, evaluating the possibility of subsuming each of them under the entailments of an
appropriate cellular automaton. Nowhere does he find conclusive evidence to dismiss his propo-
sition out of hand. His overall project is clear, but a quotable few lines summarizing his intent
disappear among the details of his arguments.

The question therefore appears justified whether data processing can have no more than an
effectuating part in the interplay [between mathematics and physics] or whether it can also
be the source of fruitful ideas which themselves influence the physical theories. (Zuse, p. 1)

Such a process of influence can issue from two directions . . . 2. A direct process of influenc-
ing, particularly by the thought patterns of automaton theory, the physical theories themselves
could be postulated. This subject is without a doubt the more difficult, but also the more
interesting. (Zuse, p. 2)

The first result of viewing the cosmos as a cellular automaton is that the single cells represent
a finite automaton. The question to what extent it is possible to consider the entire universe as
a finite automaton depends on the assumption which we make in relation to its dimensions.
(Zuse, p. 70)

In view of the possibilities listed, it is clear that there are several different points of view
possible: . . . (3) The possibilities arising from the ideas of calculating space are in themselves
so interesting that it is worthwhile to reconsider those concepts of traditional physics which
are called into question and to examine their validity from new points of view. (Zuse, p. 93)
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In like fashion, Ed Fredkin posits the existence of ‘the Ultimate Computer’ residing in a universe
he calls ‘Other’. His argument is also detailed but can be summarised more clearly:

The answer lies in the amazing consequence of the simple assumption of Finite Nature. As we
have explained, Finite Nature means that what underlies physics is essentially a computer.
Not the kind of computer that students use to do their homework on, but a close cousin;
a cellular automaton. Not knowing the details of that computer doesn’t matter because a
great and tragic British mathematician, Alan Turing proved that we don’t need to know the
details!
What Turing did in the 1930s was to invent the Turing Machine. It was a way to formalize
all the things that a mathematician could do with pencil and paper. The result proves that any
ordinary computer, given the proper program and enough memory, can do what any other
computer can do. It can also do what any mathematician can do; if we only knew how to
write the program! Finite Nature implies that the process underlying physics is a kind of
computer; therefore it is subject to Turing’s proof. This means that there is not just one kind
of underlying computer, but there are many possible equivalent computers. Of course some
are simpler, some are more elegant, some use the least amount of various resources, some
are faster... Once we have figured out that it’s a computer at the bottom, we already know a
lot even if we don’t know what kind of computer would be most efficient at the task.

As to where the Ultimate Computer is, we can give an equally precise answer, it is not in
the Universe - it is in an other place. If space and time and matter and energy are all a
consequence of the informational process running on the Ultimate Computer then everything
in our universe is represented by that informational process. The place where the computer
is, the engine that runs that process, we choose to call “Other”.

Jürgen Schmidhuber explores a philosophy and epistemology of computation with a lighter touch:

A long time ago, the Great programmer wrote a program that runs all possible universes on
His Big Computer. “Possible” means “computable”: (1) Each universe evolves on a discrete
time scale. (2) Any universe’s state at a given time is describable by a finite number of
bits. One of the many universes is ours, despite some who evolved in it and claim it is
incomputable. (Schmidhuber, P. 201)

Conclusion. By stepping back and adopting the Great Programmer’s point of view, classic
problems of philosophy go away. (Schmidhuber, P. 208)

Marvin Minsky expands upon Schmidhuber’s ‘conclusion’ above:

Fifty years ago, in the 1940s and 50s, human thinkers learned for the first time how to
describe complicated machines. We invented something called computer language, program-
ming language, and for the first time people had a way to describe complicated processes or
complicated machines, complicated systems made of thousands of little parts all connected
together . . . Before 1950 there was no language to discuss this, no way for two people to
exchange ideas about complicated machines. But why is it important to understand? Because
that’s what you are . . . .
Computer Science is a new philosophy about complicated processes . . . about Artificial Life,
about natural life, about Artificial Intelligence [and] about natural intelligence . . . So all
[prior] philosophy, I think, is stupid. It was very good to try to make philosophy. Those
people tried to make theories of thinking, theories of knowledge, theories of ethics, and the-
ories of art, but . . . they had no words to describe the processes or the data . . . So I advise
all students to read some philosophy, and with great sympathy. Not to understand what the
philosopher said, but to feel compassionate and say, “Think of those poor people years ago
who tried so hard to cook without ingredients, who tried to build a house without wood and
nails, who tried to build a car without steel, or rubber or gasoline.” So look at philosophy
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with sympathy. But don’t look for knowledge. There is none. Remember whenever you see
ancient wisdom that still seems smart, what does it mean? It means that the ancient wisdom
has something wrong with it that keeps people from replacing it for a long time. (Minsky
1996)

No less intellectually stimulating, and on a lighter note, the possibilities are often further explored
as fiction. Among the most interesting are short stories such as Stanislaw Lem’s ‘Non Serviam’
(Lem), novels such as Greg Egan’s Permutation City (Egan) and films such as Josef Rusnak and
Daniel F. Galouye’s, The Thirteenth Floor (Rusnak).

Is our Universe, at its base, computational? What does it mean to make or refute this claim?
Are debates, both pro and con, simply language games? Perhaps they are, but the games being
played are oftentimes complex and have serious consequences. Such games are symptoms that
expose the inability of spoken language to represent and describe, and our inability to understand
and explain certain complexities in our world. Computer languages, on the other hand, may provide
correspondences that are richer, that capture many facets of reality more completely than can natural
languages. Moreover, by pressing ‘run’, they spin out the entailments of statements they contain in
greater detail and more consistently than discursive arguments following an assertion. The claim
that we are patterns that emerge from processes operating at a smaller scale, provides us with more
inspiration, insight and wonder into the wonders of this world, than does its negation.

Sara Turing, Alan’s mother, wrote:

Some years later Alan remarked that the daily papers were many years ahead of him, opening
even his eyes in wonder, so far did they outstrip him in their forecasts. (S. Turing, p. 80)

Alan would have liked to have joined us in this discussion, and perhaps he has, as there is a little of
Alan Turing in each of us.
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Stephen Wolfram looks to reconcile —

INTELLIGENCE AND THE
COMPUTATIONAL UNIVERSE

What will it take to create artificial intelligence? The only clear example of intelligence that we
have traditionally had is human intelligence. But what aspects of human intelligence are somehow
essential to the notion of ‘intelligence’, and what are merely side effects of our particular biological
implementation?

In Turing’s day it was known that the brain operated in a largely electrical way – and it was
clear that all sorts of devices could be constructed with electronics. But what was the secret that let
a brain show intelligent behaviour? Was it some particular architecture that could be emulated with
electronics? Or was it something about the way information was provided? Or something else?

I don’t think Turing ever imagined that his Turing machines would be equivalent to brains; he
was sure there was something fundamentally more to brains. But of course his intuition did not have
the benefit of all our experience with actual computers, with what they do, and with the experiments
we can do with them.

In my own case, my view of artificial intelligence has changed completely over the past 30
years. And one of the important consequences of the change is that I came to believe that the
Wolfram|Alpha ‘Computational Knowledge Engine’ (Wolfram) should be possible – and then
proceeded to build it.

What precipitated the change in my views was the experimentation I did on the computational
universe in connection with A New Kind of Science (Wolfram, 2002). Normally when we think of
computers we imagine constructing machines or programs for specific purposes – to perform tasks
we want.

And certainly that is what Turing had in mind when he set up Turing machines, or discussed
how ‘intelligent machines’ could be built.

Originally motivated by natural science, however, what I did was to explore the general uni-
verse of possible programs – starting with simple programs that one might set up at random, or by
enumeration. And what I found – first in the context of cellular automata – was that even extremely
simple underlying rules are capable of producing behaviour of in effect arbitrary complexity.
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This led me to a general principle – the Principle of Computational Equivalence (Wolfram,
2002) – that implies that beyond some very low threshold, almost any set of rules or programs that
one encounters, if it does not have trivial behaviour, it will behave in a way that is computationally
as sophisticated as anything else.

In other words, it does not take much to be able to do sophisticated computation. But adding
more complexity to a system does not increase the sophistication of the computation that it
can do.

I had always imagined that there was somehow ‘more to intelligence’ than ‘just computation’.
But the Principle of Computational Equivalence implies that at a fundamental level there cannot be.

What is intelligence? As a perhaps simpler analogue, one can ask, ‘What is life?’ In ancient
Greek times, it was assumed that anything that ‘moved itself’ must be alive. A century ago it was
assumed that life must be associated with some special chemistry or special thermodynamics. Later,
it was assumed that self-reproduction was what was special.

By now it is clear that none of these particular definitions really allows us to distinguish life
from non-life. Of course, in practice it is quite easy to tell what is alive and what is not. For all
life we know shares not just abstract characteristics, but a detailed history. And the result is that all
living things have many detailed similarities – like RNA, cell membranes, and so on.

So what about intelligence? I think the story is very much the same. One can imagine all sorts
of abstract definitions. But in practice the definitions we use are deeply tied to the details of human
intelligence, and the human condition. And indeed that is why the Turing Test remains a good test –
not of abstract intelligence, but of human-like intelligence.

But what of abstract intelligence? My conclusion is that there is really nothing to distinguish it
from ‘pure computation.’ When we say that ‘the weather has a mind of its own’, we are effectively
attributing intelligence to the dynamics of a fluid. And in fact this is not as misguided as modern sci-
ence might have one believe. For in fact the computations done by the fluid are doubtless equivalent
to computations that can be done by any system, notably our brains.

So then what about the kinds of tasks that Turing considers for artificial intelligence? I used to
imagine that some of these tasks might require some special spark of intelligence to do. But now I
believe that all they will ever need is in a sense ‘just computation’.

One of the broadest tasks – and one that seems closely related to intelligence – is answering
questions. Given the knowledge that our civilisation has accumulated, is it possible to automate
answering questions that can be answered on the basis of this knowledge?

In the early years of electronic computers, there was an assumption that this should be quite
easy – through a kind of automation of mental processes analogous to the automation of physical
tasks achieved by mechanical machines. In actuality, however, it turned out to be too difficult, and
all that emerged were some embarrassingly simplistic toy attempts.

From my own work on computation and the computational universe, however, I came to believe
that this failure was not inevitable, and that in fact, by doing appropriate engineering, and inventing
a collection of relevant algorithmic approaches, it should be perfectly possible to make knowledge
computable on a large scale.

The result of my effort is Wolfram|Alpha, which has been increasingly successful at answering
millions of expert-level questions across thousands of domains of knowledge every day.

Wolfram|Alpha does not work much like Turing’s conception of an intelligent machine, though it
achieves in many directions more than I believe Turing would have expected would be possible of a
machine. But much of what it does, it does in a very different way than human intelligence operates.
For example, if Wolfram|Alpha is asked to solve a problem about the behaviour of a physical system,
it does not do it by a process of ‘thinking’: of reasoning, like a Mediaeval philosopher, about how one
part of the system should affect another and so on. Instead, it just sets up the appropriate equations,
then uses the most powerful scientific and mathematical methods it can to push through to an answer.

Wolfram|Alpha is in this case in effect using the formalism of science and mathematics that our
civilisation has set up, not the processes of thinking and reasoning that are basic to our brains.
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And similarly, when Wolfram|Alpha understands natural language input provided by humans,
it does it in ways that probably have little relation to the way such a task is performed in human
brains.

What does all this mean for artificial intelligence, and for Turing’s intelligent machinery? Over
the coming decades I suspect the whole notion of artificial intelligence will become increasingly
moot.

Through ‘pure computation’ we will perform all sorts of tasks that we traditionally attributed to
intelligence. And as the computational systems we use become increasingly integrated into our lives
as humans, those systems will in effect behave in more ‘human-like’ ways – fundamentally, because
their interaction with the world will be increasingly aligned with what we humans experience.

Through our technology, and our understanding of the broader computational universe, we will
achieve what Turing imagined. Though we will do it not through emulating details of humans, but
in a sense through pure computation. Ironically enough, we will do it in a way that is much closer to
Turing’s original invention of Turing machines, and further from the details of human intelligence
that he discussed in this paper.
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Paul Smolensky asks a key question —

COGNITION:
DISCRETE OR CONTINUOUS COMPUTATION?

‘Cognition is computation’. This radical idea we owe in part to philosophers such as Aristotle and
Hobbes, but most of all, to Turing, who made computation a tool with power sufficient to spur the
founding of a new field: cognitive science. Rooted in a long history, two main currents shape cognitive
science: both computational, but only one following a course apparently foreseen by Turing himself.
In this essay we will explore these two streams, focusing on the key question: what is the relation
between meaning and mechanism? More specifically: what is the mapping that links the meaningful
elements of cognition – abstract concepts in the mind, and the knowledge that links them – to the
mechanistic elements of computation – basic units of data, and the operations that act on them?1

1 Turing’s ideas concerning the formal details of computation and his ideas for relating machines to minds are both
well-attested in his writings, but the latter are discussed at a level of generality that makes it difficult to interpolate
how they were intended to be implemented in the former. The virtual absence of discussion of this mapping by Turing
leaves it unclear whether it was simply taken for granted that this mapping is simple and transparent, as assumed by
the symbolic paradigm in cognitive science introduced below. Thus the emphasis here will be on characterizing the
conceptual relations underlying approaches to relating mind to machine in contemporary cognitive science, without
attempting historical analysis. It is clear that Turing’s work laid the foundations for and is consistent with the symbolic
paradigm, and it is clear that a fundamental principle of the alternative, subsymbolic paradigm – distributed conceptual
representation – was either not considered, not considered important, or not considered correct by Turing.

http://www.wolframalpha.com/
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For our purposes, we can take computation to be the reduction of unboundedly complex pro-
cesses to combinations of simple ones. A computational architecture is thus defined by (i) a set of
simple, primitive processes that are assumed given; (ii) a general type of data that these processes
operate upon; and (iii) a finite set of operations that join primitive processes to create more complex
processes which they then in turn combine to create still more complex processes.

Between them, the two streams of cognitive science deploy two classes of computational
architecture. The first class comprises the discrete architectures, of which a key example is the
Turing machine; other examples include Babbage’s Analytical Engine, Church’s function systems,
Kleene’s algebras, and Post’s string-rewriting systems. This last example is closest to the dis-
crete architectures central to cognitive science. The type of data employed is symbol strings (i.e.,
sequences), e.g., (x+(2*y))=z. The primitive processes involve taking a string of symbols, say
w=z, and substituting for one symbol, say w, a string of symbols, say (x+u), producing (x+u)=z;
this simple process is a rewrite rule, denoted w→ (x+u). Combining many rewrite rules, it is
possible to compute complex sets of strings, such as the set of all well-formed equations of alge-
bra, or the set of all well-formed programs in a computer language such as Java, or even a set
of strings constituting an approximation to the sentences of English (where each symbol denotes
an English word). In the latter case, the rules constitute a rewrite-rule grammar with rules like
Sentence→ NounPhrasesubject VerbPhrasepredicate.

What is the purpose of computational reduction? Before automatic computers, clerks were
employed to carry out extensive calculations. These human computors needed to be instructed in
terms of simple operations they could reliably perform by hand or with basic mechanical aids, with-
out relying on intuitions as a mathematician might. Reducing complex calculations to a sequence of
simple operations allowed these complex computations to be performed by human computors, who
were using a mental faculty we can call the conscious rule interpreter. For human computors, the
rules can be stated in English, using a circumscribed vocabulary referring to simple operations. It is
this type of computational reduction that is formalised in discrete computation. And it is this type
of reduction that Turing apparently envisaged for simulating the human mind.

Crucially, this type of reduction conflates meaning with mechanism. The complex process being
carried out has the purpose of taking meaningful inputs (say, a target location) and producing
meaningful outputs (rocket launch parameters). The mechanisms that perform the process oper-
ate on these meaningful elements: these are the operations described by the instructions that human
computors follow.

This type of computational reduction defines the first stream of cognitive science: the symbolic
paradigm. It is illustrated by what Haugeland (1985) terms ‘Good Old Fashioned Artificial Intelli-
gence’, where programs consist of rules manipulating meaningful symbols that refer to the elements
of the conceptual world in which the inputs and outputs reside. The same is true in the Newell and
Simon (1972)/Anderson (1983) school of cognitive science, which models novice geometry stu-
dents as literally internalizing the rules of their textbooks; with experience, these rules are modified
to more efficiently achieve their effects, but remain, even in the expert, procedures (now uncon-
scious) that manipulate symbols meaningful in the problem domain (symbols that refer to points,
lines, triangles). When Turing (1950) discusses the Argument from the informality of behaviour, he
addresses the kinds of ‘laws of behaviour’ that later developers of ‘expert systems’ would seek:
propositions stated in terms of the concepts experts use to cognize their domain, concepts which are
formalised as symbols that are meaningful in this sense and, simultaneously, are the tokens manipu-
lated by the mechanisms of computation, which operate on the propositions encoding the identified
laws of expert behaviour.
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In the symbolic paradigm of cognitive science, then, the type of computational reduction
afforded by discrete computation is deployed for not only the conscious rule interpreter internal
to the mind of the human computor or novice geometry student – it is also invoked for the intuitive
processor in the mind of the expert geometer, a processor that delivers inferences independently of
consciously accessible justifications. The intuitive processor of the symbolic paradigm is perform-
ing logical inference via operations manipulating meaningful symbols, just as the conscious rule
interpreter does: the differences concern only accuracy, efficiency and conscious access.

In the other approach to cognitive science – the subsymbolic paradigm – conscious rule interpre-
tation is analyzable in the same terms as in the symbolic paradigm, but intuition is not (Smolensky,
1988). This is crucial because intuition includes the large majority of mental processes studied in
cognitive science. Expertise resides in the intuitive processor, and we are all experts in perception,
action, common sense, and language. If Turing’s (1950) discussion of a machine playing the imita-
tion game, or of training an intelligent machine through verbal instruction, is applied to the human
machine, the necessary command of language is a capability of the human intuitive processor, and if
the subsymbolic paradigm is correct, such a machine cannot operate within the confines of a discrete
computational architecture operating on meaningful symbols.

For in the subsymbolic paradigm, the intuitive processor is formalised with a type of com-
putation falling outside the class of discrete architectures. In a continuous architecture, data
is numerical, and the primitive processes are arithmetic operations; data changes over time
according to a differential equation, which combines multiple operations. The class of con-
tinuous computational architectures includes Thomson (Lord Kelvin)’s (1876) mechanical inte-
grator, Bush’s (1931) Differential Analyzer, Pour-El’s (1974) theory of analog computation,
Blum et al.’s (1989) theory of computation over the real numbers, as well as the continuous neural
network models of Amari (1977), Hinton and Anderson (1981), Grossberg (1982), Hopfield (1984),
Kohonen (1984), Rumelhart and McClelland (1986), and many others.2 In these latter networks,
the data consists in n real numbers a1,a2, . . . ,an; ak is called ‘the activation value of the kth unit
(or neuron)’; together, they specify a point in Rn, the ‘activation vector’ a – a ‘pattern of activity’.
A typical differential equation is dak/dt =−ak+ f (

∑
j Wkjaj), where f (x)≡ [1+ e−x]−1 and each

parameter Wkj is called ‘the connection (or synaptic) weight from unit j to unit k’.
Because of the universality of discrete computation, any continuous computation can be approx-

imately simulated with discrete computation3 – but the crucial point is that then the symbols
manipulated must refer to activation values and weights, not to meaningful concepts and to rules
that relate them. In the subsymbolic paradigm, mechanism operates below the level of meaning
(Hofstadter, 1985), whether the mechanism be given in its most natural formalisation as continuous
computation, or in its discrete-computational approximation. Here is why.

According to the subsymbolic paradigm, in the intuitive processor, a concept is not represented
as a symbol governed by the rules of a symbolic program: a concept is represented by an entire
activation vector, which is governed by a differential equation that operates on individual activity
values, each of which is but a small part of a vector that is meaningful. This is distributed concep-
tual representation. In the symbolic paradigm, the concept COFFEE is encoded as a symbol which

2 Continuous computation includes some, but not all, of what is called ‘parallel distributed processing’, ‘connectionism’,
or ‘neural networks’; Turing’s own work on network machines (Turing, 1948) falls in the discrete computational class,
like the work of McCulloch and Pitts discussed below.
3 The questions under consideration here concern how best to model the internal structure of mental processing; issues
concerning digital vs. analog computability are not particularly central and can be put aside.
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appears in propositions encoding knowledge of the relation of this concept to others. But in the sub-
symbolic paradigm, COFFEE is encoded as a vector. Changing the numbers in this vector can yield
the vector encoding the concept SCONE. Individual numbers in these vectors do not correspond to
concepts about the world of gustatory delicacies to which the computation refers: only the entire
pattern of numbers constituting the activation vector a has such a conceptual interpretation. A dis-
crete program simulating the continuous computation that defines the processing occurring within
this subsymbolic model will have symbols that refer to ‘the fifth activation value’, not to CREAM.

Indeed, in the McCulloch and Pitts (1943) discrete calculus inspired by Turing (1936), the basic
elements are propositions that refer to the binary active/inactive status of a node in a network. If
such a predicate is equated with an ‘idea’ – a proposition over concepts – we are in the symbolic
paradigm.4 A network is but a notational variant of a complex proposition or equation; networks
provide a notation that is often more convenient for describing parallel computation than is the
string-based notations that are so well suited to sequential computation. The distinction between
network- and string-based notations is largely orthogonal to the distinction between symbolic and
subsymbolic cognitive models. It is true that conscious rule interpretation has a sequential nature
(computors execute only one operation at a time), so lends itself well to string-based notation, while
intuitive processing does not have an overtly sequential character. Intuition is modeled by uncon-
scious sequential computation in the symbolic paradigm, but by (unconscious) parallel computation
in the subsymbolic paradigm; this is reflected in the propensity of theorists to write the former in
string- and the latter in network-based notations. What is crucial is that, whatever the notation,
the primitive operations of the computational architecture operate on conceptually meaningful ele-
ments (symbols) in the symbolic paradigm, but on sub-conceptual elements (activations) in the
subsymbolic paradigm.

Why have a significant proportion of cognitive scientists adopted a computational architecture
deploying continuous mechanisms that operate beneath the level of meaning?

The subsymbolic paradigm is motivated by both the human mind and the human machine.
Regarding the mind, during the 1970s certain psychologically-oriented cognitive scientists became
frustrated with the rigidity of the symbolic paradigm for capturing human mental processes. Their
theories called for ‘partially active’ words during sentence processing, ‘spreading activation’ to yield
flexible associations between concepts, and, ultimately, learning procedures accumulating quantita-
tive degrees of associations between sub-conceptual properties of experience from which emerge over
time the coordinated aggregates which function as concepts, like Hebb’s (1949) cell assemblies.

Regarding the human machine, it has long been an important part of the mind-body problem to
connect the mental to the physical brain, and computational reduction offers the first prospect for
carrying this out rigorously. This requires, however, that the computational architecture deployed
has primitive operations, data, and combinators that a brain could provide. And this is what the
continuous architectures employed in the subsymbolic paradigm achieve, according to our current
best understanding of the appropriate level of neural organisation: a mental concept is encoded in
the activity of many neurons, not a single one, and a given population of neurons can host multi-
ple patterns encoding multiple mental concepts; the activity of a neuron is a continuously varying
quantity at the relevant level of analysis; combination of information from multiple neurons has
an approximately linear character, while the consequences of this combination for neural activation

4 As mentioned in note 1, it is not clear what mapping between node activations and concepts was imagined for the
network machines introduced by Turing or by McCulloch and Pitts (their ‘ideas immanent in nervous activity’). If they
envisioned something other than a transparent mapping under which each node encodes a conceptual proposition, then
they seem not to have discussed the formal structure, or any of the implications of, a non-transparent mapping. (Nor
the combinatorial explosion of nodes entailed by a ‘node = proposition’ mapping. A population of n nodes each with v
discriminable values of course provides not n, but vn patterns for potential use as representations.)
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has a non-linear character that imposes minimum and maximum levels. The primitives provided by
the continuous architectures of the subsymbolic paradigm are within the capabilities of the brain –
that the brain has yet more complexity than assumed in these architectures does not compromise the
subsymbolic paradigm’s computational reduction of mental to neural processing.

While brain theory is far from achieving a settled state, this conception of continuous neural
processing has generally displaced earlier notions according to which the relevant level of analy-
sis was taken to be one where neural activations are binary (firing/not-firing), as assumed by the
early discrete-computational network descriptions of the brain developed by Turing (1948) as well
as McCulloch and Pitts (1943). Similarly, early on, the search for the meaning of neural activation
targeted individual cells, but recent years have seen an explosion of research in which neural mean-
ing is sought by recording ‘population codes’ over hundreds of neurons, or patterns of aggregated
activity over hundreds of thousands of neurons (functional Magnetic Resonance Imaging, fMRI).

The implications of distributed representation – of taking vectors in Rn as the basic data type of
the computational architecture – are many (Smolensky and Legendre, 2006). The basic operations
of continuous mathematics provided by vector space theory now do the fundamental computational
work. Consider, for example, language processing, a key domain for cognitive science. Instead of
stringing together two conceptual-level symbols to form Frodosubjectlivespredicate, we add
together two vectors, the first representing ‘Frodo as subject’ and the second ‘lives as predicate’.
The vector encoding ‘Frodo as subject’ results from taking a vector representing Frodo and a vector
representing ‘subject’ and combining them with a vector operation called the tensor product. The
basic mapping operation of vector space theory, linear transformation, provides the core of mental
processing. Vector similarity, as conventionally defined using the vector inner product, serves to
model conceptual similarity, a central notion of psychological theory. And a notion from dynami-
cal systems theory proves to have major implications as well: the differential equations governing
many subsymbolic models have the property that as time progresses, a quantity called the Harmony
steadily increases. Harmony can be interpreted as a numerical measure of the well-formedness of
the network’s activation vector with respect to the weights. The objective of network computation
is to produce the representation (vector) that is maximally well-formed – optimal.5

On a practical level, aspects of this continuous computational theory enable analysis of the con-
ceptual meaning of measured neural activity patterns; this is now becoming pervasive in cognitive
neuroscience (e.g., fMRI). And on a theoretical level, a nascent theory of vectorial computation is
starting to tackle the kinds of computability questions initiated for discrete computation by Turing
and his contemporaries.

The symbolic and subsymbolic paradigms conflict as regards the modeling of intuitive processes:
the former, but not the latter, posit mechanisms manipulating conceptually meaningful elements.
Nonetheless, with respect to mental representations – even within the intuitive processor – it is
possible to achieve a degree of integration between the two paradigms by embedding discrete repre-
sentations within a continuous vector space. Imagine the continuous space of all activation vectors
as a Euclidean plane (Rn, with n = 2). Imagine that stuck into the plane are a set of flags, each
bearing a symbol string. So at a particular point x there is a flag labeled b, at another point y a flag
labeled ab, and at z a flag bearing aab. The symbol strings b, ab, and aab have been embedded in
Rn at the vectors x, y, and z.

5 Definitions: addition, [a+b]k ≡ ak + bk; tensor product, [a⊗b]kj ≡ akbj; linear transformation, [Fa]k ≡
∑

j Fkjaj;
inner product, [a ·b]≡

∑
k akbk; Harmony, H(a)≡ 1/2

∑
kj akWkjaj+

∑
k h(ak).
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A function f over symbol strings (e.g., f : b 7→ ab,ab 7→ aab, . . .) can, for a significant class of
functions, be achieved through a basic subsymbolic function, a linear transformation F over Rn (i.e.,
F: x 7→ y, y 7→ z, . . .).6 Such strings might represent conceptual structures, in which case the function
computed by such a subsymbolic system has a perfectly precise description within the symbolic
paradigm – employing symbols which individually have conceptual meaning – but the process by
which this function is computed does not. Returning to language processing, this yields a theory
in which the syntax of a native speaker can be specified by a symbolic grammar, but the mental
processes that manipulate syntactic mental representations can be specified only subsymbolically
(in terms of connection weights derived from the symbolic grammar).

Such a theory of mental grammars has led to a new subsymbolically-grounded theory in a cog-
nitive domain long central to the symbolic paradigm: universal grammar. Recall that in many
subsymbolic models, processing is optimisation: it produces representations that have maximal
Harmony (well-formedness). The Harmony of the representation z – the location of the flag bear-
ing aab – can be taken to be the grammatical well-formedness of the symbolic representation aab.
According to such a Harmonic Grammar, the grammatical strings are those with maximal Har-
mony (Legendre et al., 1990). And the Harmony of aab, it turns out, can be computed in terms
of constraints like ‘a cannot follow b’: a string (like baa) that violates this constraint incurs a
Harmony penalty −s, where s is the strength of that constraint in the grammar. In actual natural
language grammars, an example constraint is ‘no plural subject for a singular verb’ (violated by
dogs barks).

Previous approaches to human grammar (Chomsky, 1965) are primarily based in discrete com-
putation theory: a grammar is a set of rewrite rules which provide a step-by-step set of instructions
– suitable for a human computor – for constructing grammatical structures. That is, grammars are
specified as processes. Harmonic Grammars are specified instead in terms of products: a product
of language processing is grammatical iff it optimally satisfies the grammar’s constraints; a process
for generating such optimal products is not specified by the grammar, but is left to a separate theory
analyzing how to carry out optimisation over such constraints. The new contribution to the theory
of universal grammar derives from the following strong hypothesis: the constraints are the same in
all human grammars – only their strengths vary from language to language. The empirical success
of this hypothesis can be summarised: what is universal across languages is found in the products,
not the processes, of language generation.

Constraint-based approaches to grammar can also be pursued with discrete computational archi-
tectures. Indeed it is a striking discovery of recent years that the Harmonic Grammars of human
languages have a strong tendency to display a special property: the strength of any given constraint
is greater than that of all weaker constraints combined.7 This entails that all that is needed to deter-
mine grammaticality – optimality – is the ranking of constraints from strongest to weakest within
a particular grammar. This is Optimality Theory (Prince and Smolensky, 1997, 2004), which is
the theory that actually introduced the strong universality hypothesis in the form: the constraints
in all grammars are the same; only their relative ranking varies across languages. In Optimality
Theory, grammars specify functions in discrete computational terms; but considered as part of the
subsymbolic paradigm, the human mental processes that actually compute these functions must

6 For a fully recursive function over strings of unbounded length, we need n=∞, but nonetheless F can be finitely
specified.
7 More precisely, the Harmony penalty resulting from a single violation of a given constraint is greater than the maximal
Harmony penalty that can result from all weaker constraints combined.
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be specified using continuous computation – optimisation – over Harmonic Grammars realised in
vectorial distributed conceptual representations.

If cognition is computation, we must ask, what are the primitive computational elements, and
how do they map onto cognitive entities? For the cognitive faculty of conscious rule interpreta-
tion, the computational primitives are the symbol-manipulating operations of discrete computation,
with individual symbols mapping onto individual concepts. Mechanism operates on meaningful
elements. For intuitive cognition, the same holds – according to the symbolic paradigm of cogni-
tive science. In the subsymbolic paradigm, however, the computational primitives are the numerical
operations of continuous computation, and a concept corresponds to an entire vector. Mechanism
operates on individual numbers, activation values, beneath the level of meaning. Subsymbolic com-
putation reduces complex mental processes to simple brain processes. Vector space theory provides
tools now widely used for conceptual interpretation of recorded activation patterns in the brain.
Dynamical systems theory provides tools for interpreting subsymbolic computation as optimisation.
Applied to language, this leads to a theory of grammar in which what is universal is the optimality-
defining criteria for evaluating the products of language processing – as opposed to the process of
producing these representations, previously the subject matter of mainstream grammatical theory.

The universe of computation opened up to us by Turing includes not just the discrete class of
architectures, but also the continuous class; not just symbolic, but also vectorial representation of
concepts; the means to formalize grammatical knowledge not just as procedures for computation,
but also as criteria for evaluating products of computation. Undoubtedly, the universe of computa-
tion holds other unexplored architectures for creating machine intelligence and for understanding
human cognition.
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Tom Vickers recalls —

ALAN TURING AT THE NPL 1945–47

Having been fortunate to get to know Alan Turing briefly at NPL from 1946 to 1947, it was
suggested that I should commit my memories to paper. Sadly, memories fade with age; also I
find that I would be repeating much that is now readily available in important books, particularly
those by Hodges (1983), Copeland (2005) and Yates (1997). For much greater detail of this short
period, I would strongly recommend the two accounts by J. H. (Jim) Wilkinson in his 1970 ACM
Turing Award lecture (Wilkinson, 1971, p.243), and A History of Computing in the 20th Century
(Wilkinson, 1980, p.101).

I will therefore try to present material which has not appeared elsewhere, plus some personal
observations on the remarkable revolution in computing which took place during my stay at NPL
from 1946 to 1977.

At the end of World War II, Jim and I were invited by E. T. (Chas) Goodwin to join the newly
formed ‘National Mathematics Lab’ which was the Mathematics Division of the National Physical
Laboratory (NPL) in Teddington. Earlier in the war, Goodwin had been a senior colleague of ours
in the Maths Lab at Cambridge doing ballistics problems. (That lab was later to become the home
of EDSAC.)

It was planned that Jim would share his time as an aide to Turing who was working on his own on
the design of a computer (ACE or Automatic Computing Engine) and also work with Goodwin and
Les Fox on the development of good numerical methods. It was also hoped that his plan to return
to Cambridge to do further research would not materialise. I joined the Desk Computing Section
headed by Goodwin and one of my briefs was to look out for better and faster desk machines.
(Little did I realise what was to appear in a short time.) The whole Division was about 20 strong but
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it gradually increased to about 40. We were all very young (under 40). We were housed in a large
house (Cromer House) and later in the adjacent Teddington Hall, both next to NPL. This is where
the thinking about the Ace started.

Although Turing did not mix socially to any extent, I was very fortunate that I was regularly able
to join him at lunch with my two senior colleagues, Goodwin and Fox and possibly others; here he
clearly enjoyed their company and was most jovial. I was more the listener than a contributor in
such exalted company! The subject of sport often arose because Fox was particularly good at both
soccer and cricket. Any sports event between Oxford (Fox) and Cambridge (Goodwin), or cricket
match between Yorkshire (Fox) and Middlesex (Goodwin) always caused a lot of rivalry, much to
Turing’s amusement as he knew very little about either cricket or soccer. However, he was always
able to offer a new slant to the games such as ‘If a pyramid of acrobats leapt up, could they save a
potential 6 hit at cricket?’ It struck me that Turing was particularly good at lateral thinking.

Mathematics did crop up at times, and the subject of build-up of rounding errors was a hot topic.
It was clear that Turing took a more pessimistic view than Fox, leading at times to strong debates.
Jim, with more limited experience at that time, tended to favour Fox and later on, with the arrival
of the Pilot Ace, was able to do lots of experiments to provide evidence for his subsequent research
in error analysis.

Turing frequently raised the subject of Machine Intelligence (this was in 1946, long before it
became a fashionable subject). He also discussed the possible use of a computer to play chess. This
had obviously been a popular hobby during the war. He discussed the Bletchley ‘Inter-hut’ chal-
lenges when his colleagues had included the bulk of the British chess team. In revisiting Bowden’s
Faster than Thought (Bowden, 1953) I see that the chapter on Game Playing was attributed to Tur-
ing and he discusses how chess might be played by computer. This classic book is probably not
well known but it represents the state of computer activity in the UK in 1952, with description of
machines and applications. I give further details in Appendix 1. I also provide details in Appendix
2 of a 1949 book by Hartree (1950), a pre-war expert on the same subject.

Sadly, Turing did not stay to see the arrival of the Pilot Ace, his plans to concentrate on build-
ing the larger full-scale Ace having been delayed. However, he was pleased to see that it was a
resounding success even though he had not been keen to see its development. He did not produce
any problems to be solved, as his interests by then (not unusually for him) were far from the stan-
dard mathematical/engineering problems focused on at NPL. A return to academia was probably
the right thing to do. He had left enough impetus to NPL in a stay of about 2 years.

The impact of the Pilot Ace on the parent Maths Division

By 1950, Maths Division had been in existence for 5 years and developed into a strong unit able to
tackle a wide range of jobs for Government and Industry, mainly using desk calculators (of which
we were able to acquire the best available) and Hollerith punched card machines. (Here, several had
been converted for scientific rather than the usual commercial work. I have just been reminded that
this included a modified tabulator redundant from Bletchley Park.) The smooth running cruise liner
was about to be met by a gigantic tidal wave!

One of my jobs had been to seek improvements from the newer desk machines becoming avail-
able. Could I reduce the time to multiply 2 large numbers from 15 seconds by 10%, say? After
exploiting a National Accounting machine with 6 registers modified to work in decimal rather than
sterling, what could I do with 8 registers? Suddenly, the Pilot Ace appeared with a multiplication
time of about 1/500 second and initially 250 registers. It is not surprising that I jumped at the oppor-
tunity to move, with the initial task of developing a junior section to be involved in operating and
possibly programming. Ted York, who had been a member of the Punched Card team exploiting
their modified equipment, also moved over to become a very experienced and enthusiastic pro-
grammer until recruited by RAE Farnborough when their Deuce (the commercial successor to the
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Pilot Ace) arrived. Significant changes of duties and organisation followed during the Ace era but I
recall that these are discussed in detail by Mary Croarken in Early Scientific Computing in Britain
(Croarken, 1990) and I do not discuss them further here.

My chapter in (Copeland, 2005, p.265), presented at the Pilot Ace’s 50th birthday conference,
gives a summary of the overall impact of the Pilot Ace and I have little to add to it. I give details
of the many jobs tackled and refer to the large number of guest workers who spent time with us
and subsequently became leaders elsewhere, particularly in universities where they pioneered new
courses in computing – E.S. Page, P. Samet, J. Ord-Smith and, very much later, Jean Bacon. We
lost several staff by the same route – F. W. J. Olver (USA and still very active at Maryland), L.
Fox (Oxford), C. W. Clenshaw (Lancaster) and S. Gill (London). Finally, I try to assess why it
was such a success after a disappointing start and discuss some major offshoots such as the NAG
(National Algorithms Group) Library which is now based in Wilkinson House, Oxford, and the
Central Computing Agency.

Turing’s Legacy to NPL

The ideas which he had developed with help from Jim Wilkinson, Mike Woodger and, later, Donald
Davies and Gerald Alway (who sadly died at an early age in a car accident) were successfully used
in building the Pilot Ace and it proved to be a greyhound among its UK rivals. In relation to EDSAC,
for example, it was about 4 times faster, contained about a quarter the number of valves and had 33
copies made (the Deuce). The design of the Bendix G15 was based on it, over 400 were sold and it
was arguably the world’s first personal computer. For a detailed discussion of the speed of the Pilot
Ace, see Martin Campbell-Kelly, in (Copeland, 2005, p.149). The most important impact was that
his ideas persuaded three important members of the team to stay.

Jim Wilkinson had fully expected to return to academia but was inspired to stay and see a
computer built. He then exploited its use and developed important research into error analysis of
computer arithmetic, resulting in worldwide fame, a rise to the top position in the Scientific Civil
Service and the award of FRS. He was able to inspire so many staff of all grades to get interested,
whereas the shy Turing did not interact with junior staff.

Both Jim and Turing disliked some of the bureaucratic aspects of the Civil Service. Jim had a
simple solution and that was to ignore it. To avoid a dull internal meeting, he would find a convenient
hiding place to do some ‘useful work’. (I recall that during his war-time work in the Cambridge
Maths Lab he was found growing tomatoes on the top flat roof.) Many contributed to the success
of the Pilot Ace but Jim was the undoubted leader who kept his light under a bushel. He was a real
asset to NPL.

Mike Woodger also stayed at NPL until retirement. An early very successful project of his,
assisted by Brian Munday, was started on the Pilot Ace (when the magnetic drum was fitted) and
finalised on the Deuce. This was a General Interpretive Program (GIP). A good description of it by
R. A. Vowels appears in (Copeland, 2005, p.319). Heavy use was made of it in handling matrices
which often arise in engineering and aircraft design, although it did have wider applications. Indeed,
this one program was sufficient to sell several Deuces to the then widespread aircraft industry. The
firm of Bristol Engines developed a simplified form to deal with columns, rather like a modern
spreadsheet.

Mike worked on language definitions including Algol and Ada. He was fortunately able to
retrieve many important official documents which are now preserved in the Science Library. (My
earlier attempts to archive important material were not encouraged: I was too early for the historian!)

Donald Davies had a long career in developing ideas in computing outside the main functions of
Maths Division and these came under new regroupings eventually called Computer Science. David
Yates, who was a colleague, gives full detail in his Yates (1997). Although a very important member
of the Ace builders (particularly of the clever input-output arrangements), he did not get much
involved with problem-solving as he acquired other duties, including a year in the USA. However,
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one of his first tasks on the Pilot Ace has not received much recognition so it is worth mentioning
here. (I should add that when the Pilot Ace began to do jobs, any publicity was primarily up to
the client. Further, there were not many appropriate journals available. That is why we got heavily
involved in launching two new societies – the Institute of Mathematics and its Applications (IMA)
and the British Computer Society (BCS).) Donald’s problem came from the Road Research Lab -
a sister establishment (and I believe a pre-war spin-off from NPL). It related to timing of traffic
signals, both fixed, as they were then, and traffic-operated, which was under consideration. It must
have been a very early use of computers in Operational Research involving the generation of random
numbers. Four streams of traffic, represented by random digits (1=car, 0=gap) were timed through
a junction. The streams could be seen on the output screen: when 2 of them stopped, the other 2
would start. The program was tiny, well under the 300 stores available. Hitherto, the use of random
numbers taken from tables had not been widespread but it now became simple and the subject of OR
blossomed from then on. Of his later work, mention should be made of the NPL network, which by
1976 connected about 30 various computers, 100 VDUs, several devices and services around NPL
(a miniature World Wide Web). Two key features were the concept of packet-switching (as used in
the Web) and a Standard Interface for connecting devices (like the USB on a modern laptop). At
the time, its use was similar to the 3-point plug in the house. (It started as a 12-wire system, later
extended to 18.) Like Turing and Wilkinson, Davies became FRS.

Thoughts on post-war computing at NPL

1. Little was known about the effort needed to build a computer, although from 1945 the key
features were well established. The days of large special-purpose machines such as Colossus
and ENIAC were over. (L. J. Comrie, the pre-war expert on computing - see Croarken (1990) -
had long disliked such machines.) A machine should be able to store both data and instructions
in a common store, and these could be in binary form represented by pulses. The storage system
needed to be specified and there were a number of options - delay lines (mercury, nickel, I
believe Turing even suggested gin!), cathode ray tube, magnetic drum, but later to be replaced
by magnetic core. Sir Charles Darwin, Director of NPL, felt that the best machine would be
created by co-operation among the 3 main UK builders - NPL and the Universities of Cambridge
and Manchester. However, original interest among the parties was lukewarm and it is clear
that a Turing link with M.V. Wilkes would not have got very far. However, at the lower level,
Wilkinson had very cordial relations with David Wheeler and Stan Gill (who had worked briefly
for Jim) giving David a lot of unrecognised credit for the success of EDSAC. So, by 1951, three
different machines were working in the UK with a potential greater than in the USA at that
time. NPL had its links to English Electric Co. with the Deuce and other computers to come;
Cambridge had the surprise link to J. Lyons, of Corner House fame, with the start of commercial
computing, and also the development of micro-programming; Manchester had close links with
Ferranti, later to produce Atlas etc. In addition, a line of computers for defence was coming
from Elliot Bros. Thus the initial lack of joint activity produced widespread dividends later.

2. An early prediction (possibly by Hartree (1950)) was made that 3 or 4 computers would satisfy
the total national need! How many have we in a typical house now with its washing machine,
phone, camera, laptop etc?

3. The newly-formed Nuclear Energy Authority of the late 1940s had big computing needs far
beyond the desk machine but our Punched Card section proved to be effective for certain
Monte-Carlo calculations, initially for Harwell and later for Aldermaston. (There was a very
big difference. One was deadly secret and hush-hush whilst the other came under normal
confidentiality. Yet the two problems were similar - in one the energy was captured (hopefully)
for general use and in the other it was released with deadly results.) Later, a new problem was
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produced by Aldermaston which needed the skills of Wilkinson. It was processed on the Pilot
Ace although we were not to know the details. The Nuclear Units were early buyers when
large commercial computers became available from IBM and Ferranti, and lured several of our
experienced punched card staff to run new computing sections in Harwell, Aldermaston and
Culham, with enhanced salaries. (Our use of our card machines was likely to decline, so this
was less of a problem to us.) Wilkinson was under tremendous pressure to go to Aldermaston,
but he resisted. Having tried hard to leave secret Armament Research at the end of the war, he
had no desire to return to a similar regime.

4. Turing’s proposal to “develop an electronic computer” which was presented to the NPL
Executive Committee on 19 March 1946 did not, to my knowledge, surface until 1972, and then
by chance! In going through the contents of a locked drawer for Confidential Information held
by our deceased librarian, I came across the only copy held by the Division and this must have
been deposited by J. R. Womersley when the proposal was first discussed. Jim Wilkinson was
away, probably on one of his trips to the USA, so I showed it to Mike Woodger who had not
met it. It was then published by Donald Davies as an NPL Report (see reference 138 in Yates
(1997)) and later by Carpenter and Doran (1986). Unfortunately, the original was not returned
to me. It must be of immense value now, but at least we know the content. In it, Turing gives
an interesting list of ten tasks which ought to be solvable by his proposal. These are listed in
(Yates, 1997, p.21). Most would have been standard problems once the Pilot Ace was working,
but for 3 of them his comments are more interesting.

a) Solution of linear simultaneous equations. We cannot expect to solve more than 50 equations.”
In fact, in 1952 we solved 129 equations (and without the magnetic drum). See (Copeland, 2005,
p.271).

b) Cut up a jigsaw into a number of whole squares. Not a common problem but could have
great military significance.” This must be a reference to the huge manual task of Bill Tutte in
cracking one of the codes at Bletchley as a preliminary to Turing’s work, which featured in a
recent TV documentary (see (Hodges, 1983, p.332)). I wonder whether Turing or M. Newman
ever gave thought to the impact of new computers on cryptography?

c) Comments on the ability of a computer to play good chess. I recall a much later writer
(around 1970) saying that it could eventually beat the best players. I mentioned this to Michael
Stein, a schoolboy Grandmaster who spent the summer with us prior to going to university and
his comment was nonsense”. Some years later, I was very amused to read that Mike was the
first Grandmaster to have been beaten by a computer.

5. How do ideas develop? From my experience at NPL, I found that lots of new ideas came about
from chance discussions between scientists of different disciplines and there was plenty of scope
for this at the three pioneering institutions. An extraordinary example is the original chat between
M. V. Wilkes and J. Lyons to consider commercial computing. Innovation appears to be much
more common than invention. However, in Turing’s case he was much more the inventor than
the innovator. He was always thinking way ahead of the current problem, and it needed a genius
such as Jim Wilkinson to keep up with him. Hence his difficulty in communicating with others
not on the same wavelength.

Appendix 1: On “Faster than Thought”

This very interesting collection of papers Bowden (1953) on the state of the art in 1952 does not
appear to have come to the attention of the modern historian. After a brief history of previous
machines (e.g. Babbage) he then describes the electronics involved in a 1950 computer. This is
followed by descriptions of current work in progress in the UK and the USA, mainly supplied by
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the relevant workers. It is interesting that for the Pilot Ace, the chapter is anonymous and ”reprinted
from Engineering by kind permission of the editors”. I assume that this refers to a Turing article, but
I have no further reference. It is also of interest that, at the time of publication, Bowden was working
for Ferranti and in close contact with Manchester University and Turing. The next section describes
a range of applications, relying heavily on articles from Ferranti and Manchester University. As I
have reported earlier, the article on game-playing is attributed to Turing, where he discusses chess,
draughts and nim. There is no mention of applications at NPL but it could be that we had little pub-
lished then. He had good contacts with us, as he was a buddy of our new director, E. C. Bullard. The
final chapter on Thought and Machine Processes, which is written by the editor, includes a fascinat-
ing description of two mathematical prodigies of that time - Professor A. C. Aitken of Edinburgh
University and Willy Klein of the Mathematisch Centrum in Amsterdam. I was very fortunate to
have had impressive demonstrations from each of them. Their capabilities were similar, based on
knowing their tables to 100 by 100 rather the 12 by 12, but their spare activities were rather dif-
ferent. Klein liked to learn logarithms of more numbers but Aitken, in his London demonstration,
said that he was happy to look these up in tables and instead learnt all the piano works of Bach
and Beethoven. Although he was teaching practical maths to students, I understand that his lab was
poorly equipped with desk calculators as he expected his students to follow his methods! We always
had close connections with the Dutch centre and Willy Klein (who was a humble operator) visited
us for a couple of days. Apparently he would use a desk calculator when he was tired. I organised
races with him using two of our popular demonstration programs - finding the smallest factor of a
six-figure number and finding the day of a given date. He was quick! According to the article, he
multiplied two ten-figure numbers to give a twenty-figure product in 64 seconds. In describing the
Pilot Ace, I used to quote times for this as “by hand 15 minutes [Les Fox claimed he could do it
faster but I am afraid he got the wrong answer], by desk machine 15 seconds and by computer 1/500
second”. The article gives many examples of their amazing skills.

Bowden also quotes the skill of a Lakeland shepherd who, when retrieving and counting his
flock of about 2000 sheep, will know not only how many are missing but which ones. What is
incredible is that when I was a schoolboy I visited a farm in the foothills of the Pennines and helped
to collect up the sheep. After more than one attempt we agreed a total and one was missing. Our
illiterate farmer, who had very little school training, told us which one and where he last saw it!
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Douglas Hofstadter engages with —

THE GÖDEL–TURING THRESHOLD
AND THE HUMAN SOUL

1. The universal machines that surround us

When I was around twelve years old, there were kits you could buy that allowed you to put together
electronic circuitry that would carry out various interesting functions. You could build a radio, a
circuit that would add two binary numbers, a device that could encode or decode a message using
a substitution cipher, a ‘brain’ that would play tic-tac-toe against you, and a few other devices like
this. Each of these machines was dedicated: it could do just one kind of trick. This is the usual
meaning of ‘machine’ that we grow up with. We are accustomed to the idea of a refrigerator as a
dedicated machine for keeping things cold, an alarm clock as a dedicated machine for waking us up
and so on. But more recently, we have started to get used to machines that transcend their original
purposes.

Take cellular telephones, for instance. Nowadays, in order to be competitive, cell phones are
marketed not so much (maybe even very little) on the basis of their original purpose as commu-
nication devices, but instead for the number of tunes they can hold, the number of games you can
play on them, the quality of the photos they can take, and who knows what else! Cell phones once
were, but no longer are, dedicated machines. And why is that? It is because their inner circuitry
has surpassed a certain threshold of complexity, and that fact allows them to have a chameleon-like
nature. You can use the hardware inside a cell phone to house a word processor, a web browser, a
gaggle of video games, and on and on. This, in essence, is what the computer revolution is all about:
when a certain well-defined threshold – I’ll call it the ‘Gödel– Turing threshold’ – is surpassed, then
a computer can emulate any kind of machine.
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This is the meaning of the term ‘universal machine’, introduced in 1936 by the English math-
ematician and computer pioneer Alan Turing, and today we are intimately familiar with the basic
idea, although most people do not know the technical term or concept. We routinely download
virtual machines from the web that can convert our universal laptops into temporarily specialized
devices for watching movies, listening to music, playing games, making cheap international phone
calls, identifying birds in photos, who knows what. Machines of all sorts come to us through wires
or even through the air, via software, via patterns, and they swarm into and inhabit our compu-
tational hardware. One single universal machine morphs into new functionalities at the drop of a
hat, or, more precisely, at the double-click of a mouse. I bounce back and forth between my e-mail
program, my word processor, my web browser, my photo displayer and a dozen other ‘applications’
that all live inside my computer. At any specific moment, most of these independent, dedicated
machines are dormant, sleeping, waiting patiently (actually, unconsciously) to be awakened by my
royal double-click and to jump obediently to life and do my bidding.

Inspired by Kurt Gödel’s astonishing discovery, in 1931, which Alfred North Whitehead and
Bertrand Russell’s monumental formal system Principia Mathematica could encode its own rules
of inference and thus could ‘look at itself’, Alan Turing realized that the critical threshold for this
kind of computational universality comes exactly at that point where a machine is flexible enough
to read and correctly interpret a set of data that describe its own structure. At this crucial juncture,
a machine can, in principle, explicitly watch how it does any particular task, step by step. Turing
realized that a machine that has this critical level of flexibility can imitate any another machine,
no matter how complex the latter is. In other words, there is nothing more flexible than a universal
machine. Universality is as far as you can go!

This is why my Macintosh can, if I happen to have fed it the proper software, act indistin-
guishably from my son’s more expensive and faster ‘Alienware’ computer (running any specific
program), and vice versa. The only difference is speed, because my Mac will always remain, deep
in its guts, a Mac. It will therefore have to imitate the fast, alien hardware by constantly consulting
tables of data that explicitly describe the hardware of the Alien, and doing all those lookups is very
slow. This is like me trying to get you to sign my signature by writing out a long set of instructions
telling you how to draw every tiny curve. In principle it’s possible, but it would be hugely slower
than just signing with my own handware!

2. The unexpectedness of universality

There is a tight analogy linking universal machines of this sort with the universality of Principia
Mathematica. What Russell and Whitehead did not suspect, but what Gödel realized, is that, simply
by virtue of representing certain fundamental features of the positive integers (such basic facts as
commutativity, distributivity, the law of mathematical induction), they had unwittingly made their
formal system PM surpass a key threshold that made it ‘universal’, which is to say, capable of
defining number-theoretical functions that imitate arbitrarily complex other patterns (or indeed,
even capable of turning around and imitating itself – giving rise to Gödel’s black-belt maneuver,
whereby the enormous strength of the system was, in a sense, exploited to bring about its own
downfall).

Russell and Whitehead did not realize what they had wrought because it did not occur to them
to use PM to ‘simulate’ anything else. That idea was not on their radar screen (for that matter, radar
itself was not on anybody’s radar screen back then). Prime numbers, squares, sums of two squares,
sums of two primes, Fibonacci numbers and so forth were seen merely as beautiful mathematical
patterns – and patterns consisting of numbers, although fabulously intricate and endlessly fascinat-
ing, were not thought of as being isomorphic to anything else, let alone as being stand-ins for, and
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thus standing for, anything else. After Gödel and Turing, although, such naı̈veté went down the
drain in a flash.

By and large, the engineers who designed the earliest electronic computers were as unaware as
Russell and Whitehead had been of the richness that they were unwittingly bringing into being.
They thought they were building machines of very limited, and purely military, scopes – for
instance, machines to calculate the trajectories of ballistic missiles, taking wind and air resistance
into account, or machines to break very specific types of enemy codes. They envisioned their com-
puters as being specialized, single-purpose machines – a little like wind-up music boxes that could
play just one tune each.

But at some point, when Alan Turing’s abstract theory of computation, based in large part on
Gödel’s 1931 paper, collided with the concrete engineering realities, some of the more perceptive
people (such as Turing himself and John von Neumann) put two and two together and realized that
their machines, incorporating the richness of integer arithmetic that Gödel had shown was so potent,
were thereby universal. All at once, these machines were like music boxes that could read arbitrary
paper scrolls with holes in them, and thus could play any tune. From then on, it was simply a matter
of time until cell phones started being able to don many personas other than just the plain old cell
phone persona. All they had to do was surpass that threshold of complexity and memory size that
limited them to a single ‘tune’, and then they could become anything.

The early computer engineers thought about their computers as number-crunching devices and
did not see numbers as a universal medium. Today, we (and by ‘we’ I mean our culture as a whole,
rather than specialists) do not see numbers that way either, but our lack of understanding is for an
entirely different reason – in fact, for exactly the opposite reason. Today it is because all those num-
bers are so neatly hidden behind the screens of our laptops and desktops that we utterly forget they
are there. We watch virtual football games unfolding on our screen between hypothetical “dream
teams” that exist only inside the CPU, or central processing unit (which is carrying out arithmetical
instructions, just as it was designed to do). Children build virtual towns inhabited by little people
who virtually ride by on virtual bicycles, with leaves that virtually fall from trees and smoke that
virtually dissipates into the virtual air. Cosmologists create virtual galaxies, let them loose, and
watch what happens as they virtually collide. Biologists create virtual proteins and watch them fold
up according to the complex virtual chemistry of their constituent virtual submolecules.

I could list hundreds of things that take place on computer screens, but few people ever think
about the fact that all of this is happening courtesy of addition and multiplication of integers way
down at the hardware level. But that is exactly what’s happening. We don’t call computers com-
puters for nothing, after all! They are, in fact, computing sums and products of integers expressed
in binary notation. And in that sense, Gödel’s world-dazzling, Russell-crushing, Hilbert-toppling
vision of 1931 have become such a commonplace in our downloading, upgrading, gigabyte culture
that although we are all swimming in it all the time, hardly anyone is least aware of it. Just about
the only trace of the original insight that remains visible, or rather, ‘audible’, around us is the very
word ‘computer’. That term tips you off, if you bother to think about it, to the fact that underneath
all the colorful pictures, seductive games, and lightning-fast web searches, there is nothing going
on but integer arithmetic. What a hilarious joke!

To be quite honest, however, things are a bit more ambiguous than that. Wherever there is a
pattern, it can be seen either as itself or as standing for anything to which it is isomorphic. For
example, if two spouses have been unfaithful to each other, then harsh accusatory words flung by
the husband at his wife condemning her acts of straying apply equally much to him, and neither
way of interpreting of his words will be truer than the other one, even if he is thinking only about
one of those ways. His words apply to his own straying whether he likes it or not, because his sin
was isomorphic to his wife’s sin. Likewise, an operation on an integer that is written out in binary
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notation (for instance, the conversion of ‘0000000011001111’ into ‘1100111100000000’) that one
person might describe as multiplication by 256 might be described by another observer as a left
shift by eight bits, and by another observer as the transfer of a color from one pixel to its neighbor,
and by someone else as the deletion of an alphanumeric character in a file. As long as each one is a
correct description of what is happening, none of them is privileged. The reason we call computers
‘computers’, then, is solely a historic one. They originated as integer calculation machines, and they
are still of course validly describable as such – but we now realize, as Kurt Gödel first did in 1931,
that such devices can be equally validly perceived and talked about in terms that are fantastically
different from what their originators intended.

3. Universal beings

We human beings, too, are universal machines of a different sort: our neural hardware can copy
arbitrary patterns, even if evolution never had any grand plan for this kind of ‘representational
universality’ to come about. Through our senses and then our symbols, we can internalize external
phenomena of many sorts. For example, as we watch ripples spreading on a pond, our symbols echo
their circular shapes, abstract them and can replay the essence of those shapes much later. I say
‘the essence.’ because some – in fact most – detail is lost; as is obvious, we retain not all levels
of what we encounter but only those that our hardware, through the pressures of natural selection,
came to consider the most important. I should also make clear that when I say that our symbols
‘internalize’ or ‘copy’ external patterns, I do not mean that when we watch ripples on a pond, or
when we ‘replay’ a memory of such a scene (or of many such scenes blurred together), there literally
are circular patterns spreading out on some horizontal surface inside our brains. I mean that a host
of structures are jointly activated, which are connected with the concepts of water, wetness, ponds,
horizontal surfaces, circularity, expansion, things bobbing up and down and so forth. I am not talking
about a movie screen inside the head!

Representational universality also means that we can import ideas and happenings without hav-
ing to be direct witnesses to them. For example, humans (but not most other animals) can easily
process the two-dimensional arrays of pixels on a television screen and can see those ever-changing
arrays as coding for distant or fictitious three-dimensional situations evolving over time.

One time on a skiing vacation in the Sierra Nevada, some two thousand miles west of our home
town of Bloomington, Indiana, my children and I took advantage of the ‘doggie cam’ at the Bloom-
ington kennel where we had boarded our golden retriever Ollie, and thanks to the World Wide Web,
we were treated to a jerky sequence of stills of a couple of dozen dogs meandering haphazardly in a
fenced-in play area outdoors, looking a bit like particles undergoing random Brownian motion, and
although each pooch was rendered by a pretty small array of pixels, we could often recognize our
Ollie by subtle features such as the angle of his tail. For some reason, the kids and I found this act
of visual eavesdropping on Ollie quite hilarious, and although we could easily describe this droll
scene to our human friends, and although I would bet a considerable sum that these few lines of text
have vividly evoked in your mind both the canine scene at the kennel and the human scene at the ski
resort, we all realized that there was not a hope in hell that we could ever explain to Ollie himself
that we had been ‘spying’ on him from thousands of miles away. Ollie would never know, and could
never know.

Why not? Because Ollie is a dog, and dogs’ brains are not universal. They cannot absorb ideas
like ‘jerky still photo’, ‘24-hour webcam’, ‘spying on dogs playing in the kennel’, ‘two thousand
miles west of’, or even, for that matter, the concept ‘west of’. This is a huge and fundamental
breach between humans and dogs – indeed, between humans and all other species. It is this that sets
us apart, makes us unique, and, in the end, gives us what we call ‘souls’.
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In the world of living things, the magic threshold of representational universality is crossed
whenever a system’s repertoire of symbols becomes extensible without any obvious limit. This
threshold was crossed on the species level somewhere along the way from earlier primates to our-
selves. Systems above this counterpart to the Gödel–Turing threshold – let us call them ‘beings’,
for short – have the capacity to model inside themselves other beings that they run into – to slap
together quick-and-dirty models of beings that they encounter only briefly, to refine such coarse
models over time, even to invent imaginary beings from whole cloth. (Beings with a propensity to
invent other beings are often informally called ‘novelists’.)

Once beyond the magic threshold, universal beings seem inevitably to become ravenously thirsty
for tastes of the interiority of other universal beings. This is why we have movies, soap operas, tele-
vision news, blogs, webcams, gossip columnists, People magazine and tabloid newspapers. People
yearn to get inside other people’s heads, to ‘see out’ from inside other crania, to gobble up other
people’s experiences.

Although I have been depicting it somewhat cynically, representational universality and the
nearly insatiable hunger that it creates for vicarious experiences is but a stone’s throw away from
empathy, which I see as the most admirable quality of humanity. To ‘be’ someone else in a profound
way is not merely to see the world intellectually as they see it and to feel rooted in the places and
times that molded them as they grew up; it goes much further than that. It is to adopt their values,
to take on their desires, to live their hopes, to feel their yearnings, to share their dreams, to shudder
at their dreads, to participate in their life and to merge with their souls.
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Computing Machinery and Intelligence
(MIND, vol. 59 (1950), pp. 433–460)

Gregory Chaitin discovers Alan Turing ‘The Good Philosopher’
at both sides of —

MECHANICAL INTELLIGENCE
VERSUS UNCOMPUTABLE CREATIVITY

What is human intelligence? Is it mechanical or is it creative? In this paper, Turing argues forcefully
for the former, mechanical, but his On Computable Numbers makes a dramatic statement in favour
of creativity, since he shows that there is no mechanical procedure even for solving something
as simple as the halting problem. Let us contrast Turing’s MIND article with his On Computable
Numbers more forcefully. According to his piece in MIND, human thinking is mechanical. But
On Computable Numbers is – as Paul Feyerabend puts it in another context – Against Method in
mathematics, and people can do mathematics! How come?

According to Gödel, mathematicians sometimes have direct access to the Platonic world of
ideas; in Turing’s famous Systems of Logic based on Ordinals terminology, they sometimes seem
to have access to uncomputable oracles. Certainly, Euler and Ramanujan’s extreme mathematical
creativity are difficult to explain; indeed, they seem, at least superficially, to defy ordinary rational
explanations.

In other words, are we machines or do we have a divine spark? In MIND, Turing argues the
former, but as Emil Post argued in the 1940s, Gödel and Turing’s work on incompleteness and
uncomputability can equally well be viewed as emphasizing the fundamental importance of cre-
ativity – defined as uncomputability – in the progress of mathematics.1 This also emphasises
the connection between incompleteness and uncomputability and mathematical and biological
creativity, which I do not believe are that different.

In fact, in my view, incompleteness and uncomputability open a door from mathematics to biol-
ogy. The halting probability � contains infinite irreducible complexity and in a sense shows that
pure mathematics is even more biological then biology itself, which merely contains extremely large
finite complexity. For each bit of the dyadic expansion of � is one bit of irreducible mathematical
information, while the human genome is merely 3× 109 bases = 6× 109 bits of information.

It is a delightful paradox that Turing argues that we are machines while all the while emphasizing
the importance of what machines cannot do. Like a good philosopher, he cannot help seeing the good
arguments on both sides. He thus provides ammunition to both parties.

1 Post’s 1941 words, first published by Martin Davis in 1965 in The Undecidable and movingly placed by Jeremy Gray at
the conclusion of his 2008 treatise on Plato’s Ghost: The Modernist Transformation of Mathematics, are worth quoting:
‘mathematical thinking is, and must be, essentially creative’.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00023-0
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551

http://dx.doi.org/10.1016/B978-0-12-386980-7.00023-0


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/9 3:22 Page 552 #2

552 Part III

COMPUTING MACHINERY AND
INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, ‘Can machines think ?’ This should begin with definitions of
the meaning of the terms ‘machine’ and ‘think’. The definitions might be framed so as to reflect
so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of
the words ‘machine’ and ‘think’ are to be found by examining how they are commonly used it is
difficult to escape the conclusion that the meaning and the answer to the question, ‘Can machines
think ?’ is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of
attempting such a definition I shall replace the question by another, which is closely related to it and
is expressed in relatively unambiguous words.

The new form of the problem can be described in terms of a game which we call the ‘imitation
game’. It is played with three people, a man (A), a woman (B), and an interrogator (C) who may
be of either sex. The interrogator stays in a room apart from the other two. The object of the game
for the interrogator is to determine which of the other two is the man and which is the woman. He
knows them by labels X and Y, and at the end of the game he says either ‘X is A and Y is B’ or ‘X
is B and Y is A’. The interrogator is allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A’s object in the game to try and cause C to
make the wrong identification. His answer might therefore be

‘My hair is shingled, and the longest strands are about nine inches long.’

In order that tones of voice may not help the interrogator the answers should be written, or better
still, typewritten. The ideal arrangement is to have a teleprinter communicating between the two
rooms. Alternatively the question and answers can be repeated by an intermediary. The object of the
game for the third player (B) is to help the interrogator. The best strategy for her is probably to give
truthful answers. She can add such things as ‘I am the woman, don’t listen to him!’ to her answers,
but it will avail nothing as the man can make similar remarks.

We now ask the question, ‘What will happen when a machine takes the part of A in this game?’
Will the interrogator decide wrongly as often when the game is played like this as he does when the
game is played between a man and a woman? These questions replace our original, ‘Can machines
think?’

2. Critique of the New Problem.

As well as asking, ‘What is the answer to this new form of the question’, one may ask, ‘Is this
new question a worthy one to investigate?’ This latter question we investigate without further ado,
thereby cutting short an infinite regress.

The new problem has the advantage of drawing a fairly sharp line between the physical and the
intellectual capacities of a man. No engineer or chemist claims to be able to produce a material
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which is indistinguishable from the human skin. It is possible that at some time this might be done,
but even supposing this invention available we should feel there was little point in trying to make
a ‘thinking machine’ more human by dressing it up in such artificial flesh. The form in which we
have set the problem reflects this fact in the condition which prevents the interrogator from seeing
or touching the other competitors, or hearing their voices. Some other advantages of the proposed
criterion may be shown up by specimen questions and answers. Thus:

Q: Please write me a sonnet on the subject of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764
A: (Pause about 30 seconds and then give as answer) 105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my Kl, and no other pieces. You have only K at K6 and R at R1. It is your

move. What do you play ?
A: (After a pause of 15 seconds) R-R8 mate.

The question and answer method seems to be suitable for introducing almost any one of the
fields of human endeavour that we wish to include. We do not wish to penalise the machine for
its inability to shine in beauty competitions, nor to penalise a man for losing in a race against an
aeroplane. The conditions of our game make these disabilities irrelevant. The ‘witnesses’ can brag,
if they consider it advisable, as much as they please about their charms, strength or heroism, but the
interrogator cannot demand practical demonstrations.

The game may perhaps be criticised on the ground that the odds are weighted too heavily against
the machine. If the man were to try and pretend to be the machine he would clearly make a very
poor shewing. He would be given away at once by slowness and inaccuracy in arithmetic. May not
machines carry out something which ought to be described as thinking but which is very different
from what a man does? This objection is a very strong one, but at least we can say that if, nev-
erthelees, a machine can be constructed to play the imitation game satisfactorily, we need not be
troubled by this objection.

It might be urged that when playing the ‘imitation game’ the best strategy for the machine may
possibly be something other than imitation of the behaviour of a man. This may be, but I think it
is unlikely that there is any great effect of this kind. In any case there is no intention to investigate
here the theory of the game, and it will be assumed that the best strategy is to try to provide answers
that would naturally be given by a man.

3. The Machines concerned in the Game.

The question which we put in §1 will not be quite definite until we have specified what we mean
by the word ‘machine’. It is natural that we should wish to permit every kind of engineering tech-
nique to be used in our machines. We also wish to allow the possibility than an engineer or team
of engineers may construct a machine which works, but whose manner of operation cannot be
satisfactorily described by its constructors because they have applied a method which is largely
experimental. Finally, we wish to exclude from the machines men born in the usual manner. It is
difficult to frame the definitions so as to satisfy these three conditions. One might for instance insist
that the team of engineers should be all of one sex, but this would not really be satisfactory, for it is
probably possible to rear a complete individual from a single cell of the skin (say) of a man. To do
so would be a feat of biological technique deserving of the very highest praise, but we would not
be inclined to regard it as a case of ‘constructing a thinking machine’. This prompts us to abandon
the requirement that every kind of technique should be permitted. We are the more ready to do so in
view of the fact that the present interest in ‘thinking machines’ has been aroused by a particular kind
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of machine, usually called an ‘electronic computer’ or ‘digital computer’. Following this suggestion
we only permit digital computers to take part in our game.

This restriction appears at first sight to be a very drastic one. I shall attempt to show that it is not
so in reality. To do this necessitates a short account of the nature and properties of these computers.

It may also be said that this identification of machines with digital computers, like our criterion
for ‘thinking’, will only be unsatisfactory if (contrary to my belief), it turns out that digital computers
are unable to give a good showing in the game.

There are already a number of digital computers in working order, and it may be asked, ‘Why not
try the experiment straight away ? It would be easy to satisfy the conditions of the game. A number
of interrogators could be used, and statistics compiled to show how often the right identification
was given.’ The short answer is that we are not asking whether all digital computers would do well
in the game nor whether the computers at present available would do well, but whether there are
imaginable computers which would do well. But this is only the short answer. We shall see this
question in a different light later.

4. Digital Computers.

The idea behind digital computers may be explained by saying that these machines are intended
to carry out any operations which could be done by a human computer. The human computer is
supposed to be following fixed rules; he has no authority to deviate from them in any detail. We
may suppose that these rules are supplied in a book, which is altered whenever he is put on to a new
job. He has also an unlimited supply of paper on which he does his calculations. He may also do his
multiplications and additions on a ‘desk machine’, but this is not important.

If we use the above explanation as a definition we shall be in danger of circularity of argument.
We avoid this by giving an outline of the means by which the desired effect is achieved. A digital
computer can usually be regarded as consisting of three parts:

(i) Store.
(ii) Executive unit.

(iii) Control.

The store is a store of information, and corresponds to the human computer’s paper, whether this is
the paper on which he does his calculations or that on which his book of rules is printed. In so far as
the human computer does calculations in his head a part of the store will correspond to his memory.

The executive unit is the part which carries out the various individual operations involved in
a calculation. What these individual operations are will vary from machine to machine. Usually
fairly lengthy operations can be done such as ‘Multiply 3540675445 by 7076345687’ but in some
machines only very simple ones such as ‘Write down 0’ are possible.

We have mentioned that the ‘book of rules’ supplied to the computer is replaced in the machine
by a part of the store. It is then called the ‘table of instructions’. It is the duty of the control to see
that these instructions are obeyed correctly and in the right order. The control is so constructed that
this necessarily happens.

The information in the store is usually broken up into packets of moderately small size. In one
machine, for instance, a packet might consist of ten decimal digits. Numbers are assigned to the
parts of the store in which the various packets of information are stored, in some systematic manner.
A typical instruction might say—

‘Add the number stored in position 6809 to that in 4302 and put the result back into the latter
storage position’.

Needless to say it would not occur in the machine expressed in English. It would more likely be
coded in a form such as 6809430217. Here 17 says which of various possible operations is to be
performed on the two numbers. In this case the operation is that described above, viz. ‘Add the
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number. . . .’ It will be noticed that the instruction takes up 10 digits and so forms one packet of
information, very conveniently. The control will normally take the instructions to be obeyed in the
order of the positions in which they are stored, but occasionally an instruction such as

‘Now obey the instruction stored in position 5606, and continue from there’

may be encountered, or again

‘If position 4505 contains 0 obey next the instruction stored in 6707, otherwise continue
straight on.’

Instructions of these latter types are very important because they make it possible for a sequence
of operations to be repeated over and over again until some condition is fulfilled, but in doing so
to obey, not fresh instructions on each repetition, but the same ones over and over again. To take a
domestic analogy. Suppose Mother wants Tommy to call at the cobbler’s every morning on his way
to school to see if her shoes are done, she can ask him afresh every morning. Alternatively she can
stick up a notice once and for all in the hall which he will see when he leaves for school and which
tells him to call for the shoes, and also to destroy the notice when he comes back if he has the shoes
with him.

The reader must accept it as a fact that digital computers can be constructed, and indeed have
been constructed, according to the principles we have described, and that they can in fact mimic the
actions of a human computer very closely.

The book of rules which we have described our human computer as using is of course a con-
venient fiction. Actual human computers really remember what they have got to do. If one wants
to make a machine mimic the behaviour of the human computer in some complex operation one
has to ask him how it is done, and then translate the answer into the form of an instruction table.
Constructing instruction tables is usually described as ‘programming’. To ‘ programme a machine
to carry out the operation A’ means to put the appropriate instruction table into the machine so that
it will do A.

An interesting variant on the idea of a digital computer is a ‘digital computer with a random
element’. These have instructions involving the throwing of a die or some equivalent electronic
process; one such instruction might for instance be,‘Throw the die and put the resulting number into
store 1000’. Sometimes such a machine is described as having free will (though I would not use this
phrase myself). It is not normally possible to determine from observing a machine whether it has a
random element, for a similar effect can be produced by such devices as making the choices depend
on the digits of the decimal for π .

Most actual digital computers have only a finite store. There is no theoretical difficulty in the
idea of a computer with an unlimited store. Of course only a finite part can have been used at any
one time. Likewise only a finite amount can have been constructed, but we can imagine more and
more being added as required. Such computers have special theoretical interest and will be called
infinitive capacity computers.

The idea of a digital computer is an old one. Charles Babbage, Lucasian Professor of Mathe-
matics at Cambridge from 1828 to 1839, planned such a machine, called the Analytical Engine,
but it was never completed. Although Babbage had all the essential ideas, his machine was not at
that time such a very attractive prospect. The speed which would have been available would be
definitely faster than a human computer but something like 100 times slower than the Manchester
machine, itself one of the slower of the modern machines. The storage was to be purely mechanical,
using wheels and cards.

The fact that Babbage’s Analytical Engine was to be entirely mechanical will help us to rid
ourselves of a superstition. Importance is often attached to the fact that modern digital computers
are electrical, and that the nervous system also is electrical. Since Babbage’s machine was not
electrical, and since all digital computers are in a sense equivalent, we see that this use of electricity
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cannot be of theoretical importance. Of course electricity usually comes in where fast signalling
is concerned, so that it is not surprising that we find it in both these connections. In the nervous
system chemical phenomena are at least as important as electrical. In certain computers the storage
system is mainly acoustic. The feature of using electricity is thus seen to be only a very superficial
similarity. If we wish to find such similarities we should look rather for mathematical analogies of
function.

5. Universality of Digital Computers.

The digital computers considered in the last section may be classified amongst the ‘discrete state
machines’. These are the machines which move by sudden jumps or clicks from one quite definite
state to another. These states are sufficiently different for the possibility of confusion between them
to be ignored. Strictly speaking there are no such machines. Everything really moves continuously.
But there are many kinds of machine which can profitably be though of as being discrete state
machines. For instance in considering the switches for a lighting system it is a convenient fiction
that each switch must be definitely on or definitely off. There must be intermediate positions, but
for most purposes we can forget about them. As an example of a discrete state machine we might
consider a wheel which clicks round through 120◦ once a second, but may be stopped by a lever
which can be operated from outside; in addition a lamp is to light in one of the positions of the
wheel. This machine could be described abstractly as follows. The internal state of the machine
(which is described by the position of the wheel) may be q1, q2 or q3. There is an input signal i0
or i1 position of lever). The internal state at any moment is determined by the last state and input
signal according to the table

Last State

q1 q2 q3

Input
i0

i1

q2 q3 q1

q1 q2 q3

The output signals, the only externally visible indication of the internal state (the light) are described
by the table

State q1 q2 q3

Output o0 o0 o1

This example is typical of discrete state machines. They can be described by such tables provided
they have only a finite number of possible states.

It will seem that given the initial state of the machine and the input signals it is always possible
to predict all future states. This is reminiscent of Laplace’s view that from the complete state of
the universe at one moment of time, as described by the positions and velocities of all particles, it
should be possible to predict all future states. The prediction which we are considering is, however,
rather nearer to practicability than that considered by Laplace. The system of the ‘universe as a
whole’ is such that quite small errors in the initial condition can have an overwhelming effect at a
later time. The displacement of a single electron by a billionth of a centimetre at one moment might
make the difference between a man being killed by an avalanche a year later, or escaping. It is an
essential property of the mechanical systems which we have called ‘discrete state machines’ that
this phenomenon does not occur. Even when we consider the actual physical machines instead of
the idealised machines, reasonably accurate knowledge of the state at one moment yields reasonably
accurate knowledge any number of steps later.

As we have mentioned, digital computers fall within the class of discrete state machines. But
the number of states of which such a machine is capable is usually enormously large. For instance,
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the number for the machine now working at Manchester it about 2165,000, i.e. 1050,000. Compare this
with our example of the clicking wheel described above, which had three states. It is not difficult to
see why the number of states should be so immense. The computer includes a store corresponding
to the paper used by a human computer. It must be possible to write into the store any one of the
combinations of symbols which might have been written on the paper. For simplicity suppose that
only digits from 0 to 9 are used as symbols. Variations in handwriting are ignored. Suppose the
computer is allowed 100 sheets of paper each containing 50 lines each with room for 30 digits.
Then the number of states is 10100×50×30, i.e. 10150,000. This is about the number of states of three
Manchester machines put together. The logarithm to the base two of the number of states is usually
called the ‘storage capacity’ of the machine. Thus the Manchester machine has a storage capacity
of about 165,000 and the wheel machine of our example about 1·6. If two machines are put together
their capacities must be added to obtain the capacity of the resultant machine. This leads to the
possibility of statements such as ‘The Manchester machine contains 64 magnetic tracks each with a
capacity of 2560, eight electronic tubes with a capacity of 1280. Miscellaneous storage amounts to
about 300 making a total of 174,380.’

Given the table corresponding to a discrete state machine it is possible to predict what it will do.
There is no reason why this calculation should not be carried out by means of a digital computer.
Provided it could be carried out sufficiently quickly the digital computer could mimic the behaviour
of any discrete state machine. The imitation game could then be played with the machine in question
(as B) and the mimicking digital computer (as A) and the interrogator would be unable to distinguish
them. Of course the digital computer must have an adequate storage capacity as well as working
sufficiently fast. Moreover, it must be programmed afresh for each new machine which it is desired
to mimic.

This special property of digital computers, that they can mimic any discrete state machine, is
described by saying that they are universal machines. The existence of machines with this property
has the important consequence that, considerations of speed apart, it is unnecessary to design various
new machines to do various computing processes. They can all be done with one digital computer,
suitably programmed for each case . It will be seen that as a consequence of this all digital computers
are in a same equivalent.

We may now consider again the point raised at the end of §3. It was suggested tentatively that
the question, ‘Can machines think?’ should be replaced by ‘Are there imaginable digital computers
which would do well in the imitation game?’ If we wish we can make this superficially more general
and ask ‘Are there discrete state machines which would do well?’ But in view of the universality
property we see that either of these question is equivalent to this, ‘Let us fix our attention on one
particular digital computer C. Is it true that by modifying this computer to have an adequate storage,
suitably increasing its speed of action, and providing it with an appropriate programme, C can be
made to play satisfactorily the part of A in the imitation game, the part of B being taken by a man?’

6. Contrary Views on the Main Question.

We may now consider the ground to have been cleared and we are ready to proceed to the debate on
our question, ‘Can machines think?’ and the variant of it quoted at the end of the last section.
We cannot altogether abandon the original form of the problem, for opinions will differ as to
the appropriateness of the substitution and we must at least listen to what has to be said in this
connexion.

It will simplify matters for the reader if I explain first my own beliefs in the matter. Consider
first the more accurate form of the question. I believe that in about fifty years’ time it will be
possible to programme computers, with a storage capacity of about 109, to make them play the
imitation game so well that an average interrogator will not have more than 70 per cent. chance
of making the right identification after five minutes of questioning. The original question, ‘Can
machines think?’ I believe to be too meaningless to deserve discussion. Nevertheless I believe that
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at the end of the century the use of words and general educated opinion will have altered so much
that one will be able to speak of machines thinking without expecting to be contradicted. I believe
further that no useful purpose is served by concealing these beliefs. The popular view that scientists
proceed inexorably from well-established fact to well-established fact, never being influenced by
any unproved conjecture, is quite mistaken. Provided it is made clear which are proved facts and
which are conjectures, no harm can result. Conjectures are of great importance since they suggest
useful lines of research.

I now proceed to consider opinions opposed to my own.

(1) The Theological Objection.

Thinking is a function of man’s immortal soul. God has given an immortal soul to every man and
woman, but not to any other animal or to machines. Hence no animal or machine can think.

I am unable to accept any part of this, but will attempt to reply in theological terms. I should find
the argument more convincing if animals were classed with men, for there is a greater difference,
to my mind, between the typical animate and the inanimate than there is between man and the other
animals. The arbitrary character of the orthodox view becomes clearer if we consider how it might
appear to a member of some other religious community. How do Christians regard the Moslem
view that women have no souls? But let us leave this point aside and return to the main argument.
It appears to me that the argument quoted above implies a serious restriction of the omnipotence of
the Almighty. It is admitted that there are certain things that He cannot do such as making one equal
to two, but should we not believe that He has freedom to confer a soul on an elephant if He sees
fit? We might expect that He would only exercise this power in conjunction with a mutation which
provided the elephant with an appropriately improved brain to minister to the needs of this soul.
An argument of exactly similar form may be made for the case of machines. It may seem different
because it is more difficult to “swallow”. But this really only means that we think it would be less
likely that He would consider the circumstances suitable for conferring a soul. The circumstances in
question are discussed in the rest of this paper. In attempting to construct such machines we should
not be irreverently usurping His power of creating souls, any more than we are in the procreation of
children: rather we are, in either case, instruments of His will providing mansions for the souls that
He creates.

However, this is mere speculation. I am not very impressed with theological arguments whatever
they may be used to support. Such arguments have often been found unsatisfactory in the past. In
the time of Galileo it was argued that the texts, “And the sun stood still. . . and hasted not to go down
about a whole day” (Joshua x. 13) and “He laid the foundations of the earth, that it should not move
at any time” (Psalm cv. 5) were an adequate refutation of the Copernican theory. With our present
knowledge such an argument appears futile. When that knowledge was not available it made a quite
different impression.

(2) The ‘Heads in the Sand’ Objection.

“The consequences of machines thinking would be too dreadful. Let us hope and believe that they
cannot do so.”

This argument is seldom expressed quite so openly as in the form above. But it affects most of
us who think about it at all. We like to believe that Man is in some subtle way superior to the rest of
creation. It is best if he can be shown to be necessarily superior, for then there is no danger of him
losing his commanding position. The popularity of the theological argument is clearly connected

1 Possibly this view is heretical. St. Thomas Aquinas (Summa Theologica. quoted by Bertrand Russell. p. 480) states that
God cannot make a man to have no soul. But this may not be a real restriction on His powers, but only a result of the fact
that men’s souls are immortal, therefore indestructible.
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with this feeling. It is likely to be quit strong in intellectual people, since they value the power of
thinking more highly than others, and are more inclined to base their belief in the superiority of Man
on this power.

I do not think that this argument is sufficiently substantial to require refutation. Consolation
would be more appropriate: perhaps this should be sought in the transmigration of souls.

(3) The Mathematical Objection.

There are a number of results of mathematical logic which can be used to show that there are
limitations to the powers of discrete-state machines. The best known of these results is known
as Gödel’s theorem,2 and shows that in any sufficiently powerful logical system statements can be
formulated which can neither be proved nor disproved within the system, unless possibly the system
itself is inconsistent. There are other, in some respects similar, results due to Church, Kleene, Rosser,
and Turing. The latter result is the most convenient to consider, since it refers directly to machines,
whereas the others can only be used in a comparatively indirect argument: for instance if Gödel’s
theorem is to be used we need in addition to have some means of describing logical systems in
term of machines, and machines in term of logical systems. The result in question refers to a type
of machine which is essentially a digital computer with an infinite capacity. It states that there are
certain things that such a machine cannot do. If it is rigged up to give answers to questions as in
the imitation game, there will be some questions to which it will either give a wrong answer, or
fail to give an answer at all however much time is allowed for a reply. There may, of course, be
many such question, and question which cannot be answered by one machine may be satisfactorily
answered by another. We are of course supposing for the present that the question are of the kind
to which an answer ‘Yes’ or ‘No’ is appropriate, rather than question such as ‘What do you think
of Picasso?’ The questions that we know the machines must fail on are of this type, “Consider the
machine specified as follows. . . Will this machine ever answer ‘Yes’ to any question?” The dots
are to be replaced by a description of some machine in a standard form, which could be something
like that used in §5. When the machine described bears a certain comparatively simple relation to
the machine which is under interrogation, it can be shown that the answer is either wrong or not
forthcoming. This is the mathematical result: it is argued that it proves a disability of machines to
which the human intellect is not subject.

The short answer to this argument is that although it is established that there are limitations to
the powers of any particular machine, it has only been stated, without any sort of proof, that no
such limitations apply to the human intellect. But I do not think this view can be dismissed quite
so lightly. Whenever one of these machines is asked the appropriate critical question, and gives
a definite answer, we know that this answer must be wrong, and this gives us a certain feeling
of superiority. Is this feeling illusory? It is no doubt quite genuine, but I do not think too much
importance should be attached to it. We too often give wrong answers to questions ourselves to be
justified in being very pleased at such evidence of fallibility on the part of the machines. Further,
our superiority can only be felt on such an occasion in relation to the one machine over which we
have scored our petty triumph. There would be no question of triumphing simultaneously over all
machines. In short, then, there might be men cleverer than any given machine, but then again there
might be other machines cleverer again, and so on.

Those who hold to the mathematical argument would, I think, mostly be willing to accept the
imitation game as a basis for discussion. Those who believe in the two previous objections would
probably not be interested in any criteria.

2 Author’s names in italics refer to the Bibliography.
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(4) The Argument from Consciousness.

This argument is very well expressed in Professor Jefferson’s Lister Oration for 1949, from which
I quote. “Not until a machine can write a sonnet or compose a concerto because of thoughts and
emotions felt, and not by the chance fall of symbols, could we agree that machine equals brain—that
is, not only write it but know that it had written it. No mechanism could feel (and not merely artifi-
cially signal, an easy contrivance) pleasure at its successes, grief when its valves fuse, be warmed
by flattery, be made miserable by its mistakes, be charmed by sex, be angry or depressed when it
cannot get what it wants.”

This argument appears to be a denial of the validity of our test. According to the most extreme
form of this view the only way by which one could be sure that a machine thinks is to be the machine
and to feel oneself thinking. One could then describe these feelings to the world, but of course no
one would be justified in taking any notice. Likewise according to this view the only way to know
that a man thinks is to be that particular man. It is in fact the solipsist point of view. It may be the
most logical view to hold but it makes communication of ideas difficult. A is liable to believe ‘A
thinks but B does not’ whilst B believes ‘B thinks but A does not’. Instead of arguing continually
over this point it is usual to have the polite convention that everyone thinks.

I am sure that Professor Jefferson does not wish to adopt the extreme and solipsist point of view.
Probably he would be quite willing to accept the imitation game as a test. The game (with the player
B omitted) is frequently used in practice under the name of viva voce to discover whether some one
really understands something or has ‘learnt it parrot fashion’. Let us listen in to a part of such a viva
voce:

Interrogator: In the first line of your sonnet which reads ‘Shall I compare thee to a summer’s
day’, would not ‘a spring day’ do as well or better?

Witness: It wouldn’t scan.
Interrogator: How about ‘a winter’s day’ That would scan all right.

Witness: Yes, but nobody wants to be compared to a winter’s day.
Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

Witness: In a way.
Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick would mind

the comparison.
Witness: I don’t think you’re serious. By a winter’s day one means a typical winter’s

day, rather than a special one like Christmas.

And so on. What would Professor Jefferson say if the sonnet-writing machine was able to answer
like this in the viva voce? I do not know whether he would regard the machine as ‘merely artificially
signalling’ these answers, but if the answers were as satisfactory and sustained as in the above
passage I do not think he would describe it as ‘an easy contrivance’. This phrase is, I think, intended
to cover such devices as the inclusion in the machine of a record of someone reading a sonnet, with
appropriate switching to turn it on from time to time.

In short then, I think that most of those who support the argument from consciousness could be
persuaded to abandon it rather than be forced into the solipsist position. They will then probably be
willing to accept our test.

I do not wish to give the impression that I think there is no mystery about consciousness. There
is, for instance, something of a paradox connected with any attempt to localise it. But I do not think
these mysteries necessarily need to be solved before we can answer the question with which we are
concerned in this paper.

(5) Arguments from Various Disabilities.

These arguments take the form, “I grant you that you can make machines do all the things you have
mentioned but you will never be able to make one to do X”. Numerous features X are suggested in
this connexion. I offer a selection:
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Be kind, resourceful, beautiful, friendly (p. 448), have initiative, have a sense of humour, tell
right from wrong, make mistakes (p. 448), fall in love, enjoy strawberries and cream (p. 448), make
some one fall in love with it, learn from experience (pp. 456 f.), use words properly, be the subject of
its own thought (p. 449), have as much diversity of behaviour as a man, do something really new (p.
450). (Some of these disabilities are given special consideration as indicated by the page numbers.)

No support is usually offered for these statements. I believe they are mostly founded on the
principle of scientific induction. A man has seen thousands of machines in his lifetime. From what
he sees of them he draws a number of general conclusions. They are ugly, each is designed for a
very limited purpose, when required for a minutely different purpose they are useless, the variety of
behaviour of any one of them is very small, etc., etc. Naturally he concludes that these are necessary
properties of machines in general. Many of these limitations are associated with the very small
storage capacity of most machines. (I am assuming that the idea of storage capacity is extended in
some way to cover machines other than discrete-state machines.

The exact definition does not matter as no mathematical accuracy is claimed in the present dis-
cussion.) A few years ago, when very little had been heard of digital computers, it was possible to
elicit much incredulity concerning them, if one mentioned their properties without describing their
construction. That was presumably due to a similar application of the principle of scientific induc-
tion. These applications of the principle are of course largely unconscious. When a burnt child fears
the fire and shows that he fears it by avoiding it, I should say that he was applying scientific induc-
tion. (I could of course also describe his behaviour in many other ways.) The works and customs
of mankind do not seem to be very suitable material to which to apply scientific induction. A very
large part of space-time must be investigated, if reliable results are to be obtained. Otherwise we
may (as most English children do) decide that everybody speaks English, and that it is silly to learn
French.

There are, however, special remarks to be made about many of the disabilities that have been
mentioned. The inability to enjoy strawberries and cream may have struck the reader as frivolous.
Possibly a machine might be made to enjoy this delicious dish, but any attempt to make one do
so would be idiotic. What is important about this disability is that it contributes to some of the
other disabilities, e.g. to the difficulty of the same kind of friendliness occurring between man and
machine as between white man and white man, or between black man and black man.

The claim that “machines cannot make mistakes” seems a curious one. One is tempted to retort,
“Are they any the worse for that?” But let us adopt a more sympathetic attitude, and try to see what
is really meant. I think this criticism can be explained in term of the imitation game. It is claimed
that the interrogator could distinguish the machine from the man simply by setting them a number
of problems in arithmetic. The machine would be unmasked because of its deadly accuracy. The
reply to this is simple. The machine (programmed for playing the game) would not attempt to give
the right answers to the arithmetic problems. It would deliberately introduce mistakes in a manner
calculated to confuse the interrogator. A mechanical fault would probably show itself through an
unsuitable decision as to what sort of a mistake to make in the arithmetic. Even this interpretation
of the criticism is not sufficiently sympathetic. But we cannot afford the space to go into it much
further. It seems to me that this criticism depends on a confusion between two kinds of mistake.
We may call them ‘errors of functioning’ and ‘errors of conclusion’. Errors of functioning are due
to some mechanical or electrical fault which causes the machine to behave otherwise than it was
designed to do. In philosophical discussion one likes to ignore the possibility of such errors; one is
therefore discussing ‘abstract machines’. These abstract machines are mathematical fictions rather
than physical objects. By definition they are incapable of errors of functioning. In this sense we can
truly say that ‘machines can never make mistakes’. Errors of conclusion can only arise when some
meaning is attached to the output signals from the machine. The machine might, for instance, type
out mathematical equations, or sentences in English. When a false proposition is typed we say that
the machine has committed an error of conclusion. There is clearly no reason at all for saying that
a machine cannot make this kind of mistake. It might do nothing but type out repeatedly ‘0= 1’.
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To take a less perverse example, it might have some method for drawing conclusion by scientific
induction. We must expect such a method to lead occasionally to erroneous results.

The claim that a machine cannot be the subject of its own thought can of course only be answered
if it can be shown that the machine has some thought with some subject matter. Nevertheless, ‘the
subject matter of a machine’s operations’ does seem to mean something, at least to the people who
deal with it. If, for instance, the machine was trying to find a solution of the equation x2

− 40x−
11= 0 one would be tempted to describe this equation as part of the machine’s subject matter at that
moment. In this sort of sense a machine undoubtedly can be its own subject matter. It may be used to
help in making up its own programmes, or to predict the effect of alterations in its own structure. By
observing the results of its own behaviour it can modify its own programmes so as to achieve some
purpose more effectively. These are possibilities of the near future, rather than Utopian dreams.

The criticism that a machine cannot have much diversity of behaviour is just a way of saying
that it cannot have much storage capacity. Until fairly recently a storage capacity of even a thousand
digits was very rare.

The criticisms that we are considering here are often disguised forms of the argument from
consciousness. Usually if one maintains that a machine can do one of these things, and describes the
kind of method that the machine could use, one will not make much of an impression. It is thought
that the method (whatever it may be, for it must be mechanical) is really rather base. Compare the
parenthesis in Jefferson’s statement quoted on p. 21.

(6) Lady Lovelace’s Objection.

Our most detailed information of Babbage’s Analytical Engine comes from a memoir by Lady
Lovelace. In it she states, “The Analytical Engine has no pretensions to originate anything. It can
do whatever we know how to order it to perform” (her italics). This statement is quoted by Hartree
(p. 70) who adds: “This does not imply that it may not be possible to construct electronic equipment
which will ‘think for itself’, or in which, in biological terms, one could set up a conditioned reflex,
which would serve as a basis for ‘learning’. Whether this is possible in principle or not is a stimu-
lating and exciting question, suggested by some of these recent developments. But it did not seem
that the machines constructed or projected at the time had this property”.

I am in thorough agreement with Hartree over this. It will be noticed that he does not assert that
the machines in question had not got the property, but rather that the evidence available to Lady
Lovelace did not encourage her to believe that they had it. It is quite possible that the machines
in question had in a sense got this property. For suppose that some discrete-state machine has the
property. The Analytical Engine was a universal digital computer, so that, if its storage capacity and
speed were adequate, it could by suitable programming be made to mimic the machine in question.
Probably this argument did not occur to the Countess or to Babbage. In any case there was no
obligation on them to claim all that could be claimed.

This whole question will be considered again under the heading of learning machines.
A variant of Lady Lovelace’s objection states that a machine can ‘never do anything really new’.

This may be parried for a moment with the saw, ‘There is nothing new under the sun’. Who can be
certain that ‘original work’ that he has done was not simply the growth of the seed planted in him by
teaching, or the effect of following well-known general principles. A better variant of the objection
says that a machine can never ‘take us by surprise’. This statement is a more direct challenged and
can be met directly. Machines take me by surprise with great frequency. This is largely because I do
not do sufficient calculation to decide what to expect them to do, or rather because, although I do a
calculation, I do it in a hurried, slipshod fashion, taking risks. Perhaps I say to myself, ‘I suppose the
voltage here ought to be the same as there: anyway let’s assume it is’ Naturally I am often wrong,
and the result is a surprise for me for by the time the experiment is done these assumptions have
been forgotten. These admissions lay me open to lectures on the subject of my vicious ways, but do
not throw any doubt on my credibility when I testify to the surprises I experience.
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I do not expect this reply to silence my critic. He will probably say that such surprises are due
to some creative mental act on my part, and reflect no credit on the machine. This leads us back to
the argument from consciousness, and far from the idea of surprise. It is a line of argument we must
consider closed, but it is perhaps worth remarking that the appreciation of something as surprising
requires as much of a ‘creative mental act’ whether the surprising event originates from a man, a
book, a machine or anything else.

The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which
philosophers and mathematicians are particularly subject. This is the assumption that as soon as a
fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it.
It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A
natural consequence of doing so is that one then assumes that there is no virtue in the mere working
out of consequences from data and general principles.

(7) Argument from Continuity in the Nervous System.

The nervous system is certainly not a discrete-state machine. A small error in the information about
the size of a nervous impulse impinging on a neuron, may make a large difference to the size of the
outgoing impulse. It may be argued that, this being so, one cannot expect to be able to mimic the
behaviour of the nervous system with a discrete-state system.

It is true that a discrete-state machine must be different from a continuous machine. But if
we adhere to the conditions of the imitation game, the interrogator will not be able to take any
advantage of this difference. The situation can be made clearer if we consider some other simpler
continuous machine. A differential analyser will do very well. (A differential analyser is a certain
kind of machine not of the discrete-state type used for some kinds of calculation.) Some of these
provide their answers in a typed form, and so are suitable for taking part in the game. It would not
be possible for a digital computer to predict exactly what answers the differential analyser would
give to a problem, but it would be quite capable of giving the right sort of answer. For instance, if
asked to give the value of π (actually about 3·1416) it would be reasonable to choose at random
between the values 3·12, 3·13, 3·14, 3·15, 3·16 with the probabilities of 0·05,0·15,0·55,0·19,0·06
(say). Under these circumstances it would be very difficult for the interrogator to distinguish the
differential analyser from the digital computer.

(8) TheArgument from Informality of Behaviour.

It is not possible to produce a set of rules purporting to describe what a man should do in every
conceivable set of circumstances. One might for instance have a rule that one is to stop when one
sees a red traffic light, and to go if one sees a green one, but what if by some fault both appear
together? One may perhaps decide that it is safest to stop. But some further difficulty may well arise
this decision later. To attempt to provide rules of conduct to cover every eventuality, even those
arising from traffic lights appear to be impossible. With all this I agree.

From this it is argued that we cannot be machines. I shall try to reproduce the argument, but I fear
I shall hardly do it justice. It seems to run something like this. ‘If each man had a definite set of rules
of conduct by which he regulated his life he would be no better than a machine. But there are no such
rules, so men cannot be machines’. The undistributed middle is glaring. I do not think the argument
is ever put quite like this, but I believe this is the argument used nevertheless. There may however
be a certain confusion between ‘rules of conduct’ and ‘laws of behaviour’ to cloud the issue. By
‘rules of conduct’ I mean precepts such as ‘Stop if you see red lights’, on which one can act, and
of which one can be conscious. By ‘laws of behaviour’ I mean laws of nature as applied to a man’s
body such as ‘if you pinch him he will squeak’. If we substitute ‘laws of behaviour which regulate
his life’ for ‘laws of conduct by which he regulates his life’ in the argument quoted the undistributed
middle is no longer insuperable. For we believe that it is not only true that being regulated by laws
of behaviour implies being some sort of machine (though not necessarily a discrete-state machine,
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but that conversely being such a machine implies being regulated by such laws. However, we cannot
so easily convince ourselves of the absence of complete laws of behaviour as of complete rules of
conduct. The only way we know of for finding such laws is scientific observation, and we certainly
know of no circumstances under which we could say, ‘We have searched enough. There are no such
laws.’

We can demonstrate more forcibly that any such statement would be unjustified. For suppose
we could be sure of finding such laws if they existed. Then given a discrete-state machine it should
certainly be possible to discover by observation sufficient about it to predict its future behaviour,
and this within a reasonable time, say a thousand years. But this does not seem to be the case. I have
set up on the Manchester computer a small programme using only 1000 units of storage, whereby
the machine supplied with one sixteen figure number replies with another within two seconds. I
would defy anyone to learn from these replies sufficient about the programme to be able to predict
any replies to untried values.

(8) The Argument from Extra-Sensory Perception.

I assume that the reader is familiar with the idea of extra-sensory perception, and the meaning of
the four items of it, viz. telepathy, clairvoyance, precognition and psycho-kinesis. These disturb-
ing phenomena seem to deny all our usual scientific ideas. How we should like to discredit them!
Unfortunately the statistical evidence, at least for telepathy, is overwhelming. It is very difficult to
rearrange one’s ideas so as to fit these new facts in. Once one has accepted them it does not seem a
very big step to believe in ghosts and bogies. The idea that our bodies move simply according to the
known laws of physics, together with some others not yet discovered but somewhat similar, would
be one of the first to go.

This argument is to my mind quite a strong one. One can say in reply that many scientific theories
seem to remain workable in practice, in spite of clashing with E.S.P.; that in fact one can get along
very nicely if one forgets about it. This is rather cold comfort, and one fears that thinking is just the
kind of phenomenon where E.S.P. may be especially. relevant.

A more specific argument based on E.S.P. might run as follows: “Let us play the imitation
game, using as witnesses a man who is good as a telepathic receiver, and a digital computer. The
interrogator can ask such questions as ‘What suit does the card in my right hand belong to?’ The man
by telepathy or clairvoyance gives the right answer 130 times out of 400 cards. The machine can
only guess at random, and perhaps gets 104 right, so the interrogator makes the right identification.”
There is an interesting possibility which opens here. Suppose the digital computer contains a random
number generator. Then it will be natural to use this to decide what answer to give. But then the
random number generator will be subject to the psycho-kinetic powers of the interrogator. Perhaps
this psycho-kinesis might cause the machine to guess right more often than would be expected on a
probability calculation, so that the interrogator might still be unable to make the right identification.
On the other hand, he might be able to guess right without any questioning, by clairvoyance. With
E.S.P. anything may happen.

If telepathy is admitted it will be necessary to tighten our test up. The situation could be regarded
as analogous to that which would occur if the interrogator were talking to himself and one of the
competitors was listening with his ear to the wall. To put the competitors into a ‘telepathy-proof
room’ would satisfy all requirements.

7. Learning Machines.

The reader will have anticipated that I have no very convincing arguments of a positive nature to
support my views. If I had I should not have taken such pains to point out the fallacies in contrary
views. Such evidence as I have I shall now give.
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Let us return for a moment to Lady Lovelace’s objection, which stated that the machine can
only do what we tell it to do. One could say that a man can ‘inject’ an idea into the machine, and
that it will respond to a certain extent and then drop into quiescence, like a piano string struck by
a hammer. Another simile would be an atomic pile of less than critical size: an injected idea is
to correspond to a neutron entering the pile from without. Each such neutron will cause a certain
disturbance which eventually dies away. If, however, the size of the pile is sufficiently increased,
the disturbance caused by such an incoming neutron will very likely go on and on increasing until
the whole pile is destroyed. Is there a corresponding phenomenon for minds, and is there one for
machines? There does seem to be one for the human mind. The majority of them seem to be ‘sub-
critical’, i.e. to correspond in this analogy to piles of subcritical size. An idea presented to such a
mind will on average give rise to less than one idea in reply. A smallish proportion are super-critical.
An idea presented to such a mind may give rise to a whole ‘theory’ consisting of secondary, tertiary
and more remote ideas. Animals minds seem to be very definitely sub-critical. Adhering to this
analogy we ask, ‘Can a machine be made to be super-critical?’

The ‘skin of an onion’ analogy is also helpful. In considering the functions of the mind or the
brain we find certain operations which we can explain in purely mechanical terms. This we say does
not correspond to the real mind: it is a sort of skin which we must strip off if we are to find the
real mind. But then in what remains we find a further skin to be stripped off, and so on. Proceeding
in this way do we ever come to the ‘real’ mind, or do we eventually come to the skin which has
nothing in it? In the latter case the whole mind is mechanical. (It would not be a discrete-state
machine however. We have discussed this.)

These last two paragraphs do not claim to be convincing arguments. They should rather be
described as ‘recitations tending to produce belief’.

The only really satisfactory support that can be given for the view expressed at the beginning
of §6, will be that provided by waiting for the end of the century and then doing the experiment
described. But what can we say in the meantime? What steps should be taken now if the experiment
is to be successful?.

As I have explained, the problem is mainly one of programming. Advances in engineering will
have to be made too, but it seems unlikely that these will not be adequate for the requirements.
Estimates of the storage capacity of the brain vary from 1010 to 1015 binary digits. I incline to the
lower values and believe that only a very small fraction is used for the higher types of thinking.
Most of it is probably used for the retention of visual impressions. I should be surprised if more
than 109 was required for satisfactory playing of the imitation game, at any rate against a blind
man. (Note—The capacity of the Encyclopaedia Britannica, 11th edition, is 2 × 109.) A storage
capacity of 107 would be a very practicable possibility even by present techniques. It is probably
not necessary to increase the speed of operations of the machines at all. Parts of modern machines
which can be regarded as analogues of nerve cells work about a thousand times faster than the
latter. This should provide a ‘margin of safety’ which could cover losses of speed arising in many
ways. Our problem then is to find out how to programme these machines to play the game. At my
present rate of working I produce about a thousand digits of programme a day, so that about sixty
workers, working steadily through the fifty years might accomplish the job, if nothing went into the
waste-paper basket. Some more expeditious method seems desirable.

In the process of trying to imitate an adult human mind we are bound to think a good deal about
the process which has brought it to the state that it is in. We may notice three components,

(a) The initial state of the mind, say at birth,
(b) The education to which it has been subjected,
(c) Other experience, not to be described as education, to which it has been subjected.
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Instead of trying to produce a programme to simulate the adult mind, why not rather try to
produce one which simulates the child’s ? If this were then subjected to an appropriate course of edu-
cation one would obtain the adult brain. Presumably the child-brain is something like a note-book
as one buys it from the stationers. Rather little mechanism, and lots of blank sheets. (Mechanism
and writing are from our point of view almost synonymous.) Our hope is that there is so little mech-
anism in the child-brain that something like it can be easily programmed. The amount of work in
the education we can assume, as a first approximation, to be much the same as for the human child.

We have thus divided our problem into two parts. The child-programme and the education pro-
cess. These two remain very closely connected. We cannot expect to find a good child-machine at
the first attempt. One must experiment with teaching one such machine and see how well it learns.
One can then try another and see if it is better or worse. There is an obvious connection between
this process and evolution, by the identifications

Structure of the child machine = Hereditary material

Changes ,, ,, = Mutations

Natural selection = Judgment of the experimenter

One may hope, however, that this process will be more expeditious than evolution. The survival of
the fittest is a slow method for measuring advantages. The experimenter, by the exercise of intelli-
gence, should be able to speed it up. Equally important is the fact that he is not restricted to random
mutations. If he can trace a cause for some weakness he can probably think of the kind of mutation
which will improve it.

It will not be possible to apply exactly the same teaching process to the machine as to a normal
child. It will not, for instance, be provided with legs, so that it could not be asked to go out and
fill the coal scuttle. Possibly it might not have eyes. But however well these deficiencies might be
overcome by clever engineering, one could not send the creature to school without the other children
making excessive fun of it. It must be given some tuition. We need not be too concerned about the
legs, eyes, etc. The example of Miss Helen Keller shows that education can take place provided that
communication in both directions between teacher and pupil can take place by some means or other.

We normally associate punishments and rewards with the teaching process. Some simple child-
machines can be constructed or programmed on this sort of principle. The machine has to be so
constructed that events which shortly preceded the occurrence of a punishment-signal are unlikely
to be repeated, whereas a reward-signal increased the probability of repetition of the events which
led up to it. These definitions do not presuppose any feelings on the part of the machine. I have done
some experiments with one such child-machine, and succeeded in teaching it a few things, but the
teaching method was too unorthodox for the experiment to be considered really successful.

The use of punishments and rewards can at best be a part of the teaching process. Roughly
speaking, if the teacher has no other mean of communicating to the pupil, the amount of information
which can reach him does not exceed the total number of rewards and punishments applied. By the
time a child has learnt to repeat ‘Casabianca’ he would probably feel very sore indeed, if the text
could only be discovered by a ‘Twenty Questions’ technique, every ‘NO’ taking the form of a blow.
It is necessary therefore to have some other ‘unemotional’ channels of communication. If these are
available it is possible to teach a machine by punishments and rewards to obey orders given in some
language, e.g. a symbolic language. These orders are to be transmitted through the ‘unemotional’
channels. The use of this language will diminish greatly the number of punishments and rewards
required.

Opinions may vary as to the complexity which is suitable in the child machine. One might try
to make it as simple as possible consistently with the general principles. Alternatively one might
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have a complete system of logical inference ‘built in’.3 In the latter case the store would be largely
occupied with definitions and propositions. The propositions would have various kinds of status, e.g.
well-established facts, conjectures, mathematically proved theorems, statements given by an author-
ity, expressions having the logical form of proposition but not belief-value. Certain propositions may
be described as ‘imperatives’. The machine should be so constructed that as soon as an imperative
is classed as ‘well-established’ the appropriate action automatically takes place. To illustrate this,
suppose the teacher says to the machine, ‘Do your homework now’. This may cause “Teacher says
‘Do your homework now’ ” to be included amongst the well-established facts. Another such fact
might be, “Everything that teacher says is true”. Combining these may eventually lead to the imper-
ative, ‘Do your homework now’, being included amongst the well-established facts, and this, by
the construction of the machine, will mean that the homework actually gets started, but the effect is
very satisfactory. The processes of inference used by the machine need not he such as would satisfy
the most exacting logicians. There might for instance be no hierarchy of types. But this need not
mean that type fallacies will occur, any more than we are bound to fall over unfenced cliffs. Suitable
imperatives (expressed within the systems, not forming part of the rules of the system) such as ‘Do
not use a class unless it is a subclass of one which has been mentioned by teacher’ can have a similar
effect to ‘Do not go too near the edge’.

The imperatives that can be obeyed by a machine that has no limbs are bound to be of a rather
intellectual character, as in the example (doing homework) given above. Important amongst such
imperatives will be ones which regulate the order in which the rules of the logical system concerned
are to be applied. For at each stage when one is using a logical system, there is a very large number of
alternative steps, any of which one is permitted to apply, so far as obedience to the rules of the logical
system is concerned. These choices make the difference between a brilliant and a footling reasoner,
not the difference between a sound and a fallacious one. Propositions leading to imperatives of this
kind might be “When Socrates is mentioned, use the syllogism in Barbara” or “If one method has
been proved to be quicker than another, do not use the slower method”. Some of these may be ‘given
by authority’, but others may be produced by the machine itself, e.g. by scientific induction.

The idea of a learning machine may appear paradoxical to some readers. How can the rules
of operation of the machine change? They should describe completely how the machine will react
whatever its history might be, whatever changes it might undergo. The rules are thus quite time-
invariant. This is quite true. The explanation of the paradox is that the rules which get changed in
the learning process are of a rather less pretentious kind, claiming only an ephemeral validity. The
render may draw a parallel with the Constitution of the United States.

An important feature of a learning machine is that its teacher will often be very largely ignorant
of quite what is going on inside, although he may still be able to some extent to predict his pupil’s
behaviour. This should apply most strongly to the later education of a machine arising from a child-
machine of well-tried design (or programme). This is in clear contrast with normal procedure when
using a machine to do computations: one’s object is then to have a clear mental picture of the state of
the machine at each moment in the computation. This object can only be achieved with a struggle.
The view that ‘the machine can only do what we know how to order it to do’,4 appears strange
in face of this. Most of the programmes which we can put into the machine will result in its doing
something that we cannot make sense of at all, or which we regard as completely random behaviour.
Intelligent behaviour presumably consists in a departure from the completely disciplined behaviour
involved in computation, but a rather slight one, which does not give rise to random behaviour,
or to pointless repetitive loops. Another important result of preparing our machine for its part in

3 Or rather ‘programmed in’ for our child-machine will be programmed in a digital computer. But the logical system will
not have to be learnt.
4 Compare Lady Lovelace’s statement (p. 450), which does not contain the word ‘only’.
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the imitation game by a process of teaching and learning is that ‘human fallibility’ is likely to be
omitted in a rather natural way, i.e. without special ‘coaching’. (The reader should reconcile this
with the point of view on pp. 24, 25.) Processes that are learnt do not produce a hundred per cent.
certainty of result; if they did they could not be unlearnt.

It is probably wise to include a random element in a learning machine (see p. 438). A random
element is rather useful when we are searching for a solution of some problem. Suppose for instance
we wanted to find a number between 50 and 200 which was equal to the square of the sum of its
digits, we might start at 51 then try 52 and go on until we got a number that worked. Alternatively
we might choose numbers at random until we got a a good one. This method has the advantage that
it is unnecessary to keep track of the values that have been tried, but the disadvantage that one may
try the same one twice, but this is not very important if there are several solutions. The systematic
method has the advantage that there may be an enormous block without any solutions in the region
which has to be investigated first. Now the learning process may be regarded as a search for a form
of behaviour which will satisfy the teacher (or some other criterion). Since there is probably a very
large number of satisfactory solutions the random method seems to be better than the systematic.
It should be noticed that it is used in the analogous process of evolution. But there the systematic
method is not possible. How could one keep track of the different genetical combinations that had
been tried, so as to avoid trying them again?

We may hope that machines will eventually compete with men in all purely intellectual fields.
But which are the best ones to start with? Even this is a difficult decision. Many people think that
a very abstract activity, like the playing of chess, would be best. It can also be maintained that it
is best to provide the machine with the best sense organs that money can buy, and then teach it to
understand and speak English. This process could follow the normal teaching of a child. Things
would be pointed out and named, etc. Again I do not know what the right answer is, but I think both
approaches should be tried.

We can only see a short distance ahead, but we can see plenty there that needs to be done.
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Examining the Work and Its Later Impact

Daniel Dennett is inspired by —

TURING’S
“STRANGE INVERSION OF REASONING”

Some of the greatest, most revolutionary advances in science have been given their initial expression
in attractively modest terms, with no fanfare. Charles Darwin managed to compress his entire theory
into a single summary paragraph that a layperson can readily follow, in all its details:

If during the long course of ages and under varying conditions of life, organic beings vary
at all in the several parts of their organization, and I think this cannot be disputed; if there
be, owing to the high geometric powers of increase of each species, at some age, season, or
year, a severe struggle for life, and this certainly cannot be disputed; then, considering the
infinite complexity of the relations of all organic beings to each other and to their conditions
of existence, causing an infinite diversity in structure, constitution, and habits, to be advanta-
geous to them, I think it would be a most extraordinary fact if no variation ever had occurred
useful to each being’s own welfare, in the same way as so many variations have occurred
useful to man. But if variations useful to any organic being do occur, assuredly individu-
als thus characterized will have the best chance of being preserved in the struggle for life;
and from the strong principle of inheritance they will tend to produce offspring similarly
characterized. This principle of preservation, I have called, for the sake of brevity, Natural
Selection. (Origin of Species, end of chapter 4)

Francis Crick and James Watson closed their epoch-making paper on the structure of DNA with
the deliciously diffident sentence:

It has not escaped our notice that the specific pairings we have postulated immediately sug-
gests a possible copying mechanism for the replicating unit of life. (Watson and Crick (1953),
p.738)

And Alan Turing created a new world of science and technology, setting the stage for solving
one of the most baffling puzzles remaining to science, the mind-body problem, with an even shorter
declarative sentence in the middle of his 1936 paper on computable numbers:

It is possible to invent a single machine which can be used to compute any computable
sequence. (Turing (1936), p.241)

Turing didn’t just intuit that this remarkable feat was possible; he showed exactly how to make such
a machine. With that demonstration the computer age was born. It is important to remember that
there were entities called computers before Turing came up with his idea – but they were people,
clerical workers with enough mathematical skill, patience, and pride in their work to generate reli-
able results of hours and hours of computation, day in and day out. Many of them were women.
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Thousands of them were employed in engineering and commerce, and in the armed forces and
elsewhere, calculating tables for use in navigation, gunnery and other such technical endeavours.
A good way of understanding Turing’s revolutionary idea about computation is to put it in juxtapo-
sition with Darwin’s about evolution. The pre-Darwinian world was held together not by science but
by tradition: all things in the universe, from the most exalted (‘man’) to the most humble (the ant,
the pebble, and the raindrop), were the creations of a still more exalted thing, God, an omnipotent
and omniscient intelligent creator – who bore a striking resemblance to the second-most exalted
thing. Call this the trickle-down theory of creation. Darwin replaced it with the bubble-up theory of
creation. One of Darwin’s nineteenth century critics put it vividly:

In the theory with which we have to deal, Absolute Ignorance is the artificer; so that we may
enunciate as the fundamental principle of the whole system, that, IN ORDER TO MAKE A
PERFECT AND BEAUTIFUL MACHINE, IT IS NOT REQUISITE TO KNOW HOW TO
MAKE IT. This proposition will be found, on careful examination, to express, in condensed
form, the essential purport of the Theory, and to express in a few words all Mr. Darwin’s
meaning; who, by a strange inversion of reasoning, seems to think Absolute Ignorance fully
qualified to take the place of Absolute Wisdom in all the achievements of creative skill.
(MacKenzie, 1868)

It was, indeed, a strange inversion of reasoning. To this day many people cannot get their heads
around the unsettling idea that a purposeless, mindless process can crank away through the eons,
generating ever more subtle, efficient and complex organisms without having the slightest whiff of
understanding of what it is doing.

Turing’s idea was a similar – in fact remarkably similar – strange inversion of reasoning. The
Pre-Turing world was one in which computers were people, who had to understand mathemat-
ics in order to do their jobs. Turing realised that this was just not necessary: you could take the
tasks they performed and squeeze out the last tiny smidgens of understanding, leaving nothing but
brute, mechanical actions. IN ORDER TO BE A PERFECT AND BEAUTIFUL COMPUTING
MACHINE IT IS NOT REQUISITE TO KNOW WHAT ARITHMETIC IS.
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What Darwin and Turing had both discovered, in their different ways, was the existence of com-
petence without comprehension (Dennett, 2009, from which material in the preceding paragraphs
has been drawn, with revisions). This inverted the deeply plausible assumption that comprehension
is in fact the source of all advanced competence. Why, after all, do we insist on sending our chil-
dren to school, and why do we frown on the old-fashioned methods of rote learning? We expect
our children’s growing competence to flow from their growing comprehension; the motto of modern
education might be: ‘comprehend in order to be competent’ And for us members of H. sapiens, this
is almost always the right way to look at, and strive for, competence. I suspect that this much-loved
principle of education is one of the primary motivators of skepticism about both evolution and its
cousin in Turing’s world, Artificial Intelligence. The very idea that mindless mechanicity can gen-
erate human-level – or divine level! – competence strikes many as philistine, repugnant, an insult to
our minds and the mind of God.

Consider how Turing went about his proof. He took human computers as his model. There they
sat at their desks, doing one simple and highly reliable step after another, checking their work, writ-
ing down the intermediate results instead of relying on their memories, consulting their recipes as
often as they needed, turning what at first might appear a daunting task into a routine they could
almost do in their sleep. Turing systematically broke down the simple steps into even simpler steps,
removing all vestiges of discernment or comprehension. Did a human computer have difficulty
telling the number 99999999999 from the number 9999999999? Then, break down the perceptual
problem of recognizing the number into simpler problems, distributing easier, stupider acts of dis-
crimination over multiple steps. He thus prepared an inventory of basic building blocks from which
to construct the universal algorithm that could execute any other algorithm. He showed how that
algorithm would enable a (human) computer to compute any function, and noted that:

The behaviour of the computer at any moment is determined by the symbols which he is
observing and his “state of mind” at that moment. We may suppose that there is a bound B
to the number of symbols or squares which the computer can observe at one moment. If he
wishes to observe more, he must use successive observations. .... The operation actually
performed is determined .... by the state of mind of the computer and the observed
symbols. In particular, they determine the state of mind of the computer after the operation
is carried out.

He then noted, calmly:

We may now construct a machine to do the work of this computer. (p.251)

Right there we see the reduction of all possible computation to a mindless process. We can
start with the simple building blocks Turing had isolated, and construct layer upon layer of more
sophisticated computation, restoring, gradually, the intelligence Turing had so deftly laundered out
of the practices of human computers.

But what about the genius of Turing, and of later, lesser programmers, whose own intelligent
comprehension was manifestly the source of the designs that can knit Turing’s mindless building
blocks into useful competences? Doesn’t this dependence just re-introduce the trickle-down per-
spective on intelligence, with Turing in the God role? No less a thinker than Roger Penrose has
expressed skepticism about the possibility that Artificial Intelligence could be the fruit of nothing
but mindless algorithmic processes.

I am a strong believer in the power of natural selection. But I do not see how natural selection,
in itself, can evolve algorithms which could have the kind of conscious judgements of the
validity of other algorithms that we seem to have. (1989, p.414)
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He goes on that admit:

To my way of thinking there is still something mysterious about evolution, with its appar-
ent‘groping’ towards some future purpose. Things at least seem to organize themselves
somewhat better than they‘ought’ to, just on the basis of blind-chance evolution and natural
selection. (1989, p.416)

Indeed, a single cascade of natural selection events, occurring over even billions of years, would
seem unlikely to be able to create a string of zeroes and ones that, once read by a digital computer,
would be an ‘algorithm’ for ‘conscious judgments.’ But as Turing fully realised, there was nothing
to prevent the process of evolution from copying itself on many scales, of mounting discernment
and judgment. The recursive step that got the ball rolling – designing a computer that could mimic
any other computer–could itself be reiterated, permitting specific computers to enhance their own
powers by redesigning themselves, leaving their original designer far behind. Already in ‘Comput-
ing Machinery and Intelligence,’ his classic paper in Mind, 1950, he recognised that there was no
contradiction in the concept of a (non-human) computer that could learn.

The idea of a learning machine may appear paradoxical to some readers. How can the rules
of operation of the machine change? They should describe completely how the machine will
react whatever its history might be, whatever changes it might undergo. The rules are thus
quite time-invariant. This is quite true. The explanation of the paradox is that the rules which
get changed in the learning process are of a rather less pretentious kind, claiming only an
ephemeral validity. The reader may draw a parallel with the Constitution of the United States.
(See Suber (2001), unpublished, for a valuable discussion of this passage and the so-called
paradox of self-amendment.)

He saw clearly that all the versatility and self-modifiability of human though – learning and
re-evaluation and, language and problem-solving, for instance – could in principle be constructed
out of these building blocks. Call this the bubble-up theory of mind, and contrast it with the various
trickle-down theories of mind, by thinkers from René Descartes to John Searle (and including,
notoriously, Kurt Gödel, whose proof was the inspiration for Turin’s work) that start with human
consciousness at its most reflective, and then are unable to unite such magical powers with the mere
mechanisms of human bodies and brains.

Turing, like Darwin, broke down the mystery of intelligence (or Intelligent Design) into what
we might call atomic steps of dumb happenstance, which, when accumulated by the millions, added
up to a sort of pseudo-intelligence. The Central Processing Unit of a computer doesn’t really know
what arithmetic is, or understand what addition is, but it ‘understands’ the ‘command’ to add two
numbers and put their sum in a register – in the minimal sense that it reliably adds when thus called
upon to add and puts the sum in the right place. Let’s say it sorta understands addition. A few levels
higher, the operating system doesn’t really understand that it is checking for errors of transmission
and fixing them but it sorta understands this, and reliably does this work when called upon. A few
further levels higher, when the building blocks are stacked up by the billions and trillions, the chess-
playing program does’t really understand that its queen is in jeopardy, but it sorta understands this,
and IB’s Watson on Jeopardy sorta understands the questions it answers.

Why indulge in this ‘sorta’ talk? Because when we analyze – or synthesise – this stack of ever
more competent levels, we need to keep track of two facts about each level: what it is and what
it does. What it is can be described in terms of the structural organization of the parts from which
it is mad – so long as we can assume that the parts function as they are supposed to function.
What it does is some (cognitive) function that it (sorta) performs – well enough so that at the next
level up, we can make the assumption that we have in our inventory a smarter building block that
performs just that function – sorta, good enough to use. This is the key to breaking the back of the
mind-bogglingly complex question of how a mind could ever be composed of material mechanisms.
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What we might call the sorta operator is, in cognitive science, the parallel of Darwin’s gradualism
in evolutionary processes. Before there were bacteria there were sorta bacteria, before there were
mammals there were sorta mammals and before there were dogs there were sorta dogs, and so
forth. We need Darwin’s gradualism to explain the huge difference between an ape and an apple,
and we need Turin’s gradualism to explain the huge difference between a humanoid robot and hand
calculator. The ape and the apple are made of the same basic ingredients, differently structured and
exploited in a many-level cascade of different functional competences. There is no principled divid-
ing line between a sorta ape and an ape. The humanoid robot and the hand calculator are both made
of the same basic, unthinking, unfeeling Turing-bricks, but as we compose them into larger, more
competent structures, which then become the elements of still more competent structures at higher
levels, we eventually arrive at parts so (sorta) intelligent that they can be assembled into compe-
tences that deserve to be called comprehending. We use the intentional stance (Dennett, 1971, 1987)
to keep track of the beliefs and desires (or ‘beliefs’ and ‘desires’ or sorta beliefs and sorta desires)
of the (sorta-)rational agents at every level from the simplest bacterium through all the discriminat-
ing, signaling, comparing, remembering circuits that compose the brains of animals from starfish to
astronomers. There is no principled line above which true comprehension is to be found – even in
our own case. The small child sorta understands her own sentence ‘Daddy is a doctor’, and I sorta
understand ‘E=mc2’. Some philosophers resist this anti-essentialism: either you believe that snow
is white or you don’t; either you are conscious or you aren’t; nothing counts as an approximation of
any mental phenomenon – it’s all or nothing. And to such thinkers, the powers of minds are insolu-
ble mysteries because they are ‘perfect,’ and perfectly unlike anything to be found in mere material
mechanisms.

We still haven’t arrived at ‘real’ understanding in robots, but we are getting closer. That, at least,
is the conviction of those of us inspired by Turing’s insight. The trickle-down theorists are sure in
their bones that no amount of further building will ever get us to the real thing. They think that a
Cartesian res cogitans, a thinking thing, cannot be constructed out of Turing’s building blocks. And
creationists are similarly sure in their bones that no amount of Darwinian shuffling and copying
and selecting could ever arrive at (real) living things. They are wrong, but one can appreciate the
discomfort that motivates their conviction.

Turing’s strange inversion of reason, like Darwin’s, goes against the grain of millennia of earlier
thought. If the history of resistance to Darwinian thinking is a good measure, we can expect that
long into the future, long after every triumph of human thought has been matched or surpassed by
‘mere machines’, there will still be thinkers who insist that the human mind works in mysterious
ways that no science can comprehend.
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Aaron Sloman draws together —

VIRTUAL MACHINERY AND EVOLUTION
OF MIND (PART 2)∗

1. Introduction

Darwin’s critics could not understand how natural selection could produce minds and conscious-
ness. They (and even some of his defenders) pointed out that his evidence, such as gradual changes
in animal forms, supported only the hypothesis that natural selection produces physical forms
and behaviours. Nobody could understand how physical mechanisms can produce mysterious and
externally unobservable mental states and processes, referred to by Huxley as ‘The explanatory
gap’.1 Since Darwin’s time, the problem has been re-invented and re-labelled several times, e.g.
as the problem of ‘Phenomenal Consciousness’ (Block, 1995) or the ‘Hard Problem’ of conscious-
ness (Chalmers, 1996). The topic was touched on and side-stepped in Turing (1950). It remains
unclear how a genome can, as a result of physical and chemical processes, produce the problematic,
apparently non-physical, externally unobservable, personal experiences (qualia) and processes of
thinking, feeling, wanting, and artistic, mathematical or scientific creation.

The facts about virtual machinery used in complex computing systems, presented in Part 1,
suggest ways in which biological evolution may have taken advantage of virtual machines to pro-
duce self-monitoring, self-modifying, self-extending information-processing architectures, some of
whose contents would have the core features of qualia, including non-definability in the language of
physics. This suggests a way for Darwin to answer the criticism that natural selection can produce
only physical development, not mental states and consciousness, though this type of explanation was
not available in Darwin’s time. On the basis of what we have learnt recently, we can now conjecture
that evolution produced ‘mysterious’ aspects of consciousness if, like engineers in the last six or
seven decades, it produced solutions to increasingly complex problems of representation and con-
trol – solutions based on increasingly abstract, but effective, mechanisms, including self-observation
capabilities, implemented in non-physical virtual machines which, in turn, are implemented in lower
level physical mechanisms. For this, evolution would have had to produce far more complex virtual
machines than human engineers have so far managed, but the key idea might be the same.2

Part 1 presented Universal Turing Machines as theoretical precursors of technology supporting
networks of interacting running virtual machines (RVMs) sensing and controlling things in their
environment. Such RVMs are fully implemented in underlying physical machines (PMs) but the
concepts used to describe the states and processes in some RVMs (e.g. ‘pawn’, ‘threat’ and ‘win’

∗This is the second of three linked papers in this Volume. Part 1 is in Part I of the volume. The final part, Part 3, on
Meta-Morphogenesis, is in Part IV of the volume.
1 For more detail and quotations from critics, see Sloman (2010a).
2 It is not yet clear whether the biological virtual machinery can implemented in the kind of discrete technology used in
computers as we know them. New kinds of computers may be required.
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in chess VMs) are not definable in the language of the physical sciences. We now develop the bio-
logical versions of these ideas, potentially explaining how self-monitoring, self-modifying RVMs
can include some of the features of consciousness, such as qualia, previously thought by some to
be inexplicable by science, paving the way for a theory of how mind and consciousness might have
evolved, and how robots might have qualia. Unlike capabilities of earlier machinery, there is no
close relationship between information processing capabilities and physical form or behaviour.

2. Epigenesis: Bodies, behaviours and minds

Turing was interested in both evolution and epigenesis and made pioneering suggestions regarding
the processes of morphogenesis – differentiation of cells to form diverse body parts during devel-
opment. As far as I know, he did not do any work on how a genome can produce behavioural
competences of the complete organism, including behaviours with complex conditional structures,
so that what is done depends on internal and external sensory information, though he briefly
considered learning, in Turing (1950).3

It is understandable that physical behaviours, such as hunting, eating, escaping predators and
mating, should influence biological fitness and that evolution should select brain and other modifi-
cations that produce advantageous behaviours. But there are internal non-behavioural competences
whose biological uses are not so obvious: thinking, reminiscing, perceiving with enjoyment, find-
ing something puzzling and attempting to understand it. It is not obvious how biological evolution
could produce mechanisms that are able to support such mental processes. Though it is clear that
once such mechanisms were produced, some of them might enhance biological fitness.

Many species develop behavioural and internal competences that depend on the environment
during development (e.g. which language a child speaks, and which mathematical problems are
understood), so the genome-driven processes must create some innately specified competences
partly under the influence of the genome and partly under the influence of combinations of senso-
rimotor signals during development (Held and Hein, 1963; McCarthy, 2008). For humans at least,
the internal processes of competence-formation go on long after birth, suggesting that the genome
continues producing, or enabling, or constraining effects (including changes in sexual and parental
motivations and behaviours) long after the main body morphology and sensory-motor mechanisms
have developed.

Karmiloff-Smith (1992) presents many examples where after achieving behavioural compe-
tence in some domain, learners (including some non-human species) re-organise their understanding
of the domain in such a way as to give them new abilities to think and communicate about the
domain. After children develop linguistic competences based on known phrases they spontaneously
switch to using a generative syntax that allows derivation of solutions to novel problems, instead
of having to learn empirically what does and does not work. Craik (1943) pointed out the value of
such mechanisms in 1943, suggesting that they could be based on working mental models.4 Grush
(2004) and others suggest that such models could work as simulations or emulations. However,
when used for reasoning purposes, as opposed to statistical prediction, a decomposable information
structure is required rather than a fixed executable model, for instance when proving geometrical
theorems.

3 In ‘The Mythical Turing Test’ in Part III of this volume Turing’s suggestion about learning on the basis of a blank slate
at birth is criticised, and compared with McCarthy’s ideas.
4 I have not been able to find out whether Craik and Turing ever interacted. Turing must have known about his work,
since he was a member of the Ratio club, founded in honour of Craik, shortly after he died in a road accident in 1945.
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The mental models we use to explain, predict and produce processes in our environment include
models of things like gear wheels, bicycles, electric circuits and other mechanisms that are too new
to have been part of our evolutionary history. So, at least in humans, the model construction process
cannot all be encoded in the genome: the specific models need information obtained after birth from
the environment, along with novel ideas thought up by the individual.

So, the genome specifies not only physical morphology and physical behavioural competences,
but also a multi-functional information-processing architecture developed partly in species-specific
ways, at various stages after the individual’s birth, partly under the control of features of the envi-
ronment, and includes not only mechanisms for interpreting sensory information and mechanisms
for controlling external movements, but also mechanisms for building and running predictive and
explanatory models of structures and processes, either found in the environment or invented by the
individual.5 How can a genome specify ongoing construction processes to achieve that function-
ality? I don’t think anyone is close to an answer, but I’ll offer a conjecture about a feature of the
process: evolution discovered the virtues of virtual machinery long before human engineers.

Part 1 of this series of papers outlined the benefits of virtual machinery in human-designed
computing systems, and their advantages compared with specifying, designing, monitoring, con-
trolling and debugging the physical machinery directly, The advantages come from the coarser
granularity, the use of abstraction allowing different implementations to be compared, and the use
of application-relevant semantics.

Perhaps a series of initially random changes during reproduction of organisms decoupled the
control mechanisms from the physical sensors and effectors, allowing more flexibility in subsequent
deployment, eventually leading to use of virtual machinery in animals because of its advantages for
specifying types of competence at a relatively abstract level, avoiding the horrendous complexity
of specifying all the physical and chemical details, and allowing construction of behaviour speci-
fications of greater generality. The initial specification of behavioural competences in the genome
might be far more compact and simpler to construct or evolve if a virtual machine specification is
used, provided that other mechanisms ensure that that ‘high level language’ is mapped onto physi-
cal machinery in an appropriate way. The use of self-monitoring processes required for learning and
modifying competences, including de-bugging them, may be totally intractable if the operations of
atoms, molecules or even individual neurones are monitored and modified, but more tractable if the
monitoring happens at the level of a RVM.

So something like a compiler is required for the basic epigenetic processes creating common
features across a design, including physical forms, and something more like an interpreter to drive
subsequent processes of learning and development.

3. The evolution of organisms with qualia

Part 1 showed that virtual machinery can be implemented in physical machinery, and events in vir-
tual machines can be causally connected with other VM events and also with physical events both
within the supporting machine and in the environment, as a result of use of complex mixtures of
technology for creating and maintaining virtual/physical causal relationships developed over the last
seven decades. The use of virtual machinery enormously simplifies the design, debugging, main-
tenance and development of complex systems. Finally, and perhaps most importantly, in machines

5 It is argued in Sloman (1979, 2008) that this requires types of ‘language’ (in a generalised sense of the word, including
structural variability and compositional semantics) that evolved, and in young humans develop, initially for internal
information processing, not for external communication. We can call these ‘generalised languages’ (GLs).
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that need to monitor and modify their own operations, performing the monitoring and modifications
at the level of virtual machinery can be tractable where the corresponding tasks would he intractably
complex and too inflexible and slow, if done by monitoring and modifying physical machinery.

So, biological evolution could have gained in power, flexibility, and speed of development by
using virtual machine descriptions in the genome for specifying behavioural competences, instead of
descriptions of the physical details. Moreover, if some of the virtual machinery is not fully specified
in the genome, and has to be developed after birth or hatching by making use of new information
gained by the individual from the environment, then that post-natal construction process will be
simpler to specify, control and modulate, and easier to change as needed, if done at the virtual
machine level rather than specifying all the chemical and neuronal changes required. And finally
self-monitoring, self-control and self-modification in a sophisticated information-processing system
all need to control virtual not physical, machinery.

An organism can perceive, think about and act on a rich and complex environment that contains
enduring objects and processes at various locations at different spatial and temporal scales, and not
all constantly in perceptual range. Doing this requires different sorts of information, including rela-
tively enduring information structures and also rapidly changing perceptual contents and motor and
proprioceptive signals. Relating the abstract goal of grasping a berry to the changing visual, haptic
and motor signals requires machinery constructing, manipulating and using a variety of changing
information contents, some concerned with what is happening in the environment, and some con-
cerned with what’s happening in the organism: e.g. is some information incomplete, or ambiguous
or capable of answering a question, or capable of being used for detailed control of actions? The
contents of those information structures seem to be exactly what philosophers have been attend-
ing to for centuries and labelling as experiences, sense data, or qualia, of different sorts. Visual
and haptic processes perceiving the same portion of the environment could include overlapping
virtual machines dealing with different aspects of the environment processed at different levels of
abstraction in parallel Sloman (2009). Data-structures representing visible portions and features of
the environment, e.g. visible portions of surfaces with colour, shape, orientation, curvature, speeds
of motion or rotation, and relationships to other surface fragments (i.e. not the specific sensory
signals), will then be components of virtual machines.

Necker cube

(a) (b)

Duck-rabbit

Fig. 1: Each of the two figures is ambiguous and flips between two very different views. (a) can be
seen as a 3-D wire frame cube. For most people it flips between two different views of the cube, in
which the 3-D locations, orientations, and other relationships vary. In (b), the flip involves changes
in body parts, the facing direction, and likely motion – requiring a very different ontology.

Presumably similar qualia exist in other animals that are capable of similar controlled
behaviours. But in humans, and perhaps a subset of other species, there is additional machinery
that can detect record, compare, and later reflect on and describe, those contents. A possible use
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for that would be explaining to someone else how to tell when a danger or opportunity or achieve-
ment of a goal is imminent. This introspective use of the information content is different from and
requires different machinery, from the use of the sensory contents to control movements.6 As Fig. 1
shows, the very same low level sensory content can sometimes cause construction of more than
one information structure. The ontology required to describe the change in contents differs from
one ambiguous view to another. Some of the contents concern shape and information relevant to
manipulation. Others concern more abstract capabilities and likely behaviours of perceived objects,
like differences between a duck facing one way and a rabbit facing another way.

If the information structures created during perception and action are sometimes accessed by
self-monitoring processes focused, not on what is in the environment, but on the content of what is
currently being perceived, or signalled, then we potentially have an explanation of the phenomena
that have led to philosophical and other puzzles about the existence and nature of sensory and motor
qualia, which are often regarded as defining the most difficult aspect of mind to explain in physical
or functional terms, and whose evolution and development in organisms Huxley and others found
so difficult to explain. See also Sloman and Chrisley (2003).

Ryle, Dennett and others identified deep confusions in talk about consciousness and qualia, but
such things clearly exist, though they are hard to characterise and to identify in other individuals and
other species. Analysis of examples, including ambiguous figures, such as Fig. 1, helps to determine
requirements for explanatory mechanisms. Such pictures illustrate the intentionality of perceptual
experience, i.e. interpreting something as referring to something else and the different ontologies
used by different experiences. I suggest that that is only possible within running virtual machinery,
since concepts like ‘interpreting’, ‘referring’, ‘intending’ and ‘looking’ are no more definable in the
language of physics than ‘pawn’ or ‘threat’.

Many organisms can, I suspect, create and use such virtual entities without having the meta-
semantic mechanisms required to detect and represent the fact that they do. As noted at the time of
Darwin in Whittaker (1884), not all organisms that have qualia know that they have them! We can
separate the occurrence of mental contents in an organism from their detection by the organism,
which requires additional architectural complexity to support self-observation and self-description
mechanisms. We need to experiment with varied ranges of increasingly complicated working exam-
ples, using different kinds of mechanism, in order to understand better some of the questions to
be asked about mental phenomena in biological organisms. This is very close to Arbib’s research
programme described in Arbib (2003).

4. What next?

Experience shows that for many thinkers belief in an unbridgeable mind/body explanatory gap will
be unshaken by all this. As argued in Sloman (2010), some cases of opposition will be based on use
of incoherent concepts (e.g. a concept of ‘phenomenal consciousness’ defined to involve no causal
or functional powers of the kinds described above). Designing working systems, using different
robot designs to illustrate different products of evolution may help us understand the biologi-
cal examples. But current achievements in AI vision, motor-control, concept-formation, forms of
learning, language understanding and use, motive-generation, decision-making, plan-formation,
problem-solving, and many others, are still (mostly) far inferior to those of humans and other

6 That distinction between having mental contents and detecting them could explain evidence e.g. by Libet showing that
initiation of motor signals can precede consciousness of the decision to move.
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animals, in part because designers typically consider only a small subset of the requirements for
biological intelligence. Even if we omit uniquely human competences, current robots are still far
inferior to other animals, in many ways. There is no easy way to close those gaps, but there are many
things to try, as long as we think clearly about what needs to be explained. Turing the philosopher-
engineer-biologist could have made a substantial contribution to this project. Part 3, in part IV of
this volume, expands on the theme of meta-morphogenesis.
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Mark Bishop examines —

THE PHENOMENAL CASE OF THE
TURING TEST AND THE CHINESE ROOM

This short story is concerned with Alan Turing’s take on an age-old question; ‘Can a Machine
Think?’ Famously, in his 1950 paper Computing Machinery and Intelligence (CMI), Turing sug-
gested replacing this question – which he found ‘too meaningless to deserve discussion’ – with a
simple [behaviourial] test based on an imagined Victorian-esque pastime he entitled the ‘imitation
game’.

In this note, I will endeavour to draw a path linking Alan Turing with a Chinese room; a path
which leads me to suggest that consciousness is necessary for grounded understanding and hence,
because conscious phenomenal states are not instantiated by the execution of a mere computer
program (Bishop, 2009), that Turing’s exposition [in CMI] of an early form of computationalism
(the view that computation can offer an explanatory basis for cognition, i.e. that the execution of
an appropriate computer program is sufficient for ‘thinking’, ‘understanding’ and ‘consciousness’)
was ultimately misguided.

The capabilities of ‘computing machines’ had long been of interest to Turing and certainly,
as early as 1941, Turing was thinking about machine intelligence – specifically how computing
machines could solve problems by searching through the space of possible problem solutions guided
by heuristic principles. As a result, at the Royal Astronomical Society (RAS: London) in 1947,
Turing gave what is perhaps the earliest public lecture on machine intelligence.

In 1948, following a year’s sabbatical at Cambridge, Turing completed a report for the UK’s
National Physical Laboratory (NPL) on his research into machine intelligence, entitled Intelligent
Machinery (Turing, 1948). Although not published contemporaneously, the report is notable for
predicting a series of core themes which eventually emerged from the yet nascent science of machine
intelligence: expert systems; connectionism; evolutionary algorithms; but, most intriguingly of all,
the report offers perhaps the earliest version of the ‘imitation game’ – a procedure that has since
become more widely known as the ‘Turing test’.

In the NPL report Turing presented the original version of the imitation game as follows:

“The extent to which we regard something as behaving in an intelligent manner is deter-
mined as much by our own state of mind and training as by the properties of the object under
consideration. If we are able to explain and predict its behaviour or if there seems to be
little underlying plan, we have little temptation to imagine intelligence. With the same object
therefore it is possible that one man would consider it as intelligent and another would not;
the second man would have found out the rules of its behaviour.

It is possible to do a little experiment on these lines, even at the present stage of knowledge.
It is not difficult to devise a paper machine which will play a not very bad game of chess. Now
get three men as subjects for the experiment A, B, and C. A and C are to be rather poor chess
players, B is the operator who works the paper machine. (In order that he should be able to
work it fairly fast it is advisable that he be both mathematician and chess player.) Two rooms
are used with some arrangement for communicating moves, and a game is played between C
and either A or the paper machine. C may find it quite difficult to tell which he is playing.”
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In the initial exposition of the better known ‘imitation game’ presented in his 1950 paper (Turing
1950, ibid.) Turing called for a human interrogator (C) to hold a conversation with a male and female
respondent (A and B) with whom the interrogator could communicate only indirectly by typewritten
text. The object of this game was for the interrogator to correctly identify the gender of the players
(A and B) purely as a result of such textual interactions; what makes the task non-trivial is that (a)
the respondents are allowed to lie and (b) the interrogator is allowed to ask questions ranging over
the whole gamut of human experience. At first glance it is perhaps mildly surprising that, even after
many such interactions, a skilled player can determine (more accurately than by chance) the correct
gender of the respondents.

Turing then asked ‘What will happen when a machine takes the part of (A) in this game? Would
the interrogator decide wrongly as often as when playing the initial imitation game?’ In this ver-
sion of the Turing test – which has become known as the ‘standard interpretation’ – a suitably
programmed computer takes the part of either player (A) or player (B) (i.e. the computer plays as
either the man or the woman) and the interrogator (C) simply has to determine which respondent is
the human and which is the machine.

NB. The precise formulation of the Turing Test continues to attract lively debate. Thus in 2008
the UK society for the study of Artificial Intelligence and the Simulation of Behaviour (AISB)
sponsored a one-day symposium on the Turing test at the University of Reading in the hope of
eliciting further clarity in the interpretation of the test, further insight into its implications and further
reflection as to its status as a [practical] measure of machine intelligence; for brief commentary, see
the author’s introduction to the recent special issue of KYBERNETES journal, which resulted from
the 2008 symposium (Bishop, 2010).

1. A thinking machine?

In the 1950 paper, Turing confidently predicted that by the year 2000, there would be computers
with 1G of storage (which turned out very prescient) that would be able to perform the [standard]
Turing test such that the average interrogator would not have more than 70% chance of making the
right identification after five minutes of questioning.

For some working at the coal-face in the world of Artificial Intelligence (AI), conclusive proof
of the presence of mental states and capacities is a system’s ability to pass the Turing test. If an AI
system can convince an interrogator that it has mental states, then it must have those mental states;
it would be purely ‘human bias’ to think otherwise (Warwick, 2002). If, for example, a machine
could ‘converse’ with a native Chinese speaker in a manner indistinguishable from that of a native
Chinese speaker then it could [literally] be said to understand Chinese.

But by 2011 even this minimal – five minute – Turing Test had still not been passed; albeit it
seems very likely that in the next few years Turing’s predictions for a ‘time limited’ Turing test will
be met. But whether that will mean ‘general educated opinion will have altered so much that one will
be able to speak of machines thinking without expecting to be contradicted’ (as Turing predicted) is
doubtful as, in the 50 plus years since the CMI paper was first published, the status of the Turing test
as a definitive measure of machine intelligence and understanding has been extensively critiqued.

Perhaps the best known criticism of a Turing-style test of machine understanding comes from
John Searle whose seminal work on machine understanding, first presented in the 1980 paper Minds,
Brains & Programs (MBP), has become known as the Chinese Room Argument (CRA) (Searle,
1980). In the CRA Searle endeavours to show that, even if a computer behaved in a manner fully
indistinguishable from a human (when answering questions about a simple story), it cannot be said
to genuinely understand its responses and hence the computer cannot be said to genuinely think.
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Although the last thirty years have seen tremendous controversy over the success of the CRA, a
great deal of consensus over its impact has emerged. Larry Hauser has called it ‘perhaps the most
influential and widely cited argument against the claims of Artificial Intelligence’. Stevan Harnad
(1990), editor of Behavioural and Brain Sciences, asserted that ‘it has already reached the status
of a minor classic’. Anatol Rapaport claims the argument ‘rivals the Turing test as a touchstone of
philosophical inquiries into the foundations of AI’.

2. The Chinese Room Argument

In 1977 Schank and Abelson published information on a program they created, which could accept
a simple story and then answer questions about it, using a large set of rules, heuristics and scripts.
By script they referred to a detailed description of a stereotypical event unfolding through time. For
example, a system dealing with restaurant stories would have a set of scripts about typical events
that happen in a restaurant: entering the restaurant; choosing a table; ordering food; paying the
bill and so on. In the wake of this and similar work in computing labs around the world, some of
the more excitable proponents of artificial intelligence began to claim that such programs actually
understood the stories they were given, and hence offered insight into human comprehension.

It was precisely an attempt to expose the flaws in the statements emerging from these proselytis-
ing AI-niks, and more generally to demonstrate the inadequacy of the Turing test, which led Searle
to formulate the Chinese Room Argument.

The central claim of the CRA is that computations alone cannot in principle give rise to under-
standing, and that therefore, computational theories of mind cannot fully explain human cognition.
More formally, Searle later stated that the CRA was an attempt to prove that syntax (rules for the
correct formation of sentences:programs) is not sufficient for semantics (understanding). Combin-
ing this claim with those that programs are formal (syntactical), whereas minds have semantics, led
Searle to conclude that ‘programs are not minds’.

And yet it is clear that Searle believes that there is no barrier in principle to the notion that a
machine can think and understand; indeed in MBP Searle explicitly states, in answer to the question
‘Can a machine think?’, that ‘the answer is, obviously, yes. We are precisely such machines’. Clearly
Searle did not intend the CRA to target machine intelligence per se, but rather any form of artificial
intelligence according to which a machine could have genuine mental states (e.g., understanding
Chinese) purely in virtue of executing an appropriate series of computations: what Searle termed
‘Strong AI’.

Searle argues that understanding of, say, a Chinese story can never arise purely as a result
of following the procedures prescribed by any computer program, for Searle offers a first-person
tale outlining how he could instantiate such a program, and act as the Central Processing Unit of
a computer (CPU), produce correct internal and external state transitions, pass a Turing Test for
understanding Chinese, and yet still not understand a word of Chinese.

Searle-as-CPU describes a situation whereby he is locked in a room and presented with a large
batch of papers covered with Chinese writing that he does not understand. Indeed, the monoglot
Searle does not even recognise the symbols as being Chinese, as distinct from say Japanese or
simply meaningless patterns. Later Searle is given a second batch of Chinese symbols, together
with a set of rules (in English) that describe an effective method (algorithm) for correlating the
second batch with the first, purely by their form or shape. Finally, Searle-as-CPU is given a third
batch of Chinese symbols together with another set of rules (in English) to enable him to correlate
the third batch with the first two, and these rules instruct him how to return certain sets of shapes
(Chinese symbols) in response to certain symbols given in the third batch.
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Unknown to Searle, the people outside the room call the first batch of Chinese symbols, ‘the
script’, the second set ‘the story’, the third ‘questions about the story’, and the symbols he returns
they call ‘answers to the questions about the story’. The set of rules he is obeying they call ‘the
program’.

To complicate matters further, the people outside the room also give Searle-as-CPU stories in
English and ask him questions about these stories in English, to which he can reply in English.

After a while Searle-as-CPU gets so good at following the instructions and the ‘outsiders’ get so
good at supplying the rules he has to follow, that the answers he gives to the questions in Chinese
symbols become indistinguishable from those a true Chinese person might give.

From an external point of view, the answers to the two sets of questions, one in English the
other in Chinese, are equally good; Searle, in the Chinese room, has passed the Turing test. Yet
in the Chinese language case, Searle behaves ‘like a computer’ and does not understand either the
questions he is given or the answers he returns, whereas in the English case, ex hypothesi, he does.
Searle contrasts the claim posed by some members of the AI community – that any machine capable
of following such instructions can genuinely understand the story, the questions and answers – with
his own continuing inability to understand a word of Chinese; pace Stevan Harnad (1990) for Searle
the Chinese [squiggle and squoggle] symbols forever remain ungrounded.

Harnad’s ‘symbol-grounding problem’ is closely related to the problem of how words (symbols)
get their meanings. On its own the meaning of a word on a page is ‘ungrounded’ and merely looking
it up in a dictionary doesn’t help ground it. If I attempt to look up the meaning of a word I do not
understand in a [unilingual] dictionary of a language I do not already understand, I simply wander
endlessly from one meaningless definition to another (a problem not unfamiliar to young children);
like Searle in his Chinese room, my search for meaning forever remains ‘ungrounded’.

2.1. The ‘translation reply’

Of course the type of programs from the 1970s which Searle appears to caricature – described as
merely correlating uninterpreted Chinese symbols – are a long way from the style of modern A.I.
programs being developed by cognitive scientists using, say, Natural Language Processing (NLP)
techniques. Furthermore, with the recent development of powerful automatic translation tools (such
as ‘Google Translate’) it is not difficult to imagine that future Chinese room systems might deploy,
say, a machine translation module yielding an intermediate representation of a translation of the
Chinese story into English (which ex hypothesi Searle-as-CPU could understand and analyse).

For Searle-as-CPU mapping the Chinese squiggles and squoggles into internal representation(s)
in English offers potential for the unknown symbols to gradually become ‘grounded’. Hence in this
scenario, over time, it is not difficult to imagine Searle learning a little rudimentary Chinese.

At first sight, the possible development of complex A.I. programs (as described above) appears
to undermine the CRA. The problem arises because the rule-book that Searle follows (developed
by the Chinese room’s ‘programmers’) now processes complex ‘internal representations’ in English
(a language Searle understands) (Boden, 1990). This offers Searle-as-CPU a handle on underlying
symbol-grounding problem; the problem is now analogous to merely learning Chinese from a
Chinese:English dictionary.

Nevertheless, on deeper reflection, it is clear that such systems do not fundamentally under-
mine the CRA; unlike Searle, a real computing machine doesn’t bring a grounded understanding of
English to the problem of understanding Chinese anymore than it’s processes yield a grounded
understanding of Chinese (at most it brings merely syntactical information defining how to
execute its machine code instruction set). Thus, from the perspective of any real computing
machine, the English internal representations [and the Chinese symbols] that it processes remain
ungrounded; in other words, the original CRA thought experiment grants the Searle-as-CPU too
much ‘symbol-grounding power’.
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To redress the imbalance in symbol-grounding, we simply need to modify the original thought
experiment such that the ‘programmers’ of Searle’s rule-book are now, say, Japanese. In this case,
even allowing the instructions in the rule-book [its syntax] to remain in English (so that Searle-
as-CPU can still perform the required procedures), any intermediate internal representations that it
deploys [the program’s variables, data structures, translations etc.] are now specified in Japanese; a
language [monoglot] Searle does not understand.

It is clear that Searle-as-CPU could blindly follow such a rule-book (appropriately manipulate
the symbols and hence accurately respond to questions in Chinese) but continue to understand noth-
ing of the underlying Chinese story; for Searle-as-CPU, the Chinese symbols and Japanese internal
representations remain ungrounded. In this version of the CRA, the problem has become analogous
to Searle endeavouring to learn Chinese using only a Chinese:Japanese dictionary.

2.2. The ‘logical reply’

In a chapter published as part of the author’s edited collection of essays on the Chinese room
argument Jack Copeland challenged the logical validity of the basic Chinese Room Argument
(Copeland, 2002). Alongside other commentators, he pointed out that the person in the room is
not analogous to a computer executing an AI program, but rather just its CPU. Moreover the claim
of A.I. researchers is not that the CPU understands Chinese, rather that the computer as a whole [the
CPU + memory + hard disc and so on] does. Copeland subsequently observes that if the CRA is
supposed to target the entire system (of Searle, the room, the rule-book, the bits of paper etc.), then
the argument is simply not watertight; ‘one might as well claim of the statement “The organisation
of which Clark is a part has no taxable assets in Japan” follows logically from the statement “Clark
has no taxable assets in Japan”’.

In fact Copeland’s response is closely related to an earlier move which Searle anticipated from
the start: the ‘System reply’. Although the person in the room doesn’t understand Chinese, the entire
system of the room and its contents do; a response Searle finds entirely unsatisfactory.

Searle responds to the System reply by allowing the person in the room to internalise everything
(the rules, the batches of paper, etc.), so that there is nothing in the Chinese-room-system that is not
internalised. In response to the questions in Chinese and English, there are two subsystems – the
native English-speaking Searle and the internalised Chinese room – and Searle continues to assert
‘he understands nothing of the Chinese, and a fortiori neither does the system, because there isn’t
anything in the system that isn’t in him. If he doesn’t understand, then there is no way the system
could understand because the system is just a part of him’.

Not surprisingly this move – to allow the person in the room to internalise the rule book, bits
of paper, and so on – has also been criticised. One example is the critique by Georges Rey, who
argues that once ‘we observe the full complexity that a reasonable computational theory of mind
proposes, the idea of someone memorising the programs to all these systems and getting them to
run the right way is, well, pretty hard to imagine and intuitively evaluate’. However, as John Preston
suggests in his introduction to our volume (Preston and Bishop), ‘in this respect, it doesn’t differ
from Einstein’s request for us to imagine what it would be like if, per impossible, we were riding on
the front of a beam of light . . .’.

Hence Searle concludes:

“... the only motivation for saying there must be a subsystem in me that understands Chinese
is that I have a program and I can pass the Turing test; I can fool native Chinese speakers.
But precisely one of the points at issue is the adequacy of the Turing test. The example shows
that there could be two ‘systems,’ both of which pass the Turing test, but only one of which
understands; and it is no argument against this point to say that since they both pass the
Turing test they must both understand, since this claim fails to meet the argument that the
system in me that understands English has a great deal more than the system that merely
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processes Chinese. In short, the systems reply simply begs the question by insisting without
argument that the system must understand Chinese.”

Yet other discussions of the System reply, for example that by Haugland (2002), have questioned
why we should accept Searle’s conclusion that the internalised Chinese subsystem doesn’t under-
stand Chinese given that its responses to the Chinese questions are correct and indistinguishable
from those a native Chinese speaker may give:

“What we are to imagine in the internalization fantasy is something like a patient with
multiple personality disorder. One “personality”, Searle, is fluent in English (both written
and spoken), doesn’t know a word of Chinese, and is otherwise perfectly normal (except that
he has the calculative powers of a mega idiot savant). The other ostensible personality -
let’s call him Hao - is fluent in Chinese (though only written, not spoken), has no English,
and, moreover, apart from seeming to be able to read and write, is deaf, dumb, blind, and
paralyzed.

Why, exactly, should we conclude that Hao doesn’t understand the Chinese that he appears
to be reading and writing (“automatically”, as it were)?

Haugland suggests Searle’s [internalisation] response equivocates on the use of the word ‘in’ and
subsequently deduces that Searle is not entitled to assert that, ‘were Hao to understand Chinese, so
would he’; hence Haugland claims Searle’s internalisation response to the System reply is simply
not logically sound.

3. On consciousness and the metaphysical sensation of the inner

In response to Searle’s critics, an insight that may lend support to his position can be found at the
‘inner’, phenomenological level. Let us compare the responses of the two systems – Hao and Searle
– in the case where Searle first listens to a joke in Chinese and then in English. In the former case,
although [assuming he executes the memorised procedures correctly] Searle may make the right
linguistic responses in Chinese, he will never ‘get the joke’ and ‘feel the laughter’ because he, John
Searle, still doesn’t really understand a word of Chinese; whereas in the latter case, he may well
‘get the joke’, find it funny and laugh because he really does understand English. In other words,
there is a fundamental ‘difference in kind’ (an ontological distinction) between these two cases.
This is perhaps not so surprising as in the former case Searle’s command of English is grounded
by consciousness of his body; his interactions with the world and society; whereas in the latter ex
hypothesi, he is merely carrying out ungrounded, uninterpreted symbol manipulations.

Conversely, such reification on the metaphysical sensations of the inner has recently been
robustly criticised (from a Wittgensteinian perspective) by Murray Shanahan (2010). For example,
with reference to the treatment of language, we find at the beginning of Philosophical Investigations
(Wittgenstein, 1958), Shanahan highlights Wittgenstein mulling over the meaning of the word
‘five’ . . .

“... addressing the philosophically inclined, who are apt to enquire into the ‘nature’ or
‘essence’ of meaning - almost as if it were some kind of stuff, something ‘out there’, so to
speak, that is amenable to rational investigation. This is metaphysical thinking. But Wittgen-
stein advises us to set aside the vexing question, with its taint of metaphysics, of what a word
like ‘five’ means. Instead he simply offers a description of the way the word ‘five’ is used, a
description that emphasises its place in the hustle and bustle of daily human activity. There
is no presentation of propositions and arguments in the style of traditional philosophy, no
attempt to define the concept of number or pin down the nature of mathematical reality. Yet
(we can imagine Wittgenstein saying) what has been left out of the description?
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Here Shanahan’s exegesis of Wittgenstein would seem to imply that nothing of significance is left
out by Searle’s – programmed and perfectly acceptable – ‘Chinese room’ responses to questions
about a Chinese story. Conversely, I suggest that in ‘everyday’ language use – the hustle and bustle
of daily human activity – this is simply not the case.

Consider the following analogy: for all a small child may laugh at a sequence of adult jokes, she
does not appropriately feel the laughter and really understand the jokes. Similarly, for all Hao may
correctly respond to jokes in Chinese in ways that are behaviourally indistinguishable from those
of a native Chinese speaker, can Hao ever appropriately feel the laughter and really understand the
jokes?

In the absence of any linguistically grounding ‘conscious sensations of laughter’ accompanying
Searle’s execution of the Hao program, I doubt that by any normal use of the word ‘understand’
Shanahan can, legitimately, claim Searle-as-Hao understands the Chinese story anymore than the
young child ‘understands’ adult jokes; demonstrably [in this case] mere outward behaviour alone is
not sufficient to tease apart the two situations.

In conclusion I suggest that there is a fundamental ontological (not merely epistemological)
distinction between Searle-as-Hao and Searle-as-native-English-speaker; a difference that cannot
be teased apart by mere observation of external behaviour alone and – fatally for any Turing-esque
style test – I suggest that this conscious difference is central to the notion of what it really means to
‘understand’ and to ‘think’.

And so, just as there are a priori grounds for doubting that the mere execution of any computer
program is sufficient to instantiate conscious phenomenal states in a machine, there may be con-
comitant grounds for believing Turing’s 1950 dream – of mechanical, computational thought – is
just beginning to fade; the overarching fallacy of ‘cognitive computation’ finally exposed.
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Peter Millican on recognising intelligence and —

THE PHILOSOPHICAL SIGNIFICANCE OF THE
TURING MACHINE AND THE TURING TEST

The concepts through which we attempt to understand the world are formed by our experience of
it. Alan Turing’s ‘imitation game’ thought experiment can be seen as an attempt to stretch that
experience, and with it our concept of intelligence. We naturally take our own intelligence to be
intimately related to our phenomenology – our sentience and conscious awareness. But although
Turing himself sometimes evinces the same assumption, his invention of the Turing machine
provides an alternative, algorithmic model of information processing, and thus opens the
prospect – where that information processing is sufficiently sophisticated and effective to deserve
the name – of achieving ‘intelligence’ without consciousness.

1. Intelligence before Turing

The objects that we find in the world appear – at least to the casual observer – to divide fairly neatly
into two quite distinct categories: purposive and inanimate. We ourselves are the most immediate
examples of the former, and it is only natural to take ourselves as a model for the rest. From ‘the
inside’, we both know our purposes, and self-consciously act on them. Our planned behaviour thus
makes sense to us, and the actions of our family members and other humans are also explicable
accordingly. Such purposive explanations are then very naturally applied further, to the animals we
see behaving more or less comprehensibly in analogous ways (be they our pets, livestock, predators,
birds, insects, or whatever).

Plants are less obviously purposive over a short timescale, but their growth, development and
reproduction seem to manifest an equally clear teleology. Animals and plants together make up by
far the majority of the most conspicuous elements of the pre-industrial landscape (something easy
to overlook from within a modern house or city). It is not surprising, therefore, that before the age
of modern science, the world as a whole was almost universally interpreted in terms of purpose,
whether inherent or divine. Thunderstorms would vulgarly be attributed to the gods, and plagues to
witchcraft. But even the academics of the time – the Medieval Schoolmen with their Aristotelian
physics – took stones and stars to be as driven by purpose as animals, except that their purposes
are more constant. Stones strive to reach the centre of the universe, and therefore fall to Earth; stars
strive to mimic the eternal perfection of their Maker, and hence rotate around the heavens in perfect
circles.

Galileo’s telescope, in refuting the Aristotelian geocentric cosmology, equally sounded the
death-knell for this entire picture of the physical universe. The scientific revolution that he ush-
ered in undermined the view of inanimate objects as intrinsically purposive, replacing this with a
theory of inert matter acting in accordance with rigid causal laws, being pulled and pushed around
by forces and impulses that are mathematically determined by the relevant circumstances. Mov-
ing billiard balls bash into others and make them move in turn (according to their mass, angle of
impact, and velocity); water gushes through a pipe under pressure from a pump; stones fall to Earth
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while the moon continues to orbit, and we discover that both can be neatly explained by Newton’s
postulation of a force of gravity that attracts according to an inverse square law. Modern physics
significantly complicates this picture, of course, interlinking space with time and introducing an
element of indeterminism. But the general mechanistic paradigm remains, the future of inanimate
things unfolding from their past through mathematical laws that are purposeless and oblivious of
any final destination.

From this modern perspective, the idea of purpose in inanimate things seems puerile and super-
stitious, or an occult relic of a pre-scientific era. Even most examples of living organisms, including
plants and ‘lower’ animals, cease to be purposive, their appearance of teleology explained away by
Darwinian selection. Genuine purpose lies exclusively in the domain of conscious beings, desiring
certain ends and – at least in the case of humans and privileged ‘higher’ animals – thinking about
the means to achieve those ends before acting accordingly. To think in this way to good effect is to
be intelligent, a concept which thus ties together conscious purpose with the effective processing of
information to identify the means to a desired outcome. Without the desired outcome, there would
be no target for the information processing. But in the assessment of intelligence, it is the effec-
tiveness of that processing rather than the strength or nature of the desire that provides the crucial
measure. Human beings are the pre-eminent intellects of the natural world not because our desires
are stronger than those of, say, a dog, but because we are so much better at identifying unobvious
patterns, forming sophisticated plans, and calculating complex consequences.

2. Turing machines, intuition pumps and a word of caution

In his famous paper On computable numbers (1936),1 Alan Turing came up with a precise model of
an information processing machine – now universally known as a Turing machine – and provided an
informal argument to suggest that when suitably programmed, this could faithfully execute any well-
specified algorithmic process that can be carried out systematically by a human thinker. Suddenly a
new question arises: Should such information processing, as performed by an inanimate machine,
be deemed genuinely intelligent? Our experience of nature has not prepared us for this question,
for although we have learned to think of intelligence as primarily a measure of the sophistication of
information processing, we have also understood it as confined to conscious beings, planning how to
achieve their ends. Now we are in a novel situation, faced with a machine which is clearly capable
of processing information – of calculating answers to the sorts of questions that we standardly
think of as demanding intelligence – and yet which has no ends of its own, and whose functioning
has no need of reason as traditionally understood: no need of genuine understanding, insight, or
consciousness.

Philosophers attempting to circumscribe the boundaries of some controversial or troublesome
concept often appeal to thought experiments, nicely characterised by Daniel Dennett (1995) as
‘intuition pumps’. Given the context described above, two sorts of thought experiment naturally sug-
gest themselves. On the one hand, the advocate of machine intelligence can point to some suitably
impressive example(s) of the sophisticated information processing achievable by an appropriately
programmed Turing machine, and ask: How can something which achieves this be denied genuine
intelligence? On the other hand, the opponent of machine intelligence can emphasise the crude,
mechanical basis of the entity which is performing the processing, and the trivial individual steps
by which it is operating, and ask: How can anything which works like this be judged genuinely
intelligent? Turing himself takes the first path, presenting us in his paper Computing machinery

1 The paper is technically daunting, but is presented and explained very effectively by Petzold (2008).
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and intelligence (1950) with a scenario – a successful ‘Turing test’ – in which it seems unreason-
ably chauvinistic to deny intelligence.2 John Searle, with his well-known ‘Chinese room’ thought
experiment, takes the second path, focusing not on the outcome but on the method of processing,
which seems so fantastically divorced from reality as to lack any semantic grounding.3 The operator
in Searle’s room cannot plausibly be considered as reasoning about whatever is represented by the
Chinese symbols he manipulates; hence the processing he carries out cannot be classed as genuinely
intelligent. That, at least, is the moral that Searle would apparently have us draw.4

Thought-experiments designed to elicit particular ‘intuitions’ can be endlessly seductive for
philosophers, but a severe note of caution is appropriate. Consider, for example, the following
argument:

“Performance at chess cannot provide an adequate criterion of intelligence, even of a domain-
specific kind. For suppose that someone were to write a computer program of only a few
dozen lines of code (in a standard general programming language), which could play chess at
a grandmaster level in real time. Such a crude program could not possibly count as genuinely
intelligent. Hence grandmaster performance at chess is not a reliable proof even of intelligent
chess-playing.”

It might well be true that we would be reluctant to count such a short computer program as ‘gen-
uinely intelligent’. But of course the fundamental hypothesis of this thought experiment – that such
a program could possibly play grandmaster chess in real time – is utterly ludicrous. So we have no
reason for taking it seriously as a guide to the boundaries of our concepts. Indeed it is easy to see
that were we to allow this sort of thought experiment quite generally, it could without further ado
rule out any performance-based criterion of intelligence.5 But this seems outrageously simplistic,
given that our notion of intelligence is, as mentioned above, one that we tend to assess primarily in
terms of information-processing performance.

Note that performance here involves issues of resources, as well as output. It is not terribly dif-
ficult to write a computer program of modest length that plays infallible chess, if time and memory
space are no object: simply analyse every possible line to the end, and score each as checkmate
or as drawn (by stalemate, repetition, or the 50-move rule), chaining back accordingly. But such

2 Turing calls this the ‘imitation game’, but it is now universally known as the ‘Turing test’ (at least when it involves
a human interrogator interacting by teletype machine with one other human and one computer). In general terms, a
computer program ‘passes’ the Turing test if it maintains a text-only conversation with sufficient human realism that the
human interrogator cannot reliably distinguish between it and a human conversationalist. More detailed aspects of the
test are discussed in Section 6.
3 The most familiar Chinese room scenario (Searle, 1984, p. 32) involves a conversation conducted in written Chinese by
means of cards posted into and out of a room, where the incoming cards express meaningful questions, and the outgoing
cards provide meaningful and appropriate answers to those questions (such as might be produced by a competent and
intelligent native speaker of Chinese). The twist is that the man inside the room has no knowledge whatever of the
Chinese language or of the semantics – the meaning – of the symbols he is reading or writing. Instead, he is generating
his written ‘answers’ by strictly applying rules based purely on the syntax – the shape and structure – of the ‘question’
character strings that he receives, these rules being specified in books contained within the room. Searle wishes us to
conclude that the apparent meaningfulness of the answers that the man generates is an illusion, a conclusion which can
then be taken as equally applicable to conversations generated by natural language processing computer programs.
4 I say ‘apparently’, because although Searle presents his argument as an attack on ‘strong artificial intelligence’ and
on the idea that machines can ‘think’ (e.g., Searle, 1980, p. 417; 1984, p. 36; 2002, p. 56), he generally expresses his
thesis not as a denial of intelligence but rather of ‘intentionality’, ‘cognitive states’ (e.g., Searle, 1980, p. 417); ‘a mind’,
‘mental states’ (e.g., Searle, 1984, p. 37); ‘cognitive processes’, ‘mental content’, ‘semantic content’, or ‘consciousness’
(e.g., Searle, 2002, Section I). Since my focus is on Turing I shall not address this issue in detail here, but see note and
Sections 4–5. below.
5 ‘Suppose that someone were to write a computer program of only a few dozen lines of code . . . which could solve any
problem of kind X . . . ’. And so forth.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/9 3:22 Page 590 #40

590 Part III

a program, whose first calculated move will require vastly more steps than there are picoseconds
in the entire history of the universe, is unlikely to be deemed ‘intelligent’. Much the same applies
to Ned Block’s ‘Blockhead’ program, supposed to be programmed in advance with pre-prepared
‘intelligent’ responses for every conceivable sequence of verbal inputs in a conversation of some
pre-defined length.6 Such a program is possible only ‘in principle’, for even to set it up to cope
with a fairly short conversation could consume more memory than the universe can hold. It seems
entirely reasonable to deny that such programs can count as genuinely intelligent, when their mode
of operation is so far removed from the clever techniques that intelligent organisms have evolved,
to enable us to negotiate our way through complex problems with very limited resources.

Searles “Chinese room” combines outrageous unfeasibility with elements of genuine impossi-
bility, because it hypothesises that intelligent answers – as good as those of a typical native Chinese
speaker – could be framed by following purely syntactic rules in a context where the operator
of those rules has no means of taking account of a changing world, both external and internal,
whose events form the subject-matter of so much of our conversation. When asked (the Chinese
translation of) questions such as ‘Do you like the weather we’ve been having?’, ‘Did yesterday’s
news about X upset you?’, ‘How many times did I knock on your door just now?’, or ‘Have you
disagreed with anything I’ve said in the last five minutes?’, the operator’s syntactic rules give no
scope for sensory input, real-time updating, or emotional reaction, and so however sophisticated
those rules might be, he cannot possibly match the response of someone who understands the
question. But even if the questions are artificially limited to comprehension of a fixed story writ-
ten in Chinese, rather than being interactive,7 the suggestion that intelligent responses to arbitrary
Chinese questions could be generated by Searle’s specified method – through the manual consul-
tation of purely syntactic rules recorded in books within a room – is as ridiculous as the idea that
a 50-line computer program might play grandmaster chess in real time. ‘Surely’, Searle’s scenario
implicitly urges, ‘something that operates in such a manner cannot possibly be deemed intelligent’.
This indeed seems persuasive, but then something that operates in such a simplistic manner could
not possibly reach the level of performance that Searle is postulating, so the significance of his
thought experiment is crucially undermined.8

3. Turing machines, new paradigms and open texture

I started by suggesting that our modern concept of intelligence was established within a world
apparently divided between two main categories of entities. We ourselves, together with ‘higher’
members of the animal kingdom, are organisms moved by conscious desires, able to process and
exploit information (with various degrees of sophistication) in the conscious attempt to fulfil those
desires. All other things lack consciousness and therefore cannot be moved by such desire, nor
apprehend information. These unconscious entities include physical objects, which act mechani-
cally: pushed or pulled around by impacts and forces that are blind to any final outcome. Plants and
‘lower’ animals, though presumably equally unaware, behave in ways that seem to manifest pur-
pose, sufficiently so that for millennia it proved almost irresistible to attribute this behaviour to the

6 See Block (1981). It is unclear who first coined the nice name ‘Blockhead’ for the program described in this paper.
7 As in the original 1980 version of Searle’s Chinese room scenario. For some useful background to that article, see
Preston (2002), pp. 16–19.
8 Searle might respond that it is conceivable that something operating by the Chinese room method – even under realistic
constraints of space and speed – might achieve the required level of real-time performance, and this should therefore be
considered possible. However it is obvious from cases such as the provability (or otherwise) of Goldbach’s Conjecture
that conceivability can be taken as a reliable guide to possibility only, at best, where it is interpreted as involving clarity
and distinctness of a fairly strong kind. I can of course conceive in a general sense (e.g., sufficient for understanding the
words) what it would be for a 10-line computer program to play infallible chess in real time. But I cannot clearly and
distinctly conceive how such a program would operate, and it is very obviously not a genuine possibility. For more on
this, and on Hume’s influential appeals to the Conceivability Principle, see Millican (forthcoming) Section 5.
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influence of a divine being with human-like intentions. Darwin’s theory of evolution was revolution-
ary not only because it removed the need for such a designer-god, but more fundamentally, because
it introduced an entirely new mode of explanation which was neither mechanical nor purposive.
Such explanatory innovations are rare but momentous: other examples would be the development
of mechanism itself by Galileo and others (e.g., Descartes and Boyle) in the seventeenth century,
and its challenge by quantum mechanics in the twentieth century, which brought a very different
conception of physical explanation.

The invention in 1936 of what we now know as the Turing machine bears comparison with these
paradigm shifts.9 For it provides a way of specifying processes in algorithmic terms that are nei-
ther purposive nor mechanical, but have common features with each. Like a purposive explanation,
an algorithm is couched in terms of the abstract processing of information. But like a mechani-
cal explanation, this processing is at bottom ‘mindless’ and automated, taking no account of any
semantic significance and paying no regard to any desired endpoint. This – I suggest – is what
opened the possibility that Turing presented so forcefully in his 1950 paper, of intelligent informa-
tion processing that is automated rather than purposive. Before the Turing machine, information had
to be understood in terms of its significance to a conscious mind. But Turing saw that information
– and information processing – could be understood quite differently, thus opening the possibility
of machine ‘intelligence’ gauged in terms of inputs and outputs rather than requiring any sort of
internal understanding. Hence we reach the idea of a thought experiment that compares the exter-
nal behaviour of man and machine, judging the latter to be intelligent if it can do equally well. As
we saw in the previous section, such thought experiments need to take account not only of inputs
and outputs, but also the constraints of our practical situation. Even the best-equipped organisms
are limited in knowledge, capacity, time, and other resources. This puts a premium on the effective
exploitation of our limited means, on efficient and flexible processing with uncertain inputs and
under pressure of time. We naturally judge intelligence accordingly, and deprecate the inefficient
brute force methods of the implausible thought experiments of Searle and Block, which lack any
practical utility and differ so radically from any familiar reality.

Turing’s ‘imitation game’ thought experiment, however, still remains to be judged, and we surely
know now – even if this was hard for most of his readers to appreciate in 1950 – that the level of
computational linguistic ability that it postulates is relatively plausible. Over the last decade, inter-
active computer systems have made huge strides in the processing of natural language (as illustrated,
for example, by the development of automated translation systems), and although they still have a
long way to go, it is by no means obviously ridiculous to consider a future system – even within
the next few decades – that might achieve something like the level of performance anticipated by
Turing. Admittedly some aspects of his thought experiment are less plausible than others, notably
his requirement that the envisaged system should be able to pass for a human in general conversa-
tion, informed as this might be by personal emotions and by reference to changing events.10 So to

9 Floridi argues that ‘the best way to understand the information turn is in terms of a fourth revolution in the long process
of reassessing humanity’s fundamental nature and role in the universe. We are not immobile, at the centre of the universe
(Copernicus); we are not unnaturally distinct and different from the rest of the animal world (Darwin); and we are far from
being entirely transparent to ourselves (Freud). We are now slowly accepting the idea that we might be informational
organisms among many agents (Turing) . . . ’ (2008, p. 651). Whether or not one accepts this account (e.g., I would be
inclined to replace Freud with Hume and the development of cognitive science, cf. Section 4 below), it is interesting that
the paradigm shifts I have identified – in terms of the discovery of new modes of explanation – correspond quite closely
to major upheavals in our understanding of our place in the universe.
10 Note, however, that Turing would ‘wish to permit every kind of engineering technique to be used in our machines’
(1950, p. 435; see p̄. 553 this volume), including ‘the best sense organs that money can buy’ (p. 460; p̄. 568). Con-
sideration of sensory input plays a large role in his discussion of learning machines (pp. 454–460; p̄p̄. 564-568), and
presumably explains why he expresses a special concern about the possibility of extra-sensory perception, which (were
it to occur) could not be replicated mechanistically (pp. 453–454; see p̄. 564 this volume). Searle standardly restricts his
operator to information gleaned from books inside the Chinese room, but he takes the message of his thought experiment
to apply equally to a robot equipped with appropriate sensors (1984, pp. 34–35).
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ensure that our discussion remains solidly grounded in foreseeably plausible reality, let us suppose
only that the challenge of the Turing test has been fulfilled in an extensive – though not unlimited –
factual domain: perhaps the science of chemistry. Suppose that computers have been programmed
in such a way as to be able to sustain long and detailed conversations, appropriately directed, with
complex, accurate reasoning and interlocking themes, apparently well informed about all relevant
aspects of chemistry.11 Should we call such conversational behaviour ‘intelligent’?

In making this judgement, there is no reason why we should confine ourselves within narrow
behaviourist limits, and it is entirely legitimate to take account of obvious points regarding the
nature of any such program. Clearly such sophisticated discourse about chemical interactions will
have to be informed by representations of molecular structures and relevant laws and forces: this
is not a Blockhead-style lookup table, nor a ‘chatterbot’ designed to mislead (cf. Section 6 below).
Real information processing is taking place, generating appropriate and informative responses by
reference to the same mathematical and structural relationships that would inform a human expert,12

but none of it – at least on the part of the program – is the least bit conscious. Does this then debar
it from deserving the accolade of intelligence?

I would like to suggest that we cannot necessarily expect an unambiguous answer to this
question, because it concerns the application of a concept beyond the context for which it has
evolved. Our common sense world view seems to imply a general division between things that
are consciously purposive and calculating, and others that are neither conscious, nor purposive,
nor calculating. So it is not surprising that we then find it hard to classify a novel kind of entity
which seems to calculate very effectively (in a sophisticated manner, and to a useful purpose), but
which itself entirely lacks any kind of consciousness, and hence lacks any awareness or ‘internal’
understanding of either the apparent purpose or the calculation.

We have here a case of what Friedrich Waismann called open texture. A concept or term is
said to be open textured if our understanding of it does not ‘provide in advance for all possible
cases’.13 Our concepts are framed, or adapt, to fit the circumstances in which they are standardly
employed, and they commonly fail to have determinate criteria of application in abnormal, unantic-
ipated circumstances. Suppose, for example, that marriage is defined as being allowed only between
a man and a woman, in a society in which it is absolutely taken for granted that everyone has an
unambiguous sex (and gender) throughout their life. This rule might seem to be entirely clear and
precise; indeed those who frame it take it be so. But it can nevertheless become indeterminate if, for

11 This enables us to put aside the question of whether such a program could convincingly discuss matters that arguably
require essential reference to human perceptions or emotions, such as sensory phenomena, morals or aesthetic apprecia-
tion. The presupposition that intelligence in one area does not require intelligence in all seems highly plausible to me, but
could perhaps be threatened if, for example, it turned out that only a ‘global workspace’ could solve the frame problem,
cf. Shanahan and Baars (2005).
12 Searle might contest this, on the ground that there is no semantic connection between the representations in the program
and the real-world features they represent. But for present purposes, the fact that there is a well-designed isomorphism
between the relationships as understood by the scientist, and those formally manipulated by the program, will do. Clearly
in some sense there is information being processed, even if that information fails to live up to Searle’s ‘semantic’ require-
ments. Space does not permit further discussion of Searle’s concerns here, but suffice it to say that I consider his notion
of the ‘semantic’ to be fundamentally obscure, and liable to dissolve under close analysis. As the references in note 4
above indicate, his terminological promiscuity tends to conflate information processing with phenomenology, whereas
I shall argue in Sections 4–5 below that these are best distinguished, since ‘intelligent’ processing does not necessarily
require consciousness. Once distinguished, the plausibility of Searle’s claim that a computer program could not possibly
have ‘semantic’ relationships – at least in the information processing sense – is significantly weakened (especially if we
consider the possibility of directly connecting the program to reality through appropriate sensors and manipulative mech-
anisms). Moreover even if the claim were to be accepted (e.g., on the basis that any fully adequate semantic relationship
must involve conscious intentionality), it would then require a further argument to move from a lack of semantics to a
lack of intelligence.
13 Quoted from Williamson (1994), p. 90. Williamson discusses Waismann’s use of open texture on pp. 89–95.
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example, someone is born chromosomally male but physically female, or if sex-change operations
occur. As the philosopher of law Herbert Hart insisted and this example illustrates, open texture is
particularly important in legal contexts, which often hinge on the precise boundaries of rules that
have been specified without even considering, let alone defining, their application to ‘all possible
cases’.14

4. Intelligence and consciousness

If the concept of intelligence is open textured in this way, then its application to suitably pro-
grammed computers is an open question, rather than one we should expect to be able to decide
by simply analysing our existing concept. But this does not imply that the question has no best
answer, and we have already seen at least one good reason for siding with Turing rather than Searle.
For although we standardly take an intelligent entity to be one that has conscious awareness and
purpose as well as effectiveness in processing the relevant information, nevertheless when we judge
one person to be more intelligent than another, we do so almost exclusively in terms of the latter
criterion. Thus we do not typically consider mathematical brilliance to be any sort of measure of the
quality of a mathematician’s inner life – the motivational desires, feelings of effort, or even poetic
urges that he might experience whilst proving his next theorem. All this subjectivity is irrelevant,
and it is the objective quality of his proof production that dominates, except in so far as we are
inclined to require some inner life before we are prepared to count ‘him’ as a mathematician at all
(as opposed to a mathematical tool).

This consideration can be pushed further, by noticing that for humans, at any rate, there is often
an inverse relationship between these subjective and objective qualities. Perhaps the most familiar
example is in driving a car, where the seasoned expert achieves high performance with little focused
‘consciousness’ of what he is doing – or subsequent memory of having done it – while the stumbling
learner driver is only too conscious of every tense observation and manoeuvre. In the same way, the
novice chess-player struggles to find a good move, vividly aware of his efforts and uncertainties,
reflecting carefully and anxiously on all the considerations that come to mind. The grandmaster, by
contrast, typically finds his move effortlessly, almost without conscious thought and entirely without
struggle; moreover when asked to explain his ‘thinking’, he might well have nothing better to say
than that ‘in this sort of position, that is obviously the right move to play’. Here again our common
sense identification of intelligent information processing with self-conscious information processing
is contradicted, as we find that greater expertise is frequently accompanied by less, rather than more,
articulacy.15 And accordingly the person who has had to struggle to acquire a skill often makes the
better teacher, having reflected far more on what the skill requires, and able to relate more closely
to the difficulties of students. But we do not on this account judge him to be the better practitioner
of the skill, even where the skill is one that we think of as paradigmatically ‘intellectual’. Executing
an intellectual task is one thing; reflecting on it quite another.

Pushing even further in the same direction, it turns out that there is little correlation between the
sophistication of information processing that common tasks require, and their typical psychological
impact or effort. Indeed, it seems that the vast majority of the most complex processing that takes
place in our brains is entirely unconscious, and remarkably little of our mental life can properly be
explained in terms of reflective reasoning and explicit inference. David Hume famously pioneered
this message, proving the impossibility of accounting for such basic mental operations as inductive
inference or the identification of persisting objects in terms of any traditional concept of reason.

14 An entertaining example is provided by a famous Punch cartoon (6 March 1869, p. 96), in which a railway porter is
telling an old lady about the price of travelling with her menagerie of pets, given rules which specify a cost for dogs
only: ‘Station Master says, Mum, as Cats is “Dogs”, and Rabbits is “Dogs”, and so’s Parrots; but this ’ere “Tortis” is a
Insect, so there ain’t no charge for it!’
15 See Michie (1993) and also my introduction to Millican and Clark (1996), pp. 2–3.
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Though we might suppose that we are transparently apprehending rational connexions between past
and future, or passively perceiving continuing things through time, in truth our minds (or at least our
brains) are actively supplying crucial contributions of their own. It is these active inputs that enable
us to move to conclusions beyond what pure reason would warrant, and to smooth over irregularities
in the flux of sensations. And because they are creative rather than cognitive processes – reading
into the world of our experience rather than off it – Hume attributes them to ‘the imagination’
rather than to ‘reason’. The same lesson has been emphasised even more in recent years, with
discoveries prompted by studies in artificial intelligence. It is now clear, for instance, that even
the identification of objects in a visual scene at a single time essentially involves active processes
of edge detection, shadow interpretation, and so forth, all of which are typically subcognitive and
therefore unavailable to consciousness. And this increased appreciation of the sheer computational
complexity of everyday cognition has gone together with a re-evaluation of the familiar examples of
‘intelligence’ that once seemed to represent the pinnacle of intellectual achievement. Arithmetic, for
instance, seems abstract and difficult for humans, and is hard to master without years of schooling
and practice. Yet compared to the computational difficulty of, say, tracking and catching a ball
whilst running (something which many of us can do with relative ease, and which dogs seem to do
quite naturally), arithmetic is utterly trivial. Again the lesson seems to be that if we wish to preserve
the criterial correlation between intelligence and competence founded on sophisticated information
processing, then we must be prepared to cast off the folk-psychological assumption that greater
intelligence requires greater consciousness of what we are doing. With that assumption discarded,
there is much to be said for relinquishing the requirement of consciousness entirely.

5. Information processing and phenomenology

Throughout this discussion I have resisted any conflation between ‘intelligence’ and ‘conscious-
ness’, whilst fully acknowledging that our naı̈ve concept of the one significantly implicates the
other. This is important, because discussions of the Turing test are often horribly muddied by a fail-
ure to distinguish two quite different features of what we take to be intelligent thought, namely the
information processing that it involves, and the phenomenology that potentially accompanies that
information processing. Too often, the possession of intelligence is conflated with possession of a
mind, yet it seems to me that the connotations of the two are radically different. When we consider
an entity as having a mind, the crucial factor is not so much the quality of its intellectual processing
as its possession of an ‘inner life’, or as Thomas Nagel famously put it, there being ‘something it
is like’ to be them. When we say that we are ‘minded’ to do something, we are expressing a felt
desire rather than any intellectual process. And nothing said above has given the slightest ground for
supposing that an electronic computer – no matter how cleverly it might be programmed – is able to
experience genuine feelings. I have argued that we should be prepared to accept the notion of uncon-
scious intelligence, but there is no such compelling reason to countenance unconscious desires, let
alone unconscious feelings.16 Some might wish to do so, attracted either by exotic Freudianism or,
at the other extreme, by the austere objectivity of behaviourism or functionalism. But there is no
need for us to adjudicate on these things here, and I am happy to allow the opponent of machine
intelligence to insist that even the merest wish – let alone a passion or a craving – is something that
essentially requires feeling, and hence is confined to conscious beings.17 We have already noted

16 Unconscious sensations may provide an intermediate case, in that although sensory awareness can be seen as a source
of information (and to that extent abstracted from phenomenology), conceptually it seems to be tied more closely to its
internal Nagelian character than in the case of intelligence.
17 So here I am content to agree with Searle in opposing the view that ‘any physical system whatever that had the right
program with the right inputs and outputs would have a mind in exactly the same sense that you and I have minds. . . . that
it must have thoughts and feelings, because that is all there is to having thoughts and feelings: implementing the right
program.’ (1984, pp. 28–29).
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that this does not prevent unconscious beings from exhibiting apparent teleology, as we find in
much of the animal kingdom and universally amongst plants. But again, for present purposes, I am
quite happy to allow Turing’s opponent to explain this away by the familiar appeal to Darwinism,
and to reserve the term desire for the genuine (i.e., conscious) article. Such a reservation, however,
is entirely consistent with allowing the possibility – indeed the manifest reality – of unconscious
intelligence.

Turing himself, unfortunately, is guilty of the conflation that I am resisting, and perhaps delib-
erately so. In his 1950 paper he considers Geoffrey Jefferson’s ‘Argument from Consciousness’ as
a ‘denial of the validity of our test’, and his response is to compare it with solipsism, as though we
could have no better reason for denying consciousness to a (suitably conversing) computer than we
have for denying it to our fellow humans. But this response is weak, and should convince nobody
who takes consciousness to have an ontological reality over and above behaviour and functional
role. Certainly the subjectivity of consciousness seems mysterious, and perhaps all the more so as
our psychological and physiological science has become more objective. The relationship of con-
sciousness to our physical brain is hard to make sense of, as is its evolutionary function: even if we
ignore the difficulty of understanding how consciousness can arise from physical matter, it remains
obscure how, having arisen, it can contribute to our biological success (as the popularity of thought
experiments involving ‘zombies’ testifies). Nevertheless, if there is one solid certainty in all this,18

it is that consciousness must indeed bring some such evolutionary benefit, perhaps by facilitating
a more efficient form of perspectivally informed processing than would otherwise be possible (e.g.
spatio-temporal, perhaps, or in terms of our ability to employ a theory of mind about our fellows).19

And that being so, we have every reason to suppose that the same biological make-up which gen-
erates our own capacity for consciousness does exactly the same for others of our species (and,
indeed, of similar species).20 No such argument can be made in the case of a programmed computer
or robot. On the contrary, such a machine’s behaviour – however closely it may be designed to
mimic our own – is precisely explicable in terms of its program: that is what the program has been
designed to do! When the machine produces an output which, in a human, would be expressive
of consciousness, we know that the reason it does so is that it has been programmed appropriately
(even if the detailed algorithmic mechanism is unpredictable or too complex for us to discern).
Genuine, full-blooded, ontological consciousness – whatever exactly that might be beyond
behaviour and functional role – is an entirely gratuitous postulation in such a case, eliminable
immediately with a slash of Ockham’s Razor. So Turing’s anti-solipsistic move is powerless against
someone who insists that we have such consciousness.

Note that this argument does not depend on the assumption that genuine consciousness is irrel-
evant to the achievement of sophisticated information processing; nor would it be refuted by the
discovery that some forms of information processing are entirely beyond the practical capacity of
anything that lacks a conscious perspective. For the latter discovery could only plausibly be made

18 Such certainty is vastly more likely to be found in reasoning based on scientific considerations that are liable to empir-
ical test – or on formal rules whose reliability can be rigorously tested by mechanical application to numerous cases –
than in the aprioristic (and typically ad hoc) untestable argumentation of armchair philosophers. Anyone disinclined to
accept this Humean point (1748, 12.27-9) would be well advised to ponder the track-record and shifting fashionable tides
of philosophical armchair speculation!
19 If consciousness had no causal impact on behaviour, but just somehow arose as an epiphenomenon, it would be a
complete coincidence that such a manifest correlation has evolved between subjective feelings and bodily events. If the
subjective pain of banging my knee, or the pleasure of tasting honey, are causally inert, then there is nothing to tie them
evolutionarily to the events that characteristically generate them, and from the point of view of survival, they could just
as well be reversed.
20 For an illuminating discussion on the connection between evolutionary considerations and the inference to mental
states of others, see Sober (2000).
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in respect of a form of information processing that had not been achieved by a computer. If a com-
puter were to achieve it, that would ipso facto provide overwhelming evidence that the computer’s
programmed powers were sufficient for it, and thus count decisively against the hypothesis that
anything more was required.

6. Evaluating the Turing test: the lessons of ELIZA

In considering the significance of Turing’s thought experiment, we should bear in mind the state
of computer technology – both hardware and software – at the time when he came up with it. He
could not point, as we can now, to sophisticated computer systems achieving feats of information
processing hugely beyond the powers of the unaided human brain, not only in relatively abstract
calculation (such as arithmetic or chess-playing), but also across a large and ever-increasing range
of scientific enquiry. What he sought, therefore, was not a general criterion of intelligent behaviour,
but a clear illustration of one sort of behaviour that anyone would recognise as paradigmatically
intelligent were it to be achieved.21 And in order to make this illustration relatively plausible within
a reasonable timescale, that behaviour had to be confined to verbal interaction. In this context, his
choice of test was judicious, his examples convincing, and his predictions remarkably accurate.
Here, first, is an example of a conversation from the 1950 paper which, if spontaneously produced
(and hence not pre-arranged in any way), would surely tend to persuade us that the Witness is
capable of responding to such questions appropriately and ‘intelligently’:

“ Interrogator: In the first line of your sonnet which reads ‘Shall I compare thee to a
summer’s day’, would not ‘a spring day’ do as well or better?

Witness: It wouldn’t scan.
Interrogator: How about ‘a winter’s day’ That would scan all right.

Witness: Yes, but nobody wants to be compared to a winter’s day.
Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

Witness: In a way.
Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick would mind

the comparison.
Witness: I don’t think you’re serious. By a winter’s day one means a typical winter’s

day, rather than a special one like Christmas.” (1950, p. 446; p̄.560)

However Turing is not so rash as to predict that performance at anything like this level is likely to be
achievable soon. At the beginning of Section 6 of his paper, ‘Contrary Views on the Main Question’,
he famously makes the following far more modest prediction:

“ I believe that in about fifty years’ time it will be possible to programme computers, with a
storage capacity of about 109, to make them play the imitation game so well than an average
interrogator will not have more than 70 per cent. chance of making the right identification
after five minutes of questioning. . . . I believe that at the end of the century the use of words
and general educated opinion will have altered so much than one will be able to speak of
machines thinking without expecting to be contradicted.” (1950, p. 442; p̄. 557)

The standard he suggests – whereby an average interrogator is supposed to be able to do no better
than distinguishing between the computer and a human with 70% accuracy after a mere five minutes

21 Turing makes clear that he is seeking a sufficient test of intelligence rather than a necessary condition, when addressing
the objection: ‘May not machines carry out something which ought to be described as thinking but which is very different
from what a man does?’ (1950, p. 435).
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of questioning – is not particularly high.22 Had this been a serious goal of artificial intelligence
research, I expect that it would have been solidly achieved by the year 2000. As for the other part
of Turing’s prediction, by the end of the century it had indeed become fairly commonplace to talk
of computers ‘thinking’, especially about difficult information-processing tasks taking place in real
time. Other psychological verbs have also become natural to apply to computer programs, with
minimal if any embarrassment, and a conversation like this about a chess-playing program would
not seem out of place:

“Why is the computer taking so long to respond to your queen move?”

“It’s thinking hard, because it’s realized that if it tries to defend against my attack by bringing
its knight over to protect the king, I’ll be able to grab its pawn on the other side. It’s displaying
now that it assesses the position as better for me materially, but it seems to be predicting that
it can get some activity to compensate if it decides to let the pawn fall.”

No doubt many philosophical pedants, hearing this conversation, would want to insist that the psy-
chological verbs are being applied only loosely or analogically. But the fact remains that such
application is extremely natural, and by now rather likely to be used ‘without expecting to be
contradicted’. We have here symptoms of precisely the sort of conceptual evolution advocated
above, whereby increased habituation to a changed reality leads to a corresponding adaptation of
our traditional concepts.

This conceptual evolution has not been significantly fostered by work towards satisfying the
Turing test, which has led in a very different and less productive direction, namely the develop-
ment of ‘chatterbots’ that are typically at best amusing curiosities rather than serious tools. Indeed
with hindsight, it is a shame that Turing not only proposed his ‘imitation game’ as an illustration of
how a computer could manifest intelligence (as in the sonnet conversation above) but also gave the
impression that it could provide a rough measure of success in developing machine intelligence. For
his quantitative prediction – that a 30% success rate at impersonation over five minutes’ questioning
would be achievable by the end of the century – naturally suggests that a higher success rate, over
a longer period of questioning, would be a suitable indicator of progress. But unfortunatey, it is
no such thing, because as the experience of Joseph Weizenbaum’s ELIZA program of 1966 quickly
showed, success in impersonation can be far more readily achieved by trickery and misdirection than
by genuinely intelligent processing. Hence we have the sad spectacle of the Loebner Prize organi-
sation, year after year, holding a Turing test challenge which encourages the further development of
these largely pointless chatterbots, whose programmers, rather than attempting to write systems that
handle language intelligently, instead focus on marginally improving their methods of appearing to
contribute appropriately to the flow of a conversation. What these programs actually do is typically
nothing more intelligent than recognising simple patterns in the input and replaying adaptations of
the interrogator’s own phrases, suitably modified by switching first- and second-person etc. Where
even this fails, they say something entirely neutral (e.g., ‘GO ON’), revert to some previous input,
change the subject, or disguise the failure by saying something that makes no pretence of continuing
a thread of conversation but is instead designed to appear amusingly eccentric (a manoeuvre which
can even be presented positively as giving the chatterbot a distinctive ‘personality’). The original

22 This would mean that a sequence of 100 members of the public, each faced with the task of distinguishing a human
from the computer through a five-minute ‘interrogation’ of each of them, could be expected to achieve 70 correct iden-
tifications, and 30 incorrect. So there is no requirement here that the interrogators are deceived most of the time. It is
perhaps better to think of this performance as 30% successful impersonation by the computer program, rather than 70%
accuracy, since the point of the test is to provide a measure of the program’s achievement, rather than the interrogators’.
(But note that 50% successful impersonation would be enough to imply indistinguishability from a human – any more
than that, and the program is implicitly being judged to be ‘more human than a human’).
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conversation in Weizenbaum’s 1966 paper, which introduced most of these techniques, includes
such gems as:

“ Men are all alike. [pattern: ‘alike’]
IN WHAT WAY
. . .
Well, my boyfriend made me come here. [pattern: ‘my X’ – this also prompts saving of X]
YOUR BOYFRIEND MADE YOU COME HERE
. . .
I need some help, that much seems certain. [pattern: ‘I need X’]
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
. . .
My mother takes care of me. [pattern: ‘my mother X’]
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
. . .
Bullies. [no recognized pattern, so previously saved ‘my X’ phrase is re-used instead]
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU

COME HERE ”

Such a conversation can indeed seem intelligent, because observers are typically unaware of how
much its apparent coherence depends on trickery and pretence (or, in the last case, sheer coinci-
dence), and so they systematically give the computer the benefit of the doubt by interpreting the
outputs as maximally appropriate within the conversation. Weizenbaum also cunningly has his pro-
gram ELIZA play the role of a Rogerian psychotherapist, whose method consists largely of echoing
back the human user’s own thoughts, in order to elicit further such thoughts.23 This ruse is quickly
exposed if one sets two clones of such a program conversing with each other: without any injection
of substantial content from human input, the conversation soon descends into aimless vacuity.

Since Turing presented his test as a demonstration of how computers could in principle man-
ifest human-like intelligence, it is ironic that the main objection to the test is how unintelligent
humans can be, both as conversationalists and as interpreters. In some areas of ordinary life, a fair
amount of human conversation can consist of vacuous responses which engage only vaguely with
what has gone before. Presumably for this reason, our interpretation of others’ contributions can be
excessively uncritical and over-generous, even when we have knowingly been put in the role of an
‘interrogator’ judging their intelligence. So although human conversational behaviour is generally
intelligent up to a point – and often highly so – it is hardly a paradigm of intelligence, and there
is no reason why indistinguishability from a human should be seen as the ideal criterion of intelli-
gence, let alone indistinguishability as judged by an average human (which is thus doubly polluted
by human sloppiness and fallibility).

None of this is to deny Turing’s claim that genuine indistinguishability over an extended and
suitably probing discussion by a discerning interrogator – as illustrated by his sonnet conversation –
would provide a reasonable basis for ascribing intelligence (at least on a provisional basis).24 But
were anything remotely like this to be achievable in practice, the main problem with the test would
become not the over-generosity of uncritical interrogators, but rather their excessive discernment.
For in this situation, the main concern of programmers attempting to fulfil the test would be not

23 For an implementation of Weizenbaum’s ‘DOCTOR’ script (based closely on the appendix of his 1966 paper and
generating the dialogue he quotes), within a fully documented learning environment that facilitates practical chatterbot
development and experimentation without requiring programming expertise, see www.philocomp.net/ai/elizabeth/.
24 The ascription could be withdrawn if it later turned out that the program was driven by a lookup table or just happened
to ‘get lucky’. As argued above, it is sophisticated and appropriate information processing – what enables it to respond
‘intelligently’ to a wide range of inputs – that constitutes intelligence, not just outward behaviour on particular occasions.

http://www.philocomp.net/ai/elizabeth/
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the maximising of intelligent processing per se, but rather the imitation of human reactions, many
of which are informed by our emotions, personal histories and social lives, and often have rather
little to do with intelligence. Mimicking of all this so as to convince a discriminating judge over
an extended period would be an extremely impressive programming achievement, no doubt. But
the notion of intelligence – as Turing would have been the first to insist – is nothing like so human
focused as to require any such thing (cf. note 21 above), and hence it would be utterly perverse to
make the general imitation of human characteristics a major focus of artificial intelligence research.
Indeed this would be almost as ridiculous as making the imitation of birds – rather than fast, safe
and efficient flight – a primary aim of aeronautical research.25

7. Conclusion: The Turing test and the Tutoring test

When Turing proposed his ‘imitation game’ in 1950, it served the valuable role of highlighting a
context – namely textual conversation – in which one could realistically foresee computer behaviour
that deserved to be called ‘intelligent’. I have suggested that in this role the ‘Turing test’ succeeds,
and that if we were presented with a system which could reliably generate conversation of the quality
he illustrates in his article, we would have excellent reason for counting it as intelligent, even though
we would have no good reason for ascribing it any sort of conscious awareness. Admittedly this
involves conceptual change, because our naı̈ve concept of intelligence combines both information
processing and phenomenological aspects, but such change is well motivated in this sort of situation,
where we are presented with a new kind of entity that fails to fit into our naı̈ve taxonomy. Moreover
there are good independent reasons for seeing sophistication of information processing – rather than
inner experience – as the central criterion for intelligence: this conforms to our standard methods
of comparing intelligence amongst people and animals, and also acknowledges the reality of highly
intelligent behaviour that is ‘intuitive’, habitual, or subcognitive.

Unfortunately, however, the Turing test itself fares very badly as a method of measuring intelli-
gence: it simply is not true that better performance in the test (in the sense of passing more plausibly
for a human conversationalist, or for a longer period) correlates well with intelligent information
processing. Nor is this only because success in the test is biased towards the imitation of human
conversational behaviour, which surely disqualifies it as a necessary condition for intelligence (as
Turing himself recognised). More damagingly, the development of chatterbots has revealed how
unreliable we humans are as judges of conversational competence, mainly because we are so liable
to read coherent meaning into any verbal exchange that is susceptible of it. Hence the chatterbot
designer, aspiring to do as well as possible in the imitation game, aims not for the generation of pre-
cise and careful dialogue (in which the computer’s mistakes or lack of ‘humanity’ will become all
too apparent), but instead for the production of piecemeal responses that are maximally vague and
sloppy, exploiting the foibles of the interrogator. Thus there is no plausible developmental pathway
from increasing chatterbot performance in the Turing test to genuine artificial intelligence, and the
Loebner Prize (though no doubt well motivated) is completely misdirected.

It might, nevertheless, be possible to preserve something in a similar spirit if we add two letters
and move from the ‘Turing test’ to a ‘Tutoring test’, in which the aim is not to pass for a human,
but instead to succeed in a conversational information-processing task which has a very clear point
and whose measurement is relatively well understood. Here the criterion of success would be not
deception but revelation, by tutoring the human ‘interrogators’ to acquire an understanding of some
specific field of knowledge of which they were previously ignorant (e.g., some aspect of chemistry).
In this context, for the tutoring system to reveal its non-human status would not be any kind of fail-
ure – all that matters is the effective eliciting of understanding in the tutee. And this can be assessed

25 Whitby (1996), pp. 57-58, develops this point, while French (1990) highlights the extreme difficulty of programming
a computer to mimic human subcognitive reactions.
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by the methods we standardly use in educational practice, ranging from first-personal reports to
interviews and formal tests. Now the Turing-style gold standard would be a tutoring system that can
teach as effectively (in a given time) as a good human tutor; and it is an open question, I believe,
whether this is realistically achievable, and in which fields. But whether or not that provides a plau-
sible ultimate target, the great advantage of this Tutoring test – in almost any field to which it might
be applied – is that work towards it can potentially be of real value, not only in developing systems
that can provide cheap education to those unable to afford human tuition, but also in promoting
genuine artificial intelligence.26 For the comprehensive understanding of any intellectual issue by
the tutee will typically involve the grasp of a complex web of connections amongst the relevant
concepts and techniques. And to convey these most effectively, an intelligent tutoring system will
presumably require some representation of these same connections: the more fully and faithfully
they are represented, the better it is likely to be able to perform at tutoring. At any rate, it seems a
relatively plausible expectation that work towards the Tutoring test could provide a valuable source
of continuing inspiration in artificial intelligence. Sadly, the same can no longer be said of the Turing
test.27
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Luciano Floridi brings out the value of —

THE TURING TEST AND THE METHOD OF
LEVELS OF ABSTRACTION

1. Introduction

Among the many lessons that philosophy can learn from Turing, there is one that is fundamental
and concerns the use of the method of levels of abstraction (LoA). Turing theorises and uses the
method in his paper introducing his famous test (Turing, 1950). Because of this, the importance of
the method seems to have been appreciated less than its application to the debate on the feasibility
of AI. This is a pity, because the general method is independent of such debate and is actually
invaluable as a general way of approaching philosophical questions, whenever we are dealing not
only with intelligence but also with any phenomenon that we find intuitive but very hard to define.
In this contribution, I wish to highlight its nature and value.

As it is well known, Turing refuses even to try to provide an answer to the question ‘can a
machine think?’ He considers it a problem ‘too meaningless to deserve discussion’, because it
involves vague concepts such as ‘machine’ and ‘thinking’ (Turing, 1950). Instead, he suggests
replacing it with the Imitation Game, which is exactly more manageable and less demanding. By
so doing, he specifies a LoA and asks a new question, which may be summed up thus: ‘may one
conclude that a machine is thinking, at this Level of Abstraction?’ The rules of the game define the
conditions of observability (Floridi et al. 2008). If a machine is indistinguishable from the chosen
thinking agent at that LoA, then clearly the machine passes the test, at that LoA, and by changing
the rules of the game, one changes the LoA and consequently the answer. Note that Turing

1. refuses to provide a universal definition of intelligence;
2. makes a hypothesis based on the common assumption that conversation skills require intelli-

gence;
3. devises a model to evaluate whether a machine is intelligent comparatively, that means at that

LoA; and
4. provides a system that is fully controllable. One knows how it works and how it can be modified,

so it can be implemented to test other features such as creativity, learning and ethical behaviour.
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A strongly constructionist approach grounds not only the design of the test, but also what Turing
conjectured as a potentially successful strategy to obtain a machine that would pass the test. In the
final section of his 1950 paper, entitled ‘Learning Machines’, Turing suggests, as a working hypoth-
esis, that a child-machine could learn and gain its own knowledge through educational processes.
Then he builds a model, the child-programme, in order to test that hypothesis. This system is con-
trollable, for example through punishment and reward processes. Any hints or results in the process
concern only the model and not how a human child learns.

2. Turing’s idea of level of abstraction

It seems clear that the method used by Turing is both powerful and flexible. Complex biochemi-
cal compounds and abstruse mathematical concepts have at least one thing in common: they may
be unintuitive, but once understood they are all definable with total precision, by listing a finite
number of necessary and sufficient properties. Mundane phenomena like intelligence, life or mind
share the opposite property: one intuitively knows what they are and perhaps could be, and yet
there seems to be no way to encase them within the usual planks of necessary and sufficient
conditions.

Sometimes the problem is addressed optimistically, as if it were just a matter of further shaping
and sharpening whatever necessary and sufficient conditions are required to obtain a definiens that
is finally watertight. Stretch here, cut there; ultimate agreement is only a matter of time, patience
and cleverness. In fact, attempts follow one another without a final identikit ever being nailed to the
definiendum in question. After a while, one starts suspecting that there might be something wrong
with this ad hoc approach. Perhaps it is not the Procrustean definiens that needs fixing, but the
Protean definiendum. Sometimes its intrinsic fuzziness is blamed. One cannot define with sufficient
accuracy things like life, intelligence, agenthood and mind because they all admit of subtle degrees
and continuous changes.

A solution is to give up all together or at best be resigned to being vague and rely on indica-
tive examples. Pessimism follows optimism, but Turing’s influential Imitation Game shows that
this need not. The fact is that, in the exact discipline of mathematics, for example, definitions are
‘parameterised’ by generic sets. Such technique provides a method for regulating the right levels
of abstraction Indeed abstraction acts as a ‘hidden parameter’ behind exact definitions, making a
crucial difference. Thus, each definiens comes pre-formatted by an implicit LoA; it is stabilised,
as it were, in order to allow a proper definition. An x is defined or identified as y never absolutely
(i.e., LoA-independently), as a Kantian ‘thing-in-itself’, but always contextually, as a function of a
given LoA, whether it be in the realm of Euclidean geometry, quantum physics or commonsensical
perception.

When a LoA is sufficiently common, important, dominating or in fact happens to be the very
frame that constructs the definiendum, it becomes ‘transparent’ to the user, and one has the pleasant
impression that x can be subject to an adequate definition in a sort of conceptual vacuum. Glass is
not a solid but a liquid, tomatoes are not vegetables but berries, a banana plant is a kind of grass,
and whales are mammals not fish. Unintuitive as such views might be initially, they are all accepted
without further complaint because one silently bows to the uncontroversial predominance of the
corresponding LoA.

When no LoA is predominant or constitutive, things get messy. In this case, the fundamen-
tal lesson from Turing is to avoid fiddling with the definiens or blaming the definiendum, and to
decide instead on an adequate LoA, before embarking on the task of understanding the nature of the
definiendum.
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Turing’s analysis of intelligence or ‘thinking’ behaviour is enlightening. One might define
‘intelligence’ in a myriad of ways; many LoAs seem equally convincing but no single, absolute,
definition is adequate in every context.Turing avoided the problem of ‘defining’ intelligence by
first fixing a LoA – in this case a dialogue conducted by computer interface, with response time
taken into account – and then establishing the necessary and sufficient conditions for a com-
puting system to count as intelligent at that LoA: the imitation game. As I argued in Floridi
(1995, 2008a), the LoA is crucial and changing it changes the test. An example is provided by the
Loebner test (Moor, 2001), the current competitive incarnation of Turing’s test. There, the LoA
includes a particular format for questions, a mixture of human and non-human players, and precise
scoring that takes into account repeated trials. It is precisely the flexibility of the method that makes
Turing tests of different kinds still extremely useful.

The idea of a ‘level of abstraction’ plays an absolutely crucial rôle in the previous account.
We have seen that this is so even if the specific LoA is left implicit. For example, whether we
perceive oxygen in the environment depends on the LoA at which we are operating; to abstract it
is not to overlook its vital importance, but merely to acknowledge its lack of immediate relevance
to the current discourse, which could always be extended to include oxygen were that desired. The
question is: what are these LoAs exactly? Turing did not explicitly theorise them, but his work
contains all the necessary ideas to draw a complete picture. I have provided a definition and more
detailed analysis in Floridi (2008b, 2011), so here I shall outline only his basic idea.

3. The method

Suppose we join Anne, Ben and Carole in the middle of a conversation. Anne is a collector and
potential buyer; Ben tinkers in his spare time; and Carole is an economist. We do not know the
object of their conversation, but we are able to hear this much:

Anne observes that it has an anti-theft device installed, is kept garaged when not in use and
has had only a single owner;
Ben observes that its engine is not the original one, that its body has been recently re-painted
but that all leather parts are very worn;
Carole observes that the old engine consumed too much, that it has a stable market value but
that its spare parts are expensive.

The participants view the object under discussion (the ‘it’ in their conversation) according to their
own interests, at their own LoA. We may guess that they are probably talking about a car, or per-
haps a motorcycle, but it could be an airplane.Whatever the reference is, it provides the source
of information and is called the system. A LoA consists of a collection of observables, each with
a well-defined possible set of values or outcomes. For the sake of simplicity, let us assume that
Anne’s LoA matches that of an owner, Ben’s that of a mechanic and Carole’s that of an insurer.
Each LoA makes possible an analysis of the system, the result of which is called a model of the
system. Evidently an entity may be described at a range of LoAs and so can have a range of models.
So a level of abstraction or LoA is essentially an interface, used to analyse a system from a point of
view. Models are the outcome of the analysis of a system, developed at some LoA(s). The Method
of Abstraction consists of formalising the model (see Floridi (2008b)). In the previous example,
Anne’s LoA might consist of observables for security, method of storage and owner history; Ben’s
might consist of observables for engine condition, external body condition and internal condition;
and Carole’s might consist of observables for running cost, market value and maintenance cost. The
interface might consist, for the purposes of the discussion, of the set of all three LoAs.
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In this case, the LoAs happen to be disjoint, but in general they need not be. A particularly
important case is that in which one LoA includes another. Suppose, for example, that Delia joins the
discussion and analyses the system using a LoA that includes those of Anne and Ben. Delia’s LoA
might match that of a buyer. Then Delia’s LoA is said to be more concrete, or lower, than Anne’s,
which is said to be more abstract, or higher; for Anne’s LoA abstracts some observables apparent at
Delia’s.

4. Relativism

A LoA qualifies the level at which an entity or system is considered. In general, it seems that Turing
was right when arguing that many uninteresting disagreements might be clarified by the various
‘sides’ making precise their LoA. Yet a crucial clarification is in order. It must be stressed that a
clear indication of the LoA at which a system is being analysed allows pluralism without endorsing
relativism. It is a mistake to think that ‘anything goes’ as long as one makes explicit the LoA,
because LoA are mutually comparable and assessable (see Floridi (2008b) for a full defence of this
point).

Introducing an explicit reference to the LoA clarifies that the model of a system is a function of
the available observables, and that (i) different interfaces may be fairly ranked depending on how
well they satisfy modelling specifications (e.g., informativeness, coherence, elegance, explanatory
power, consistency with the data etc.) and (ii) different analyses can be fairly compared provided
that they share the same LoA.

5. State and state-transitions

Let us agree that an entity is characterised, at a given LoA, by the properties it satisfies at that
LoA (Cassirer, 1910). We are interested in systems that change, which means that some of those
properties change value. A changing entity, therefore, has its evolution captured, at a given LoA
and any instant, by the values of its attributes. Thus, an entity can be thought of as having states,
determined by the value of the properties that hold at any instant of its evolution, for then any
change in the entity corresponds to a state change and vice versa.

This conceptual approach allows us to view any entity as having states. The lower the LoA, the
more detailed the observed changes and the greater the number of state components required to cap-
ture the change. Each change corresponds to a transition from one state to another. A transition may
be non-deterministic. Indeed, it will typically be the case that the LoA under consideration abstracts
the observables required to make the transition deterministic. As a result, the transition might lead
from a given initial state to one of several possible subsequent states.

According to this view, the entity becomes a transition system. The notion of a ‘transition sys-
tem’ provides a convenient means to support the basic criteria for agenthood, for example, being
general enough to embrace the usual notions like automaton and process. It is frequently used to
model interactive phenomena. We need only the idea; for a formal treatment of much more than we
need in this context, the reader might wish to consult Arnold and Plaice (1994) and Colburn and
Shute (2007).

A transition system comprises a (non-empty) set S of states and a family of operations, called the
transitions on S. Each transition may take input and may yield output, but at any rate it takes the sys-
tem from one state to another and in that way forms a (mathematical) relation on S. If the transition
does take input or yield output, then it models an interaction between the system and its environ-
ment and so is called an external transition; otherwise, the transition lies beyond the influence of the
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environment (at the given LoA) and is called internal. It is to be emphasised that input and output
are, like state, observed at a given LoA. Thus, the transition that models a system is dependent on
the chosen LoA. At a lower LoA, an internal transition may become external; at a higher LoA, an
external transition may become internal.

In our example, the object being discussed by Anne might be further qualified by state com-
ponents for location, whether in-use, whether turned-on, whether the anti-theft device is engaged,
history of owners and energy output. The operation of garaging the object might take as input a
driver, and have the effect of placing the object in the garage with the engine off and the anti-
theft device engaged, leaving the history of owners unchanged, and outputting a certain amount of
energy. The ‘in-use’ state component could non-deterministically take either value, depending on
the particular instantiation of the transition. Perhaps the object is not in use, being garaged for the
night; or perhaps the driver is listening to a program broadcasted on its radio, in the quiet solitude
of the garage. The precise definition depends on the LoA. Alternatively, if speed were observed but
time, accelerator position and petrol consumption abstracted, then accelerating to 60 miles per hour
would appear as an internal transition.

6. Conclusion

In this paper, I have summarised the method of abstraction as introduced by Turing’s test. I have
tried to show its principal features and crucial value for any conceptual analysis independently
of the debate on AI. The method clarifies implicit assumptions, facilitates comparisons, enhances
rigour and hence promotes the resolution of possible conceptual confusions. If carefully applied,
the method confers remarkable advantages in terms of consistency and clarity. Too often philosoph-
ical debates seem to be caused by a misconception of the LoA at which the questions should be
addressed. This is not to say that a simplistic policy of ‘on the one hand and on other hand’ sort of
arguments would represent a panacea. Disagreement is often not based on confusion. But Turing
was right in arguing that chances of resolving or overcoming it may be enhanced if one is first of all
careful about specifying what sort of observables are at stake.
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Aaron Sloman absolves Turing of —

THE MYTHICAL TURING TEST

1. Introduction

In his 1950 paper, Turing described his famous ‘imitation game’, defining a test that he thought
machines would pass by the end of the century. For useful surveys of views about the test, see
Saygin et al. (2000) and Proudfoot (2011). It is often claimed that Turing was proposing a test for
intelligence. I think that assumption is mistaken (a) because Turing was far too intelligent to propose
a test with so many flaws, (b) because his words indicate that he thought it would be a silly thing to
do, and (c) because there is an alternative, much more defensible, reading of his paper as making a
technological prediction, whose main function was to provide a unifying framework for discussing
and refuting some common arguments against the possibility of intelligent machines.1

I shall try to explain (i) why the common interpretation of Turing’s paper is mistaken, (ii) why
the idea of a test for intelligence in a machine or animal is misguided, and (iii) why a different
sort of test, not for a specific machine or animal, but for a genome or generic class of developing
systems, would be of greater scientific and philosophical interest. That sort of test was not proposed
by Turing, and is very different from the many proposed revisions of Turing’s test, since it would
require many instances of the design allowed to develop in a variety of environments. to be tested.
That would be an experiment in meta-morphogenesis, the topic of my paper in Part IV of this
volume.

2. Turing’s 1950 paper

Section 1 of the paper states:

“I propose to consider the question, ‘Can machines think?’ This should begin with definitions
of the meaning of the terms ‘machine’ and ‘think.’ The definitions might be framed so as to
reflect so far as possible the normal use of the words, but this attitude is dangerous. If the
meaning of the words ‘machine’ and ‘think’ are to be found by examining how they are
commonly used it is difficult to escape the conclusion that the meaning and the answer to the
question, ‘Can machines think?’ is to be sought in a statistical survey such as a Gallup poll.
But this is absurd. . . . ”

Instead of this ‘absurd’ procedure he proposes a game, which he calls ‘The imitation game’, which
he uses to formulate a technological prediction:

“I believe that in about fifty years’ time it will be possible, to programme computers, with a
storage capacity of about 109, to make them play the imitation game so well that an average
interrogator will not have more than 70 per cent chance of making the right identification

1 I have found that many of those who think Turing proposed a test for intelligence, if asked whether they have read the
paper, answer ‘No’. They simply repeat what others have said. Saygin’s and Proudfoot’s articles discuss some merits of
the test.
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after five minutes of questioning. The original question, “Can machines think?” I believe to
be too meaningless to deserve discussion. . . . ”

The game is not intended to answer the ‘too meaningless’ question whether machines can think, but
enables Turing to formulate his prediction about what can be achieved in 50 years, so that he can
discuss several objections to the prediction. Refuting them, by showing that they are all based on
unsound arguments, is the main meat of his paper – his way of replacing the ‘meaningless’ question
‘Can machines think?’ with a ‘relatively unambiguous’ question. (We shall see that the question is
not as unambiguous as he thought.)

3. Does the test have any value?

Turing’s test is far too limited to serve as a criterion for intelligence. Nobody would accept as
an employee, or a student, someone whose only known qualification was the ability to fool the
‘average’ population for five minutes, in 30 per cent of trials. Ability to pass the test is neither
sufficient, nor necessary, for being intelligent (or able to think). No engineer would accept 30%
success at playing the imitation game for five minutes as either a specification for a worthwhile
design or as an acceptance test for a product. Further information would be required, e.g. how it
managed to do this, under what conditions it succeeded and failed, and whether it used mechanisms
that allowed it to overcome its limitations eventually.

Nothing about the test explains how a mind can work or what thinking is. No information sci-
entist would accept Turing’s prediction as specifying an explanatory mechanism. By 1950, Turing
had already made profound contributions to our understanding of mathematical competence. Pass-
ing his shallow test provides no evidence for possession of any such competence. (Interrogation by
mathematicians rather than average interrogators might!) The ability to pass the test could not drive
natural selection since it requires the interrogators to have evolved previously. The vast majority
of intelligent animals cannot pass Turing’s test. Neither can highly intelligent pre-verbal human
toddlers. So ability to pass that test is neither necessary nor sufficient for normal animal or human
intelligence.

Intelligence is not some unique set of behavioural capabilities: there are different kinds of
intelligence (and thinking) evident in nest-building birds, dolphins, elephants, baboons and human
toddlers. In the terminology of Ryle (1949), ‘intelligence’ is a polymorphous concept. Its use can
vary systematically according to context.2

Though worthless as a test for intelligence or thinking, the imitation game suits Turing’s main
purpose, namely providing a framework for presenting and refuting a collection of arguments
against the possibility of machine intelligence. It has inspired some AI researchers to try to sub-
stantiate Turing’s prediction, but that has proved difficult. I suspect Turing understood some of the
difficulties, unlike some early proponents of AI who rashly predicted the imminent arrival of intel-
ligent machines. Unfortunately, the test has diverted much intellectual effort from a deep study of
biological varieties of intelligence and how to model or replicate them.

4. Turing’s predictions

Turing was remarkably accurate about the number of bits available in a computer’s memory by the
turn of the century. His caution in formulating the test (requiring only 30% of testers to be fooled
for only 5 minutes) has been justified by the failures of machines to pass the test so far (though they
have come close). The failure seems to be a matter of scale rather than the problems of principle

2 Compare what computer scientists call ‘parametric polymorphism’.
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that he discussed in his paper. A machine with a sufficiently large and varied collection of stored
patterns could obviously pass the test. That’s one of the problems with any time-limited behavioural
test for intelligence.

Another problem with the test is its dependence on ‘average’ interrogators. I suspect that by
about the year 2000 it actually was possible to fool close to 30% of the ‘average’ world-wide human
population (excluding computer experts and those who had encountered the idea of a Turing test),
for up to five minutes. But the ‘average interrogator’ has changed since then, in ways that Turing
did not allow for. Computing technology has continued to advance since 2000, and computers are
now doing much cleverer things, while increasing numbers of humans have been learning about
what computers can and cannot do, through frequent use, news reports, internet discussions, and so
on, making it harder to fool ‘average’ testers into thinking they are interacting with a human! Many
more humans are now able to choose things to say to a machine that may reveal its inability to
respond like a human, and the proportion is likely to increase. This relativity to cultural attainment
of testers is one of the reasons why the test is so bad as a test of intelligence.

Unfortunately, the misinterpretation of Turing as proposing a test for thinking or for intelligence
is so wide-spread that it has led to huge amounts of wasted effort, wasted, because, as Turing himself
pointed out, the notion of such a test is based on a question which is ‘too meaningless to deserve dis-
cussion’.3 None of this diminishes the value of Turing’s main purpose: presenting and demolishing
arguments purporting to show that machines cannot successfully play the imitation game.

5. Turing’s error about human-like learning

Turing did make one serious error in that paper. In his Section 7, ‘Learning Machines’, he wrote

“Instead of trying to produce a programme to simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this were then subjected to an appropriate course
of education one would obtain the adult brain. Presumably the child brain is something like
a notebook as one buys it from the stationer’s. Rather little mechanism, and lots of blank
sheets. (Mechanism and writing are from our point of view almost synonymous.) Our hope
is that there is so little mechanism in the child brain that something like it can be easily
programmed. The amount of work in the education we can assume, as a first approximation,
to be much the same as for the human child. . . . ”

Turing, like many AI researchers studying learning machines, grossly underestimated the contribu-
tion of biological evolution to the processes of human learning. As John McCarthy put it

“Evolution solved a different problem than that of starting a baby with no a priori assump-
tions. ... Animal behavior, including human intelligence, evolved to survive and succeed in
this complex, partially observable and very slightly controllable world. The main features of
this world have existed for several billion years and should not have to be learned anew by
each person or animal. In order to understand how a well-designed baby should work, we
need to understand what the world is like at the gross level of human interaction with the
environment.”

What McCarthy did not point out is that the specification is different for different animals, and
different types of machine. Jackie Chappell and I have indicated ways in which such diversity can
emerge.4 This requires much more research in meta-morphogenesis.

3 A related question on which there has been much futile discussion is whether machines can be conscious. I have
attempted to write a tutorial introduction to some of the issues and ways of making progress in Sloman (2010b).
4 See Sloman and Chappell (2005), Chappell and Sloman (2007) and Sloman (2008).
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6. Dichotomies and continua

There is a very common mistake, implicitly made by most who ask: ‘Can machines be intelligent?’,
or ‘Can machines think?’, namely, assuming that there is a dichotomy (a binary distinction) in a
complex space where things are very varied. This is as mistaken as assuming there is a binary divide
between things that are and things that are not efficient, useful, dangerous, or reliable. Sometimes
people who realise that the assumption is mistaken, instead refer to differences of degree, e.g. by
suggesting that there are differences in degrees of intelligence, consciousness, etc. That view makes
two related mistakes: (a) assuming that there is a total ordering of cases, as if, for example, species
could be put into a linear ordering of animals with more or less intelligence (or consciousness, etc.),
and (b) assuming that there is continuous variation in kinds of intelligence (etc.).

An example of the first sort of mistake could also be made by a child who finds that some
containers can be put inside other containers (e.g. a little box inside a bigger box) and draws the
conclusion that all containers form a linear ordering, so that given any two containers Ca and Cb,
either Ca can be put inside Cb, or Cb can be put inside Ca, or they are exactly the same size, because
their bounding surfaces are the same shape and size. That’s obviously false, because one box may
have a square cross section and the other circular, with the diameter of the circle larger than the side
of the square and smaller than the diagonal of the square.

There can be many different sorts of competence that are ‘dimensions’ of intelligence, and dif-
ferent individuals or different species may excel in different dimensions. E.g. one may be very good
at designing furniture and terrible at proving theorems in geometry, while the other is good at math-
ematics and poor at designing furniture. Variations in ability to perceive, learn about, act in, plan in
and survive in various types of environment are wide-spread among organisms. Neither species nor
individual organisms can be arranged in a linear sequence of increasing intelligence.

The assumption of continuous variation, required for differences of degree, is also false. There
are some kinds of knowledge or competence that cannot vary continuously. E.g. learning about arith-
metic, or geometry, or grammar, involves learning distinct items. Competences that are expressed in
rules don’t have intermediate cases using half a rule, quarter of a rule, etc. Moreover, since genetic
makeup is ultimately implemented in chemistry, and since molecules differ discontinuously (e.g.
by addition or removal of atoms) it is impossible for species to vary continuously in their genetic
makeup (though small differences are possible).

It follows from the above that the very idea of a Turing test or any other test for intelligence is
muddled if there is no binary divide between things that are and things that are not intelligent, only
a vast variety of cases. Attempting to replace a binary classification with a measure of intelligence
is similarly mistaken in assuming that there is a total ordering of types of intelligence and, possibly
also in assuming that there is continuous variation so that degrees of intelligence can be represented
by real numbers.

If there is no total ordering, only a complex space of combinations of competences (just as
there is a complex space of combinations of atoms, making the notion of ordering molecules
along a line of increasing ‘chemicality’ (?) misguided), then, instead of using a number or label
for degree or amount of intelligence, we need to find ways of describing types of intelligence
in terms of the combinations of competences that they include, just as we describe chemical
molecules in terms of the different combinations of atoms and chemical bonds and also the dif-
ferent properties that result from those structures (e.g. acidity, alkalinity and many more used in
drug design). It may be more useful to search for a grammar for types of intelligence than a mea-
sure. A grammar for types of intelligence might be a specification of varieties of combinations of
competences of many sorts that could be implemented in a unified working architecture, and could
include combinations that could grow themselves, in ways that depend on their interactions with the
environment.
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7. What sort of test would be worth while?

If we are to propose tests of the general sort that people take the Turing Test to be, namely a test for
something being intelligent, or human-like, we’ll need to distinguish testing a particular individual
from testing a theory about a type of design for working systems.

It is clear that there are many very different human beings and also that they all share a large
collection of common features. We really should be testing a theory about what’s common, where
the differences come from, and what the implications are. Compare: if a theory about the weather is
able to explain only how a particular tornado works and no other weather phenomena, then it cannot
be a good explanation of the particular case. Likewise a theory of what’s going on when oil burns
that says nothing wood burning, or coal burning, or gas burning cannot be a good theory about oil
burning.

Or suppose someone claims to have a theory about how to solve algebraic equations and an
online computer test that demonstrates the theory. The implemented algorithm solves only quadratic
equations: give it any quadratic equation and it will produce the solutions. Would that be taken as a
good test for a theory of equation solving? We would rightly demand something more generic.

What would the required sort of generic theory of intelligence look like? The closest answer
I can give is something like a parametrised specification for a highly polymorphic design for a
working system, which can be given different parameters to produce instances of the design, where
the instances will be very different in the way that, for example, humans in different cultures, or
who talk different languages, or who grow up to have very different competences and interests
are different, and yet be as similar as different humans are, a requirement that is very complex and
very demanding, and not yet specifiable in detail since we don’t yet know enough about what typical
humans are like (e.g. how their vision systems work, how they learn, what mechanisms are involved
in their motivational and other affective states and processes.)

The parameters, instead of all being supplied at the time the instance is created, would have to
be picked up at various times during the development and testing of the instance.

In particular, in order to really understand human intelligence, we should be able to specify a
type of system, with many different instances, differing as much as humans in different physical and
social environments do. For example, as a result of educational and environmental influences, and
some individual personality features, instances of the machine would ‘grow up’ to be philosophers
with very different views, including views on what machines can or cannot do, e.g. some becoming
like Alan Turing, others like John Searle, or Tom Nagel, or David Chalmers, or Dan Dennett, and
perhaps even some like me, since I disagree with all the others!5
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David Harel proposes —

A TURING-LIKE TEST FOR
MODELLING NATURE∗

In 1950, Alan Turing proposed an ‘imitation game’, for determining whether a computer is intelli-
gent. A human interrogator, the candidate computer and another human are put in separate rooms,
connected electronically. Alice, the interrogator, doesn’t know which is the human and which is the
computer, and has a fixed amount of time to determine their correct identities by addressing ques-
tions to them. The computer has to make its best effort to deceive Alice, giving the impression of
being human, and is said to pass the Turing test if after the allotted time Alice doesn’t know which is
which. Succeeding by guessing is avoided by administering the test several times. Here, I argue that
a variant of this idea, but with a Popperian twist (Popper, 1959), is applicable to the computerised
modelling of natural systems, particularly in systems biology.

1. The grand challenge

Many characteristics of man-made systems, especially those termed reactive by computer scientists,
are central to the dynamics of biological systems too: heavy concurrency (simultaneity), event-
driven and time-dependent behavior, cause-effect phenomena and distributed control. These occur
from the atomic level, via the molecular and the intra- and inter-cellular levels, to full organisms
and even entire populations, suggesting that biological systems can be modelled (that is, reverse-
engineered, simulated and analyzed) using methods and tools developed for the engineering of
complex man-made systems. Recent results from small-scale modelling efforts have been extremely
encouraging, Harel (2003, 2005); Kam et al. (2003); Kugler et al. (2008); Popper (1959); Priami
et al. (2001); Setty et al. (2008).

∗This paper is a slightly expanded version of Harel (2005) and is published here with permission.
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Most modelling efforts are partial, intended to capture some limited phenomena or mechanism,
or a small part of a larger system. There is often a particular goal for the modelling, with specific
laboratory observations relevant to it and specific behaviors for simulation and checking. The moti-
vation for such modelling efforts is making carefully considered predictions, which would typically
be driven by certain questions that the modeller has in mind. These predictions stemming from the
model and its analysis then lead to particular experiments that are to be carried out in the laboratory,
and thus to the discovery of new scientific facts. A different approach, far more ambitious in its
scope and required work, is to aim at modelling a complete biological system, such as an organ or
a full multi-cellular animal. This kind of effort is not motivated by specific questions but, rather,
by the desire to understand an entire system. (See Harel (2003), in which I propose to model the
Caenorhabditis elegans nematode.)

Such a comprehensive ‘grand challenge’ is extremely nontrivial and by its very nature is intended
to take modelling to the limit: let’s model (reverse-engineer) a worm or an elephant similarly to the
way we engineer a chemical plant or an F-15 fighter jet. The challenge is to construct a realistic
model, true to all known facts, which is smoothly extendable as the facts are discovered. It would
feature a three-dimensional, animated graphical front end and would enable interactive multilevel
probe-able simulations of the animal’s development and behavior. The underlying computational
framework would be mathematically rigorous but would also be intuitive enough for biologists to
enter newly discovered data themselves. The model would also support alternative theses reflecting
disagreement among the scientists, to observe and to compare their effects at run time.

As I have argued previously (Harel, 2003), achieving this goal, even for a very modest organism
like C. elegans, would require enormous amounts of interdisciplinary work, both in the computa-
tional an analysis realms and in the accumulation, assimilation and formalization of the biological
data itself. It raises numerous difficulties, for some of which no solutions are known at present.
The good news is that this is typical of many grand challenges, both past and future; like putting
a man on the moon, proving Fermat’s last theorem or solving cancer. One of the characteristics of
a ‘good’ long-term challenge is that, if successful, the results would be spectacular, but even if it
is not completely successful, many fundamental and useful results will have been achieved along
the way. In our case, a comprehensive in silico model of an entire living organism would constitute
an unprecedented tool, allowing researchers to see and understand life in ways not otherwise pos-
sible, triggering and helping predict behavior, filling gaps and correcting errors, suggesting hitherto
unimagined experiments and much more.

It is not my intention here to try to convince the reader of the virtues of such an effort, but many
benefits can easily be imagined.

2. Measuring success

Still, what does being successful mean? How do we know when we are done, labelling the model
valid? And are we ever done? It is one thing to build a computerised model that looks good and
captures some desired, but limited, features of a biological system in order to provide answers
to some specific research questions, but quite another thing to claim to have constructed a valid
model of a full organism, using all that is known about it. In limited modelling, one has in mind a
manageable set of laboratory observations – analogous to requirement sin engineering man-made
systems – so that one essentially knows what to test for. The challenge in comprehensive mod-
elling is so great and the required multi-levelled amounts of detail and their inter-combinations so
vast, that it is no longer clear how to tell when one is done or what it means for one’s model to
be valid.

To address this question, we must clarify what we mean by modelling a creature based on all that
is known. We must decide upon the model’s levels of detail, so that we don’t find ourselves having
to deal with quarks or quantum effects. Moreover, we cannot hope to ever find out everything there
is to know about a complex organism, even after limiting the levels of discourse. A model enabling
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computerised simulations can at best be based on the knowledge available at a given point in time
and will have to take liberties with what we don’t know yet or never will. For example, the model
can be made to fill in certain dynamics by carrying out the biological equivalent of the movie
industry’s ‘morphing’ technique. In any case, this begs the question of how to tell when all that we
do know has indeed been captured.

Here is where validating the model can be likened to the Turing test, but with a Popperian twist
(Popper, 1959): a comprehensive model of a full organism will be deemed valid/complete/adequate
if it cannot be distinguished from the real thing by an appropriate team of interrogators. This idea
raises many subtle questions and may attract opposition on many grounds, which this short essay
will not attempt to address. The reader is referred to Turing’s original paper which discusses several
issues that are relevant here, too.

3. Modifications to Turing’s test

If we were to apply the idea in Turing’s paper to validate models of natural systems, particularly
biological ones, what types of modifications to the original test would we have to implement? First,
to prevent us from using our senses to tell human from computer, Turing recommended employing
separate rooms and electronic means for communication. In our version of the test, tailored for mod-
elling a multi-cellular organism, we are not simulating communicable intelligence but development
and behavior. Consequently, our ‘protection buffer’ will have to be quite more complex – intelligent,
in fact! It would have to limit the interrogation (which would consist of probing the computerised
model residing in one room and the actual in vivo or in vitro laboratory for the organism at hand
that resides in the other) to be purely behavioural and to incorporate means for disguising the fact
that the model is not an actual living entity. These would have to include neutral communication
methods and similar-looking front-ends, as in Turing’s original test, but also means for emulating
the limitations of actual experimentation. A query requiring three weeks in a laboratory on the real
thing would have to elicit a similarly realistic delay from the simulating model. Moreover, queries
that cannot be addressed for real at all must be let unanswered by the model, too, even though the
main reason for building models in the first place is to generate predictive and work-provoking
responses even to those.

Second, our test is perpetually dynamic, in the good spirit of Popper’s philosophy of science
(Popper, 1959). A computer passing Turing’s original test can be labelled intelligent once and for all
because, even if we take into account the variability of intelligence among average humans, we don’t
expect the nature and scope of intelligence to change much over the years. In contrast, a model of a
worm or a fly or an elephant that passes our version of the test can only be certified valid or complete
for the present time. New research will repeatedly refute that completeness, and the model will have
to be continuously strengthened to keep up with the advancement of science. The exciting point here
is that once a model passes the test, that model can be viewed as a correct theory of the organism
being modelled. In a sense it actually is the organism, unless and until it can be distinguished
from the real thing by appropriately clever probes and the corresponding laboratory work, which is
exactly what Popper is trying to teach us: the important work of experimental scientists is to refute
accepted theories by increasingly sophisticated experimentation. And this is how science advances
and knowledge increases. (By the way, the protection buffer required for our test will also have to
change as advances are made in laboratory technology, but, interestingly, it will have to be made
weaker, since probing the model and probing the real thing will become closer to each other.)

Third, our interrogators can’t simply be any humans of average intelligence. Both they, and the
buffer people responsible for ‘running’ the real organism in the room that contains the laboratory
and providing its responses to probes, would have to be experts on the subject matter of the model,
appropriately knowledgeable about its coverage and levels of detail. In the C. elegans proposal, for
example, these would have to be knowledgeable members of the worm research community.

Clearly, the modified Turing test proposed here is not without its problems and is not put forward
for immediate consideration in practice. Still, it could serve as an ultimate kind of certification for
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the success of what appears to be a worthy long-term research effort. Variations of the idea are also
applicable to efforts aimed at modelling and simulating other kinds of natural systems.
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Huma Shah engages with the realities of —

CONVERSATION, DECEPTION AND
INTELLIGENCE:

TURING’S QUESTION-ANSWER GAME

Describing two ways to practicalise his question-answer game to examine machine thinking in
1950, Turing believed one day a machine would succeed in providing satisfactory and sustained
answers to any questions. In 2011 IBM Watson achieved success competing against two human
champions in a televised general knowledge quiz show. Though he regarded the process of thinking
as mysterious, Turing believed building a machine to think might help us to understand how it is we
humans think.

1. Introduction

In order to fully understand Turing’s plans for constructing and examining a thinking machine,
through text-based communication with an interrogator unfamiliar with the machine’s inner work-
ings, it is necessary to consider the ideas from his papers and lectures before and after ‘Computing
Machinery and Intelligence’ (Turing, 1950). In this contribution, Turing’s question-answer imitation
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game emerges from his scholarship, via his two methods to practicalise it: (a) a vive voce, direct
interrogation of a machine by a human (see Fig. 1), and (b) a simultaneous comparison of the
machine with a human (see Fig. 2), both unseen and unheard to an interrogator (Shah, 2010).
Turing’s 2-interlocutor and 3-participant tests are contrasted (see Table 1) and Turing’s evolv-
ing predictions are analysed (see Table 2). Turing’s 1952 statement ‘at least 100 years’ (Turing,
1952) shows, although he had grasped the difficulty of the task to build a conversational machine
conveying human-like intelligence, he firmly believed a thinking machine would emerge in the
21st century. In 2011, IBM’s Watson, a question-answer supercomputer using a statistical analysis
approach to associating information, overcame two human general knowledge experts, an achieve-
ment Turing advocated when he wrote that a thinking machine could be built if there was not
something else important keeping engineers from this venture. Had he been alive, Turing may well
have asked: Was not IBM Watson thinking when it provided its real-time answers to clues in natural
language during the Final Jeopardy! quiz in February 2011, albeit differently from its two human
competitors, Ken Jennings and Brad Rutter?

Fig. 1: Turing’s viva voce test.

2. Turing’s early imitation game

In 1947, in a lecture on the automatic computing engine (ACE) to the London Mathematical Society
(Turing, 1947), Turing acquainted attendees with the idea of intelligent machines that could learn
from experience and compete against humans in a game of chess. This was the first time Turing
introduced the possibility of a machine vs. human encounter in a restricted domain.

In 1948, Turing added indistinguishability by introducing a third player to his 1947 chess game.
In the 3-participant chess play off, the machine is to be distinguished from a human poor chess
player. In his 1948 report, ‘Intelligent Machinery’ (Turing, 1948) Turing set the scene on how to
calibrate a machine’s ability to think: ‘I propose to investigate the question as to whether it is
possible for machinery to show intelligent behaviour’ (p. 410). Turing warned that ‘the idea of
‘intelligence’ is itself emotional rather than mathematical’ (p. 411), and that ‘the extent to which we
regard something as behaving in an intelligent manner is determined as much by our own state of
mind and training as by the properties of the object under consideration’ (p. 431). With this caveat
in place, Turing attempted to mitigate subjective attribution of intelligence to others.
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Fig. 2: Turing’s simultaneous comparison test.

Table 1 Practicalising Turing’s Imitation Game

Comparison of Turing’s two Question-Answer Tests

TIG Feature Viva voce Simultaneous-comparison

Mode of questioning One-to-one: human interrogator-
machine

One-to-two: human interrogator – machine +
human

Type of questions Unrestricted Unrestricted

Number of participants Two Three

Duration of Interaction Unspecified After five minutes

Interrogator Type Non-machine expert Average judge

Number of Interrogators Jury Unspecified

Number of Tests Judge quite a number of times Unspecified

Language for communication
(e.g., English)

Same for both interlocutors Same for all three participants

Criteria for Test Pass:
satisfactory and sustained
answers

Considerable portion of jury
taken in by pretence.

‘average interrogator will not have more
than 70 per cent chance of making the right
identification’

Turing described his chess indistinguishability test claiming he had actually conducted ‘a rather
idealized form’ (p. 431). Turing introduced a ‘little experiment’ involving three members A, B,
and C playing chess. Turing declared, even at that early period in modern computing history, it was
not difficult to produce a ‘paper machine’ playing a ‘not very bad game of chess’ (ibid.). By paper
machine, Turing meant an ‘effect of a computing machine’ produced by a written down ‘set of rules
of procedures’ which a man, ‘provided with paper, pencil and rubber, and subject to strict discipline’
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could follow (p. 416). Turing suggested B, the operator of the paper machine, be a mathematician
and chess player in order to work the machine ‘fairly fast’ (p. 431), and A and C be ‘poor chess
players’ (ibid.). Turing envisaged the game played across two rooms between C and either A, or the
paper machine operated by B, with ‘some arrangement for communicating moves’ (ibid.). Turing
felt it might not be easy for C to say whether they were playing A, or the paper machine: ‘C may
find it difficult to tell which he is playing’ (ibid.).

In considering what could be done by a ‘brain without a body’, Turing listed chess, learning
and translation of languages, cryptography and mathematics. We can see how Turing’s ideas were
evolving, and why he replaced chess with a language test for the machine to display thinking,
because he wrote ‘the learning of languages would be the most impressive, since it is the most
human of these activities’ (p. 421). Turing felt that intellectual activity consisted of various kinds
of search. Thus did Turing pave the way for his most famous examination of machine thinking
conducted through question-answer sessions using text-based interaction.

Turing’s Thinking Machine Predictions

Year Where prediction made Prediction

1950 Computing machinery and intelligence ‘in about fifty year’s time it will be possible to
programme computers, with a storage capacity of about
109, to make them play the imitation game so well that
an average interrogator will not have more than a
70 per cent. chance of making the right identification
after five minutes of questioning’

1951b BBC radio broadcast: Can digital
computers think?

‘. . . at the end of the century it will be possible to
programme a machine to answer questions in such a
way that it will be extremely difficult to guess whether
the answers are being given by a man or by the
machine. I am imagining something like a viva voce
examination’ (in Copeland, 2004, p. 484)

1951b BBC radio broadcast: Can digital computers
think?

‘If it (thinking machine) comes at all it will almost
certainly be within the next millennium’ (p. 486)

1952 BBC radio broadcast: Can automatic
calculating machines be said to think?

‘Oh yes, at least 100 years, I should say’ [for machine
to stand a chance in a no questions barred viva voce]
(p. 495)

Table 2: Turing’s Evolving Predictions

3. Turing’s imitation game 1950

Following the Second World War, Turing drew readers into the uncommon idea of non-human
machines as ‘thinking entities’ participating in a simple, text-based interview to examine indistin-
guishability between human and machine (Turing, 1950). This was in a time when he was obliged
by official secrecy not to reveal the extent to which machines had assisted with work involving
deception and intelligence during WWII battles, and in which women who, under the age of 30 less
than a quarter of a century earlier were awarded the vote in 1928 on equal terms with men, assisted
as messengers and typists to the mainly male code breakers, including Turing at Bletchley Park. In
this context, Turing began his ‘reader awakening’ and prescribed an open mind to the possibility
of what could be achieved by future machines. Beginning with a game of ‘guess the sex of two
hidden human interlocutors’, Turing explained how a machine, inculcated with necessary memory,
storage capacity, speed and the right programme would possess the ability to replace one of the
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humans in the guessing game to imitate appropriate answers to any question put by an interroga-
tor stripped of visual and auditory interaction. Turing proposed a question-answer imitation game
(TIG): the machine has 5 minutes to answer with sustained, satisfactory responses to any questions
using the text-based communicative medium with a human interrogator who is not familiar with the
inner workings of the machine (Shah, 2010). In his 1950 Mind article Turing suggested two ways
to practicalise his imitation game: (a) one interrogator/one machine-witness viva voce (see Fig. 1),
and (b) a three-participant, comparison of a machine with a human both simultaneously questioned
by a human interrogator (see Fig. 2).

Turing’s two practicalisations for his imitation game are given in Table 1. The essential differ-
ence is that in the viva voce test (VVTT), the machine is directly questioned by an interrogator,
while in the other, simultaneous comparison (SCTT), the machine is compared with a human foil,
both questioned in parallel by a human interrogator. In both tests the interrogator can ask anything:
‘the question and answer method seems to be suitable for introducing almost any one of the fields of
human endeavour that we wish to include’ (p. 435). In the case of the comparison test, the human foil
must act human while the machine must put up a satisfactory pretence with appropriate responses
to questions. Turing’s indistinguishability test allows the interrogator to return a judgement of ‘two
humans’ after questioning a machine and human simultaneously (Shah, 2010). If the machine were
to achieve this, i.e., deceive the interrogator into classifying it as a human, Turing asked: ‘May not
machines carry out something which ought to be described as thinking but which is very different
from what a man does?’ (p. 435). Turing predicted ‘in about fifty year’s time it will be possible
to programme computers, with a storage capacity of about 109, to make them play the imitation
game so well that an average interrogator will not have more than a 70 per cent chance of making
the right identification after five minutes of questioning’ (p. 442). However, this prediction evolved
with Turing realising that it was likely to take a lot longer before a machine could succeed in his
imitation game.

4. Turing’s later imitation game scholarship

Elaborating upon his ideas during BBC radio discussions in 1951 and 1952 (Turing, 1951a,b, 1952),
Turing described thinking as a ‘sort of buzzing’ in his head (p. 494), believing a ‘considerable
portion of a jury’ (p. 495) of non-expert interrogators could be taken in by the imitating machine.
Albrechtsen et al. (2009) showed experts are not necessarily better in their study of ‘experienced
police investigators’ who were found to be no better than lay individuals at deception-detection, in
fact they were ‘more likely to judge statements as deceptive’ (p. 1055). Turing believed that in due
course, when developers did not have ‘something better to do’, they could build a machine to think
(p. 569).

Turing discussed machine ability and revised his earlier 1950 prediction of ‘in about fifty years
time’ to ‘most certainly within the next millennium’ (p. 486) and ‘at least a 100 years’ (p. 495).
Table 2 presents Turing’s evolving predictions. In the year before his death, in the 1953 essay on how
to build a machine to think (Turing, 1953), Turing suggested chess as a good starting point. Turing
said: ‘[the game] holds special interest of the representation of human knowledge in machines’ (p.
562). Turing described how to deal with the question of whether a machine could be built to play
by considering word meanings in sentences. This led him to put forward sub-questions that could
be considered separately:

(i) Could machines be programmed to follow the legal moves according to the rules of the game?
(ii) Could machines solve chess problems given the board location of its pieces?

(iii) Could machines play reasonably well in the game?
(iv) Could the machine improve its play and profit from its experience?

As Turing believed it would, a machine did learn to play and beat humans at chess.
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5. Realising Turing’s future

In 1997 a computer achieved what Turing had years earlier felt a machine could, and what Simon
and Newell predicted it would (Turing, 1953, p. 563). IBM’s Deep Blue supercomputer beat Gary
Kasparov, the then World Chess Champion, by 3.5 to 2.5 games in May 1997, a technology that
was put to use in designing cars, forecasting the weather, and developing innovative drug therapies
(IBM, 1997). In February 2011, following four years of research, IBM’s Watson question-answer
technology used natural language to sparr with two human champions during Final Jeopardy!, a
televised man vs. machine general knowledge quiz show. With contributions from Carnegie Mellon,
MIT, and Rensselaer Polytechnic Institute, among other universities, IBM Watson’s reverse fact-
finder showed it was possible for a machine to find its way through the format of a quiz show with
its clues in the form of puzzles, riddles and puns to beat two human champions (Baker, 2011; IBM,
2011; Jennings, 2011; Shah, 2010).

IBM Watson did err, for instance remaining silent about its IBM ancestry when presented with
the clue ‘Garry Kasparov wrote the foreword for The Complete Hedgehog, about a defense in
this game’ (Baker, 2011, p. 246) rather than answer with what it displayed on its screen as a 96
percent confidence in its first response: ‘What is chess?’ (ibid.). Turing had warned in 1950 that
‘We too often give wrong answers to questions ourselves to be justified in being very pleased on
such evidence of fallibility on the part of the machines . . . our superiority can only be felt on such an
occasion in relation to the one machine over which we have scored a petty triumph. There would be
no question of triumphing simultaneously over all machines’ (p. 445). Answering on topics such as
the ‘Beatles Jude, the swimmer Michael Phelps, the monster Grendel in Beowulf, the 1908 London
Olympics, and the boundaries of black holes’ (Baker, 2011, p. 239), Watson showed off its strength
through its massive store of knowledge in responding to clues such as ‘The chapels at Pembroke
and Emmanuel Colleges were designed by this architect’ with the correct question ‘Who is Sir
Christopher Wren?’ (p. 245). Ken Jennings, one of two human contestants of IBM Watson in the
2011 Final Jeopardy! quiz wrote: ‘there’s no shame losing to silicon ... I don’t have 2,880 processors
and 15 terabytes of reference works’ (Jennings, 2011, p. 2). IBM Watson’s developers believe the
technology has the potential to ‘transform how computers can help people accomplish tasks’ (IBM,
2011, p. 5), for example, searching and analysing unstructured data to assist with the diagnosis of
diseases, parse legal documents, and drive progress (Baker, 2011).

The future could see question-answer systems weaved into artificial conversational systems
combined with robot engineering, to assist humanity facing catastrophes as a result of natural disas-
ters, as with Japan’s Fukushima nuclear reactor following the March 2011 earthquake. In the spirit
of Alan Turing, the difficulty of the tasks before us must not deter us from innovating.
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Kevin Warwick looks forward to —

TURING’S FUTURE

In 1950 Alan Turing said of humans that ‘we can only see a short distance ahead, but we can see
plenty there ’. He looked himself, at that time, 50 to 100 year’s into the future to the time when the
Turing Imitation Game, which has become known as the Turing Test, would have been passed. He
also said ‘machines will eventually compete with men in all purely intellectual fields’. It could be
argued that one machine came perilously close to passing the Turing test: Elbot ‘surpassed Turing’s
30 percent deception rate by fooling one in two experts’ [p. 452], we can only assume that this is
something that will happen well before Turing’s 100 year horizon – certainly within Turing’s 50 to
100 year time frame. So where does this leave us and where will it take us?

Turing suggested providing machines with ‘ the best sense organs money can buy’ and then
teaching them. He said, ‘This process could follow the normal teaching of a child’. So he con-
ceived of giving machines sensory input but interestingly appeared to shy away from completely
embodying them with motor output as well – however he opened up the concept of machine learn-
ing which was revolutionary at the time (even now some people still believe machines to be merely
programmed!!).

Let us assume that Turing was right! What does this mean? What will the world be like in 2050?
Firstly machines will be able to learn (like a child), to sense the world in a plethora of ways (not

limited to human senses) and to fool humans into believing them to be human (at least to the stage
where a human cannot tell the difference most of the time – possibly physical appearance accepted).
As Turing pointed out ‘An important feature of a learning machine is that its teacher will .. be largely
ignorant of quite what is going on inside’. This needs to be coupled with the concept of machine
creativity – Turing said ‘the criticism that a machine cannot have much diversity of behaviour is just
the same as saying that it cannot have much storage capacity’. Even nowadays it is apparent that the
storage capacity of a personal computer compares favourably with that of a human brain.

http://www.slate.com/id/2284721/
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But one key element is clear, and this tips the balance firmly in the favour of machines, it is the
power of networking. This is something which was perhaps not particularly spotted by Turing and
which provides all sorts of issues when Turing Tests are run at this time – quite simply networks
are not allowable! But in reality most machines, of the computer/thinking type, are networked. The
storage capacity, the communication ability, the learning skills of a machine are not just those of
itself but rather are those of the network in which it is connected. In comparison humans are nowhere
near as well networked in that our brains (apart from in a handful of scientific experiments) are not
part of a closely connected network.

Potentially therefore we will (as indicated by Turing) by 2050 witness machines that are far
more creative than humans, that can learn in a human like way and (if and when they wish) can fool
us that they are human. To some this might sound quite sinister, Terminator-style and dangerous.
Should we be scared or is it just a theoretical possibility?

As long as we do not use computers within a military environment then we need have no worries.
As long as we do not develop weapon systems that protect themselves, that decide on their own
target, that have no (realistic) human control then a dangerous situation is unlikely. But I hear you
say – we already have such autonomous systems!

OK – then maybe the important thing is that humans maintain a veto, the chance to switch
machines off. But you say – even now we cannot switch off many machines, we are dependant on
them – the internet is a good example. Anyone disputing this fact can easily prove it to all of us – to
show that humans can still do it, actually do it – switch off the internet.

So maybe in 2050 we will (with our pink glasses on) have machines around the home, helping
us in our old age but maybe (with our black glasses on) machines will have humans around their
home, helping them.

Playing chess, GO or other games with machines is one thing – but giving machines the power
of choosing between the life and death of humans is quite something else.
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(Bowden, B. V. (Ed.), 1953. Faster than Thought.

Pitman, London, Chap. 25, pp. 286–310)

Alan Slomson introduces —

TURING AND CHESS

According to his mother, Alan Turing ‘took up chess and stirred up some interest in the game among
his fellows’ at his preparatory school, Hazelhurst (Turing, 1959, p. 20). However, she also refers to
him as ‘not being a very good chess player’ (Turing, 1959, p. 85). Later, Turing found himself in the
company of many strong chess players at Bletchley Park. Andrew Hodges comments that his ‘chess
was always something of a joke at Bletchley, being all the more exposed to invidious comparison
when the chess masters arrived. Harry Golombek had been able to give him queen odds, and still
win’ (Hodges, 1983, p. 265).

This is a little surprising in view of Turing’s mathematical ability, and the frequency with
which this is associated with ability in chess. For example, among Turing’s near mathematical
contemporaries in Cambridge who were strong chess players, and who represented the Univer-
sity at chess, we find the names of Jacob Bronowski (1908–74) and Charles Coulson (1910–74),
(Sergeant, 1934, p. 357). The clue to Turing’s weakness at chess may perhaps be found in his
mother’s remark that ‘despite his profound mathematical insight, eagerness to press on often
resulted in elementary mistakes in the simplest mathematical calculations’ (Turing, 1959, p. 59),
and to Feferman’s comment that Turing’s ‘writing was rough-and-ready and prone to minor errors’,
(Feferman, 2001, p. 7). The minor errors that occurred in some of Turing’s mathematical papers are
not important. A single miscalculation often leads to defeat at chess.

Turing’s ideas on using a computer to play chess emerged from his discussions with I. J. [Jack]
Good (1916–2009), another young Cambridge mathematician, and a strong chess player, who was
drafted to work at Bletchley Park (see Banks (1996)). Claude Shannon (1916–2001) had similar
ideas which he presented at a conference in 1949 and which were published in the following year
(Shannon, 1950). The connection between the Shannon’s and Turing’s ideas in this area is not
entirely clear. Turing met Shannon at the Bell Labs in February 1943, and they talked about comput-
ers in the context of intelligence (Hodges, 1983, pp. 250–251). In a talk Turing gave to the London
Mathematical Society in 1947, but not published until many years later, he refers briefly to the possi-
bility of using a computer to play chess and says of Shannon that he ‘tells me that he has won games
playing by rule of thumb: the skill of his opponents is not stated’ (Turing, 1947, p. 104). However,
when Turing’s ideas on using a computer to play chess were published in 1953, no mention is made
of Shannon’s work.

Turing’s remarks on the use of computers to play chess form part of Chapter 25, ‘a sympo-
sium on digital computing machines’ (Bowden, 1953). The editor, Vivian Bowden (1910–89), was
working for Ferranti selling computers when in 1953 he was appointed principal of the Manchester
College of Science and Technology. The book indicates that, in addition to Turing, the other contrib-
utors to Chapter 25 were Audrey Bates, Christopher Strachey (1916–75) and Bowden himself, but
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does not make clear who wrote which parts of the chapter. The entire chapter is printed without com-
ment about its authorship in the volume of Turing’s collected papers covering his work on Machine
Intelligence (Ince, 1992, pp. 161–185). However, Turing’s original typescript has survived and was
used by Jack Copeland in his edition, Copeland (2004), of a selection of Turing’s work. This makes
it clear that Turing’s contribution to the chapter is just the section, following the half-title ‘Chess’,
on pages 288 to 295 of Bowden (1953).1 According to Copeland there are some minor differences
between the typescript and the text as printed in Bowden (1953). There is one difference which is
worthy of particular mention below.

Turing says that the main question he addresses is whether one could make a machine which
would play a reasonably good game of chess. He invokes an informal version of what is now called
the Church–Turing Thesis (for which see, e.g., Cooper (2004)), to say that it is not necessary for
him to give ‘actual programmes’ to show that the answer to his question is ‘yes’ provided that he
can give an unambiguous description of an appropriate algorithm. He indicates that, as chess is a
finite game, if there was no limitation of time, it would be possible to evaluate any position as a win,
draw or loss for the player about to move by applying the standard max–min algorithm to the tree
of all positions obtainable from the given position using a sequence of legal moves. Since, because
of the very large of different possible games (estimated as at least 10120 by Shannon (1950)) this is
not feasible, we have to estimate the value of non-terminal positions according to some rule, now
called an evaluation function.

These ideas are also to be found in the work of Shannon (1950). Both Shannon and Turing
understood that it would be a mistake just to look ahead a fixed number of moves and then estimate
the value of all the positions thus reached, but Turing is more specific, defining what he means by
a considerable move and a dead position; evaluation being applied only to dead positions. Shan-
non talks about possible evaluation functions, but Turing gives a specific definition, and gives an
example of a game played following his algorithm, the calculations being performed by hand.

It seems from this that Shannon and Turing independently arrived at the essentials of modern
computer programmes for playing chess – deciding which positions to evaluate, the need for a
suitable evaluation function and max–min searching – but Shannon gets the credit for the earliest
publication of these ideas. However, Turing should be credited with the first specific algorithm
for playing chess. Because of the difficulty in doing the calculations by hand, Turing’s algorithm
involves, normally, just looking two moves ahead, that is, one move by White and one by Black.
Positions are evaluated by giving priority to the relative of the strengths of the two armies (counting
a Queen as worth 9, a Rook as worth 5, and so on), and then calculating a ‘Position-Play’ value,
which gives most weight to the sum of the square-roots of the number of legal moves available to
each piece.

Turing also gets the credit for the first game played following such an algorithm. In this game,
whose moves are given, Turing took the part of the computer, doing the calculations by hand. The
player of the Black pieces was the computer scientist Alick Glennie (1925–2003) who is not named
but merely described by Turing as ‘a weak player who did not know the system’. Glennie was
another contributor to Bowden’s symposium, Bowden (1953).

I now come to one significant difference between Turing’s typescript and the text as originally
printed. As Copeland points out, the games differ from White’s move 22 onwards, but he makes no
suggestion as to how this occurred. If you apply Turing’s algorithm to the position reached in the
game after Black’s 21st move, two things become apparent. First, applying the algorithm by hand
is tedious, and Turing’s persistence in doing this for 29 moves is to be admired. Second, it seems

1 Editor’s note: Dietrich Prinz, friend of Turing in Manchester, describes the first chess program to be actually
implemented on pp. 295–297 (see Copeland (2004), p. 564, and pp. 632–634 of this volume).
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that initially Turing made a mistake in the calculations. White’s 22nd move, P × B, as printed in
Copeland is not the move indicated by Turing’s algorithm. I surmise that this was noticed, and the
optimal move according to the algorithm, B × B, was later substituted. In the originally printed
version in Bowden’s book, White resigns after 29 moves, and the comment ‘on the advice of his
trainer’ is added (by Turing?), whereas, according to the version printed by Copeland, the game
ended after White was checkmated by Black’s 29th move.

The limitation of the algorithm, looking ahead just two moves, means that it plays rather weak
chess. However, except for two advances of the rooks’ pawns, White’s moves are, remarkably for
such a simple algorithm, not unlike those that a weak player might choose, and it seems likely that
this gave Turing confidence that chess playing programmes of considerable strength were feasible.

In his well-known paper (Turing, 1950), in which Turing discussed the question ‘Can machines
think?’, and in which he introduced the Imitation Game, now known as the Turing Test, he gives
the specific example of the solution to a chess problem as the sort of question that might be asked
as a part of this test. Turing expresses the belief that ‘in about fifty year’s time it will be possible to
programme computers, with a storage capacity of about 109, to make them play the imitation game
so well that an average interrogator will not have not than a 70 per cent chance of making the right
identification after five minutes of questioning’ (Turing, 1950, p. 442).

As is well known, in 1996 the then world chess champion, Gary Kasparov, lost a match game
to the Deep Blue chess programme. Kasparov ultimately won the match but a year later he was
beaten 3 1

2 –2 1
2 by a strengthened version of the programme (see King (1997) for the details). The

strength of such programmes arises mainly from the speed and power of modern computers, for
example, King reports that the programme that defeated Kasparov used 220 parallel chips each able
to examine two million positions each second (King, 1997, p. 47). They throw very little light on
human intelligence. However, their underlying structure follows the approach set out by Shannon
and Turing, and can be seen as a validation of their pioneering work.
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DIGITAL COMPUTERS APPLIED TO
GAMES

Chess problems are the hymn tunes of mathematics — G. H. HARDY

MACHINES WHICH WILL PLAY GAMES have a long and interesting history. Among the first
and most famous was the chess-playing automaton constructed in 1769 by the Baron Kempelen;
M. Maelzel took it on tour all over the world, deceiving thousands of people into thinking that it
played the game automatically. This machine was described in detail by Edgar Allan Poe; it is said
to have defeated Napoleon himself—and he was accounted quite a good player, but it was finally
shown up when somebody shouted “FIRE” during a game, and caused the machine to go into a
paroxysm owing to the efforts of the little man inside to escape.

In about 1890 Signor Torres Quevedo made a simple machine—a real machine this time—which
with a rook and king can check-mate an opponent with a single king. This machine avoids stalemate
very cleverly and always wins its games. It allows an opponent to make two mistakes before it
refuses to play further with him, so it is always possible to cheat by moving one’s own king the
length of the board. The mechanism of the machine is such that it cannot move its rook back past its
king and one can then force a draw! This machine, like Babbage’s “noughts and crosses” machine is
relatively simple, the rules to be obeyed are quite straightforward, and the machines couldn’t lose.
Babbage thought that his analytical engine ought to be able to play a real game of chess, which is a
much more difficult thing to do.

In this chapter we discuss how a digital computer can be made to play chess—it does so rather
badly, and how it plays draughts—it does so quite well. We shall also describe a special simple
machine which was built to entertain the public during the Festival of Britain. It was called Nimrod
because it played nim, a game which is like noughts and crosses, in that the tricks which are needed
to win can be expressed in mathematical terms. This machine was on show in South Kensington for
six months and took on all comers.

During the Festival the Society for Psychical Research came and fitted up a room nearby in order
to see if the operations of the machine could be influenced by concentrated thought on the part of
the research workers, most of whom were elderly ladies. When this experiment had failed they tried
to discover whether they in turn could be affected by vibrations from the machine, and could tell
from another room how the game was progressing. Unfortunately this experiment, like the first, was
a complete failure, the only conclusion being that machines are much less co-operative than human
beings in telepathic experiments.

At the end of the Festival of Britain Nimrod was flown to Berlin and shown at the Trade Fair.
The Germans had never seen anything like it, and came to see it in their thousands, so much so
in fact that on the first day of the show they entirely ignored a bar at the far end of the room
where free drinks were available, and it was necessary to call out special police to control the
crowds. The machine became even more popular after it had defeated the Economics Minister, Dr.
Erhardt, in three straight games. After this it was taken to Canada and demonstrated to the Society
of Engineers in Toronto. It is still somewhere on the North American continent, though it may have
been dismantled by now, and it would be amusing to match it against some of the other nim-playing
machines which have been built in the last year or two.

The reader might well ask why we bother to use these complicated and expensive machines in
so trivial a pursuit as playing games. It would be disingenuous of us to disguise the fact that the
principal motive which prompted the work was the sheer fun of the thing, but nevertheless if ever



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 10:25 Page 627 #5

Digital Computers Applied to Games 627

we had to justify the time and effort (and we feel strongly that no excuses are either necessary or
called for) we could quite easily make a pretence at doing so. We have already explained how hard
all programming is to do, and how much difficulty is due to the incompetence of the machine at
taking an overall view of the problem which it is analysing. This particular point is brought out
more clearly in playing games than in anything else. The machine cannot look at the whole of a
chess board at once; it has to peer short-sightedly at every square in turn, in much the same way as
it has to look at a commercial document. Research into the techniques of programming a machine to
tackle complicated problems of this type may in fact lead to quite important advances, and help in
serious work in business and economics—perhaps, regrettably, even in the theory of war. We hope
that mathematicians will continue to play draughts and chess, and to enjoy themselves as long as
they can.

We have often been asked why we don’t use the machine to work out the football pools, or
even to do something to remove the present uncertainty about the results of tomorrow’s horse races.
Perhaps one day we shall persuade our mathematicians to apply themselves to this problem too. It
would first be necessary to establish a series of numerical criteria from which the machine could
predict the results with greater certainty than the ordinary citizen can achieve with his pin; the
presumption underlying the whole idea is that such criteria do in fact exist, but that they are too
complicated for a man to apply in time, whereas a machine could do the necessary computations
for him. It is most unlikely that a machine could ever hope to predict (for example) the results of a
single football match, but it is at least possible that a detailed analysis might significantly improve
the odds in favour of the gambler, so that if he invested on a large enough scale he could make a
profit. It is notoriously true that mathematics, and particularly the theory of probability, owes more
to gambling than gambling owes to mathematics; perhaps a machine might do something to restore
the balance. Lady Lovelace lost a fortune by trying to back horses scientifically, and many others
have done the same; all one could hope for is a slight improvement in the odds. We might make it
pay but we doubt it; as an academic exercise it would be amusing, but we shall give the project a
low priority.

CHESS

When one is asked, “Could one make a machine to play chess?” there are several possible meanings
which might be given to the words. Here are a few—

(a) Could one make a machine which would obey the rules of chess, i.e. one which would play
random legal moves, or which could tell one whether a given move is a legal one?

(b) Could one make a machine which would solve chess problems, e.g. tell one whether, in a given
position, white has a forced mate in three?

(c) Could one make a machine which would play a reasonably good game of chess, i.e. which,
confronted with an ordinary (that is, not particularly unusual) chess position, would after two or
three minutes of calculation, indicate a passably good legal move?

(d) Could one make a machine to play chess, and to improve its play, game by game, profiting from
its experience?
To these we may add two further questions, unconnected with chess, which are likely to be on
the tip of the reader’s tongue.

(e) Could one make a machine which would answer questions put to it, in such a way that it would
not be possible to distinguish its answers from those of a man?

(f) Could one make a machine which would have feelings as you and I have?
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The problem to be considered here is (c), but to put this problem into perspective with the others
I shall give the very briefest of answers to each of them.

To (a) and (b) I should say, “This certainly can be done. If it has not been done already it is
merely because there is something better to do.”

Question (c) we are to consider in greater detail, but the short answer is, “Yes, but the better the
standard of play required, the more complex will the machine be, and the more ingenious perhaps
the designer.”

To (d) and (e) I should answer, “I believe so. I know of no really convincing argument to support
this belief, and certainly of none to disprove it.”

To (f ) I should say, “I shall never know, any more than I shall ever be quite certain that you feel
as I do.”

In each of these problems except possibly the last, the phrase, “Could one make a machine to . . .”
might equally well be replaced by, “Could one programme an electronic computer to . . .” Clearly
the electronic computer so programmed would itself constitute a machine. And on the other hand
if some other machine had been constructed to do the job we could use an electronic computer (of
sufficient storage capacity), suitably programmed, to calculate what this machine would do, and in
particular what answer it would give.

After these preliminaries let us give our minds to the problem of making a machine, or of pro-
gramming a computer, to play a tolerable game of chess. In this short discussion it is of course
out of the question to provide actual programmes, but this does not really matter on account of the
following principle—

If one can explain quite unambiguously in English, with the aid of mathematical symbols if
required, how a calculation is to be done, then it is always possible to programme any digital
computer to do that calculation, provided the storage capacity is adequate.

This is not the sort of thing that admits of clear-cut proof, but amongst workers in the field it
is regarded as being clear as day. Accepting this principle, our problem is reduced to explaining
“unambiguously in English” the rules by which the machine is to choose its move in each position.
For definiteness we will suppose the machine is playing white.

If the machine could calculate at an infinite speed, and also had unlimited storage capacity,
a comparatively simple rule would suffice, and would give a result that in a sense could not be
improved on. This rule could be stated:

“Consider every possible continuation of the game from the given position. There is only a finite
number of them (at any rate if the fifty-move rule makes a draw obligatory, not merely permissive).
Work back from the end of these continuations, marking a position with white to play as ‘win’ if
there is a move which turns it into a position previously marked as ‘win.’ If this does not occur,
but there is a move which leads to a position marked ‘draw,’ then mark the position ‘draw.’ Failing
this, mark it ‘lose.’ Mark a position with black to play by a similar rule with ‘win’ and ‘lose’
interchanged. If after this process has been completed it is found that there are moves which lead
to a position marked ‘win,’ one of these should be chosen. If there is none marked ‘win’ choose
one marked ‘draw’ if such exists. If all moves lead to a position marked ‘lose,’ any move may be
chosen.”

Such a rule is practically applicable in the game of noughts and crosses, but in chess is of merely
academic interest. Even when the rule can be applied it is not very appropriate for use against a weak
opponent, who may make mistakes which ought to be exploited.

In spite of the impracticability of this rule it bears some resemblance to what one really does
when playing chess. One does not follow all the continuations of play, but one follows some of them.
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One does not follow them until the end of the game, but one follows them a move or two, perhaps
more. Eventually a position seems, rightly or wrongly, too bad to be worth further consideration,
or (less frequently) too good to hesitate longer over. The further a position is from the one on the
board the less likely it is to occur, and therefore the shorter is the time which can be assigned for its
consideration. Following this idea we might have a rule something like this—

“Consider all continuations of the game consisting of a move by white, a reply by black, and
another move and reply. The value of the position at the end of each of these sequences of moves
is estimated according to some suitable rule. The values at earlier positions are then calculated by
working backwards move by move as in the theoretical rule given before. The move to be chosen is
that which leads to the position with the greatest value.”

It is possible to arrange that no two positions have the same value. The rule is then unambiguous.
A very simple form of values, but one not having this property, is an “evaluation of material,” e.g.
on the basis—

P = 1
Kt = 3
B = 3 1

2

R = 5
Q = 10

Checkmate = 1000

If B is black’s total and W is white’s, then W/B is quite a good measure of value. This is better
than W—B as the latter does not encourage exchanges when one has the advantage. Some small
extra arbitrary function of position may be added to ensure definiteness in the result.

The weakness of this rule is that it follows all combinations equally far. It would be much better if
the more profitable moves were considered in greater detail than the less. It would also be desirable
to take into account more than mere “value of material.”

After this introduction I shall describe a particular set of rules, which could without difficulty be
made into a machine programme. It is understood that the machine is white and that white is next
to play. The current position is called the position on the board, and the positions arising from it by
later moves positions in the analysis.

“CONSIDERABLE” MOVES

“Considerable” here is taken to mean moves which will be “considered” in the analysis by the
machine.

Every possibility for white’s next move and for black’s reply is “considerable.” If a capture is
considerable then any recapture is considerable. The capture of an undefended piece or the capture
of a piece of higher value by one of lower value is always considerable. A move giving checkmate
is considerable.

DEAD POSITION

A position in the analysis is dead if there are no considerable moves in that position, i.e. if it
is more than two moves ahead of the present position, and no capture or recapture or mate can be
made in the next move.
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VALUE OF POSITION

The value of a dead position is obtained by adding up the piece values as above, and forming the
ratio W/B of white’s total to black’s. In other positions with white to play the value is the greatest
value of (a) the positions obtained by considerable moves, or (b) the position itself evaluated as if a
dead position. The latter alternative is to be omitted if all moves are considerable. The same process
is to be undertaken for one of black’s moves, but the machine will then choose the least value.

POSITION-PLAY VALUE

Each white piece has a certain position-play contribution and so has the black king. These must
all be added up to give the position-play value.

For a Q,R,B, or Kt, count—

(a) The square root of the number of moves the piece can make from the position, counting a capture
as two moves, and not forgetting that the king must not be left in check.

(b) (If not a Q) 1·0 if it is defended, and an additional 0·5 if twice defended.

For a K, count—

(c) For moves other than castling as (a) above.
(d) It is then necessary to make some allowance for the vulnerability of the K. This can be done

by assuming it to be replaced by a friendly Q on the same square, estimating as in (a), but
subtracting instead of adding.

(e) Count 1·0 for the possibility of castling later not being lost by moves of K or rooks, a further 1·0
if castling could take place on the next move, and yet another 1·0 for the actual performance of
castling.

For a P, count—

(f) 0·2 for each rank advanced.
(g) 0·3 for being defended by at least one piece (not P).

For the black K, count—

(h) 1·0 for the threat of checkmate.
(i) 0·5 for check.

We can now state the rule for play as follows. The move chosen must have the greatest possible
value, and, consistent with this, the greatest possible position-play value. If this condition admits of
several solutions a choice may be made at random, or according to an arbitrary additional condition.

Note that no “analysis” is involved in position-play evaluation. This is to reduce the amount of
work done on deciding the move.

The game below was played between this machine and a weak player who did not know the
system. To simplify the calculations the square roots were rounded off to one decimal place, i.e. this
table was used—

Number . . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Square Root . . 0 1 1·4 1·7 2·0 2·2 2·4 2·6 2·8 3·0 3·2 3·3 3·5 3·6

No random choices actually arose in this game. The increase of position-play value is given
after white’s move if relevant. An asterisk indicates that every other move had a lower position-play
value.
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White (Machine) Black

1. P—K4 4·2∗ P—K4

2. Kt—Q B3 3·1∗ Kt—K B3

3. P—Q4 2·6∗ B—Q Kt5
4. Kt—K B3(1) 2·0 P—Q3

5. B—Q2 3.5∗ Kt—Q B3

6. P—Q5 0·2 Kt—Q5

7. P—K R4(2) 1·1∗ B—Kt5
8. P—Q R4(2) 1·0∗ Kt×Kt ch.
9. P×Kt B—K R4

10. B—Kt5 ch. 2·4∗ P—Q B3

11. P×P O—O
12. P×P R—Kt1
13. B—R6 − 1·5 Q—R4

14. Q—K2 0·6 Kt—Q2

15. K R—Kt 1(3) 1·2∗ Kt—B4(4)

16. R—Kt 5(5) B—Kt3
17. B—Kt5 0·4 Kt×Kt P
18. O—O—O 3.2∗ Kt—B4

19. B—B6 KR—Q B1

20. B—Q5 B×Kt
21. B×B 0·7 Q×P
22. K—Q2 Kt—K3

23. R—Kt4 − 0·3 Kt—Q5

24. Q—Q3 Kt—Kt4
25. B—Kt3 Q—R3

26. B—B4 B—R4

27. R—Kt3 Q—R5

28. B×Kt Q×B
29. Q×P(6) R—Q 1(4)

30. Resigns(7)

Notes—

1. If B—Q2 3·7∗ then P×P is foreseen.
2. Most inappropriate moves.
3. If white castles then B×Kt, B×B,Q×P.
4. The fork is unforeseen at white’s last move.
5. Heads in the sand!
6. Fiddling while Rome burns!
7. On the advice of his trainer.

Numerous criticisms of the machine’s play may be made. It is quite defenceless against forks,
although it may be able to see certain other kinds of combination. It is of course not difficult to
devise improvements of the programme so that these simple forks are foreseen. The reader may be
able to think of some such improvements for himself. Since no claim is made that the above rule
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is particularly good, I have been content to leave this flaw without remedy; clearly a line has to be
drawn between the flaws which one will attempt to eliminate and those which must be accepted as
a risk. Another criticism is that the scheme proposed, although reasonable in the middle game, is
futile in the end game. The change-over from the middle game to the end-game is usually sufficiently
clear-cut for it to be possible to have an entirely different system for the end-game. This should of
course include quite definite programmes for the standard situations, such as mate with rook and
king, or king and pawn against king. There is no intention to discuss the end-game further here.

If I were to sum up the weakness of the above system in a few words I would describe it as a
caricature of my own play. It was in fact based on an introspective analysis of my thought processes
when playing, with considerable simplifications. It makes oversights which are very similar to those
which I make myself, and which may in both cases be ascribed to the considerable moves being
inappropriately chosen. This fact might be regarded as supporting the glib view which is often
expressed, to the effect that “one cannot programme a machine to play a better game than one
plays oneself.” This statement should I think be compared with another of rather similar form. “No
animal can swallow an animal heavier than himself.” Both statements are, as far as I know, untrue.
They are also both of a kind that one is easily bluffed into accepting, partly because one thinks that
there ought to be some slick way of demonstrating them, and one does not like to admit that one
does not see what this argument is. They are also both supported by normal experience, and need
exceptional cases to falsify them. The statement about chess programming may be falsified quite
simply by the speed of the machine, which might make it feasible to carry the analysis a move
farther than a man could do in the same time. This effect is less than might be supposed. Although
electronic computers are very fast where conventional computing is concerned, their advantage is
much reduced where enumeration of cases, etc., is involved on a large scale. Take for instance the
problem of counting the possible moves from a given position in chess. If the number is 30 a man
might do it in 45 seconds and the machine in 1 second. The machine has still an advantage, but it is
much less overwhelming than it would be for instance when calculating cosines.

In connexion with the question of the ability of a chess-machine to profit from experience,
one can see that it would be quite possible to programme the machine to try out variations in its
method of play (e.g. variations in piece value) and adopt the one giving the most satisfactory results.
This could certainly be described as “learning,” though it is not quite representative of learning
as we know it. It might also be possible to programme the machine to search for new types of
combination in chess. If this project produced results which were quite new, and also interesting
to the programmer, who should have the credit? Compare this with the situation where a Defence
Minister gives orders for research to be done to find a counter to the bow and arrow. Should the
inventor of the shield have the credit, or should the Defence Minister?

THE MANCHESTER UNIVERSITY MACHINE

In November, 1951, some months after this article was written (by Dr. Turing) Dr. Prinz was
able to make the Manchester University machine solve a few straightforward chess problems of the
“Mate-in-Two” type (see Research, Vol. 6 (1952), p. 261).

It is usually true to say that the best and often the only way to see how well the machine can
tackle a particular type of problem is to produce a definite programme for the machine, and, in
this case, in order to have something working in the shortest possible time, a few restrictions were
imposed on the rules of chess as they were “explained” to the machine. For example castling was
not permitted, nor were double moves by pawns, nor taking en passant nor the promotion of a
pawn into a piece when it reached the last row; further, no distinction was made between mate and
stalemate.
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The programme contained a routine for the construction of the next possible move, a routine
to check this move for legality, and various sequences for recording the moves and the positions
obtained. All these separate subroutines were linked together by a master routine which reflected
the structure of the problem as a whole and ensured that the subroutines were entered in the proper
sequence.

The technique of programming was perhaps rather crude, and many refinements, increasing the
speed of operation, are doubtless possible. For this reason, the results reported here can only serve as
a very rough guide to the speed attainable; but they do show the need for considerable improvement
in programming technique and machine performance before a successful game by a machine against
a human chess player becomes a practical possibility.

The programme, as well as the initial position on the chess board, was supplied to the machine
on punched tape and then transferred to the magnetic store of the machine.

A initial routine (sub-programme) was transferred to the electronic store, and the machine started
its computation. The programme was so organized that every first move by white was printed out;
after the key move had been reached the machine printed: “MATE.”

The main result of the experiment was that the machine is disappointingly slow when playing
chess—in contrast to the extreme superiority over human computers where purely mathematical
problems are concerned. For the simple example given in the position reproduced here, 15 min-
utes were needed to print the solution. A detailed analysis shows that the machine tried about 450
possible moves (of which about 100 were illegal) in the course of the game; this means about two
seconds per move on the average.

A considerable portion of this time had to be used for a test for self-check (i.e. after a player
had made a move, to find out whether his own King was left in check). This was done by first
examining all squares connected to the King’s square by a Knight’s move, to see (a) whether they
were on the board at all, (b) whether they were empty or occupied, (c) if occupied, by a piece of
which colour and (d) if occupied by a piece of opposite colour, whether or not this piece was a
Knight. A similar test had to be carried out for any other piece that might have put the King in
check. This test involves several hundreds of operations and, at a machine speed of 1 msec per
operation, might take an appreciable fraction of a second.

The next important time-consuming factor was the magnetic transfers, i.e. the transfers of sub-
programmes and data (relating to positions and moves) between the magnetic and the electronic
store. It is here that improved programming technique may save time by better utilization of the
electronic store, thus reducing the number of transfers (nine for every legal move in the present
programme).

Compared with these two items, the time spent in computing the moves appeared to be of minor
importance although the machine not only computed the possible moves but also the impossible, but
“thinkable” moves—meaning those which either carry the piece off the board, or lead to a collision
with a piece of the same colour already on the square. These moves, however, were quickly rejected
by the machine and did not contribute greatly to the total computation time.

It appears that if this crude method of programming were the only one available it would be
quite impractical for any machine to compete on reasonable terms with a competent human being.

Before we conclude too easily that no computer will ever compete in a Masters’ Tournament let
us remind ourselves that the Manchester machine solved a problem after a few weeks tuition, which
represents quite reasonable progress for a beginner.
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The First Chess Problem Solved by a Computing Machine. The task set the Manchester machine
was to find a move by white that would lead to a mate in the next move, whatever black might
answer. The move is R—R6.

81

71

61

51

41

31

21

11

88

78

68

58

48

38

28

18

For solution of the problem by the machine the squares of the board were numbered in rather
unusual fashion. The bottom row was numbered 11 to 18 (from left to right), the next 21 to 28,
and so on to the top row, which was 81–88. Square 68 was thus the square in row 6, column 8.
The machine has printed out all the moves which white tried out to find a solution, and has printed
“MATE” after finding and recording the key move, which appears in the form “Rook to 68.”

The list of moves is—

Pawn to 78. Rook to 11.
Rook to 17. Rook to 28.
Rook to 16. Rook to 38.
Rook to 15. Rook to 48.
Rook to 14. Rook to 58.
Rook to 13. Rook to 68.
Rook to 12. MATE.

DRAUGHTS

The game of draughts occupies an intermediate position between the extremely complex games
such as chess, and the relatively simple games such as nim or noughts-and-crosses for which a
complete mathematical theory exists. This fact makes it a rather suitable subject for experiments in
mechanical game playing, for although there is no complete theory of the game available, so that the
machine has to look ahead to find the moves, the moves themselves are rather simple and relatively
few in number.

Various forms of strategy have been suggested for constructing an automatic chess player; the
purpose of such plans is to reduce the time taken by the machine to choose its move. As Prinz has
shown, the time taken by any machine which considers all the possible moves for four or five steps
ahead would be quite prohibitive, and the principal aim of the strategy is to reduce this number
very considerably, while at the same time introducing a scheme of valuing the positions which will
allow it to choose a reasonably good move. The chief interest in games-playing machines lies in the
development of a suitable strategy.

Before any strategy can be realized in practice, however, the basic programme necessary to find
the possible moves and to make them must be constructed. When this has been done the strategy,
which consists principally of the methods by which positions can be valued, can be added to make
the complete game player. It is obviously possible to make experiments with different strategies
using the same basic move-finding-and-making routine.

The basic programme for draughts, which is described in outline in the following paragraphs, is
very much simpler than the corresponding one for chess. It has in fact proved possible to put both



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 10:25 Page 635 #13

Digital Computers Applied to Games 635

it and the necessary position storage in the electronic store of the Manchester machine at the same
time. This removes the need for magnetic transfers during the operation of the programme, and this
fact, together with the simplicity of the moves, has reduced the time taken to consider a single move
to about one tenth of a second.

BASIC PROGRAMME FOR DRAUGHTS

We must first consider the representation of a position in the machine. The 32 squares used in a
draughts board are numbered as shown in the diagram.

A position is represented by 3 thirty-two-digit binary numbers (or words) B, W and K which
give the positions of the black men (and kings), the white men (and kings) and the kings (of either
colour) respectively. The digits of these words each represent a square on the board; the square n
being represented by the digit 2n.

0 1 2 3

BLACK

WHITE

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Thus the least significant digit represents square 0 and the most significant digit represents square
31. (In the Manchester machine, where the word length is 40 digits, the last 8 digits are irrelevant).
A unit in the word indicates the presence, and a zero indicates the absence of the appropriate type
of man in the corresponding square. Thus the opening position of the game would be represented
by*—

B = 1111, 1111, 1111, 0000, 0000, 0000, 0000, 0000
W = 0000, 0000, 0000, 0000, 0000, 1111, 1111, 1111
K = 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000

The positions of the white kings are indicated by the word W&K, while the empty squares are
indicated by the word∼W&∼B.†

It will be seen that there are at most four possible types of non-capture moves from any square
on the board. For example, from square 14 the possible moves are to squares 9, 10, 17 or 18. The
machine considers all these moves in turn, but it will be sufficient to indicate here the way in which
it deals with one of them—say the move 14–18.

* All binary numbers are written in the convention used for the Manchester machine, i.e. with their least significant digit
on the left.
† W&K stands for the logical product of W and K (sometimes also known as the result of collating W and K).∼W stands
for the negation of W, i.e. the word obtained by writing 1’s for 0’s in W, and vice versa (see Chapter 15).
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This type of move, which consists of adding 4 to the number of the square, corresponds to
multiplying the appropriate digit in the position word by 24. A move of this type can be made by
any black man, but only by a white king; it cannot be made from squares 28, 29, 30 or 31 nor can it
be made unless the square to which the man is to be moved is empty. For a black move, the machine
there- fore forms the following quantity—

γ = {(B&M)× 24
}&∼W&∼ B

where M = 1111, 1111, 1111, 1111, 1111, 1111, 1111, 0000
For a white move, the corresponding quantity is—

{(W&K&M) × 24
}&∼W&∼ B

In these expressions (B&M) or (W&K&M) give all the men on the board who could make the move;
multiplying this by 24 give the squares to which they would move. If these squares are empty
(collate with∼W&∼B) the move is possible.

The quantity γ thus represents all the possible moves of this type. To consider a single one of
these, the largest non-zero digit of γ is taken and removed from γ . The word consisting of this
single digit known as θ , gives the square to which the man is moved. The quantity φ = θ × 2−4 is
then formed and gives the square from which the man was moved. For a black move, the quantity—

B′ = B 6≡ θ 6≡ φ

will then give the new position of the black men. If K&φ is not zero, the man moved was a king so
that K′ = K 6≡ θ 6≡ φ gives the new position of the kings. If K&φ is zero, the man moved was not
a king. The new position of the kings will therefore be unaltered unless the man has kinged during
this move—in other words unless θ 1 228 in which case K′ = K 6≡ θ .

Relatively simple modifications of this scheme are needed to deal with white moves and non-
capture moves of other types. Capture moves are somewhat more complicated as multiple captures
must be allowed for. Furthermore, all the possible captures must be made or the machine will ren-
der itself liable to be huffed. This leads to a considerable complication which it is not possible to
describe fully here, but the basic scheme is not altered.

The machine considers all the possible moves of one type before starting the next, so that in
order to describe a position fully, it is necessary to store the word γ , which indicates the moves still
to be considered, as well as the position words B, W and K. It is also necessary to keep a record of
the type of move being considered. This is done with the aid of a further parameter word P which
also contains the value associated with the position. The whole storage required for a position is
thus reduced to the 5 thirty-two-digit words B,W,K,γ , and P.

VALUATION OF POSITIONS AND STRATEGY

It should be possible to graft almost any type of strategy on to the move-finding scheme outlined
above to produce a complete draughts-playing routine and then to evaluate the effectiveness of the
strategy by direct experiment. I have done this with two rather simple types of strategy so far, and I
hope to be able to try some rather more refined strategies in the future.

For demonstration purposes, and also to ensure that a record of the game is kept, and to take
certain precautions against machine error, the move-finding sequence and the associated strategy
have been combined with a general game-playing routine which accepts the opponent’s moves,
displays the positions, prints the move, and generally organizes the sequence of operations in the
game. It is rather typical of logical programmes that this organizing routine is in fact longer than
the game-playing routine proper. As its operations, though rather spectacular, are of only trivial
theoretical interest, I shall not describe them here.
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The first, and simplest, strategy to try is the direct one of allowing the machine to consider all
the possible moves ahead on both sides for a specified number of stages. It then makes its choice,
valuing the final resulting positions only in terms of the material left on the board and ignoring any
positional advantage. There is an upper limit to the number of stages ahead that can be considered
owing to limitations of storage space—actually six moves, three on each side, are all that can be
allowed. In practice, however, time considerations provide a more severe limitation. There are on an
average about ten possible legal moves at each stage of the game, so that consideration of one further
stage multiplies the time for making the move by a factor of about ten. The machine considers moves
at the rate of about ten a second, so that looking three moves ahead (two of its own and one of its
opponents), which takes between one and two minutes, represents about the limit which can be
allowed from the point of view of time.

This is not sufficient to allow the machine to play well, though it can play fairly sensibly for
most of the game. One wholly unexpected difficulty appears. Consider the position on the following
board.

1 2

BLACK

WHITE

4 7

8 9 11

12 13 14

17 18

21 22 23

24 27

31

In this position, the machine is aware that its opponent is going to king next move. Now a king
is more valuable than a man—the actual values used were three for a king and one for a man—so
that if the opponent kings the machine effectively loses two points. The only way it can stop this is
by offering a man for sacrifice, because then, by the rules of the game, the sacrifice must be taken at
once. If the machine does this, it will lose only one point, and as it is not looking far enough ahead,
it cannot see that it has not prevented its opponent from kinging but only postponed the evil day. At
its next move it is still faced with the same difficulty, which it tries to solve in the same way, so that
it will make every possible sacrifice of a single man before it accepts as inevitable the creation of
an opponent’s king. In fact, when faced with this position, the machine played 19—23, followed by
16—21 and 20—24.

This, of course, is a fatal flaw in the strategy—and not one it would have been easy to dis-
cover without actually trying it out. An opponent who detected this behaviour—and it is extremely
conspicuous in play—would only have to leave his man on the point of kinging indefinitely. The
machine would then sacrifice all its remaining men as soon as the opportunity offered.

In order to avoid this difficulty, the second strategy was devised. In this the machine continues to
investigate the moves ahead until it has found two consecutive moves without captures. This means
that it will be able to recognize the futility of its sacrifice to prevent kinging. It is still necessary to
impose an over-riding limit on the number of stages it can consider, and once more, considerations
of time limit this. However, as no move is continued for more than two stages unless it leads to a
capture, it is possible to allow the machine to consider up to four stages ahead without it becoming
intolerably slow. This would mean that it would consider the sacrifice of two men to be of equal
value to the creation of an opponent’s king, and as there is a random choice between moves of equal
value, it might still make this useless sacrifice. This has been prevented by reducing the value of a
king from 3 to 2 7

8 .
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Machine Strachey

1. 11—15 23—18
2. 7—11 21—17
3. 8—12 20− 16(1)

4. 12—21(16) 25—16(21)
5. 9—14!(2) 18—9(14)
6. 6—20(16,9)(3) 27—23
7. 2—7(4) 23—18
8. 5—8 18—14
9. 8—13(5) 17—8(13)

10. 4—13(8) 14—9
11. 1—5(6) 9—6
12. 15—19 6—1 K
13. 5—9 1—6?(7)

14. 0—5!(8) 6—15(10)
15. 11—25(22,15) 30—21(25)
16. 13—17 21—14(17)
17. 9—18(14) 24—21
18. 18—23 26—22
19. 23—27 22—17
20. 5—8(9) 17—14
21. 8—13 14—9
22. 19—23 9—6
23. 23—26(10) 31—22(26)
24. 27—31K 6—2 K
25. 7—10 2—7
26. 10—15 21—16?(11)

27. 3—10(7) 16—9(13)
28. 10—14 9—6
29. 15—19 6—2K
30. 31—27(12) 2—6
31. 27—31(12) 6—10
32. 31—26(13) 10—17(14)
33. 19—23 29—25
34. 26—31(14)

Notes—

1. An experiment on my part—the only deliberate offer I made. I thought, wrongly, that it was quite
safe.
2. Not foreseen by me.
3. Better than 5—21 (9,17).
4. A random move (zero value). Shows the lack of a constructive plan.
5. Another random move of zero value, actually rather good.
6. Bad. Ultimately allows me to make a King. 10—14 would have been better.
7. A bad slip on my part.
8. Taking full advantage of my slip.
9. Bad. Unblocks the way to a King.
10. Sacrifice in order to get a King (not to stop me kinging). A good move, but not possible before
19—23 had been made by chance.
11. Another bad slip on my part.
12. Purposeless. The strategy is failing badly in the end game.
13. Too late.
14. Futile. The game was stopped at this point as the outcome was obvious.
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With this modified strategy, the machine can play quite a tolerable game until it reaches the
end game. It has always seemed probable that a wholly different strategy will be necessary for end
games. The game given on page 303, which is the first ever played using the strategy, brings this
point out very clearly.

NIM

A considerably easier game which the machine can be programmed to play is the one known as
nim. Probably a variation of this was known to the Chinese—certainly in its present form many
people have met it. We have chosen to deal with this comparatively trivial game in detail because of
its topical interest. Thousands of people will have seen Nimrod, the computer built by Ferranti Ltd.
for the Science Exhibition of the Festival of Britain. This special-purpose machine was designed to
show the main features of large electronic digital computers, and the game of nim was chosen as an
interesting but simple demonstration problem. The game itself is as follows—

Initially we have any number of heaps, each containing any number of tokens (usually matches).
In the simplest form, two contestants play alternately, and may pick up as many matches as they
wish at one time from one pile, but they must take at least one match. The aim is to avoid taking the
last match of all—or there is another variation where the aim is to take the last match or group of
matches.

The so-called multiple game differs from this only in that the number of heaps altered in any
move may take any value from one up to a pre-assigned maximum k. Of course, to prevent complete
triviality, k must be less than N, the total number of heaps.

The detailed theory of nim was worked out long ago and, apart from the initial distribution of the
matches, no element of chance need enter into the game. This theory is very simple, but it becomes
clearer for the non-mathematician if we use the concept of a binary number, introduced elsewhere
(see page 33).

We can now proceed to give a working rule for the game of nim. We would like to find a winning
position having the following characteristics—

(a) It is impossible, when faced by a winning position, to make a move which will leave a winning
position.

(b) Faced with any other than a winning position, it is possible to make a move resulting in a winning
position.

(c) If at any stage of the game a player A can convert a position into a winning position, it is possible
for A to win, and impossible for his opponent B to do so unless A makes a mistake. A wins by
leaving a winning position at every succeeding move on his part.

Such winning positions can be achieved and are recognized as follows: For any given config-
uration, express the number of matches in each heap as a binary number. Suppose, for example,
that we have four heaps, A, B, C and D, containing respectively 7, 4, 3 and 2 matches. These are
represented—

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 0 1 1 (3)

D 0 1 0 (2)
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We write these down as above, one under the other, and add up each column, e.g., in the above
example, we get

4 2 1

sum: 2 3 2

Now the “secret” of a winning position is that every column should be divisible by k+ 1; k being
the maximum number of heaps which can be altered in any one move. Thus the example quoted
above cannot represent a winning position whatever our initial choice of k. However, suppose we
have k = 1; then consider the position—

4 2 1

A 1 0 1 (5)

B 1 1 1 (7)

C 0 1 1 (3)

D 0 0 1 (1)

sum : 2 2 4

This is a winning position, but would not be so if we had previously fixed k = 3, for example.
To convert an “unsafe” into a winning position, we deal with a column at a time. Consider our

previous example with k = 1.

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 0 1 1 (3)

D 0 1 0 (2)

sum : 2 3 2

We start with the “most-significant,” or left-hand column. This sum is divisible by k+ 1, so we
proceed to consideration of the next column. The sum here is 3, which is not divisible by k+ 1, so
we choose any heap, say D, having a one in this column. We remove this 1 (which is equivalent to
subtracting 2 from D), and put 1 in every less-significant (or right-hand) column of this heap (which
in this case is equivalent to adding 1, though if we had chosen to modify A instead, it would have
meant no change in the last column). That is, we make the minimum move which removes the 1 in
the “unsafe” column. Thus we remove 1 from D, and so alter its binary representation to 001.

Now our representation is—

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 0 1 1 (3)

D 0 0 1 (1)

sum : 2 2 3
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and we see that we have made the sum of column 2 divisible by k+ 1 at the expense of column
1. However, we shall now proceed to adjust column 1. To avoid altering more than k heaps in one
move, we must alter one or more of the heaps already affected if, by so doing, we can achieve the
desired result, rather than select a fresh heap.

Now, in this case, we wish to remove 1 from column 1 of some heap. Since heap D has already
been altered, we choose this—it has a 1 in this column.

So, at the end of our move, we have removed two matches from heap D, and leave the winning
position—

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 0 1 1 (3)

D 0 0 0 (0)

sum : 2 2 2

In adapting this game for the universal computer, we allow a maximum of eight heaps, with not
more than thirty-one matches in a heap. In Nimrod the more stringent restrictions to four heaps, each
with a maximum content of seven matches, were applied to simplify the problems of demonstration.

Possible positions with which the machine may be faced are as follows—

(a) At least k+ 1 heaps contain more than one match.
(b) The number of heaps containing more than one match lies between 1 and k (inclusive).
(c) No heap contains more than one match. Not all heaps are empty.
(d) All heaps are empty.

In case (a), we follow the so-called normal routine, which aims at leaving column sums all
divisible by (k+ 1).

In case (b), we want to leave r(k+ 1)+ 1 heaps containing one match, and no heaps with more
than one, where r may have any non-negative integral value (i.e. r = 0,1,2, . . .).

In case (c) the same applies. If only one heap is left, containing one match, we have no choice
of move, but this need not be treated separately.

In case (d), the game is over. Special investigation has to be used to detect this case. In all other
cases, if the normal routine cannot succeed in its purpose, i.e. if the machine is faced with a winning
position—a random move can, and must, be made. But, in this situation, this obviously cannot be
done.

Thus the routine breaks up naturally into the following parts—

(i) Entry
(ii) Determination of case

(iii) Normal Routine
(iv) Cases (b) and (c)
(v) Treatment of zero case (d)

(vi) Random move
(vii) Emergence.

There is no need to give further details of the programme, but an example is given of how the
machine would tackle a specific game.

Suppose initially that we have four heaps, containing respectively 7, 4, 5 and 2 matches; that
k = 2; and that the machine moves first.
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(i) Entry—

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 1 0 1 (5)

D 0 1 0 (2)

sum : 2 2 2

(ii) Determination of case—
There are 4 non-zero, non-unit heaps, so we are dealing with case (a).

(iii) Normal routine—

4 2 1

A 1 1 1 (7)

B 1 0 0 (4)

C 1 0 1 (5)

D 0 1 0 (2)

sum : 3 2 2

The sum of column 4 is divisible by k+ 1 so we need not modify it.
The sum of column 2 is 2, and is not divisible by k+ 1, so we need to modify any heap having

a 1 in this column—say heap A.
According to the rules, we then get—

4 2 1

A 1 0 1 (5)

B 1 0 0 (4)

C 1 0 1 (5)

D 0 1 0 (2)

sum : 3 1 2

And we note that heap A has been modified, and should be again modified whenever possible.
Sum of column 2 is still not divisible by k+ 1, so this time we modify heap D to obtain—

4 2 1

A 1 0 1 (5)

B 1 0 0 (4)

C 1 0 1 (5)

D 0 0 1 (1)

sum : 3 0 3
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Column 2 is now divisible by k+ 1 and, proceeding to the next column, we see this condition is
also satisfied here, so the move has been completed and a winning-position left, the means to this
end being the removal of two matches from A, and one from D, leaving 5, 4, 5 and 1. (If column
1 had needed adjustment, we should have had to modify one or both of heaps A and D, since these
had already been affected.)

Suppose the opponent now makes a move leaving 0,4, 2 and 1 as the contents of the respective
heaps. It is now for the machine to move again.

(i) Entry—

4 2 1

A 0 0 1 (0)

B 1 0 0 (4)

C 0 1 0 (2)

D 0 0 1 (1)

(ii) Determination of case.
There are 3 non-zero, non-unit heaps, so we are dealing with case (b). Thus we want to leave 1,
or 4, or 7. . . unit-heaps. Clearly we can only leave 1 unit heap in this case.

(iv) Cases (b) and (c).
We remove all matches from heaps B and D, which affects only k heaps, and leaves just one unit
heap as required.

The opponent is now forced to remove the last match, and the machine wins the game.
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Examining the Work and Its Later Impact

David Levy1 delves deeper into —

ALAN TURING ON COMPUTER CHESS

In the history of computer chess three names stand out as candidates for the title of ‘founder’.
The accolade is usually given to Claude Shannon, who was certainly the founder of the field of
Information Theory and whose seminal lecture2 on computer chess in 1949 laid the foundations of
most of the chess programs developed since then.

A second candidate is the German computer designer Konrad Zuse, who in 1945 wrote
Die Plankalkül, describing an algorithmic language he had devised during the period 1936–45.
Zuse’s original publication was in German and it was not until 1975 that an English translation
appeared in print. Consequently Zuse’s work on computer chess3 was virtually unknown to the
English speaking world until after Shannon’s ideas had already been adopted by most of those
working in this field, and Zuse’s contribution to the field has been rather slight in the sense that no
leading program has ever been based on his ideas.

The third candidate for the title of ‘founder of computer chess’ is Alan Turing. Although not
a strong player himself, he was very keen on the game and had even taught himself to play with-
out sight of the board. Turing recognized that chess could be a suitable vehicle for a study of the
mechanization of thought processes, and the idea of a chess program fascinated him. During the
war years, while working at Bletchley Park on the breaking of the German Enigma code, Turing
had many discussions on the subject with Donald Michie and Jack Good, both of whom were also
chess enthusiasts.4

It was Turing, in fact, who was the first to publish in English on how chess could be programmed.
In a report in 1946 for the National Physical Laboratory, entitled Proposed Electronic Calculator,
Turing described some of the problems that he expected to be submitted to the computer he was
proposing, one of which was programming a computer to play chess.

‘Given a position in chess the machine could be made to list all the “winning combinations”
to a depth of about three moves on either side. This is not unlike the previous problem5

but raises the question “Can the machine play chess?” It could fairly easily be made to play
a rather bad game. It would be bad because chess requires intelligence. We stated at the

1 Dr. David Levy is an International Master at Chess, and President of the International Computer Games Association.
davidlevylondon@yahoo.com
2 Shannon’s 1950 paper ‘Programming a Computer for Playing Chess’ was the first publication to describe how a position
might be evaluated and how a game tree might be searched. That paper was the text of a lecture given by Shannon to the
Institute of Radio Engineers on 9 March 1949, which happened to be Bobby Fischer’s sixth birthday.
3 Described in Chapter 5 of the English edition, pp. 201–244.
4 Bletchley Park was a hotbed for chess addicts. Three of the five players in the English chess team who participated in
the 1939 Chess Olympiad in Buenos Aires were recruited to work at Bletchley: Harry Golombek, Stuart (later Sir Stuart)
Milner-Barry and Hugh Alexander. It is said that once, when arriving on his bicycle for work, Turing was asked by a
guard at the gate of who his head of section was, and rather than naming himself he replied ‘Alexander’, so important
was the latter’s role in Turing’s team.
5 Solving a jigsaw.

http://davidlevylondon@yahoo.com


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 10:25 Page 645 #23

Examining the Work and Its Later Impact 645

beginning of this section [i.e. when describing how programming is done] that the machine
should be treated as entirely without intelligence. There are indications however that it is
possible to make the machine display intelligence at the risk of its making occasional serious
mistakes. By following up this aspect the machine could probably be made to play very good
chess’.

Turing later augmented these comments in a lecture to the London Mathematical Society6 in which
he raised the possibility of having a chess machine that could learn from its own experience.

‘It would probably be quite easy to find instruction tables which would enable the ACE to
win against an average player. Indeed Shannon of Bell Telephone laboratories tells me that
he has won games playing by rule of thumb: the skill of his opponents is not stated. But I
would not consider such a victory very significant. What we want is a machine that can learn
from experience. The possibility of letting the machine alter its own instructions provides the
mechanism for this, but this of course does not get us very far’.

And he subsequently speculated in his 1948 report Intelligent Machinery, also written for the
National Physical Laboratory, on whether a chess playing machine should be regarded as intelli-
gent, suggesting a form of the imitation game7 which became famous through Turing’s 1950 paper
Computing Machinery and Intelligence.

‘The extent to which we regard something as behaving in an intelligent manner is determined
as much by our own state of mind and training as by the properties of the object under
consideration. If we are able to explain and predict its behaviour or if there seems to be
little underlying plan, we have little temptation to imagine intelligence. With the same object
therefore it is possible that one man would consider it as intelligent and another would not;
the second man would have found out the rules of its behaviour’.

‘It is possible to do a little experiment on these lines, even at the present state of knowledge.
It is not difficult to devise a paper machine which will play a not very bad game of chess.
Now get three men as subjects for the experiment A, B, C. A and C are to be rather poor chess
players, B is the operator who works the paper machine. (In order that he should be able to
work it fairly fast, it is advisable that he be both mathematician and chess player.) Two rooms
are used with some arrangement for communicating moves, and a game is played between
C and either A or the paper machine. C may find it quite difficult to tell which he is playing.
(This is a rather idealized form of an experiment I have actually done.)’

Following the end of the war Turing’s fascination for the mechanization of thought processes caused
him to dwell on the problem of programming chess, continuing his discussions with Good and
Michie. Almost nothing survives of whatever correspondence they exchanged on the subject, only
the following snippet from a letter he wrote to Good on 18 September 1948.

‘The chess machine designed by Champ8 and myself is rather on your lines. Unfortunately
we made no definite record of what time it was9, but I am going to write one down definitely
in the next few days with a view to playing the Shaun-Michie machine’.10

6 On 20 February 1947.
7 More widely known as the Turing Test.
8 ‘Champ’ was the Cambridge economist David Champernowne, a friend of Turing from the time they were under-
graduates together at King’s College, Cambridge.
9 What Turing meant in this letter by ‘what time it was’ is not entirely clear. Perhaps he was referring to the time it took
to perform the calculations necessary to make a move.
10 Shaun Wylie was a colleague of Donald Michie at Bletchley Park.
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The Turing–Champernowne ‘paper machine’ was the first known chess program or simulation,
preceding Shannon’s first publication on the subject. It searched only one ‘ply’11, employing an
evaluation function which survives in the literature in an article by Turing published in 1953.12

In her biography of her son, Sara Turing recounts Michie’s recollections of Turochamp.

‘Alan told me that he and Champernowne had constructed a machine to play chess, in the
sense of a complete specification on paper for such a machine. One could call it a “paper
machine” from which one could laboriously calculate move by move what the corresponding
electronic machine would do were it constructed. Each move required perhaps half an hour’s
paper work as compared with the fraction of a second which a real machine would need.
During a stay in Cambridge, Shaun Wylie and I constructed a rival “paper machine” which
we christened Machiavelli, from our two names, Michie-Wylie. On behalf of Machiavelli
we then issued a challenge to the Turochamp (our name for the Turing-Champernowne
machine), the game to be played by correspondence. Alan and I were responsible for con-
ducting the correspondence and working out the moves for our respective machines. The
labour involved proved too tedious for us and the game did not progress beyond the first few
moves. Alan was then at Manchester, I think, and he had plans to programme the electronic
computer there13 with the two chess machines so as to be able to run off a series of games
between them in a short time and so discover which was the better. I think he embarked on
the project, but it was never finished’.

The Turochamp ‘program’ only ever beat one opponent, Champernowne’s wife, who was a begin-
ner.14 Fortunately, the one substantive piece of Turing’s writing on the subject of computer chess
(included above) provides a detailed insight on their method of position evaluation.

On pages 627–630 above can be found Turing’s discussion of the program. He comments on p. 629:

After this introduction I shall describe a particular set of rules, which could without difficulty
be made into a machine programme. It is understood that the machine is white and that white
is next to play. The current position is called the position on the board, and the positions
arising from it by later moves positions in the analysis.

Following the description of the rules, Turing continues (p. 630):

We can now state the rule for play as follows. The move chosen must have the greatest
possible value, and, consistent with this, the greatest possible position-play value. If this
condition admits of several solutions a choice may be made at random, or according to an
arbitrary additional condition.
Note that no ‘analysis’ is involved in position-play evaluation. This is to reduce the amount
of work done on deciding the move.
The game below was played between this machine and a weak player who did not know the
system. To simplify the calculations the square roots were rounded off to one decimal place,
i.e., this table was used.

11 A ply, or half-move, is a move by White or a move by Black. The depth of search of chess and other strategy games
programs is traditionally measured in ply. Thus, in mentioning ‘a depth of about three moves on either side’ in the NPL
report quoted above, Turing is referring to a 6-ply search.
12 See below for the full text of that article.
13 The Ferranti Mark I. It was for this computer that Dietich Prinz, a fellow researcher at Manchester University, wrote
the first program to solve chess problems of the type: ‘White to play and force checkmate in two moves’. That program
first ran in November 1951. But this was not a program to play chess – a problem of this type is an analytical exercise
that bears almost no relation to playing the game.
14 Sara Turing was told by Champernowne that the calculations took only 2 or 3 minutes per move.
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There is some interest in a closer look at Turing’s example, adding some pertinent observations.
Note that in Turing’s article he employed ‘descriptive’ notation for the moves, which was the pop-
ular method of chess notation in the UK at that time. I have transcribed the moves into algebraic
notation which today is the most popular form of notation throughout the world. The comments are
by Turing apart from those marked DL which are mine.

White:(Machine) Black:(Human)

1 e2-e4 4.2∗ e7-e5

2 Nb1-c3 3.1∗ Ng8-f6

3 d2-d4 2.6∗ Bf8-b4

4 Ng1-f3 2.0

If 4 Bc1-d2 3.7* then 4 . . . e5×d4 is foreseen.

4 . . . d7-d6

5 Bc1-d2 3.5∗ Nb8-c6

6 d4-d5 0.2 Nc6-d4

7 h2-h4 1.1∗

[Strangely enough, even though such moves would be almost unthinkable in a game between
reasonable human players, they were not uncommon in computer games during the early decades of
computer chess. The reason is not hard to find. The programme’s positional ‘judgement’ is governed
by its evaluation function, which is designed to incorporate various chess rules-of-thumb (heuris-
tics). Two of the heuristics embodied in Turing’s evaluation function, as well as in the evaluation
functions of many more recent programmes, are: (i) advance your pawns (exemplified by the bonus
of 0.3 for each rank advanced); and (ii) increase your mobility (score the square root of the number
of moves that a piece can make). The move 7 h2-h4 scores a bonus of 0.6 for advancing the pawn
two ranks, and it increases the mobility of White’s rook on h1 from 2 (for which it scores 1.4) to 4
(for which it scores 2). – DL]

7 . . . Bc8-g4

8 a2-a4 1.0∗

White’s last two moves are most inappropriate.
[This useless pawn advance is made for the same reason as h2-h4. – DL]

8 . . . Nd4xf3+

9 g2xf3 Bg4-h5

10 Bf1-b5+ 2.4∗ c7-c6

[Obviously 10 . . . Nf6-d7 would be better. – DL]

11 d5xc6 0-0

12 c6xb7 Ra8-b8

13 Bb5-a6 -1.5 Qd8-a5

14 Qd1-e2 0.6 Nf6-d7
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[Back can win back one pawn by 14 . . . Bh5xf3! 15 Qe2xf3 Qa5xa6. – DL]

15 Rh1-g1 1.2∗

If 15 0-0-0 Bb4xc3 16 Bd2xc3 Qa5xa4.

15 . . . Nd7-c5

The fork is unforeseen at White’s last move.

16 Rg1-g5

Heads in the sand!
[What Turing means by this comment is that the programme is faced with the loss of its advanced

pawn on b7 and so it staves off this material loss as far as possible. By playing 16 Rg1-g5 the
programme appears to be avoiding reality – it simply pushes reality (in this case the loss of the b7
pawn) over its horizon. This is known in the computer chess world as the ‘horizon effect’. But now,
after Black moves his attacked bishop and White retreats his own bishop, the capture of the b7 pawn
has not been averted, but its capture will occur at a depth too great for the programme to see at this
point in the game.

But in fact 16 Rg1-g5 is White’s best move. – DL]

16 . . . Bh5-g6

17 Ba6-b5 0.4

[An aimless move. 17 h4-h5 is also not good because of 17 . . . Nc5-e6. But 17 Ba6-c4 was obvi-
ously the best choice, since if Black were then to capture the b7 pawn White could play 18 h4-h5,
trapping the bishop, for example 18. . .h7-h6 19 Rg5xg6. If Black meets 17 Ba6-c4 with 17. . .Kg8-
h8, avoiding the pin along the g8-a2 diagonal, White wins by 18 h4-h5, for example 18. . . f7-f6 19
Rg5xg6 h7xg6 20 h5xg6, when it is impossible for Black to prevent White from checkmating him
on h7 by Qe2-f1 followed by Qf1-h1, or by f3-f4 followed by Qe2-h5. The idea 17. . . Kg8-h8 18
h4-h5 h7-h6 is also no good because of 19 h5xg6 h6xg5 20 Qe2-f1 etc. It seems that Black must
reply to 17 Ba6-c4 with 17. . . Nc5-e6 18 Bc4xe6 f7xe6, when White has an excellent position.

So it appears that Turing’s programme had a clear advantage. – DL]

17 . . . Nc5xb7

18 0-0-0 3.2∗

[18 Bb5-c4, threatening 19 h4-h5, probably gives White a won game. 18 h4-h5 h7-h6 19 h5xg6
h6xg5 20 Bb5-c4 is also very difficult for Black to meet. The programme, however, is more attracted
by the bonus attached to castling. – DL]

18 . . . Nb7-c5

[Now it is too late for 19 h4-h5, which can be met by . . . Nc5-e6, while 19 Bb5-c4 Nc5xa4 is
also good for Black. – DL]

19 Bb5-c6 Rf8-c8

[19 . . . Nc5-e6 was essential, for obvious reasons. – DL]
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20 Bc6-d5 Bb4xc3

21 Bd2xc3 Qa5xa4

22 Kc1-d2

[22 h4-h5 wins for White. – DL]

22 . . . Nc5-e6

[At last, but it ought to be too late. – DL]

23 Rg5-g4 -0.3

[23 Bc4xe6 was correct. Now Black’s knight becomes a nuisance. – DL]

23 ... Ne6-d4

[23 . . . Ne6-f4 followed by 24. . . Nf4xd5 would have put an end to White’s K-side play. – DL]

24 Qe2-d3 Nd4-b5

25 Bd5-b3 Qa4-a6

26 Bb3-c4

[26 Rd1-g1 gives White a winning attack. – DL]

26 . . . Bg6-h5

27 Rg4-g3

[It would be better to go back to g5. – DL]

28 . . . Qa6-a4

28 Bc4xb5 Qa4xb5

29 Qd3xd6

Fiddling while Rome burns!
[After 29 Qd3×b5 Rb8×b5 30 Rd1-g1 g7-g6 31 Kd2-e3, White could unravel his rooks and

keep a big advantage because of the superiority of his own bishop over that of his opponent. – DL]

29 . . . Rc8-d8

[White had overlooked the strength of this move because it was too far ahead. When playing its
29th move the programme was unable to see to the position in which its queen was captured (which
was at a depth of 4-ply.) – DL]

30 Resigns

On the advice of his trainer. — So ends Turing’s description of this trial run.
We refer the reader to Turing’s own entertaining discussion of the the ‘Numerous criticisms

of the machine’s play [that] may be made.’ And of aspects of the future role of computers in the
playing of chess.
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Can Digital Computers Think?
(BBC Third Programme radio broadcast (15 May 1951), transcript

edited B. J. Copeland)

Intelligent Machinery: A Heretical Theory
(Lecture given to 51 Society in Manchester (c.1951), transcript

edited B. J. Copeland)

Can Automatic Calculating Machines Be Said To
Think?

(Broadcast discussion, BBC Third Programme (14 and 23 January 1952),
transcript edited B. J. Copeland)

B. Jack Copeland introduces the transcripts —

TURING AND THE PHYSICS OF THE MIND

1. Introduction

Turing’s lecture ‘Can Digital Computers Think?’ was broadcast on BBC Radio on 15th May 1951
(repeated on 3rd July). It was the second in a series of lectures entitled ‘Automatic Calculating
Machines’. Other contributors to the series included Max Newman (like Turing from the Univer-
sity of Manchester), Douglas Hartree (University of Cambridge), Maurice Wilkes (Cambridge),
and F. C. Williams (Manchester)1. In modern times, ‘Can Digital Computers Think?’ was virtually
unknown until 1999, when I included it in a small collection of unpublished work by Turing (‘A
Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing’, in Machine Intelli-
gence 15) and again in The Essential Turing in 2004. The previously published text, reproduced
here, is from Turing’s own typescript and incorporates corrections made in his hand.

In this broadcast Turing’s overarching aim was to defend his view that ‘it is not altogether
unreasonable to describe digital computers as brains’. The broadcast contains a bouquet of fasci-
nating arguments, and includes discussions of the Church–Turing thesis and of free will. There is a
continuation of Turing’s discussion of ‘Lady Lovelace’s dictum’ (which he had begun in ‘Comput-
ing Machinery and Intelligence’ the previous year), and a priceless analogy that likens the attempt
to program a computer to act like a brain to trying to write a treatise about family life on Mars
– and moreover with insufficient paper. The broadcast makes manifest Turing’s real attitude to

1 Letter from Maurice Wilkes to Copeland (9 July 1997).
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talk of machines thinking. In ‘Computing Machinery and Intelligence’, he famously said that the
question ‘Can machines think?’ is ‘too meaningless to deserve discussion’, Turing (1950) but in
this broadcast he made liberal use of phrases such as ‘programming a machine to think’ and ‘the
attempt to make a thinking machine’. In one passage he said:

our main problem [is] how to programme a machine to imitate the brain, or as we might say
more briefly, if less accurately, to think.

However, the feature of the broadcast that is of absolutely outstanding interest, and is the topic
of this note, is Turing’s brief discussion of the possibility that physical action is not always com-
putable.2 Roger Penrose attributed the opposite view to Turing. He said, ‘It seems likely that he
[Turing] viewed physical action in general – which would include the action of a human brain – to
be always reducible to some kind of Turing-machine action’ (Penrose, 1994, p. 21). Penrose even
named this claim Turing’s thesis. Yet Turing never endorsed this thesis. As ‘Can Digital Computers
Think?’ makes clear, Turing was aware that the thesis might be false.

2. Physics and uncomputability: a brief history

This overview mentions only a few of the important milestones in the history of the current debate
about physics and uncomputability. For more information, see Copeland (2002a, b, 2003) and
Copeland and Sylvan (1999).

1. Scarpellini
In an article published in German in 1963, Scarpellini speculated that non-recursive (i.e., non-
Turing-machine-computable) processes might occur in nature. He wrote:

[O]ne may ask whether it is possible to construct an analogue-computer which is in a
position to generate functions f (x) for which the predicate

∫
f(x) cos nxdx > 0 is not

decidable [by Turing machine] while the machine itself decides by direct measurement
whether

∫
f(x) cos nxdx is greater than zero or not.3

Scarpellini’s suggestion was de novo. He had no knowledge of Turing’s ‘Can Digital Com-
puters Think?’. Working in isolation at the Battelle Research Institute in Geneva in 1961, he
conceived the idea that natural processes describable by classical analysis might falsify the sug-
gestion that every function effectively computable by machine is also computable by Turing
machine. He recollects that the influence of Turing’s work on his paper was twofold: ‘Tech-
nically, in that Turing machines appear, explicitly or implicitly, at various points of my paper;
and conceptually, in that his work caused me to perform for the continuum, i.e., analysis, con-
structions analogous to those that he introduced for discrete mathematics’.4 In comments on
his 1963 paper made in 2003 Scarpellini said:

‘[I]t does not seem unreasonable to suggest that the brain may rely on analogue pro-
cesses for certain types of computation and decision-making. Possible candidates which
may give rise to such processes are the axons of nerve cells.. . . [I]t is conceivable that
the mathematics of a collection of axons may lead to undecidable propositions.’5

2 Aspects of Turing’s broadcast not treated here are discussed in my 2004 (ch. 13), 2000, and introduction to 1999.
3 Scarpellini 1963 (Scarpellini’s translation is from Copeland 2003: 77).
4 Letter from Bruno Scarpellini to Copeland (3 August 2011).
5 Scarpellini in Copeland 2003:84-85.
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2. Komar
In 1964 Komar showed that the behaviour of a quantum system having an infinite number
of degrees of freedom can be uncomputable, proving that, in general, the universal Turing
machine cannot determine whether or not two arbitrarily chosen states of such a system are
macroscopically distinguishable. He wrote:

‘[T]here exists no [effective] procedure for determining whether two arbitrarily given
physical states can be superposed to show interference effects characteristic of quantum
systems. . . . [I]t is rather curious . . . that the issue of the macroscopic distinguishability
of quantum states should be among the undecidable questions.’6

3. Kreisel
Kreisel emphasised that it is an open question whether there are uncomputable natural pro-
cesses. He discussed this theme in relation to classical mechanics, classical electrodynamics
and quantum mechanics, in remarks throughout a series of papers spanning three decades. See,
for example, Kreisel (1965, 1967, 1971, 1972, 1982, 1987), and especially the study published
in 1970 and 1974. He said:

‘There is no evidencethat even present day quantum theory is a mechanistic, i.e. recur-
sive theory in the sense that a recursively described system has recursive behaviour’.7

4. Pour-El and Richards
In 1979 Pour-El and Richards published their paper ‘A computable ordinary differential equa-
tion which possesses no computable solution’, followed in 1981 by their equally transparently
titled ‘The wave equation with computable initial data such that its unique solution is not com-
putable’. See also the book by Pour-El and Richards (1989). They explained their general
approach as follows:

Our results are related to some remarks of Kreisel. In [1974], Kreisel concerns himself
with the following question. Can one predict theoretically on the basis of some cur-
rent physical theory—e.g. classical mechanics or quantum mechanics—the existence
of a physical constant which is not a recursive real? Since physical theories are often
expressed in terms of differential equations, it is natural to ask the following question:
Are the solutions of
φ′ = F(x,φ), φ(0) = 0, computable when F is?8

Pour-El and Richards proved in their second paper that the behaviour of a certain system with
computable initial conditions and evolving in accordance with the familiar three-dimensional
wave equation is not computable. In a review of their two papers Kreisel wrote:

The authors suggest, albeit briefly and in somewhat different terms, that they have
described an analogue computer that—even theoretically—cannot be simulated by a
Turing machine. Here ‘analogue computer’ refers to any physical system, possibly with
a discrete output, such as bits of computer hardware realizing whole ‘subroutines’.

6 Komar 1964: 543-544.
7 Kreisel 1967: 270.
8 Pour-El and Richards 1979: 63.
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(Turing’s idealized digital computer becomes an analogue computer once the physi-
cal systems are specified that realize—tacitly, according to physical theory—his basic
operations.)9

5. Karp and Lipton
In a conference presentation in 1980, Karp and Lipton (1982) discussed infinite families of dig-
ital circuits, for example circuits consisting of boolean logic gates or McCulloch–Pitts neurons.
Each individual circuit in an infinite family is finite. A family may be regarded as a representa-
tion of a piece of hardware that grows over time, each stage of growth consisting of the addition
of a finite number of new nodes (e.g., neurons). The behaviour of any given circuit in a family
can be calculated by some Turing machine or other (since each circuit is finite), but there may
be no single Turing machine able to do this for all circuits in the family. In the case of some
families, that is to say, the function computed by the growing hardware – successive members
of the family computing values of the function for increasingly large inputs – is uncomputable.

6. Doyle
In 1982, Doyle suggested that the physical process of equilibriating – for example, a quan-
tum system’s settling into one of a discrete spectrum of states of equilibrium – is ‘so easily,
reproducibly and mindlessly accomplished’ that it can be granted equal status alongside the
operations usually termed effective. He wrote:

My suspicion is that physics is easily rich enough so that . . . the functions computable
in principle, given Turing’s operations and equilibriating, include non-recursive func-
tions. For example, I think that chemistry may be rich enough that given a diophantine
equation . . . we plug values into [a] molecule as boundary conditions, and solve the
equation iff the molecule finds an equilibrium.10

7. Rubel
Rubel emphasised that aspects of brain function are analogue in nature and suggested that the
brain be modelled in terms of continuous mathematics, as against the discrete mathematics
of what he called the ‘binary model’. A proponent of analogue computation, he noted that
‘[A]nalog computers, besides their versatility, are extremely fast at what they do . . . In princi-
ple, they act instantaneously and in real time. . . . Analogue computers are still unrivalled when a
large number of closely related differential equations must be solved’ (Rubel, 1985, p. 78–79).
He maintained that not all analogue computers need be amenable to digital simulation, even in
principle:

One can easily envisage other kinds of black boxes of an input-output character that
would lead to different kinds of analog computers. ... Whether digital simulation is pos-
sible for these ‘extended’ analog computers poses a rich and challenging set of research
questions.11

8. Geroch and Hartle
Geroch and Hartle argued that theories describing uncomputable physical systems ‘should be
no more unsettling to physics than has the existence of well-posed problems unsolvable by
any algorithm been to mathematics’, suggesting that such theories ‘may be forced upon us’ in

9 Kreisel 1982: 901.
10 Doyle 1982 (pp. 519-520 in Copeland 2002).
11 Rubel 1989: 1011.
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the quantum domain (Geroch and Hartle, 1986, pp. 534, 549). They drew an analogy between
the process of deriving predictions from such a physical theory and the process of calculating
approximations to some uncomputable real number. One algorithm may deliver the firstn digits
of the decimal representation of the real number, another the next m digits and so on. Discov-
ering each algorithm is, as they put it, akin to finding the theory in the first place – a creative
act. They said:

To predict to within, say, 10%, one manipulates the mathematics of the theory for a
while, arriving eventually at the predicted number. To predict to within 1%, it will be
necessary to work much harder, and perhaps to invent a novel way to carry out certain
mathematical steps. To predict to 0.1% would require still more new ideas. . . . The
theory certainly ‘makes definite predictions’, in the sense that predictions are always
in principle available. It is just that ever increasing degrees of sophistication would
be necessary to extract those predictions. The prediction process would never become
routine.12

This sophisticated analogy might have appealed to Turing. In a little noticed passage in ‘On
Computable Numbers’ Turing defined a certain infinite binary sequence δ, which he showed
to be uncomputable, and said: ‘It is (so far as we know at present) possible that any assigned
number of figures of δ can be calculated, but not by a uniform process. When sufficiently many
figures of δ have been calculated, an essentially new method is necessary in order to obtain
more figures’ (1936, p. 253). In a wartime letter to Newman, Turing spoke at greater length
about the necessity of introducing mathematical methods transcending any single uniform pro-
cess, and he emphasised the connection between the necessity for ‘essentially new methods’
and the ‘ordinal logics’ of his 1939 paper (Turing, 1939, 1940). Placing the incompleteness
results in a different light – these are usually stated in terms of there being true mathematical
statements that are not provable – Turing said:

The straightforward unsolvability or incompleteness results about systems of logic
amount to this

(α) One cannot expect to be able to solve the Entscheidungs problem for a system
(β) One cannot expect that a system will cover all possible methods of proof.

[W]e . . . make proofs . . . by hitting on one and then checking up to see that it is right.
. . . When one takes β) into account one has to admit that not one but many methods
of checking up are needed. In writing about ordinal logics I had this kind of idea in
mind.”13

The picture of uncomputable physical systems drawn by Geroch and Hartle, and their
rejection of an implication from a physical system’s uncomputability to its unpredictability, fit
very comfortably with Turing’s thinking about the foundations of mathematics. As we shall
see, though, Turing’s pioneering discussion of uncomputability in physics concerned only
the straightforwardly correct converse implication, from a physical system’s unpredictability
(over arbitrarily long spans of behaviour) to its uncomputability.

12 Geroch and Hartle 1986: 549.
13 Turing c. 1940: 212-213. See further Copeland and Shagrir 2012 (forthcoming).
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9. Pitowsky
In a conference presentation given in 1987, Pitowsky considered the question ‘Can a physical
machine compute a non-recursive function?’ (1990, p. 82). Referring to the thesis that no non-
recursive function is physically computable as Wolfram’s thesis, see Wolfram (1985). Pitowsky
said:

The question of whether Wolfram’s thesis is valid is a problem in the physical sciences,
and the answer is still unknown. Yet there are very strong indications that Wolfram’s
thesis may be invalid.14

Pitowsky described notional physical devices, compatible with general relativity, that are able
to compute functions that no Turing machine can compute. Pitowsky’s proposals have been
further developed by Hogarth, Shagrir and others (Hogarth, 1992, 1994; Shagrir and Pitowsky,
2003). See also Copeland and Shagrir (2007, 2011).

10. Penrose
In 1989 the speculation that physics – and in particular the physics of the mind – may not always
be computable hit the headlines, with the publication of Penrose’s book The Emperor’s New
Mind. Penrose suggested that ‘non-algorithmic action’ may ‘have a role within the physical
world of very considerable importance’ and that ‘this role is intimately bound up with . . .
“mind”’ (1989, p. 557). See also Penrose (1994). In a précis of the book, Penrose wrote:

I have tried to stress that the mere fact that something may be scientifically describable
in a precise way does not imply that it is computable. It is quite on the cards that the
physical activity underlying our conscious thinking may be governed by precise but
nonalgorithmic physical laws and our conscious thinking could indeed be the inward
manifestation of some kind of nonalgorithmic physical activity.15

3. Turing on physics and uncomputability

Turing’s early observation that there might be uncomputable physical processes has not been widely
noticed (as witnessed by Penrose’s attribution to him of a thesis equivalent to Wolfram’s, under the
name ‘Turing’s Thesis’). Yet Turing was one of the first, perhaps the very first, to raise the question
whether there are uncomputable physical processes, and he must be regarded as a founding father
of the enquiry whose origins are being sketched here.

In the course of his discussion in ‘Can Digital Computers Think?’, Turing considered the claim
that if ‘some particular machine can be described as a brain we have only to programme our digital
computer to imitate it and it will also be a brain’. He observed that this ‘can quite reasonably be
challenged’, pointing out that there is a problem if the machine’s behaviour is not ‘predictable
by calculation’; and he drew attention to the view of physicist Arthur Eddington (expressed in
Eddington’s 1927 Gifford Lectures, ‘The Nature of the Physical World’) that in the case of the
brain – and indeed the world more generally – ‘no such prediction is even theoretically possible’ (as
Turing summarised Eddington) on account of ‘the indeterminacy principle in quantum mechanics’
(Eddington, 1929, ch. 14).

Turing’s casual observation that something about the physics of the brain might make it impossi-
ble for a digital computer to calculate the brain’s behaviour may largely have passed over the heads
of his BBC radio audience. Yet, with hindsight, this observation prefaced the discussion of physics
and uncomputability that would gradually unfold over the following decades.

14 Pitowsky 1990: 86
15 Penrose 1990: 653.
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4. Uncomputability and freewill

Eddington’s discussion of quantum indeterminacy was closely bound up with his discussion of
the ‘freedom of the human mind’ (1929, p. 310). Turing, too, was much interested in the issue
of free will, and seems to have believed that the mind is a partially random machine. See further
Copeland (2000). We have the word of one of Turing’s closest associates, Newman, that Turing
‘had a deep-seated conviction that the real brain has a ‘roulette wheel’ somewhere in it.’16

Turing’s principal aim in ‘Can Digital Computers Think?’ was not, though, to offer an analysis
of free will, but to answer affirmatively the question posed by his title. He wished to guard his
view that appropriate digital computers can be described as brains against any objection along the
following lines: if a brain’s future states cannot be predicted by computation, and if this feature of
the brain is (not a detail of minor importance but) the seat of our free will, then digital computers,
with their deterministic action, must be a completely different sort of beast.

Turing argued that his proposition ‘If any machine can appropriately be described as a brain,
then any digital computer can be so described’ is entirely consistent with the possibility that the
brain is the seat of free will:

To behave like a brain seems to involve free will, but the behaviour of a digital computer,
when it has been programmed, is completely determined. ... [I]t is certain that a machine
which is to imitate a brain must appear to behave as if it had free will, and it may well
be asked how this is to be achieved. One possibility is to make its behaviour depend on
something like a roulette wheel or a supply of radium. . . . It is, however, not really even
necessary to do this. It is not difficult to design machines whose behaviour appears quite
random to anyone who does not know the details of their construction.

Turing called machines of the latter sort ‘apparently partially random’. An example that he gave
elsewhere is a Turing machine in which ‘the digits of the number π [are] used to determine the
choices’ (Turing, 1948, p. 416). although the secret cryptographic machines that he had worked on
during the war, such as the Lorenz SZ40/42 (‘Tunny’), would have formed much better examples of
deterministic machines whose behaviour can appear quite random – if only he could have mentioned
them. The story of Tunny is told in Copeland (2006); see Appendix 6 for a detailed description of
Turing’s main contributions to the attack on Tunny. (His involvement with all aspects of wartime
code breaking was subject to the British government’s Official Secrets Act.)

A genuinely partially random machine, on the other hand, is a discrete-state machine that
contains a genuinely random element (Turing, 1948, p. 416). Except in the case where (even under
idealisation) the machine has only a finite number N of configurations, a partially random discrete-
state machine cannot be simulated by any Turing machine. This is because, as Church pointed out in
1939, if a sequence of integers a1, a2, . . . an, . . . is random, then there is no function f (n)= an that is
calculable by Turing machine (Church, 1940). Randomness is an extreme form of uncomputability.

Apparently, partially random machines imitate partially random machines. As is well known,
Turing advocated imitation as the basis of a test – the Turing test – that ‘[y]ou might call . . . a test to
see whether the machine thinks’ (Turing et al., 1952, p. 495). See also Turing (1950). An appropri-
ately programmed digital computer could give a convincing imitation of the behaviour produced by
a human brain even if the brain is a partially random machine. The appearance that this deterministic
machine gives of possessing free will is, Turing said, ‘mere sham’, but it is in his view nevertheless
‘not altogether unreasonable’ to describe a machine that successfully ‘imitate[s] a brain’ as itself
being a brain.

16 Newman in interview with Christopher Evans. (‘The Pioneers of Computing: An Oral History of Computing’. London:
Science Museum.)
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Turing’s strategy for dealing with what can be termed the freewill objection to human-level AI
is elegant and provocative. For more on Turing and human-level AI, see Proudfoot and Copeland
(2011).
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CAN DIGITAL COMPUTERS THINK?1

A. M. TURING

Digital computers have often been described as mechanical brains. Most scientists proba-
bly regard this description as a mere newspaper stunt, but some do not. One mathematician has
expressed the opposite point of view to me rather forcefully in the words ‘It is commonly said that
these machines are not brains, but you and I know that they are’. In this talk I shall try to explain the
ideas behind the various possible points of view, though not altogether impartially. I shall give most
attention to the view which I hold myself, that it is not altogether unreasonable to describe digital
computers as brains. A different point of view has already been put by Professor Hartree.

First we may consider the naive point of view of the man in the street. He hears amazing accounts
of what these machines can do: most of them apparently involve intellectual feats of which he would
be quite incapable. He can only explain it by supposing that the machine is a sort of brain, though
he may prefer simply to disbelieve what he has heard.

The majority of scientists are contemptuous of this almost superstitious attitude. They know
something of the principles on which the machines are constructed and of the way in which they
are used. Their outlook was well summed up by Lady Lovelace over a hundred years ago, speaking
of Babbage’s Analytical Engine. She said, as Hartree has already quoted, ‘The Analytical Engine
has no pretensions whatever to originate anything. It can do whatever we know how to order it
to perform.’ This very well describes the way in which digital computers are actually used at the
present time, and in which they will probably mainly be used for many years to come. For any one
calculation the whole procedure that the machine is to go through is planned out in advance by a
mathematician. The less doubt there is about what is going to happen the better the mathematician
is pleased. It is like planning a military operation. Under these circumstances it is fair to say that the
machine doesn’t originate anything.

There is however a third point of view, which I hold myself. I agree with Lady Lovelace’s dictum
as far as it goes, but I believe that its validity depends on considering how digital computers are
used rather than how they could be used. In fact I believe that they could be used in such a manner
that they could appropriately be described as brains. I should also say that ‘If any machine can
appropriately be described as a brain, then any digital computer can be so described’.

This last statement needs some explanation. It may appear rather startling, but with some reser-
vations it appears to be an inescapable fact. It can be shown to follow from a characteristic property
of digital computers, which I will call their universality. A digital computer is a universal machine
in the sense that it can be made to replace any machine of a certain very wide class. It will not
replace a bulldozer or a steam-engine or a telescope, but it will replace any rival design of calcu-
lating machine, that is to say any machine into which one can feed data and which will later print
out results. In order to arrange for our computer to imitate a given machine it is only necessary to
programme the computer to calculate what the machine in question would do under given circum-
stances, and in particular what answers it would print out. The computer can then be made to print
out the same answers.

1First published in Copeland, B.J., 1999. A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing.
In: Furukawa, K., Michie, D., Muggleton, S. (Eds.), Machine Intelligence 15. Oxford University Press, Oxford and
New York, pp. 445–476. Reprinted in The Essential Turing, 2004.
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If now some particular machine can be described as a brain we have only to programme our
digital computer to imitate it and it will also be a brain. If it is accepted that real brains, as found
in animals, and in particular in men, are a sort of machine it will follow that our digital computer
suitably programmed, will behave like a brain.

This argument involves several assumptions which can quite reasonably be challenged. I have
already explained that the machine to be imitated must be more like a calculator than a bulldozer.
This is merely a reflection of the fact that we are speaking of mechanical analogues of brains, rather
than of feet or jaws. It was also necessary that this machine should be of the sort whose behaviour is
in principle predictable by calculation. We certainly do not know how any such calculation should
be done, and it was even argued by Sir Arthur Eddington that on account of the indeterminacy
principle in quantum mechanics no such prediction is even theoretically possible.

Another assumption was that the storage capacity of the computer used should be sufficient to
carry out the prediction of the behaviour of the machine to be imitated. It should also have sufficient
speed. Our present computers probably have not got the necessary storage capacity, though they
may well have the speed. This means in effect that if we wish to imitate anything so complicated as
the human brain we need a very much larger machine than any of the computers at present avail-
able. We probably need something at least a hundred times as large as the Manchester Computer.
Alternatively of course a machine of equal size or smaller would do if sufficient progress were made
in the technique of storing information.

It should be noticed that there is no need for there to be any increase in the complexity of the
computers used. If we try to imitate ever more complicated machines or brains we must use larger
and larger computers to do it. We do not need to use successively more complicated ones. This may
appear paradoxical, but the explanation is not difficult. The imitation of a machine by a computer
requires not only that we should have made the computer, but that we should have programmed
it appropriately. The more complicated the machine to be imitated the more complicated must the
programme be.

This may perhaps be made clearer by an analogy. Suppose two men both wanted to write their
autobiographies, and that one had had an eventful life, but very little had happened to the other.
There would be two difficulties troubling the man with the more eventful life more seriously than
the other. He would have to spend more on paper and he would have to take more trouble over
thinking what to say. The supply of paper would not be likely to be a serious difficulty, unless
for instance he were on a desert island, and in any case it could only be a technical or a financial
problem. The other difficulty would be more fundamental and would become more serious still if he
were not writing his life but a work on something he knew nothing about, let us say about family life
on Mars. Our problem of programming a computer to behave like a brain is something like trying
to write this treatise on a desert island. We cannot get the storage capacity we need: in other words
we cannot get enough paper to write the treatise on, and in any case we don’t know what we should
write down if we had it. This is a poor state of affairs, but, to continue the analogy, it is something
to know how to write, and to appreciate the fact that most knowledge can be embodied in books.

In view of this it seems that the wisest ground on which to criticise the description of digital
computers as ‘mechanical brains’ or ‘electronic brains’ is that, although they might be programmed
to behave like brains, we do not at present know how this should be done. With this outlook I am in
full agreement. It leaves open the question as to whether we will or will not eventually succeed in
finding such a programme. I, personally, am inclined to believe that such a programme will be found.
I think it is probable for instance that at the end of the century it will be possible to programme a
machine to answer questions in such a way that it will be extremely difficult to guess whether the
answers are being given by a man or by the machine. I am imagining something like a viva-voce
examination, but with the questions and answers all typewritten in order that we need not consider
such irrelevant matters as the faithfulness with which the human voice can be imitated. This only
represents my opinion; there is plenty of room for others.
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There are still some difficulties. To behave like a brain seems to involve free will, but the
behaviour of a digital computer, when it has been programmed, is completely determined. These
two facts must somehow be reconciled, but to do so seems to involve us in an age-old controversy,
that of ‘free will and determinism’. There are two ways out. It may be that the feeling of free will
which we all have is an illusion. Or it may be that we really have got free will, but yet there is no
way of telling from our behaviour that this is so. In the latter case, however well a machine imitates
a man’s behaviour it is to be regarded as a mere sham. I do not know how we can ever decide
between these alternatives but whichever is the correct one it is certain that a machine which is to
imitate a brain must appear to behave as if it had free will, and it may well be asked how this is to
be achieved. One possibility is to make its behaviour depend on something like a roulette wheel or
a supply of radium. The behaviour of these may perhaps be predictable, but if so, we do not know
how to do the prediction.

It is, however, not really even necessary to do this. It is not difficult to design machines whose
behaviour appears quite random to anyone who does not know the details of their construction.
Naturally enough the inclusion of this random element, whichever technique is used, does not solve
our main problem, how to programme a machine to imitate the brain, or as we might say more
briefly, if less accurately, to think. But it gives us some indication of what the process will be like.
We must not always expect to know what the computer is going to do. We should be pleased when
the machine surprises us, in rather the same way as one is pleased when a pupil does something
which he had not been explicitly taught to do.

Let us now reconsider Lady Lovelace’s dictum. ‘The machine can do whatever we know how
to order it to perform’. The sense of the rest of the passage is such that one is tempted to say that
the machine can only do what we know how to order it to perform. But I think this would not be
true. Certainly the machine can only do what we do order it to perform, anything else would be a
mechanical fault. But there is no need to suppose that, when we give it its orders we know what we
are doing, what the consequences of these orders are going to be. One does not need to be able to
understand how these orders lead to the machine’s subsequent behaviour, any more than one needs
to understand the mechanism of germination when one puts a seed in the ground. The plant comes
up whether one understands or not. If we give the machine a programme which results in its doing
something interesting which we had not anticipated I should be inclined to say that the machine had
originated something, rather than to claim that its behaviour was implicit in the programme, and
therefore that the originality lies entirely with us.

I will not attempt to say much about how this process of ‘programming a machine to think’
is to be done. The fact is that we know very little about it, and very little research has yet been
done. There are plentiful ideas, but we do not yet know which of them are of importance. As in
the detective stories, at the beginning of the investigation any trifle may be of importance to the
investigator. When the problem has been solved, only the essential facts need to be told to the jury.
But at present we have nothing worth putting before a jury. I will only say this, that I believe the
process should bear a close relation to that of teaching.

I have tried to explain what are the main rational arguments for and against the theory that
machines could be made to think, but something should also be said about the irrational arguments.
Many people are extremely opposed to the idea of a machine that thinks, but I do not believe that
it is for any of the reasons that I have given, or any other rational reason, but simply because they
do not like the idea. One can see many features which make it unpleasant. If a machine can think, it
might think more intelligently than we do, and then where should we be? Even if we could keep the
machines in a subservient position, for instance by turning off the power at strategic moments, we
should, as a species, feel greatly humbled. A similar danger and humiliation threatens us from the
possibility that we might be superseded by the pig or the rat. This is a theoretical possibility which is
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hardly controversial, but we have lived with pigs and rats for so long without their intelligence much
increasing, that we no longer trouble ourselves about this possibility. We feel that if it is to happen at
all it will not be for several million years to come. But this new danger is much closer. If it comes at
all it will almost certainly be within the next millennium. It is remote but not astronomically remote,
and is certainly something which can give us anxiety.

It is customary, in a talk or article on this subject, to offer a grain of comfort, in the form of a
statement that some particularly human characteristic could never be imitated by a machine. It might
for instance be said that no machine could write good English, or that it could not be influenced by
sex-appeal or smoke a pipe. I cannot offer any such comfort, for I believe that no such bounds can be
set. But I certainly hope and believe that no great efforts will be put into making machines with the
most distinctively human, but non-intellectual characteristics such as the shape of the human body;
it appears to me to be quite futile to make such attempts and their results would have something like
the unpleasant quality of artificial flowers. Attempts to produce a thinking machine seem to me to be
in a different category. The whole thinking process is still rather mysterious to us, but I believe that
the attempt to make a thinking machine will help us greatly in finding out how we think ourselves.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 11:12 Page 664 #14

664 Part III

INTELLIGENT MACHINERY: A HERETICAL
THEORY1

A. M. TURING

‘You cannot make a machine to think for you’. This is a commonplace that is usually accepted
without question. It will be the purpose of this paper to question it.

Most machinery developed for commercial purposes is intended to carry out some very specific
job, and to carry it out with certainty and considerable speed. Very often it does the same series of
operations over and over again without any variety. This fact about the actual machinery available is
a powerful argument to many in favour of the slogan quoted above. To a mathematical logician this
argument is not available, for it has been shown that there are machines theoretically possible which
will do something very close to thinking. They will, for instance, test the validity of a formal proof in
the system of Principia Mathematica, or even tell of a formula of that system whether it is provable
or disprovable. In the case that the formula is neither provable nor disprovable such a machine
certainly does not behave in a very satisfactory manner, for it continues to work indefinitely without
producing any result at all, but this cannot be regarded as very different from the reaction of the
mathematicians, who have for instance worked for hundreds of years on the question as to whether
Fermat’s last theorem is true or not. For the case of machines of this kind a more subtle argument
is necessary. By Gödel’s famous theorem, or some similar argument, one can show that however
the machine is constructed there are bound to be cases where the machine fails to give an answer,
but a mathematician would be able to. On the other hand, the machine has certain advantages over
the mathematician. Whatever it does can be relied upon, assuming no mechanical ‘breakdown’,
whereas the mathematician makes a certain proportion of mistakes. I believe that this danger of the
mathematician making mistakes is an unavoidable corollary of his power of sometimes hitting upon
an entirely new method. This seems to be confirmed by the well known fact that the most reliable
people will not usually hit upon really new methods.

My contention is that machines can be constructed which will simulate the behaviour of the
human mind very closely. They will make mistakes at times, and at times they may make new
and very interesting statements, and on the whole the output of them will be worth attention to the
same sort of extent as the output of a human mind. The content of this statement lies in the greater
frequency expected for the true statements, and it cannot, I think, be given an exact statement. It
would not, for instance, be sufficient to say simply that the machine will make any true statement
sooner or later, for an example of such a machine would be one which makes all possible statements
sooner or later. We know how to construct these, and as they would (probably) produce true and
false statements about equally frequently, their verdicts would be quite worthless. It would be the
actual reaction of the machine to circumstances that would prove my contention, if indeed it can be
proved at all.

Let us go rather more carefully into the nature of this ‘proof’. It is clearly possible to produce a
machine which would give a very good account of itself for any range of tests, if the machine were
made sufficiently elaborate. However, this again would hardly be considered an adequate proof.
Such a machine would give itself away by making the same sort of mistake over and over again,

1First published in B. J. Copeland A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing in
Furukawa, K., Michie, D., Muggleton, S. (eds) Machine Intelligence 15, Oxford and New York: Oxford University
Press, 1999, pp. 445-476. Reprinted in The Essential Turing, 2004.
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and being quite unable to correct itself, or to be corrected by argument from outside. If the machine
were able in some way to ‘learn by experience’ it would be much more impressive. If this were
the case there seems to be no real reason why one should not start from a comparatively simple
machine, and, by subjecting it to a suitable range of ‘experience’ transform it into one which was
more elaborate, and was able to deal with a far greater range of contingencies. This process could
probably be hastened by a suitable selection of the experiences to which it was subjected. This
might be called ‘education’. But here we have to be careful. It would be quite easy to arrange the
experiences in such a way that they automatically caused the structure of the machine to build up
into a previously intended form, and this would obviously be a gross form of cheating, almost on a
par with having a man inside the machine. Here again the criterion as to what would be considered
reasonable in the way of ‘education’ cannot be put into mathematical terms, but I suggest that
the following would be adequate in practice. Let us suppose that it is intended that the machine
shall understand English, and that owing to its having no hands or feet, and not needing to eat,
nor desiring to smoke, it will occupy its time mostly in playing games such as Chess and GO, and
possibly Bridge. The machine is provided with a typewriter keyboard on which any remarks to it
are typed, and it also types out any remarks that it wishes to make. I suggest that the education of
the machine should be entrusted to some highly competent schoolmaster who is interested in the
project but who is forbidden any detailed knowledge of the inner workings of the machine. The
mechanic who has constructed the machine, however, is permitted to keep the machine in running
order, and if he suspects that the machine has been operating incorrectly may put it back to one of
its previous positions and ask the schoolmaster to repeat his lessons from that point on, but he may
not take any part in the teaching. Since this procedure would only serve to test the bona fides of
the mechanic, I need hardly say that it would not be adopted at the experimental stages. As I see it,
this education process would in practice be an essential to the production of a reasonably intelligent
machine within a reasonably short space of time. The human analogy alone suggests this.

I may now give some indication of the way in which such a machine might be expected to
function. The machine would incorporate a memory. This does not need very much explanation. It
would simply be a list of all the statements that had been made to it or by it, and all the moves it had
made and the cards it had played in its games. This would be listed in chronological order. Besides
this straightforward memory there would be a number of ‘indexes of experiences’. To explain this
idea I will suggest the form which one such index might possibly take. It might be an alphabetical
index of the words that had been used giving the ‘times’ at which they had been used, so that they
could be looked up in the memory. Another such index might contain patterns of men on parts
of a GO board that had occurred. At comparatively late stages of education the memory might be
extended to include important parts of the configuration of the machine at each moment, or in other
words it would begin to remember what its thoughts had been. This would give rise to fruitful
new forms of indexing. New forms of index might be introduced on account of special features
observed in the indexes already used. The indexes would be used in this sort of way. Whenever a
choice has to be made as to what to do next, features of the present situation are looked up in the
indexes available, and the previous choice in the similar situations, and the outcome, good or bad,
is discovered. The new choice is made accordingly. This raises a number of problems. If some of
the indications are favourable and some are unfavourable what is one to do? The answer to this
will probably differ from machine to machine and will also vary with its degree of education. At
first probably some quite crude rule will suffice, e.g. to do whichever has the greatest number of
votes in its favour. At a very late stage of education the whole question of procedure in such cases
will probably have been investigated by the machine itself, by means of some kind of index, and
this may result in some highly sophisticated, and, one hopes, highly satisfactory, form of rule. It
seems probable however that the comparatively crude forms of rule will themselves be reasonably
satisfactory, so that progress can on the whole be made in spite of the crudeness of the choice [of]
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rules.2 This seems to be verified by the fact that engineering problems are sometimes solved by the
crudest rule of thumb procedure which deals only with the most superficial aspects of the problem,
e.g. whether a function increases or decreases with one of its variables. Another problem raised
by this picture of the way behaviour is determined is the idea of ‘favourable outcome’. Without
some such idea, corresponding to the ‘pleasure principle’ of the psychologists, it is very difficult
to see how to proceed. Certainly it would be most natural to introduce some such thing into the
machine. I suggest that there should be two keys which can be manipulated by the schoolmaster,
and which represent the ideas of pleasure and pain. At later stages in education the machine would
recognise certain other conditions as desirable owing to their having been constantly associated in
the past with pleasure, and likewise certain others as undesirable. Certain expressions of anger on
the part of the schoolmaster might, for instance, be recognised as so ominous that they could never
be overlooked, so that the schoolmaster would find that it became unnecessary to ‘apply the cane’
any more.

To make further suggestions along these lines would perhaps be unfruitful at this stage, as they
are likely to consist of nothing more than an analysis of actual methods of education applied to
human children. There is, however, one feature that I would like to suggest should be incorporated in
the machines, and that is a ‘random element’. Each machine should be supplied with a tape bearing
a random series of figures, e.g. 0 and 1 in equal quantities, and this series of figures should be used
in the choices made by the machine. This would result in the behaviour of the machine not being
by any means completely determined by the experiences to which it was subjected, and would have
some valuable uses when one was experimenting with it. By faking the choices made one would be
able to control the development of the machine to some extent. One might, for instance, insist on
the choice made being a particular one at, say, 10 particular places, and this would mean that about
one machine in 1024 or more would develop to as high a degree as the one which had been faked.
This cannot very well be given an accurate statement because of the subjective nature of the idea of
‘degree of development’ to say nothing of the fact that the machine that had been faked might have
been also fortunate in its unfaked choices.

Let us now assume, for the sake of argument, that these machines are a genuine possibility, and
look at the consequences of constructing them. To do so would of course meet with great opposition,
unless we have advanced greatly in religious toleration from the days of Galileo. There would be
great opposition from the intellectuals who were afraid of being put out of a job. It is probable
though that the intellectuals would be mistaken about this. There would be plenty to do, [trying to
understand what the machines were trying to say, e.g.]3 in trying to keep one’s intelligence up to
the standard set by the machines, for it seems probable that once the machine thinking method had
started, it would not take long to outstrip our feeble powers. There would be no question of the
machines dying, and they would be able to converse with each other to sharpen their wits. At some
stage therefore we should have to expect the machines to take control, in the way that is mentioned
in Samuel Butler’s ‘Erewhon’.

2 Editor’s note. Words enclosed in square brackets do not appear in the typescript.
3 Editor’s note. The words ‘trying to understand what the machines were trying to say, e.g.’ are handwritten and are
marked in the margin ‘Inserted from Turing’s Typescript’.
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CAN AUTOMATIC CALCULATING MACHINES
BE SAID TO THINK?1

By ALAN TURING, RICHARD BRAITHWAITE,
GEOFFREY JEFFERSON, MAX NEWMAN

Braithwaite: We’re here today to discuss whether calculating machines can be said to think in
any proper sense of the word. Thinking is ordinarily regarded as so much a speciality of man,
and perhaps of other higher animals, that the question may seem too absurd to be discussed.
But, of course, it all depends on what is to be included in thinking. The word is used to cover
a multitude of different activities. What would you, Jefferson, as a physiologist, say were the
most important elements involved in thinking?

Jefferson: I don’t think that we need waste too much time on a definition of thinking since
it will be hard to get beyond phrases in common usage, such as having ideas in the mind,
cogitating, meditating, deliberating, solving problems or imagining. Philologists say that the
word ‘Man’ is derived from a Sanskrit word that means ‘to think,’ probably in the sense of
judging between one idea and another. I agree that we could no longer use the word ‘thinking’
in a sense that restricted it to man. No one would deny that many animals think, though in
a very limited way. They lack insight. For example, a dog learns that it is wrong to get on
cushions or chairs with muddy paws, but he only learns it as a venture that doesn’t pay. He
has no conception of the real reason, that he damages fabrics by doing that.
The average person would perhaps be content to define thinking in very general terms
such as revolving ideas in the mind, of having notions in one’s head, of having one’s
mind occupied by a problem, and so on. But it is only right to add that our minds are
occupied much of the time with trivialities. One might say in the end that thinking was the
general result of having a sufficiently complex nervous system. Very simple ones do not
provide the creature with any problems that are not answered by simple reflex mechanisms.
Thinking then becomes all the things that go on in one’s brain, things that often end in an
action but don’t necessarily do so. I should say that it was the sum total of what the brain
of man or animal does. Turing, what do you think about it? Have you a mechanical definition?

Turing: I don’t want to give a definition of thinking, but if I had to I should probably be unable
to say anything more about it than that it was a sort of buzzing that went on inside my head.
But I don’t really see that we need to agree on a definition at all. The important thing is to
try to draw a line between the properties of a brain, or of a man, that we want to discuss, and
those that we don’t. To take an extreme case, we are not interested in the fact that the brain
has the consistency of cold porridge. We don’t want to say ‘This machine’s quite hard, so it
isn’t a brain, and so it can’t think.’ I would like to suggest a particular kind of test that one
might apply to a machine. You might call it a test to see whether the machine thinks, but it
would be better to avoid begging the question, and say that the machines that pass are (let’s

1First published in B. J. Copeland A Lecture and Two Radio Broadcasts on Machine Intelligence by Alan Turing in
Furukawa, K., Michie, D., Muggleton, S. (eds) Machine Intelligence 15, Oxford and New York: Oxford University
Press, 1999, pp. 445-476. Reprinted in The Essential Turing, 2004.
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say) ‘Grade A’ machines. The idea of the test is that the machine has to try and pretend to
be a man, by answering questions put to it, and it will only pass if the pretence is reasonably
convincing. A considerable proportion of a jury, who should not be expert about machines,
must be taken in by the pretence. They aren’t allowed to see the machine itself - that would
make it too easy. So the machine is kept in a far away room and the jury are allowed to ask it
questions, which are transmitted through to it: it sends back a typewritten answer.

Braithwaite: Would the questions have to be sums, or could I ask it what it had had for
breakfast?

Turing: Oh yes, anything. And the questions don’t really have to be questions, any more than
questions in a law court are really questions. You know the sort of thing. ‘I put it to you that
you are only pretending to be a man’ would be quite in order. Likewise the machine would
be permitted all sorts of tricks so as to appear more man-like, such as waiting a bit before
giving the answer, or making spelling mistakes, but it can’t make smudges on the paper, any
more than one can send smudges by telegraph. We had better suppose that each jury has to
judge quite a number of times, and that sometimes they really are dealing with a man and not
a machine. That will prevent them saying ‘It must be a machine’ every time without proper
consideration.
Well, that’s my test. Of course I am not saying at present either that machines really could
pass the test, or that they couldn’t. My suggestion is just that this is the question we should
discuss. It’s not the same as ‘Do machines think,’ but it seems near enough for our present
purpose, and raises much the same difficulties.

Newman: I should like to be there when your match between a man and a machine takes place,
and perhaps to try my hand at making up some of the questions. But that will be a long time
from now, if the machine is to stand any chance with no questions barred?

Turing: Oh yes, at least 100 years, I should say.

Jefferson: Newman, how well would existing machines stand up to this test? What kind of
things can they do now?

Newman: Of course, their strongest line is mathematical computing, which they were
designed to do, but they would also do well at some questions that don’t look numerical, but
can easily be made so, like solving a chess problem or looking you up a train in the time-table.

Braithwaite: Could they do that?

Newman: Yes. Both these jobs can be done by trying all the possibilities, one after another.
The whole of the information in an ordinary time-table would have to be written in as part
of the programme, and the simplest possible routine would be one that found the trains from
London to Manchester by testing every train in the time-table to see if it calls at both places,
and printing out those that do. Of course, this is a dull, plodding method, and you could
improve on it by using a more complicated routine, but if I have understood Turing’s test
properly, you are not allowed to go behind the scenes and criticise the method, but must abide
by the scoring on correct answers, found reasonably quickly.

Jefferson: Yes, but all the same a man who has to look up trains frequently gets better at it, as
he learns his way about the time-table. Suppose I give a machine the same problem again,
can it learn to do better without going through the whole rigmarole of trying everything over
every time? I’d like to have your answer to that because it’s such an important point. Can
machines learn to do better with practice?
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Newman: Yes, it could. Perhaps the chess problem provides a better illustration of this. First
I should mention that all the information required in any job - the numbers, times of trains,
positions of pieces, or whatever it is, and also the instructions saying what is to be done with
them - all this material is stored in the same way. (In the Manchester machine it is stored as
a pattern on something resembling a television screen.) As the work goes on the pattern is
changed. Usually it is the part of the pattern that contains the data that changes, while the
instructions stay fixed. But it is just as simple to arrange that the instructions themselves shall
be changed now and then. Well, now a programme could be composed that would cause the
machine to do this: a 2-move chess problem is recorded into the machine in some suitable
coding, and whenever the machine is started, a white move is chosen at random (there is a
device for making random choices in our machine). All the consequences of this move are
now analysed, and if it does not lead to forced mate in two moves, the machine prints, say,
‘P-Q3, wrong move,’ and stops. But the analysis shows that when the right move is chosen
the machine not only prints, say, ‘B-Q5, solution,’ but it changes the instruction calling for a
random choice to one that says ‘Try B-Q5.’ The result is that whenever the machine is started
again it will immediately print out the right solution - and this without the man who made up
the routine knowing beforehand what it was. Such a routine could certainly be made now, and
I think this can fairly be called learning.

Jefferson: Yes, I suppose it is. Human beings learn by repeating the same exercises until they
have perfected them. Of course it goes further, and at the same time we learn generally to
shift the knowledge gained about one thing to another set of problems, seeing relevances and
relationships. Learning means remembering. How long can a machine store information for?

Newman: Oh, at least as long as a man’s lifetime, if it is refreshed occasionally.

Jefferson: Another difference would be that in the learning process there is much more
frequent intervention by teachers, parental or otherwise, guiding the arts of learning. You
mathematicians put the programme once into the machine and leave it to it. You wouldn’t get
any distance at all with human beings if that is what you did. In fact, the only time you do
that in the learning period is at examinations.

Turing: It’s quite true that when a child is being taught, his parents and teachers are repeatedly
intervening to stop him doing this or encourage him to do that. But this will not be any the
less so when one is trying to teach a machine. I have made some experiments in teaching a
machine to do some simple operation, and a very great deal of such intervention was needed
before I could get any results at all. In other words the machine learnt so slowly that it needed
a great deal of teaching.

Jefferson: But who was learning, you or the machine?

Turing: Well, I suppose we both were. One will have to find out how to make machines that
will learn more quickly if there is to be any real success. One hopes too that there will be a
sort of snowball effect. The more things the machine has learnt the easier it ought to be for
it to learn others. In learning to do any particular thing it will probably also be learning to
learn more efficiently. I am inclined to believe that when one has taught it to do certain things
one will find that some other things which one had planned to teach it are happening without
any special teaching being required. This certainly happens with an intelligent human mind,
and if it doesn’t happen when one is teaching a machine there is something lacking in the
machine. What do you think about learning possibilities, Braithwaite?
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Braithwaite: No-one has mentioned what seems to me the great difficulty about learning,
since we’ve only discussed learning to solve a particular problem. But the most important
part of human learning is learning from experience - not learning from one particular kind
of experience, but being able to learn from experience in general. A machine can easily be
constructed with a feed-back device so that the programming of the machine is controlled by
the relation of its output to some feature in its external environment - so that the working of
the machine in relation to the environment is self-corrective. But this requires that it should
be some particular feature of the environment to which the machine has to adjust itself. The
peculiarity of men and animals is that they have the power of adjusting themselves to almost
all the features. The feature to which adjustment is made on a particular occasion is the one
the man is attending to and he attends to what he is interested in. His interests are determined,
by and large, by his appetites, desires, drives, instincts - all the things that together make
up his ‘springs of action.’ If we want to construct a machine which will vary its attention
to things in its environment so that it will sometimes adjust itself to one and sometimes to
another, it would seem to be necessary to equip the machine with something corresponding to
a set of appetites. If the machine is built to be treated only as a domestic pet, and is spoon-fed
with particular problems, it will not be able to learn in the varying way in which human
beings learn. This arises from the necessity of adapting behaviour suitably to environment if
human appetites are to be satisfied.

Jefferson: Turing, you spoke with great confidence about what you are going to be able to do.
You make it sound as if it would be fairly easy to modify construction so that the machine
reacted more like a man. But I recollect that from the time of Descartes and Borelli on people
have said that it would be only a matter of a few years, perhaps 3 or 4 or maybe 50, and a
replica of man would have been artificially created. We shall be wrong, I am sure, if we give
the impression that these things would be easy to do.

Newman: I agree that we are getting rather far away from computing machines as they exist at
present. These machines have rather restricted appetites, and they can’t blush when they’re
embarrassed, but it’s quite hard enough, and I think a very interesting problem, to discover
how near these actually existing machines can get to thinking. Even if we stick to the
reasoning side of thinking, it is a long way from solving chess problems to the invention of
new mathematical concepts or making a generalisation that takes in ideas that were current
before, but had never been brought together as instances of a single general notion.

Braithwaite: For example?

Newman: The different kinds of number. There are the integers, 0, 1, -2, and so on; there are
the real numbers used in comparing lengths, for example the circumference of a circle and
its diameter; and the complex numbers involving

√
−1; and so on. It is not at all obvious

that these are instances of one thing, ‘number.’ The Greek mathematicians used entirely
different words for the integers and the real numbers, and had no single idea to cover both. It
is really only recently that the general notion of kinds of number has been abstracted from
these instances and accurately defined. To make this sort of generalisation you need to have
the power of recognising similarities, seeing analogies between things that had not been put
together before. It is not just a matter of testing things for a specified property and classi-
fying them accordingly. The concept itself has to be framed, something has to be created,
say the idea of a number-field. Can we even guess at the way a machine could make such
an invention from a programme composed by a man who had not the concept in his own mind?
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Turing: It seems to me, Newman, that what you said about ‘trying out possibilities’ as a
method applies to quite an extent, even when a machine is required to do something as
advanced as finding a useful new concept. I wouldn’t like to have to define the meaning of
the word ‘concept,’ nor to give rules for rating their usefulness, but whatever they are they’ve
got outward and visible forms, which are words and combinations of words. A machine could
make up such combinations of words more or less at random, and then give them marks for
various merits.

Newman: Wouldn’t that take a prohibitively long time?

Turing: It would certainly be shockingly slow, but it could start on easy things, such as
lumping together rain, hail, snow and sleet, under the word ‘precipitation.’ Perhaps it might
do more difficult things later on if it was learning all the time how to improve its methods.

Braithwaite: I don’t think there’s much difficulty about seeing analogies that can be formally
analysed and explicitly stated. It is then only a question of designing the machine so that it
can recognise similarities of mathematical structure. The difficulty arises if the analogy is a
vague one about which little more can be said than that one has a feeling that there is some
sort of similarity between two cases but one hasn’t any idea as to the respect in which the
two cases are similar. A machine can’t recognise similarities when there is nothing in its
programme to say what are the similarities it is expected to recognise.

Turing: I think you could make a machine spot an analogy, in fact it’s quite a good instance
of how a machine could be made to do some of those things that one usually regards as
essentially a human monopoly. Suppose that someone was trying to explain the double
negative to me, for instance, that when something isn’t not green it must be green, and he
couldn’t quite get it across. He might say ‘Well, it’s like crossing the road. You cross it,
and then you cross it again, and you’re back where you started.’ This remark might just
clinch it. This is one of the things one would like to work with machines, and I think it
would be likely to happen with them. I imagine that the way analogy works in our brains
is something like this. When two or more sets of ideas have the same pattern of logical
connections, the brain may very likely economise parts by using some of them twice over, to
remember the logical connections both in the one case and in the other. One must suppose
that some part of my brain was used twice over in this way, once for the idea of double
negation and once for crossing the road, there and back. I am really supposed to know about
both these things but can’t get what it is the man is driving at, so long as he is talking about
all those dreary nots and not-nots. Somehow it doesn’t get through to the right part of the
brain. But as soon as he says his piece about crossing the road it gets through to the right
part, but by a different route. If there is some such purely mechanical explanation of how
this argument by analogy goes on in the brain, one could make a digital computer do the same.

Jefferson: Well, there isn’t a mechanical explanation in terms of cells and connecting fibres in
the brain.

Braithwaite: But could a machine really do this? How would it do it?

Turing: I’ve certainly left a great deal to the imagination. If I had given a longer explanation I
might have made it seem more certain that what I was describing was feasible, but you would
probably feel rather uneasy about it all, and you’d probably exclaim impatiently, ‘Well, yes, I
see that a machine could do all that, but I wouldn’t call it thinking.’ As soon as one can see
the cause and effect working themselves out in the brain, one regards it as not being thinking,
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but a sort of unimaginative donkey-work. From this point of view one might be tempted to
define thinking as consisting of ‘those mental processes that we don’t understand.’ If this is
right then to make a thinking machine is to make one which does interesting things without
our really understanding quite how it is done.

Jefferson: If you mean that we don’t know the wiring in men, as it were, that is quite true.

Turing: No, that isn’t at all what I mean. We know the wiring of our machine, but it already
happens there in a limited sort of way. Sometimes a computing machine does do something
rather weird that we hadn’t expected. In principle one could have predicted it, but in practice
it’s usually too much trouble. Obviously if one were to predict everything a computer was
going to do one might just as well do without it.

Newman: It is quite true that people are disappointed when they discover what the big
computing machines actually do, which is just to add and multiply, and use the results to
decide what further additions and multiplications to do. ‘That’s not thinking’, is the natural
comment, but this is rather begging the question. If you go into one of the ancient churches
in Ravenna you see some most beautiful pictures round the walls, but if you peer at them
through binoculars you might say, ‘Why, they aren’t really pictures at all, but just a lot of
little coloured stones with cement in between.’ The machine’s processes are mosaics of very
simple standard parts, but the designs can be of great complexity, and it is not obvious where
the limit is to the patterns of thought they could imitate.

Braithwaite: But how many stones are there in your mosaic? Jefferson, is there a sufficient
multiplicity of the cells in the brain for them to behave like a computing machine?

Jefferson: Yes, there are thousands, tens of thousands more cells in the brain than there are in
a computing machine, because the present machine contains - how many did you say?

Turing: Half a million digits. I think we can assume that is the equivalent of half a million
nerve cells.

Braithwaite: If the brain works like a computing machine then the present computing machine
cannot do all the things the brain does. Agreed; but if a computing machine were made that
could do all the things the brain does, wouldn’t it require more digits than there is room for in
the brain?

Jefferson: Well, I don’t know. Suppose that it is right to equate digits in a machine with nerve
cells in a brain. There are various estimates, somewhere between ten thousand million and
fifteen thousand million cells are supposed to be there. Nobody knows for certain, you see.
It is a colossal number. You would need 20,000 or more of your machines to equate digits
with nerve cells. But it is not, surely, just a question of size. There would be too much logic
in your huge machine. It wouldn’t be really like a human output of thought. To make it more
like, a lot of the machine parts would have to be designed quite differently to give greater
flexibility and more diverse possibilities of use. It’s a very tall order indeed.

Turing: It really is the size that matters in this case. It is the amount of information that can be
stored up. If you think of something very complicated that you want one of these machines
to do, you may find the particular machine you have got won’t do, but if any machine can do
it at all, then it can be done by your first computer, simply increased in its storage capacity.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 11:12 Page 673 #23

Can Automatic Calculating Machines Be Said To Think? 673

Jefferson: If we are really to get near to anything that can be truly called ‘thinking’ the
effects of external stimuli cannot be missed out; the intervention of all sorts of extraneous
factors, like the worries of having to make one’s living, or pay one’s taxes, or get food
that one likes. These are not in any sense minor factors, they are very important indeed,
and worries concerned with them may greatly interfere with good thinking, especially with
creative thinking. You see a machine has no environment, and man is in constant relation
to his environment, which, as it were punches him whilst he punches back. There is a vast
background of memories in a man’s brain that each new idea or experience has to fit in
with. I wonder if you could tell me how far a calculating machine meets that situation.
Most people agree that man’s first reaction to a new idea (such as the one we are discussing
today) is one of rejection, often immediate and horrified denial of it. I don’t see how a
machine could as it were say ‘Now Professor Newman or Mr. Turing, I don’t like this pro-
gramme at all that you’ve just put into me, in fact I’m not going to have anything to do with it.’

Newman: One difficulty about answering that is one that Turing has already mentioned. If
someone says, ‘Could a machine do this, e.g. could it say “I don’t like the programme you
have just put into me” ‘, and a programme for doing that very thing is duly produced, it is
apt to have an artificial and ad hoc air, and appear to be more of a trick than a serious answer
to the question. It is like those passages in the Bible, which worried me as a small boy, that
say that such and such was done ‘that the prophecy might be fulfilled which says’ so and so.
This always seemed to me a most unfair way of making sure that the prophecy came true. If
I answer your question, Jefferson, by making a routine which simply caused the machine to
say just the words ‘Newman and Turing, I don’t like your programme,’ you would certainly
feel this was a rather childish trick, and not the answer to what you really wanted to know.
But yet it’s hard to pin down what you want.

Jefferson: I want the machine to reject the problem because it offends it in some way. That
leads me to enquire what the ingredients are of ideas that we reject because we instinctively
don’t care for them. I don’t know why I like some pictures and some music and am bored by
other sorts. But I’m not going to carry that line on because we are all different, our dislikes
are based on our personal histories and probably too on small differences of construction
in all of us, I mean by heredity. Your machines have no genes, no pedigrees. Mendelian
inheritance means nothing to wireless valves. But I don’t want to score debating points! We
ought to make it clear that not even Turing thinks that all that he has to do is to put a skin on
the machine and that it is alive! We’ve been trying for a more limited objective whether the
sort of thing that machines do can be considered as thinking. But is not your machine more
certain than any human being of getting its problem right at once, and infallibly?

Newman: Oh!

Turing: Computing machines aren’t really infallible at all. Making up checks on their accuracy
is quite an important part of the art of using them. Besides making mistakes they sometimes
haven’t done quite the calculation one had expected, and one gets something that might be
called a ‘misunderstanding.’

Jefferson: At any rate, they are not influenced by the emotions. You have only to upset a
person enough and he becomes confused, he can’t think of the answers and may make a fool
of himself. It is high emotional content of mental processes in the human being that makes
him quite different from a machine. It seems to me to come from the great complexity of
his nervous system with its 1010 cells and also from his endocrine system which imports all
sorts of emotions and instincts, such as those to do with sex. Man is essentially a chemical
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machine, he is much affected by hunger and fatigue, by being ‘out of sorts’ as we say, also
by innate judgements, and by sexual urges. This chemical side is tremendously important,
not the least so because the brain does exercise a remote control over the most important
chemical processes that go on in our bodies. Your machines don’t have to bother with that,
with being tired or cold or happy or satisfied. They show no delight at having done something
never done before. No, they are ‘mentally’ simple things. I mean that however complicated
their structure is (and I know it is very complicated), compared with man they are very
simple and perform their tasks with an absence of distracting thoughts which is quite inhuman.

Braithwaite: I’m not sure that I agree. I believe that it will be necessary to provide the machine
with something corresponding to appetites, or other ‘springs of action,’ in order that it will pay
enough attention to relevant features in its environment to be able to learn from experience.
Many psychologists have held that the emotions in men are by-products of their appetites
and that they serve a biological function in calling higher levels of mental activity into play
when the lower levels are incapable of coping with an external situation. For example, one
does not feel afraid when there is no danger, or a danger which can be avoided more or
less automatically: fear is a symptom showing that the danger has to be met by conscious
thought. Perhaps it will be impossible to build a machine capable of learning in general from
experience without incorporating in it an emotional apparatus, the function of which will be to
switch over to a different part of the machine when the external environment differs too much
from what would satisfy the machine’s appetites by more than a certain amount. I don’t want
to suggest that it will be necessary for the machine to be able to throw a fit of tantrums. But
in humans tantrums frequently fulfil a definite function - that of escaping from responsibility;
and to protect a machine against a too hostile environment it may be essential to allow it, as
it were, to go to bed with a neurosis, or psychogenic illness - just as, in a simpler way, it is
provided with a fuse to blow, if the electric power working it threatens its continued existence.

Turing: Well, I don’t envisage teaching the machine to throw temperamental scenes. I
think some such effects are likely to occur as a sort of by-product of genuine teaching,
and that one will be more interested in curbing such displays than in encouraging them.
Such effects would probably be distinctly different from the corresponding human ones,
but recognisable as variations on them. This means that if the machine was being put
through one of my imitation tests, it would have to do quite a bit of acting, but if one was
comparing it with a man in a less strict sort of way the resemblance might be quite impressive.

Newman: I still feel that too much of our argument is about what hypothetical future machines
will do. It is all very well to say that a machine could easily be made to do this or that,
but, to take only one practical point, what about the time it would take to do it? It would
only take an hour or two to make up a routine to make our Manchester machine analyse all
possible variations of the game of chess right out, and find the best move that way - if you
didn’t mind its taking thousands of millions of years to run through the routine. Solving a
problem on the machine doesn’t mean finding a way to do it between now and eternity, but
within a reasonable time. This is not just a technical detail that will be taken care of by future
improvements. It’s most unlikely that the engineers can ever give us a factor of more than a
thousand or two times our present speeds. To assume that runs that would take thousands of
millions of years on our present machines will be done in a flash on machines of the future,
is to move into the realms of science fiction.
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Turing: To my mind this time factor is the one question which will involve all the real
technical difficulty. If one didn’t know already that these things can be done by brains
within a reasonable time one might think it hopeless to try with a machine. The fact that a
brain can do it seems to suggest that the difficulties may not really be so bad as they now seem.

Braithwaite: I agree that we ought not to extend our discussion to cover whether calculating
machines could be made which would do everything that a man can do. The point is, surely,
whether they can do all that it is proper to call thinking. Appreciation of a picture contains
elements of thinking, but it also contains elements of feeling; and we’re not concerned
with whether a machine can be made that will feel. Similarly with moral questions: we’re
only concerned with them so far as they are also intellectual ones. We haven’t got to give
the machine a sense of duty or anything corresponding to a will: still less need it be given
temptations which it would then have to have an apparatus for resisting. All that it has
got to do in order to think is to be able to solve, or to make a good attempt at solving, all
the intellectual problems with which it might be confronted by the environment in which
it finds itself. This environment, of course, must include Turing asking it awkward ques-
tions as well as natural events such as being rained upon, or being shaken up by an earthquake.

Newman: But I thought it was you who said that a machine wouldn’t be able to learn to adjust
to its environment if it hadn’t been provided with a set of appetites and all that went with them?

Braithwaite: Yes, certainly. But the problems raised by a machine having appetites are
not properly our concern today. It may be the case that it wouldn’t be able to learn from
experience without them; but we’re only required to consider whether it would be able to
learn at all - since I agree that being able to learn is an essential part of thinking. So oughtn’t
we to get back to something centred on thinking? Can a machine make up new concepts, for
example?

Newman: There are really two questions that can be asked about machines and thinking, first,
what do we require before we agree that the machine does everything that we call thinking?
This is really what we have been talking about for most of the time; but there is also another
interesting and important question: Where does the doubtful territory begin? What is the near-
est thing to straight computing that the present machines perhaps can’t do?

Braithwaite: And what would your own answer be?

Newman: I think perhaps to solve mathematical problems for which no method is known, in
the way that men do; to find new methods. This is a much more modest aim than inventing
new mathematical concepts. What happens when you try to solve a new problem in the
ordinary way is that you think about it for a few seconds, or a few years, trying out all the
analogies you can think of with problems that have been solved, and then you have an idea.
You try it out in detail. If it is no good you must wait for another idea. This is a little like the
chess-problem routine, where one move after another is tried, but with one very important
difference, that if I am even a moderately good mathematician the ideas that I get are not
just random ones, but are pre-selected so that there is an appreciable chance that after a few
trials one of them will be successful. Henry Moore says about the studies he does for his
sculpture, ‘When the work is more than an exercise, inexplicable jumps occur. This is where
the imagination comes in.’ If a machine could really be got to imitate this sudden pounce
on an idea, I believe that everyone would agree that it had begun to think, even though it
didn’t have appetites or worry about the income tax. And suppose that we also stuck to what
we know about the physiology of human thinking, how much would that amount to, Jefferson?
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Jefferson: We know a great deal about the end-product, thinking itself. Are not the contents of
our libraries and museums the total up to date? Experimental psychology has taught us a lot
about the way that we use memory and association of ideas, how we fill in gaps in knowledge
and improvise from a few given facts. But exactly how we do it in terms of nerve cell actions
we don’t know. We are particularly ignorant of the very point that you mentioned just now,
Newman, the actual physiology of the pounce on an idea, of the sudden inspiration. Thinking
is clearly a motor activity of the brain’s cells, a suggestion supported by the common
experience that so many people think better with a pen in their hand than viva voce or by
reverie and reflection. But you can’t so far produce ideas in a man’s mind by stimulating his
exposed brain here or there electrically. It would have been really exciting if one could have
done that - if one could have perhaps excited original thoughts by local stimulation. It can’t
be done. Nor does the electro-encephalograph show us how the process of thinking is carried
out. It can’t tell you what a man is thinking about. We can trace the course, say, of a page of
print or of a stream of words into the brain, but we eventually lose them. If we could follow
them to their storage places we still couldn’t see how they are reassembled later as ideas. You
have the great advantage of knowing how your machine was made. We only know that we
have in the human nervous system a concern compact in size and in its way perfect for its job.
We know a great deal about its microscopical structure and its connections. If fact, we know
everything except how those myriads of cells allow us to think. But, Newman, before we say
‘not only does this machine think but also here in this machine we have an exact counterpart
of the wiring and circuits of human nervous systems,’ I ought to ask whether machines have
been built or could be built which are as it were anatomically different, and yet produce the
same work.

Newman: The logical plan of all of them is rather similar, but certainly their anatomy, and I
suppose you could say their physiology, varies a lot.

Jefferson: Yes, that’s what I imagined - we cannot then assume that any one of these electronic
machines is a replica of part of a man’s brain even though the result of its actions has to be
conceded as thought. The real value of the machine to you is its end results, its performance,
rather than that its plan reveals to us a model of our brains and nerves. Its usefulness lies in
the fact that electricity travels along wires 2 or 3 million times faster than nerve impulses pass
along nerves. You can set it to do things that man would need thousands of lives to complete.
But that old slow coach, man, is the one with the ideas - or so I think. It would be fun some
day, Turing, to listen to a discussion, say on the Fourth Programme, between two machines
on why human beings think that they think!
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Examining the Work and Its Later Impact

Richard Jozsa takes us forward to —

QUANTUM COMPLEXITY AND THE
FOUNDATIONS OF COMPUTING

In the radio broadcast ‘Can automatic calculating machines be said to think?’ Turing and his
interlocutors explore the boundaries of the notion of computation itself by comparing and contrast-
ing it with amazing (yet routinely familiar!) features of the functioning of the human brain. This key
issue of what computation ‘really is’ or ‘should be’, has since the 1980s been vigorously explored
in another context, that of fundamental physics, especially quantum physics. We have witnessed the
emergence of a new field of scientific research known as quantum computation, having momentous
implications for both the fundamental theory of computation and issues of practical computing.

Turing’s original notion of computation was motivated from operational considerations, with the
head and work tape of a Turing machine corresponding to a person calculating on sheets of paper.
But we can entertain such operational considerations at a more fundamental level – if we recognise
that any computer is a physical device and information is always represented in physical degrees
of freedom then it follows that the possibilities and limitations of information processing must
depend on the laws of physics and cannot be determined from mathematics or abstract thought alone.
This fundamental connection between computation and theoretical physics, foreshadowed by earlier
pioneers such as J. Wheeler, R. Feynman and R. Landauer, was perhaps first explicitly developed
by David Deutsch in his seminal paper from 1985 ‘Quantum theory, the Church-Turing principle
and the universal quantum computer’ (Proc. Roy. Soc. Lond. A400, pp. 97-117). Deutsch writes for
example that ‘there is no a priori reason why the physical laws should respect the limitations of the
mathematical processes we call “algorithms”’ and ‘Nor, conversely, is it obvious a priori that any
of the familiar recursive functions is in physical reality computable . . . The reason is that the laws
of physics “happen to” permit the existence of physical models for [these] operations’.

The notion of computation embodied in the operation of a Turing machine may be argued to cor-
respond to the computational possibilities of classical physics. On the other hand, quantum physics,
superseding classical theory, is well known to give rise to a notoriously strange picture of the world
and correspondingly it offers extraordinary novel possibilities for the representation and processing
of information. Deutsch in the above paper, introduced the notion of ‘quantum Turing machine’
initiating the formal study of this new quantum computation.

To appreciate the significance of quantum versus classical computing it is necessary to introduce
some basic notions from computational complexity theory. Instead of asking only whether a task is
computable or uncomputable, we seek a finer distinction in the former case, asking how ‘hard’ it
is to compute. Hardness is measured by consumption of resources viz. time (number of steps) and
space (number of tape cells) that the computation (Turing machine) uses, as a function of input size
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(defined to be the length of the initial input string). Here we will consider only time complexity; we
are mostly interested in one fundamental question: is the time complexity bounded by a polynomial
function of the input size, or does it grow super-polynomially (exponentially)? Poly-time computa-
tions are regarded as ‘feasible or computable in practice’ whereas exponential time tasks, although
computable in principle, are regarded as unfeasible or uncomputable in practice, as they consume
resources at an unacceptable rate.

Returning to considering quantum physics from a computational perspective, we note first that
all laws of quantum physics embody standardly computable prescriptions: given a description of
a quantum physical system and its starting state, we can, using a classical computer, in principle
calculate its state at any later time and the results of measurements of any of its physical properties.
Thus we would not expect any ‘quantum computation’ (as a quantum process) to be able to compute
any task that is Turing-uncomputable. However at the level of computational complexity there are
known to be profound and exciting differences.

The non-classical characteristics of quantum theory may be broadly categorised into three
features – quantum superposition, entanglement and measurement, and they turn out to have a
singular significance for issues of computational complexity. If a quantum system S is capable
of representing a generic n-bit string x, then according to the superposition principle it also has
states involving the ‘superposition’ of all n-bit strings x with ‘amplitudes’ ax. Such a generic state is
also called entangled since the individual bit carriers cannot generally be assigned individual super-
positions of 1-bit values, but instead they can be globally correlated (‘entangled’) in a peculiarly
quantum fashion. The concept of entanglement is difficult to convey intuitively but a key feature is
the following: a physical system that is the quantum analogue of a classical n-bit memory has states
whose descriptions can be exponentially more complicated than those of the corresponding classical
system, providing a rich new feature for information representation that goes beyond the possibili-
ties of classical computing. These states can be formally interpreted as embodying the simultaneous
presence of all n-bit strings, in the following sense: if we apply a physical time evolution then the
final result is the same as if we had evolved each n-bit string separately and combined the final
states with amplitudes ax. For example if the evolution corresponds to the computation of some
function f (x) then at the expense of just a single run (on the superposed input), we can produce a
state whose identity embodies all values of f (x) for all 2n inputs x. This kind of ‘quantum parallel
computation’ is not available in the standard (Turing) notion of computation and appears to pro-
vide a new exponentially powerful mode of information processing i.e., one which would need an
exponential amount of computing effort to simulate classically. However there is a catch, perhaps
the strangest feature of quantum physics, namely the formalism of quantum measurement: if we are
given a generic quantum state, then according to the laws of quantum physics it is impossible to
determine the state’s identity by any physical process (in contrast to classical physics where such
determination is always possible while leaving the original state intact). Any extraction of classical
information about the quantum state’s identity is necessarily accompanied by irrevocable damage
to the state (sometimes called ‘collapse of the wave function in quantum measurement’) and only a
small amount of (generally probabilistic) information can be gained before total destruction of the
given state’s identity. Collecting the above, we get a very strange picture of the world: to perform
quantum physical evolution, Nature updates quantum states in a remarkable way that would require
an exponential overhead of classical computing effort to mimic by classical means; yet at the end,
most of the updated information is kept hidden from us – we can read out as classical information,
only a small part (which to some extent can be chosen by us) while the rest is irrevocably destroyed!

As an example, given a superposition state involving all 2n values f (x) of a Boolean function,
we can extract very little information about the exponentially many values. But remarkably this
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‘small amount of information’ can be global or collective information about the set of all values,
which although small, may still require exponentially many function evaluations f (x) to determine
classically. In this way we can obtain a quantum computational advantage. The first explicit example
of this phenomenon was the so-called Deutsch–Jozsa quantum algorithm of 1992: if f (having 1-bit
values) is promised a priori to be either (a) the constant function having f (x)= 0 for all x or (b) a
‘balanced’ function, having 0 and 1 equally often amongst its 2n values, then it may be shown that
we can decide (a) versus (b) with certainty (i.e., just a single bit of global information about the
set of values) from a single evaluation of f on an equal superposition of all x values. On the other
hand, classically exponentially many evaluations are necessary to decide this task, giving the key
exponential separation in time complexity. Another significant example is provided by Peter Shor’s
1994 poly-time quantum algorithm for integer factorisation, perhaps to date the most celebrated
result in the subject area, making the fundamentally important task of factorisation feasible on a
quantum computer (whereas no feasible classical algorithm is known). Using some basic number
theory the problem of integer factorisation is first converted into a problem of determining the period
of an associated periodic function. This periodicity information (small compared to the total list of
function values!) is then extracted by a quantum computation from a uniform superposition of the
function’s values, superposed across a suitably large range of inputs to capture the periodic pattern.

Perhaps the most famous outstanding issue in computational complexity theory is the so-called
P versus NP problem i.e., establishing the relationship of the complexity class NP to that of (clas-
sical) poly-time computations. Thus in our present context we are compelled to ask: can quantum
computation provide a poly-time algorithm for an NP-complete problem? Indeed from the fore-
going discussion, we may at first sight have reason to be excitedly optimistic! Consider for example
the (NP complete) satisfiability problem for Boolean functions – given a Boolean function f we
ask ‘does f take the value 1 or not, amongst its set of values?’ i.e., we ask for just a single bit of
of information about the full set of all values, and indeed as before, we can easily generate all of
the exponentially many values in superposition. But alas the information requested, although small,
is the ‘wrong kind’ of information – intuitively if we consider two Boolean functions requiring
opposite answers viz. one uniquely satisfiable and the other unsatisfiable, then they differ in only
a single f (x) value. Hence the quantum states representing superpositions of all their values are
exponentially close in the space of physical states and thus hard (i.e., require exponential effort)
to distinguish by physical means. In contrast for a pattern structure such as periodicity, if the peri-
odicity changes then a large number of values must change and the superposition states become
readily distinguishable. At present (just as in classical computation theory and the class P) it is not
known whether quantum computations can provide poly-time solutions to NP complete problems
or not, but it generally believed that it is not possible. Indeed for the satisfiability problem, if the
function (from n bits to one bit) is given as a black box then in 1994 it was shown by E. Bernstein,
C. H. Bennett, G. Brassard and U. Vazirani that any quantum algorithm that purports to decide sat-
isfiability (with any constant level of probability) must access the black box at least O(

√
2n) times,

and soon thereafter in 1996, Lov Grover gave an explicit quantum algorithm matching this lower
bound. The relationship of NP to computability in the physical universe remains an infectiously
fascinating subject, explored, for example in Scott Aaronson’s paper ‘NP-complete problems and
physical reality’ (ACM SIGACT News, March 2005).

In this commentary we have seen that the union of concepts from fundamental quantum physics
and the theory of computing has a remarkable synergy. On the one hand we obtain a new (physically
realistic) computational paradigm allowing the computation of some tasks in a way that consumes
exponentially fewer resources than is known to be possible with standard (classical) computing.
Furthermore, on the other hand concepts from computational complexity theory offer a potentially
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new perspective on quantum (or any post-quantum) physics with its own characteristic flavour of
guiding principles. For example we might adopt as fundamental the principle that any prospective
physical theory should not allow the efficient solution of an NP complete problem. This would
greatly restrict the form of any prospective future theory (for example already ruling out some
proposed non-linear generalisations of quantum theory) and remarkably, it appears to hold in the
established formalisms of both classical and quantum physics, which were developed from entirely
different considerations.

Alan Turing would surely have been delighted by the development of quantum computation. It is
known (cf Andrew Hodges’ celebrated biography ‘Alan Turing – The Enigma’) that he maintained
a lifelong interest in quantum physics, but curiously he appears never to have made a connection
with his fundamental work on computation. Returning finally to the subject of the radio broadcast
it is interesting to mention that various authors (notably for example, Roger Penrose in his book
‘The Emperor’s New Mind’) have controversially proposed a significance for quantum processes
in the workings of the brain and even more, entertained the suggestion that non-computability may
play a role there, and in fundamental physics. But even within the framework of conventionally
accepted theory, the study of quantum computation is today one of the most active areas of all
scientific research worldwide, and it continues to inspire imaginative developments at the forefront
of fundamental science as well as offering powerful new computational capabilities.
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Part IV

The Mathematics of Emergence:
The Mysteries of Morphogenesis
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The Chemical Basis of Morphogenesis
(Phil. Trans. R. Soc. London B 237 (1952), pp. 37–72)

Peter Saunders introduces —

ALAN TURING’S WORK IN BIOLOGY1

Turing’s work in biology illustrates just as clearly as his other work his ability to identify a
fundamental problem and to approach it in a highly original way, drawing remarkably little from
what others had done. He chose to work on the problem of form at a time when the majority of
biologists were primarily interested in other questions. There are very few references in these papers,
and most of them are for confirmation of details rather than for ideas that he was following up. In
biology, as in almost everything else he did within science – or out of it – Turing was not content to
accept a framework set up by others.

Even the fact that the mathematics in these papers is different from what he used in his other
work is significant. For while it is not uncommon for a newcomer to make an important contribution
to a subject, this is usually because he brings to it techniques and ideas that he has been using in his
previous field but which are not known in the new one. Now much of Turing’s career up to this point
had been concerned with computers, from the hypothetical Turing machine to the real life Colossus,
and this might have been expected to have led him to see the development of an organism from egg
to adult as being programmed in the genes and to set out to study the structure of the programmes.
This would also have been in the spirit of the times, because the combining of Darwinian natural
selection and Mendelian genetics into the synthetic theory of evolution had only been completed
about 10 years earlier, and it was in the very next year that Crick and Watson discovered the structure
of DNA. Alternatively, Turing’s experience in computing might have suggested to him something
like what are now called cellular automata, models in which the fate of a cell is determined by the
states of its neighbours through some simple algorithm, in a way that is very reminiscent of the
Turing machine.

For Turing, however, the fundamental problem of biology had always been to account for pattern
and form, and the dramatic progress that was being made at that time in genetics did not alter his
view. And because he believed that the solution was to be found in physics and chemistry, it was
to these subjects and the sort of mathematics that could be applied to them that he turned. In my
view, he was right, but even someone who disagrees must be impressed by the way in which he
went directly to what he saw as the most important problem and set out to attack it with the tools
that he judged appropriate to the task, rather than those which were easiest to hand or which others
were already using. What is more, he understood the full significance of the problem in a way that
many biologists did not and still do not. We can see this in the manuscript with Wardlaw which is

1This brief overview of Turing’s work is taken from Peter Saunders’ Introduction to the Morphogenesis volume of the
Collected Works, with some minor editorial updating.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00026-6
c© 2013 Elsevier Inc. All rights reserved.
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included in the Collected Works, but it is clear just from the comment he made to Robin Gandy (see
Hodges (1983, p. 431)) that his new ideas were ‘intended to defeat the argument from design’.2

The development of any organism, and above all a complex one such as a human being, is a
truly remarkable process. We each begin as a single cell and eventually become an adult made up
of approximately 1015 cells of about 200 different types organised in a very complicated arrange-
ment and able to cooperate to carry out many vital functions. This would be an impressive enough
accomplishment if it were done under the supervision of an intelligent craftsman; in fact, it hap-
pens through nothing more than a series of interrelated physical and chemical processes. The genes
play an important role in this, but we cannot just say that the genes create the form and let it go
at that. The genes can only influence development through their effects on chemical reactions, and
they themselves have to be turned on and off at appropriate times. Important though developmental
genetics is, ultimately it is the physics and chemistry that we have to understand.

While the later stages of development are often complicated and hard to understand in detail,
perhaps the greatest difficulty in principle is at the very beginning. Once a pattern of some sort has
been established, it can serve as the basis for the next stage and so on. But how does the process
start? The original cell is not, to be sure, totally symmetric; it has a polarity induced by the point of
entry of the sperm, but this does not seem enough to determine the structure that is to appear. How
does a pattern appear in a region that has nothing to serve as a template – or, equivalently, where
does the template come from? This was what Turing saw as the fundamental problem.

Reference

Hodges, A., 1983. Alan Turing: The Enigma, Burnett Books, London.

And Philip K. Maini wonders at —

TURING’S THEORY OF MORPHOGENESIS

Alan Turing’s paper, ‘The chemical basis of morphogenesis’ (Turing, 1952) has been hugely influ-
ential in a number of areas3. In this paper, Turing proposed that biological pattern formation arises
in response to a chemical pre-pattern which, in turn, is set up by a process which is now known
as diffusion-driven instability. The genius of this work was that he considered a system which was
stable in the absence of diffusion and then showed that the addition of diffusion, which is naturally
stablising, actually caused an instability. Thus, it was the integration of the parts that was as crucial
to the understanding of embryological development as the parts themselves – patterns emerged or
self-organisd as a result of the individual parts interacting. To see how far ahead of his time he was,

2 Peter Saunders continues with further comments on this aspect of the morphogenesis work in his Introduction in the
Collected Works. But see his contribution later in this chapter – Defeating the Argument from Design – for his recent
thinking on the topic.
3 3,459 citations – ISI web of science 25/4/11.
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one has to note that it is only now in the post-genomic era of systems biology that the majority of
the scientific community has arrived at the conclusion he came to some 60 years ago.

Turing termed these chemicals ‘morphogens’. For example, in phyllotaxis, an area in which he
was interested, if the morphogen was a growth hormone, then a spatially non-uniform pre-pattern
in it could cause symmetry breaking in a ring of cells leading to branching or leaf formation. More
generally, if the morphogen determined cell fate, then the model could be used to describe patterning
phenomena in a variety of settings (see, for example, Murray (2003)).

The Turing model was generalised in 1972 by Gierer and Meinhardt (see Meinhardt, 1982 and
references therein) to the idea of activator–inhibitor systems and the general patterning principle of
‘short-range activation, long-range inhibition’ or ‘local-activation, lateral inhibition (LALI)’. They
also showed how the model could be used to explain regulation as well as normal patterning. Many
subsequent models for biological pattern formation have been proposed based on very different
biology, for example, (i) the theory of chemotaxis in which cells are proposed to move up gradients
in chemicals (known as chemoattractants) so that the patterns are in cebu now.

Idensity (see, for example, Keller and Segel (1970)); (ii) the mechanochemical 4 theory of mor-
phogenesis in which it is proposed that the physical interaction of cells with extracellular matrix
leads to instabilities from which spatially varying patterns in cell density emerge (Murray, 2003,
and references therein); (iii) neural models in which the neuroscretory system leads to growth and
pigmentation (Boettiger et al., 2009). These models also have very different mathematical forms
from the original parabolic system of equations proposed by Turing, some involving hyperbolic
and/or elliptical terms, while others are of integro-partial differential equation type. However, they
all generate pattern by the LALI principle. As a result of this, one can draw general conclusions on
how patterns will depend on domain length and geometry, leading to mathematically derived notions
of developmental constraints and the evolution of and morphogenetic rules for certain patterns (for
example, cartilage formation in the vertebrate limb – see Murray (2003)).

The notion that something as complicated as patterning in developmental biology can be
described by two equations appears fanciful but this was recognised by Turing, who stated in his
paper:

This model will be a simplification and an idealization, and consequently a falsification. It is
to be hoped that the features retained for discussion are those of greatest importance in the
present state of knowledge.

His model may be thought of as being applied at a certain scale, with the link to other scales
appearing via the parameters (production, decay and interaction rates). So, for example, in the appli-
cation to fish pigmentation patterns, while the model is assumed to operate on the tissue level, the
parameters would arise from interactions occurring from the genetic level upwards (Kondo, 2002;
Watanabe et al., 2006). Understanding how biological function arises through the integration of
processes interacting on very different spatial and temporal scales is perhaps the greatest challenge
facing developmental biology this century.

The Turing model for morphogenesis has provoked much controversy. For example, it does not
account for factors such as chemotaxis, mechanics, etc., subsequently modelled as mentioned above.
While Turing patterns have been shown to exist in chemistry (see, for example, Bánsági et al. (2011)
and references therein) their existence in biology is still highly controversial. While the existence
of morphogens is now widely accepted, it is still not at all clear if patterns arise by the mechanism
proposed by Turing. While a vast number of organisms obey the developmental constraints arising

4 In fact Turing mentioned that it may be possible to take mechanical effects into account within the framework he had
developed.
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from LALI models and a great number of experimental manipulations give results consistent with
the Turing model (or extensions thereof) to actually prove that a pattern arises via a Turing mecha-
nism would require one to know the precise chemical interactions of the morphogens and show that
the parameters satisfy the inequalities necessary for diffusion-driven instability to occur. This is a
far way off but encouraging recent progress has been made. For example, Garfinkel et al. (2004)
investigated in vitro the self-organising properties of multipotential adult vascular mesenchymal
cells. They identified BMP-2 and MGP as qualitatively satisfying all the conditions necessary for
a Turing morphogen pair and showed that the cells aggregate into stripe, spot and labyrinthine pat-
terns in response to various manipulations precisely as predicted by the Turing model. Sick et al.
(2006) propose that WNT and DKK may be a Turing morphogen pair involved in the patterning of
hair follicles in mice. They showed that experimental manipulation of the system leads to results
that are qualitatively similar to those predicted by a Turing mechanism.

Adding fuel to the debate was the discovery that one of the candidates for a Turing pattern,
the periodic pattern of expression of pair-rule genes in Drosophila, is actually not formed via
diffusion-driven instability but an asymmetry is already inherited from the mother and this leads
to a cascade of patterning interactions (Akam, 1989). This is very different from the Turing model
which assumes that pattern arises de novo. However, again this was recognised by Turing, who said
in his famous paper, ‘Most of an organism, most of the time, is developing from one pattern to
another rather than from homogeneity into a pattern’.

Not only are there biological issues about the Turing model, there are also mathematical con-
cerns. It is known that the model exhibits multiple stable steady states and this means that it can be
very sensitive to noise and stochasticity in, for example, initial conditions (Bard and Lauder, 1974)
or slight changes in domain shape (Bunow et al., 1980). Therefore, the patterns produced are not
robust. In some cases, this may not be a problem (for example, for certain pigmentation patterns),
but in other cases, for example, limb development, it may be crucial. It has been shown that using
different types of biologically relevant boundary conditions can improve robustness (Dillon et al.,
1994) as can domain growth (Crampin et al., 1999). In the latter case, it has been shown that growth
can enhance selection of certain patterning modes at the expense of others. It is observed that bio-
logical pattern often arises behind a moving front (either in growth or a critical parameter) and in
the context of the Turing theory for morphogenesis, this would be explained by noting that such
a process keeps the patterning domain small, and on such domains pattern selection can be easily
controlled. Very recently, it has been shown that the model is highly sensitive to the inclusion of
gene transcription delays in the kinetics (see Seirin Lee et al. (2011) and references therein).

Not only has the Turing model challenged biologists to prove/disprove the existence of LALI
morphogens. It has also challenged several generations of mathematicians. While the equations look
relativity simple, the vast array of patterning behaviours it produces (many of which were computed
by Turing in his paper) is astonishing. While the linear theory is well understood (presented by
Turing himself), the nonlinear theory is largely intractable. Early analysis investigated the weakly
nonlinear case where amplitude equations could be derived using perturbation approaches (see, for
example, the book by Britton (1986), for the general theory) and are valid in the vicinity of primary
bifurcation points. Although Turing studied and computed the linear system, he does mention the
nonlinear problem and, in an ad hoc way, derives the amplitude equation that many found later
multi-timescale analysis. Group symmetry approaches have also been used to study the problem
of mode interactions (see Comanici and Golubitsky (2008) and references therein). Away from the
primary bifurcation points one has to resort, by and large, to numerical computation, except in
certain cases of very slow activator diffusion in which spike solutions form. These solutions have
complex behaviour in which they move to certain parts of the domain to stabilise and spikes may
also coalesce with other spikes (see, for example, Ward et al. (2002) and references therein).
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Applications of Turing’s work to developmental biology are too numerous to list but include
limb development, pigmentation patterning, hair and feather germ formation, tooth morphogenesis,
phyllotaxis, hydra patterning and regeneration. Moreover, ideas of self-organisation now abound in
biology, chemistry and ecology. The stimulus for a lot of this work stems from Turing’s original
ideas. Thus, his paper has significantly advanced the field and the paper is being cited almost every-
day5. Advanced computational power now means that the model is trivial to simulate and explore
(Kondo and Miura, 2010) and it is envisaged that this will result in its impact increasing instead
of waning. George Box is quoted as making the very truthful statement, ‘all models are wrong, but
some are useful’. Although still very controversial, Turing’s theory for morphogenesis provided a
paradigm shift in our way of thinking, which has stimulated countless experimental programmes
and resulted in novel experiments being carried out that may not otherwise have been undertaken. It
has also generated new mathematical and computational problems that have advanced those fields
considerably.
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It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a

tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally

be quite homogeneous, may later develop a patten or structure due to an instability of the homogeneous equilibrium,

which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the

case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation

is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this

may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for

instance, for the tentacle patterns on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere

is also considered. Such a system appears to account for gastrulation. Another reaction system in two dimensions

gives rise to patterns reminiscent of dappling. It is also suggested that stationary waves in two dimensions could

account for the phenomena of phyllotaxis.

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote may determine the

anatomical structure of the resulting organism. The theory does not make any new hypotheses; it merely suggests

that certain well-known physical laws are sufficient to account for many of the facts. The full understanding of

the paper requires a good knowledge of mathematics, some biology, and some elementary chemistry. Since readers

cannot be expected to be experts in all of these subjects, a number of elementary facts are explained, which can be

found in text-books, but whose omission would make the paper difficult reading.

1. A model of the embryo: Morphogens

In this section a mathematical model of the growing embryo will be described. This model will be a
simplification and an idealization, and consequently a falsification. It is to be hoped that the features
retained for discussion are those of greatest importance in the present state of knowledge.

The model takes two slightly different forms. In one of them the cell theory is recognized but
the cells are idealized into geometrical points. In the other the matter of the organism is imagined as
continuously distributed. The cells are not, however, completely ignored, for various physical and
physico-chemical characteristics of the matter as a whole are assumed to have values appropriate to
the cellular matter.

With either of the models one proceeds as with a physical theory and defines an entity called
‘the state of the system’. One then describes how that state is to be determined from the state at a
moment very shortly before. With either model the description of the state consists of two parts,
the mechanical and the chemical. The mechanical part of the state describes the positions, masses,
velocities and elastic properties of the cells, and the forces between them. In the continuous form
of the theory essentially the same information is given in the form of the stress, velocity, density
and elasticity of the matter. The chemical part of the state is given (in the cell form of theory) as
the chemical composition of each separate cell; the diffusibility of each substance between each
two adjacent cells must also be given. In the continuous form of the theory the concentrations and
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diffusibilities of each substance have to be given at each point. In determining the changes of state
one should take into account

(i) The changes of position and velocity as given by Newton’s laws of motion.
(ii) The stresses as given by the elasticities and motions, also taking into account the osmotic

pressures as given from the chemical data.
(iii) The chemical reactions.
(iv) The diffusion of the chemical substances. The region in which this diffusion is possible is

given from the mechanical data.

This account of the problem omits many features, e.g. electrical properties and the internal struc-
ture of the cell. But even so it is a problem of formidable mathematical complexity. One cannot at
present hope to make any progress with the understanding of such systems except in very simplified
cases. The interdependence of the chemical and mechanical data adds enormously to the difficulty,
and attention will therefore be confined, so far as is possible, to cases where these can be separated.
The mathematics of elastic solids is a well- developed subject, and has often been applied to bio-
logical systems. In this paper it is proposed to give attention rather to cases where the mechanical
aspect can be ignored and the chemical aspect is the most significant. These cases promise greater
interest, for the characteristic action of the genes themselves is presumably chemical. The systems
actually to be considered consist therefore of masses of tissues which are not growing, but within
which certain substances are reacting chemically, and through which they are diffusing. These sub-
stances will be called morphogens, the word being intended to convey the idea of a form producer.
It is not intended to have any very exact meaning, but is simply the kind of substance concerned
in this theory. The evocators of Waddington provide a good example of morphogens (Waddington
1940). These evocators diffusing into a tissue somehow persuade it to develop along different lines
from those which would have been followed in its absence. The genes themselves may also be con-
sidered to be morphogens. But they certainly form rather a special class. They are quite indiffusible.
Moreover, it is only by courtesy that genes can be regarded as separate molecules. It would be more
accurate (at any rate at mitosis) to regard them as radicals of the giant molecules known as chro-
mosomes. But presumably these radicals act almost independently, so that it is unlikely that serious
errors will arise through regarding the genes as molecules. Hormones may also be regarded as quite
typical morphogens. Skin pigments may be regarded as morphogens if desired. But those whose
action is to be considered here do not come squarely within any of these categories.

The function of genes is presumed to be purely catalytic. They catalyze the production of other
morphogens, which in turn may only be catalysts. Eventually, presumably, the chain leads to some
morphogens whose duties are not purely catalytic. For instance, a substance might break down into
a number of smaller molecules, thereby increasing the osmotic pressure in a cell and promoting its
growth. The genes might thus be said to influence the anatomical form of the organism by determin-
ing the rates of those reactions which they catalyze. If the rates are assumed to be those determined
by the genes, and if a comparison of organisms is not in question, the genes themselves may be elim-
inated from the discussion. Likewise any other catalysts obtained secondarily through the agency
of the genes may equally be ignored, if there is no question of their concentrations varying. There
may, however, be some other morphogens, of the nature of evocators, which cannot be altogether
forgotten, but whose role may nevertheless be subsidiary, from the point of view of the formation
of a particular organ. Suppose, for instance, that a ‘leg-evocator’ morphogen were being produced
in a certain region of an embryo, or perhaps diffusing into it, and that an attempt was being made to
explain the mechanism by which the leg was formed in the presence of the evocator. It would then
be reasonable to take the distribution of the evocator in space and time as given in advance and to
consider the chemical reactions set in train by it. That at any rate is the procedure adopted in the
few examples considered here.
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2. Mathematical background required

The greater part of this present paper requires only a very moderate knowledge of mathematics.
What is chiefly required is an understanding of the solution of linear differential equations with
constant coefficients. (This is also what is chiefly required for an understanding of mechanical and
electrical oscillations.) The solution of such an equation takes the form of a sum 6Aebt, where the
quantities A, b may be complex, i.e. of the form α+ iβ, where α and β are ordinary (real) num-
bers and i=√− 1. It is of great importance that the physical significance of the various possible
solutions of this kind should be appreciated, for instance, that

(a) Since the solutions will normally be real one can also write them in the form R ∑
Aebt or∑R Aebt (R means ‘real part of’).

(b) That if A= A′eiφ and b= α+ iβ, where A′, α, β, φ are real, then

R Aebt
= A′eαt

= A′eαt cos(βt+φ).

Thus each such term represents a sinusoidal oscillation if α = 0, a damped oscillation if α < 0,
and an oscillation of ever-increasing amplitude if α > 0.

(c) If any one of the numbers b has a positive real part the system in question is unstable.
(d) After a sufficiently great lapse of time all the terms Aebt will be negligible in comparison with

those for which b has the greatest real part, but unless this greatest real part is itself zero these
dominant terms will eventually either tend to zero or to infinite values.

(e) That the indefinite growth mentioned in (b) and (d) will in any physical or biological situation
eventually be arrested due to a breakdown of the assumptions under which the solution was
valid. Thus, for example, the growth of a colony of bacteria will normally be taken to satisfy
the equation dy/dt = αy(α > 0), y being the number of organisms at time t, and this has the
solution y= Aeαt. When, however, the factor eαt has reached some billions the food supply
can no longer be regarded as unlimited and the equation dy/dt = αy will no longer apply.

The following relatively elementary result will be needed, but may not be known to all readers:

N∑
r=1

exp

[
2π irs

N

]
= 0 if 0< s< N,

but

= N if s= 0 or s= N.

The first case can easily be proved when it is noticed that the left-hand side is a geometric
progression. In the second case all the terms are equal to 1.

The relative degrees of difficulty of the various sections are believed to be as follows. Those who
are unable to follow the points made in this section should only attempt §§ 3, 4, 11, 12, 14 and part
of § 13. Those who can just understand this section should profit also from §§ 7, 8, 9. The remainder,
§§ 5, 10, 13, will probably only be understood by those definitely trained as mathematicians.

3. Chemical reactions

It has been explained in a preceding section that the system to be considered consists of a number
of chemical substances (morphogens) diffusing through a mass of tissue of given geometrical form
and reacting together within it. What laws are to control the development of this situation ? They
are quite simple. The diffusion follows the ordinary laws of diffusion, i.e. each morphogen moves
from regions of greater to regions of less concentration, at a rate proportional to the gradient of
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the concentration, and also proportional to the ‘diffusibility’ of the substance. This is very like the
conduction of heat, diffusibility taking the place of conductivity. If it were not for the walls of the
cells the diffusibilities would be inversely proportional to the square roots of the molecular weights.
The pores of the cell walls put a further handicap on the movement of the larger molecules in
addition to that imposed by their inertia, and most of them are not able to pass through the walls at
all.

The reaction rates will be assumed to obey the ‘law of mass action’. This states that the rate at
which a reaction takes place is proportional to the concentrations of the reacting substances. Thus,
for instance, the rate at which silver chloride will be formed and precipitated from a solution of
silver nitrate and sodium chloride by the reaction

Ag++Cl−→ AgCl

will be proportional to the product of the concentrations of the silver ion Ag+ and the chloride ion
C1−. It should be noticed that the equation

AgNO3+NaC1→ AgC1+NaNO3

is not used because it does not correspond to an actual reaction but to the final outcome of a number
of reactions. The law of mass action must only be applied to the actual reactions. Very often certain
substances appear in the individual reactions of a group, but not in the final outcome. For instance,
a reaction A→ B may really take the form of two steps A+G→ C and C→ B+G. In such a
case the substance G is described as a catalyst, and as catalyzing the reaction A→ B. (Catalysis
according to this plan has been considered in detail by Michaelis & Menten (1913).) The effect of
the genes is presumably achieved almost entirely by catalysis. They are certainly not permanently
used up in the reactions.

Sometimes one can regard the effect of a catalyst as merely altering a reaction rate. Consider,
for example, the case mentioned above, but suppose also that A can become detached from G,
i.e. that the reaction C→ A+G is taken into account. Also suppose that the reactions A+G� C
both proceed much faster than C→ B+G. Then the concentrations of A, G, C will be related
by the condition that there is equilibrium between the reactions A+G→ C and C→ A+G, so
that (denoting concentrations by square brackets) [A][G]= k[C] for some constant k. The reaction
C→ B+G will of course proceed at a rate proportional to [C], i.e. to [A][G]. If the amount of C is
always small compared with the amount of G one can say that the presence of the catalyst and its
amount merely alter the mass action constant for the reaction A→ B, for the whole proceeds at a
rate proportional to [A]. This situation does not, however, hold invariably. It may well happen that
nearly all ofG takes the combined C so long as any A is left. In this case the reaction proceeds at a
rate independent of the concentration of A until A is entirely consumed. In either of these cases the
rate of the complete group of reactions depends only on the concentrations of the reagents, although
usually not according to the law of mass action applied crudely to the chemical equation for the
whole group. The same applies in any case where all reactions of the group with one exception
proceed at speeds much greater than that of the exceptional one. In these cases the rate of the reaction
is a function of the concentrations of the reagents. More generally again, no such approximation is
applicable. One simply has to take all the actual reactions into account.

According to the cell model then, the number and positions of the cells are given in advance,
and so are the rates at which the various morphogens diffuse between the cells. Suppose that there
are N cells and M morphogens. The state of the whole system is then given by MN numbers, the
quantities of the M morphogens in each of N cells. These numbers change with time, partly because
of the reactions, partly because of the diffusion. To determine the part of the rate of change of one
of these numbers due to diffusion, at any one moment, one only needs to know the amounts of the
same morphogen in the cell and its neighbours, and the diffusion coefficient for that morphogen. To
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find the rate of change due to chemical reaction one only needs to know the concentrations of all
morphogens at that moment in the one cell concerned.

This description of the system in terms of the concentrations in the various cells is, of course,
only an approximation. It would be justified if, for instance, the contents were perfectly stirred.
Alternatively, it may often be justified on the understanding that the ‘concentration in the cell’ is
the concentration at a certain representative point, although the idea of ‘concentration at a point’
clearly itself raises difficulties. The author believes that the approximation is a good one, whatever
argument is used to justify it, and it is certainly a convenient one.

It would be possible to extend much of the theory to the case of organisms immersed in a
fluid, considering the diffusion within the fluid as well as from cell to cell. Such problems are not,
however, considered here.

4. The breakdown of symmetry and homogeneity

There appears superficially to be a difficulty confronting this theory of morphogenesis, or, indeed,
almost any other theory of it. An embryo in its spherical blastula stage has spherical symmetry,
or if there are any deviations from perfect symmetry, they cannot be regarded as of any particular
importance, for the deviations vary greatly from embryo to embryo within a species, though the
organisms developed from them are barely distinguishable. One may take it therefore that there is
perfect spherical symmetry. But a system which has spherical symmetry, and whose state is chang-
ing because of chemical reactions and diffusion, will remain spherically symmetrical for ever. (The
same would hold true if the state were changing according to the laws of electricity and magnetism,
or of quantum mechanics.) It certainly cannot result in an organism such as a horse, which is not
spherically symmetrical.

There is a fallacy in this argument. It was assumed that the deviations from spherical symmetry
in the blastula could be ignored because it makes no particular difference what form of asymmetry
there is. It is, however, important that there are some deviations, for the system may reach a state of
instability in which these irregularities, or certain components of them, tend to grow. If this happens
a new and stable equilibrium is usually reached, with the symmetry entirely gone. The variety of
such new equilibria will normally not be so great as the variety of irregularities giving rise to them.
In the case, for instance, of the gastrulating sphere, discussed at the end of this paper, the direction
of the axis of the gastrula can vary, but nothing else.

The situation is very similar to that which arises in connexion with electrical oscillators. It is
usually easy to understand how an oscillator keeps going when once it has started, but on a first
acquaintance it is not obvious how the oscillation begins. The explanation is that there are random
disturbances always present in the circuit. Any disturbance whose frequency is the natural frequency
of the oscillator will tend to set it going. The ultimate fate of the system will be a state of oscillation
at its appropriate frequency, and with an amplitude (and a wave form) which are also determined by
the circuit. The phase of the oscillation alone is determined by the disturbance.

If chemical reactions and diffusion are the only forms of physical change which are taken into
account the argument above can take a slightly different form. For if the system originally has no
sort of geometrical symmetry but is a perfectly homogeneous and possibly irregularly shaped mass
of tissue, it will continue indefinitely to be homogeneous. In practice, however, the presence of
irregularities, including statistical fluctuations in the numbers of molecules undergoing the vari-
ous reactions, will, if the system has an appropriate kind of instability, result in this homogeneity
disappearing.

This breakdown of symmetry or homogeneity may be illustrated by the case of a pair of cells
originally having the same, or very nearly the same, contents. The system is homogeneous: it is also
symmetrical with respect to the operation of interchanging the cells. The contents of either cell will
be supposed describable by giving the concentrations X and Y of two morphogens. The chemical
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reactions will be supposed such that, on balance, the first morphogen (X) is produced at the rate
5X− 6Y + 1 and the second (Y) at the rate 6X− 7Y + 1. When, however, the strict application of
these formulae would involve the concentration of a morphogen in a cell becoming negative, it is
understood that it is instead destroyed only at the rate at which it is reaching that cell by diffusion.
The first morphogen will be supposed to diffuse at the rate 0.5 for unit difference of concentration
between the cells, the second, for the same difference, at the rate 4.5. Now if both morphogens
have unit concentration in both cells there is equilibrium. There is no resultant passage of either
morphogen across the cell walls, since there is no concentration difference, and there is no resultant
production (or destruction) of either morphogen in either cell since 5X− 6Y + 1 and 6X− 7Y + 1
both have the value zero for X = 1,Y=1. But suppose the values are X1 = 1.06,Y1 = 1.02 for the
first cell and X2 = 0.94,Y2 = 0.98 for the second. Then the two morphogens will be being produced
by chemical action at the rates 0.18, 0.22 respectively in the first cell and destroyed at the same
rates in the second. At the same time there is a flow due to diffusion from the first cell to the second
at the rate 0.06 for the first morphogen and 0.18 for the second. In sum the effect is a flow from the
second cell to the first at the rates 0.12,0.04 for the two morphogens respectively. This flow tends
to accentuate the already existing differences between the two cells. More generally, if

X1 = 1+ 3ξ , X2 = 1− 3ξ , Y1 = 1+ ξ , Y2 = 1− ξ ,

at some moment the four concentrations continue afterwards to be expressible in this form, and ξ
increases at the rate 2ξ . Thus there is an exponential drift away from the equilibrium condition. It
will be appreciated that a drift away from the equilibrium occurs with almost any small displacement
from the equilibrium condition, though not normally according to an exact exponential curve. A
particular choice was made in the above argument in order to exhibit the drift with only very simple
mathematics.

Before it can be said to follow that a two-cell system can be unstable, with inhomogeneity
succeeding homogeneity, it is necessary to show that the reaction rate functions postulated really can
occur. To specify actual substances, concentrations and temperatures giving rise to these functions
would settle the matter finally, but would be difficult and somewhat out of the spirit of the present
inquiry. Instead, it is proposed merely to mention imaginary reactions which give rise to the required
functions by the law of mass action, if suitable reaction constants are assumed. It will be sufficient
to describe

(i) A set of reactions producing the first morphogen at the constant rate 1, and a similar set forming
the second morphogen at the same rate.

(ii) A set destroying the second morphogen (Y) at the rate 7Y .
(iii) A set converting the first morphogen (X) into the second (Y) at the rate 6X.
(iv) A set producing the first morphogen (X) at the rate 11X.
(v) A set destroying the first morphogen (X) at the rate 6Y , so long as any of it is present.

The conditions of (i) can be fulfilled by reactions of the type A→ X, B→ Y, where A and B are
substances continually present in large and invariable concentrations. The conditions of (ii) are
satisfied by a reaction of the form Y→ D, D being an inert substance and (iii) by the reaction
X→ Y or X→ Y +E. The remaining two sets are rather more difficult. To satisfy the conditions
of (iv) one may suppose that X is a catalyst for its own formation from A. The actual reactions
could be the formation of an unstable compound U by the reaction A+X→ U, and the subsequent
almost instantaneous breakdown U→ 2X. To destroy X at a rate proportional to Y as required in (v)
one may suppose that a catalyst C is present in small but constant concentration and immediately
combines with X, X+C→ V . The modified catalyst reacting with Y , at a rate proportional to Y ,
restores the catalyst but not the morphogen X, by the reactions V +Y→W, W→ C+H, of which
the latter is assumed instantaneous.
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It should be emphasized that the reactions here described are by no means those which are most
likely to give rise to instability in nature. The choice of the reactions to be discussed was dictated
entirely by the fact that it was desirable that the argument be easy to follow. More plausible reaction
systems are described in § 10.

Unstable equilibrium is not, of course, a condition which occurs very naturally. It usually
requires some rather artificial interference, such as placing a marble on the top of a dome. Since
systems tend to leave unstable equilibria they cannot often be in them. Such equilibria can, how-
ever, occur naturally through a stable equilibrium changing into an unstable one. For example, if
a rod is hanging from a point a little above its centre of gravity it will be in stable equilibrium. If,
however, a mouse climbs up the rod the equilibrium eventually becomes unstable and the rod starts
to swing. A chemical analogue of this mouse-and-pendulum system would be that described above
with the same diffusibilities but with the two morphogens produced at the rates

(3+ I)X− 6Y + I− 1 and 6X− (9+ I)Y − I+ 1.

This system is stable if I < 0 but unstable if I > 0. If I is allowed to increase, corresponding to
the mouse running up the pendulum, it will eventually become positive and the equilibrium will
collapse. The system which was originally discussed was the case I = 2, and might be supposed to
correspond to the mouse somehow reaching the top of the pendulum without disaster, perhaps by
falling vertically on to it.

5. Left-handed and right-handed organisms

The object of this section is to discuss a certain difficulty which might be thought to show that
the morphogen theory of morphogenesis cannot be right. The difficulty is mainly concerned with
organisms which have not got bilateral symmetry. The argument, although carried through here
without the use of mathematical formulae, may be found difficult by non-mathematicians, and these
are therefore recommended to ignore it unless they are already troubled by such a difficulty.

An organism is said to have ‘bilateral symmetry’ if it is identical with its own reflexion in some
plane. This plane of course always has to pass through some part of the organism, in particular
through its centre of gravity. For the purpose of this argument it is more general to consider what
may be called ‘left-right symmetry’. An organism has left-right symmetry if its description in any
right-handed set of rectangular Cartesian co-ordinates is identical with its description in some set of
left-handed axes. An example of a body with left-right symmetry, but not bilateral symmetry, is a
cylinder with the letter P printed on one end, and with the mirror image of a P on the other end, but
with the two upright strokes of the two letters not parallel. The distinction may possibly be without
a difference so far as the biological world is concerned, but mathematically it should not be ignored.

If the organisms of a species are sufficiently alike, and the absence of left-right symmetry suffi-
ciently pronounced, it is possible to describe each individual as either right-handed or left-handed
without there being difficulty in classifying any particular specimen. In man, for instance, one could
take the X-axis in the forward direction, the Y-axis at right angles to it in the direction towards the
side on which the heart is felt, and the Z-axis upwards. The specimen is classed as left-handed or
right-handed according as the axes so chosen are left-handed or right-handed. A new classification
has of course to be defined for each species.

The fact that there exist organisms which do not have left-right symmetry does not in itself
cause any difficulty. It has already been explained how various kinds of symmetry can be lost in
the development of the embryo, due to the particular disturbances (or ‘noise’) influencing the par-
ticular specimen not having that kind of symmetry, taken in conjunction with appropriate kinds
of instability. The difficulty lies in the fact that there are species in which the proportions of
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left-handed and right-handed types are very unequal. It will be as well to describe first an argument
which appears to show that this should not happen.

The argument is very general, and might be applied to a very wide class of theories of
morphogenesis.

An entity may be described as ‘P-symmetrical’ if its description in terms of one set of right-
handed axes is identical with its description in terms of any other set of right-handed axes with the
same origin. Thus, for instance, the totality of positions that corkscrew would take up when rotated
in all possible ways about the origin has P-symmetry. The entity will bc said to be ‘F-symmetrical’
when changes from right-handed axes handed may also be made. This would apply if the corkscrew
were replaced by a bilaterally symmetrical object such as a coal scuttle, or a left-right symmetrical
object. In these terms one may say that there are species such that the totality of specimens from that
species, together with the rotated specimens, is P-symmetrical, but very far from F-symmetrical. On
the other hand, it is reasonable to suppose that

(i) The laws of physics are F-symmetrical.
(ii) The initial totality of zygotes for the species is F-symmetrical.

(iii) The statistical distribution of disturbances is F-symmetrical. The individual disturbances of
course will in general have neither F-symmetry nor P-symmetry.

It should be noticed that the ideas of P-symmetry and F-symmetry as defined above apply even
to so elaborate an entity as ‘the laws of physics’. It should also be understood that the laws are to
be the laws taken into account in the theory in question rather than some ideal as yet undiscovered
laws.

Now it follows from these assumptions that the statistical distribution of resulting organisms
will have F-symmetry, or more strictly that the distribution deduced as the result of working out
such a theory will have such symmetry. The distribution of observed mature organisms, however,
has no such symmetry. In the first place, for instance, men are more often found standing on their
feet than their heads. This may be corrected by taking gravity into account in the laws, together with
an appropriate change of definition of the two kinds of symmetry. But it will be more convenient if,
for the sake of argument, it is imagined that some species has been reared in the absence of gravity,
and that the resulting distribution of mature organisms is found to be P-symmetrical but to yield
more right-handed specimens than left-handed and so not to have F-symmetry. It remains therefore
to explain this absence of F-symmetry.

Evidently one or other of the assumptions (i) to (iii) must be wrong, i.e. in a correct theory one
of them would not apply. In the morphogen theory already described these three assumptions do all
apply, and it must therefore be regarded as defective to some extent. The theory may be corrected
by taking into account the fact that the morphogens do not always have an equal number of left- and
right-handed molecules. According to one’s point of view one may regard this as invalidating either
(i), (ii) or even (iii). Simplest perhaps is to say that the totality of zygotes just is not F-symmetrical,
and that this could be seen if one looked at the molecules. This is, however, not very satisfactory
from the point of view of this paper, as it would not be consistent with describing states in terms
of concentrations only. It would be preferable if it was found possible to find more accurate laws
concerning reactions and diffusion. For the purpose of accounting for unequal numbers of left- and
right-handed organisms it is unnecessary to do more than show that there are corrections which
would not be F-symmetrical when there are laevo- or dextrorotatory morphogens, and which would
be large enough to account for the effects observed. It is not very difficult to think of such effects.
They do not have to be very large, but must, of course, be larger than the purely statistical effects,
such as thermal noise or Brownian movement.
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There may also be other reasons why the totality of zygotes is not F-symmetrical, e.g. an asym-
metry of the chromosomes themselves. If these also produce a sufficiently large effect, so much the
better.

Though these effects may be large compared with the statistical disturbances they are almost cer-
tainly small compared with the ordinary diffusion and reaction effects. This will mean that they only
have an appreciable effect during a short period in which the break-down of left-right symmetry is
occurring. Once their existence is admitted, whether on a theoretical or experimental basis, it is prob-
ably most convenient to give them mathematical expression by regarding them as P-symmetrically
(but not F-symmetrically) distributed disturbances. However, they will not be considered further in
this paper.

6. Reactions and diffusion in a ring of cells

The original reason for considering the breakdown of homogeneity was an apparent difficulty in the
diffusion-reaction theory of morphogenesis. Now that the difficulty is resolved it might be supposed
that there is no reason for pursuing this aspect of the problem further, and that it would be best to
proceed to consider what occurs when the system is very far from homogeneous. A great deal more
attention will nevertheless be given to the breakdown of homogeneity. This is largely because the
assumption that the system is still nearly homogeneous brings the problem within the range of what
is capable of being treated mathematically. Even so many further simplifying assumptions have to
be made. Another reason for giving this phase such attention is that it is in a sense the most critical
period. That is to say, that if there is any doubt as to how the organism is going to develop it is
conceivable that a minute examination of it just after instability has set in might settle the matter,
but an examination of it at any earlier time could never do so.

There is a great variety of geometrical arrangement of cells which might be considered, but
one particular type of configuration stands out as being particularly simple in its theory, and also
illustrates the general principles very well. This configuration is a ring of similar cells. One may
suppose that there are N such cells. It must be admitted that there is no biological example to which
the theory of the ring can be immediately applied, though it is not difficult to find ones in which the
principles illustrated by the ring apply.

It will be assumed at first that there are only two morphogens, or rather only two interesting
morphogens. There may be others whose concentration does not vary either in space or time, or
which can be eliminated fron the discussion for one reason or another. These other morphogens
may, for instance be catalysts involved in the reactions between the interesting morphogens. An
example of a complete system of reactions is given in § 10. Some consideration will also be given
in §§ 8, 9 to the case of three morphogens. The reader should have no difficulty in extending the
results to any number of morphogens, but no essentially new features appear when the number is
increased beyond three.

The two morphogens will be called X and Y. These letters will also be used to denote their
concentrations. This need not lead to any real confusion. The concentration of X in cell r may
be written Xr, and Yr has a similar meaning. It is convenient to regard ‘cell N’ and ‘cell 0’ as
synonymous, and likewise ‘cell 1’ and cell ‘N+ 1’. One can then say that for each r satisfying
16 r 6 N cell r exchanges material by diffusion with cells r− 1 and r+ 1. The cell-to-cell diffusion
constant for X will be called µ, and that for Y will be called ν. This means that for unit concentration
difference of X, this morphogen passes at the rateµ from the cell with the higher concentration to the
(neighbouring) cell with the lower concentration. It is also necessary to make assumptions about the
rates of chemical reaction. The most general assumption that can be made is that for concentrations
X and Y chemical reactions are tending to increase X at the rate f (X, Y) and Y at the rate g(X, Y).
When the changes in X and Y due to diffusion are also taken into account the behaviour of the
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system may be described by the 2N differential equations

dXr

dt
= f (Xr,Yr)+µ(Xr+1− 2Xr +Xr−1)

dYr

dt
= g(Xr,Yr)+ ν(Yr+1− 2Yr +Yr−1)

 (r = 1, . . . ,N). (6.1)

If f (h, k) : g(h, k)= 0, then an isolated cell has an equilibrium with concentrations X = h, Y = k.
The ring system also has an equilibrium, stable or unstable, with each Xr equal to h and each Yr

equal to k. Assuming that the system is not very far from this equilibrium it is convenient to put Xr =

h+ xr, Yr = k+ yr. One may also write ax+ by for f (h+ x, y+ k) and cx+ dy for g(h+ x,y + k).
Since f (h, k)= g(h, k)= 0 no constant terms are required, and since x and y are supposed small
the terms in higher powers of x and y will have relatively little effect and one is justified in ignoring
them. The four quantities a, b, c, d may be called the ‘marginal reaction rates’. Collectively they
may be described as the ‘marginal reaction rate matrix’. When there are M morphogens this matrix
consists of M2 numbers. A marginal reaction rate has the dimensions of the reciprocal of a time,
like a radioactive decay rate, which is in fact an example of a marginal (nuclear) reaction rate.

With these assumptions the equations can be rewritten as

dxr

dt
= axr + byr +µ(xr+1− 2xr + xr−1)

dyr

dt
= cxr + dyr + ν(y+1− 2yr + yr−1)

 (6.2)

To solve the equations one introduces new co-ordinates ξ0, . . . , ξN−1 and η0, . . . , ηN−1 by
putting

xr =
N−1∑
s=0

exp

[
2π irs

N

]
ξs,

yr =
N−1∑
s=0

exp

[
2π irs

N

]
ηs.

 (6.3)

These relations can also be written as

ξr =
1

N

N∑
s=1

exp

[
−

2π irs

N

]
xs,

ηr =
1

N

N∑
s=1

exp

[
−

2π irs

N

]
ys,

 (6.4)

as may be shown by using the equations

N∑
s=1

exp

[
2π irs

N

]
= 0 if 0< r < N,

= N if r = 0 or r = N,

(6.5)
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(referred to in § 2). Making this substitution one obtains

dξs

dt
=

1

N

N∑
s=1

exp

[
−

2π irs

N

][
axr + byr +µ

(
exp

[
−

2π is

N

]
− 2+ exp

[
2π is

N

])
ξs

]

= aξs+ bηs+µ

(
exp

[
−

2π is

N

]
− 2+ exp

[
2π is

N

])
ξs

=

(
a− 4µsin2 πs

N

)
ξζ + bηs.

(6.6)

Likewise

dηs

dt
= cξs+

(
d− 4ν sin2 πs

N

)
ηs. (6.7)

The equations have now been converted into a quite manageable form, with the variables separated.
There are now two equations concerned with ξ1 and η1, two concerned with ξ2 and η2, etc. The equa-
tions themselves are also of a well-known standard form, being linear with constant coefficients. Let
ps and p′s be the roots of the equation

(p− a+ 4µsin2 πs

N
)(p− d+ 4ν sin2 πs

N
)= bc (6.8)

(with R ps >R p′s for definiteness), then the solution of the equations is of the form

ξs = Asepst
+Bsep′st,

ηs = Csepst
+Dsep′st,

 (6.9)

where, however, the coefficients As, Bs, Cs, Ds are not independent but are restricted to satisfy

As

(
ps− a+ 4µsin2 πs

N

)
= bCs,

Bs

(
p′s− a+ 4µsin2 πs

N

)
= bDs.

 (6.10)

If it should happen that ps = p′s the equations (6.9) have to be replaced by

ξs = (As+Bst)epst,

ηs = (Cs+Dst)epst.

 (6.9′)

and remains true. Substituting back into (6.3) and replacing the variables xr, yr by Xr, Yr (the actual
concentrations) the solution can be written

Xr = h+
N∑

s=1
(Asepst +Bsep′st)exp

[
2π irs

N

]
,

Yr = k+
N∑

s=1
(Csepst +Dsep′st)exp

[
2π irs

N

]
.

 (6.11)

Here As, Bs, Cs, Ds are still related by (6.10), but otherwise are arbitrary complex numbers; ps

and p′s are the roots of (6.8).
The expression (6.11) gives the general solution of the equations (6.1) when one assumes that

departures from homogeneity are sufficiently small that the functions f (X, Y) and g(X, Y) can safely
be taken as linear. The form (6.11) given is not very informative. It will be considerably simplified
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in § 8. Another implicit assumption concerns random disturbing influences. Strictly speaking one
should consider such influences to be continuously at work. This would make the mathematical
treatment considerably more difficult without substantially altering the conclusions. The assumption
which is implicit in the analysis, here and in § 8, is that the state of the system at t = 0 is not one
of homogeneity, since it has been displaced from such a state by the disturbances; but after t = 0
further disturbances are ignored. In § 9 the theory is reconsidered without this latter assumption.

7. Continuous ring of tissue

As an alternative to a ring of separate cells one might prefer to consider a continuous ring of tissue.
In this case one can describe the position of a point of the ring by the angle θ which a radius to the
point makes with a fixed reference radius. Let the diffusibilities of the two substances be µ′ and ν′.
These are not quite the same as µ and ν of the last section, since µ and ν are in effect referred to a
cell diameter as unit of length, whereas µ′ and ν′ are referred to a conventional unit, the same unit
in which the radius ρ of the ring is measured. Then

µ= µ′
(

N

2πρ

)2

,ν = ν′
(

N

2πρ

)2

.

The equations are

∂X

∂t
= a(X− h)+ b(Y − k)+

µ′

ρ2

∂2X

∂θ2
,

∂Y

∂t
= c(X− h)+ d(Y − k)+

ν′

ρ2

∂2Y

∂θ2
,

 (7.1)

which will be seen to be the limiting case of (6.2). The marginal reaction rates a, b, c, d are,
as before, the values at the equilibrium position of ∂f /∂X, ∂f /∂Y , ∂g/∂X, ∂g/∂Y . The general
solution of the equations is

X = h+
∞∑

s=−∞
(Asepst

+Bsep′st)eisθ ,

Y = k+
∞∑

s=−∞
(Csepst

+Dsep′st)eisθ ,

 (7.2)

where ps, p′s are now roots of(
p− a+

µ′s2

ρ2

)(
p− d+

ν′s2

ρ2

)
= bc (7.3)

and

As

(
ps− a+ µ′s2

ρ2

)
= bCs,

Bs

(
p′s− a+ µ′s

ρ2

)
= bDs.

 (7.4)

This solution may be justified by considering the limiting case of the solution (6.11). Alterna-
tively, one may observe that the formula proposed is a solution, so that it only remains to prove that
it is the most general one. This will follow if values of As, Bs, Cs, Ds, can be found to fit any given
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initial conditions. It is well known that any function of an angle (such as X) can be expanded as a
‘Fourier series’

X(θ)=
∞∑

s=−∞

Gse
isθ (X(θ) being values of X at t = 0),

provided, for instance, that its first derivative is continuous. If also

Y(θ)=
∞∑

s=−∞

Hse
isθ (Y(θ) being values of Y at t = 0),

then the required initial conditions are satisfied provided As+Bs = Gs and Cs+Ds = Hs. Values
As, Bs, Cs, Ds to satisfy these conditions can be found unless ps = p′s. This is an exceptional case
and its solution if required may be found as the limit of the normal case.

8. Types of asymptotic behaviour in the ring after a lapse of
time

As the reader was reminded in § 2, after a lapse of time the behaviour of an expression of the form of
(6.11) is eventually dominated by the terms for which the corresponding ps has the largest real part.
There may, however, be several terms for which this real part has the same value, and these terms
will together dominate the situation, the other terms being ignored by comparison. There will, in
fact, normally be either two or four such ‘leading’ terms. For if ps0 is one of them then pN−s0 = ps0 ,
since

sin2 π(N− s0)

N
= sin2 πs0

N
,

so that ps0 and pN−s0 are roots of the same equation (6.8). If also ps0 is complex then R ps0 =R ps0

and so in all

R ps0 =R p′s0
=R pN−s0 =R p′N−s0

.

One need not, however, normally anticipate that any further terms will have to be included.
If ps0 and ps1 are to have the same real part, then, unless s1 = s0 or s0+ s1 = N the quantities
a, b, c, d,µ, ν will be restricted to satisfy some special condition, which they would be unlikely
to satisfy by chance. It is possible to find circumstances in which as many as ten terms have to be
included if such special conditions are satisfied, but these have no particular physical or biological
importance. It is assumed below that none of these chance relations hold.

It has already been seen that it is necessary to distinguish the cases where the value of ps0 for
one of the dominant terms is real from those where it is complex. These may be called respectively
the stationary and the oscillatory cases.

Stationary case. After a sufficient lapse of time Xr − h and Yr − k approach asymptotically to
the forms

Xr − h= 2R As0 exp
[

2π is0r
N + It

]
,

Yr − k = 2R Cs0 exp
[

2π is0r
N + It

]
.

 (8.1)

Oscillatory case. After a sufficient lapse of time Xr − h and Yr − k approach the forms
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Xr − h= 2eItR
{

As0 exp

[
2π is0r

N
+ iωt

]
+AN−s0 exp

[
−

2π is0r

N
− iωt

]}
,

Yr − k = 2eItR
{

Cs0 exp

[
2π is0r

N
+ iωt

]
+CN−s0 exp

[
−

2‘π is0r

N
− iωt

]}
.

 (8.2)

The real part ofps0 has been represented by I, standing for ‘instability’, and in the oscillatory
case its imaginary part is ω. By the use of the R operation (real part of), two terms have in each
case been combined in one.

The meaning of these formulae may be conveniently described in terms of waves. In the sta-
tionary case there are stationary waves on the ring having s0 lobes or crests. The coefficients As0

and Cs0 are in a definite ratio given by (6.10), so that the pattern for one morphogen determines
that for the other. With the lapse of time the waves become more pronounced provided there is
genuine instability, i.e. if I is positive. The wave-length of the waves may be obtained by dividing
the number of lobes into the circumference of the ring. In the oscillatory case the interpretation is
similar, but the waves are now not stationary but travelling. As well as having a wave-length they
have a velocity and a frequency. The frequency is ω/2π , and the velocity is obtained by multiply-
ing the wave-length by the frequency. There are two wave trains moving round the ring in opposite
directions.

The wave-lengths of the patterns on the ring do not depend only on the chemical data
a, b, c, d, µ′, ν′ but on the circumference of the ring, since they must be submultiples of the
latter. There is a ṡense, however, in which there is a ‘chemical wave-length’ which does not depend
on the dimensions of the ring. This may be described as the limit to which the wave-lengths tend
when the rings are made successively larger. Alternatively (at any rate in the case of continuous
tissue), it may be described as the wave-length when the radius is chosen to give the largest possi-
ble instability I. One may picture the situation by supposing that the chemical wave-length is true
wave-length which is achieved whenever possible, but that on a ring it is necessary to ‘make do’
with an approximation which divides exactly into the circumference.

Although all the possibilities are covered by the stationary and oscillatory altematives there are
special cases of them which deserve to be treated separately. One of these occurs when s0 = 0,
and may be described as the ‘case of extreme long wave-length’, though this term may perhaps
preferably be reserved to describe the chemical data when they are such that s0 is zero whatever
the dimensions of the ring. There is also the case of ‘extreme short wave-length’. This means that

sin2(πs0/N) is as large as possible, which is achieved by s0 being either
1

2
N, or 1

2 (N− 1). If the

remaining possibilities are regarded as forming the ‘case of finite wave-length’, there are six sub-
cases altogether. It will be shown that each of these really can occur, although two of them require
three or more morphogens for their realization.

(a) Stationary y case with extreme long wave-length. This occurs for instance if µ= ν = 1
4 , b=

c= 1, a= d. Then ps = a− sin2 πs

N
+ 1. This is certainly real and is greatest when s= 0. In

this case the contents of all the cells are the same; there is no resultant flow from cell to cell
due to diffusion, so that each is behaving as if it were isolated. Each is in unstable equilibrium,
and slips out of it in synchronism with the others.

(b) Oscillatory case with extreme long wave-length. This occurs, for instance, if µ= ν = 1
4 , b=

−c= 1, a= d. Then ps = a− sin2 πs
N ± i. This is complex and its real part is greatest when

s= 0. As in case (a) each cell behaves as if it were isolated. The difference from case (a) is
that the departure from the equilibrium is oscillatory.
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(c) Stationary waves of extreme short wave-length. This occurs, for instance, if ν = 0, µ= 1, d =
I, a= I− 1, b=−c= 1. ps is

I−
1

2
− 2sin2 πs

N
+

√√√√{(2sin
2 πs

N +
1

2

)2

− 1

}
,

and is greatest when sin2(πs/N) is greatest. If N is even the contents of each cell are similar
to those of the next but one, but distinctly different from those of its immediate neighbours.
If, however, the number of cells is odd this arrangement is impossible, and the magnitude of
the difference between neighbouring cells varies round the ring, from zero at one point to a
maximum at a point diametrically opposite.
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Fig. 1: Values of R p (instability or growth rate), and |I p| (radian frequency of oscillation), related

to wave-length 2πU−
1
2 as in the relation (8.3) with I = 0. This is a case of stationary waves with

finite wave-length. Full line, R p; broken line, −|I p| (zero for U > 0.071); dotted line, R p′. The
full circles on the curve for R p indicate the values of U,p actually achievable on the finite ring
considered in § 10, with s= 0 on the extreme left, s= 5 on the right.

(d) Stationary waves of finite wave-length. This is the case which is of greatest interest, and has
most biological application. It occurs, for instance, if a= I− 2, b= 2.5, c=−1.25, d = I+

1.5, µ′ = 1, ν′ = 1
2 , and µ

µ′
,= ν

ν′
,=
(

N
2πρ

)2
. As before ρ is the radius of the ring, and N the

number of cells in it. If one writes U for ( N
πρ
)2 sin2 πs

N , then equation (6.8) can, with these
special values, be written

(p− I)2+

(
1

2
+

3

2
U

)
(p− I)+

1

2

(
U−

1

2

)2

= 0. (8.3)

This has a solution p= I if U = 1
2 . On the other hand, it will be shown that if U has any

other (positive) value then both roots for p− I have negative real parts. Their product is positive
being 1

2 (U−
1
2 )

2, so that if they are real they both have the same sign. Their sum in this case
is − 1

2 −
3
2 U which is negative. Their common sign is therefore negative. If, however, the roots

are complex their real parts are both equal to − 1
4 −

3
4 U, which is negative.
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If the radius ρ of the ring be chosen so that for some integer s0, 1
2 = U =

(
N
πρ

)2
sin2 πs0

N ,

there will be stationary waves with s0 lobes and a wave-length which is also equal to the chem-
ical wave-length, for ps0 will be equal to I, whereas every other ps will have a real part smaller

than I. If, however, the radius is chosen so that
(

N
πρ

)2
sin2 πs

N =
1
2 cannot hold with an integral

s, then (in this example) the actual number of lobes will be one of the two integers nearest to
the (non-integral) solutions of this equation, and usually the nearest. Examples can, however,
be constructed where this simple rule does not apply.

Figure 1 shows the relation (8.3) in graphical form. The curved portions of the graphs
are hyperbolae.

The two remaining possibilities can only occur with three or more morphogens. With
one morphogen the only possibility is (a).

(e) 0scillatory case with a finite wave-length. This means that there are genuine travelling waves.
Since the example to be given involves three morphogens it is not possible to use the formu-
lae of § 6. Instead, one must use the corresponding three morphogen formulae. That which
corresponds to (6.8) or (7.3) is most conveniently written as∣∣∣∣∣∣∣∣

a11− p−µ1U a12 a13

a21 a22− p−µ2U a23

a31 a32 a33− p−µ3U

∣∣∣∣∣∣∣∣= 0, (8.4)

where again U has been written for ( N
πρ
)2 sin2 πs

N . (This means essentially that U = (
2π

λ
)2,

where λ is the wave-length.) The four marginal reactivities are superseded by nine a11, . . . , a33,
and the three diffusibilities are µ1, µ2, µ3. Special values leading to travelling waves are

µ1 =
2

3
, µ2 =

1

3
, µ3 = 0

a11 =−
10

3
, a12 = 3, a13 =−1,

a21 =−2, a22 =
7

3
, a23 = 0,

a31 = 3, a32 =−4, a33 = 0,


(8.5)

and with them (8.4) reduces to

p3
+ p2(U+ 1)+ p(1+ 2

9 (U− 1)2)+U+ 1= 0. (8.6)

If U = 1 the roots are ±i and −2. If U is near to I they are approximately −1−U and ±i+
(U−1)2

18 (±i− 1), and all have negative real parts. If the greatest real part is not the value zero,
achieved with U = 1, then the value zero must be reached again at some intermediate value of
U. Since P is then pure imaginary the even terms of (8.6) must vanish, i.e. (p2

+ 1)(U+ 1)= 0.
But this can only happen if p=±i, and the vanishing of the odd terms then shows that U = 1.
Hence zero is the largest real part for any root p of (8.6). The corresponding p is ±i and U is
1. This means that there are travelling waves with unit (chemical) radian frequency and unit
(chemical) velocity. If I is added to a11, a22 and a33, the instability will become I in place of
zero.

(f) Oscillatory case with extreme short wave-length. This means that there is metabolic oscillation
with neighbouring cells nearly 180◦ out of phase. It can be achieved with three morphogens
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and the following chemical data:

µ = 1, µ2 = µ3 = 0,

a11 =−1, a12 =−1, a13 = 0

a21 = 1, a22 = 0, a23 =−1,

a31 = 0, a32 = 1, a33 = 0.

 (8.7)

With these values (8.4) reduces to

p3
+ p2(U+ 1)+ 2p+U+ 1= 0. (8.8)

This may be shown to have all the real parts of its roots negative if U > 0, for if U = 0 the
roots are near to −0.6, −0.2± 1.3i, and if U be continuously increased the values of p will
alter continuously. If they ever attain values with a positive real part they must pass through
pure imaginary values (or zero). But if p is pure imaginary p3

+ 2p and (p2
+ 1)(U+ 1) must

both vanish, which is impossible if U > 0. As U approaches infinity, however, one of the roots
approaches i. Thus R p= 0 can be approached as closely as desired by large values of U, but
not attained.

9. Further consideration of the mathematics of the ring

In this section some of the finer points concerning the development of wave patterns are considered.
These will be of interest mainly to those who wish to do further research on the subject, and can
well be omitted on a first reading.

(1) General formulae for the two morphogen case. Taking the limiting case of a ring of large radius

(or a filament), one may write ( N
πρ
)2 sin2 πs

N = U = ( 2π
λ
)2 in (6.11) or s2

ρ2 = U = ( 2π
λ
)2 in (7.3)

and obtain

(p− a+µ′U)(p− d+ v′U)= bc, (9.1)

which has the solution

p=
a+ d

2
−
µ′+ v′

2
U±

√√√√{(µ′− ν′
2

U+
d− a

2

)2

+ bc

}
. (9.2)

One may put I(U) for the real part of this, representing the instability for waves of wave-

length λ= 2πU−
1
2 . The dominant waves correspond to the maximum of I(U). This maximum

may either be at U = 0 or U =∞ or at a stationary point on the part of the curve which is
hyperbolic (rather than straight). When this last case occurs the values of p (or I) and U at the
maximum are

p= I =
(
dµ′− av′− 2

√
(µ′v′)

√
(−bc)(µ′− v′)−1,

U = (a− d+ µ′+ν′
√
(µ′ν′)

√
(−bc))(µ′− ν′)−1.

 (9.3)

The conditions which lead to the four cases (a), (b), (c), (d) described in the last section are

(a) (Stationary waves of extreme long wave-length.) This occurs if either

(i) bc> 0, (ii) bc< 0 and
d− a
√
(−bc)

>
µ′+ v′
√
(µ′v′)

, (iii) bc< 0 and
d− a
√
(−bc)

<−2.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 706 #24

706 Part IV

The condition for instability in either case is that either bc> ad or a+ d > 0.
(b) (Oscillating case with extreme long wave-length, i.e. synchronized oscillations.) This

occurs if

bc< 0 and− 2<
d− a
√
(−bc)

<
4√(µ′v′)

µ′+ v′
.

There is instability if in addition a+ d > 0.
(c) (Stationary waves of extreme short wave-length.) This occurs if bc< 0, µ′ > v′ = 0. There

is instability if, in addition, a+ d > 0.
(d) (Stationary waves of finite wave-length.) This occurs if

bc< 0 and
4
√
(µ′v′)

µ′+ v′
<

d− a
√
(−bc)

<
µ′+ ν′

(
√
µ′v′)

, (9.4a)

and there is instability if also

d
√
(−bc)

√µ′

v′
−

a
√
(−bc)

√ v′

µ′
> 2. (9.4b)

It has been assumed that ν′ 6 µ′ > 0. The case where µ′ 6 ν′ > 0 can be obtained by inter-
changing the two morphogens. In the case µ′ = ν′ = 0 there is no co-operation between the
cells whatever.

Some additional formulae will be given for the case of stationary waves of finite wave-
length. The marginal reaction rates may be expressed parametrically in terms of the diffusibil-
ities, the wave-length, the instability, and two other parameters α and χ . Of these α may be
described as the ratio of X− h to Y − k in the waves. The expressions for the marginal reaction
rates in terms of these parameters are

a= µ′(ν′−µ′)−1(2ν′U0+χ)+ I,

b= µ′(ν′−µ′)−1((µ′+ ν′)U0+χ)α,

c= ν′(µ′− ν′)−1((µ′+ ν′)U0+χ)α
−1,

d = ν′(µ′− ν′)−1(2µ′U0+χ)+ I,


(9.5)

and when these are substituted into (9.2) it becomes

p= I−
1

2
χ −

µ′+ ν′

2
U+
√

{(
µ′+ ν′

2
U+

1

2
χ

)2

−µ′ν′(U−U0)
2

}
. (9.6)

Here 2πU
−

1
2

0 is the chemical wave-length and 2πU−
1
2 the wave-length of the Fourier

component under consideration. χ must be positive for case (d) to apply.
If s be regarded as a continuous variable one can consider (9.2) or (9.6) as relating s to

p, and dp/ds and d2p/ds2 have meaning. The value of d2p/ds2 at the maximum is of some
interest, and will be used below in this section. Its value is

d2p

ds2
=−

√
(µ′ν′)

ρ2
·

8
√
(µ′ν′)

µ′+ ν′
cos2 πs

N
(1+χU−1

0 (µ′+ ν′)−1)−1. (9.7)

(2) In §§ 6, 7, 8 it was supposed that the disturbances were not continuously operative, and that the
marginal reaction rates did not change with the passage of time. These assumptions will now
be dropped, though it will be necessary to make some other, less drastic, approximations to
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replace them. The (statistical) amplitude of the ‘noise’ disturbances will be assumed constant
in time. Instead of (6.6), (6.7), one then has

dξ

dt
= a′ξ + bη+R1(t),

dη

dt
= cξ + d′η+R2(t),

 (9.8)

where ξ , η have been written for ξs, ηs since s may now be supposed fixed. For the same
reason a− 4µsin2 πs

N has been replaced by a′ and d− 4ν sin2 πs
N by d′. The noise disturbances

may be supposed to constitute white noise, i.e. if (t1, t2) and (t3, t4) are two non-overlapping
intervals then

∫ t2
t1

R1(t)dt and
∫ t4

t3
R2(t)dt are statistically independent and each is normally dis-

tributed with variances β1(t2− t1) and β1(t4− t3) respectively, β1 being a constant describing
the amplitude of the noise. Likewise for R2(t), the constant β1 being replaced by β2. If p and
p′ are the roots of (p− a′)(p− d′)= bc and p is the greater (both being real), one can make the
substitution

ξ = b(u+ v),

η = (p− a′)u+ (p′− a′)v,

 (9.9)

which transforms (9.8) into

du

dt
= pu+

p′− a′

(p′− p)b
R1(t)−

R2(t)

p′− p
+ ξ

d

dt

(
p′− a′

(p′− p)b

)
− η

d

dt

(
1

p′− p

)
, (9.10)

with a similar equation for v, of which the leading terms are dv/dt = p′v. This indicates that v
will be small, or at least small in comparison with u after a lapse of time. If it is assumed that
v= 0 holds (9.11) may be written

du

dt
= qu+L1(t)R1(t)+L2(t)R2(t), (9.11)

where

L1(t)=
p′− a′

(p′− p)b
, L2(t)=

1

p′− p
, q= p+ bL′1(t). (9.12)

The solution of this equation is

u=

t∫
−∞

(L1(w)R1(w)+L2(w)R2(w))exp

 t∫
w

q(z)dz

dw. (9.13)

One is, however, not so much interested in such a solution in terms of the statistical distur-
bances as in the consequent statistical distribution of values of u, ξ and η at various times after
instability has set in. In view of the properties of ‘white noise’ assumed above, the values of u
at time t will be distributed according to the normal error law, with the variance

t∫
−α

[
β1(L1(w))

2
+β2(L2(w))

2
]

exp

2

w∫
t

q(z)dz

dw. (9.14)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 708 #26

708 Part IV

There are two commonly occurring cases in which one can simplify this expression con-
siderably without great loss of accuracy. If the system is in a distinctly stable state, then q(t),

which is near to p(t), will be distinctly negative, and exp
[∫ t

w q(z)dz
]

will be small unless w is

near to t. But then L1(w) and L2(w)may be replaced by L1(t) and L2(t) in the integral, and also
q(z) may be replaced by q(t). With these approximations the variance is

(−2q(t))−1
[
β1(L1(t))

2
+β2(L2(t))

2
]

. (9.15)

A second case where there is a convenient approximation concerns times when the system
is unstable, so that q(t) > 0. For the approximation concerned to apply 2

∫ t
w q(z)dz must have

its maximum at the last moment w(= t0) when q(t0)= 0, and it must be the maximum by
a considerable margin (e.g. at least 5) over all other local maxima. These conditions would
apply for instance if q(z) were always increasing and had negative values at a sufficiently early
time. One also requires q′(t0) (the rate of increase of q at time t0) to be reasonably large; it

must at least be so large that over a period of time of length (q′(t0))−
1
2 near to t0 the changes

in L1(t) and L2(t) are small, and q′(t) itself must not appreciably alter in this period. Under
these circumstances the integrand is negligible when w is considerably different from t0, in
comparison with its values at that time, and therefore one may replace L1(w) and L2(w) by
L1(t0) and L2(t0), and q′(w) by q′(t0). This gives the value

√
π(q′(t0))

−
1
2

[
β1(L1(t0))

2
+β2(L2(t0))

2
]

exp

2

t∫
t0

q(z)dz

 , (9.16)

for the variance of u.
The physical significance of this latter approximation is that the disturbances near the time

when the instability is zero are the only ones which have any appreciable ultimate effect. Those
which occur earlier are damped out by the subsequent period of stability. Those which occur
later have a shorter period of instability within which to develop to greater amplitude. This
principle is familiar in radio, and is fundamental to the theory of the superregenerative receiver.

Naturally one does not often wish to calculate the expression (9.17), but it is valuable as
justifying a common-sense point of view of the matter. The factor exp[

∫ t
t0

q(z)dz] is essentially
the integrated instability and describes the extent to which one would expect disturbances of
appropriate wave-length to grow between times t0 and t. Taking the terms in β1, β2 into con-

sideration separately, the factor
√
πβ1(q′(t0))−

1
2 (L1(t0))2 indicates that the disturbances on the

first morphogen should be regarded as lasting for a time

√
π(q1(t0))

−
1
2 (bL1(t0))

2.

The dimensionless quantities bL1(t0), bL2(t0) will not usually be sufficiently large or small
to justify their detailed calculation.

(3) The extent to which the component for which ps is greatest may be expected to outdistance
the others will now be considered in case (d). The greatest of the ps will be called ps0 . The
two closest competitors to s0 will be s0− 1 and s0+ 1; it is required to determine how close
the competition is. If the variation in the chemical data is sufficiently small it may be assumed
that, although the exponents ps0−1, ps0 , ps0+1 may themselves vary appreciably in time, the
differences ps0−ps0−1 and ps0−ps0+1 are constant. It certainly can happen that one of these
differences is zero or nearly zero, and there is then ‘neck and neck’ competition. The weakest
competition occurs when ps0−1 = ps0+1. In this case

ps0 − ps0−1 = ps0 − ps0+1 =−
1

2
(ps0+1− 2ps0 + ps0−1).
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But if s0 is reasonably large ps0+1− 2ps0 + ps0−1 can be set equal to (d2p/ds2)s=s0 . It may
be concluded that the rate at which the most quickly growing component grows cannot exceed
the rate for its closest competitor by more than about 1

2 (d
2p/ds2)s=s0 . The formula (9.7), by

which d2p/ds2 can be estimated, may be regarded as the product of two factors. The dimen-
sionless factor never exceeds 4. The factor√(µ′v′)/ρ2 may be described in very rough terms as
‘the reciprocal of the time for the morphogens to diffuse a length equal to a radius’. In equally
rough terms one may say that a time of this order of magnitude is required for the most quickly
growing component to get a lead, amounting to a factor whose logarithm is of the order of
unity, over its closest competitors, in the favourable case where ps0−1 = ps0+1.

(4) Very little has yet been said about the effect of considering non-linear reaction rate functions
when far from homogeneity. Any treatment so systematic as that given for the linear case seems
to be out of the question. It is possible, however, to reach some qualitative conclusions about the
effects of non-linear terms. Suppose that z1 is the amplitude of the Fourier component which is
most unstable (on a basis of the linear terms), and which may be supposed to have wave-length
λ. The non-linear terms will cause components with wave-lengths 1

2λ, 1
3λ, 1

4λ, . . . to appear as
well as a space-independent component. If only quadratic terms are taken into account and if
these are somewhat small, then the component of wave-length 1

2λ and the space-independent
component will be the strongest. Suppose these have amplitudes z2 and z1. The state of the
system is thus being described by the numbers z0, z1, z2. In the absence of non-linear terms
they would satisfy equations

dz0

dt
= p0z0,

dz1

dt
= p1z1,

dz2

dt
= p2z2,

and if there is slight instability p1 would be a small positive number, but p0 and p2 distinctly
negative. The effect of the non-linear terms is to replace these equations by ones of the form

dz0

dt
= p0z0+Az2

1+Bz2
2,

dz1

dt
= p1z1+Cz2z1+Dz0z1,

dz2

dt
= p2z2+Ez2

1+Fz0z2.

As a first approximation one may put dz0/dt = dz2/dt = 0 and ignore z4
1 and higher pow-

ers; z0 and z1 are then found to be proportional to z2
1, and the equation for z1 can be written

dz1/dt = p0z1− kz3
1. The sign of k in this differential equation is of great importance. If it is

positive, then the effect of the term kz3
1 is to arrest the exponential growth of z1 at the value

√
(p1/k). The ‘instability’ is then very confined in its effect, for the waves can only reach

a finite amplitude, and this amplitude tends to zero as the instability (p1) tends to zero. If,
however, k is negative the growth becomes something even faster than exponential, and, if
the equation dz1/dt = p1z1− kz3

1 held universally, it would result in the amplitude becoming
infinite in a finite time. This phenomenon may be called ‘catastrophic instability’. In the case
of two-dimensional systems catastrophic instability is almost universal, and the corresponding
equation takes the form dz1/dt = p1z1+ kz2

1. Naturally enough in the case of catastrophic insta-
bility the amplitude does not really reach infinity, but when it is sufficiently large some effect
previously ignored becomes large enough to halt the growth.

(5) Case (a) as described in § 8 represents a most extremely featureless form of pattern develop-
ment. This may be remedied quite simply by making less drastic simplifying assumptions, so
that a less gross account of the pattern can be given by the theory. It was assumed in § 9 that
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only the most unstable Fourier components would contribute appreciably to the pattern, though
it was seen above (heading (3) of this section) that (in case (d)) this will only apply if the period
of time involved is adequate to permit the morphogens, supposed for this purpose to be chem-
ically inactive, to diffuse over the whole ring or organ concerned. The same may be shown to
apply for case (a). If this assumption is dropped a much more interesting form of pattern can
be accounted for. To do this it is necessary to consider not merely the components with U = 0
but some others with small positive values of U. One may assume the form At−BU for p.
Linearity in U is assumed because only small values of U are concerned, and the term At is
included to represent the steady increase in instability. By measuring time from the moment of
zero instability the necessity for a constant term is avoided. The formula (9.17)may be applied
to estimate the statistical distribution of the amplitudes of the components. Only the factor

exp
[
2
∫ t

t0
q(z)dz

]
will depend very much on U, and taking q(t)= p(t)= At−BU, t0 must be

BU/A and the factor is

exp
[
A(t−BU/A)2

]
.

The term in U2 can be ignored if At2 is fairly large, for then either B2U2/A2 is small or
the factor e−BUt is. But At2 certainly is large if the factor eAt2 , applying when U = 0, is large.

With this approximation the variance takes the form Ce−
1
2 k2U , with only the two parameters

C, k to distinguish the pattern populations. By choosing appropriate units of concentration and
length these pattern populations may all be reduced to a standard one, e.g. with C = k = 1.
Random members of this population may be produced by considering any one of the type
(a) systems to which the approximations used above apply. They are also produced, but with
only a very small amplitude scale, if a homogeneous one-morphogen system undergoes random
disturbances without diffusion for a period, and then diffusion without disturbance. This process
is very convenient for computation, and can also be applied to two dimensions. Figure 2 shows
such a pattern, obtained in a few hours by a manual computation.

To be more definite a set of numbers ur,s was chosen, each being ±1, and taking the two
values with equal probability. A function f (x,y) is related to these numbers by the formula

f (x,y)=6ur,s exp[−
1

2
((x− hr)2+ (y− hs)2)].

In the actual computation a somewhat crude approximation to the function

exp

[
−

1

2
(x2
+ y2)

]

was used and h was about 0.7. In the figure the set of points where f (x,y) is positive is shown
black. The outlines of the black patches are somewhat less irregular than they should be due to
an inadequacy in the computation procedure.
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Fig. 2: An example of a ‘dappled’ pattern as resulting from a type (a) morphogen system. A marker
of unit length is shown. See text, § 9, 11.

10. A numerical example

The numerous approximations and assumptions that have been made in the foregoing analysis may
be rather confusing to many readers. In the present section it is proposed to consider in detail a
single example of the case of most interest, (d). This will be made as specific as possible. It is
unfortunately not possible to specify actual chemical reactions with the required properties, but it is
thought that the reaction rates associated with the imagined reactions are not unreasonable.

The detail to be specified includes

(i) The number and dimensions of the cells of the ring.
(ii) The diffusibilities of the morphogens.

(iii) The reactions concemed.
(iv) The rates at which the reactions occur.
(v) Information about random disturbances.

(vi) Information about the distribution, in space and time, of those morphogens which are of the
nature of evocators.

These will be taken in order.

(i) It will be assumed that there are twenty cells in the ring, and that they have a diameter of 0.1
mm each. These cells are certainly on the large rather than the small side, but by no means
impossibly so. The number of cells in the ring has been chosen rather small in order that it
should not be necessary to make the approximation of continuous tissue.

(ii) Two morphogens are considered. They will be called X and Y , and the same letters will be used
for their concentrations. This will not lead to any real confusion. The diffusion constant for X
will be assumed to be 5 × 10−8 cm2s−1 and that for Y to be 2.5 × 10−8 cm2s−1. With cells
of diameter 0.01 cm this means that X flows between neighbouring cells at the rate 5 × 10−4

of the difference of X-content of the two cells per second. In other words, if there is nothing
altering the concentrations but diffusion the difference of concentrations suffers an exponential
decay with time constant 1000 s, or ‘half-period’ of 700 s. These times are doubled for Y .
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If the cell membrane is regarded as the only obstacle to diffusion the permeability of the
membranes to the morphogen is 5× 10−6cm/s or 0.018cm/h. Values as large as 0.1cm/h have
been observed (Davson & Danielli 1943, figure 28).

(iii) The reactions are the most important part of the assumptions. Four substances A, X, Y , B are
involved; these are isomeric, i.e. the molecules of the four substances are all rearrangements
of the same atoms. Substances C, C′, W will also be concerned. The thermodynamics of the
problem will not be discussed except to say that it is contemplated that of the substances
A, X, Y , B the one with the greatest free energy is A, and that with the least is B. Energy for
the whole process is obtained by the degradation of A into B. The substance C is in effect a
catalyst for the reaction Y→ X, and may also be regarded as an evocator, the system being
unstable if there is a sufficient concentration of C.

The reactions postulated are

Y +X→W,

W +A→ 2Y +B instantly,

2X→W,

A→ X,

Y→ B,

Y +C→ C′ instantly,

C′→ X+C.

(iv) For the purpose of stating the reaction rates special units will be introduced (for the pur-
pose of this section only). They will be based on a period of 1000 s as units of time, and
10−11mole/cm3 as concentration unit*. There will be little occasion to use any but these spe-
cial units (S.U.). The concentration of A will be assumed to have the large value of 1000 S.U.
and the catalyst C, together with its combined form C′ the concentration 10−3(1+ γ ) S.U., the
dimensionless quantity γ being often supposed somewhat small, though values over as large
a range as from −0.5 to 0.5 may be considered. The rates assumed will be

Y +X →W at the rate
25

16
YX,

2X →W at the rate
7

64
X2,

A→ X at the rate
1

16
× 10−3A,

C′ → X+C at the rate
55

32
× 10+3C′,

Y → B at the rate
1

16
Y .

With the values assumed for A and C′ the net effect of these reactions is to convert X into Y at
the rate 1

32 [50XY + 7X2
− 55(1+ γ )] at the same time producing X at the constant rate 1

16 , and
destroying Y at the rate Y/16. If, however, the concentration of Y is zero and the rate of increase of

* A somewhat larger value of concentration unit (e.g. 10−9mole/cm3) is probably more suitable. The choice of unit only
affects the calculations through the amplitude of the random disturbances.
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Y required by these formulae is negative, the rate of conversion of Y into X is reduced sufficiently
to permit Y to remain zero.

In the special units µ= 1
2 , ν = 1

4 .

(v) Statistical theory describes in detail what irregularities arise from the molecular nature of mat-
ter. In a period in which, on the average, one should expect a reaction to occur between n
pairs (or other combinations) of molecules, the actual number will differ from the mean by
an amount whose mean square is also n, and is distributed according to the normal error law.
Applying this to a reaction proceeding at a rate F (S.U.) and taking the volume of the cell
as 10−8cm3 (assuming some elongation tangentially to the ring) it will be found that the root
mean square irregularity of the quantity reacting in a period τ of time (S.U.) is 0.004

√
(Fτ).

Table 1 Some Stationary-Wave Patterns.

First Specimen︷ ︸︸ ︷ Second ‘Slow

Incipient Pattern Final Pattern Specimen: Cooking’: Four-Lobed Equilibrium︷ ︸︸ ︷ ︷ ︸︸ ︷ Incipient Incipient ︷ ︸︸ ︷
Cell Number X Y X Y Y Y X Y

0 1.130 0.929 0.741 1.463 0.834 1.057 1.747 0.000

1 1.123 0.940 0.761 1.469 0.833 0.903 1.685 0.000

2 1.154 0.885 0.954 1.255 0.766 0.813 1.445 2.500

3 1.215 0.810 1.711 0.000 0.836 0.882 0.445 2.500

4 1.249 0.753 1.707 0.000 0.930 1.088 1.685 0.000

5 1.158 0.873 0.875 1.385 0.898 1.222 1.747 0.000

6 1.074 1.003 0.700 1.622 0.770 1.173 1.685 0.000

7 1.078 1.000 0.699 1.615 0.740 0.956 0.445 2.500

8 1.148 0.896 0.885 1.382 0.846 0.775 0.445 2.500

9 1.231 0.775 1.704 0.000 0.937 0.775 1.685 0.000

10 1.204 0.820 1.708 0.000 0.986 0.969 1.747 0.000

11 1.149 0.907 0.944 1.273 1.019 1.170 1.685 0.000

12 1.156 0.886 0.766 1.451 0.899 1.203 0.445 2.500

13 1.170 0.854 0.744 1.442 0.431 1.048 0.445 2.500

14 1.131 0.904 0.756 1.478 0.485 0.868 1.685 0.000

I5 1.090 0.976 0.935 1.308 0.919 0.813 1.747 0.000

16 1.109 0.957 1.711 0.000 1.035 0.910 1.685 0.000

17 1.201 0.820 1.706 0.000 1.003 1.050 0.445 2.500

18 1.306 0.675 0.927 1.309 0.899 1.175 0.445 2.500

19 1.217 0.811 0.746 1.487 0.820 1.181 1.685 0.000

The diffusion of a morphogen from a cell to a neighbour may be treated as if the passage
of a molecule from one cell to another were a monomolecular reaction; a molecule must be
imagined to change its form slightly as it passes the cell wall. If the diffusion constant for
a wall is µ, and quantities M1, M2 of the relevant morphogen lie on the two sides of it, the
root-mean-square irregularity in the amount passing the wall in a period τ is

0.004
√
{(M1+M2)µτ } .



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 714 #32

714 Part IV

These two sources of irregularity are the most significant of those which arise from truly
statistical cause, and are the only ones which are taken into account in the calculations whose
results are given below. There may also be disturbances due to the presence of neighbouring
anatomical structures, and other similar causes. These are of great importance, but of too great
variety and complexity to be suitable for consideration here.

(vi) The only morphogen which is being treated as an evocator is C. Changes in the concentration
of A might have similar effects, but the change would have to be rather great. It is preferable
to assume that A is a ‘fuel substance’ (e.g. glucose) whose concentration does not change.
The concentration of C, together with its combined form C′, will be supposed the same in all
cells, but it changes with the passage of time. Two different varieties of the problem will be
considered, with slightly different assumptions.

The results are shown in table 1. There are eight columns, each of which gives the concentration
of a morphogen in each of the twenty cells; the circumstances to which these concentrations refer
differ from column to column. The first five columns all refer to the same ‘variety’ of the imaginary
organism, but there are two specimens shown. The specimens differ merely in the chance factors
which were involved. With this variety the value of γ was allowed to increase at the rate of 2−7 S.U.
from the value− 1

4 to+ 1
16 . At this point a pattern had definitely begun to appear, and was recorded.

The parameter γ was then allowed to decrease at the same rate to zero and then remained there until
there was no more appreciable change. The pattern was then recorded again. The concentrations of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.5

1.0

1.5

Fig. 3: Concentrations of Y in the development of the first specimen (taken from table 1).
- - - - - original homogeneous equilibrium; ////// incipient pattern; —– final equilibrium.

Y in these two recordings are shown in figure 3 as well as in table 1. For the second specimen
only one column of figures is given, viz. those for the Y morphogen in the incipient pattern. At
this stage the X values are closely related to the Y values, as may be seen from the first specimen
(or from theory). The final values can be made almost indistinguishable from those for the first
specimen by renumbering the cells and have therefore not been given. These two specimens may
be said to belong to the ‘variety with quick cooking’, because the instability is allowed to increase
so quickly that the pattern appears relatively soon. The effect of this haste might be regarded as
rather unsatisfactory, as the incipient pattern is very irregular. In both specimens the four-lobed
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component is present in considerable strength in the incipient pattern. It ‘beats’ with the three-
lobed component producing considerable irregularity. The relative magnitudes of the three- and
four-lobed components depend on chance and vary from specimen to specimen. The four-lobed
component may often be the stronger, and may occasionally be so strong that the final pattern is
four-lobed. How often this happens is not known, but the pattern, when it occurs, is shown in the
last two columns of the table. In this case the disturbances were supposed removed for some time
before recording, so as to give a perfectly regular pattern.

The remaining column refers to a second variety, one with ‘slow cooking’. In this the value of γ
was allowed to increase only at the rate 10−5. Its initial value was−0.010, but is of no significance.
The final value was 0.003. With this pattern, when shown graphically, the irregularities are definitely
perceptible, but are altogether overshadowed by the three-lobed component. The possibility of the
ultimate pattern being four-lobed is not to be taken seriously with this variety.

The set of reactions chosen is such that the instability becomes ‘catastrophic’ when the second-
order terms are taken into account, i.e. the growth of the waves tends to make the whole system
more unstable than ever. This effect is finally halted when (in some cells) the concentration of Y has
become zero. The constant conversion of Y into X through the agency of the catalyst C can then no
longer continue in these cells, and the continued growth of the amplitude of the waves is arrested.
When γ = 0 there is of course an equilibrium with X = Y = 1 in all cells, which is very slightly
stable. There are, however, also other stable equilibria with γ = 0, two of which are shown in the
table. These final equilibria may, with some trouble but little difficulty, be verified to be solutions of
the equations (6.1) with

dX

dt
=

dY

dt
= 0,

and 32f (X,Y)= 57− 50XY − 7Y2, 32g(X,Y)= 50XY + 7Y2
− 2Y − 55.

The morphogen concentrations recorded at the earlier times connect more directly with the
theory given in §§ 6 to 9. The amplitude of the waves was then still sufficiently small for the
approximation of linearity to be still appropriate, and consequently the ‘catastrophic’ growth had
not yet set in.

The functions f (X, Y) and g(X, Y) of § 6 depend also on γ and are

f (X,Y)=
1

32

[
−7X2

− 50XY + 57+ 55γ
]

,

g(X,Y)=
1

32

[
7X2
+ 50XY − 2Y − 55− 55γ

]
.

In applying the theory it will be as well to consider principally the behaviour of the system
when γ remains permanently zero. Then for equilibrium f (X, Y)= g(X, Y)= 0 which means that
X = Y = 1, i.e. h= k = 1. One also finds the following values for various quantities mentioned in
§§ 6 to 9:

a=−2,b=−1.5625,c= 2,d = 1.500,s= 3.333,

I = 0,α = 0.625,χ = 0.500,(d− a)(−bc)−
1
2 = 1.980,

(µ+ ν)(µν)−
1
2 = 2.121,p0 =−0.25± 0.25i,

p2 =−0.0648,p3 =−0.0034,p4 =−0.0118.

(The relation between p and U for these chemical data, and the values pn, can be seen in figure 1,
the values being so related as to make the curves apply to this example as well as that in § 8.) The
value s= 3.333 leads one to expect a three-lobed pattern as the commonest, and this is confirmed
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Table 2

cell 0 1 2 3 4 5

X 7.5 3.5 2.5 2.5 3.5 7.5

Y 0 8 8 8 8 0

by the values pn. The four-lobed pattern is evidently the closest competitor. The closeness of the
competition may be judged from the difference p3− p4 = 0.0084, which suggests that the three-
lobed component takes about 120 S.U. or about 33 h to gain an advantage of a neper (i.e. about 2.7 :
1) over the four-lobed one. However, the fact that γ is different from 0 and is changing invalidates
this calculation to some extent.

The figures in table 1 were mainly obtained with the aid of the Manchester University Computer.
Although the above example is quite adequate to illustrate the mathematical principles involved

it may be thought that the chemical reaction system is somewhat artificial. The following example
is perhaps less so. The same ‘special units’ are used. The reactions assumed are

A→ X at the rate 10−3A, A= 103,

X+Y → C at the rate 103XY ,

C→ X+Y at the rate 106C,

C→ D at the rate 62.5C,

B+C→W at the rate 0.125BC, B= 103,

W → Y +C instantly,

Y → E at the rate 0.0625Y ,

Y +V → V ′ instantly,

V ′ → E+V at the rate 62.5V ′, V ′ = 10−3β.

The effect of the reactions X+Y� C is that C = 10−3XY . The reaction C→ D destroys C, and
therefore in effect both X and Y , at the rate 1

16 XY . The reaction A→ X forms X at the constant rate

1, and the pair Y +V→ V ′→ E+V destroys Y at the constant rate
1

16
β. The pair B+C→W→

Y +C forms Y at the rate 1
8 XY , and Y→ E destroys it at the rate 1

16 Y . The total effect therefore is
that X is produced at the rate f (X, Y)= 1

16 (16−XY), and Y at the rate g(X, Y)= 1
16 (XY −Y −β).

However, g(X, Y)= 0 if Y 6 0. The diffusion constants will be supposed to be µ=
1

4
, ν =

1

16
.

The homogeneity condition gives hk = 16, k = 16−β. It will be seen from conditions (9.4a) that
case (d) applies if and only if 4

k +
k
4 < 2.75, i.e. if k lies between 1.725 and 9.257. Condition (9.4b)

shows that there will be instability if in addition 8
k +

k
8 >
√

3+ 1
2 , i.e. if k does not lie between 4.98

and 12.8. It will also be found that the wave-length corresponding to k = 4.98 is 4.86 cell diameters.
In the case of a ring of six cells with β = 12 there is a stable equilibrium, as shown in table 2.
It should be recognized that these equilibria are only dynamic equilibria. The molecules which

together make up the chemical waves are continually changing, though their concentrations in any
particular cell are only undergoing small statistical fluctuations. Moreover, in order to maintain the
wave pattern a continual supply of free energy is required. It is clear that this must be so since there
is a continual degradation of energy through diffusion. This energy is supplied through the ‘fuel
substances’ ( A, B in the last example), which are degraded into ‘waste products’ (D, E).
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11. Restatement and biological interpretation of the results

Certain readers may have preferred to omit the detailed mathematical treatment of §§ 6 to 10. For
their benefit the assumptions and results will be briefly summarized, with some change of emphasis.

The system considered was either a ring of cells each in contact with its neighbours, or a con-
tinuous ring of tissue. The effects are extremely similar in the two cases. For the purposes of this
summary it is not necessary to distinguish between them. A system with two or three morphogens
only was considered, but the results apply quite generally. The system was supposed to be initially
in a stable homogeneous condition, but disturbed slightly from this state by some influences unspec-
ified, such as Brownian movement or the effects of neighbouring structures or slight irregularities of
form. It was supposed also that slow changes are taking place in the reaction rates (or, possibly, the
diffusibilities) of the two or three morphogens under consideration. These might, for instance, be
due to changes of concentration of other morphogens acting in the role of catalyst or of fuel supply,
or to a concurrent growth of the cells, or a change of temperature. Such changes are supposed ulti-
mately to bring the system out of the stable state. The phenomena when the system is just unstable
were the particular subject of the inquiry. In order to make the problem mathematically tractable
it was necessary to assume that the system never deviated very far from the original homogeneous
condition. This assumption was called the ‘linearity assumption’ because it permitted the replace-
ment of the general reaction rate functions by linear ones. This linearity assumption is a serious one.
Its justification lies in the fact that the patterns produced in the early stages when it is valid may be
expected to have strong qualitative similarity to those prevailing in the later stages when it is not.
Other, less important, assumptions were also made at the beginning of the mathematical theory, but
the detailed effects of these were mostly considered in § 9, and were qualitatively unimportant.

The conclusions reached were as follows. After the lapse of a certain period of time from the
beginning of instability, a pattern of morphogen concentrations appears which can best be described
in terms of ‘waves’. There are six types of possibility which may arise.

(a) The equilibrium concentrations and reaction rates may become such that there would be insta-
bility for an isolated cell with the same content as any one of the cells of the ring. If that cell
drifts away from the equilibrium position, like an upright stick falling over, then, in the ring,
each cell may be expected to do likewise. In neighbouring cells the drift may be expected to be
in the same direction, but in distant cells, e.g. at opposite ends of a diameter there is no reason
to expect this to be so.

This is the least interesting of the cases. It is possible, however, that it might account for
‘dappled’ colour patterns, and an example of a pattern in two dimensions produced by this
type of process is shown in figure 2 for comparison with ‘dappling’. If dappled patterns are
to be explained in this way they must be laid down in a latent form when the foetus is only
a few inches long. Later the distances would be greater than the morphogens could travel by
diffusion.

(b) This case is similar to (a), except that the departure from equilibrium is not a unidirectional
drift, but is oscillatory. As in case (a) there may not be agreement between the contents of cells
at great distances.

There are probably many biological examples of this metabolic oscillation, but no really
satisfactory one is known to the author.

(c) There may be a drift from equilibrium, which is in opposite directions in contiguous cells.
No biological examples of this are known.

(d) There is a stationary wave pattern on the ring, with no time variation, apart from a slow increase
in amplitude, i.e. the pattern is slowly becoming more marked. In the case of a ring of contin-
uous tissue the pattern is sinusoidal, i.e. the concentration of one of the morphogens plotted
against position on the ring is a sine curve. The peaks of the waves will be uniformly spaced



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 718 #36

718 Part IV

round the ring. The number of such peaks can be obtained approximately by dividing the so-
called ‘chemical wave-length’ of the system into the circumference of the ring. The chemical
wave-length is given for the case of two morphogens by the formula (9.3). This formula for
the number of speaks of course does not give a whole number, but the actual number of peaks
will always be one of the two whole numbers nearest to it, and will usually be the nearest. The
degree of instability is also shown in (9.3).

The mathematical conditions under which this case applies are given in equations
(9.4a), (9.4b).

Biological examples of this case are discussed at some length below.

(e) For a two-morphogen system only the alternatives (a) to (d) are possible, but with three or
more morphogens it is possible to have travelling waves. With a ring there would be two sets
of waves, one travelling clockwise and the other anticlockwise. There is a natural chemical
wave-length and wave frequency in this case as well as a wave-length; no attempt was made to
develop formulae for these.

In looking for biological examples of this there is no need to consider only rings. The
waves could arise in a tissue of any anatomical form. It is important to know what wave-
lengths, velocities and frequencies would be consistent with the theory. These quantities are
determined by the rates at which the reactions occur (more accurately by the ‘marginal reaction
rates’, which have the dimensions of the reciprocal of a time), and the diffusibilities of the
morphogens. The possible range of values of the reaction rates is so immensely wide that they
do not even give an indication of orders of magnitude. The diffusibilities are more helpful. If
one were to assume. that all the dimensionless parameters in a system of travelling waves were
the same as in the example given in § 8, one could say that the product of the velocity and wave-
length of the waves was 3π times the diffusibility of the most diffusible morphogen. But this
assumption is certainly false, and it is by no means obvious what is the true range of possible
values for the numerical constant (here 3π). The movements of the tail of a spermatozoon
suggest themselves as an example of these travelling waves. That the waves are within one cell
is no real difficulty. However, the speed of propagation seems to be somewhat greater than can
be accounted for except with a rather large numerical constant.

(f) Metabolic oscillation with neighbouring cells in opposite phases. No biological examples of
this are known to the author.

It is difficult also to find cases to which case (d) applies directly, but this is simply because
isolated rings of tissue are very rare. On the other hand, systems that have the same kind of symmetry
as a ring are extremely common, and it is to be expected that under appropriate chemical conditions,
stationary waves may develop on these bodies, and that their circular symmetry will be replaced by
a polygonal symmetry. Thus, for instance, a plant shoot may at one time have circular symmetry, i.e.
appear essentially the same when rotated through any angle about a certain axis; this shoot may later
develop a whorl of leaves, and then it will only suffer rotation through the angle which separates
the leaves, or any multiple of it. This same example demonstrates the complexity of the situation
when more than one dimension is involved. The leaves on the shoots may not appear in whorls,
but be imbricated. This possibility is also capable of mathematical analysis, and will be considered
in detail in a later paper. The cases which appear to the writer to come closest biologically to the
‘isolated ring of cells’ are the tentacles of (e.g.) Hydra, and the whorls of leaves of certain plants
such as Woodruff (Asperula odorata).

Hydra is something like a sea-anemone but lives in fresh water and has from about five to ten
tentacles. A part of a Hydra cut off from the rest will rearrange itself so as to form a complete new
organism. At one stage of this proceeding the organism has reached the form of a tube open at the
head end and closed at the other end. The external diameter is somewhat greater at the head end
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than over the rest of the tube. The whole still has circular symmetry. At a somewhat later stage
the symmetry has gone to the extent that an appropriate stain will bring out a number of patches
on the widened head end. These patches arise at the points where the tentacles are subsequently to
appear (Child 1941, p. 101 and figure 30). According to morphogen theory it is natural to suppose
that reactions, similar to those which were considered in connection with the ring of tissue, take
place in the widened head end, leading to a similar breakdown of symmetry. The situation is more
complicated than the case of the thin isolated ring, for the portion of the Hydra concerned is neither
isolated nor very thin. It is not unreasonable to suppose that this head region is the only one in which
the chemical conditions are such as to give instability. But substances produced in this region are
still free to diffuse through the surrounding region of lesser activity. There is no great difficulty in
extending the mathematics to cover this point in particular cases. But if the active region is too wide
the system no longer approximates the behaviour of a thin ring and one can no longer expect the
tentacles to form a single whorl. This also cannot be considered in detail in the present paper.

In the case of woodruff the leaves appear in whorls on the stem, the number of leaves in a whorl
varying considerably, sometimes being as few as five or as many as nine. The numbers in consecu-
tive whorls on the same stem are often equal, but by no means invariably. It is to be presumed that
the whorls originate in rings of active tissue in the meristematic area, and that the rings arise at suffi-
ciently great distance to have little influence on one another. The number of leaves in the whorl will
presumably be obtainable by the rule given above, viz. by dividing the chemical wave-length into
the circumference, though both these quantities will have to be given some new interpretation more
appropriate to woodruff than to the ring. Another important example of a structure with polygonal
symmetry is provided by young root fibres just breaking out from the parent root. Initially these are
almost homogeneous in cross-section, but eventually a ring of fairly evenly spaced spots appear,
and these later develop into vascular strands. In this case again the full explanation must be in terms
of a two-dimensional or even a three-dimensional problem, although the analysis for the ring is still
illuminating. When the cross-section is very large the strands may be in more than one ring, or more
or less randomly or hexagonally arranged. The two-dimensional theory (not expounded here) also
goes a long way to explain this.

Flowers might appear superficially to provide the most obvious examples of polygonal sym-
metry, and it is probable that there are many species for which this ‘waves round a ring’ theory is
essentially correct. But it is certain that it does not apply for all species. If it did it would follow
that, taking flowers as a whole, i.e. mixing up all species, there would be no very markedly pre-
ferred petal (or corolla, segment, stamen, etc.) numbers. For when all species are taken into account
one must expect that the diameters of the rings concerned will take on nearly all values within a
considerable range, and that neighbouring diameters will be almost equally common. There may
also be some variation in chemical wave-length. Neighbouring values of the ratio circumferences to
wave-length should therefore be more or less equally frequent, and this must mean that neighbour-
ing petal numbers will have much the same frequency. But this is not borne out by the facts. The
number five is extremely common, and the number seven rather rare. Such facts are, in the author’s
opinion, capable of explanation on the basis of morphogen theory, and are closely connected with
the theory of phyllotaxis. They cannot be considered in detail here.

The case of a filament of tissue calls for some comment. The equilibrium patterns on such a
filament will be the same as on a ring, which has been cut at a point where the concentrations of
the morphogens are a maximum or a minimum. This could account for the segmentation of such
filaments. It should be noticed, however, that the theory will not apply unmodified for filaments
immersed in water.
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12. Chemical waves on spheres: Gastrulation

The treatment of homogeneity breakdown on the surface of a sphere is not much more difficult than
in the case of the ring. The theory of spherical harmonics, on which it is based, is not, however,
known to many that are not mathematical specialists. Although the essential properties of spherical
harmonics that are used are stated below, many readers will prefer to proceed directly to the last
paragraph of this section.

The anatomical structure concerned in this problem is a hollow sphere of continuous tissue such
as a blastula. It is supposed sufficiently thin that one can treat it as a ‘spherical shell’. This latter
assumption is merely for the purpose of mathematical simplification; the results are almost exactly
similar if it is omitted. As in § 7 there are to be two morphogens, and a, b, c, d, µ′, ν′, h, k are
also to have the same meaning as they did there. The operator ∇2 will be used here to mean the
superficial part of the Laplacian, i.e. ∇2V will be an abbreviation of

1

ρ2

∂2V

∂φ2
+

1

ρ2 sin2 θ

∂

∂θ

(
sinθ

∂V

∂θ

)
,

where θ and φ are spherical polar co-ordinates on the surface of the sphere and ρ is its radius. The
equations corresponding to (7.1) may then be written

∂X

∂t
= a(X− h)+ b(Y− k)+µ′∇2X,

∂Y

∂t
= c(X− h)+ d(Y − k)+ ν′∇2 Y .

 (12.1)

It is well known (e.g. Jeans 1927, chapter 8) that any function on the surface of the sphere,
or at least any that is likely to arise in a physical problem, can be ‘expanded in spherical surface
harmonics’. This means that it can be expressed in the form

∞∑
n=0

[
n∑

m=−n

Am
n Pm

n (cosθ)eimφ

]
.

The expression in the square bracket is described as a ‘surface harmonic of degree n’. Its nearest
analogue in the ring theory is a Fourier component. The essential property of a spherical harmonic
of degree n is that when the operator ∇2 is applied to it the effect is the same as multiplication by
−n(n+ 1)/ρ2. In view of this fact it is evident that a solution of (12.1) is

X = h+
∞∑

n=0

n∑
m=−n

(
Am

n eiqnt
+Bm

n eiq′nt
)

Pm
n (cosθ)eimφ ,

Y = k+
∞∑

n=0

n∑
m=−n

(
Cm

n eiqnt
+Dm

n eiq′nt
)

Pm
n (cosθ)eiφ ,

 (12.2)

where qn and q′n are the two roots of(
q− a+

µ′

ρ2
n(n+ 1)

)(
q− d+

ν′

ρ2
n(n+ 1)

)
= bc (12.3)
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and

Am
n

(
qn− a+

µ′

ρ2
n(n+ 1)

)
= bCm

n ,

Bm
n

(
q′n− a+

µ′

ρ2
n(n+ 1)

)
= cDm

n . (12.4)

This is the most general solution, since the coefficients Am
n and Bm

n can be chosen to give any
required values of X, Y when t = 0, except when (12.3) has two equal roots, in which case a treat-
ment is required which is similar to that applied in similar circumstances in § 7. The analogy with
§ 7 throughout will indeed be obvious, though the summation with respect to m does not appear
there. The meaning of this summation is that there are a number of different patterns with the same
wave-length, which can be superposed with various amplitude factors. Then supposing that, as in
§ 8, one particular wave-length predominates, (12.2) reduces to

X− h= eiqn0t,
n0∑

m=−n0

Am
n0

Pm
n0
(cosθ)eimφ ,

b(Y − k)=
(

qn0 − a+ µ′

ρ2 n(n+ 1)
)
(X− h).

 (12.5)

In other words, the concentrations of the two morphogens are proportional, and both of them are
surface harmonics of the same degree n0, viz. that which makes the greater of the roots qn0, q′n0
have the greatest value.

It is probable that the forms of various nearly spherical structures, such as radiolarian skeletons,
are closely related to these spherical harmonic patterns. The most important application of the theory
seems, however, to be to the gastrulation of a blastula. Suppose that the chemical data, including the
chemical wave-length, remain constant as the radius of the blastula increases. To be quite specific
suppose that

µ′ = 2, ν′ = 1, a=−4, b=−8, c= 4, d = 7.

With these values the system is quite stable so long as the radius is less than about 2. Near this
point, however, the harmonics of degree 1 begin to develop and a pattern of form (12.5) with n0 = 1
makes its appearance. Making use of the facts that

P0
1(cosθ)= cosθ , P1

1(cosθ)= P−1
1 (cosθ)= sinθ ,

it is seen that X− h is of the form

X− h= Acosθ +Bsinθ cosφ+C sinθ sinφ, (12.6)

which may also be interpreted as

X− h= A′ cosθ ′, (12.7)

where θ ′ is the angle which the radius θ , φ makes with the fixed direction having direction cosines
proportional to B, C, A and A′ =√(A2

+B2
+C2).

The outcome of the analysis therefore is quite simply this. Under certain not very restrictive
conditions (which include a requirement that the sphere be relatively small but increasing in size)
the pattern of the breakdown of homogeneity is axially symmetrical, not about the original axis of
spherical polar co-ordinates, but about some new axis determined by the disturbing influences. The
concentrations of the first morphogen are given by (12.7), where θ ′ is measured from this new axis;
and Y − k is proportional to X− h. Supposing that the first morphogen is, or encourages the produc-
tion of, a growth hormone, one must expect the blastula to grow in an axially symmetric manner, but
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at a greater rate at one end of the axis than at the other This might under many circumstances lead
to gastrulation, though the effects of such growth are not very easily determinable. They depend
on the elastic properties of the tissue as well as on the growth rate at each point. This growth will
certainly lead to a solid of revolution with a marked difference between the two poles, unless, in
addition to the chemical instability, there is a mechanical instability causing the breakdown of axial
symmetry. The direction of the axis of gastrulation will be quite random according to this theory. It
may be that it is found experimentally that the axis is normally in some definite direction such as
that of the animal pole. This is not essentially contradictory to the theory, for any small asymmetry
of the zygote may be sufficient to provide the ‘disturbance’ which determines the axis.

13. Non-linear theory: Use of digital computers

The ‘wave’ theory which has been developed here depends essentially on the assumption that the
reaction rates are linear functions of the concentrations, an assumption which is justifiable in the
case of a system just beginning to leave a homogeneous condition. Such systems certainly have a
special interest as giving the first appearance of a pattern, but they are the exception rather than the
rule. Most of an organism, most of the time, is developing from one pattern into another, rather than
from homogeneity into a pattern. One would like to be able to follow this more general process
mathematically also. The difficulties are, however, such that one cannot hope to have any very
embracing theory of such processes, beyond the statement of the equations. It might be possible,
however, to treat a few particular cases in detail with the aid of a digital computer. This method
has the advantage that it is not so necessary to make simplifying assumptions as it is when doing
a more theoretical type of analysis. It might even be possible to take the mechanical aspects of the
problem into account as well as the chemical, when applying this type of method. The essential
disadvantage of the method is that one only gets results for particular cases. But this disadvantage is
probably of comparatively little importance. Even with the ring problem: considered in this paper,
for which a reasonably complete mathematical analysis was possible, the computational treatment
of a particular case was most illuminating. The morphogen theory of phyllotaxis, to be described,
as already mentioned, in a later paper, will be covered by this computational method. Non-linear
equations will be used.

It must be admitted that the biological examples which it has been possible to give in the present
paper are very limited. This can be ascribed quite simply to the fact that biological phenomena are
usually very complicated. Taking this in combination with the relatively elementary mathematics
used in this paper one could hardly expect to find that many observed biological phenomena would
be covered. It is thought, however, that the imaginary biological systems which have been treated,
and the principles which have been discussed, should be of some help in interpreting real biological
forms.
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Examining the Work and Its Later Impact

Henri Berestycki on the visionary power of —

ALAN TURING AND
REACTION–DIFFUSION EQUATIONS

A singular gem, alone it shines. The 1952 article of Turing ‘The Chemical basis of morphogenesis’
addresses one of the mysteries of life. A paper impossible to classify – it is not even clear on
which shelf of the library one should look for it – it does not resemble anything else. The article
is revolutionary, one of its kind. It is both a mathematical invention and a biological vision of how
reaction and diffusion mechanisms, indeed very basic ones, can account for morphogenesis.

Turing’s article (1952) is a theory aiming at explaining how form and differentiation appear
in the germinal form of life when cells are undifferentiated. More generally, this paper addresses
the problem of symmetry breaking. It offers indeed an explanation of how starting with a per-
fectly symmetric state a system can evolve into differentiated components based on simple and
fundamental mechanisms that operate at very basic levels of living systems. This vision is car-
ried through systems of reaction–diffusion equations both in spatial discrete and continuous forms.
Along with several other underlying themes, the article contains a vision of the role of non-linear
partial differential equations and scientific computing.

1. The article and its style

Even the background material included in this article is rather unusual and contains somewhat hete-
roclite material. To start with, it lists some basic properties of Fourier series. Then basics of chemical
kinetics, essentially the law of mass action, are described and some examples are given. The problem
of embryogenesis is introduced with some details.

An obvious effort is made in this paper to keep the mathematical level of the presentation
as simple as possible so as not to discourage biologists. This goal is explicitly stated and what
would be regarded as very elementary facts of differential equations with constant coefficients and
Fourier series decompositions are recalled in a section entitled ‘Mathematical background’. It is
also suggested to non-mathematicians that they skip some specific sections of the paper.

The style of Turing, throughout the paper is that of an extreme modesty. Turing enters the world
of life sciences, attacking one of the great questions of life development with extreme care. Intel-
lectually, this is an extremely bold paper, yet it is presented with the utmost humility. Do not be
disturbed because of me he seems to say to his fellow biologists. Cautionary remarks abound in
the paper epitomised by the one in the second sentence: ‘this model will be a simplification and
an idealisation, and consequently a falsification’. In the conclusion of his article, he writes that the
‘biological examples which it has been possible to give in the present paper are very limited. This
can be ascribed simply to the fact that biological phenomena are usually very complicated’. Yet, in
spite of the effort to spare the reader mathematical efforts, I believe that the intuition of Turing is
primarily mathematical.
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Morphogenesis in Turing’s vision can be explained by two imaginary or archetypical chemical
substances that he calls morphogens interacting by reaction and diffusion. One such morphogen is
an activator and the other one an inhibitor. Those are not further specified but the plausibility of
these morphogens is carefully described say in the form of ions. Turing also explains that such mor-
phogens are not antithetic to genetics but could for instance be ascribed to genetic activity. Genes
can be at work in creating the receptors that give the chemical basis for morphogens. The essence of
the phenomenon is that the homogeneous distribution in a certain regime becomes unstable yielding
to a non-homogeneous one thus producing patterns. This phenomenon is now universally referred
to as Turing’s instability mechanism.

To make his point, Turing introduces an imaginary system, an annulus of cells, hence a discrete
space (but continuous in time) model. The cells are labelled k = 1, . . ., N and cell N+ 1 is the same
as cell 1 while cell 0 is the same as cell N. Two morphogens, called X,Y , interact and their levels
in cell r are denoted Xr,Yr. Between contiguous cells, diffusion moves chemical substances from
one cell into the neighboring one if the density is smaller in the latter. The rate of mobility between
cells is given by diffusion coefficients µ,ν for each morphogen respectively. Morphogens interact
through chemical reactions. The kinetic rates of these reactions, given by the law of mass action,
are respectively f (Xr,Yr) and g(Xr,Yr). The resulting system of equation then simply reads


dXr

dt
= f (Xr,Yr)+µ(Xr+1− 2Xr +Xr−1)

dYr

dt
= g(Xr,Yr)+ ν(Yr+1− 2Yr +Yr−1),

(1.1)

for r = 1, . . . ,N. Assume that there is a homogeneous stationary solution, that is, a solution such that
Xr = h and Yr = k for all r, where h,k are constants. Since it must be the case that f (h,k)= g(h,k)=
0, it is of interest to look at the linearised system in the vicinity of h,k. Denoting xr = Xr − h and
yr = Yr − k viewed as perturbations from the homogeneous stationary state this system reads


dxr

dt
= axr + byr +µ(xr+1− 2xr + xr−1)

dyr

dt
= cxr + dyr + ν(yr+1− 2yr + yr−1),

(1.2)

where

a=
∂f

∂X
(h,k), b=

∂f

∂Y
(h,k), c=

∂g

∂X
(h,k), d =

∂g

∂Y
(h,k).

This is an elementary system of two equations in two unknowns. Turing is able to analyse it
mathematically using finite sums of cosine and sine functions. The extraordinary finding of Turing
is that in a certain parameter regime, such a simple system yields morphogenesis. Starting from an
homogeneous distribution of the chemicals, that is, identical densities of the chemicals in all cells, as
some parameters are changed, the system may give rise to a new kind of stable stationary solutions.
These correspond to differentiated cells in which the distributions of chemicals varies form one
cell to another. For certain values of the parameters, the only configuration that is observed is the
homogeneous one with undifferentiated cells. Then, as the parameter is changed, a critical threshold
is crossed after which one observes a non-homogeneous distribution of chemicals in the cells.
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A specific example of a system of the type (1.1) is mentioned in the article of Turing. It reads:
f (X,Y)=

1

32
[−7X2

− 50XY + 57]

g(X,Y)=
1

32
[7X2
+ 50XY − 2Y − 55]

(1.3)

In this case, the homogenous solution is h= k = 1. Turing mentions a computation for the case
N = 20 and µ= 1/2,ν = 1/4. The longterm shape of the solutions of this equation starting from
small perturbations (order 10−4) of the homogenous state, i.e., X0 ≡ Y0 ≡ 1, is shown in Fig 1.
These correspond to values of N = 80, ν = 1/4 and different values of µ close to µ= 1/2 (with the
proper scaling). One curve represents X and the other one Y . This system exhibits pattern formation
and bifurcation occurs at a value close to µ= 1/2. When µ < 1/2 with µ very close to 1/2, the
solution (X,Y) converges to (1,1) (upper left diagram). As µ gets closer to 1/2 and crosses it, this
ceases to be the case, (1,1) is not stable any more and one can see solutions with oscillations as is
seen in the upper right diagram (µ= 0.497) and the amplitude increases as shown in the lower dia-
grams (µ= 0.5 and µ= 0.51 respectively). One can see the strong parameter sensitivity close to the
bifurcation point. These computations illustrate the role of the diffusion of one of the components
as the bifurcation parameter. Turing’s mechanism is indeed often referred to as a diffusion–driven
instability.
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Fig. 1: Long-term (T = 500) solution for the system (1.1) in the case of reaction kinetics terms
(1.3). In abscissa is the coordinate r of the cell in the circle. Upper left calculation: µ= 0.49; upper
right: µ= 0.497; lower left µ= 0.5; lower right: µ= 0.52. (Computations are courtesy of Lionel
Roques).
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What has this to do with embryogenesis? Turing states his goal as to describe ‘. . . a mathematical
model of the growing embryo’. As a mathematician, Turing tries to find the simplest form in which
the mechanisms at work can be seen clearly, that is, as a mathematical truth. In the paper, Turing may
appear as a dreaming mathematician (by this I mean a visionary one). He is not chiefly concerned
with describing a precise situation but rather general classes of problems where morphogenesis can
be seen to occur. For him the word morphogen ‘is not intended to have any very exact meaning but
is simply the kind of substance concerned in this theory’. And he quotes Waddington (1940) as a
precursor of his line of thinking (Waddington had introduced the notion of ‘evocators’). He could as
well have invoked D’Arcy Thompson (1942) in the great British lineage of morphogenesis theory.
He adds that genes themselves can be considered as morphogens but also, say, skin pigments. Here,
as well as in all the article, Turing’s writing style is quite remarkable: ‘. . . it is only by courtesy that
genes may be regarded as separate molecules’.

Turing’s great mathematical discovery in this paper is that a two-component system of reaction–
diffusion equations even though of homogeneous form may give rise to non-homogeneous stable
solutions. Going from a discrete circular assembly of cell, he moves to the continuous version. In
the system of reaction–diffusion equations analogous to (1.2) above, he introduces for a circle reads
in its linearised form: 

∂X

∂t
= a(X− h)+ b(Y − k)+

µ′

ρ2

∂2X

∂θ2
,

∂Y

∂t
= c(X− h)+ d(Y − k)+

ν′

ρ2

∂2Y

∂θ2

(1.4)

where ρ is the radius of the circle.
This type of system is now referred to as a Turing system. More general Turing systems are of

the form: 
∂X

∂t
= f (X,Y)+

µ′

ρ2
1X,

∂Y

∂t
= g(X,Y)+

ν′

ρ2
1Y

(1.5)

Actually, Turing wrote this system for chemical waves on spheres to study gastrulation. Then,
the equation is set on the surface of the sphere of radius ρ and the 1 operator is to be understood as
the Laplace–Beltrami operator on the sphere. That is the two-dimensional analogue of the annulus
problem. Turing again studies the linearised equation, which is now somewhat more involved. By
calling upon the theory of spherical harmonics rather than Fourier series, he is able to carry the
same type of analysis as on the circle. Here too, bifurcation occurs. Patterns depart from spherical
symmetry but will have axial symmetry.

2. A brief history of reaction–diffusion equations

The history of reaction–diffusion equations begins in the first half of the twentieth century. It is
remarkable and as a matter of fact without parallel that all the founding articles that proposed
this important class of non-linear partial differential equations have all been motivated by biol-
ogy. It starts with the work of a great British statistician and geneticist, Ronald A. Fisher (also from
Cambridge). With the aim to describe the spatial spread of a genetic trait, and dissatisfied with the
Malthus law of population growth, Fisher (1937) introduced a non-linear diffusion equation with a
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logistic term limiting the growth of the population.

∂tu−1u= f (u) (2.1)

Here, f (u)= u(1− u).
Inspired by Fisher’s work and with the genetics model in mind, Kolmogorov, Petrovsky and

Piskunov (KPP) (Kolmogorov et al., 1937) took up the model to derive this non-linear parabolic
(or diffusion) equation.It is classically referred to as the Fisher–Kolmogorov or Fisher–KPP
equation. At about the same time and at the same place, in Moscow in 1939, Zel’dovich and
Frank-Kamenetskii (1938) introduced a simplified model called the thermo-diffusive approxima-
tion to describe flame propagation. It takes the above form, but with different functions f . A
general reference for reaction–diffusion equations of this kind as well as their generalisations in
non-homogeneous settings can be found in Berestycki and Hamel (2012).

Only a few years passed after the Second World War until entirely new areas of applications
motivated the study of further reaction–diffusion systems. In 1951, Skellam proposed to use the
diffusion equation, first without the saturation or logistic term in it and then in the form (2.1), in
ecology to model the dispersal of biological species in a given environment (see Skellam (1951)).
With remarkable success, using this equation, he was able to account for the observations of the area
colonised by muskrats, a species that was first introduced in Europe, near Prague in 1905. These
Muskrat observations were akin to a natural experiment. Indeed, muskrats is a species native of
North America. The exact day and location where it was introduced in Europe are known. Fur-
thermore, rather accurate observations and measurements had been made yearly for the region
it colonised. In particular, the surface expansion rate was available. Skellam’s model explained
surprisingly well the rate of growth of the area inhabited by the muskrats.

Up to then, everyone had used single equations. The next major progress came in the early
1950s with the works of Hodgkin and Huxley in Cambridge and of Turing who proposed systems
of reaction–diffusion equations. They were achieved at about the same period, all the articles being
dated 1952. As it is known, in a series of papers (in particular Hodgkin and Huxley (1952)) Hodgkin
and Huxley introduced a system of reaction–diffusion equations to describe the propagation of the
nerve impulse along an axone. This work opened a new field and Hodgkin and Huxley were awarded
the Nobel Prize in Physiology for it.

Could this be a coincidence? Turing was probably aware of what was done in Cambridge at
the time. Twice at the same time then and at the same places (first in Moscow, 1937–1938, then
in Cambridge and in the United Kingdom in 1952), fundamental breakthroughs were achieved by
introducing equations and then systems of reaction–diffusion equations. It is hard to know whether
or to what extent these works somehow influenced each other. This is an interesting question for the
historians of science.

The reason why the works of Hodgkin–Huxley and Turing were such quantum leaps when they
came out rests on the nature of diffusion equations. These were generally viewed as mostly diffus-
ing, which in some sense they are, thus leading to homogenisation of the quantities. The diffusion
mechanism, by its very nature, works as an equaliser, that is, it tends towards a greater homogeneity.

Fisher and KPP first showed that they were in some sense the right model to describe transi-
tions and ‘waves of advance’. This concept that was later used even in paleoanthropology by a
student of Fisher, Cavalli-Sforza with Amermann (Ammerman and Cavalli-Sforza, 1984) as well as
in many other instances, such as the modelling for phase transitions in physics. As for nerve impulse,
Helmholtz, for instance, thought that only wave equations could provide an adequate framework to
describe such a phenomenon.

It was something of an iconoclastic view that reaction–diffusion systems could achieve this.
For the same reason, the idea that equations of this kind could lead to pattern formation was
hard to conceive. These phenomena were thought to belong to an entirely different realm. These
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discoveries in the 1930s and 1950s lead to a Paradox of diffusion. Indeed, contrary to what had
been thought by every one until then, with Fisher and Kolmogorov (KPP), Zeldovich and Frank-
Kameneskii, Skellam and Hodgkin–Huxley, one sees diffusion as generating waves with constant
shapes and velocity. Then, with Turing, one sees diffusion operating so as to enhance spatial
inhomogeneity.

Therefore, the uses of reaction–diffusion systems to describe propagation of nerve impulse or
pattern formation were some kind of revolutions. And in fact, this could not have been achieved
with a scalar (or single component) equation alone. That Hodgkin–Huxley and Turing were able to
depart from the use of single equations, which was the norm at that time, was an essential step. The
extraordinary intuition of Turing was that at least a two-component system of two equations was
required to account for pattern formation in an otherwise homogeneous model. This is why I think
that Turing’s intuition was more mathematical than biological. I am convinced that Turing could
see that what was needed to produce forms was a system of equations. How such a deep insight –
really, a streak of genius – came to someone who did not seem to have practiced partial differential
equations hitherto remains quite mysterious.

3. Instability and symmetry breaking

For the central preoccupation of Turing is the transition from homogeneous (undifferentiated state)
to one where the distribution of densities varies along locations. In more mathematical terms, the
question is that of symmetry breaking. One looks at a system which is homogeneous and in which
there is a homogeneous or symmetric solution and one wishes to understand how such a system can
evolve into non-symmetric state. This is the process of symmetry breaking. Turing’s approach here
is a way to understand such transitions and, in fact, applies to a wide range of phenomena in the life
sciences.

The mechanism at the heart of this phenomenon is what is called bifurcation and exchange
of stability. In essence, a non-linear system undergoes a bifurcation as some parameter varies if,
say, when going through some critical value of the parameter, new types of solutions appear that
are stable whereas the old ones have lost their stability. Thus, bifurcation phenomena are strongly
related to the principle of exchange of stability. The most classical example of such a phenomena is
the elastica solved by Euler in 1744. Initially at rest, an elastic rod at both ends of which a pressure
is exerted, remains at rest (undeformed) when the pressure is small. However, when the pressure
goes through a critical value, the rod suddenly buckles. This abrupt change of shape was first studied
in a celebrated article of Euler who computed the critical pressure. It should be noted that it is not
that the undeformed solution disappears but rather that it becomes unstable, with the new solution,
the buckled state, acquiring as it were its stability.

The mechanism described by Turing is precisely of this nature. In his study, one of the diffusion
coefficients plays the role of the bifurcation parameter. For small values of this coefficient, the
homogeneous state is initially stable. As this parameter is increased beyond a critical threshold, this
state loses its stability and new solutions in fact non-homogeneous states appear that are now the
stable ones. This is described in the sequence of computations for various values of µ in Fig. 1.

Ideally, if a system starts from a symmetric state, it will keep this symmetry. Loss of stability
means that any deviation from symmetry in the initial data, be it as small as one wishes, would lead
as time evolves to solutions without symmetry. Again, in the example of the rod, if everything is
perfectly symmetric, say if the rod is an ideal object, it should not be deformed even at high values
of the pressure. And in fact, it stays like that even somewhat beyond criticality. This is why bending
of the rod occurs in an abrupt fashion. The slightest departure from symmetry ensures that the state
will leave the symmetric configuration to reach the new stable bucked state.
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The same happens in the reaction–diffusion equation. Now this idea that a small departure from
symmetry is needed seems to have worried Turing. Indeed, a full section of the paper is devoted to
discussing the breakdown of symmetry and homogeneity, and another one to left–right symmetry.
Actually, the discussions border philosophical considerations. First he argues that one can consider
an embryo in its spherical blastula stage as perfectly spherically symmetric. Indeed, says Turing,
‘if there are any deviations from perfect symmetry, they cannot be regarded as of any particular
importance, for the deviations vary greatly from embryo to embryo within a species, though the
organisms developed from them are barely distinguishable’. Then,‘a system which has spherical
symmetry, and whose state is changing because of chemical reactions and diffusion will remain
spherically symmetric for ever. It certainly cannot result in an organism such as a horse, which is
not spherically symmetric’. But then, he points out to the fallacy of the argument that deviations
from symmetry could be ignored.

Surprisingly, to a certain extent, Turing does not put his discovery within the framework of
bifurcation theory to which, in a modern perspective, it obviously belongs. No references are given
to the Elastica of Euler, nor to any other works in mechanics where this type of ideas appeared.
A more elaborate use of bifurcation and stability exchange was developed by Poincaré in 1885
for celestial mechanics. Poincaré imagined such a mechanism at work to explain how double stars
are created by a transition from a spherically symmetric configuration to a state with an hourglass
shape that eventually yields two stars rotating one around the other. No more general mention of
bifurcation and symmetry exchange is indicated in Turing’s paper.

Now, if one believes that mathematicians are general thinkers, that is, develop general models
that can be used afterwards in varied contexts of applications, it is surprising that Turing shies away
from explaining or mentioning this more general framework. Another problem for historians to
delve in. For this, I see two possible explanations. First, Turing clearly aimed at writing a biology
article, one that would carry with him the biologists. Turing surely wrote the paper as self-contained
mathematically as possible. From this viewpoint, he might have seen references to very different
contexts or to a general theory as leading to confusion in the readers’ minds and for this reason
would have preferred to stay clear of this mathematical vantage point. This concern was certainly
present in Turing’s intention.

However, to this explanation, I prefer to imagine that the paper of Turing came from nowhere.
A specialist of mathematical logic, having worked early on in probability, and then, during the War,
having accumulated a deep knowledge of statistics and signal theory, Turing was simply very far
from partial differential equations and mechanics. I rather imagine Turing as having invented this
system of reaction–diffusion equations out of nowhere. Not quite from scratch say, since he may
have grasped some knowledge here and there at lectures about reaction–diffusion equations, but he
probably was not aware of the Poincaré’s paper or the use of bifurcation methods in mechanics.

Also quite remarkable then, if no prior encounter with this type of theories is to be reckoned,
is the use of the linearisation of the problem. This is indeed now the established approach. First,
Turing justifies his choice to concentrate on the bifurcation point itself: ‘This is largely because the
assumption that the system is still nearly homogeneous brings the problem within the range of what
is capable of being treated mathematically’.

To concentrate on the bifurcation points means that morphogenesis really is the study of nascent
shapes. This is why Turing emphasises the role of linearised equations. The linearisation theory on
which Turing concentrates is justified ‘in the case of a system just beginning to leave a homoge-
neous condition. Such systems certainly have a special interest as giving the first appearance of a
pattern’. Here is a central idea, one which has been at the core of the success of Turing’s approach
in all the subsequent developments. By looking at the linearised equation, one can track not only
the critical value at which departure from homogeneity occurs but also the shape of the new con-
figurations emerging as a result from these transitions. Indeed, in general terms, bifurcation occurs
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when the linearised operator is singular (has a non-zero kernel). Then, by looking at the kernel of
the linearised operator, one gets the shapes of the new solutions, at least at first order.

Even if one were to know well the general theory of bifurcation, to fathom that reaction–
diffusion systems would produce Turing instabilities was far from obvious. It is remarkable that
Turing could imagine this mechanism.

4. Turing’s paper in perspective

What is the legacy of Turing’s paper? First, for a while, the Turing mechanisms were taken as a
serious explanation for morphogenesis. Since morphogens as such have not really been identified
in embryogenesis and because the view of morphogenesis is now a more global one very much
resting on genetic programming, Turing’s mechanism is not considered a primary description of
what happens in the embryo. Yet, it still captivates the imagination in its ability to describe such a
complicated process by making it rest on simple chemical and diffusion mechanisms we know to
operate in living systems. Surely, if we were to adopt Occam’s razor, Turing’s mechanism would be
the widely recognised theory for morphogenesis.

For chemical reactions, however, Turing systems have been devised in a series of remarkable
experiments in the early 1990s by De Kepper and collaborators (De Kepper et al., 1991; Horváth
et al., 2009) as well as by Ouyang and Swinney (1991). Turing’s mechanisms fit remarkably
well in these observations. In particular, all the shapes predicted in the bifurcation analysis have
been observed. Therefore, an experimental confirmation was thus finally given 40 years after the
predictions of Turing.

In the biological fields, one can say that the richness of structures that are available from Turing-
type systems is fascinating. In several works of Jim Murray and also in a series of works by Philip
Maini and collaborators (see the foundation book of mathematical biology of Murray (2003)),
Turing systems have been developed that could reproduce virtually all types of shapes of animal
coatings. Even explaining through additional geometrical constraints specific transition regions near
legs or tails. Also, Hans Meinhardt took up the challenge to use systems of this type to explain the
variety of design in shells. His book (Meinhardt, 1995) is not only a collection of pictures of marine
wonders but also a testimony of what can be achieved with this type of mathematical systems. All
this is not a proof of this mechanism, but it is rather amazing to see the richness of the structure that
one can get from reaction–diffusion equations.

Another area of success for the ideas that Turing has introduced and their generalisations are
the bacterial growth colonies. The generation of patterns by bacteria is indeed fascinating (see the
striking experiments reported in Ben Jacob et al. (1995, 2000); Budrene and Berg (1995)). Of par-
ticular importance in the study of bacterial colonies is the phenomenon of chemotaxis (Keller and
Segel, 1970) (see Perthame (2007) for population models). In a sense, this can be also related to
the paradigm of Turing. The original idea of Turing can be formulated in terms of an interaction of
a short-range activator with a long-range inhibitor generating patterns. In the light of the study of
A. Aotani, M. Mimura and T. Mollee Ahotani et al. (2010), it is also possible to view chemotaxis
in a similar way1. For this, the short range activator is the density of bacteria, while chemotactic
attractant can be viewed as the long range inhibitor of mobility. Indeed, the attractant also acts as
though to inhibit the dispersing of bacteria owing to chemotactic aggregation.

Lastly, I would like to mention modelling visual hallucination shapes. In a remarkable series of
works, Bresloff, Ermentrout, Cowan and their collaborators (Bressloff and Cowan, 2003; Bressloff
et al., 2001; Ermentrout and Cowan, 1979) have developed systems of equations based on what is
known of the visual cortex and the way the human brain processes visual signals. Using Turing’s

1 I owe this insight to Masayasu Mimura.
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approach and the study of the linearisations, the authors were able to explain in great detail the
catalogue of different shapes that patients experience in their hallucinations. Again, a remarkable
achievement.

Put in modern perspective, the paper of Alan Turing is one of great visionary power. First, the
use of reaction–diffusion systems to describe pattern formation was a revolutionary idea that paved
the way to considerable development. Then, it has opened an approach to modelling in the life
sciences that has proved extraordinarily successful. Using bifurcation analysis and linearisations
to study sharp transitions and creation of shapes became a widely used method. One might view
it really as the only general approach we have. Turing writes that such attention to this phase of
transition is warranted because ‘it is in a sense the most critical period’. In this respect, René Thom
Thom (1972) has followed in the footsteps of Turing with the use of catastrophe theory. As we
know, much of modern science has concentrated on phase transitions or critical and near critical
situations.

Very modern is also the use in the same paper of discrete systems and their continuous analogues.
The former are amenable to more explicit results whilst the latter lend themselves more easily to
general situations (e.g., systems at the surface of a sphere). It is worthwhile noting that the ease with
which Turing passes from discrete to continuous and vice versa has been a constant in his scientific
life. One can say that Turing is truly the heir of both Democritus and Leibniz !

The last short section of the 1952 article is devoted to the non-linear theory. These are required
since bifurcation situations ‘are the exception rather than the rule’. This means that bifurcation
occurs at specific critical values of parameters. A complete study, valid for all values of the param-
eters, therefore requires the study of non-linear equations that cannot be reduced to their linearised
form. In a short paragraph, Turing lays out a visionary philosophy about the study of non-linear
problems. Having recognised that all embracing general theories are not to be expected, Turing
argues for the value of studying mathematically specific problems (which he calls examples). After
the attempts at building general non-linear theories, it can be said that modern non-linear partial
differential equations deal more with specific classes of equations and even specific equations than
with general theories. Turing was ahead of his time in understanding this.

Then, in a true vision of what scientific computing will bring in the second half of the twentieth
century and into the present one, he envisions the widespread use of digital computers for the study
of non-linear problems. The richness of specific cases and the ability to solve them numerically will
be ‘most illuminating’. The combination in a single article of developing ab nihilo a model with
much effort in understanding the biology, the use of rigorous mathematical analysis and the use of
numerical simulations is a remarkable quality of this paper. It is in a sense a very modern attitude
where boundaries between pure and applied, between discrete and continuous, between rigorous and
numerical can be crossed at ease, with elegance and with points of view that reinforce one another.
Such a remarkable combination, and the lack of intellectual prejudice it supposes, highlights the
great freedom of thinking of Alan Turing.

In perspective, one can only agree with the last sentence of the Turing article: ‘It is thought,
however, that the imaginary biological systems which have been treated, and the principles which
have been discussed, should be of some help in interpreting real biological forms’. A more general
meaning can be attributed to what I would like to call Turing’s philosophy. Indeed, this last sentence
in which Turing maps out the role of mathematics in biology is well worth further meditation.
The clarity of reasoning, the rigour of deductions, the possibility of isolating specific causes and
effects, the precise study of elementary building blocks of living systems, are some of the benefits
that mathematics brings to biological modelling. Even if no pretence is made to encompass the
whole complexity of living systems, mathematics, even on ‘imaginary systems’ is a way to approach
this complexity by looking at well-defined and specific phenomena. Keeping in mind their limits,
mathematical models are to be trusted. This too is the lesson of Alan Turing.
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(Bjul. Moskowskogo Gos. Univ.) 1, 1–26.

Meinhardt, H., 1995. The algorithmic beauty of sea shells. With contributions and images by Przemyslaw
Prusinkiewicz and Deborah R. Fowler. The virtual Laboratory, Springer Verlag, Berlin.

Murray, J.D., 2003. Mathematical Biology, Springer Verlag, Berlin.
Ouyang, Q., Swinney, H.L., 1991. Transition from a uniform state to hexagonal and striped Turing patterns.

Nature 352, 610–612.
Perthame, B., 2007. Transport Equations in Biology, Birkhäuser, Basel.
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Hans Meinhardt focuses on —

TRAVELLING WAVES AND OSCILLATIONS
OUT OF PHASE:

AN ALMOST FORGOTTEN PART OF
TURING’S PAPER

1. Introduction

Turing’s 1952 paper is most famous for the discovery that stable patterns can be generated by the
interaction of two substances that diffuse at different rates. In a second part, he discusses inter-
actions of three components and showed that this can lead to travelling waves and to out-of-phase
oscillations – a part that became largely forgotten. Turing himself mentioned (p. 718 of this volume)
that he is not aware of any example of such an out-of-phase oscillation in biology. Presumably for
this reason he did not provide a set of example equations for three-component systems as he did for
the reactions that form stable patterns. For both types, he did not provide an intuitive explanation
of how this patterning mechanism works. This may explain why his work found initially only little
attention.

By searching for mechanisms that account for the pigment pattern on tropical sea shells, we came
across with a reaction type that is also based on three components and that also shows travelling
waves and out-of-phase oscillations (Meinhardt, 2009; Meinhardt and Klingler, 1987). Therefore,
both mechanisms are presumably mathematically equivalent, but this has still to be proven. In the
present article, I will work out the requirements for reactions that display out-of-phase oscillations
and travelling waves and discuss some biological applications. As elaborated in other parts of this
book, a substantial part of Turing’s Biology-oriented unpublished work deals with phyllotaxis. It
will be shown that such three-component systems are most convenient to account for a helical
arrangement of leaves or seeds, e.g., on a fire cone. Thus, considering three component systems
provides an unanticipated link between these two themes of Turing’s work.

2. Stable pattern and travelling waves
by two-component systems

Turing derived the conditions for stable patterning by mathematical consideration only. On
page 694, he gave the following set of equations as an example:

dX

dt
= 5X− 6Y + 1 (1a)

dY

dt
= 6X− 7Y + 1 [+Diffusion]. (1b)

Both Eqs (1a) and (1b), look very similar. It is not immediately obvious why such an interaction
allows pattern formation. In a general theory of biological pattern formation proposed 20 years later,
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we have shown that pattern formation is possible if and only if local self-enhancement is combined
with an antagonistic reaction of longer range (Meinhardt, 1982; Gierer and Meinhardt, 1972). This
condition is not inherent in Turing’s paper, even not in a hidden form. It seems, however, that later he
recognised the role of inhibition. In unpublished notes found after his death, the following sentence
occurred: ‘The amplitude of the waves is largely controlled by the concentration V of “poison”’ (see
Hodges (1983, p. 494)). It is remarkable that long-range inhibition does not occur in his work since
phyllotaxis was prevalent for him and the idea that the spacing of leaves is achieved by a mutual
long-range inhibition of leaves was discussed since long (Schoute, 1913; Snow and Snow, 1931).

A straightforward realisation of the general mechanism we proposed is an interaction between a
short-ranging autocatalytic activator a that catalyses its own production and that of a long-ranging
component h that acts as an inhibitor in the self-enhancement.

∂a

∂t
=

sa2

h
− raa+Da

∂2a

∂x2
+ ρa (2a)

∂h

∂t
= sa2

− rhh+Dh
∂2h

∂x2
+ ρh. (2b)

Knowing the basic principle allowed us to introduce molecular realistic interactions for which
non-linear interactions are indispensable and to recognise somewhat hidden molecular realisations
in biological systems. Meanwhile, several biological pattern-forming systems of this type are known
(for review see Meinhardt (2008)). Formation of a stable pattern is illustrated in Fig. 1a.
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Fig. 1: Pattern formation by a two-component activator–inhibitor system. (a) Stable patterns can
result if the self-enhancing activator has a short and the inhibitor has a long range. (b) Oscillations
will result if the inhibitor has a longer time constant than the activator. (c) Travelling waves result
if the activator has a moderate spread but the inhibitor is local. A baseline inhibitor production
suppresses the spontaneous trigger of activations, otherwise synchronous oscillation would appear.
Two colliding waves annihilate each other (Meinhardt, 1982, 2009).

It is easy to see that Turing’s example equation satisfies our condition. X in Eq. (1a) enhances
its own production and catalyses that of Y [Eq. (1b)]. In turn, Y – the diffusible component – causes
a higher destruction rate of X, antagonising in this way the self-enhancement of X. The mechanism
proposed by Turing has an essential drawback: its molecular basis is not reasonable. According to
Eq. (1a), the number of X molecules disappearing per time unit is assumed to be independent of
the number of X molecules and only proportional to the number of Y molecules. In other words, X
molecules can disappear at a high rate even if no X molecule is present any longer. This leads to neg-
ative concentrations. Turing had seen this problem and proposed to ignore negative concentrations.
To avoid this problem, first-order decay kinetics is needed, which requires non-linear production
terms as given in Eq. (2a).



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 735 #53

Travelling Waves and Oscillations Out of Phase 735

3. Oscillations and wave formation by two-component systems

The same reaction type can lead to oscillations and to travelling waves. Oscillations occur if the
antagonistic reaction has a longer time constant than the self-enhancing component (Fig. 1b). Then,
activation occurs in a burst-like fashion since the antagonistic reaction follows too slowly. After
some time, when, e.g., sufficient inhibitor accumulated, the self-enhancement breaks down. After
a refractory period, the next burst can trigger. For travelling waves, the activation has to show a
moderate spread while the antagonistic reaction has to be local (Fig. 1c). Thus, for wave formation
and for stable patterns, the requirements for the antagonistic reaction are just the opposite. Well-
known processes of this type play a role in different areas. The wave-like spread of a forest fire or
of an epidemic is an example. A characteristic feature of such waves is that they annihilate each
other upon a collision (Fig. 1c). A forest fire can not spread into a region just burned down by a
wave that came from the opposite direction.

Wave formation by two-component systems looks simple by a first inspection. However, more
conditions have to be satisfied. There must be a spatial pattern that determines where the waves
should start. For instance, for the regular contraction waves in the heart, it is crucial that the oscil-
lations run somewhat faster in the sinus node that acts as pacemaker region. Likewise, a wave front
of a fire needs a local ignition. Thus, a complete travelling wave system would require at least four
components, two for the generation of the stable pattern determining where the wave should start
and two components for the proper wave.

4. Wave formation by three-component systems

The pigment patterns on the shells of mollusks provide a wonderful natural picture book to study
all sorts of pattern formation. They are of great diversity and frequently of great beauty. Mollusks
can increase the size of their shells only by accretion of new material along the growing edge of
the shell. In most species, pigment only becomes incorporated only there during growth. In these
cases, the formation of the pattern is generated in a linear array of cells. The shell itself consists
of dead material and preserves the pattern. Thus, the two-dimensional shell pattern is a protocol
of what happens as function of time along the one-dimensional edge. Shell patterns are, therefore,
space-time plots and provide a unique situation in that the complete history of a highly dynamic
process is preserved.

Position Position

(a) (b) (c) (d)

Position

T
im

e

Fig. 2: Out-of-phase oscillation and travelling waves by three-component systems, presumably as
anticipated by Turing. (a) The spontaneous generation of travelling waves by a self-enhancing acti-
vator and two antagonistic components [Eqs (3a) through (3c)]. (b) The chessboard–like pattern on
the small shell of Bankivia fasciata has its origin in out-of-phase oscillations that changed into trav-
elling waves. (c) In three-component systems, a synchronous oscillation can become instable and
change to out-of-phase oscillations. (d) A transition to travelling waves can occur if the activation
becomes stable enough that it does not collapse but escape into an adjacent position (Meinhardt,
2004, 2009; Meinhardt and Klingler, 1987).
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In an attempt to decode the underlying mechanism, it became clear that the usual two-component
systems are insufficient for an explanation. Some patterns result from out-of-phase oscillations
(Fig. 2). Crossing of oblique lines are the result of travelling waves that penetrate each other (Fig. 3),
a very unusual behaviour for waves in excitable media. The key was the idea that these patterns are
explicable by three-component systems (Meinhardt, 2004, 2009; Meinhardt and Klingler, 1987).

Position
(a) (b) (c)

T
im

e

Fig. 3: Penetration of waves. (a) Oblique lines that cross each other on the shell Tapes literatus
are time records of travelling waves at the growing edge which were penetrating each other. (b)
Penetration of waves in a three-component system [Eqs (3a) through (3c)]. Assumed is an activator–
inhibitor system (black area and gray line). The removal of a substrate (gray area) that is required for
the autocatalysis leads to a local destabilisation. Activation shifts into a region where still sufficient
substrate is available (arrows); travelling waves result. During collision, the shift is suspended. Due
to the rapidly declining inhibitor, the activation survives at a low level. After the recovery of the
substrate, the waves start to move again into divergent directions, completing the penetration. (c)
The simulation in a larger field shows that the model accounts for the fact that sometimes only one of
the two waves survive a collision, leading to an ‘amputated X’ and that backwards-running waves
can trigger spontaneously (arrows in a and c) (From Meinhardt (2009); Meinhardt and Klingler
(1987)).

As mentioned above, two components are required to generate a stable pattern. Imagine that
a second antagonistic component – i.e., a third component – is involved that acts local and that
has a long time constant. This can be an inhibitor or can result from the depletion of a necessary
component, as given in Eqs (3a) through (3c). A local maximum becomes quenched some time
after its generation by the slowly accumulating antagonistic reaction. Depending on the parameters,
the system can react in two ways. Either a maximum shifts to an adjacent position, becomes there
quenched too, and moves further, i.e., a travelling wave result. Alternatively, the maximum may
vanish and reappear at a displaced position. Out-of-phase oscillation can result, even from a system
that oscillated originally in synchrony (Fig. 2d). Travelling waves can be formed from an initially
homogeneous situations, i.e., without a pacemaker (Fig. 2a). The equation given below provides an
example that has been used for the simulations given in Figs. 2 and 3.

5. An example

In the following example reaction, the activator a is antagonised by a substrate b that becomes
depleted during autocatalysis; a is produced with the same rate as b is removed. The third compo-
nent c acts as an inhibitor. It is produced under the control of the activator and that slows down
the autocatalysis. In this way, a higher c concentration leads also to a lower removal rate of the
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substrate b. With a notation as used elsewhere (Meinhardt, 2009), the reaction can be described by
the following equation:

∂a

∂t
=

sb(a2
+ ba)

(sb+ sc c)(1+ saa2)
− raa+Da

∂2a

∂x2
(3a)

∂b

∂t
= bb−

sb(a2
+ ba)

(sb+ sc c)(1+ saa2)
− rbb+Db

∂2b

∂x2
(3b)

∂c

∂t
= rc (a− c) +Dc

∂2c

∂x2
. (3c)
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Fig. 4: Flashing up of local signals at displaced positions in phyllotaxis and shell patterning.
(a) Whorl-like pattern suggest that spacing around the circumference and along the axis of the
shoot result from two different processes. (b, c) Signals for leaf or seedling formation appear at
displaced positions. (d) Model: assumed is an autocatalytic activator (black) that is antagonised by
two inhibitors. One has a short time constant and a long range (dark pixels); it keeps the maxima
localised and is responsible for the spacing around the circumference. A second inhibitor (gray) acts
more locally and has a long time constant; it takes care that the leaf-initiating signal disappears after
a certain time interval. A new signal can only appear at a displaced region where both inhibitions
are below a threshold (white); calculation on a ring, second dimension is time. (e) Oblique rows of
spots on the shell of a mollusk, also resulting from the successive formation of spot-like signals at
regularly displaced position. (f) Calculation on a smaller ring with space for one helix. The most
recent leaf initiation sites are numbered. The angular displacement is around the golden angle of
137.5o, illustrating that the corresponding displacement of leaf initiation sites is correctly described
(Meinhardt et al., 1998).
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6. Phyllotaxis: initiation of leaves along spirals

The regular arrangement of leaves has fascinated people for centuries (see Kuhlemeier (2007) for a
recent review and molecules involved and Smith et al. (2006) for recent simulations). As described
in other parts of this book, Turing is one of them. The tip of the shoot, the apical meristem, contains
undifferentiated cells that divide rapidly. Cells just leaving this zone become competent to form
new leaves. Thus, the leaf-forming zone has the geometry of a ring. Similar as in shell patterning,
the arrangement of leaves is a time record of the signal distribution in this leaf-forming zone. Many
different models have been proposed that have the assumption in common that existing primordia
have an inhibitory influence on the initiation of the next leaf. Implicit in this assumption is that the
spacing around the circumference in the leaf-forming zone and the separation along the axis, i.e.,
the time span at which the next leaf can be formed, is based on the same signaling. However, the
existence of whorl-like leaf patterns (Fig. 4a) suggests that the spacing around the circumference
and spacing in time (e.g., when the next whorl will come) is based on different mechanisms. This
suggests an explanation of leaf spacing by two different inhibitions, one in space and one in time,
leading to models that are analogous to those proposed for shell patterning (Fig. 4).

7. Other systems and outlook

The three-component patterning, discovered for a more exotic type of pattern formation, has turned
out to be very powerful to account for very different biological phenomena. In E. coli, the determina-
tion of the plane where the next cell division will take place works in this way. A high concentration
of a protein (MinD) occurs at the poles in an alternating sequence. This out-of-phase oscillation
inhibits the onset of cell division near the pole regions, resulting in the initiation of cell division
precisely at the cell center (Meinhardt and de Boer, 2001). The separation of the barbs of an avian
feather occurs by travelling waves that have been described with the same equations as given above
(Harris et al., 2005). Chemotactic cells show a highly dynamic pattern of stretching and retracting
pseudopods. Three-component systems provide on the one hand the high amplification to make the
cells sensitive to minute concentration differences, and, on the other hand, allow to maintain this
sensitivity by avoiding that the cells are trapped in a once-made decision (Meinhardt, 1999). Thus
three-component systems seems to be used by nature for very different purposes in biology.

In conclusion, we found a mechanism that has the properties anticipated by Turing in the second
part of this paper dealing with three-component systems. In the view of our model, the three sub-
stances have the following function: a self-enhancing feedback loop together with a long-ranging
antagonist enables pattern formation in space. The third component, a local short-ranging antago-
nist, causes on a longer time scale a local destabilisation. In this mode, a stable steady state is never
reached. The shell patterns provide a beautiful record of such highly dynamic interaction and were
the key to disentangle the underlying complex interaction.
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James D. Murray on what happened —

AFTER TURING – THE BIRTH AND GROWTH OF
INTERDISCIPLINARY

MATHEMATICS AND BIOLOGY

1. Introduction

An accepted norm of the study of biology during much of the nineteenth century was classification
and list making. Its death knell was truly sounded by D’Arcy Thompson’s classic book On Growth
and Form first published in 1917 by Thompson. There had been, of course, considerable interest
in morphological patterns for a long time. The classic work of Geoffroy Saint-Hilaire (1836) is a
remarkable seminal example. He was a strong supporter of Lamarck and was ridiculed in 1842 by an
etching of him as an ape. Sainte-Hilaire was particularly interested in teratology and was probably
the first to introduce the important concept of a developmental constraint which we come back to
below. D’Arcy Thompson specifically commented on the absence of certain particular forms that
implies an awareness of developmental constraints. He emphasised the parallels between the study
of form in physical systems and of biological form that presages landmark paper of Turing (1952)
on the chemical basis of morphogenesis, a paper with only six references, one of which is to the
second edition of D’Arcy Thompson’s (1917) book.

Turing’s foray into biology is primarily practical but essentially mathematical: he says nothing
about real biology or morphogenesis. Importantly, however, he shows how a model system of react-
ing and diffusing chemicals in a bounded domain can result in steady-state spatial patterning of the
chemical concentrations. In this article, I shall give a very brief description of reaction–diffusion



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 740 #58

740 Part IV

theory and an equally brief and biased history of the developments following from Turing’s paper
but with references for further reading. I shall describe the emergence and astonishing growth of
a new field – mathematical biology. By way of illustration, I shall describe two specific biologi-
cal problems I have worked on, both of which resulted in experimental research projects. Finally,
I shall point out some of the limitations of Turing-type reaction–diffusion mechanisms that
necessitated a new, and more experimentally verifiable, approach to biological pattern formation.

In spite of the enormous amount of research and the exploding study of genetics, the devel-
opment of spatial pattern and form is still one of the central issues in embryology. In the past
20 to 30 years, it has spawned exciting, important and genuine interdisciplinary research between
theoreticians and experimentalists, the common aim of which is the elucidation of the underlying
mechanisms involved in embryology and medicine; most of which are essentially still unknown.

Mathematicians and theoreticians did not begin to examine the development of spatial pattern
and form until almost 20 years after Turing’s 1952 paper. The late 1960s and early 1970s was
when the field of mathematical biology, theoretical biology, or whatever one wants to call this
genuine interdisciplinary field of mathematics and biology, really got going. The first mention of
Turing’s paper was by Prigogine and Nicolis (1967) and the Brussels group subsequently intro-
duced a simpler theoretical reaction–diffusion mechanism of the Turing type. Another influential
activator–inhibitor reaction–diffusion system was proposed by Gierer and Meinhardt (1972). The
first genuine experimentally based reaction–diffusion system that produced steady-state chemical
spatial patterns in line with Turing’s predictions was developed by Thomas (1975). Interestingly,
when you take these model systems and look at the parameter ranges that can generate spatial
pattern by far the largest ranges are those of the practical system proposed by Thomas (1975).
Mimura and Murray (1978) showed mathematically how this specific reaction–diffusion system
produced steady-state spatial patterns. There are numerous review articles and books: for example,
Murray’s books Mathematical Biology (Murray (1989, 2002)) in 1990, 2003 describe, among many
other topics, Turing’s theory of morphogenesis and its influence on modelling biological pattern
and form in some detail and, more specifically, Turing’s theory in a review article Murray (1990).
The study by Maini (2004) specifically addresses pattern and form as do the conference proceed-
ings by Brenner et al. (1981), Jäger and Murray (1984) and the book of articles edited by Chaplain
et al. (1999) and Maini and Othmer (2001). In population ecology, the review article by Levin
(1992) describes the mathematical modelling of that field from an equivalent ‘reaction–diffusion’
approach in which the reaction terms are population growth and interaction terms.

The basic concept, which Turing demonstrated mathematically, was that if you have two chem-
icals, an activator and an inhibitor, which react together and at the same time diffuse, crucially at
different rates with the inhibitor having the larger diffusion coefficient, it is possible for such a
coupled system of reaction–diffusion equations to produce steady-state spatial patterns in chemical
concentrations of the reactants. In the early to mid 1970s, Turing’s paper was rediscovered by more
theoreticians with an increasing number of publications starting to appear. Closely related, but not
specifically to Turing’s work, is the fundamentally important experimental work on the importance
of chemical gradients in embryonic development by Wolpert (1969) who introduced the concept of
‘positional information’. In it cells react to a chemical gradient. His work initiated a huge amount
of experimental and theoretical work, often controversial, that is still going on. For a review of his
work and his views on development, see Wolpert’s (2006) book on the principles of development.

To get an intuitive idea of how the patterning works, consider the following, albeit unrealistic
scenario, of a field of dry grass in which there is a large number of grasshoppers that can generate
a lot of moisture by sweating if they get warm. Now suppose the grass is set alight at some point
and a flame front starts to propagate. We can think of the grasshopper as an inhibitor and the fire
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as an activator. If there were no moisture to quench the flames, the fire would simply spread over
the whole field, which would result in a uniform charred area. Suppose, however, that when the
grasshoppers get warm enough, they can generate enough moisture to dampen the grass so that
when the flames reach such a pre-moistened area the grass will not burn. The scenario for spatial
pattern of charred and uncharred grass is then the following. The fire starts to spread; it is one
of the ‘reactants’, the activator, with a fire ‘diffusion’ coefficient, which quantifies how fast the
fire spreads. When the grasshoppers, the inhibitor ‘reactant’, ahead of the flame front feel it coming,
they move quickly ahead of it; that is, they have a ‘diffusion’ coefficient that is much larger than that
of the fire front. The grasshoppers then sweat profusely and generate enough moisture to prevent the
fire spreading into the moistened area. In this way, the charred area is restricted to a finite domain
that depends on the ‘diffusion’ coefficients of the reactants – fire and grasshoppers – and the various
‘reaction’ parameters. If, instead of a single initial fire, there were a random scattering of them, we
can see how this process would result in a final, spatially heterogeneous, steady-state distribution of
charred and uncharred regions in the field and a spatial distribution of grasshoppers, since around
each fire the above scenario would take place. If the grasshoppers and flame front ‘diffused’ at the
same speed, no such spatial pattern could evolve.

2. How the leopard gets its spots

I became interested in how animal coat patterns were formed Murray (1981a, b) and used the
practical reaction–diffusion mechanism of Thomas (1975) to study them. I showed that a single
pre-patterning mechanism was capable of generating the geometry of mammalian coat patterns,
from the mouse to the badger to the giraffe to the elephant and almost everything in between, with
the end pattern governed simply by the size and shape of the embryo at the time the pattern forma-
tion process took place. In solving these reaction–diffusion systems, the domain’s size and shape is
important. For a given mechanism if you try and simulate solutions in a very small domain, it is not
possible to obtain steady-state spatial patterns. A minimum size is needed to drive any sustainable
spatial pattern. If, for example, it is a long, thin domain, you can only generate stripes. You can
think about this intuitively. It is like disturbing the water surface in a long, thin tank: the only waves
that persist are one dimensional along the tank. If the tank is large and the surface is disturbed, it is
possible to have complex wave patterns.

Suppose the surface, which corresponds to the reaction–diffusion domain, is a rectangle. As
mentioned, if the surface is very small, it cannot have any spatial pattern: a minimum size is there-
fore needed to exhibit spatial heterogeneity. As the size of the rectangle is increased, a series of
increasingly complex spatial patterns emerge. The concept behind the model is that the simulated
spatial patterns solutions of a reaction–diffusion mechanism reflect the final morphogen melanin
landscape (Murray, 1981a,b, 1989, 2002) observed on animal coats. With this scenario, the cells
react to a given level in morphogen concentration, thus producing melanin (or rather becoming
melanocytes – cells that produce melanin). In the figures, the dark regions represent high levels of
morphogen concentration. It should be emphasised that this model is a hypothetical one which has
not been verified experimentally but rather circumstantial. The main purpose is to show how scale
and shape play major roles in animal coat patterns as it must in other developmental processes.

An example of how the geometry constrains the possible pattern modes is when the domain is so
narrow that only simple, essentially one-dimensional, modes can exist. Two-dimensional patterns
require the domain to have enough breadth as well as length. Consider a tapering cylinder. If the
radius at one end is large enough, two-dimensional patterns can exist on the surface. So, such a taper-
ing cylinder can exhibit a gradation from a two-dimensional pattern to simple stripes as in Fig. 1.
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Fig. 1: Examples of a developmental constraint. Spotted animals can have striped tails but not the
other way round. From left to right are typical examples of the tail of the leopard, the cheetah and
the genet together with the solutions from a reaction–diffusion system which can generate steady-
state spatial patterns. The geometry and scale when the pattern mechanism is activated play crucial
roles in the resulting coat patterns. Dark regions represent areas of high morphogen concentration.
(Tail art work by Patricia Wynne, www.patriciawynne.com).

Fig. 2: Geoffrey’s cat ((Leopardus geoffroyi). An example of the developmental constraint described
in Fig.1. (Photo credit: Charles Barilleaux/Wikimedia Commons)).

www.patriciawynne.com


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 743 #61

After Turing – The Birth and Growth of Interdisciplinary Mathematics and Biology 743

In the calculations, a set of reaction and diffusion parameters were chosen which could produce
a diffusion-driven instability and kept them fixed for all the calculations. Only the scale and geome-
try of the domain were varied. The resulting patterns are colored dark and light in regions where the
concentration of one of the morphogens is greater than or less than the concentration in the homo-
geneous steady state. Even with such limitations on the parameters, the wealth of possible patterns
is remarkable.

The solutions of the reaction–diffusion system in domains shown in Fig. 1 were first computed.
These domains all taper as shown. This shows that the conical domain mandates that it is not pos-
sible to have a tail with spots at its tip and stripes at its base, but only the converse: Fig. 1 shows
some examples of specific animal tails. This is a genuine example of a developmental constraint.
Cheetahs are prime examples of this, as well as other spotted animals. Geoffrey’s cat (Leopardus
geoffroyi) (see Fig. 2), named after Geoffroy Saint-Hilaire who travelled extensively in the south
and east of South America, the habitat of this animal is a less well-known example of a spotted
cat on which both the tail and the legs exhibit the developmental constraint. If the threshold level
of morphogen is different, a different but related pattern can develop. In this way quite different,
but globally similar, patterns can be formed and could be the explanation for the different types of
patterns on different species of the same animal genre, such as the giraffe (see Fig. 7).

Scapular
stripes

(a) (b) (c)

(d) (e) (f)

Fig. 3: (a) Typical scapular stripe pattern on a zebra (Equus burchelli) with (b) the pattern obtained
from the same reaction–diffusion system used in Fig. 1 with the same parameters. (c) is a typical
foreleg-body pattern in the zebra. (d) is a schematic dorsal striping on a 21-day embryo of Equus
burchelli: the stripes are approximately 0.4 mm apart while (e) shows the effect on the pattern of
approximately 3–4 day growth in which the stripe deformation is associated with a typical Equus
burchelli as in Fig. 4(a). (f) This shows more typical stripe spacing associated with a 3-week old
embryo of the Grevy zebra (Equus grevyi) which result in typical striping as in the herd photo in
Fig. 4(b).

The case of the zebra exhibits another aspect. The early embryo of the zebra is, although curved,
approximately linear and so stripes are formed along it as schematically shown in Fig. 3(d)–(f). The
legs are also narrow and linear appendages and again the typical markings are stripes. What was
encouraging for the hypothesis was the patterns obtained when the domain of simulation involved
two linear stripe-sustaining domains at right angles to each other. The calculated patterns are shown
in Fig. 3(b), while Fig. 3(c) is a photograph of typical zebra patterns: note the scapular stripe pattern
at the junction of the body and foreleg. It is possible to quantify the number of stripes necessary at
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the early embryonic stage and also their spacing. Further details are given in the study by Murray
(1989, 2002). Figure 4a and b are photographs of typical patterning on two species of zebra.

(a)

(b)

Fig. 4: (a) Photograph of a female plains zebra and its foal. Note the scapular stripes at the foreleg-
body junction and the lack of them on the back legs. This is indicated by the initial elongation in
stripe patterns in the embryo as shown in Fig. 3e. (b) Photograph of a herd of Grevy zebras in which
the scapular stripes are evident in all four legs and are closer together. (Photographs courtesy of
Professor Daniel Rubenstein)

The pattern formation mechanism for coat patterns is activated at some specific time in the
embryo’s development. There are minor variations in the timing and certainly small random vari-
ations in the initial morphogen concentrations. As a result, it is clear why the coat patterns on an
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animal are unique to that animal. It is similar in concept to the uniqueness of human fingerprints
(Murray, 1989, 2002). The uniqueness of patterns is clear in the photos in Fig. 4. Such small ran-
dom parameter and timing variations, however, do not explain the occasional unusual aberrations
observed, such as the case of a black zebra with white stripes photographed in the Kruger National
Park in 1967 or the black sheep with white stripes (Murray, 2002). Aberrations in cheetah patterns
are more common, resulting in one case in the erroneous conclusion that it was a new species with
a name associated with the scientist who first saw it.

Fig. 5: These show the result of numerical simulations of the reaction–diffusion model proposed
for the generation of coat markings on animals; it is the same mechanism used in Figs 1 and 3.
The model parameters were also the same; only the scale parameter was varied. As before the dark
regions represent high levels of morphogen concentration. The domain sizes have been reduced so
as to fit in a single figure, but in the simulations, there was a scale difference of 1000 between the
smallest and the largest figure. The interpretation is that if the animal skin size is too small when the
patterning mechanism is activated, as in the mouse, or too large, as in the hippopotamus and ele-
phant, then no pattern will be formed and these animals are generally uniform in colour. In between,
there is a progressively more complex pattern as the size increases; the first two bifurcations are
illustrated in Fig. 6 with the largest animals still showing coat pattern in Fig. 7.

Scale plays a crucial role in the type of pattern that can be generated. Incorporating scale showed
that if the animal is too small when the patterning mechanism is activated (as in very small animals)
or too large (as in the hippopotamus and elephant), then no distinct pattern will be formed. Figure 5
schematically illustrates these scale aspects. The idealised animal skin domains have been reduced
to fit in a single figure. In the model simulations, there is a scale difference of 1000 between the
smallest and the largest figure.
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(a)

(b)

Fig. 6: Photographs of animals which exhibit initial bifurcating patterns: (a) Valais Blackneck goat
(Photograph by BS Thurner Hof, Wikimedia Commons); (b) Belted Galloway cows (Photograph
courtesy of Allan Wright).

In a recent interesting paper, Allen et al. (2011) point out that an understanding of the diversity
of animal coat patterns requires an understanding of both the mechanisms that create them and their
adaptive value. Among other things, they discuss the advantages of specific patterns in different
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environments. They use a reaction–diffusion model, but their conclusions are general and do not
rely on specific reaction–diffusion models. They convincingly show how different marking relate
to specific natural environments for the specific felids.

(a)

(b)

(f)

(g)(e)

(d)(c)

1 cm

Fig. 7: (a) A typical giraffe embryo of about 35–45 days. We anticipate the pattern has been laid
down by this time although the actual melanisation will not take place until very much later.
(b) Typical neck markings on the reticulated giraffe (Giraffa camelopardalis reticulata). (c)–(e)
Tracings of giraffe trunk spots of Giraffa camelopardalis. (c) Giraffa rothschildi, (d) Giraffa retic-
ulata and (e) Giraffa tippelskirchi. (f) Spatial patterns obtained from the model reaction–diffusion
mechanism. (g) Spatial patterns obtained from the same model reaction–diffusion mechanism but
with a lower threshold of morphogen for cell differentiation into melancytes than that in (f) (see
Murray (1981a,b, 1989, 2002) for more details).

3. Experimentally verified prediction of a reaction–diffusion
pattern formation model and resolution of a controversy

Reaction–diffusion models have now been applied to a vast array of patterning problems in biology
such as snake skin patterns, tooth formation in crocodilia, butterfly wing patterns and many many
others: see Murray (1989, 2002) for numerous examples and a review of the literature. There is an
interesting study by Painter et al. (1999) on the stripes on zebra fish (Pomcanthus circulates) that
incorporates the effect of growth on the patterns obtained. They include chemotaxis in their model.
This is where there is cell movement up a chemical concentration gradient a crucial aspect of the
slime mold, Dictyostelium, aggregation. There are other interesting papers on the temporal growth
and variation in the stripes formation on this fish, for example, by Kondo et al. (2009): see other
references in their paper. They importantly relate their theory to specific experiments. Other articles
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such as that done by Nijhout et al. (2003) discuss butterfly wing patterns, the model results of which
are also related to experiment. Travelling stripes on the skin of a mutant mouse are discussed the
study by Suzuki et al. (2003) and Maini (2003). Genuinely, practical applications of modelling are
now the norm in several large research groups such as the Center for Mathematical Biology in
Oxford and the Department of Ecology and Evolutionary Biology in Princeton, both of which are
particularly outstanding.

One of the major problems with much of the reaction–diffusion modelling research in biological
pattern formation up to the mid-1990s is that it was difficult to carry out experimental verification
or otherwise since, among other things, the morphogens involved were unknown and genetics was
a fast growing field in which a widespread belief, among geneticists, was that genes did everything.
Mechanisms, however, are needed even though they are controlled by genes. Unlike many of the
patterning problems studied up to the late 1980s and early 1990s, little was done to try and model
the effect of embryonic growth on the patterning process. The above mentioned works on zebra fish
and mice are important examples which show that when growth and pattern formation processes
are occurring simultaneously it can explain hitherto un-understood phenomena. Growth plays a
crucial role.

(a)

(b)

(c)

Fig. 8: Typical stripe pattern on an alligator hatchling. (a) Alligator embryo around 21 day of
gestation, approximately when the stripe pattern is laid down: it is schematically shown in (b).
(c) This embryo is around 51–60 days of gestation and from head to the bend in the tail is 8 mm.
(Photographs courtesy of Professor Mark W.J. Ferguson)

A controversy arose associated with the number of stripes on alligators. It was proposed that
genes controlled the number of stripes whereas developmental biologists said they were not specif-
ically involved but that it was the developmental process and temperature that determined the
number. The issue was resolved using a reaction–diffusion mechanism Deeming and Ferguson
(1989c); Murray et al. (1990) suggested specific detailed experiments. Males in general have one
more stripe than females and geneticists insisted this was controlled by genes although no specific
gene was suggested or found. The alligator embryo is a particularly convenient embryo to study and
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manipulate since development takes place in the egg external to the adult. Ferguson and his coau-
thors (Deeming and Ferguson, 1989c; Murray et al., 1990, see also Section 8) studied this stripe
patterning on alligators and their model suggested specific experiments at different stages of the
embryo’s development that subsequently confirmed their theoretical predictions that genes did not
control the number. Figure 8(c) shows a typical embryo. There is generally 20 stripes on the female
and 21 on the male.

In regard to spatial pattern, which only shows up at a later stage, we often do not know what
the actual mechanism is in the developmental process. A major drawback is that we also often do
not know when in development the pattern generating mechanism is operative; we only observe
the results. Because of the relative ease of embryonic manipulation and reliability of growth data
obtainable with alligator embryos, Deeming and Ferguson (1989c) and Murray et al. (1990) consid-
ered the stripe patterning on the alligator to try and determine the time of initiation of the patterning
mechanism and to quantify the effect of size on the stripe pigmentation pattern. It is in part their
work that we describe here. The theory (Murray et al., 1990) suggested specific experiments (Deem-
ing and Ferguson, 1989c; Murray et al., 1990) to resolve the question in development, namely the
role of genetics in pattern determination, as it applies to the stripe pattern formation on alligators. As
mentioned, males generally have one more stripe than females. What they showed was that genetics
does not play a role in the detailed patterning mechanism.

A major attribute of the crocodilia is that incubation temperature determines sex (Deeming and
Ferguson, 1989e,c; Murray et al., 1990). Females come from eggs incubated at lower temperatures,
less than approximately 32

◦

C, and males at temperatures greater than approximately 32
◦

C. Females
at 30

◦

C have fewer white stripes than males, incubated from eggs incubated at 33
◦

C. During devel-
opment, the pattern is first apparent at approximately 41–45 days of incubation. The gestation period
is from 65 to 70 days. The optimal temperature for both females and males is in the region of 32

◦

C.
To discover a real biological pattern formation mechanism from experiment, it is essential to

know when (and of course where) during development to look for it: it is too late after we see
the pattern. Murray et al. (1990) counted the number of white stripes along the dorsal (top) side
of alligator hatchlings, from the nape of the neck to the tip of the tail. The number of stripes on
the body (nape to rump) and on the tail (rump to tail tip) was recorded together with the colour
of the tail tip. The total length of the animal, the nape–rump length and rump–tail tip length were
also measured to the nearest 0.1 mm at various times during development. Hatchlings from two
incubation temperatures, 30

◦

C and 33
◦

C (which resulted respectively in 100% female and 100%
male hatchlings), were examined (these were identical animals to those examined by Deeming and
Ferguson Deeming and Ferguson (1989c)).

To investigate the effects of sex on pigmentation pattern, specifically the number of stripes,
hatchlings from eggs of a pulsed ‘shift twice’ experiment (Deeming and Ferguson, 1989c) were
analysed. In these ‘shift twice’ experiments, eggs were incubated at 33

◦

C, except for days 7 to
14 when they were incubated at 30

◦

C. This incubation treatment produced 23 male and 5 female
hatchlings despite the male-inducing temperature of 33

◦

C for the rest of the incubation (Murray
et al., 1990). The fact that there were some females is that sometime during this time period and
with this temperature the sex was determined to be female.

In a second experiment various measurements of embryos, at 30
◦

C and 33
◦

C, were taken from
days 10 to 50 of incubation. These included total length of the animal, nape–rump length and rump–
tail tip length (Murray et al., 1990). The embryos were assigned a stage of development. Regression
estimates were calculated for embryo growth at the two temperatures. Measurements were also
taken for a third group of embryos incubated for 32, 36, 40, 44, 48 and 52 days. They found that
temperature clearly affected the pigmentation pattern of hatchling alligators (Murray et al., 1990).
There was a higher number of stripes on animals incubated at 33

◦

C compared to those incubated
at 30

◦

C. Those animals with a white tip to their tail had, on average, one more stripe than those
with a black tip at both temperatures. Generally, there are 8 stripes on the body and 12 on the tail.
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The number of stripes was not genetically sex linked: male hatchlings from eggs incubated at 33
◦

C
(30

◦

C between 7 and 14 days) had a mean number of stripes of 19.96 (+/− 1.15), whereas females
from the same treatment had 20.00 (+/− 0.71) stripes; see Murray et al. (1990) for experimental
details and data and the study by Murray (2002) for further and more detailed discussion.

4. Concluding discussion

This has been a very short and personal choice from the vast literature associated with reaction–
diffusion models of biological pattern formation. With most of the research conclusions speculative,
there was a decrease in the new applications of reaction–diffusion models in the 1980s since
demonstrating the existence of specific morphogens was proving elusive. This resulted in a new
mechanochemical theory of biological pattern and form (Murray, 1989, 2002; Murray et al., 1983;
Murray and Oster, 1984; Oster et al., 1983d), which is very briefly described below. From the mid-
1990s on, the practical use of reaction–diffusion models has again vastly increased as has research
and developments of the Murray–Oster mechanochemical theory of pattern formation.

Models and their biological predictions encouragingly have been a stimulant for guiding critical
experiments that have resulted in significant discoveries. This, of course, should be the aim of any
mathematical biology modelling, namely to stimulate in any way whatsoever any endeavour that
results in furthering our understanding of biology.

Although we now know a lot about pattern development, most mechanisms are still far from
being fully understood. We do not know, for example, the complete mechanisms of how cartilage
patterns in developing limbs are formed or the specialised structures in the skin such as feathers,
scales, glands and hairs, or the myriad of patterns on butterfly wings. The list is endless. Many of
the rich spectrum of patterns and structures observed in development evolve from a homogeneous
mass of cells that are orchestrated by genes that initiate and control the pattern formation mecha-
nisms: genes themselves are not involved in the actual physical process of pattern generation. The
basic philosophy behind practical modelling is to try to incorporate the physico-chemical events,
which from observation and experiment appear to be going on during development, within a model
mechanistic framework that can then be studied mathematically and, importantly, the results related
back to the biology. These morphogenetic models provide the embryologist with possible scenarios
as to how, and often when, pattern is laid down, how elements in the embryo might be created and
what constraints on possible patterns are imposed by different models.

These mechanochemical models – referred to as the Murray–Oster mechanochemical theory
– assume that cells move in response to external physical and chemical guidance cues and form
spatial patterns; see the books of Murray (1989, 2002) for a full discussion. Oster and Murray’s
mechanochemical approach directly brought forces and known measurable properties of biolog-
ical tissue into the morphogenetic pattern formation process. The mechanisms start with known
experimental facts about embryonic cells and tissue involved in development. They were used to
construct model mechanisms that reflect these physical facts. Basically, they took the view that
mechanical morphogenetic movements themselves create the pattern and form. The models try to
quantify the co-ordinated movement and patterning of populations of cells. The models are based on
the experimental observations that early embryonic dermal cells are capable of independent move-
ment and have the ability to generate traction forces through long finger-like protrusions called
filopodia. These can attach to adhesive sites on the tissue’s extracellular matrix (ECM) and thus
pull themselves along; at the same time, they deform the ECM. This cell traction is resisted by the
viscoelasticity of the ECM. The orchestration of the various physical effects can generate spatial
aggregation patterns in cell number density and the models show how the parameters affect the size
and shape of the patterns and when they can form. Here pattern formation and morphogenesis occur
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simultaneously as a single process. Work on these models have resulted in understanding and sug-
gesting numerous examples of developmental constraints that have been confirmed by experiment
and have suggested new avenues of research.

Both the mechanochemical models and reaction–diffusion models have been fruitfully applied
to a vast range of biological problems in morphogenesis and elsewhere, including feather primordia
arrangement, wound healing, wound scarring, cartilage formation, shell and mollusk patterns and
many others. It is almost certain that both mechanisms are involved in development and although
they are in a sense competing theories, I do not think of them as such but rather mechanisms that
complement each other. Perhaps, the most fundamental difference between the theories is that the
elements involved directly in the mechanical theory are all real biological quantities, namely cells,
tissue and the forces generated by the cells. All quantities involved are measurable. In the end,
however, a crucial aspect of these mechanisms is their ability to predict the subsequent form and
pattern that can be verified experimentally.

Modelling of pattern and form in biology and medicine has reached the stage where differ-
ent mechanisms can generate the observed biological patterns. The question is how to distinguish
between them so as to determine which may be the relevant mechanism in vivo. These different
models, and explanations for how pattern arises, have suggested different experiments that have
been shown to lead to a greater understanding of the biological processes involved. The final arbiter
of a model’s correctness and usefulness is not so much in what biological patterns it generates
(although a first necessary condition for any such model is that it must be able to produce biologi-
cally observed patterns), but in how consistent it appears in the light of subsequent experiments and
observations.

The explosion in biochemical techniques over the last several decades has led to a still larger
increase in our biological knowledge but has partially eclipsed the study of the intermediate mech-
anisms that translate gene influence into chemicals, into gradients and into pattern and form. As a
result, there is much still to be done in this area, both experimentally and theoretically.

We have clearly only scratched the surface of a huge, important and burgeoning interdisciplinary
world. Biology, in its broadest sense, is obviously the science of the foreseeable future. What is
clear is that the application of mathematical modelling in the biological, medical, ecological and
psychological sciences is going to play an increasingly important role in future major discoveries
and control strategies. There is an ever increasing number of areas where theoretical modelling is
important such as social behaviour, conservation in animals when their environment is changed
through human land use and so on. In the case of zebras, for example, Rubenstein (2010) shows, by
unravelling how species adapt to specific environmental changes, such as land use, why, of the two
types of zebra (shown in Fig. 1) the Grevy zebra is nearing extinction while the other has adapted
its behaviour to survive. Behavioral ecology is another important expanding area of research. How
bird flocks, schools of fish and so on reach community decisions is another exciting relatively new
area. In the case of how fish reach communal decisions see, for example, the work of Leonard et al.
(2010). Human social sciences is another area that will increasingly use mathematical modelling:
one example is in marital interaction and divorce prediction which has already proved extremely
useful in designing a new and successful scientific marital therapy (Murray, 1989). Another positive
development, although still, very much in its infancy and not generally accepted, is the realisation
that in medical training, medical trials and so on there is often a singular lack of true scientific
process: the controversy over the use of PSA (prostate-specific antigen) tests and prostate cancer
is one example (Swanson et al., 2001) and brain tumour is another (Murray, 2002). A crucially
important aspect of all this type of mathematical or theoretical biological research is its genuine
interdisciplinary content. There is no way mathematical modelling could solve major biological
problems on its own. On the other hand, it is highly unlikely that even a reasonably complete
understanding could come solely from experiment.
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Jäger, W., Murray, J.D. (Eds), Modelling of Patterns in Space and Time. In: Proceedings of a workshop of that

name in Heidelberg, 1983 Springer-Verlag, Heidelberg, 1984.
Kondo, S., Iwashita, M., Yamaguchi, M., 2009. How animals get their skin patterns: Fish pigment pattern as a

live Turing wave. Inst. J. Dev. Biol. 53, 851–856.
Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F. Zhang, F., 2010. Coordinated control of

an underwater glider fleet in an adaptive ocean sampling field experiment in monterey bay, J. Field Robot.
27, 718–740.

Levin, S.A., 1992. The problem of pattern and scale in ecology, Ecology 73, 1943–1967.
Maini, P.K., 2003. How the mouse got its stripes. Proc. Nat. Acad. Sci. USA 100, 9656–9657.
Maini, P.K., 2004. Using mathematical models to help understand biological pattern formation, C. R. Biol.

327, 225–234.
Maini, P.K., Othmer, H.G. (Eds.), 2001. Mathematical Models for Biological Pattern Formation Mathematics

and its Applications IMA, vol. 121. Springer, New York.
Mimura, M., Murray, J.D., 1978. Spatial structures in a model substrate-inhibition reaction diffusion system.

Z. Für. Naturforsch 33c, 580–586.
Murray, J.D., 1981. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199.
Murray, J.D., 1981. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat

markings. Phil. Trans. Roy. Soc. Lond. B 295, 473–496.
Murray, J.D., 1989. Mathematical Biology, Springer-Verlag, Heidelberg.
Murray, J.D., 1990. Turing’s theory of morphogenesis - its influence on modelling biological pattern and form.

Bull. Math. Biol. 52, 119–152.
Murray, J.D., 2003. Mathematical Biology, third ed, vol. 2. Mathematical Biology: I. An Introduction, Springer,

New York, 2002. Mathematical Biology: II. Spatial Models and Biomedical Applications. Springer, New
York, 2003.

Murray, J.D., Deeming, D.C., Ferguson, M.W.J., 1990. Size dependent pigmentation pattern formation in
embryos of Alligator mississippiensis: time of initiation of pattern generation mechanism. Proc. Roy. Soc.
Lond. B 239, 279–293.

Murray, J.D., Oster, G.F., Harris, A.K., 1983. A mechanical model for mesenchymal morphogenesis. J. Math.
Biol. 17, 125–129.

Murray, J.D., Oster, G.F., 1984. Generation of biological pattern and form. IMA J. Maths. Appl. Medic. Biol.
1, 51–75.

Nijhout, H. F., Maini, P. K., Madzvamuse, Wathen, A.J., Sekimura, T. Pigmentation pattern formation in
butterflies: experiments and models. , 2003. C. R. Biologies 326, 717–727.

Oster, G.F., Murray, J.D., Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol.
Exp. Morph. 78, 83–125.

Painter, K.J., Maini, P.K., Othmer, H.G., 1999. Stripe formation in juvenile Pomacanthus explained by a
generalized Turing mechanism with chemotaxis. Proc. Nat. Acad. Sci. USA 96, 5549–5554.

Prigogine, I., Nicolis, G., 1967. On symmetry-breaking instabilities in dissipative systems. J. Chem. Phys. 46,
3542–3551.

Rubenstein, D.I., 2010. Ecology, social behavior, and conservation in zebras. In: Macedo, R. (Ed.), Advances
in the Study Behavior: Behavioral Ecology of Tropical Animals, vol. 42. Elsevier Press, Oxford, UK,
pp. 231–258.
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Peter T. Saunders observes Alan Turing —

DEFEATING THE ARGUMENT
FROM DESIGN

1. Introduction

The obvious question to ask about ‘The Chemical Basis of Morphogenesis’ is why Turing took
up the problem at all. Pattern formation, interesting though it may be to biologists, does not look
like the sort of fundamental problem that Turing characteristically chose to devote his time and
effort to. The answer is simply that he saw it not as a mere puzzle but as a way of addressing what
he considered to be a crucial issue in biology. As he said to his student Robin Gandy, his aim was
to ‘defeat the argument from design’.

2. The argument from design

The argument from design is often put forward as scientific proof that God exists. As William Paley,
one of the late eighteenth century ‘natural theologians’ put it, if we were to find a watch, composed
as it is of a large number of parts, all fitting so precisely together and combining to keep accurate
time, then we would know that somewhere there must be a watchmaker. In the same way, if we look
at an organism, we cannot but conclude that there must be a Creator.

Turing was not, of course, setting out to refute Paley. That had been done almost a century
before by Charles Darwin, who had shown how natural selection could (not, by the way, that it does)
explain the evolution of organisms. Darwin had pointed out that while offspring generally resemble
their parents, variations do sometimes occur. Many of these are of no importance, some are harmful.
Even if the variations are completely random, however, a few are bound to be beneficial, that is,
they will increase the probability of survival and reproduction. The fortunate individuals in which
they occur will leave more offspring than the rest, and over many generations, the advantageous
variation will spread through the population, replacing the original trait.
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Note that for Darwin’s argument to defeat the natural theologians, it is sufficient that the varia-
tions can be random. It is not necessary that they must be. Darwin himself wrote, in the Origin of
Species:

“I have hitherto sometimes spoken as if the variations ... were due to chance. This, of course,
is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of
each particular variation.”

Contemporary evolutionists see things differently. To be sure, few if any of them claim explicitly
that the variations are totally random. On the contrary, when challenged they insist that when they
speak of ‘random’, they mean random with respect to the needs of the organism. They do, however,
carry out their research as though the variations were completely random. That leaves natural selec-
tion as the only non-random effect in evolution and so it is to natural selection alone that we are to
look for explanations.

Any heritable trait is to be explained by showing how it is or might be useful to the organism
and so would have been selected, that is to say by much the same sort of argument that was used
by the natural theologians to justify their belief in a beneficient God. Thus despite Darwin, the
argument from design persists. As Julian Huxley (1942) put it: ‘Paley redivivus, one might say,
but philosophically upside down, with Natural Selection replacing the Divine Artificer as the deus
ex machina’.

One of the most trenchant critics of this approach was the Scottish biologist D’Arcy Thompson.
In his classic, On Growth and Form, Thompson (1917) urged biologists to seek to explain form in
the same ways that physicists do:

“The waves of the sea, the little ripples on the shore, the sweeping curve of the sandy bay
between the headlands, the outline of the hills, the shape of the clouds, all these are so many riddles
of form, so many problems of morphology, and all of them the physicist can more or less easily
read and adequately solve; solving them by reference to their antecedent phenomena, and in the
material system of mechanical forces to which they belong and to which we interpret them as being
due. They have also, doubtless, their immanent teleological significance; but it is on another plane
of thought from the physicist’s that we contemplate their intrinsic harmony and perfection, and ‘see
that they are good’.

“Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is in
obedience to the laws of physics that their particles have been moved, moulded and conformed.
They are no exception to the rule 2εòς ὰεὶ γ εωµετ%ει̂. Their problems of form are in the first
instance mathematical problems, their problems of growth are essentially physical problems, and
the morphologist is, ipso facto, a student of physical science.”

Turing had read On Growth and Form many years before. It is one of only six references in the
paper, and we can hear an echo of the passage quoted above in the abstract:

‘The theory does not make any new hypotheses; it merely suggests that certain well-known
physical laws are sufficient to account for many of the facts’.

Turing did not expand on this remark; that was left to a non-technical paper that he was preparing
with the botanist C.W. Wardlaw but which was never published. Wardlaw, who had probably done
most of the actual writing, published a slightly different version (Wardlaw, 1953), but this does
not seem to have been noticed by most of those who were interested in ‘The Chemical Basis of
Morphogenesis’. As a result, while Turing’s work has been very influential in mathematical biology,
it has so far had little effect on the problem he was actually addressing.
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3. Defeating the argument from design

To illustrate how pattern and form can often be explained by the physical and chemical processes
that produce them, Turing turned to phyllotaxis, the arrangement of leaves on the stem of a plant.
This is a classic problem, and also one that he clearly expected to be able to solve with the tools
available at the time. Today, when almost everyone has access to sufficient computing power to
solve the reaction–diffusion equations numerically, we can find easier examples.

Think of a herd of Friesian cattle. They all have black and white coats with the colours in large
irregular patches. Each individual, however, has its own unique pattern; no two are identical.

It is easy to propose an adaptationist argument to account for this. Intra-species differences
in coat patterning must have evolved because of the selective advantage they give through ‘kin
recognition’ (Hepper, 1991). The idea is that it is important for animals to be able to distinguish their
close relatives from others of the same species so that they can favour them through kin selection
and also avoid inbreeding.

Turing’s work suggests another explanation. Murray (1982) has shown that the reaction–
diffusion model can generate quite realistic mammalian coat patterns. The bifurcation parameters
(two because the pattern is two dimensional) are the dimensions of the embryo at the time the pat-
tern is laid down. Domains that are approximately the same dimensions will have patterns of the
same general kind: solid colour, spots, stripes, large patches and so on. The details, however, are
very sensitive to the precise shape.

Now we would expect that within a species all embryos at the relevant stage will be similar in
size and shape but not precisely the same. Hence if the coat pattern is formed by a reaction–diffusion
mechanism, while every individual will have the same general sort of pattern, they should all differ
in the details. Which is precisely what we observe in many species, including of course Friesians. It
may well be that the animals find it useful to be able to tell their neighbours apart, but that is not at
all the same as saying that is why they all look slightly different from each other.

4. Conclusion

While Turing recognised that the interplay between reaction and diffusion was by no means the only
significant process in morphogenesis, he thought it was likely to be one of the most important. It
now appears that reaction–diffusion is not as common a mechanism in development as he thought.
But there are now other models of pattern formation and these make many of the same predictions.
Even the vibrations of a thin metal plate can produce patterns similar to those produced by reaction–
diffusion (Xu et al., 1983).

Thus, the argument of the previous section does not depend crucially on the assumption that the
coat patterns are formed through the reaction–diffusion mechanism; it holds for others as well. What
we would like to know, of course, is how generic the result is, i.e., what is the class of mechanisms
for which it is valid. For this we would need a classification of the kind that Thom had in mind in
what he called generalised catastrophes (Thom, 1972). Even without that, however, ‘The Chemical
Basis of Morphogenesis’ has led to research that can contribute towards Turing’s aim of defeating
the argument from design. It is just taking longer than he anticipated.
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Stephen Wolfram fills out the computational view of —

THE MECHANISMS OF BIOLOGY

In the comparatively sparse history of theoretical biology, this paper stands as something of a mile-
stone. For it provided, for essentially the first time, a potentially mechanistic mathematical model for
features of biological morphogenesis. And the notion of reaction–diffusion equations that it intro-
duced has become influential and widespread in biology and elsewhere – though the paper itself
languished in almost complete obscurity into well into the 1980s.

Viewed from a modern perspective, however, there is a certain irony to the paper. Did Tur-
ing even think about Turing machines when he tried to make a model for how biological systems
operate? It seems not. For the main thrust of this paper is precisely to use ideas from traditional
continuum physics, and apply them to biological growth. Turing did not know about DNA and dig-
ital genomic information. But he even chose to ignore the discrete cellular structure of biological
organisms. And instead treated biological systems just like pieces of bulk physical material.

As it turns out, he was partly correct. And indeed over the past 25 years his concept of mor-
phogens has proved to be at least part of the story of biological growth and pattern formation. But
what Turing missed was the incredible richness that thinking in terms of computational processes
brings to studying biological phenomena. In the paper, Turing actually simulated his reaction–
diffusion equations using an early electronic computer. But he viewed the mathematical equations
as the true model; the computation was just an approximation, found with all sorts of effort of
numerical analysis.

But are equations ultimately the appropriate raw material for modelling biological processes?
From my point of view, equations represent just a tiny corner of the possible types of underlying
rules by which a system may operate. And in biology, there are plenty of other types of rules that
increasingly seem important.

Cellular automata are an example that I happen to have studied extensively. Each cell in a cellular
automaton may represent many biological cells. But the point is that there is a rule that governs the
behaviour of these cells and that can be thought of as corresponding to a simple program. When one
looks at different simple programs – in the computational universe of all possibilities – there is great
diversity in the behaviour one sees. But a remarkable observation is that this diversity seems not dis-
similar to the kind of diversity that we observe in biological systems. And in cases such as mollusc
shell patterns I have managed to show that there is indeed a detailed correspondence between the
behaviour of possible cellular automaton programs and the diversity we actually observe in nature.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 757 #75

The Mechanisms of Biology 757
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Fig. 1: Examples of patterns produced by the evolution of each of the simplest possible symmetrical
one-dimensional cellular automaton rules, starting from a random initial condition.

The concept of Darwinian evolution might lead one to assume that whatever processes now give
rise to the forms we see in biological systems, they must have been carefully shaped by natural
selection.

But the surprising observation that I have made in at least several cases (Wolfram, 2002) is
that instead – in the computational universe of all possible underlying rules – it seems that biology
in effect just samples essentially all possibilities, distributing the results among the species of the
Earth.

In the abstract, one might think that there could never be any real theory in biology, and that
instead all features of current organisms must just be the result of endless historical accidents.
But instead it increasingly seems that just by knowing the abstract structure of the computational
universe, one can understand the different forms that occur across the biological world.

Darwinian evolution tends to imagine continuous variations from one form to another, and pre-
dicts various ‘missing links’ that interpolate between forms. Studying the computational universe
gives much more surprising predictions about the diversity of possible forms that can occur. Since
Turing’s time, most of biological science has shifted from studies of overall forms and behaviour of
organisms to a much more molecular scale. Reaction-diffusion processes are, if anything, potentially
more directly relevant at this scale than at larger scales.

But in a sense such processes end up only being the lowest level primitives; there is more to the
whole architecture of how the systems operate. There is much that we still do not know about that
architecture. Genomics and digital information is one key element.
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Quite possibly the various features of simple programs are another. The genome, in a sense,
provides all sorts of simple programs. But we need to understand the overall characteristics of these
programs, and how they lead to what we actually see in biology. Once we truly understand that, it
will dramatically change medicine – and likely also much of our traditional human condition.

Fig. 2: Typical examples of pigmentation patterns on mollusc shells. Shell patterns show a detailed
correspondence with the behaviour of cellular automata.

Morphogens and reaction–diffusion equations will be a small part of what is involved. But
a much larger part will come from Turing’s most important legacy: the concept of universal
computation.

Turing machines are not, in detail, likely to be good models of biological processes – though
ribosomes and the like on strands of RNA do seem awfully reminiscent of Turing machines. But
the concept of computation is a central one for the future of biology.

Whereas it was the concept of mathematical equations that really launched theoretical physics
three centuries ago, it is, I think, the concept of computation that can really launch theoretical
biology today.
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K. Vela Velupillai connects —

FOUR TRADITIONS OF EMERGENCE:
MORPHOGENESIS, ULAM-VON NEUMANN

CELLULAR AUTOMATA,
THE FERMI-PASTA-ULAM PROBLEM, AND

BRITISH EMERGENTISM

The classic works by the trio of Mill (1890), Lewes (1891) and Lloyd Morgan (1927), together with
Broad (1929) and Alexander (1920), made up what has come to be called the ‘British Emergentist’
school. The concept of emergence came to have its current connotations as a result of these (and a
few other) clearly identifiable sequence of classic works by these pioneering British philosophers. A
representative sample of crucial definitions, in these classics, may provide a decent backdrop against
which to proceed. In particular, the one by Lewes, the man who introduced the word ‘emergent’,
from which Lloyd Morgan derived ‘emergence’:

“[T]here are laws which, like those of chemistry and physiology, owe their existence to
.. heteropathic laws. . . . The Laws of Life will never be deducible from the mere laws
of the ingredients, but the prodigiously complex Facts of Life may all be deducible from
comparatively simple laws of life;. . . ”
Mill (1890) Bk.III, Ch.VI, p.269; italics added.
“Thus, although each effect is the resultant of its components, the product of its factors, we
cannot always trace the steps of the process, so as to see in the product the mode of operation
of each factor. In this latter case, I propose to call the effect an emergent. It arises out of the
combined agencies, but in a form which does not display the agents in action.”
Lewes (1891) Problem V, Ch.III, p.368, italics added.
“The concept of emergence was dealt with .. by J.S.Mill in his Logic .. under the discussion
of ‘heteropathic laws’ in causation. The word ‘emergent’ as contrasted with ‘resultant,’ was
suggested by G.H.Lewes in his Problems of Life and Mind’. . . . . What makes emergents
emerge? .. What need [is there] for a directive Source of emergence. Why should it not pro-
ceed without one?”
?, pp. 2, 32; italics added.

The rise and fall of British Emergentism has been eloquently and almost persuasively argued in the
study by Brian McLaughlin (1992), basing himself on the emerging (sic!) codification of quantum
mechanics in the works of Heisenberg, Schrödinger, Dirac and Pauling, and on the philosophi-
cal critiques of the 1920s, launched primarily by Pepper (1926), Stace (1939) and Bayliss (1929).
Remarkably, it is possible, with a good dose of hindsight, to pinpoint the reason for McLaughlin’s
premature obituary of British Emergentism and, at the same time, link that failure with a prescient –
and typically penetrating, yet almost playfully formulated – observation by Alan Turing in his last
publication before a tragically truncated life came to an end.
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In what can only be called a moment of weakness, because Dirac, surely, is not capable of
carelessness or flippancy, one of the great founding fathers of modern quantum mechanics, slipped
badly in a pronouncement that was the fulcrum around which the premature obituary of British
Emergentism was proclaimed:

“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known1, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be solu-
ble. It therefore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features of
complex atomic systems without too much computation.”
Dirac (1929), p. 714; italics added.

Contrast this with Turing’s wonderfully laconic, yet eminently sensible precept (Turing, 1954, p. 9;
italics added):

“No mathematical method can be useful for any problem if it involves much calculation.”

It is precisely in this sense that Scerri (1994) – and in a series of perceptive writings on the failure
of reductionism, in general, and the untenability of McLaughlin’s thesis (Scerri and Lee McIntyre,
1997, Scerri, 2007) – has made his case against Dirac’s unfortunate claim. The British Emergentists
were prescient in their approach to the formalisation of emergence, coupled to the dialectic between
the simple and the complex, in a natural dynamic context. They rise and rise; there was never any
fall of the British Emergentisits!

Turing’s remarkable original work on The Chemical Basis of Morphogenesis was neither
inspired by, nor influenced any later allegiance to the British Emergentist’s tradition – such as
the influential experimental and theoretical neurological and neurophilosophical work of Nobel
Laureate, Roger Sperry. 2

On the other hand, the structure of the experimental framework Turing chose to construct was
uncannily similar to the one devised by Fermi, Pasta and Ulam (1955) although with different
purposes in mind. But there was – and there remains – a deeper affinity in that the violation of
the equipartition of energy principle that was observed in the Fermi–Pasta–Ulam simulation and
the symmetry breaking that is intrinsic to the dynamical system behaviour of Turing’s system of
reaction–diffusion equations.

Turing’s aim was to devise a mechanism by which a spatially homogeneous distribution of
chemicals – i.e., formless or patternless structure – could give rise to form or patterns via what has

1 This must rank with the celebrated but, mercifully, falsified prophetic pontifications by two other intellectual giants of
the 19th century: Lord Kelvin and John Stuart Mill. The former is reputed to have suggested, on the eve of the works
by Planck and Einstein, that all the problems of physics had been solved‘, except for just two anomalies: the Michelson-
Morley experiment, on the one hand, and Black Body radiation, on the other’! As for the great and saintly John Stuart
Mill, in what can only be called an unfortunate moment of weakness, he etched for posterity theese un-prophetic thoughts
(Mill, 1848, [1898], Bk. III, Ch. 1, p. 266; italics added):

“Happily, there is nothing in the laws of Value which remains for the present writer to clear up; the theory of the subject
is complete: the only difficulty to be overcome is that of so stating it as to solve by anticipation the chief perplexities
which occur in applying it: and to do this, some minuteness of exposition, and considerable demands on the patience of
the reader, are inevitable.”

2 See, in particular, Sperry’s outstanding Noble Prize Lecture, delivered on 8 December, 1981, on the nature of the
emergence of consciousness and its relation to brain processing.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/8 15:03 Page 761 #79

Four Traditions of Emergence 761

come to be called a Turing Bifurcation. A reaction–diffusion mechanism formalised as a (linear)
dynamical system and subject to what I have referred to, in other writings, as the linear mouse
theory of self-organisation. 3.

As young boy, Alan Turing won the Morcom science prize4 for his work on the study of ‘the
reaction between iodic acid and sulphur dioxide’ (cf., Hodges, 1983, p. 52; italic added). Indeed,
even as a 12-year-old boy, during Christmas holidays spent at the family villa in the Rue du Casino5,
Alan Turing had ‘heaved great quantities of sea-weed .. from the beach in order to extract a minute
amount of iodine’ (ibid, p. 18). It is, therefore, particularly satisfying to note that the kind of patterns
suggested by Turing’s theory of morphogenesis was first definitively established in iodine reactions,
in the work of Castets et al. (1990) and Ouyang and Swinney (1991). How much more serendipitous
could events be?

In this same vein, it is most satisfying to note the role the Turing Bifurcation played in the devel-
opment of the Brusselator and the work of the 1977 Chemistry Nobel Prize winner, Ilya Prigogine
(cf. Nicolis and Prigogine, 1977) on self-organisation in non-equilibrium systems. I have come to
try to characterise, at least for the purpose of classifying in some systematic way, the contributions
to emergence in terms of: (i) Novelty; (ii) Irreducibility; (iii) Unpredictability; (iv) Non-reductive
Physicalism; (v) Downward Causation.

These are the categories that played decisive roles in the emergence literature that originated
in the work of the British Emergentists. Perhaps the time is apposite for a reconsideration of the
philosophical underpinnings of Turing’s methodology for morphogenesis. If so, then it is the basis
in the work of the British Emergentists, and their above characterising categories, that one may find
the way forward. This will not be incongruent at all, given that Lloyd Morgon was, among other
things, also a zoologist, a pupil of T.H. Huxley and the man who coined the word Emergence in
his famous Gifford Lectures. Add to this the names of Sperry and Prigogine, and the trio of Fermi,
Pasta and Ulam and their experimental structure, and it would be a simple completion of an honour
roll when Turing’s name is added to the list – and this, too, on the basis of only one of his many
fundamental contributions.

I have also found it useful to utilise the following three precise notions for the classifying exer-
cise: Potential Surprise, Computation Universality, Mereological Confusion. In every one of the
five classifying categories and the three analytical notions used for the classifying exercise, I have
been inspired by some aspect of Turing’s work.

Above all, it is by now only too well known that von Neumann’s contribution – in his famous
joint work with Ulam – to the theory of self-reproducing automata, was almost wholly underpinned
by Turing’s theory of computation.

3 In typically playful fashion, he summarised the mathematical mechanism he sought (Turing, 1952, pp. 43–4):

“Unstable equilibrium is not . . . a condition which occurs very naturally. .. Since sytems tend to leave unstable
equilibria they cannot often be in them. Such equilibria can, however, occur naturally through a stable equi-
librium changing into an unstable one. For example, if a rod is hanging from a point a little above its centre
of gravity it will be in stable equilibrium. If, however, a mouse climbs up the rod the equilibrium eventually
becomes unstable and the rod starts to swing. . . . The system which was originally discussed . . . might be sup-
posed to correspond to the mouse somehow reaching the top of the pendulum without disaster, perhaps by falling
vertically on to it.”

4 Christopher Morcom was Alan’s dear friend during the very brief period they shared at Sherborne school and the
Morcom family, on the unfortunately early death of their son, had endowed, in memory of their son, ‘a science prize to
be awarded for work which included an element of originality’, (Hodges, op.cit., p. 51).
5 In Dinard, France.
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Gregory Chaitin takes the story forward —

FROM TURING TO METABIOLOGY AND
LIFE AS EVOLVING SOFTWARE

Having applied mathematical methods to the foundations of reason (mathematics) and to the
question of how we think, Turing obviously could not resist attempting to increase the scope of
mathematical methods in biology, a subject notably resistant to mathematical reasoning.

Newton taught us to use ordinary differential equations in physics, and Maxwell taught us to use
partial differential equations. Fisher–Wright–Haldane population genetics makes use of ordinary
differential equations, and Turing’s work on morphogenesis puts partial differential equations to
good use.

Unfortunately, like many pioneers, Turing himself was caught half-way between traditional con-
tinuous mathematics and the new world revealed by On Computable Numbers. Newton was much
more in the Middle Ages1 than the modern thinker he is portrayed as by Voltaire, and Darwin was
less of a Darwinian extremist than many of his determined followers. In a similar manner, Tur-
ing could not, dying as he did prematurely in 1954, barely after the work of Watson and Crick in
1953, appreciate the fact that DNA is a powerful digital programming language. Indeed, DNA is
presumably a universal programming language, a concept for which we are indebted to Turing.

As I have argued in my work on what I call metabiology, following Turing’s ideas (but not
his own work on biology) suggests modelling life as randomly evolving software, software that
describes a random walk of increasing fitness in program space. In this manner, we can discuss bio-
logical creativity, something that has gotten lost in the accounts of Darwinian evolution emphasising
competition and survival of the fittest.

Sir Ronald Fisher has been referred to as the greatest biologist of the twentieth century because
his population genetics gives a mathematical basis for Darwinian evolution. But by definition there
is no biological creativity in population genetics, since it deals with a fixed gene pool and merely
studies the changes in gene frequencies in response to selective pressures.

How then are we to understand mathematically biological creativity such as the invention of
the eye or the transition from unicellular to multicellular organisms? For that it is helpful to think
of DNA as randomly mutating computer software and to study the random evolution of artificial
software (computer programs) rather than natural software (DNA). In this manner, it is easy to
understand the absence of intermediate forms, the fact that ontogeny recapitulates phylogeny, and I
have recently even been able to prove that in such a simplified setting random mutations will drive
unlimited and unending biological creativity. I achieve this by forcing my organisms to work on
mathematical problems for which there are no general methods and unlimited, unending creativity
is essential.

Thus, my proposed new field of metabiology, which already has some mathematical successes
to its credit, deliberately mixes mathematical and biological creativity in order to enable us to prove

1 See John Maynard Keynes’ famous essay Newton, the Man on Newton as the last Babylonian magician.
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that evolution works. In my toy model of biology, the Against Method moral of the unsolvability of
the halting problem is used to drive evolution.

In fact, in one of the versions of metabiology, the organisms that rapidly evolve due to random
mutations are better and better approximations to the halting probability � – lower bounds in fact.
Indeed, all possible versions of the halting probability evolve in parallel. So random mutations
yield mathematical creativity; intelligence emerges from randomness. I suspect that this version of
metabiology may be the Platonic ideal of evolution that real, messy biological evolution can only
approximate asymptotically in the limit from below.

In another version of metabiology, I can show that hierarchical structure will rapidly emerge,
which is a conspicuous feature of actual biological organisms.

How would Turing view these developments? This metabiological work on life as evolving
software views organisms as machines in the spirit of Turing’s paper in MIND, but metabiology
simultaneously takes advantage of the unsolvability of the halting problem from On Computable
Numbers to show that evolution is unending. In a sense, we simultaneously use and refute Turing
– and we ‘refute’ him by using his own methods, so that it is clear that the contradictory spirit of
Turing very much lives on in this metabiological work.2

2 For more on metabiology see: ‘Metaphysics, metamathematics and metabiology’ in H. Zenil, Randomness Through
Computation, World Scientific, 2011, pp. 93–103; ‘Life as evolving software’, in H. Zenil, A Computable Universe,
World Scientific, to appear; and G. Chaitin, Proving Darwin: Making Biology Mathematical, Pantheon, to appear.
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I. Geometrical and Descriptive Phyllotaxis
II. Chemical Theory of Morphogenesis

III. (Bernard Richards) A Solution of the Morphogenical
Equations for the Case of Spherical Symmetry

(Prepared after December 1954 by N. E. Hoskin and B. Richards, using
manuscripts of Turing and notes from his lectures in Manchester)

Bernard Richards recalls Alan Turing and —

RADIOLARIA: THE RESULT OF

MORPHOGENESIS

1. Introduction

To some it might seem an anomaly that two topics, namely high-speed electronic computers and tiny
sea creatures, at opposite ends of the scientific spectrum, can be connected by computer science.

The late Dr. Alan Turing was well known in the UK for his work on cryptography and ‘Think-
ing Machines’ but his work in the field of botany and biology is less well-known. What was this
latter work? He was able to take further the work of D’Arcy Thompson ‘On Growth and Form’
(Thompson, 1917), and to offer explanations as to why certain visual appearances were perceived
in biological creatures. In 1952 he wrote a now-famous paper entitled ‘The Chemical Basis of
Morphogenesis’ (Turing, 1952). He was aware of some earlier work by Waddington (1940), who
invented the word ‘evocators’, but Turing, wishing to go further, invented the word ‘Morphogens’.
He proposed that growth in two and three dimensions could be explained by his theories. In two
dimensions he explained the black-and-white dappling on cows, and in three dimensions the shapes
of some plants, e.g. the woodruff (Asperula odorata) and some creatures, e.g. the hydra. He pro-
posed that the many shapes observed in minute sea creatures, the species ‘Radiolaria’, could be
explained by postulating the diffusion of saline into a growing spherical body resulting in tentacles
(‘spines’) growing out at equilibrium. The present author took this postulate of Turing’s and set out
to prove, or otherwise, the validity of this theory by solving the differential diffusion equations and
examining the resultant observable shapes.

2. Radiolaria

Radiolaria are saltwater marine creatures whose unicellular body consists of two main portions
supported by a membrane: an inner central capsule and an outer surface in contact with the outside

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00027-8
c© 2013 Elsevier Inc. All rights reserved.

765

http://dx.doi.org/10.1016/B978-0-12-386980-7.00027-8


To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/11 17:48 Page 766 #2

766 Part IV

world for feeding and protection. Radiolaria are found in all seas and in all climatic zones. The
sphere measures about 2 mm in diameter.

During the development from the spherical newborn, ‘spines’ (a kind of spike) develop from the
surface in pre-determined positions. These resulting shapes give rise to six sub-species of Radiolaria.
The spines are usually of a length equal to the radius of the main spherical body and are to be found
symmetrically placed over the sphere. For only two spines these are placed at the north and south
poles, see Fig. 1. There are no three-, four-, or five spine versions. For six spines, the spines are
placed 90◦apart, i.e. two at the poles and four around the equator, see Fig. 2. Figure 3 shows another
species with six spines. Figure 4 shows a species with 12 spines, whilst Figure 5 shows a specimen
with 20 spines. The general shapes taken by these species resemble the regular mathematical solids.

Thus, Fig. 1 has two spines, one at the north pole and one at the south pole. Figure 2 shows
a version with six spines. Figure 3 shows another species with six spines, whereas Fig. 4 has 12
spines. Figure 5 has 20 spines, as does Fig. 6.

Fig. 1: Cromyatractus tetracelyphus with two spines.
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Fig. 2: Circopus sexfurcus with six spines.

Fig. 3: Circopurus octahedrus with six spines and eight faces.

Fig. 4: Circogonia Icosahedra with 12 spines and 20 faces.
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Fig. 5: Circorrhegma Dodecahedra with 20 spines and 12 faces.

Fig. 6: Cannocapsa Stethoscopium with 20 spines.

3. The differential equation

One can introduce U, a substance which represents a ‘growth dimension’ e.g. the radius of the
sphere, and V an alien invader-chemical which is anti-growth, a sort of poisoning factor. One
then sets up the diffusion equations for the state of affairs in the single cell as regards these two
substances. It is assumed that V will diffuse uniformly into the cell.

The starting point is therefore the two equations:
dU

dt
=8(∇2)U+GU2

−HUV (3.1)

V = (Ũ2), the mean value over the sphere. (3.2)
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It can be shown that the solution U must be a linear combination of different eigenfunctions, it
is therefore appropriate to assume that the solution is of the form:

U(θ ,ϕ, t)=
∑

Sm(t)Pn
m(cosθ)eimϕ (3.3)

with U real and the functions Pn
m(cos θ) being normalised Legendre Associated Functions. These

functions satisfy the relation

1

4π

∫ ∫
Pn

r(cosθ)Pn
s(cosθ)dS= {1 for r = s, and 0 for r 6= s}

It is possible to evaluate V from (3.2) above by integration since

V =
1

4π

∫ ∫
U2dS.

Now in Eq. (3.1), the function8(∇2) can be replaced by a constant I, since for spherical surface
harmonics,

∇
2
=−n(n+ 1)/R2

So Eq. (3.1) becomes

dU

dt
= IU+GU−HUV (3.4)

To proceed one has to introduce the Legendre Functions Pn
m(µ), where µ= cosθ

and the variables Ln
p,q,r
= 1/4π

∫ ∫
Pn

p(µ)Pn
q(µ)Pn

r(µ)ei(p+q+r)ϕdµdϕ.

The mathematics hereafter becomes very complicated and very long. It can be found in great
detail in some 30 pages in the thesis ‘Morphogenesis of Radiolaria’, written by the author of this
contribution, and in a more concise form in the Morphogenesis volume of the Collected Works
edited by P.T. Saunders (1992).

4. The solutions of the equations

The outcome is that several sets of simultaneous equations are derived depending on the parameter
‘n’ as used above. These in turn allow the radius U to be calculated.

The case n= 2

The solution is

U = (7/4)(3 cos2 θ − 1)

V = 49/20.
(4.1)

This is a prolate spheroid whose major axis coincides with the direction θ = 0, and it resembles
Fig. 1 above in a small way. The radius at the two poles is therefore 7/2. This is the only solution
for the parameter n taking the value 2.

The case n= 4

Here there are five simultaneous equations in the Sm to solve with coefficients involving the Legen-
dre Functions as in (3.3). There is a solution involving S0 and S4 being non-zero. These give rise to
a solution:

U = 143/1728
[
6(35µ4

− 30µ2
+ 3)+ 30(1−µ2)2 cos4ϕ

]
. (4.2)
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This is a spheroid with spines at the two poles and four spines equidistant around the equator, the
radius (length) of the polar spines being the same as those on the equator (µ= 0,cosϕ = 1). The
spine length, measured from the centre of the sphere, is 143/36.

The case n= 6

As before, this needs sets of seven simultaneous equations to be solved. One solution takes the form:

U =
(

323
√

13/1300
)[

P6
9(µ)+

(
323
√

1001/14300
)

P6
5(µ)cos5ϕ

]
. (4.3)

It is almost impossible to conjecture what three-dimensional shape this represents. Using the
computer (see below) reveals that it is a regular Icosahedron with 12 equal spines separated by the
correct angular distance of 62◦ 24′, two of the spines being at the poles.

The case n= 8

This time there are nine simultaneous equations to solve but, as before, one can choose some of the
Si to be zero giving rise to many solutions of the simultaneous equations. One of these shapes will
resemble the Dodecahedron analogous to Fig. 6.

5. The part played by the computer

Given a solution for U, e.g., as in Eqs (4.2) and (4.3), it is necessary to discover what three-
dimensional shape this produces. This is not an easy thing to do when one not only needs to know
where the spines are on the sphere but also the diameter of the sphere and the length of the spines
which protrude therefrom. Here the computer played a role.

The computer involved, the Ferranti MARK I, had no visual display output facilities, but only
a very primitive line-printer restricted to numerical and alphabetic characters. So it was decided to
use that printer to print contour maps of the surface. On an A4 page was displayed an array with
values of θ talking values from 0◦ to 90◦, and ϕ taking values 0◦ to 350◦, whilst on the second
page, the values of θ from 90◦ to 180◦ were shown. The pages were covered in the teleprinter
symbols, each one representing a distance from the centre (a height) on a scale of from zero to
31. Thus the whole surface of the sphere was covered. The writer was then able to draw on these
sheets the contour lines, locate the spines and record their lengths. The computer outputs confirmed
the statements made for n= 2 and 4 above, and also identified the icosahedra and dodecahedra
solutions.

6. Comparisons with the marine species Radiolaria

As has been said above, the solution of the differential equations produced a class of solutions. These
were evaluated in three dimensions and the corresponding shapes were set against their matches
from the species Radiolaria. The matches were very good. Figure 7 shows the solution for n= 4,
which is Eq. (4.2), superimposed upon the six-spined Circopus Sexfurcus, this having spines at the
two poles and four around the equator.

Figure 8 shows the solution for n = 8, Eq. (4.3), the computer solution being superimposed on
Circogonia Icosahedre. This latter has twelve spines equidistantly spread over its surface.
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Fig. 7: The computer solution superimposed on Circopus Sexfurcus.

Fig. 8: The computer solution superimposed on Circogonia Icosahedra.

7. Conclusion

This work seems to give credence to Turing’s ideas of Morphogenesis, and in particular that the
external shapes in the species Radiolaria could be explained by diffusion. Whilst it is a triumph for
Turing’s theory, it is very sad that he did not see the results detailed above as he died before they
were obtained. Nevertheless, they remain as a tribute to his genius, foresight and love of nature.

References

Richards, B., 1954. The Morphogenesis of Radiolaria, M.Sc. Thesis, University of Manchester.
Saunders, P.T. (ed.), 1992. Collected Works of A.M. Turing: Morphogenesis, North Holland Press, London.
Thompson, D’A. W., 1917. On Growth and Form, Cambridge University Press, Cambridge.
Turing, A.M., 1952. The chemical basis of morphogenesis. Trans. Royal Soc. 237 (641), 37–72.
Waddington, C.H., 1940. Organisers and Genes, Cambridge University Press, Cambridge.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/11 17:48 Page 772 #8

772 Part IV

Photograph of a sunflower (from the Turing archive) [see p. 48 of Collected Works, V.3].
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THE MORPHOGEN THEORY OF
PHYLLOTAXIS1

Part I. Geometrical and Descriptive Phyllotaxis

Phyllotaxis deals with the arrangements of leaves on the stems of plants. By a liberal interpretation
of the terms “leaf” and “stem” it deals also with the arrangements of florets in a head (e.g. in a
sunflower) and with the leaf primordia near the growing point of a bud. All these kinds of patterns
will be discussed in the present paper. In the first part, which deals with some of the more superficial
problems, the leaves are usually treated as if they were geometrical points distributed on a cylinder.
Such patterns on cylinders are appropriate for the description of the mature structures, but their use
may be criticised on the grounds that the patterns of real importance are not those formed by the
mature structures, but of the leaf primordia. I would indeed go further and say that we should not
consider even the primordia but certain patterns of concentration of chemical substances (“mor-
phogens”) which are present before there is any visible growth of primordia at all. This criticism is
entirely valid, and the second part of the paper takes account of it. Nevertheless, a consideration of
the patterns formed by the mature structures is enormously helpful, for a number of reasons.

(1) Suitable specimens of stems with leaves, large and robust enough for convenient examination,
can be found almost anywhere, whereas the primordia can only be observed with the aid of a
microscope and inconvenient techniques.

(2) The leaf patterns on a mature cylindrical stem are mathematically simpler and more easily
intelligible than those near the growing point.

(3) In order to describe the patterns near the growing point satisfactorily it would in any case be
necessary to carry through the mathematical theory of cylindrical patterns such as those formed
by the mature structures, at least as an abstract discipline.

The method of exposition will be to alternate sections of mathematical theory with sections
which describe facts about plants. The purpose of the theory may be lost if it is all given at once,
and before any descriptive matter. On the other hand, if an attempt is made to describe first and
theorise later the necessary terminology is lacking.

1For the citations below, see the bibliography from the Morphogenesis volume of the Collected Works of A. M. Turing,
pp.125–127, reproduced on pp. 832–833 below.
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Diagram of a sunflower with the florets numbered (from the Turing archive).
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1. A description of certain leaf distribution patterns

Plate 1 shows a portion of a branch of Pinus with a very regular arrangement of scales which at one
time had supported leaves. The leaves have been removed to enable the patterns to be seen more

Plate 1: A branch of Pinus. This photograph does not have the precise regularity described in the
text (the original cannot be found) but the parastichies can be readily seen, especially where the
leaves have been removed.
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Fig. 1: An idealized plane representation of Plate 1.

clearly. The same pattern is shown in Fig. 1 diagrammatically. The surface of the cylinder has here
been unrolled onto the flat paper surface, and the whole enlarged. The scales have been reduced
to points and will be referred to as “leaves”. The three vertical lines represent one generator of
the cylinder repeated. Each point between the first pair of lines represents a leaf which is also
represented by one of the points between the second pair. The pattern is remarkably regular and is
seen to have the following properties:

(1) If the cylinder is rotated and at the same time shifted along its length in such a way as to make a
leaf A move into the position previously occupied by a leaf B, every other leaf also moves into
a position previously occupied by a leaf. This may be called the congruence property.

(2) All the leaves lie at equal intervals along a helix. On the specimen in Plate 1 [i.e. the lost
original], the pitch of the helix is about 0.046 cm and the successive leaves differ in angular
position by about 137◦.

These two properties are by no means independent. All patterns with the second property have
also the first; but there are many species which produce leaf patterns having the first property but
not the second. Figure 2 is a diagram similarly constructed to Fig. 1, and showing the arrangement
of leaves on the stem of a maiden pink. In this arrangement each leaf has a partner at the same
level with it on the stem. A helix could only pass through both partners if it had zero pitch and so
degenerated into a circle. However, property (1) holds for these patterns also.

It need hardly be said that for the majority of botanical species the congruence property is
only very roughly satisfied. But this need not trouble us for the present. It will be sufficient if
the reader will admit that the congruence property has a certain botanical importance, and is willing
in consequence to give some attention to the mathematics of patterns having the property.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/11 17:48 Page 777 #13

The Morphogen Theory of Phyllotaxis 777

Fig. 2: A sketch of a maiden pink (Dianthus deltoides). Redrawn after Ross-CRAIG (1951).

2. Helical coordinates for a phyllotactic system

Consider the set of congruences of the patterns formed by the leaves on a stem, i.e. the set of pairs
[θ ,z] such that if the stem is simultaneously rotated through an angle θ about its axis, and shifted
a distance z along it, both measured algebraically, each leaf is thereby moved into the position
previously occupied by another leaf. If [θ1,z1] is one such congruence and [θ2,z2] is another, then
clearly [θ1+ θ2,z1+ z2], [−θ1,−z1] are also congruences, that is, the congruences form an Abelian
group 0. If n is an integer, then [2nπ , 0] is a congruence. Consider now those congruences which,
like these, have a translation component (second coordinate) zero. The possible rotation components
include 2π . Let κ be the smallest positive angle such that [κ , 0] is in 0, and let γ be any other such
angle. One can write γ = rκ + δ where r is an integer and 0 6 δ 6 κ . Then [δ,0] is a congruence,
and therefore δ = 0, for otherwise the definition of κ would be contradicted. Thus every congruence
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which is a pure rotation is a rotation through a multiple of κ . In particular 2π must be a multiple
of κ , 2π = Jκ , say. It is easily seen that J may be interpreted as the number of leaves which lie at
one level on the stem. This number will be called the “jugacy”, in conformity with the established
practice of calling systems with J = 2 “bijugate” (two leaves being “yoked” together on the stem),
and those with J > 1 “multijugate”, but it is usually more convenient to use κ = 2π/J. If J = 1,
i.e. κ = 2π , the system is described as “simple” (or in some books “alternate”) but that phrase will
not be used, as it suggests rather distichous. It is possible for all the congruences to have z= 0,
but this case is too degenerate to be of much interest. Let therefore η be the smallest positive value
of z occurring in any of the congruences. This quantity will be called the “plastochrone distance”
on account of its relation to the “plastochrone ratio” as defined by RICHARDS (1948), p. 226. An
argument similar to that above shows that all the displacements (second coordinates) are multiples
of η. Now let [α, η] be a congruence, the angle α being chosen so as to have the smallest possible
absolute value for the given η, and if this still leaves the sign in doubt, to be non-negative. Then
[nα+ rκ , nη] is a congruence, and indeed every congruence can be put into this form. For if [θ , nη]
is a congruence, then so is [θ − nα, 0]; and since the translation component of the latter is zero,
θ − nα must be of the form rκ . The angle α is called the divergence angle.

The three parameters

(i) the jugacy J(or κ = 2π/J),
(ii) the plastochrone distance η,

(iii) the divergence angle α

together completely describe the phyllotactic system, i.e. the total group of congruences. These three
parameters, together with the radius of the cylinder, are the helical coordinates of the phyllotactic
system.

3. Parastichies and parastichy numbers

In a diagram such as Fig. 1 showing the leaves on a stem, one can distinguish numerous straight
lines with leaves at uniform intervals along them. These are known as parastichies. The word is
commonly used for those series of leaves which most readily catch the eye, but no such restriction
will be imposed in the present paper. A parastichy is thus the totality of leaves obtained by repeat-
edly applying the same congruence to some one leaf. Thus if a leaf has coordinates (θ0,z0) and
[θ ,z] is a congruence, then the leaves with coordinates (θ0+ nθ ,z0+ nz) form a parastichy. If one
uses a different leaf, (θ1, z1) but the same congruence, one will in general obtain a different paras-
tichy, running parallel to the first, though it may happen that one obtains the same one again. If the
congruence [θ ,z] is [nα+ rκ , nη], then the cylinder includes η−1

|n|−1 leaves of the parastichy per
unit length. Since there are Jη−1 leaves per unit length altogether, there must be |n| J = 2π |n|κ−1

parallel parastichies generated by the congruence [nα+ rκ , nη]. This explains the use of the term
“parastichy number”, for nJ is the number of different parastichies which the congruence generates,
provided that n> 0. If n= 0, the parastichies are not helices on the cylinder but circles; each con-
tains only a finite number of leaves, and there are infinitely many of them. It is preferable however
to say in these cases that the parastichy number is zero rather than that it is infinite, so that the
representation of the congruence as [nα+ rκ , nη] may hold for all values of n, positive, zero or
negative.

It is evident from the definition that if one adds two congruences, the parastichy number for the
resulting congruence is obtained by adding the parastichy numbers for the two original congruences.
This simple but important property is mentioned explicitly, since it is by no means so obvious when
the parastichy numbers are defined by counting.

Note: What is here called “parastichy number” is called “leaf number difference” by botanists,
whose own “parastichy” is a factor of our parastichy number. A parastichy with parastichy number
3 is indicated in Fig. 1.
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4. Phyllotactic systems as lattices. The principal congruences

If % is the radius of the cylinder, then [%θ ,z] will be called the surface coordinates of the congruence
(or point) with cylindrical polar coordinates (θ ,z). The surface coordinates of the congruences [nα+
mκ ,nη] of a phyllotactic system may be described as consisting of all the vectors mu+ nv where
m,n are integers and u,v are respectively (%κ ,0) and (%α,η). There are many other possible choices
of u,v, e.g. (3%α+ 2%κ ,3η) and (%α+ %κ ,η). The totality of vectors mu+ nv where m, n run over
the integers and u,v are fixed vectors is called a lattice. In order that a lattice should arise from
a phyllotactic system on a cylinder of radius % it is necessary that (2π%,0) should be a point of
the lattice. This is also sufficient, as may be seen by interpreting a vector (y,x) of the lattice as a
congruence [y/%,x].

One may define the first principal vector of a lattice as being that which is of shortest non-zero
length. This defines it at best with a doubtful sign, and, as will appear later, at worst there are six
equally valid candidates. It will be supposed that one of these is chosen to be the first principal
vector; there is no need to enquire by what criteria. One may also define similarly the second, third
principal vectors, etc. Each is to be the shortest consistent with not being a multiple of one of the
earlier principal vectors.

In the sequel the first three principal vectors will play an important part. They correspond more
or less to the “contact parastichies” of other investigators, the correspondence being closest for
the parastichies generated by the first two principal vectors; but it has been thought that confusion
would best be avoided by using an entirely different terminology.

It should be observed that the first two principal vectors of a lattice generate the lattice. For if not,
a lattice-parallelogram must contain other lattice points within it. But a point within a parallelogram
is always closer to one of the vertices than are some pair of the vertices from one another. Hence
the definition of the principal vectors would be contradicted. A small consequence is that the first
two principal vectors may also be defined as those two vertices which generate the lattice, and for
which (subject to this condition) the square of the scalar product (u · v) has the minimum value.

Given two vectors u, v which generate the lattice, the value of (u · v) is increased by u2 (or
decreased by v2) by replacing u by u± v (or v by v±u). By repeatedly modifying the vectors in
this way and reducing |(u · v)| without changing the sign of (u · v) one must eventually come to a
pair for which (u · v) has the same sign as it had originally and |(u · v)|6 u2 6 v2. By changing the
sign of one of the original vectors if necessary, one may suppose this scalar product to be negative.
Then

0 6−(u · v)6 u2 6 v2

from which it follows that all three of the scalar products which can be formed from the vectors
u,v,−(u+ v) are negative, i.e. the vectors form an acute angled triangle. If one had started with
the principal vectors, no reduction would have been possible at all, so that the first three vectors
must form an acute angled triangle. Conversely, three vectors forming an acute angled triangle, any
two of which generate the lattice, are the principal vectors. For if u,v are the shortest and second
shortest sides of the triangle respectively, then |(u·v)|6 1

2 u2, since v is shorter than (u± v). Then if
m, n are any two non-zero integers,

(mu+ nv)2− v2
= m2u2

+ 2mn(u · v)+ (n2
− 1)v2

> (m2
− |mn|)u2

+ (n2
− 1)v2

> (m2
− |mn| + n2

− 1)u2 since n2 > 1 and |v|> |u|

= ((|m| − |n|)2+ |mn| − 1)u2

> 0 since |m|> 1, |n|> 1.
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Thus only vectors for which m= 0 or n= 0, i.e. only multiples of u or of v, can be shorter than v.
Consequently u and v are the first two principal vectors.

These results may be summed up in the theorem on principal vectors:

The principal vectors form an acute angled triangle, and are the only vectors generating the
lattice which do so. The first two principal vectors are also characterised by the property
that they are the pair of vectors which generate the lattice and minimise the modulus of their
scalar product.

In a phyllotactic lattice one may speak of the first, second, etc. principal parastichies and paras-
tichy numbers. One then has the following simple consequence of the fact that u± v is the third
principal vector:

Corollary. The third principal parastichy number is the sum or difference of the first and second
parastichy numbers.

Although it is not intended to enter into the matter yet in any detail, it may be mentioned that
for a very large proportion of those plants which show sufficient regularity for parastichies to be
counted, the principal parastichy numbers are all numbers of the Fibonacci series, in which each
number after the first two is the sum of its two predecessors: 0,1,1,2,3,5,8,13,21,34,55,89, . . . .

Clearly, if (say) the first two principal parastichy numbers are consecutive members of the series,
the third and fourth must be also.

5. The measurement of the phyllotaxis parameters

It was explained in §2 that a phyllotaxis scheme is described by the parameters κ = 2π/J, α, η,%.
On almost any specimen it is as well to measure the radius % directly. On specimens on which the
leaves are not very closely packed the jugacy J = 2π/κ may be determined by counting how many
leaves there are at any level on the stem. With more closely packed leaves this is not feasible, and it
is best to choose two vectors which generate the lattice. The jugacy may then be determined as the
highest common factor of two corresponding parastichy numbers. On specimens such as the stem
shown in Plate 1, it is convenient to measure the distance and the angle between two leaves which
are at a considerable distance apart.

To complete the calculation one must find the parastichy number corresponding to the congru-
ence chosen, and the number of complete revolutions of the helix, which must be added to the angle
measured. The parastichy number is obtained conveniently not by a direct count, but by counting
two of the principle parastichies and combining the results by the addition rule. The divergence
angle in such a case is best obtained by first making a less accurate measurement based on leaves
which are not so far apart.

On more closely packed specimens it is better to choose two congruences (preferably principal
congruences which generate the whole lattice) say [mα+ rκ , mη] and [nα+ sκ , nη], and measure
the angles ψ1, ψ2 which the corresponding parastichies make with the generators of the cylinder.
Then the area of the parallelogram generated by the first two principal vectors is

1= mnη2
|τ2− τ1|

where τ1 = tanψ1 and τ2 = tanψ2. This area is also κ%η, and therefore, since η > 0,

η = κ%/mn|τ2− τ1|.



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/11 17:48 Page 781 #17

The Morphogen Theory of Phyllotaxis 781

The angle α satisfies

mα = mη%−1τ1 mod κ (I.5.1)

nα = nη%−1τ2 mod κ (I.5.2)

and since m, n are co-prime, positive integers, k, l can be found satisfying km−ln= 1. Therefore,

α ≡ (kmτ1− lnτ2)η%
−1mod κ

≡±

(
2πk

n

−τ1

τ2− τ1
+

2π l

m

τ2

τ2− t1

)
. (I.5.3)

The following rule expresses this formula in a convenient form. Choose two vectors which
generate the lattice and whose parastichy helices turn in opposite directions. Calculate (or look
up in Table 1) what would be the divergence angle if either one of these parastichies were an
orthostichy, i.e. parallel to the axis of the cylinder. The correct divergence angle may be obtained
as a weighted average of these two. Each is to be weighted in proportion to the modulus of the
cotangent of the angle which the corresponding parastichy makes with the generators of the
cylinder.

Fraction of 2π Deg., Min., Sec. Degrees

1/2 180◦

1/3 120◦

2/5 144◦

3/8 135◦

5/13 138◦ 27′ 41.5′′ 138.46154
8/21 137◦ 8′ 34.3′′ 137.14286

13/34 137◦ 38′ 49.4′′ 137.64706
21/55 137◦ 27′ 16.4′′ 137.45454
34/89 137◦ 31′ 41.1′′ 137.52809
55/144 137◦ 30′ 00.0′′ 137.50000
89/233 137◦ 30′ 38.6′ 137.51073
Limiting value 137◦ 30′ 27.9′ 137.50778

Table 1: Divergence angles.

These angles are given with greater accuracy than can be used, though perhaps not so much
greater as might be supposed. Since the angles given for the higher parastichy numbers differ by
less than a minute, and since the angles ψ1, ψ2 can be measured to a few degrees, the divergence
angle can be determined in such cases to within a few seconds. It need hardly be said that the value
so obtained is not accurately repeated from leaf to leaf, and may vary by a degree or more, and
it is only the averages over a considerable number of plastochrones that behave consistently. This
insensitivity of the divergence angle to errors in the angles ψ1, ψ2 may be expressed in the equation

∣∣∣∣dαdξ
∣∣∣∣= κ

mn

1

(ξ − 1)2
.

In the case of limiting divergence-angle phyllotaxis (ξ = 0) this has the value κ/mn.
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6. Phyllotaxis on surfaces of revolution

The patterns of leaves so far considered have been on the surface of a cylinder, and remain essen-
tially the same on parts of the cylinder far removed from one another. Although species can be found
for which, for the stems, this is a good approximation, some broader point of view is necessary to
deal with the majority of phyllotactic patterns.

In general one may suppose that the specimen is a solid of revolution on which the lateral organs,
idealised into points, are distributed. A common case is a capitulum, e.g. a sunflower or a daisy. The
“leaves” are then florets and the surface of revolution is a disc, or nearly so.

For our purposes the geometry of the surface of revolution can be conveniently described as
follows. The position of a point on the surface is fixed by two coordinates (θ ,z) as on the cylinder.
The coordinate z is measured along the surface (and not, as might be considered most natural,
parallel to the axis). The shape of the surface is determined by giving the radius % for each z. On
such a surface one may define a phyllotactic system in which the parameters vary continuously with
the coordinate z. The jugacy J, being an integer, cannot of course be allowed to vary at all. But
suppose that at each z a value is assigned for the plastochrone distance η and the divergence angle
α, as well as for the radius %: what would be the positions of the leaves that correspond to arbitrary
values of the parameters?

A natural answer can be given to this question if the formula (nα+ rκ , nη) is extended to non-
integral values of n, which we rename u. The formula is replaced by the two differential equations:

dz(u)

du
= η(z),

dθ(u)

du
= α(z), (I.6.1)

the positions of the leaves being given by (θ(u)+ rκ ,z(u)) for integral values of u and r.

With these conventions, one may obtain values of z(n) and θ(n) by measurement and could,
in theory, infer values of η(z), α(z) by ordinary finite difference methods. In practice there will
be such errors of measurement, and irregularities in the positions of the leaves, that the use of
differentiation formulae involving high differences is inappropriate. The method which the author
finds most convenient is to draw freehand the principal parastichies in the neighbourhood of the
value of z in question, measure the angles ψ1, ψ2 which these curves make with a plane through
the axis (i.e. in practice with the intersection of this plane with the surface), count the parastichy
numbers, and apply the formula of §5.

According to the point of view of this section there is a complete phyllotactic system corre-
sponding to each value of the parameter z, described by parameters α,η,% varying continuously
with z. It will be convenient to continue to speak of such systems as if they were given on a cylin-
der, although η,α are defined by (I.6.1); and to consider the phyllotactic system as the lattice of
points (nα+ rκ , nη).

Attention will be given later (§11) to phyllotactic systems varying with a parameter.

7. The bracket and the fractional notations

When describing a specimen one may not always wish to make sufficient measurements to give a
complete description of the lattice at some level on the stem: an indication of the principal parastichy
numbers would often be enough. For this purpose the notation of CHURCH (1904) is appropriate.
He used such notations as (8+ 13), which in this paper will be used to signify that the principal
parastichy numbers are 8, 13 and 21.
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Some latitude must be allowed when the third and fourth principal vectors are of nearly equal
length, and the three numbers may consequently be the first, second and fourth parastichy numbers.
This cannot have been Church’s intention, for he believed that two of the principal parastichies are
always at right angles, an assumption which is not always correct.

Another, less happy notation is the use of fractions of a revolution as measures of the divergence
angle. The most satisfactory approximations are of course the continued fraction convergents, and
these will normally be the ratio of two Fibonacci numbers. That such ratios were good approxima-
tions to the divergence angle was first observed by Schimper and Braun (BRAUN 1835), and was an
important discovery. However the use of different fractions of this kind to distinguish phyllotactic
systems must be deplored. For instance, in the case where the divergence angle has the limiting
value 2πω−2

= 137◦ 30′27.9′′, all of these ratios are good approximations to the divergence angle.
What then is the significance of the choice of one rather than another? On the whole, the tendency
seems to be to choose larger denominators for smaller plastochrone ratios, but no very definite rule
seems to have been formulated. In cases where there is some real reason for regarding the diver-
gence angle as a rational fraction of a revolution, the use of such fractions is admissible. Such cases
arise with distichous (α = 180◦, J = 1) and decussate (α = 90◦, J = 2) systems, and in fact with
all symmetrical systems. Another example is provided by the genus Carex, where the stem itself is
a triangular prism, thus ensuring that the divergence angle does not, on average, wander far from
120◦. There are likewise species with a pentagonal stem (e.g. Plumbago) where the angle may be
supposed to be 144◦.

8. Naturally occurring phyllotactic patterns

It is found that the numbers in the Fibonacci series 0,1,1,2,3,5,8,13, . . . are by far the commonest
parastichy numbers and a phyllotactic system with these numbers is described as normal. In these
cases the divergence angle α is in the region 135◦ to 140◦ and if the principal parastichy numbers are
large, α is near to 137◦30′28′′. However this system is not universal and other types of phyllotaxis
mentioned below may be encountered.

(a) There are cases where the Fibonacci series is to be replaced by the series 1, 3, 4, 7, 11, . . . (the
“anomalous” series of Church). In some species this series is fairly common, but in others it
appears only in a small proportion of specimens. For these cases the divergence angle is found
to be in the neighbourhood of 99◦30′.

(b) There are species (e.g. Dipsacus sylvestris) for which the principal parastichy numbers are taken
from the double Fibonacci series 0,2,2,4,6,10,16,26, . . ., and the divergence angle is half the
normal, i.e. about 68◦45′14′′.

(c) Some species have mirror symmetry, and indeed, this is true in the majority of cases where
there are opposite leaves (i.e. bijugate phyllotaxis, J = 2). Commonest among these are the
“decussate” leaf patterns, i.e. those for which the divergence angle is 90◦, and the first four
principal parastichy numbers are 0,2,2,4 (not necessarily respectively). There are also cases
where these parastichy numbers are 0,1,1,2; and, relatively rarely, such combinations as
0,6,6,12. The latter occur in species where the parastichy numbers are very variable, e.g.
one might find within the species 0,6,6,12; 1,6,7,13; 0,7,7,14; 0,5,5,10; each forming a
considerable fraction of the whole.

It is the main purpose of the present paper to explain, in part at any rate, the phenomena described
above. The explanations given will be at two levels. In this first part of the paper the arguments are
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entirely geometrical. The geometrical arguments do not exactly give a theory of the development of
a phyllotactic pattern. It is merely shown that if the development satisfies certain not very artificial
conditions, then when once a phyllotactic pattern has started it will develop into patterns of the
kind observed. These geometrical arguments have been expounded by some previous writers, but
often in a rather unsatisfactory form, and with the emphasis misplaced. The writer has consequently
considered it appropriate to give a new exposition of these arguments. This first part of the paper
is not however entirely old material in a new form. In particular the use of the inverse lattice and
other ideas related to Fourier analysis appears to be new. This first and purely geometrical part of
the paper must however be considered as merely a preliminary to the second part, which expounds
a chemical explanation of the same phenomena. The chemical theory will be much more complex
than the geometrical theory, and, in effect, justifies the assumptions of the latter. Although it might
have been possible to expound the chemical theory totally independently of the geometrical, it was
not thought advisable to do so, because of the insight which the geometrical theory gives.

9. Lattice parameters

It has been seen that the two principal vectors (a0,b0) and (c0,d0) generate the lattice. If these
vectors, so far not uniquely specified, are precisely defined, their four coordinates can be used as
parameters for describing the lattice, as alternatives to the helical parameters α,η,%,J(= 2π/κ).
Owing to the close connection with the principal parastichy numbers, the new parameters will be
found more useful in theories of the origin of phyllotaxis. In order to make the definitions unique
it is necessary to specify the signs that are to be given to the two vectors, and the order in which
they are to be taken. It is convenient to require that the second coordinate of each vector should
be non-negative. In phyllotactic systems this second coordinate, being an integral multiple of η,
must be either at least as large as η or zero. In the latter case the convention will be that the first
coordinate shall be positive, but this is rarely used in what follows. The ordering is to be such that
a0d0− b0c0 > 0. (In view of b0 > 0,d0 > 0, the condition for this is that the first vector can be made
parallel to the second by turning it to the left through an angle of less than 180◦.)

The conditions on the four numbers a0,b0,c0,d0 are thus that for every pair of non-zero integers
m,n

a2
0+ b2

0 6 (ma0+ nc0)
2
+ (mb0+ nd0)

2, (I.9.1)

c2
0+ d2

0 6 (ma0+ nc0)
2
+ (mb0+ nd0)

2, (I.9.2)

b0 > 0 or b0 = 0 and a0 > 0, (I.9.3)

d0 > 0 or d0 = 0 and c0 > 0, (I.9.4)

a0d0− b0c0 > 0. (I.9.5)

Since the matrix (
a0 b0

c0 d0

)

plays a prominent part, the numbers (a0,b0,c0,d0) are called the principal matrix coordinates of the
lattice. They are unique so long as the third principal vector is longer than the second. A further set
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of parameters suggested by these, having considerable intuitive appeal, are:

1= a0d0− b0c0, (I.9.6)

ζ =

(
a2

0+ b2
0

c2
0+ d2

0

)1/2

, (I.9.7)

φ =−sin−1

(
a0c0+ b0d0

[(a2
0+ b2

0)(c
2
0+ d2

0)]
1/2

)
, (I.9.8)

ψ = tan−1
(

a0+ c0

b0+ d0

)
. (I.9.9)

The letter 1 has already been used in its present sense of denoting the area of the parallelo-
gram generated by the first two principal vectors, i.e., the area occupied by each leaf, and it may
accordingly be called the leaf area; ζ is the ratio of the first two vectors; and φ is the angle between
them reduced by 90◦. The parameter ψ describes the direction of the sum of the first two principal
vectors. It follows from the theorem on principal vectors that φ lies between −30◦ and 30◦, and ψ
between −90◦ and 90◦. In practice, in phyllotactic lattices, |ψ | does not often exceed 30◦, while ζ
is usually close to 1.

A lattice can be described by any pair of vectors which generate it. If (a, b) and (c, d) are two
such vectors, the matrix (

a b

c d

)

will be called a matrix representation of the lattice. A necessary and sufficient condition that two
matrices should describe the same lattice is that one should be obtainable from the other by left
multiplication with a matrix with integral coefficients and determinant ±1. By the second part of
the theorem on principal vectors the principal representation of a lattice can be recognised by the
fact that the vectors (a0, b0) and (c0,d0) form two of the sides of an acute angled triangle. It must of
course also satisfy the conditions b0 > 0, d0 > 0, a0d0− b0c0 > 0. If mJ and nJ are two parastichy
numbers and if the corresponding vectors generate the lattice, and the parastichies make angles
ψ1, ψ2 with the generators of the cylinder, then the matrix

%κ

τ2− τ1

(
−τ1/n 1/n
−τ2/m 1/m

)

is one of the matrix representations of the lattice. Here κ = 2π/J, τ1 = tanψ1, τ2 = tanψ2, and
(cf. I.5.1)

1=
(%κ)2

mn|τ2− τ1|
. (I.9.10)

To convert any matrix coordinates (a,b,c,d) for a lattice into helical coordinates η,α,%,J one pro-
ceeds as follows. The value of η is easily obtained as the highest common factor of b and d. It is not
possible to find the value of J since the same lattice may be wrapped around cylinders of various
radii. For the present we suppose it given. To obtain 2π% one must find the vectors of the lattice
which have their first coordinates zero. If b= mη and d = nη then these vectors are clearly multiples
of (na−mc,0), i.e. %κ = |na−mc|. To obtain α let km− ln = 1, then α = (ka− lc)/% modulo 2π .
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10. Continued fraction properties

The procedure by which any matrix description of a lattice may be made to yield the principal
description was described in effect in §4. Suppose that the scalar product of two vectors is nega-
tive. Then one repeatedly adds one vector to another, and continues until the modulus of the scalar
product can no longer be reduced. Suppose that k is the largest integer such that the scalar product
(ka+ c, kb+ d) · (a,b) is negative. Then after adding the first row (a,b) of the matrix k times to
the second, it will be necessary to interchange the two rows, if the first is always to be added to the
second. The effect of the combined addition and interchange is expressed by the multiplication of
the matrix (

a b

c d

)
on the left by

(
k 1
1 0

)
.

The reduction process as a whole is then expressed by left multiplication by a product of a number
of such matrices Ck0 ,Ck1 , . . . ,Ckr , where Ck represents(

k 1
1 0

)
.

In order finally to bring the matrix to the form agreed as standard it may be necessary to left-multiply
by one of the matrices (

0 ±1
±1 0

)
or

(
±1 1
0 ±1

)
.

Every unimodular matrix of order 2 can be expressed as a product(
±1 0
0 ±1

)
Ck1Ck2 · · ·Ckr .

Products Ck0Ck1 · · ·Ckr are very closely related to continued fractions. In fact it can be shown by
a simple inductive argument that if

K0+
1

K1
+

1

K2
+

1

K3
+ ·· ·

1

Kr
=

pr

qr

is in its lowest terms, then

Ck0Ck1 · · ·Ckr =

(
pr pr−1

qr qr−l

)
.

This shows in effect that

Every improper unimodular matrix may be expressed in the form(
pr qr

pr−1 qr−1

)
where pr/qr, pr−1/qr−1 are two consecutive convergents of the continued fraction of some
number. If the unimodular matrix is obtained by reduction of a matrix representation of a
lattice then the partial quotients are given in reverse order as the number of times one vector
is to be subtracted from the other without interchange.
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This result may be applied to the lattice as described by the helical coordinates α,η,%,J. One
representative matrix is

2π%J−1

(
−1 0
x σ

)
where σ = ηJ/2π%, x= αJ/2π . The lattice vectors are

2π%J−1(p q)

(
−1 0
X σ

)
where p, q are any integers. It will be convenient to represent this vector by the expression (p/q):
this notation is intended to suggest a connection with fractions, but the brackets are always to be
retained to prevent any confusion. By what has been shown above, a standard representative, apart
from the order of the rows, can be written in the form

2π%J−1

(
qnx− pn σqn

qn−1x− pn−1 σqn−1

)
.

The first two principal vectors are then, not necessarily in order,

u= (pn/qn), v= (pn−1/qn−1).

Denoting the third vector by (p/q), the theorem on principal vectors and acute angled triangles
gives

(p/q)= (pn± pn−1/qn± qn−1).

Now the three quantities qnx− pn, qn−1x− pn−1, qx-p cannot all have the same sign, for if they
did the three scalar products (pn/qn), (pn−1/qn−1), (p/q) would all be positive, contrary to the
results of the same theorem. If qnx− pn and qn−1x− pn−1 have opposite signs, then pn−1/qn−1 is
a convergent of x. If, however, they have the same sign, (p/q) must be (pn− pn−1/qn− qn−1) and
|qn−1x− pn−1|> |qnx− pn|. Since

pn = Knpn−1+ pn−2, qn = Knqn−1+ qn−2, and Kn > 1,

it follows that qn−2x− pn−2 also has the opposite sign to qn−1x− pn−1, and therefore pn−2/qn−2 is
a convergent of x. If Kn = 1 then (pn−2/qn−2) is the third vector. If, however, Kn > 1 then

|qn−2x− pn−2| = (Kn− 1)|qn−1x− pn−1| + |qx− p|

> |qn−1x− pn−1|. (I.10.1)

Thus in any case one of the three principal vectors, that with the smallest or second smallest
parastichy number, corresponds to a convergent of x.

Rather more may be asserted in the conditions which normally apply in real phyllotaxis. Let
pr−1/qr−1, pr/qr, pr+1/qr+1 now represent three consecutive convergents of x= αJ/2π , and
suppose that

−

(
x−

pr−1

qr−1

)(
x−

pr

qr

)
> σ 2

>−

(
x−

pr

qr

)(
x−

pr+1

qr+1

)
> 0, (I.10.2)

pr+1 = pr + pr−1, qr+1 = qr + qr−1, (I.10.3)
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then it follows at once that the scalar product ((pr−1/qr−1) · (pr/qr)) is negative and that
((pr/qr) · (pr+1/qr+1)) and ((pr−1/qr−1) · (pr+1/qr+1)) are positive. Also (pr+1/qr+1)= (pr/qr)+

(pr−1/qr−1). Thus these three vectors form an acute angled triangle, and therefore are the three
principal vectors of the lattice. Thus

If the divergence angle as a fraction of 2π/J has one of its partial quotients ar0+1 equal to
unity, so that

pr0+1 = pr0 + pr0−1, qr0+1 = qr0 + qr0−1

then for some values of the plastochrone ratio η/% the principal vectors correspond to these
three consecutive convergents of the divergence angle, though not necessarily in order. If
there are a number of consecutive unit partial quotients, the corresponding ranges of values
of the plastochrone ratio are consecutive intervals.

In particular, if all the partial quotients are unity from some point onwards, then for all
sufficiently small plastochrone ratios the principal vectors all correspond to convergents of the
divergence angle. Such a divergence angle may be called a limiting divergence angle. The reduced
parastichy numbers from some point onwards are the denominators qr and satisfy qr+1 = qr + qr−1.
They determine the value of the limiting divergence angle, apart of course for sign and for additive
multiples of 2π . For the numerators pr must satisfy pr+1 = pr + pr−1 and qrpr−1− qr−1pr =±1. A
change of sign in the value of qrpr−1− qr−1pr may be accomplished by changing the sign of each
pr and therefore of the limiting angle

lim
r→∞

2π

J

pr

qr
.

Suppose then that

qr0pr0+1− qr0+1pr0 = 1

and that p′r is a second solution so that
qr(pr+1− p′r+1)= qr−1(pr − p′r).

Then since qr, qr+1 have no common factor, for some integer m one must have

p′r+1 = pr+1+mqr+1, p′r = pr +mqr

and pr/qr differs from p′r/q
′
r only by the integer m. If p′r/q

′
r tends to a limit it can only differ from

the limit of pr/qr by an integer, and hence from the corresponding estimates of α by a multiple of κ ,
which may be eliminated by the minimal condition on α. For this reason, the limiting angle may be
described as “the limiting divergence angle corresponding to the series qr0−1, qr0 , qr0+1 of reduced
parastichy numbers”.

The value of the limiting divergence angle may be expressed as

κ
pr0 +ωpr0+1

qr0 +ωqr0+1
.

The cases of chief interest are:
Normal Fibonacci phyllotaxis. The parastichy numbers belong to the series 0,1,1,2,3,5, . . . and

the numerators to the same series displaced: −1,1,0,1,1,2, . . . . The limiting angle is 2π(1−ω−1),
i.e. 137◦ 30′28′′.

Normal bijugate phyllotaxis. The parastichy numbers are 0,2,2,4, . . ., i.e. the Fibonacci numbers
doubled. The jugacy is two, and the reduced parastichy numbers are again the Fibonacci numbers.
The limiting angle is π(1−ω−1) i.e. 68◦45′14.0′′.

Phyllotaxis of the so-called anomalous series. The principle parastichy numbers belong to the
series 1,3,4,7,11, . . . . The limiting angle is 2πω/(1+ 3ω), i.e. 99◦30′6′′.

Examples were also collected by the brothers BRAVAIS (1838) of the occurrence of other series.
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11. Continuously changing phyllotaxis

There are at least two ways in which one may be concerned with a phyllotactic system which
depends continuously on some real parameter. On a growing specimen the dimensions of the stem
may be altering and the leaves moving relative to one another. In this way one is concerned with a
phyllotaxis which depends on time. One may equally well be concerned with a phyllotaxis which
changes continuously along the length of a stem, or towards the centre of a capitulum. Variation
of phyllotaxis in time will be given greater attention here than variation in space, though it can be
less conveniently demonstrated. For the purpose of the present section either kind of variation will
be described by allowing α,η,% and other quantities describing the phyllotaxis to depend upon a
parameter t, which will be described as “the time” regardless of the fact that other interpretations
would be equally appropriate.

Until comparatively recently, phyllotaxis continuously varying in space has only been considered
in the rather trivial case in which although the radius % is allowed to vary with position (as indeed on
a disc it is obliged to do), the dimensionless quantities α,η/%,J remain constant. In such a system
all other dimensionless quantities, such as angles, principal parastichy numbers, etc., also remain
constant, and it may be considered that one has effectively the same phyllotaxis at each radius. This
hypothesis may be most familiar to the reader in the form in which it is stated that the parastichies
are logarithmic spirals. It may be appropriate for certain conditions of exponential growth, but there
are also many conditions for which it is entirely inappropriate. For instance in the case of the florets
on a mature capitulum of Taraxacum officinale the area per floret, so far from varying inversely
as the square of the radius, as would be required on this hypothesis, actually increases towards
the centre. It is also inappropriate for the neighbourhood of the growing point, at least if there
be any truth in the theory expounded in part II. It would be particularly inappropriate to restrict
consideration of continuously varying phyllotaxis to this case, which does not admit of changes
of principal parastichy numbers, since it is intended to explain in part these changes in terms of
continuously changing phyllotaxis.

More recently RICHARDS (1948) has considered phyllotactic systems on a disc with the diver-
gence angle always equal to the Fibonacci angle, i.e. the limiting angle for the Fibonacci series,
viz. 2πω−2, and the radius varying with the leaf number in various ways. In general if f (u) is some
increasing function of the real variable u one may consider leaves to be placed at the points described
in plane polar coordinates by (f (u), 2πω−2u).

According to the principles of §6, one has z= % and therefore z(u)= f (u). The value of η for
radius % is f ′(u) where % = f (u). A particularly interesting example is provided by putting f (u)=
A(u+B)1/2. Then η = A2/2%, and the leaf area has the same value πA2 at each radius: this is quite a
good approximation for the distribution of mature florets in the head of a member of the compositae.
Figure 3 shows such a phyllotaxis. It is taken from RICHARDS (1948) and in it B= 1/2.

It follows from the results of the last section that the principal parastichy numbers for this phyl-
lotactic pattern are Fibonacci numbers at each radius. One must be cautious here and avoid assuming
causal connections groundlessly. Certainly if the divergence angle is exactly the Fibonacci angle
then the principal parastichy numbers must be Fibonacci numbers, and conversely, if the princi-
pal parastichy numbers are Fibonacci numbers the divergence angle cannot differ much from the
Fibonacci angle. If one of these phenomena has to be the cause of the other, then the less objec-
tionable assumption is that the value of the angle is the effect. But there is no need to adopt either
hypothesis. In view of the corollary to the theorem on principal parastichy numbers and acute angled
triangles (§4) it is not possible for the first two of the principal parastichy numbers to be Fibonacci
numbers without the third being one also. It is to be expected that this fact should go a long way
to explain the great preponderance of Fibonacci numbers amongst the principal parastichy num-
bers. Clearly, however, some other hypothesis is necessary in addition, for it is possible to produce
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Fig. 3: A phyllotactic system on a disc. After RICHARDS (1948).

(as mathematical constructions) phyllotactic systems with any two given integers as the first two
principal parastichy numbers. An appropriate hypothesis for the purpose is the following:

The third principal parastichy number does not lie numerically between the first and second.

This will be known as the hypothesis of geometrical phyllotaxis. It can easily be seen by examination
of Fig. 3 that it applies for Fibonacci angle phyllotaxis, and it may also be shown to apply for any
limiting angle phyllotaxis. It appears also to apply to all naturally occurring cases. (To verify it on
a specimen, look for the acute angled triangles. The longest side should either join the uppermost
and lowermost points of the triangle, or else be sufficiently nearly horizontal for its projection onto
a vertical line to be less than half the projection of the whole triangle.) It is adequate as a subsidiary
condition for Fibonacci phyllotaxis for

If a phyllotactic system varies in time whilst satisfying the hypothesis of geometrical phyl-
lotaxis, then the three principal parastichy numbers of the system always belong to the same
sequence pr obeying the Fibonacci law pr+1 = pr + pr−1.

If this be not so then there must be a time when the principal parastichy numbers change from
a set pr−1,pr,pr+1 obeying the rule to a set which do not. This must arise through the original third
parastichy number being dropped out and being replaced by another number. It cannot be pr−1
which is dropped, for then pr,pr+1 would remain, and by §4 the third parastichy number after the
change must be either pr+1− pr or pr+1+ pr, i.e. either pr−1 or pr+2, either of which would belong
to the series contrary to hypothesis. Likewise it cannot be pr+1 which is dropped. It cannot be pr for
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this would contradict the hypothesis of geometrical phyllotaxis. Thus each alternative is impossible,
and the assumption that it is possible to reach principal parastichy numbers not in the series pr is
contradicted.

However, this hypothesis cannot be regarded as entirely satisfactory. However true it is, and
however logically it follows that the principal parastichy numbers remain in a Fibonacci-like series,
the hypothesis is itself quite arbitrary and unexplained. Its merit is that it replaces an empirical
law, of a rather weird and magical appearance, by something simpler and much less mysterious.
The question remains “Why should the hypothesis of geometrical phyllotaxis hold?” and this is
a question which the geometrical approach is not capable of answering. There are other questions
which it is also unable to answer, such as “Why should leaf patterns take the form of lattices at all?”,
“How does the lattice pattern develop on previously undifferentiated pieces of tissue?” and “How
does a mirror symmetrical pattern develop into an unsymmetrical one?” and “Why are the principal
vectors of the lattice of such importance?” All of these topics must be left until part II. There remain
however a number of questions which can be treated by the methods of geometrical phyllotaxis,
which have not yet been considered. Some of these are preparatory for the work of part II; others
throw further light on the mathematics of continuously changing phyllotaxis and the mathematical
description of phyllotactic lattices, and yet others are concerned with the packing of mature and
semi-mature leaves.

12. The inverse lattice

Suppose that one does not consider the leaves as geometrical points but as described by some func-
tion on the surface of a cylinder, or in the plane obtained by unrolling the surface of the cylinder.
The points of the cylinder may be expressed in the form

(ξ1, ξ2)

(
a b

c d

)
= (x,z)

since the matrix (
a b

c d

)
is non-singular. When the function is described in terms of the variables (ξ1,ξ2) it is periodic with
unit period in both variables, i.e. of the (x,z) it is periodic with unit period in both variables, i.e. of
the form ∑

Am,ne2π i(mξ1+nξ2).

To express this in terms of the original variables one must express (ξ1,ξ2) in terms of (x,z). If the

inverse of
(

a b
c d

)
is
(

A C
B D

)
then

ξ1 = Ax+Bz, ξ2 = Cx+Dz, (I.12.1)

and the function can be written as∑
Am,ne2π i((mA+nC)x+(mB+nD)z)

or as

f (x)=
∑

Au e2π i(u,x) (I.12.2)
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where the summation is over the lattice described by the matrix
(

A B
C D

)
. This lattice may be called

the inverse lattice, because it is described by the transposed inverse of the matrix describing the
lattice arising from the congruences.

In the inverse lattice it is only the lattice points relatively close to the origin that are of any
particular importance. Consider for example a function in the plane having the symmetry of the

lattice, and of the form
∑

y∈L g(x+ y) where L is the lattice
(

a b
c d

)
. If

g(x)=
∫
φ(u)e2π i(u,x)du

then the coefficients Au are proportional to φ(u).
If mJ and nJ are two parastichy numbers, if the corresponding vectors generate the lattice, and

if the parastichies make angles ψ1, ψ2 with the generators of the cylinder, then the matrix

J

2π%

(
n nτ2

−m −mτ1

)
is one of the matrix descriptions of the inverse lattice. Here

τ1 = tanψ1, τ2 = tanψ2. (I.12.3)

It will be seen that the coefficients A, C are bound to be multiples of J/2π%. In other words, the
first coordinates of the points of the inverse lattice are all multiples of J/2π%. This simply represents
the fact that the leaf pattern is unaltered by rotating the cylinder through the angle 2π/J.

When drawing diagrams to describe a phyllotaxis through its inverse lattice, it is helpful to draw
a number of vertical lines, u= m/2π% or possibly only the lines u= mJ/2π%. The points of the
inverse lattice are bound to lie on these lines, and may be imagined as beads sliding up and down
on them. Owing to the fact that only relatively few points of the inverse lattice can be of importance
it is appropriate to use a relatively large scale for such diagrams, i.e. a larger area of paper may
be used per lattice point in the case of an inverse lattice than would be appropriate for the primary
lattice. It may be noticed that, apart from scale, the two lattices are obtainable from one another by
rotating through 90◦; the scale factor is 1 or 1−1.

In part II ideas involved in the inverse lattice will be found of immense importance. To a large
extent, however, it will no longer be possible to work in terms of lattices. To assume that one
has a lattice is an approximation which is no longer appropriate when discussing the origin of the
phyllotactic patterns. It is nevertheless still appropriate to describe functions on the surface of the
cylinder by a Fourier analysis of some kind. The appropriate kind of Fourier analysis for functions
defined on a cylinder is of the form of a Fourier series in one variable and a Fourier integral in the
other:

f (x,y)=
∞∑

m=−∞

∞∫
−∞

Fm(v)e
(imx/P)+ivydy. (I.12.4)

The function Fm(v) may be regarded as being defined on the lines u= m/2π% of the diagram men-
tioned above. In general Fm(v) will be complex, and cannot be very easily represented on the
diagram. It may happen however (and in practice it always happens), that f (x,y) has a centre of
symmetry, f (x,y)= f (x0− x,y0− y). In this case, if (x0,y0) is made the origin, the function Fm(v)
is real. If in addition, as often happens, the function is nowhere negative, the function may be con-
veniently shown diagrammatically by representing the vertical lines of varying thickness. The case
of a lattice arises when this widening of the lines is restricted to isolated points.
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The diagrams for the inverse lattice also include a circle whose radius is K0 = 2π/λ0 where λ0 is
the so-called “optimum wavelength”. K0 may be called the “optimum radian wave number”. There
is a tendency for the lattice points with the greatest coefficients in (I.12.2) to lie not very far from
this circle.

The expression (I.12.2) is a very familiar one when applied to three-dimensional lattices. It then
gives the relation between the electron density in a crystal and the X-ray reflection pattern. The
similarity of phyllotactic patterns to crystal lattices was first observed by the brothers Bravais.

13. Flow matrices

If a lattice is changing, the manner of its change may be described by some matrix description A(t0)
of the lattice at some time t0, together with the product (A(t))−1A′(t) at other times, the dash here
representing differentiation. This product will be called the “flow matrix”. It is independent of the
matrix description chosen, for if B(t) is another matrix description there is an improper unimodular
matrix L such that B(t)= LA(t), and if A(t) and B(t) are continuous, L must be constant. But then

(B(t))−1B′(t)= (LA(t))−1LA′(t)= (A(t))−1A′(t).

If one uses helical coordinates the matrix description may be written as(
2π%J−1 0
α% η

)
and the flow matrix is

F =

(
F11 F12

F21 F22

)
=


dlog%

dt
0

%

η

dα

dt

dlogη

dt

 . (I.13.1)

A convenient way of picturing flow matrices is to imagine the change in the lattice as being due
to the leaves being carried over the surface of the lattice by a fluid whose velocity is a linear function
of position. The flow matrix then gives the relation between the velocity and the position. This point
of view is particularly suitable when one is concerned with leaves which are sufficiently mature to be
no longer moving with respect to the surrounding tissue, but only have movement due to the growth
of that tissue. The coefficient F11 then represents the exponential rate of growth in girth of the stem,
and the coefficient F22 the exponential rate of increase of the stem in length. The sum of these,
the trace of the flow matrix, is the exponential rate of increase of the leaf area. The coefficient F21
represents whatever tendency there is for the stem to twist. It should be small, or in other words the
divergence angle should not be appreciably affected by such growth. If this coefficient F21 is zero,
the flow may be described as being “without twist”. A flow without twist and with F11 = F22, i.e. a
scalar flow matrix, may be described as a “compression”. One with F11+F22 = 0 may be described
as “area preserving”. One may also consider flows with F12 6= 0 but these of course cannot apply
to phyllotactic lattices but only to more general lattices. A flow with F11 = F22 = 0, F12+F21 = 0
represents a rotation.

If a lattice has a representation which changes continuously with time from A(t1) to A(t2), then
the ratio (A(t1))−1A(t2) may be called the “finite flow matrix” for the period t1 to t2. Finite flows
are also independent of the representation.

If a flow matrix is independent of time, the corresponding finite flow may be expressed as the
exponential of the product of the flow and the time for which it acts. Particular cases of exponentials
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of matrices that may be relevant in this connection are*

exp

(
0 θ

−θ 0

)
=

(
cosθ sinθ
−sinθ cosθ

)
, (I.13.2)

exp

(
κ1 0
0 κ2

)
=

(
eκ1 0
0 eκ2

)
, (I.13.3)

exp

(
0 0
χ 0

)
=

(
1 0
χ 1

)
. (I.13.4)

They give the effects of constant rotations, twistless flows and pure twists.
If a finite flow matrix G arises from the continuous change of a phyllotactic lattice then G12 = 0

since the point (2π%, 0) must transform into another of the same form. Also G11 and G22 must be
positive, since they are continuous, initially both unity, and can never vanish without the leaf area
vanishing. On the other hand, every matrix G with G12 = 0, G11 > 0, G22 > 0 is a possible finite
flow matrix, as may be seen by writing it in the form(

G11 0
0 G22

)(
1 0
G21/G11 1

)
.

It can now easily be seen that if a continuous change of a phyllotactic system is described by
a finite flow matrix equal to the matrix G then the corresponding curve in the space of lattices is
deformable to zero; for the set of points satisfying G12 = 0, G11 > 0, G22 > 0 is simply connected.

14. The touching circles phyllotaxis

The lattice patterns which arise from packing circles as tightly as possible on the surface of a cylin-
der have been considered as models for phyllotaxis (v. ITERSON 1907). The cylinder is supposed to
increase in diameter and the lattice continuously adjusts itself, without major alteration, to allow as
many circles as possible per unit area. It is not difficult to see that in tightest packing every circle
is touching two others. If a formal proof is desired, one may argue as follows. If no vectors of the
lattice are as short as the diameter l of the circles, then η may be decreased until one of them has
this length. Thereafter one may continue to decrease η until a second vector has length l, but during
this second phase of the process the divergence angle must be continually modified to ensure that
the first vector remains of length l. Such a lattice can be described by the matrix

l

(
sinψ1 cosψ1

sinψ2 cosψ2

)

* If A is a matrix, exp(A)= I+A+A2/2+ ·· ·+An/n!+·· · . The formula (I.13.2) follows from

(
0 θ

−θ 0

)n

=



(
0 θn

−θn 0

)
(−1)(n−1)/2 if n is odd,(

θn 0

0 θn

)
(−1)n/2 if n is even.
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where

|ψ1|< π/2, |ψ2|< π/2, π/3≤ ψ1−ψ2 < 2π/3

and the flow matrix will be found to be

dlog%

dt

(
1 0

−(tanψ1+ tanψ2) tanψ1 tanψ2

)
.

The angles ψ1, ψ2 are obliged to satisfy

ψ̇1 tanψ1 = ψ̇2 tanψ2

in order that F12 = 0.
At certain values of the radius the third principal vector is also of length l. The lattice may then

be called “equilateral”. For such a lattice ψ1−ψ2 must be either π/3 or 2π/3. It may be supposed
to be 2π/3; otherwise one may interchange the first two vectors and change the sign of one of them.
If one then puts ψ3 = ψ2+ 2π/3, all the angles ψ1−ψ2,ψ2−ψ3,ψ3−ψ1 will be 2π/3. If the
radius of the cylinder is allowed to alter still further, the directions of the three sides of the principal
triangle will still be given by the angles ψ1,ψ2,ψ3 or angles very close to them, but their roles
will have been interchanged. The first two vectors will be in directions ψ ′1 and ψ ′2 and the third in
direction ψ ′3 and

ψ ′1−ψ
′

2 = ψ
′

2−ψ
′

3 = ψ
′

3−ψ
′

1 = 2π/3

and ψ ′1;ψ
′

2, ψ ′3 will be a permutation of ψ1, ψ2, ψ3. The permutation has to be cyclic to ensure
ψ ′1−ψ

′

2 = ψ
′

2−ψ
′

3 = ψ
′

3−ψ
′

1 = 2π/3. The question as to which of the three angles ψ1, ψ2, ψ3 is
to be ψ ′3 must be decided by the condition that the subsequent change of the lattice shall, for a short
time at any rate, satisfy π/3 6 ψ ′1−ψ

′

2 < 2π/3 and, subject to this, the area 1= l2 sin(ψ ′1−ψ
′

2)

shall be as small as possible. This means to say that d1/dt must change sign but, subject to this,
have the smallest available modulus. Now in the period before the change

1

1

d1

dt
= (1+ tanψ1 tanψ2)

dlog%

dt

=
cos(ψ1−ψ2)

cosψ1 cosψ2 cosψ3
cosψ3

dlog%

dt

=
−dlog%/dt

2cosψ1 cosψ2 cosψ3
cosψ3

whereas afterwards

1

1

d1

dt
=

−dlog%/dt

2cosψ ′1 cosψ ′2 cosψ ′3
cosψ ′3.

Then cosψ ′3 has the opposite sign to cosψ3 and |cosψ ′3| must equal the smaller of |cosψ1| and
|cosψ2|. Since cosψ1+ cosψ2+ cosψ3 = 0 the change of sign is certainly possible. In the case
that cosψ1 and cosψ2 have the same sign,

|cosψ ′3| =Min |cosψr|

whereas if they have the opposite sign

|cosψ ′3| =Max |cosψr|.
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In no case is |cosψ ′3| intermediate between |cosψ ′1| and |cosψ ′2|. But the three principal paras-
tichy numbers (after the change) are proportional to |cosψ ′1|, |cosψ ′2|, |cosψ ′3|. The third principal
parastichy number is therefore either the smallest or the greatest.

In the case that d log%/dt > 0, cosψ ′1 cosψ ′2 < 0 (since d1/dt > 0) and the third parastichy
number is the smallest. Then the hypothesis of geometrical phyllotaxis is satisfied immediately after
the lattice is equiangular. It will continue to be so until there is a change in the principal parastichy
numbers. The first two can only change at equiangular lattices but the third can also change when
the lattice is square. Now if q1, q2 are the first two parastichy numbers the third is either q1+ q2
or |q1− q2|. If the change is upward, i.e. if d log%/dt > 0, and the third parastichy number is the
smallest, the new value of the third parastichy number must be q1+ q2 and the hypothesis is still
satisfied. If the parastichy number is decreasing, the new value of the third parastichy number is
|q1− q2| and the hypothesis will be satisfied if and only if q1/q2 lies between 1/2 and 2. Thus the
hypothesis of geometrical phyllotaxis is satisfied in the case of “touching circles phyllotaxis” from
the point when the lattice first becomes equiangular and can only cease to do so when d%/dt < 0, and
the third parastichy number cannot be decreased to become the difference of the first two without
contradicting the hypothesis, therefore

In a continuously varying touching circles phyllotaxis the hypothesis of geometrical phyl-
lotaxis is satisfied from the time when an equilateral triangle first appears onwards.

The difficulty in the proof given above lay largely in deciding which side of the equilateral
triangle increases when the diameter of the cylinder increases. The following not very rigorous
argument may be found helpful. Consider three of the circles forming an equilateral triangle of
the lattice (Fig. 4). The circles are being pressed downwards to ensure the closest packing. The
downward pressure of the upper circle will tend to wedge the lower circles apart, whilst at the same
time holding it in contact with the other two. Thus if % is increasing it is the most nearly horizontal
of the sides which increases. When a touching circles lattice with decreasing % reaches a state when
tanψ1 tanψ2 =∞ it is no longer possible for the lattice to continue. This happens if ψ1 or ψ2 is
90◦.

Fig. 4:

It is of some interest to know what the angles ψ1, ψ2, ψ3 will be when the lattice is equilateral.
Writing lcosψi = ηmj one obtains

tanψj = (mi+1−mi−1)/mj
√

3

(the suffixes being reckoned mod 3). When the parastichy numbers are 1, 1, 2 the directions are
0◦mod 60◦. When they are 1, 2, 3 the directions are 10◦54′mod 60◦. When the parastichy numbers
are 2, 3, 3 the directions are 6◦35′mod 60◦. For the limit of large parastichy numbers of the Fibonacci
series the directions are tan−1(ω−3/

√
3), i.e. 7◦46′mod 60◦. It will be seen that these lattices have

vectors lying very nearly along the generators of the cylinder. This will be of importance in §18,
where evidence will be brought to show that the touching circles theory is unlikely to be valid. The
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arguments apply also equally well to discredit any theory requiring that for some values of the radius
of the cylinder the lattice be equiangular.

The divergence angles for the equiangular lattices are as follows:

1,2,2 180◦

1,2,3 128◦34′

2,3,5 142◦6′

Fn−1,Fn,Fn+1 2π

(
Fn−1Fn+1+F2

n−1+F2
n−2

F2
n+1+F2

n +F2
n−1

)
.

Closely related to touching circles phyllotaxis is a phyllotaxis whose inverse lattice is a touching
circles lattice. The importance of such a lattice is that its points may be regarded as the maxima of
two sets of waves of fixed wavelength superimposed on one another.

15. The lattice described by its twist and other coordinates

Any phyllotactic lattice may be described by its helical coordinates in the form of the matrix(
2π%J−l 0
α% η

)
.

Alternatively, it may be expressed as a product of the matrix(
2π%J−1 0
α0% η

)
describing a lattice with a limiting divergence angle α0, and a finite flow matrix

(
1 0
χ 1

)
describing a twist. The matrix describing the lattice may be further broken down into factors as
follows

∆1/2

(
1 0
α0J/2π 1

)(
κ 0
0 κ−1

)(
1 0
χ 1

)
(I.15.1)

where κ = (2π%/ηJ)1/2 = 2π%/J∆1/2. One may of course multiply it on the left by any unimodular
matrix, for instance (

pn qn

pn+1 qn+1

)
where pn/qn and pn+1/qn+1 are two successive convergents of α0J/2π .

Since α0J/2π is a limiting divergence angle, the partial quotients of α0J/2π are all 1 beyond
some point and it will be supposed that pn/qn and pn+1/qn+1 are obtained by taking sufficiently
many partial quotients to ensure that some of these 1’s are included. Then

qn
αJ

2π
− pn = (−1)nω−nA where A=

ωJ

q0+ωq1
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and the lattice is described by the matrix

11/2

(
Aκ(−ω−l)n κ−1qn

Aκ(−ω−1)n+1 κ−1qn+1

)(
1 0
χ 1

)
. (I.15.2)

In the case that χ = 0, for some n, Jqn, Jqn+1, Jqn−1 are the principal parastichy numbers, and
(I.15.2) is the principal matrix representation. In this way the lattice is described by the leaf area 1,
the parameter κ which is directly related to the plastochrone ratio, and the twist χ . The parastichy
series is supposed known so that the value of A= ωJ/(q0+ q1ω) is determined. In theory one can
refer the phyllotaxis to any parastichy series, but in practice if one refers it to the “wrong” series
monstrously large twists are required.

For large parastichy numbers, qn is approximately (q0+ωq1)ω
n−1/
√

5 i.e. Jωn/A
√

5, and the
matrix approximates the form

11/2

51/4

(
ω2θ+1/2 ω−2θ−1/2

−ω2θ−1/2 ω−2θ+1/2

)(
1 0
χ 1

)
(I.15.3)

where n has been supposed even and θ =−n/2− 1/4+ 1
2 logω(Aκ). Lattices of the form (I.15.3)

with χ = 0 may be called “ideal phyllotactic lattices”. Apart from the leaf area, which is only a
scale factor, the only parameter is θ , and the lattice is a periodic function of θ with unit period. If
1/2 is added to θ the lattice is transformed into the mirror image in a generator of the cylinder for(

ω2θ+3/2 ω−2θ−3/2

−ω2θ+1/2 ω−2θ−1/2

)
=

(
−1 1
1 0

)(
ω2θ+1/2 ω−2θ−1/2

−ω2θ−1/2 ω−2θ+1/2

)
.

A very natural way of describing a general lattice is to express it by means of a matrix which is
the product of one which describes an ideal lattice and another matrix of unit determinant and with
two parameters, thus for instance

11/2

51/4

(
ω2θ+1/2 ω−2θ−1/2

−ω2θ−1/2 ω−2θ+1/2

)(
1 µ

0 1

)(
1 0
χ 1

)
. (I.15.4)

The order of the matrices
(

1
χ

0
1

)
and

(
1
0
µ
1

)
is conveniently immaterial. As a finite flow, the first of

these represents a pure twist and the second a pure shear. The shear coordinate is closely related to
the plastochrone ratio by the relation

µ=±(−1)n
∣∣∣∣∣qn−1 qn

qn qn+1

∣∣∣∣∣ 12

2π%

which holds for any n, with sign independent of n.
A convenient way of describing the effect of a finite twisting flow(

1 0
χ 1

)
is to say that it adds χ to the tangent of all the angles which lattice vectors make with the generators
of the cylinder. This idea at once provides a method of determining the twist of a phyllotactic
system. Suppose that the parastichies with parastichy numbers qn, qn+1 make angles ψn, ψn+1 with
the generators, and that the limiting angle concerned is that which corresponds to the sequence
with qn, qn+1 as consecutive terms. Then if the relation tanψn =−ω tanψn+1 were satisfied, the
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divergence angle would have the limiting angle. Since this relation can be ensured by subtracting χ
from both tanψn and tanψn+1, the equation

tanψn−χ =−ω(tanψn+1−χ)

must hold, i.e.

χ = (tanψn+ω tanψn+1)/(1+ω).

In the case of an equilateral lattice of high parastichy number, one may take tanψn =

(3ω−1)/2
√

3, tanψn+1 = ω
−3/
√

3, χ = 5/(2ω3
√

3)= 0.341.
In the case of an ideal lattice with θ = 0, the matrix is orthogonal and so represents a square

lattice, which is then also a touching circles lattice. Thus the touching circles lattice is ideal when
both are square. The sides of the square make an angle tan−1ω−1, i.e. 31◦43′ with the coordinate
axes.

16. The optimum packing problem

If one submits a lattice, with matrix description(
a b

c d

)
to an area preserving twistless flow (

κ 0
0 κ−1

)
then the points of the lattice all move along rectangular hyperbolae, and have a non-zero minimum
distance from the origin. The point

(m,n)

(
a b

c d

)
will have minimum distance [2(ma+ nc)(mb+ nd)]1/2. The minimum of this distance taken over
all the points of the lattice is of a certain interest and importance. It is the shortest distance to which
any leaves approach one another during the flow. If this distance is small in comparison with 11/2

then the leaves will, at some stage of the flow, become awkwardly close. It is interesting in this
connection that the ideal lattices are optimum in the sense that with them the minimum distance has
the maximum value for the given value of 1. To prove this, let(

a b

c d

)
be a matrix representation of the lattice in which ac< 0, bd > 0. Such a representation can be made
from two of the principal vectors. Then the minimum of |(ma+ nc)(mb+ nd)| for pairs of integers
m, n of the same sign (say for positive m, n) occurs when m/n is one of the convergents of the
continued fraction of −c/a. If not, let pr/qr,pr+1/qr+1 be two consecutive convergents such that
qr ≤ n≤ qr+1. Since the matrix (

pr qr

pr+1 qr+1

)
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has determinant±1, one can find integers k, l such that m= kpr + lpr+1, n= kqr + lqr+1. Since m/n
is not a convergent, neither k nor l can be zero. They must be of opposite sign since n< qr+1. Now
if m≥ pr then

|mb+ nd|> |prb+ qrd|

and

|ma+ nc| = |k(pra+ qrc)+ l(pr+1a+ qr+1c)|> |pra+ qrc|.

But then m,n could not then give the minimum for pr, qr would do better. Then m< pr and n> qr.
But in this case by reducing qr by 1 one would certainly reduce |mb+ nd| and one would reduce
|ma+ nc| for

ma/c+ n> ma/c+ (n− 1)≥ (−a/c)(pr + qra/c+ 1)≥ 0.

This shows that m/n must be a convergent of−c/a. Likewise if m/n is negative it must be a conver-
gent of −d/b. In the case of the ideal lattice, −a/c= ω, b/d = ω−1 and m and n are consequently
Fibonacci numbers. Then

|Fra+Fr+1c| = |c||ωFr −Fr+1| = |c|ω
−r,

|Frb+Fr+1d| = |b||ωFr +Fr+1| = bωr+1
= |d|ωr,

|Fra+Fr+1c||Frb+Fr+1d| = |cd| =1/
√

5.

Thus the shortest distance is

5−1/4(21)1/2 = 0.8945
√
1.

When a lattice of such a family has worst packing then±(ma+ nc)= mb+ nd and (ma+ nc, mb+
nd) is a principal vector, i.e. one may take a= b and m= 1, n= 0. The worst packing ideal lattice
is (

1
√

5

) (
1 1
−ω ω−1

)
.

It must still be shown that no other lattice gives so large a minimum. Write Ar = pra+ qrc, Br =

prb+ qrd, then the determinants ArBr−1−Ar−1Br all have the value ±1. If the partial quotients of
−a/c are Kr, then

Ar+1 = Kr+1Ar +Ar−1, Br+1 = Kr+1Br +Br−1.

Now suppose Kr+1 ≥ 3, then for Br/Br+1 > 0, Ar/Ar+1 < 0

|1|

|ArBr|
=

∣∣∣∣Br+1

Br
−

Ar+1

Ar

∣∣∣∣≥ 3.

Since

|1|

|ArBr|
<
√

5< 3
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it follows that there can be no partial quotients as large as 3 in the partial fraction for −c/a. Then
Br+1/Br ≤ 3 for each r, and so if Kr = 2 then

|∆|

|ArBr|
≥

∣∣∣∣ Br

Br+1

∣∣∣∣= ∣∣∣∣Kr +
Br−1

Br

∣∣∣∣> 2 1
3 >
√

5.

There can therefore not be any partial quotients as large as 2, so they are all 1, i.e. −c/a is ω or
ω−1. Likewise b/d is ω or ω−1. [There is a handwritten marginal note here that “more argument is
needed for r = 0”. The above proof is indeed not valid for K0, but the value of K0 does not affect
the divergence angle.]

Though this optimum property is of considerable mathematical interest, its biological impor-
tance is perhaps rather secondary. Above all it would be quite unjustified to suppose that the
appearance in nature of nearly ideal lattices is due to a search for the best lattice. On the contrary it
seems probable that the effect of such a search would be to defeat its own ends. It would be likely
that the evolutionary process would lead to some not too bad lattice which was a local optimum
and remain there. It will be realised that if the ratio a/c is allowed to change continuously it has to
pass through rational values, and these are the very worst from the point of view of packing. More
specifically, if one wishes to alter one of the partial quotients of a number by altering the number
continuously, then it is necessary to allow the next partial quotient to take unlimited large values.
Of course not all the partial quotients concerned in a phyllotactic lattice can be of importance, but
if any one of them is of sufficient importance that it must be kept down to a moderate size then
this fact prevents any of the previous partial quotients from being altered. However, although it is
unreasonable to suppose that there is any such evolutionary search for the best lattice from the point
of view of packing in spite of twistless area-preserving flow, the fact that the naturally occurring
lattices have, or very nearly have, the optimum property, still has its advantages. It means in effect
that if there are mutations which modify the twistless growth, disadvantageous packing effects will
arise.

17. Comparison of methods of describing lattices

A considerable number of different sets of parameters have now been introduced for the description
of phyllotactic lattices. Their various purposes, merits and defects will now be compared.

(1) The most fundamental way of describing lattices is by a matrix(
a b

c d

)
.

The other methods described may all be related to it. Its main advantage is its generality, and its
main disadvantage its lack of uniqueness.

(2) Closely related to the matrix describing the lattice is that which describes the inverse lattice(
A B

C D

)
.

This will be found particularly useful in part II.
(3) Amongst methods of making the matrix description unique is the use of helical coordinates, i.e.

the use of the matrix description (
2π%/J 0
α% η

)
.
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If the plastochrone distance η is required to be positive and the modulus of the divergence angle
α, satisfies −π < α ≤ π , this representation is unique. This form of description is more suitable
for the description of the lattice as a group of congruences of the cylinder, but is not very helpful
where theories of the origin of the phyllotactic pattern are concerned. The divergence angle and
the plastochrone displacement are not easily measured or even appreciated on specimens with
high parastichy numbers. As compared to the method next to be described the helical coordinates
at least have the advantage of changing continuously with continuously changing lattices.

(4) Another method of making the matrix description unique is to make the vectors represented
by the two rows of the matrix be the first two principal vectors. This is the principal matrix
representation. This representation is, one might say, the most natural matrix representation,
i.e. that which one would be most likely to choose if asked to give a matrix representation of a
lattice. Its main disadvantage is that it undergoes discontinuous changes when the lattice changes
continuously.

(5) There are methods of describing a lattice by means of parameters which vary continuously with
change of lattice, and in such a way that lattices whose principal matrix representations are
near to one another are represented by neighbouring sets of parameters. Such descriptions can
for instance be based on the theory of elliptic functions. The disadvantage of these methods is
that these sets of parameters are most unmanageable from the point of view of their algebraic
properties. They are not further discussed elsewhere in this paper.

(6) When one wishes to measure the parameters of a lattice, suitable quantities are the radius % and
the two angles ψ1, ψ2 which the two parastichies make with the generators. In addition to these
measured quantities one needs to know the relevant parastichy numbers.

(7) When one is concerned with phyllotactic lattices belonging to a known series of parastichy num-
bers, rather different parameters are appropriate. These are the parameters1, θ ,µ,χ (expression
I.15.4). These parameters vary continuously in a continuously varying lattice. In theory it is pos-
sible for very similar lattices to be described by very different parameters, but this does not cause
any genuine misunderstanding.

18. Variation principle theories. Equilateral lattices

One rather attractive type of theory to account for the change of phyllotaxis with changing radius
is to suppose that there is some function of the lattice that the plant attempts to minimise. It is only
able to achieve local minima, and is restricted to phyllotactic lattices that can be fitted to the cylinder
available. This “potential” function should of course be defined for lattices other than phyllotactic
lattices, and should be unchanged on rotating the lattice. The touching circles phyllotaxis can be
defined by such a potential function, viz. the ratio of the length of the shortest lattice vector to l, so
long as this ratio exceeds 1, and by 1/2l otherwise. Likewise the fixed wavelength lattices can be
defined by a similar potential. Other potential functions may be defined in the form

φ(Λ)=
∑
u∈Λ

f (|u|).

The function f (r) should preferably tend to zero quickly as r tends to infinity, and have a negative
minimum at some positive value, l. When the minimum is very sharp, one approaches the touching
circles lattices again.

Nearly all such theories require that at certain values of the plastochrone ratio the lattice must be
hexagonal, for if the equilateral lattice is optimum with a certain vector length in the infinite plane it
will also be optimum on any circle on which it can be fitted. Now suppose that the vector length is
chosen so that a lattice (in the unrestricted plane) is equilateral and gives the minimum potential for
equilateral lattices. Then although this lattice may not be an optimum or even a local optimum it is
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at least locally stationary in the space of lattices. For suppose the lattice begins to change with flow
matrix F. Then the rate of change of potential will be linear in the coefficients of F, e.g trace(FH).
Now if the whole lattice is rotated by a matrix U then F becomes UFU−1. Since for rotations of 60◦

the rate of change of potential due to the flow F will be unaltered by the rotation, it follows that, if
U is such a rotation, trace (UFU−1H)= trace (FH) for any F, i.e. U−1HU =H. Thus H commutes
with the matrices (

cosrπ/3 sinrπ/3
−sinrπ/3 cosrπ/3

)
and is therefore of the form (

A B

−B A

)
.

But since the potential is stationary for pure compressions, A= 0. It is also stationary for pure
rotations, and therefore B= 0. Hence the equilateral lattice is a stationary point of the potential.
It may not be a minimum, and if it is a minimum it may still not be one which really ever comes
into play. But these possibilities on the whole seem rather unlikely. One must expect that theories
depending on a variation principle will involve equilateral lattices for appropriate radii.

It seems however that no such theory can be right, for in the experimental material there seems to
be no trace of any equilateral lattices. As has been mentioned, equilateral lattices of high parastichy
number have a twist χ of about 0.34. In actual mature specimens one seldom finds values of χ even
as large as 0.1. This might possibly be explained by the lattice being subjected to a squashing flow(

κ 0
0 κ−1

)
in the growth after the lattice has been formed, which results in the twist getting magnified by the
factor κ2. It is difficult however to estimate the values of κ which might apply. But the same applies
with growing points.

An equilateral lattice, if it occurred, would be rather unsatisfactory from the point of view of
packing. A not very great degree of squashing applied to an equilateral lattice gives a lattice with
very poor packing indeed.
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Part II. Chemical Theory of Morphogenesis

1. Morphogen equations for an assembly of cells. The linear
case

In TURING (1952) the theory of a reaction and diffusion system was developed for the case where
the geometrical form of the organism was a ring of cells, and where the reaction rates might be
considered as linear functions of the concentrations. The equations that will be found in this part are
applicable to arbitrary geometrical forms and reaction rate functions. In this investigation, as in the
previous one, the geometrical form is assumed to remain unchanged throughout. This assumption
cannot of course always be satisfied—indeed variations of chemical concentrations would be of little
importance if they did not ultimately affect growth—but the rates of growth are likely to be slow
enough for the equilibria of chemical concentration that are reached not to be appreciably affected
by the growth.

The description of the organism may be divided into a geometrical and a chemical part, con-
cerned respectively with the diffusion and the reactions of the morphogens which are to be found in
it. The word “morphogen”, which was introduced in TURING (1952), was there, in effect, defined
to mean essentially “chemical substance relevant to morphogenesis”. In the present paper it will
be given a slightly more restrictive meaning, viz. “chemical substance, the variation of whose con-
centration is described by a variable in the mathematical theory”. The state of the organism at any
time t may be described by MN numbers 0mn(m= 1,2, . . . ,M;n= 1,2, . . . ,N), where 0mn is the
concentration of the mth morphogen in the nth cell. This description supposes that there is no need
to distinguish one point of a cell from another, an assumption which is probably true, as there is
usually considerable protoplasmic flow in the interior of cells, which will result in good mixing of
the contents. It is not necessary to assume the cells of equal volume, and one may suppose the rth
cell to have volume vr. The rate of flow from one cell to another will of course be proportional to
the difference of concentrations of the flowing substance, i.e. the rate of flow of the mth morphogen
from cell r to cell s will be proportional to 0mr −0ms. It must also be proportional to a quantity grs

dependent on the geometry of the wall of separation between cells r and s, but independent of the
substance flowing, and there will be a further factor µm, the diffusion constant for the morphogen
in question, diffusing through the material of which all the cell walls are assumed to be made.

Ignoring the chemical reactions, the equations of the system are

vr
d0mr

dt
= µm

∑
s6=r

grs(0rs−0ms). (II.1.1)

If grr is defined to be

−

∑
s6=r

grs

then (II.1.1) may be written in the more convenient form

vr
d0mr

dt
=−µm

∑
s

grs0ms (II.1.2)

or, by putting 0(1)mr = v1/2
r 0mr, in the form

d0(1)mr

dt
=−µm

∑
s

grs
√
(vrvs)

0(1)ms . (II.1.3)
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Since the matrix grs/
√
(vrvs) is symmetrical, it may be brought to diagonal form by an orthogonal

transformation:
grs
√
(vrvs)

=

∑
k

αklrklsk, (II.1.4a)

∑
k

lrklsk = δrs (II.1.4b)

and if one then puts

0
(2)
mj =

∑
r

0(1)mr lrj (II.1.5)

and consequently

0(1)mr =
∑

j

0
(2)
mj lrj (II.1.6)

the equations become simply

d0(2)mj

dt
=−µmαj0

(2)
mj . (II.1.7)

The characteristic values αk are real, since grs is real and symmetric. None of them is negative, as
can be seen on physical grounds. If one of them were negative, then there would be solutions of (II.
1.7) in which concentration differences increase with time. There can be only one αk which is zero,
provided the organism is connected, for there is then, for each m, only one linearly independent
solution of the equations which is constant in time.

As regards the chemical reactions, the one essential point is that they proceed at rates which
depend only on the concentrations of the various morphogens in the same cell. In TURING (1952)
the main interest centred around the case in which the reaction rates are linear functions of the
concentrations, an assumption which is reasonably valid so long as only small variations of con-
centration are concerned. The theory of this linear case was carried through with the rather special
geometrical assumption that the organism consisted of a ring of cells. This restriction was, however,
an altogether unnecessary one. It was made merely in order to make the problem under consider-
ation a quite definite one, and so make the argument more generally intelligible. As will be seen
very shortly, the conclusions which were obtained in that case can be directly taken over to any
arrangement of cells.

Suppose that when the concentrations of the M morphogens are 01,02, . . . ,0M the rate of
production of the mth morphogen is fm(01, . . . ,0M) per unit volume. In this case the equations
describing the effect of diffusion and reaction together are

vr
d0mr

dt
=−µm

∑
s

grs0ms+ vrfm(01r, . . . ,0Mr). (II.1.8)

The equations may be transformed by the substitutions (II.1.3), (II.1.6) to give a result analogous to
(II.1.7).

If 0(3)mr are variables which are similar to 0(2)mr , except that they refer to differences from the
equilibrium, and if these differences are sufficiently small for it to be admissable to treat the reaction
rates as linear functions of them, then the transformed equations become

d0(3)mj

dt
=−µmαj0

(3)
mj +

∑
k

amk0
(3)
kj (II.1.9)



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier
and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

A.M. Turing 2013/3/11 17:48 Page 806 #42

806 Part IV

where amk is the value of ∂fm/∂0k for the equilibrium concentrations. It will be seen that these equa-
tions separate into N independent sets of M equations each. In each set of equations the geometry of
the system comes into the problem only through the characteristic values αj of the diffusion matrix
grs/
√
(vrvs). With the rings of cells considered in TURING (1952) every possible non-negative value

of α (there written U) could arise, and was allowed for, and no greater variety of values of α can
arise with any other geometrical arrangement.

The solution of (II.1.9) can be written in the form

0
(3)
mj (t)=

∑
r

0
(4)
rj (t)Smrj (II.1.10a)

where

0
(4)
rj (t)= 0

(4)
rj (0)e

pr(αj)t (II.1.10b)

and

(pr(αj)+µmαj)Smrj =
∑

s

amsSsrj. (II.1.11)

On eliminating the Smrj from equations (II.1.11) one obtains an algebraic relation between p and
α. For each value of α there will be M values of p satisfying the relation, and M corresponding
solutions (II.1.10). TURING (1952) was very largely concerned with this relation between α and p,
and the various forms it can take with different chemical conditions. It would not be appropriate
to repeat that analysis here, but some of the main points of relevance to the present problem may
be mentioned. Evidently the terms in (II.1.10b) of greatest importance are those for which the real
part of p is greatest, for these are the ones which grow fastest. Ultimately, in fact, provided that the
linearity assumption remains true, one may ignore all components of the solution except those with
the largest Re(p). In TURING (1952) the possibilities were classified according to the values of p
and of α when Re(p) has its maximum value. Since α may be zero, finite or infinite, and p may
be real or complex, there are six alternatives, each of which was shown to occur with appropriate
imaginary chemical reactions. The case of chief interest, and the only one to be considered here,
was where p is real at the maximum, and α is finite and different from zero. This is described as the
“case of stationary waves”.

When the organism contains only a finite number of cells, or where the cells are infinitesimal
but the whole organism of finite volume, the characteristic values αk will be discrete. There can
then only be a finite number for which Re(p) has its greatest value. It will however be by no means
unusual for this number to exceed unity. In fact, if the system has some geometrical symmetry,
multiple roots of the characteristic equation of (II.1.11) will not be at all exceptional, for when a
symmetry operation is applied to the Smrj they will be converted into characteristic vectors corre-

sponding to the same characteristic value. It may happen that the vector 0(3)m itself has the symmetry
in question, but if it has not (and there is no reason why it should) then the symmetry operation trans-
forms it into another solution, and the characteristic root must be multiple. If there is a k-fold root
corresponding to the greatest Re(p), then the limiting solution has k parameters. This situation is
greatly modified when the quadratic terms are taken into account.

For many purposes the description of the organism in terms of cells is inconvenient. It may
be mathematically more satisfactory to take the limiting case in which the volume of each cell is
allowed to shrink to zero and the number of cells is allowed to increase correspondingly. There is no
need to assume that the resulting continuous tissue is either homogeneous or isotropic, nor indeed is
there any need to carry the theory through in any detail. In any particular case there will be a certain
linear operator represented by “∇2”, such that the diffusion of a substance with concentration c and
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diffusion constant µ obeys the law

dc

dt
= µ∇2c. (II.1.12)

When reactions are taken into account, the equations become

d0m

dt
= µm∇

20m+ fm(01, . . . ,0m). (II.1.13)

As in the finite case, one may expand any function of position in the organism in terms of charac-
teristic functions of the operator ∇2 analogously to (II.1.5), and the remainder of the theory of this
section may be applied to this expansion.

2. Assumptions concerning the chemistry of phyllotaxis

The behaviour of the solutions (II.1.13) can take very different forms according to the functions fm
and the diffusibilities µm involved. This variety is even further increased if the concentrations of the
morphogens affect the growth of the organism. It was suggested in TURING (1952) that this might
be the main means by which the chemical information contained in the genes was converted into a
geometrical form. If this be so, then any particular type of anatomical structure can only arise from
a relatively small fraction of the possible chemical reaction systems: if it arose from all then no
other anatomical forms would be possible. In particular, not all reaction systems can be appropriate
for the description of phyllotactic phenomena. It is the purpose of this second part of the paper to
describe conditions under which the chemical reactions are appropriate for that purpose, to find a
partial differential equation which describes the progress of those reactions, and to investigate the
behaviour of that partial differential equation. It is unfortunately not possible to say a priori how
great is the variety of behaviour which could be described by the other reaction systems. It seems to
be capable of giving rise to an enormous variety of possible solutions, but whether this variety is, or
is not, sufficient to describe all the variety of living forms cannot easily be settled.

The principal assumptions to be made are:

(a) The reaction system is such that there is a homogeneous equilibrium, and small deviations from
this equilibrium satisfy the conditions for stationary waves (see TURING (1952) p. 52).

(b) The deviations from the homogeneous state are not very great. They are sufficiently large for
the linear approximation to be inapplicable, but nevertheless sufficiently small for the effects of
the quadratic and higher terms to be regarded as little more than perturbations.

(c) The only wavelengths which are significant are those which are either very long or fairly near
to the optimum.

When it is not intended to assume that the reaction rate functions are linear one may

(i) make some quite definite assumptions about the chemistry of the system and obtain definite
reaction rate functions, or,

(ii) admit that the reaction rate functions may be any functions of the concentrations, or,
(iii) assume that the reaction rates are polynomials in the concentrations, or,
(iv) assume that the reaction rates are quadratic functions of the concentrations.

The assumption that the reaction rates are polynomials can be directly justified by the law of
mass action. However it gives one very little advantage to know this. Moreover, if one is trying to
deal with a particular case one will often prefer to use functions which are not polynomials, since by
doing so one can often, if some of the reactions proceed quickly, reduce the number of morphogens,
i.e. the number of variables which need to be considered. The assumption that the reaction rates are
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quadratic functions of the concentrations is a more useful one, although superficially it appears to be
rather arbitrary and of limited validity. It can, however, be justified quite as well as the assumption
of polynomial reaction rates. The justifying argument may be expressed either in a purely math-
ematical form or in physical terms, although it is really essentially the same argument in either
case. The physical argument is that all chemical reactions in dilute solution are either monomolec-
ular or bimolecular. Where three molecules react there will be two of them which meet and form
some, probably more or less unstable, combination, before reacting with the third substance. When
these unstable substances are all included as morphogens, there will only be monomolecular and
bimolecular reactions, and consequently only linear and quadratic terms in the reaction rates. It may
be necessary, if this point of view is to be maintained, to treat excited states of molecules as being
molecules of a different compound, but there is clearly no objection to this.

The mathematical argument also proceeds by introducing new variables, and these variables
might, if one wished, be imagined as representing the concentrations of imaginary intermedi-
ate products according to some possible theory of how the reactions are to be broken down into
monomolecular and bimolecular reactions.

The additional variables which are necessary if one is to have quadratic rate functions are clearly
no disadvantage in the sort of theoretical discussion where one is in any case committed to an
indefinite but finite number of concentration variables.

Although the equations are no longer linear it is convenient to use the same substitutions as in
the linear theory, viz. first

0mj = hm+
∑

r

0
(3)
mj v−1/2

j lrj (II.2.1)

where fm(h1, . . . ,hM)= 0 for all m, i.e. h1, . . . ,hM represents a homogeneous equilibrium. Naturally,
if there are variables for every substance which occurs (in solution) in the system, then h1 = h2 =

·· · = hM = 0 will be such an equilibrium, but it is preferable for a number of reasons not to suppose
that h1, . . . ,hM have these values. If some of the substances whose concentrations are effectively
constant have not been assigned variables, the values zero may not be an equilibrium. Moreover,
the zero equilibrium is by no means a representative one, and not all the phenomena described in
TURING (1952) will occur with this trivial form of equilibrium.

The M different roots of the equation resulting from eliminating the 0(3)mr (0) from (II.1.10) may
be called pl(α), l= 1,2, . . . ,M, and there will be numbers Wml(α) such that

(pl(α)+µmα)Wml(α)=
∑

s

amsWms(α). (II.2.2)

If pl is a k-fold repeated latent root, there will be k corresponding Wml(α). The matrix Wms(α) is
accordingly always non-singular and has an inverse W−1

st (α). Consequently the matrix 0(3)mr (t) may
be expressed in the form

0(3)mr (t)=
∑

l

Wml(αr)Xlr(t) (II.2.3)

and so, by (II.2.1)

0mj(t)− hm =
∑
r,l

Wml(αr)Xlr(t)v
−1/2
j lrj. (II.2.4)

The assumption (c) above can now be brought into play. Only terms for which α is close to
zero or to k2

0, where 2π/k0 is the optimum wavelength, must be considered. It is assumed also, that
in view of the analogy of the linear case, and assumption (ii) that the non-linear terms are only of
secondary importance, one may ignore all terms on the right-hand side of (II.2.4) which do not arise
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from the largest Re{pl(αr)} for the αr in question. For αr near to zero this will be supposed to be
pl(0)(αr), and when αr is near to k2

0 it will be supposed to be l(1).
With these assumptions, (II.2.4) becomes

0mj(t)− hm =
∑

r

(αr near 0)Wml(0)(αr)Xl(0)r(t)v
−1/2
j lrj

+

∑
r

(αr near k2
0)Wml(1)(αr)Xl(1)r(t)v

−1/2
j lrj. (II.2.5)

A further, and rather drastic, approximation is the assumption that over the two short ranges of
values of α concerned, the functions Wml(0)(α) and Wml(1)(α) may be treated as constants, and so

0mj(t)− hm =Wml(0)(0)
∑

r

Xl(0)r(t)v
−1/2
j lrj

+Wml(1)(k
2
0)
∑

r

Xl(1)r(t)v
−1/2
j lrj

=Wml(0)(0)Vj+Wml(1)(k
2
0)Uj. (II.2.6)

Now assuming, in agreement with (iv), that the reaction rates are quadratic functions of the con-
centrations, the differential equations controlling the behaviour of 0mj(t) can be written in the
form

d0mj

dt
=

∑
ams(0ms− hm)+

∑
Kmrs(0rj− hr)(0Sj− hs)

−
µm

vj

∑
gjj0mj (II.2.7)

the constant terms being absent by the definition of the hr. If these equations are expressed in terms
of the variables Xlr(t) by means of the relation (II.2.4), one obtains

dXlr

dt
=

∑
m,j

W−1
lm (αr)lrjv

−1/2
j

d0mj

dt
. (II.2.8)

The linear terms will of course be the same as in the purely linear theory, and the quadratic terms
may be evaluated by the approximation (II.2.6). There is evidently no need to give the equations
except where l= l(0) or l= l(1). The equation for Xl(0)r is

dXl(0)r

dt
= pl(0)(αr)Xl(0)r +

∑
m,j,s

W−1
l(0)m

lrjv
−1/2
j Kmrs[Wrl(0)(0)Vj+Wrl(1)(k

2
0)Uj]

× [Wsl(0)(0)Vj+Wsl(1)(k
2
0)Uj] (II.2.9)

and may be written

dXl(0)r

dt
= pl(0)(αr)Xl(0)r

+

∑
m,j

W−1
l(0)m

lrjv
−1/2
j (F(1)m V2

j + 2F(2)m VjUj+F(3)m U2
j ). (II.2.10)
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There is of course a similar equation for Xl(1)r. One can now change the variables to Uj,Vj, and one
obtains

dVj

dt
= [pl(0)(−∇

2)V]j

+

∑
W−1

l(0)m
(αr)lrkv−1/2

k v1/2
j lrj(F

(1)
m V2

j + 2F(2)m VjUj+F(3)m U2
j ). (II.2.11)

Here p(−∇2) represents a certain linear operator. As implied by the notation used, the character-
istic vectors of these operators are the same as those of the operator ∇2, but where −∇2 has the
characteristic value α,p(−∇2) is to have the characteristic value p(α). If now the matrix W−1

lm (α) is
treated as independent of α over the range involved, as has already been supposed for its inverse,
the equation reduces to the much simplified form

dVj

dt
= [pl(0)(−∇

2)V]j+F(4)V2
j + 2F(5)VjUj+F(6)U2

j . (II.2.12a)

Likewise the equation for Uj takes the similar form

dUj

dt
= [pl(1)(−∇

2)U]j+G(4)V2
j + 2G(5)VjUj+G(6)U2

j . (II.2.12b)

The assumptions which led to these equations have been somewhat drastic, but it must be remem-
bered that it is by no means claimed that these approximations are appropriate for all problems of
morphogenesis, but merely that, in the cases where these approximations hold good one obtains
equations suitable for the description of the phyllotactic phenomena. When considering the validity
of the approximations, therefore, one should ask whether there are any cases in which they hold
good, rather than whether they are universally valid.

There will be still further assumptions to be made, but the equations (II.2.12) may be regarded
as a convenient bridge linking the more or less chemical theory with the rest of the problem.

A number of additional assumptions will be made with even less appearance of generality. First,
the coefficients F(4),F(5),G(4) will be assumed to be zero. One may, if one wishes, explain the
ignoring of the term G(4)V2

j on the grounds that, in a Euclidean space at any rate, it does not contain

components near to the optimum wavelength; and the ignoring of 2F(5)UjVj on the grounds that it
does not contain terms of long wavelength. The ignoring of F(4)V2

j might be justified by the view
that Vj is small. But whatever justification be offered, these assumptions are made. It is assumed
further that there is effective equilibrium in the equation (II.2.12a), i.e. that the right-hand side of
this equation vanishes, so that

V = [pl(0)(−∇
2)]−1U2

= ψ(−∇2)U2 (II.2.13)

putting F(6) =−1 by suitable scaling of the variables.
The equation for U may be written

dUj

dt
= [φ(−∇2)U]jGU2

j −HUjVj (II.2.14)

The two functions φ,ψ are bound in theory to be algebraic, but this is of course no real restriction.
Any analytic function can be approximated as closely as one pleases by an algebraic function. The
essential point about the function φ(α) is that it has a maximum near α = k2

0. Since it has been
supposed in any case that it is only the components of U with wavelengths near to 2π/k0 which
are significant, it can only be the values of φ(α) for values of α near to k2

0 which matter, i.e. only
the values near to the maximum. An appropriate approximation for φ(α) therefore seems to be
I(α−α0)

2. As regards the function ψ(α), the most natural assumption seems to be that pl(0)(α)

increases linearly with increasing α and so that ψ(α) is of the form A/(B+α). However, since
computations are greatly simplified if ψ(α) can be put equal to zero for the majority of values of α,
other forms for this function will sometimes be used.
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3. Equations for small organisms

If the dimensions of an organism are not too large in comparison with the optimum wavelength,
the characteristic values αr will usually be well spaced out, except where they are multiple. In this
case some of the approximations of the last section will be rather more convincingly justifiable, for
there may be only one value of α which needs to be considered in each of the two important ranges,
viz. that near the optimum wavelength and that near zero. The value near the optimum wavelength
will probably be multiple, but, as has already been mentioned, for a connected organism the root
zero is simple: Vj(t) is therefore independent of position. According to the point of view in which V
represents the concentration of a diffusing poison, the organism is sufficiently small that the poison
may be assumed to be uniformly distributed over it. The function Uj(t), on the other hand, must be
a linear combination of diffusion eigenfunctions all with the same eigenvalue, or, in other words,
waves with the same wavelength. If F is a linear operator which removes all components which
have not the appropriate wavelength, then the equations may be written

dUj

dt
= (P−HV)Uj+G[F U2]j, (II.3.1)

V = U2. (II.3.2)

Here P is the value of pl(1)(α) for the particular α (near the optimum) which is concerned. The
equilibrium solutions of these equations take the form of multiples of solutions of the equations
U =F (U2).

This problem may be illustrated by the case where the organism forms a spherical shell. It is not
of course possible to build up a spherical shell out of a large number of similarly shaped areas. But
if it be built up of a large number of cells which are not quite the same, the effect of the irregularities
will become small as the number of cells increases. In any case it will be assumed that the “∇2” for
the shell is the ordinary three-dimensional Laplacian in spherical polar coordinates, with the radial
term omitted, and so has the spherical harmonics as characteristic functions. The operator F will
then be one which removes from a function on a sphere all spherical harmonic components except
those of a particular degree. To solve the equation U =F (U2) is to find a spherical harmonic of
that degree which, when it is squared and again has the appropriate orders removed, is unchanged.
For each degree there is only a finite number of essentially different solutions of this problem, i.e.
solutions which are inequivalent under rotations of the sphere. They have been investigated by B.
Richards, and the results are described in Part III.

4. The equations applied to a plane

In the case that the cells form an isotropic homogeneous plane (apart from local variations over
regions containing not very many cells), the diffusion characteristic functions are plane waves of
the form ei(Xx+Yy). Over any finite area of the plane the functions may be approximated as closely
as one pleases by Fourier sums ∑

Cnei(Xnx+Yny). (II.4.1)

When a function has two independent periods it may be accurately represented by such a series.
As was seen in Part I, the exponents (Xn,Yn) then form a lattice. Such a series can also represent
any function accurately within a bounded region, by choosing sufficiently large periods. Functions
in the plane can also be approximated by Fourier integrals, and sometimes accurately expressed by
them. There is no need, however, to go into these problems of analysis here. There are no organisms
consisting of infinite planes of tissue, and it is only of value to consider such imaginary organisms
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for the light that they throw on other systems more nearly represented in nature. This light will not be
appreciably dimmed by making the assumption that the functions concerned have two independent
periods, possibly rather large, and the expression (II.4.1) will therefore be supposed exact.

Before going on to the non-linear theory of the plane it will be worth while to ask what sorts of
patterns one would get if the linear theory applied throughout. The value of his question lies in the
fact that it has a fairly definite answer, and is valuable as an illustration of certain points. Whether
the patterns which arise from it can fairly be claimed to occur in nature is another matter.

The equations for the linear case can be obtained by omitting the quadratic terms in (II.2.12b)
and so become

dU

dt
= pl(1)(−∇

2)U. (II.4.2)

This equation may also be inferred fairly directly from (II.2.9) and (II.2.10) by ignoring all but the
largest roots p. The equation (II.4.2) can only be regarded as valid over a limited range of time.
Apart from the question (which is being intentionally ignored) of the effects of quadratic terms as
t increases, there is the effect of Brownian movement and similar “noise” effects when t has large
negative values and U is consequently very small. If this Brownian movement is taken into account,
the character of the problem changes. One is no longer trying to find the totality of solutions, or the
time development of a solution, but rather to find statistical information about the “ensemble” of
solutions.

5. “Noise” effects

The equation (II.1.8) can be regarded as accurate only so long as one assumes that Avogadro’s
number is infinite. Otherwise it will be necessary to admit that the concentration of a morphogen in
a cell can only have discrete values, corresponding to the various numbers of molecules that may
occur in it. It will also not be possible to predict the actual new concentration at any future time,
but only to give probabilities. In some applications of the theory it may be important to consider
seriously the possibility that there may be only one or two molecules present, or even none. This
would apply, for instance, in the case that the same theory is applied to the spread of epidemics,
the “molecules” now being infected and uninfected men, rats, corpses, fleas, etc. It may even apply
to the morphogenetic problem for some of the morphogens, e.g. the genes themselves. However,
since these statistical effects are in any case of rather secondary importance in this problem it is
appropriate to make some simplifying assumptions. It will be supposed in fact that over intervals
of time short enough for the concentrations not to undergo appreciable proportionate changes, the
number of molecules undergoing any one of the reactions in any one of the cells, or passing through
any of the membranes, is large enough that one is justified in using a normal distribution instead
of a Poisson distribution for it. Let 0mr be expressed in gram molecules per unit volume and N be
Avogadro’s number, then . . . [the manuscript breaks off here]

6. Effects of random disturbances

If there is one value pk(αr) which exceeds all the others, then for almost all initial values the term
exp{ipk(αr)t} will eventually be far greater than any of the other terms which contribute to 0ms. In
this case then the ultimate condition of the system is almost independent of the initial conditions.
Even if there are non-linear terms which eventually have to be taken into account, this will quite
possibly not apply until this dominant term has outdistanced the others. However it is not at all
uncommon for there to be several different characteristic vectors for which the corresponding dif-
fusion characteristic values αr are all equal. In this case the “argument by outdistancing” merely
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tells us that ultimately the only characteristic vectors which need be included in the sum are those
for which the pk(αr) has its maximum value. It does not, however, say anything about the propor-
tions in which those characteristic vectors are to be taken. According to the theory expounded in
§II.1, this could be settled by giving all the concentrations of all the morphogens at some early time.
These would then determine the concentrations at all later times. The theory of §II.1 is, however,
in error about this. For there are some small effects which are ignored. This does not matter under
most circumstances, but sometimes it will, as for instance when the system is near to an unstable
equilibrium. The main effects concerned are probably

(1) The statistical nature of the chemical reactions.
(2) The statistical nature of the diffusion.
(3) Variations of the reaction rates from cell to cell, due for instance to the presence of different

concentrations of indiffusible catalysts (not reckoned as morphogens).
(4) The irregularity of the cell pattern in the cases where this cell pattern has been idealised in some

way, e.g. where it is regarded as forming a spherical surface.

It is pointless to attempt to give any complete list of the effects ignored because of the very
approximate nature of the whole investigation, but the above list may be used to illustrate the nature
of these effects. So long as one is interested in the manner of departure from homogeneous equilib-
rium, one can fairly say that even if non-linear effects are eventually to be considered, nevertheless
during the period when these minor disturbances are of significance, the non-linear terms can be
ignored. It can happen that a non-homogeneous equilibrium, for whose maintenance the non-linear
terms are of importance, may become unstable, and then again these small effects will determine
the course that the system will actually take. In these cases, however, there are usually very few
alternative courses which can be taken. There is also usually a symmetry which shows that the
alternative possible courses are all equally probable: in fact no detailed theory is necessary. In the
present section therefore it will be supposed that the linear theory applies. This really means that
it is being assumed that the linear theory applies whilst the disturbances operate, but the progress
of the differential equation will not be followed up to the time when the non-linear terms become
effective. It will also be assumed in this investigation that the multiplicity of the roots of the diffu-
sion characteristic equation is entirely due to symmetry. The situation is very similar to that which
arises in the theory of spectra, where the multiplicity of an energy level is almost always due to
symmetry.

It seems probable that effects (3) and (4) would normally be of somewhat greater magnitude
than the atomistic effects (1) and (2). The atomistic effects have, however, not been ignored: this is
mainly because the theory of them is much more satisfactory.

One may, if one wishes, regard a morphogenetic system as described by the MN values of the
concentrations of the various morphogens in the various cells, without attempting to classify these
variables. If y1, . . . ,yMN are these variables, the equations may be written in the form

dyr

dt
= Fr(y1, . . . ,yMN , t)+Nr(t), (II.6.1)

where the functions Fr(y1, . . . ,yMN , t) describe both the diffusion and the reactions, and Nr(t)
describe the statistical effects.* The choice of the values of these functions is to be imagined as
independently chosen at different times, although the various values at a particular time may be
statistically or even functionally dependent.

* The use of these Nr(t) is strictly speaking quite unjustifiable; they could not themselves be given finite values at each
time, though their integrals can, and also the integrals below in which they appear.
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The value of the integral of Nr(t) over any period of time being a sum of a large number of
statistically independent components, arising from any way in which the interval of integration may
be broken up into subintervals, has a normal distribution. Its variance is expressible in the form∫ b

a
σr(t)dt

where (a,b) is the time interval concerned. Likewise, if g(t) is a function statistically independent
of Nr(t), then ∫ b

a
Nr(t)g(t)dt

is also normally distributed and its variance is∫ b

a
σr(t)[g(t)]

2dt.

Now suppose that y1(t), . . . ,yMN(t) would be an equilibrium at time t if only the conditions were not
changing, i.e. that

Fr(y
(0)
1 (t), . . . ,y(0)MN(t), t)= 0 (II.6.2)

and let the partial derivative ∂Fr/∂ys have the value brs(t) for the arguments y(0)1 (t), . . . ,y(0)MN(t), t.

Then putting y(1)r (t)= yr(t)− y(0)r (t) one has

dy(1)r

dt
=

∑
s

brs(t)y
(1)
s (t)+Nr(t)− ẏ(0)r (t) (II.6.3)

with a dot denoting differentiation with respect to t. Similar equations hold if the variables are
subjected to a linear transformation. The solution of the equation may be expressed in the form

y(1)r (t)=
∑

s

∫ t

−∞

(Ns(u)− ẏ(0)s (u))Krs(t,u)du (II.6.4)

where

∂Krs

∂t
=

∑
q

brq(t)Kqs(t) if t > u (II.6.5)

and

Krs(u,u)= δrs. (II.6.6)

One may regard brs(t) as differing rather little from some “ideal” coefficients b(0)rs (t) which have the
appropriate symmetry. Similarly, one may have K(0)rs related to b(0)rs as in (II.6.5). In the case where
the brs are independent of time, the Krs(t) are sums of time exponentials with the pk(αr) as growth
rates. These pk(αr) are of course the characteristic values of the matrix brq. The small difference

between brs and b(0)rs will make only a small difference in the characteristic values, but if the time
lapse is large the effect on the corresponding exponential growth factor may be considerable. With
the actual brs(t) which may be encountered, which are not constant in time, the same considerations
of magnitude will apply.
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It will not be feasible to give a very complete account of the behaviour of the solutions, but some
general conditions may be considered. The case in which there are only atomistic disturbances, i.e.
of kinds (1) and (2), can be dealt with fairly fully. In this case the term

−

∫ t

−∞

ẏ(0)s Krs(t,u)du

in (II.6.4) represents an effect independent of position. That this is so is not at all obvious from the
equation, which does not in any case distinguish space and morphogen effects. It may be seen from
the general principle that in the absence of any of the effects (1) to (4) a solution homogeneous at
one time will remain so thereafter. Concentrating on the space dependent term∫ t

−∞

Ns(u)Krs(t,u)du= y(2)r (t)

one sees at once that each of its components is normally distributed, and that every linear com-
bination of components is also normally distributed. The vector y(2)1 , . . . ,y(2)MN consequently has a
frequency function of the form

(1(t))−1/2(2π)−MN/2 exp

−1

2

∑
i,j

θij(t)y
(2)
i y(2)j

 (II.6.7)

where the quadratic form
∑
θij(t)y

(2)
i y(2)j is positive definite and 1(t) is the determinant of its

coefficients.
It is proposed to consider this matrix θij in respect of its asymptotic behaviour in time, and the

symmetry of the system. For any given t, the function Krs(t,u) will normally be small compared
with its maximum except over a comparatively narrow range of values of u, viz. near to the point
where the largest real part of a characteristic value of the matrix brs(u) is zero (cf. TURING (1952)
equation (9.15)). For large values of t, therefore, one may replace the lower limit of integration in
(II.6.4) by some fixed t0, and then y(2)r (t) will satisfy the differential equation

dy(2)r

dt
=

∑
s

brs(t)y
(2)
s

and consequently the matrix θij will satisfy

dθij

dt
=−

∑
p

(θipbjp− θjpbip). (II.6.8)

If one makes a linear transformation to variables y(3)r (t) such that the corresponding matrix b(3)rs (t)
is diagonal, these variables will be, or could be, the same as the 0(3)rs , and the characteristic values
b(3)ii are the pk(αr). Writing I for the largest of the real parts of these characteristic values and

y(4)r (t) for y(3)r (t)e−It, then y(4)r (t) tends to a limit y(5)r as t tends to infinity. This limit is zero unless
Re(b(3)rr − I)= 0, and when this happens the corresponding imaginary part Im(b(3)rr ) is zero, since it
is assumed that the stationary wave case applies. The differential equation (II.6.8) becomes, when
applied to the coefficients θ (4)ij which describe the distribution of y(4)r ,

dθ (4)ii

dt
=−2(b(3)ii − I)θii
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(θij = 0 if i 6= j), and so θii tends to infinity unless b(3)ii = I. This merely expresses that it is infinitely

improbable that y(5)r will not be zero if b(5)rr = I. The θ (4)rr with b(3)rr = I give the frequency distribution
of the y(5)r . They are normally distributed and independent.

The above argument gives an existence theorem about the distribution of the y(5)r , i.e. of those
linear combinations of the coordinates which tend to infinity fastest. The actual distribution is best
obtained by symmetry requirements. Although the full details of these arguments must be related to
the particular symmetry group involved, a little can be said which is generally applicable.

It has already been mentioned that the degeneracy of the characteristic equation associated with
diffusion was to be supposed entirely due to symmetry. This assumption needs some clarification
before it can be used. Let y be any vector (i.e. an assignment of morphogen concentrations to the
cells), then this vector can be transformed into various others, e.g. Spy by the symmetry operations,
i.e. the permutations τ of the cells which satisfy

gprps = grs.

If y is a characteristic vector of the operator ∇2 with characteristic value α, then Spy is also a
characteristic vector with the same characteristic value. The various vectors

Sp1y,Sp2y, . . .

span a space of vectors with characteristic value α. In the metaphor of the assumption on p. 102,
the equality of these characteristic values is “due to the symmetry”. That assumption states that the
characteristic values are equal only if equality is due to symmetry, i.e. if y,y′ are both characteristic
vectors with characteristic value α then y′ can be expressed in the form

∑
βpSpy. Another way of

expressing the condition is to say that when the group of symmetry is represented on the vectors
with characteristic value α, this representation is irreducible. What is actually required below is
a little more, viz. that the degeneracy of the largest roots of the matrix brs(t) (for large t) should
be entirely due to symmetry. These roots are the pk(αr). The degeneracies of the diffusion matrix
mean that various sets of the αr are equal. It is required that if I =Max[pk(αr)] then pk(αr)= I and
pk′(αr′)= I imply that αr = αr′ and k = k′. The cases in which this is most likely to be incorrect
are when either there is some kind of symmetry in the chemical reaction system, as for instance
when the dextro and laevo forms of the morphogens are distinguished, or when αr 6= αr′ , k = k′, but
pk(αr)= pk(αr′) due to fortuitous values of the geometrical dimensions. With these assumptions,
the representation of the symmetry group on the vectors for which brs has characteristic value I
is irreducible. Now let the values of r for which b(3)rr = I be 1,2, . . . ,J, and let the effect of the
symmetry operation on y(5)1 , . . . ,y(5)5 ,0,0, . . . ,0 be to convert it to the vector whose rth coordinate
(r 6 J) is

J∑
s=1

urs(p)y
(5)
s .

Also let the frequency distribution of the values of y(5)1 , . . . ,y(5)J be

(2π)−J/2(detθ (5))−J/2 exp

−1

2

∑
i,j

θ
(5)
ij y(5)i y(5)j

dy(5)1 , . . . ,dy(5)J .

The frequency distribution for the transformed coordinates will have∑
k,l

uik(τ
−1)ujl(τ

−1)θkl
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in place of θ (5)ij , but by the symmetry condition the frequency distribution is unaltered, i.e.∑
uik(τ

−1)ujl(τ
−1)θkl = θ

(5)
ij .

Now for a finite group of symmetry, the basis of the vectors may be chosen in such a way that
the matrices of the representation are unitary. If this is done, the condition may be expressed by
saying that the matrix θij commutes with each representative matrix uij(τ

−1). But by a well known
theorem on representations, this means that the matrix θij is a multiple of the unit matrix.

When the coordinates are chosen in the space of vectors of greatest growth rate in such a way
that the representatives of the symmetry group are unitary, then the frequency distribution is normal
in each coordinate and the coordinates are independent of one another and have equal variances.

The consequences of the non-atomistic effects (3) and (4) are not capable of so satisfactory a
treatment. If one were justified in supposing that the final effects were linear functions of indepen-
dent causes the outcome of effects (3) and (4) would be of the same kind as the outcome of effects
(1) and (2). It is likely however that this is not usually a good approximation. Although it would be
fair to regard the matrix (brs)= B as influenced by a number of linearly independent causes, this
matrix takes effect mainly through an exponential eBτ with a fairly large value of τ . Unless ετ is
small, e(B+εB

′)τ cannot be satisfactorily approximated by a linear function of B′.
It is not proposed to enter into these effects here in great detail, although it is probable that they

are of greater importance than those of atomistic origin. It is only intended to deal with an extreme
case, one which is very different from the case of the atomistic effects, viz. that in which the time
period is so long that in the exponential e(B+εB

′)τ the differences of the characteristic values of the
matrix, when multiplied by the time interval, are large. In this case one comes back to the situation
in §II.1, where only the largest characteristic value need be considered. The actual characteristic
value is of no particular interest, as it will merely determine the time before a pattern of a given
amplitude appears. Greater interest attaches to the characteristic vector, as it determines the pattern.
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Part III. A Solution of the Morphogenetical Equations for
the Case of Spherical Symmetry

1. Reduction of the differential equation

In the previous part the equations for small organisms were deduced, and an attempt was made to
justify the assumptions on a chemical basis. One is interested in finding the concentration function
U(θ ,φ, t) satisfying the equations:

dU

dt
=8(∇2)U+GU2

−HUV , (III.1.1)

V = U2. (III.1.2)

It has been shown that the solution U must be a linear combination of diffusion eigenfunctions; it is
therefore appropriate to assume that the solution of (III.1.1) is of the form

U(θ ,φ, t)=
m=n∑

m=−n

Sm(t)Pm
n (cosθ)eimφ (III.1.3)

with U real and the functions Pm
n (cosθ) being the normalised Legendre Associated Functions (see

Appendix). These functions satisfy the relation

1

4π

∫ ∫
Pr

n(cosθ)Ps
n(cosθ)dS=

{
1 for r = s,
0 for r 6= s.

(III.1.4)

Since U is real, it is equal to its complex conjugate U∗, and since

Pm
n (cosθ)= P−m

n (cosθ)

it follows that

S−m(t)= S∗m(t). (III.1.5)

It is then possible to evaluate V from (III.1.2) by integration, since

V =
1

4π

∫ ∫
U2dS

=
1

4π

∫ ∫ k=n∑
k=−n

m=n∑
m=−n

SkSmPk
n(cosθ)Pm

n (cosθ)ei(k+m)φdcos θdφ

=

k=n∑
k=−n

m=n∑
m=−n

SkSm
1

4π

∫ ∫
Pk

n(cosθ)Pm
n (cosθ)ei〈k+m)φdcos θdφ.

Now using the relations (III.1.4) and (III.1.5), it follows that

V =
m=n∑

m=−n

|Sm|
2. (III.1.6)
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In equation (III.1.1), the function 8(∇2) is replaced by a constant I, since for the case of
spherical surface harmonics,

∇
2
=−n(n+ 1)/R2.

Equation (III.1.1) thus becomes:

dU

dt
= IU+GU2

−HUV . (III.1.7)

Substituting the series solution into this equation leads to:

dSm

dt
= (I−HV)Sm+G

i=n∑
i=−n

j=n∑
j=−n

SiSjL
i,j,−m
n (III.1.8)

the coefficients Lp,q,r
n being defined by:

Lp,q,r
n =

1

4π

∫ ∫
Pp

n(µ)P
q
n(µ)Pr

n(µ)e
i(p+q+r)φdµ dφ, (III.1.9)

−µ being written for cosθ .
As time goes on, Sm(t) will reach its equilibrium value as determined by equation (III.1.8).

Therefore, assuming that equilibrium has been reached, this equation becomes

(I−HV)Sm+G
i=n∑

i=−n

j=n∑
j=−n

SiSjL
i,j,−m
n = 0 (III.1.10)

which can be written in the form

−

(
I−HV

G

)
Sm =

i=n∑
i=−n

j=n∑
j=−n

SiSjL
i,j,−m
n . (III.1.11)

For the purposes of obtaining a solution it is more convenient to solve the equation

Tm =

i=n∑
i=−n

j=n∑
j=−n

TiTjL
i,j,−m
n (III.1.12)

which does not contain any of the arbitrary constants. If Tm is a solution of this equation, then
Sm = λTm will satisfy the equation

λSm =

i=n∑
i=−n

j=n∑
j=−n

SiSjL
i,j,−m
n (III.1.13)

and thus λTm will satisfy (III.1.11) provided one chooses λ so that

λ=−(I−HV)/G. (III.1.14)

Here the constant V is given by

V =
∑
|Sm|

2
= λ2

∑
|Tm|

2 (III.1.15)
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so that the final equation for λ is

λ=−
I− λ2H

∑
|Tm|

2

G
. (III.1.16)

Since λ is the same for each of the Tm, there will only be a constant factor between the distribution
given by the T’s and that given by the S’s.

One thus arrives at the set of equations

Sm =

i=n∑
i=−n

j=n∑
j=−n

SiSjL
i,j,−m
n (III.1.17)

which are to be solved for the unknown Sm. The solutions are in general complex, but it is possible
to choose solutions which are purely real, since it can be shown that the complex solutions differ
only by a rotation.

It is possible to enumerate the (n+ 1) equations as given by (III.1.17) for each particular value
of n, in the forms given below. The relations

S−m = S∗m,

Lr,s,−m
n = E|r|,|s|,|m|n where r+ s−m= 0, (III.1.18)

Ep,q,r
n = 0 if any of p,q,r is > n

have been used.

For n 6 8 the equations are

S0 = S2
0E0,0,0

n + 2
n∑
1

|Sk|
2E0,0,0

n ,

S1 = 2
n−1∑

0

S∗k Sk+1E1,k,k+1
n ,

S2 = 2
n−2∑

0

S∗k Sk+2E2,k,k+2
n + S2

1E1,1,2
n ,

S3 = 2
n−3∑

0

S∗k Sk+3E3,k,k+3
n + 2S1S2E1,2,3

n ,

S4 = 2
n−4∑

0

S∗k Sk+4E4,k,k+4
n + 2S1S3E1,3,4

n + S2
2E2,2,4

n ,

S5 = 2
n−5∑

0

S∗k Sk+5E5,k,k+5
n + 2S1S4E1,4,5

n + 2S2S3E2,3,5
n ,
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S6 =2
n−6∑

0

S∗k Sk+6E6,k,k+6
n + 2S1S5E1,5,6

n

+ 2S2S4E2,4,6
n + 2S2

3E3,3,6
n ,

S7 =2
n−7∑

0

S∗k Sk+7E7,k,k+7
n + 2S1S6E1,6,7

n

+ 2S2S5E2,5,7
n + 2S3S4E3,4,7

n ,

S8 =2
n−8∑

0

S∗k Sk+8E8,k,k+8
n + 2S1S7E1,7,8

n

+ 2S2S6E2,6,8
n + 2S3S5E3,5,8

n + S2
4E4,4,8

n

where for n< 8 only the first n+ 1 equations hold.

These equations have algebraic solutions, though they are not necessarily real. The solutions
S= (S0,S1, . . . , Sn) for given n are not unique, and indeed it is sometimes possible to specify n
of the n+ 1 components of S and to vary the remaining component, keeping its modulus fixed.
Solutions have been sought with S1 = 0, since in any solution with S1 6= 0 it is possible to rotate the
coordinate axes so as to eliminate S

′

1 in the resulting transformation S→ S′. In doing this, the same
physical solution is preserved.

It will be seen that in the solutions obtained, some values are negative. It is to be remembered
that the solutions represent deviations from the sphere. The dimensions are somewhat arbitrary, but
a correct balance between the oscillations of the function U and the radius of the initial sphere can
be obtained by reference to suitable biological species.

2. Solutions of the simultaneous equations

The solutions of the sets of equations conform, in general, to a set pattern. If there is a solution in
which Sr is non-zero, then S2r,S3r, etc. will also occur in that particular solution. Thus there will
be a solution with S0,S3,S6 etc. all non-zero; or again, S0,S2,S4,S6 etc. non-zero. There will be
additional solutions if certain coincidences in numerical values hold among the integrals Li,J,k

n .
The equations are solved for the values of n= 2,4,6, together with the restriction mentioned

previously, namely that S1 ≡ 0.
Case n= 2. The equations are:

S0 = S2
0E0,0,0

2 + 2S∗1S1E1,1,0
2 + 2S∗2S2E2,2,0

2 ,

S1 = 2S1S0E1,1,0
2 + 2S∗1S0E1,1,2

2 , (III.2.1)

S2 = 2S2S0E2,2,0
2 + S2

1E1,1,2
2

while the coefficients En have numerical values

E0,0,0
2 = 2

√
5/7, E1,1,0

2 =
√

5/7,

E2,2,0
2 =−2

√
5/7 E1,1,2

2 =
√

30/7.
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The simplest solution of this set (III.2.1) is that for which S0 is the only non-zero variable. This
solution is

S0 = (E
0,0,0
2 )−1

= 7
√

5/10

and hence

U = S0P0
2(cosθ)= (7/4)(3cos2 θ − 1),

V = S2
0 = 49/20.

This gives rise to a prolate spheroid whose major axis coincides with the direction θ = 0. All other
solutions of this set of equations do not introduce any physical solutions but only rotate the spheroid
through varying angles about different axes. For example, consider the solution with S0 6= 0, S2 6= 0.
We can choose S2 to be positive, for the case S2 negative is obtained by rotation through π/2 about
the axis φ = 0, since

−S2P2
2(µ)cos2φ = S2P2

2 cos2(φ±π/2).

The solution is then

U = (7/8)[(1+ 3cos2φ)− 3µ2(1+ cos2φ)],

V = 49/20.

This is seen to be the same prolate spheroid as the original, but merely rotated through π/2 about
the axis φ = π/2.

Case n= 4. (i) Here again the simplest solution is a fundamental one physically; the solution
being that for which S0 is the only non-zero coefficient. It is

Ur = (E
0,0,0
4 )−1P0

4(cosθ)= (1001/1296)(35cos4 θ − 30cos2 θ + 3),

V = (1001/486)2.

This is a solid of revolution about the polar axis and resembles a discoid elongated in the polar
directions.

In identifying the physical solutions, the value of the integral V , as calculated from (II.3.1),
serves as an identity number, since for two physical solutions to be the same they must have the
same wavelength predominating and must have the same value for V .

(ii) If one assumes two non-zero coefficients, namely S0 and S4, the solution is

U = S0P0
4(µ)+ 2S4P4

4(µ)cos4φ

= (143/108)[(3/8)(35µ4
− 30µ2

+ 3)+ (30/16)(1−µ2)2 cos4φ],

V = 20449/6804.

This solid is a spheroid with a spine at each pole and four around the equator; in fact it has six-point
symmetry. It is thus totally different from the previous solution.

(iii) The solution with S0 and S3 as the only non-zero coefficients yields the same solid, the
solution being

U = S0P0
4(µ)+ 2S3P3

4(µ)cos3φ

=−(143/324)[(3/4)(35µ4
− 30µ2

+ 3)− 15
√

2(1−µ2)3/2µcos3φ],

V = 20449/6804.
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In this case, however, the pole has been rotated through cos−1(1/
√

3)= 54◦ 44′.
(iv) In seeking a further solution one makes the assumption that S0 6= 0, S2 6= 0. If one further

assumes that these two are real, one can deduce that S4 is also real and non-zero. Since the solution
of a quadratic in S0 is required, one expects two solutions; in fact these two solutions are those
previously obtained, namely, the discoid and the six-spined spheroid, the former having the line
φ = π/2 for its axis of rotation, while the latter has been rotated about the axis φ = π/2. The
solutions are

S0 = − 1001/3024, S2 = 1001
√

10/3024,

S4 = 1001
√

70/144112, v= 20449/6804,

and

S0 = 1001/1296, S2 = 1001
√

90/11664,

S4 = 1001
√

70/7776, V = (1001/486)2.

(v) The only other solution in the pattem results from the assumption that S2 is real and S3 is
non-zero. This most general solution is obtained due to a certain numerical relationship among the
E′s. The value of the integral is

V = (1001/486)2

and thus it is the discoid, having, in fact, been rotated about the axis φ = π/2 through an angle of
50◦.

For this case, n= 4, there are thus only the two physical solutions, the discoid and the six-spined
spheroid.

Case n= 6. (i) For the case n= 6, the solid of revolution is again the easiest solution to obtain

and corresponds to the function P0
6(cosθ) in that it has two ridges equidistant from the equator. Thus

the solution is

U = (3553
√

13/5200)P0
6(cosθ),

V = 13(3553/5200)2.

(ii) A more interesting solution is that for which S0 and S5 are non-zero, the solution being

U = (323
√

13/1300)[P0
6(µ)+ (323

√
1001/14300)P5

6(µ)cos5φ],

V = 104329/57200.

This corresponds to a regular icosahedron, the twelve equal spines being separated by the correct
angular distance of 63◦ 24′. this particular solution having spines at the poles.

(iii) Assume S3,S5 to be zero and S2,S4,S6 to be real. Now because E2,2,0
6 = E6,6,0

6 it is possible
to find a simpler solution in which S4 = 0 because the equations are compatible. The solution of the
reduced equations then leads to

U =−
323
√

13

520

[
P0

6(µ)+

√
21

29
P2

6(µ)cos2φ+

√
378

319
P6

6(µ)cos6φ

]
,

V =
5529437

228800
.

This gives rise to a somewhat irregular solid with ten spines.
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(iv) The solution in which S0 and S6 are assumed to be non-zero gives a similar solution with
the same value of V .

(v) The icosahedron mentioned above appears again in the solution with S0,S3,S6 all non-zero.
The solution with S0 and S4 non-zero has twelve equal spines situated about the polar axis as the

axis of symmetry, and is really solution (i) slightly modified by the cos4φ term.

3. Comparison with physical species

The biological group which best illustrates the spherical harmonic pattern is that of the Radiolaria.
These marine organisms are unicellular, and are surrounded by a skeleton for support and protection,
this latter being generally composed of silica. These small Radiolarian cells are about a millimetre
in diameter, and are found in all the seas of the world, in all climactic zones, and at all depths, but
are not found in fresh water. Their most interesting property from the present point of view is that
of possessing radial spines which radiate from the outer shell of the skeleton. From a morphological
aspect the number, the arrangement and disposition of the spines is usually the determining factor
regarding the general form of the skeleton. Physiologically they discharge distinct functions as
organs of protection and support.

The life of a single cell is essentially individual and its growth is influenced by the surroundings.
Thus it can be conceived that the numerous forms that abound are due to various concentrations of
diffusing materials both organic and inorganic. The salinity of the water or the silica content may
be likened to the poison morphogen, as these are known to influence the growth.

For the purposes of biological classification, the Radiolaria are divided into two subclasses, the
“Porulosa” and the “Osculosa”, and are further subdivided into four legions. The subclass Poru-
losa includes the two legions SPUMELLARIA and ACANTHARIA, which have the following
characteristics:

(1) The central capsule is a sphere and retains this form throughout the majority of the species.
(2) The equilibrium of the floating unicellular body is either pantostatic (indifferent) or polystatic

(plural-stable), since a vertical axis is either absent, or if present has its two poles similarly
constituted.

(3) The ground forms of the skeleton are therefore almost always spherotypic or isopolar-
monaxon, very rarely zygotypic.

The subclass Osculosa comprises the two legions NASSELARIA and PHAEODARIA, which
agree in similar and constant characteristics.

(1) The central capsule is a sphere and retains this ground form in most of the species.
(2) The equilibrium of the floating body is monostatic and unistable, since the two poles of the

main axis are always more or less different from each other.
(3) The ground forms of the skeleton are, therefore, for the most part grammotypic (centraxon)

or zygotypic, rarely spherotypic.
The four principal groups of Radiolaria, which have been given the name “legions”, are nat-

ural units; when, however, the attempt is made to bring them all into a phylogenetic relationship
it undoubtedly appears that the SPUMELLARIA are the primitive stem. The other three have
developed, probably independently, from the most ancient stem form of the SPUMELLARIA, the
spherical “Actissa”.

As our main interest will lie in the development of the individual ground forms, it will be appro-
priate to give a survey of the various types. We can classify the great variety of the geometrical
ground forms into four principal groups: the “Centrostigma” or Spherotypic, the “Centraxonia” or
Grammotypic, the “Centroplana” or Zygotypic, and the “Acentrica” or Atypic. The natural centre
of the body, about which all its parts are regularly arranged, is in the first group a point (stigma),
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in the second a straight line (principle axis), in the third a plane (sagittal plane) and in the fourth a
centre is, of course, wanting.

The Spherical or Homaxon ground form is the only absolutely regular ground form, since only
in it are all axes which pass through the centre equal. It is very often realised among the Radiolaria,
especially in the SPUMELLARIA and in the ACANTHARIA, where it furnishes the common orig-
inal ground form, but it is often to be seen in the shells of many PHAEODARIA. On the other hand,
it is never found among the NASSELLARIA.

The endospherical polyhedron or polyaxon ground form naturally follows the spherical or
homaxon. Under it are included all polyhedra whose angles fall on the surface of a sphere; this
ground form is especially common among the SPUMELLARIA but it is also found among the
ACANTHARIA. Strictly speaking, all those lattice shells which have been incorrectly called “spher-
ical” belong to this category, for none of them are true spheres in the geometrical sense, but rather
endospherical polyhedra, whose angles are indicated by the nodal points of the lattice shell or the
radial spines which spring from them. These polyhedra may be divided into three groups, regular,
subregular and irregular. Of the regular polyhedra, properly so-called, only five can exist, namely
the regular tetrahedron, cube, dodecahedron, octahedron and icosahedron. All these are actually
manifested among the Radiolaria, although the subregular endospherical polyhedra are much more
common.

The ground form whose geometrical type is the regular icosahedron (bounded by twenty
equilateral triangles) occurs among the PHAEODARIA (e.g. “Circongonia”) and also in certain
Aulosphaerida. This ground form may also be assumed to occur in those Sphaeroidea whose spher-
ical lattice shells bear twelve equal and equidistant radial spines; the basal points of these spines
indicate the twelve angles of the regular icosahedron.

The regular octahedron (bounded by eight equilateral triangles) commonly appears among the
SPUMELLARIA. In these Sphaeroidea the typical ground form is usually indicated by six equal
radial spines which lie on three perpendicular axes. Occasionally the spherical form of the lattice
shell passes over into that of the regular octahedron. The same form recurs in “Circoporus” among
the PHAEODARIA.

The regular cubic ground form and the regular tetrahedral ground form also occur. The former
may be regarded as occurring in those species whose spherical lattice shell bears eight equal and
equidistant radial spines. The isopolar-monaxon ground form is characterised by the possession of a
vertical main axis with equal poles, whilst no transverse axes are differentiated. All horizontal planes
which cut the axis at right angles are circles. The most important ground forms of this group are
the “phacoids” (the lens or oblate spheroid) and the ellipsoid (or prolate spheroid) e.g. Phacodiscus
rotula and Cromyactractus tetracelyphus.

Appendix

The functions Pm
n (cosθ) are the normalised Legendre Associated Functions defined by

Pm
n (µ)= Am

n Pm
n (µ),

where µ is written for cosθ and Pm
n (µ) represents the usual Legendre Associated Functions, with

the condition that Pm
n (µ)= P−m

n (µ) and Am
n is chosen so that

1

4π

∫ ∫
S

P
m1
n (µ)P

m2
n (µ)ei(m1+m2)φdcosθ dφ = 1.
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One therefore finds that

Am
n =

√
(2n+ 1)(n−m)!

(n+m)!

(see HOBSON (1931) p. 162).
It is convenient to introduce the functions Lp,q,r

n and Ep,q,r
n , defined by:

Lp,q,r
n =

1

4π

∫ 2π

0

∫ 1

−1
Pp

n(µ)P
q
n(µ)Pr

n(µ)e
i(p+q+r)φdµ dφ

and

Ep,q,r
n =

1

2

∫ 1

−1
Pp

n(µ)P
q
n(µ)Pr

n(µ)dµ.

It follows that

Lp,q,r
n =

{
Ep,q,r

n = E|p|,|q|,|r|n for p+ q+ r = 0,
0 for p+ q+ r 6= 0.

Since the definition of Lp,q,r
n is independent of choice of axis, it is possible to rotate the coordinate

axis and keep the integral constant. This enables one to obtain a form of recurrence relation for the
L’s:

m1Km1−1
n Lm1−1,m2,m3

n +
m2Km2−1

n Lm1,m2−1,m3
n +

m3Km3−1
n Lm1,m2,m3−1

n = 0

subject to the condition that m1+m2+m3 = 1; the constants pKq
n being given by

p+1Kp
n =−

1

2

√
(n− p)(n+ p+ 1),

pKp+1
n =

1

2

√
(n− p)(n+ p+ 1),

pKq
n ≡ 0 unless |p− q| = 1,

pKq
n =

|p|K|q|n .

The set of equations which arises from the recurrence relation is not unique, and it is therefore
possible to derive several checking equations. For the case n= 2 the set for solution contains three
equations since, in all cases, it is necessary to determine E0,0,0

n beforehand. This is best done by
direct calculation from the integral or by use of the formula:

E0,0,0
n =

1

3n+ 1

(
1 · 3 · . . . · (n− 1)

2 · 4 · . . . · n

)3 2 · 4 · . . . · (3n)

1 · 3 · . . . · (3n− 1)

=
1

3n+ 1

(
n!

(n/2)!

)3
(3n/2)!

(3n)!

(see HOBSON (1931) p. 86).
For n= 4 there are nine equations, and for n= 6,17. It is possible to check the results by

evaluating En,n,0
n using the polynomial and the Beta function, and also by means of the relation

n∑
−n

Ei,i,0
n = 0.
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Examining the Work and Its Later Impact

Peter Saunders comments* on the background to —

TURING’S MORPHOGEN THEORY OF
PHYLLOTAXIS

It is not hard to imagine why Turing chose the arrangement of leaves on plants as the first applica-
tion of his theory. Phyllotaxis is a classical problem which remains unsolved to this day, despite the
efforts of many workers. Yet at the same time it is hard to believe that it does not have a straight-
forward solution, if only one were clever enough to find it. The phenomenon to be explained is the
occurrence of a small number of regular patterns on a simply shaped and accessible surface. The
pattern on a mature specimen is essentially that which is laid down in the first place, which is not so
in many other developmental processes. And for a mathematician there is the additional twist that
the Fibonacci sequence is involved.

Turing’s attempt on the problem consists of two parts. The first is a detailed geometrical analysis
of the patterns, and the second is the beginning of an application of the (1952) theory to explain
them. While the latter, though incomplete, is quite straightforward and self-contained, the former
requires some further explanation. Many readers may not know much about phyllotaxis, and most
of those that do will probably be accustomed to accounts written by botanists, who usually approach
the problem slightly differently. In particular, because Turing was setting out to investigate as deeply
as possible the patterns he was hoping to explain, he chose to represent the leaves as the points of
a lattice. This amounts to considering the mature stem as a cylinder, unrolling the surface onto
the plane, and then repeating the pattern infinitely many times. There are obvious mathematical
advantages in this, and Turing is not the only author to have done it, but it does mean that there
are some differences between his approach and the usual botanists’ picture, which is based on a
cross section. Above all, the connection with the Fibonacci sequence is far less obvious. To assist
the reader, therefore, I provide below an outline introduction to phyllotaxis with definitions of the
terms that are used, referring where necessary to both representations. I also include a brief account
of continued fractions and an explanation of how the Fibonacci numbers enter into the problem and
how they are connected with the Fibonacci angle.

Phyllotaxis:

There are several common forms of phyllotaxis. In some plants, such as grasses and peas, each
leaf is at an angle of 180◦ from the one before it on the stem. This is called distichous phyllotaxis.
In another form, known as decussate phyllotaxis and found in, for example, trees like the ash and
horse chestnut, the leaves occur in opposing pairs, with each pair in a plane at right angles to the
one before. In most flowering plants, however, and in conifers and various other families, the leaves
are arranged around the stem in such a way that it is possible to draw a single spiral, called the

* Comments reproduced from the Morphogenesis volume of the Collected Works of A. M. Turing, pp. XVII–XXIV.
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fundamental (also genetic, ontogenetic or generative) spiral which passes through the centres of all
of them in the order in which they appeared. Since the time interval between successive appearances
of primordia (the plastochrone) is approximately constant, so too are the distances and the angles
between them.

The angle between successive primordia, or leaf centres in the mature plant, is called the diver-
gence angle. To specify the arrangement completely a second coordinate is required and if we are
studying the cross section a convenient choice is the plastochrone ratio (RICHARDS 1948), the
ratio of the transverse distances from the centre of successive primordia. In a uniform system it is
a measure of the radial expansion of the apex during one plastochrone. Because he was concerned
with the side view, Turing (Section 2) used instead what he called the plastochrone distance, which
is measured along the surface of the stem; in the case of a cylindrical stem it is along one of the
generators.

On account of the regularity, many spirals other than the fundamental one can be drawn through
primordia; any such spiral is called a parastichy. Two examples are shown in Figs. 1 and 2. These
are illustrations of the kind commonly found in biological works and show a transection of the
apical bud. Drawn in this way, one’s eye is immediately caught not by the fundamental spiral but by
the two parastichies, one spiralling clockwise and one anticlockwise, that pass through primordia
that are actually in contact and are therefore called contact parastichies. In the mature plant they are
the parastichies which pass through a given leaf and one of the two or three adjacent leaves above
or below it, and they are then sometimes referred to as the conspicuous opposed parastichy pair,
because the leaves are not actually in contact as the primordia were. If the primordia are numbered
in order of formation, or in the case of a mature plant if the leaves are numbered in order along the
stem, it is easily seen that the difference in number between successive primordia on a parastichy
will be constant. What is surprising is that in the vast majority of cases, these numbers, called the
numbers or orders of the parastichies, are members of the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13,
21, . . . The numbers of the two contact parastichies are successive terms in the sequence.
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Fig. 1: Transection of the apical bud of a young seedling of Prinus pinea. The leaves are numbered
in the order of formation. The contact parastichy numbers are 5 and 8. Redrawn after Church (1920).
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Fig. 2: Transection of the apical bud of a young seedling of Araucaria excelsa. The leaves are
numbered in order of formation. The contact parastichy numbers are 7 and 11. Redrawn after Church
(1920).

The significance of the Fibonacci numbers in phyllotaxis has been recognized for a long time;
according to ADLER (1974), Kepler was the first to comment on it. Kepler also suggested that the
appearance of the sequence in biology might be connected with its property that each of the terms is
the sum of the two which precede it. And indeed in spiral phyllotaxis, even if the parastichy numbers
are not from the Fibonacci sequence they are often from another sequence formed by a similar rule,
such as 1, 3, 4, 7, . . . , 1, 4, 5, 9, . . . or 2, 5, 7, 12, . . . etc. Even if there is no simple explanation,
that so many plants should have this curious property does strongly suggest a common underlying
process which is regular enough that we can hope to elucidate it, which is doubtless why so many
workers have been attracted to the problem.

In the side view, the contact parastichies are less obvious, but it is easier to see whether or not
there is more than one leaf at each level. Usually there is not, but when there is then there is also
more than one fundamental spiral. Turing denoted the number of leaves at each level by J, and called
it the jugacy, because the cases J = 2, J = 3, J > 3 are commonly referred to as bijugate, trijugate
and multijugate, respectively. In Fig. 3 we have supposed that J = 1. There is consequently only one
fundamental spiral, and we take this to be a helix with the leaves at equal intervals along it so that
the leaves form a cylindrical lattice. Figure 3(b) shows the equivalent plane lattice.

A parastichy will not in general pass through a leaf at every level. If it passes through a leaf at
every nth level only, then it is called a parastichy of order n. Turing called n the parastichy number.
There are altogether nJ parastichies of order n in a phyllotaxis of jugacy J. They are all parallel, and
every leaf lies on exactly one of them, so they partition the set of leaves. A collection of mJ m-order
parastichies and nJ n-order parastichies with m and n is chosen, so that one set is clockwise and
the one in anticlockwise is called an opposed parastichy pair of order (m,n). There need not be a
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(a) (b)

Fig. 3: (a) Side view of an idealised stem and (b) the equivalent plane lattice. The contact parastichy
numbers are 1 and 2. Both the generative spiral and a parastichy of order 3 are shown.

leaf at every intersection of the two spirals of such a pair, but if there is, the pair is called visible. In
the lattice representation the contact parastichies are defined as the parastichy pair defined by a leaf
together with its nearest neighbours to the right and to the left. This is of course equivalent to the
definition given above.

The Fibonacci sequence:

Almost everyone who writes about phyllotaxis points out the striking property that the contact
parastichies typically have numbers that are members of the Fibonacci sequence and that the diver-
gence angle (i.e., the angle between successive primordia) is then close to the Fibonacci angle,
approximately 137.51◦. They also generally mention that other divergence angles occur, though
less frequently, that these are approximately 99.50◦ and 77.96◦, and that the contact parastichies
then have numbers from the series 1, 3, 4, 7, 11,. . . (the anomalous or first accessory series) or 1, 4,
5, 9, 14, . . . , respectively. The latter two series satisfy the same recurrence relation as the Fibonacci
series, viz. un = un−1+ un−2.

These statements are usually made without any explanation. At the time when Turing was writ-
ing, it may have been safe to suppose that most readers, at least those who were mathematicians,
would be familiar with the connection between the Fibonacci sequence and the particular angle.
Because this is less true today, and even continued fractions (which are used in Section 10) are no
longer a standard part of mathematics syllabi, we give a brief account here.

A continued fraction is a fraction of the form

a0+
1

a1+
1

a2+
1

a3+
1

a4+ . . .

where a0, a1, a2, . . ., an, . . . are real numbers all of which, with the possible exception of a0,

are positive. Because this is an awkward expression to write or set in type it is usual to employ
a conventional notation, such as the one Turing used in Section 10 or the even simpler [a0; a1,
a2, . . .]. The numbers an are called the partial quotients of the fraction. If there are only a finite
number of non-zero partial quotients, the continued fraction is said to be finite; if all the partial
quotients are integers, it is said to be simple. The finite continued fraction obtained from an infinite
one by cutting off the expansion after the nth partial quotient, an, is called the nth convergent of the
continued fraction.
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It is not difficult to show (see, e.g. BURTON (1976), p. 306) that the nth convergent of the simple
continued fraction [a0; a1, a2, . . .] is given by

Cn = pn/qn

where

p0 = a0, q0 = 1,
p1 = a1a0+ 1, q1 = a1,
pk = akpk−1+ pk−2, qk = akqk−1+ qk−2, k > 1

It can also be shown that pk and qk are relatively prime, so the formula gives the convergents in
their lowest terms. If a0 = 0 and ak = 1 for all k > 0, the recurrence relations for pk and qk generate
Fibonacci series, and the successive convergents are

Cn = un+1/un

where un denotes the nth Fibonacci number.
Every rational number can be written as a finite simple continued fraction in two closely related

ways. Every irrational number has a unique representation as an infinite simple continued fraction.
Much of the importance of continued fractions arises from the fact that if an irrational number x
is expressed as a continuous fraction, the convergents pn/qn are the best approximations to x in
the sense that each of them gives the closest approximation to x among all rational numbers with
denominators qn or less. This property makes continued fractions useful in numerical analysis, and
it is also the reason that they are connected with phyllotaxis.

The contact parastichies are the parastichies formed by adjacent leaf bases. Now which bases are
adjacent to a given base O depends not only on the angular separation between them but also on the
pitch of the helix (see Fig. 4). On the other hand, it is clear that a leaf base is a candidate for being
adjacent only if it is closer to the generator (i.e. the vertical line) through O than is any previous
base on the generative spiral, or at least any previous base on the same side of the generator.

Now the leaves are generally equally spaced along the generative spiral. Let their angular sep-
aration, i.e. the divergence angle, be θ , and let α = θ/2π . In finding leaves that are close to the
original vertical line we are looking for integers a, b such that a/b + 2απ . Here b is the number
of the leaf in sequence along the generative spiral and a is the number of rotations the spiral has
made around the stem. The closest rational approximations to α are the convergents of its expansion
as a continued fraction. Given any α, therefore, we can immediately calculate the convergents, and
because the convergents are automatically in their lowest terms this gives us pk and qk separately.
The sequence pk gives the sequence of leaves successively closest to the vertical line, i.e. the set of
possible contact parastichy numbers for the given divergence angle.

(a) (b)

Fig. 4: (a) Side view of an idealised stem and (b) the equivalent plane lattice. As Fig. 3 except for
the pitch of the helix. The contact parastichy numbers are 3 and 5.
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Conversely, if we are given the complete set of possible contact parastichy numbers we can
work out the divergence angle by solving the recurrence relation for the ak. In particular, if pk = uk,
the kth Fibonacci number, then the continued fraction is [0,1,1,1, . . .], which can be shown to be
equal to (1+

√
5)/2, or about 1.618, the so-called ‘golden mean’. This implies a divergence angle

of about 582.5◦, or, equivalently, 137.5◦. For this divergence angle, therefore, the contact parastichy
numbers will always be Fibonacci numbers, though which ones they will be will depend on the pitch
of the helix. The angle 137.5◦ is called the Fibonacci angle.

The next most common spirals have parastichy numbers from the subsidiary series 1, 3, 4, 7,
11, . . . This corresponds to the continued fraction [0, 3, 1, 1, 1, . . .] which implies a divergence
angle of approximately 99.5◦. Also observed is 1, 4, 5, 9, 14, . . . , with the continued fraction [0, 4,
1, 1, 1, . . .] and angle 77.96◦.

For more on continued fractions and the related sequences, see BURTON (1976) or almost any
other elementary book on number theory. The ‘simple inductive argument’ referred to in the text
(p. 66) and proofs of the results mentioned above can be found in Burton’s book.
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Jonathan Swinton explores further —

TURING, MORPHOGENESIS,
AND FIBONACCI PHYLLOTAXIS:

LIFE IN PICTURES

After completing The Chemical Basis of Morphogenesis, and at some point in last three years of his
life, Turing produced the pen-and-ink pictures reproduced as figures throughout this commentary
and published here for the first time. When his editors came to publish the Morphogenesis volume
of the Collected Works in 1992 they struggled with the fragmentary nature of The Morphogen The-
ory of Phyllotaxis and Outline of the Development of the Daisy and these images, without captions
or a clear place, were not included. But they tell a fascinating story of Turing’s quest to explain,
among much else, the appearance of Fibonacci numbers in the natural world. They have consider-
able historical interest as very early graphics of computational biology, but the work they represent
remained in advance of published theory for decades. It is one goal of this commentary to represent
these figures and to explain their origin in the context of Turing’s phyllotactic theory. The other
goal is to provide a partial guide to those aspects of the surviving fragmentary works which can be
understood from this perspective.

1. Introduction

. . . I think I can account for the appearance of Fibonacci numbers in connection with
fir-cones1 . . .

In 1951 Turing had submitted what is now seen as a seminal paper on the generation of form
in biological systems (Turing, 1952). Turing was to publish no more in this field in life though
at his death three years later he did leave behind a mass of working notes and two related but
uncompleted manuscripts, The Morphogen Theory of Phyllotaxis and the much sketchier Outline
of the Development of the Daisy, both published posthumously in the Collected Works (Turing,
1992), together with a mass of working notes including a set of figures.2 The figures cannot be
slotted directly into those manuscripts but they are illustrations of their central concerns and were
probably intended for subsequent drafts. I have published elsewhere an account of my own attempts
to understand that work (Swinton, 2003), and here I repeat and extend that material, taking the
opportunity to resurrect some of Turing’s rather elegant approach to mathematical phyllotaxis.3

Although so much of the discussion of Turing’s heritage in mathematical biology has focussed
on the reaction–diffusion mechanism (Allaerts, 2003; Murray, 1993), which Turing attempted to put

1 A. M. Turing, letter to M. Woodger, February 1951, quoted in Hodges (1992).
2 Although in print here for the first time they been available online for a decade at http://www.turingarchive.org/ and
visible to view for visitors to King’s College, Cambridge. The archives in Cambridge, and the other archive of Turing
material at the UK National Archive for the History of Computing (NAHC) in Manchester include more material than is
described here.
3 This section draws heavily on Swinton (2003) but see also Allaerts (2003); Hodges (1992); Nanjundiah (2003).

http://www.turingarchive.org/
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on a firm footing in Part II of his The Morphogen Theory of Phyllotaxis, it is helpful in understanding
the figures, and the unpublished manuscripts, to distinguish that mechanism from a second broad
mathematical idea that Turing was also thinking and writing about in the morphogenesis work, and
which makes up much of Part I. Reaction–diffusion was a mechanism for a generation of form—
something that could create spots or strips where only uniformity had been before as Meinhardt
and Richards elaborate on elsewhere in this volume (Meinhardt, 2013; Richards, 2013). Reaction–
diffusion systems have become part of the mathematical mainstream4 and though an understanding
of them is necessary to fully understand the archive material I refer the reader to Murray (1993)
as an introduction. The second, in some ways mathematically simpler, idea was the question of
what happens when a mechanism of, say spot-generation, is allowed to repeat itself over and over
again, constrained by the existence of previous spots, and with slowly changing parameters. It is
this second idea that lies at the heart of the explanation of Fibonacci phyllotaxis that Turing sought,
partly found, and which has subsequently been discovered.

2. Modelling Fibonacci phyllotaxis

Fig. 1: Florets on a sunflower. The most visually obvious spirals have been identified, and then
starting from about 2 o’clock, every 10th such spiral has been removed showing that there are 55
of them. The spirals in the opposite direction, which are almost radial lines and harder to count,
number 89: this is a (55,89) parastichy pair.

4 Although their utility as models of developmental biology has remained contested (Fox Keller, 2002).
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The Fibonacci series is the series of numbers

0,1,1,2,3,5,8,13,21,34,55,89,144, . . . ,

where each number after the second is the sum of the previous two. Phyllotaxis means the arrange-
ment of forms in plants, and Fig. 1 shows a sunflower in which the two come together as Fibonacci
phyllotaxis; the appearance of numbers from this sequence in plant structures. Much has been writ-
ten in and beyond the mathematical literature on the problem of explaining this appearance (Adler
and Barabé, 1997; Jean, 1994; Jean and Barabé, 1998 and Swinton, 2003) and this contribution will
not attempt to review it all, but to understand the figures we do need two ingredients of an explana-
tion of this problem. The first is a caricature of how structures appear on growing plant stems, and
the second is a mathematical model of that process.

2.1. A caricature of plant growth

A caricature description of stem growth and floret formation is to view it as taking place on a stem
with a growing tip, just below which is a ring called the apical meristem. In this region, a decision
is from time to time made to generate the cells which will subsequently differentiate into bud or
leaf formations. After having writ, the growing tip moves on and upward, leaving the bud behind.
As well as the decision of a time to commit to bud formation, which corresponds via the speed of
growth to the spatial distance between buds, a decision is made as to the angular position of the
bud around the quasi-cylindrical, apical meristem. If we also imagine that the stem is thickening
with age, then looking down at this process from above, we can make sense of the first of Turing’s
figures: (Fig. 2). This figure starts with a Fibonacci structure in that it uses the Fibonacci angle and
so it is inevitable that Fibonacci numbers will appear (Jean and Barabé, 1998). Turing’s task was to
understand why these structures appeared without the imposition of a particular angle.

2.2. Lattice dynamics

Assume further that bud positioning within the apical meristem is only a function of effects acting
within the meristem, and that the positioning process reaches equilibrium on a time scale shorter
than that on which the apical meristem itself enlarges. By approximating the ring of the apical
meristem to be exactly cylindrical, and supposing that it has enough vertical extent that edge effects
can be neglected, we arrive at a mathematical model for pattern formation on a tall vertical cylinder.
This cylinder may be slowly enlarging with time, and as it does so the evolved pattern rapidly come
to a new equilibrium.5 The first central question of such a model is what symmetries are to be
expected of pattern formation processes on cylinders, and the second is how those symmetries will
evolve over the growth process.

3. Lattices on cylinders

Turing had his reaction–diffusion process quite unambiguously in mind as the pattern formation
process, and was certainly using it for his numerical work. But much progress can be made in
understanding the kinds of patterns it must generate on cylinders by recognising that it is enough to
require a mechanism that produces spots separated in space by a characteristic distance. Indeed, the
reaction–diffusion mechanism is in some ways a more complicated approach than those of others
which have largely focused on packings based on rigid circles (Atela et al., 2002; Mitchison, 1977;
van Iterson, 1907), or equivalently electrically charged particles (Douady, 1996; Kunz, 1995).

5 For more discussion of this approximation see Turing (1992).
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Fig. 2: An idealised view of bud formation. This is a Fibonacci spiral; starting from the innermost
spot at about 3 o’clock, labelled (0), each successor spot is rotated a further angle 2π/ω2

≈ 137◦;
ω is the limiting ratio of successive terms of the Fibonacci series and solves ω2

+ω = 1. This is
calculated in the first pencil column at the top left. The difference in radial distance between each
spot is a factor of 1.1—calculated in the second column at the top left. It can be seen that the
nearest spots to spot 0 are those numbered 3 and 5, so this displays a Fibonacci phyllotaxis in which
the principal parastichy numbers, (3,5) are Fibonacci ones. This is by construction, for when the
rotation angle is 2π/ω2 the parastichies are forced to be Fibonacci numbers (Jean, 1994; Turing,
1992). However even with this constraint the particular members of the Fibonacci sequence which
appear are not fixed but depend on the rise, the difference in radial distance, here the factor 1.1.
Moreover, the third nearest spot to spot 0 has number 8: the third parastichy number is the sum of
the first two. From the Modern Archives Centre, King’s College, Cambridge archive at AMT/K3/3.
The archive is online at http://www.turingarchive.org/. c©PN Furbank.

But in any case Turing needed a theory of lattices on cylinders, and characteristically regenerated
his own rather than building on earlier attempts (Church, 1904; van Iterson, 1907). The implications
of that theory have largely been rediscovered and enlarged subsequently (Jean, 1994), but it has
some elegant corners, particularly in its treatment of patterns with lattice symmetry and their Fourier
transforms, which are essential to understand the figures and which have not been subsequently
emphasised. The theory was written up in Part I of The Morphogen Theory of Phyllotaxis, and so
published in 1992. However, the manuscript was never a complete one, and Turing’s style never
the most transparent, which might explain why it has never even been cited in the mathematical
phyllotaxis literature. To redress that, and to explain what we need to understand the figures, I give
a summary of the theory here.

http://www.turingarchive.org/
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3.1. Geometrical phyllotaxis

This notation and discussion follows Section I.4 of Turing (1992). Consider a vertical cylinder
of infinite height and circumference 2πρ. Pick an origin, and put a spot there. Then pick a rise
η > 0, and an angular rotation (the divergence angle α) between successive spots, place a spot at
the position rotated by α and raised by η, then repeat to generate the entire lattice. The lattice on
the cylinder can also be unrolled into a 2πρ-periodic lattice in the plane, in which the sequence
numbers are correspondingly mapped, and we take these two views interchangeably.

An alternative description of such a lattice is to pick out the two nearest spots which are visible
from the origin spot. These define two principal vectors. The sequence number of the nearest spot
is m, the first principal parastichy number, and the line through that spot is a spiral on the cylinder
(or a line on the periodic plane) called the first order parastichy: it is the line through the lattice
points the eye will most easily pick out. Similarly, the sequence number n of the second nearest
spot defines the second principal vector and, by translation, the second-order parastichy, having the
second principal parastichy number n. This is then an (m,n) lattice. The ms and ns are then models
for the spiral counts we make in the sunflower and we are trying to see reasons why they are often
adjacent members of the Fibonacci sequence. One first hint comes from seeing that the sequence
number of a spot gives the number of rise units above the origin, so the sequence number of the
vector sum of two points must be the sum of their sequence numbers.

The theory of this section is similar to that developed by other workers and summarised in Chap-
ters 1 and 2 of Jean (1994), where Jean uses a ‘visible pair’ to mean what Turing terms ‘parastichy
pair’ (Swinton, in press). The details are different, but also based on the idea of taking an arbitrary
pair of vectors (u,v) that generate the lattice and ‘contracting’ it, that is replacing it by (u,u− v) in
order to find the most fundamental characterisation of the lattice.

3.2. Finding the principal parastichy vectors

Since we will later want to know how m and n change as the lattice parameters, particularly ρ,
change, it is useful to be able to compute m and n from the lattice parameters, and Turing (1992)
provides a mechanism to do so, which also sheds further light on why Fibonacci structures may
emerge. The converse of this problem, computing the lattice parameters from (m,n), is Adler and
Jean’s Fundamental Theorem of Phyllotaxis (Adler, 1998; Jean, 1994).

Firstly, Turing observes that the first and second principal vectors must generate the lattice. This
‘small consequence’ follows from a section of the manuscript6 that was not included by Hoskin:
because the area of the parallelogram formed by any two vectors (u,v) in the lattice is1(u,v), with
12(u,v)= u2v2

− (u.v)2 and for vectors which generate the lattice this can be interpreted as the
area per point, and so must be the same for any choice of generating vectors. Since the principal
vectors minimise u2v2 among generating vectors, they must also minimise (u.v)2 = u2v2

−12.
Turing then gives an algorithm to construct these principal vectors from any pair of generating

vectors. Now the third principal parastichy vector has to be one of u± v. Turing’s reasoning can be
verified by considering the tiling of the plane by the u,v parallelogram. If we fix the sign of u by
making its vertical component positive (and equal to mη where m is the first parastichy number),
there is a choice of sign for v and Turing makes the choice in which u.v< 0. With this sign choice
the third parastichy vector must be u− v because |u− v|< |u+ v|. But while v may have a positive
or negative vertical component, the second parastichy numbers n is by definition positive and so the
second parastichy vector has vertical component equal to ±nη. Thus the parastichy number of the
third parastichy vector can be |m± n|: the sum or difference of the first two.

6 Kings/AMT-C25-14.
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3.3. Change of parastichy numbers as a lattice changes: the hypothesis
of geometrical phyllotaxis

So far the discussion has been about a single, fixed lattice. However as modelled in Section 2.2 the
phyllotactic pattern is laid down in an arena that is smoothly changing, affecting the circumference,
and in response to a spot-generation pattern that is also smoothly changing, affecting the rise. Turing
develops a system of flow matrices to describe these processes in general, which he uses in his
subsequent discussion of optimal packings. But the key idea is captured by observing that these
changes in geometry can be thought of simply as smooth deformations of the original lattice.

The observation that the third parastichy number must be the sum or difference of the first two is
then particularly important when we consider how the first two parastichy numbers must change as
the lattice is smoothly changed as they can only change when the third nearest point becomes closer
than the second nearest point.

Now suppose our lattice at some point has first three parastichy numbers, members of the
Fibonacci series (pr−1, pr, pr+1). Under smooth change, the order may change but eventually one
of the three may drop out. If pr−1 drops out it must be replaced by a new third parastichy number x
satisfying x= pr ± pr+1 = pr−1 or pr+2; if pr+1 drops out it must similarly be replaced by pr−2 or
pr+1. So if we could forbid lattice transitions that allowed pr to be dropped, we could ensure that
lattices which began as Fibonacci remained Fibonacci. This Hypothesis of Geometrical Phyllotaxis
is that the third parastichy number has to be larger or smaller than the first two. If Turing could have
demonstrated this he would essentially have solved his Fibonacci Phyllotaxis problem.

4. Exploring the Hypothesis of Geometrical Phyllotaxis

The Hypothesis of Geometrical Phyllotaxis (H. of G. P.) is not necessarily true in general: as Turing
(1992), p.72 (p.791 this volume) states, ‘the hypothesis is itself quite arbitrary and unexplained’
and why it should hold is a question that ‘the geometrical approach is not capable of answering’. He
writes that he will discuss this in Part II, but in fact only two relevant fragments survive. One is in
the discussion of what Turing calls ‘touching-circles’ phyllotaxis, following van Iterson (1907) and
in some ways anticipating Mitchison (1977), in which the spot-formation mechanism at any lattice
geometry is a packing of rigid disks. Turing found this an unsatisfactory mechanism for a model,
perhaps because it provides no mechanism to ensure optimal packing, but he notes (see pp.77–80;
pp.794–797 this volume) that in such a model the H. of G. P. holds. The second, more relevant pages
are in the brief but important Outline of the Development of the Daisy, which gives, among other
things, a description of numerical simulations that had already been carried out, and which should
produce exactly the kind of smoothly changing lattice to which the H. of G. P. should apply. In the
absence of an analytical proof, it was likely Turing’s plan to show that lattices emerging as solutions
of reaction–diffusion equations (i.e. with nodes more-or-less a fixed distance apart) would satisfy
the H. of G. P., or at least to rely on its truth to have confidence that the emerging solutions would
have Fibonacci structure. To do that, he needed a lattice representation, not of spots, but of patterns
with lattice symmetry.

The standard account of the Turing instability sets up equations for two chemicals describing
their mutual reactions and diffusions. For some sets of parameters, the solution to the equation is a
homogeneous one, but as the parameters vary that state loses stability and solutions appear which
are periodic in space. In one dimension x, this is analysed by plotting the dispersion relation λ(k)
between the growth rate λ in time t and the wavenumber k of solutions eλ(k)t+ikx of the linearised
equation. For certain classes of equations, this dispersion relation can have a maximum at say k0, and
the value of this maximum can be changed from negative to positive by changes in parameters. Then
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solutions with wavelengths in the range near 2π/k0 can be expected. On a plane, the same reaction–
diffusion system has no preferred direction, so all possible wavevectors u with modulus near k0 are
those which are promoted by the dynamics. On a cylinder with a particular lattice symmetry there
are more constraints. Turing proceeds to an elegant representation of these constraints by observing
the relationship between them and the lattice symmetry of the pattern.

4.1. The lattice matrix and inverse lattice

First, although, we need another way of representing lattices. In Section 9 of MTP, Turing introduces
a matrix representation. If this is an (m,n) lattice with rise in η and the first and second principal
vectors make angles tan−1 τ1 and tan−1 τ1 with the vertical, then the principal parastichy vectors are
u1 = (a,b) and u2 = (c,d) with

L=

(
a b

c d

)
=

(
mητ1 mη

nητ2 nη

)
(4.1.1)

and the area of the parallelogram generated by u1 and u2 is

1= |ad− bc| (4.1.2)

= mnη2
|τ2− τ1| (4.1.3)

= 2πη (4.1.4)

In Section 12 of MTP, Turing introduces coordinates (ξ1,ξ2) which are normalised to the paral-
lelogram of the principal parastichy vectors, in which, e.g., the first principal parastichy vector is of
the form (1,0), and all points of the lattice can be generated by allowing ξ1,ξ2 to run over the inte-
gers. We can transform to these coordinates with (x,z)= (ξ1,ξ2)L and transform back by inverting
and then transpose the lattice matrix L to obtain

M =

(
A B

C D

)
=

(
a b

c d

)−1T

(4.1.5)

=
1

2πρ

(
n −nτ2

m mτ1

)
. (4.1.6)

Just as the matrix L generates the original lattice, the lattice generated by M is the inverse lattice.

4.2. Fourier representations of functions with lattice symmetries

Turing introduced a wholly new dimension into the analysis by considering not merely the lattice
points themselves, but functions which have the symmetry of the lattice. This is a natural conse-
quence of thinking of the spots as high-points of a surface generated by a reaction–diffusion system,
or from the technique of solving such reaction–diffusion systems in Fourier space.

If f (x), arising perhaps from such a reaction–diffusion system, has the symmetry of the lattice,
then it is defined, in the lattice coordinates above, by specifying f (ξ1,ξ2) for 0≤ ξ1, ξ2 ≤ 1 within
the parallelogram of the first two principal vectors, and as a periodic function can be represented as
a Fourier sum, given in Section 12 as

f (ξ1,ξ2)=
∑
m,n

Am,ne2π i(mξ1+nξ2) (4.1.7)
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and then converted into cylindrical coordinates as

f (x)=
∑
m,n

Am,ne2π i[(mA+nC)x+(mB+nD)z] (4.1.8)

=

∑
u∈L(M)

A(u)e2π iu.x, (4.1.9)

where the sum is over the lattice generated by the matrix M.
So f is entirely determined by (i) the lattice generated by M and (ii) the values of A at those

lattice points. But we see from Eq. (4.1.6) that A and C are integer multiples of 1/2πρ, constraining
the inverse lattice points to lie on those vertical lines. This constraint corresponds to the cylindrical
periodicity of the original lattice. The additional constraint that f had lattice symmetry corresponds
to the coefficients A only being non-zero at various ‘beads’, which can be imagined as sliding up
and down on those vertical lines.

But now we combine with the central insight from reaction–diffusion that only wavenumbers
near k0 will be seen in an evolving pattern, and we find that only the coefficients of beads near to the
circle of radius k0 will be promoted by the dynamics, or conversely that the pattern on the cylinder
at the nonlinear steady state will be defined by the values of the coefficients at the beads. This allows
the entire evolving pattern to be represented by only a small numbers of parameters which is crucial
for both analysis and numerical simulation.

5. The figures

We can now revisit the figures with a little more understanding. It’s now plausible that they are
representations of, at the bottom, a pattern with a lattice symmetry on a cylinder, and above the
inverse lattice as defined in Section 4.1. The cylinder itself is vertically orientated, and we are
seeing two repeats of the pattern around the cylinder. The pattern is not symmetric in the vertical
axis z.

The circle, representing the maximally unstable wavenumber, has a constant radius of 12 grid
squares across the three diagrams, while the ‘wires’ narrow from 5 in Figs 3 to 4 in Fig. 4 to 10/3
in Fig. 5. The cylindrical patterns have horizontal symmetries at intervals of about 30, 24 and 28
grid squares, but the cylindrical segment in Fig. 3 has height 24 in contrast to those of Figs 4 and 5.
If that is indeed drawn at a scale 50% larger than the other two the symmetry widths are in the
proportion 20:24:28 consistent with the narrowing of the wires. It is fairly easy to see that the two
lattices are indeed inverses of each other by visualling the parallelogram of the first two principal
vectors and seeing that they are rotated by 90◦. Figure 5 is a more complicated figure; the spots on
the cylinder are a superposition of two different lattices, with the corresponding inverse lattices as
indicated; moreover the lattice with the larger red spots has a horizontal periodicity half that of the
cylinder. The lattices in both Fig. 3 and Fig. 4 have parastichy numbers (1,2).

Although there is a reference to figures of this form on page 74 of Turing (1992), I do not
think these figures were intended to be placed at that point in the manuscript. We have a clear
explanation of the spots in all of the figures, and indeed a suggestion that they show the evolution
of the symmetry of the pattern over the slow expansion of cylinder width. But what is not clear is
how the pattern within each symmetry unit is defined, or in other words what the Fourier coefficients
at the beads on the wires are. That they are the solution of a reaction–diffusion equation seems very
likely; that each one has been derived from its predecessor by using it (or at least its symmetry cell)
as an initial condition is also probable. Moreover, we have a number of computer outputs from the
1951–54 period, which clearly solve reaction–diffusion systems such as Fig. 8 (Swinton, 2003).
So it is a reasonable inference that these were computer-generated solutions of partial differential
equations with rather carefully chosen initial symmetry and geometry conditions. Indeed much of
Turing’s Manchester Mark I code to generate such patterns has survived in the Manchester Archive.
So much for an explanation of what these pictures are. But why were they generated?
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Fig. 3: Sheet AMT/K3/4 from the Turing Archive at King’s College Cambridge. Double foolscap
(320×230 mm) with each grid line at 1/4-inch intervals; the upper half is formed from a second
single foolscap sheet fixed on top at the large dark tape marks. For more details, see Section 5 c©PN
Furbank.
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Fig. 4: Sheet AMT/K3/5 from the Turing Archive at King’s College Cambridge. Double foolscap.
For more details see Section 5 c©PN Furbank.
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Fig. 5: Sheet AMT/K3/6 from the Turing Archive at King’s College Cambridge. Like Fig. 3, the
upper half is formed from a second single foolscap sheet taped over. For more details see section 5
c©PN Furbank.
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Fig. 6: Description of likely phyllotactic transitions. From the Turing papers NAHC/TUR/C2,3
in the UK National Archive for the History of Computing, University of Manchester,
http://www.chstm.manchester.ac.uk/research/nahc/. c©PN Furbank.

What Turing needed was an understanding of which bifurcations were allowed and which are
not: to find a basis for the hypothesis of geometrical phyllotaxis. Evidence for this comes mainly
from material in the Manchester Archive such as Figs 6 and 7. Like the majority of the archive this
note is undated, but I have speculated that (Swinton, 2003) the majority of the Manchester material
was probably created close to the end of Turing’s work on this project and it is unlikely that much

http://www.chstm.manchester.ac.uk/research/nahc/
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Fig. 7: Bifurcation tree of possible phyllotactic transitions (top left), inverse lattice (middle row)
and actual phyllotactic patterns (bottom row). The significance of the code and data (top right) is
unknown. From the Manchester Turing papers NAHC/TUR/C2,3. c©PN Furbank.

of the ‘planned’ work took place, for reasons we are unlikely to fully understand although the sheer
difficulty of programming this sophisticated mathematical modelling on the Manchester computer
must have played a significant part. Based on the fragmentary archive records there is no evidence
he fully completed a numerical confirmation of his intuitive speculations about the likely transitions,
much less was able to deploy them in support of a demonstration of the hypothesis of geometrical
phyllotaxis. That was to be the work of others decades later.

6. Seeing spots and making sense of life

I first saw these figures as a mathematics student in the early 1980s, in an attic room in King’s
College at a time when the narrow circles where Alan Turing’s reputation had persisted were
already beginning to enlarge into progressively larger and less marginalised groups. Propelled by
a brilliant biography (Hodges, 1992), the awareness of Turing as an iconic, field-defining figure,
passed from logicians and philosophers, through gay rights activists, applied mathematicians,
cryptographers, artificial lifers, mainstream computer scientists, and into popular scientific culture
where he is now firmly established as a boffin of fiction, stage and screen. One culture where
he might have, but has not, had a major impact is in developmental biology. He spent years on
this at the end of his life; he introduced technical approaches that are now a reflex for modellers;
but the program of ‘chemical embryology’ implied by that late work of his is nearly invisible
by contrast with the wildly successful reductionist program of late twentieth century molecular
developmental biology. Carroll (2005) represents a majority opinion in that field about Turing when
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Fig. 8: AMT/K3/7. Computer-generated solutions of reaction–diffusion equations; probably gener-
ated by the Kjell family of routines (Swinton, 2003).
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he writes ‘while the math and the models are beautiful, none of this theory has been borne out by
the discoveries of the last twenty years’. Fox Keller (2002) reflects at length on the reasons for
this. She observes the mathematical culture that Turing, and perhaps the majority of the readers of
this volume, inhabit. It is a culture to which the student in the attic was just then being inducted
into by Turing’s successors in the Fellowship, with observations such as ‘the rest is just botany’
for any finite enumeration task and in which an explanation is powerful to the very extent to which
it is not grounded in specifics. In this world view, showing that a morphogen with particular dif-
fusivity exists and produces patterns is much less valuable than demonstrating that, in general, a
fictional morphogen might be expected to demonstrate pattern under certain conditions.7 By con-
trast, Fox Keller (2002), p.99, characterises the view of many biologists then and now as ‘what
possible value could there be to an explanation posited on an entirely imaginary system?’

Fox Keller goes on, though, to wonder if (p.112) ‘Turing may simply have been too soon’.
There is indeed a newer synthesis between these fields, now that essentially mathematical and
computational tools of large-scale data handling and analysis are now being deployed in a newly
quantitative biology currently going by the name ‘Systems Biology’ (Alberghina and Westerhoff,
2007; Noble, 2006), which makes extensive use of models. Despite some not unwarranted
scepticism, there is considerable interest from biologists in these models, and the difference from
Turing’s reception may be partly accounted for by the way in which those models are represented
as ‘computer simulations’ as opposed to mathematical abstractions. It is interesting to speculate
on the reception that a finished, fully illustrated Morphogen Theory of Phyllotaxis, complete with
computer simulation, might have had in the late 1950s. Would the turning away of developmental
biology from theory have lasted so long with such a clear demonstration of the information locked in
the algorithmic development of plants: what Stewart (1999, 2011) has called ‘Life’s Other Secret’?
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Aaron Sloman travels forward to —

VIRTUAL MACHINERY AND EVOLUTION
OF MIND (PART 3)*

META-MORPHOGENESIS: EVOLUTION OF

INFORMATION-PROCESSING MACHINERY

1. Introduction: Types of emergence

In 1936 Turing made major contributions to our understanding of certain types of emergence, by
showing how a Turing machine can be set up so as to generate large numbers of very simple pro-
cesses that cumulatively produce qualitatively new large scale results, e.g. TM operations producing
results related to results of human mathematical reasoning. Later work by Turing and others led to
electronic computing machinery enabling a small set of very simple operations to produce very
many kinds of novel, useful, complex, and qualitatively varied results—now impacting on many

* This is Part 3 of a sequence of related contributions to Alan Turing – His Work and Impact. The previous chapters will
be referred to as ‘Part 1’ and ‘Part 2’. The ideas presented here are developed further in:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html.

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html
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aspects of everyday life. Universal TMs showed that both the construction of mechanisms and the
construction of things on which mechanisms operate can in some cases be handled in a uniform
way, by having mechanisms that can construct and manipulate mechanisms (e.g. self-modifying
computer programs). A similar theme was implicit in his 1950 paper. As far as I know, Turing’s last
work on micro–macro emergence was the 1952 paper on morphogenesis, explaining how micro-
interactions in physicochemical structures could account for global transformations from a fertilised
egg to an animal or plant, within a single organism.

All those ways in which complex configurations of simple structures and processes can have
qualitatively new features are examples of micro–macro relationships that can be labelled as
‘emergent’ (Cohen and Stewart, 1994).

It is now clear that physical and chemical mechanisms involved in biological reproduction can,
like computational machinery, include specifications not only for (partially) controlled construction
of new physical mechanisms (where some of the control comes from the environment) but also
for the production of new construction specifications, and new mechanisms for using such spec-
ifications, as well as development and learning mechanisms for growing and modifying already
functioning machinery, and mechanisms for detecting damage and producing repairs. The com-
bined products of all these mechanisms, ecosystems and socio-economic-political systems, together
constitute the most complex known example of emergence.

Much research on evolution and development has focused on production of new physical forms
and new physical behaviours. We also need to understand micro–macro relationships involving cre-
ation and use of new forms of information-processing, without which much of the complexity could
not have arisen. There is much knowledge and expertise about information processing in computer
science, software engineering and more generally computer systems engineering, but relatively little
understanding of biological ‘meta-morphogenesis’ (MM), the information processing mechanisms
involved in producing biological novelty, including new forms of information processing.2

2. Layered computational emergence

Computing systems developers create new micro–macro relationships, using a set of micro compo-
nents: types of hardware or software structure, a small collection of possible processes, and ways
of ways of combining processes and structures using syntactic composition methods. The resulting
new macro components (e.g. electronic circuits or computer programs) have complex and varied
structures, and can support yet more new types of complex and varied processes, some of which
provide ‘platforms’ for constructing further layers of complexity. As argued in Part 1 (this volume),
the functions, states and processes in the new layers often cannot be defined in the language of
physics and chemistry, or digital circuits. In that sense, although the new layers may be fully imple-
mented in the old ones, they are not reduced to them. For example, the concepts ‘win’ and ‘lose’,
required for describing a running chess program, are not definable in the language of physics. So
the chess machine is implemented in, but not reducible to physical machinery.

Achieving such micro–macro bridges requires understanding the deep and unobvious generative
potential of the initial fragments and their possible relationships. The full potential was unobvious in
the early days of computing, but new programming languages, new development environments, new
operating systems, new re-usable packages and, above all, new problems, have continually revealed
new, more complex, achievable targets. The complexity we now take for granted was achievable
only through layered development of tools and techniques, often depending on use of earlier layers.
Similar constraints apply to biological evolutionary and developmental trajectories. Many biological
mechanisms, structures and functions that developed recently could not have occurred in earlier
times, despite availability of all the physical materials, because many small intermediate changes
were required in order to produce the infrastructure for newer more complex mechanisms.

2 For an answer to ‘What is information?’, see Sloman (2011).
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New layers of computing machinery were in part a response to external pressures from applica-
tion domains, with which new computing systems had to interact, e.g. using sensors (e.g. cameras,
pressure sensors etc.), effectors (e.g. grippers, wheels, paint sprayers etc.), or network connections.
Similar, still unidentified, environmental pressures led to new emergent mechanisms and processes
in biological evolution. Other pressures can come from internal requirements to improve speed,
reliability, energy efficiency, easy of monitoring, ease of debugging and ease of extension.

The physical universe produces objects of varying complexity, from subatomic particles through
molecules, planets, galaxies and beyond. Large lumps of solid or liquid matter can result from
materials being brought together concurrently. But many intermediate-sized structures of great com-
plexity, including organic molecules and organisms of many kinds, require special construction
mechanisms, or intermediate scale components, that are not always directly available even when
the physical materials are available. Such complex systems need to be assembled over time using
precisely controlled selections from among physically and chemically possible alternatives. For
example, there was no way the matter on this planet several billion years ago could have immediately
reorganised itself into an oak tree or an orangutan.

A Tornado could not assemble a 747 airliner from a junkyard full of the required parts. Assem-
bling an airliner requires not only prior assembly of smaller parts, but also machinery for producing
the intermediate structures, and maintaining them in relationships required for subsequent opera-
tions. Biological evolution also requires intermediate stages including intermediate mechanisms of
reproduction and development. Intermediate stages in evolution require increasingly complex forms
of information processing, so biological information processing mechanisms, like computer systems
engineering, must have involved many intermediate forms of information processing. Compare how
later stages of a mathematical proof depend on earlier stages, preventing simultaneous discovery of
all parts of the proof.

Successive information-processing mechanisms must have had successively more complex
physical components, forms of representation, ontologies, algorithms, architectures and functions,
especially information processing functions relating to the environment. We need to understand the
mechanisms of meta-morphogenesis.

Some thinkers assume that there must be a single master designer controlling such processes of
assembly of complex living structures from inanimate matter. But development of software engi-
neering sophistication over the last six decades did not require some super-engineer controlling the
whole process. There was only a large collection of successively discovered or created bootstrap-
ping processes in a multitude of forms of competition and co-operation partly driven by a plethora of
new more complex goals that became visible as horizons receded. Humans mostly stumbled across
more and more complex ways in which previous achievements could be extended. Natural selection
had much in common with this, except that there were no designers detecting new targets – until
species emerged with sufficient intelligence to engage in mate selection and other selective breeding
activities.

3. Meta-morphogenesis and biological complexity

A feature of growth of complexity is that as new mechanisms are developed some of them transform,
and simplify, opportunities for subsequent developments, as illustrated for individual cognitive
development in Chappell and Sloman (2007). Related points were made in Cohen and Stewart
(1994). New mechanisms, new forms of representation and new architectures can sometimes be
combined to provide new ‘platforms’ bringing entire new spaces within (relatively) easy reach.
Examples in the history of computing include new operating systems, new programming languages,
new interfacing protocols, new networking technologies, new constraints and requirements from
users, including requirements for reliability, modifiability, security, ease of learning, ease of use
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etc. We do not know all the new pressures that influenced developments of biological information-
processing mechanisms, both in evolution and in individual development, though we can guess
some of them.

Evolution of biological information processing was much slower, and did not need goal direc-
tion, only random ‘implicit’ search (implicit because there were no explicit goals, only opportunities
that allowed some changes to be relatively advantageous). Identifying those opportunities and the
evolutionary changes they influenced is hard. An example is the difference between organisms in an
amorphous chemical soup and organisms whose environment has distinct enduring parts with dif-
ferent properties (e.g. providing different, persistent, nutrients and dangers, in different locations).
Only the second type could benefit from mechanisms for acquiring and storing information about
those enduring structures. Such information would necessarily have to be built up piecemeal over
time. If the organism had visual mechanisms it could rapidly take in information about complex
structures at different distances. If it only had tactile/haptic sensors the information would have to
be acquired in much smaller doses with more movements required.

Some computing developments, such as a new notation, or a new ontology (e.g. for types of
communication, or types of event handler, or types of data-structure), or creation of a new type of
operating system, can provide a ‘platform’ supporting a very wide range of further developments.
There were probably also many different kinds of platform-producing transitions in biological evo-
lution, e.g., development of new means of locomotion, new sensors, new manipulators and new
forms of learning. Some of these were changes in physical form or structure or forms of motion, or
types of connectivity, while others were changes concerned with information processing. Smith and
Szathmáry (1995) discussed changes in forms of communication, but there must have been many
more transitions in information processing capabilities and mechanisms, some discussed by Sloman
(2008).

When a new multifunction platform is developed, searches starting from the new platform can
(relatively) quickly reach results that would previously have involved intractable search spaces.
After learning a powerful language like Prolog, a programmer can often quickly produce programs
that would have been very difficult to express using earlier languages. New high level languages
add new opportunities for rapid advances. Likewise, as Dawkins and others have pointed out,
some biological developments, including new forms of information processing, could, in princi-
ple, dramatically shorten timespans required for subsequent developments, even though there is
no goal-directed design going on. Even random search (though not a tornado?) can benefit from a
billion-fold reduction in size of a search space.

4. Less blind evolutionary transitions

Some animals can formulate explicit goals and preferences and select actions accordingly. The
evolution of that capability can provide a basis for selecting actions that influence reproductive
processes, e.g. selecting mates, or favouring some offspring over others, e.g. bigger, stronger or
more creative offspring. When animals acquire such cognitive capabilities, such choices can be
used, explicitly or as a side-effect of other choices, to influence selective breeding, in ways that may
be as effective as explicit selective breeding of another species, e.g. domestic cattle or hunting dogs.
Which types of selective breeding a species is capable of will depend on which features they are
capable of recognising. If all they can distinguish among prospective mates or their offspring is size
or patterns of motion, that could speed up evolution of physical strength and prowess. If they can
distinguish differences in information processing capabilities that could lead to kinds of selective
breeding of kinds of intelligence. (N.B. I am not endorsing eugenics.)
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These are examples of ways in which production of a new platform can transform something
impossible into something possible, overcoming limitations of pre-existing mechanisms of com-
position. That includes bringing yet more new platforms within reach, as has happened repeatedly
in computer systems engineering when new tools allowed the construction of even more powerful
tools, e.g. using each new generation of processor design to help with production of subsequent
designs.

A major research task is to identify evolutionary and developmental transitions that facilitate new
subsequent evolutionary and developmental transitions. Innate learning capabilities produced at a
late stage in evolution may include important pre-compiled partial information about the environ-
ment that facilitates specific kinds of learning about that sort of environment. (Compare Chomsky’s
claims about human language learning, and Karmiloff-Smith (1992).) Special-purpose evolved
learning systems may, on this planet, outstrip all totally general, domain-neutral, mechanisms of
learning or evolution sought investigated by some researchers. In his 1950 paper Turing suggested
that ‘blank slate’ learning would be possible, which I find surprising. In contrast, McCarthy (2008)
argues convincingly that evolution produced new, specialised, learning capabilities, required for
human learning in a human lifetime, in certain sorts of changing 3-D environments.

5. From morphogenesis to meta-morphogenesis

In the same general spirit as Turing’s paper on morphogenesis, I have tried to sketch a rudimen-
tary theory of ‘meta-morphogenesis’ showing how kinds of development that are possible in a
complex system can change dramatically after new ‘platforms’ (for evolution or development) are
produced by pre-existing mechanisms. Biological evolution is constantly confronted with environ-
mental changes that reduce or remove, or in some cases enhance, the usefulness of previously
developed systems, while blocking some opportunities for change and opening up new opportu-
nities. In that sense the environment (our planet) is something like a very capricious teacher guiding
a pupil. Initially the ‘teacher’ could change only physical aspects of the environment, through cli-
mate changes, earthquakes, volcanic eruptions, asteroid collisions, solar changes, and a host of local
changes in chemical soups and terrain features. Later, the teacher itself was transformed by products
of biological evolution, including global changes in the composition of the atmosphere, seas, lakes,
and the land–water distribution influenced by evolution of microbes that transformed the matter
with which they interacted.

As more complex organisms evolved, they formed increasingly significant parts of the environ-
ment for other organisms, of the same or different types, providing passive or active food (e.g. prey
trying to escape being caught), new materials for use in various forms of construction (e.g. building
shelters, protective clothing, or tools) active predators, mates, and competitors for food, territory,
or even mates. As a species evolved new physical forms and new information-processing mecha-
nisms, those new developments could make possible new developments that were previously out
of reach, e.g. modification of a control mechanism might allow legs that had originally evolved for
locomotion to be used for digging, fighting or manipulation. As new control subsystems evolved,
they could have produced new opportunities for system architectures containing those subsystems to
develop, allowing old competences to be combined in novel ways. So developments in the ‘learner’
can be seen as developments in the ‘teacher’, the environment. Two concepts used in educational
theory, Vygotsky’s concept of Zone of proximal development (ZPD) and Bruner’s notion of ‘scaf-
folding’ can therefore be generalised to evolution. Evolutionary and other changes can modify the
ZPD of an existing species and provide scaffolding that encourages or supports new evolutionary
developments. Further details would contribute to a theory of meta-morphogenesis.
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6. Evolved information processing: beyond Gibson

Almost all organisms are control systems, using stored energy (sometimes externally supplemented,
e.g. when birds use up-draughts) to produce internal and external changes that serve their needs. The
control details depend on information acquired through sensors of various kinds, at various times.
So organisms are ‘informed control systems’. Information available, and also the control possibili-
ties, vary enormously: from the simplest micro-organisms, mostly responding passively in chemical
soups, to animals with articulated bodies and multiple sensors, who were capable of performing
many different sorts of action, and requiring increasingly complex information processing to notice
opportunities, to select goals, to select ways of achieving goals, to carry out those selected actions,
to deal with unexpected details of the environment detected during execution, and to learn both from
experiences of performing successful and unsuccessful actions and from observation of other things
occurring in the environment. A full account of these transitions requires several generalisations of
James Gibson’s notion of ‘affordance’ (Sloman, 2009).

We need to extend not only Turing’s work but also the work of Maynard Smith and Szathmáry,
on transitions in evolution, to include detailed investigation of transitions in types of information
processing. Transitions in forms of communication are often noted, for instance the development
in humans of communication using syntactic structures, but there are far more biological processes
involving information than communication (internal or external). The need for them will be obvious
to experienced designers of intelligent, autonomous robots. The information processing require-
ments include interpreting sensory information, controlling sensors, learning, forming plans, dealing
with conflicts, evaluating options and many more (Sloman, 2006). Many of the requirements are not
obvious; so researchers often notice only a tiny subset and therefore underestimate the problems to
be solved—as has happened repeatedly in the history of AI. An extreme example is assuming that
the function of animal vision is to provide geometric information about the surfaces in view (Marr,
1982), ignoring the functions concerned with detecting affordances, interpreting communications
and continuous control of actions (Gibson, 1979).

A particularly pernicious type of myopia occurs in research in robotics, biology, psychology,
neuroscience and philosophy that focuses entirely on the continuous or discrete online interactions
between an organism (or robot) and the immediate environment, ignoring requirements for planning,
explaining and reasoning about things going on in other locations, and past and possible future
events discussed in Sloman (2006,2009). Overcoming this myopia can be very difficult, but progress
is possible if instead of focusing attention on single organisms or particular designs, we examine
spaces of possibilities: possible sets of requirements for organisms and robots, and possible sets
of design features capable of meeting those requirements. For example, noticing an organism or
individual failing to do something may draw attention to the problem of explaining how others
succeed—a requirement that may previously have gone unnoticed. A special case of this is the
work of Jean Piaget on the many partial or missing competences of young children, which help to
draw attention to the hidden complexities in the competences of (normal) adults. Likewise events
following brain damage can expose unobvious aspects of normal cognition.

Simply observing or dissecting organisms will not reveal their information-processing: we also
need to engage in detailed analysis of differences between environments and morphologies, showing
how, as environments change, a succession of increasingly complex demands and opportunities can
make possible cumulative changes not only in physical structure, size, strength, and behaviours, but
also in the kinds of information available, the kinds of information processing mechanisms, and the
uses of such information.

We also need to identify different requirements for belief-like and desire-like states that inform
behaviours as discussed (incompletely) in Sloman et al. (2005). Changes in the environment can
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affect the goals that are essential or useful for an organism to pursue. In some cases goals remain the
same, but the information processing and behaviours required to achieve them change: for example
if drought or competition makes a certain kind of fruit more scarce, requiring the animals to travel
further, climb higher up trees, or physically engage with competitors after the same food. In other
cases, changes in the environment may produce new constraints or new opportunities, making it
useful to acquire new types of goal. For example, a new kind of food may become available, and
if food is scarce the species that acquire desires to find and consume the new food will benefit.
However, the physical actions required to obtain and consume that food (e.g. breaking open a shell)
may benefit from new forms of control, thereby allowing yet another genetic change to be useful.

Even when environment and sensorimotor morphology remain the same, changes in the mode of
processing of the information available may provide benefits, e.g.,. acquiring new ways of learning correlations between sensorimotor signals,. acquiring new actions that provide or refine information about the environment, e.g. approaching

objects, viewing them from new locations, rotating them, acting on them by prodding, pushing,
squeezing, twisting, pulling apart, etc. (Gibson, 1979),. developing a new ontology extending old semantic contents (e.g. developing an exosomatic
ontology of 3-D structures and processes that exist independently of being sensed, or developing
an ontology that allows information about the past or the future or states of affairs out of sight
to be represented),. developing new explanatory theories about the materials, structures, processes, and causal
interactions in the environment,. developing ways of exploring future possible actions to find good plans before initiating
behaviours (Craik, 1943; Sloman, 2006),. developing new meta-semantic competences that allow the information processing of other
organisms to be taken into account (e.g. prey, predators, conspecifics, offspring, mates).

7. Monitoring and controlling virtual machinery

Some changes produce new opportunities for informed control of monitoring and other processes,
including operations on the intermediate virtual machine structures in perceptual sub-systems. Parts
1 and 2 of this commentary point out that such biological developments involving virtual machinery
can explain philosophically puzzling features of animal (including human) minds, such as the exis-
tence of ‘qualia’. This can enhance our understanding of requirements for future machines rivalling
biological intelligence. We need to explore the space of possible minds, and the different require-
ments different sorts of minds need to satisfy—a very difficult task, since many of the requirements
are unobvious. In particular, I hope it is now clear that not all the requirements for embodied
organisms (and future robots) are concerned with real-time, continuous, online interactions with
the immediate environment, except for very simple organisms with very simple sensory–motor
capabilities.

Turing was interested in evolution and epigenesis and made pioneering suggestions regarding
morphogenesis–differentiation of cells to form diverse body parts during development. As far as
I know he did not do any work on how a genome can produce behavioural competences of the
complete organism, including behaviours with complex conditional structures so that what is done
depends on internal and external sensory information, nor internal behaviours that extend or modify
previously developed information processing architectures, as discussed in Karmiloff-Smith (1992).

Even if we can understand in the abstract that evolution produces behavioural competences by
selecting brain mechanisms that provide those competences, explaining how it actually works raises
many deep problems, especially where the competences are not themselves behavioural.
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The human-produced mechanisms for constructing more and more complex computing systems
from a relatively small set of relatively simple types of components are all examples of ‘emergence’
of qualitatively new large-scale structures and processes from combinations of much simpler build-
ing blocks.3 Perhaps a deeper study of the evolution of tools, techniques, concepts and theories for
designing complex systems in the last half century will stimulate new conjectures about the evo-
lution of natural information processing systems, including those that build themselves only partly
on the basis of an inherited specification. I suspect that people who predict imminent singularities
underestimate the extent of our ignorance about what evolution has achieved, and some of the dif-
ficulties of replicating it using known mechanisms. Most biological meta-morphogenesis remains
undetected.
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Drawing of Alan Turing by his mother, at his preparatory school, Hazelhurst, Sussex, 1923.
Courtesy of Sherborne School.
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Outline of the Development of the Daisy
(Prepared from Turing’s notes by P.T. Saunders for the Collected Works

and updated by J. Swinton.)

Jonathan Swinton’s updating of the texts —

AN EDITORIAL NOTE

Timed as it is for the centenary of the birth of Alan Turing in 2012, the editors have called on many
who have detailed knowledge of Turing’s life and work, including Turing’s ex-student Bernard
Richards. In this case, the familiarity of Jonathan Swinton with the original papers kept at King’s
College, Cambridge, has been invaluable. His work in this area has continued over a number of
years, and both Bernard Richards and Jonathan Swinton retain their connection with Manchester,
where this seminal work originated. The timely centenary return to Turing’s writings contained
in this book forms but a small stepping-stone to a fuller appreciation of these visionary but sadly
fragmented notes relating to morphogenesis.

Peter Saunders commented in his Introduction to the morphogenesis volume of the Collected
Works:

Finally there is the incomplete Outline of the Development of the Daisy. As I explained in the
preface, I am not including everything in the Archive, but I felt that this material does stand
on its own. It gives us an idea of how Turing meant to proceed and it also reminds us that
Turing was interested not just in mathematics but also in real flowers, an interest that goes
back to his childhood if we may judge by the sketch that serves as the frontispiece.1

Peter Saunders observes in this Preface mentioned above:

I found reading the archive material a fascinating experience. For while at first glance
Turing’s work on biology appears quite different from his other writings, it actually exhibits
the features typical of all his work: his ability to identify a crucial problem in a field, his
comparative lack of interest in what others were doing, his selection of an appropriate math-
ematical approach, and the great skill and evident ease with which he handled a wide range
of mathematical techniques.

Particularly relevant here, Peter goes on in relation to the various unpublished fragments
represented by Outline of Development of the Daisy:

[They] were never edited into a form ready for publication and so I have had to undertake
this task myself. I have made some obvious minor corrections and filled in a few gaps where
it was clear what was missing, but there are no significant alterations. My aim has been
to produce as nearly as possible the papers that would have appeared had Turing lived. To
avoid cluttering the text with indications of trivial deviations from the manuscript, I have not
marked the corrections. Readers whose primary interest is historical are therefore warned that
not only does the archive contain more material than is in this volume, but not everything
that is here is word for word as it appears in the manuscripts.

Here now is a brief outline of the editorial changes to the later morphogenesis material from the
Collected Works, kindly provided by Jonathan Swinton:

1 Editors note: Reproduced opposite.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00028-X
c© 2013 Elsevier Inc. All rights reserved.
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The three parts of Morphogen Theory of Phyllotaxis, (‘MTPI’, ‘MTPII’, ‘MTPIII’) and
Outline of the Development of the Daisy (‘ODD’), are derived from Turing’s typescripts in
the King’s College archive. MTPI was first prepared for publication from AMT/C25 by Nick
Hoskin, probably during the 1950s, with a number of minor editorial changes: for exam-
ple changing 2π/J to κ throughout. Hoskin’s typescript was preserved as AMT/C8, and
was adopted almost unchanged by Saunders in his preparation of the 1992 Collected Works.
Similarly, Sections 1–3 of MTPII were prepared by Hoskin from AMT/C26 into AMT/C9.
However, Sections 4–7 of the Saunders text were taken direct from AMT/C26. The work
behind MTPIII is described by Richards in this volume.

ODD is drawn from AMT/C24, primarily sheets 1–15. These sheets were numbered by
‘ROG’ (Robin Gandy), but this ordering was not adopted in full by Saunders who omit-
ted a number of sheets and figures. There are a number of clues elsewhere in the archive of
how to fill in the gaps in both papers, but given the availability of the original material online
there seems little value in attempting to establish a canonical text of papers which were in
any case drafts. Accordingly, we have made a small number of silent minor changes from the
Saunders volume where there has been clear typographical error.

The exception to this is in ODD where we have reordered the second half based largely
on Gandy’s ordering which is in our view more coherent and included Turing’s original
and informative, if rough, diagrams. Thus the version of ODD here includes previously
unpublished material.

Photograph of a sunflower (from the Turing archive). [see p. 48 of Collected Works, V. 3]
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OUTLINE OF THE DEVELOPMENT OF THE
DAISY

The theory developed in this paper is limited by a number of assumptions which are by no means
always satisfied. Two are of special importance:

(i) That the pattern passes through a long developmental period without forming any visible struc-
tures, and indeed without the chemical patterns modifying in any way the geometry of the
system. When the visible structures are finally formed, this is done without essential alteration
of the chemical pattern.

(ii) That the pattern is always developed within a ring so narrow that it may reasonably be treated
as a portion of a cylinder.

The first of these assumptions is one which it would be very difficult to avoid. It would be
exceedingly difficult to know what to assume about the anatomical changes. For the majority of
plants this assumption is probably false. In the development of the capitulum of a daisy it seems to
be more or less correct, however. The capitulum is appreciably separated from the rest of the plant
by a length of petiole before the development of the capitulum starts. Thus a new start is made in
the development of the capitulum. It is not appreciably influenced by the proximal structures. That
this is the case is confirmed by the following facts:

(a) The directions of the generating spirals of the rosette and of the capitulum are statistically
independent. Thus of 15 capitula and corresponding rosettes examined by the author, four cases
had both rosette and capitulum left handed. In five cases the rosette was left handed but the
capitulum right handed, and in four the rosette right handed and the capitulum left handed;
in one case both were right handed. Thus in nine out of the fifteen cases, the rosette and the
capitulum were in different directions.

(b) Beneath the 13 bracts enclosing the capitulum, there are no other distinguishable structures.

It is suggested that the development of the daisy proceeds essentially as follows. First, the petiole
grows up from the rosette without any differentiation either of a visible anatomical form or of an
invisible chemical form. Subsequently, the distal end of the petiole undergoes two kinds of change.
Its diameter increases, and at the same time a chemical pattern is determined by purely chemical
considerations, and there is therefore little reason to expect the wavelength to change much. As the
diameter increases further, therefore, the pattern will have to change in order that it may continue
to fit on the petiole with its new diameter. A very rough description of the concentration patterns
during this process may be described as follows:

The concentration U of one of the morphogen concentrations x= (%θ ,z) is to be given by the
formula

U =
∑
η

ei(η,x)G(η2)W(x) (1)

where the summation is to be over the lattice

(
A B

C D

)
reciprocal to

(
a b

c d

)
.

The function G(η2) is to have a maximum near the square of the shortest vector of the lat-

tice

(
A B

C D

)
. A suitable form for G(η2) and the suitable range for the shortest vectors of the

reciprocal lattice

(
a b

c d

)
are given in Fig. 1.
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Fig. 1: [Editors note: From AMT/C24/6. Graph of η2 against G(η2). The annotation reads ‘range of
shortest lattice vector’.]

The function W(x) should depend only on z and typically may be of the form exp(−z2/2σ 2).

The ratio of the standard deviation σ to the shortest vectors of the lattice

(
a b

c d

)
is probably

between 2 and 5. The inclusion of this factor W(x) of course results in the pattern not having the

symmetry of the lattice

(
a b

c d

)
, or of any other lattice. But it is nevertheless possible to use the

lattice

(
a b

c d

)
applying to the formula (I1) to describe the pattern instead of the symmetry lat-

tice. It remains only then to describe what in the lattice is to be used for each value of the diameter of
the petiole. A suitable form for the lattice is the limiting divergence angle lattice described in Part I.
Clearly this description cannot hold at all times. It breaks down for the period during which the pat-
tern is beginning to form. There may also be a period during which there is a pattern with reflexion
symmetry (e.g., a decussate pattern), and the formula above will be invalid for this period also. The
sections which follow are concerned with considering the chemical conditions under which this sort
of description of the pattern very broadly holds.

At a certain point in the development of the daisy, the anatomical changes begin. From this point,
as has been mentioned, it becomes hopelessly impracticable to follow the process mathematically;
nevertheless it will be as well to describe how the process does proceed (at least in the author’s
opinion). In the regions of high concentration of one of the morphogens, growth is accelerated, and
subsequently florets appear. Also, the chemical pattern begins to spread inwards towards the apex,
and the florets follow it. The wave length of course remains essentially unaltered during this inward
movement, and therefore, as the apex is approached the parastichy numbers fall, producing the usual
disc pattern, possibly with some slight irregularity at the very centre. There may still be some growth
of the capitulum itself, but the pattern can no longer adjust itself to keep the wavelength constant.
Either the chemical pattern has lost all its importance and gives way to the relatively unchangeable
anatomical pattern or else secretions from the new structures ensure that the wavelength of the
chemical pattern increases with that of the anatomical pattern.
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A special point arises in connection with the daisy, the formation of the ring of 13 bracts. This
number is very constant. The author does not recall finding any specimen with a different number
of bracts, excepting a very few deformed or damaged specimens. It is suggested that this ring of
bracts is formed as follows. Within the band of lattice pattern there appears at some stage a ring
of reduced activity, so that the band becomes divided into two separate bands. The more distal of
these bands continues its development and eventually forms the floret pattern. The proximal band,
however, is rather narrow and weak (it is pointless to enquire why). This process is described in. . . .
The number of maxima in the ring under these circumstances will be one of the three principal
parastichy numbers, usually the largest of the three. In view of the fact that the daisy develops
according to the normal Fibonacci pattern, this number must be expected to be a Fibonacci number,
as it is.

In order to justify this account it is necessary to describe a chemical system for which the pattern
develops accordingly. No actual system will actually be described, nor even imaginary chemical
reactions as described in Turing (1951). However a partial differential equation will be obtained
which is thought to give a good approximation to mark the behaviour of certain kinds of chemical
system. The differential equation has a number of parameters and it is necessary to find values
for these parameters which will make the differential equation behave appropriately. The choice of
parameters is largely made on theoretical grounds, described in this paper, but in order to be sure
that the differential equation does really describe a development such as that mentioned above, it is
necessary to follow its behaviour by computation.

1. Considerations governing the choice of parameters

The assumptions to be made concerning the development of the pattern are

(i) That the pattern is described by functions U, V of position on the cylinder and of time,
satisfying the partial differential equations

∂U

∂t
= φ(∇2)U+ I(x, t)U+GU2

−HUV ,

V = ψ(∇2)U2.

(ii) The operator φ(∇2) is supposed to take the form

φ(∇2)= I2

(
1+
∇

2

k2
0

)2

.

(iii) The operator ψ(∇2) is supposed to take the form

ψ(∇2)=
1

1−∇2/R2

though in the computations other forms may be used, taking the value zero outside a finite
region.

(iv) A quasi-steady state is assumed to hold, i.e. the time derivative ∂U/∂t is supposed to be zero,
or so near zero as is consistent with slow changes in the radius of the cylinder. This assumption
of course implies that certain details as to the effect of the growth on the equation need not be
considered.

(v) The function I(x, t) is supposed given in advance. At each time it may be supposed to take
the form I0− I2z2/l2. The quantity I0 is initially supposed to be negative and to increase to an
asymptotic value, reaching very near to it when the optimum wavelength is about one third
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of a circumference. The quantity l can remain very nearly constant or increase slightly with
increasing radius. Clearly in view of (iv), it is only the variation of I0 and l with radius which
is significant, not the variation with time.

If we concentrate our attention on the period of time in which the optimum wavelength is less than
a third of a circumference, I0 and l may be taken as constants, i.e., on a par with G,H, I2, k0,R.
We have to consider what are appropriate values for these seven quantities. Of the seven quantities
there are really only four that are dimensionless. In other words, if we are quite uninterested in the
units of time, length and concentration, new units may be introduced which will result in three of
these parameters taking the value unity. Actually it is not advisable to do this reduction in every
context. A certain amount of interest attaches to the relation of the time and space scales of the
phenomena and the diffusion constants for the morphogens in the tissue. The enormous variety of
possible reaction constants, and the fact that exceedingly weak concentrations of morphogens could
be effective to influence growth, mean that our ignorance of the other two dimensionful quantities
is too great for there to be any value in considering them in detail.

If three of the parameters are to be taken as unity, appropriate ones seem to be k0, fixing the unit
of length as the optimum radian wavelength, I2, fixing the unit of time, and G, fixing the unit of
concentration.

The parameters required are thus reduced to four, viz R, H, I0, l. When actual computations
are being carried out, the number of quantities to be specified is again increased to seven by the
inclusion of the radius ρ, and two other quantities I1 and h concerned with the method of calculation.
Of these, only the role of h need be mentioned here. In the actual calculations the function I0− z2/l2

is replaced by I0− (h2/π2ρ2)sin2πzh, and the pattern is periodic in z with period h. But this is of
course only a mathematical device. The calculations are applied to the Fourier coefficients of U and
the number of these that has to be considered is proportional to h. One therefore has to make h
as small as possible without the pattern I0− (h2/π2ρ2)sin2πzh differing too much from I0− z2/l2

and, what is more important without the bands of pattern becoming so close as to influence one
another appreciably.

The main consideration governing the choice of the quantity R is that an excessively small value
has the effect that large areas of more or less uniform pattern tend to be unstable and to break up
into a number of separate patches. This phenomenon may be explained as follows. The amplitude
of the waves is largely controlled by the concentration V of ‘poison’. If the quantity R is small, it
means that the poison diffuses very fast. This reduces its power of control, for if the U values are
large in a patch and large quantities of poison are produced, the effect of the poison will mainly be
to diffuse out of the patch and prevent the increase of U in the neighbourhood.

Another way of expressing the effect is that the poison, acting through the HUV term, prevents
the growth of waves whose wave vectors are near to that of a strong wave train. The quantity R
expresses essentially the range of action in the wave-vector space. If it is too small, there will be
liberty for ‘side bands’ to develop round the strong components. These side bands will represent the
modulation of the patchiness. If R is allowed to become too large, it can happen that this ‘side band
surpression’ effect even prevents the formation of a hexagonal lattice; neighbouring points around
the hexagon of wave-vectors surpress one another. This however happens only with certain values
of the other parameters.

In the actual calculations (initially, at any rate) the function chosen for ψ(∇2) was

ψ(r2)=


(

1−

(
r

rmax

)2
)2

, r ≤ rmax,

0, r ≥ rmax

(2)

with rmax/k0 usually about 1/
√

2. (This function calculated in ‘Subgroup smooth’.)
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The choice of the parameters H, I0, l is assisted by obtaining an approximate form of solution
valid for patterns covering a large area, i.e. in effect with l very large. One may then, as a very
crude approximation, suppose that when I(x, t) varies from place to place one may find near each
point more or less the solution which would apply over the whole plane if the value of I appropriate
for that point were applied to the whole plane. A nomogram for this purpose is given elsewhere.1

Another approach to the problem is provided by considering the effect of the terms φ(∇2)U and
I(x, t)U taken in conjunction in the absence of the terms GU2

−HUV . The terms I(x, t)U may then
be regarded as modifying the effect of the φ(∇2)U term, so that φ(∇2) has to be replaced by another
function of the wave vector, no longer dependent on the length alone. Having expressed the effect
of the I(x, t) term in this way, it may be assumed, as another (alternative) crude approximation,
that the effect of this term is the same even in the presence of the terms GU2

−HUV . Clearly this
approximation will not be too unreasonable if the really important term is φ(∇2)U.

2. Early stages in pattern formation

The most probable course of pattern formation in its early stages is something as follows. The
value of I0 remains sufficiently small to preclude the formation of any pattern until ρk0 has a value
somewhere between 2 and 3. At this stage, when I0 reaches the appropriate value the homogeneous
distribution (or at least θ -independent) breaks up and gives rise to a pattern which is symmetrical
under rotation through 120◦, i.e., which has three maxima and a reciprocal lattice pattern as shown
in Fig. 2.

Fig. 2: [Editors note: From AMT/C24/15].

1 Editors note: There is a nomogram surviving in the archives at AMT/C24/71 but it is not obviously the one referred to
here, which appears to have been lost.
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Fig. 3: [Editors note: From AMT/C24/15].

If I0 increases further, this pattern itself becomes unstable and develops into a more or less
hexagonal pattern without reflection symmetry, as shown in Fig. 3.
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Einar Fredriksson Recalls1 the —

HISTORY OF THE PUBLICATION OF THE
COLLECTED WORKS OF ALAN M. TURING

The history of the project to publish the Collected Works of Alan M. Turing is a long drawn-out
one and dates back to the founding of a book series Studies in Logic, which took place at the
10th Congress of Philosophy held in Amsterdam in 1948. The aims of this series were to publish
outstanding work in pure and applied logic, an area to which Turing had made fundamental contribu-
tions. This Congress was important as being the first such post-war international event; its secretary
was E. W. Beth, who later became Professor in Logic at the University of Amsterdam. Also present
were Turing’s US colleagues S. C. Kleene, who mentioned Turing’s work in his lecture, and H. B.
Curry, although neither Turing himself nor his close UK logic colleagues, such as Robin Gandy,
were present. After Turing’s death in 1954 Beth took the initiative to organise a publication in hon-
our of Turing, and this initiative resulted in a visit by M. D. Frank, series publisher of North-Holland
Publishing Co., to Turing’s mother, Mrs E. Sara Turing in Spring 1958.

This led to a publishing agreement for Turing’s Collected Works, dated 29 July 1958 and signed
by P. N. (Nick) Furbank as Executor of AMT’s will, dated 13 February 1954 and by the other four
beneficiaries of the will. The Works were to be edited by M. H. A. (Max) Newman, Turing’s superior
at Manchester University, where Turing held a readership at the time of his death. Gandy was, by
the terms of the will, recipient of all mathematical books and papers. There is a correspondence
from 1959 to 1963 between Newman and the publisher, but Newman in 1963 retired from his
professorship and gave up the editorship. The editorship was passed on to Gandy in the same year.

In 1969 I began a new career as a publishing editor at North-Holland and soon received the
dossier for Turing’s Collected Works from M. D. Frank with the request to see the project through
to publication. Sara Turing had been in touch annually with Frank since their first meeting. Beth
had died in 1964 and the series editors in 1969 now included Andzrej Mostowski of Warsaw and
Abraham Robinson of Yale University. Mostowski was spending a sabbatical in Oxford as a Fellow
of All Souls, while Gandy had moved from Manchester and was also in Oxford, having accepted
a readership there in the same year. Gandy was asked by me to take up editing of the Works and
meetings to arrange practical steps were organised in Oxford, starting in February 1970. Later that
year a complete outline of works by Turing, mostly published, was prepared and circulated among
the editors of Studies in Logic. The Works were divided into four parts: (i) Pure Mathematics,
(ii) Mathematical Logic, (iii) Mechanical Intelligence and (iv) Morphogenesis.

Gandy’s editing was designed to include the collection of errata to all articles through experts in
the different areas. Some articles were published with many typesetting errors and other mistakes
of various kinds. On top of this, Gandy was to write a short introduction and comment on each
paper. He cautioned that he would need time to go through all this material and to consult with
specialists where necessary. He was further led into new areas of research of his own whilst working
on the Turing papers, and there were often other interruptions due to his many other conflicting
commitments. By 1971 it became clear that progress would be very slow and that more drastic
action was necessary.

Sara Turing kept calling to check whether the publisher was doing his utmost to get the Works
published in her lifetime (she was 90 in 1971, with a very clear mind). The publisher complained of
the slow editing process and Sara proposed to call Gandy’s mother to help getting matters moving

1 The help of Peter Brown in verifying some of the historical details is gratefully acknowledged.
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more rapidly. Repeated visits to the editor were not followed by measurable success and finally
Gandy was asked what was needed to keep him concentrated on the project. He then suggested that
one of his Oxford students should be paid a grant to assist him. Sara liked this idea and offered
to provide a fund of £1000 to give assistance to Gandy. The publisher previously had repeatedly
offered Gandy financial assistance for his time on the project, but Gandy had always declined.
However, work with the student did not give the desired result and progress with editing the Works
remained slow, despite further visits, prodding by colleagues and other pressure. In 1974 Sara called
the publisher to say that Donald Michie (Professor at Edinburgh University and an authority on
Artificial Intelligence) and Mrs Michie (Dr Anne McLaren, a leading geneticist) had visited her
and proposed that the £1000 fund should form the basis for an ‘A.M. Turing Trust’ under Michie’s
chairmanship. Sara asked the publisher whether we had any objection to this transfer of funds, and
of course we did not. The publishing agreement with the beneficiaries of Turing’s will was entirely
separate from the creation of a Trust and there was no possibility that the student would play an
effective role in Gandy’s editorial work. Sara passed the matter of the fund transfer to her solicitor
and this was her last contact with the publisher. In March 1976 we were informed by the solicitor
of the death of Sara Turing.

Interest in Turing’s work increased with growth of the Turing archive set up at Kings College,
Cambridge and resulted in continuous demands for the publication of the Collected Works. But
during the period 1977–83 Gandy was frequently being interviewed by Andrew Hodges to provide
information for the biography that Hodges was writing, and these calls on his time, coupled with
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interruptions due to repeated attempts by Michie to become involved in the publication of the Works,
gave Gandy good reason to postpone active work on the editorship, so that it is fair to say that during
this period it had come virtually to a standstill. The publishers sought additional editorial help,
visiting the National Physical Laboratory at Teddington (Donald W. Davies and Mike Woodger)
and other scholars who had worked with Turing, but to no effect.

Fortunately a turning point resolving these difficulties was at hand. Unexpectedly, Nick Furbank,
Executor of Turing’s will, got in touch with us as the contracted publishers of the Works, stressing
his role as Executor. Furbank had not had any effective contact with Gandy since the 1950s, and
we then related to him the entire frustrating editorial history in some detail. Gandy was not very
happy when we visited him in 1986, accompanied by Furbank, with the purpose of rejuvenating the
editorial process. He himself had not attempted to contact Furbank in all those years.

Thanks to Furbank’s intervention an editorial meeting was organised at King’s College, Lon-
don in January 1987 with experts invited according to the original organisational lines defined by
Gandy. Those attending were J. L. Britton (Part I, Mathematics), Gandy (Part II, Logic), D. C. Ince
(Part III, Machine Intelligence) and P. T. Saunders (Part IV, Morphogenesis). Dr Saunders was host
to the meeting, which was chaired by Furbank, and I attended as a publisher. The contents of each
volume of a four-volume series were defined and deadlines set for submission of the manuscripts.
Three volumes (i), (iii) and (iv) appeared in 1992. In 1991 Gandys former colleague at Manchester,
C. E. M. Yates, was invited to be co-editor of part (ii) with Gandy and the work was interrupted by
Gandy’s death in November 1995. A new part, Enigmas, Mysteries and Loose Ends was added to
this last published volume, which appeared in 2001.

The Publisher, Elsevier (North-Holland), completed the publication of the Collected Works, as
originally announced in the preface of the Sara Turing biography of 1959, after 43 years. In the
Turing Centenary, 2012, this new edited volume, including a broad commentary by experts, is pub-
lished by the same company.

Mike Yates Writing in The Independent, Friday 24 November
1995 —

OBITUARY: ROBIN GANDY

Robin Gandy was one of the grand old men in the international community of mathematical logi-
cians. ‘Old man’ is not an expression, however, that sits happily with Gandy, who until his last
few months seemed forever youthful, a friend as well as a mentor to his endless stream of PhD
students. A colourful and complex character who, when I first met him, would arrive at Manchester
University in motor-cycle leathers, and later dominate a crowd in the nearest pub with his foghorn
voice, plumes of smoke and witty anecdotes, Robin Gandy had immense intellectual and personal
qualities and utter dedication to his subject. He was born in Peppard, Oxfordshire, where his father,
Thomas Gandy, was in general practice. His mother, Ida Gandy, earned a reputation for a sequence
of books based on her early life in Wiltshire. Educated at Abbotsholme, a progressive public school,
he went on to join that special elite at King’s College, Cambridge. In 1940, his graduation year, he
met Alan Turing, famed now for breaking the German Enigma code, and in 1944 they started work-
ing together at Hanslope Park, in Buckinghamshire, by which time Gandy had become an expert on
military radio and radar.

His friendship with Turing continued. In 1946 he returned to King’s to take Part III of the Math-
ematical Tripos with distinction, then began studying for a PhD under Turing’s supervision; his
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successful thesis on the logical foundation of physics, entitled ‘On Axiomatic Systems in Math-
ematics and Theories in Physics’ and presented in 1953, can now be seen as a bridge between
his early expertise and later career. When Turing died in 1954 he left his mathematical books and
papers to Gandy, who between 1950 and 1961 held lectureships in Applied Mathematics at first
Leicester, then Leeds. During this period his commitment to logic evolved and he developed a
Mathematics–Philosophy course at Leeds, with Martin Löb.

In 1961, Gandy moved to Manchester, where the seemingly retiring but extremely astute Max
Newman had with (now Sir) James Lighthill built up what was then the best mathematics depart-
ment in the country. Newman had brought Turing to Manchester, and he selected Gandy to develop
logic and start up a Mathematics–Philosophy course.

Now officially a logician, Gandy appointed new staff and invited many visitors from abroad. He
was promoted to a chair in 1967, and organised the European summer meeting of the Association
for Symbolic Logic in Manchester in 1969, supported as was usual then by Nato funds. Turing had
gently chided Gandy in 1940 for his left-wing beliefs; now, ironically, be came to be attacked as
right-wing for his support of Nato funding. These were halcyon days for mathematical logic, with
unexpected connections being made between the principal areas of research. Gandy’s own research
into functionals of higher types had made him prominent, quite aside from his high motivating
qualities.

In 1969 he gave up his chair in Manchester for a readership in Mathematical Logic at Oxford,
where he was to be based for the rest of his life. He was adopted by the young Wolfson College and
soon had rooms in the college’s fine new building in North Oxford. He occasionally complained
about the ‘tedious beat of heavy metal’ from some other room but generally found college life very
congenial.

He was responsible for the Mathematics–Philosophy course, and with John Sheperdson from
Bristol brought the British Logic Colloquium into being. Dana Scott was appointed to a new chair
of Mathematical Logic in 1972, Michael Dummett succeeded Sir Alfred Ayer to the Wykeham chair
of logic in 1979 and Ronald Jensen came to All Souls in 1981. Mathematical logic came into its
own in Oxford and Gandy’s list of PhD students grew from three to around 30.

He retired in 1986 amongst fireworks and full moon at the University of Wales’s retreat at Greg-
ynog in Powys, feted at a conference in his honour by an international gathering and most of his
PhD students. He continued to publish with great vigour, and was a familiar figure at international
conferences until shortly before his death.

He had seemed more fragile recently, but in earlier years he loved walking the Snowdonian hills,
especially his beloved Cnicht, or, based at his cottage on the Portmeirion estate, combing the forests
for fungi: one favourite memory is of him perched on top of a wall in his jodhpurs, pipe in hand and
turning his craggy face to a red-faced farmer to say, ‘There is nothing to worry about. I’m used to
climbing your walls’.

He made a number of appearances on radio and television, especially to reminisce about Alan
Turing. When asked about Turing’s motives if he really did commit suicide, Gandy would become
quite heated: ‘Some things are too deep and private and should not be pried into’. Himself, he
was much loved and his generosity, tolerance, hospitality, kindliness, good-humour, irreverence,
erudition and mouth-watering home-made ice-cream will be sorely missed. He would often chide
himself as a ‘silly old owl’, but then the owl is by repute the wisest of birds.

Robin Oliver Gandy, mathematical logician: born Peppard, Oxfordshire 22 September 1919;
Lecturer in Applied Mathematics, Leicester University 1950–56; Lecturer in Applied Mathemat-
ics, Leeds University 1956–61; Senior Lecturer in Mathematical Logic, Manchester University
1961–64, Reader 1964–67, Professor 1967–69; Reader in Mathematical Logic, Oxford University
1969–86; died Oxford 20 November 1995.
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Bernard Richards shares with us —

RECOLLECTIONS OF LIFE IN THE LABORATORY
WITH ALAN TURING

This commentary describes the man, Alan Turing, through the eyes of a co-worker and it reveals a
man who was warm, friendly and kind, and who had an exciting and vibrant personality. It explains
too why it is right to consider him as one of the ‘Wonders of the Modern World’, and to liken him
to the Great Pyramid at Giza, which is one of the Wonders of the Ancient World.

1. Turing as a man

As a man, Turing was somewhat shy. At times his voice would suddenly rise two octaves. But he
was always very polite and very patient, at least with me, his student. He was a good athlete, so
much so that occasionally he was known to have run to the Computing Laboratory from his home
in Wilmslow, some 10 miles. I did not know it, but according to his mother (see Section 4) he was
well recognised by his family as being a very generous man, showering gifts on his many nieces.

But it would be wrong to give the impression that Turing was insignificant – someone of no
importance. I want to liken him to the Great Pyramid of the Pharaoh Khufu at Giza. That pyramid,
the largest in the world, is 480ft high and each of the four sides has a baseline 756ft long. It is one of
the Seven Wonders of the World. Do not think it is wrong of me to compare Turing to this Pyramid.
He was a genius: he was a ‘Wonder of the world’, and he had four sides, or facets, to his work. He
was essentially (i) a computer designer and user, (ii) a mathematician, (iii) a pseudo-biologist, and
(iv) a philosopher who thought about ‘Thinking Machines’.

2. Turing as a computer designer and user: the first facet
of a genius

During the Second World War, at Bletchley Park, Turing was engaged in breaking the enemy mil-
itary codes. To this end he designed a computer known as the ‘Bombe’ to take forward the work
already done by the Poles, one Lieutenant Marian Rejewski in 1932. Rejewski was born in Byd-
goszcz in northern Poland and obtained a degree in Mathematics from Poznan University. He then
secretly joined the Polish General Staff’s Cipher Bureau. He was able to crack the codes on the
German Enigma I cipher machine. His discoveries were told to the British in July 1939. The Bombe
was a complicated machine electrically, but simple in concept. Soon Turing realised that he could
do much better and his ideas led to the building of the ‘Colossus’ computer. This was fed a 5-hole
tape containing text to be decoded and that machine was very successful and was said by some to
have ‘won the war for Britain’. But so too did Rejewski win the war for Britain by revealing his
work and bring a Cipher Machine to Britain. It is fitting that both men are honoured in the same
way. Rejewski was honoured by a statue of him sitting on a bench in his home city of Bydgoszcz,
and Turing is honoured by a statue of him sitting on a bench in Sackville Gardens in his home city
of Manchester.

To use the Ferranti Mark I computer, installed in February 1951 in the Computing Machine
Laboratory of Manchester University, one had to have the brains and skills to write the program and
the eyes and hands to use the Operator’s Console, and to be able to use these latter to prepare one’s
program on 5-hole paper tape, the input media for the computer.
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As Turing was the originator of some of the concepts of the Mark I and of some of its circuits,
and was responsible for its Instruction Set, it made his own life easier when it came to solving his
own mathematical problems on the machine. The Ferranti Mark I, sometimes called the Manchester
Mark I, came into being as the commercial production version of the Prototype, the experimental
machine built in the Electrical Engineering Department of the University of Manchester, the exper-
imental machine which many years later became known as the ‘Baby’. Whilst there were many
changes as regards the hardware of the new machine, and the engineering implementation, there are
two interesting changes to the machine’s ‘Order Code’ – the Instruction Set – introduced by Alan
Turing showing his foresight. The first was the instruction to generate a Random Number. Numbers
in the machine were stored as a 40-bit integer, and so the Random Number Generator would produce
a random pattern in those 40 digits. This instruction was useful in many spheres of mathematics,
statistics and in game playing. The other instruction invented by Turing was the ‘Sideways Adder’.
This instruction counted the number of 1s in the 40 binary digits – the 40 bits.

When it came to using the Operator’s Console, Turing was very adept. He could manipulate the
switches to enable him to ‘call-down his program from the drum’ – the backing store – and then
change them to enable him to look at both the sequence of instructions in his program and at his
data, an exercise known as ‘peeping’.

He was also very adept at preparing the five-hole paper tape which was the standard input for the
Mark I machine. He converted all his data into binary numbers before typing them into the paper
tape. One day he saw me typing my Radiolaria data into the teleprinter – in decimals ! He looked
skeptical and somewhat shocked, and he asked me what I was doing. So I explained. The reason for
his question was because he was using the original Input Scheme – Scheme A – which he devised
and for which he wrote ‘The Programming Manual: Scheme A’ in 1951. This Scheme required
all data to be input in binary form. Later, his colleague, Tony Brooker, wrote the ‘Programming
Manual for Scheme B’ that contained a decimal input routine. I was using the latter, but Turing was
still using Scheme A which he knew well and loved.

Fig. 1: Alan Turing and the console of the Manchester Mark I computer, c. 1951.
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3. Turing’s researches in mathematics: the second facet
of a genius

Turing had been using the Mark I prototype – the BABY – to search for Mersenne Primes. These
are prime numbers of the form M = 2p

− 1. These numbers take their name from work done by a
French monk, Marin Mersenne, in the 17th century. Thus, if p= 2, we find that M = 3 which is
a prime number, and if p= 4, M = 15 which is not prime. But if p= 5, M = 31 which is prime.
The search was on to find the largest value of p which would still give a prime number. Mersenne
conjectured the values of p for which M would still be prime, as far as p= 257. In fact, p= 127
is the largest number in his list to give a prime number, viz. for p= 127, M is a number with 39
decimal digits. In 2009, a value of p= 43,112,609 gave a value for M with 12,978,189 digits! But
in 1950, the largest p to give a prime number was still p= 127, and Alan Turing wanted to find the
next value.

He also considered the potential of the machine for illustrating the Riemann Hypothesis, since
as early as 1938, whilst at Cambridge, he has dreamt of building a mechanical device to test the
Riemann Hypothesis. Then, in his Handbook, he mentions the value of Tchebysheff Polynomials
for mapping functions. This was yet another illustration of his mathematical ability and interest.

4. Turing’s work on Morphogenesis: the third facet of a genius

I spoke with Turing’s mother, Sara Turing, just after Alan died and she told me that he had always
been interested in the shape, form, and growth of plants and flowers. He used to pick the flowers,
especially the daisies, and examine them minutely. This must have been the start of his interest in
the growth and form of botanical, and later, biological, species.

Turing was aware of the work of D’Arcy Thompson who wrote on ‘Growth and Form’
(Thompson, 1917). Turing’s own work on growth resulted in his paper ‘The Chemical Basis of
Morphogenesis’ (Turing, 1952). He had used his ideas of Morphogenesis to explain the black-
and-white dappling on cows.

Then I came along and he took me on to work alongside him in his work on Morphogenesis.
He showed me his Diffusion Equation: the basis of his Morphogenesis in biological species. I set
about solving that equation. It involved many, many, pages of degree-level mathematics. One such
equation, used to calculate Lp,q,r

n involved the Legendre Functions:

Lp,q,r
n =

1

4π

∫∫
Pp

n(µ)P
q
n(µ)P

r
n(µ)

ei(p+q+r)ϕdµdϕ

Following through with the equations gave rise to four solutions with n taking the values 2, 4,
6, 8. The computer was then called upon to plot, using the teleprinter characters, the surface contours
– contours on the surface of a sphere – which then gave the shape of the resulting ‘computer species’.
What emerged were spherical bodies having 2, 6, 12 and 20 tentacles – spikes – extending the length
of one radius above the surface of the sphere.

The theoretical results – the solutions of the Diffusion Equation – matched very closely the
marine biological species Radiolaria. The finer details are given in the chapter ‘Radiolaria: the
Results of Morphogenesis’, and in the thesis ‘Morphogenesis of Radiolaria’ (Richards, 1954).

It seems that Turing knew of the existence of Radiolaria in that he directed me to a research
publication which detailed the findings of the Research Ship ‘HMS Challenger’ which sailed the
Pacific Ocean in the 19th century.

One day I told Turing that I had some results and that I would go to find the Challenger Report.
We made an arrangement to meet again in 3 days time. Alas, he died 2 days later before he could
see the excellent correspondence between my theoretical creatures and the real biological species
Radiolaria. There is no doubt that these two, taken together, vindicated his Theory of Morphogen-
esis. It is very sad that he did not live to see this happen. However, I did show the results to his
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mother when we met just after Turing’s death. She was, understandably, very sad, but felt so proud
on seeing those results.

5. Turing’s work on ‘Thinking Machines’: the fourth facet
of a genius

It is now well-known that, during the Second World War, Turing worked at Bletchley Park in the
Government Code and Cipher School decoding enemy messages. But before that, in 1935, whilst
at Cambridge University, Turing conceived the idea of the modern computer. He had the idea that
the computer could store a program whose reaction to the external world would be to improve
that program based on the responses it was getting. That concept of Turing’s became known as the
‘Universal Turing Machine’. Then the war came, but he was able and keen to return to this topic
again more formally after the war.

Whilst at Bletchley Park he was committed to breaking the enemy codes. But when he was
not using the Colossus, in his rest periods Turing would talk with colleagues about chess and the
possibility of building a computer to play chess. He wanted to write programs which would give the
computer the idea of ‘Intelligence’. And then the title of ‘Artificial Intelligence’ was given to those
concepts.

It was after the war, and when at Manchester in 1950 that he wrote a famous paper entitled
‘Computing Machinery and Intelligence’. This topic dealt with his previous ideas on Artificial Intel-
ligence and considered the question ‘Can machines think?’ His target was to build a system such
that a human could not discover whether, in a conversation, he or she was talking to a human or the
computer. Then, in the expectation that it would happen, people adopted the label ‘Turing Machine’
to this concept.

In Manchester, Turing turned his mind again to the thoughts he had at Bletchley on chess. He
began to play with a colleague, one Dr Dietrich Prinz, an employee of the computer company
Ferranti Limited, the builder of the Mark I computer. Rapidly the conclusion was reached that the
present computer did not have the speed or capacity to play a complete game of chess. The pair
agreed that perhaps the computer could be programmed to play ‘End-Games’ of the type ‘Mate-in
two’. Then Dr Prinz, or DP as he was known, went away and in 1951 programmed the Mark I to
play ‘End-Games’. Turing felt that his ideas had been vindicated.

6. The departure of a Genius

In June 1954 I had in my diary a date for a meeting with Alan Turing. I believed that he too had that
same date in his diary. Alas he was not able to attend for that meeting. Everyone in the Laboratory,
not least myself, felt a great loss. It was particularly poignant in my case as I had lost my Supervisor.
But more sadness was to come. Turing’s mother, Sara Ethel Turing, came to see me and we shared
his loss together, each in our own way. She told me about his early life and his interest in plants, and
his athleticism. She told me about his time at Sherborne School, and some years later I was able to
see the staircase where he exercised his then already scientific mind.

We parted recognising that we both had suffered a great loss.
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A very comprehensive and detailed bibliography of works of or relating to Alan Turing is to be
found as part of the BibNet Project and TeX User Group bibliography archives, which have been
in existence for approximately two decades now. Created and maintained by Professor Nelson H. F.
Beebe of the University of Utah, one can find:

A BIBLIOGRAPHY OF PUBLICATIONS OF
ALAN MATHISON TURING

in BibTex form at:

http://ftp.math.utah.edu/pub//bibnet/authors/t/turing-alan-mathison.html

The advantage of this valuable and very impressive online resource is that it is updated weekly, and
amendments or additions can be notified to Professor Beebe (contact details in the bibliography).

Further information on the BibNet project can be found at:

http://ftp.math.utah.edu/pub/bibnet/faq.html
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Arithmetically sound, 204
Art

classical computability and classical, 68–69
composition and balance, 68–69
human scale, 68

mathematics as, 65
Art of exposition, 69
Artificial intelligence (AI). See also Intelligent
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P-type unorganised machines compared with, 514
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Bell’s Theorem, 207
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723–731
Beurling, Arne, 433
BHK. See Brouwer–Heyting–Kolmogorov

explanation

Bifurcation, 728
non-linear theory and, 731
patterns of, 746f
in reaction–diffusion equations, 755

Bi-immunity, 208, 208n5
Bijugate phyllotaxis, 788
Bilateral symmetry, 695
Binary

addition in, 491
in computing machine, 490
converter between decimal and, 491
multiplication in, 492

Binary trees, Turing’s dots for, 228
Biological complexity, meta-morphogenesis and,

851–852
Biological evolution, virtual machinery and, 98
Biological growth, continuum physics and, 756
Biological pattern formation. See Pattern formation
Biological process modelling, cellular automata for,

756–758, 757f
Biology, interdisciplinary with mathematics,

739–751
Bishop’s constructivism, 79
Blastula, symmetry in, 693
Bletchley bicycle, 6
Bletchley Park, 147, 413, 426, 447

before Turing, 414–415
Turing at, 525

Block, Ned, 590–591, 590n6
Block schematic diagram, for programming, 474
Blockhead program, 590, 590n6
Blum, Lenore, other theory of computation, 377–383
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invention of, 415–416
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letter pairs, 426–428

Turing’s work on, 525
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Bound variable
in concealed-type system, 224
in lambda calculus, 139
mathematical notation for, 245

reform of, 246–247
in nested-type system, 218

Bracket, for phyllotaxis, 782–783
Brackets. See also General bracketing theory

enclosing, 230
Brain theory, 536
Braithwaite, Richard, on thinking machines,

667–676
British emergentism, 759–761
British foreign Office Memorandum, 443
Britton, John Leslie

introduction to Turing’s On Permutation Groups,
359

on mathematics of The Word Problem in
Semi-Groups with Cancellation, 344

Broadcasting, in conscious cognition, 94
Brooks, Rodney, on embodied intelligence, 499–500
Brouwer–Heyting–Kolmogorov explanation (BHK),

199
Brouwer’s intuitionism, 199
B-type unorganised machines, 507, 517–518

interference of, 510
Buckled state, 728
Burners-Lee, Tim, 14
Butterfly wing patterns, 747

C
C language, 125
Calculability, mathematical definition of, 66
Calculus of conversion. See Conversion calculus
Calude, Cristian

on halting and non-halting Turing computations,
105–108

on quantum random oracle, 206–209
Cambridge, Turing, Alan at, 5, 146–147
Cannocapsa Stethoscopium, 768f
Cantor space, open subset of, 209n7
Cantor theory of ordinals, 162
Capitulum, of daisy, 860
Cartilage patterns, 750
Catalysts, reaction rates and, 692
Catastrophe theory, 731
Catastrophic instability, 709
Cathode ray tube, for memory storage, 487
Causation

computation and, 98–99
virtual machinery and, 97

in RVMs, 99–100
CC. See Complete configuration
c.e. See Computably enumerable

Cell assembly, morphogen equations for, 804–807
Cell model, morphogenesis and, 692
Cell theory, in embryo development, 689
Cellular automata, 45, 683. See also Ulam-von

Neumann cellular automatas
for biological process modelling, 756, 757f, 758f
complex pattern generation with, 47f
evolution of first, 128
elementary, 46f
Turing machines compared with, 45

Central limit theorem, Turing’s fellowship
dissertation on

central limit theorem development, 258–259
discussion, 262
history, 257–258
Turing’s counterexample, 262
Turing’s paper structure, 259–260
Turing’s preface, 264
Turing’s quasi-necessary conditions, 260–261
Turing’s sufficient conditions, 261–262

Certification, in functional programming, 125
Chaitin, Gregory

on finding the halting problem and halting
probability in traditional mathematics, 343

on halting problem to halting probability, 63–65
on mechanical intelligence v. uncomputable

creativity, 551
on metabiology and life as evolving software,

763–764
on Turing’s Solvable and Unsolvable Problems,

321
Champernowne, David, normal number work of,

403, 408–409
Champernowne’s sequence, 207
Change relations, of semi-groups, 349
Charging condensers, for PCMs, 504
Checking a Large Routine, 461–463

Jones’ modern assessment of, 455
context, 455
correctness problem, 456
Turing’s contribution, 456–458, 457f
Turing’s potential influences, 459
work after Turing, 458–459

Cheetahs, 743
Chemical basis, of morphogenesis, 689–722
Chemical pre-pattern, biological pattern formation

and, 684
Chemical processes, in development of organisms,

684
Chemical reactions, in morphogenesis, 691–693
Chemical theory of morphogenesis, 804–817

chemistry of phyllotaxis, 807–810
equation applied to plane, 811–812
equations for small organisms, 811
linear case, 804–807
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Chemical theory of morphogenesis (Continued)
morphogen equations for assembly of cells,

804–811
noise effects, 812
random disturbances, 812–817

Chemical waves, on spheres, 720–722
Chemistry of phyllotaxis, 807–810
Chemotactic cells, 738
Chess

ACE playing, 496
digital computers for, 627–629

considerable moves, 629
dead position, 629
Manchester University machine,

632–635
position-play value, 630–632
value of position, 630

disembodied intelligence and, 500
for early Turing Test, 500
first problem solved by computing machine,

634–635
machine playing of, 11, 618, 668–669
paper machine for playing, 502
Turing, Alan and, 623–625

Child machine, education of, 566
Chinese Room Argument (CRA), 581

consciousness metaphysical sensation of inner,
585–586

impossibility and unfeasibility of, 589n3, 590,
590n8

logical reply to, 584–585
system reply to, 584–585
translation reply to, 583–584
Turing Test and, 580–586

Choice machines (c-machines), 17
for Hilbert function calculus, 32

Church, Alonzo, 50, 57
review of computable numbers, 117–118
Turing, Alan work with, 145, 147

Church-Rosser theorem, in lambda calculus, 140
Church’s proof, of unsolvability of

Entscheidungsproblem, 50
Church’s simplified theory of types, nested-type

system equivalence with, 220–222
Church’s system

juxtaposition in, 233
Turing’s dots and, 234

Church’s Thesis, 50, 65
history of, 146
Turing’s Thesis compared with, 66–67

Church-Turing Thesis, 121
chess playing and, 624
history of, 146

Ciphony. See Voice encryption system

Circle-free machine, 18, 80
computable numbers and, 33
computation of, 81
D.N and determination of, 29
o-machine as, 149
proof of, 8

Circogonia Icosahedra, 767f, 771f
Circopurus Octahedrus, 767f
Circopus Sexfurcus, 767f, 770, 771f
Circorrhegma Dodecahedra, 768f
Circuitry

for binary addition, 491–492
computer code and, 481–482, 484
infinite families of, 654

Circular machine, 18, 80. See also Non-terminating
circular a-machines

computation of, 81
D.N and determination of, 29

Circular symmetry, of plant shoot, 718
Clairvoyance, intelligent machinery objection from,

564
Clarke, Arthur C., 439
Classical art, classical computability and, 68

composition and balance, 68–69
human scale, 68

Classical computability, 65–69
art of exposition, 69
classical art and, 68

composition and balance, 68–69
human scale, 68

defining effectively calculable functions, 65–66
Michelangelo compared with Donatello, 67–68
recursion and, 69
Turing compared with Church, 66–67

Classical computer, quantum computer compared
with, 677–678

Classical group theory, 10
Classical iterative method, 395
Classical recursion theory (CRT), 68

Turing machines in, 105
Clean

compilers for, 123
history and perspective on, 125
input/output and, 125

Clicks, in Enigma machine decoding work, 426
Clock signal, for memory system, 489
Clocked Böhm-trees, in lambda calculus, 141
Closure, of Spector class, 112
C-machines. See Choice machines
Code. See Computer code
Cognition, 532–538
Cognitive psychology, neuroscience and, 482
Cognitive science

computer analogy for, 482
currents in, 532
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Collected Works of Alan Turing, 868

Turing, Sara and, 869
Combinators, 44
Combiner, for Delilah Rebuild Project, 452
Common sense, in mathematics, 252
Commutation relations, of semi-groups, 349
Competence without comprehension, 571
Compilers, 100

in epigenetics, 576
for functional languages, 123

Complete configuration (CC), 17
in Turing’s work on word problem in semi-groups

with cancellation, 346–347
Completeness

number-theoretic theorems and, 161–162
in ordinal logics, 9, 176–185

definition for, 176–177
incompleteness theorems, 180–185
invariance of, 177–179

Completeness Theorem, 50
in ordinal logics, 178, 203

Complex behaviour, in natural systems, 45
Complex processes, in cognitive science, 533
Complexity, programming language and, 64
Composition, CRT and, 68–69
Comprehension, competence without, 571
Computability. See also Classical computability;

Human computability; Oracle
computability

effective calculability and, 16, 40–41
for Entscheidungsproblem, 51
λ-definability and, 127–138

imperative and functional programming
paradigm, 121–125

λ-K-definability and
abbreviations for, 129–131
definition of, 127–128
mechanical conversion, 131–134

of λ-K-definable functions, 134–135
proof of equivalence of, 119
recursion and, 69, 136
relativised, 202
theorems about, 34
with TM, 121

Computability thesis, 57
universal Turing machine and, 59–60

Computable analysis, 80
Computable convergence, 35–37
Computable functions, 16, 59

examples of, 59
of integral variable, 34
in ordinal logic, 155

partial computable functions and, 59
recursiveness of, 136–138
theorems about, 34

Computable languages, 62
Computable numbers, 7, 16, 18, 43

abbreviated tables for, 20–23
application of diagonal process to, 28–30
with application to Entscheidungsproblem, 37–39

correction to, 42–43
Church’s review of, 117–119
computable function of, 33
computable sequences and, 43

enumeration of, 23–24
computing machines for, 16–17

examples of, 18–20
connection between normal numbers and,

403–404
definitions for, 17–18

automatic machines, 17
circular and circle-free machines, 18
computable sequences and numbers, 18
computing machines, 17

extent of, 30–33
large classes of, 33–37

computable convergence, 35–37
Papadimitriou, Christos on, 13–15
propositional function of, 34
universal computing machines for, 24–25

detailed description of, 25–28
Computable predicate, 59. See also Partial

computable predicates
Computable properties, 155
Computable sequences, 18

application of diagonal process to, 28–30
calculability of, 40–41
computable convergence, 35–37
computable numbers and, 43
enumeration of, 23–24
universal computing machine for, 24–25

Computable variable, 16, 34
computable function of, 34

Computably enumerable (c.e.), 111
Computably open set, 209n7
Computation(s), 526. See also Turing computations

abstract intelligence and, 531
causation and, 98–99
cognition as, 532–538
hardness of, 677–678
mathematical notation, linguistics and, 239–244,

239f, 241f, 242f, 243f
models of, 121, 533–534
quantum parallel, 678
theory of, 377
with Turing machine, 93
world of, 525–529

Computation equivalence, 527
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Computation universal. See Universal Turing
machine

Computational architecture, 533
Computational complexity

with quantum computation, 678
Turing machines and, 57–63, 62f, 106

Computational irreducibility, 48
Computational level, of information processing

system, 482
Computational power, of Turing’s non-terminating

circular a-machines, 80–84
a-machines, 81
red-green Turing machines, 80–81
relation between a-machines and red-green

Turing machines, 82, 83t
Computational reduction, 533–534

mental and physical brain, 535
Computational space. See Space function
Computational universe

biological diversity and, 756–758
intelligence and, 530–532

Computational world, 525–529
Computations, termination of, 93
Computer chess. See Chess
Computer code, circuitry and, 481–482, 484
Computer science, 526–529

object of, 14
Computers, human, 569–570, 570f
Computing

foundations of, 677–680
infinite numbers, 109–115
on paper, 30

Computing machines, 7–10, 16–17. See also
Automatic machines; Choice machines;
Circle-free machine; Circular machine;
Digital computers; Intelligent machinery

arithmetic part of, 490–493
behaviour of, 18–19
binary addition in, 491–492
binary multiplication in, 492
control of, 490
discrimination for, 493
electricity for, 483–484
error calculation for, 495
example of operation of, 494
examples of, 18–20
inequalities in, 495
input and output in, 490, 493
intelligence and, 496–497, 552–568

contrary views on, 557–564
critique of, 552–553
digital computers, 554–556
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learning machines, 493–497

machines in game for, 553–554
universality of digital computers, 556–557

languages for, 496
memory for, 486–488
required parts of, 490–491
subsidiary tables for, 494
in Turing’s work on word problem in semi-groups

with cancellation, 346–347
universal, 24–25

detailed description of, 25–28
subsidiary skeleton table for, 26–28

Computing over reals, 381–382
Concealed-type system, 223–225
Concept empiricism, NPDMs and, 100–101
Condition number. See also Matrix condition number

invention of, 382–383
spectral, 379n8

Configuration
in computing machine, 17
of discrete machinery, 502–503
m-configuration and scanned symbol and, 31–32

Congruence property, 776
principal, 779–780

Connectionism, 517
Connectionist rule, in AI, 94
Conscious cognition

discrete temporal frames, 94–95
implementable but irreducible, 100–101
implications of, 101–102
mind states, 95
neural Turing machines, 93–94
trained phenomenology, 96
as universal Turing machine, 92–96

systems with states, 92
Conscious rule interpreter, 533
Consciousness

differences in degree of, 609
information processing and, 592, 592n12
intelligence and, 593–594
metaphysical sensation of inner and, 585–586
natural selection and, 572–574

Consciousness objections, to intelligent machinery,
560

Considerable moves, 624, 629
Consistency, Wittgenstein’s debates with Turing on,

77–79
Consistency progression, for ordinal formulae, 203
Consistency statement, for ordinal logics, 202
Conspicuous opposed parastichy pair, 828
Constants, mathematical notation for, reform of,

246–247
Constructive null set, 209n7
Constructive ordinal, notations assigned to, 203
Constructive Zermelo Fraenkel Set Theory (CZF),

201
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Contact parastichies, 831, 831f
Continuation, of processes, 93
Continued fraction, 830
Continued fraction properties, for phyllotaxis,

786–788
Continuous computation, 534n2

cognition and, 532–538
Continuous machinery, 502
Continuous mathematics, 654
Continuous ring of tissue

asymptotic behaviour in, 701–705, 703f
morphogenesis in, 700–701
numerical example with, 711–716, 713t,

714f, 716t
restatement of, 717–719

Continuous variation, in intelligence, 609
Continuously changing phyllotaxis, 789–791, 790f,

802
Continuum hypothesis, ordinal logics and, 186
Continuum physics, biological growth and, 756
Contractum, 140
Contradiction, Wittgenstein’s debates with Turing

on, 78
Control

of computing machine, 490–491
of digital computers, 554–556

Controlling machinery, 502–503
Conversations, deception, intelligence and, 614–619,

615f, 616t, 617t
Conversion, 40–41
Conversion calculus, 152–154

for number-theoretic theorems, 157
Converter, for binary to decimal, 491
Copeland, Jack, on CRA, 584–585
Correctness problem, in programme writing, 456
Cortex, as unorganised machine, 511
Counter machines, 71n1
CRA. See Chinese Room Argument
Cramér, Harald, central limit theorem work, 260–261
Creativity. See Uncomputable creativity
Cribs, in Enigma machine decoding work, 426
Crick, Francis, 569
Critical line zeroes, of Riemann zeta function, 266

Turing’s computations of, 267–269, 284
approximate functional equation, 285–288
calculation method outline, 297–299
calculation principles, 288–289
evaluation of N(t), 289–296
Manchester computer essentials, 296–297
2 notation, 285

Critical pressure, 728
Cromyatractus tetracelyphus, 766f
CRT. See Classical recursion theory
Cryptanalysis, science as, 521–522
Cryptography

disembodied intelligence and, 500, 509
random oracle in, 207, 207n2

Cryptologia, 448
Cryptology

Prof’s Book excerpts on Bombe development
Bombe idea, 417–418
diagram of logical chain of implications

deduced from plaintext to be exploited by
Bombe, 419–420

problem of how to scan electrical output from
Bombe, 421–422

Turing’s deduction of bigram key-system,
424–425

Welchman’s Diagonal Board idea, 423
Sale on background to Enigma and Bombe, 426

Bombe construction, 430–431
Diagonal Board addition, 431
letter loops, 429–430
letter pairs, 426–428

Schmeh on German mistakes on Enigma
machine, 432
independent cryptographic units, 436–437
possible improvements, 435, 436f
untimely replacement, 434–435, 435f
weaknesses overlooked, 432–435, 433f, 434f,

435f, 436f, 437f
Weierud on Prof’s Book place within, 413

Bletchley Park before Turing, 414–415
Bombe invention, 415–416
boxing and buttoning up methods, 414–415
declassification of Turing’s work, 413
pre-war Enigma history, 414

Cultural search, 499
initiative for, 515–516

Cultural searches, for intelligent systems, 500
Cylinders, lattices on, 836–840
Cylindrical stem

leaf patterns on, 775–776, 775f, 776f
observation of, 773

CZF. See Constructive Zermelo Fraenkel Set Theory

D
Daisy, development of, 860–865, 861f

early stages in pattern formation, 864–865, 864f,
865f

parameter choice, 862–864
Dappled colour patterns, 711, 711f, 717
Darwin, Charles

at NPL, 522–523
summary of evolution, 569

Darwinian natural selection, Mendelian genetics and,
683

Data, in lambda calculus, 122–123
Data processing, Turing machine for, 62–63
Davis, Martin, on unsolvability of

Entscheidungsproblem, 49–52
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Davis–Putnam–Robinson–Matiyasevich proof, 343
de Moivre, Abraham, central limit theorem work,

258
Dead position, 624, 629
Deception, conversations, intelligence and, 614–619,

615f, 616t, 617t
Decimal

addition in, 491
converter between binary and, 491

Decision problem, unsolvability of, 329–331
Decision problem of the equivalence of manifolds,

330–331
Decoding machines

Prof’s Book excerpts on Bombe development
Bombe idea, 417–418
diagram of logical chain of implications

deduced from plaintext to be exploited by
Bombe, 419–420

problem of how to scan electrical output from
Bombe, 421–422

Turing’s deduction of bigram key-system,
424–425

Welchman’s Diagonal Board idea, 423
Sale on background to Enigma and Bombe, 426

Bombe construction, 430–431
Diagonal Board addition, 431
letter loops, 429–430
letter pairs, 426–428

Schmeh on German mistakes on Enigma
machine, 432
independent cryptographic units, 436–437
possible improvements, 435, 436f
untimely replacement, 434–435, 435f
weaknesses overlooked, 432–435, 433f, 434f,

435f, 436f, 437f
Weierud on, 413

Bletchley Park before Turing, 414–415
Bombe invention, 415–416
boxing and buttoning up methods, 414–415
declassification of Turing’s work, 413
pre-war Enigma history, 414

Decussate phyllotaxis, 827
Dedekind’s theorem, for computable, 34
Deducibility problem, 119
Deduction theorem, mathematical notation for,

245–246, 251–252
reform of, 246–247

Deep Blue supercomputer, 619
Definability, in lambda (λ)-calculus, 146
Definability theory, 110
Definiens, 602
Deformation professionelle, 78
Degree theory, 111
Degrees of unsolvability, 149

Delilah Rebuild Project, 451–454, 452f, 453f
combiner, 452
cypher unit, 454
hardware, 452
key unit, 454
power supply, 452

Delilah, Turing’s progress report on, 440–441
proposed future plans, 440
suggested key form, 440–441

Delilah, voice encryption system
characteristics and features, 448
description, 447–448
keying methods, 449
technical problems, 448–449

Dennett, Daniel, on Turing’s strange inversion of
reasoning, 569–573, 570f

Description number (D.N)
for computable sequence, 24
diagonal process and, 28–30
for universal computing machine, 24–25

Desire-like states, 854
Desires, unconscious, 594–595
Deterministic theory, 208n4
Development, of organisms, 684
Diagonal Board, in Bombe, 423, 431
Diagonal process, application of, 28–30
Dialectica interpretation, 200
Dianthus deltoides, 777f
Dichotomy, intelligent machines and, 609
Differences in degree, of intelligence, 609
Differential analyser, limitations of, 486
Differential equations

analogue computer for, 654
for radiolaria, 768–769

computer role in, 770
solutions for, 769–770

Diffusion
in continuous ring of tissue, 700–701
of morphogens, 692

numerical example with, 711–716, 713t, 714f,
716t

paradox of, 728
in ring of cells, 697–700
stability and, 684

Diffusion-driven instability, 684, 725, 725f, 743
Digital computers, 63

applied to games, 623–643
nim, 639–643

brain-like, 660–661
for chess, 627–632, 627–629

considerable moves, 629
dead position, 629
first problem solved, 634
Manchester University machine, 632–634
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position-play value, 630–632
value of position, 630

components of, 486–487
as discrete machinery, 556
for draughts, 634–636

valuation of positions and strategy, 636–639
history of, 484
human computers and, 554
idea behind, 554–556
importance of, 483–484, 486
inequalities in, 495
languages for, 496
memory for, 486–488
parts of, 554–555
programming of, 555
with random element, 555
thinking of, 660–663
universality of, 556–557

Digital quantum computer, 63
Dimensions, of intelligence, 609
Diophantine approximation, in Turing’s Riemann

zeta function work, 311–315
Diophantine equation, halting problem and, 343
Dirac delta function, 78
Disabilities, objections to intelligent machinery from

various, 560–562
Discipline, in intelligent machinery, 515–516
Discrete architecture, in cognitive science, 533
Discrete computation, cognition and, 532–538
Discrete controlling machinery, 503
Discrete machinery, 502–503

behaviour of, 503
digital computers as, 556–557
LCMs, 503–504
limitations to, 559
PCMs, 504–505

Discrete mathematics, 654
Discrete temporal frames, for conscious cognition,

94–95
Discrimination, for computing machine, 493
Disembodied intelligence

applications for, 500
selection of, 499

Distichous phyllotaxis, 827
Distributed conceptual representation, 534–535
Divergence angle, 778, 828

Fibonacci angle and, 830
limiting, 788
measurement of, 780–781, 781t

Division, in binary, 493
D.N. See Description number
DNA, as universal programming language, 763
Domains of definition, mathematical notation for,

reform of, 247–248

Double Fibonacci series, naturally occurring
phyllotactic patterns and, 783

Doyle, 654
Draughts, digital computers for, 635–636

valuation of positions and strategy, 636–639
Dynamic types, in functional programming, 123

E
E. coli, cell division in, 738
Economic decision making, Turing’s Solvable and

Unsolvable Problems and, 339–341
Edge of stability, 519
Edison, in information industrialization, 482–485
Education, of machinery, 509, 664–666
Edwards, Dai, Manchester computer work by, 468
Effective calculability, 119
Effective enumeration, 59
Effectively calculable functions, 57. See also

Lambda (λ)-definable sequences
computability and, 16, 40–41
defining, 65–66
in ordinal logic, 154–156

Efficiency, in functional programming, 123
Ekert, Artur, on physical reality of

√
not, 102–105

Elbot, 620
Electrical oscillators, 693
Electricity

for computing machinery, 483–484, 486
digital computers and, 555–556

Electronic computers
development of, 44
reliability of, 102–105
Turing machines and, 44–45

Elimination method, 387–389
ELIZA program, lessons of, 596–599
Embodied cognition, 482
Embodied intelligence, 499–500

thinking machine and, 499
Embryo

model of, 689–690
of zebra, 743, 743f

Embryogenesis, mathematical model of, 726
Emergence

layered computational, 850–851
types of, 849–850

Emotional concept, intelligence as, 516
Employment, for ACE, 495–496
Enclosing brackets, 230
Enigma Code, 147–148
Enigma machine

Prof’s Book excerpts on Bombe development
Bombe idea, 417–418
diagram of logical chain of implications

deduced from plaintext to be exploited by
Bombe, 419–420
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Enigma machine (Continued)
problem of how to scan electrical output from

Bombe, 421–422
Turing’s deduction of bigram key-system,

424–425
Welchman’s Diagonal Board idea, 423

Sale on background to, 426
Bombe construction, 430–431
Diagonal Board addition, 431
letter loops, 429–430
letter pairs, 426–428

Schmeh on German mistakes regarding, 432
independent cryptographic units, 436–437
possible improvements, 435, 436f
untimely replacement, 434–435, 435f
weaknesses overlooked, 432–435, 433f, 434f,

435f, 436f, 437f
Weierud on Turing’s work on, 413

Bletchley Park before Turing, 414–415
Bombe invention, 415–416
boxing and buttoning up methods, 414–415
declassification of Turing’s work, 413
pre-war Enigma history, 414

Entscheidungsproblem, 49–50, 65
computable numbers and, 16–41

abbreviated tables, 20–23
application of diagonal process, 28–30
with application to, 37–39
computing machines, 16–20
correction to, 42–43
definitions for, 17–18
detailed description of universal computing

machines, 25–28
enumeration of computable sequences, 23–24
extent of computable numbers, 30–33
large classes of computable numbers, 33–37
Papadimitriou, Christos on, 13–15
universal computing machines, 24–25

Turing’s work on, 146
unsolvability of, 49–52

Church’s proof, 50–51
Gödel–Kleene proof, 51–52
Turing’s proof, 51

Enumeration Theorem, 110
Epidemic, wave-like spread of, 735
Epigenesis, bodies, behaviours and minds, 575–576
Equational calculus, for partial recursive functions,

110
Equations, in Gentzen type ordinal logics, 189–190
Equilibrating, 654
Equilibrium, unstable, 695
Equivalence theorem, for Turing’s dots, 231–233
Error calculation, for computing machines, 495
Errors of conclusion, 561
Errors of functioning, 561

E.S.P. See Extra-sensory perception
E-squares, 19

in universal computing machine, 24–25
Evaluation function, 624
Evaluation of material, 629
Evolution of mind, virtual machinery and, 97–101,

574–579
causation and, 97

computation and, 98–99
in RVMs, 99–100

epigenesis, 575–576
future directions, 578–579
meta-morphogenesis, 849–856

biological complexity and, 851–852
evolved information processing, 854–855
layered computational emergence, 850–851
less blind evolutionary transitions, 852–853
monitoring and controlling virtual machinery,

855–856
from morphogenesis to, 853
types of emergence, 849–850

virtuality, 97–98
Evolution of organisms

human learning and, 608
with qualia, 576–578
randomness in, 753–754

Evolutionary transitions, less blind, 852–853
Exceptional groups

definition of, 359–360
systematic search for

detailed search, 365–375
theory behind, 363–364

Exchange of stability, 728
Executive unit, of digital computers, 554
Experience, learning from, 670
Extensible Markup Language (XML), for binary

trees, 228
Extra-sensory perception (E.S.P.), intelligent

machinery objection from, 564

F
F#, 125
Falsity, in nested-type system, 215–216
Fast primality tests, 63
Feelings

machines and, 675
unconscious, 594–595

Feferman, Solomon, on ordinal logics and oracle
computability, 145–149

Feller, William, central limit theorem work, 259, 261
Fermat’s last theorem, as number-theoretic, 158, 207
Fermi-Pasta-Ulam problem, 759–761
Ferranti Mark I computer, Turing’s contributions to,

469–470
Feuerstein, 450
Feynman, Richard, 63
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Feynman Integrals, 79
Fibonacci angle, 830
Fibonacci phyllotaxis, 834–848

exploring hypothesis of geometrical phyllotaxis,
839–841
Fourier representations of functions with

lattice symmetries, 840–841
lattice matrix and inverse lattice, 840

figures for, 841–846, 842f, 843f, 844f, 845f, 846f,
847f

lattices on cylinders, 836–839
change of parastichy numbers as lattice

changes, 839
geometrical, 838
principal parastichy vectors, 838

modelling of, 835–836, 835f
caricature of plant growth, 836, 837f
lattice dynamics, 836

seeing spots and making sense of life, 846–848
Fibonacci series, 830–832, 831f

daisy development and, 862
phyllotactic patterns and, 783, 788, 839

Finite control, of Turing machines, 58–59
Finite flow matrix, 793
Finite Nature, 528
Fire, wave front of, 735
First order logic, 49
First order parastichy, 838
First principal parastichy number, 838
First-order decay kinetics, 734
First-phase relations, of semi-groups, 348–349
Fisher, Ronald, 726, 763
Fisher-KPP equation, 727
Fixed point combinators (fpc), in untyped lambda

(λ) calculus, 139–141
fixed points, 140–141
terms, reduction and conversion, 139–140

Fixed Point Theorem, 110, 140–141
Floridi, Luciano, on Turing Test and LoA, 601–605
Flow matrices, 793–794

finite, 793
Flowers, polygonal symmetry of, 719
Floyd, Bob, reasoning about programmes, 458–459
Floyd, Juliet, on Reform of Mathematical Notation

and Phraseology, 250–253
Form

in biology, 683
mechanochemical theory of, 750

Formal languages
incompleteness of, 64
in red-green Turing machines, 80

Formal programming languages, universality of, 64
Formal system, 148

development of new, 253

Formally defined, 153–154
Formulas. See also Admissible proposition formulas;

Admissible term formulas; Logic
formulae; Properly formed formulae;
Well-formed formula

in concealed-type system, 223–225
interpretable, 223
in nested-type system, 218
ordinal, 163–164
state, 33

Formula with variables, in nested-type system,
215–216

Fortnow, Lance, on Turing’s dots, 227–228
Foss, Hugh, Enigma machine decoding work of,

414–415
Foundations of computing, 677–680
Four Traditions of Emergence, 759–761
Fourier representations of functions with lattice

symmetries, 840–841
fpc. See Fixed point combinators
FR. See Fundamental relation
Fractional notations, for phyllotaxis, 782–783
Fredkin, Ed, 528
Fredriksson, Einar, on history of publication of

Collected Works of Alan Turing, 868
Free variable

in concealed-type system, 224
in lambda calculus, 139
mathematical notation for, 245

parameters and types for, 246–247
reform of, 245–246

in nested-type system, 215–216, 218
Free variables, typed bindings for, 246–247
Freewill, 662

uncomputability and, 657–658
Free-will assumption, 208
F-squares, 19–20

in universal computing machine, 24–25
F-symmetry, in organisms, 696–697
Full-reflection progressions, 204
Function(s). See also Computable functions;

Effectively calculable functions;
Herbrand–Gödel recursive functions;
Lambda (λ)-K-definable functions;
M-function; Partial computable functions;
Riemann zeta function; Uncomputable
functions; Universal algorithmic
probability function

Ackermann, 44
dirac delta, 78
evaluation, 624
kolmogorov complexity, 61
in nested-type system, 213–214
non-recursive, 656
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Function(s) (Continued)
partial, 59
partial recursive, 110
primitive recursive, 156, 156n
projection, 59
propositional, 34
recursive, 52, 68
µ-recursive, 65
ω-recursive, 68
space, 106
successor, 59
wave, 678
zero, 59

Function constants, in Gentzen type ordinal logics,
189

Functional interpretation, 200
Functional programming, 121–125

creation of, 121
current research in, 125
history and perspective on, 125
imperative programming compared with, 125
input/output, 124–125
lambda calculus and, 121

features beyond, 122–123
features from, 121–122

types for, 123–124
Functional variables, in Gentzen type ordinal logics,

188
Functions

partial computable, 59
uncomputable, 61

Fundamental relation (FR), of semi-groups, 344–346
semi-group S0, 348–350

Fundamental spiral, 828

G
Gambling, 627
Games

digital computers applied to, 626–643
for chess, 627–635
draughts, 635–639
nim, 639–643

disembodied intelligence and, 499–500
Gandy, Robin

Collected Works of Alan Turing, 868–870
Delilah work by, 439
obituary for, 870–871
on Practical Forms of Type Theory, 211

Gandy machine, 338
Gastrulation, 720–722
Gaussian elimination. See also Elimination method

for linear equations, 385
rounding-off errors with, 378–379, 382, 400–401

Gaussian error function. See On the Gaussian Error
Function

GC&CS. See Government Code and Cypher School
Geheimschreiber, 432–433, 437f
General bracketing theory, 229–230

replacement for
first form of rule for, 230
second form of rule for, 230–231

General recursiveness, 9, 146
in number-theoretic theorems, 156, 156n

Generalised Abstract Data Types, in functional
programming, 123

Generalised recursion theory (GRT), 68
Generators, in Turing’s work on word problem in

semi-groups with cancellation, 345
Generic types, in functional programming, 123
Genes

in development of organisms, 684
function of, 690
in spatial patterns, 749–750

Genetic algorithms
for network evolution, 519
for unorganised machines, 518

Genetic searches
initiative for, 515–516
for intelligent systems, 500

Gentzen type ordinal logics, 188–194
Genuinely partially random machines, 657–658
Geoffrey’s cat, 742f, 743
Geometrical and descriptive phyllotaxis, 773–803,

838
bracket and fractional notations, 782–783
continued fraction properties, 786–788
continuously changing, 789–791, 790f
equilateral lattices, 802–803
flow matrices, 793–794
helical coordinates for, 777–778
hypothesis of, 839

exploring, 839–841
inverse lattice, 791–793
lattice described by twist, 797–799
lattice parameters, 784–785
as lattices, 779–780
leaf distribution patterns, 775–777, 775f, 776f,

777f
methods of describing lattices, 801–802
naturally occurring patterns, 783–784
optimum packing problem, 799–801
parameter measurement, 780–781, 781t
parastichies and parastichy numbers, 778
on surfaces of revolution, 782
touching circles, 794–797, 796f
variation principle theories, 802–803

German Enigma Code. See Enigma Code
German Naval Enigma. See Enigma machine
Geroch, 654–655
Gessler, Nicholas, computerman, cryptographer and

physicist, 521–529
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Giraffe, 747f
Glaschick, Rainer, on Turing machines in Münster,

71–76
Global workspace (GW) theory, 94
Gödel number, for Turing machine, 60
Gödel representations (G.R.), 152–154
Gödel–Kleene proof, of unsolvability of

Entscheidungsproblem, 51–52
Gödel’s theorem, 44, 50

intelligent machinery and, 501–502, 559
Gödel-Turing threshold, 545–546
Good, Irving ‘Jack’, 415–416, 439
Government Code and Cypher School (GC&CS),

413, 426
G.R. See Gödel representations
Grammar

Harmonic, 537–538
for intelligence, 609
rewrite-rule, 533

Growing point, observation of, 773
GRT. See Generalised recursion theory
GW theory. See Global workspace theory

H
HA. See Heyting Arithmetic
Halting behaviour, 106
Halting probability

halting problem to, 63–65
resources for, 106–107
in traditional mathematics, 343

Halting problem, 105
to halting probability, 63–65
in traditional mathematics, 343
undecidability of, 60–61

Halting time, 107–108
Halting Turing computations, 105–108
Halting Turing machines, as Turing oracle, 207
Hanslope Park, Hodges on Turing’s work at, 439

Speech System ‘Delilah’ – Report on Progress,
439–441

Hard Problem of consciousness, 574
Hardness, of computation, 677
Hardware, software trade off with, 484
Hardy, G. H.

on digital computers applied to games, 626–643
normal number work of, 409

Harel, David, on Turing-like test for modelling
nature, 611–614

Harmonic Grammar, 537–538
Harmony, 536
Harper, John, on Delilah Rebuild Project, 449,

451–454, 452f, 453f
combiner, 452
cypher unit, 454

hardware, 452
key unit, 454
power supply, 452

Hartle, 654–655
Hartree, Douglas, ‘Automatic Calculating

Machines’, 651
Hasenjaeger, Gisbert, 71–75

Enigma machine work of, 432–433, 433f,
436–437

Haskell
compilers for, 123
history and perspective on, 125
input/output and, 124–125
programming environment of, 124
state for, 124

Haugland, on CRA, 585
Head, of Turing machines, 58
Heads in sand objection, to intelligent machinery,

558–559
Heart, sinus node oscillations, 735
Hejhal, Dennis

comments about Turing’s method, 279–283
on Turing’s Riemann zeta function work, 265

Turing’s early zeta work, 269–270
Turing’s skepticism of the Riemann
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polymorphous concept of, 607
before Turing, Alan, 587–588
unconscious, 594–596

Intelligent machinery, 501–516, 664–666. See also
Mechanical intelligence

Brooks, Rodney on, 499–500

dichotomy and, 609
discipline in, 515–516
education of, 509
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Non-recursive processes, 652
Non-terminating circular a-machines

computational power of, 80–84
a-machines, 81
red-green Turing machines, 81
relation between a-machines and red-green

Turing machines, 82
significance of, 82–83, 83t

Norm, of matrix, 392
Norm property, of Spector class, 112
Normal form, 154
Normal Form Theorem, 52, 110

for ITTM, 114
Normal numbers

connection between computable numbers and,
403–404

Turing’s A Note on, 405–407
Normal operations, 519–520
Normalisation

strong, of simply typed lambda calculus, 143
weak, of simply typed lambda calculus, 141–143

√
Not, physical reality of, 102–105

Notations. See also Mathematical notation
assigned to constructive ordinal, 203
for integrals, 239f

Notations for ordinals, 148
A Note on Normal Numbers, 405–407

Becher’s look at, 408–411
Noun-classes, 250–253
NPDMs. See Non-physically describable machines
NPDVMs. See Non-physically describable virtual

machines
NPL. See National Physics Laboratory
N-reflection progressions, 204
nth convergent of continued fraction, 830–831
Numbers. See Computable numbers; Description

number; Gödel number; Natural numbers;
Real numbers; Satisfactory number;
Uncomputable numbers

Number computed by machine, 17
Number-theoretic theorems, 156–159, 156n

completeness for, 176–177
conversion calculus for, 157
logic formulae for, 160–162
oracles for, 207
proof of, 187
syntactical theorems as, 160
type of problem which is not, 159
unsolved problems as, 158

Numerals, in Gentzen type ordinal logics, 188
Numerical variables, in Gentzen type ordinal logics,

188

O
Oblique line crossing, 736, 736f
OCaML, compilers for, 123
Odlyzko, Andrew, on Turing’s Riemann zeta

function work, 265
Turing’s early zeta work, 269–270
Turing’s skepticism of the Riemann hypothesis,

277–278
Turing’s zeta function computations, 267–269
writing of On a Theorem of Littlewood, 271–276,

273f, 274f, 275f, 276f
zeroes of the zeta function, 266–269
zeta function basics, 265–267

OKW-Chi, 432
o-machine. See Oracle machine
Omega number, 209
On a Theorem of Littlewood

case where Riemann hypothesis is false, 315–320
computational diophantine approximation,

314–315
diophantine approximation, 311–314
formal preliminaries, 301–304
method outline, 300–301
results with special kernel, 304–311
sample pages from, 275f, 276f
writing of, 271–273

On Computable Numbers, with Application to
Entscheidungsproblem, 16–41

abbreviated tables, 20–23
application of diagonal process, 28–30
computable numbers

extent of, 30–33
large classes of, 33–37

computable sequences, enumeration of, 23–24
computing machines, 16–17

examples of, 18–20
correction to, 42–43
definitions for, 17–18

automatic machines, 17
circular and circle-free machines, 18
computable sequences and numbers, 18
computing machines, 17

history of, 146–147
Papadimitriou, Christos on, 13–15
universal computing machines, 24–25

detailed description of, 25–28
Wolfram, Stephen on, 44–49, 46f, 47f

One-time pad, 443–444
On Growth and Form, 739, 754, 765
On Permutation Groups

Britton’s introduction to, 359
detailed search for exceptional groups, 365–375
exceptional groups defined, 359–360
investigating any upright U, 360–363
symmetric and alternating groups case, 376
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On Permutation Groups (Continued)
theory behind systematic search for exceptional

groups, 363–364
U with beetle, 364
U with no beetle, 363–364

On the Gaussian Error Function, Zabell’s guide to
central limit theorem development, 258–259
discussion, 262
history, 257–258
Turing’s counterexample, 262
Turing’s paper structure, 259–260
Turing’s preface, 264
Turing’s quasi-necessary conditions, 260–261
Turing’s sufficient conditions, 261–262

Open texture, Turing machines and, 590–593
Operations

normal, 519–520
self-modifying, 519–520
of Turing machines, 58

Opposed parastichy pair, 829
Optimal network, 536
Optimality Theory, 537
Optimum packing problem, 799–801
Optimum radian wave number, 793
Optimum wavelength, 793

in daisy development, 863
Oracle. See also Quantum random oracle; Random

oracle; Turing oracle
computation relative to, 149
HA in higher types, 199–200
for number-theoretics, 159
Rathjen, Michael on, 198–201
realisability, 198–199

relative to, 200–201
Oracle computability, 145–149
Oracle machine (o-machine), 202, 206

introduction of, 110
for number-theoretics, 149

Ordering relation, in ordinal logic, 163
Ordinals

abbreviations for, 164–165
notations for, 148
for ordinal logic, 162–170

Ordinal formula, 163–164
definitions for, 203
proof of, 166–168
representation of, 165

Ordinal logics, 9, 145–149, 170–175. See also
Systems of logic based on ordinals

calculus of conversion, 152–154
completeness questions, 176–185

definition for, 176–177
incompleteness theorems, 180–185
invariance of, 177–179

construction of, 191
continuum hypothesis, 186
definitions for, 188
effective calculability, 154–156
Gentzen type, 188–194
index of definitions for, 195–196
number-theoretic theorems, 156–159, 156n

logic formulae for, 160–162
syntactical theorems as, 160
type of problem which is not, 159

ordinals for, 162–170
purpose of, 186–188
redux, 149
thesis for, 148–149
Welch, Philip on, 202–206

Ordinary recursion theory (ORT), 68
Ordinary standard Turing programme, 113
Organisms

breakdown of symmetry and homogeneity in,
693–695

development of, 684
F-symmetry in, 696–697
left-handed and right-handed, 695–697
P-symmetry in, 696

Organizing
pleasure–pain systems for, 511–512
of P-type unorganised machines, 512–515
unorganised machines, 510–511

ORT. See Ordinary recursion theory
Oscillations out of phase, 733–738

example of, 736–737
outlook for, 738
phyllotaxis, 737f, 738
with three-component systems, 735–736, 735f
with two-component systems, 734f, 735

Oscillatory case, in ring of cells, 701–705
with extreme long wavelengths, 702
with extreme short wavelengths, 704–705
with finite wavelengths, 704–705

Outline of development of daisy, 860–865, 861f
considerations governing choice of parameters,

862–864
early stages in pattern formation, 864–865, 864f,

865f
Output, for Turing machines, 59

P
P v. NP problem, 679
PA. See Peano Arithmetic
Pain. See Pleasure–pain systems
Paley, William, 753
Papadimitriou, Christos, on Turing, Alan, 13–15
Paper interference, 507, 519
Paper machines

as intelligent machinery, 505
for playing chess, 502
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Paradox of diffusion, 728
Paradoxes, theory of types and, 247
Paradoxical combinator, 140
Parallel machines, 338
Parallel random access machine (PRAM), 63
Parallelism

in functional programming, 125
synchronized, 98

Parameters, mathematical notation for, reform of,
246–247

Parastichies, 778, 828, 828f, 829f
first order, 838

Parastichy numbers, 778, 829
change of, 839
in continued fraction properties, 786–788
in continuously changing phyllotaxis, 791
in equilateral lattices, 802–803
first principal, 838
in inverse lattice, 791–793
in lattice described by twist, 797–798
lattice parameters and, 784–785
measurement of, 780
in touching circles phyllotaxis, 796

Parastichy of order, 829
Parastichy vector, principal, 838
Partial computable functions, computable functions

and, 59
Partial computable predicates, 59
Partial function, with Turing machine, 59
Partial quotients of fraction, 830
Partial recursive functions, equational calculus for,

110
Partially random machines, 505

apparently, 657
genuinely, 657

Pattern formation. See also Morphogenesis; Spatial
patterns; Stable patterns

in biology, 683
chemical pre-pattern and, 684
of daisy

early stages in, 864–865, 864f, 865f
parameter choice, 862–864

mechanochemical theory of, 750
theory of chemotaxis in, 685
by two-component systems, 733–734, 734f

PCMs. See Practical computing machines
Peano Arithmetic (PA), 61

HA and, 198–200
Pearl Harbor attack, 443
Peeping, Turing’s use of, 468
Penrose, Roger, 656

on AI, 571
on physical action, 652

Perceptron, history of, 517
Perceptual frames, in conscious cognition, 95

Permutation groups, Turing’s work on
Britton’s introduction to, 359
detailed search for exceptional groups, 365–374
exceptional groups defined, 359
investigating any upright U, 360–363
symmetric and alternating groups case, 376
theory behind systematic search for exceptional

groups, 363–364
Petiole, of daisy, 860
p-function, in λ-K-conversion, 144
Phenomenal Consciousness, 574
Phenomenology, information processing and,

594–596
Philosophical significance, of TM and Turing Test,

587–600
information processing and phenomenology,

594–596
intelligence and consciousness, 593–594
intelligence before Turing, 587–588
intuition pumps and, 588–590
lessons of ELIZA, 596–599
new paradigms and open texture, 590–593
tutoring test, 599–600

Phoneme, 446
Phraseology, reform of, 245–249

application of, 248–249
constants and parameters, 246–247
deduction theorem, 246–247
free and bound variables, 246–247
theory of types and domains of definition,

247–248
Phyllotaxis, 827–830, 828f, 829f. See also Fibonacci

phyllotaxis
chemistry of, 807–810
defeating argument from design, 755
geometrical and descriptive, 773–803, 838

bracket and fractional notations, 782–783
continued fraction properties, 786–788
continuously changing, 789–791, 790f
equilateral lattices, 802–803
flow matrices, 793–794
helical coordinates for, 777–778
hypothesis of, 839–841
inverse lattice, 791–793
lattice described by twist, 797–799
lattice parameters, 784–785
as lattices, 779–780
leaf distribution patterns, 775–777, 775f, 776f,

777f
methods of describing lattices, 801–802
naturally occurring patterns, 783–784
optimum packing problem, 799–801
parameter measurement, 780–781, 781t
parastichies and parastichy numbers, 778
on surfaces of revolution, 782
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Phyllotaxis (Continued)
touching circles, 794–797, 796f
variation principle theories, 802–803

morphogen theory of, 773–826
appendix, 825–826
chemical theory of morphogenesis, 804–817
geometrical and descriptive phyllotaxis,

773–803
solution of morphogenetical equations,

818–826
traveling waves and oscillations out of phase,

738, 738f
Physical brain, mental brain connection with, 535
Physical Church-Turing thesis, 117
Physical Machines (PMs), 99

as implementation of VM, 101
Physical processes, in development of organisms,

684
Physical reality, of

√
not, 102–105

Physics
brief history of, 652–656
Turing on, 656

Physics envy, 521
Pilot Ace, 378n2, 523
Pinus, 77
Pitowsky, 656
Plant growth, caricature of, 835, 837f
Plant shoot, circular symmetry of, 718
Plasmeijer, Rinus, on imperative and functional

programming paradigm, 121–125
Plastochrone, 827
Plastochrone distance, 778, 828

measurement of, 780–781
Plastochrone ratio, 828
Platform RVMs, 100
Pleasure–pain systems. See also Reinforcement

learning
for learning machines, 567
for organizing machines, 511–512
in P-type unorganised machine, 512–515
for thinking machines, 666

Ply, 646, 646n11
PMs. See Physical Machines
Polygonal symmetry, of flowers, 719
Polymorphous concept, of intelligence, 607
Poly-time quantum algorithm, 678–680
Popplewell, Cicely, Manchester computer work by,

468, 469
Position on board, 629
Position-play value, calculation of, 624, 630–632
Positions in analysis, 629
Positive Friedman Sheard, 204–206
Post, Emil, 321

halting problem in work of, 343

in Turing’s work on word problem in semi-groups
with cancellation, 346–348

Post’s production systems, Turing’s work coherence
with, 334–335

Pour-El, 653
Practical computing machines (PCMs), 504

universal, 505
Practical Forms of Type Theory, 213–225

concealed-type system, 223–225
Gandy, Robin on, 211
nested-type system

equivalence with Church’s system, 220–222
for finite universe, 213–217
formal account of, 218–220
relaxation of type notation in, 222–225

Practical formulae, 233–234
PRAM. See Parallel random access machine
Precognition, intelligent machinery objection from,

564
Predicate, 59. See also Kleene T-predicate; Partial

computable predicates
Turing machine and, 61

Prefix-free TM, 106
Prefrontal cortex, 95
Pre-patterning mechanism, 741
Primitive processes, in cognitive science, 532–533
Primitive recursive, 51
Primitive recursive functions, 156, 156n
Primordia, 828

observation of, 773
Princeton, Turing, Alan at, 5, 147–148
Principal matrix coordinates, of lattice, 784
Principal parastichy vector, 838
Principal vector, of lattice, 779–780, 784–785, 802,

838
Principia Mathematica, 240, 241f
Principle of Computational Equivalence, 46, 531
Printing problem, 51
Probabilistic Turing machines, 63
Probability, programming language and, 63–65
Probability amplitudes, 104
Probability theory,

√
not machine and, 104

Processes. See also Primitive processes
artificial intelligence and emulation of, 93–94
continuation of, 93
with Turing machine, 93
of VM, 101

Prof’s Book
excerpts from

Bombe idea, 417–418
diagram of logical chain of implications

deduced from plaintext to be exploited by
Bombe, 419–420

problem of how to scan electrical output from
Bombe, 421–422
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Turing’s deduction of bigram key-system,
424–425

Welchman’s Diagonal Board idea, 423
Weierud on, 413

Bletchley Park before Turing, 414–415
Bombe invention, 415–416
boxing and buttoning up methods, 414–415
declassification of Turing’s work, 413
pre-war Enigma history, 414

Programmer’s Handbook for the Manchester
Electronic Computer Mark II

excerpt from, 472–474, 475f –478f
breaking problems down, 474
planning, 473–474
programming main routine, 474
programming new subroutines, 474

Howard on, 469
Programming

checking large routines in, 455
context, 455
correctness problem, 456
Turing’s contribution, 456–458, 457f
Turing’s paper, 461–463
Turing’s potential influences, 459
work after Turing, 458–459

of digital computers, 555
for learning machines, 494
machines to think, 662
of Manchester University machine, 632–634
Turing’s principles of, 472–474, 475f –478f

Programming languages
DNA as, 763
expressiveness of, 64
universality of, 64

Progressive joint, 352
Progressive sequence, for ordinal formulae, 203
Projection function, 59
Prolog, 851–852
Promethean irreverence, intelligent machinery and,

501
refutation of, 502

Properly formed formulae, in λ-K-definability,
127–128

Propositions. See also Admissible proposition
formulas

in nested-type system, 215–216
Proposition formulas, in nested-type system,

215–216, 218
Proposition variables, in nested-type system, 218
Propositional function, of computable numbers, 34
Proposition-like formulas, 221
Provability, in HA and PA, 198–199
Provable equations, in Gentzen type ordinal logics,

189–190

Provable formulas, in nested-type system, 218–219,
224

Psycho-kinesis, intelligent machinery objection
from, 564

P-symmetry, in organisms, 696
P-type unorganised machines, 512–515, 517
Punched-card machines, 44
Puzzles. See Solvable and Unsolvable Problems

Q
Qualia

evolution of organisms with, 576–578
explanations for, 855–856

Quantum complexity, 677–680
Quantum computation

classical computation compared with, 677
integer factorisation with, 679

Quantum computer, 63
digital, 63
√

not machine and, 103–105
Quantum entanglement, 678
Quantum measurement, 678
Quantum parallel computation, 678
Quantum random number generator, value

indefiniteness and, 209
Quantum random oracle, 206–209

example of, 208–209
hypercomputation with, 209
value indefiniteness and Kochen–Specker

theorem, 207–208
Quantum superposition, 678
Quantum system, behaviour of, 652–653
Quantum Turing machine, 63
Quasi-inductive definitions, 114

R
Radiolaria, 765–768, 766f, 767f, 768f

computer role for, 770
comparisons with, 770, 771f

differential equation for, 768–769
solutions for, 769–770

morphogenetical equations and, 824–825
Raffone, Antonio, on conscious cognition, 92–96
RAM. See Random access machine
Random access machine (RAM), 62
Random Boolean networks (RBNs), 518–519

sparse percolation limit and damage in, 519
Random disturbances

in morphogenesis, 811–817
in waves in ring of cells, 706–708

numerical example with, 711–716, 713t, 714f,
716t

Random dynamical network automata, 519
Random element

digital computers with, 555
in learning machines, 567
for thinking machinery, 666
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Random numbers
characterisation of, 403–404
normality and, 410

Random oracle, in cryptography, 207, 207n2
Random oracle model, 206–207
Randomised computations, 63
Randomising device, 103
Rathjen, Michael, on Systems of Logic Based on

Ordinals, 198–201
RBNs. See Random Boolean networks
Reaction rates

catalysts and, 692
of morphogens, 692

Reaction–diffusion equations. See also
Morphogenesis

alligator stripes, 748, 748f
application of, 834–835
Berestycki, Henri on, 723–731
bifurcation parameters, 755
computer-generated solution of, 843, 847f
concluding discussion for, 750–751
on cylinders, 836–837
domain size and shape in, 741
experimentally based, 740
experimentally verified prediction of, 747–750,

748f
history of, 726–728
instability and symmetry breaking, 728–730
perspective on, 730–731
scale and, 745, 745f
surface of, 741
systems of, 727–728
tapering cylinders, 741, 742f
two-component system of, 726

Reactions, in ring of cells, 697–700
Real numbers, computable numbers, 16
Real variable, computable function of, 33
Realisability, 198–199

relative to oracle, 200–201
Realisers, 199
Reasoning, strange inversion of, 569–573, 570f
Recirculating circuit, 488–489
Recognized, formal language, 81
Recursion

computability and, 69
of computable functions, 136

Recursion formulae, in ordinal logics, 172–173
Recursion Theorem, 110
Recursive analysis, 381
Recursive functions, 52, 68. See also Partial

recursive functions
Recursive function theory, 68
µ-Recursive functions, 65
ω-Recursive functions, 68
Recursively enumerable set, 68

Redex, 140
Red-green Turing machines, 80–81

a-machines relation with, 82
significance of, 82–83, 83t

relativistic Turing machines and, 83
β-Reduction, from lambda calculus, 122, 140
Reductionism, failure of, 760
Reflexive closure of theory, 205
Reform of Mathematical Notation and Phraseology,

245–249
application of, 248–249
constants and parameters, 246–247
deduction theorem, 246–247
Floyd, Juliet on, 250–253
free and bound variables, 246–247
theory of types and domains of definition,

247–248
Wolfram, Stephen on, 239–244, 239f, 241f, 242f,

243f
Refractory period, in oscillations, 735
Regeneration of storage, 489
Register machines, 71

early history of, 74–75
Reinforcement learning, 518
Relations, of semi-groups, 344–346

semi-group S0, 348–350
Relativised computability, 202
Relativism, of LoA, 604
Relativistic Turing machines, red-green Turing

machines and, 83
Religious objection. See also Theological objection

to intelligent machinery, 501
refutation of, 502

Research, method of, 524
Retrogressive joint, 352
Revolution, surfaces of, 782
Rewards. See Pleasure–pain systems
Rewrite rule, primitive process and, 533
Rewrite-rule grammar, primitive process and, 533
Rewriting, from lambda calculus, 121
Rey, Georges, on CRA, 584–585
Richards, Bernard, 468

on radiolaria and morphogenesis, 765–771
Riemann, Bernhard, 266
Riemann hypothesis, 266–267

as number-theoretic, 158–159, 207
Turing’s skepticism of, 273f, 274f, 275f, 276f,

277–278
Riemann zeta function

Hejhal and Odlyzko’s look at Turing’s work with,
265
Turing’s early zeta work, 269–270
Turing’s skepticism of Riemann hypothesis,

273f, 274f, 275f, 276f, 277–278
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Turing’s zeta function computations, 267–269
writing of On a Theorem of Littlewood,

271–273
zeroes of the zeta function, 266–269
zeta function basics, 265–267

Hejhal’s comments about Turing’s method,
279–283

Turing’s On a Theorem of Littlewood
case where Riemann hypothesis is false,

315–320
computational diophantine approximation,

314–315
diophantine approximation, 311–314
formal preliminaries, 301–304
method outline, 300–301
results with special kernel, 304–311
sample pages from, 275f, 276f
writing of, 271–273

Turing’s Some Calculations of, 284
approximate functional equation, 285–288
calculation method outline, 296–299
calculation principles, 288–289
evaluation of N(t), 289–296
Manchester computer essentials, 296–297
2 notation, 285

Riemann zeta-function, Turing, Alan on, 10
Riemann-Siegel formula, 267
Right-handed organisms, 695–697
Ring of cells. See also Continuous ring of tissue

asymptotic behaviour in, 644–650, 703f
further considerations of mathematics of, 711f
numerical example with, 711–716, 713t, 714f,

716t
restatement of, 717–719

reactions and diffusion in, 697–700
Robots

building blocks of, 572–573
building of, 500
social, 500

Rödding, Dieter, 71–75
Rota, Gian-Carlo, 78
Rounding-off errors

with Gaussian elimination, 378, 382, 400–401
in Jordan’s method, 396–400
in matrix processes, 378–379, 385–402

classical iterative method, 395
elimination method, 387–389
error estimates in reputed inverse, 395–396
ill-conditioned matrices and equations,

379–381
Jordan’s method for inversion, 389–390
magnitude of matrix, 392–393
measure of work in process, 385–386
solution of equations v. inversion, 386

triangular resolution of matrix, 386–387,
390–392

in unsymmetrical Choleski method, 401–402
Routines, 472

checking of, 455
context, 455
correctness problem, 456
Turing’s contribution, 456–458, 457f
Turing’s paper, 461–463
Turing’s potential influences, 459
work after Turing, 458–459

Rubel, 654
Rule of thumb process

LCMs and, 504
machine process and, 490

Rules of procedure
in concealed-type system, 224–225
in nested-type system, 218–220

Running virtual machines (RVMs). See also
Application RVMs; Platform RVMs

benefits of, 100
causation in, 99–100
implementable but irreducible, 100–101

Russell paradox, nested-type system and, 223
Russell’s theory of types, 213
RVMs. See Running virtual machines

S
Saint-Hilaire, Geoffroy, 739
Sale, Tony, on cryptographic background to Enigma

and Bombe, 426
Bombe construction, 430–431
Diagonal Board addition, 431
letter loops, 429–430
letter pairs, 426–428

Satisfactory number, 24
Satisfiability problem, 679
Saunders, Peter

on argument from design, 753–755
on Morphogen Theory of Phyllotaxis, 827–832
on morphogenesis, 858
notes from, 858

Sayers, Dorothy, intelligent machinery and, 501
refutation of, 502

Scan, by Turing machines, 58
Scanned square

changes to, 31
of complete configuration, 17
in computing machine, 16–17
immediate recognisability of, 31

Scanned symbol
in computing machine, 16–17
m-configuration and, 31

for universal computing machines, 25
Scarpellini, 652
Schlüsselgerät 41, 434–435, 435f
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Schmeh, Klaus, on German mistakes on Enigma
machine, 432

independent cryptographic units, 436–437
possible improvements, 436, 436f
untimely replacement, 434–435, 435f
weaknesses overlooked, 432–435, 433f, 434f,

435f, 436f, 437f
Schmidhuber, Jürgen, 528
Science, as cryptanalysis, 521–522
Scope condition, for Turing’s dots, 231
Screwdriver interference, 507, 519
SCTT. See Simultaneous comparison test
S.D. See Standard description
Search, for intelligent systems, 500
Searle, John, CRA and, 582–584
Second-phase relations, of semi-groups, 348–349
Selberg, Riemann zeta function work by, 277
Self-delimiting code, 58
Self-delimiting TM, 106
Self-modifying machinery, 507–508
Self-modifying operations, 519–520
Semantics, syntax and, 582
Semi-group, 344
Semi-group with cancellation (SWC), 344

associative and cancellation laws, 345
Turing’s Word Problem in

computing machines, 346–348
mathematics of, 344
necessity of condition that (ϕ1(C),ϕ2(C)) be a

relation of S0, 352–356
semi-group S0, 348–350
sufficiency of condition that (ϕ1(C),ϕ2(C)) be

a relation of S0, 350–352
word problem, 345–346

Sensory input
in GW theory, 94
processing of, 92

Sequences. See Computable sequences
Sequence computed by machine, 17
Serial processing, for AI, 94
Series, in ordinal logic, 163
Shah, Huma, on Turing’s question-answer game,

614–619, 616f, 616t, 617t
Shannon, Claude, 623–625, 644
Sieg, Wilfried, on normal forms for puzzles,

332–338
analyzing puzzles, 334–336
generalising substitution puzzles, 336–337
substitution puzzles, 332–334

Sierpinski, Waclaw, normal number work of, 409
SIGBUSE key, 446, 447
SIGSALY, 443–447, 444f, 445f, 447f
Simon, Herbert, Human Problem Solving, 339–341
Simple operations, 31

Simply typed lambda (λ) calculus
strong normalisation of, 143
weak normalisation of, 141–143

proof of, 141–142
terms and reduction, 141

Simultaneous comparison test (SCTT), 616t, 618
Simultaneous equations solutions, 821–824

case n=2, 821–822
case n=4, 822–823
case n=6, 823–824

Situated cognition, 482
Skeleton tables, 20

subsidiary, for universal computing machines,
26–28

Skewes, Stanley, 273f
Turing’s 1953 letter to, 274f
in Turing’s Riemann zeta function work,

269–270
Skewes number, 269
Skin of an onion analogy, 565
Skin pigments, as morphogens, 690
Sliding-squares puzzle

Sieg on, 332
Turing’s discussion of, 322–323, 327, 329–330

Sloman, Aaron
on Turing Test, 606–610
on virtual machinery and evolution of mind,

97–102, 574–579
Slomson, Alan, on Turing and chess, 623–625
The Small-Scale Experimental Machine. See Baby
S-m-n Theorem, 110
Smolensky, Paul, on cognition, 532–538
Soare, Robert Irving, on classical computability,

65–69
Social robots, 500
Software

hardware trade off with, 484
life as evolving, 763–764

Software seduction, 481–482
Solution of equations, inversion v., 386
Solvable and Unsolvable Problems, 322–331, 325f

decision problem for puzzles, 329–331
knot puzzle, 324–325, 325f
questions about puzzles, 327
Sieg’s variant on Turing’s thesis in, 332–338

analyzing puzzles, 334–336
generalising substitution puzzles, 336–337
substitution puzzles, 332–334

sliding-squares puzzle, 323, 327, 329–330
substitution puzzles, 326, 332–333

for determining when problems are
unsolvable, 329–331, 334

generalisation of, 336–337
as normal form for puzzles, 326, 333
rules for, 328–329, 333
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Turing’s string machines as, 336
systematic method for detecting unsolvable

problems, 323–324, 327–331
twisted wire puzzle, 324, 330
Velupillai’s connection between Simon’s Human

Problem Solving and, 339–341
Some Calculations of the Riemann Zeta Function,

284
approximate functional equation, 285–288
calculation method outline, 297–299
calculation principles, 288–289
evaluation of N(t), 289–296
Manchester computer essentials, 296–297
2 notation, 285

SP limit. See Sparse percolation limit
Space function, for TM, 106–107
Spaces of possibilities, 854
Sparse percolation (SP) limit, in RBNs, 519
Spatial patterns

animal coat patterns, 741–747, 742f, 743f, 744f,
745f, 746f, 747f

development of, 740
mechanism of, 749
scale for, 745, 745f
shape, 741
steady-state, 740
surface size, 741

Spector Classes, 112
Spector Criterion, 111

for ITTM, 114
Spectral condition number, 379n8

origins of, 382
Spectral norm, 379n8
Speech System ‘Delilah’ – Report on Progress, 440

proposed future plans, 440
suggested key form, 440–441

Spheres, chemical waves on, 720–722
Spherical symmetry, in blastula, 693
Stability

diffusion and, 684
exchange of, 728

Stability point, in ITTM, 114
Stable patterns, by two-component systems,

733–734, 734f
Staiger, Ludwig, on halting and non-halting Turing

computations, 105–108
Standard description (S.D)

for computable sequence, 24
diagonal process and, 28
for universal computing machine, 24–25

Start cell, of Turing machines, 58
State. See also Configuration

belief-like and desire-like, 854
in conscious cognition, 92, 94

input/output and, 124–125
of LoA, 604
of TM, 105–106
of VM, 101

State formula, 33
State of mind

change in, 31
counterpart of, 33
m-configuration and, 31–32
number of, 30

State of progress, 33
State of system, in embryo development, 689–690
State-transitions, of LoA, 604
Stationary case, in ring of cells, 701–704, 703f

with extreme long wavelengths, 702
with extreme short wavelengths, 703
with finite wavelengths, 703–704

Stay, Michael, on halting and non-halting Turing
computations, 105–108

Steady states
in daisy development, 862
spatial patterns, 740
in Turing patterns, 686

Step, of Turing machines, 58
Stochasticity, in Turing patterns, 686
Storage. See Memory
Strange inversion of reasoning, 569–573, 570f
String machine, 336
String-rewrite systems, 44
Strong normalisation, of simply typed lambda

calculus, 143
Subroutines, 472
Subsidiary skeleton table, for universal computing

machines, 26–28
Subsidiary tables, for computing machine, 494
Substitution puzzles, 326, 332–333

for determining when problems are unsolvable,
329–331, 334

generalisation of, 336–337
as normal form for puzzles, 326–327, 333
rules for, 328–329, 333
Turing’s string machines as, 336

Subsymbolic paradigm
for cognitive science, 534
intuition in, 534–535
intuitive processor in, 534–535
motivation of, 535

Subtraction, in binary, 493
Successive observations, 30
Successor function, 59
Successor relation, with intelligent machinery, 508
Suffix, in Gentzen type ordinal logics, 188
Superdeterminism, 208n4
Surface coordinates, of congruence, 779
Surfaces of revolution, phyllotaxis on, 782
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Suslin Theorem, 111
Svozil, Karl, on quantum random oracle, 206–209
SWC. See Semi-group with cancellation
Swinton, Jonathan

editorial note, 858–859
on morphogenesis and Fibonacci phyllotaxis,

834–848
Symbols, 30, 30n5

in λ-K-definability, 127–128
mathematical notation for, 247
theorem tethering and, 101

Symbol grounding thesis, NPDMs and, 100–101
Symbol strings, primitive processes and, 533
Symbol-grounding problem, 583
Symbolic logic

mathematical notation and, 247
mathematics and, 245
number-theoretic theorems and, 161

Symbolic paradigm
for cognitive science, 533–534
intuition in, 534–535
intuitive processor in, 534

Symbolic rule, in AI, 93–94
Symbols of first kind, 81
Symbols of second kind, 81
Symcon machines, 337
Symmetrical matrices, 391
Symmetry

breakdown of, 693–695
circular, 718
instability and breaking of, 728–730
mirror, 783
polygonal, 719

Synchronized parallelism, 98
Syntactical theorems, as number-theoretic theorems,

160
Syntax, semantics and, 582
Syntax for trees, Turing’s dots for, 227–228
System reply, to CRA, 587
Systems

of levels of abstraction, 603
of reaction–diffusion equations, 727–728

Systems of Logic Based on Ordinals, 145–196
calculus of conversion, 152–154
completeness questions, 176–185

definition for, 176–177
incompleteness theorems, 180–185
invariance of, 177–179

construction of, 191
continuum hypothesis, 186
definitions for, 188–189
effective calculability, 154–156
Feferman, Solomon on, 145–149
Gentzen type, 188–194
index of definitions for, 195–196

number-theoretic theorems, 156–159, 156n
logic formulae for, 160–162
o-machine, 159

syntactical theorems as, 160
type of problem which is not, 159

ordinal logics, 170–175
ordinals for, 162–170
purpose of, 186–188
Rathjen, Michael on, 198–201
Welch, Philip on, 202–206

T
Table of instructions, for digital computer, 554
Tables

abbreviated, 20–23
further examples of, 21–23

for computing machines, 18–20
for m-configuration, 20
skeleton, 20

Tae-computing, 82–83, 83t
Tape, of Turing machines, 58, 92, 92n3
Tape P, for Turing machine in Münster, 72
Tape Q, for Turing machine in Münster, 72
Tape R, for Turing machine in Münster, 72
Tapering cylinders, reaction–diffusion equations

with, 741, 742f
Telepathy, intelligent machinery objection from, 564
Telephone, 483

control of ACE with, 495
Temptations, machines and, 675
Terms. See also Admissible term formulas

in Gentzen type ordinal logics, 189
in nested-type system, 215–216

Term formulas, in nested-type system, 215–216, 218
Term variables, in nested-type system, 218
Termination, of computations, 93
Teuscher, Christof, on unorganised machines,

517–520
Thalamocortical system, 95
Theological objection, to intelligent machinery, 558
Theorem of completeness. See Completeness

Theorem
Theorem on Triangular Resolution, 386
Theoretical biology, 756
Theory of chemotaxis, biological pattern formation

with, 685
Theory of computation, 377
Theory of computational complexity. See

Computational complexity
Theory of real computation, 381
Theory of types. See Type theory
Theory tethering thesis, 101
Thermo-diffusive approximation, 727
Thinking, 667, 671–672
Thinking machine, 11

embodied intelligence and, 499
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justification for, 500
man compared with, 508–509
radio broadcast about, 677
Turing test and CRA, 581–582

Thompson, D’Arcy, 739, 754, 765
Three-component systems

examples of, 736–737
wave formation by, 735, 736f

TICOM, 450
Tiltman, John, 433
Time

in conscious cognition, 94–95
in Turing machines, 58

Time-sharing, of virtual machines, 99
Titchmarsh, Riemann zeta function work, 267–268,

270
TM. See Turing machines
Tootill, Geoff

Baby work of, 465
Manchester computer work by, 468

Total computable, 59
Touching circles phyllotaxis, 794–797, 796f
Trained phenomenology, 96
Transition rules

for conscious cognition, 94
for Turing machines, 93

Transition system, 604–605
Translation of languages, disembodied intelligence

and, 500, 509
Translation reply, to CRA, 583–584
Travelling waves, 733–738

example of, 736–737
outlook for, 738
phyllotaxis, 737f, 738
by two-component systems, 733–734, 734f

Trial-and-error predicates, 82–83, 83t
Triangular resolution

elimination method, 387–389
Jordan’s method for inversion, 389–390
of matrix, 386–387, 390–392

Tri-Level Hypothesis, 482
Truth, in nested-type system, 216–217
Truth theories, 204
Turing, Alan

Biography of, 5–7
at Bletchley Park, 525–526
Bombe work of, 525
at Cambridge, 5–6, 146–147
Can Digital Computers Think, 660–663
Chemical theory of morphogenesis, 11–12,

804–817
chess and, 623–625
Christos Papadimitriou on, 13–15
on classical group theory, 10
Collected Works of, 868–870

Computability and Lambda (λ)-definability,
127–138

Computable Numbers, with Application to
Entscheidungsproblem, 16–41
correction to, 42–43

computational world, 525–529
Computing Machinery and Intelligence, 552–568
death of, 5, 7, 87, 456
education of, 5
fellowship dissertation experiences, 257–258
‘Foreign Office’ work, 3, 6
intelligence before, 587–588
Intelligent Machinery, 501–516, 664–666
interest in, 869
lambda calculus contributions of, 139–143

fixed point combinators, 139–141
weaknormalisation of simply typed, 141–143

lecture to London Mathematical Society, 486–497
on Lie groups, 10
mathematical logic, 7–9
Morphogen Theory of Phyllotaxis, 773–826
at National Physics Laboratory, 6, 522–525
outline of development of daisy, 860–865, 861f
p-function in λ-K-conversion, 144
on physics and uncomputability, 656
Practical Forms of Type Theory, 213–225
at Princeton, 6, 147–148
Reform of Mathematical Notation and

Phraseology, 245–249
on Riemann zeta-function, 10
Rounding-off Errors in Matrix Processes,

385–402
scientific work of, 7–12
strange inversion of reasoning, 569–573, 570f
Systems of Logic Based on Ordinals, 151–196
on thinking machines, 667–676
Turing machine and, 57–58
and voice encryption, 442–450

Delilah, 447–449
Feuerstein, 450
prologue, 442–443
SIGSALY, 443–447, 444f, 445f, 447f

Wittgenstein’s debates with, 77–79
Turing, Sara

Collected Works of Alan Turing and, 869
on Turing, Alan, 522–525

Turing Bifurcation, 761
Turing computations, halting and non-halting,

105–108
Turing degree of incomputability, 202
Turing jump, 110
Turing machines (TM), 57–58, 106, 110. See also

Automatic machines; Choice machines;
Infinite Time Turing Machine; Red-green
Turing machines; Relativistic Turing
machines; Universal Turing machine
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Turing machines (TM) (Continued)
analogue computer simulation by, 653–654
for biological process modelling, 758
building of

inMünster, 71–76
by Turing, 117–118

cellular automata compared with, 45
computability with, 121
computable functions, 59

examples of, 59
computation complexity and, 57–63, 62f
electronic computers and, 44–45
formal definition of, 58–59
formal systems and, 253
Gödel number for, 60
Herbrand–Gödel (HG) recursive function

simulation by, 110
history of, 146
human problem solving and, 340–341
importance of, 62–63
information processing system compared with,

484
intuition pumps and, 588–590
inMünster, 71–76

early history of register machines, 74–75
examples, 73
hardware layout, 72–73, 72f
object, 71
papers, 73–75
state machine, 75–76
universal Turing machines and

Jones–Matyiyasevich-masking, 73–74
natural numbers and, 59
natural systems and, 45
neural, 93–94
philosophical significance of, 587–600

information processing and phenomenology,
594–596

intelligence and consciousness, 593–594
intelligence before Turing, 587–588
lessons of ELIZA, 596–599
new paradigms and open texture, 590–593
tutoring test, 599–600

predicate and, 61
probabilistic, 63
processes and computation with, 92–93
purpose of, 381
quantum, 63
red-green, 80–81
resources for, 106–107
simplest universal computation, 47f
unsolvable problems and, 334
virtual machinery and, 97–98

Turing model for morphogenesis, 686
Turing oracle, 206–207

Turing patterns, 686
Turing programme, ordinary standard, 113
Turing’s Orthogonal Circuit, 448–449
Turing Test, 667–668

chess for early, 499
Chinese room and, 580–586
human-like behavior and, 608
levels of abstraction and, 601–605

method for, 603–604
relativism, 604
state and state-transitions of, 604–605
Turing’s idea for, 602–603

for modelling nature, 611–614
challenge of, 611–612
measuring success with, 612–613
modifications for, 613–614

origination of, 606–607
other tests for, 610
philosophical significance of, 587–600

information processing and phenomenology,
594–596

intelligence and consciousness, 593–594
intelligence before Turing, 587–588
intuition pumps and, 588–590
lessons of ELIZA, 596–599
new paradigms and open texture, 590–593
tutoring test, 599–600

predictions with, 607–608
Shah, Huma on, 614–619, 615f, 616f, 616t, 617t
Sloman, Aaron on, 606–610
value of, 607

Turing–Champernowne paper machine, 646
Turingery, 416
Turingraum, 71
Turing’s dots, 10, 229–237

application to Church’s system, 234
discussion of conventions, 235–237
equivalence theorem for, 231–233
first form of rule for, 230
Fortnow, Lance on, 227–228
general bracketing theory, 229–230
juxtaposition and omitted points in, 233–234
precedence of, 227
second form of rule for, 230–231

Turing’s method, 265
Hejhal’s comments about, 279–283

Turing’s proof, of unsolvability of
Entscheidungsproblem, 51

Turing’s Thesis, 57, 66, 652
Church’s Thesis compared with, 66–67

Turing’s Treatise on the Enigma. See Prof’s Book
Turing–Welchman Bombe. See Bombe
Turochamp, 646
Tutoring test, 599–600
Twinn, Peter, Enigma machine decoding work of,

413–415
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Twisted wire puzzles, Turing’s discussion of, 324,
330

Two-cell system, symmetry and homogeneity
breakdown in, 693–695

Two-component systems
oscillations and wave formation by, 734f, 735
stable patterns and travelling waves by, 733–734,

734f
Types

in Clean, 125
for functional programming, 123–124
theory of, 213

Type inferencing, 123
Type notation, nested-type system relaxation of,

222–225
Type theory

concealed-type system, 223–225
mathematical notation for, 245

reform of, 247–248
nested-type system

equivalence with Church’s system, 220–222
for finite universe, 213–217
formal account of, 218–220
relaxation of type notation in, 222–225

practical forms of, 10, 213–225
Russell’s, 213

Typed bindings, for free variables, 252

U
Ulam, Stanislaw, 78
Ulam-von Neumann cellular automatas, 759–761
Ultimate Computer, 528
Ultimate theory of physics, 48
Unabbreviated formulae

application to Church’s system, 234
equivalence theorem and, 231–233
first form of rule for, 230
general bracketing theory and, 229
second form of rule for, 230–231

Unbounded computation, approaches to, 82–83, 83t
Uncomputability

brief history of, 652–656
freewill and, 657–658
incompleteness and, 551
Turing on, 656

Uncomputable creativity, mechanical intelligence v.,
551

Uncomputable functions, 61
Uncomputable numbers, 63
Uncomputable physical systems, 654–655
Unconscious desires, 594–595
Unconscious feelings, 594–595
Unconscious intelligence, 594–595

Undecidability
of halting problem, 60–61, 105
resources for, 106–107

Unfeasibility, of CRA, 589n3, 590
Uniform reflection principle, 149
Uniformly computably convergent, 35
Uniqueness type system, in Clean, 125
Unit cost, 62
Universal algorithmic probability function, 61
Universal beings, 548–549
Universal computation, importance of, 44–49,

46f, 47f
Universal computing machines, 24–25

detailed description of, 25–28
development of, 44
proof of, 8
subsidiary skeleton table for, 26–28
in Turing’s work on word problem in semi-groups

with cancellation, 348
Universal language, 44
Universal logical computing machines, 503–504
Universal practical computing machines, 505
Universal Turing Machine (UTM)

computability thesis and, 59–60
conscious cognition as, 92–96

discrete temporal frames for, 94–95
implementable but irreducible, 100–101
implications of, 101–102
mind states, 95
neural Turing machines, 93–94
systems with states, 92
trained phenomenology in, 96

construction of, 60
creation of, 51, 66
description of, 92–93
digital computers as, 556–557
Incompleteness Theorem and, 14, 60–61
Jones–Matyiyasevich-masking and, 73–74
rule of thumb process, 490
undecidability of halting problem and, 60–61

Universality, 92n2, 660
of digital computers, 556–557
distribution of, 48
of formal programming languages, 64
impact of, 14
of Spector class, 112
unexpectedness of, 546–548

Unorganised machines, 501, 505–507
B-type, 507
Christof Teuscher on, 517–520
contemporary impact of, 518–519
context and significance of, 518
cortex as, 511
future developments of, 519–520
organizing, 510–511
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Unorganised machines (Continued)
P-type, 512–515
as random Boolean networks, 519
A-type, 506–507

Unsolvability
degrees of, 149
of Entscheidungsproblem, 49–52

Church’s proof, 50–51
Gödel–Kleene proof, 51–52
Turing’s proof, 51

Unsolvable problems, 322–331, 325f
decision problem for puzzles, 329–331
knot puzzle, 324–325, 325f
questions about puzzles, 327
Sieg’s variant on Turing’s thesis in, 332–338

analyzing puzzles, 334–336
generalising substitution puzzles, 336–337
substitution puzzles, 332–334

sliding-squares puzzle, 322–323, 327, 329–330
substitution puzzles, 326, 332–334

for determining when problems are
unsolvable, 329–331, 333–334

generalisation of, 336–337
as normal form for puzzles, 326, 333
rules for, 328–329, 333
Turing’s string machines as, 336

systematic method for detecting unsolvable
problems, 323–324, 327–331

twisted wire puzzle, 324, 330
Velupillai’s connection between Simon’s Human

Problem Solving and, 339–341
Unstable equilibrium, 695
Unsymmetrical Choleski method, errors in, 401–402
Untyped lambda (λ) calculus, fixed point

combinators in, 139–141
fixed points, 140–141
terms, reduction and conversion, 139–140

Use of dots as Brackets in Church’s System,
229–237. See also Turing’s dots

Fortnow, Lance on, 227–228
UTM. See Universal Turing Machine

V
Valais Blackneck goat, 746f
Value definiteness, Bell’s Theorem and, 207–208
Value indefiniteness

Kochen–Specker theorem and, 207–208
quantum random number generator and, 209

Value of position, in chess, 630
Valve flip-flop, 487
van Leeuwen, Jan, on computational power of

Turing’s non-terminating circular
a-machines, 80–84

van Wijngaarden, Aad, reasoning about programmes,
458–459

Variables. See also Bound variable; Free variable
in Gentzen type ordinal logics

functional, 188
numerical, 188

in λ-K-definability, 127–128
in nested-type system, 215–216

Variation principle theories, 802–803
Velupillai, K. Vela

Four Traditions of Emergence, 759–761
on Turing’s Solvable and Unsolvable Problems

and Simon’s Human Problem Solving,
339–341

on Wittgenstein’s debates with Turing, 77–79
Victory, 431
Virtual machinery (VM). See also Non-physically

describable virtual machines
biological evolution and, 98
causation and, 97

computation and, 98–99
in RVMs, 99–100

evolution of mind and, 97–102, 574–579
epigenesis, 575–576
future directions, 578–579
meta-morphogenesis, 849–856

implementable but irreducible, 100–101
implications of, 101–102
monitoring and controlling, 855–856
PMs as implementation of, 101
time-sharing of, 99
UTM and, 97–98

Visible pair, 830
Vitányi, Paul, on Turing machines and computation

complexity, 57–63
Viva voce test (VVTT), 616t, 618
VM. See Virtual machinery
Vocoder, 444, 447, 448, 448n4, 450
Voice encryption system, 442–450

Delilah, 447–449
Feuerstein, 450
prologue, 442–443
SIGSALY, 443–447, 444f, 445f, 447f

von Neumann, Turing’s work with, 147–148
VVTT. See Viva voce test

W
Warwick, Kevin, on Turing’s future, 620–621
Watson, James, 569
Waves, in ring of cells, 701–705, 703f. See also

Chemical waves
mathematics of, 705–710, 711f

disturbances in, 706–708
non-linear reaction rate functions, 709
simplifying assumptions in, 709–710, 711f
two morphogens, 705–706

oscillatory case
with extreme long wavelengths, 702
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with extreme short wavelengths, 704–705
with finite wavelengths, 704

stationary case
with extreme long wavelengths, 702
with extreme short wavelengths, 702
with finite wavelengths, 703–704

Wave formation
by three-component systems, 735–736, 735f,

736f
by two-component systems, 734f, 735

Wave function, collapse of, 678
Weak normalisation

of simply typed lambda (λ) calculus, proof of,
141–142

of simply typed lambda calculus, 141–143
terms and reduction, 141

Weierud, Frode, on Prof’s Book viewed within
cryptologic history, 413

Bletchley Park before Turing, 414–415
Bombe invention, 415–416
boxing and buttoning up methods, 414–415
declassification of Turing’s work, 413
pre-war Enigma history, 414

Weizenbaum, Joseph, ELIZA program of, 596–599
Welch, Philip

on computing infinite numbers, 109–115
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