ELSEVIER

ALAN TURING

HIS WORK AND IMPACT

S. Barry Cooper ¢ Jan van Leeuwen

Alan Turing

HIS WORK AND IMPACT

This page intentionally left blank

Alan Turing

HIS WORK AND IMPACT

Edited by

S. BARRY COOPER
University of Leeds, UK
and
JAN VAN LEEUWEN
Utrecht University, The Netherlands

ELSEVIER
AMSTERDAM ¢ BOSTON « HEIDELBERG *« LONDON
NEW YORK ¢« OXFORD ¢ PARIS * SAN DIEGO
SAN FRANCISCO ¢ SINGAPORE « SYDNEY « TOKYO

Elsevier

225 Wyman Street, Waltham, MA 02451, USA

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

Copyright © 2013 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission
of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:

permissions @elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site
at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in
particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

For information on all Elsevier publications
visit our web site at elsevierdirect.com

Printed and bound in USA
12131415 10987 654321

ISBN: 978-0-12-386980-7

(© Matthew Oldfield Photography, Turing Statue at Bletchley Park, National Codes Centre. Created by
Stephen Kettle and commissioned by the Sidney E Frank Foundation.

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID q,phe Foundation

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://elsevierdirect.com

List of Contributors

Alastair Abbott
Department of Computer Science, The University of Auckland, Auckland, New Zealand

Samson Abramsky
Department of Computer Science, Oxford University, Oxford, UK

Henk Barendregt
Institute for Computing and Information Sciences, Faculty of Science, Radboud University,
Nijmegen, The Netherlands

Craig Bauer
Department of Physical Sciences, York College of Pennsylvania, York, PA, USA

Anthony Beavers
Philosophy & Cognitive Science, The University of Evansville, Evansville, IN, USA

Veroénica Becher
Departamento de Computacién, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires and CONICET, Ciudad Universitaria, Buenos Aires, Argentina

Nelson H. F. Beebe
Department of Mathematics, University of Utah, Salt Lake City, UT, USA

Henri Berestycki
University of Chicago, and L’Ecole des hautes études en sciences sociales (EHESS), Paris, France

Meurig Beynon
Department of Computer Science, University of Warwick, Coventry, UK

Mark Bishop
Department of Computing, Goldsmiths, University of London, New Cross, London, UK

Lenore Blum
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Rodney Brooks
Emeritus Professor of Robotics, Computer Science and Artificial Intelligence Laboratory, MIT,
Cambridge, USA

Cristian Calude
Department of Computer Science, The University of Auckland, Auckland, New Zealand

Gregory Chaitin
Professor of Mathematics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Argentina

Jack Copeland
School of Social and Political Sciences, University of Canterbury, Christchurch, New Zealand

vi List of Contributors

Martin Davis
Department of Mathematics, University of California, Berkeley, CA, USA

Daniel Dennett
Center for Cognitive Studies, Tufts University, Medford, MA, USA

Artur Ekert
Mathematical Institute, University of Oxford, Oxford, UK and Centre for Quantum Technologies,
National University of Singapore, Singapore

Solomon Feferman
Department of Mathematics, Stanford University, Stanford, CA, USA

Luciano Floridi
School of Humanities, University of Hertfordshire, Hertfordshire, and Department of Computer
Science, University of Oxford, Oxford, UK

Juliet Floyd
Philosophy Department, Boston University, Boston, MA, USA

Lance Fortnow
School of Computer Science, Georgia Institute of Technology, Atlanta, USA

Einar Fredriksson
1OS Press, Amsterdam, The Netherlands

Nicholas Gessler
Information Science & Information Studies, Duke University, Durham, NC, USA

Rainer Glaschick
Paderborn, Germany

David Harel
Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Rehovot, Israel

John Harper
Retired, Honorary Fellow of the British Computer Society

Dennis Hejhal
School of Mathematics, University of Minnesota, Minneapolis, MN, USA

Andrew Hodges
Wadham College, Oxford University, Oxford, UK

Douglas Hofstadter
College of Arts and Sciences, Center for Research on Concepts and Cognition, Indiana University,
Bloomington, IN, USA

Toby Howard
School of Computer Science, The University of Manchester, Manchester, UK

List of Contributors vii

CIiff Jones
School of Computing Science, Newcastle University, Newcastle, UK

Richard Jozsa
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK

Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

David Levy
Intelligent Toys Ltd, London, UK

Philip Maini
Centre for Mathematical Biology, Mathematical Institute, Oxford University, Oxford, UK

Giulio Manzonetto
LIPN - Institut Galilée, Université Paris-Nord, Villetaneuse, France

Hans Meinhardt
Max-Planck-Institut fiir Entwicklungsbiologie, Tiibingen, Germany

Peter Millican
Faculty of Philosophy, Oxford University, Oxford, UK

James D. Murray
Professor Emeritus, Mathematical Institute, University of Oxford, Oxford, UK

Andrew Odlyzko
School of Mathematics, University of Minnesota, Minneapolis, MN, USA

Christos Papadimitriou
EECS Department, University of California, Berkeley, CA, USA

Rinus Plasmeijer
Institute for Computing and Information Sciences, Faculty of Science, Radboud University,
Nijmegen, The Netherlands

Antonino Raffone
Department of Psychology, Sapienza University of Rome, Rome, Italy

Michael Rathjen
School of Mathematics, University of Leeds, Leeds, UK

Bernard Richards
Emeritus Professor of Medical Informatics, University of Manchester, Manchester, UK

Anthony Edgar “Tony” Sale, FBCS (30 January 1931-28 August 2011)
Founder member Bletchley Park Trust, leader Colossus rebuild project

Peter T. Saunders
Department of Mathematics, King’s College, Strand, London, UK

viii List of Contributors

Klaus Schmeh
Gelsenkirchen, Germany

Huma Shah
School of Systems Engineering, University of Reading, Reading, UK

Wilfried Sieg
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA

Aaron Sloman
School of Computer Science, University of Birmingham, Birmingham, UK

Alan Slomson
School of Mathematics, University of Leeds, Leeds, UK

Paul Smolensky
Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD, USA

Robert I. Soare
Department of Mathematics, The University of Chicago, Chicago, IL, USA

Ludwig Staiger
Institut fiir Informatik, Martin-Luther-Universitit, Halle, Germany

Michael Stay
Google Inc., CA, USA, and Department of Computer Science, The University of Auckland,
Auckland, New Zealand

Karl Svozil
Institut fiir Theoretische Physik, Technische Universitidt Wien, Vienna, Austria

Jonathan Swinton
Physiomics ple, Oxford Science Park, Oxford, UK

Christof Teuscher
ECE Department, Portland State University, Portland, OR, USA

K. Vela Velupillai
Department of Economics, University of Trento, Trento, Italy

Tom Vickers
Retired, Manager computing service that developed and used the Pilot ACE, at National Physical
Laboratory (NPL), Teddington, London, UK

Paul Vitanyi
CWI, Amsterdam, The Netherlands

Kevin Warwick
School of Systems Engineering, University of Reading, Reading, UK

Frode Weierud
Le Pre Vert, Prevessin-Moens, France

List of Contributors X

Philip Welch
School of Mathematics, University of Bristol, Bristol, UK

Jiri Wiedermann
Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague,
Czech Republic

Stephen Wolfram
Wolfram Research, Champaign, IL, USA

Mike Yates
Emeritus Professor of Mathematics, University of Manchester, Manchester, UK

Sandy L. Zabell
Department of Mathematics, Northwestern University, Evanston, IL, USA

This page intentionally left blank

Introduction

This is an unusual book. Its unusualness and complexity is appropriate for such an unusually
inventive scientist, who was personally unique, as are so many creative thinkers.

Of the writings of Alan Turing selected here — which comprise most of those to be found in the
Collected Works — a number have attracted a special interest, recognition and impact. And this is
reflected in the number of commentaries accompanying his “computable numbers” paper, or the late
great pieces on morphogenesis and the Turing test. But the collective power and energy of Turing
is in the theoretical coherence of this collection of diverse writings. They are diverse in content, in
style, in discipline, conveying different facets of a basic quest for understanding of ‘how the world
computes’.

You will find here no anonymous papers by committees of researchers. Even the occasional
unpublished writing by joint authors on closer inspection, turns out to be written by one man. The
rewards of a visceral engagement with these original writings are on various levels. A researcher
should always have first-hand experience of any writings referred to. But with Turing the sense
of the man behind the formal words is ever present. The organic involvement with the technical
material, the sense of its emergence — an important concept in relation to Turing — from some more
basic level of thought, is ever with us.

And just as the work and the person are unusually at one, there is a personal organic involvement
with the writings from many of those paying tribute to Turing’s thinking in this volume. We have
tried to tap a wide spectrum of responses to Turing, people touched in many different ways by this
strangely appealing man.

You will find here much to fascinate or surprise, both from Alan Turing and his commentators.
The book intends to show the great value and impact Alan Turing’s work continues to have.

There is a living heterogeneity to the content, formatted by a major academic publisher, with
the editors aiming at something with at least a hint of the newspaper’s immediacy and reporting of
events in progress.

In this context, we hope our readers will excuse some rough edges. If you go to the “Afterword”
first, you will see a candid description of the history of the “Collected Works of A.M. Turing”,
from which this book grew. That invaluable four-volume work took over 40 years to complete. The
present single volume, containing most of the Turing works and much else, had to be completed in
less than three years, much of it under pressure from an anxious publisher, and with doubly anxious
editors watching the pages of the calendar turn towards 2012 — and past. We are very grateful to
the publisher for initiating this major contribution to the Turing centenary celebrations, and to the
contributors and editorial support team at Elsevier for their enthusiasm for the project and their
patience with, and understanding of, the difficulties and delays.

With a few more years, we might have done much better, though the result might have been less
interesting, and certainly less timely! We took a decision early on to not try to subsume the Collected
Works. The Collected Works continues to have its own unique place in the Turing scholar’s library,
its value as an artefact matching the facsimile reproductions of Turing’s papers. And the editorial
work is by thinkers much closer to Turing and his contemporaries than us, and more often than not
no longer available to update their work.

So we have not tried to reproduce the style of an archive, rather aiming at a book to be read, to be
dipped into for pure pleasure, to be enjoyed and browsed in office, on train or bus, or accompanying
the proposer to some distant scientific meeting or place of relaxation. The rekeying of the historical
items presented special challenges, but we hope the benefits in terms of readability and sense of
contemporaneity made them worth taking on.

Xi

Xii Introduction

One omission from the Collected Works, spread as it was over four volumes and a decade of
publishing, was a seriously comprehensive bibliography. This has been commented on by a number
of people, and was something we were anxious to rectify. Turing’s biographer, Andrew Hodges,
has provided a characteristically careful and insightful summary of the literature at his “The Alan
Turing Bibliography” webpage: http://www.turing.org.uk/sources/biblio.html.

We did think of asking Andrew for permission to reprint this. And then came an unexpected
discovery, which was the gargantuan work — “Bibliography of Publications of Alan Mathison
Turing” — by Professor Nelson Beebe of the University of Utah. This is a bibliography whose scope
and attention to detail, and current updated status, is beyond anything we could have provided. For
details, see the Bibliography page at the end of this book.

Sadly, we never met Alan Turing, though we have talked to those who did, some of them rep-
resented in this book. What we hope the reader will share with us is the excitement of an ongoing
exploration of ‘how the world computes’, and of a distinct sense of Turing’s visionary presence
accompanying us as we carry forward, in many different ways, his uncompleted work. In the much-
quoted words of the great man himself, from his 1950 Mind paper on Computing Machinery and
Intelligence:

We can only see a short distance ahead, but we can see plenty there that needs to be done.

S. Barry Cooper
Jan van Leeuwen

Spring 2013

http://www.turing.org.uk/sources/biblio.html

Contents

List of Contributors
Introduction

Part | How Do We Compute? What Can We Prove?

1955

Alan Mathison Turing by Max Newman
(Bibliographic Memoirs of the Fellows of the Royal Society, 1 (Nov.),
253-263)

Andrew Hodges contributes —
A Comment on Newman’s Biographical Memoir

Biographical Memoir

1936-7

1937

On Computable Numbers, with an Application to
the Entscheidungsproblem
(Proc. Lond. Math. Soc. (2) 42, 230-265)

— A Correction (ibid: 43, 544-546)

Christos Papadimitriou on —
Alan and I

Turing texts

Stephen Wolfram on —
The Importance of Universal Computation

Martin Davis illuminates —
Three Proofs of the Unsolvability of the Entscheidungsproblem

Samson Abramsky detects —
Two Puzzles About Computation

Paul Vitanyi illustrates the importance of —
Turing Machines and Understanding Computational Complexity

Gregory Chaitin traces the path —
From the Halting Problem to the Halting Probability

Robert Irving Soare expands on —
Turing and the Art of Classical Computability

Rainer Glaschick takes us on a trip back to —
Turing Machines in Miinster

X1

13
16

44

49

53

57

63

65

71

xiii

Xiv

Contents

From K. Vela Velupillai —
Reflections on Wittgenstein’s Debates with Turing during his
Lectures on the Foundations of Mathematics 77

Jan van Leeuwen and Jiff Wiedermann on —
The Computational Power of Turing’s Non-Terminating Circular
a-Machines 80

Meurig Beynon puts an empirical slant on —
Turing’s Approach to Modelling States of Mind 85

Henk Barendregt and Antonio Raffone explore —
Conscious Cognition as a Discrete, Deterministic and Universal Turing
Machine Process 92

Aaron Sloman develops a distinctive view of —
Virtual Machinery and Evolution of Mind (Part 1) 97

Artur Ekert on the physical reality of —

~vNOT 102

Cristian Calude, Ludwig Staiger and Michael Stay on —
Halting and Non-Halting Turing Computations 105

Philip Welch leads us —
Toward the Unknown Region: On Computing Infinite Numbers 109

1937

On Computable Numbers, with an Application to

the Entscheidungsproblem by A. M. Turing — Review by:
Alonzo Church

(J. Symb. Log. 2, 42)

Andrew Hodges finds significance in —
Church’s Review of Computable Numbers 117

1937

Computability and A-Definability
(J. Symb. Log. 2, 153-63)

Henk Barendregt, Giulio Manzonetto and Rinus Plasmeijer
trace through to today —
The Imperative and Functional Programming Paradigm 121

Turing text 127

1937

The p-Function in A-K Conversion
(J. Symb. Log. 2, 164)

Henk Barendregt and Giulio Manzonetto point out the subtleties of —
Turing’s Contributions to Lambda Calculus 139

Turing text 144

Contents

1939

Systems of Logic Based on Ordinals
(Proc. Lond. Math. Soc. (2) 45, 161-228)

Solomon Feferman returns to —
Turing’s Thesis: Ordinal Logics and Oracle Computability

Turing text

Michael Rathjen looks at —
Turing’s ‘Oracle’ in Proof Theory

Philip Welch takes a set-theoretical view of —
Truth and Turing

Alastair Abbott, Cristian Calude and Karl Svozil describe —
A Quantum Random Oracle

1948

Practical Forms of Type Theory
(J. Symb. Log. 13, 80-94)

Some background remarks from Robin Gandy’s —
Preface

Turing text

1942

The use of Dots as Brackets in Church’s System
(J. Symb. Log. 7, 146-156)

Lance Fortnow discovers —
Turing’s Dots

Turing text

1944

Part Il

The Reform of Mathematical Notation and Phraseology

Stephen Wolfram connects —
Computation, Mathematical Notation and Linguistics

Turing text

Juliet Floyd explores —
Turing, Wittgenstein and Types: Philosophical Aspects of Turing’s
‘The Reform of Mathematical Notation and Phraseology’ (1944-5)

Hiding and Unhiding Information: Cryptology,
Complexity and Number Theory

1935

On the Gaussian error function

Sandy L. Zabell delivers an authoritative guide to —
Alan Turing and the Central Limit Theorem

Turing’s ‘Preface’ (1935) to ‘On the Gaussian error function’

XV

145
151

198

202

206

211
213

227
229

239
245

250

255

257
264

Xvi

1953

1952-3

Some Calculations of the Riemann Zeta function
(Proc. Lond. Math. Soc. (3) 3, 99-117)

On a Theorem of Littlewood

Dennis Hejhal and Andrew Odlyzko take an in-depth look at —
Alan Turing and the Riemann Zeta Function

And Dennis Hejhal adds —
A Few Comments About Turing’s Method

Turing text

On a Theorem of Littlewood (S. Skewes and A.M. Turing)

1954

Solvable and Unsolvable Problems
(Science News 31, 7-23)

Gregory Chaitin recommends—
Turing’s Small Gem

Turing text

Wilfried Sieg focuses on —
Normal Forms for Puzzles: A Variant of Turing’s Thesis

K. Vela Velupillai connects —
Turing on ‘Solvable and Unsolvable Problems’ and Simon on ‘Human
Problem Solving’

1950

The Word Problem in Semi-Groups with Cancellation
(Annals of Mathematics, 52 (2), 491-505)

Gregory Chaitin on —
Finding the Halting Problem and the Halting Probability in Traditional
Mathematics

While John L. Britton gives us a brief —
Introduction to the mathematics

Turing text

On Permutation Groups

John Leslie Britton’s informative —
Introduction

Turing text

1948

Rounding-off Errors in Matrix Processes
(Quart. J. Mech. Appl. Math. 1, 287-308)

Contents

265

279
284
300

321
322

332

339

343

344
345

359
360

Contents

Lenore Blum brings into view—
Alan Turing and the Other Theory of Computation

Turing text

A Note on Normal Numbers

Andrew Hodges on an interesting connection between —
Computable Numbers and Normal Numbers

Turing text

Verénica Becher takes a closer look at —
Turing’s Note on Normal Numbers

1940

Turing’s Treatise on the Enigma (Prof’s Book)

Frode Weierud on Alan Turing, Dilly Knox, Bayesian statistics,
decoding machines and —
Prof’s Book: Seen in the Light of Cryptologic History

Excerpts from the ‘Enigma Paper’

Tony Sale delves into the cryptographic background to —
Alan Turing, the Enigma and the Bombe

Klaus Schmeh looks at —
Why Turing cracked the Enigma and the Germans did not

1944

Speech System ‘Delilah’ — Report on Progress
(A.M. Turing, 6 June, National Archives, box HW 62/6)

Andrew Hodges sets the scene for —
The Secrets of Hanslope Park 1944-1945

Craig Bauer presents —
Alan Turing and Voice Encryption: A Play in Three Acts

John Harper reports on the —
Delilah Rebuild Project

1949

Checking a Large Routine

(Paper, EDSAC Inaugural Conference, 24 June.

In: Report of a Conference on High Speed Automatic Calculating
Machines, 67-69)

Cliff B. Jones gives a modern assessment of —
Turing’s “Checking a Large Routine”

Turing text

xvii

377
385

403
405

408

413
417

426

432

439

442

451

455
461

Xviii

1951

Excerpt from: Programmer’s Handbook for the Manchester
Electronic Computer Mark I1

Local Programming Methods and Conventions
(Paper read at the Inaugural Conference for the Manchester University
Computer, July 1951)

Toby Howard describes—
Turing’s Contributions to the Early Manchester Computers

Excerpt from: Programmer’s Handbook for the Manchester Electronic
Computer Mark 11

Part Il Building a Brain: Intelligent Machines,

Practice and Theory

Turing’s Lecture to the London Mathematical Society

on 20 February 1947

(A more readable guide to the ACE computer than Turing’s 1945 ACE
report)

Anthony Beavers pays homage to —
Alan Turing: Mathematical Mechanist

Turing text

1948

Intelligent Machinery

Contents

465

472

479

481
486

(Report Written by Alan Turing for the National Physical Laboratory, 1948)

Rodney A. Brooks and —
The Case for Embodied Intelligence

Turing text

Christof Teuscher proposes —
A Modern Perspective on Turing’s Unorganised Machines

Nicholas Gessler connects past and future —
The Computerman, the Cryptographer and the Physicist

Stephen Wolfram looks to reconcile —
Intelligence and the Computational Universe

Paul Smolensky asks a key question —
Cognition: Discrete or Continuous Computation?

Tom Vickers recalls —
Alan Turing at the NPL 1945-47

499
501

517

521

530

532

539

Contents

Douglas Hofstadter engages with —
The Godel-Turing Threshold and the Human Soul

1950

Computing Machinery and Intelligence
(Mind, 59, 433-460)

Gregory Chaitin discovers Alan Turing ‘The Good Philosopher’
at both sides of —
Mechanical Intelligence versus Uncomputable Creativity

Turing text

Daniel Dennett is inspired by —
Turing’s “Strange Inversion of Reasoning”

Aaron Sloman draws together —
Virtual machinery and Evolution of Mind (Part 2)

Mark Bishop examines —
The Phenomenal Case of the Turing Test and the Chinese Room

Peter Millican on recognising intelligence and —
The Philosophical Significance of the Turing Machine and the Turing Test

Luciano Floridi brings out the value of —
The Turing Test and the Method of Levels of Abstraction

Aaron Sloman absolves Turing of —
The Mythical Turing Test

David Harel proposes —
A Turing-Like Test for Modelling Nature

Huma Shah engages with the realities of —
Conversation, Deception and Intelligence: Turing’s
Question-Answer Game

Kevin Warwick looks forward to —
Turing’s Future

1953

Digital Computers Applied to Games
(Bowden, B. V. (Ed.), Faster than Thought. Pitman, London, Chap. 25,
286-310)

Alan Slomson introduces —
Turing and Chess

Digital Computers Applied to Games

David Levy delves deeper into —
Alan Turing on Computer Chess

Xix

545

551
552

569

574

580

587

601

606

611

614

620

623
626

644

XX

Contents

1951

Can Digital Computers Think?
(BBC Third Programme radio broadcast (15 May 1951), transcript edited
B. J. Copeland)

Intelligent Machinery: A Heretical Theory
(Lecture given to 51 Society in Manchester (c. 1951), transcript edited
B. J. Copeland)

Can Automatic Calculating Machines Be Said To Think?
(Broadcast discussion, BBC Third Programme (14 and 23 Jan. 1952),
transcript edited B. J. Copeland)

B. Jack Copeland introduces the transcripts —
Turing and the Physics of the Mind

Turing texts

Can Automatic Calculating Machines Be Said To Think?
By Alan Turing, Richard Braithwaite, Geoffrey Jefferson, Max Newman

Richard Jozsa takes us forward to —
Quantum Complexity and the Foundations of Computing

Part IV The Mathematics of Emergence: The Mysteries

of Morphogenesis

1952

The Chemical Basis of Morphogenesis
(PHhil. Trans. R. Soc. London B 237, 37-72)

Peter Saunders introduces —
Alan Turing’s Work in Biology

And Philip K. Maini wonders at —
Turing’s Theory of Morphogenesis

Turing text

Henri Berestycki on the visionary power of —
Alan Turing and Reaction—Diffusion Equations

Hans Meinhardt focuses on —
Travelling Waves and Oscillations Out of Phase:
An Almost Forgotten Part of Turing’s Paper

James D. Murray on what happened —
After Turing — The Birth and Growth of Interdisciplinary Mathematics
and Biology

Peter T. Saunders observes Alan Turing —
Defeating the Argument from Design

Stephen Wolfram fills out the computational view of —
The Mechanisms of Biology

651
660

667

677

681

683

684
689

723

733

739

753

756

Contents xXxi

K. Vela Velupillai connects —

Four Traditions of Emergence: Morphogenesis, Ulam-von Neumann

Cellular Automata, The Fermi-Pasta-Ulam Problem, and

British Emergentism 759

Gregory Chaitin takes the story forward —
From Turing to Metabiology and Life as Evolving Software 763

1954

The Morphogen Theory of Phyllotaxis
I. Geometrical and Descriptive Phyllotaxis
II. Chemical Theory of Morphogenesis

III. (Bernard Richards) A Solution of the Morphogenical
Equations for the Case of Spherical Symmetry

(Prepared after December 1954 by N. E. Hoskin and B. Richards, using
manuscripts of Turing and notes from his lectures in Manchester)

Bernard Richards recalls Alan Turing and —
Radiolaria: The Result of Morphogenesis 765

The Morphogen Theory of Phyllotaxis
Part I. Geometrical and Descriptive Phyllotaxis 773
Part II. Chemical Theory of Morphogenesis 804

Part III. A Solution of the Morphogenetical Equations for the Case of
Spherical Symmetry 818

Peter Saunders comments on the background to —
Turing’s Morphogen Theory of Phyllotaxis 827

Jonathan Swinton explores further —
Turing, Morphogenesis, and Fibonacci Phyllotaxis: Life in Pictures 834

Aaron Sloman travels forward to —
Virtual Machinery and Evolution of Mind (Part 3)
Meta-Morphogenesis: Evolution of Information-Processing Machinery 849

Outline of the Development of the Daisy
(Prepared from Turing’s notes by P.T. Saunders for the Collected Works
and updated by J. Swinton.)

Jonathan Swinton’s updating of the texts —
An Editorial Note 858

Outline of the Development of the Daisy 860

Afterword 867
Bibliography 877

Index

879

This page intentionally left blank

Part I

How Do We Compute? What Can
We Prove?

1912 -1954

S ALAN TURING,

This page intentionally left blank

Alan Mathison Turing by Max Newman

(Bibliographic Memoirs of the Fellows of the Royal Society,
vol. 1 (Nov. 1955), pp. 253-263)

Andrew Hodges Contributes

A COMMENT ON NEWMAN’S
BIOGRAPHICAL MEMOIR

Newman had to comply with official secrecy and said virtually nothing regarding Turing’s work
from 1939 to 1945. Although the words ‘Foreign Office’ would have conveyed ‘codes and ciphers’
to all but the most naive readers, nothing went beyond this to convey scale or significance or scien-
tific content. Indeed Newman’s account went further than suppressio veri and led into a suggestio
falsi. The expression ‘mild routine’ probably reinforced the prevalent impression of Bletchley Park
as the resort of leisured time-wasters. Turing’s work had been far from routine, involving real-time
day and night work on the U-boat messages, and hair-raising missions to France, the United States,
and Germany. It also required great intellectual originality. Newman could probably have given a
clue to its content by making a reference to I. J. Good’s 1950 book Probability and the weighing of
evidence. But there was no such hint, and the 1955 reader could never have guessed that Newman
had headed the section that used the most advanced electronic technology and Turing’s statistical
theory to break Hitler’s messages.

A more surprising feature of Newman’s account is the claim that ‘the designers’ of ‘the new auto-
matic computing machines’ had worked in ignorance of Turing’s universal machine. This is an odd
expression since Turing himself was one such designer, as Newman’s reference to ‘the first plan of
the ACE’ makes clear, and obviously he knew of his own theory. Moreover, this plan was a very
early one submitted to the NPL in March 1946. Newman can therefore only have meant that von
Neumann’s report of June 1945 was written in ignorance of Turing’s work. The origin of the digital
computer is a major point of interest in the history of science, and it seems strange that Newman
lent his authority to such an oblique and vague comment on it, with an implicit assertion about von
Neumann that is at variance with other evidence. Newman’s statement is also misleading in its impli-
cation that Turing only turned his attention to computers in the summer of 1945 after learning of von
Neumann’s design. As it happens, Newman had actually written to von Neumann on 8 February 1946
with a sharply worded statement about British developments, asserting their early start and intellectual
independence.! Already he was applying to the Royal Society for a large grant to fund what became
the Manchester computer. ‘By about 18 months ago’, he wrote, ‘I had decided to try my hand at start-
ing up a machine unit... This was before I knew anything of the American work... I am of course in
close touch with Turing...” The date of ‘18 months ago’ is that of August 1944. In the light of what
was revealed over 20 years later, it seems obvious that the success of the electronic Colossus after
D-Day prompted discussion between Turing and Newman of how the logic of the universal machine
could be implemented in a practical form. All this pre-1945 history was obliterated by Newman’s
accountin 1955. It is of course very possible that the overpowering nature of official secrecy deterred
Newman from giving even the faintest hint of his own and Turing’s wartime experience at Bletchley
Park. Unfortunately this omission contributed to a distortion of the historical record.

! Letter in the von Neumann archive, Library of Congress, Washington D.C. Quoted by A. Hodges Alan Turing: the
enigma, p. 341.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00001-1 3
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00001-1

4 Part 1

By courtesy of the National Portrait Gallery, London

Alan Mathison Turing 5

ALAN MATHISON TURING

1912-1954

The sudden death of Alan Turing on 7 June 1954 deprived mathematics and science of a great
original mind at the height of its power. After some years of scientific indecision, since the end
of the war, Turing had found, in his chemical theory of growth and form, a theme that gave the
fullest scope for his rare combination of abilities, as a mathematical analyst with a flair for machine
computing, and a natural philosopher full of bold original ideas. The preliminary report of 1952,
and the account that will appear posthumously, describe only his first rough sketch of this theory,
and the unfulfilled design must remain a painful reminder of the loss that his early death has caused
to science.

Alan Mathison Turing was born in London on 23 June 1912, the son of Julius Mathison Turing,
of the Indian Civil Service, and of Ethel Sara Turing (née Stoney). The name ‘Turing’ is of Scottish,
perhaps ultimately of Norman origin, the final g being an addition made by Sir William Turing, of
Aberdeenshire, in the reign James VI and 1. The Stoneys, an English-Irish family of Yorkshire
origin, produced some distinguished physicists and engineers in the nineteenth century, three of
whom became Fellows of the Society; and Edith A. Stoney was one of the early women equal-to-
wranglers at Cambridge (bracketed with 17th Wrangler, 1893).

Alan Turing’s interest in science began early and never wavered. Both at his preparatory schools
and later at Sherborne, which he entered in 1926, the contrast between his absorbed interest in sci-
ence and mathematics, and his indifference to Latin and ‘English subjects’ perplexed and distressed
his teachers, bent on giving him a well-balanced education. Many of the characteristics that were
strongly marked in his later life can already be clearly seen in remembered incidents of this time: his
particular delight in problems, large or small, that enabled him to combine theory with the kind of
experiments he could carry out with his own hands, with the help of whatever apparatus was at hand;
his strong preference for working everything out from first principles instead of borrowing from
others—a habit which gave freshness and independence to his work, but also undoubtedly slowed
him down, and later on made him a difficult author to read. At school homemade experiments in his
study did not fit well into the routine of the house: a letter from his housemaster mentions ‘Heaven
knows what witches’ brew blazing on a naked wooden window sill’. But before he left school
his abilities, and his obvious seriousness of purpose, had won him respect and affection, and even
tolerance for his own peculiar methods.

In 1931 he entered King’s College, Cambridge, as a mathematical scholar. A second class in
Part I of the Tripos showed him still determined not to spend time on subjects that did not interest
him. In Part IT he was a Wrangler, with ‘6*’, and he won a Smith’s Prize in 1936. He was elected a
Fellow of King’s in 1935, for a dissertation on the Central Limit Theorem of probability (which he
discovered anew, in ignorance of recent previous work).

It was in 1935 that he first began to work in mathematical logic, and almost immediately started
on the investigation that was to lead to his best known results, on computable numbers and the

Royal Society Memoir (Max Newman)
Reproduced from the Bibliographic Memoirs of the Fellows of the Royal Society, vol. 1 (November 1955) pp. 253-263
by kind permission of the Royal Society and of Edward and William Newman.

6 Part 1

“Turing machine’. The paper attracted attention as soon as it appeared and the resulting correspon-
dence led to his spending the next two years (1936-8) in Princeton, working with Professor Alonzo
Church, the second of them as Proctor Fellow.

In 1938 Turing returned to Cambridge; in 1939 the war broke out. For the next six years he was
fully occupied with his duties for the Foreign Office. These years were happy enough, perhaps the
happiest of his life, with full scope for his inventiveness, a mild routine to shape the day, and a
congenial set of fellow-workers. But the loss to his scientific work of the years between the ages of
27 and 33 was a cruel one. Three remarkable papers written just before the war, on three diverse
mathematical subjects, show the quality of the work that might have been produced if he had settled
down to work on some big problem at that critical time. For his work for the Foreign Office he was
awarded the O.B.E.

At the end of the war many circumstances combined to turn his attention to the new automatic
computing machines. They were in principle realizations of the ‘universal machine’ which he had
described in the 1937 paper for the purpose of a logical argument, though their designers did not
yet know of Turing’s work. Besides this theoretical link, there was a strong attraction in the many-
sided nature of the work, ranging from electric circuit design to the entirely new field or organizing
mathematical problems for a machine. He decided to decline an offer of a Cambridge University
Lectureship, and join the group that was being formed at the National Physical Laboratory for the
design, construction and use of a large automatic computing machine. In the three years (1945-8)
that this association lasted he made the first plan of the ACE, the N.P.L’s automatic computer, and
did a great deal of pioneering work in the design of sub-routines.

In 1948 he was appointed to a Readership in the University of Manchester, where work was
beginning on the construction of a computing machine by F. C. Williams and T. Kilburn. The
expectation was that Turing would lead the mathematical side of the work, and for a few years
he continued to work, first on the design of the sub-routines out of which the larger programmes
for such a machine are built, and then, as this kind work became standardized, on more general
problems of numerical analysis. From 1950 onward he turned back for a while to mathematics and
finally to his biological theory. But he remained in close contact with the Computing Machine Lab-
oratory, whose members found him ready to tackle the mathematical problems that arose in their
work, and what is more, to find the answers, by that combination of powerful mathematical analysis
and intuitive short cuts that showed him at heart more of an applied than a pure mathematician.

He was elected to the Fellowship of the Society in 1951.

For recreation he turned mostly to those ‘home-made’ projects and experiments, self-contained
both in theory and practice, that have already been mentioned: they remained a ruling passion up
to the last hours of his life. The rule of the game was that everything was to be done with the
materials at hand, and worked out from data to be found in the house, or in his own head. This sort
of self-sufficiency stood him in good stead in starting on his theory of ‘morphogenesis’, where the
preliminary reading would have drowned out a more orthodox approach. In everyday life it led to
a certain fondness for the gimcrack, for example the famous Bletchley bicycle, the chain of which
would stay on if the rider counted his pedal-strokes and executed a certain manoeuvre after every
seventeen strokes.

After the war, feeling in need of violent exercise, he took to long distance running, and found
that he was very successful at it. He won the 3 miles and 10 miles championships of his club (the
Walton Athletic Club), both in record time, and was placed fifth in the A.A.A. Marathon race in
1947. He thought it quite natural to put this accomplishment to practical use from time to time, for
example by running some nine miles from Teddington to a technical conference at the Post Office
Research Station in North London, when the public transport proved tedious.

In conversation he had a gift for comical but brilliantly apt analogies, which found its full scope
in the discussions on ‘brains v. machines’ of the late 1940’s. He delighted in confounding those
who, as he thought, too easily assumed that the two things are separated by an impassable gulf,
by challenging them to produce an examination paper that could be passed by a man, but not by a

Alan Mathison Turing 7

machine. The unexpected element in human behaviour he proposed, half seriously, to imitate by a
random element, or roulette-wheel, in the machine. This, he said, would enable proud owners to say
‘My machine’ (instead of ‘My little boy’) ‘said such a funny thing this morning’.

Those who knew Turing will remember most vividly the enthusiasm and excitement with which
he would pursue any idea that caught his interest, from a conversational hare to a difficult scientific
problem. Nor was it only the pleasure of the chase that inspired him. He would take the greatest pains
over services, large or small, to his friends. His colleagues in the computing machine laboratory
found him still as ready as ever with his help for their problems when his own interests were fully
engaged with his bio-chemical theory; and, as another instance, he gave an immense amount of
thought and care to the selection of the presents which he gave to his friends and their children at
Christmas.

His death, at a time when he was fully absorbed in his scientific work, was a great and sad loss
to his friends, as well as to the wider world of science.

Scientific work

The varied titles of Turing’s published work disguise its unity of purpose. The central problem with
which he started, and to which he constantly returned, is the extent and the limitations of mechanistic
explanations of nature. All his work, except for three papers in pure mathematics (19350, 1938a and
b) grew naturally out of the technical problems encountered in these inquiries. His way of tackling
the problem was not by philosophical discussion of general principles, but by mathematical proof
of certain limited results: in the first instance the impossibility of the too sanguine programme for
the complete mechanization of mathematics, and in his final work, the possibility of, at any rate, a
partial explanation of the phenomena of organic growth by the ‘blind’ operation of chemical laws.

1. Mathematical logic

The Hilbert decision-programme of the 1920°s and 30’s had for its objective the discovery of a
general process, applicable to any mathematical theorem expressed in fully symbolical form, for
deciding the truth or falsehood of the theorem. A first blow was dealt at the prospects of finding this
new philosopher’s stone by Godel’s incompleteness theorem (1931), which made it clear that truth
or falsehood of A could not be equated to provability of A or not-A in any finitely based logic, chosen
once for all; but there still remained in principle the possibility of finding a mechanical process for
deciding whether A, or not-A, or neither, was formally provable in a given system. Many were
convinced that no such process was possible, but Turing set out to demonstrate the impossibility
rigorously. The first step was evidently to give a definition of ‘decision process’ sufficiently exact
to form the basis of a mathematical proof of impossibility. To the question ‘What is a “mechanical”
process?’” Turing returned the characteristic answer ‘Something that can be done by a machine, and
he embarked on the highly congenial task of analyzing the general notion of a computing machine.
It is difficult to-day to realize how bold an innovation it was to introduce talk about paper tapes
and patterns punched in them, into discussions of the foundations of mathematics. It is worth while
quoting from his paper (1937a) the paragraph in which the computing machine is first introduced,
both for the sake of its content and to give the flavour of Turing’s writings.

‘1. Computing machines

‘We have said that the computable numbers are those whose decimals are calculable by
finite means. This requires rather more explicit definition. No real attempt will be made
to justify the definitions given until we reach §9. For the present I shall only say that the
justification lies in the fact that the human memory is necessarily limited.

8 Part 1

‘We may compare a man in the process of computing a real number to a machine which
is only capable of a finite number of conditions ¢, ¢2, ..., gg Which will be called “m-
configurations”. The machine is supplied with a “tape” (the analogue of paper) running
through it, and divided into sections (called “squares”) each capable of bearing a “sym-
bol”. At any moment there is just one square, say the r-th, bearing the symbol &(r) which
is “in the machine”. We may call this square the “scanned square”. The symbol on the
scanned square may be called the “scanned symbol”. The “scanned symbol” is the only
one of which the machine is, so to speak, “directly aware”. However, by altering its m-
configuration the machine can effectively remember some of the symbols which it has “seen”
(scanned) previously. The possible behaviour of the machine at any moment is determined
by the m-configuration g, and the scanned symbol &(r). This pair g,, S(r) will be called the
“configuration”: thus the configuration determines the possible behaviour of the machine. In
some of the configurations in which the scanned square is blank (i.e. bears no symbol) the
machine writes down a new symbol on the scanned square: in other configurations it erases
the scanned symbol. The machine may also change the square which is being scanned, but
only by shifting it one place to right or left. In addition to any of these operations the m-
configuration may be changed. Some of the symbols written down will form the sequence of
figures which is the decimal of the real number which is being computed. The others are just
rough notes to “assist the memory”. It will only be these rough notes which will be liable to
erasure.
‘It is my contention that these operations include all those which are used in the computation
of a number. The defence of this contention will be easier when the theory of the machines
is familiar to the reader.’

In succeeding paragraphs he gave arguments for believing that a machine of this kind could
be made to do any piece of work which could be done by a human computer obeying explicit
instructions given to him before the work starts. A machine of the kind he had described could
be made for computing the successive digits of 7, another for computing the successive prime
numbers, and so forth. Such a machine is completely specified by a table, which states how it moves
from each of the finite sets of possible ‘configurations’ to another. In the computations mentioned
above, of m and of the successive primes, the machine may be supposed to be designed for its
special purpose. It is supplied with a blank tape and started off. But we may also imagine a machine
supplied with a tape already bearing a pattern which will influence its subsequent behaviour, and
this pattern might be the table, suitably encoded, of a particular computing machine, X. It could
be arranged that this tape would cause the machine, M, into which it was inserted to behave like
machine X. Turing proved the fundamental result that there is a ‘universal’ machine, U (of which
he gave the table), which can be made to do the work of any assigned special-purpose machine, that
is to say to carry out any piece of computing, if a tape bearing suitable ‘instructions’ is inserted into
it. The machine U is so constructed that, presented with a tape bearing any arbitrary pattern it will
move through a determinate, in general endless, succession of configurations; and it may or may
not print at least one digit, O or 1. If it does, the pattern is ‘circle-free’. It is therefore a problem, for
which a decision process might be sought, to determine from inspection of a tape, whether or not
it is circle-free. By means of a Cantor diagonal argument, Turing showed that no instruction-tape
will cause the machine U to solve this problem, i.e. no pattern P is such that U, when presented
with P followed by an arbitrary pattern Y, will print O if Y is ‘circle-free’, and 1 if it is not. If
Turing’s thesis is accepted, that the existence of a method for solving such a problem means the
existence of a machine (or an instruction-tape for the universal machine U) that will solve it, it
follows that the discovery of a process for discriminating between circle-free and other tapes is
an insoluble problem, in an absolute and inescapable sense. From this basic insoluble problem it

Alan Mathison Turing 9

was not difficult to infer that the Hilbert programme of finding a decision method for the axiomatic
system, Z, of elementary number-theory, is also impossible.

In the application he had principally in mind, namely, the breaking down of the Hilbert pro-
gramme, Turing was unluckily anticipated by a few months by Church, who proved the same result
by means of his ‘A-calculus’. An offprint arrived in Cambridge just as Turing was ready to send
off his manuscript. But it was soon realised that Turing’s ‘machine’ had a significance going far
beyond this particular application. It was shown by Turing (1937b) and others that the definitions of
‘general recursive’ (by Godel in 1931 and Kleene in 1935), ‘A-definable’ (by Church in 1936) and
‘computable’ (Turing, 1937a) have exactly the same scope, a fact which greatly strengthened the
belief that they describe a fundamentally important body of functions. Turing’s treatment has the
merit of making a particularly convincing case for the acceptance of these and no other processes,
as genuinely constructive; and it turned out to be well adapted for use in finding other insoluble
problems, e.g., in the theory of groups and semi-groups.

Turing’s other major contribution to this part of mathematical logic, the paper (1939) on systems
logic based on ordinals, has received less attention than (1937a), perhaps owing to its difficulty.
The method of Godel for constructing an undecidable sentence in any finitely based logic, L, i.e.
a sentence expressible, but neither provable nor disprovable, in L, has led to the consideration of
infinite families of ‘logics’, L,, one for each ordinal o, where L, is formed from L, by the
adjunction as an axiom of a sentence undecidable for Ly, if such exist, and L, for limit ordinals
a has as ‘provable formulae’, the union of the sets PB(8 < «), where PS is the set of provable
formulae in L. The process must terminate for some y < wji, since the total set of formulae (which
does not change) is countable. This procedure opens up the possibility of finding a logic that is
complete, without violating Godel’s principle, since L, may not be finitely based if « is a limit
ordinal. Rosser investigated this possibility in 1937, using the ‘classical’ non-constructive theory
of ordinals. Turing took up the proposal, but with the proviso that, although some non-constructive
steps must be made if a complete logic is to be attained, a strict watch should be kept on them. He
first introduced a new theory of constructive ordinals, or rather of formulae (of Church’s A-calculus)
representing ordinals; and he showed that the problem of deciding whether a formula represents an
ordinal (in a plausible sense) is insoluble, in the sense of his earlier paper. A formula L of the
A-calculus is a logic if it gives a means of establishing the truth of number-theoretic theorems;
formally, if L(A) conv. 2 implies that A(n) conv. 2 for each n representing a natural number. The
extent of L is the set of A’s such that L(A) conv. 2, i.e., roughly speaking, the set of A’s for which L
proves A(n) is true for all n. An ordinal logic is now defined to be a formula A, such that A(2) is a
logic whenever 2 represents an ordinal; and A is complete if every number-theoretic theorem that is
true, is probable in A (£2) for some €2, i.e. if given A such that A(n) conv. 2 for each n representing
a natural number, A (2,A) conv. 2 for some 2 (depending on A). It is next shown, by an example,
that formulae 21, £, may represent the same ordinal, but yet make A(€21) and A(£2,) different
logics, in the sense that they have different extents. An ordinal logic for which this cannot happen
is invariant. It is only in invariant logics that the ‘depth’ of a theorem can be measured by the size
of the ordinal required for its proof. The main theorems of the paper state (1) that complete ordinal
logics and invariant ordinal logics exist, (2) that no complete and invariant ordinal logic exists.

This paper is full of interesting suggestions and ideas. In §4 Turing considers, as a system with
the minimal departure from constructiveness, one in which number-theoretic problems of some
class are arbitrarily assumed to be soluble: as he puts it, ‘Let us suppose that we are supplied with
some unspecified means of solving number-theoretic problems; a kind of oracle, as it were.” The
availability of the oracle is the ‘infinite’ ingredient necessary to escape the Godel principle. It also
obviously resembles the stages in the construction of a proof by a mathematician where he ‘has
an idea’, as distinct from making mechanical use of a method. The discussion of this and related
matters in §11 (“The purpose of ordinal logics’) throws much light on Turing’s views on the place
of intuition in mathematical proof. In the final rather difficult §12 the idea adumbrated by Hilbert in
1922 of recursive definitions of order-types other than w received its first detailed exposition.

10 Part 1

Besides these two pioneering works, and the papers (1937b, c), arising directly out of
them, Turing published four papers of predominantly logical interest. (A) The paper (1942a), with
M. H. A. Newman, on a formal question in Church’s theory of types. (B) A ‘practical form of
type-theory’ (1948b) is intended to give Russell’s theory of types a form that could be used in ordi-
nary mathematics. Since the more flexible Zermelo-von Neumann set-theory has been generally
preferred to type-theory by mathematicians, this paper has received little attention. It contains a
number of interesting ideas, in particular a definition of ‘equivalence’ between logical systems (p.
89). (C) The use of dots as brackets (1942b), an elaborate discussion of punctuation in symbolic
logic. Finally, (D) contains the proof (1950a) of the insolubility of the word-problem for semi-
groups with cancellation. A finitely generated semi-group without cancellation is determined by
choosing a finite set of pairs of words, (4;, B;)(i=11...k) of some alphabet, and declaring two
words to be ‘equivalent’ if they can be proved so by the use of the equations PA;Q = PB;Q, where
P and Q can be arbitrary words (possibly empty). The word-problem for such a semi-group is to
find a process which will decide whether or not two given words are equivalent. The insolubility
of this problem can be brought into relation with the fundamental insoluble machine-tape prob-
lem. The table of a computing machine states, for each configuration, what is the configuration that
follows it. Since a configuration can be denoted by a ‘word’, in letters representing the internal con-
figurations and tape-symbols, this table gives a set of pairs words which, when suitably modified,
determine a semi-group with insoluble word problem. So much was proved by E. L. Post in 1947.
The question becomes much more difficult if the semi-group is required to satisfy the cancellation
laws, ‘AC = BC implies A = B’ and ‘CA = CB implies A = B’ since now a condition is imposed on
account of its mathematical interest, and not because it arises naturally from the machine interpre-
tation. This was the step taken by Turing in (1950a). (For a helpful discussion and analysis of this
difficult paper see the long review by W. W. Boone, J. Symbolic Logic, 17 (1952) 74.)

2. Three mathematical papers

Shortly before the war Turing made his only contributions to mathematics proper.

The paper 1938a contains an interesting theorem on the approximation of Lie groups by finite
groups: if a (connected) Lie group, L, can for arbitrary ¢ > 0 be e-approximated by a finite group
whose multiplication law is an e-approximation to that of L, in the sense that the two products of
any two elements are within ¢ of each other, then L must be both compact and abelian. The theory
of representations of topological groups is used to apply Jordan’s theorem on the abelian invariant
subgroups of finite groups of linear transformations.

Paper (1938b) lies in the domain of classical group theory. Results of R. Baer on the extensions
of a group are re-proved by a more unified and simpler method.

Paper (1943)—submitted in 1939, but delayed four years by war-time difficulties—shows that
Turing’s interest in practical computing goes back at least to this time. A method is given for the
calculation of the Riemann zeta-function, suitable for values of ¢ in a range not well covered by the
previous work of Siegel and Titchmarsh. The paper is a straightforward but highly skilled piece of
classical analysis. (The post-war paper (1953a) describes an attempt to apply a modified form of
this process, which failed owing to machine trouble.)

3. Computing machines

Apart from the practical ‘programmer’s handbook’, only two published papers (1948a and 1950b)
resulted from Turing’s work on machines. When binary fractions of fixed length are used (as they
must be on a computing machine) for calculations involving a very large number of multiplications
and divisions, the necessary rounding-off of exact products introduces cumulative errors, which
gradually consume the trustworthy digits as the computation proceeds. The paper (1948a) investi-
gates questions of the following type: how many figures of the answer are trustworthy if k figures

Alan Mathison Turing 11

are retained in solving n linear equations in n unknowns? The answer depends on the method of
solution, and a number of different ones are considered. In particular it is shown that the ordinary
method of successive elimination of the variables does not lead to the very large errors that had been
predicted, save in exceptional cases which can be specified.

The other paper (1950b) arising out of his interest in computing machines is of a very different
nature. This paper, on computing machines and intelligence, contains Turing’s views on some ques-
tions about which he had thought a great deal. Here he elaborates his notion of an ‘examination’ to
test machines against men, and he examines systematically a series of arguments commonly put for-
ward against the view that machines might be said to think. Since the paper is easily accessible and
highly readable, it would be pointless to summarize it. The conversational style allows the natural
clarity of Turing’s thought to prevail, and the paper is a masterpiece of clear and vivid exposition.

The proposals (1953b) for making a computing machine play chess are amusing, and did in fact
produce a defence lasting 30 moves when the method was tried against a weak player; but it is
possible that Turing underestimated the gap that separates combinatory from position play.

4. Chemical theory of morphogenesis

For the following account of Turing’s final work I am indebted to Dr N. E. Hoskin, who with
Dr B. Richards is preparing an edition of the material for publication.

The work falls into two parts. In the first part, published (1952) in his lifetime, he set out to
show that the phenomena of morphogenesis (growth and form of living things) could be explained
by consideration of a system of chemical substances whose concentrations varied only by means
of chemical reactions, and by diffusion through the containing medium. If these substances are
considered as form-producers (or ‘morphogens’ as Turing called them) they may be adequate
to determine the formation and growth of an organism, if they result in localized accumulations
of form-producing substances. According to Turing the laws of physical chemistry are sufficient
to account for many of the facts of morphogenesis (a view similar to that expressed by D’ Arcy
Thompson in Growth and form).

Turing arrived at differential equations of the form

Ezﬁ(xl---,xn)‘i‘llv X, (=1,...,n)

for n different morphogens in continuous tissue; where f; is the reaction function giving the rate of
growth of X;, and V2X; is the rate of diffusion of X;. He also considered the corresponding equations
for a set of discrete ceils. The function f; involves the concentrations, and in his 1952 paper Turing
considered the X;’s as variations from a homogeneous equilibrium. If, then, there are only small
departures from equilibrium, it is permissible to linearize the f;’s, and so linearize the differential
equations. In this way he was able to arrive at the conditions governing the onset of instability.
Assuming initially a state of homogeneous equilibrium disturbed by random disturbances at ¢t = 0,
he discussed the various forms instability could take, on a continuous ring of tissue. Of the forms
discussed the most important was that which eventually reached a pattern of stationary waves. The
botanical situation corresponding to this would be an accumulation of the relevant morphogen in
several evenly distributed regions around the ring, and would result in the main growth taking
place at these points. (The examples cited are the tentacles Hydra and whorled leaves.) He also
tested the theory by obtaining numerical solutions of the equations, using the electronic computer
at Manchester. In the numerical example, in which two morphogens were supposed to be present in
a ring of twenty cells, he found that a three or four lobed pattern would result. In other examples
he found two-dimensional patterns, suggestive of dappling; and a system on a sphere gave results
indicative of gastrulation. He also suggested that stationary waves in two dimensions could account
for the phenomena of phyllotaxis.

In his later work (as yet unpublished) he considered quadratic terms in the reaction functions
in order to take account of larger departures from the state of homogeneous equilibrium. He was

12 Part 1

attempting to solve the equations in two dimensions on the computer at the time of his death. The
work is in existence, but unfortunately is in a form that makes it extremely difficult to discover
the results he obtained. However, B. Richards, using the same equations, investigated the problem
in the case where the organism forms a spherical shell and also obtained numerical results on the
computer. These were compared with the structure of Radiolaria, which have spikes on a basic
spherical shell, and the agreement was strikingly good. The rest of this part of Turing’s work is
incomplete, and little else can be obtained from it. However, from Richards’s results it seems that
consideration of quadratic terms is sufficient to determine practical solutions, whereas linear terms
are really only sufficient to discuss the onset of instability.

The second part of the work is a mathematical discussion of the geometry of phyllotaxis (i.e.
of mature botanical structures). Turing discussed many ways of classifying phyllotaxis patterns and
suggested various parameters by which a phyllotactic lattice may be described. In particular, he
showed that if a phyllotactic system is Fibonacci in character, it will change, if at all, to a system
which has also Fibonacci character. This is in accordance with observation. However, most of this
section was intended merely as a description preparatory to his morphogenetic theory, to account
for the facts of phyllotaxis; and it is clear that Turing did not intend it to stand alone.

The wide range of Turing’s work and interests have made the writer of this notice more than
ordinarily dependent on the help of others. Among many who have given valuable information I
wish to thank particularly Mr R. Gandy, Mr J. H. Wilkinson, Dr B. Richards and Dr N. E. Hoskin;
and Mrs Turing, Alan Turing’s mother, for constant help with biographical material.

BIBLIOGRAPHY

1935a. On the Gaussian Error Function (King’s College Fellowship Dissertation)

1935b. Equivalence of left and right almost periodicity. J. Lond. Math. Soc. 10, 284.

1937a. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. (2),
42, 230.

1937b. Computability and A-definability. J. Symbolic Logic, 2, 153.

1937¢. The p-function in A-K-conversion. J. Symbolic Logic, 2, 164.

1937d. Correction to 1937a. Proc. Lond. Math. Soc. (2), 43, 544.

1938a. Finite approximations to Lie groups. Ann. Math. Princeton, 39, 105.

1938b. The extensions of a group. Comp. Math. §, 357.

1939. Systems of logic based on ordinals. Proc. Lond. Math. Soc. (2), 45, 161.

1942a. (With M. H. A. Newman) A formal theorem in Church’s theory of types. J. Symbolic Logic, 7, 28.

1942b. The use of dots as brackets in Church’s system, J. Symbolic Logic, 7, 146.

1943*. A method for the calculation of the zeta-function. Proc. Lond. Math. Soc. (2), 48, 180.

1948a. Rounding-off errors in matrix processes. Quart. J. Mech. App. Math. 1, 287.

1948b. Practical forms of type-theory. J. Symbolic Logic, 13, 80.

1950a. The word problem in semi-groups with cancellation. Ann. Math. 52, 491.

1950b. Computing machinery and intelligence. Mind 59, 433.

1950c. Programmers’ Handbook for the Manchester electronic computer

1952. The chemical basis of morphogenesis. Phil. Trans. B 237, 37.

1953a. Some calculations of the Riemann zeta-function. Proc. Lond. Math. Soc. (3), 3, 99.

1953b. Digital computers applied to games: chess, pp. 288-295 of Faster than thought, ed. B. V. Bowden.
Pitman, London.

1954. Solvable and unsolvable problems. Sci. News 31, 7.
[A second paper on morphogenesis is being prepared for publication by N. E. Hoskin and B. Richards,
based on work left by Turing.]

* Received four years earlier (7 March 1939).

On Computable Numbers, with an Application to the
Entscheidungsproblem

(Proc. Lond. Math. Soc., ser. 2 vol. 42 (1936-37), pp. 230-265)

— A Correction
(ibid. vol. 43 (1937), pp. 544-546)

Christos Papadimitriou on —

ALAN AND I

During my sad college years, I often dreamed of Alan. At the time I did not know it was Alan
Turing that I was dreaming of, but it was. I was studying a subject that did not excite me (electrical
engineering), in the inflexible educational system of an oppressive society (Greece of the colonels).
I had no access to a proper scientific library. My life as a fledgling scientist was one of frustration,
blind longing, and episodes of false epiphany. A few subjects (systems theory, communication the-
ory), even though they were taught at school in the most mundane way, enabled one to imagine a
courageous intellectual universe in which questions of the most fundamental nature are confronted
rigorously and head on, and I was aching to enter that universe.

I don’t remember when, in which outdated textbook, handed to me by whom, I got my first
glimpse of the Turing machine. I did not get it all at once, but I knew immediately that this abstract
device is an important exemplar of the higher sphere I had been dreaming. I looked up in the
dictionary the verb ‘to ture’ (I really did). I sought more information, every book I opened those
days I opened it on the index page where “Turing machine’ should be.

Eventually I did put it all together, how a British mathematician named Alan Turing answered
through his machine the world’s most fundamental question, ‘what can be computed?’ and did so
with amazing rigor, elegance, imagination and economy. But those days I was thinking of the Turing
machine as a singular breakthrough, the end of a story, something of the past. Two years later, in
1973 — after a year in the Greek army that was even bleaker than my tertiary studies — I was fortunate
to find myself at Princeton (Turing’s Princeton, by the way, where I lived for a year in room 2B of
the Graduate College rumored to be Alan’s room 35 years before). At Princeton I was introduced
to the Theory of Computation, the rich and vibrant scientific tradition essentially built on Turing’s
formalism. I remember how grateful I felt that my prayers had been answered, so to speak, and I was
finally entering the realm of my dreams, far more elegant and exciting than I could ever imagine.
And 5 years later, whilst teaching at Harvard with my friend Harry Lewis, we wrote a textbook on
the subject.

But even though my life now revolved around his intellectual heritage, the truth is, I did not
know Alan. I understood next to nothing about the man’s life, personality, and breadth of achieve-
ment. In 1983, 2 years after our textbook was published, I read one of the books that have influenced
me most: Turing’s powerful and definitive biography by Andrew Hodges. Alan became my hero,
a giant and relentless intellect, a fascinating and complex personality, a man of immense accom-
plishment, impact, and tragedy. When, more than a decade later, the second edition of our textbook

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00002-3 1 3
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00002-3

14 Part 1

was published, Harry and I decided that we must have Alan Turing’s image on the cover. Since
the mid-1980s, every time I teach about Turing machines and undecidability, I stop to tell the class
about Alan, about his ingenious work and about his tragic end. Once in a while I teach a course at
Berkeley on ‘Reading the Classics’, and in it we spend a month on Turing, because I believe that
every graduate student should be exposed directly to the exacting self-conscious greatness of Alan’s
opus.

There is a scene in Gibson’s Neuromancer, at the very end of Part Three, where the hero returns
to his hotel room to find it full of cops. ‘Turing’, they tell him. ‘You are under arrest’. They mean
‘Turing police’, a fictional force bent on rooting out Al from the planet, but it does not matter, for
me this line, read literally, contained the germ of an idea: What if Alan Turing were alive and turned
up some place, unbidden? This strange fantasy lived inside me for a few years.

Turing is not my only intellectual hero. In poetry, my hero is Constantine Cavafy, a Greek
from Alexandria who died when Alan Turing was 21. He wrote some of the greatest poems of the
twentieth century, a stunning opus sharply divided between subtle historical metaphor and rather
unsubtle eroticism. (I do not know why both my heroes happen to be homosexuals.) In 1997 I was
in Greece, and I went to see a film titled Cavafy. I liked it so-so, but I remember coming out of the
theatre impressed by the director’s gesture: to honor one’s hero by creating a work of art bearing his
name. And then, right there in the theatre lobby, I had a vision: there was a blue paperback hovering
above, and the title in front read Turing (A Novel).

Writing a novel had never occurred to me before. I had never written short stories or poetry. |
had of course noticed over the years that writing was not my weakest point, and neither was it for
me the hated chore that comes after research, as it was for many of my colleagues. That night I
thought about a plot.

This was 1997, when it was slowly becoming apparent to many computer scientists that the true
object of our science is not the computer, but the Internet (by which I mean both the network of
networks and the World Wide Web). In a sense, the Internet is the ultimate legacy of Alan Turing.
The reason it spread like wildfire ever since a physicist named Tim Burners-Lee invented ‘click’
in 1989 is because there were millions of computers on the desks of people at that time, and these
computers were all universal and so, in addition to everything else, they could be easily made to
click. But universality was a minority opinion among computer dreamers during the 1930s and
1940s. By making his universal machine so compelling, Turing influenced deeply von Neumann
and the way computers turned out to be. Universality and software would have probably taken root
at some point in computers no matter what, but we can only speculate about the setbacks and delays
this would have required without Turing.

But why did Turing envision universality? The reason is, he did not set out just to answer the
question ‘What can (and what cannot) be computed?’ per se, as I inaccurately mentioned above.
If he had only wanted to establish the existence of unsolvable problems, Turing could just use
diagonalisation or growth, and the universal Turing machine might never come to light. Fortunately,
he wanted to do something more ambitious and specific — and central to the scientific agenda of the
time — he wanted to show that the Entscheidungsproblem (the decision problem for sentences not of
arithmetic, but even of first-order logic) cannot be solved by computers. In other words, his goal was
to sharpen Godel’s negative result, to extinguish the last glimmer of hope left by the Incompleteness
Theorem. And to accomplish this he needed the universal Turing machine.

The night after I saw that movie, all this was in my mind. If, through this long chain of logic,
the Internet is Alan’s ultimate creation, why would not the Internet return the favor, and bring its
creator back to life? The thought did not let me sleep. The Internet does confer a lame kind of
immortality (just search for ‘Alan Turing’ on the web). Imagining a more explicit form, an Inter-
net spirit residing somewhere and everywhere, a kind of impromptu, hacked-up SETI, was only a

On Computable Numbers, with an Application to the Entscheidungsproblem 15

modest step forward. And if I were to bring my hero back to life, why wouldn’t I load him with
gifts of gratitude, especially focusing on things he missed in life? I could give him, for example, a
happy love life — after all obstacles are overcome, of course — make him a gifted teacher, give him
a faithful pupil who would be a Greek man my age, yes, an archeologist perhaps, pining for a lost
love, for an American woman, a software wiz maybe, why not? When I was a child, I happened
to visit the island of Corfu with my father during the same summer Alan Turing was there. As the
night advanced, the plot thickened. In the morning I recounted the story to my wife Martha, as [
always do when I want to rid myself of an idea — because she can be a pitiless critic — but she went
extra soft on it, she actually liked it. Two days later I was flying to California, and during that flight
I drafted the first chapter — taking place, as it happens, in an airplane. For the next two and a half
years I wrote every day, usually the first hours of my day, until the book was finished.

This book was a watershed. Whilst writing it, I understood things about myself that surprised
me utterly. One of them was, I would be writing fiction again. Once more, Alan Turing had changed
my life.

Alan inspires my papers and my stories, he fires my talks and my courses, inhabits my memories
and my dreams. And because he’s so intimate, impossible to examine anew and from a distance in
order to discern something fresh, I could only speak here of this intimacy.

16 Part 1

ON COMPUTABLE NUMBERS, WITH AN
APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING
[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable” numbers may be described briefly as the real numbers whose expressions
as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the
computable numbers, it is almost equally easy to define and investigate computable functions of an
integral variable or a real or computable variable, computable predicates, and so forth. The funda-
mental problems involved are, however, the same in each case, and I have chosen the computable
numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an
account of the relations of the computable numbers, functions, and so forth to one another. This will
include a development of the theory of functions of a real variable expressed in terms of computable
numbers. According to my definition, a number is computable if its decimal can be written down
by a machine.

In §§9,10 I give some arguments with the intention of showing that the computable numbers
include all numbers which could naturally be regarded as computable. In particular, I show that
certain large classes of numbers are computable. They include, for instance, the real parts of all
algebraic numbers, the real parts of the zeros of the Bessel functions, the numbers r, e, etc. The
computable numbers do not, however, include all definable numbers, and an example is given of a
definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to the class
of real numbers, it is nevertheless enumerable. In §8 I examine certain arguments which would
seem to prove the contrary. By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godel'. These results have valuable applications.
In particular, it is shown (§11) that the Hilbertian Entseheidungsproblem can have no solution.

In a recent paper Alonzo Church® has introduced an idea of “effective calculability”, which
is equivalent to my “computability”, but is very differently defined. Church also reaches similar
conclusions about the Entseheidungsproblem’. The proof of equivalence between “computability”
and “effective calculability” is outlined in an appendix to the present paper.

1. Computing machines

We have said that the computable numbers are those whose decimals are calculable by finite means.
This requires rather more explicit definition. No real attempt will be made to justify the definitions
given until we reach §9. For the present I shall only say that the justification lies in the fact that the
human memory is necessarily limited.

I Godel, “Uber formal unentscheidbaro Sitze der Principia Mathematica und ver-wandter Systeme, I, Monatshefte
Math. Phys., 38 (1931), 173-198.

2 Alonzo Church “An unsolvable problem of elementary number theory”, American J. of Math., 58 (1936), 345-363.

3 Alonzo Church “A note on the Entseheidungsproblem”, J. of Symbolic Logic, 1 (1936), 40-41.

On Computable Numbers, with an Application to the Entscheidungsproblem 17

We may compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions g1, ¢, ..., gr, which will be called “m-configurations”.
The machine is supplied with a “tape” (the analogue of paper) running through it, and divided into
sections (called “squares”) each capable of bearing a “symbol”. At any moment there is just one
square, say the r-th, bearing the symbol & (r) which is “in the machine”. We may call this square
the “scanned square”. The symbol on the scanned square may be called the “scanned symbol”. The
“scanned symbol” is the only one of which the machine is, so to speak, “directly aware”. However,
by altering its m-configuration the machine can effectively remember some of the symbols which
it has “seen” (scanned) previously. The possible behaviour of the machine at any moment is deter-
mined by the m-configuration g, and the scanned symbol &(r). This pair g,, &(r) will be called the
“configuration”: thus the configuration determines the possible behaviour of the machine. In some
of the configurations in which the scanned square is blank (i.e. bears no symbol) the machine writes
down a new symbol on the scanned square: in other configurations it erases the scanned symbol.
The machine may also change the square which is being scanned, but only by shifting it one place
to right or left. In addition to any of these operations the m-configuration may be changed. Some of
the symbols written down will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to “assist the memory”. It will only be
these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in the computation of
a number. The defence of this contention will be easier when the theory of the machines is familiar
to the reader. In the next section I therefore proceed with the development of the theory and assume

9% .

that it is understood what is meant by “machine”, “tape”, scanned”, etc.

2. Definitions

Automatic machines

If at each stage the motion of a machine (in the sense of §1) is completely determined by the
configuration, we shall call the machine an “automatic machine” (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion is
only partially determined by the configuration (hence the use of the word “possible” in §1). When
such a machine reaches one of these ambiguous configurations, it cannot go on until some arbitrary
choice has been made by an external operator. This would be the case if we were using machines to
deal with axiomatic systems. In this paper I deal only with automatic machines, and will therefore
often omit the prefix a-.

Computing machines

If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists entirely
of 0 and 1 (the others being called symbols of the second kind), then the machine will be called a
computing machine. If the machine is supplied with a blank tape and set in motion, starting from
the correct initial m-configuration, the subsequence of the symbols printed by it which are of the
first kind will be called the sequence computed by the machine. The real number whose expression
as a binary decimal is obtained by prefacing this sequence by a decimal point is called the number
computed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the complete
sequence of all symbols on the tape, and the m-configuration will be said to describe the complete
configuration at that stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

18 Part 1

Circular and circle-free machines

If a computing machine never writes down more than a finite number of symbols of the first kind, it
will be called circular. Otherwise it is said to be circle-free.

A machine will be circular if it reaches a configuration from which there is no possible move, or
if it goes on moving, and possibly printing symbols of the second kind, but cannot print any more
symbols of the first kind. The significance of the term “circular” will be explained in §8.

Computable sequences and numbers

A sequence is said to be computable if it can be computed by a circle-free machine. A number is
computable if it differs by an integer from the number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable sequences than of computable
numbers.

3. Examples of computing machines

I. A machine can be constructed to compute the sequence 010101... The machine is to have the
four m-configurations “b”, “c”, “€” “e¢”, and is capable of printing “0” and “1”. The behaviour of the
machine is described in the following table in which “R” means “the machine moves so that it scans
the square immediately on the right of the one it was scanning previously”. Similarly for “L”. “E”
means “the scanned symbol is erased” and “P” stands for “prints”. This table (and all succeeding
tables of the same kind) is to be understood to mean that for a configuration described in the first
two columns the operations in the third column are carried out successively, and the machine then
goes over into the m-configuration described in the last column. When the second column is left
blank, it is understood that the behaviour of the third and fourth columns applies for any symbol
and for no symbol. The machine starts in the m-configuration b with a blank tape.

Configuration Behaviour
m-config. symbol operations final m-config.
b None PO,R c
c None R e
4 None P1,R 14
¢ None R b

If (contrary to the description in §1) we allow the letters L, R to appear more than once in the
operations column we can simplify the table considerably.

m-config. symbol operations final m-config.
None PO b
b 0 R,R,P1 b
1 R,R,PO b

II. As a slightly more difficult example we can construct a machine to compute the sequence
001011011101111011111.... The machine is to be capable of five m-configurations, viz. “0”, “q”,
“p”, “§” “b” and of printing “9”, “x”, “0” “1”. The first three symbols on the tape will be “920”; the
other figures follow on alternate squares. On the intermediate squares we never print anything but

On Computable Numbers, with an Application to the Entscheidungsproblem 19

“x”. These letters serve to “keep the place” for us and are erased when we have finished with them.
We also arrange that in the sequence of figures on alternate squares there shall be no blanks.

Configuration Behaviour
m-config. symbol operations final
m-config.

b Po,R,Po,R,PO,R,R,PO,L,L 0
0 1 R,Px,L,L,L 0
0 q

q Any (0 or 1) R,R q
None P1,L p

X E,R q

p 5 R j
None L L P

f Any R3 R f
None PO,L,L 0

To illustrate the working of this machine a table is given below of the first few complete con-
figurations. These complete configurations are described by writing down the sequence of symbols
which are on the tape, with the m-configuration written below the scanned symbol. The successive
complete configurations are separated by colons.

990 0:99 0 0:290 0:2920 O 200 0 1
b 0 q q q b
200 0 1 200 0 1:9020 O 1:9900 O 1

p p f f
20 0 I :909 0 0 1 900 0 1 O0:

f f 0

200 0 1x0

0
This table could also be written in the form

b:oo v 0 0:90q0 0:..., ©

in which a space has been made on the left of the scanned symbol and the m-configuration written in
this space. This form is less easy to follow, but we shall make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very useful: I shall always
make use of it. 1 shall call the one sequence of alternate squares F-squares and the other sequence
E-squares. The symbols on E-squares will be liable to erasure. The symbols on F-squares form a

20 Part 1

continuous sequence. There are no blanks until the end is reached. There is no need to have more
than one E-square between each pair of F-squares: an apparent need of more E-squares can be
satisfied by having a sufficiently rich variety of symbols capable of being printed on E-squares. If a
symbol S is on an F-square S and a symbol a is on the E-square next on the right of S, then S and g
will be said to be marked with . The process of printing this a will be called marking B (or S) with
a.

4. Abbreviated tables

There are certain types of process used by nearly all machines, and these, in some machines, are
used in many connections. These processes include copying down sequences of symbols, compar-
ing sequences, erasing all symbols of a given form, etc. Where such processes are concerned we
can abbreviate the tables for the m-configurations considerably by the use of “skeleton tables”. In
skeleton tables there appear capital German letters and small Greek letters. These are of the nature
of “variables”. By replacing each capital German letter throughout by an m-configuration and each
small Greek letter by a symbol, we obtain the table for an m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations: they are not essential. So
long as the reader understands how to obtain the complete tables from the skeleton tables, there is
no need to give any exact definitions in this connection.

Let us consider an example:

m-config. Symbol Behaviour Final m-config.
9 L f1(€,B,a) From the m-configuration
(€, B, a) (¢,B,) the machine
f
not o L f(€,B,«) finds the symbol of form
a which is farthest to the
a ¢ left (the “first «”) and
f1(C,B,a) the m-configuration then
T not o R f1(€,8B,a) becomes €. If there is no
o then the m-configuration
None R f2(€,B,a) becomes B.
o ¢
f2(€,B,0)
not « R fl (Q:, %’ Ol)
None R B

If we were to replace € throughout by q (say), B by v, and a by x, we should have a complete
table for the m-configuration f(g, ¢, x). f is called an “m-configuration function” or “m-function”.

The only expressions which are admissible for substitution in an m-function are the m-
configurations and symbols of the machine. These have to be enumerated more less explicitly :
they may include expressions such as p(e, x); indeed they must if there are any m-functions used
at all. If we did not insist on this explicit enumeration, but simply stated that the machine had
certain m-configurations (enumerated) and all m-configurations obtainable by substitution of m-
configurations in certain m-functions, we should usually get an infinity of m-configurations; e.g., we
might say that the machine was to have the m-configuration q and all m-configurations obtainable

On Computable Numbers, with an Application to the Entscheidungsproblem 21

by substituting an m-configuration for & in p(€&). Then it would have q,p(q), p(p(q)), p(p(P(q))), ...
as m-configurations.

Our interpretation rule then is this. We are given the names of the m-configurations of the
machine, mostly expressed in terms of m-functions. We are also given skeleton tables. All we want is
the complete table for the m-configurations of the machine. This is obtained by repeated substitution
in the skeleton tables.

Further examples

l

(In the explanations the symbol “—’
configuration. ...”)

is used to signify ‘“the machine goes into the m-

e(€,B,a) f(e1 (€, B,0)B,) From ¢(€,B, o) the first « is erased

. (C,B,a) E ¢ and — *B. If there is no a — ‘B.

c(B,a) c¢(c(®B,),B,a) From e(B,) all letters @ are erased
and — ‘B.

The last example seems somewhat more difficult to interpret than most. Let us suppose that in
the list of m-configurations of some machine there appears e(b,x) (= q, say). The table is

c(b,x) e(c(b,x),b,x)
or q c(q,b,x).
Or, in greater detail:
q c(q,b,x)
e(q’ bsx) f(el(qs b,x),b,x)
e1(q,b,x) E g.

In this we could replace ¢, (q,b,x) by q’ and then give the table for f (with the right substitutions)
and eventually reach a table in which no m-functions appeared.

pe(C,B) f(peL (€, B),C,9) From pe(€, 8) the machine
pe, (€. B) Any R,R pcy (€, 6) prints 8 at the end of the
None Pp ¢ sequence of symbols and — €.
(&) L ¢ From §'(€,B,a) it does the same
(&) R (o as for (€, B, «) but moves to
the left before — €.

f(€,B,a) f(H(E), B,)

77(€,8B,a) f(x(€),B,®)

c(¢,B,a) (c1(€),B,a) ¢(¢,B,). The machine writes
¢, (€) B pe(C,B) at the end the first symbol

marked o and — €.

22 Part 1

The last line stands for the totality of lines obtainable from it by replacing 8 by any symbol
which may occur on the tape of the machine concerned.

ce(€,B,a) c(e(€,B,a),B,a) ce(®B,). The machine copies down in
ce(B,a) ce(ce(®B,a),B,a) order at the end all symbols marked o
and erases the letters o; — B.
e (€, B, a, B) f(te (€, 8,0, 8)B,0) te(&,B,a,B). The machine replaces the
te, (€,B,a,8) E,PB ¢ first « by 8 and — € — ‘B if there is no
e (’% ’ 8) ’ (ce(B). B, B) a. te(®B,a, B). The machine replaces all
e, a, ve(ve(®B, . B). B, letters « by 8; — B
ct(¢, B, a) c(ve(C,B,a,a),B,a) ct(®B,) differs from ce(B,«) only in
t(B,a) cr(ce(B,a), te(B.a,a),a) that the letters a are not erased. The m-
’ T U configuration ct(¢,«) is taken up when
no letters “o” are on the tape.
Cp(@:,ﬁ,(’f,a,ﬂ) f/(cpl(elam’ﬂ)7f(m,6’,3)’“)
Cpl(e:’mng) y f/(cpz(e:,m»)/)»m,a)
y ¢
¢,
P V) not y 2.

The first symbol marked « and the first marked 8 are compared. If there is neither & nor 8, — €.
If there are both and the symbols are alike, — €. Otherwise — 2.

cpe(C,2A, ¢ a,B) ch(e(e(€, ¢, 8),¢,a),AU, ¢ o, B)

cpe(€,2U, &, a, B) differs from cp(&€,2A, &, «, B) in that in the case when there is similarity the first o
and S are erased.

cpe(A, €, a,B) cpe(cpe(A, €, 0, B), A €, ax, B).

cpe(2A, €, , B). The sequence of symbols marked « is compared with the sequence marked 8. — &
if they are similar. Otherwise — 2. Some of the symbols « and S are erased.

2(©) Any R q(®) q(¢,a). The machine
finds the last symbol
None R q4: () of form a. — €.
A R ¢
0. (©) ny q(¢)
None ¢
q(€,) q(q(¢, @)
¢
91 (€,0) “
notee L 9. (¢, @)
pes (€,) pe(pe(€. B).a) pes (&, f). The

machine prints af at
the end

On Computable Numbers, with an Application to the Entscheidungsproblem 23

ce,(B,a, B) ce(cc(B, B),) ce5(B,a,B,y). The
machine copies down at
the end first the symbols
marked «, then those
marked 8, and finally
those marked y; it erases
the symbols «, 8, .

“3(%,“’,8’)/) Ce(“z(%,lgay)aa)
¢(@)) R () From ¢(€) the marks are
erased form all marked
Noto L «(®) symbols — €.
e (©) Any R.E,R e1(¢)
None ¢

5. Enumeration of computable sequences

A computable sequence y is determined by a description of a machine which computes y. Thus
the sequence 001011011101111... is determined by the table on p. 19, and, in fact, any computable
sequence is capable of being described in terms of such a table.

It will be useful to put these tables into a kind of standard form. In the first place let us suppose
that the table is given in the same form as the first table, for example, I on p. 18. That is to say,
that the entry in the operations column is always of one of the forms E: E, R: E, L: Pa;Pa, R:
Pa, L:R:L: or no entry at all. The table can always be put into this form by introducing more

m-configurations. Now let us give numbers to the m-configurations, calling them g1, ..., ggr, as
in §1. The initial m-configuration is always to be called ¢q;. We also give numbers to the symbols
S1, ..., Sy and, in particular, blank = Sp,0 = S1,1 = S3. The lines of the table are now of form
m-config. Symbol Operations Final m-config.
qi S; PSy, L qm (N1)
qi S; PSi, R Gm (N2)
qi S; PSy qm (NV3)

Lines such as
qgi Si E.R qm
are to be written as
qi S; PSo, R qm
and lines such as
qi Sj R Gm
to be written as
qi S; PSj, R qm
In this way we reduce each line of the table to a line of one of the forms (N1), (N2) (N3).
From each line of form (N1) let us form an expression ¢;S;SxLg,; from each line of form (N,) we
form an expression ¢;S;SxRq,; and from each line of form (N3) we form an expression g;S;SkNg.
Let us write down all expressions so formed from the table for the machine and separate them

by semi-colons. In this way we obtain a complete description of the machine. In this description
we shall replace g; by the letter “D” followed by the letter “A” repeated i times, and S; by “p3”

24 Part 1

followed by “C” repeated j times. This new description of the machine may be called the standard
description (S.D). It is made up entirely from the letters “A”, “C”, “D” “L”, “R”, “N”, and from *;”.

If finally we replace “A” by “1”, “C” by “2”, “D” by “3” “L” by “4”, R by “5” “N” by “6”, and
“” by “7” we shall have a description of the machine in the form of an arabic numeral. The integer
represented by this numeral may be called a description number (D.N) of the machine. The D.N
determine the S.D and the structure of the machine uniquely, The machine whose D.N is n may be
described as M (n).

To each computable sequence there corresponds at least one description number, while to no
description number does there correspond more than one computable sequence. The computable
sequences and numbers are therefore enumerable.

Let us find a description number for the machine I of §3. When we rename the m-configurations
its table becomes:

q1 So PS1, R q2
q2 So PSo, R q3
q3 So PSy, R q4
q4 So PSo, R q1

Other tables could be obtained by adding irrelevant lines such as
q1 Si PS1, R 92

Our first standard form would be
q150S1Rq2; q250S0Rq3; q3S0S2Rq4; qaSoSoRq1; .
The standard description is
DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;
A description number is
31332531173113353111731113322531111731111335317
and so is
3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be called a satisfactory
number. In §8 it is shown that there can be no general process for determining whether a given
number is satisfactory or not.

6. The universal computing machine

It is possible to invent a single machine which can be used to compute any computable sequence.
If this machine U is supplied with a tape on the beginning of which is written the S.D of some
computing machine M, then U will compute the same sequence as 9. In this section I explain in
outline the behaviour of the machine. The next section is devoted to giving the complete table for /.

Let us first suppose that we have a machine M’ which will write down on the F-squares the
successive complete configurations of M. These might be expressed in the same form as on p. 19
using the second description, (C), with all symbols on one line. Or, better, we could transform
this description (as in §5) by replacing each m-configuration by “D” followed by “A” repeated the
appropriate number of times, and by replacing each symbol by “D” followed by “C” repeated the
appropriate number of times. The numbers of letters “A” and “C” are to agree with the numbers
chosen in §5, so that, in particular, “0” is replaced by “DC”, “1” by DCC”, and the blanks by “D”.
These substitutions are to be made after the complete configurations have been put together, as in

On Computable Numbers, with an Application to the Entscheidungsproblem 25

(C). Difficulties arise if we do the substitution first. In each complete configuration the blanks would
all have to be replaced by “D”, so that the complete configuration would not be expressed as a finite
sequence of symbols.

If in the description of the machine II of §3 we replace “0” by “DAA”, “9” by “DCCC”, “q” by
“DAAA”, then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : ... €y

(This is the sequence of symbols on F-squares.)

It is not difficult to see that if M can be constructed, then so can M’. The manner of operation
of M’ could be made to depend on having the rules of operation (i.e., the S.D) of M. written
somewhere within itself (i.e. within M"); each step could be carried out by referring to these rules.
We have only to regard the rules as being capable of being taken out and exchanged for others and
we have something very akin to the universal machine.

One thing is lacking: at present the machine M’ prints no figures. We may correct this by print-
ing between each successive pair of complete configurations the figures which appear in the new
configuration but not in the old. Then (C;) becomes

DDA :0:0: DCCCDCCCDAADCDDC : DCCC.... (C2)

It is not altogether obvious that the E-squares leave enough room for the necessary “rough
work”, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as (C) may be used as standard
descriptions of the complete configurations. When the letters are replaced by figures, as in §5, we
shall have a numerical description of the complete configuration, which may be called its description
number.

7. Detailed description of the universal machine

A table is given below of the behaviour of this universal machine. The m-configurations of which
the machine is capable are all those occurring in the first and last columns of the table, together with
all those which occur when we write out the unabbreviated tables of those which appear in the table
in the form of m-functions. E.g., e(anf) appears in the table and is an m-function. Its unabbreviated
table is (see p. 22)

o) R e, (anf)

¢(anf) [not o L e(anf)
Any R,E,R ¢, (anf)

e1(anf) : None (anf)

Consequently e; (anf) is an m-configuration of U.

When U is ready to start work the tape running through it bears on it the symbol a on an F-
square and again a on the next E-square; after this, on F-squares only, comes the S.D of the machine
followed by a double colon “::” (a single symbol, on an F-square). The S.D consists of a number of
instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

(i) “D” followed by a sequence of letters “A”. This describes the relevant m-configuration.
(i) “D” followed by a sequence of letters “C”. This describes the scanned symbol.
(iii) “D” followed by another sequence of letters “C”. This describes the symbol into which the
scanned symbol is to be changed.
@iv) “L”, “R”, or “N”, describing whether the machine is to move to left, right, or not at all.

26 Part 1

(v) “D” followed by a sequence of letters “A”. This describes the final m-configuration.

The machlne uls to be Capable Of pl‘inting “A”, “C”, “D”, “0”, “1”’ “un, “V”, “W”, “x”’ uy”’ “Z”.
The S.D iS formed fI‘O[n “;”’ “A”, “C”, “D”, “L”, “R”, “N”.

Subsidiary skeleton table

NotA R,R ¢,
con(€.) ot . con(C,)
A L,Py,R con, (€, a) con(¢, o) Starting from an
F-square, S say, the sequence C of
cony (€, a) A R,Pqa, R cony (€, @) symbols describing a configuration
| closest on the right of S is marked
D R.Py.R con, (€, @) out with letters o. — €.
con, (€,) C R,P,,R con, (&,) con(€,a). In the final
¢ configuration the machine is
NotC R,R scanning the square which is four
squares to the right of the last
square of C. C is left unmarked.
The table for U.
b f(by,b2,:1,a) b. The machine prints: DA on the
F-squares after :: — anf.
b, R,R,P . R,R, anf
PD,R,R,PA .
anf) anf. The machine marks the
g(anfy,) configuration in the last complete
anf, con(Eom,) configuration with y. — tom.
tom ; R,P, L con(fmp,x) £om. The machine finds the last
semi-colon not marked with z. It
z L,L tom marks this semi-colon with z and
not z nor; L tom the configuration following it with
X.
tmp cpe(e(tom,x,y), fmyp. The machine compares the
sequences marked x and y. It
sim,x,y) erases all letters x and y. — sim if

they are alike. Otherwise — tom.

anf. Taking the long view, the last instruction relevant to the last configuration is found.
It can be recognised afterwards as the instruction following the last semi-colon marked
Z. — sim.

On Computable Numbers, with an Application to the Entscheidungsproblem 27

sim
sim,
sim,

simg

mj

mf,

mf,

sh
sh;

sh,

sh;

shs

— — p—— p—— p——

notA R,P,,R,R,R
notA L,P,

A LP,RRR

notA R,R
A L LLL

C RP.,LLL

D R.P.LLL

not: R,P,,L,L,L

Any R,P,,R
None P:
L,L, L

D R,R,R,R

not D

not C

not C

not C

f(simy,simy,z2)

con(sim,,)
simgy
sim,

e(mf, z)
simgy

g(mf, 1)
mf,
mf,

mf,
mfy
mfs

mfs
mfy

con(I(l(mps)),)

ms
sb

f(shy,inst,u)
sh
sb.
inst
shy,
inst
shs

pe, (inst,0,:)
inst

pe, (inst, 1,:)

sim The machine marks out the
instructions. That part of the
instructions which refers to
operations to be carried out is
marked with u, and the final
m-configuration with y. The letters
z are erased.

mf. The last complete
configuration is marked out into
four sections. The configuration is
left unmarked. The symbol
directly preceding it is marked
with x. The remainder of the
complete configuration is divided
into two parts, of which the first is
marked with v and the last with w.
A colon is printed after the whole.
— sb.

sbh. The instructions (marked u)
are examined. If it is found that
they involve “Print 0” or “Print 1,
then O: or 1: is printed at the end.

28 Part 1

g(I(insty),u)

inst

inst, o RE inst, (@) inst The next complete
. configuration is written down,
inst, (L) ce5 (00, v, ,X,u, W) carrying out the marked
. instructions. The letter:
inst, (R) ceS(on,v,y,x,u,w) structions e letters u, v, w, x, y

are erased. — anf.
inst, (V) ecs (00, v, y,X,u,w)
ov e(anf)

8. Application of the diagonal process

It may be thought that arguments which prove that the real numbers are not enumerable would also
prove that the computable numbers and sequences cannot be enumerable®. It might, for instance,
be thought that the limit of a sequence of computable numbers must be computable. This is clearly
only true if the sequence of computable numbers is defined by some rule.

Or we might apply the diagonal process. “If the computable sequences are enumerable, let a,, be
the n-th computable sequence, and let ¢, (m) be the m-th figure in a,. Let 8 be the sequence with
1 — ¢y, (n) as its n-th figure. Since § is computable, there exists a number K such that 1 — ¢, (n) =
¢k (n) all n. Putting n = K, we have 1 = 2¢(K), i.e. 1 is even. This is impossible. The computable
sequences are therefore not enumerable .

The fallacy in this argument lies in the assumption that 8 is computable. It would be true if
we could enumerate the computable sequences by finite means, but the problem of enumerating
computable sequences is equivalent to the problem of finding out whether a given number is the
D.N of a circle-free machine, and we have no general process for doing this in a finite number of
steps. In fact, by applying the diagonal process argument correctly, we can show that there cannot
be any such general process.

The simplest and most direct proof of this is by showing that, if this general process exists,
then there is a machine which computes . This proof, although perfectly sound, has the disadvan-
tage that it may leave the reader with a feeling that “there must be something wrong ”. The proof
which I shall give has not this disadvantage, and gives a certain insight into the significance of the
idea“circle-free”. It depends not on constructing 8, but on constructing 8’, whose n-th figure is

Let us suppose that there is such a process; that is to say, that we can invent a machine D which,
when supplied with the S.D. of any computing machine M will test this S.D and if M is circular
will mark the S.D with the symbol “u” and if it is circle-free will mark it with “s”. By combining
the machines D and U we could construct a machine H I to compute the sequence B’. The machine
D, may require a tape. We may suppose that it uses the E-squares beyond all symbols on F-squares,
and that when it has reached its verdict all the rough work done by D is erased.

The machine H has its motion divided into sections. In the first N — 1 sections, among other
things, the integers 1, 2,...,N — 1 have been written down and tested by the machine D. A certain
number, say R(N — 1), of them have been found to be the D.N’s of circle-free machines. In the N-th
section the machine D tests the number N. If N is satisfactory, i.e., if it is the D.N of a circle-free
machine, then R(N) = 1+ R(N — 1) and the first R(N) figures of the sequence of which a D.N is

4 Cf. Hobson,Theory of functions of a real variable(2nd ed., 1921),87,88.

On Computable Numbers, with an Application to the Entscheidungsproblem 29

N are calculated. The R(N)-th figure of this sequence is written down as one of the figures of the
sequence B’ computed by H. If N is not satisfactory, then R(N) = R(N — 1) and the machine goes
on to the (N + 1)-th section of its motion.

From the construction of H we can see that H. is circle-free. Each section of the motion of H
comes to an end after a finite number of steps. For, by our assumption about D the decision as to
whether N is satisfactory is reached in a finite number of steps. If NV is not satisfactory, then the
N-th section is finished. If N is satisfactory, this means that the machine M (XN) whose D.N is N
is circle-free, and therefore its R(V)-th figure can be calculated in a finite number steps. When this
figure has been calculated and written down as the R(N)-th figure of 8/, the N-th section is finished.
Hence H is circle-free.

Now let K be the D.N of H. What does.1 H do in the K-th section of its motion ? It must test
whether K is satisfactory, giving a verdict “s” or “u”. Since K is the D.N of H and since H is circle-
free, the verdict cannot be “u”’. On the other hand the verdict cannot be “s”. For if it were, then in the
K-th section of its motion H, would be bound to compute the first R(K — 1) + 1 = R(K) figures of
the sequence computed by the machine with K as its D.N and to write down the R(K)-th as a figure
of the sequence computed by H. The computation of the first R(K) — 1 figures would be carried out
all right, but the instructions for calculating the R(K)-th would amount to “calculate the first R(K)
figures computed by H and write down the R(K)-th”. This R(K)-th figure would never be found.
Le., H is circular, contrary both to what we have found in the last paragraph and to the verdict “s”.
Thus both verdicts are impossible and we conclude that there can be no machine D.

We can show further that there can be no machine £ which, when supplied with the S.D of an
arbitrary machine M, will determine whether. M ever prints a given symbol (0 say).

We will first show that, if there is a machine &, then there is a general process for determining
whether a given machine. M prints 0 infinitely often. Let M| be a machine which prints the same
sequence as M, except that in the position where the first O printed by M stands, M prints 0. M,
is to have the first two symbols 0 replaced by 0 and so on. Thus, if. M. were to print

ABAO1AABO0O10AB. . .,
then M would print

ABAO1AABOO10AB. ..
and. M> would print

ABAOIAABOO10AB. ...

Now let R be a machine which, when supplied with the S.D of M will write down successively
the S.D of M, of M, of M3 ... (there is such a machine). We combine R with £. and obtain a new
machine, }. In the motion of R first R is used to write down the S.D of M, and then £ tests it, : 0 :
is written if it is found that. M never prints 0; then R writes the S.D of M, and this is tested, : 0 :
being printed if and only if M never prints 0, and so on. Now let us test } with . If it is found that
}, never prints 0, then M prints 0 infinitely often; if } prints 0 sometimes, then M does not print 0
infinitely often.

Similarly there is a general process for determining whether M prints 1 infinitely often. By a
combination of these processes we have a process for determining whether M prints an infinity of
figures, i.e. we have a process for determining whether M is circle-free. There can therefore be no
machine &.

The expression “there is a general process for determining...” has been used throughout this
section as equivalent to “there is a machine which will determine ...”. This usage can be justified
if and only if we can justify our definition of “computable”. For each of these “general process”
problems can be expressed as a problem concerning a general process for determining whether a

30 Part 1

given integer n has a property G(n) [e.g.G(n) might mean “n is satisfactory” or “n is the Godel
representation of a provable formula”], and this is equivalent to computing a number whose n-th
figure is 1 if G(n) is true and O if it is false.

9. The extent of the computable numbers

No attempt has yet been made to show that the “computable” numbers include all numbers which
would naturally be regarded as computable. All arguments which can be given are bound to be,
fundamentally, appeals to intuition, and for this reason rather unsatisfactory mathematically. The
real question at issue is “What are the possible processes which can be carried out in computing a
number ?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new definition has a greater intuitive
appeal).

(c) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all “ computable ” several other propositions of
the same character follow. In particular, it follows that, if there is a general process for determining
whether a formula of the Hilbert function calculus is provable, then the determination can be carried
out by a machine.

L. [Type (a)]. This argument is only an elaboration of the ideas of §1.

Computing is normally done by writing certain symbols on paper. We may suppose this paper
is divided into squares like a child’s arithmetic book. In elementary arithmetic the two-dimensional
character of the paper is sometimes used. But such a use is always avoidable, and I think that it will
be agreed that the two-dimensional character of paper is no essential of computation. I assume then
that the computation is carried out on one-dimensional paper, i.e. on a tape divided into squares. I
shall also suppose that the number of symbols which may be printed is finite. If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily small extent’. The effect
of this restriction of the number of symbols is not very serious. It is always possible to use sequences
of symbols in the place of single symbols. Thus an Arabic numeral such as 17 or 999999999999999
is normally treated as a single symbol. Similarly in any European language words are treated as
single symbols (Chinese, however, attempts to have an enumerable infinity of symbols). The dif-
ferences from our point of view between the single and compound symbols. is that the compound
symbols, if they are too lengthy, cannot be observed at one glance. This is in accordance with expe-
rience. We cannot tell at a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the symbols which he is observ-
ing, and his “state of mind” at that moment. We may suppose that there is a bound B to the number
of symbols or squares which the computer can observe at one moment. If he wishes to observe
more, he must use successive observations. We will also suppose that the number of states of mind
which need be taken into account is finite. The reasons for this are of the same character as those
which restrict the number of symbols. If we admitted an infinity of states of mind, some of them
will be “arbitrarily close” and will be confused. Again, the restriction is not one which seriously
affects computation, since the use of more complicated states of mind can be avoided by writing
more symbols on the tape.

5 If we regard a symbol as literally printed on a square we may suppose that the square is 0 < x < 1, 0 <y < 1. The
symbol is defined as a set of points in this square, viz. the Bet occupied by printer’s ink. If these sets are restricted to be
measurable, we can define the “distance”between two symbols as the cost of transforming one symbol into the other if
the cost of moving unit area of printer’s ink unit distance is unity, and there is an, infinite supply of ink at x =2.y =0.
With this topology the symbols form a conditionally compact space.

On Computable Numbers, with an Application to the Entscheidungsproblem 31

Let us imagine the operations performed by the computer to be split up into “simple operations”
which are so elementary that it is not easy to imagine them further divided. Every such operation
consists of some change of the physical system consisting of the computer and his tape. We know the
state of the system if we know the sequence of symbols on the tape, which of these are observed by
the computer (possibly with a special order), and the state of mind of the computer. We may suppose
that in a simple operation not more than one symbol is altered. Any other changes can be split up
into simple changes of this kind. The situation in regard to the squares whose symbols may be
altered in this way is the same as in regard to the observed squares. We may, therefore, without loss
of generality, assume that the squares whose symbols are changed are always “observed” squares.

Besides these changes of symbols, the simple operations must include changes of distribution
of observed squares. The new observed squares must be immediately recognisable by the computer.
I think it is reasonable to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain fixed amount. Let us say
that each of the new observed squares is within L squares of an immediately previously observed
square.

In connection with “immediate recognisability”, it may be thought that there are other kinds of
square which are immediately recognisable. In particular, squares marked by special symbols might
be taken as immediately reognisable. Now if these squares are marked only by single symbols there
can be only a finite number of them, and we should not upset our theory by adjoining these marked
squares to the observed squares. If, on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a fundamental point and should
be illustrated. In most mathematical papers the equations and theorems are numbered. Normally the
numbers do not go beyond (say) 1000. It is, therefore, possible to recognise a theorem at a glance
by its number. But if the paper was very long, we might reach Theorem 157767733443477; then,
further on in the paper, we might find .. .hence (applying Theorem 157767733443477) we have...”.
In order to make sure which was the relevant theorem we should have to compare the two numbers
figure by figure, possibly ticking the figures off in pencil to make sure of their not being counted
twice. If in spite of this it is still thought that there are other “immediately recognisable” squares, it
does not upset my contention so long as these squares can be found by some process of which my
type of machine is capable. This idea is developed in III below.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) CChanges of one of the squares observed to another square

within L squares of one of the previously observed squares.
It may be that some of these changes necessarily involve a change of state of mind. The most
general single operation must therefore be taken to be one of the following:

(A) A possible change (a) of symbol together with a possible change of state of mind.
(B) A possible change (b) of observed squares, together with a possible change of state of mind.

The operation actually performed is determined, as has been suggested on p. 30, by the state of
mind of the computer and the observed symbols. In particular, they determine the state of mind of
the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To each state of mind of the
computer corresponds an “m-configuration” of the machine. The machine scans B squares corre-
sponding to the B squares observed by the computer. In any move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another square distant not more
than L squares from one of the other scanned squares. The move which is done, and the succeed-
ing configuration, are determined by the scanned symbol and the m-configuration. The machines

32 Part 1

just described do not differ very essentially from computing machines as defined in §2 and corre-
sponding to any machine of this type a computing machine can be constructed to compute the same
sequence, that is to say the sequence computed by the computer.

IL. [Type (b)].

If the notation of the Hilbert functional calculus® is modified so as to be systematic, and so as
to involve only a finite number of symbols, it becomes possible to construct an automatic’ machine
IC, which will find all the provable formulae of the calculus®.

Now let o be a sequence, and let us denote by G (x) the proposition “The x-th figure of v is 17,
so that” G, (x) means “The x-th figure of « is 0. Suppose further that we can find a set of properties
which define the sequence « and which can be expressed in terms of G, (x) and of the propositional
functions N (x) meaning “x is a non-negative integer” and F(x, y) meaning “y = x + 1”. When we
join all these formulae together conjunctively, we shall have a formula, 2l say which defines «. The
terms of 2{ must include the necessary parts of the Peano axioms, viz.,

Q)N ()& (x) (N(x) = @y)F(x,y)) & (F(x, y) = N(¥)),

which we will abbreviate to P.
When we say “2l defines «””, we mean that —2(is not a provable formula, and also that, for each
n, one of the following formulae (A,) or (B,,) is provable.

A& F® — Gy (u™), (A0
A& FW — (=G ™)), (B,),

where F™ stands for F(u, ') & F (', u") & ... F(u®=V, 4™,

I say that « is then a computable sequence: a machine Iy, to compute « can be obtained by a
fairly simple modification of K.

We divide the motion of ', into sections. The n-th section is devoted to finding the n-th figure
of «v. After the (n — 1)-th section is finished a double colon :: is printed after all the symbols, and the
succeeding work is done wholly on the squares to the right of this double colon. The first step is to
write the letter “A” followed by the formula (A,) and then “B” followed by (B,,). The machine /Cy
then starts to do the work of /C, but whenever a provable formula is found, this formula is compared
with (A,) and with (B,,). If it is the same formula as (A,), then the figure “1” is printed, and the
n-th section is finished. If it is (B,), then “0” is printed and the section is finished. If it is different
from both, then the work of /C is continued from the point at which it had been abandoned. Sooner
or later one of the formulae (A,) or (B,) is reached; this follows from our hypotheses about « and
2, and the known nature of /. Hence the n-th section will eventually be finished. /Cy . is circle-free;
« is computable.

It can also be shown that the numbers « definable in this way by the use of axioms include all
the computable numbers. This is done by describing computing machines in terms of the function
calculus.

6 The expression “the functional calculus” is used throughout to mean the restricted Hilbert functional calculus.

7 1t is most natural to construct first a choice machine (§2) to do this. But it is then easy to construct the required
automatic machine. We can suppose t h a t the choices are always choices between two possibilities 0 and 1. Each
proof will then be determined by a sequence of choices iy, i3,...,i,(i1 =0or 1,i =0or 1,...,i, =0 or 1), and hence the
number 2” 4 i12"~1 +i,2"=% 4 ... 4 i, completely determines the proof. The automatic machine carries out successively
proof 1, proof 2, proof 3,....

8 The author has found a description of such a machine.

9 The negation sign is written before an expression and not over it.

10°A sequence of r primes is denoted by).

On Computable Numbers, with an Application to the Entscheidungsproblem 33

It must be remembered that we have attached rather a special meaning to the phrase “2l defines
a”. The computable numbers do not include all (in the ordinary sense) definable numbers. Let § be
a sequence whose n-th figure is 1 or 0 according as »n is or is not satisfactory. It is an immediate
consequence of the theorem of §8 that § is not computable. It is (so far as we know at present)
possible that any assigned number of figures of §. can be calculated, but not by a uniform process.
When sufficiently many figures of § have been calculated, an essentially new method is necessary
in order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we avoid introducing the
“state of mind” by considering a more physical and definite counterpart of it. It is always possible
for the computer to break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. This note is the counterpart of the “state of mind”.
We will suppose that the computer works in such a desultory manner that he never does more than
one step at a sitting. The note of instructions must enable him to carry out one step and write the
next note, Thus the state of progress of the computation at any stage is completely determined by the
note of instructions and the symbols on the tape. That is, the state of the system may be described
by a single expression (sequence of symbols), consisting of the symbols on the tape followed by A
(which we suppose not to appear elsewhere) and then by the note of instructions. This expression
may be called the “state formula”. We know that the state formula at any given stage is determined
by the state formula before the last step was made, and we assume that the relation of these two
formulae is expressible in the functional calculus. In other words, we assume that there is an axiom
2 which expresses the rules governing the behaviour of the computer, in terms of the relation of the
state formula at any stage to the state formula at the preceding stage. If this is so, we can construct
a machine to write down the successive state formulae, and hence to compute the required number.

10. Examples of large classes of numbers which are computable

It will be useful to begin with definitions of a computable function of an integral variable and of
a computable variable, etc. There are many equivalent ways of defining a computable function of
an integral variable. The simplest is, possibly, as follows. If y is a computable sequence in which 0
appears infinitely’ often, and n is an integer, then let us define £(y, n) to be the number of figures
1 between the n-th and the (n+ 1)-th figure O in y. Then ¢ (n) is computable if, for all n and some
y, ¢ (n) = &(y,n). An equivalent definition is this. Let H(x, y) mean ¢ (x) = y. Then, if we can find
a contradiction-free axiom 2y, such that 24 — P, and if for each integer n there exists an integer
N, such that

Ay & FV = Hu™, @),
and such that, if m # ¢ (n), then, for some N/,
Ap & FNY (—H(u("), u(’")),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since there is no general
method of describing a real number, but we can define a computable function of a computable
variable. If n is satisfactory, let yn be the number computed by M (n), and let

a, = tan (rr(yn — %)) ,

7 If M computes y, then the problem whether M prints 0 infinitely often is of the same character as the problem whether
M is circle-free.

34 Part 1

unless y, =0 or y, = 1, in either of which cases «, = 0. Then, as n runs through the satisfactory
numbers, &, runs through the computable numbers®. Now let ¢ (1) be a computable function which
can be shown to be such that for any satisfactory argument its value is satisfactory,’. Then the
function f, defined by f(a,) = ag), is a computable function and all computable functions of a
computable variable are expressible in this form.

Similar definitions may be given of computable functions of several variables, computable-
valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I shall prove only (ii) and a
theorem similar to (iii).

(i) A computable function of a computable function of an integral or computable variable is
computable.

(i) Any function of an integral variable defined recursively in terms of computable functions is
computable. Le. if ¢ (m, n) is computable, and r is some integer, then n(n) is computable,
where

n0)=r,
nn) =¢n, n(n—1)).

(iii) If ¢ (m, n) is a computable function of two integral variables, then ¢ (n, n) is a computable
function of n.

(iii) If ¢(m, n) is a computable function of two integral variables, then ¢(n, n) is a computable
function of n.

@iv) If ¢ (n) is a computable function whose value is always O or 1, then the sequence whose n-th
figure is ¢ (n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace “real” throughout by

“computable”. But it holds in the following form:

(v) If G(«) is a propositional function of the computable numbers and

(@ @)EB){G(a) & (=G(B))},

() Gla) & (=G(B)) = (@ < p),

and there is a general process for determining the truth value of G(w), then there is a
computable number & such that

G(a) —> a <&,

—Ga) > a =&,

In other words, the theorem holds for any section of the computables such that there is a general
process for determining to which class a given number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a computable bounded
increasing sequence of computable numbers has a computable limit. This may possibly be
understood by considering a. sequence such as

1 1 1 1 11
L= -ioe T

On the other hand, (v) enables us to prove

8 A function a,, may be defined in many other ways so as to run through the computable numbers.

9 Although it is not possible to find a general process for determining whether a given number is satisfactory, it is often
possible to show that certain classes of numbers are satisfactory.

On Computable Numbers, with an Application to the Entscheidungsproblem 35

(vi) If @ and B are computable and o < 8 and ¢ () <0 < ¢(B), where ¢ («) is a computable
increasing continuous function, then there is a unique computable number y, satisfying o <

y <Band ¢(y) =0.

Computable convergence

We shall say that a sequence S, of computable numbers converges computably if there is a com-
putable integral valued function N(¢) of the computable variable €, such that we can show that, if
€ >0andn > N(¢) and m > N(€), then |B, — Bl < €.

We can then show that

(vii) A power series whose coefficients form a computable sequence of computable numbers is
computably convergent at all computable points in the interior of its interval of convergence.
(viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of “uniformly computably convergent’:

(ix) The limit of a uniformly computably convergent computable sequence of computable functions
is a computable function. Hence

(x) The sum of a power series whose coefficients form a computable sequence is a computable
function in the interior of its interval of convergence.

From (viii) and w = 4(1 — % + % —...) we deduce that 7 is computable.

Frome=1+1+ % + % + ... we deduce that e is computable.
From (vi) we deduce that all real algebraic numbers are computable.
From (vi) and (x) we deduce that the real zeros of the Bessel functions are computable.

Proof of (ii).

Let H(x, y) mean “n(x) =y”, and let K(x, y, z) mean “¢ (x, y) = z”. Uy is the axiom for ¢ (x, y).
We take 2, to be

Ap & P& (F(x, y) = G(x,y)) & (G(x, y) & G(y, 2) = G(x, 2))
& (F = Hw, u)) & (F(r, w) & H(v,) & K(w, x,) > H(w,)
& [H(w, 2) & G(z, HvG(t,z) = (—H(w, 1))].

I shall not give the proof of consistency of 2l,,. Such a proof may be constructed by the meth-
ods used in Hilbert and Bernays, Grundlagen der Mathematik (Berlin, 1934), p. 209 et seq. The
consistency is also clear from the meaning.

Suppose that, for some n, N, we have shown

Ay & FO = H@®=D, 0=y
then, for some M,

Ap & FM K(u(n), u(n("—l)), u("("))),
Q[n & FM _, F(u(”_l), u(")) &H(u("_l),u(nm_l)))

& K™, 4=, (n(m))

Part 1

&K (™, y@=D) 00y g)y

36
and

A& FM s [F(u(nfl), M("))& H(u(nfl)’ u(n(nfl)))
Hence Ay, & FM — Hu® | 40y,
Also A, & FO — H(u, u™O)y,

Hence for each n some formula of the form

Q[n & FM _ H(u(n), u(ﬂ(")))

is provable. Also, if M’ > M and M’ > m and m # 1 (u), then

2[71 & F(M/) — G(u"((n)),u(m))vG(u(m), M(ﬂ(ﬂ)))

and

an &F(M’)_)[{G(u(fl('l))’ u(m))vG(u(m), u(ﬂ(n)).

& H (u(n), M(U(m))} — (—H(u("), u(m)))].

Hence A, & FM) s (—Hu™, ym)y).

The conditions of our second definition of a computable function are therefore satisfied.

Consequently 7 is a computable function.

Proof of a modified form of (iii).

Suppose that we are given a machine N, which, starting with a tape bearing on it o o followed
by a sequence of any number of letters “F”” on F-squares and in the m-configuration b, will compute
a sequence ¥, depending on the number n letters “F”. If ¢,,(m) is the m-th figure of y,, then the

sequence B8 whose n-th figure is ¢, (n) is computable.

We suppose that the table for A has been written out in such a way that in each line only one
operation appears in the operations column. We also suppose that &, ©, 0, and 1 do not occur in the
table, and we replace o throughout by ®, 0 by 0, and 1 by 1. Further substitutions are then made.

Any line of form

A o
we replace by
A o
and any line of the form
A o
by A o
and we add to the table the following lines:
u
1 R,Pk,R,PO,R,P®
u
uz

PO

B

te(®B, u, h, k)

B
te(B, v, h, k)

pe(uy,0)
up
te(u3’u37 k’ h)

pe(uz, F)

On Computable Numbers, with an Application to the Entscheidungsproblem 37

and similar lines with v for u and 1 for O together with the following line
c R, PE, R, Ph b.

We then have the table for the machine A’ which computes 8. The initial m-configuration is ¢,
and the initial scanned symbol is the second o.

11. Application to the Entscheidungsproblem

The results of §8 have some important applications. In particular, they can be used to show that
the Hilbert Entscheidungsproblem can have no solution. For the present I shall confine myself to
proving this particular theorem. For the formulation of this problem I must refer the reader to Hilbert
and Ackermann’s Grundziige der Theoretischen Logik (Berlin, 1931), chapter 3.

I propose, therefore, to show that there can be no general process for determining whether a
given formula 2 of the functional calculus K is provable, i.e. that there can be no machine which,
supplied with any one 2 of these formulae, will eventually say whether 2(is provable.

It should perhaps be remarked that what I shall prove is quite different from the well-known
results of Godel'?. Godel has shown that (in the formalism of Principia Mathematica) there are
propositions 2 such that neither 2 nor —2{ is provable. As a consequence of this, it is shown that no
proof of consistency of Principia Mathematica (or of K) can be given within that formalism. On the
other hand, I shall show that there is no general method which tells whether a given formula 2 is
provable in K, or, what comes to the same, whether the system consisting of K with —%(adjoined
as an extra axiom is consistent.

If the negation of what Godel has shown had been proved, i.e. if, for each 2 either 2 or —%
is provable, then we should have an immediate solution of the Entscheidungsproblem. For we can
invent a machine K which will prove consecutively all provable formulae. Sooner or later K will
reach either 2 or —2A. If it reaches 2, then we know that 2 is provable. If it reaches —%2A, then, since
K is consistent (Hilbert and Ackermann, p. 65), we know that 2l is not provable.

Owing to the absence of integers in K the proofs appear somewhat lengthy. The underlying ideas
are quite straightforward.

Corresponding to each computing machine M we construct a formula Un (M) and we show
that, if there is a general method for determining whether Un (M) is provable, then there is a general
method for determining whether M ever prints 0.

The interpretations of the propositional functions involved are as follows:

Rs,(x, y) is to be interpreted as “in the complete configuration x (of M) the symbol on the square
yis S”.

I(x, y) is to be interpreted as “in the complete configuration x the square y is scanned”.

K,,, (x) is to be interpreted as “in the complete configuration x the m-configuration is g.

F(x, y) is to be interpreted as “‘y is the immediate successor of x”.

Inst {g;S;SkLq;} is to be an abbreviation for

@ 3, X, ¥) {Rs (x,) & 1(x, y) & Kgy(0) & F(x, X') & F(Y, y))
— (I(X,y) & Ry, (X', y) & Ky (x')
& (2) [F(Y, 29)V(Rs;(x,2) = R, (',)]}
Inst {g;S;SkRq;} and Inst {g;S;SkNgi}

are to be abbreviations for other similarly constructed expressions.
Let us put the description of M into the first standard form of §6. This description consists
of a number of expressions such as “g;S;SxLg;” (or with R or N substituted for L). Let us form

107 oc. cir.

38 Part 1

all the corresponding expressions such as Inst {g;S;S;Lg;} and take their logical sum. This we call
Des (M).
The formula Un (M) is to be

AN () & (x)(N(x) = @x)F(x, X))
& (,2)(F(y, 2) > N(y) & N(2)) & (y)Rs,(u, y)
& I(u, u) & Ky, (u) & Des(M)]
— (3s)@AN[N(s) & N(t) & Rs, (s, 1)].

[Mu) & ... & Des (M)] may be abbreviated to A(M).

When we substitute the meanings suggested on p. 37-38 we find that Un (M) has the interpre-
tation “in some complete configuration of M, S (i.e. 0) appears on the tape”. Corresponding to this
I prove that

(a) If S| appears on the tape in some complete configuration of M, then Un (M) is provable.
(b) If Un (M) is provable. then S appears on the tape in some complete configuration of M.

When this has been done, the remainder of the theorem is trivial.

LEMMA 1 If S| appears on the tape in some complete configuration of M, then Un (M) is
provable.

We have to show how to prove Un (M). Let us suppose that in the n-th complete configuration
the sequence of symbols on the tape iS Sy(,,0),5,1) - - -» Sr(n,n), followed by nothing but blanks,
and that the scanned symbol is the i(n)-th, and that the m-configuration is gk(,). Then we may form
the proposition

Ry, 0 @™, u) &Rs,, ™, u) & ... &R, @™, u™)
& 1", u™™)) & Ky, (™)
& WF((,)WVFu, YVF@, y)v ... vVF@" ™V, y)vRs, ™ y)),

which we may abbreviate to CC,,.

As before, F(u, W) & Fu', ') & ... & F ", u") is abbreviated to F.

I shall show that all formulae of the form A(M) & F" — CC, (abbreviated to CF,) are prov-
able. The meaning of CF,, is “The n-th complete configuration of M is so and so”, where “so and
s0” stands for the actual n-th complete configuration of M. That CF}, should be provable is therefore
to be expected.

CFy is certainly provable, for in the complete configuration the symbols are all blanks, the
m-configuration is g1, and the scanned square is u, i.e. CCy is

O)Rs, (u, y) & I (u, u) & Kq1(u).

A(M) — CCy is then trivial.

We next show that CF, — CF,41 is provable for each n. There are three cases to consider,
according as in the move from the n-th to the (n 4 1)-th configuration the machine moves to left or
to right or remains stationary. We suppose that the first case applies, i.e. the machine moves to the
left. A similar argument applies in the other cases. If

r(n, i(n)) =a, r(n+ 1,iln+ 1)) =c, k(i(n)) =b, and k(i(n+ 1)) =d,

then Des (M) must include Inst {g,S»SsLg.} as one of its terms, i.e.
Des (M) — Inst {qg,SpSalq.}.

On Computable Numbers, with an Application to the Entscheidungsproblem 39

Hence A(M) & FOD — Tnst {q,SpSqLlg.} & FO+D,
But Inst {g,SpSqLlq.} & FU"tD — (CC, — CCpy1)

is provable, and so therefore is

AM) & F"*D 5 (CC, — CChyt)
and (AM) & F™ — CC,) — (AM) & F"D — CCyy1),
i.e. CF, — CF41.

CF,, is provable for each n. Now it is the assumption of this lemma that S| appears somewhere,
in some complete configuration, in the sequence of symbols printed by M that is, for some integers
N, K, CCy has Rg, @™, 4%y as one of its terms, and therefore CCy — Rg, ™ 4Ky is provable.
We have then

CCy — Rs, (u™, u'®))
and AM) & FNV) — ccN.
We also have
AWAM) — Auw)@d) ... AN AM) & FM),
where N’ = max(N, K). And so
AwWA(M) — A @) ... GuN)Rg, @™, u®),
AAM) — Gu™)@u®)Rs, @™, u®),
FWAM) — 3s)@EDRs, (s, 1),

i.e. Un(M) is provable.
This completes the proof of Lemma 1.

LEMMA 2 [f Un (M) is provable, then Sy appears on the tape in some complete configuration of
M.

If we substitute any propositional functions for function variables in a provable formula, we
obtain a true proposition. In particular, if we substitute the meanings tabulated on pp. 37-38 in Un
(M), we obtain a true proposition with the meaning “S; appears somewhere on the tape in some
complete configuration of M”.

We are now in a position to show that the Entscheidungsproblem cannot be solved. Let us sup-
pose the contrary. Then there is a general (mechanical) process for determining whether Un (M) is
provable. By Lemmas 1 and 2, this implies that there is a process for determining whether M ever
prints 0, and this is impossible, by §8. Hence the Entscheidungsproblem cannot be solved.

In view of the large number of particular cases of solutions of the Entscheidungsproblem for
formulae with restricted systems of quantors, it is interesting to express Un (M) in a form in which
all quantors are at the beginning. Un (M) is in fact, expressible in the form

@) W) Fur) ... Qup)B, @

where B contains no quantors, and n = 6. By unimportant modifications we can obtain a formula,
with all essential properties of Un (M), which is of form (I) with n = 5.

40 Part 1

Added 28 August, 1936.

Appendix

Computability and effective calculability

The theorem that all effectively calculable (A-definable) sequences are computable and its con-
verse are proved below in outline. It is assumed that the terms “well-formed formula” (W.F.F.)
and “conversion” as used by Church and Kleene are understood. In the second of these proofs
the existence of several formulae is assumed without proof; these formulae may be constructed
straightforwardly with the help of, e.g., the results of Kleene in “A theory of positive integers in
formal logic”, American Journal of Math., 57 (1935), 153-173, 219-244.

The W.EF. representing an integer n will be denoted by N,,. We shall say that a sequence y whose
n-th figure is ¢, (n) is A-definable or effectively calculable if 7 + ¢, (1) is a A-definable function of
n, i.e. if there is a W.EF. M, such that, for all integers n,

{M, }(N,) conv N¢,y<n)+1,

i.e. {M, }(N,) is convertible into Axy. x(x(y)) or into Axy.x(y) according as the n-th figure of A is 1
or 0.

To show that every A-definable sequence y is computable, we have to show how to construct
a machine to compute y. For use with machines it is convenient to make a trivial modification in
the calculus of conversion. This alteration consists in using x, x’, x”, ... as variables instead of
a, b, c, We now construct a machine £ which, when supplied with the formula M,,, writes down
the sequence y. The construction of £ is somewhat similar to that of the machine /C which proves
all provable formulae of the functional calculus. We first construct a choice machine £, which if
supplied with a W.E.F., M say, and suitably manipulated, obtains any formula into which M is con-
vertible. £ can then be modified so as to yield an automatic machine £, which obtains successively
all the formulae into which M is convertible (of. foot-note p. 32). The machine £ includes £, as a
part. The motion of the machine £ when supplied with the formula M, is divided into sections of
which the n-th is devoted to finding the n-th figure of y. The first stage in this n-th section is the
formation of {M,, }(N,). This formula is then supplied to the machine £;, which converts it succes-
sively into various other formulae. Each formula into which it is convertible eventually appears, and
each, as it is found, is compared with

AxX[AX DT, ie.Ny,
and with MY [{x} ()], ie.Ny.

If it is identical with the first of these, then the machine prints the figure 1 and the n-th section is
finished. If it is identical with the second, then 0 is printed and the section is finished. If it is different
from both, then the work of £; is resumed. By hypothesis, {M,, }(N,) is convertible into one of the
formulae N, or Np; consequently the n-th section will eventually be finished, i.e. the n-th figure of
y will eventually be written down.

To prove that every computable sequence y is A-definable, we must show how to find a formula
M, such that, for all integers n,

{My, }(Ny) conv Ny g, (n)-

Let. M be a machine which computes y and let us take some description of the complete config-
urations of M by means of numbers, e.g. we may take the D.N of the complete configuration as
described in §6. Let £(n) be the D.N of the n-th complete configuration of M. The table for the
machine M gives us a relation between &£(n + 1) and & (n) of the form

E(n+1)=py(EMm),

On Computable Numbers, with an Application to the Entscheidungsproblem 41

where p,, is a function of very restricted, although not usually very simple, form: it is determined
by the table for M. p, is A-definable (I omit the proof of this), i.e. there is a W.EF. A, such that,
for all integers n,

{Ay YNz) conv Ne(ny-1)-
Let U stand for
Aul{{u}(Ay)}NA],
where r = £(0); then, for all integers #,
{Uy }(Vy) conv Ne(yy.
It may be proved that there is a formula V such that

conv N1 if, in going from the n-th to the (n+1)-th
complete configuration, the figure O is

{VIWVea- 1)} Nemy) printed.
conv Np if the figure 1 is printed.
conv N, otherwise.

Let W, stand for
MV (A, YUy Y @) YA Uy @)1,
so that, for each integer 1
{VI(Nent-1))} (Ngmy) conv {W,, }(N),
and let Q be a formula such that
{Q} (W)} (Ny) conv Ny(y),

where r(s) is the s-th integer g for which {W, }(N,) is convertible into either N1 or N. Then, if M,
stands for

AWy} QN Wy) w))],

it will have the required property '’

The Graduate College,
Princeton University,
New Jersey, U.S.A.

111 a complete proof of the A-definability of computable sequences it would be best to modify this method by replacing
the numerical description of the complete configurations by a description which can be handled more easily with our
apparatus. Let us choose certain integers to represent the symbols and the m-configurations of the machine. Suppose
that in a certain complete configuration the numbers representing the successive symbols on the tape are s1s2 ..., Sy,
that the m-th symbol is scanned, and that the m-configuration has the number #; then we may represent this complete
configuration by the formula

[[Ns; s Nsys -« s Ny, 1 INGNs, 1 [Ns, s - -2 N 1
where [a,b] stands for Au[{{u}(a)}(D)]],
[a,b,c] stands for Au[{{{u}(a)}(D)}(c)],

etc.

42 Part 1

ON COMPUTABLE NUMBERS, WITH AN
APPLICATION TO THE
ENTSCHEIDUNGSPROBLEM. A CORRECTION

By A. M. TURING

In a paper entitled “On computable numbers, with an application to the Entscheidungsproblem”!
the author gave a proof of the insolubility of the Entscheidungsproblem of the “engere Funktio-
nenkalkiil”. This proof contained some formal errors> which will be corrected here: there are also
some other statements in the same paper which should be modified, although they are not actually
false as they stand.

The expression for Inst {¢;S;SxLg;} on p. 37 of the paper quoted should read

06 3, X YORs; (v, y) & (x, Y)&Kgi(x) & Fx,xX') & F(Y, ¥))
— (I, y) & Ry, (¥',y) & Kg(x)) & F(Y,2)V[(Ry (x,2) — Ry (v',2))
&(Rs, (x, 2) = Ry, (¥,2)) & ... & (R, (x,2) — Ry, (', 2)D),
So, S1, ..., Sy being the symbols which. M can print. The statement on p. 39, line 4, viz.
“Inst {¢aSpSaLq.} & F"TD — (CC, — CCyy1)

is provable” is false (even with the new expression for Inst {g,S»SqsLg.}): we are unable for example
to deduce F"*D) — (—F(u, u")) and therefore can never use the term

F(Y, 2VI(Rs, (x, 2) = Rs, (¥, 2) & ... & (Rs), (x,2) = Rs,, (x',2))]

in Inst {g,SpS4Lq.}. To correct this we introduce a new functional variable G[G(x,y) to have the
interpretation “x precedes y”’]. Then, if Q is an abbreviation for

(D @EW) ¢, D{F (x,w) & (F(x,y) = G(x,y)) & (F(x,2) & G(x,y) = G(x,y))
& [G(z,0)v(G(x,y) & F(y,2)V(F(x,y) & F(z,y)) = (=F(x,2))]

the corrected formula Un (M) is to be
FuAM) — (3)@DRy, (5,0).
where A(M) is an abbreviation for
0 & (V)Rsy(u, y)1 & I(u, u) & Ky, (1) & Des(M).
The statement on p. 39 (line 3) must then read

Inst {qaSpSalqc} & Q & QF"tD — (CC, — CCpry),
and line 29 should read

I Proc. London Math. Soc. (2), 42 (1936-7), 230-265.
2 The author is indebted to P. Bernays for pointing out these errors.

On Computable Numbers, with an Application to the Entscheidungsproblem 43

r(n,itn)) =>b, rin+1,i(n)) =d, k(n) =a, k(n+1) =c.

For the words “logical sum” on p. 38, line 4, read “conjunction”. With these modifications the
proof is correct. Un (M) may be put in the form (I) (p. 39) with n = 4.

Some difficulty arises from the particular manner in which “computable number” was defined
(p- 18). If the computable numbers are to satisfy intuitive requirements we should have:

If we can give a rule which associates with each positive integer n two rationals ay,, b, satisfying
an < ay+1 < byr1 < bp,by —ay < 277, then there is a computable number a for which a, < a < by,
each n. (A)

A proof of this may be given, valid by ordinary mathematical standards, but involving an
application of the principle of excluded middle. On the other hand the following is false:

There is a rule. whereby, given the rule of formation of the sequences, a,, b, in (A) we can obtain
a D.N. for a machine to compute a. B)

That (B) is false, at least, if we adopt the convention that the decimals of numbers of the form
m/2" shall always terminate with zeros, can be seen in this way. Let A'be some machine, and define
¢y as follows: ¢, = % if A has not printed a figure O by the time the n-th complete configuration is
reached ¢, = % — 23 if 0 had first been printed at the m-th, complete configuration (m < n). Put
ay=cp—2"""2 b, =c,+27""2. Then the inequalities of (A) are satisfied, and the first figure of «
is 0 if Mever prints 0 and is 1 otherwise. If (B) were true we should have a means of finding the first
figure of a given the D.N. of Ai.e. we should be able to determine whether N ever prints 0, contrary
to the results of §8 of the paper quoted. Thus although (A) shows that there must be machines which
compute the Euler constant (for example) we cannot at present describe any such machine, for we
do not yet know whether the Euler constant is of the form m/2".

This disagreeable situation can be avoided by modifying the manner in which computable
numbers are associated with computable sequences, the totality of computable numbers being left
unaltered. It may be done in many ways> of which this is an example. Suppose that the first figure of
a computable sequence y, is i and that this is followed by 1 repeated n times, then by 0 and finally
by the sequence whose r-th figure is c,; then the sequence y, is to correspond to the real number

oo
Qi—Dn+Y " 2e,—D(3)
r=1
If the machine which computes y is regarded as computing also this real number then (B) holds.
The uniqueness of representation of real numbers by sequences of figures is now lost, but this is of
little theoretical importance, since the D.N.’s are not unique in any case.

The Graduate College,
Princetom, N.J., U.S.A.

3 This use of overlapping intervals for the definition of real numbers is due originally to Brouwer.

44 Part 1

Examining the Work and Its Later Impact

Stephen Wolfram on —

THE IMPORTANCE OF
UNIVERSAL COMPUTATION

In the long view of intellectual history, I believe universal computation will stand as the single most
important idea to emerge in the twentieth century. And this paper is where it first appeared with
clarity.

The paper certainly did not set out to have such significance. Instead, its purpose was to address
a technical question — albeit one thought to be important — about the foundations of mathematics.
But to address that question, Turing created the concept of a universal computer — which in time led
to the notion of software, the computer revolution, and an increasing fraction of all our technology
today.

In retrospect, it seems almost bizarre that it took until 1936 for such a basic idea to emerge. For
today, immersed as they are in modern technology, even quite young children seem to have a decent
grasp of the basic idea of programmability and universal computation.

Even in antiquity, there was already the notion that any single human language could describe
the same basic range of facts and processes. Leibniz tightened this up in the 1600s, imagining
a universal language based on logic, and even discussing encoding logic with numbers (Leibniz,
1966).

Then in the 1800s, there were punched-card machines that could be programmed for different
functions. And with the increasing abstraction and formalisation of mathematics, there emerged by
the 1920s ideas like combinators and string-rewrite systems.

But it was Godel’s theorem (Godel, 1931) that highlighted the importance of such abstrac-
tions. And in fact, inside the proof of Godel’s theorem is in effect exactly the idea of universal
computation — but framed in the context of purely mathematical constructs.

The great significance of Turing’s paper was to give concreteness to universal computation: to
make it seem that universal computation might somehow be inevitable in any constructible system.

At the time, it was far from clear how general Turing’s results might be. After all, for example,
until the 1920s, there had been the idea that any reasonable mathematical function could be rep-
resented by primitive recursion — but that idea was immediately exploded by the discovery of the
Ackermann function (Wilhelm, 1928).

And indeed, after his 1936 paper, Turing himself set about looking at systems involving ora-
cles and so on, that would be more powerful than his universal Turing machine. But gradually an
increasing collection of ‘implementable’ abstract models seemed instead to be precisely equivalent
in their power to ordinary Turing machines.

Meanwhile, electronic computers were emerging. McCulloch and Pitts (1943) had used Turing’s
idea of a universal machine to argue that brains could in effect just be like networks of electronic
components. And von Neumann (Burks, Goldstine and von Neumann, 1947) then applied these
ideas to develop architectures for practical electronic computers.

The Importance of Universal Computation 45

There continued to be some theoretical work on Turing machines, but for the most part, elec-
tronic computers were treated purely as technology, with little discussion of foundational issues.
And indeed, it was only in about the 1980s that Turing’s work began to become more widely
known.

And at that time, there tended to be the view that Turing machines were relevant as idealisations
of what could be implemented with electronics, and perhaps with mathematics, but not necessarily
much more. And indeed it was usually assumed (as it had been by Turing himself) that when it came
to typical systems in nature, traditional mathematical equations — and not something like discrete
Turing machines — would be the relevant models to use.

In the early 1980s, I became interested in a variety of natural systems that exhibited complex
behaviour, and that had never been very usefully described by traditional mathematical equations.
And I set about trying to find the simplest models that might describe such systems.

I had experience both with practical computers and with models in statistical physics based
on discrete components. And in trying to find the simplest possible model, I quickly settled on
one-dimensional cellular automata.

My main initial methodology for studying cellular automata was experimental: to just run
computer experiments and see how the cellular automata behaved (see Figure 1).

The results were remarkable, and to me deeply surprising. For I found that even when the under-
lying rules for the system were extremely simple, the behaviour of the system as a whole could be
immensely complex (see Figure 2).

And gradually, through my work (Wolfram, 2002) and the work of many others, it began to be
clear that a great many systems in nature could successfully be modelled using these kinds of simple
programs.

But as I searched for an understanding of the basic phenomenon by which complexity was
generated, I was quickly led to Turing machines and universal computation. And I came to speculate
that even in the simple cellular automata I was studying, there must be universal computation which
in turn I then argued led to perceived complexity, and a variety of other fundamental phenomena.

Before my work, one might have assumed that systems in nature would typically need to be
described by the standard continuous differential equations of mathematical physics — and would
therefore presumably not act like Turing machines. But after seeing so many examples of natural
systems successfully described by systems like cellular automata, it began to seem much more
plausible that nothing with power beyond Turing machines was needed.

I do not think that Alan Turing ever directly simulated a Turing machine. He was interested in
the theoretical issue of whether a Turing machine that is universal could be constructed. And indeed
in this paper he showed that that was possible — though with a machine of considerable complexity.
It was not until the beginning of the 1990s that I actually started simulating Turing machines in large
numbers. I decided to see if my results on cellular automata would carry over to Turing machines —
which operate in a sequential, rather than parallel, way.

And what I found was that much like in cellular automata, one does not have to go far in the
universe of possible Turing machines before one starts to find examples that exhibit highly complex
behaviour.

For a long time, it was not clear what the very simplest universal Turing machine might be. But
now we know. It is a machine with two states and three colors that I first identified in the mid-1990s
(see Figure 3), and that was finally proved universal in 2007 as a result of a competition we held
(Smith, 2007).

Traditional intuition from looking at practical computers might have suggested that to get uni-
versality would require a system with a complicated structure, typical of what might be set up by
human engineers. But from my studies in the computational universe of possible programs, I had

46

—_—
—
—_——
Rule 0 Rule 2 Rule 3 Rule 4 Rule 7
- e
—_
—_—
—_——
Rule 8 Rule 9 Rule 10 Rule 11 Rule 12
=
e
EBe———
’:&é x&%&
Rule 16 Rule 17 Rule 18 Rule 19 Rule 20 Rule 23
Rule 24 Rule 25 Rule 26 Rule 27 Rule 28 Rule 31
’ —
_
—_—
Rule 32 Rule 33 Rule 34 Rule 35 Rule 36 Rule 37 Rule 38 Rule 39
-
’ ‘
—_— e
_ e
—_—— = _——
Rule 40 Rule 41 Rule 43 Rule 44 Rule 45 Rule 46 Rule 47
—_—
—_—
—_——
Rule 48 Rule 49 Rule 50 Rule 51 Rule 52 Rule 53 Rule 54 Rule 55
Rule 56 Rule 59 Rule 60 Rule 61 Rule 63
//
v al
Rule 64 Rule 65 Rule 66 Rule 67 Rule 68 Rule 69 Rule 70 Rule 71
Rule 72 Rule 76 Rule 77 Rule 78 Rule 79
_—
=—
e s
Rule 80 Rule 81 Rule 82 Rule 84 Rule 85 Rule 86 Rule 87
NE e Indl= 4
m Y al
Rule 88 Rule 89 Rule 90 Rule 92 Rule 93 Rule 94 Rule 95
= AN P
Rule 96 Rule 97 Rule 98 Rule 100 Rule 101 Rule 102 Rule 103
= ——— ‘ ¥
Rule 104 Rule 105 Rule 106 Rule 108 Rule 109 Rule 110 Rule 111
—— —
—_—— ’_‘E
= VY
=— =
e B
Rule 112 Rule 113 Rule 114 Rule 115 Rule 116 Rule 117 Rule 118
Rule 120 Rule 121 Rule 122 Rule 123 Rule 124 Rule 125 Rule 126 Rule 127

Part1

Fig. 1: Evolution of the first 128 elementary cellular automata, starting in all cases from a single

black cell.

formulated a general principle that I called the Principle of Computational Equivalence, which pre-
dicted, among many other things, that universal computation should actually be very common, even

among systems with simple underlying structures.

The result of this is to even further enhance the importance of Turing’s paper.
At first, we might have thought that things like universal Turing machines would be relevant
only to specific kinds of mathematical-type systems. But gradually we came to learn that all sorts
of systems — including practical ones made with electronic components — could be set up to behave
like universal Turing machines.

The Importance of Universal Computation 47

-I‘IZII:II:li
| O HE BN [N]

Fig. 2: A cellular automaton with a simple rule that generates a pattern, which seems in many
respects random. The rule used is of the same type as in the previous examples, and the cellular
automaton is again started from a single black cell. The pattern that is obtained is highly complex,
and shows almost no overall regularity.

Fig. 3: The first 50 steps in evolution (from a blank tape) of the simplest Turing machine capable of
universal computation.

48 Part 1

But what we learn now is that setup is in a sense not required. Instead, the phenomenon of
universality seems to be ubiquitous — in systems in nature, mathematics and elsewhere.

What is the significance of this? At a practical level, the occurrence of universality in so many
kinds of systems makes it easier to imagine creating practical computation systems in a much wider
variety of ways. But universality also implies some important limitations on science — particularly
a phenomenon I call computational irreducibility, which fundamentally limits the predictability of
processes.

In the past, one might have assumed that most systems in nature would be computationally much
simpler than universal Turing machines. But now we have evidence that essentially whenever we
see complex behaviour in nature, it is associated with processes that achieve universal computation.

But could the systems do more than universal Turing machines? We do not yet know for sure. But
as we successfully model more and more systems without the need to go beyond Turing machines,
it seems less and less plausible that this will be necessary.

The ultimate test, however, is whether we can model our whole physical universe using some-
thing equivalent to a universal Turing machine. We can certainly imagine a universe that operates
like some behaviour of a Turing machine. But the issue is whether our actual universe does so.

Until we know the ultimate theory of physics, we will not be sure of the answer. The history of
traditional physics might seem to suggest that as one goes to smaller and smaller scales, it must take
something more and more complicated to describe the physical world. But from my exploration
of cellular automata and similar systems, I have developed a quite different intuition — which now
makes it seem quite plausible that there could be a simple rule that underlies everything in our
universe.

The evidence I have increasingly seems to support this view. For more and more phenomena
familiar from known physics seem to emerge from extremely simple underlying rules — operating
underneath such traditional notions as space and time. And if it is true that there is a rule that in
effect reproduces our universe, then we will know for certain that everything in our universe can in
fact, in principle, be described by something equivalent to a universal Turing machine.

The Turing machine has then gone from a mathematical idealisation, to a model for computa-
tional processes — to a complete means of describing everything that can exist in our universe. It
also has gone from something of importance only for questions of mathematical or theoretical com-
putation to something whose features and properties must pervade all systems that we experience —
and that must be considered fundamental to science.

We can trace the foundations of so much modern technology to the idea of universal computation
set forth in Turing’s paper. Increasingly, universal computation seems destined to be central to all
sorts of issues in science. In a sense, though, I believe we are still early on the curve of seeing the
full significance of universal computation. Computers, for example, became widespread though the
development of first databases, then word processing, then the web — none of which make central
use of universal computation. But now, as we see knowledge begin to become computable on a large
scale, there is finally starting to be deeper use of universal computation. And there is still much more
to come.

Almost everything we build — whether with molecules, social systems, whatever — will rely on
universal computation. Our intuition about how the world works — and what we can know and
predict about the world — will be based on thinking about universal computation. Even the future of
the human condition will rely centrally on universal computation.

Newton’s Principia Mathematica is often cited as the most important single work in the history
of science — for it was the key milestone that enabled the development of the exact sciences and
the tradition of engineering that arose from them. And certainly Newton was more aware of the

Three Proofs of the Unsolvability of the Entscheidungsproblem 49

significance of his work than Turing. But in the modest paper by Alan Turing reproduced here
lie the seeds of what is surely the most important single intellectual development of the twentieth
century, and possibly of all of modern human history.

References

Hilbert, D., Bernays, P., 1934. Grundlagen der Mathematik, vol.1, Springer, Berlin, p. 209.

Burks, A.W., Goldstine, H., von Neumann, J., 1947. Preliminary discussion of the Logical Design of an
Electronic Computing Instrument, Institute for Advanced Study, Princeton, NJ.

Church , Alonzo 1936a. An unsolvable problem of elementary number theory, Am. J. Math. 58, 345-363.

Church, Alonzo, 1936b. A note on the Entseheidungsproblem, J. Symb. Logic 1, 40-41.

Godel, K., 1931. Uber formal unentscheidbare sitze der principia mathematica und verwandter systeme,
I. Monatshefte fiir Mathematik und Physik, 38, 173-198.

Hobson, E.-W., 1921. Theory of Functions of a Real Variable, second edn. 87-88.

Kleene, S.C., 1935. A theory of positive integers in formal logic. Amer. J. Math. 57, 153-173, 219-244.

Leibniz, GW., 1966. Zur allgemeinen Charakteristik. Hauptschriften zur Grundlegung der Philosophie.
pp- 30-31, Philosophische Werke Band 1, Translated by Artur Buchenau. Reviewed and with introduction
and notes published by E. Cassirer. Hamburg, Felix Meiner.

McCulloch, W., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math.
Biophys. 7, 115-133.

Smith, A., 2007. The Wolfram 2,3 Turing Machine Research Prize. http://www.wolframscience.com/
prizes/tm23/solved.html. (accessed April 1, 2012)

Turing, A.M., 1936. On computable numbers with an application to the Entscheidungsproblem. Proc. London
Math. Soc. 2 (42) 230-265.

Wilhelm, A., 1928. Zum hilbertschen aufbau der reellen zahlen. Mathematische Ann. 99, 118-133.

Wolfram, S., 2002. A New Kind of Science, Wolfram Media, Champaign, IL. USA.

Martin Davis illuminates —

THREE PROOFS OF THE UNSOLVABILITY
OF THE ENTSCHEIDUNGSPROBLEM

The Entscheidungsproblem

What is usually called first order logic is an encapsulation of logical reasoning, especially as it
occurs in proofs in mathematics. In this setup propositions become ‘sentences’ in which symbols
for basic logical notions (like and, not, all) are combined with non-logical symbols for the specific
items being reasoned about.

The Entscheidungsproblem may be stated in the following three equivalent ways:

(1) Find an algorithm to determine whether a given sentence of first order logic is valid, that is,
true regardless of what specific objects and relationships are being reasoned about.

(2) Find an algorithm to determine whether a given sentence of first order logic is satisfiable, that
is, true for some specific objects and relationships.

(3) Find an algorithm to determine given some sentences of first order logic regarded as premises
and another sentence, being a desired conclusion, whether that conclusion is provable from the
premises using the rules of proof for first order logic.

http://www.wolframscience.com/prizes/tm23/solved.html
http://www.wolframscience.com/prizes/tm23/solved.html

50 Part 1

That the first two are equivalent is clear because the sentence A is valid if and only if not-A is
not satisfiable. To show that the third formulation is equivalent to the first two, it suffices to note
that, according to the Completeness Theorem that Godel established in his doctoral dissertation, a
sentence A is a logical consequence of premises Py, P»,..., P, if and only if the sentence

Pi1&Pr&.. &P, = A

is valid.

If we think of the premises as the axioms of some mathematical domain, we can see that an
actual algorithm solving the Entscheidungsproblem would reduce all of mathematics, at least in
principle, to mechanical calculation. Presumably it was this that led Hilbert to characterise the
Entscheidungsproblem as ‘the fundamental problem of mathematical logic’. This was enough to
convince G. H. Hardy that there could be no such algorithm. He declared:

There is of course no such theorem, and this is very fortunate, since if there were we should
have a mechanical set of rules for the solution of all mathematical problems, and our activities
as mathematicians would come to an end.!

In a different context, Poincaré made it clear that he found the whole idea of formalisation of
mathematics ridiculous:

Thus it will be readily understood that in order to demonstrate a theorem, it is not necessary
or even useful to know what it means. ...we might imagine a machine where we should
put in axioms at one end and take out theorems at the other, like that legendary machine
in Chicago where pigs go in alive and come out transformed into hams and sausages. It is
no more necessary for the mathematician than it is for these machines to know what he is
doing.?

If indeed a solution of the Entscheidungsproblem would have reduced all of mathematics
to mechanical calculation, then from the existence of any mathematical problem provably algo-
rithmically unsolvable, the unsolvability of the Entscheidungsproblem itself should follow. The
unsolvability proofs of Church and of Turing each follow this approach.

1. Church’s Proof

Alonzo Church, in his historic (Church, 1936), provided a rigorous formal characterisation of what
it means to be solvable by means of an algorithm, what has come to be known as Church’s Thesis.
This made it possible for him to prove that one specific problem is algorithmically unsolvable. In
his work, Church (1936a) specified a finite set of premises that encapsulate this specific problem
so faithfully that an algorithm for testing whether a given conclusion follows from those premises
would also provide an algorithmic solution to that specific problem, although the problem is known
to be unsolvable. From this contradiction Church could conclude that the Entscheidungsproblem
itself is unsolvable.

Instead of indicating his satisfaction at having settled a fundamental problem, Church expressed
a doubt. He noted the fact that the proof of Godel’s Completeness Theorem is necessarily non-
constructive, dealing as it must, with the notion of validity that refers to arbitrary sets and

1 Davis (2000), Chapter 7.
2 Davis (2000), Chapter 5.

Three Proofs of the Unsolvability of the Entscheidungsproblem 51

relations. And showing a surprisingly extreme constructivist stance, Church cast doubt on his own
accomplishment saying:

The unsolvability of [all three forms] of the Entscheidungsproblem .. .cannot, therefore, be
regarded as established beyond question.

2. Turing’s Proof

Alan Turing began working on the Entscheidungsproblem with no knowledge of what Church was
doing. He began with his own explication of algorithmic solvability, or as he called it, computability,
in terms of extremely simple abstract computing machines, what are now called ‘Turing machines’.
By analyzing what someone actually does when computing something, he provided a convincing
argument for the adequacy of his formulation. (Later he proved that his concept was equivalent
to Church’s.) Like Church, he used what he had done to prove that a certain specific problem is
unsolvable. In Turing’s case the unsolvable problem was to determine algorithmically whether one
of his given machines would ever produce a particular symbol, the so-called ‘printing problem’.
His remarkable paper (Turing, 1936) contained as a byproduct a construction showing that a par-
ticular one of his machines, his universal machine, could all by itself duplicate anything that any
of his machines could do, and thereby showed in schematic form the possibility of an all-purpose
computer.

By using sentences of first order logic to mimic the step-by-step behaviour of his machines he
was able to associate with any one of his machines a corresponding sentence of first order logic
that is valid if and only if that machine eventually produces the symbol 0. Thus an algorithm for
validity (the first form of the Entscheidungsproblem in our list of three) would automatically provide
a solution to the printing problem, although it is, in fact, unsolvable. Thus Turing could conclude
that the Entscheidungsproblem is algorithmically unsolvable. Turing’s method turned out to be quite
fertile and was later used successfully to obtain significant new results.?

3. The should-have-been Godel-Kleene Proof

Church and Turing’s proofs were both published in 1936. Godel’s epochal paper (Godel, 1931)
in which he showed that formal logical systems in which a modicum of mathematics could be
developed would inevitably be incomplete: there would be straightforward mathematical statements
which could be neither proved nor disproved in that system. But the paper is extremely rich and, in
particular contains an application to the Entscheidungsproblem. This application involves a class of
functions from natural numbers to natural numbers called primitive recursive.* The key thing about
this class is that included functions that can be defined recursively. As an example, we may consider
the function 2* which can be defined by the recursion:

20—1; 2Kl =22k

What Godel proved relating to the Entscheidungsproblem in his remarkable 1931 paper is that cor-
responding to any given primitive recursive function f(x), there is a sentence of first order logic,
which is satisfiable if and only if f(x) = 0 for all x.° So to get the unsolvability of the Entschei-
dungsproblem (in our second form) it suffices to show that there is no algorithm for determining of
a given primitive recursive function f(x) whether it is equal to O for all x.

3 See Borger et al. (1997).
4 Not quite the term Godel used.
3 Godel (1931) Theorem X.

52 Part 1

Stephen Kleene was a student of and collaborator with Church during the exciting period when
these dramatic results were being developed. Kleene’s paper (Kleene, 1936) is mainly remem-
bered for his Normal Form Theorem in which arbitrary computable functions on the natural
numbers are seen to be closely related to primitive recursive functions. Thus for any computable
function f(x). Kleene showed that there are a pair of primitive recursive functions g(x),h(x,y)
such that:

fo) = g(m)in(h(x,y) =0)).

In addition, Kleene found a particular primitive recursive function #(z,x) such that the prob-
lem of determining for a given value of z whether #(z,x) =0 for all x is algorithmically
unsolvable.® From this special case, it is clear that there can be no general algorithm to determine
of an arbitrary given primitive recursive function f(x) whether it is equal to O for all x. So Godel’s
result immediately yields the unsolvability of the Entscheidungsproblem.

It seems remarkable that Kleene, who certainly had studied Godel’s 1931 paper and knew it very
well, apparently had not noticed this connection.

References

Borger, E., Gridel, E., Gurevich, Y., 1997. The Classical Decision Problem, Springer, Berlin, Heidelberg.

Church, A., 1936. An unsolvable problem in elementary number theory. Am. J. Math. 58, 345-363. Reprinted
in Davis, M. (1965).

Church, A., 1936a. A note on the Entscheidungsproblem. J. Symb. Log. 1, 40—41. Correction ibid pp. 101-102.
Reprinted with corrections incorporated: Davis, M. (1965).

Copeland, B.J., (Ed.), 2004. The Essential Turing. Oxford University Press.

Davis, M. (Ed.), 1965. The Undecidable. Raven Press, 1965. Reprinted: Dover 2004.

Davis, M., 1982. Why Gddel didn’t have Church’s Thesis, Inf. Control 54, 3-24.

Davis, M., 2000. The Universal Computer. Turing Centenary edition, A.K. Peters, Norton, New York, 2011.

Gdodel, K., 1931. Uber formal unentscheidbare Sitze der Principia mathematica und verwandter Systeme I,
Monatshefte fiir Mathematik und Physik, Band 38, pp. 173-198. Reprinted with English translation from:
Godel, K., 1986. On Formally Undecidable Proposition of Principia Mathematica and Related Systems I,
pp. 144-195.

Godel, K., 1986. Collected Works, vol. I, Solomon Feferman et al, eds., Oxford University Press.

Kleene, S.C., 1936. General recursive functions of general numbers, Mathematische Annalen, Band 112, 727-
742. Reprinted in Davis, M. (1965).

Petzold, C., 2008. The Annotated Turing: A Guided Tour through Alan Turing’s Historic Paper on Computabil-
ity and the Turing Machine, Wiley, Indianapolis.

Turing, A., 1936. On computable numbers with an application to the Entscheidungsproblem. Proc. Lond. Math.
Soc. ser. 2,42, 230-265. Correction: ibid, 43 (1937), pp. 544-546. Reprinted in Davis, M. (1965) pp. 116—
154. Reprinted in Turing (2001) pp. 18-56. Reprinted in Copeland, J. (2004) pp. 58-90; 94-96. Reprinted
in Petzold, C. (2008) (the original text interspersed with commentary).

Turing, A., 2001. Collected Works: Mathematical Logic. Gandy, R.O., Yates, C.E.M. (Eds.), North-Holland,
Amsterdam, London.

6 See Kleene (1936) XVI. To coordinate the present notation with Kleene’s, we would define

0 if T1(z,z,%)

1(z,x) = .
@) 1 otherwise

Two Puzzles About Computation 53

Samson Abramsky detects —

TwoO PuzzLES ABOUT COMPUTATION

1. Introduction

Turing’s classical analysis of computation Turing (1936) gives a compelling account of the nature
of the computational process; of how we compute. This allows the notion of computability, of what
can in principle be computed, to be captured in a mathematically precise fashion.

The purpose of this note is to raise two different questions, which are rarely if ever considered,
and to which, it seems, we lack convincing, systematic answers. These questions can be posed as:

e Why do we compute?

e What do we compute?

The point is not so much that we have no answers to these puzzles, as that we have no established
body of theory which gives satisfying, systematic answers, as part of a broader understanding. By
raising these questions, we hope to stimulate some thinking in this direction.

These puzzles were raised in Abramsky (2008); see also Adriaans and van Emde Boas (2011).

2. Why Do We Compute?

The first puzzle is simply stated:

Why do we compute?

By this we mean: why do we perform (or build machines and get them to perform) actual, physically
embodied computations?
There is, indeed, an obvious answer to this question:

To gain information (which, therefore, we did not previously have).

But — how is this possible?' Two problems seems to arise, one stemming from physics, and one
from logic.

Problem 1: Doesn’t this contradict the second law of thermodynamics?

Problem 2: Isn’t the output implied by the input?

We shall discuss each of these in turn.

! Indeed, I was once challenged on this point by an eminent physicist (now knighted), who demanded to know how
I could speak of information increasing in computation when Shannon Information theory tells us that it cannot! My
failure to answer this point very convincingly at the time led me to continue to ponder the issue, and eventually gave rise
to this discussion.

54 Part 1

Problem 1

The problem is that, presumably, information is conserved in the fotal system. The natural response
is that, nevertheless, there can be information flow between, and information increase in, subsys-
tems; just as a body can gain heat from its environment. More precisely, while the entropy of an
isolated (total) system cannot decrease, a sub-system can decrease its entropy by consuming energy
from its environment.

Thus if we wish to speak of information flow and increase, this must be done relative to sub-
systems. Indeed, the fundamental objects of study should be open systems, whose behaviour must
be understood in relation to an external environment. Subsystems which can observe incoming
information from their environment, and act to send information to their environment, have the
capabilities of agents.

Moral: Agents and their interactions are intrinsic to the study of information flow and increase
in computation. The classical theories of information do not reflect this adequately.

Observer-dependence of information increase? Yorick Wilks (personal communication) has
suggested the following additional twist. Consider an equation such as

3x5=15.

The forward direction 3 x 5 — 15 is obviously a natural direction of computation, where we per-
form a multiplication. But the reverse direction 15 — 3 x 5 is also of interest — finding the prime
factors of a number! So it seems that the direction of possible information increase must be
understood as relative to the observer or user of the computation!

Can we in fact find an objective, observer-independent notion of information increase? This
seems important to the whole issue of whether information is inherently subjective, or whether it
has an objective structure.

Problem 2

The second puzzle is the computational version of what has been called the scandal of deduction
DAgostino and Floridi (2009); Hintikka (1970); Sequoiah-Grayson (2008). The logical problem is
to find the sense in which logical deduction can be informative, since, by the nature of the process,
the conclusions are ‘logically contained’ in the premises. So what has been added by the derivation?
This is a rather basic question, which it is surprisingly difficult to find a satisfactory answer to.

Computation can be modelled faithfully as deduction, whether in the sense of deducing the steps
that a Turing maching takes starting from its initial configuration, or more directly via the Curry-
Howard isomorphism Curry, Feys and Craig (1958); Howard (1980), under which computation can
be viewed as performing cut-elimination on proofs, or normalization of proof terms. Thus the same
question can be asked of computation: since the result of the computation is logically implied by
the program together with the input data, what has been added by computing it?

The same issue can be formulated in terms of the logic programming paradigm, or of querying
a relational database: in both cases, the result of the query is a logical consequence of the data- or
knowledge-base.

It is, of course, tempting to answer in terms of the complexity of the inference process; but this
seems to beg the question. We need to understand first what the inference process is doing for us!

We can also link this puzzle to another well-known issue in logic, namely the principle of log-
ical omnisicience in epistemic logic, which is unrealistic yet hard to avoid. This principle can be
formulated as follows:

[Kap A (P — V)] Kap.

It says that the knowledge of agent a is deductively closed: if @ knows a proposition ¢, then he
knows all its logical consequences. This is patently untrue in practice, and brings us directly back

Two Puzzles About Computation 55

to our puzzle concerning computation. We compute to gain information we did not have. We start
from the information of knowing the program and its input, and the computation provides us with
explicit knowledge of the output. But what does ‘explicit’ mean?

The computational perspective may indeed provide a usefully clarifying perspective on the issue
of logical omniscience, since it provides a context in which the distinction between ‘explicit’ and
‘implicit’ knowledge can be made precise. Let us start with the notion of a function. In the 19th
century, the idea of a function as a ‘rule’ — as given by some defining expression — was replaced
by its ‘set-theoretic semantics’ as a set of ordered pairs. In other terminology, a particular defining
expression is an intensional description of a function, while the set of ordered pairs which it denotes
is its extension.

A program is exactly an intensional description of a function, with the additional property that
this description can be used to explicitly calculate outputs from given inputs in a stepwise, mechan-
ical fashion.” We can say that implicit knowledge, in the context of computation, is knowledge of
an intensional description; while explicit knowledge, of a data item such as a number, amounts to
possessing the numeral (in some numbering system) corresponding to that number; or more gener-
ally, to possessing a particular form of intensional description which is essentially isomorphic to the
extension.

The purpose of computation in these terms is precisely to convert intensional descriptions into
extensional ones, or implicit knowledge of an input-output pair into explicit knowledge. The cost of
this process is calibrated in terms of the resources needed — the number of computation steps, the
workspace which may be needed to perform these steps, etc. Thus we return to the usual, ‘common-
sense’ view of computation. The point is that it rests on this distinction between intension and
extension, or implicit vs. explicit knowledge.

Another important aspect of why we compute is data reduction—getting rid of a lot of the
information in the input. Note that normal forms are in general unmanagably big Vorobyov (1997).
Note also that it is deletion of data which creates thermodynamic cost in computation Landauer
(1961). Thus we can say that much (or all?) of the actual usefulness of computation lies in getting
rid of the hay-stack, leaving only the needle.

The challenge here is to build a useful theory which provides convincing and helpful answers to
these questions. In our view these puzzles, naive as they are, point to some natural questions which
a truly comprehensive theory of computation, incorporating a ‘dynamics of information’, should be
able to answer.

3. What Do We Compute?

The classical notion of computability as pioneered by Turing Turing (1936) focusses on the key
issue of how we compute; of what constitutes a computation. However, it relies on pre-existing
notions from mathematics as to what is computed: numbers, functions, sets, etc.

This idea also served computer science well for many years: it is perfectly natural in many
situations to view a computational process in terms of computing an output from an input. This
computation may be deterministic, non-deterministic, random, or even quantum, but essentially the
same general paradigm applies.

However, as computation has evolved to embrace diverse forms and purposes: distributed,
global, mobile, interactive, multi-media, embedded, autonomous, virtual, pervasive, ...the ade-
quacy of this view has become increasingly doubtful.

Traditionally, the dynamics of computing systems — their unfolding behaviour in space and
time — has been a mere means to the end of computing the function which specifies the algorith-
mic problem which the system is solving.? In much of contemporary computing, the situation is

2 We refer e. g. to Gandy (1980); Sieg (2002) for attempts to give a precise mathematical characterization of ‘mechanical’.

3 Insofar as the dynamics has been of interest, it has been in quantitative terms, counting the resources which the algo-
rithmic process consumes — leading of course to the notions of algorithmic complexity. Is it too fanciful to speculate

56 Part 1

reversed: the purpose of the computing system is to exhibit certain behaviour. The implementation
of this required behaviour will seek to reduce various aspects of the specification to the solution of
standard algorithmic problems.

What does the Internet compute?

Surely not a mathematical function ...

Why Does It Matter?

We shall mention two basic issues in the theory of computation which become moot in the light of
this issue.

There has been an enormous amount of work on the first, namely the theory of concurrent pro-
cesses. Despite this huge literature, produced over the past four decades and more, no consensus has
been achieved as to what processes are, in terms of their essential mathematical structure. Instead,
there has been a huge proliferation of different models, calculi, semantics, notions of equivalence. To
make the point, we may contrast the situation with the A-calculus, the beautiful, fundamental calcu-
lus of functions introduced by Church at the very point of emergence of the notion of computability
Church (1941). Although there are many variants, there is essentially a unique, core calculus which
can be presented in a few lines, and which delineates the essential ideas of functional computation.
In extreme contrast, there are a huge number of process calculi, and none can be considered as
definitive.

Is the notion of process too amorphous, too open to different interpretations and contexts of use,
to admit a unified, fundamental theory? Or has the field not yet found its Turing? See Abramsky
(2006) for an extended discussion.

The second issue follows on from the first, although it has been much less studied to date. This
concerns the Church-Turing thesis of universality of the model of computation. What does this
mean when we move to a broader conception of what is computed? And are there any compelling
candidates? Is there a widely accepted universal model of interactive or concurrent computation?

As a corollary to the current state of our understanding of processes as described in the previous
paragraphs, there is no such clear-cut notion of universality. It is important to understand what is
at issue here. If we are interested in the process of computation itself, the structure of interactive
behaviour, then on what basis can we judge if one such process is faithfully simulated by another?
It is not of course that there are no candidate notions of this kind which have been proposed in the
literature; the problem, rather, is that there are far too many of them, reflecting different intuitions,
and different operational and application scenarios.

Once again, we must ask: is this embarrassing multitude of diverse and competing notions a
necessary reflection of the nature of this notion, or may we hope for an incisive contribution from
some future Turing which will unify and organize the field?

References

Abramsky, S., 2006. What are the Fundamental Structures of Concurrency? We still dont know! Electronic
Notes in Theoretical Computer Science 162, 37-41.

Abramsky, S., 2008. Information, processes and games. In: van Benthem, J., Adriaans, P. (eds.), Handbook of
the Philosophy of Information, Elsevier Science Publishers, Amsterdam, pp. 483-549.

Adriaans, P., van Emde Boas, P., 2011. Computation, information, and the arrow of time. In: Cooper, S.B.,
Sorbi, A. (eds.), Computability in Context, World Scientific, Singapore, pp. 1-18.

that the lack of an adequate structural theory of processes has been an impediment to fundamental progress in complexity
theory?

Turing Machines and Understanding Computational Complexity 57

Church, A., 1941. The Calculi of Lambda Conversion, Vol. 6 of Annals of Mathematics Studies, Princeton
University Press, Princeton.

Curry, H.B., Feys, R. and Craig, W., 1958. Combinatory Logic: Vol. 1. North-Holland, Amsterdam.

D’ Agostino, M., Floridi, L., 2009. The enduring scandal of deduction. Synthese, 167(2), 271-315.

Gandy, R., 1980. Churchs thesis and principles for mechanisms, Studies in Logic and the Foundations of
Mathematics, 101, 123-148.

Hintikka, J., 1970. Information, deduction, and the a priori. Nous 4(2), 135-152.

Howard, W.A., 1980. The formulae-as-types notion of construction. In: Selden, J.P., Hindley, J.R. (eds.), To
HB Curry: essays on combinatory logic, lambda calculus and formalism, Academic Press, pp. 479-490.

Landauer, R., 1961. Irreversibility and heat generation in the computing process, IBM Journal of Research and
Development 5, 183-191.

Sequoiah-Grayson, S., 2008. The scandal of deduction, Journal of Philosophical Logic 37(1), 67— 94.

Sieg, W., 2002. Calculations by man and machine: Mathematical presentation. In: Gérdenfors, P., Wolenski,
J., and Kijania-Placek, K. (eds.): In the scope of logic, methodology, and philosophy of science: volume
two of the 11th International Congress of Logic, Methodology and Philosophy of Science, Cracow, August
1999, Kluwer Academic Publishers, Dordrecht, Boston, London, p. 247.

Turing, A.M., 1936. On computable numbers, Proc. of the Lond. Math. Soc. 2(42), 230-65, 1936.

Vorobyov, S.G.,, 1997. The “hardest” natural decidable theory. In: Proceedings of the 12th Symposium on Logic
in Computer Science, IEEE Press, 294-305.

Paul Vitanyi illustrates the importance of —

TURING MACHINES AND UNDERSTANDING
COMPUTATIONAL COMPLEXITY

1. Introduction

A Turing machine refers to a hypothetical machine proposed by Alan M. Turing (1912-54) in 1936
(Turing, 1936) whose computations are intended to give an operational and formal definition of the
intuitive notion of computability in the discrete domain. It is a digital device and sufficiently simple
to be amenable to theoretical analysis and sufficiently powerful to embrace everything in the discrete
domain that is intuitively computable. As if that were not enough, in the theory of computation many
major complexity classes can be easily characterised by an appropriately restricted Turing machine;
notably, the important classes P and NP and consequently the major question whether P equals NP.

Turing gave a brilliant demonstration that everything that can be reasonably said to be com-
puted by a human computer using a fixed procedure can be computed by such a machine. As Turing
claimed, any process that can be naturally called an effective procedure is realised by a Turing
machine. This is known as Turing’s thesis. Enter Alonzo Church (1903-95). Over the years, all
serious attempts to give precise yet intuitively satisfactory definitions of a notion of effective proce-
dure (what Church called effectively calculable function) in the widest possible sense have turned
out to be equivalent — to define essentially the same class of processes. The Church—Turing thesis
states that a function on the positive integers is effectively calculable if and only if it is computable.
An informal accumulation of the tradition in S. C. Kleene (1952) has transformed it to the Com-
putability thesis: there is an objective notion of effective computability independent of a particular
formalisation. The informal arguments Turing sets forth in his 1936 paper are as lucid and convinc-
ing now as they were then. To us it seems that it is the best introduction to the subject. It gives

58 Part 1

the intuitions that lead up to the formal definition, and is in a certain sense a prerequisite of what
follows. The reader can find this introduction in Turing (1936) included in this volume. It begins
with:

“All arguments are bound to be, fundamentally, appeals to intuition, and for that reason rather unsat-
isfactory mathematically. The real question at issue is: ‘what are the possible processes which can be
carried out in computing (a number)?’ The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of equivalence of two definitions (in case the new definition has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.”

2. Formal definition of the Turing machine

We formalise Turing’s description as follows: A Turing machine consists of a finite program, called
the finite control, capable of manipulating a linear list of cells, called the tape, using one access
pointer, called the head. We refer to the two directions on the tape as right and left. The finite
control can be in any one of a finite set of states O, and each tape cell can contain a 0, a 1, or a blank
B. Time is discrete and the time instants are ordered 0, 1,2, ..., with O the time at which the machine
starts its computation. At any time, the head is positioned over a particular cell, which it is said to
scan. At time 0 the head is situated on a distinguished cell on the tape called the start cell, and the
finite control is in a distinguished state go. At time O all cells contain Bs, except for a contiguous
finite sequence of cells, extending from the start cell to the right, which contain 0’s and 1’s. This
binary sequence is called the input. The device can perform the following basic operations:

(1) It can write an element from A = {0, 1, B} in the cell it scans; and
(2) it can shift the head one cell left or right.

When the device is active it executes these operations at the rate of one operation per time unit
(a step). At the conclusion of each step, the finite control takes on a state from Q. The device is
constructed so that it behaves according to a finite list of rules. These rules determine, from the
current state of the finite control and the symbol contained in the cell under scan, the operation to
be performed next and the state to enter at the end of the next operation execution.

The rules have format (p, s,a,q): p is the current state of the finite control; s is the symbol under
scan; a is the next operation to be executed of type (1) or (2) designated in the obvious sense by an
element from S = {0, 1, B, L, R}; and ¢ is the state of the finite control to be entered at the end of this
step.

For now, we assume that there are no two distinct quadruples that have their first two elements
identical, the device is deterministic. Not every possible combination of the first two elements has
to be in the set; in this way we permit the device to perform ‘no’ operation. In this case we say
that the device halts. Hence, we can define a Turing machine by a mapping from a finite subset of
0 x A into § x Q. Given a Turing machine and an input, the Turing machine carries out a uniquely
determined succession of operations, which may or may not terminate in a finite number of steps.

Strings and natural numbers are occasionally identified according to the pairing

(¢,0),(0,1),(1,2),(00,3),(01,4),(10,5),(11,6),..., (2.1)

where € denotes the empty string (with no bits). In the following, we need the notion of a self-
delimiting code of a binary string. If x = x...x, is a string of n bits, then its self-delimiting code
is x = 1"0x. Clearly, the length |x| = 2|x| 4+ 1. Encoding a binary string self-delimitingly enables a
machine to determine where the string ends reading it from left to right in a single pass and without
reading past the last bit of the code.

Turing Machines and Understanding Computational Complexity 59

2.1. Computable functions

We can associate a partial function with each Turing machine in the following way: The input
to the Turing machine is presented as an n-tuple (xi,...,x,) consisting of self-delimiting versions
of the x;’s. The integer represented by the maximal binary string (bordered by blanks) of which
some bit is scanned, or 0 if a blank is scanned, by the time the machine halts, is called the output
of the computation. Under this convention for inputs and outputs, each Turing machine defines a
partial function from n-tuples of integers onto the integers, n > 1. We call such a function partial
computable. If the Turing machine halts for all inputs, then the function computed is defined for all
arguments and we call it total computable. (Instead of computable the more ambiguous recursive
has also been used.) We call a function with range {0, 1} a predicate, with the interpretation that
the predicate of an n-tuple of values is frue if the corresponding function assumes value 1 for that
n-tuple of values for its arguments and is false or undefined otherwise. Hence, we can talk about
partial (total) computable predicates.

2.2. Examples of computable functions

Consider x as a binary string. It is easy to see that the functions |x|, f(x) = X, g(xy) = x, and h(xy) =y
are partial computable. Functions g and /4 are not total since the value for input 1111 is not defined.
The function g’(xy) defined as 1 if x=y and as 0 if x #y is a computable predicate. Consider
x as an integer. The following functions are basic n-place total computable functions: the suc-
cessor function 1 (x) = x + 1, the zero function ¢ ™ (x1,...,x,) =0, and the projection function
71,(”") (X1,...,%,) =X, (1 <m <n). The function (x,y) = Xxy is a total computable one-to-one map-
ping from pairs of natural numbers into the natural numbers. We can easily extend this scheme to
obtain a total computable one-to-one mapping from k-tuples of integers into the integers, for each
fixed k. Define (ny,nz,...,nx) = (n1, (na,...,n)). Another total recursive one-to-one mapping from
k-tuples of integers into the integers is (ny,n2,...,nk) = ny...Ak—17k.

3. Computability thesis and the universal Turing machine

The class of algorithmically computable numerical functions (in the intuitive sense) coincides with
the class of partial computable functions. Originally intended as a proposal to henceforth supply
intuitive terms such as ‘computable’ and ‘effective procedure’ with a precise meaning, the Com-
putability thesis has come into use as shorthand for a claim that from a given description of a
procedure in terms of an informal set of instructions we can derive a formal one in terms of Turing
machines.

It is possible to give an effective (computable) one-to-one pairing between natural numbers and
Turing machines. This is called an effective enumeration. One way to do this is to encode the table
of rules of each Turing machine in binary, in a canonical way.

The only thing we have to do for every Turing machine is to encode the defining mapping
T:0xA— S x Q.Giving each element of Q| J S a unique binary code requires s bits for each such
element, with s = [log(|Q| + 5)]. Denote the encoding function by e. Then the quadruple (p,0, B, q)
is encoded as e(p)e(0)e(B)e(q). If the number of rules is r, then r < 3|Q|. We agree to consider the
state of the first rule as the start state. The entire list of quadruples,

T = (p]’tl,SI,Q]),(pZJZ’SZaQZ)’--w(ﬂr»trasr,‘h),
is encoded as
E(T) =sre(pre(ti)e(s)e(qr) .. .e(pre(ty)e(sr)e(qr).

Note that [(E(T)) <4rs+2logrs+4. (Moreover, E is self-delimiting, which is convenient in
situations in which we want to recognise the substring E(7T') as prefix of a larger string.)

60 Part 1

We order the resulting binary strings lexicographically (according to increasing length). We
assign an index, or Godel number, n(T') to each Turing machine 7 by defining n(7T) = i if E(T) is the
i-th element in the lexicographic order of Turing machine codes. This yields a sequence of Turing
machines 71,75, ... that constitutes the effective enumeration. One can construct a Turing machine
to decide whether a given binary string x encodes a Turing machine, by checking whether it can be
decoded according to the scheme above, that the tuple elements belong to Q x A x § x Q, followed
by a check whether any two different rules start with the same two elements. This observation
enables us to construct universal Turing machines.

A universal Turing machine U is a Turing machine that can imitate the behaviour of any other
Turing machine 7. It is a fundamental result that such machines exist and can be constructed effec-
tively. Only a suitable description of 7’s finite program and input needs to be entered on U’s tape
initially. To execute the consecutive actions that 7 would perform on its own tape, U uses T’s
description to simulate 7”s actions on a representation of 7”s tape contents. Such a machine U is
also called computation universal. In fact, there are infinitely many such U’s.

We focus on a universal Turing machine U that uses the encoding above. It is not difficult, but
tedious, to define a Turing machine in quadruple format that expects inputs of the format E(T)p and
is undefined for inputs not of that form. The machine U starts to execute the successive operations
of T using p as input and the description E(T) of T it has found so that U(E(T)p) = T (p) for every
T and p. We omit the explicit construction of U.

For the contemporary reader there should be nothing mysterious in the concept of a general-
purpose computer which can perform any computation when supplied with an appropriate program.
The surprising thing is that a general-purpose computer can be very simple: M. Minsky (1967) has
shown that four tape symbols and seven states suffice easily in the above scheme. This machine can
be changed to, in the sense of being simulated by, our format using tape symbols {0, 1, B} at the cost
of an increase in the number of states. The last reference contains an excellent discussion of Turing
machines, their computations and related machines. The effective enumeration of Turing machines
T,,T,,... determines an effective enumeration of partial computable functions @1, ¢, ... such that
@; is the function computed by T, for all i. It is important to distinguish between a function ¢ and
a name for . A name for i can be an algorithm that computes v, in the form of a Turing machine
T. It can also be a natural number i such that ¢ equals ¢; in the above list. We call i an index for
Y. Thus, each partial computable i occurs many times in the given effective enumeration, that is,
it has many indices.

4. Undecidability of the halting problem

Turing’s paper (Turing, 1936), and more so Kurt Godel’s paper (Godel, 1931), where such a result
first appeared, are celebrated for showing that certain well-defined questions in the mathemati-
cal domain cannot be settled by any effective procedure for answering questions. The following
‘machine form’ of this undecidability result is due to Turing and Church: ‘which machine compu-
tations eventually terminate with a definite result, and which machine computations go on forever
without a definite conclusion?” This is sometimes called the halting problem.

Since all machines can be simulated by the universal Turing machine U, this question cannot be
decided in the case of the single machine U, or more generally for any other individual universal
machine. The following theorem due to Turing (1936), formalises this discussion. Let ¢, ¢3,... be
the standard enumeration of partial computable functions and write ¢ (x) < oo if ¢ (x) is defined and
write ¢ (x) = oo otherwise. Define Ky = {(x,y) : ¢x(y) < 00} as the halting set.

THEOREM 4.1. The halting set Ky is not computable.

The theorem of Turing on the incomputability of the halting set was preceded by (and was
intended as an alternative way to show) the famous (first) Incompleteness Theorem of Kurt Godel
in 1931. Recall that a formal theory T consists of a set of well-formed formulas, formulas for short.

Turing Machines and Understanding Computational Complexity 61

For convenience these formulas are taken to be finite binary strings. Invariably, the formulas are
specified in such a way that an effective procedure exists that decides which strings are formulas
and which strings are not.

The formulas are the objects of interest of the theory and constitute the meaningful statements.
With each theory we associate a set of true formulas and a set of provable formulas. The set of true
formulas is true according to some (often non-constructive) criterion of truth. The set of provable
formulas is provable according to some (usually effective) syntactic notion of proof.

A theory T is simply any set of formulas. A theory is axiomatisable if it can be effectively
enumerated. For instance, its axioms (initial formulas) can be effectively enumerated and there is
an effective procedure that enumerates all proofs for formulas in 7 from the axioms. A theory is
decidable if it is a recursive set. A theory T is consistent if not both formula x and and its negation
—x are in 7. A theory T is sound if each formula x in 7 is true (with respect to the standard model
of the natural numbers).

Hence, soundness implies consistency. A particularly important example of an axiomatis-
able theory is Peano arithmetic, which axiomatises the standard elementary theory of the natural
numbers.

THEOREM 4.2. There is a computably enumerable set, say the set Ky defined above, such that for
every axiomatisable theory T that is sound and extends Peano arithmetic, there is a number n such
that the formula ‘n & Ko’ is true but not provable in T.

In his original proof, Godel uses diagonalisation to prove the incompleteness of any sufficiently
rich logical theory T with a computably enumerable axiom system, such as Peano arithmetic. By
his technique he exhibits for such a theory an explicit construction of an undecidable statement y
that says of itself I am unprovable in T. The formulation in terms of computable function theory is
due to A. Church and S. C. Kleene.

Turing’s idea was to give a formal meaning to the notion of ‘giving a proof.” Intuitively, a
proof is a sort of computation where every step follows (and follows logically) from the previous
one, starting from the input. To put everything as broad as possible, Turing analyses the notion of
‘computation’ from an ‘input’ to an ‘output’ and uses this to give an alternative proof of Godel’s
theorem.

Prominent examples of uncomputable functions are the Kolmogorov complexity function and
the universal algorithmic probability function. These are the fundamental notions in Li and Vitdnyi
(2008) and, among others, Downey and Hirschfeldt (2010); Nies (2009).

5. Complexity of computations

Theoretically, every intuitively computable (effectively calculable) function is computable by a per-
sonal computer or by a Turing machine. But a computation that takes 2" steps on an input of length n
would not be regarded as practical or feasible. No computer would ever finish such a computation in
the lifetime of the universe even with n merely 1000. For example, if we have 10° processors each
taking 10° steps/s, then we can execute 3.1 x 102 < 2190 steps/year. Computational complexity
theory tries to identify problems that are feasibly computable.

In computational complexity theory, we are often concerned with languages. A language L over
a finite alphabet ¥ is simply a subset of X*. We say that a Turing machine accepts a language L if
it outputs 1 when the input is a member of L and outputs O otherwise. That is, the Turing machine
computes a predicate.

Let T be a Turing machine. If for every input of length n we have that T makes at most #(n)
moves before it halts, then we say that 7 runs in time #(rn), or has time complexity #(n). If T uses
at most s(n) tape cells in the above computations, then we say that 7 uses s(n) space, or has space
complexity s(n).

For convenience, we often give the Turing machine in Fig. | a few more work tapes and designate
one tape as a read-only input tape. Thus, each transition rule will be of the form (p,5,a,q), where §
contains the scanned symbols on all the tapes, and p,a, g are as above, except that an operation now
involves moving maybe more than one head.

62 Part 1

We sometimes also make a Turing machine non-deterministic by allowing two distinct transition
rules to have identical first two components. That is, a non-deterministic Turing machine may have
different alternative moves at each step. Such a machine accepts if one accepting path leads to
acceptance. Turing machines are deterministic unless it is explicitly stated otherwise.

Tape
Head

Finite control

Fig. 1: Turing machine.

e DTIME][#(n)] is the set of languages accepted by multitape deterministic Turing machines in
time O(t(n));
e NTIME[#(n)] is the set of languages accepted by multitape non-deterministic Turing machines
in time O(t(n));
e DSPACE]s(n)] is the set of languages accepted by multitape deterministic Turing machines in
O(s(n)) space;
e NSPACE[s(n)] is the set of languages accepted by multitape non-deterministic Turing machines
in O(s(n)) space.
e With ¢ running through the natural numbers:
P is the complexity class |, DTIME[r¢];
NP is the complexity class |, NTIME[r¢];
PSPACE is the complexity class |_J, DSPACE[n¢].

Languages in P, that is, languages acceptable in polynomial time, are considered feasibly com-
putable. The non-deterministic version for PSPACE turns out to be identical to PSPACE by Savitch’s
Theorem (Savitch, 1970), which states that NSPACE[s(n)] = DSPACE[(s(n))?]. The following
relationships hold trivially, P € NP € PSPACE. It is one of the most fundamental open questions
in computer science and mathematics to prove whether either of the above inclusions is proper.
Research in computational complexity theory focuses on these questions. In order to solve these
problems, one can identify the hardest problems in NP or PSPACE. The Bible of this area is the
works of Garey and Johnson (1979).

6. Importance of the Turing machine

In the last three quarters of a century, the Turing machine model has proven to be of priceless value
for the development of the science of data processing. All theory development reaches back to
this format. The model has become so dominant that new other models that are not polynomial-
time reducible to Turing machines are viewed as not realistic (the so-called polynomial-time
Computability thesis).

Without explaining terms, the random access machine (RAM) with logarithmic cost, or unit
cost without multiplications, is viewed as realistic, while the unit cost RAM with multiplications or

From the Halting Problem to the Halting Probability 63

the parallel random access machine (PRAM) are not so viewed. New notions, such as randomised
computations as in the works by Motwani and Raghavan (1995) (like the fast primality tests used
in Internet cryptographical protocols) are analysed using probabilistic Turing machines.

In 1980 the Nobelist Richard Feynman proposed a quantum computer, in effect an analogous
version of a quantum system. Contrary to digital computers (classical, quantum or otherwise), an
analogue computer works with continuous variables and simulates the system we want to solve
directly: for example, a wind tunnel with a model aircraft simulates the aeroflow and in particu-
lar non-laminar turbulence of the aimed-for actual aircraft. In practice, analogue computers have
worked only for special problems. In contrast, the digital computer, where everything is expressed
in bits, has proven to be universally applicable. Feynman’s innovative idea was without issue until
D. Deutsch (1985) put the proposal in the form of a quantum Turing machine, that is, a digital
quantum computer. This digital development exploded the area both theoretically and applied to the
great area of quantum computing.

References

Deutsch, D., 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc.
Royal Soc. Lond. A. 400, 97-117.

Downey, R.G., Hirschfeldt, D., 2010. Algorithmic Randomness and Complexity (Theory and Applications of
Computability), Springer, New York.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman, New York.

Godel, K., 1931. Uber formal unentscheidbare Stze der Principia Mathematica und verwandter Systeme, 1.
Monatshefte fiir Mathematik und Physik, 38, 173-198.

Kleene, S.C., 1952. Introduction to Metamathematics, Van Nostrand, New York.

Li, M., Vitdnyi, PM.B., 2008. An Introduction to Kolmogorov Complexity and Its Applications, third ed.
Springer, New York.

Minsky, M., 1967. Computation: Finite and Infinite Machines, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Motwani, R., Raghavan, P., 1995. Randomised Algorithms, Cambridge Univ. Press, Cambridge, UK.

Nies, A., 2009. Computability and Randomness, Oxford Univ. Press, USA.

Savitch, W.J., 1970. Relationships between nondeterministic and deterministic tape complexities. J. Comput.
Syst. Sci. 4 (2), 177-192.

Turing, A.M., 1936. On computable numbers, with an application to the entscheidungsproblem. Proc. Lond.
Math. Soc. 2 (42), 230-265. “Correction”, 43(1937), 544-546.

Gregory Chaitin traces the path —

FROM THE HALTING PROBLEM
TO THE HALTING PROBABILITY

In this remarkable paper, Turing starts by observing that most real numbers are uncomputable —
indeed this is the case with probability one. Furthermore he observes that incompleteness is a corol-
lary of uncomputability, because if it is always possible to prove whether or not something is the
case using a fixed formal axiomatic theory, then there is in principle a mechanical procedure for
searching through all possible proofs and mechanically deciding the answer.

This makes incompleteness much more natural and fundamental than the assertion ‘I am unprov-
able!” that is true if and only if it is unprovable, that was constructed by Godel. So, following Turing
1936, we have a much bigger problem than following Godel (1931).

64 Part 1

On the one hand he taketh away, on the other he giveth, for although Turing shows that for-
mal languages for mathematical reasoning are necessarily incomplete, he also shows that formal
programming languages can have a kind of completeness called universality. No formal language
can express all possible proofs, but programming languages are commonly universal, that is to say,
capable of expressing essentially any algorithm.

In our Search for the Perfect Language (to echo Umberto Eco), let us now consider how
expressive different programming languages can be. Given a particular programming language, two
important things to consider are the complexity H (x), namely the size in bits of the smallest program
to calculate x as a function of x, and the corresponding probability P(x) that a program whose bits
are chosen by using independent tosses of a fair coin will compute x.

We are thus led to select a subset of the Turing universal languages that minimise H and
maximise P; one way to define such a language is to consider a universal computer U that runs
self-delimiting binary computer programs m¢ p defined as follows:

U(rep) = C(p).

In other words, the result of running w¢p on U is the same as the result of running p on C.
Any two such universal languages U and V will necessarily have

|Hy(x) —Hy(x)| < ¢
and
Pu(x) > Pv(x) X 2_6, P\/(x) > Pu(x) X 2_6.

It is in this precise sense that such a universal U minimises H and maximises P.
Using such a U we can define the halting probability €2, for example, as follows:

Q= ZP(H)

over all positive integers n, or alternatively

Q = Z 27H (n)’
which has a slightly different numerical value but essentially the same paradoxical properties.

What are these properties? €2 is a form of concentrated mathematical creativity, or, alternatively,
a particularly economical Turing oracle for the halting problem, because knowing N bits of the
dyadic expansion of 2 enables one to solve the halting problem for all programs that compute
a positive integer that are up to N bits in size. It follows that the bits of the dyadic expansion of
Q2 are irreducible mathematical information; they cannot be compressed into a theory smaller than
they are.

More precisely, it takes a formal theory of complexity > N — ¢ (one requiring a > N — ¢ bit
program to enumerate all its theorems) to enable us to determine N bits of 2. From this it follows
that €2 is Borel normal, so that €2 is a particularly natural example of a normal number. In 1933,
Turing’s friend David Champernowne found a natural example of a number normal for blocks of
all size in base-ten; provably has this property in any base.!

From a philosophical point of view, however, the most striking thing about €2 is that it pro-
vides a perfect simulation in pure mathematics, where all truths are necessary truths, of contingent,
accidental truths — i.e., of truths such as historical facts or biological frozen accidents.

! Andrew Hodges conjectures that Turing’s work on normal numbers helped Turing to formulate the notion of a com-
putable real; see Hodges’ review of Copeland’s The Essential Turing in the November 2006 AMS Notices and Turing’s
A Note on Normal Numbers in Part 1.

Turing and the Art of Classical Computability 65

Indeed, I have just recently come to understand that the most important property of €2 is that
it opens a door for us from mathematics to biology. The halting probability €2 contains infinite
irreducible complexity and in a sense shows that pure mathematics is even more biological then
biology itself, which merely contains extremely large finite complexity. For each bit of the dyadic
expansion of €2 is one bit of independent, irreducible mathematical information, while the human
genome is merely 3 x 10 bases = 6 x 10° bits of information.

Robert Irving Soare expands on —

TURING AND THE ART
OF CLASSICAL COMPUTABILITY

1. Mathematics as an art

Mathematics is an art as well as a science. It is an art in the sense of a skill as in Donald Knuth’s
series, The Art of Computer Programming, but it is also an art in the sense of an esthetic endeavor
with inherent beauty, which is recognised by all mathematicians.

One of the world’s leading art treasures is Michelangelo’s statue of David as a young man
displayed in the Accademia Gallery in Florence. There is a long aisle to approach the statue of
David. The aisle is flanked by the statues of Michelangelo’s unfinished slaves struggling as if to
emerge from the blocks of marble. These figures reveal Michelangelo’s work process. There are
practically no details, and yet they possess a weight and power beyond their physical proportions.
Michelangelo thought of himself not as carving a statue but as seeing clearly the figure within the
marble and then chipping away the marble to release it. The unfinished slaves are perhaps a more
revealing example of this talent than the finished statue of David.

Similarly, it was Alan Turing (1936) and (1939) who saw the figure of computability in the mar-
ble more clearly than anyone else. Finding a formal definition for effectively calculable functions
was the first step, but demonstrating that it captured effective calculability was as much an artistic
achievement as a mathematical one.

2. Defining the effectively calculable functions

The Entscheidungsproblem, the decision problem for first order logic, was described in the works
of Hilbert and Ackermann (1928). To show this problem unsolvable one first had to mathemat-
ically define the effectively calculable functions. From 1931 to 1934, Church and his student
Kleene developed the A-definable functions. Church privately proposed to Godel in 1934 that
A-definable functions should be identified with the effectively calculable functions. Godel rejected
this as ‘thoroughly unsatisfactory.’

Godel (1934) defined the Herbrand—Godel (HG) recursive functions, a class of functions as
a deductive formal system with initial functions and with two rules of inference to derive new
functions. Church (1936) proposed Church’s Thesis that a function is effectively calculable if and
only if it is Herbrand—Godel recursive. Godel still did not accept it. Kleene (1936) then defined
the p-recursive functions by combining the (Godel) numbering of syntax in Goédel’s Incomplete-
ness Theorem (1931) with the HG recursive functions. This definition is mathematically correct

66 Part 1

and prevailed for several decades in research papers from 1935 to 1965, but it is not intuitive,
being based on two unintuitive formalisms. By 1936 Godel knew these definitions, and their formal
mathematical equivalence but he did not accept any of them. Indeed, Godel suggested that it might
not be possible to give a mathematical definition of calculability, and he wrote in footnote 3 of
(1934) “... the notion of finite computation is not defined, but serves as a heuristic principle’.

Turing (1936) brought a new vision of human computability. Turing’s remarkable achieve-
ment consisted of several parts that we sketch only briefly because they are very well-known.
Turing: (1) defined an automatic machine (a-machine) based on his model of how a human being
might carry out a calculation; (2) defined a universal Turing machine whose inputs included both
programs and integers and could simulate any Turing machine on any input; (3) gave an extraor-
dinary demonstration that any function calculated by a human being could be computed by an
a-machine. Turing then stated what was later known as Turing’s Thesis that a function on the
integers is computable by a finite procedure if and only if it is computable by a Turing machine.

First, Turing gave a model based on a mechanistic approach to human computing, something the
previous models lacked. Perhaps, even more impressive was Turing’s careful analysis in component
parts of how a human being might calculate and then an argument why his Turing machine could
simulate this calculation. By comparison, Church (1936) tried to carry out a similar argument that
any calculable function is HG recursive, but Gandy (1988, p. 79) and Sieg (1994, pp. 80, 87) pointed
out the flaws in Church’s argument. Godel never accepted Church’s Thesis, but he accepted Turing’s
Thesis at once, and stated:

‘That this is really the correct definition of mechanical computability was estab-
lished beyond any doubt by Turing’. Godel Collected Works Volume III, 1995,
Section 3.3:

‘But I was completely convinced only by Turing’s paper’. Géodel: letter to Kreisel of May 1,
1968 (Sieg, 1994, p. 88).

‘The greatest improvement was made possible through the precise definition of the concept
of finite procedure, ... This concept, ...is equivalent to the concept of a ‘computable function of
integers’ Godel (1951, pp. 304-305), Gibbs lecture.

Kleene (1981b, p. 49) wrote, ‘Turing’s computability is intrinsically persuasive’ but
‘A-definability is not intrinsically persuasive’ and ‘general recursiveness scarcely so (its author
Godel being at that time not at all persuaded).” Kleene wrote in his second book (1967, p. 233),
“Turing’s machine concept arises from a direct effort to analyze computation procedures as we
know them intuitively into elementary operations. Turing argued that repetitions of his elementary
operations would suffice for any possible computation. For this reason, Turing computability sug-
gests the thesis more immediately than the other equivalent notions and so we choose it for our
exposition.”

Church, in his review (1937) of Turing (1936) wrote, Computability by a Turing machine, ‘has
the advantage of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately — i.e., without the necessity of proving preliminary theorems’.

3. Why Turing and not Church?

Why give so much credit to Turing and not to Church? In 1923-27 Church was explaining the
Hilbert papers to his Princeton thesis adviser, Oswald Veblen. Turing heard of them only a decade
later in the Cambridge seminar of M.H.A Newman. In 1936 when Church proposed Church’s The-
sis, he was a full professor at Princeton in 1936 when Turing was a mere graduate student. Church
used the model of the Herbrand—Gdodel recursive functions, defined by Godel, the most eminent logi-
cian at that time. They used the concept of recursion (induction) that had appeared in mathematics
since Dedekind (1888).

Turing and the Art of Classical Computability 67

Turing machines were a fanciful new invention without such a well-known, mathematical foun-
dation as recursion. By 1934 Church and Kleene had shown that most number theoretic functions
were A-definable and therefore recursive, giving clear evidence for Church’s Thesis. Church was the
first to propose Church’s Thesis first in 1934 for the A-definable functions and then in 1935-36 for
the Herbrand—Gddel recursive functions, even though Godel did not believe it. Church got it right
and he got it first. The effectively calculable functions are the recursive functions.

If this had been the solution to a purely mathematical problem in number theory, Church would
have received at least half the credit and Turing would have been credited with a later but inde-
pendent solution to the problem. By any purely quantifiable evaluation Church’s contribution was
at least as important as Turing’s. Godel’s Incompleteness Theorem (1931) and his proof (1940)
of the consistency of CH and AC were purely mathematical problems not requiring one to make
mathematically precise an informal concept like calculability. However, characterising human com-
putability was not a purely quantifiable process. Godel (1946, p. 84) wrote, ‘one [Turing] has for
the first time succeeded in giving an absolute definition of an interesting epistemological notion,
i.e., one not depending on the formalism chosen’.

4. Why Michelangelo and not Donatello?

Donatello (1386—1466) was a sculptor in Florence. In 1430 he created the bronze statue of David,
his most famous work. This was a remarkable work, innovative in many ways, the first free-standing
nude statue since ancient times, the first major work of Renaissance sculpture. Now compare this
to Michelangelo’s David, in 1504, the most famous statue in the world. Michelangelo broke away
from the traditional way of representing David, with sword in hand and with the giant’s head at his
feet (as with Donatello). Michelangelo has caught David tense with increasing power as he is about
to go to battle. Michelangelo places him in perfect contraposto outdoing the Greek representations
of heros.

Michelangelo and Turing both completely transcended conventional approaches. They created
something completely new from their own visions, something that went far beyond the achievements
of their contemporaries. Second, both emphasised the human form. Michelangelo brought out the
human form in his statues and the Sistine ceiling. Turing invented a system that simulates how a
human being computes and then demonstrated that his creation did capture human computing.

Frank Zolner wrote in his book Michelangelo Life and Work (2010, p. 7)

“Asinnovative as Leonardo da Vinci, who was a generation older, as productive as his slightly
younger contemporary Raphael of Urbino, as secretive as Giorgione in Venice and blessed
like Titian with a long life and unbridled creativity, Michelangelo Buonarroti embodies,
perhaps most completely, the concept of the artist in the modern era.”

Likewise, Alan Turing embodies, perhaps most completely, the concept of human computability
in the modern era. Regarding the creative process, Turing 1939, Sec. 11 wrote,

“Mathematical reasoning may be regarded rather schematically as the exercise of a combina-
tion of two faculties, which we may call intuition and ingenuity. The activity of the intuition
consists in making spontaneous judgments which are not the result of conscious trains of
reasoning. These judgments are often but by no means invariably correct. ...
The exercise of ingenuity in mathematics consists in aiding the intuition through suitable
arrangements of propositions, and perhaps geometrical figures or drawings.”

Turing’s first great contribution was by intuition. Although others were studying deductive sys-
tems like HG recursion, Turing’s intuition drew him to a completely new model more clearly

68 Part 1

reflecting in mechanical terms how a calculation is carried out. His second contribution was his exer-
cise of ingenuity which led him to a demonstration that anything computed by a human being could
be computed by a Turing machine. Gandy (1988, p. 82) observed, ‘Turing’s analysis does much
more than provide an argument for’ Turing’s Thesis, ‘it proves a theorem.” Furthermore, as Gandy
(1988, pp. 83-84) pointed out, ‘Turing’s analysis makes no reference whatsoever to calculating
machines. Turing machines appear as a result, a codification, of his analysis of calculations by
humans.” Sieg (1994, 2006, 2009), gives a full analysis of Turing’s contribution. Wittgenstein
remarked about Turing machines, ‘These machines are humans who calculate’.

5. Classical art and classical computability

The term ‘recursive’ to mean ‘computable’ began with Church (1936) and was developed by Kleene
to prevail for 60 years in the form, ‘recursive function,’ ‘recursively enumerable set’ and ‘recursive
function theory’. In June 1979, Gerald Sacks and I had each been invited to give a series of four
lectures at the Italian Mathematical Summer Center (C.I.LM.E.). Gerald was to lecture on gener-
alised recursion theory (GRT) and I on recursion theory on the integers w, at that time sometimes
called ordinary recursion theory (ORT). 1 began the trip with a few days in Florence revisiting the
Renaissance art treasures of the Uffizi gallery and Michelangelo’s statues in the Accademia. As the
train made its way to Bressanone at the very north of Italy in the Dolomite alps, I was still basking
in the memories of the art of the Renaissance.

As our courses began in Bressanone, Gerald kept repeating the term ‘ordinary recursion theory
(ORT)’. He was doing nothing wrong, simply using the term as it had come to be used in the
previous decade to distinguish w-recursion theory from GRT. And yet as the phrase kept cascading
down it clashed more and more with my esthetic sense. It seemed far too impoverished to describe
the magnificent theory created by Turing(1936, 1939), Post (1944) and the others. My colleagues
at the University of Chicago, Alberto Calderone and Antoni Zygmund, worked in singular integrals
and classical analysis, but classical analysis was never called ‘ordinary analysis’ to distinguish it
from functional analysis. No one ever called the art of the Renaissance ‘ordinary art’ to distinguish
it from Baroque art or Impressionism.

By my third lecture it all came together. I coined the term ‘classical recursion theory (CRT)’ and
developed a whole lecture about the analogies between CRT and the classical art of the Italian High
Renaissance. The lectures and art analogies were published in the works done by Soare (1981), but
it is a rather obscure reference and not widely read. The lectures were expanded at the Cornell AMS
meeting in July 1982, but not published there. Some of the analogous characteristics are these.

5.1. Human scale

A Roman arch such as the Arch of Constantine next to the Colosseum in Rome is designed to arouse
awe and to dwarf the human figure. In contrast the Loggia della Signoria in Florence is on a human
scale and designed to display statues of human size. The art and sculpture of the High Renaissance
were designed to display the human form. Analogously, the computability theory of Turing and
Post works on the integers, which can be represented as in Turing by a finite sequence of ones and
blanks. GRT works on infinite ordinals or on functionals of higher type.

5.2. Composition and balance

The paintings of the Renaissance were characterised by highly complex compositions which were
balanced to keep the eye from leaving the painting. Leonardo’s The Virgin and Saint Anne has a very
complicated and carefully designed composition around the three figures, Mary, her mother, Anne
and her son Jesus. The heads and feet form one large triangle. The arms and child form an inner
rectangle. Everything holds the eye and prevents it from leaving the painting as it might in a Baroque
painting. In classical computability, theorems such as the Friedberg Muchnik theorem are proved by

Turing and the Art of Classical Computability 69

a delicate balance of opposing requirements, positive requirements wanting to enumerate elements
into a set A and negative requirements wanting to keep elements out. These constructions are often
defined with as much intricacy and balance as a Renaissance composition. Other characteristics will
be developed in later papers.

6. Computability and recursion

Church (1936) and Kleene began to use the term ‘recursive’ to mean ‘computable’ as well as ‘induc-
tively defined’. Since Kleene was the main figure in the subject after 1940, this term had became
standard for 60 years from 1936 to 1996. By the 1990s this usage had become problematic. When
one referred to a recursive function did one mean ‘inductively defined’ or ‘effectively computable?’
Also, the term ‘recursive’ was not well understood in the mathematical and scientific community
and, if understood at all, it was identified with the elementary methods of iteration and recursion
in a first programming course. Neither Turing nor Godel ever used the word ‘recursive’ to mean
‘computable’ or ‘recursive function theory’ to name the subject. When others did, Godel reacted
sharply negatively stating, ‘the term in question [recursive] should be used with reference to the
kind of work Rosza Peter did’.

Soare (1996, 1999a) analysed the history and meaning of computability and recursion and sug-
gested that the terms ‘Computability Theory’ and ‘computably enumerable set’ be used in place of
the recursive version. This was largely adopted within a few years.

7. The art of exposition

In the art of exposition it is not sufficient to have a correct theorem with a correct proof. It must be
the right theorem with the right proof, relating the results which came before and those which will
come after in an aesthetically pleasing mix. The entire work must be artistically beautiful and must
appeal to the imagination.

The initial expositions in the study by Turing (1936) and Post (1944) were clear, intuitive and
very well motivated. In contrast, Kleene (1936) had developed the Kleene T-predicate as a Godel
coding of the Herbrand—Kleene recursive functions, which had little appeal to the imagination.
Kleene’s mathematical results were very difficult but his 7T-predicate notation was hard to read. It
dominated the proofs in the subject for over 30 years. For example, Friedberg (1957a) used the
Kleene T-predicate style proofs in his solution to Post’s problem and his completeness criterion
(Friedberg, 1957a), which made the proofs difficult to read. Compare these proofs with the informal
style of Rogers’ (1967) book’s written in a clear and intuitive style, which opened the subject to a
generation of students and which was continued in Soare’s (1987) book.

8. Conclusion

Mathematicians are not assigned projects like building bridges. Like artists, they choose which
problems to work on according to taste and beauty. Like artists, what they produce is evaluated on
the basis of beauty as well as mathematical results. The greatest results are those arising from a
completely new vision and a profound intuition into the area.

References

Church A., 1936. An unsolvable problem of elementary number theory. Am. J. Math., 58, 345-363.

Feferman S., 2007. Turing’s Thesis. Notices of the Amer. Math. Soc. 53, 1200-1206.

Friedberg, R.M., 1957. Two recursively enumerable sets of incomparable degrees of unsolvability. Proc. Natl.
Acad. Sci. USA 43, 236-238.

70 Part 1

Friedberg, R.M., 1957. A criterion for completeness of degrees of unsolvability. J. Symb. Log. 22, 159-160.

Friedberg, R.M., 1958. Three theorems on recursive enumeration: I. decomposition, II. maximal set, III.
enumeration without duplication. J. Symb. Log. 23, 309-316.

Gandy, R., 1988. The confluence of ideas in 1936. Herken, 55-111.

Godel K., 1931. Uber formal unentscheidbare sitze der Principia Mathematica und verwandter systeme.
I. Monatsch. Math. Phys. 38, 173-178.

Godel K., 1934. On undecidable propositions of formal mathematical systems. Notes by S.C. Kleene and
J.B. Rosser on lectures at the Institute for Advanced Study, Princeton, New Jersey, 1934, p. 30.

Godel K., 1995. Collected works vol. III: unpublished essays and lectures, Feferman, S., et. al. (Eds.), Oxford
Univ. Press, Oxford.

Kleene, S.C., 1936. General recursive functions of natural numbers. Math. Ann. 112, 727-742.

Post, E.L., 1944. Recursively enumerable sets of positive integers and their decision problems. Bull. Am. Math.
Soc. 50, 284-316.

Rogers, Jr., H., 1967. Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York.

Sieg, W., 1994. Mechanical procedures and mathematical experience. In: George, A. (Ed.), Mathematics and
Mind, Oxford Univ. Press, Oxford, , pp. 71-117

Sieg, W., 1997. Step by recursive step: Church’s analysis of effective calculability. Bull. Symb. Log. 3, 154—
180.

Sieg, W., 2006. Godel on computability. Philosophia Mathematica 14, 189-207.

Sieg, W., 2009. On computability. In: Irvine, A.D. (Ed.), Handbook of the Philosophy of Mathematics, Elsevier,
pp. 535-630.

Soare, R.I., 1981. Constructions in the recursively enumerable degrees. In: Lolli, G. (Ed.), Recursion Theory
and Computational Complexity, Proceedings of Centro Internazionale Matematico Estivo (C.I.LM.E.), June
14-23, 1979, in Bressanone, Italy, Liguori Editore, Naples, Italy.

Soare, R.I., 1987. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and
Computably Generated Sets, Springer-Verlag, Heidelberg.

Soare, R. I., 1996. Computability and Recursion. Bull. Symb. Log. 2, 284-321.

Soare, R.I., 1999. The history and concept of computability. In: Griffor, E.R. (Ed.), Handbook of Computability
Theory, North-Holland, Amsterdam, pp. 3-36.

Soare, R.I., 2007. Computability and Incomputability, Computation and Logic in the Real World. In: Cooper,
S.B., Lowe, B., Sorbi, Andrea (Eds.), Proceedings of the Third Conference on Computability in Europe,
CiE 2007, Siena, Italy, June 18-23, 2007, Lecture Notes in Computer Science, No. 4497, Springer-Verlag,
Berlin, Heidelberg.

Soare, R.I., 2009. Turing oracle machines, online computing, and three displacements in computability theory.
Ann. Pure Appl. Log. 160, 368-399.

Soare, R.I., 2012. Formalism and intuition in computability. In: Abramsky, S., Cooper, S.B. (Eds.), Philosoph-
ical Transactions of the Royal Society A. 370, 3277-3304.

Soare, R.I., in press a. Computability Theory and Applications: The Art of Classical Computability,
Computability in Europe Series, Springer-Verlag, Heidelberg.

Soare, R.I., in press b. Turing-post relativized computability and interactive computing. In: Copeland, J., Posy,
C., Shagrir, O. (Eds.), Computability: Gédel, Church, Turing, and Beyond, MIT Press.

Soare, R.1., in press c. The impact of Turing on computable reducibility and information content. In: Downey,
R. (Ed.), Association for Symbolic Logic Lecture Notes in Logic (CUP).

Turing, A.M., 1936.1 Turing, A.M., 1936. On computable numbers, with an application to the entschei-
dungsproblem. Proc. Lond. Math. Soc. 2 (42), 230-265. “Correction”, 43 (1937), 544-546.

Turing, A.M., 1965. Systems of logic based on ordinals. Proc. Lond. Math. Soc. 45 Part 3, 161-228. Reprinted
in Davis [1965], 154-222.

Zbllner, F.,, Thoenes, C., Taschen, B. (Eds.), 2010. Michaelangelo Life and Work, Taschen GmbH, Kéln, 2010.
ISBN: 978-3-8365-2117-8

! Many papers, Kleene (1943, p. 73; 1987a;1987b), Davis (1965, p. 72), Post (1943, p. 200) and others, mistakenly refer
to this paper as ‘Turing (1937)’. The journal states that Turing’s manuscript was ‘received on May 28 1936 and read
on November 12 1936’. It appeared in two sections, the first section of pages 230-240 in volume 42, part 3, issued on
November 30 1936, and the second section of pages 241-265 in volume 42, part 4, issued on December 23 1936. No
part of Turing’s paper appeared in 1937, but the two page minor correction (1937a) did.

Turing Machines in Miinster 71

Rainer Glaschick takes us on a trip back to —

TURING MACHINES IN MUNSTER

In the University of Miinster (Germany) existed a room with Alan Turing’s name, the Turingraum.
It contained documents and, as tangible objects, small machines made from post office relays,
designed and built by Gisbert Hasenjaeger and Dieter Rodding. While the Turingraum does no
longer exist, a number of the artefacts have been kept by the Hasenjaeger and Rédding families,
and now made accessible for analysis and maybe reconstruction.

One of these artefacts is a universal Turing machine with 16 relays, which has 4 states, 2 sym-
bols, and 3 non-erasable tapes, apparently smaller than any machine of this type known so far. Also,
it needs only 15 bits to encode a program to add a mark at the end of a chain of marks on the result
tape.

1. Introduction

The Institut fiir mathematische Logik und Grundlagenforschung of the University of Miinster in
Germany had a Turingraum, dedicated to Alan Turing’s work and the Turing machine in particular,
initiated and run from 1960 until 1985 by Gisbert Hasenjaeger and Dieter Rodding.

The Institute in Miinster was the first and for a longtime leading one in the area of mathematical
logic in Germany. It was established in 1936 by Heinrich Scholz, followed in 1953 by Hans Hermes
(until 1966) and Dieter Rodding (until 1985). H. Scholz was one of the two persons who asked Alan
Turing for a reprint of his “On computable numbers”, which, including a dedication, is still in the
archives of the University. H. Hermes is well known for his books on computability and logic, where
he established a prominent role for Turing machines. H. Hermes was also the first one who proved
under the title Die Universalitit programmgesteuerter Rechenmaschinen (Hermes, 1954) that an
idealised programmable electronic computer could be programmed to duplicate the behaviour of
any Turing machine.

The Turingraum contained a collection of physical machines that were either Turing machines or
register machines.! The devices in the Turingraum were conceived and built by Gisbert Hasenjaeger
and Dieter Rodding.

Unfortunately, the Turingraum does no longer exist, and no specific documents could be found
any more. Fortunately, Irmhild Hasenjaeger and Walburga R6dding have preserved several of those
objects. Norbert Ryska” found this out and convinced the families to entrust us the objects for further
study, which we thankfully acknowledge here.’

2. The object

The device selected for in-depth analysis has a central box and three peripherals, one peripheral
obviously being a Turing tape, see Fig. 1. This object was shown in Oxford during 2012 and then
in Paderborn in the special exhibition on Alan Turing in the Heinz Nixdorf Museum.

As E. Borger wrote in his obituary for Dieter Rodding (Borger, 1987), a universal Turing
machine was built between 1958 and 1960, which is probably the machine covered here. He also

! They are also called counter machines.
2 The director of the Heinz Nixdorf Museum.
3 Special thanks to E. Borger for his continuous support.

72 Part 1

reported from his own experience, confirmed by others, that machines of this kind were shown and
operated in lectures on computability.

The machine is shown in Fig. 1. It seemed to be a fairly complete and attractive object for
investigation. The detailed structure could be reconstructed now.

Fig. 1: Hasenjaeger’s machine.

2.1. Hardware layout

The machine has a main cabinet, with 16 relays, 3 connectors, a switch, 5 buttons and 4 lamps.
Three different kinds of ‘tapes’ can be plugged to the main box:

e Tape P, the program tape. It is a circular tape with 18 positions, that can be set by small switches.
Using a selector switch, it can be ‘moved’ in only one direction.

e Tape Q, the counter tape. Two selector switches are connected back-to-back, so that a signal is
generated iff both have the same position. It is thus a counter (modulo 18), that can be incre-
mented and decremented, and zero sensed. In terms of Turing tapes, it is an immutable tape with
a marker every 18th position.

e Tape R, the result tape.* It can be moved in both directions, but once marked, the mark cannot
be erased. Used was 35-mm film, split longitudinally, so that one border has a perforation. The
marks were punched as triangular notches at the opposite border. A lever sensed the marks, and
was raised by a magnet automatically whenever the tape was moved or punched.

The main cabinet has a fixed logic, where 4 of the 16 relays provide a two-phase clock, and the
remaining 12 relays are pairwise connected to provide 6 flipflops. Two pairs of flipflops were con-
nected in a master-slave mode, so that during one phase of the clock the information was transferred
from the master to the slave. In the other phase, the state table is evaluated using contact trees, either
moving (or marking) the tapes, and sets the master flipflops for state transitions.

Thus, the machine has a two-bit state memory; the states labelled with roman numerals I, II, III
and I'V. Four lamps show the current state, and four of the push buttons allow to directly set a state.
The other push button allows single-step advance, and the switch allows to run in continuous mode.

4 Labelled Rechenband, i.e., calculating or computing tape.

Turing Machines in Miinster 73

The reconstructed state table is shown in A. Slightly different from what Hasenjaeger wrote
(Hasenjaeger, 1987), the encoding is: 1=*, 01=R, 001=L, 000n1, where n stands for n zeroes and
* for mark. n is the the equivalent of the conditional transfer, that Wang (1957) denoted Cn, but
in our case it is a relative jump address, i.e., a skip of n instructions. As all instructions end in a
mark, the state machine skips marks on tape P, if tape R is marked; otherwise the n zeroes just read
are discarded. Because tape P is cyclic, a long-enough skip goes back, resulting in a program loop.
Because all instructions except mark have zeroes, forward jumps are possible.

2.2. Examples

The first example uses the bit pattern found on the machine, but this is not necessarily authentic, as
over the years someone may have flipped some switches just for fun.
The bit string 101101010000111100 found on the tape produces this sequence of operations:

* R* RR T #*x*x% L R * R R 1 ®xx% .,

resulting in the sequence **_x_*_x*. .. on tape R. Note that the first bit is interpreted only at the
beginning as a mark instruction; because in the other rounds, it is the end bit of the L instruction.
Also, the 1 is redundant on a blank tape, as the previous instruction has just reached a blank square.

Wang (1957) gives the following program to position onto the space at the end of a chain of
marks: 1.x 2.R 3.C2 4.R 5.L. The equivalent would be * R 3 R L, using 1 +2+4+7+2+
3 = 15 bits, but staying busy because of Wang’s convention using RL as stop or return.

Slightly modifying the machine (so that it stops if it tries to mark a marked tape), a program to
append a mark at the end of a (possibly empty) chain of marks could be done with 2 * * R, using
only 6+ 1+ 142 =10 bits.

When I began the analysis, I did not believe it would be possible to build a UTM with 16 relays
only, because according to the the very recent work of D. Woods and T. Neary (Neary, 2008; Woods
and Neary, 2009), a (4,2) UTM (in this configuration) is not yet known.?

The compactness of this machine description clearly demonstrates the superiority of Hasen-
jaeger’s and Rodding’s concept to use Wang’s programmatic method instead of the encoding of
state tables.

3. The papers

Two papers have been published by G. Hasenjaeger, which contain substantial information about
his and D. Rodding’s work on Turing machines. These papers were published relatively late;
Hasenjaeger left Miinster to become professor in Bonn in 1962.

3.1. Universal Turing machines and Jones—Matiyasevich-masking

In the article with the above title, Hasenjaeger (1984) made several remarks that are related to our
objects.
The article starts with a section Background as follows:

When I learned from reports given by BORGER (spring 1982) and JONES (fall 1982) about
a new combination of coding of sequences with coding of Boolean algebras as a tool to
describe the behaviour of register machines, I tried to apply this tool on my earlier variants
of small universal Turing machines hoping these application should lead to some sufficiently
simple solutions for exponential diophantine predicates universal for r.e. sets.

5T, Neary also accounts for the efficiency of a UTM, and I think, the number of bits to encode a certain problem is
important too.

74 Part 1

This confirms that Hasenjaeger desired to make a small universal Turing machine.
Section 4 in his paper has the title Universal Turing machines, and its complete text is as
follows:

As decoding a number (introduced as an additional argument indicating a program or a par-
ticular machine) certainly needs more states, smaller solutions are obtained by introducing
an additional program tape or program loop. Instead of targets for conditional jumps (or
”gotos”), an additional register to count the ”in between” for suspended operations seems
adequate. As besides conditional halt and jump three operations on the tape are sufficient (I,
1, print, or 1, r, change sign) hence are to be transcribed, a similar code should also serve for
a multiple counter concept: Just one counter is on duty; operations are: add 1, take 1, change
of counters in a given cyclic order.

Not only does he write about a circular program tape, there is also an alternate use of tapes, like
explained above for the tapes P and Q for the Hasenjaeger machine.

Note also the indication that state changes are coded as a distance to the next entry on the
programme tape, accumulated to and then consumed from a counter tape, instead of absolute state
numbers.

Section 5 has the title From Turing tapes to counting registers and starts as follows:

As 25 years ago finding it harder to materialize a Turing tape with an operation: change
symbol (instead of: print 1, not erasing) we introduced a multitape version: one 1 on each
tape, and moving for counting. By changing the tape “on duty” in a cyclic order all tapes can
be operated

It is not clear which machine was meant having tapes with a single mark and moving for counting,
i.e., if the tapes using selector switches were included.

More important appears the idea not to use 3n different instructions for n counter tapes to enlarge,
decrease and test, but instead 4 for enlarge, decrease, test and cyclic change. Whether this attempt
really is advantageous, depends on the problem and code, because switching to a specific register
may need up to n — 1 change instructions.

3.2. On the early history of register machines

In 1987, G. Hasenjaeger published a short note with the above title (Hasenjaeger, 1987) that had
the following footnote on the title page: This report on my collaboration with D. Rodding is not
restricted to the item on the title; but that item seems to be the most remarkable result of our
Jjoint activities. Reading it in the context of the above device, this publication reveals important
information.

The second part, with the heading Turing Machines, reveals a lot of information in relation to
Alan Turing.® In the first paragraph, the Turing machines to be built are characterised as theoretical,
i.e., not for practical use.

It is also mentioned that the people in Miinster were not aware of the practical work of Alan Tur-
ing at that time, in particular the ACE.” In the next paragraph, Hasenjaeger mentions that Wang’s
article (Wang, 1957) had a high influence on the following activities to materialise theoretical
machines.

6 G. Hasenjaeger had worked for the German military and been assigned the task of examining the security of Enigma. He
detected weak points, but he could not foresee that the Allies had long since been taking advantage of these weaknesses
(Schmeh, 2009).

7 Astonishing enough, that in 1987 Hasenjaeger mentioned the ACE, which is still unknown to many experts in this field.

Turing Machines in Miinster 75

Note the remark that the unreliablitiy of the tape punch lead to the search for alternatives, and,
via Moore’s practical proposal (Moore, 1952), to the idea of separate counting and programme
tapes, and finally perhaps to Rodding’s theoretical work on register machines and decomposition
of automata. This clearly indicates that attempts to materialise theoretical constructs can lead to
fruitful advances in theory.

The idea of alternatively scanning tapes, as mentioned here, has already been present in Hasen-
jaeger’s machine, described in detail above. I originally suspected that the fact that tape Q could
only be used in states II and IV, and tape R only in states I and III, was caused by a lack of relays
and contacts, once the 16 relays were nicely assembled. Maybe we have the not so uncommon case
that the desire to use only 16 relays lead to the idea of using tapes alternatively, which was later
more extensively used.

Hasenjaeger mentioned that Rodding already reported his results in H. HERMES’ colloquium,
when similar results of M. MINSKY [1961] became known. And some sentences later: I think
we were angry enough not to go into MINSKY’s details. Thus, I realised only much later that
these details were quite different. This is quite a pity, as his (4,2) UTM should have been pub-
lished, not only for the small size, but also for the observation that using Wang’s programme
oriented encoding was also practically superior over the traditional attempt of encoding state tables.®
E. Borger remembered (Borger, 1987) in this context that the unreliability of the first tape drive rose
the desire to avoid punching, and became the abstract task to use a fixed, finite maximum of marks
on a tape, leading Hasenjaeger and Rodding to the idea of using a tape with a single immutable
marker as a counter.

Noting that using counters is a basic building block for Turing machines, D. R6dding followed
this idea to use (infinite) counters to define computability, not only because this model made it easier
to teach computability at elementary level. The final version used only two operations, increment
and decrement, with just a (backwards) loop if the decremented register is not yet zero. He published
a very clear and comprehensible description (Rodding, 1972) in German. Early publications on
register machines are by Minsky (1961), and Shepherdson and Sturgis (1963), the latter citing the
above mentioned proof of Hermes (1954) at the end of Section 1.

4. Conclusion

From the legacy of G. Hasenjaeger and D. R6dding, a small machine, made from old relays, was
obtained, which was used to practically demonstrate Turing machines. Restricted to really small
machines and due to difficulties in building tape drives, a machine was built with a mark-only
result tape, a counter tape and a read-only program tape. Using this configuration, a (4,2) UTM was
built that could encode a simple program in only 15 bits of the program tape. This was achieved
not by encoding state tables, but by following H. Wang’s theoretical proposal of using programs
instead. The use of relative instead of absolute (preferably backward) jumps mirrored the transi-
tion to structured programming, and influenced D. Roddings final concept of register (or counter)
machines.

5. State machine

The reconstructed state table is printed below. State numbers are in arabic digits, column 1 shows
the state number, column 2 the conditions for the tapes P, Q and R (dot means do not care), column
3 shows the actions (dot for no action) and column 4 the next state (dot for no state change):

S PQR PQR S~

8 In an early version of this paper, I started to argue that using state tables is more efficient, as it allows more actions to
be done in parallel. While this is true for hardware logic, it is obviously is wrong for programs on Turing tapes.

76 Part 1

I: P=1 is punch, P=0 other instruction
1 1.0 +.% . mark if not marked, next instruction 1 1.1 +.. . no
need to mark if marked, next instruction 1 0.. +.. 2 other
instruction, take the 0

I[T: R, L or other; Q is zero on entry
2 10. +.R 1 go right, next instruction 2 00. ++. . save 0 in
Q, check next P bit 2 11. +-L 1 next P bit is 1, go Teft, clear
Q, next inst. 2 01. +-. 3 next P bit is 0, this is a skip

ITI: skip part 1: count zeroes to Q, if mark
30.0+.. . R has space, skip zeroes until P=1 3 0.1 ++. . R has
mark, count zeroes until P=1 3 1.0 +.. 1 end found; R has space:
next instruction 3 1.1 .+. 4 end found; R has mark, need to skip

IV: skip part 2: execute
4 01. +.. . while Q>0, skip zeroes on P, leave Q 4 11. +-.
while Q>0, skip a one, decrement Q 4 .0. ... 1 Q=0, next
instruction

Remark:

Meanwhile, some of Hasenjaeger’s notes and a bidirectional uniselector have been found, show-
ing that the machine was built for a bidirectional tape P. Thus, in the state table for state 4 tape P is
advanced backwards instead of forwards:

S PQR PQR S’
4 01. -.. . while 0Q>0, skip zeroes backwards on P, leave Q
4 11. --. . while Q>0, skip a one backward, decrement Q

4 0. +.. 1 Q=0, end of backjump

The machine still never did jump conditionally, until today, when we have built a new
bidirectional tape P from material left by Hasenjaeger.

References

Borger, E., 1987. D. Rodding: Ein Nachruf., Jber.d.dt.Math.-Verein. 89, 144-148. http://dml.math.
uni-bielefeld.de/JB_DMV/JB_DMV_090_3.pdf

Hasenjaeger, G., 1984. Universal Turing machines (UTM) and Jones—Matiyasevich-Masking. In: Borger, E.,
Hasenjaeger, G., Rodding, D. (Eds.), Logic and Machines: Decision Problems and Complexity, vol. 171
of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 248-253. http://dx.doi.org/10.1007/3-
540-13331-3_44.

Hasenjaeger, G., 1987. On the early history of register machines. In: Borger, E. (Ed.), Computation Theory
and Logic, vol. 270 of Lecture Notes in Computer Science Springer Berlin/Heidelberg, 181-188.
http://dx.doi.org/10.1007/3-540-18170-9_165.

Hermes, H., 1954. Die Universalitit programmgesteuerter Rechenmaschinen, Mathematisch-Physikalische
Semesterberichte der Universitit Gottingen 4, 42-53.

Minsky, M.L., 1961. Recursive unsolvability of Post’s problem of “Tag” and other topics in theory of Turing
machines. Ann. Math. 74 (2), 437-455, ISSN 0003-486X.

Moore, E.F, 1952. A simplified universal Turing machine. In: Proceedings of the 1952 ACM
national meeting (Toronto), ACM ’52, ACM, New York, NY, USA, pp. 50-55. http://doi.acm.org/ 10.1145/
800259.808993.

Neary, T., 2008. Small universal Turing machines, Ph.D. thesis, NUI, Maynooth.

Rodding, D., 1972. Registermaschinen, Der Mathematikunterricht 18, 32—41, ISSN 0025-5807.

http://dml.math.uni-bielefeld.de/JB_DMV/JB_DMV_090_3.pdf
http://dml.math.uni-bielefeld.de/JB_DMV/JB_DMV_090_3.pdf
http://dx.doi.org/10.1007/3-540-13331-3_44
http://dx.doi.org/10.1007/3-540-13331-3_44
http://dx.doi.org/10.1007/3-540-18170-9_165
http://doi.acm.org/10.1145/800259.808993
http://doi.acm.org/10.1145/800259.808993

Reflections on Wittgenstein’s Debates with Turing 77

Schmeh, K., 2009. Enigmas contemporary witness: Gisbert hasenjaeger, cryptologia 33, 343-346, ISSN 0161-
1194, doi:10.1080/01611190903186003.

Shepherdson, J.C., Sturgis, H.E., 1963. Computability of recursive functions. J. ACM 10, 217-255, ISSN
0004-5411. http://doi.acm.org/10.1145/321160.321170.

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. ser. 2. 24, 230-265.

Wang, H., 1957. A variant to Turing’s theory of computing machines. J. ACM 4, 63-92, ISSN 0004-5411,
http://doi.acm.org/10.1145/320856.320867.

Woods, D., Neary, T. 2009. The complexity of small universal Turing machines. Theor. Comput. Sci. 410,
443-450.

From K. Vela Velupillai —

REFLECTIONS ON WITTGENSTEIN’S DEBATES
WITH TURING DURING HIS

Lectures on the Foundations of Mathematics'

Andrew Hodges (2008) recalled Max Newman’s characterisation of Alan Turing as ‘at heart more
an applied than a pure mathematician’, and went on (p. 4; italics added):

“It might be more true to say that Turing had resisted this Cambridge classification from
the outset. He attacked every kind of problem — from arguing with Wittgenstein, to the
characteristics of electronic components, to the petals of a daisy.”

This prompts me to return to Turing’s ‘debates’ with Wittgenstein — now remembering Max
Newman’s characterisation — during the latter’s Lectures on the Foundations of Mathematics
(Wittgenstein, 1939) [1976]. It is little realised — indeed, to the best of this writer’s knowledge,
never mentioned — that when Turing attended these lectures, in the Lent and Easter terms of 1939,
he was the young (Turing was not quite 27 years old and Wittgenstein turning a vintage 40!) author
of Systems of logic based on ordinals (Turing, 1939) where ‘ways in which systems of logic may be
associated with constructive ordinals’ (couched in the language of the A-calculus) was a main theme.
Feferman, in his perceptive Preface to ‘Systems of Logic’ (Turing, 2001, p. 79) observed, correctly
in my opinion: Turing never tried to develop an over-all philosophy of mathematics...’ Yet, he
(Turing) was engaging one of the great philosophers of the twentieth century on his (Wittgenstein’s)
interpretation — even ‘deconstruction’ — of Cantor’s work on Transfinite Numbers!

It is a pity that in these famous lectures by Wittgenstein, Turing was ‘set up’ as the ‘strawman’
representing orthodox mathematics and mathematical logic, defending the conventional notion of
consistency (not related to its specialised version in the Godel-Rosser work) in mathematics. Had

1T write as an economist who is painfully aware that uninformed references to this dialogue between one of the great
philosophers and the pioneer of computability recur in the methodological literature of economics (cf., e.g., the muddled
invoking of a particular part of this famous dialogue by McCloskey (1991, pp. 13-4)).

http://dx.doi.acm.org/10.1145/321160.321170
http://dx.doi.acm.org/10.1145/320856.320867
http://dx.doi.org/10.1080/01611190903186003

78 Part 1

the protagonists been privy to the Newman—Hodges picture of Alan Turing, who ‘began (and ended)
with the physical world’ (Hodges, op.cit., p. 4), the subsequent misrepresentation of Wittgenstein’s
stance” may have been prevented.

The context for the particularly (in)famous part of the Wittgenstein—Turing dialogue on consis-
tency/contradiction in mathematics (and mathematical logic), may well be the original few remarks
in Wittgenstein (op.cit, pp. 211-212, Lecture XXII; italics added):

It was suggested last time [i.e., Lecture XXI] that the danger with a contradiction in logic or
mathematics is in the application. Turing suggested that a bridge might collapse.

Now it does not sound quite right to say that a bridge might fall down because of a
contradiction [in logic or mathematics].”

Now, to place this in proper historical perspective, compare Stanislaw Ulam’s dialogue with Gian-
Carlo Rota on collapsing bridges and logical contradictions (Rota, 1986, p. 2; italics added):

“However, out of curiosity I [Rota] decided to play devil’s advocate, and watch his reaction.

But if what you [Ulam] say is right, what becomes of objectivity, an idea that is so defini-
tively formalized by mathematical logic and by the theory of sets, on which you [Ulam]
yourself have worked for many years of your youth?

There was a visible emotion in his [Ulam’s] answer. Really? What makes you [Rota] so sure
that mathematical logic corresponds to the way we think?® You are suffering from what
the French call a ‘deformation professionelle.” Look at the bridge over there. It was built
following logical principles. Suppose that a contradiction were to be found in a set theory.
Do you honestly believe that the bridge might fall down?

Do you [Ulam] then propose that we give up mathematical logic? said I [Rota], in fake
amazement.

Quite the opposite [said Ulam]. Logic formalizes only very few of the processes by which
we actually think*. The time has come to enrich formal logic by adding to itsome other
fundamental notions-.”

In the years before Laurent Schwartz elegantly encapsulated the Dirac delta function® with his
notion of generalised functions, von Neumann had ‘banished’ it from ‘official’ use in physics and

2 Most egregiously represented by Charles Chihara (1977), only partially blunted by Shanker’s brilliant counterattack in
Shanker (1987).

3 Brouwer had been there, and Wittgenstein may have remembered it, long before them, and had remarked, in his
Inaugural Lecture of 1912 (Brouwer, 1913, p. 84; italics added), most perceptively:

“To the philosopher or to the anthropologist, but not to the mathematician, belongs the task of investigating why certain
systems of symbolic logic rather than others may be effectively projected upon nature. Not fo the mathematician, but to
the psychologist, belongs the task of explaining why we believe in certain systems of symbolic logic and not in others,
in particular why we are averse to the so-called contradictory systems in which the negative as well as the positive of
certain propositions are valid.”

4If, at this point, Ulam had added ‘and act’, he would have completely encapsulated Wittgenstein’s prescription for
circumventing contradictions in mathematics and logic by means of ‘rules’.

5 The original journal article has ‘motions’, but the context makes it clear that what is meant is ‘notions’.

6 Dirac himself attributed the origin of the idea to his ‘early engineering training’ (cf., Kragh, 1990, p. 41) — surely
paralleling both Wittgenstein’s early training as an aeronautical engineer and Turing’s above characterisation by Newman
and Hodges.

Reflections on Wittgenstein’s Debates with Turing 79

quantum mechanics for being mathematically ‘improper’. Meanwhile, physicists, with princely
unconcern for the prestigious embargo placed on the delta function, went on happily using it for
calculations. Engineers, of course, were blissfully unaware of von Neumann’s prestige or embargo
and went on calculating with the Heaviside operational calculus.

So far as I know, neither the Feynman Integral, nor Bishop’s constructivism, have been axioma-
tised. This has not prevented perfectly valid calculations using Feynman integrals in quantum
electrodynamics. For all we know, there are, lurking in the inner recesses of the Platonic Universe,
the eventually discoverable logical foundations, which will show that the use of the Feynman inte-
gral entails contradictions. No quantum physicist in his right mind would pay the slightest attention
to such logical hair-splitting (cf., also Schwartz, 2001, Chapter VI).

I am suggesting, therefore, that a sympathetic reader (an always elusive creature), should
approach this famous dialogue between a great philosopher of, among other things, mathemat-
ics, and a great logician and founding father of computability theory, remembering that both of
these intellectual giants were also, fundamentally, wedded to the ‘physical world’ — one with an
explicit engineering background and the other as an ‘applied mathematician’, both camouflaging as
logicians and mathematicians perplexed by semantic paradoxes and grammatical nuances that they
thought could be sorted out by dialogue.

References

Brouwer, L.E.J., 1913. Intuitionism and Formalism, Bull. Am. Math. Soc. 20 (2), 81-96.

Chihara, C., 1977. Wittgenstein’s Analysis of the Paradoxes in His Lectures on the Foundations of Mathemat-
ics, Philos. Rev. 86 (3), 365-381.

Cooper, S.B., Lowe, B., Sorbi, A., 2008. New Computational Paradigms: Changing Conceptions of What is
Computable, Springer, New York.

Feferman, S., 2001. Preface to: Systems of logic based on ordinals. In: Gandy, R.O., Yates, C.E.M. (Eds.),
Collected Works of A.M. Turing — Mathematical Logic, North-Holland, Amsterdam.

Hodges, A., 2008. Alan Turing, logical and physical. In: Cooper, et al., 2008, pp. 3—15.

Kragh, H. S., 1990. Dirac: A Scientific Biography, Cambridge University Press, Cambridge.

McCloskey, D. N., 1991. Economic science: a search through the hyperspace of assumptions? Methodus
3 (1) 6-16.

Rota, G.-C., 1986. In memoriam of Stan Ulam: the barrier of meaning. Physica D, 2 (1-3), 1-3.

Schwartz, L., 2001. A Mathematician Grappling with His Century, Birkhduser Verlag, Basel.

Shanker, S. G,, 1987. Wittgenstein and the Turning-Point in the Philosophy of Mathematics, State University
of New York Press, Albany, NY.

Turing, A.M., 1939. Systems of logic based on ordinals, Proc. Lond. Math. Soc., Series 2, 45, 161-228.

Turing, A.M., 2001. Collected Works of A.M. Turing: Mathematical Logic, Gandy, R.O., Yates, C.E.M. (Eds.),
North-Holland, Amsterdam.

Wittgenstein, L., (1939) [1976]. Wittgenstein’s Lectures on the Foundations of Mathematics — Cambridge
1939. In: Diamond, C. (Ed.), The University of Chicago Press, Chicago.

80 Part 1

Jan van Leeuwen and Jiri Wiedermann on —

THE COMPUTATIONAL POWER OF TURING’S
NON-TERMINATING CIRCULAR A-MACHINES

1. Introduction

For readers familiar with the concept of Turing machines as described in contemporary textbooks,
reading the definition of a Turing machine in Turing’s original paper (Turing, 1936) may present a
surprise. It is not only the difference in notational style or in the vocabulary used when speaking
about these machines (called ‘automatic machines’, or simply ‘a-machines’), which may be surpris-
ing. Astonishing may be the fact that properly designed a-machines never halt. a-Machines of this
kind are called circle-free and their task is to output infinite sequences of binary digits representing
computable real numbers € [0, 1]. Obviously, for computing the infinite expansions of real numbers
such a behaviour is perfectly desirable. Nevertheless, Turing noted that there may also be machines
— so-called circular machines — which at some point stop producing output digits, i.e., they alto-
gether produce only a finite number of output digits. This may happen in two different ways. Either
the machine at hand reaches a configuration from which there is no possible further move, or the
machine goes on moving without producing any further output digits.

The modern versions of circle-free a-machines are still being used as a formal model in so-called
computable analysis, a field in which one studies the parts of real analysis and functional analysis
that can be carried out in a computable manner (cf. Weihrauch (2000)).

The circular a-machines that terminate, i.e. that halt after performing a finite number of steps
yield the basis of today’s computability and complexity theory. In fact, they are the forerunner of
the contemporary Turing machine model.

Non-terminating circular a-machines run forever but produce only a finite number of output
symbols. It seems that no special attention has been paid to such machines. From a classical compu-
tational point of view, the machines are strange: in spite of the fact that their computation is infinite,
they are doomed to produce but a finite number of outputs. Turing himself proved that the property
of circularity of a-machines cannot be tested effectively by any other a-machine. What could such
machines be good for?

Recently, we have investigated a new computational model of unbounded computational
processes — so-called red-green Turing machines (van Leeuwen and Wiedermann, 2012).

The motivation for considering red-green Turing machines comes from the modern, typical
computer applications in which the core mechanism is a multi-process system that is always up
and running. Control goes from process to process and, whenever a process has its turn, the pro-
cess computes until it executes an instruction that explicitly transfers control to another process.
We have studied and appraised computationally the mechanism of control passing among the pro-
cesses in the course of unbounded computation. The computing power of red-green Turing machines
goes beyond that of classical Turing machines, reaching up to the second levels of the arithmetical
hierarchy, viz. A, or even X».

We will show that red-green Turing machines can be seen as a modern variant of Turing’s
original circular non-terminating a-machines producing a finite number of output symbols. This

The Computational Power of Turing’s Non-Terminating Circular a-Machines 81

connection between the two models gives a new link between Turing’s 1936 paper and contempo-
rary computing. The connection straightforwardly leads to the characterisation of the computational
power of the underlying a-machines and thus reveals an unexpected super-Turing computational
potential of an authentic, ‘old-fashioned’ machine model of Turing.

The rest of this short note is organised as follows. In Section 2 we describe both models —
circular non-terminating a-machines producing a finite number of output symbols and red-green
Turing machines — in more detail. Next we prove their computational equivalence. In Section 3 we
discuss the significance of our result. Some conclusions are given in Section 4.

2. a-Machines and red-green Turing machines

2.1. a-Machines

Using the contemporary terminology of Turing machines, an a-machine can be seen as a
deterministic single tape Turing machine with working alphabet ¥ and input and output alphabet
A ={0,1}, with ¥ N A # (. In Turing’s terminology, symbols from A are called ‘figures’ or symbols
of the first kind, whereas the symbols from X are called symbols of the second kind.

The input — a string from {0, 1}* — is written on the tape at the beginning of the computation. The
computation of an a-machine now proceeds as usual, reading, writing and rewriting the symbols on
the tape and moving the head in accordance with the machine’s program. At each time, the sequence
of symbols from A printed on the tape (as a subsequence of all symbols printed by the machine) is
called the sequence computed by the machine (cf. Turing (1936)), or simply the result at that time.

In Turing’s own words (Turing, 1936): “If a computing machine never writes down more than a
finite number of symbols of the first kind it will be called circular. Otherwise it is said to be circle-
free. A machine will be circular if it reaches a configuration from which there is no possible move,
or if it goes on moving, and possibly printing symbols of the second kind, but cannot print any more
symbols of the first kind.”

Thus, a circular a-machine is a machine which on a given input prints a finite number of output
symbols (not necessarily into different cells), and then either halts, or goes on forever, performing
an infinite number of steps in which no output symbol is printed anymore.

2.2. Red-green Turing machines

A red-green Turing machine is formally almost identical to the classical model of Turing machines.
The only difference is that in red-green Turing machines the set of states is partitioned in two disjoint
subsets: the set of green states, and the set of red states, respectively. There are no halting states.
A computation of a red-green Turing machine proceeds as in the classical case, changing between
green and red states in accordance with the transition function. A moment of change in state color
is called a mind change. A formal language is said to be recognised just in case on the inputs of
this language and precisely those, the machine computations ‘stabilise’ in green states, i.e., from a
certain time on, the machine keeps entering only green states. Similarly, a language is said to be
accepted if and only if the inputs from the language are recognised, and the computations on the
inputs not belonging to this language eventually stabilise in red states.

The model captures in a neat way a main feature of the current thinking of computing: namely,
viewing computations as potentially infinite sequences of communications between processes,
oscillating between different states of mind but ultimately converging on a fixed behaviour.

82 Part 1

2.3. Relation between a-machines and red-green Turing machines

For our purpose — comparing red-green machines with a-machines — we will only consider deter-
ministic single tape red-green machines over input/output alphabet A computing partial functions
f:{0,1}* — {0, 1}*. The result of computation will be defined similarly as in the case of a-machines.
More specifically, if for input x f(x) is defined, f(x) will be written in binary as a finite sequence of
symbols over A, as a subsequence of all symbols printed on the tape. If f(x) is undefined then f(x)
is represented by an infinite sequence.

THEOREM 2.1. Let A be a circular a-machine, let R be a red-green Turing machine, and let f
{0,1}* — {0, 1}* be a partial function. Then f is computed by A if and only if f is computed by R
with f (x) mind changes.

Proof. (Sketch.) We show that, if f is computed by a non-terminating circular a-machine A, then f
can be computed by a red-green machine R performing f(x) mind changes.

On input x, machine R works as follows. Each time A prints an output symbol, R prints the same
symbol, and changes state to red and then to green. If A has no move from some configuration, then
‘R switches to a red state and starts cycling in that state.

If A prints a finite number f(x) of symbols without termination, then R accepts x in f(x)
mind changes and stabilises in a green state. If .4 keeps on producing an infinite number of out-
put symbols, then f(x) is undefined and obviously, R keeps changing its mind infinitely often as
well.

Obviously, R computes f and, if f(x) is a finite number, then R computes f(x) in f(x) mind
changes.

Conversely, let R be a machine accepting x with f(x) mind changes. Obviously, at the occasion
of each mind change R can add one to the current number of mind changes and the total number
presents R’s current output (we assume that output symbols can be rewritten). Thus, after f(x)
mind changes the output from R represents the value of f(x). Simulation of R by A is then a
straightforward matter.

If x is not accepted by R then R oscillates forever between red and green states and thus
A produces an infinite number of outputs, effectively rejecting the input x for which f(x) is
undefined. O

3. Significance of the result

By equating the computations of non-terminating circular a-machines with those of red-green Tur-
ing machines, we have opened a way of appraising the computational power of the former model
via the latter. Results for this model are available.

The idea of the red-green computing goes back to the very notion of computability. This con-
nection is strengthened by the present result that links red-green computing to the authentic ideas
of Turing on computing. The original concept of computability, established in the middle of the
twentieth century, has been established in the period of ideas on function calculation. But com-
putational systems nowadays have a number of features that extend beyond pure function value
calculation. The concept of red-green computations specifically addresses one important feature of
contemporary usage of computers, viz. unbounded computations of multi-process systems. Sev-
eral models of infinite computations have been studied in the past, as a natural generalisation
of the classical notion of computations, without having any particular ‘realistic’ computational
model of infinite computations in mind. Along these lines, without entering into details, let us
mention Gold’s notion of limiting recursion (Gold, 1965, 1967), and Putnam’s related notion
of trial-and-error predicates, inductive computing (Burgin, 1983), various kinds of w-automata
(Biichi, 1962; Rabin, 1969; Staiger, 1997; Thomas, 1990), tae-computing Hintikka and Mutanen

The Computational Power of Turing’s Non-Terminating Circular a-Machines 83

Table 1 Approaches to Unbounded Computation.

Model of Computation Level Reference year
Non-term. circ. a-machines Yo, Iy Turing (1936), this paper 1936
Number-theoretic predicates Arithmetic sets Kleene (1943) 1943
Oracle Turing machines All sets Turing (1939) 1939
Trial-and-error predicates Ay Putnam (1965) 1965
Limiting recursion Ap Gold (1965) 1965
Iterated limiting recursion Ay Schubert (1974) 1974
Alternating Turing machines Arithmetic sets Chandra et al. (1981) 1976
w-Turing machines NA Cohen and Gold (1978) 1978
Inductive Turing machines Arithmetic sets Burgin (1983) 1983
Tae-computability p) Hintikka and Mutanen (1988) 1988
Infinite time Turing machines ~ Hyper-arithmetic sets ~Hamkins and Lewis (2000) 2000
Accelerating Turing machines NA Copeland (2002) 2002
Relativistic computing Ay, 2o Etesi and Nemeti (2002) and
Wiedermann and van Leeuwen
(2002)

SAD computers Arithmetic sets Hogarth (2004) 2004
Zeno machines NA Potgieter (2006) 2006
Display Turing machines A3 Rovan and Steskal (2007, 2009) 2007
Red-green Turing machines ¥y, Iy van Leeuwen and Wiedermann (2012) 2012

(1988), and display Turing machines with control (Rovan and Steskal, 2007,2009) . Also, so-called
hypercomputers have been inspired by relativistic physics, cf. Hogarth (2004), Welch (2008), Wie-
dermann and van Leeuwen (2002). At the heart of all these alternative approaches to unbounded
computations, the complexity classes of the arithmetical hierarchy have repeatedly emerged as
the classes characterising the computational power of the underlying models, in particular the
classes Ay and X,. An overview on various approaches to unbounded computations is given in
Table 1.

In preliminary studies we have investigated various aspects of red-green computations from the
viewpoint of the computability theory. For example, it appears (van Leeuwen and Wiedermann,
2012) that the computational power of red-green Turing machines increases with the number of
mind changes allowed (it climbs along the so-called Ershov hierarchy, cf. Cooper (2004), Ershov
(1968) and Rogers (1967)). Also, for any finite number of mind changes red-green Turing machines
recognise languages in ¥, and accept languages from Aj;. In fact, computations of red-green
Turing machines exactly characterise the latter two classes. This, together with the similar results
achieved with the help of other machine or logical models of unbounded computation mentioned
in the beginning of this section, suggests that, due to their simplicity and mathematical elegance,
red-green Turing machines can serve as a bridging model among the various alternative models
of potentially infinite computations. Moreover, another interesting result is that red-green Turing
machines can elegantly and straightforwardly be simulated by relativistic Turing machines (Etesi
and Nemeti, 2002; Wiedermann and van Leeuwen, 2002); (and vice versa). This indicates the rela-
tion of red-green computing to hypercomputing. An overview of the known results on red-green
Turing machines can be found in van Leeuwen and Wiedermann (2012). The first results are encour-
aging and it is nice to see, retrospectively, that the core ideas essentially have their roots in the
Turing’s work.

84 Part 1

4. Conclusion

It is symptomatic that the hallmarks of modern computing have appeared in the mathematical work
of Turing whose primary aim initially was to define the notion of computability rather than to lay
down the theoretical fundamentals of computing machinery. (Turing himself was among the first to
realise the impact of the latter later on.) In particular, Turing’s a-machines were tailored to infinite
rather than finite computations. This, together with the prevailing use of computers nowadays, has
opened a way towards considering problems up to A, or even X, computable by unbounded pro-
cesses, as we have tried to show in this note. These considerations may change our attitude towards
what is computable. Would this trend lead to an extension of the notion of computability?

Acknowledgements

This research was partially supported by Czech National Science Foundation Grant No.
P202/10/1333 and institutional research plan AV0Z10300504.

References

Biichi, J.R., 1962. On a decision method in restricted second order arithmetic. In: Logic, Methodology and
Philosophy of Science, Proceedings of the 1960 International Congress, Nagel, E., Suppes, P., Tarski, A.,
Stanford University Press, Stanford, pp. 1-11.

Burgin, M., 1983. Inductive Turing Machines, Notices Acad Sci USSR, 270:6 1289-1293 (translated from
Russian, v. 27, No. 3).

Burgin, M., 2005. Super-recursive Algorithms, Springer, Berlin, Heidelberg.

Chandra, A.K., Kozen, D.C., Stockmeyer, L.J., 1981. Alternation, J. ACM 28 (1) 114-133.

Cohen, R.S., Gold, A.Y., 1978. w-Computations on Turing machines, Theor. Comput. Sci. 6 (1), 1-23.

Copeland, B.J., 2002. Accelerating turing machines. Minds Machines 12, 281-301.

Cooper, S.B., 2004. Computability Theory, Chapman & Hall/CRC, Boca Raton, London, New York.

Ershov, Y.L., 1968. A certain hierarchy of sets I. Algebra i Logika 7 (1) 47-74 (Russian), Algebra and Logic
7:1 (1968) 25-43 (English translation).

Etesi, G., Nemeti, I., 2002. Non-Turing computation via Malament-Hogarth space-times. Int. J. Theor. Phys.
41 (2), 341-370.

Gold, E.M., 1965. Limiting recursion. J. Symb. Log. 30 (1) 28-48.

Gold, E.M., 1967. Language identification in the limit. Inf. Control 10 (5) 447-474.

Hamkins, J.D., 2000. A. lewis, infinite time turing machines. J. Symb. Log. 65 (2) 567-604.

Hintikka, J. Mutanen, A., 1988. An alternative concept of computability. In: Hintikka, J. (Ed.), Language,
Truth, and Logic in Mathematics, Kluwer, Dordrecht, pp. 174—188.

Hogarth, M., 2004. Deciding arithmetic using SAD computers. British J. Phil. Soc. 55, 681-691.

Kleene, S.C., 1943. Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53 (1) 41-73.

Potgieter, P.H., 2006. Zeno machines and hypercomputation. Theor. Comput. Sci. 358, 26-33.

Putnam, H., 1965. Trial and error predicates and the solution to a problem of Mostowski. J. Symb. Log. 30 (1)
49-57.

Rabin, M.O., 1969. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math.
Soc. 141, 1-35.

Rogers, Jr., H., 1967. Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York.

Rovan, B., Steskal, L., 2007. Infinite computations and a hierarchy in A3. In: Cooper, S.B., Léwe, B., Sorbi, A.
(Eds.), Computability in Europe, Lecture Notes in Computer Science, vol. 4497, Springer, Berlin, pp. 660—
669.

Rovan, B., Steskal, L., 2009. Infinite computations and a hierarchy in A3 reconsidered. J. Log. Comput. 19
(1), 175-176.

Schubert, L.K., 1974. Iterated limiting recursion and the program minimization problem. JJACM 21 (3), 436—
445.

Turing’s Approach to Modelling States of Mind 85

Staiger, L., 1997. w-Languages. In: Rozenberg, G., Salomaa, A. (Eds.), Handbook of Formal Languages, Vol
3: Beyond Words, Springer, Berlin pp. 339-387.

Thomas, W., 1990. Automata on infinite objects. In: van Leeuwen, J. (Ed.), Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Semantics, Elsevier, Amsterdam, pp. 133-192.

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. Ser. 2 (42) 230-265.

Turing, A.M., 1939. Systems of logic based on ordinals. Proc. Lond. Math. Soc. Ser. 2 (45) 161-228.

van Leeuwen, J., Wiedermann, J., 2012. Computation as an unbounded process. Theoretical Computer Science
429, 202-212.

Weihrauch, K., 2000. Computable Analysis: An Introduction, Springer-Verlag, Berlin/Heidelberg.

Welch, P.D., 2008. The extent of computations in Malament-Hogarth spacetimes. Br. J. Phil. Sci. 59 (4), 659-
674.

Wiedermann, J., van Leeuwen, J., 2002. Relativistic computers and non-uniform complexity theory. In: Calude,
C.S., Dinneen, M.J., Peper, F. (eds.), Unconventional Models of Computation (UMC’2002), Lecture Notes
in Computer Science, Vol. 2509, Springer, Berlin, pp. 287-299.

Meurig Beynon puts an empirical slant on —

TURING’S APPROACH TO MODELLING
STATES OF MIND

In discussing Turing’s seminal 1936 paper, the Stanford Encyclopedia of Philosophy, http://plato
.stanford.edu/entries/turing/, highlights the way in which his conception of the ‘Turing Machine
(TM)’ was guided by the idea of modelling states of mind: ‘... in a bolder argument, the one he
placed first, he considered an “intuitive” argument appealing to the states of mind of a human
computer (Turing, 1936, p. 249). The entry of “mind” into his argument was highly significant, but
at this stage it was only a mind following a rule.’

There are two respects in which the subsequent treatment of TMs in mainstream computer
science has sidelined ‘intuitive’ elements:

e The TM is viewed as the fundamental mathematical abstraction in a theory of computer science
that is based on ‘computational thinking’.

e Computer science has promoted the computational theory of mind, which proposes that
everything the human mind does is attributable to following rules.

In combination, these two viewpoints promote a narrow conception of computer science; they
respectively root computing in an abstract machine model with a strict formal semantics and set out
to show that such a model is enough to give a good account of its core applications.

Throughout the short history of computer science, it has suited the political purposes of an
emerging discipline to emphasise its connections with Turing’s work — one of the supreme intellec-
tual achievements of the twentieth century. But perhaps it is not so clear that computer science as
currently conceived truly fulfils Turing’s aspirations for a science of computing.

As Hodges (2004) points out, Turing’s vision was broader than that of a mathematical logician:
‘The essence of Turing’s achievement was the discovery of a concept with an application to logic,
rooted in ideas which lay outside mathematics’ and, unlike ‘Church’s Thesis’, ‘Turing’s definition

http://plato.stanford.edu/entries/turing/
http://plato.stanford.edu/entries/turing/

86 Part 1

[of computability] was modeled on what human beings could actually do’. Also, as Hodges (2004)
goes on to observe: ‘[After 1948] Turing did ... surprisingly little ... to build up the modern science
of computation’.

As for Turing’s stance on the contribution that computational abstractions make to our under-
standing of mind, there are many clues in his discussion of ‘“The Imitation Game’ in Turing (1950).
It is clear that Turing sees the isssue of whether an interrogator might be deceived into attributing
a machine’s responses to a human as a limited question, and not one that decisively illuminates
the nature of mind. For instance, he acknowledges that other concerns about the mind might be
beyond the scope of his enquiry: ‘I don’t wish to give the impression that I think there is no mystery
about consciousness ... [b]ut I do not think these mysteries necessarily need be solved before we
can answer the question with which we are concerned in this paper’. Even in relation to his con-
tention that a computer could succeed in ‘The Imitation Game’, Turing (1950) is careful to point out
that — despite the rebuttals he gives in response to objections to this possibility: ‘The reader will have
anticipated that [have no very convincing arguments of a positive nature to support my views’.

Hodges (1988) refers elsewhere to the ‘trenchant materialist and atheist Turing who emerged
after 1936°, and it is perhaps these characteristics that have been most emphasised in subsequent
building upon his legacy. In that context, it may seem surprising that, in rebutting counter-arguments
to the idea that a computer might successfully play ‘The Imitation Game’, Turing (1950) remarks:
‘The Argument from Extrasensory Perception] is to my mind quite a strong one’. But this is more
explicable if, as Hodges (1988) advocates, ‘we recognize [in Turing] the common thread — a great
seriousness about the sheer mystery of mental phenomena, and an equally serious conviction that
they must be reconciled with a scientific world view’.

As the Stanford Encyclopedia of Philosophy quotation above emphasises, Turing’s treatment of
states of mind was conceived with a view to modelling ‘a mind following rules’, as was appropriate
for addressing the Entscheidungsproblem: a Turing machine should model procedures ‘definite in
the sense that at every stage a completely explicit “note of instructions” could be written down
explaining what was to be done in such a way that another person could take up the work’
(Hodges, 1988). Beyond question, Turing’s insight informed the practical contributions he made
to the development of computer programming. For instance, it gives a deep meaning — deeper than
a programmer needed to appreciate — to the statement with which he prefaced his General Remarks
on Electronic Computers in his Manual for the Ferranti Mk. I computer Turing (1951): ‘Electronic
computers are intended to carry out any definite rule-of-thumb process which could have been done
by a human operator working in a disciplined but unintelligent manner’. It also led him to identify
the importance in programming of more disciplined use of mathematical notation (Turing, 1944-5).

But — to take nothing away from the extraordinary fertile nature of Turing’s insight, and
what has been, and can yet be, achieved within the framework of computational models in many
disciplines — it seems likely that Turing himself did not consider the broader issue of the nature
of mind to be closed. To quote Hodges (1988) once again: ‘... we cannot feel that Turing had
arrived at a complete theory of what he meant by modelling the mental functions of the brain by
a logical machine structure’. Significantly, in the spirit of an applied mathematician, Turing gave
high priority to squaring mathematical theory with empirical evidence and practical applicability.
In this connection, Hodges (2004) contrasts Turing’s approach to enhancing discrete computational
models as models of physical systems through introducing randomness with ‘that of some mod-
ern theorists, who seek to outdo discrete computation by exploiting the very elements that Turing
made little of” and whose approaches lead to difficulties that render them ‘meaningless without
stability and robustness in the face of infinitesimal phenomena’. As further testimony to Turing’s
practical orientation, we need only consider the degree of direct involvement he wanted in building

Turing’s Approach to Modelling States of Mind 87

early computers, his contributions to code-breaking and speech recognition, and his concern to take
account of the inevitability of operational error in theorising about computers (Hodges, 2004).

It may be that, by imputing greater authority to mechanical models of mind than Turing himself
would have decisively endorsed, today’s students of computer science are in danger of identifying
mathematics with a blind process of inference such as can be carried out by a machine. Such a
concern is raised by Byers (2007), for instance, in motivating his account of mathematical practice.
Turing’s biographers describe him as a mathematician ‘[whose] native style was rough-and-ready
and prone to minor errors’ (Feferman, 2006) for whom the notion of ‘intuition’ had a particular
fascination (cf. his mathematical work on the Riemann hypothesis (Hodges, 1988)). If this seems
to be at odds with the demystification of effective procedures that he achieved in his own work,
an instructive parallel may be drawn with his older contemporary Emil Post, who concluded his
paper ‘Absolutely unsolvable problems and relatively undecidable propositions’ (written in 1941,
but only published posthumously (Post, 1965)) by expressing his amazement at the reaction to
Godel’s undecidability results in the following terms:

“... mathematical thinking is, and must be, essentially creative. It is to the writer’s continuing
amazement that ten years after Godel’s remarkable achievement current views on the nature
of mathematics are thereby affected only to the point of seeing the need of many formal
systems, instead of a universal one. Rather has it seemed to us to be inevitable that these
developments will result in a reversal of the entire axiomatic trend of the late nineteenth and
early twentieth centuries, with a return to meaning and truth.”

To the end of his life — in the spirit of Post’s injunction — Turing seems to have been motivated
to seek significance beyond an abstract logical interpretation for his TM concept. In realising his
vision for computation, he felt the essential need to establish the connection with physical reality.
Hodges (1988) cites Penrose’s summary of Turing’s position in 1950: ‘It seems likely that he viewed
physical action in general — which would include action of a human brain — to be always reducible
to some kind of Turing-machine action’. As Hodges (1988) later goes on to relate, this was to be
an unresolved problem for Turing, who recognised the challenge presented by the indeterminacy
principle in quantum mechanics.

It is hard to imagine how the academic discipline of computer science would have emerged
without Turing’s contribution. In his work, Turing showed extraordinary prescience in relation to
many aspects of the ‘computer programming’ related activity that has been the central focus of
academic computer science throughout its history. But, at the time of his death, the transformative
impact of computers and programming could hardly have been predicted. And in the same way that
mathematics demands a broader account than formal systems can supply, so too does contempo-
rary computing. In concluding this brief review, it is appropriate to look at ways in which modern
computing and the science of computing to which we must now aspire is influenced by other per-
spectives on modelling human states of mind. This conclusion reflects the author’s own research
interest, under the auspices of the Empirical Modelling (EM) project http://www.dcs.warwick.ac.uk/
modelling, in seeking a broader alternative conceptual framework for computing.

Turing (1950) asserts that the problem of developing a digital computer that can succeed at The
Imitation Game ‘is mainly one of programming’. In the context of modern software development,
it has become apparent that ‘the problem of programming’ cannot be understood in a narrow sense.
One of the most critical aspects of software development is that of binding meanings to artefacts that
ostensibly are — or are to be — specified purely in computational terms. The idea that such seman-
tic considerations can be comprehensively addressed by formal computational semantics has been

http://www.dcs.warwick.ac.uk/modelling
http://www.dcs.warwick.ac.uk/modelling

88 Part 1

criticised by reviewers representing many different perspectives. They include the expert software
consultant Michael Jackson (2006), the distinguished computer scientist Peter Naur (1985) and the
philosopher Cantwell-Smith (2002). The common theme in these, and other critiques, is that formal
semantics can only go so far in mediating meanings in the software development process, especially
where the activity involves ‘radical design’ (cf. Jackson (2006); Vincenti (1993)).

Whereas it suited Turing’s (1936) purpose in addressing his mathematical objective to consider
human states of mind associated with carrying out a calculation, quite different kinds of states of
mind feature in modern software development involving radical design. Such a development process
has to take account of the perspectives of many human participants whose understanding is mediated
in quite different ways from those of the traditional ‘human computer’: they cannot be expected to
appreciate the full purposes or context for actions, to be able to interpret formal notations reliably,
or to be able to communicate their wishes abstractly without reference to actual experience that
can only be had and skills that can only be developed for instance by interacting with a prototype
system. And even though the functional goal and the process itself may be clearly specified, the
practical situated knowledge needed to enact the process may itself be difficult to access — as when
we try to make a pot of tea in a neighbour’s house, and have to contend with finding the ingredients
(‘where are the tea bags?’), identifying the utensils we need (‘is that a teapot?’), and determining
how to configure these (‘where do I plug this in?’). In developing software for reactive systems,
this exploratory activity may take yet more extreme forms: in configuring devices and tuning their
responses, it as if we are investigating the feasibility of constructing the very hardware on which
our programs are to be executed (Beynon et al., 2006).

The duality that separates ‘the given already engineered computing device’ from ‘the to-be-
specified abstract sequence of instructions to be performed on the device’ is characteristic of the
computational framework within which Turing was reasoning. Turing (1950) exploits this character-
istic when he identifies The Imitation Game as ‘drawing a fairly sharp line between the physical and
the intellectual capabilities of a man’, and stipulates that ‘the interrogator cannot demand practical
demonstration’.

An instructive comparison can be made between Turing’s approach to modelling the mind of a
human computer and that conceived by David Gooding (1990) in his account of Faraday’s seminal
experimental work on electromagnetic phenomena. In interpreting the way in which this activity
was conducted, Gooding (2001) introduced the notion of ‘construals’ as ‘proto-interpretative repre-
sentations which combine images and words as provisional or tentative interpretations of novel
experience ... [that is] being created ... through the interaction of visual, tactile, sensorimotor
and auditory modes of perception together with existing interpretative concepts including mental
images’. Such construals can be regarded as a means to knowledge representation in spirit similar
to that advocated by Rodney Brooks (cf. Brooks (1991a) and Brooks (1991b)). Gooding (2001)
invokes his research into Faraday’s use of construals in his critique of the ‘profoundly mistaken’
notion ‘that systematic, rational thought is or can be separate from the world that it seeks to under-
stand, manipulate or control’. In collaboration with Addis et al. (2008), Gooding builds on this work
to propose a broader notion of computer science embracing ‘irrational sets’ that ‘require the use of
an abductive inference system’.

Of the computer-based innovations that have been developed post-Turing, the spreadsheet
is perhaps the one that is most directly connected with the ‘modelling of states of mind’ that
Turing (1936) discussed. For instance, a spreadsheet can be viewed as a particularly effective way
to represent human states of mind at the interface between the user and the computational process.
Several of the characteristic themes that Hodges (1988) identifies in Turing’s vision of the TM also
seem to be relevant to the spreadsheet concept. The spreadsheet exemplifies ‘the blending of the

Turing’s Approach to Modelling States of Mind 89

mechanical and the psychological’ (Hodges, 1988). Through the dependency relations it character-
istically maintain, the spreadsheet embodies the notion of being determined (Hodges, 1988) as this
is understood in two complementary ways — as in the automatic recalculation of a cell value (e.g.
profit) from an arithmetic formula (e.g. profit = income — expenditure), and as in the mind of the
spreadsheet user, who apprehends ‘profit’ as indivisibly connected with ‘income’. What is more,
there is a closer correspondence between the current state of the spreadsheet and the mental state
of the spreadsheet user than in a conventional TM or procedural programming model, where the
variables that are intended to record meaningful quantities (e.g. ‘profit’ and ‘income’) are routinely
assigned intermediate values that are inconsistent with their real-world semantics. In keeping with
Turing’s aspirations for modelling states of mind, as characterised by Hodges (1988), this com-
mends the spreadsheet as ‘a new level of description based on the idea of discrete states [such that]
this level (rather than that of atoms and electrons, or indeed that of the physiology of brain tissue)
[is] the correct one in which to couch the description of mental phenomena’.

A spreadsheet captures the human calculator’s state of mind in a quite different sense from a TM.
For the user of a spreadsheet, the state of interest has to do with the real-world semantics (‘how will
the price of petrol affect my profit?’) rather than the routine computational semantics (‘how is the
formulae relating profit to the cost of petrol evaluated?’). The chief virtue of the spreadsheet is that
it renders the mechanics of computation invisible, throwing its significance to the user into sharper
relief.

Unlike a computational semantics, the real-world semantics of the spreadsheet is informal and
pragmatic in character. Appreciating its state requires knowledge of the context (e.g. ‘to what does
profit refer?’), skill in associating cells with their referents (e.g. ‘which cells record income and
profit?’) and in knowing how to carry out the interactions that disclose, maintain and probe mean-
ings (e.g. how to change the price of petrol, how to revise the formula that define income and profit
in response to changes in the tax laws, and how to carry out ‘what if?’ experiments). The speed
with which computational updates are effected, the way in which key values are disposed in the
spreadsheet grid and the level of familiarity of the user all contribute to the quality of the spread-
sheet as a model of a state of mind. Turing (1936) himself discusses such issues in motivating his
conception of the Turing machine: expressing concern in choosing his representations for numbers
about symbols that ‘cannot be observed at one glance’ and insisting that changes to the squares
being observed ‘must be immediately recognisable by the computer’. This is evidence that focusing
exclusively on formal mathematical interpretations of TMs fails to do justice to the subtlety of his
thinking. Indeed, Turing (1950, p. 15) himself expresses a related concern about facile interpreta-
tions of logic when he refers to ‘a fallacy to which philosophers and mathematicians are particularly
subject ... the assumption that as soon as a fact is presented to a mind all consequences of that fact
spring into the mind simultaneously with it’.

The goal of the EM project is to identify principles and develop tools to support a broader view of
computing. Such a view takes account of roles for human agents richer than those of a ‘human com-
puter’. EM puts its primary focus on computer-based artefacts, similar in character to the construals
introduced by Gooding in his work on the history of science, rather than ‘computer programs’.
An EM construal is framed with reference to three basic concepts: observables, dependencies and
agents. These concepts have approximate counterparts in spreadsheets in - respectively - the cells,
the relationships between cell values established by definitions, and the diverse modes of redefini-
tion that are associated with state changing actions, both manual and automated, in connection with
spreadsheet development and use. In keeping with the ‘what if?” character of a spreadsheet, an EM
construal is archetypally associated with the state of mind of a human experimenter involved for

90 Part 1

example in the kind of activity that Friedrich Steinle (1997) identifies as ‘exploratory experimenta-
tion’ that ‘is driven by the elementary desire to obtain empirical regularities and to find out proper
concepts and classifications by means of which those regularities can be formulated’.

The relationship between the EM and TM models of states of mind is best understood by consid-
ering how exploratory activities can engineer functional machine-like entities in the world. This is
illustrated by the way in which — as conceived by Gooding (1990) — Faraday elaborated his constru-
als in engineering the first prototype electric motor. EM principles for software development exploit
construals in a similar way: first in enabling the exploratory sense-making activities that disclose
patterns of interaction, agency and interpretation that can be reliably revisited, and then in configur-
ing the situation and exercising discretion in interaction so as to establish program-like behaviours
(Beynon et al., 2006). The way in which a machine-like abstraction is here identified through a
conceptual shift of viewpoint on a situation that has first been suitably engineered is something that
Turing appreciated in relation to his ‘discrete-state machines’: ‘These are the machines which move
by sudden jumps or clicks from one quite definite state to another. These states are sufficiently differ-
ent for the possibility of confusion between them to be ignored. Strictly speaking, there are no such
machines. Everything really moves continuously. But there are many kinds of machine which can
profitably be thought of as being discrete-state machines. For instance in considering the switches
for a lighting system it is a convenient fiction that each switch must be definitely on or definitely
off. There must be intermediate positions, but for most purposes we can forget about them’.

In Addis et al. (2008) take inspiration from the use of construals in scientific practice but invoke
the Peircean notion of abduction to arrive at a computational framework that is framed, like Turing’s,
in logical terms. EM gives an account of computing similar in spirit to that of Addis and Gooding in
key respects but radically different in that — following William James (1912/1996) — the semantics
of model building is squarely rooted in experience. In line with James’s concept of ‘radical empiri-
cism’, the fundamental premise of EM is that every instance of knowing is a connection made in the
present experience of an individual, and all semantic relationships must be in some way traceable
to such instances. As a model for a state of mind, an EM construal is characterised by the patterns
of observables, agencies and dependencies that it embodies. This is unlike a logical specification
such as is expressed by abstracting variables and declaring the constraints to which they are subject.
Like a spreadsheet, an EM construal represents both a current state and latent germs of change that
express expectations that rely upon contextual guarantees that can never be absolute.

It is impossible to say whether Turing would have been sympathetic to such approaches to
placing his fundamental contribution in a broader conceptual frame. But beyond question, Turing’s
own style of thinking was in some respects well matched to a pragmatic philosophical stance. And
where some have made grand theoretical claims for the TM concept in relation to computer science
and the mind, Turing’s own outlook and working practices put the emphasis on real and topical
problems, on engaging with engineering issues and on ideas under construction, and appeal to the
empiricist as well as to the logician. The remark that concludes his paper on Computing Machin-
ery and Intelligence (Turing, 1950) testifies to the live, creative and adventurous qualities of his
imagination: “We can only see a short distance ahead, but we can see plenty there that needs to be
done’.

Acknowledgements

I am much indebted to the many contributors to the EM research project, and especially to Steve
Russ for key ideas that have motivated this paper.

Turing’s Approach to Modelling States of Mind 91

References

Addis, T., Addis, J.T., Billinge, D., Gooding, D., Visscher, B.-F., 2008. The abductive loop: tracking irrational
sets. Found. Sci. 13(5), 5-16.

Beynon, W.M,, Boyatt, R.C., Russ, S.B., 2006. Rethinking programming. In: Latifi, S. (ed.), Proceedings of the
IEEE Third International Conference on Information Technology: New Generations (ITNG 2006), April
10-12, 2006, Las Vegas, Nevada, USA 2006, pp. 149-154.

Brooks, R.A., 1991a. Intelligence without representation. Artif. Intell. 47, pp. 139-159.

Brooks, R.A., 1991b. Intelligence without reason. Proceedings of the 12th International Joint Conference on
Artificial Intelligence - Volume 1, IJICAI-91, Morgan Kaufmann Pub. Inc., San Francisco, CA, pp. 569-595.

Byers, W., 2007. How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create
Mathematics. Princeton University Press.

Cantwell-Smith, B., 2002. The foundations of computing. In: Scheutz, M. (Ed.), Computationalism: New
Directions. MIT Press, Cambridge, MA, pp. 23-58.

Feferman, S., 2006. Turing’s thesis. Notices Am. Math. Sci. 53(10), 1200-1206.

Gooding, D., 1990. Experiment and the Making of Meaning: Human Agency in Scientific Observation and
Experiment. Kluwer, Dordrecht.

Gooding, D., 2001. Experiment as an instrument of innovation: Experience and embodied thought. In:
Beynon, Nehaniv, and Dautenhahn (Eds.), Proceedings of the 4th International Conference on Cognitive
Technology: Instruments of Mind. Springer LNCS, Vol. 2117, pp. 130-140.

Hodges, A., 1988. Alan Turing and the Turing machine. In: Rolf Herken (Ed.), The Universal Turing Machine.
A Half-Century Survey, Oxford University Press, Oxford.

Hodges, A., 2004. Alan Turing: the logical and physical basis of computing. In: Proceedings of Alan Mathison
Turing 2004: A Celebration of His Life and Achievements, Manchester University, 5 June, 2004. BCS
eWiC Series, http://www.bcs.org/content/conWebDoc/17127

Jackson, M.A., 2006. What can we expect from program verification? IEEE Comput., 39(10), 53-59.

James, W., 1912/1996. Essays in Radical Empiricism (Reprinted from the original 1912 edition by Longmans,
Green and Co., New York), London: Bison Books.

Naur, P.,, 1985. Intuition in software development. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher, J.W. (Eds.),
Mathematical Foundations of Software Development, Proceedings of the International Joint Conference on
Theory and Practice of Software Development (TAPSOFT), Berlin, Germany, March 25-29, 1985, Volume
2. Lecture Notes in Computer Science 186, Springer, pp. 60-79.

Post, E., 1965. Absolutely unsolvable problems and relatively undecidable propositions. In: M. Davis (Ed.),
The Undecidable — Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable
Functions, Raven Books, New York.

Steinle, F., 1997. Entering new fields: exploratory uses of experimentation. Phil. Sci. 64 (Proc.), pp. S65-S74.

Turing, A.M.. 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. London
Math. Soc. 42(2), 230-265.

Turing, A.M., 1944-45. The Reform of Mathematical Notation (unpublished, in Collected Works).

Turing, A.M., 1950. Computing machinery and intelligence, Mind 49, 433-460.

Turing, A.M., 1951. Programmers’ Handbook for the Manchester Electronic Computer Mark II (1st ed.), Com-
puting Machine Laboratory, Manchester University, c. March 1951. Digital facsimile in The Turing Archive
for the History of Computing at http://www.AlanTuring.net/programmers_handbook.

Vincenti, W.C.. 1993. What Engineers Know and How They Know It: Analytical Studies from Aeronautical
History. The Johns Hopkins University Press, Baltimore.

Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/turing/

The EM website at url: http://www.dcs.warwick.ac.uk/modelling

http://www.bcs.org/content/conWebDoc/17127
http://www.AlanTuring.net/programmers_handbook
http://plato.stanford.edu/entries/turing/
http://www.dcs.warwick.ac.uk/modelling

92 Part 1

Henk Barendregt and Antonio Raffone explore —

CONScCIOUS COGNITION AS A DISCRETE,
DETERMINISTIC AND
UNIVERSAL TURING MACHINE PROCESS!

1. Systems with states

It is often maintained that the brain-as-computer metaphor is ill taken. Nevertheless one can view
conscious cognition as a Turing machine process, with its discrete, deterministic and universal
aspects. Not being familiar to the language of science one may object to the claim that computation
plays an important role in the life of humans (and in fact all animals). Nevertheless, for goal-directed
movements fast and accurate (unconscious) computations are necessary. Sensory input has to be
transformed to output in the form of adequate action. Cognitive scientists, who are aware of the
need for computation, still may object to the computer metaphor. Indeed, our brain is not a network
of Boolean switches and it does neither have numerical input nor output. Our claim is that it is
nevertheless useful to interpret cognition as a hybrid Turing machine process.

Modelling systems (machines or living organisms) the notion of ‘state’ is important. Only
considering stimulus-reaction (Input, Action) transitions, we get

I— A (1.1)

This ‘behaviouristic’ view has limited possibilities. Actual systems can react differently to the same
input. To model this difference, inspired by Turing machines, one introduces states, modifying
(1.1) to

IxS—AXS. (1.2)

Now the output may depend also on the state. This will be elaborated below.

2. The Turing machine: processes and computation

A Turing machine is a theoretical model of ad hoc computing devices, including the universal Turing
machine,” after which the modern digital computers are built. It consists of a potentially two-sided
infinite tape’ with memory cells, a movable reading/writing head placed on one of the cells, and a
finite set S of states. The cells each contain a symbol from a finite input alphabet I (set of symbols).
Each specific Turing machine is determined by:

Hyooistp : I XS A XS, 2.1)

! Added in print. After acceptance for publication of this commentary we found out that in Zylberberg et al. (2011)
overlapping ideas have been presented.

2 The universality means that just one machine can simulate the behaviour of all other ones by giving it various programs.

3 In modern computers a disc or flash memory is used instead of a tape. The infinity of the tape was proposed by Turing
in order to be technology independent. But each computation on a Turing machine uses only a finite amount of memory.

Conscious Cognition as a Discrete, Deterministic and Universal Turing Machine Process 93

where we have the following

I =set of possible inputs (symbols)
the head may read on the tape at its location,
S =set of possible states,
A ={L,R,W(a)}, the set of possible actions:
L =moving head left (or the tape moves right),
R =moving head right (or the tape moves left),
W (a) =overwriting present location with symbol a € I.

For example a machine M can have a,b in I and 51,52 in S, and transition rules

1 (a,s1)|—>(R,s2)
f: (b,s1)—>(W(a),s2)

with the following meanings.

t: if M reads an a in state 51, then
the reading head moves one cell to the right and M enters state s2;

t: if M reads a b in state s, then
it (over)writes (this b with) an a and M enters state s».

With a Turing machine one can run processes and perform computations.

A computation starts with an input. In the Turing machine this is represented as a finite sequence
of data, elements of I, written on consecutive cells of the tape. The other cells are blank (also
considered as an element of the alphabet I). The read/write head is located at a particular cell of
the tape and the machine is in an initial state gg. The machine performs the actions according to its
transition rules, until no more rule applies and the machine ‘halts’. The resulting contents on the
tape is considered as the output of the computation.

Turing made it plausible that any kind of mechanical computation can be performed in such
a way. Moreover, he constructed a single Turing machine UM, the Universal Machine, that can
simulate an arbitrary Turing machine M. Wanting to simulate the computation of M on input i,
notation M (i), one can construct a program pys for M such that for all input i one has

UM (py,i) = M(i).

This means that UM requires an extra argument, the program code pys, next to the given argu-
ment i. Turing used it to define a problem that cannot be answered by the computation of any Turing
machine and hence not by any computation.

A process is like a computation, but without the requirement that there is a final state in which the
machine comes to a halt. So computations are special processes focused on termination; processes
in general are focused on continuation. The usefulness of processes can be seen by giving some of
the cells on the tape a special status: for input (‘sensors’) and for output (‘actuators’) from and to
the outside world. A factory involving heating devices, thermometers, and safety valves, may be
controlled in this way by a Turing machine acting as process.

The process (or computation) taking place in a Turing machine is discrete and deterministic: it
consists of a stream of distinct steps, only depending on the input.

3. The neural Turing machine

From the description of a process it is clear that life (humans, animals and even plants) can be
thought of as processes. In artificial intelligence (AI) one tries to emulate these processes. There are

94 Part 1

the two views in Al, one the symbolic rule based Simon and Newell (1958), and the connectionist
one related to Turing (1948) and Hillis (1989). Simon and Newell state that intelligence works
in a discrete serial way following specific rules. The connectionists state that cognition uses the
parallelism of ‘neural nets’ and not a sequential system. In the hybrid version of Turing machines
presented below, the sequential machine will get transition rules programmed by a parallel neural
net, providing a useful unification for understanding human cognition.

Let us review the model of the Turing machine. A particular such machine is determined by a
finitely specified transition map (2.1). Now we slightly change the interpretation of this notation.

I = now stands for sensory input,
S = set of possible states,
A = now stands for actions, including neural excitation for
movement and focussing attention,
= the transition determined by a neural net.

We do have a non-essential extension. No longer is [a finite alphabet, but a virtually unbounded
set of inputs from the world. It still is essentially finite by the limitations of our senses. In a Turing
machine the set / is typically of size 2", with n < 10; in human cognition it is orders of magnitude
bigger. The same applies to the set A. This set directs bodily movements, speech or mental action.

Another feature that happens in the brain is that whilst we are processing, our processor does
change. This includes development and is essential for homo sapiens. This seems like a proper
extension of the notion of a Turing machine. But thanks to the existence of a universal Turing
machine this is not so. Instead of (N stands for the neural net determining the transitions and A can
act on N)

IxS—N>AxS 3.1

one can employ the universal machine and write the equivalent

Ixpyx§ —= AxS.
UM

Now it becomes possible that the A act on the program py. In ordinary computing this is not advis-
able, as it is difficult to reason about the resulting effects. But in the neural evolution it fits perfectly
well.

In the resulting model of cognition the set of states S plays an important role. Rather than seeing
human cognition in a stimulus response fashion like in (1.1), as was fashionable in the behaviourist
days of last century, the cognitive model (3.1) shows the essence of states. A ‘state’ is a mathe-
matical concept: giving the same input—output relation. We know empirically that attention and
emotions greatly influence these states. Under the same circumstances these inner state can make
of a human being a saint, a scientist, a Scrooge or worse. It should be noted that the model (3.1)
is discrete. Conscious cognition is a stream of separate phenomena, taking place in time. We will
come back to this in the next section.

4. Conscious cognition: discrete temporal frames

A currently influential model of human conscious cognition is the global workspace (GW) theory
(Baars, 1998; Baars et al., 2003). In this model, conscious cognition enables an access to a varying
subset of brain sources.

A neuronal underpinning for the GW model has been developed in Dehaene and Naccache
(2001). It is characterised by a winner-take-all dynamics, forming a ‘neural processing bottleneck’,
involving ‘broadcasting’ activity from prefrontal cortex to neurons on a global scale in the brain.

Conscious Cognition as a Discrete, Deterministic and Universal Turing Machine Process 95

Only one large-scale reverberating neural assembly is assumed to be active at any given moment.
This crucially involves the thalamocortical pulse and imposes a temporal resolution for the stream
of conscious cognition, needing at least 100 ms for a perceptual awareness moment.

Independently, based on psychophysical, neurophysiological and electrophysiological findings,
Varela et al. (2001) postulate that a specific large-scale neural assembly underlies the emergence
and operation of each conscious cognitive act. Such assemblies occur in the thalamocortical system,
using closed-loop signalling with periods of 100-300 ms, see Tononi and Edelman (1998). This is
consistent with the earlier behavioural evidence of the psychological refractory period, based on
minimal temporal resolutions (Welford, 1952), about 150 ms.

On the other hand, Efron (1973) suggested, based on psychophysical evidence, that conscious
cognition is temporally discrete and parsed into sensory sampling intervals or ‘perceptual frames’,
estimated to be about 70—-100 ms in average duration. More recently, based on psychophysical and
electrophysiological evidence, the range 70-100 ms has been interpreted as an attentional object-
based sampling rate for visual motion (van Rullen and Koch, 2006). This rate could be related to
a sequence of shorter temporal processes, needed for unconscious treatment of sensory and other
input, see van Rullen and Koch (2003) for a review. It may provide an estimate of the rate at which
temporal representations at an unconscious level can be accessed (van Wassenhove, 2009).

To reconcile the framing of conscious cognition with the apparent continuity of perceptual expe-
rience, John (1990) suggested the following mechanism. A cortical convergence of a cascade of
momentary perceptual frames establishes a steady-state perturbation from baseline brain activ-
ity. This idea has received substantial support from electroencephalographic (EEG) studies. The
dynamics of the EEG field is represented by intervals of quasi-stability or ‘microstates’, with sudden
transitions between them (Strik and Lehmann, 1993).

5. Conscious cognition: mind states

According to Baars” GW theory (Baars et al., 2003), sensory cognition works as follows. Input as
signals from the sensory cortex are amplified by attention and become ‘contents’ of consciousness.
After this amplification, feed back to the sensory cortex takes place to enable conscious access to
the contents themselves, in a recurrent GW process. See Dehaene and Naccache (2001) and Lamme
(2003).

In this process ‘contextual’ brain systems play a role in shaping conscious events. These include
the ‘where’ and ‘what’ pathways in the parietal cortex for visual processing, see Milner and Goodale
(2008). Regions of prefrontal cortex appear to do the same for other aspects of experience, including
emotional, goal-related and self-representation aspects (Baars et al., 2003). Also the insula appears
to play a crucial role as body- and feeling-related contextual system for awareness (Craig, 2009).
More in general, as shown by behavioural research, affective states, including moods and emotions,
provide a inner context guiding different forms of human judgment and cognitive processing, see
Clore and Huntsinger (2007) for a review. These contexts can be considered as mind states, not only
determining actions, but also the next input via selective attention. Selectivity in turn stems from
current goals represented in prefrontal cortex (Duncan, 2001) and can ultimately be related to the
current mind state. In a synthetic view, apart from inputs from sensory fields, inputs to the GW come
from the GW output itself, see also Maia and Cleeremans (2005), depending on a given mind state.

In a TM controlling an industrial process the input is determined solely by the world. This is
not so in human emotional cognition, where attention plays an input selecting role. Therefore mind
states are themselves the ground for conscious cognition, not just a context. By their broadcasting,
‘speaking to the audience’ in Baars’ theatre metaphor, they have the greatest influence on the brain
state as a whole, and on (intentions for) action and thinking.

The brain substrates for mind states are potentially wider than those for the GW, with an overlap
with the latter, and with the inclusion of various kinds of unconscious contextual systems supporting
conscious cognition. The neural substrates for longer lasting emotional mind states plausibly also
include the cerebrospinal fluid, as discussed in the paper by Veening and Barendregt (2010).

96 Part 1

6. Trained phenomenology

The temporally discrete view of conscious cognition stemming from psychophysical and neuro-
scientific experiments, and models of conscious cognition, can be related to Buddhist psychology,
based on trained phenomenology (insight meditation). Also in this theory, conscious cognition is
described as a deterministic stream of successive ‘pulses’, with object and a state, see von Rospatt
(1995).

Mindfulness, which can be conceived as a moment by moment reflexive awareness, is described
as providing psychologically wholesome mind states. Being meta-awareness it is universal (as in
a TM) and can bring flexibility in the co-determination of mind states and conscious processes.
Mindfulness plausibly is supported by adaptive coding regions in prefrontal cortex (Raffone and
Srinivasan, 2009). An effective way to influence the outcome of this deterministic process is to
choose the right input. This can be done by training our attention, which chooses input and thereby
the mind states. This is exactly what happens during the mental development of insight meditation:
training concentration and mindfulness.

7. Conclusion

Behavioural and neurophysiological experiments and also trained phenomenology all point in the
direction of conscious cognition as a discrete process depending on input and states. This is very
similar to the Turing model of general computability. In fact, the hybrid Turing machine model of
human conscious cognition captures well the recursive aspects mentioned in 5 and gives a logical
interpretation of the notion of determinacy, emphasised both in cognitive science and Buddhism.
This does not exclude free will, see, e.g. Dennett (2004).

References

Baars, B., 1998. Metaphors of consciousness and attention in the brain. Trends Neurosci. 21, 58-62.

Baars, B., Ramsoy, T., Laureys, S., 2003. Brain, conscious experience and the observing self. Trends Neurosci.
26, 671-675.

Clore, G., Huntsinger, J., 2007. How emotions inform judgment and regulate thought. Trends Cogn. Sci. 11,
393-399.

Craig, A., 2009. Emotional moments across time: a possible neural basis for time perception in the anterior
insula. Philos. Tran. Royal Soc. Lond. B 364, 1933-1942.

Dehaene, S., Naccache, L., 2001. Towards a cognitive neuroscience of consciousness: basic evidence and a
workspace framework. Cognition 79, 1-37.

Dennett, D.C., 2004. Freedom Evolves. Penguin, London, New York.

Duncan, J., 2001. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2,
820-829.

Efron,R., 1973. Conservation of temporal information by perceptual systems. Percept. Psychophys. 14, 518-530.

Hillis, D., 1989. The Connection Machine. MIT Press, Cambridge, MA, USA.

John, E.R., 1990. Machinery of the Mind: Data, Theory, and Speculations About Higher Brain Function.
Birkhauser, Boston.

Lamme, V., 2003. Why attention and awareness are different. Trends Cogn. Sci. 7, 12-18.

Maia, T. V., Cleeremans, A., 2005. Consciousness: converging insights from connectionist modeling and
neuroscience. Trends Cogn. Sci. 9, 397-404.

Milner, A., Goodale, M., 2008. Two visual systems re-viewed. Neuropsychologia 46, 774-785.

Raffone, A., Srinivasan, N., 2009. An adaptive workspace hypothesis about the neural correlates of conscious-
ness: insights from neuroscience and meditation studies. Progress in Brain Research 176, 161-180.
Prog Brain Res. 2009;176:161-80.

Simon, H. A., Newell, A., 1958. Heuristic problem solving: the next advance in operations research. Oper. Res.
6 (1), 1-10.

Strik, W., Lehmann, D., 1993. Data-determined window size and space-oriented segmentation of spontaneous
eeg map series. Electroencephalogr. Clin. Neurophysiol. 87, 169-174.

Tononi, G., Edelman, G., 1998. Consciousness and complexity. Science 282, 1846-1851.

Virtual Machinery and Evolution of Mind (Part 1) 97

Turing, A.M. 1948. Intelligent Machinery. National Physical Laboratory Report. In: Meltzer, B., Michie, D.
(eds) 1969. Machine Intelligence 5. Edinburgh: Edinburgh University Press, 3-23. Reproduced with the
same pagination in Ince 1992.

van Rullen, R. Reddy, L., Koch, C., 2006. The continuous wagon wheel illusion is associated with changes in
electroencephalogram power at 13 hz. J. Neurosci. 26, 502-507.

van Rullen, R., Koch, C., 2003. Is perception discrete or continuous? Trends Cogn. Sci. 7, 207-213.

van Wassenhove, V., 2009. Minding time in an amodal representational space. Philos. Trans. Royal Soc. B 364,
1815-1830.

Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase synchronization and large-
scale integration. Nat. Rev. Neurosci. 2, 229-239.

Veening, J. G., Barendregt, H. P.,, 2010. The regulation of brain states by neuroactive substances distributed
via the cerebrospinal fluid; a review. Cerebrospinal Fluid Research 2010, 7:1, doi:10.1186/1743-8454-7-1.
<www.cerebrospinalfluidresearch.com/content/7/1/1>

von Rospatt, A., 1995. The Buddhist Doctrine of Momentariness: A Survey of the Origins and Early Phase of
this Doctrine up to Vasubandhu. Stuttgart, Franz Steiner Verlag.

Welford, A. T., 1952. The ‘psychological refractory period’ and the timing of high speed performance — a
review and a theory. Br. J. Psychol. 42, 2-19.

Zylberberg, A., Dehaene, S., Roelfsema, P. R., Sigman, M., 2011. The human Turing machine: a neural
framework for mental programs. Trends in Cognitive Sciences, 15, 293-300.

Aaron Sloman develops a distinctive view of —

VIRTUAL MACHINERY
AND EVOLUTION OF MIND (PART 1)

1. Virtual machines and causation

The idea of implementing one Turing machine in another can be seen as a precursor of the increas-
ingly important idea of a virtual machine running in a physical machine. Some features of virtual
machinery that are potentially relevant to explaining the evolution of mind and consciousness will be
discussed, including their causal powers and the differences between implementation and reduction.

One of Turing’s achievements was the specification of a Universal Turing Machine (UTM)
within which any other Turing machine could be emulated by specifying its properties on the tape
of a UTM (Turing, 1936). This led to proofs of important theorems, e.g. about equivalence, decid-
ability and complexity. It can also be seen as a precursor of what we now call virtual machinery
(not to be confused with virtual reality). I shall try to show how the combination of virtuality, causal
interaction and (relative) indefinability can produce something new to science. My part 2 (in Part 4
of this volume) will present implications regarding evolution of mind and consciousness.

2. Virtuality

The UTM idea established that a computing machine can run by being implemented as a virtual
machine in another machine. (I think the gist of this idea was understood by Ada Lovelace a century
earlier.) The mathematical properties of a Turing machine’s trajectory through its state space will
not depend on whether it is run directly in physical machinery or as a virtual machine implemented
in another computation. This has proved immensely important for theorems of meta-mathematics

http://www.cerebrospinalfluidresearch.com/content/7/1/1
http://dx.doi.org/10.1186/1743-8454-7-1

98 Part 1

and computer science and for some of the practicalities of using one computer for multiple pur-
poses, including time-sharing. One of the consequences is that a Turing machine implementing
another Turing machine can also be a virtual machine implemented in a UTM: so that layered
implementations are possible.

In the decades following publication of Turing’s paper, engineering developments emerged in
parallel with mathematical developments, with some consequences that have not received much
attention, but are of great philosophical interest and potentially also biological import. I will suggest
in Part 2 that biological evolution ‘discovered’ many of the uses of virtual machinery long before
we did. Unfortunately, the word ‘virtual’ suggests something ‘unreal’ or ‘non-existent’, whereas
virtual machines can make things happen: they can be causes, with many effects, including phys-
ical effects. To that extent they, and the objects and processes that occur in them, are real not
virtual!

A possible source of misunderstanding is the fact that among a subset of computer scientists the
label ‘virtual machine’ refers to software implementations of ‘real’, ‘physical’ machines which they
accurately simulate (Popek and Goldberg, 1974). The notion of ‘virtual machine’ used in this paper
includes machines whose operations cannot all be defined in terms of physical properties, although
they are all implemented in physical machinery, and can interact with and control physical machin-
ery. These virtual machines should not be regarded as surrogates for ‘real’ physical machines. They
are real enough, in their causal powers, despite being virtual.

3. Causation and computation

Causation is a crucial aspect of the engineering developments in computing, as I'll now try to
explain. It is possible to take any finite collection of Turing machines and emulate them running
in parallel, in synchrony, on a UTM. This demonstrates that synchronised parallelism does not
produce any qualitatively new form of computation. The proofs are theorems about relationships
between abstract mathematical structures including sequences of states of Turing machines — and
do not mention physical causation. A running physical machine can be an instance of such an
abstract mathematical structure. However, being physical it can be acted on by physical causes, e.g.
causes that alter its speed. Moreover, as remarked in Sloman (1996), standard computability theo-
rems do not apply to physical Turing machines that are not synchronised. For example, if TM T1
repeatedly outputs ‘0’, and T2 repeatedly outputs ‘1°, and the outputs are merged to form a binary
sequence, then if something (e.g. a device controlled by a geiger counter) causes the speeds of T1
and T2 to vary randomly and they run forever, the result could (and most probably would) be a
non-computable infinite binary sequence, even though each of T1 and T2 conforms to theorems
about Turing machines. (This claim will be refuted if it ever turns out that the whole physical uni-
verse can be modelled on a single Turing machine. I know of no evidence that such a model is
possible.)

Likewise, if a machine has physical sensors and some of its operations depend on the sensor
readings, then the sequence of states generated may not be specifiable by any TM, if the environ-
ment is not equivalent to a TM. So the mathematical ‘limit’ theorems do not apply to all physically
implemented information-processing systems. In fact a machine with sensors and effectors con-
nected to physical objects in the environment is fundamentally different from a Turing machine
running its ‘closed’ world consisting only of its (infinite tape) and controlling transition table.

Mathematical entities, such as numbers, functions, proofs and abstract models of computation,
do not have spatio-temporal locations, whereas running instances of computations do, some of them
distributed across networks. Likewise, there are no causal connections, only logical connections,
between the TM states that form the subject matter of the mathematical theory of computation,
whereas there are causal connections in the running instances, depending on the physical machin-
ery used and the physical environment. So, notions like ‘reliability’ are relevant to the physical

Virtual Machinery and Evolution of Mind (Part 1) 99

instances, but not the mathematical abstractions. From a mathematical point of view there is no
difference between three separate computers running the same program, and a single computer sim-
ulating the three computers running the program. However, an engineer aiming for reliability would
choose three physically separate computers with a voting mechanism as part of a flight control
system, rather than a mathematically equivalent, equally fast, implementation in a single computer
(Sloman, 1996), if all the computers use equally reliable components.

Physical details of time-sharing of the machines have other consequences. When the three sep-
arate machines running in synchrony switch states in unison, nothing happens between the states,
whereas in the time-shared implementation on one computer, the underlying machine has to go
through operations to switch from one virtual machine to another. Such ‘context switching’ pro-
cesses have intermediate sub-states that do not occur in the parallel implementation. A detailed
mathematical model of one machine running three virtual machines will need to include the interme-
diate states that occur during switching, but a model of three separate concurrently active machines
will not. A malicious intruder, or a non-malicious operating system, will have opportunities to inter-
fere with the time-shared systems during a context-switching process, e.g. modifying the emulated
processes, interrupting them, or copying or modifying their internal data.

Such opportunities for intervention (e.g. checking that a sub-process does not violate access
restrictions or transferring information between devices) are often used both within individual
computers and in networked computers causally linked to external environments, e.g. sensing or
controlling physical devices, chemical plants, air-liners, commercial customers, social or economic
systems, and many more. In some cases, analog-to-digital digital-to-analog converters, and direct
memory access mechanisms now allow constant interaction between processes. See also Dyson
(1997).

The technology supporting the causal interactions includes (in no significant order): memory
management, paging, cacheing, interfaces of many kinds, interfacing protocols, protocol con-
verters, device drivers, interrupt handlers, schedulers, privilege mechanisms, resource control
mechanisms, file-management systems, interpreters, compilers, ‘run-time systems’ for various lan-
guages, garbage collectors, mechanisms supporting abstract data types, inheritance mechanisms,
debugging tools, pipes, sockets, shared memory systems, firewalls, virus checkers, security systems,
operating systems, application development systems, name-servers, and more. All of these can be
seen as contributing to intricate webs of causal connections in running systems, including prevent-
ing things from happening, enabling certain things to happen in certain conditions, ensuring that if
certain things happen then other things happen, and in some cases maintaining mappings between
physical and virtual processes, e.g. in device drivers. Philosophers who think that different causal
webs at different levels of abstraction cannot coexist need to learn more engineering, unfortunately
not a standard component of a philosophy degree.

4. Causation in RVMs

A running virtual machine can have many effects, including causing its own structure to change.
Understanding how virtual machines can cause anything to happen requires a three-way distinction,
between: (a) Mathematical Models (MMs), e.g. numbers, sets, grammars, proofs, etc., (b) Physical
Machines (PMs), including atoms, voltages, chemical processes, electronic switches, etc., and (c)
Running Virtual Machines (RVMs), e.g. calculators, games, formatters, provers, spelling checkers,
email handlers, operating systems, etc., running in general-purpose computers.

MMs are static abstract structures, like proofs and axiom systems. Like numbers, they cannot do
anything. They include Turing machine executions whose properties are the subject of mathematical
proofs. Unfortunately some uses of ‘virtual machine’ refer to MMs, e.g. ‘the Java virtual machine’.
These are abstract, inactive, mathematical entities, not RVMs, whereas PMs and RVMs are active
and cause things to happen.

100 Part 1

Physical machines on our desks can now support varying collections of virtual machinery with
various kinds of concurrently interacting components whose causal powers operate in parallel with
the causal powers of underlying virtual or physical machines, and help to control those physical
machines. Some of them are application RVMs that perform specific functions, e.g. playing chess,
correcting spelling, handling email. Others are platform RVMs, like operating systems, or run-time
systems of programming languages, which are capable of supporting many different higher level
RVMs. Different RVMs have different levels of granularity and different kinds of functionality.
They all differ from the granularity and functionality of the physical machinery. Relatively simple
transitions in a RVM can use a very much larger collection of changes at the machine code level and
an even larger collection of physical changes in the underlying PM — far more than any human can
think about. Apart from the simplest programs even machine code specifications are unmanageable
by human programmers. Automatic mechanisms (including compilers and interpreters) are used to
ensure that machine-level processes support the intended RVMs.

Interpreted and compiled programming languages have important differences in this context. An
interpreter ensures dynamically that the causal connections specified in the program are maintained.
If the program is changed while running, the interpreter’s behaviour will change. In contrast, a
compiler statically creates machine code instructions to ensure that the specifications in the program
are subsequently adhered to, and the original program plays no role thereafter. Changing it has no
effect, unless it is recompiled (e.g. if an incremental compiler is used). In principle the machine
code instructions can be altered directly by a running program (e.g. using the ‘poke’ command in
Basic) but this is usually feasible only for relatively simple changes and would probably not be
suitable for altering a complex plan after new obstacles are detected, and modifying the physical
wiring would be out of the question. So some kinds of self-monitoring and self-modification are
simplest if done using process descriptions corresponding to a high level virtual machine specified
in an interpreted formalism and least feasible if done at the level of physical structure. Compiled
machine code instructions are an intermediate case.

There are two different benefits of using a suitable RVM, namely (a) the already mentioned
coarser granularity of events and states compared with a PM or low level RVM, and (a) the use
of an ontology related to the application domain (e.g. playing chess, making airline reservations).
Both of these are indispensable for processes of design, testing, debugging, extending, and also for
run-time self-monitoring and control, which would be impossible to specify at the level of physical
atoms, molecules or even transistors (partly because of explosive combinatorics, especially on time-
sharing, multi-processing systems where the mappings between virtual and physical machinery keep
changing). The coarser grain, and application-centred ontology makes self-monitoring (like human
debugging of the system) more practical when high-level interpreted programs are run than when
machine code compiled programs are run. This relates to the third aspect of some virtual machinery:
ontological irreducibility.

S. Implementable but irreducible

The two main ideas presented so far are fairly familiar, namely (a) a VM can run on another
(physical or virtual) machine, and (b) RVMs running in parallel can interact causally with one
another and with things in the environment. A third consequence of 20th century technology is not
so obvious, namely: some VMs include states, processes and causal interactions whose descriptions
require concepts that cannot be defined in terms of the language of the physical sciences: they are
non-physically describable machines (NPDMs). Virtual machinery can extend our ontology of types
of causal interaction beyond physical interactions.

This is not a form of mysticism. It is related to the fact that a scientific theory can use concepts
(e.g. ‘gene’, ‘valence’) that are not definable in terms of the actions and observations that scien-
tists can perform. This contradicts both the ‘concept empiricism’ of philosophers like Berkeley

Virtual Machinery and Evolution of Mind (Part 1) 101

and Hume, originally demolished in Kant (1781), and also its modern reincarnation, the ‘symbol
grounding’ thesis popularised by Harnad (1990), which also claims that all concepts have to be
derived from experience of instances. The alternative ‘theory tethering’ thesis, explained in Slo-
man (2007), is based on the conclusion in twentieth century philosophy of science that undefined
symbols used in deep scientific theories get their meanings primarily, though not exclusively, from
the structure of the theory, though a formalisation of such a theory need not fully determine what
exactly it applies to in the world. The remaining indeterminacy of meaning is partly reduced by
specifying forms of observation and experiment (e.g. ‘meaning postulates’ in Carnap (1947)) that
are used in testing and applying the theory, ‘tethering’ the semantics of the theory. The meanings
are never uniquely determined, since it is always possible for new observations and measurements
(e.g. of charge on an electron) to be adopted as our knowledge and technology advance.

Ontologies used in specifying VMs, e.g. concepts like ‘pawn’, ‘threat’, ‘capture’ etc. used in
specifying a chess VM, are also mainly defined by their role in the VM, whose specification
expresses an explanatory theory about chess. Without making use of such concepts, which are
not part of the ontology of physics, designers cannot develop implementations and users cannot
understand what the program is for, or make use of it. So, when the VM runs, there is a physical
implementation that is also running, but the two are not identical: there is an asymmetric relation
between them. The PM is an implementation of the VM, but the VM is not an implementation of
the VM, and there are many other statements that are true of one and false of the other. The RVM,
but not the PM, may include threats, and defensive moves. And neither ‘threat’ nor ‘defence’ can
be defined in the language of physics. Not all the concepts used to describe objects, events and pro-
cesses in a RVM are definable in terms of concepts of physics even though the RVM is implemented
in a physical machine. The physical machine could include some of the environment with which the
RVM interacts. The detailed description of the PM is not a specification of the VM, since the VM
could be the same even if it were implemented on a very different physical machine with different
physical processes occurring during the execution even of a particular sequence of chess moves. The
VM description is also not equivalent to any fixed disjunction of descriptions since the VM specifi-
cation determines which PMs are adequate implementations. Programmers can make mistakes, and
bugs in the virtual machinery are detected and removed, usually by altering a textual specification
of the abstract virtual machinery not the physical machinery. When a bug in the program is fixed it
does not have to be fixed differently for each physical implementation — a compiler or interpreter
for the language handles the mapping between virtual machine and physical processes and those
details are not part of the specification of the common virtual machine.

Neither can the VM machine states and processes be defined in terms of physical input-output
specifications, since very different technologies can be used to implement interfaces for the same
virtual machine, e.g. using mouse, keyboard, microphone or remote email for input. Moreover, some
VMs perform much richer tasks than can be fully expressed in input—output relations, e.g. the visual
system of a human (or future robot!) watching turbulent rapids in a river. (Compare the critique of
Skinner in Chomksy (1959).)

The indefinability of VM ontologies in terms of PM ontologies does not imply that RVMs include
some kind of ‘spiritual stuff” that can exist independently of the physical implementation machinery,
as assumed by those who believe in immortal minds, or souls. Despite the indefinability there are
close causal connections between VM and PM states, but that includes things like detection of a threat
causing a choice of defensive move, which is a VM process that can cause changes in the physical
display and the physical memory contents. We thus have what is sometimes referred to as ‘downwards
causation’, in addition to ‘upwards causation’ and ‘sideways causation’ (within the RVM).

6. Implications

The complex collection of hardware, firmware, and software technologies, developed since Turing’s
time has made possible information-processing systems of enormous complexity and sophistication
performing many tasks that were previously performed only by humans and some that not even

102 Part 1

humans can perform. This has required new ways of thinking about non-physically describable
virtual machinery (NPDVM) with causal powers. The new conceptual tools are relevant not only
to engineering tasks but also to understanding what self-monitoring, self-controlling systems can
do. Philosophy now has the task of working out in detail metaphysical implications of multiple
coexisting causal webs with causation going sideways, upwards and downwards. Implications for
evolution of mind are discussed in Part 2 of this paper, included in Part III of this volume. Finally,
Part 3 of this paper, presenting the concept of meta-morphogenesis (the processes by which the
processes of change and development change) will be included in Part IV of this volume.

References

Carnap, R., 1947. Meaning and Necessity: A Study in Semantics and Modal Logic. Chicago University Press,
Chicago.

Chomksy, N., 1959. Review of skinner’s Verbal Behaviour. Language, 35, 26-58.

George, B.D., 1997. Darwin Among The Machines: The Evolution Of Global Intelligence. Addison-Wesley,
Reading, MA.

Harnad, S., 1990. The symbol grounding problem. Physica D, 42, 335-346.

Kant, I., 1781. Critique of Pure Reason. Macmillan, London. Translated (1929) by Norman Kemp Smith.

Popek, GJ., Goldberg, R.P., 1974. Formal requirements for virtualizable third generation architectures.
Commun. ACM 17 (7).

Sloman, A., 1996. Beyond turing equivalence. In: Millican, P.J.R., Clark, A. (Eds.), Machines and Thought:
The Legacy of Alan Turing (vol I), The Clarendon Press, Oxford, pp. 179-219. URL http://
www.cs.bham.ac.uk/research/projects/cogaff/96-99.html4#1. (Presented at Turing90 Collo-
quium, Sussex University, April 1990.

Sloman, A., 2007. Why symbol-grounding is both impossible and unnecessary, and why theory-
tethering is more powerful anyway. http://www.cs.bham.ac.uk/research/projects/cogaff/
talks/ffmodels.

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. 42 (2), 230-265. URL http://www.abelard.org/turpap2/tp2-ie.asp.

Artur EKert on the physical reality of —
v NOT

One of many remarkable traits of Alan Turing was his ability to bridge the gap between the abstract
and the physical. His background in physics is clearly seen in his approach to the definition of
computability. Turing’s machines (Turing, 1936) captured the notion of effective computation in
a much more tangible and convincing way than, for example, the lambda calculus proposed by
Alonzo Church (this was generously acknowledged by Church (1937) himself). Although Turing’s
machines were abstract constructs of his mathematical imagination there was nothing unphysical
about them. Indeed, Turing’s machines (with arbitrarily long tapes) can be built, but no one would
ever do so except for fun, as they would be extremely slow and cumbersome. The computer I am
working on at the moment is much faster and more reliable.

But wait a minute! Where does this reliability come from? My computer is a physical object,
made out of a vast number of electronic components. How do I know that the computer generates
the same outputs as the appropriate abstract Turing machine? How do I know that the machinery

http://www.cs.bham.ac.uk/research/projects/cogaff/96-99.html#1
http://www.cs.bham.ac.uk/research/projects/cogaff/96-99.html#1
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#models
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#models
http://www.abelard.org/turpap2/tp2-ie.asp

~VNOT 103

of electric currents must finally display the right answer? After all, nobody has tested the machine
by following all possible logical steps, or by performing all the arithmetic it can perform. If they
were able and willing to do that, there would be no need to build the computer in the first place. The
reason we trust the machine cannot be based entirely on logic; it must also involve our knowledge
of the physics of the machine. When relying on the machine’s output, we rely on our knowledge
of the laws of physics that govern the computation, i.e. the physical process that takes the machine
from an initial state (input) to a final state (output) (Deutsch et al., 2000).

Given that algorithms can now be performed by real automatic computing machines, the natural
question arises: what, precisely, is the set of logical procedures that can be performed by a physical
machine? The theory of Turing machines cannot, even in principle, answer this question, nor can
any approach based on formalising traditional notions of effective procedures. What we need instead
is to extend Turing’s idea of mechanising procedures. This would define logical procedures by the
mechanical procedures that effectively perform logical operations. But what does it mean to involve
real, physical machines in the definition of a logical notion? The discovery of quantum physics
has provided us with an excellent example. Consider the following, very simple, machine which
performs a computation mapping {0, 1} to itself.

0 Poo 0

P11

Here p, is the probability for the machine to produce the output » when presented with the input
a. It may seem obvious that if the p,;, are arbitrary apart from satisfying the standard probability
conditions), pa = 1, then the figure above represents the most general machine whose action
depends on no other input or stored information and which performs a computation mapping {0, 1} to
itself. The deterministic limits are obtained by setting po; = p1o = 0, poo = p11 = 1 (which gives a
logical identity machine) or pg; = p1o = 1, poo = p11 = 0 (which gives a negation (‘not’) machine).
Otherwise we have a randomising device. Let us assume, for the sake of illustration, that pg; =
P10 = poo = p11 = 0.5. Again, we may be tempted to think of such a machine as a random switch
which, with equal probability, transforms any input into one of the two possible outputs. However,
that is not necessarily the case. When the particular machine we are thinking of is followed by
another, identical, machine the output is always the negation of the input.

vnot vnot

»
>

»
>

~
O
Y

Identical

This is a very counter-intuitive claim — the machine alone outputs O or 1 with equal probabil-
ity and independently of the input, but the two machines, one after another, acting independently,
implement the logical operation not. That is why we call this machine +/not. It may seem reason-
able to argue that since there is no such operation in logic, +/not machines cannot exist. But they do

104 Part 1

exist! Physicists studying single-particle interference routinely construct them, and some of them
are as simple as a half-silvered mirror, i.e. a mirror which with probability 50% reflects a photon
that impinges upon it and with probability 50% allows it to pass through. In this particular case the
logical values, 0 and 1, are represented by paths taken by photons before and after travelling through
the mirror (Ekert, 2006; Nielsen and Chuang, 2000).

The reader may be wondering what has happened to the axiom of additivity in probability theory,
which says that if E1 and E, are mutually exclusive events then the probability of the event (E;
or E3) is the sum of the probabilities of the constituent events, Ej, E;. We may argue that the
transition 0 — 0 in the composite machine can happen in two mutually exclusive ways, namely,
0—0—0or 0— 1 — 0. The probabilities of the two are poopoo and po1p10 respectively. Thus,
the sum poopoo + po1p1o represents the probability of the 0 — 0 transition in the new machine.
Provided that pog or po1p1o are different from zero, this probability should also be different from
zero. Yet we can build machines in which pgg and pg1p19 are different from zero, but the probability
of the 0 — O transition in the composite machine is equal to zero. So what is wrong with the above
argument?

One thing that is wrong is the assumption that the processes 0 - 0 — 0 and 0 — 1 — 0 are
mutually exclusive. In reality, the two transitions both occur, simultaneously. We cannot learn about
this fact from probability theory or any other a priori mathematical construct. We learn it from the
best physical theory available at present, namely quantum mechanics.

The mathematical machinery of quantum mechanics, which can be used to describe quantum
computing machines ranging from the simplest, such as v/not , to the quantum generalisation of the
universal Turing machine (Deutsch, 1985), involves basic operations on complex numbers. Indeed,
at the level of predictions, quantum mechanics introduces the concept of probability amplitudes —
complex numbers ¢ such that the quantities |c|> may under suitable circumstances be interpreted
as probabilities. When a transition, such as ‘a machine composed of two identical sub-machines
starts in state 0 and generates output 0, and affects nothing else in the process’, can occur in sev-
eral alternative ways, the overall probability amplitude for the transition is the sum, not of the
probabilities, but of the probability amplitudes for each of the constituent transitions considered
separately.

(] iN2 0

12

12
2

In the v/not machine, the probability amplitudes of the 0 — 0 and 1 — 1 transitions are both
i/~/2, and the probability amplitudes of the 0 — 1 and 1 — O transitions are both 1/+/2. This means
that the +/not machine preserves the bit value with probability amplitude cop = c11 =i/ V2 and
negates it with probability amplitude co; = c19 = 1/+/2. In order to obtain the corresponding prob-
abilities we have to take the modulus squared of the probability amplitudes, which gives probability
1/2 both for preserving and swapping the bit value. This describes the behaviour of the single +/not
machine. When we concatenate the two machines then, in order to calculate the probability of out-
put O from input 0, we have to add the probability amplitudes of all computational paths leading
from input O to output 0. There are only two of them — coocop and coicio. The first computational
path has probability amplitude i/ V2 xi/+/2=—1/2 and the second one 1/+/2 x 1/4/2 = +1/2.
We add the two probability amplitudes first and then we take the modulus squared of the sum. We
find that the probability of output O is zero. Unlike probabilities, probability amplitudes can cancel
each other out!

Halting and Non-Halting Turing Computations 105

Quantum theory explains the behaviour of v/not and correctly predicts the probabilities of all
the possible outputs no matter how we concatenate the machines. This knowledge was created as
the result of conjectures, experimentation, and refutations. Hence, reassured by the physical exper-
iments that corroborate this theory, logicians are now entitled to propose a new logical operation
V/not. Why? Because a faithful physical model for it exists in nature!

The story of the +/not is just one example which illustrates the main point: whenever we improve
our knowledge about physical reality, we may also gain new means of improving our knowledge
of logic, mathematics and formal constructs. It seems that we have no choice but to recognise the
dependence of our mathematical knowledge (though not of mathematical truth itself) on physics,
and that being so, it is time to abandon the classical view of computation as a purely logical notion
independent of that of computation as a physical process (Deutsch, 1997; Deutsch et al., 2000).

References

Church, A., 1937. Review of Turing 1936. J. Symb. Log. 2, 42-43.

Deutsch, D., 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc.
R. Soc. A: Math. Phys. Eng. Sci. 400, 97-117.

Deutsch, D., 1997. The Fabric of Reality. Allen Lane, The Penguin Press, New York, London.

Deutsch, D., Ekert, A., Lupacchini, R., 2000. Machines, logic and quantum physics. Bull. Symb. Log. 6,
265-283.

Ekert, A., 2006. Quanta, ciphers and computers. In: Fraser, G. (Ed.), The New Physics for the Twenty-First
Century. Cambridge University Press, Cambridge, New York, pp. 268-283.

Nielsen, M. A., Chuang, I. L., 2000. Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge, New York.

Turing, A. M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. 42, 230-265.

Cristian Calude, Ludwig Staiger and Michael Stay on —

HALTING AND NON-HALTING
TURING COMPUTATIONS

1. Introduction

Turing’s famous paper (Turing, 1936) proved that the halting problem — the problem of decid-
ing whether a given Turing machine ever reaches the halting state when provided with a given
tape — was undecidable. Turing machines give us a convenient way to talk about the time and space
necessary to carry out computations, and play a significant role in both classical recursion theory
and the theory of computational complexity (Cooper, 2004; Balcdzar et al., 1995; Sipser, 2006;
Wagner and Wechsung, 1986).

Nowadays, the undecidability discovered by Turing need not be quite the fearsome phenomenon
it at first appears. To understand this we look in more detail at the time and space of Turing
computations.

106 Part 1

First, any Turing machine having an undecidable halting problem uses an infinite number of
cells on its working tape (Calude and Staiger, 2010). Accordingly, the halting behaviour of a Turing
machine M on input x can be divided into three categories:

(1) The machine M halts on x, in which case the number of cells used is necessarily finite.
(2) The machine M does not halt on x, but uses only finitely many distinct cells on its tapes.
(3) The machine M does not halt on x and uses infinitely many distinct cells on its tapes.

In the second case above, the halting problem for M on x is decidable, so Turing’s undecidability
result relies on the fact that machines with an undecidable halting problem necessarily use infinite
space.

Secondly, the critical time (Chaitin, 1987) can be used to yield a classification of Turing
computations into three categories:

e The machine M halts on x in time bounded by the critical number of steps.
e The machine M halts on x in time not bounded by the critical number of steps.
e The machine M does not halt on x.

The last case, that is when M does not halt on x, can be refined in terms of space complexity. Finally,
the significance of these mathematical facts for hypercomputation and formal proofs in mathematics
will be briefly discussed.

2. Turing machines

A Turing machine is a formalisation of a mechanical device. The device has a long tape on which
a finite alphabet of symbols are read or written, and the tape can be shifted back and forth through
the machine, which can read symbols from and write symbols to the tape. The machine itself has
a finite set of internal states, and updates those states depending on what it finds on the tape. In
the formalisation, the tape is infinite and there are never any errors. Turing’s own description is
wonderfully lucid, and we refer the reader to his account for details.

The set of pairs (M,x), where M is a Turing machine and x is an input, can be computably
enumerated. We fix such an enumeration and we denote by code(M,x) the code, or description, of
the pair (M, x) in this enumeration.

3. Resources

Let M be a Turing machine and x an input word.

The function timep(x) denotes the number of steps executed by M on input x (see
Balcdzar et al. (1995)). By M(x) < co we denote the fact that M stops on x. The halting prob-
lem for a particular Turing machine M is the problem of deciding, given x, whether M (x) < oco.
The halting set or the domain of M is the set haltyy = {x | M(x) < oo}. It is well known that the
halting problem for most Turing machines M is undecidable; more precisely, the halting set of M
is computably enumerable but not computable. A Turing machine whose domain is prefix-free is
called self-delimiting or prefix-free (Calude, 2002). Although many results presented below hold for
any Turing machine, for uniformity we study only prefix-free Turing machines, which from now on
we will simply call machines.

The computational space, or space function, spacey (x) used by M on x is defined to be the
number — finite or infinite — of cells used by M during its computation with the input x; a cell used

Halting and Non-Halting Turing Computations 107

at least once is counted as used.* Obviously, if spaceys(x) is finite, then the computation process as
described above can have only a finite number of different configurations.
Clearly, spacey;(x) < oo whenever M(x) < 0o, and M (x) = oo if and only if timeys(x) = oco.
Given a machine M, we can therefore classify input strings x according to timeys and spacey
and get the following three sets:

halty = {x | timep (x) < oo},
{x | timep(x) = 00, spacey(x) < 0o},
{x | spacep(x) = oo}.

Calude and Staiger (2010) showed that if for every x, spaceps(x) < oo, then the halting problem
for M is decidable. This result does not contradict Turing’s undecidability of the halting prob-
lem because the set of descriptions code(M,x) — where M is a machine, x is a string — for which
spaceps(x) < 00, is computably enumerable but not computable.

4. Halting time

Let bin be the computable bijection that associates to every integer n > 1 its binary expansion with-
out the leading 1: bin(1) is the empty string, bin(2) = 0, bin(3) = 1, bin(4) = 00 etc. The natural
complexity of the string y (with respect to the machine M) is Vys(y) = min{n > 1 | M(bin(n)) = y}
(see Calude and Stay (2006)); V is a relative of Kolmogorov complexity for partially computable
functions used in Manin and Zilber (2010).

The invariance theorem says that one can effectively construct a ‘universal machine’ that can
simulate any other machine. A machine U is universal if for every machine M there is a constant
& > 0 (depending upon U and M) such that Vy(x) < e Vy(x), for all strings x. We fix a universal
machine U and define V = Vy.

Say a machine M gets an input x and runs for exactly ¢ steps before halting. Chaitin (1987)
showed that there is a program y for the universal machine not much longer than code(M,x) such
that U(y) = ¢ — or more formally, that there is a constant ¢ such that if M(x) halts exactly in time ¢,
then V (bin(z)) < 2lcodeMx)l+c

A binary string x is algorithmically random if V(x) > 2/|x|. A time ¢ is called algorithmically
random if bin(7) is algorithmically random. Assume that M(x) has not stopped in time 22V+2¢+1
where N = |code(M,x)| and ¢ comes from Chaitin’s statement above; then Calude and Stay (2008)
proved that M(x) cannot stop at any algorithmically random time ¢ > 22V +2¢+1,

Therefore, if one runs a program for long enough (where ‘long enough’ depends on ¢ above),
then either the program halts at a non-algorithmically random time or it does not halt at all. The
density of non-algorithmically random numbers near n is 1/n. Hence, most times are not halting
times for any machine and input.

Consider the set S = {0, 1}% x N whose elements are pairs of an input string of length R and a
potential runtime. Let g(x) be the uniform probability distribution on strings of length R and p(n)
be any computable probability distribution on natural numbers. Given M, x and a positive integer m,
we can effectively compute a critical value T isicq1(|code(M, x)|,m) such that either M (x) stops in
time less than T¢jsicai(|code(M, x)|,m), or the probability given by g x p that M (x) eventually stops
is smaller than 27"

4 This definition differs slightly from the space complexity usually employed in computational complexity theory
(Balcdzar et al., 1995), which treats the space as infinite if the time is infinite.
5 A configuration records the current state, tape contents and head location (Sipser, 2006, p. 140).

108 Part 1

Manin (2010) proved a general result of this kind valid for many complexity measures, including
time.

Given a probability bound 27", the halting behaviour of a machine M can be described by the
following three sets:

{x | timepy (%) < Terisical(lcode(M,x)|,m)},
{x | Teriticai(|code(M, x)|,m) < timep (x) < 00},
{x | timep (x) = 00}.
The last case can be refined using the computational space as follows:

{x | timep (x) = 00, spacep (x) < oo},
{x | timep (x) = 0o, ZFC proves spaceys(x) = oo},

{x | spacep(x) = oo, but ZFC cannot prove spaceys(x) = 0o}.

5. Final comments

What is the ‘real-world” significance of this commentary?°

The bad news is that even an accelerated Turing machine (Copeland, 2002) needs infinite space
to solve the halting problem. This begs for more insight into the mysterious usefulness of analogue
computation which can bypass this limit (as Kreisel (1970) anticipated). The good news is that the
halting problem can be probabilistically solved with any probability less than one.

Hilbert’s formal proofs have been apparently killed for the practice of mathematics by Godel’s
Incompleteness Theorem, so ultimately by the undecidability of the halting problem. Unexpect-
edly — at least from the theoretical view point — in the last decade, enormous progress has been
made on automating the production of formal proofs, with tools like Isabelle, Coq and others (Hales,
2008). In part, this successful story — which in our humble opinion will change the way mathemat-
ics is done — is due to the practical possibility of working with meaningful, computational resource
defined, approximations of the halting problem.

Acknowledgements

We thank Alastair Abbott, Barry Cooper and Jan van Leeuwen for comments that improved the
presentation.

References

Balcdzar, J.L., Dfaz, J., Gabarrd, L., 1995. Structural Complexity I, second ed. Springer-Verlag, Berlin.

Barrow, J., 2005. The Infinite Book. A Short Guide to the Boundless, Timeless and the Endless, Jonathan Cape,
London.

Boolos, G, Jeffrey, R.C., 1980. Computability and Logic, Cambridge University Press, Cambridge.

Calude, C.S., 2002. Information and Randomness: An Algorithmic Perspective, second ed. Springer-Verlag,
Berlin.

Calude, C.S., Staiger, L., 2010. A note on accelerated Turing machines. Math. Struct. Comput. Sci. 20, 1011-
1017.

6 ... was the question Barry Cooper asked us at the 9th iteration of this commentary.

Toward the Unknown Region: On Computing Infinite Numbers 109

Calude, C.S., Stay, M.A., 2006. Natural halting probabilities, partial randomness, and Zeta functions. Inf.
Comput. 204, 1718-1739.

Calude, C.S., Stay, M.A., 2008. Most programs stop quickly or never halt. Adv. Appl. Math. 40, 295-308.

Chaitin, GJ., 1987. Computing the busy beaver function. In: Cover, T.M., Gopinath, B. (Eds.), Open Problems
in Communication and Computation, Springer-Verlag, Heidelberg, pp. 108—112.

Cooper, S.B., 2004. Computability Theory, Chapman & Hall/CRC, Boca Raton, New York, London.

Copeland, B., 2002. Accelerating Turing machines. Minds Mach. 12 (2), 281-300.

Hales, T.C., 2008. Formal proof. Notices of the AMS 11, 1370-1380.

Kreisel, G,, 1970. Church’s thesis: a kind of reducibility axiom for constructive mathematics. In: Kino, A.,
Mpyhill, J., Vesley, R.E. (Eds.), Intuitionism and Proof Theory, North-Holland, Amsterdam, 121-150.

Manin, Y., 2010. Infinities in quantum field theory and in classical computing: renormalization program. In
Ferreira, F., Lowe, B., Majordomo, E., Gomes, L.M. (Eds.), Programs, Proofs, Process. Proceedings CiE
2010, LNCS 6158, Springer, Heidelberg, pp. 307-316. Full paper in Renormalization and Computation II:
Time Cutoff and the Halting Problem, http:// arxiv.org/abs/0908.3430, 24 August 2009.

Manin, Y., Zilber, B., 2010. A Course in Mathematical Logic for Mathematicians, second ed. Springer,
Heidelberg.

Sipser, M., 2006. Introduction to the Theory of Computation, second ed. PWS, Boston.

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. 2 42, 230-265.

Turing, A.M., 1937. On computable numbers, with an application to the Entscheidungsproblem: A correction.
Proc. Lond. Math. Soc. 2, 43, 544-546.

Wagner, K., Wechsung, G., 1986. Computational Complexity, Deutscher Verlag der Wissenschaften, Berlin.

Philip Welch leads us —

TOWARD THE UNKNOWN REGION:
ON COMPUTING INFINITE NUMBERS

Darest thou now, O Soul,

Walk out with me toward the
Unknown Region,

Where neither ground is for the feet,
nor any path to follow?

Whitman, Leaves of Grass

The story is told that Church, after presenting the A-calculus as a means of addressing the Entschei-
dungsproblem, was told by Godel, in effect, to go away and try again. Godel in conversation with
Church said that he found the suggestion that effectively calculable be identified with the A-calculus
as ‘thoroughly unsatisfactory’.! However, Godel immediately recognised Turing’s model as the
model for this problem. Why was this? Presumably the criteria, somewhat implicit in Hilbert’s
question, as to whether there is an algorithm, or ‘effective process’ to determine from an ‘effec-
tively’ given set of axioms in a deductive system, for any sentence ¢ of the system’s language,
whether or not ¢ was deducible from those axioms, would hinge crucially on the notion of algo-
rithm or ‘effectivity’. As Godel had already shown the incompleteness of formal systems (satisfying
a modicum of some basic requirements and thereby introducing the primitive recursive functions),

! This is recalled in a letter from Church to Kleene (Kleene, 1959). The conversation took place in early 1934 (Rosser,
1984).

http://arxiv.org/abs/0908.3430

110 Part 1

all that remained in one sense was this question of ‘decidability’. Was there a method for deter-
mining, given the axiom set A, which ¢ were deducible? The general recursive functions of Godel
were also used by Church but as Gandy (1988) and Sieg (1994) have pointed out, Church did not
establish that the actual steps in this (or any other) calculus were themselves of a recursive nature.
Crucially Turing’s notion does this.

Turing’s paper solved this problem by way of introducing the now familiar, but still beautifully
simple, notion of an ‘automatic machine’ (or ‘a-machine’, but which I shall just abbreviate as ‘TM’).
As is well known, in a TM an infinite tape runs to the right (and if one wishes to the left too). Turing
analysed what he took to be a set of automaton like constructions/edits of a particular square or
cell of the tape that was being scanned by what we should now call a read/write head, under the
control of a finite instruction set. The machine would write marks from an alphabet (let us just say
0/1 here). If a computation halted there would then be an ‘output’ — meaning the tape’s contents.
Otherwise the machine would perform fruitlessly tasks for ever in an infinite sequence of moments
in time fg,t1,...,t,,.... The paper, although titled, and set up to prove, the unsolvability of the
Entscheidungsproblem, had of course done much more than that: it had captured the notion of an
automatic or mechanical behaviour, and moreover had deployed a notion of ‘universality’ — that
there was a universal machine that could mimic any other machine given the latter’s code as an
input, and this, together with the intensional aspects of Turing’s argument, are presumably what
Godel (and we later) found persuasive. In a final section of the paper, Turing applies his concept of
machine to solving this problem. He further showed in an Appendix that the functions defined by
Church’s A-calculus were coextensive with his computable functions.

This showed, when taken with the work of Church and Kleene, that the (Gédel-Herbrand) gen-
eral recursive functions can be simulated by the TM. We shall not discuss here the Church—Turing
thesis that any effective algorithmic process is simulable by Turing machines, or equivalently, as
Turing proved, by the general recursive functions. Rather we shall concentrate on the capabilities
of the machine model to compute such functions, and its generalisations.

Godel had already drawn attention to the primitive recursive functions, which were then
extended to the general recursive functions. Kleene, whilst working with Church on the Decision
Problem, developed an equational calculus for the partial recursive functions: a set of basic equa-
tions and rules for recursion that allowed for the definition of the class of partial recursive functions
as that class closed under those equational schemata (see, e.g. Odifreddi (1989)). It is this equa-
tional approach that was formative for a mathematico-logical approach to the theory of recursive
functions, and indeed for a definability theory for sets of numbers. Whilst Turing had shown the
universality of his machines, the flexibility of the equational approach allowed Kleene to produce
a number of theorems analysing the computable functions. An Enumeration Theorem for the par-
tial recursive functions as well as the S-m-n Theorem which allowed for enumeration of the partial
recursive functions on m + n variables to be re-enumerated as n-ary functions in m-parameters, and
the Recursion or Fixed-point theorem. These relied on his

THEOREM 1. (Normal Form Theorem) (Kleene) There is a primitive recursive universal predi-
cate T, and a primitive recursive function U satisfying VeVx:

Pz <« 3FyeN[Ti(ex,y) AUy =zl

In Turing’s paper ‘On Ordinal Logics® (discussed elsewhere) he somewhat quietly introduced
the notion of o-machine or ‘oracle’-machine. Such a machine added to the capabilities of the a-
machine the possibility of input during the course of computation via queries to an external oracle.
If we enumerate the programs of a such a TM (equipped now with a command querying member-
ship questions of a set A) as (P‘Z,‘ | ¢ € N) then the halting set A’ =g4¢ {e | P?(e)i} would come to be
named the Turing jump of the set A, and is a complete Z‘l“ set, in that any set recursively enumer-
able in A is also (1-1) reducible to A’. This is the basis for Post’s analysis of such sets and their
relationship to the arithmetical hierarchy (here relativised to the set A). Thus definability becomes

Toward the Unknown Region: On Computing Infinite Numbers 111

identified with the hierarchy of relativised halting sets. Moreover it is probably fair to say that the
beginnings of the theory of definability, although connected with halting sets as stated, become
increasingly divorced in conceptual terms from the TM model itself. It seems as if the machine
has done its work for us, and now we may proceed to the mathematics of analysis of recursive
sets, r.e. sets (which we might now want to call computably enumerable or c.e.), and hierarchies of
such and the concomitant degree theory. In particular definability over the natural number structure
later became extended to considering the notion of hyperarithmetic definability: sets of numbers
that whilst not recursive, or even obtainable by finitely many iterations of the Turing jump oper-
ator, (i.e. again the arithmetically definable sets, that is those definable over N = (N, +, x,0,S) in
the appropriate language), were definable by processes that themselves had computable, i.e., recur-
sively definable, procedures: a hyperarithmetic set was one seen as having a computable or recursive
protocol for describing its construction. By a definable version of Suslin’s theorem, Kleene showed
that such sets coincide with the A}-deﬁnable sets over N, that is those A C N that were both H{-
and E{-deﬁnable. Such notions then connect to the theory of inductive definitions over N as now
described.

Let ¥ : P(N) — P(N) be any arithmetic, or even 1'[% monotone operator (e.g., ‘n € V(X)’ is
arithmetic (or H%) as a relation of n and X); we define the following iterates of W:

W) =X; Wup1 (X) = W(W(X)); W) = [WaX).

a<A

By sheer monotonicity, this process must reach a least o with Wy, (X) = Wy 41(X). For X = @ then
Spector showed for l'[} W, (Gandy for arithmetical) that this process must halt by a)?k the first non-
recursive ordinal (‘ck’ for ‘Church—Kleene’), and in general not sooner; the resulting fixed point
set, namely that with W, (@) = W (¥, (2)), was T1}.

It is possible (see Rogers (1967)) to define a reducibility for x C w: ‘x is hyperarithmetic in
y’, writing this as ‘x <j y’; further there is the notion of a complete hyperarithmetically ‘c.e.” set
or ‘hyperjump’ x" corresponding to Turing jump x’. Spector was able to establish that the ordi-
nal assignment x — w7y, (Where w7, is the least ordinal not recursive in x) satisfied the so-called
‘Spector Criterion’:

¥
x<py— <y Wiy < W)

To very cursorily summarise the history (in a rather crude fashion), generalisations of recursion
away from the structure N tended in two directions in the 1960s: firstly via metarecursion theory
and the work of Kreisel and Sacks, into extending the domain to initial segments of the ordinals that
were admissible. The other direction initiated by Kleene, who published his equational system of
recursion in higher type objects in a series of papers from 1959 onwards. He himself devised a notion
that came to be called Kleene Recursion: this was a higher type recursion with a domain that of all
the real numbers, that allowed hyperarithmetic questions about membership of sets of such numbers
to be answered. This was a ‘boldface’ notion: the recursive sets of natural numbers became the Borel
(or boldface A% sets by the Suslin Theorem) and the analogon of a computably enumerable set was
a co-analytic sets of reals. We shall return to this model later. However the science of higher type
recursion theory later became much developed by the work of Gandy, Moschovakis, Harrington,
Normann, Kechris, et al.

Indeed it did, but these formulations, and indeed much of the generalised theory of inductive def-
initions, and the later theory of Spector classes of Moschovakis became intimately involved with the
notion of admissible set. A transitive set M was an admissible set if it was a model of some modest
basic set theory, including schemes of Aj-Comprehension and ¥1-Replacement. In particular those
levels of (relativised) Godel hierarchies of the form (Ly[A], € A) that were admissible came to play
a central role. The ordinal height of a transitive admissible set was named an admissible ordinal,
the first such above w is indeed wi: Ly, = KP. The importance of admissible sets was that they

112 Part 1

were domains inside which certain natural X{-set theoretic recursions or constructions (rather than
number theoretic) could be effected.

Much of this may seem a million miles from the original conceptions of recursive set of inte-
gers and universality of the computation/recursion procedure that allowed for the Enumeration and
Recursion Theorems efc. mentioned above. However these founding theorems return, almost partly
as definitions, in the notion that Moschovakis singled out as encompassing a generalised theory of
inductive definability, that of the Spector class. We give the definition (with some details swept
under the rug) as it pertains to inductive definitions at the lowest type, those of sets of integers.

DEFINITION 2. (Spector Class) (Moschovakis) A class of sets of integers I' C P(w) (or P(w®), or
direct products of such) is a Spector Class if the following are satisfied:

(i) (Closure) T is closed under trivial substitutions and those by functions themselves in ', and
universal quantification over numbers: N;

(i1) (Universality) There is a relation R € I' N @ X w, which is universal for all relations in I" on
w: if P € P(w)NT then de € w Yk(k € P <> (e,k) € R) (and similarly for other products of w
and w®).

(iii) (Norm Property) For any P € ' there is a function ¢ with ¢ : P — On satisfying certain
properties close to saying that the prewellordering induced on P by ¢ has both its graph and
its complement in I.

The last property here is somewhat distractingly technical, and so has been left vague, but the
point is that the function into the ordinals, gives us a nice prewellordering of the set P and in a very
loose sense, we can think of it as saying that an n gets into P before m does if ¢ (n) < ¢ (m). Property
(i) is recognisable as an Enumeration property; (i) hints at some initial basic closure properties.

There are countless examples of Spector classes, but the original basic such ur-class is obtained
by taking the class of Hi sets of integers (and this is the least such class). Such classes relate to
notions of definability over admissible sets, since to any Spector class I" of sets of integers we may
find an admissible structure M1 over which the sets in I correspond to sets inductively definable
over Mt via some operator W as above.

So, on the one hand, the increasing generalisations of recursion theory to higher types, and espe-
cially those including infinite ordinals in their domain, were mostly mathematical generalisations
rather than machine model generalisations. This might lead one to think that with the increasing
sophistication of the approach, that the original intuition of machine or computer had been left far,
far behind. However running through this development was always a thread of machine-mindedness.
For Kleene Recursion this was for Rogers (1967) the ‘Ng-mind’: one could think of Kleene Recur-
sion as the notion of computability that might arise by taking hold of the TM model where a mind
could survey the whole tape, as one step; or rewrite an w-sequence of bits, as one operation, and
further consult an oracle A (consisting of a set of subsets of N) and receive a 0/1 answer as to
whether the whole set of integers coded on a tape was or was not in A. In short anything that a mind
capable of comprehending, and acting on, an Rg=sized amount of information could do. The class
of wellfounded ‘computation trees’ is then a Hi subset of P(N) with the latter identified as R. A
computational process that outputs, e.g., answers to membership questions about whether the real x
belongs to a certain ‘generalised r.e’ set of real numbers, becomes then the problem of determining
the wellfoundedness of a certain tree within any transitive admissible set containing that real x. In
a realistic sense (pace the countably infinite processes involved) this can still be construed as a
machine model.”

2 This would take us too far off course, but even in metarecursion theory, Platek said that he also thought of a formal-
ism involving a Shepherdson—Sturgess—Minsky like register machine containing countable ordinals in its registers, and
performing the appropriate machine like instructions (Platek, Private communication). This could have been extended
to a-recursion theory.

Toward the Unknown Region: On Computing Infinite Numbers 113

The recent two decades however has seen an expansion of interest in generalising models of
computation, and this has led to mathematical investigations of models of computation where one
or more space or time parameters are relaxed: the model of the Infinite Time Turing Machine of
Hamkins and Lewis (2000) allows time to become transfinite. Time is still considered to tick away
in discrete steps fort =0, 1,2,.. ., but there are also now limit stages t = w, thenw + 1,..., 0 + w,...
One simply has to specify a behaviour at limit stages of time: thinking of the ordinary Turing
machine model, as the program is finite, if the machine does not halt but runs for an w-sequence of
steps, then it is in a program loop; so at time w put it at the beginning of the outermost loop or sub-
routine in which it was involved (in other words at the least instruction number it visited infinitely
often below w). What is in the cells? We may specify, given an alphabet of 0’s, 1’s and B (for blanks)
that the i-th cell C; contains the alphabet symbol j at time w, if there was a time t = n < w so that
for all later finite times m > n the cell constantly contained a j; however if the cell value changed
unboundedly often before w then let it have value a B for ambiguity at time w. Where is the R/W
head? It at time ¢ cell Cy(y is being read, we may place it at cell Cy(,) where k(w) is defined to be
the liminf of the k(#)’s for y < w, unless this value is w itself (because the head has wandered off to
infinity). In the latter case we define k(w) to be 0. (This accords with our idea of putting the machine
at the start of the outermost loop entered into unboundedly often before time w where possible.
Hamkins and Lewis (2000) does this differently, by having three tapes, a 0/1 alphabet only and by
taking limsups at limit ordinals, and placing the head back to cell Cp at all limit times. However
mathematically the functions produced are the same.) The same considerations are used at any limit
ordinal A. We may now amuse ourselves by asking any of the myriad questions that have been
asked for the standard model TM. What are the ‘ITTM’-computable functions produced by such
machines? What are the decidable sets of integers? What is the halting set H = {P,(e) | | e € N}?
(Notice that we barely have to change notation to formulate the question.) Now computations may
halt after stage w; but at what stages? Since an ITTM can now receive an infinite stream of input it
essentially can also compute on reals as well as integers. We can devise oracle machines that, like
Kleene Recursion, can quiz a set of reals. What can we do now? Lest one think that this is merely
an occupation for an idle hour on a rainy Sunday afternoon, one can show that the classes of ITTM
‘semi-decidable’ sets of numbers and reals produced form a Spector class. They are thus a particular
instance of a higher type recursion theory.

Consider another machine: if we are relaxing time, why not go the whole hog and relax space
considerations too? Let us consider an ITTM machine model with an uncountably long tape? Or
even a tape as long as the class of ordinal numbers. What then can such a machine create? Remark-
ably there is an ordinary standard Turing program that can in effect compute, given some finite
number of ordinals (input as 1’s at the appropriate ordinal places on the tape) the truth set in the
Godel constructible universe L of the constructible set L-coded by those ordinals. In short, follow-
ing such considerations, we have another presentation, now a machine theoretic presentation, of the
set-theoretic Godel L-hierarchy to set aside those alternatives of Jensen (1972) and Deutsch (1985)
Sec. 9 (See Dawson (2009) and Koepke (2005).)

One may wonder at the apparent strength of these machine models, but a moment’s reflection
shows it to be in the limit rules themselves. We may have ordinary Turing style-action at successor
stages, but the limit rule is a kind of infinitary logical rule integrating over this time dimension.
It may look innocuous to put B-blanks on tapes at infinite stages, or take a liminf of previous cell
values, but it is in these actions that the whole essence of the process inheres.

So what of these ‘liminf” processes themselves? Consider then generalisations of the inductive
operators defined above. We now define for such a W (no longer required to be monotone):

YoX) =X; Weir1(X) =W (W (X));
W (X) = liminf o (X) =g Ua<i O p-a Wy (X) for limit 4.
oa—

114 Part 1

What kind of operators are these? Such do not necessarily reach a fixed point but instead (after
countably many iterations) reach a stability point: a least stage { = ¢(X) so that W, (X) periodically
returns for ever after as « runs through all the ordinals. Elementary arguments show that ¢ exists
and is countable. We thus may develop a theory of such quasi-inductive definitions. Starting with
the natural numbers the quasi-inductive sets defined by arithmetic (or hyperarithmetic) operators
W again form a natural Spector class. Indeed this is to be expected: we can program an ITTM to
calculate them.

Other examples may occur to the reader: consider now Infinite Time Register Machines (Koepke,
2006; Koepke and Miller, 2008). We allow transfinite time on a standard register machine containing
integers. If co-finally at a limit stage a register has become unbounded we by fiaf reset it to zero, and
otherwise register contents contain the liminf of the previous values; the instruction number about
to be performed at a limit stage is again the beginning of the outermost routine called unboundedly
before the limit time. Now ask the same questions as for ITTM’s. There is however a fundamental
difference between the Register machine model and the TM model, which does not show up at the
finite level. Universality fails, as there is no universal ITRM: as the numbers of registers increase,
their strength increases. (In fact the class considered as a whole is weaker by far than the ITTM
class.)

Instead of simply asking what the computational power of a transfinite computational model
is, one can approach the machine from another direction: that of reverse mathematics (Simpson,
1999). Even the assertion that every ITTM on zero input either halts or loops requires a proof that
can be effected only in a substantial fragment of second order number theory: H;—Comprehension
is insufficient, although Hé-Comprehension suffices. For ITRMs the analogous assertion turns out
to be equivalent to H}-CAO, see Koepke and Welch (2011).

At the risk of a truism, the thing one must always be aware of in considering these generalisations
is the infinitary nature of the generalisation: in analysing ITTM’s Hamkins and Lewis (2000) stick
closely to questions and analogies with Turing jump and degree. However it is the analysis of the
new concept in terms of set theory, or already extant higher recursion theory, that renders a full
characterisation and delivers the deeper theorems. In the study by Hamkins and Lewis (2000) the
analogy with TM’s machines was thoroughly pursued, but ultimately the analogy of ITTM-degree
is closer to that of hyperdegree, or rather Aé-degree, and the behaviour of such machines is closely
tied to that of low levels of the Godel constructible hierarchy; it is this realisation that enables one
to actually answer some of the questions they asked: what are the semi-decidable sets of reals? How
long do computations really take? Indeed an analysis of the latter is necessary in order to prove the
analogue of Kleene’s Normal Form Theorem:

THEOREM 3. (ITTM Normal Form Theorem) (Welch, 2009)

(a) For any program index e we may effectively (in the usual sense) find an index ¢’ so that:
vxe2VP,(x) | = 3ye2NPa(x) |y

where y is a code for the whole computation sequence for P,(x).
(b) There is an ITTM-decidable universal predicate X, and an arithmetical function U satisfying
VeVx:

Pex) Lz < 3y e2V[%, (e, x,0) AUG) =12l.

Note that a y in part (a) has to be a real coding at the very least the ordinal length of the computation
P, (x); in order for there to be any hope of such an ¢’ existing, we need to know that (a code for) the
length of any computation of the form P,(x) can itself be computed from something decidable in
x. This length is of course a transfinite ordinal, and so we are in a very different ballpark from the
original Normal Form Theorem. Fortunately we can, and this length has a characterisation in terms
of the L-hierarchy; further, because of this analysis we can determine the decidable, semi-decidable

Toward the Unknown Region: On Computing Infinite Numbers 115

sets etc. for this model. As evidence that we are doing the right kind of thing we see that we can
also obtain a Spector Criterion for the notion of ITTM-reducibility on sets of integers, x <, y; using
ITTM-degrees, and ITTM-jump (denoted xV), just as Spector had for hyperdegree:

XSooy—>(xV Sooy<_>§x<§y)

where now ¢* is the least ordinal after which the universal x-ITTM machine starts repeating.

We mention this here, as it typifies analyses of such proposed machine-theoretically inspired
models, that once they are allowed into the transfinite realm, then one uses set-theoretic, or analytical
methods to resolve such questions. Once one has started this kind of freeing oneself from the finite
realm, one sees all sorts of possibilities: for example consider the Blum-Shub-Smale machine —
again something certainly inspired by the Turing model. If we let this run transfinitely what may
that compute? Can we think of more general transfinite machines with different and perhaps more
complex limit rules? Friedman and Welch (2011) is one attempt to define such machines that run
through all the reals of the least S-model of analysis. Can one make sense in general of (some variant
of) dynamical systems allowed to run beyond w? Usually such systems are restricted to continuous
functions on some interval or manifold — but what if we consider more general functions in some
higher Baire class?

It seems to me that there is little difference in the end between a system of equations recursively
applied (in some general sense), and a general machine. However, within the theory of Spector
classes and higher type recursion theory, these machine-inspired models occur sporadically as points
of illumination, as concrete, and so readily graspable, examples of that rather abstract theory.

And all of this ultimately we have Turing to thank for.

References

Dawson, B., 2009. Ordinal time Turing computation. Ph.D. thesis, Bristol.

Devlin, K., 1984. Constructibility. Perspectives in Mathematical Logic. Springer Verlag, Berlin, Heidelberg.

Friedman, S.D., Welch, P.D., 2011. Hypermachines. J. Symbol. Log. 76 (2), 620-636.

Gandy, R.O., 1988. The confluence of ideas in 1936. In: Herken, (Ed.), The Universal Turing Machine:
A Half Century Survey. Oxford University Press, Oxford, pp. 55-111.

Hamkins, J.D., Lewis, A., 2000. Infinite time Turing machines. J. Symb. Log. 65 (2), 567-604.

Jensen, R.B., 1972. The fine structure of the constructible hierarchy. Ann. Math. Log. 4, 229-308.

Kleene, S.C., 1959. Origins of recursive function theory. Ann. Hist. Comput. 3, 52-67.

Koepke, P., 2005. Turing computation on ordinals. Bull. Symb. Log. 11, 377-397.

Koepke, P., 2006. Infinite time register machines. In: Beckmann, A., et al. (Eds.), Logical Approaches to
Computational Barriers, vol. 3988 of Springer Lecture Notes Computer Science, Springer, Swansea,
pp- 257-266.

Koepke, P., Miller, P., 2008. An enhanced theory of infinite time register machines. In: Beckmann, A.,
et al. (Ed.), Logic and the Theory of Algorithms, vol. 5028 of Springer Lecture Notes Computer Science,
Springer, Swansea, pp. 306-315.

Koepke, P., Welch, P.D., 2011. A generalised dynamical system, infinite time register machines, and H%—CAO.
In Proceedings of CiE 2011, Sofia, Lecture Notes in Computer Science, Springer.

Odifreddi, P-G., 1989. Classical Recursion Theory: the theory of functions and sets of natural numbers. Studies
in Logic. North-Holland, Amsterdam.

Rogers, H., 1967. Recursive Function Theory. Higher Mathematics. McGraw, 1967.

Rosser, H.B., 1984. Highlights of the history of the A-calculus. Ann. Hist. Comput., 6 (4), 337-349.

Sieg, W., 1994. Mechanical procedures and mathematical experience. In: George, A. (Ed.), Mathematics and
Mind. Oxford University Press, Oxford, New York, Toronto, Tokyo.

Simpson, S., 1999. Subsystems of second order arithmetic. Perspectives in Mathematical Logic. Springer.

Welch, P.D., 2009. Characteristics of discrete transfinite Turing machine models: halting times, stabilization
times, and normal form theorems. Theor. Comput. Sci. 410, 426-442.

This page intentionally left blank

On Computable Numbers, with an
Application to the Entscheidungsproblem
by A. M. Turing — Review by: Alonzo Church!

Andrew Hodges finds significance in —

CHURCH’S REVIEW
OF COMPUTABLE NUMBERS

This comment is stimulated by the very curious review of Turing’s paper by Alonzo Church in the
Journal of Symbolic Logic, 1937. This review introduced Turing’s work to the logicians’ world, and
in so doing used the expression ‘Turing machine’ for the first time. It was remarkable in several
ways, not least for the unstinting welcome offered to Turing’s revolutionary ideas, even though
Church had the reputation of being cautious to the point of pedantry. It was generous in spirit
despite the fact that it must have been disconcerting for Church that a young unknown, a complete
outsider, had given a more satisfactorily direct and ‘intuitive’ account of effective calculation than
the lambda calculus.

But the most curious thing is that Church was actually bolder in his physical imagery than Turing
was:

The author [Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be
“computable” that it shall be possible to devise a computing machine, occupying a finite
space and with working parts of finite size, which will write down the sequence to any num-
ber of terms if allowed to run for a sufficiently long time. As a matter of convenience, certain
further restrictions are imposed in the character of the machine, but these are of such a nature
as obviously to cause no loss of generality — in particular, a human calculator, provided with
pencil and paper and explicit instructions, can be regarded as a kind of Turing machine.

In a further sentence (in the review of Post’s work, immediately following)Church referred to
Turing’s concept as computability by an ‘arbitrary machine’, subject only to such finiteness
conditions.

Yet Turing’s paper did not actually refer to ‘arbitrary machines’. Turing certainly brought an idea
of physical action into the picture of computation. But his thorough and detailed analysis was of the
human calculator, with arguments for finiteness based not on physical space and size, but on human
memory and states of mind. It is odd that Church did not simply quote this model in his review,
but instead portrayed the human calculator as a particular case of an apparently more general finite
‘machine’ with ‘working parts’.

Nowadays, Church’s assertion about what could be computed by an arbitrary machine, empha-
sising its generality, and characterising it in terms of space and size, reads more like the ‘physical
Church-Turing thesis’, than the careful limitation to a human being, working to rule. It is unclear
whether Church was actually aware of this distinction.

IChurch, A., 1937. Review of Turing 19367, J. Symbolic Logic 2, 42, with permission from Association for Symbolic
Logic.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00003-5 11 7
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00003-5

118 Part 1

It is an interesting question as to what Turing himself, who was well acquainted with mathemati-
cal physics, thought were the physical connotations of his 1936 work. Firstly, there is the question
of the building of working Turing machines, and the universal machine in particular. Newman,
and Turing’s friend David Champernowne, later attested to discussions of it even at that time. But
no written material has reached us. It is certainly hard to see how Turing could have failed to
see that the atomic machine operations could be implemented with the sort of technology used in
automatic telephone exchanges and teleprinters. The second, more difficult, question is what Turing
thought the structure and limitations of computability had to say about the nature of the physical
world. In particular, it is a striking fact that Turing, far more than most mathematicians of 1936,
had an insight into the quantum-mechanical revolution in the description of physics. In 1932 he had
studied Neumann’s new axiomatisation of quantum mechanics, and it might well be that this work
had encouraged him in the work of logical analysis which flowered in 1936. So of all people, he
was well equipped to make some comment on Church’s idea of an ‘arbitrary machine’, if only to
emphasise that the changing nature of modern physics meant that this was not a simple concept. Yet
he gave no recorded reaction, and there seems to have been no debate around the question at this
period.

In his post-war writing, Turing made free use of the word ‘machine for describing mechanical
processes, and made no attempt to alert his readers to any distinction between human worker-to-rule
and physical system — a distinction which, nowadays, would be considered important. Thus Turing
(1948) referred to written-out programs, for a human to follow, as ‘paper machines’. The imagery
is that of a human acting out the part of a machine. Indeed, he stated that any calculating machine
could be imitated by a human computer, again the reverse of the 1936 image. He referred often to the
rote-working human calculator as a model for the way a computer worked and a guide as to what it
could be made to do in practice. But he also referred to the advantage of the universal machine being
that it could replace the ‘engineering’ of special-purpose machines. Most importantly, he appealed
to the idea of simulating the brain as a physical system. So in later years Turing readily appealed
to general ideas of physical mechanisms when discussing the scope of computability. Finally, in his
last years, he seems to have taken an interest in the implications of quantum mechanics. But as for
what he had in mind in 1936, we cannot know, and Church’s review only heightens the mystery.

Reference

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, series 2, vol. 42, pp. 230-265.

On Computable Numbers, with an Application to the Entscheidungsproblem 119

A. M. TURING. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, series 2, vol. 42 (1936-7), pp. 230-265.

The author proposes as a criterion that an infinite sequence of digits 0 and 1 be “computable”
that it shall be possible to devise a computing machine, occupying a finite space and with working
parts of finite size, which will write down the sequence to any desired number of terms if allowed to
run for a sufficiently long time. As a matter of convenience, certain further restrictions are imposed
on the character of the machine, but these are of such a nature as obviously to cause no loss of
generality — in particular, a human calculator, provided with pencil and paper and explicit instruc-
tions can be regarded as a kind of Turing machine. Thus, it is immediately clear that computability,
so defined, can be identified with (especially, is no less general than) the notion of effectiveness
as it appears in certain mathematical problems (various forms of the Entscheidungsproblem, vari-
ous problems to find complete sets of invariants in topology, group theory, etc., and in general any
problem which concerns the discovery of an algorithm).

The principal result is that there exist sequences (well defined on classical grounds), which
are not computable. In particular, the deducibility problem of the functional calculus of first order
(Hilbert and Ackermann’s engere Funktionenkalkiil) is unsolvable in the sense that, if the formulas
of this calculus are enumerated in a straightforward manner, the sequence whose nth term is 0 or
1, according as the nth formula in the enumeration is or is not deducible, is not computable. (The
proof here requires some correction in matters of detail.)

In an appendix, the author sketches a proof of equivalence of “computability” in his sense
and “effective calculability” in the sense of the present reviewer (American Journal of Mathemat-
ics, vol. 58 (1936), pp. 345-363, see review in this Journal, vol. 1, pp. 73—74). The author’s result
concerning the existence of uncomputable sequences was also anticipated, in terms of effective cal-
culability, in the cited paper. His work was, however, done independently, being nearly complete
and known in substance to a number of persons at the time the paper appeared.

As a matter of fact, there is involved here the equivalence of three different notions: com-
putability by a Turing machine, general recursiveness in the sense of Herbrand-Gédel-Kleene and
A-definability in the sense of Kleene and the present reviewer. Of these, the first has the advantage
of making the identification with effectiveness in the ordinary (not explicitly defined) sense evident
immediately — i.e., without the necessity of proving preliminary theorems. The second and third
have the advantage of suitability for embodiment in a system of symbolic logic.

ALONZO CHURCH

This page intentionally left blank

Computability and A-Definability
(J. Symbolic Logic, vol. 2 (1937), p. 153-163)

Henk Barendregt, Giulio Manzonetto and Rinus
Plasmeijer trace through to today —

THE IMPERATIVE AND FUNCTIONAL
PROGRAMMING PARADIGM

1. Models of computation

In Turing (1936) a characterisation is given of those functions that can be computed using a mechan-
ical device. Moreover it was shown that some precisely stated problems cannot be decided by such
functions. In order to give evidence for the power of this model of computation, Turing (1937)
showed that machine computability has the same strength as definability via A-calculus, introduced
in Church (1936). This model of computation was also introduced with the aim of showing that
undecidable problems exist.

Turing machine computability forms a very simple model that is easy to mechanise. Lambda
calculus computability, on the other hand, is a priori more powerful. Therefore, it is not obvious
that it can be executed by a machine. In showing the equivalence of both models, Turing shows us
that A-calculus computations are performable by a machine, so demonstrating the power of Turing
machine computations. This gave rise to the combined

Church-Turing Thesis The notion of intuitive computability is exactly captured by A-definability
or by Turing computability.

Computability via Turing machines gave rise to imperative programming. Computability
described via A-calculus gave rise to functional programming. As imperative programmes are more
easy to run on hardware, this style of software became predominant. We present major advantages
of the functional programming paradigm over the imperative one, that are applicable, provided one
is willing to explicitly deal with simple abstractions.

2. Functional programming

2.1. Features from lambda calculus

Rewriting. Lambda terms form a set of formal expressions subjected to possible rewriting (or
reduction) steps. For each term, there are in general several parts that can be rewritten. However,
if there is an eventual outcome, in which there is no more possibility to rewrite, it is necessarily
unique.

Application. An important feature of the syntax of A-terms is application. Two expressions can be
applied to each other: if F and A are A-terms, then so is FA, with as intended meaning the function '

Supported in part by NWO Project 612.000.936 CALMOC.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00004-7 1 21
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00004-7

122 Part 1

applied to the argument A. Both the function and the argument are given the same status as A-terms.
This implies that functions can be applied to functions, obtaining higher-order functions.

Abstraction. Next to the application there is abstraction. This feature allows to create complex
functions. For example, given terms F and G intended as functions, then one may form F o G and
G o F o G with the rewriting rules

(FoG)a — F(Ga);
(GoFoG)a — G(F(Ga)).

It is interesting to note that there is one single mechanism, A-abstraction, that can capture both
examples and much more. Given a A-term M in which the variable x may occur, one can form
the abstraction Ax.M. It has as intended meaning the function that assigns to x the value M. More
generally, Ax.M assigns to N the value M[x:=N], where the latter denotes the expression obtained
by substituting N for x in M. Then one has

FoG £ M.F(Gx);
GoFoG 2 \x.G(F(Gx)).

B-reduction. Corresponding to this abstraction with its intended meaning, there is a single
rewriting mechanism. It is called B-reduction and is

(Ax.M)N — M[x:=N],

giving the two rewrite examples mentioned above from the definition of F o G and Go F o G. One
can iterate the procedure and introduce the higher-order function C ‘composition’ as follows.

C & Afrgix.f(gx).

Having C one can write F o G £ C F G, where in the absence of parentheses, one should read this
C F G as (C F) G. Dually the iterated abstraction AfAgAx.f(gx) should be read as Af (Ag(Ax.f(gx))).

Instead of A-abstraction, it is convenient to define functions by their applicative behaviour!.
One then writes comp f g x=1 (gx), obtaining ‘composition’ comp f g = f o g. One can even give
definitions that are ‘looping’, like L x = (x, L(x+ 1)), so that L0 = (0,(1,(2,(3,...)))). Similarly,
one can construct the list of all prime numbers. Infinite lists are easier to describe than a list of say
28 elements.

Lazy evaluation. Expressions are evaluated as little as possible. Consider the program f (L 4): the
expression L 4 is computed only when f tries to read some input and is just evaluated for long
enough to return a value to f. This enables dealing with ‘infinite objects’, mentioned above.

2.2. Features beyond lambda calculus

For the pragmatics of functional programming, several features are added to the basic system of
A-calculus.

Data. Although integers and ‘scientific’ real numbers can be represented as A-terms, for efficiency
reasons they are given by special constants, together with the primitives for standard operations.

! This method is called as heuristic application principle by Bohm.

Computability and A-Definability 123

Names. The original A-calculus formalism does not have names by design, as arbitrary
A-abstractions can be made. However, for the pragmatics of using and reusing software compo-
nents, it is useful to introduce a naming construction 1et. For example, 1etcomp = AfAgax.f(gx)
means that composition C£ Afigix.f(gx) is now called comp and can be used later to
define

FoG&compFQG.

3. Types

In physics, constants have a ‘dimension’, e.g., speed is measured in kilometre per hour. When
we bike at v =12 km/h and we do this for t = 3 h, we have gone vt =123 = 36 km. Dimensions
prevent that we want to consider, e.g., vt? to compute the distance.

Similarly, functional programming languages come with a type system helping to ensure cor-
rectness. A program expecting a number (: Int) should not receive a judgement (: BooTl). Giving
module F a type A is denoted by F : A (read ‘F in A’). One starts typing the data, e.g., 3: Int,
True:Bool. Functions with behaviour G x =y get as type A— B, where x:A and y:B. An
application F a is only allowed if the types match, i.e., F: A— B and a : A.

The functional programmer indicates the types of the data structures and basic functions, and
the machine performs type inferencing at compile time. This is a major help for combining software
modules in a correct way: many bugs are caught as the result will be an untypable program.

Algebraic Data Types. Next to basic data types, like Int, Bool, one likes to use common data
structures, like lists and trees of elements of type A. Such structures start small and grow. There is
the empty list Ni 1 and one can extend a list t1 (‘tail’) by chaining an element hd (‘head’) of type A,
obtaining Cons hd t1. The function that counts the number of elements in a list (of arbitrary type)
can be defined by specifying that on the empty list it is 0 and on an enlarged list it is the length of
the previous list plus 1.

count:List A— Int
count NiT=0
count (Cons hd t1)=1+count tl

Using so-called Generalised Abstract Data Types, one introduces several such types simultaneously,
mutually depending on each other, keeping type inferencing possible, see Schrijvers et al. (2009).

Generic types. One can ‘code’ algebraic types enabling to write uniformly functions on these. For
example, there is a map on lists and on trees of data (hanging at the leaves), whereby a given function
f is applied to each element. The two functions can be obtained by specializing one program with
a generic type, including possible exceptions. With this feature, one can embed Domain Specific
Languages within a functional language, see Plasmeijer et al. (2007).

Dynamic types. A functional program P having type A is compiled to machine code and evalu-
ated. During this process, the original term, its type and context of definitions are forgotten. Using
‘dynamic types’, one may keep track of this syntactic data. This enables dynamic code, e.g., for
writing typed Operating System in a pure functional language and dealing with unknown plug-ins
or database specifications.

Efficiency. Considerable effort has been put into the compiler technologies for functional lan-
guages. The code generated by the state of art compilers for Haskell, OCaML and Clean is so good,
that efficiency is no longer an issue, see the URL <shootout.alioth.debian.orgs.

An example. Using abstraction, application, algebraic data types and functions as arguments, one
can write compact software that can easily be modified. One can construct fo1dr with the following
specification.

foldr (e)[a],...,an] Start = (a;e (ape (... (@apnestart)...)))

Here, ‘@’ is a binary operation used in infix position, and ‘(e)’ stands for e as argument. The program

http://shootout.alioth.debian.org

124 Part 1

foldr works on every kind of lists and subsequently can be applied to particular functions and data
structures, for example to obtain sum1ist. As a comparison, the imperative code is also given. The
function foldr has the ‘schematic type’ (A — B — B) - B — List A — B, which does not need to
be given by the programmer.

working Functional (Haskell-1ike) Imperative (C-Tike)

int sumlist(node *1){
node xcur = 1;

foldr f e Nil = e int res = 0;
foldr f e (Cons hd tl1) = while not (curr = Nil){
f hd (foldr f e t1) res = res + curr->num;

curr = curr->next;
sumlist = foldr (+) 0 }

return res;

}

If one needs the product of the elements of a list, then in the functional case, one just adds a
new line prodlist=foldr () 1, whereas in the imperative case, one needs to write another
procedure exactly like sumlist, except for the product that now replaces the sum, thus doubling
the lines of code.

4. Input/output

In applications, one needs to perform I/O to manipulate information available in peripherals (e.g.,
keyboard and mouse for input and the file system and screen for output). These characterise the
‘state’ of the machine and platform running a program. This may effect the content of the file,
which is imperative by nature. In pure” functional languages, one has to deal with I/O in a special
way, while maintaining modularity, readability and typability.

In Haskell, the state has a particular type State. For output, one modifies the state (‘writing’),
and for input, one makes available to the main functional program a value from the state (‘reading’,
thereby also possibly changing the state). The programming environment of Haskell comes with a
collection of write and read operations having the following effect.

write a state=state’
read state=(a,state’)

Together these are called ‘actors’, with the following type and action.

actor:State — Ax State
actor state=(a,state’)

Here, ‘write a’ is interpreted as an actor, for which the A is not used. Actors can have an erasing
effect on the state. Therefore, the programmer has access to the actors, but not to the state. Otherwise
one could write

fstate=(writel state, write 2 state), (1)
having a not well-defined effect (depending on execution order). The type State remains hidden

to the programmer, but not the actors having type Monad A = State — (A x State), parametrised
with a type A, on which the program can operate. The entire program is seen as a state modifying

2 A pure functional language is one without assignments, i.e., statements like [X := X 4+ 1].

Computability and A-Definability 125

function of type Monad B, for some type B. Composing such functions, using a kind of composi-
tion, one preserves modularity and compactness. In the meantime, any possible computations can
take place, by interleaving these with the actors. The monadic approach in Haskell has as advantage
that it does not require a special type system to deal with I/O.

In Clean, dealing with I/O is more general. Monads are used as well, but also the state on which
they act is given to the programmer. This is possible because a uniqueness type system warrants safe
usage that avoids situations like (1) above. As the state is available, one can split it into different
components, like files, the keyboard and whatever one needs. These can be modified separately, as
long as they are not duplicated. Explicit access to the state allows to write the actors within Clean
itself.

We see that in both Haskell and Clean, dealing with I/O comes at a certain price. But this is well
worth the advantages of pure functional programming languages: having arbitrarily high meaningful
information density, with modules that can be combined easily in a safe way.

5. Current research

5.1. Parallelism

Pure functional languages are better equipped for programming multi-cores than imperative lan-
guages, as the result of a function is independent of its evaluation order. Therefore, modules in a
functional program can be safely evaluated in parallel. As it costs overhead to send data between
processors, one should restrict parallel evaluation to those functions having time consuming com-
putations. Research on parallel evaluation of functional programs, see Hammond and Michaelson
(1999), has been revived by the advent of new multi-core machines (Marlow et al, 2009).

5.2. Certification

In languages like AGDA (Bove et al., 2009), or Coq, 2010, one can fully specify a program and prove
correctness. This demands even more skills from the programmer than pure functional languages
already done: programming becomes proving. But the ideal of ‘formal methods’ (fully specifying
software together with a proof of correctness) has become feasible. For example, Leroy (2009)
gives a full certification of an optimised compiler for the kernel of the (imperative) language C.

6. History and perspective

The first functional language was Lisp (McCarthy et al., 1962). There is no type system, and I/O
is done imperatively. By contrast, the language ML (Milner et al., 1997) and its modern variant F*
(Syme et al., 2007) are impure as well, but strongly typed. Miranda (Turner, 1985) was one of the
first pure functional programming languages, with lazy evaluation and type inference. Clean (Plas-
meijer and van Eekelen, 2002) and Haskell (Jones, 2003) are modern variants of Miranda. Haskell
has become the de facto standard pure functional language, which is widely used in academia.

Pure functional programming has not yet become mainstream, despite its expressive power and
increased safety. To make use of the power, one needs understanding the type systems and the use
of the right abstractions. Once mastered, functional programming enables writing applications in a
fraction of the usual development and debugging time.

3 As reading actors use the information obtained by modifying the state, it is a serial action with giving over a token, like
in a relay race.

126 Part 1

References

Bove, A., Dybjer, P, Norell, U., 2009. A brief overview of Agda — a functional language with dependent
types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., (Eds.), Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings, volume 5674 of Lecture Notes in Computer Science, Springer, pp. 73-78.

Church, A., 1936. An unsolvable problem of elementary number theory. Am. J. Math. 58 (2), pp. 345-363.

Coq Development Team, 2010. The Coq Proof Assistant Reference Manual — Version V8.3.
URL: <http://coqg.inria.fr>.

Hammond, K., Michaelson, G., 1999. Research Directions in Parallel Functional Programming, Springer.

Jones, S.P,, (Eds.), 2003. Haskell 98 Language and Libraries: The Revised Report, Cambridge University Press.

Leroy, X., 2009. A formally verified compiler back-end. J. Autom. Reason. 43 (4), 363-446.

Marlow, S., Jones, S.L.P. Singh, S., 2009. Runtime support for multicore Haskell. In: Hutton, G., Tolmach, A.P.,
(Eds.), Proceeding of the 14th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2009, August 31-September 2, ACM, Edinburgh, Scotland, UK, pp. 65-78.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.L., 1962. LISP 1.5 Programmer’s Manual,
MIT Press.

Milner, R., Tofte, M., Harper, R., McQueen, D., 1997. The Definition of Standard ML, The MIT Press.

Plasmeijer, R.M., Achten, P., Koopman, P.W.M., 2007. iTasks: executable specifications of interactive work
flow systems for the web. In: Hinze, R., Ramsey, N., (Eds.), Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2007, October 1-3, 2007, ACM, Freiburg,
Germany, pp. 141-152.

Plasmeijer, R.M., van Eekelen, M.C.J.D., 2002. Clean Language Report, University of Nijmegen, Software
Technology Group.

Schrijvers, T., Jones, S.L.P., Sulzmann, M., Vytiniotis, D., 2009. Complete and decidable type inference for
GADTs. In: Hutton, G, Tolmach, A.P., (Eds.), Proceeding of the 14th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2009, August 31-September 2, 2009, ACM, Edinburgh,
Scotland, UK, pp. 341-352.

Syme, D., Granicz, A., Cisternino, A., 2007. Expert F#, Reactive, Asynchronous and Concurrent Programming.
Apress, 2007.

Turing, A.M., 1936. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. ser. 2. 24, 230-265.

Turing, A.M., 1937. Computability and lambda-definability. J. Symbol. Log. 2 (4),153-163.

Turner, D.A., 1985. Miranda: A non-strict functional language with polymorphic types. Proceedings IFIP Con-
ference on Functional Programming Languages and Computer Architecture, Nancy, France, September
1985. Springer Lecture Notes in Computer Science 201, pp 1-16.

http://coq.inria.fr

Computability and A-Definability 127

COMPUTABILITY AND A-DEFINABILITY

A. M. TURING

Several definitions have been given to express an exact meaning corresponding to the intuitive
idea of ‘effective calculability’ as applied for instance to functions of positive integers. The purpose
of the present paper is to show that the computable' functions introduced by the author are identical
with the A-definable’ functions of Church and the general recursive’ functions due to Herbrand
and Godel and developed by Kleene. It is shown that every A-definable function is computable
and that every computable function is general recursive. There is a modified form of A-definability,
known as A-K-definability, and it turns out to be natural to put the proof that every A-definable
function is computable in the form of a proof that every A-K-definable function is computable;
that every A-definable function is A-K-definable is trivial. If these results are taken in conjunction
with an already available* proof that every general recursive function is A-definable we shall have
the required equivalence of computability with A-definability and incidentally a new proof of the
equivalence of A-definability and XA-K-definability.

A definition of what is meant by a computable function cannot be given satisfactorily in a short
space. I therefore refer the reader to Computable pp. 230-235 and p. 254. The proof that com-
putability implies recursiveness requires no more knowledge of computable functions than the ideas
underlying the definition: the technical details are recalled in §5. On the other hand in proving that
the A-K-definable functions are computable it is assumed that the reader is familiar with the methods
of Computable pp. 235-239.

The identification of ‘effectively calculable’ functions with computable functions is possibly
more convincing than an identification with the A-definable or general recursive functions. For
those who take this view the formal proof of equivalence provides a justification for Church’s cal-
culus, and allows the ‘machines’ which generate computable functions to be replaced by the more
convenient A-definitions

1. Definition of A-K-definability

In this section the notion of A-K-definability is introduced in a form suitable for handling with
machines. There will be three differences from the normal, in addition to that which distinguishes
A-K-definability from A-definability. One consists in using only one kind [] of bracket instead of
three, {},(),[]; another is that x,x,x!l, ... are used as variables instead of an indefinite infinite

Received September 11, 1937.

LA M. Turing, On computable numbers with an application to the Entscheidungsproblem, Proceedings of the London
Mathematical Society, ser. 2, vol. 42 (1936-7), pp. 230-265, quoted here as Computable. A similar definition was given
by E. L. Post, Finite combinatory processes—formulation 1, this JOURNAL, vol. 1 (1936), pp. 103-105.

2 Alonzo Church An unsolvable problem of elementary number theory, American journal of mathematics, vol. 58
(1936), pp. 345-363, quoted here as Unsolvable.

3 8. C. Kleene, General recursive functions of natural numbers, Mathematische Annalen, vol. 112 (1935-6), pp. 727-
742. A definition of general recursiveness is also to be found in Unsolvable pp. 350-351.

4S. C. Kleene. A-definability and recursiveness, Duke mathematical journal, vol. 2 (1936), pp. 340-353.

128 Part 1

list of the single symbols, and the third is a change in the form of condition (ii) of immediate
transformability, not affecting the definition of convertibility except in form.

There are five symbols which occur in the formulae of the conversion calculus. They are A, X, l
[and]. A sequence of symbols consisting of x followed by ! repeated any number (possibly 0)
of times is called a variable. Properly- formed formulae are a class of sequences of symbols which
includes all variables. Also if M and N are’ properly-formed formula, then [M][V] (i.e. the sequence
consisting of [followed by M then by], [and the sequence N, and finally by]) is a properly-formed
formula. If M is a properly-formed formula and V is a variable, then AV[M] is a properly-formed
formula. If any sequence is a properly-formed formula it must follow that it is so from what has
already been said.

A properly-formed formula M will be said to be immediately transformable into N if either:

(i) M is of the form AV[X] and N is AU[Y] where Y is obtained from X by replacing the variable
V by the variable U throughout, provided that U does not occur in X.

(i1) M is of the form [AV[X]][Y] where V is a variable and N is obtained by substituting Y for V
throughout X. This is to be subject to the restriction that if W be either V or a variable occurring in
Y, then AW must not occur in X.

(iii) N is immediately transformable into M by (ii).

A will be said to be immediately convertible into B if A is immediately transformable into B or
if A is of the form X[L]Y and B is X[M]Y where L is immediately transformable into M. Either
X or Y may be void. A is convertible to B (A conv B) if there is a finite sequence of properly-
formed formulae, beginning with A and terminating with B, each immediately convertible into the
preceding.

The formulae,

ax[ax! [x1] (abbreviated to 0),
ax[ax! [[x][x11] (abbreviated to 1),
Ax[Ax! [XIxIx (abbreviated to 2), etc.,

represent the natural numbers. If n represents a natural number then the next natural number is
represented by a formula which is convertible to [S][n] where S is

axIDx X I .

A function f(n) of the natural numbers, taking natural numbers as values will be said to be A-K-
definable if there is a formula F such that [F][r] is convertible to the formula representing f(n)
if n is the formula representing n. The formula [F][nr] can never be convertible to two formulae
representing different natural numbers, for it has been shown® that if two properly-formed formu-
lae are in normal form (i.e., have no parts of the form [AV[M]][N]) and are convertible into one
another, then the conversion can be carried out by the use of (i) only. The formulae representing the
natural numbers are in normal form and the formulae representing two different natural numbers
are certainly not convertible into one another by the use of (i) alone.

5 Heavy type capitals are used to stand for variable or undetermined sequences of symbols. In expressions involving
brackets and heavy type letters it is to be understood that the possible substitutions of sequences of symbols for these
letters is to be subject to the restriction that the pairing of the explicitly shown brackets is unaltered by the substitution;
thus in X[L]Y the number of occurrences of [in L must equal the number of occurrences of].

6 Alonzo Church and J. B. Rosser, Some properties of conversion, Transactions of the American Mathematical Society,
vol. 39 (1936), pp. 472-482. The result used here is Theorem 1 Corollary 2 as extended to the modified conversion on
p. 482.

Computability and A-Definability 129

2. Abbreviations

A number of abbreviations of the same character as those in Computable (pp. 235-239) are intro-
duced here. They will be applied in connection with the calculus of conversion, but are necessary
for other purposes, e.g. for carrying out the processes of any ordinary formal logic with machines.
The abbreviations in Computable are taken as known.

“The sequence of symbols marked with @ (followed by «)’ will be abbreviated to S(«) in the
explanations. Sequences are normally identified by the way they are marked, and are as it were lost
when their marks are erased.

In the tables B will be used as a name for the symbol ‘blank.’

pem(X, a, B) pe(pemy, o)
pem; R,PB A

pem; here stands for pem; (2, «, 8) and similar abbreviations must be understood throughout.

pem(2(, o, B). The machine prints « at the end of the sequence of symbols on F-squares and marks
it with 8. — 2.

The tables for cem (98, y, B) and cem(®B, y, B) are to be obtained from those for ct(*8,y) and
ce(’B, y) by replacing pe(A,) by pem (2, «, 8) throughout.

(R, Ca, B) cp(cpry, cpry, cprs, o, B)
oty ve(ve(cpt, b, B,D),b,a,a)
cpry te(ve(<,b, B),a,a)
pr; ve(ve(RU, b, B),a,a)

cpr (A, €, o, B). The machine compares S(«) with S(8). — 2 if they are alike; — € otherwise. No
erasures are made.

The letters a, b occurring in the table for cpr should not be used elsewhere in any machine whose
table involves cpt. This can be made automatic by using a@cp¢ and by, say, instead of a and b. We
shall however write a and b and understand them to mean acp, and bp.. The same applies for the
letters a, --- , z in all such tables.

y L A
Q’ls
FRL v) noty R, R f
bf(A, e, B,v,6) E, Pa f(bfy, ¥)
o R, E, Pb f(bfz, V)
bf, B L b
others R, R, R, f(bf1,b,¥)
B R, E, Pb f(bf,b, @)
bf,
not R, R, R §(bf2,¥)
y orb E, PS5, L, L bf3
bf3 o E, Py A
others L,L bf3

130 Part 1

bf(A, «, B, y, 8). This describes the process of finding the partner of a bracket. If @ and 8 are
regarded as left and right brackets, then if the machine takes up the internal configuration bf when
scanning a square next on the right of an « it will find the partner of this « in the sequence S(y), and
will mark the part of S(y) which is between the brackets with § (instead of y). The final internal
configuration is 2(and the scanned square is that which was scanned when the internal configuration
bf was first taken up.

sb(,a,B,y,8,¢€) f'(sby, cem(ve(ve(sb,a.j)b,)y €), B)
5by o R, E, Pb sbo(2A, @, B, v, 8, €, 0)
sby ' (sb3, cem(ve(re(re(A, b, B),j,@),a,@), a,8), «)
o R,E,Pa sb
5b3
not o R.E,Pa ve (' (sby, b, a)p,B)
5by T R,E,Pj re(pem(sh,7,d), a,a)
5ub(ﬂ,a,,3,)/,5) 5b(2[,0[,,3,)/, 3,8)
(A, B,a,B) pem(sb(f(e(A,d),B, d), o, B,p,r, d), r,p)

sub(, o, B, y, §). S(y) is substituted for S(B) throughout S(«). The result is copied down and

marked with §. — 2.
ot(A, B, «, B). It is determined whether the sequence S(B) occurs in S(«). — 2 if it does; — B
otherwise.

The tables which follow are particularly important in all cases where an enumeration of all
possible results of operations of given types is required. The enumeration may be carried out by
regarding the operation as determined by a number of choices, each between two possibilities, L
and M say. Each possible sequence of operations is then associated with a finite sequence of letters
L and M. These sequences can easily be enumerated. The method used here is to replace L by O,
each M by 1, follow the whole by 1, reverse the order and regard the result as the binary Arabic
numeral corresponding to the given sequence. Thus the first few sequences (beginning with the one
associated with 1) are: the null sequence, L, M, LL, ML, LM, MM, LLL, MLL, LML, MML. In
the general table below ¢ and n are used instead of L and M.

add(A,«,Z,n) f' (a0, pem(add2,¢,a),)
add; n R.E pem(ad0, ¢,a)

R,E pem(add2, 1,a)
a0y cem(re(, a, @), a,a)

add(X, o, ¢, n). The sequence S(«) consisting of letters ¢ and n only is transformed into the next
sequence. — 2.

ch@, B,¢,a,L,n) §'(chy,ve(C,b,a),a)
PR R,E,Pb 2A
lon R,E,Pb B

ch(A,%B,¢,a,¢,n) is an internal configuration which is taken up when a choice has to be made. S(«)
is the sequence of letters ¢ and n determining the choices. — 2 if the first unused letter is ¢;— B

Computability and A-Definability 131

if it is #n: it is then indicated that this ¢ or n has been used by replacing its mark by b. When the
whole sequence has been used up these marks are replaced by o again and — €.

cch®,B,¢,a,¢,1) R cch;

cchy o E, Pa cchr (A, B, €, a,¢,n,0)

cehy ch(f(cehs, b, a),f(cchy, b, @), €, .8, n)
cchs E,Po,L A

cchy E,Po,L B

cch(A, B,C, «,¢,n). This differs from ch in that the internal configurations 2 and B are taken up
when the same square is scanned as that which was scanned when the internal configuration cch was
first reached, provided that this was an F-square.

3. Mechanical conversion

We are now in a position to show how the conversion process can be carried out mechanically. It
will be necessary to be able to perform all of the three kinds of immediate transformation. (iii) can
be done most easily if we can enumerate properly-formed formulae. It is principally for this purpose
that we introduce the table for pff(2,).

funf(2, o, B,y) pem(cem(pemy (cem(pem (2, 1Ly), B, v).L.Ly),e.v), Ly)
funfLa, B,7). [S(@)1[S(B)] is written at the end and marked with y. — 2.
ch(®A, B,¢, 6) ch(®A,B,¢,60,L,M)
cch(, B,¢,) cch(2A,B, ¢, 6,L, M)
The choices will be determined by a sequence made up of letters L. and M.
pff(A, €, «,0) pes(c(h(af, pffi, €, 0),55,%,5,%)
pffl q(pfflv :)
; R,R cch(pff3. pffa. €.6)
pff2 q af
others R,R Pl
; pffa
pffs q af
others R,Pa,R pffs
; R,R ceh(pffs, pffs. €, 0)
pffa q af
others R,R pffa
;ord av
pffs
others R,Pb,R pffs

132 Part 1

ar ch(ne,ch(comp,ab,e,0),E,0)
ne pey(ney,;,x)
nej ch(pe(ner,)), af,&,0)
comp pe(funt(af, a, b,9),;)
ab pes(aby,;,A, X)
ab; ch(pe(abll),abz,(’;@)
ab pe(ce(pe(af,), a),D
af e(e(ch(fin,pff;,€,0),a),b)
fin q(e(e(fing)),;)
not g R,Pa,R fing
finy
d A

pff (A, €, «,0). A properly-formed formula is chosen, written down at the end and marked with
a. — 2. This is done by writing down successive properly-formed formulae separated by semi-
colons, and obtaining others from them by abstraction (i.e., the process by which AV[M] is obtained
from M), by application of a function to its argument (i.e., obtaining [M][N] from M and N), and
by writing down new variables. Before writing down a new formula we have the alternative of
taking the last formula as the result of the calculation. In this case the internal configuration fin is
taken up. If a new formula is to be constructed then two of the old formulae are chosen and marked
with a and b: then one of the internal configurations ab, comp,ne is chosen and the new formula is
correspondingly AV[S(a)],[S(a)][S(b)], or V, where V is a new variable. The whole of the work is
separated by a colon from the symbols which were on the tape previously. The meanings of pe; and
pes are analogous to pe,.

The occurrence of A in this table is of course as a symbol of the conversion calculus, not as a
variable machine symbol.

The immediate transformations (i) and (ii) are described next.

vaX, €, o, B, 0) f(va, A,a)

A R,E,Pa ' (vay, b,a)
vap

others cm Ao, B)

x or ! R.E,Pb f'(vay, b,a)
va

others R bf(pe(vaz,x), [,],a,¢)
vas R, Pd ch(pe(vaz, 1), 0t(vay, vas, ¢,d), €, 6)
vay ve(ve(re(cem(e(,d),, B),b,x)a,a)c,a)
vas cem(re(re(re(vag,a,a),b,a),c,a)b,f)
vag sub(e(e(A,d),f),a,f,d,B)

va(A, ¢, «,B,0). An immediate transformation (i) is chosen, and if permissible is carried out on
S(a), the result being marked with 8. If the chosen transformation is not permissible then S(g) is
identical with S(a). — 2.

Computability and A-Definability 133

red (A, o, B)
[R bf(teds, [,1,a,c¢)
ted)
not [ted|3
teds E,Pf ve(f(reds3, b,®),b, a.f)
teds bf(veds [, |, o0, d)
tedy § (te0s, b, ©)
A R, E, Pf ' (vedg b,)
te05
not A te0|3
x or | R,E,Pg f/ (teds, b,c)
telg
[R.E, Pf q(ted7, ¢)
tedy E, Pf redg
tedg § (tedog,red 0, C)
A R,E, Pk f/(tean,b,c)
tedo
not A R,E,Pk telg
x or | R, E, Pj f/ (ted11,b,¢)
el
[cpr(redy3, tedi2,/,8)
tedq2 0t(redy3,ve(reds,j, k),d,))
tedo Jub(re(re(re(re(, d, a).f, o), k, a),g, @)k, g,d, B)
ted 3 ve(ve(ve(ve(re(ve(cem(A, o, B),d, @), g, @), ¢,). f,), k,), j,)

ted (A, «, B). An immediate transformation (ii) is carried out on S(«), supposing that S(x) is
properly-formed. The result is marked with . — 2. If the transformation is not possible or
permissible S(B) is identical with S(«). Considerable use is made of the hypothesis that S(«) is
properly-formed. Thus if its first symbol is [then it must be of form [L][N] and if in addition the
second symbol is A then it is of form [AV[M]][V]. The internal configuration vedg is never reached
unless S(«) is of this form, and in that case it first occurs when V has been marked with g, M with
¢, and N with d, the remaining symbols of what was S(«) being now marked with « or f. It is then

134 Part 1

determined whether the immediate transformation (ii) is permissible: if it is then ted1¢ is taken up
and the substitution carried out.

ime(2, ¢, a,B,0) ch(f (imey, imey,), ve(imer,a,a), €, 0)
[R,E, Pc ch(ime, imces, €,60)
imcy,
not [R, E,Pc ime
imcy re(cem(XA, o, B), ¢, @)
ime3 q(bf(imey, [,1, «,a), ©)
imcy ch(oc, ch(re, ez, €,0), €, 6)
(] va(imes, &, a,b,0)
T red(imes,a,b)
et pff(ved(ery,b,d), ,b,0)
ety cpr(e(imes,d), e(e(cem(imes,a,b),d),b),d,a)
imecs cem(cem(crm(ve(ve(e(A, D), c,a),a,a),a,8),b,B),c, B)

ime(2A, €, a, B,). An immediate conversion is chosen and performed on S(«). The result is marked
with 8. — 2L

conv(XA,a, B,0) pe(cem(convy, o, d),.)
conw ch(ime(convy, au,d,f,0),ve(A,d, B), au,0
convy e(ve(convy,f,d),d)
au q(auy,.)
a q cam((A,a, B)
! not g R,E,R aug

conv(A,a, B,6). A conversion is chosen and performed on S(«). The result is marked with 8. — 2.
The sequence determining the choices is S(6). If it should happen that this sequence is exhausted
before the conversion is completed then the final formula is the same as the original, i.e. S(¢). The
half finished conversion work is effectively removed from the tape by erasing the marks.

4. Computability of A-K-definable functions

It is now comparatively simple to show that a A-K-definable function is computable, i.e., that’ if
f(n) is A-K-definable then the sequence yr in which there are f(n) figures 1 between the nth and the
(n+ 1)th 0, and f(0) figures before the first 0, is computable.

To simplify the table for the machine which computes y; we use the abbreviation 20t(2A, M, o)
for an internal configuration starting from which the machine writes the sequence M of symbols
at the end, marking it with & and finishing in the internal configuration 2. Thus the table for
20¢(A, Ax!, o) would be:

WeA, rx !, a) pe(Wry, 9)
MWy, PX, R,Pa,R, Px,R,Pa,R, P\, R,Pa A

7 Computable p. 254.

Computability and A-Definability 135

We use one more skeleton table:

pis(A, o, B) funf(e(ve(A,a,a),a), B, a,a)
If F is the formula which A-K-defines f(n) then the table for the machine which computes yr is:
b Po, R,Po We(by, F, h)
b e (by, Ax[Ax![x/1],)
by cem(bs, i, k)
b3 20 (ba, Ax! X[XX T,)
ba funf(eng, b, k,v)
(1 ado(eng,s, L, M)
my cen(eny,i,d)
my ch(re(ens,d, m),plf(cny,d, u),cng, s)
3 conv(cng, v, w,s)
ny cpr(ens, cng, w,m)
Mg e(e(e(engo,w),m),d)
o ch(cnlo, thmyp,cn, S)
s q(eny,m)
my E g(cng,m)
g E q([(eng), m)
ho] R.E pem(g(l(cng),m), 1,a)
not | pem(e(e(e(e(bay,s),v),w),m),0,a)
ba; plf(ba,k,u)

When the machine reaches the internal configuration ba for the (n + 1)th time (n 2 0) the tape bears
the formula F marked with &, the formula n representing the natural number n (or rather a formula
convertible into it) marked with k,0 marked with i, and S marked with u. A formula convertible into
one representing some natural number r is then chosen and marked with m. This brings us to the
internal configuration ¢n3. A conversion is then chosen and performed on S(v), i.e. on [F][n]. The
result is marked with w and compared with S(m). If they are not alike the letters w, m are erased
and we go back to cn after transforming the sequence S(s) which determines the choices into the
next sequence. If they are alike then 1 is written at the end repeated r times followed by 0, all of
which is marked with a. In order to have the correct number of figures we make use of the fact that
the number of brackets occurring consecutively at the end of S(m) is r 4+ 2. The machine is back in
the internal configuration ba as soon as S(k) has been changed to [S][S(k)].

No attempt is being made to give a formal proof that this machine has the properties claimed for
it. Such a formal proof is not possible unless the ideas of substitution and so forth occurring in the
definition of conversion are formally defined, and the best form of such a definition is possibly in
terms of machines.

If f(n)(n 2 1) is A-definable, i.e. if F is well-formed (Unsolvable p. 346), then the present argu-
ment shows also that f(n) is then computable in the sense that a function g(n) of positive integers
is computable if there is a computable sequence with g(n) figures 1 between the nth and (n 4+ 1)th
figure 0.

136 Part 1

5. Recursiveness of computable functions.

It will now be shown that every computable function f(n) of the natural numbers, taking natural
numbers as values, is general recursive. We shall in fact find primitive recursive functions j(x), ¢ (x)
such that if £(x) is the (x + 1)th (x =0, 1, 2, ---) natural number y for which j(y) = 0, then f(x) is
given by

J@) =¢EM®).

It is easily seen that such a function is general recursive (cf. Unsolvable p. 353); also it can easily
be brought into the form,?

J@) = ¢ (eyli(x, y) =01)

(where ey[i(x,y) = 0] means ‘the least natural number y for which i(x, y) = 0,” and i(x, y) is primi-
tive recursive) which plays a central part’ in the theory of general recursive functions. It would be
slightly simpler to set up recursion equations for f(x) but in that case it would be necessary to show
that they were consistent; this is avoided by confining ourselves to primitive recursions (whose
consistency is not likely to be doubted) except at the step from j(x) to &(x).

We are given the description of a machine which computes f(x) The machine writes down sym-
bols on a tape:amongst these symbols occur figures O and 1. The number of figures 1 between
the nth and the (n + 1)th figure O is f(n). At any moment there is one of the symbols on the tape
which is to be distinguished from the others and is called the ‘scanned symbol.” The state (complete
configuration) of the system at any moment is described by the sequence of symbols on the tape,
with an indication as to which of them is scanned, and the internal configuration (m-configuration
in Computable) of the machine. As names for the symbols we take Sp, S1, ...Sy—1 and for the
internal configurations g1 g2, ---, gr. Certain of these are names of definite symbols and internal
configurations independent of the machine; in fact,

So always stands for ‘blank,’

S1 always stands for 0,

S, always stands for 1,

q1.,always stands for the initial internal configuration.

If at any time there is the sequence
SSI,S.S‘29""SSk’“"SSkJrl (k>0,l ZO)

of symbols on the tape, with the kth symbol scanned and the internal configuration ¢;, this complete
configuration may be described by the four numbers,

w=sk_1 +Nsg_a+ --- + N2y,

8 This may be done by defining i(x, y) as follows:

e(0) =0.
e(S(x)) =S(e(x)) if j(x) =0,
=e(x) otherwise,

i(x, y) =Max (0, x —e(y)),

S(x) as usual meaning x+1.
9 Compare the two papers by Kleene already quoted.

Computability and A-Definability 137

Sk, t, and
V=Sk4+1+Nsgs2+ -+ +Nl_15k+l

or by the single number,
u=pw, sgt, v),
where
p(x1, X2, X3, Xq) = 27132557,

Each complete configuration of the machine is determined by the preceding one. The manner
of this determination is given in the description of the machine, which consists of a number of
expressions each of one of the forms ¢,SgSgLg, or q;SsSs'Ngy or q;SgSgRqy. The occurrence of
the first of these means that if in any complete configuration the scanned symbol was Sg and the
internal configuration g, then the machine goes to the next complete configuration by replacing the
scanned symbol by Sg¢r and making the new scanned symbol the symbol on the left of it and the new
internal configuration g, . In other words if a complete configuration be described by the number,

D(Sk—1 +Nsg—2+--- +Nk_251,s,t,Sk+1 + Nsgq2+--- +NHSk+1)
= p(sk—1 +Nf,s,t, 5611 +Ng),

and if ¢;SgSg'Lgy occurs in the description of the machine, then the number describing the next
complete configuration is

p(fssk—1,1, 5 + N(sp1 4+ Ng)).
In the case where we have ¢;53S3'Ngy the next complete configuration will be described by
p(si—1 +Nf, 51 si1 +Ng),
and in the case of ¢,S3Sg'Rgy by

p(s'+ N(sk—1 + Nf), si+1,7,8).

We may define a primitive recursive function d; (s, t) (or da(s, t) or d3(s, f)) to have the value 1
or 0 according as an expression of the form ¢,;S3Sg'Lqy (or q;SgSg'Ngy or q;S3Ss'Rqy) does or does
not occur in the description of the machine. In each of the three cases z(s, ¢) is to have the value
s and c(s, t) to have the value ¢'.g(x), r(x) are to be respectively quotient and remainder of x on
division by N, and @, (x)(r = 2,3,5,7) is to be the greatest integer k for which # divides x. These
functions are primitive recursive.

Then if we put

0 (x) = di(@3(x), @s5(x))p(q(@2(x)), r(@2(x)), c(@3(x), @5 (%)), 2(w3(x), @5(x)) + Noo7(x))
+ da (w3 (x), w5 (x))p(@2(x), 2(3(x), w5 (%)), c (3 (x), @5 (%)), w7 (X))
+ d3 (3 (x), @5 (x))p(z(@3(x), @5(x)) + N (x), r(@7(x)), c(03(x), @7 (x)), g (07 (%)),
and
u(0) =p(0,0,1,0) =5,

u(Sx)) = 0(u(x)),

u(x) will be the number describing the (x 4 1)th complete configuration of the machine.

138 Part 1

g(x,y) is to be defined by

g(S(x),y) =2 (allx,y 2 0), g(0,1)=0,
g(0,0):Z, g(O,Z):l,
g(0,x)=2 (x=3),
and j(x) by,

J&) = g(@3(ux)), z(@m3(u(x)), @su(x)))).

Then j(x) = 0 means that in going from the (x4 1)th to the (x + 2)th complete configuration the
machine prints a figure 0:1if j(x) = 1 it prints 1 : j(x) = 2 otherwise. & (x) is defined to be the (x + 1)th
natural number y for which j(y) = 0, and ¢ (x) as follows:
¢0)=0,
¢(S(x) =0 if j(x) =0,
T=¢ if j) =2,
=S if jx =1

Then ¢ (x) is the number of times 1 has been printed since the last 0, reckoned at the (x+ 1)th
complete configuration. ¢ (£(x)) is the number of times 1 occurs between the xth and the (x + 1)th
figure 0, its value when x = 0 being the number of figures 1 which precede all figures 0. But these
are the properties which define f(x).

PRINCETON UNIVERSITY

The p-Function in A-K Conversion
(J. Symbolic Logic, vol. 2 (1937), p. 164)

Henk Barendregt and Giulio Manzonetto point out the
subtleties of —

TURING’S CONTRIBUTIONS TO
LAMBDA CALCULUS

1. Fixed point combinators in untyped lambda calculus

The untyped lambda calculus was introduced in 1932 by Church as a part of an investigation in
the formal foundations of mathematics and logic. The two primitive notions of the lambda calcu-
lus are application and A-abstraction. Application, written MN, is the operation of applying the
term M considered as an algorithm to the term N considered as an input. Lambda abstraction, writ-
ten Ax.M, is the process of forming a function from the expression M (possibly) depending on x.
Refer to Barendregt et al. (2012) (this volume) for an intuitive account of the system relying on the
fundamental proof in Turing (1937), that lambda definability is equivalent to machine computability.

An important feature of lambda calculus is that it has fixed point combinators, namely pro-
grammes Y satisfying YM = M (YM) for all M’s. These constitute the main ingredient for writing
recursive programmes in functional style. Turing contributed to this subject by providing a fixed
point combinator ® having the additional property that the equality between ®M and M(®M)
results simply by reducing the former to the latter (which is not the case, in general). Finally,
we report how Bohm and van der Mey gave a general receipt to generate many new fixed point
combinators starting from a fixed one. Turing’s fixed point operator can be obtained in this way.

The rest of the section consists of the technical details and may be skipped by readers not
interested.

1.1. Lambda terms, reduction, and conversion
Formally, the set A of A-terms is defined inductively as follows:

Every variable x is in A;
If M,N € A, then MN € A;
If M € A, then Ax.M € A, for every variable x.

Lambda abstraction is a ‘binder’; therefore, a variable x in M is called bound if it occurs in the
scope of a ‘Ax’ and is called free otherwise. As usual we consider A-terms up to «-conversion, i.e.,
we consider equal those A-terms only differing for the names of their bound variables. For example,
AXX = AY.Y.

Supported in part by NWO Project 612.000.936 CALMOC.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00005-9 1 39
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00005-9

140 Part 1

The B-reduction, which specifies how A-terms compute, is defined as the contextual closure of
the following rule:

(Ax.M)N — g M[x := N],

where M[x := N] denotes the result of substituting the term N for every occurrence of x in M, subject
to the usual proviso about renaming bound variables in M to avoid capture of free variables in N. A
term of the shape (Ax.M)N is called redex and M[x := N] is its contractum.

Multistep B-reduction is denoted by —»g. Thus M —g N if M =My —>pg --- —p M, =N for
some n > 0. The B-conversion, written M =g N, is the equivalence relation generated by —g
(i.e., its reflexive-symmetric-transitive closure). The Church-Rosser theorem in lambda calculus
states that

M = gN if M and N have a common reduct.

1.2. Fixed points

Despite the fact that its syntax is very simple, the lambda calculus is a Turing complete programming
language. One aspect of the richness of its expressive power is the presence of fixed points that allow
to write recursive programmes.

THeEOREM 1.1 (Fixed Point Theorem). For all A-terms F, there is a A-term M, such that FM =g M.

Proof. Take M £ wrwp, where wy £ Ax.f(xx). Then
M = wror =g F(wrwF) L£FM. O]

In fact one can show that a fixed point for F can be found uniformly, that is by a term that
takes F as input. If a A-term Y satisfies YFF =g F(YF) for all F € A, then it is called a fixed point
combinator (fpc).

COROLLARY 1.2 (Curry). LetY £ Af .wrwyr. Then Y is a fixed point combinator.

The term Y is also called the paradoxical combinator, as it abstracts the argument in Russell’s
paradox.

An fpc Y is reducing if for all M € A one has YM —»g M(YM). This notion is useful as in many
applications one needs for a fixed point M of F that M —g FM. It is easy to check that Y is not
reducing. Therefore, one cannot take M £ YF to get M — g FM.

In the study by Turing (1937a), a more convenient fpc is constructed that is reducing.

PRroPOSITION 1.3 (Turing). There exists a reducing fpc.

Proof. Define © £ AA, where A = Axy.y(xxy). Then one has
OF £ AAF £ (Axy.y(xxy))AF — g (Ay.y(AAy))F — g F(OF). O
The next lemma shows how © arises naturally.

LeEMMA 1.4 (Bohm, van der Mey). A term Y is an fpc if it is a fixed point of the peculiar term
8 = Axy.y(xy).
Proof. If Y = §8Y, then YF = §YF = F(YF). O

For the converse, see the monograph by Barendregt (1984), Lemma 6.5.3.
From Lemma 1.4, it follows that, starting from a given fpc Y, one can derive an infinite sequence
of fpc’s.

Yo2Y, Y. 2V,

The p-Function in A-K Conversion 141

A natural question is whether all these fpc’s are different. In the study by Endrullis et al. (2010), it
is proved, using ‘clocked Bohm-trees’, that starting from Curry’s fpc Y, there are no duplicates in
the sequence Yo, Y1, Y2, - -- (the Bohm sequence). The problem is open for sequences starting from
an arbitrary fpc Y. Note that Turing’s fpc occurs in the Bohm sequence: © =g Y1, as

Y 2Y$ —p (Ax.8(xx)) (Ax.8(xx)) — g (Axy.y(xxy)) (Axy.y(xxy)) £ 0.

2. Weak normalisation of simply typed lambda calculus

Both for programming and theory, the property of normalisation is crucial. Termination can be seen
as an issue of programme correctness. The problem of finding all possible inhabitants of a given
type in the simply typed lambda calculus relies on the fact that all typable terms have a normal
form. An early proof of this weak normalisation result for the simply typed lambda calculus is due
to Turing and is published posthumously in the study by Gandy (1980). The idea of the proof is to
find a reduction strategy and a measure function mapping terms into some well-founded set, such
that the measure is strictly decreasing throughout steps in the computation.

One can see nicely from the notes how Turing wrote them informally, for his own use (as we all
start doing). He states that he well-orders the terms, but uses a map f to multisets with the multiset
order (which indeed is a well-ordering of type @), but as the map is not injective, there is no
ordering on terms. Then he states — like thinking aloud — that if M — g N by reducing a redex of
highest order, then f (M) > f(NN), which is not quite correct. Turing then adds ‘this at any [rate] will
be the case, if we choose the unreduced part of highest order whose X lies furthest to the right’. This
indeed yields weak normalisation.

The rest of this section is devoted to give a sketch of the technical proof; the reader not interested
in technicalities can skip it until Theorem 2.5.

2.1. Simply typed lambda terms and reduction
DEFINITION 2.1. Let us fix a non-empty set A of atoms.

(1) The set T =T of simple types over A is defined inductively as follows:
(a) Ifa € A, thena € T.
(b) Ifo,t €T, theno -t €T.

(2) The set A(o) of A-terms of type o is defined by induction as follows:
(a) For every variable x, one has x° € A(o).
(b) If M € A(0 — t) and N € A(0), then (MN) € A(T).
(c) If M € A(t), then 0 x° .M) € A(o — 1) for every variable x.

(3) Finally, the set of simply typed A-terms is given by A = Uy T A(0).

On A, we define the B-reduction as the contextual closure of the rule

(Ax” . M)N — g M[x := N].

A term M is in B-normal form if there is no N, such that M —g N.

2.2. The proof of weak normalisation

Now following Turing in the study by Gandy (1980) define a measure | - | : A — w? mapping every
simply typed A-term into an element of w?, which can be seen as the well-founded set N x N lex-
icographically ordered. For the sake of clarity, we will sometimes attach extra type information
to A-terms, decorating each subterm with its type, writing, for example, (Ax*.M#)*~# instead of
Ax* M.

142 Part 1

DEFINITION 2.2

(i) The length £(a) of a type o € T is defined as follows:
La)=1, fora e A; l(a — B) =L(a) +£(B) + 1.
(ii) The length £(R) of a redex R = (Ax* .MPY*BN® is defined as ¢(R) = £(a« — B).
(iii) With each A-term M € A, we associate an element of the ordinal w? by setting |M| = (k,n)

where k is the maximal length of a redex in M and n is the number of redexes of length k
occurring in M.

To associate a suitable reduction strategy —; guaranteeing that M — N entails |M| > |N|, we
have to study how the contraction of a redex can duplicate other redexes or create new redexes.
Duplication of a redex R happens when contracting redexes of the form

(X MIx,x1#)*7PR* — 5 MIR,R1P,

where M[P, Q] is a notation to display subterm occurrences of M.

The duplication of R is not very dangerous, while the creation of new redexes might be
more problematic: a priori new redexes of higher length might be created indefinitely. The main
instrument to check that this is not possible is given by the following Lemma.

LeEMMA 2.3 (Creation of redexes (Lévy, 1978)). Contraction of a B-redex can only create a new
redex in one of the following ways:

(i) =P Mx*= PP)@=y 0y 0P) — g MI(1y*.QP)*~FP*]Y;
(i) Ox* (P Mx* yP)P=r)a=E=1prgh — g (P MIPY, P17)E~7 OF ;
(iii) (@B xe=Pye=h=@=p gy pha=Bor o (hy* PPa=Boe,

As proved by Lévy in his PhD thesis (§1.8.4, Lemma 3), the above lemma holds more generally
for the untyped lambda calculus. See also Exercise 14.5.3 in Barendregt (1984).

LemMA 2.4. Suppose M LN g N, i.e., N is obtained from M by contracting R, and let R' be a
created redex in N. Then £(R) > £(R).

Proof. Check that in each case of Lemma 2.3 the property holds. O

This lemma is not explicitly mentioned in Turing’s proof, but it is stated that when reducing a
redex of highest length, no other redex of highest length is created.

The reduction strategy S taken by Turing for proving the weak normalisation property is as fol-
lows. If M is in B-normal form, then do nothing; otherwise S(M) = N by contracting the rightmost
redex of maximal length in M.

THEOREM 2.5 (Weak Normalisation). The simply typed lambda calculus is weakly normalising,
i.e., every MEA has a B-normal form found by S.

Proof. Contracting a redex R can only duplicate redexes R’ to the right of R. Because the redex R
chosen by S is the rightmost of maximal length, it only duplicates redexes R’, such that £(R") < £(R).
By Lemma 2.4, also the new redexes created by the reduction are of smaller length. Therefore,
S(M) = N entails |[M| > |N|. As w? is well founded, we are done. O

A recent discovery is that Gentzen already had a normalisation proof for derivations in natural
deduction, see von Plato (2008). This implies the normalisation of typed lambda terms. However,
the proof worked out for lambda calculus is more clear and understandable, thanks to the simple
linear syntax of A-terms.

The p-Function in A-K Conversion 143

2.3. Strong normalisation

Actually the simply typed lambda calculus enjoys strong normalisation, which means that all
B-reductions are terminating regardless of the strategy that is chosen. The classic proof of strong
normalisation by using the reducibility technique is due to the study by Tait (1967), already obtained
in 1963 and used by many authors. The proof of strong normalisation by Tait does not use a com-
plexity measure assigned to terms. In the study by de Vrijer (1987), it is shown that it is possible to
do this, assigning to a term M an ordinal |M| (in fact a natural number), in such a way that M —g N
entails |[M| > |N|, regardless what redex is reduced. It is an open problem whether such ordinals can
be assigned in a natural and simple way.

3. Postscript

Lambda calculus was more often on Turing’s mind. The logician Robin Gandy, who had been a
student and associate of Turing, mentioned in 1986 at a conference for his retirement that in the
early 1950s, Turing had told him ideas to implement lambda reduction using graphs. This is now
commonly done when designing compilers for functional programming languages. Thereby, Turing
was not careful about the distinction between free and bound variables and Gandy could correct
him. Then Turing said: “That remark is worth 10 pounds a week!”, in those days enough for a
decent living.

References

Barendregt, H.P., 1984. The lambda calculus, its syntax and semantics, 2nd ed. No. 103 in Studies in Logic and
the Foundations of Mathematics, North-Holland.

Barendregt, H.P., Manzonetto, G., Plasmeijer, M.J., 2012. The imperative and functional programming
paradigm. In: Cooper, B., van Leeuwen, J. (Eds.), This volume, Elsevier, pp. 121-126.

de Vrijer, R.C., 1987. Exactly estimating functionals and strong normalization. Indagat. Math. 49, 479-493.

Endrullis, J., Hendriks, D., Klop, J.W., 2010. Modular construction of fixed point combinators and clocked
Bohm trees. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, 11-14 July 2010, IEEE Computer Society, Edinburgh, United Kingdom, pp. 111-119.

Gandy, R.O., 1980. An early proof of normalization by A. M. Turing. In: Seldin, J.P., Hindley, J.R. (Eds.), To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press Limited,
pp. 453-455.

Lévy, J.-J., 1978. Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis, Université Paris 7.

Tait, W.W., 1967. Intentional interpretation of functionals of finite type I. J. Symbol. Log. 32 (2), 198-212.

Turing, A.M., 1937. Computability and A-definability. J. Symbolic Logic 2 (4), 1937, pp. 153-163.

Turing, A.M., 1937. The p-function in lambda-K-conversion. J. Symbol. Log. 2 (4), 164.

von Plato, J., 2008. Gentzen’s proof of normalization for natural deduction. Bull. Symbol. Log. 14 (2),
240-257.

144 Part 1

THE p-FUNCTION IN A-K-CONVERSION

A. M. TURING

In the theory of conversion it is important to have a formally defined function which assigns to
any positive integer n the least integer not less than n which has a given property. The definition
of such a formula is somewhat involved:' I propose to give the corresponding formula in A-K-
conversion,” which will (naturally) be much simpler. I shall in fact find a formula p such that if 7
be a formula for which T'(n) is convertible® to a formula representing a natural number, whenever
n represents a natural number, then p(7', r) is convertible to the formula g representing the least
natural number ¢, not less than r, for which T'(¢) conv 0.2 The method depends on finding a formula
® with the property that ® conv Au.u(® (u)), and consequently if M — ®(V) then M conv V(M).
A formula with this property is,

O — Dvuulvv,u))} Avu.u(v(v,u))).

The formula p will have the required property if p(7, r) conv r when T'(r) conv 0, and p(T, r) conv
p(T,S(r)) otherwise. These conditions will be satisfied if p(T, r) conv T'(r, Ax.p(T, S(r)),r), i.e. if
p conv {Aptr.t(r, x.p(t,S(r)),r)}(p). We therefore put,

p — OAptr.t(r,Ax.p(t, S(r)),r)).
This enables us to define also a formula,
P — atn.n(Av.p(t, S(v)), 0),

such that P(T, n) is convertible to the formula representing the nth positive integer g for which T'(q)
conv 0.

PRINCETON UNIVERSITY

Received April 23, 1937.

! Such a function was first defined by S. C. Kleene, A theory of positive integers in formal logic, American journal of
mathematics, vol. 57 (1934), see p. 231.

2 For the definition of A-K-conversion see S. C. Kleene, A-definability and recursiveness, Duke mathematical journal,
vol. 2 (1936), pp. 340-353, footnote 12. In A-K-conversion we are able to define the formula 0 — Afx.x. The same paper
of Kleene contains the definition of a formula L with a property similar to the essential property of ® (p. 346).

3 “Convertible” and “conv” refer to A-K-conversion throughout this note.

Systems of Logic Based on Ordinals
(Proc. Lond. Math. Soc., series 2 vol. 45 (1939), pp. 161-228)

Solomon Feferman returns to —

TURING’S THESIS: ORDINAL LLOGICS AND
ORACLE COMPUTABILITY

In the sole extended break from his life and varied career in England, Alan Turing spent the years
1936-8 doing graduate work at Princeton University under the direction of Alonzo Church, the
doyen of American logicians. Those two years sufficed for him to complete a thesis and obtain the
Ph.D. The results of the thesis were published in 1939 under the title, ‘Systems of logic based on
ordinals’ (Turing, 1939). That was the first systematic attempt to deal with the natural idea of over-
coming the Godelian incompleteness of formal systems by iterating the adjunction of statements —
such as the consistency of the system — that ‘ought to’ have been accepted but were not derivable;
in fact, these kinds of iterations can be extended into the transfinite. As Turing put it beautifully in
his introduction (Turing, 1939):

The well-known theorem of Godel (1931) shows that every system of logic is in a certain
sense incomplete, but at the same time it indicates means whereby from a system L of logic
a more complete system L' may be obtained. By repeating the process we get a sequence
L, Ly =L, Ly=L),... each more complete than the preceding. A logic L, may then be
constructed in which the provable theorems are the totality of theorems provable with the
help of the logics L, L, Ly, ... Proceeding in this way we can associate a system of logic
with any constructive ordinal. It may be asked whether such a sequence of logics of this kind
is complete in the sense that to any problem A there corresponds an ordinal « such that A is
solvable by means of the logic L.

Using an ingenious argument in pursuit of this aim, Turing obtained a striking yet equivocal partial
completeness result that clearly called for further investigation. But he did not continue that himself,
and it would be some twenty years before the line of research he inaugurated would be renewed by
others. The paper itself received little attention in the interim, though it contained a number of
original and stimulating ideas, and though Turing’s name had by then been well established through
his earlier work on the concept of effective computability. One of those ideas is that of oracle
computability, addressed elsewhere in this volume.

Here, in brief, is the story of what led Turing to Church, what was in his thesis, and what came
after, both for him and for the subject.!

! Much of this note is adapted directly from my paper (Feferman, 2006) for the Notices of the American Mathematical
Society. Prior to that I had written about this material at somewhat greater length in my work (Feferman, 1988), and
that in turn was incorporated as an introductory note to Turing’s 1939 paper in the volume, Mathematical Logic (Turing,
2001) of his collected works. In its biographical part, I have drawn to a considerable extent on Andrew Hodges’ superb
biography, Alan Turing: The Enigma (Hodges, 1994).

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00006-0 145
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00006-0

146 Part 1

1. From Cambridge to Princeton

As an undergraduate at King’s College, Cambridge, from 1931 to 1934, Turing was interested in
many parts of mathematics, including mathematical logic. Toward the end of that period he began
attending a survey course on logic by the topologist M. H. A. (Max) Newman. One of the problems
mentioned in that course was the Entscheidungsproblem, the question whether there exists an effec-
tive method to decide, given any well-formed formula of the pure first-order predicate calculus,
whether or not it is valid in all possible interpretations. After completing his undergraduate work,
Turing stayed on as a fellow at King’s College and continued to think about that problem, which had
been solved in the affirmative for various special classes of formulas. However, Turing became con-
vinced that the answer to the problem must be negative in general, but that in order to demonstrate
the impossibility of a decision procedure, he would have to give an exact mathematical explanation
of what it means to be computable by a strictly mechanical process. He arrived at such an analysis
by mid-April 1936 via the fundamental idea of the Turing machine. As explained elsewhere in this
volume, that is his most famous and certainly most important contribution to mathematical logic
and the theory of computation. By its means, Turing showed that the sought for answer to the moti-
vating problem was indeed negative in general, and he quickly prepared a draft of his work entitled
‘On computable numbers, with an application to the Entscheidungsproblem’(Turing, 1936-7). After
some initial skepticism, Newman became convinced of Turing’s analysis and encouraged its pub-
lication. Neither Newman nor Turing were aware at that point that there were already two other
proposals under serious consideration for analyzing the general concept of effective computability:
one by Kurt Godel, building on an idea of Jacques Herbrand, called general recursiveness, and the
other by Church, called definability in the lambda ())-calculus. Church and his student Stephen C.
Kleene proved the equivalence of these two notions, and what has come to be called ‘Church’s The-
sis” was that general recursiveness constitutes an analysis of the concept of effective computability.
This claim was stated in the paper Church (1936a), in which various mathematical and logical prob-
lems were shown to be effectively undecidable. That was followed by Church (1936), in which the
general Entscheidungsproblem was answered in the negative, submitted 15 April 1936 just about the
same time as Turing was preparing his paper for publication. When Newman and Turing received
news about this work a month later, the first reaction was a great disappointment, but then it was
agreed that Turing’s analysis was sufficiently different to warrant publication. Moreover, after that
was submitted but before it appeared, Turing was able to add an appendix in which he proved the
equivalence of computability by his machines with lambda-definability.

A year later, in Church’s 1937 review for The Journal of Symbolic Logic of Turing’s paper, he
stated that:

As a matter of fact, there is involved here the equivalence of three different notions;
computability by a Turing machine, general recursiveness in the sense of Herbrand-Godel-
Kleene, and A-definability in the sense of Kleene and the present reviewer. Of these, the
first has the advantage of making the identification with effectiveness in the ordinary (not
explicitly defined) sense evident immediately ... The second and third have the advantage of
suitability for embodiment in a system of symbolic logic.

Thus was born what is now called the Church-Turing Thesis, according to which the effectively
computable functions are exactly those computable by a Turing machine.” This, of course, is not to
be confused with Turing’s thesis under Church, the main subject here.

On Newman’s recommendation, Turing decided to spend the academic year 1936-7 studying
with Church in Princeton. He applied for Princeton’s Procter fellowship, of which three were offered

2 Godel accepted the Church—Turing Thesis in that form in a number of lectures and publications thereafter.

Systems of Logic Based on Ordinals 147

each year, one for Oxford, one for Cambridge and one for the College de France in Paris, but did
not succeed in getting it. Still, he thought he could manage on his fellowship funds from King’s
College, and so Turing arrived there at the end of September 1936.

2. Turing in Princeton

The Princeton mathematics department was already a leader on the American scene when it was
greatly enriched in the early 1930s by the establishment of the Institute for Advanced Study. The two
shared Fine Hall until 1940, so that the lines between them were blurred and there was significant
interaction. Among the mathematical leading lights that Turing found on his arrival were Einstein,
von Neumann, Weyl at the Institute and Lefschetz in the department. In logic, he had hoped to
find — besides Church — Godel, Paul Bernays, Church’s student Kleene and J. Barkley Rosser. As
it happened, none besides Church were there so Turing was reduced to attending Church’s lectures,
which he found ponderous and excessively precise; but this was an exposure that he needed since,
by contrast, Turing’s native style was rough-and-ready and prone to minor errors. They met from
time to time, but apparently there were no sparks, since Church was retiring by nature and Turing
was a ‘confirmed solitary’.

In the spring of 1936, Turing worked up for publication a proof in greater detail of the equiva-
lence of machine computability with A-definability. He also published two papers on group theory,
one on finite approximations of continuous groups that was of interest to von Neumann. Dean Eisen-
hart of the Princeton mathematics department urged Turing to stay on for a second year and apply
again for the Procter fellowship. This time, supported by von Neumann, Turing succeeded in obtain-
ing the fellowship, and so decided to stay the extra year and do a Ph.D. under Church. Proposed as
a thesis topic was the idea of ordinal logics that had been broached in Church’s course as a way to
‘escape’ Godel’s incompleteness theorems.

Turing made good progress on his thesis topic and devoted himself full time to it when he
returned to Princeton in the fall after a summer back in England, so that he ended up with a draft
by Christmas of 1937. Apparently Turing would have been satisfied with that as an essentially
finished product, since he wrote home that ‘Church made a number of suggestions which resulted
in the thesis being expanded to an appalling length’. One can well appreciate that Church would
not knowingly tolerate imprecise formulations or proofs, let alone errors, and the published version
shows that Turing went far to meet such demands while putting his own characteristic stamp on it.
Following an oral exam in May on which his performance was noted as ‘Excellent’, the Ph.D. itself
was granted in June 1938.

Von Neumann thought sufficiently highly of Turing’s mathematical talents to offer him a position
as his assistant at the Institute. Curiously, at that time von Neumann showed no knowledge or
appreciation of his work in logic. It was not until 1939 that he was to recognise the fundamental
importance of Turing’s work on computability. Then, during World War II, when von Neumann was
engaged in the practical design and development of general purpose electronic digital computers,
he was to incorporate the key idea of Turing’s universal computing machine in a direct way.

Von Neumann’s offer was quite attractive, but Turing’s stay in Princeton had not been a per-
sonally happy one, and he decided to return home despite the uncertain prospects outside of his
fellowship at King’s and in face of the brewing rumors of war. After publishing the thesis work he
did no more on that topic and went on to other things. Not long after his return to England, he joined
a course at the Government Code and Cypher School, and that was to lead to his top secret work
during the war at Bletchley Park on breaking the German Enigma Code. This fascinating part of the
story is told in full in Hodges’ biography (Hodges, 1994) and elsewhere in this volume, as is his

148 Part 1

subsequent career working to build actual computers, promote artificial intelligence, theorise about
morphogenesis and continue his work in mathematics. Tragically, this ended with his death in 1954,
a probable suicide.

3. The thesis: ordinal logics

What Turing calls a logic is nowadays more usually called a formal system, i.e., one prescribed
by an effective specification of a language, set of axioms and rules of inference. Where Turing
used ‘L’ for logics I shall use ‘S’ for formal systems. Given an effective description of a sequence
(Su)nen [IN=1{0,1,2, ...}] of formal systems all of which share the same language and rules of
inference, one can form a new system S,,, which is the union of the S, for n in N. If the sequence
of §,’s is obtained by iterating an effective passage from one system to the next, then that itera-
tion can be continued to form S,,1,... and so on into the transfinite. This leads to the idea of an
effective association of formal systems S, with ordinals «. Clearly that can only be done for denu-
merable ordinals, but to deal with limits in an effective way, it turns out that we must work not
with ordinals per se, but with notations for ordinals. Church and Kleene (1936) had introduced a
system O of constructive ordinal notations, given by certain expressions in the A-calculus. A variant
of this uses numerical codes a for such expressions, and associates with each a € O a countable
ordinal | a |.

In general, given any effective means of passing from a system S to an extension S’ of S, one
can form an ordinal logic $* = (S,;),c o Which is such that for each a € O and b = the successor of
a, Sp =S, and is further such that whenever a is a notation for a limit ordinal given by a recursive
function with index e, then S, is the union of the sequence of Sy}, for each n € N. In particular, for
systems whose language contains that of Peano Arithmetic, PA, one can take S’ to be SU {Cong},
where Cong formalises the consistency statement for S; the associated ordinal logic S* thus iterates
adjunction of consistency through all the constructive ordinal notations. If one starts with PA as
the initial system it may be seen that each S, is consistent and so S, is strictly stronger than S, by
Godel’s second incompleteness theorem. The consistency statements are expressible in V(‘for all’)-
form, i.e., VxR(x) where R is an effectively decidable predicate, and so a natural question to raise is
whether S* is complete for statements of that form, i.e., whether whenever VxR(x) is true in N then
it is provable in S, for some a € O. Turing’s main result for this ordinal logic was that it is indeed
the case, in fact one can always choose such an a with | a | = w 4 1. But, speaking informally, a can
only be recognised to be a notation in O by first recognising the truth of VxR (x). Turing realised that
this completeness proof is disappointing, because it shifts the question of whether a V-statement is
true to the question whether a number a actually belongs to O. In fact, the general question, given a,
is a € 07, turns out to be of higher logical complexity than any statement formed by the unlimited
iteration of universal and existential quantifiers, V and 3. Another main result of Turing’s thesis
is that for quite general ordinal logics, $* cannot be both complete for statements in V-form and
invariant, i.e., is such that whenever |a | = | b | then S, and S, prove the same theorems. It is for
these reasons that I called his completeness results equivocal above. Even so, what Turing really
hoped to obtain was completeness for statements in V3 (‘for all, there exists’)-form. His reason
for concentrating on these, that he called ‘number-theoretical problems’, rather than considering
arithmetical statements in general, is not clear. This special class certainly includes many number-
theoretical statements (in the usual sense of the word) of mathematical interest, e.g., those such as
the twin prime conjecture, that say that an effectively decidable set C of natural numbers is infinite.
Also, as Turing pointed out, the question whether a given program for one of his machines computes
a total function is in V3-form.

In Section 4 of his thesis, Turing introduced a new idea that was to change the face of the general
theory of computation (a.k.a. recursion theory) but the only use he made of it there was curiously

Systems of Logic Based on Ordinals 149

misguided. His aim was to produce an arithmetical problem which is not number-theoretical in his
sense, i.e., not in V3-form. This is trivial by a cardinality argument, since there are only countably
many effective relations R(x,y) of which we could say that Vx3yR(x, y) holds. Turing’s way of
dealing with this, instead, is through the new notion of computation relative to an oracle. As he
puts 1t:

Let us suppose that we are supplied with some unspecified means of solving number-
theoretical [i.e., V3] problems; a kind of oracle as it were. ... With the help of the oracle we
could form a new kind of machine (call them o-machines), having as one of its fundamental
processes that of solving a given number-theoretic problem.

He then showed that the problem of determining whether an o-machine terminates on any given
input is an arithmetical problem not computable by any o-machine, and hence not solvable by the
oracle itself. Turing did nothing further with the idea of o-machines, either in this paper or afterward.
Post (1944) took it as his basic notion for a theory of degrees of unsolvability, crediting Turing with
the result that for any set of natural numbers there is another of higher degree of unsolvability.
This transformed the notion of computability from an absolute notion into a relative notion that
would lead to entirely new developments and eventually to vastly generalised forms of recursion
theory.’

4. Ordinal logics redux

The problems left open in Turing’s thesis were attacked in my 1962 paper, ‘Transfinite recursive
progressions of axiomatic theories’ (Feferman, 1962). The title contains my rechristening of ‘ordi-
nal logics’ in order to give a more precise sense of the subject matter. I showed there that Turing’s
progression based on iteration of consistency statements is not complete for true V3 statements,
contrary to his hope. In fact, the same holds for the even stronger progression obtained by iterating
adjunction to a system S of the local reflection principle for S. This is a scheme that formalises, for
each arithmetical sentence A, that if A is provable in S then A holds. The uniform reflection princi-
ple is a generalisation of the local principle to arbitrary formulas. Then, I showed that a progression
based on the iteration of that is complete for all true arithmetical sentences. One can also find a path
P through O along which every true arithmetical sentence is provable in that progression. On the
other hand, invariance fails badly in the sense that there are paths P’ through O for which there are
true sentences in V-form not provable along that path, as shown in my paper with Clifford Spec-
tor (Feferman and Spector, 1962). The book Inexhaustibility (Franzén, 2004a) by Torkel Franzén
contains an accessible introduction to Feferman (1962), and his paper Franzén (2004b) gives an
interesting explanation of what makes Turing’s and my completeness results work.

The problem raised by Turing of recognising which expressions (or numbers) are actually nota-
tions for ordinals is dealt with in part through the concept of autonomous progressions of theories,
obtained by imposing a boot strapping process. That allows one to go to a system S, only if one
already has a proof in a previously accepted system Sj, that a € O (or that a recursive ordering of
order type corresponding to a is a well-ordering). Such progressions are not complete but have
been used to propose characterisations of certain informal concepts of proof, such as that of finitist
proof (Kreisel, 1960, 1970) and predicative proof (Feferman, 1964). For more recent progress that
replaces the use of transfinite progressions via a concept of the unfolding of formal systems based
on suitable axiom schemata, see my article (Feferman, 1996), and (Feferman and Strahm, 2000).

3 See the relevant pieces in other parts of this volume. I have written at greater length of the significance of oracle
computability from several perspectives in my paper (Feferman, 1992).

150 Part 1

References

Church, A., 1936a. A note on the Entscheidungsproblem, J. Symbolic Logic 1, 40-41; correction, ibid., 101-
102.

Church, A., 1936b. An unsolvable problem of elementary number theory. Amer. J. Math. 58, 345-363.

Church, A., Kleene, S.C., 1936. Formal definitions in the theory of ordinal numbers. Fundamenta Mathemati-
cae 28, 11-21.

Feferman, S., 1962. Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic 27, 259-316.

Feferman, S., 1964. Systems of predicative analysis. J. Symbolic Logic 29, 1-30.

Feferman, S., 1988. Turing in the land of O(z). In: Herken, R. (Ed.), The Universal Turing Machine. A Half-
Century Survey, Oxford University Press, Oxford, pp. 113-147.

Feferman, S., 1992. Turing’s ‘oracle’: From absolute to relative computability?—and back. In: Echeverria, J.,
et al. (Eds.), The Space of Mathematics, Walter de Gruyter, Berlin, pp. 314-348

Feferman, S., 1996. Godel’s program for new axioms: Why, where, how and what?. In: Hajek, P. (Ed.). Godel
’96, Lecture Notes in Logic 6, 3-22.

Feferman, S., 2006. Turing’s thesis. Notices Amer. Math. Soc. 53 (10) 1200-1205.

Feferman, S., Spector, C., 1962. Incompleteness along paths in recursive progressions of theories. J. Symbolic
Logic 27, 383-390.

Feferman, S., Strahm, T., 2000. The unfolding of non-finitist arithmetic. Ann. Pure and Applied Logic 104,
75-96.

Franzén, T., 2004a. Inexhaustibility. A Non-Exhaustive Treatment, Lecture Notes in Logic 28. Assoc. for
Symbolic Logic, A. K. Peters, Ltd., Wellesley (distribs.).

Franzén, T., 2004b. Transfinite progressions: a second look at completeness. Bull. Symbolic Logic 10, 367—
389.

Hodges, A., 1994. Alan Turing: The Enigma, Simon and Schuster, New York 1983, rev. ed. Springer-Verlag,
New York.

Kreisel, G., 1960. Ordinal logics and the characterization of informal concepts of proof. In: Proc. International
Congress of Mathematicians at Edinburgh 1958, Cambridge Univ. Press, New York, pp. 289-299.

Kreisel, G., 1970. Principles of proof and ordinals implicit in given concepts. In: Myhill, J., et al. (Eds.),
Intuitionism and Proof Theory, North-Holland, Amsterdam, pp. 489-516.

Post, E., 1944. Recursively enumerable sets and their decision problems. Bull. Amer. Math. Soc. 50, 284-316.

Turing, A.M., 1936-7. On computable numbers, with an application to the Entscheidungsproblem. Proc.
London Math. Soc. 42 (2), 230-265; A correction, ibid. 43, 544-546. Reprinted in Turing (2001).

Turing, A.M., 1939. Systems of logic based on ordinals. Proc. London Math. Soc. (2), 161-228. Reprinted in
Turing (2001).

Turing, A.M., 2001. Mathematical Logic. In: Gandy, R.O., Yates, C.E.M. (Eds.), Collected Works of A.M.
Turing, Elsevier Science Publishers, Amsterdam.

Systems of Logic Based on Ordinals 151

SYSTEMS OF LOGIC BASED ON ORDINALS"

By A. M. TURING

[Received 31 May, 1938.—Read 16 June, 1938.]

Introduction 151
1. The conversion calculus. Godel representations . . e 152
2. Effective calculability. Abbreviation of treatment e e e 154
3. Number-theoretic theorems e . e . e e 156
4. A type of problem which is not number-theoretic e e . 159
5. Syntactical theorems as number-theoretic theorems . e 160
6. Logic formulae 160
7. Ordinals 162
8. Ordinal logics 170
9. Completeness questions e e e e e o 176
10. The continuum hypothesis. A digression . e e .. e 186
11. The purpose of ordinal logics cee e e e e o 186
12. Gentzen type ordinal logics 188

Index of definitions 195

Bibliography 197

The well-known theorem of Godel (Godel [1], [2]) shows that every system of logic is in a
certain sense incomplete, but at the same time it indicates means whereby from a system L of
logic a more complete system L' may be obtained. By repeating the process we get a sequence
L, Ly=L, L=L], ... each more complete than the preceding. A logic L, may then be con-
structed in which the provable theorems are the totality of theorems provable with the help of the
logics L, Ly, Lo,.... We may then form L, related to L,, in the same way as L, was related to L.
Proceeding in this way we can associate a system of logic with any constructive ordinal®. It may
be asked whether a sequence of logics of this kind is complete in the sense that to any problem
A there corresponds an ordinal « such that A is solvable by means of the logic L,. I propose to
investigate this question in a rather more general case, and to give some other examples of ways in
which systems of logic may be associated with constructive ordinals.

T This paper represents work done while a Jane Eliza Procter Visiting Fellow at Princeton University, where the author
received most valuable advice and assistance from Prof. Alonzo Church.

¥ The situation is not quite so simple as is suggested by this crude argument. See pages 170-172, 178-179.

152 Part 1

1. The calculus of conversion. Godel representations.

It will be convenient to be able to use the “conversion calculus” of Church for the description of
functions and for some other purposes. This will make greater clarity and simplicity of expression
possible. I give a short account of this calculus. For detailed descriptions see Church [3], [2], Kleene
[1], Church and Rosser [1].

The formulae of the calculus are formed from the symbols {, }, (,), [,], A,d, and an infinite
list of others called variables; we shall take for our infinite list a, b, ..., z, X', x”, Certain
finite sequences of such symbols are called well-formed formulae (abbreviated to W.F.F.); we define
this class inductively, and define simultaneously the free and the bound variables of a W.F.F. Any
variable is a W.E.F. ; it is its only free variable, and it has no bound variables. § is a W.F.F. and has no
free or bound variables. If M and N are W.E.F. then {M}(N) is a W.E.F.,, whose free variables are the
free variables of M together with the free variables of N, and whose bound variables are the bound
variables of M together with those of N. If M is a W.EF. and V is one of its free variables, then
AV[M] is a W.EF. whose free variables are those of M with the exception of V, and whose bound
variables are those of M together with V. No sequence of symbols is a W.EF. except in consequence
of these three statements.

In metamathematical statements we use heavy type letters to stand for variable or undetermined
formulae, as was done in the last paragraph, and in future such letters will stand for well-formed
formulae unless otherwise stated. Small letters in heavy type will stand for formulae representing
undetermined positive integers (see below).

A W.EFF. is said to be in normal form if it has no parts of the form {AV[M]}(N) and none of the
form {{§}(M)}(N), where M and N have no free variables.

We say that one W.EF. is immediately convertible into another if it is obtained from it either by:

(i) Replacing one occurrence of a well-formed part AV[M] by AU[N], where the variable U does
not occur in M, and N is obtained from M by replacing the variable V by U throughout.
(i) Replacing a well-formed part {A\V[M]}(N) by the formula which is obtained from M by
replacing V by N throughout, provided that the bound variables of M are distinct both from
V and from the free variables of N.
(iii)) The process inverse to (ii).
(iv) Replacing a well-formed part {{§}(M)} (M) by

Af [ax LA (o)]

if M is in normal form and has no free variables.
(v) Replacing a well-formed part {{5}(M)} (N) by

Af [Ax[{f} (011

if M and N are in normal form, are not transformable into one another by repeated application
of (i), and have no free variables.

(vi) The process inverse to (iv).

(vii) The process inverse to (v).

These rules could have been expressed in such a way that in no case could there be any doubt
about the admissibility or the result of the transformation [in particular this can be done in the case
of process (v)].

A formula A is said to be convertible into another B (abbreviated to “A conv B”) if there is a
finite chain of immediate conversions leading from one formula to the other. It is easily seen that
the relation of convertibility is an equivalence relation, i.e. it is symmetric, transitive, and reflexive.

Systems of Logic Based on Ordinals 153

Since the formulae are liable to be very lengthy, we need means for abbreviating them. If we
wish to introduce a particular letter as an abbreviation for a particular lengthy formula we write the
letter followed by “— " and then by the formula, thus

I — Ax[x]

indicates that / is an abbreviation for Ax[x]. We also use the arrow in less sharply defined senses, but
never so as to cause any real confusion. In these cases the meaning of the arrow may be rendered
by the words “stands for”.

If a formula F is, or is represented by, a single symbol we abbreviate {F}(X) to F(X). A formula
{{F}(X)}(Y) may be abbreviated to

{F}(X, Y),

or to F(X, Y) if F is, or is represented by, a single symbol. Similarly for {{{F}(X)} (Y)}(Z), etc. A
formula AV{[AV,...[AV,.[M]]...] may be abbreviated to AV;V,...V,.-M.

We have not as yet assigned any meanings to our formulae, and we do not intend to do so in
general. An exception may be made for the case of the positive integers, which are very conveniently
represented by the formulae Afx - f(x), Afx-f (f(x)), In fact we introduce the abbreviations

1 — Ax-f(x)
2= Mx-f(f(x)
3= M- f(F(f(x))),etc.,

and we also say, for example, that Afx - f(f(x)), or in full

AZERTAICIATCNIIE

represents the positive integer 2. Later we shall allow certain formulae to represent ordinals, but
otherwise we leave them without explicit meaning; an implicit meaning may be suggested by the
abbreviations used. In any case where any meaning is assigned to formulae it is desirable that the
meaning should be invariant under conversion. Our definitions of the positive integers do not violate
this requirement, since it may be proved that no two formulae representing different positive integers
are convertible the one into the other.

In connection with the positive integers we introduce the abbreviation

S — Aufx - f(u(f,x)).

This formula has the property that, if n represents a positive integer, S(n) is convertible to a formula
representing its successor’ .

Formulae representing undetermined positive integers will be represented by small letters in
heavy type, and we adopt once for all the convention that, if a small letter, n say, stands for a positive
integer, then the same letter in heavy type, n, stands for the formula representing the positive integer.
When no confusion arises from so doing, we shall not trouble to distinguish between an integer and
the formula which represents it.

Suppose that f(n) is a function of positive integers taking positive integers as values, and that
there is a W.EE. F not containing § such that, for each positive integer n, F(n) is convertible to
the formula representing f(n). We shall then say that f(n) is A-definable or formally definable, and

 This follows from (A) below.

154 Part 1

that F formally defines f(n). Similar conventions are used for functions of more than one variable.
The sum function is, for instance, formally defined by Aabfx - a(f, b(f, x)); in fact, for any positive
integers m, n, p for which m + n = p, we have

{rabfx - a(f, b(f, x))} (m, n) conv p.
In order to emphasize this relation we introduce the abbreviation
X+Y — {rabfx-a(f, b(f, x))} X,Y)

and we shall use similar notations for sums of three or more terms, products, etc.

For any WEF. G we shall say that G enumerates the sequence G(1), G(2),... and any other
sequence whose terms are convertible to those of this sequence.

When a formula is convertible to another which is in normal form, the second is described as a
normal form of the first, which is then said to have a normal form. I quote here some of the more
important theorems concerning normal forms.

(A) If a formula has two normal forms they are convertible into one another by the use of (i) alone.
(Church and Rosser [1], 479, 481.)

(B) If a formula has a normal form then every well-formed part of it has a normal form. (Church
and Rosser [1], 480-481.)

(C) There is (demonstrably) no process whereby it can be said of a formula whether it has a normal
form. (Church [3], 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive integers. The method used
here is due to Godel (Godel[1]). To each single symbol s of the calculus we assign an integer r[s]
as in the table below.

S {, Gor[},,or] | A | 8§ | a | -- z X X' x”
[s] 1 2 3 4 5 ‘e 30 31 32 33
If 51, 52, ..., is a sequence of symbols, then 27151137121 .pz[u] where py is the k-th prime

number) is called the Gédel representation (GR.) of that sequence of symbols. No two W.EF. have
the same G.R.
Two theorems on G.R. of W.FF. are quoted here.

(D) There is a W.EF. “form” such that if a is the GR. of a W.EF. A without free variables, then
form (a) conv A. (This follows from a similar theorem to be found in Church [3], 53, 66.
Metads are used there in place of GR.)

(E) There is a W.EFE. Gr such that, if A is a W.EF. with a normal form without free variables, then
Gr(A) conv a, where a is the GR. of a normal form of A. [Church [3], 53, 66, as (D).]

2. Effective calculability. Abbreviation of treatment.

A function is said to be “effectively calculable” if its values can be found by some purely mechani-
cal process. Although it is fairly easy to get an intuitive grasp of this idea, it is nevertheless desirable
to have some more definite, mathematically expressible definition. Such a definition was first given
by Godel at Princeton in 1934 (Godel [2], 26), following in part an unpublished suggestion of Her-
brand, and has since been developed by Kleene [2]). These functions were described as “general
recursive” by Godel. We shall not be much concerned here with this particular definition. Another

Systems of Logic Based on Ordinals 155

definition of effective calculability has been given by Church (Church [3],356 — 358), who identi-
fies it with A-definability. The author has recently suggested a definition corresponding more closely
to the intuitive idea (Turing [1], see also Post [1]). It was stated above that “a function is effectively
calculable if its values can be found by some purely mechanical process”. We may take this state-
ment literally, understanding by a purely mechanical process one which could be carried out by a
machine. It is possible to give a mathematical description, in a certain normal form, of the structures
of these machines. The development of these ideas leads to the author’s definition of a computable
function, and to an identification of computability” with effective calculability. It is not difficult,
though somewhat laborious, to prove that these three definitions are equivalent (Kleene [3], Turing
(2D.

In the present paper we shall make considerable use of Church’s identification of effective calcu-
lability with A-definability, or, what comes to the same thing, of the identification with computability
and one of the equivalence theorems. In most cases where we have to deal with an effectively calcu-
lable function, we shall introduce the corresponding W.F.F. with some such phrase as “the function
f is effectively calculable, let F' be a formula A defining it”, or “let F be a formula such that F(n)
is convertible to . . . whenever n represents a positive integer”. In such cases there is no difficulty
in seeing how a machine could in principle be designed to calculate the values of the function con-
cerned; and, assuming this done, the equivalence theorem can be applied. A statement of what the
formula F actually is may be omitted. We may immediately introduce on this basis a W.E.F. @ with
the property that

@ (m, n) conv r,

if r is the greatest positive integer, if any, for which m" divides n and r is 1 if there is none. We also
introduce Dt with the properties

Dt(n, n) conv 3,
Dt(n+m, n) conv 2,

Dt(n, n+m) conv 1.

There is another point to be made clear in connection with the point of view that we are adopting.
It is intended that all proofs that are given should be regarded no more critically than proofs in
classical analysis. The subject matter, roughly speaking, is constructive systems of logic, but since
the purpose is directed towards choosing a particular constructive system of logic for practical use,
an attempt at this stage to put our theorems into constructive form would be putting the cart before
the horse.

Those computable functions which take only the values 0 and 1 are of particular importance,
since they determine and are determined by computable properties, as may be seen by replacing “0”
and “1” by “true” and “false”. But, besides this type of property, we may have to consider a different
type, which is, roughly speaking, less constructive than the computable properties, but more so than
the general predicates of classical mathematics. Suppose that we have a computable function of the
natural numbers taking natural numbers as values, then corresponding to this function there is the
property of being a value of the function. Such a property we shall describe as “axiomatic ” ; the
reason for using this term is that it is possible to define such a property by giving a set of axioms,

T 'We shall use the expression “computable function” to mean a function calculable by a machine, and we let “effectively
calculable” refer to the intuitive idea without particular identification with any one of these definitions. We do not restrict
the values taken by a computable function to be natural numbers; we may for instance have computable propositional
functions.

156 Part 1

the property to hold for a given argument if and only if it is possible to deduce that it holds from the
axioms.

Axiomatic properties may also be characterized in this way. A property i of positive integers is
axiomatic if and only if there is a computable property ¢ of two positive integers, such that ¥ (x) is
true if and only if there is a positive integer y such that ¢ (x, y) is true. Or again ¥ is axiomatic if
and only if there is a W.E.F. F such that ¢ (n) is true if and only if F(n) conv 2.

3. Number-theoretic theorems.

By a number-theoretic theorem' we shall mean a theorem of the form “6(x) vanishes for infinitely
many natural numbers x”, where 6 (x) is a primitive recursive® function.

We shall say that a problem is number-theoretic if it has been shown that any solution of the
problem may be put in the form of a proof of one or more number-theoretic theorems. More accu-
rately we may say that a class of problems is number-theoretic if the solution of any one of them
can be transformed (by a uniform process) into the form of proofs of number-theoretic theorems.

I shall now draw a few consequences from the definition of “number theoretic theorems” and in
section 5. I shall try to justify confining our consideration to this type of problem.

An alternative form for number-theoretic theorems is “for each natural number x there exists a
natural number y such that ¢ (x,y) vanishes”, where ¢ (x, y) is primitive recursive. In other words,
there is a rule whereby, given the function 6(x), we can find a function ¢ (x,y), or given ¢ (x,y),
we can find a function 0 (x), such that “6(x) vanishes infinitely often” is a necessary and sufficient
condition for “for each x there is a y such that ¢ (x,y) = 0”. In fact, given 8(x), we define

d(x,y) =0(x) +alxy),
where o (x,y) is the (primitive recursive) function with the properties
a(vy)=1(=<x),
=0 (> x).
If on the other-hand we are given ¢ (x,y) we define 6 (x) by the equations

01(0) =3,
O(x+1) = 2@ (01(x)o (¢ (@361 (D) =1, @2(01()))) 32301 (1) +1—-0 (¢ (@3(01 ()~ L. @2 (81 (1))

0@) =¢ (w361 () =1, @2(61 (),

T I believe that there is no generally accepted meaning for this term, but it should be noticed that we are using it in a rather
restricted sense. Tile most generally accepted meaning is probably this: suppose that we take an arbitrary formula of the
functional calculus of the first order and replace the function variables by primitive recursive relations. The resulting
formula represents a typical number-theoretic theorem in this (more general) sense.

¥ Primitive recursive functions of natural numbers arc defined inductively as follows. Suppose that
f&x1,..x0—1), 8(x1,...,%,), h(x1,...,Xx4+1) are primitive recursive, then ¢(x, ..., x,) is primitive recursive if it
is defined by one of the sets of equations (a) to (e).

@ @1, ooy x0) =R((X15 ooy 1), 815, Xn) s Xint 1+ Xn—1,X0) (L Sm = n);
(b) ¢(X|, SRR xn) =f(x27 EER) xn);
(c) ¢(x1) =a, where n =1 and « is some particular natural number;
@ ¢ @x)=xi+1(mn=1)
© oG,y Xnm1, O =F (150 Xam1); @15y Xumts Xpg1) = h(X1, ooy Xny (X150, Xn)).
The class primitive recursive functions is more restricted than the class of computable functions, but it has the advan-
tage that there is a process whereby it can be said of a set of equations whether it defines a primitive recursive function
in the manner described above.

Systems of Logic Based on Ordinals 157

where @, (x) is defined so as to mean “the largest s for which r* divides x”. The function o (x) is
defined by the equations o (0) =0, o(x+ 1) = 1. It is easily verified that the functions so defined
have the desired properties.

We shall now show that questions about the truth of the statements of the form “does f(x) vanish
identically”, where f(x) is a computable function, can be reduced to questions about the truth of
number-theoretic theorems. It is understood that in each case the rule for the calculation of f(x) is
given and that we are satisfied that this rule is valid, i.e. that the machine which should calculate
f(x) is circle free (Turing [1], 233). The function f(x), being computable, is general recursive in
the Herbrand-Godel sense, and therefore, by a general theorem due to Kleene', is expressible in
the form

v (eyl@(x,y) =0D), (3.2)

where €y[20(y)] means “the least y for which 2((y) is true” and ¥ (y) and ¢ (x,y) are primitive recur-
sive functions. Without loss of generality, we may suppose that the functions ¢, y take only the
values 0, 1. Then, if we define p(x) by the equations (3.1) and

p0) =4 (0)(1—-6(0)),
px+1)=1-(0-px)o [1+0(x) -y {w2 (01 (x)}]

it will be seen that f(x) vanishes identically if and only if p(x) vanishes for infinitely many values
of x.

The converse of this result is not quite true. We cannot say that the question about the truth of
any number-theoretic theorem is reducible to a question about whether a corresponding computable
function vanishes identically; we should have rather to say that it is reducible to the problem of
whether a certain machine is circle free and calculates an identically vanishing function. But more
is true: every number-theoretic theorem is equivalent to the statement that a corresponding machine
is circle free. The behaviour of the machine may be described roughly as follows: the machine is
one for the calculation of the primitive recursive function 6 (x) of the number-theoretic problem,
except that the results of the calculation are first arranged in a form in which the figures 0 and 1 do
not occur, and the machine is then modified so that, whenever it has been found that the function
vanishes for some value of the argument, then O is printed. The machine is circle free if and only if
an infinity of these figures are printed, i.e. if and only if 6 (x) vanishes for infinitely many values of
the argument. That, on the other hand, questions of circle freedom may be reduced to questions of
the truth of number-theoretic theorems follows from the fact that 6(x) is primitive recursive when
it is defined to have the value O if a certain machine M prints 0 or 1 in its (x+ 1)-th complete
configuration, and to have the value 1 otherwise.

The conversion calculus provides another normal form for the number theoretic theorems, and
the one which we shall find the most convenient to use. Every number-theoretic theorem is equiva-
lent to a statement of the form “A(m) is convertible to 2 for every W.E.F. n representing a positive
integer”, A being a W.EF. determined by the theorem; the property of A here asserted will be
described briefly as “A is dual”. Conversely such statements are reducible to number theoretic the-
orems. The first half of this assertion follows from our results for computable functions, or directly
in this way. Since 6 (x — 1) + 2 is primitive recursive, it is formally definable, say, by means of a
formula G. Now there is (Kleene [1], 232) a W.EE. P with the property that, if T(r) is convertible
to a formula representing a positive integer for each positive integer r, then P(T, n) is convertible
to s, where s is the n-th positive integer ¢ (if there is one) for which T(t) conv 2; if T(t) conv 2

T Kleene [3], 727. This result is really superfluous for our purpose, since the proof that every computable function is
general recursive proceeds by showing that these functions are of the form (3.2). (Turing [2], 161).

158 Part 1

for less than n values of ¢ then P(T, n) has no normal form. The formula G(P(G, n)) is therefore
convertible to 2 if and only if 6 (x) vanishes for at least n values of x, and is convertible to 2 for every
positive integer x if and only if 6 (x) vanishes infinitely often. To prove the second half of the asser-
tion, we take Godel representations for the formulae of the conversion calculus. Let ¢(x) be 0 if x is
the GR. of 2 (i.e. if x is 23.310.5.73.1128.13.17.19'9.232.29.31. 3710.412.43.47%8 532.592.612.67%)
and let c¢(x) be 1 otherwise. Take an enumeration of the GR. of the formulae into which A(m) is
convertible: let a(m, n) be the n-th number in the enumeration. We can arrange the enumeration so
that a(m, n) is primitive recursive. Now the statement that A(m) is convertible to 2 for every posi-
tive integer m is equivalent to the statement that, corresponding to each positive integer m, there is
a positive integer n such that c(a(m, n)) = 0; and this is number-theoretic.

It is easy to show that a number of unsolved problems, such as the problem of the truth of
Fermat’s last theorem, are number-theoretic. There are, however, also problems of analysis which
are number-theoretic. The Riemann hypothesis gives us an example of this. We denote by ¢ (s) the

o

function defined for !Rs = o > 1 by the series Zn_s and over the rest of the complex plane with

n=1
the exception of the point s = 1 by analytic continuation. The Riemann hypothesis asserts that this

function does not vanish in the domain o > % It is easily shown that this is equivalent to saying
that it does not vanish for 2 > o > %Js =1t> 2, i.e. that it does not vanish inside any rectangle

2>0 > % +1/T, T >t > 2, where T is an integer greater than 2. Now the function satisfies the
inequalities

<2t(N—2)_%2<0<%,t22,

N 1—s
N
‘«w—Ens—g_l
. S

10() —¢(s)l <60tls—s'],2 <0’ <%, >2,

and we can define a primitive recursive function £(/, I, m, m’,N, M) such that
I m
< 2, S = 7 + l% >

E(L, M, m, M\M*> +2, M) =X(l, m,M),

1—s

N
. N
21:” S+s—1

gL, mm ,N,M)—M

and therefore, if we put

we have
I+9% m+70 X(I,m,M)—122T
¢ +1 > s
M M M
provided that
1 1 I-1 I+1 1 —1 1
2 T M M M M M

(-l<6<1, —-1<6 <.

If we define B(M, T) to be the smallest value of X(I, m, M) for which
1 1 1 l 1 m 1

1
L JENLI WL
YT MM T M tuu~'u

then the Riemann hypothesis is true if for each T there is an M satisfying

B(M,T) > 122T.

Systems of Logic Based on Ordinals 159

If on the other hand there is a T such that, for all M, B(M, T) < 1227, the Riemann hypothesis is
false; for let Iy;, mps be such that

Xy, my, M) < 1227,

then

¢ Iy + imy - 244T.
M - M
Now if a is a condensation point of the sequence (I 4 imys) /M then since ¢ (s) is continuous
except at s = 1 we must have ¢(a) = 0 implying the falsity of the Riemann hypothesis. Thus we

have reduced the problem to the question whether for each T there is an M for which
B(M,T) > 122T.

B(M, T) is primitive recursive, and the problem is therefore number-theoretic.

4. A type of problem which is not number-theoretic .

Let us suppose that we are supplied with some unspecified means of solving number-theoretic prob-
lems; a kind of oracle as it were. We shall not go any further into the nature of this oracle apart from
saying that it cannot be a machine. With the help of the oracle we could form a new kind of machine
(call them o-machines), having as one of its fundamental processes that of solving a given number-
theoretic problem. More definitely these machines are to behave in this way. The moves of the
machine are determined as usual by a table except in the case of moves from a certain internal con-
figuration o. If the machine is in the internal configuration o and if the sequence of symbols marked
with / is then the well-formed’ formula A, then the machine goes into the internal configuration p
or t according as it is or is not true that A is dual. The decision as to which is the case is referred to
the oracle.

These machines may be described by tables of the same kind as those used for the description of
a-machines, there being no entries, however, for the internal configuration o. We obtain description
numbers from these tables in the same way as before. If we make the convention that, in assigning
numbers to internal configurations, o, p, t are always to be g2, g3, g4, then the description numbers
determine the behaviour of the machines uniquely.

Given any one of these machines we may ask ourselves the question whether or not it prints an
infinity of figures O or 1; I assert that this class of problem is not number-theoretic. In view of the
definition of “number theoretic problem” this means that it is not possible to construct an o-machine
which, when supplied® with the description of any other o-machine, will determine whether that
machine is o-circle free. The argument may be taken over directly from Turing [1], §8. We say that
a number is o-satisfactory if it is the description number of an o-circle free machine. Then, if there
is an o-machine which will determine of any integer whether it is o-satisfactory, there is also an o-
machine to calculate the values of the function 1 — ¢, (n). Let r(n) be the n-th o-satisfactory number
and let ¢, (m) be the m-th figure printed by the o-machine whose description number is r(n). This o-
machine is circle free and there is therefore an o-satisfactory number K such that ¢px(n) =1 — ¢, (n)
for all n. Putting n = K yields a contradiction. This completes the proof that problems of circle
freedom of o-machines are not number-theoretic.

Propositions of the form that an o-machine is o-circle free can always be put in the form of
propositions obtained from formulae of the functional calculus of the first order by replacing some
of the functional variables by primitive recursive relations. Compare foot-note 1 on page 156.

* Compare Rosser [1].
T Without real loss of generality we may suppose that A is always well formed.
* Compare Turing [1], §6, 7.

160 Part 1

5. Syntactical theorems as number-theoretic theorems.

I now mention a property of number-theoretic theorems which suggests that there is reason for
regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature. We do not concern
ourselves at all in interpretations for the formulae of this system; they are to be regarded as of
interest for themselves. An example of what is in mind is afforded by the conversion calculus (§1).
Every sequence of symbols “A conv B”, where A and B are well formed formulae is a formula of
the axiomatic system and is provable if the W.EF. A is convertible to B. The rules of conversion
give us the rules of procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield only formulae provable in
the original sense. We may ask ourselves whether such a rule is valid. The statement that such a
rule is valid would be number-theoretic. To prove this, let us take Godel representations for the
formulae, and an enumeration of the provable formulae; let ¢ (r) be the GR. of the r-th formula
in the enumeration. We may suppose ¢ (r) to be primitive recursive if we are prepared to allow
repetitions in the enumeration. Let v (r) be the GR. of the r-th formula obtained by the new rule,
then the statement that this new rule is valid is equivalent to the assertion of

(N@EN[Y () = ¢(s)]

(the domain of individuals being the natural numbers). It has been shown in §3 that such statements
are number-theoretic.

It might plausibly be argued that all those theorems of mathematics which have any signifi-
cance when taken alone are in effect syntactical theorems of this kind, stating the validity of certain
“derived rules ” of procedure. Without going so far as this, I should assert that theorems of this kind
have an importance which makes it worth while to give them special consideration.

6. Logic formulae.

We shall call a formula L a logic formula (or, if it is clear that we are speaking of a W.EF., simply
a logic) if it has the property that, if A is a formula such that L.(A) conv 2, then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of number-theoretic theo-
rems. For to each number-theoretic proposition there corresponds a W.EF. A which is dual if and
only if the proposition is true. Now, if L is a logic and L(A) conv 2, then A is dual and we know
that the corresponding number-theoretic proposition is true. It does not follow that, if L is a logic,
we can use L to satisfy ourselves of the truth of any number-theoretic theorem.

If L is a logic, the set of formulae A for which L(A) conv 2 will be called the extent of L.

It may be proved by the use of (D), (E), p. 154, that there is a formula X such that, if M has a
normal form, has no free variables and is not convertible to 2, then X(M) conv 1, but, if M conv 2,
then X(M) conv 2. If L is a logic, then Ax.X(L(x)) is also a logic whose extent is the same as that
of L, and which has the property that, if A has no free variables, then

{dxX (L(x))} (A)

either is always convertible to 1 or to 2 or else has no normal form. A logic with this property will
be said to be standardized.

We shall say that a logic L' is at least as complete as a logic L if the extent of L is a subset of
the extent of L'. The logic L’ is more complete than L if the extent of L is a proper subset of the
extent of L.

Suppose that we have an effective set of rules by which we can prove formulae to be dual; i.e.
we have a system of symbolic logic in which the propositions proved are of the form that certain

Systems of Logic Based on Ordinals 161

formulae are dual. Then we can find a logic formula whose extent consists of just those formulae
which can be proved to be dual by the rules; that is to say, there is a rule for obtaining the logic
formula from the system of symbolic logic. In fact the system of symbolic logic enables us to obtain®
a computable function of positive integers whose values run through the Godel representations of the
formulae provable by means of the given rules. By the theorem of equivalence of computable and
A-definable functions, there is a formula J such that J(1), J(2), ... are the G.R. of these formulae.
Now let

W — ajv.P s (j(w),v), 1,1, 2).

Then T assert that W(J) is a logic with the required properties. The properties of P imply that
P(C, 1) is convertible to the least positive integer n for which C(n) conv 2, and has no normal
form if there is no such integer. Consequently P(C, 1, I, 2) is convertible to 2 if C(n) conv 2 for
some positive integer n, and it has no normal form otherwise. That is to say that W(J, A) conv 2 if
and only if § (J(n), A) conv 2, some n, i.e. if J(n) conv A some n.

There is conversely a formula W’ such that, if L is a logic, then W’ (L) enumerates the extent of
L. For there is a formula Q such that Q(L, A, n) conv 2 if and only if L(A) is convertible to 2 in
less than n steps. We then put

W' — Aln. form (zzr (2, P (3x.0 (I form (ww (2,x)), @ (3,x)) ,n))))

Of course, W' (W(J)) normally entirely different from J and W (W’ (L)) from L.

In the case where we have a symbolic logic whose propositions can be interpreted as number-
theoretic theorems, but are not expressed in the form of the duality of formulae, we shall again
have a corresponding logic formula, but its relation to the symbolic logic is not so simple. As
an example let us take the case where the symbolic logic proves that certain primitive recursive
functions vanish infinitely often. As was shown in §3, we can associate with each such proposition
a W.EF. which is dual if and only if the proposition is true. When we replace the propositions of the
symbolic logic by theorems on the duality of formulae in this way, our previous argument applies
and we obtain a certain logic formula L. However, L does not determine uniquely which are the
propositions provable in the symbolic logic; for it is possible that “6; (x) vanishes infinitely often”
and “6>(x) vanishes infinitely often” are both associated with “A is dual”, and that the first of these
propositions is provable in the system, but the second not. However, if we suppose that the system
of symbolic logic is sufficiently powerful to be able to carry out the argument on pp. 157-158 then
this difficulty cannot arise. There is also the possibility that there may be formulae in the extent of
L with no propositions of the form “6(x) vanishes infinitely often” corresponding to them. But to
each such formula we can assign (by a different argument) a proposition p of the symbolic logic
which is a necessary and sufficient condition for A to be dual. With p is associated (in the first way)
aformula A’. Now L can always be modified so that its extent contains A" whenever it contains A.

We shall be interested principally in questions of completeness. Let us suppose that we have a
class of systems of symbolic logic, the propositions of these systems being expressed in a uniform
notation and interpretable as number-theoretic theorems; suppose also that there is a rule by which
we can assign to each proposition p of the notation a W.EF. A, which is dual if and only if p is
true, and that to each W.E.F. A we can assign a proposition pp which is a necessary and sufficient
condition for A to be dual. py,, is to be expected to differ from p. To each symbolic logic C we can
assign two logic formulae L. and L/.. A formula A belongs to the extent of L. if pa is provable in
C, while the extent of L. consists of all Ap, where p is provable in C. Let us say that the class of
symbolic logics is complete if each true proposition is provable in one of them: let us also say that

Compare Turing [1], 252, second footnote, [2], 156.

162 Part 1

a class of logic formulae is complete if the set-theoretic sum of the extents of these logics includes
all dual formulae. I assert that a necessary condition for a class of symbolic logics C to be complete
is that the class of logics L, is complete, while a sufficient condition is that the class of logics L.
is complete. Let us suppose that the class of symbolic logics is complete; consider p4, where A is
arbitrary but dual. It must be provable in one of the systems, C say. A therefore belongs to the extent
of L, i.e. the class of logics L is complete. Now suppose the class of logics L. to be complete. Let
p be an arbitrary true proposition of the notation ; A, must belong to the extent of some L., and this
means that p is provable in C.

We shall say that a single logic formula L is complete if its extent includes all dual formulae;
that is to say, it is complete if it enables us to prove every true number-theoretic theorem. It is a
consequence of the theorem of Godel (if suitably extended) that no logic formula is complete, and
this also follows from (C), p. 154, or from the results of Turing [1], §8, when taken in conjunction
with §3 of the present paper. The idea of completeness of a logic formula is not therefore very
important, although it is useful to have a term for it.

Suppose Y to be a W.EF. such that Y(n) is a logic for each positive integer n. The formulae of
the extent of Y(n) are enumerated by W(Y (n)), and the combined extents of these logics by

ar. W X (o (2,7), @ (3,7))).
If we put
' — Ay. WOr. Wy(w (2,7),@ (3,7)))),
then I'(Y) is a logic whose extent is the combined extent of
Y(1), Y2), Y3, ...

To each W.EF. L we can assign a W.EF. V(L) such that a necessary and sufficient condition for
L to be a logic formula is that V(L) is dual. Let Nm be a W.E.F. which enumerates all formulae with
normal forms and no free variables. Then the condition for L to be a logic is that L(Nm(r), s) conv
2 for all positive integers r, s, i.e. that

la.L(Nm(w (2,a)),w (3,a))
is dual. We may therefore put

V — Ala. INm(@ (2,a)), @ (3,a)).

7. Ordinals.

We begin our treatment of ordinals with some brief definitions from the Cantor theory of ordinals,
but for the understanding of some of the proofs a greater amount of the Cantor theory is necessary
than is set out here.

Suppose that we have a class determined by the propositional function D(x) and a relation G(x, y)
ordering its members, i.e. satisfying

G(x,y)&G(y,2) D G(x,72), @)
Dx)&D(y) D G(x,y) vGy,x) Vx=y, (i) 7.1)
G(x,y) D D(x)&D(y), (ii1) ’

~ G(x,x). (iv)

Systems of Logic Based on Ordinals 163

The class defined by D(x) is then called a series with the ordering relation G(x,y). The series is said
to be well ordered and the ordering relation is called an ordinal if every sub-series which is not void
has a first term, i.e. if

(DHF) D' ())& @®)(D'(x) D D(x)) D F)MID' (2)&(D'(y) D G(z,y) Vz =y} (7.2)

The condition (7.2) is equivalent to another, more suitable for our purposes, namely the condition
that every descending subsequence must terminate formally

(@) {D'(x) D DW)&EY (D' M&G(y,x))} D (¥)(~ D' (x)). (7.3)

The ordering relation G(x,y) is said to be similar to G’ (x,y) if there is a one-one correspondence
between the series transforming the one relation into the other. This is best expressed formally, thus

AM)[(){D(x) D @A)M(x, X)} &){D'(x') D @AM (x, x)}
&{(M(x, XV&M (x, X)) v MK, x)&M (x", x)) D x' =x"}
&M (x, XN &M (y, y) D (G(x, y) = G(x', y))}]. (7.4)

Ordering relations are regarded as belonging to the same ordinal if and only if they are similar.

We wish to give names to all the ordinals, but this will not be possible until they have been
restricted in some way; the class of ordinals, as at present defined, is more than enumerable. The
restrictions that we actually impose are these: D(x) is to imply that x is a positive integer; D(x) and
G(x, y) are to be computable properties. Both of the propositional functions D(x), G(x, y) can then
be described by means of a single W.EF. £ with the properties:

€ (m, n) conv 4 unless both D(m) and D(n) are true,

Q(m, m) conv 3 if D(m) is true,

Q(m, n) conv 2 if D(m), D(n), G(m, n),~ (m = n) are true,

Q(m, n) conv 1 if D(m), D(n),~ G(m, n),~ (m = n) are true.

In consequence of the conditions to which D(x), G(x,y) are subjected, 2 must further satisfy:

(a) if &(m, n) is convertible to 1 or 2, then 2(m, m) and £(n, n) arc convertible to 3,

(b) if (m, m) and £(n, n) are convertible to 3, then £(m,n) is convertible to 1, 2, or 3,

(c) if (m, n) is convertible to 1, then 2(n, m) is convertible to 2 and conversely,

(d) if (m, n) and £(n, p) are convertible to 1, then £(m, p) is also,

(e) there is no sequence my, ma, ... such that &(m;;1, m;) conv 2 for each positive integer i,
(f) (m,n) is always convertible to 1, 2, 3, or 4.

If a formula 2 satisfies these conditions then there are corresponding propositional functions
D(x), G(x,y). We shall therefore say that € is an ordinal formula if it satisfies the conditions
(a)—(f). It will be seen that a consequence of this definition is that Dt is an ordinal formula; it
represents the ordinal w. The definition that we have given does not pretend to have virtues such
as elegance or convenience. It has been introduced rather to fix our ideas and to show how it is
possible in principle to describe ordinals by means of well formed formulae. The definitions could
be modified in a number of ways. Some such modifications arc quite trivial; they are typified by
modifications such as changing the numbers 1, 2, 3, 4, used in the definition, to others. Two such
definitions will be said to be equivalent; in general, we shall say that two definitions are equivalent
if there are W.EE. T, T’ such that, if A is an ordinal formula under one definition and represents
the ordinal «, then T’(A) is an ordinal formula under the second definition and represents the same
ordinal; and, conversely, if A’ is an ordinal formula under the second definition representing o, then
T(A’) represents o under the first definition. Besides definitions equivalent in this sense to our orig-
inal definition, there are a number of other possibilities open. Suppose for instance that we do not

164 Part 1

require D(x) and G(x, y) to be computable, but that we require only that D(x) and G(x, y) &x <y
are axiomatic’. This leads to a definition of an ordinal formula which is (presumably) not equiva-
lent to the definition that we are using*. There are numerous possibilities, and little to guide us in
choosing one definition rather than another. No one of them could well be described as “wrong”;
some of them may be found more valuable in applications than others, and the particular choice
that we have made has been determined partly by the applications that we have in view. In the case
of theorems of a negative character, one would wish to prove them for each one of the possible
definitions of “ordinal formula”. This programme could, I think, be carried through for the negative
results of §9, 10.

Before leaving the subject of possible ways of defining ordinal formulae, I must mention another
definition due to Church and Kleene (Church and Kleene [1]). We can make use of this definition in
constructing ordinal logics, but it is more convenient to use a slightly different definition which is
equivalent (in the sense just described) to the Church-Kleene definition as modified in Church [4].

Introduce the abbreviations

U — Aufxu(ry f(y(,x))),
Suc — laufx.f(a(u, f, x)).

We define first a partial ordering relation “<” which holds 164 between certain pairs of W.E.F.
[conditions(1) — (5)].
(1) If A conv B, then A < C implies B < C and C < A implies C < B.
(2) A < Suc (A).
(3) For any positive integers m and n, Aufx. R(n) < Aufx.R(m) implies Aufx. R(n) < Aufx.u(R).
(4) fA <Band B < C, then A < C. (1) — (4) are required for any W.EF. A, B, C, Aufx. R.
(5) The relation A < B holds only when compelled to do so by (1) — (4).

We define C-K ordinal formulae by the conditions (6)—(10).

(6) If A conv B and A is a C-K ordinal formula, then B is a C-K ordinal formula.
(7) U is a C-K ordinal formula.

(8) If A is a C-K ordinal formula, then Suc (A) is a C-K ordinal formula.

(9) If Aufx.R(n) is a C-K ordinal formula and

Aufx.R(n) < Aufx.R(S(m))

for each positive integer n, then Aufr.u(R) is a C-K ordinal formulal.
(10) A formula is a C-K ordinal formula only if compelled to be so by (6)—(9).

' To require G(x,y) to be axiomatic amounts to requiring G(x,y) to be computable on account of (7.1) (ii).

¥ On the other hand, if D(x) is axiomatic and (G(x, y) is computable in the modified sense that there is a rule for deter-
mining whether G(x,y) is true which leads to a definite result in all cases where D(x) and D(y) are true, the corresponding
definition of ordinal formula is equivalent to our definition. To give the proof would be too much of a digression. Probably
other equivalences of this kind hold.

11f we also allow Aufr.u(R) to be a C-K ordinal formula when
Aufrn(R)conviufx.S(n,R)

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae can be much simplified. For
instance, if A and B represent « and 8, then

Aufx.B(u,f,Au,f,x))

represents o + . Property (6) remains true.

Systems of Logic Based on Ordinals 165

The representation of ordinals by formulae is described by (11)—(15).

(11) If A conv B and A represents « then B represents «.
(12) U represents 1.
(13) If A represents «, then Suc(A) represents o + 1.

(14) If Aufx.R(n) represents o, for each positive integer n, then Aufx.u(R) represents the upper
bound of the sequence o1, o, o3,

(15) A formula represents an ordinal only when compelled to do so by (11)—(14).

We denote any ordinal represented by A by E without prejudice to the possibility that more
than one ordinal may be represented by A. We shall write A < B to mean A < B or A conv B.

In proving properties of C-K ordinal formulae we shall often use a kind of analogue of the
principle of transfinite induction. If ¢ is some property and we have:

(a) If A conv B and ¢ (A), then ¢ (B),

(b) ¢(U),

(c) If ¢(A), then ¢(Suc(A)), (7.5)
(d) If ¢ (Aufx.R(m)) and Aufx.R(n) < Aufx.R(S(n)) for each positive integer n, then

¢ (Aufx.u(R));

then ¢ (A) for each C-K ordinal formula A. To prove the validity of this principle we have only
to observe that the class of formulae A satisfying ¢ (A) is one of those of which the class of C-K
ordinal formulae was defined to be the smallest. We can use this principle to help us to prove:—

(i) Every C-K ordinal formula is convertible to the form Aufx.B, where B is in normal form.

(ii) There is a method by which for any C-K ordinal formula, we can determine into which of the
forms U, Suc (Aufx.B), Aufr.u(R) (where u is free in R) it is convertible, and by which we can
determine B, R. In each case B, R are unique apart from conversions.

(iii) If A represents any ordinal, E4 is unique. If E5, Ep exist and A < B, then E4 < Ep.
@iv) If A, B, C are C-K ordinal formulae and B < A, C < A, then either B < C, C < B, or B conv
C.

(v) A formula A is a C-K ordinal formula if:
(A) U=<A,
(B) If Aufx.u(R) < A and n is a positive integer, then

Aufx.R(n) < Aufx.R(S(m)),

(C) For any two WEF. B, Cwith B < A, C < A we have B < C, C < B, or B conv C, but
never B < B,

(D) There is no infinite sequence By, B, ... for which
B, <B;,_| <A

for each r.
(vi) There is a formula H such that, if A is a C-K ordinal formula, then H(A) is an ordinal for-
mula representing the same ordinal. H(A) is not an ordinal formula unless A is a C-K ordinal
formula.

166 Part 1

Proof of (i). Take ¢ (A) to be “A is convertible to the form Aufx.B, where B is in normal form”.
The conditions (@) and (b) are trivial. For (c), suppose that A conv Aufx.B, where B is in normal
form; then

Suc(A) conv iufx.f(B)

and f(B) is in normal form. For (d) we have only to show that #(R) has a normal form, i.e. that R
has a normal form; and this is true since R(1) has a normal form.

Proof of (ii). Since, by hypothesis, the formula is a C-K ordinal formula we have only to perform
conversions on it until it is in one of the forms described. It is not possible to convert it into two of
these three forms. For suppose that Aufx.f (A (u,f,x)) conv Aufx.u(R) and is a C-K ordinal formula; it
is then convertible to the form Aufx.B, where B is in normal form. But the normal form of Aufx.u(R)
can be obtained by conversions on R, and that of Aufx.f(A(u, f, x)) by conversions on A(u,f,x)
(as follows from Church and Rosser [1], Theorem 2); this, however, would imply that the formula
in question had two normal forms, one of form Aufx.u(S) and one of form Aufx.f(C), which is
impossible. Or let U conv Aufx.u(R), where R is a well formed formula with u as a free variable.
We may suppose R to be in normal form. Now U is Aufx.u(ry . f(y(I, x))). By (A), p. 154, R is
identical with Ay.f(y(Z,x)), which does not have u as a free variable. It now remains to show only
that if

Suc (Aufx.B) conv Suc (Aufx.B’) and Aufr.u(R) conv Aufr.u(R’),

then B conv B’ and R conv R'.

If Suc (Aufx.B) conv Suc (Aufx.B’),
then Aufe.f(B) conv Aufe.f(B)

but both of these formulae can be brought to normal form by conversions on B, B’ and therefore B
conv B’. The same argument applies in the case in which Aufx.u(R) conv Aufr.u(R’).

Proof of (iii). To prove the first half, take ¢ (A) to be “Ey is unique”. Then (7.5) (a) is trivial,
and (b) follows from the fact that U is not convertible either to the form Suc (A) or to Aufx.u(R),
where R has u as a free variable. For (c): Suc (A) is not convertible to the form Aufx.u(R); the
possibility that Suc (A) represents an ordinal on account of (12) or (14) is therefore eliminated. By
(13), Suc (A) represents ’ + 1 if A represents &’ and Suc (A) conv Suc (A'). If we suppose that A
represents c, then A, A’, being C-K ordinal formulae, are convertible to the forms Aufx.B, Aufx. B’
; but then, by (ii), B conv B/, i.e. A conv A’, and therefore o« = ' by the hypothesis ¢ (A). Then
Esuc(a) = ' + 1 is unique. For (d) : Aufx.u(R) is not convertible to the form Suc (A) or to U if R
has u as a free variable. If Aufx.u(R) represents an ordinal, it is so therefore in virtue of (14), pos-
sibly together with (11). Now, if Aufr.u(R) conv Aufx.u(R’), then R conv R/, so that the sequence
Aufx.R(1), Aufx, R(2), ...1in (14) is unique apart from conversions. Then, by the induction hypoth-
esis, the sequence o1, o2, @3 ... is unique. The only ordinal that is represented by Aufx.u(R) is the
upper bound of this sequence; and this is unique.

For the second half we use a type of argument rather different from our transfinite induction
principle. The formulae B for which A < B form the smallest class for which:

Systems of Logic Based on Ordinals 167

Suc (A) belongs to the class.
If C belongs to the class, then Suc (C) belongs to it.
If Aufx.R(n) belongs to the class and
Aufx. R(n) < Aufx.R(m),
where m, n are some positive integers, then Aufx.u(R)belongs to it.
If C belongs to the class and C conv C’ then C’ belongs to it.

(7.6)

It will be sufficient to prove that the class of formulae B for which either Ep does not exist or
EA < Ep satisfies the conditions (7.6). Now

Esuc(d) = Ea +1 > Ea, 8suc(c) > Ec > By if Cis in the class.

If EjupeR(n) does not exist then &, (R) does not exist, and therefore Aufx.u(R) is in the class. If
EufcR(n) €xists and is greater than E,, and Aufx.R(n) < Aufx.R(m), then

Eufru®) = ExufcRm) > BA,

so that Aufx.u(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take ¢ (A) to be “whenever B < A
and C < A then B < C or C <B or B conv C””. ¢(U) follows from the fact that we never have
B < U. If we have ¢(A) and B < Suc (A), then either B < A or B conv A; for we can find D
such that B <D, and then D < Suc (A) can be proved without appealing either to (1) or (5); (4)
does not apply, so we must have D conv A. Then, if B < Suc (A) and C < Suc (A), we have four
possibilities,

Bconv A, Cconv A,
B conv A, C <A,
B <A, Cconv A,
B <A, C<A.

In the first case B conv C, in the second C < B, in the third B < C, and in the fourth the induction
hypothesis applies.
Now suppose that Lufx.R(n) is a C-K ordinal formula, that

Aufc.R(M) < AufeR(S(n)) and ¢ (R(n)),

for each positive integer n, and that A conv Aufx.u(R). Then, if B <A, this means that
B < Aufx.R(n) for some n; if we have also C < A, then B < Aufx.R(q), C < Aufx.R(q) for some g.
Thus, for these B and C, the required result follows from ¢ (Aufx.R(q)).

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible formulae B,
B < A are well-ordered by the relation “<”. We prove (v) by (ordinary) transfinite induction with
respect to the order type « of the series formed by these classes; (« is, in fact, the solution of the
equation 1 + o = E4, but we do not need this). We suppose then that (v) is true for all order types
less than «. If E < A, then E satisfies the conditions of (v) and the corresponding order type is

smaller: E is therefore a C-K ordinal formula. This expresses all consequences of the induction

168 Part 1

hypothesis that we need. There are three cases to consider:
x) a=0.

» a=p+1
(z) « is of neither of the forms (x), (y).

In case (x) we must have A conv U on account of (A). In case (y) there is a formula D such that
D < A, and B <D whenever B < A. The relation D < A must hold in virtue of either (1), (2), (3),
or (4). It cannot be in virtue of (4); for then there would be B, B < A, D < B contrary to (C),
taken in conjunction with the definition of D. If it is in virtue of (3), then « is the upper bound
of a sequence oy, «y, ... of ordinals, which are increasing by reason of (iii) and the conditions
Aufx.R(n) < Aufx.R(S(n)) in (B). This is inconsistent with « = 8 + 1. This means that (2) applies
[after we have eliminated (1) by suitable conversions on A, D] and we see that A conv Suc (D);
but, since D < A, D is a C-K ordinal formula, and A must therefore be a C-K ordinal formula by
(8). Now take case (z). It is impossible for A to be of the form Suc (D), for then we should have
B < D whenever B < A, and this would mean that we had case (y). Since U < A, there must be
an F such that F < A is demonstrable either by (2) or by (3) (after a possible conversion on A);
it must of course be demonstrable by (3). Then A is of the form Aufx.u(R). By (3), (B) we see
that Aufx.R(n) < A for each positive integer n; each Aufx.R(n) is therefore a C-K ordinal formula.
Applying (9), (B) we see that A is a C-K ordinal formula.

Proof of (vi). To prove the first half, it is sufficient to find a method whereby from a C-K ordinal
formula A we can find the corresponding ordinal formula 2. For then there is a formula H; such
that Hy(a) conv p if a is the GR. of A and p is that of €. H is then to be defined by

H — Aa. form (H{(Gr(a))).

The method of finding 2 may be replaced by a method of finding 2(m,n), given A and any two
positive integers m, n. We shall arrange the method so that, whenever A is not an ordinal formula,
either the calculation of the values does not terminate or else the values are not consistent with €2
being an ordinal formula. In this way we can prove the second half of (vi).

Let Ls be a formula such that Ls(A) enumerates the classes of formulac B, B < A [i.e.if B < A
there is one and only one positive integer n for which Ls(A, n) conv B]. Then the rule for finding
the value of (m, n) is as follows:—

First determine whether U < A and whether A is convertible to the form r(Suc, U). This
terminates if A is a C-K ordinal formula.

If A conv r(Suc, U) and either m > r+ 1 orn > r+ 1, then the value is 4. If m <n < r+1, the
valueis 2. If n <m < r+1, the value is 1. If m = n < r+ 1, the value is 3.

If A is not convertible to this form, we determine whether either A or Ls(A, m) is convertible
to the form Aufx.u(R), and if either of them is, we verify that Aufx.R(n) < Aufx.R(S(n)). We shall
eventually come to an affirmative answer if A is a C-K ordinal formula.

Having checked this, we determine concerning m and n whether Ls(A, m) < Ls(A, n),
Ls(A, n) < Ls(A, m), or m = n, and the value is to be accordingly 1, 2, or 3.

If A is a C-K ordinal formula, this process certainly terminates. To see that the values so calcu-
lated correspond to an ordinal formula, and one representing E4, first observe that this is so when
EA is finite. In the other case (iii) and (iv) show that Ep determines a one-one correspondence
between the ordinals 8,1 < 8 < Ej, and the classes of interconvertible formulae B, B < A. If we
take G(m, n) to be Ls (A, m) < Ls(A, n), we see that G(m, n) is the ordering relation of a series of
order type+ Ea and on the other hand that the values of §2(m, n) are related to G(m,n) as on p. 163.

 The order type is 8, where 1+ 8 = B4 ; but = S, since Ej is infinite.

Systems of Logic Based on Ordinals 169

To prove the second half suppose that A is not a C-K ordinal formula. Then one of the conditions
(A)—(D) in (v) must not be satisfied. If (A) is not satisfied we shall not obtain a result even in the
calculation of (1, 1). If (B) is not satisfied, we shall have for some positive integers p and ¢,

Ls(A, p) conv Aufx.u(R)

but not Lufx.R(q) < Aufx.R(S(q)). Then the process of calculating £(p, q) will not terminate. In
case of failure of (C) or (D) the values of £(m, n) may all be calculable, but if so conditions
(a)—(f), p. 163, will be violated. Thus, if A is not a C-K ordinal formula, then H(A) is not an
ordinal formula.

I propose now to define three formulae Sum, Lim, Inf of importance in connection with ordinal
formulae. Since they are comparatively simple, they will for once be given almost in full. The
formula Ug is one with the property that Ug(m) is convertible to the formula representing the
largest odd integer dividing m: it is not given in full. P is the predecessor function; P(S(m)) conv m,
P(1) conv 1.

Al — Apxy.p(rguv . gv,u), Auv.u(l,v),x,y),

Hf — Am.P(m(Aguv . g(v,S(w)), \uv.v(l,u), 1, 2)),
Bd — aww'ad'x. Al (\f . w(a,a,w' (d,d,f)),x,4),
Sum — Aww'pg. Bd (w,w/, Hf (p), Hf (¢),

Al (p, Al (¢,w'(Hf (p), Hf (9)), 1), Al (S(¢),w(HI (p), Hf (9)),2))

Lim — Azpg.{rab.Bd(z(a),z(b), Ug (p), Ug (¢), Al (Dt(a,b)+ Dt (b,a),
Dt (a,b),z(a, Ug (p), Ug () (@ (2,p), @ (2,9)),

Inf — Awapq. Al (Af . w(a,p,w(a,q,f)),w(P,q),4).
The essential properties of these formulae are described by:

Al 2r—1,m,n) convm, Al (2r,m,n) conv n,

Hf(2m) convm, Hf(2m — 1) conv m

Bd (2,€’,a, a’,x) conv 4, unless both

Q(a,a) conv 3 and €'(a’,a’) conv 3,
it is then convertible to X.

If 2, @ are ordinal formulae representing «, 8 respectively, then Sum(2, ') is an ordinal
formula representing o + B. If Z is a W.E.F. enumerating a sequence of ordinal formulae represent-
ing a1, o7,..., then Lim (Z) is an ordinal formula representing the infinite sum o] + oy + o3,
If @ is an ordinal formula representing «, then Inf(£2) enumerates a sequence of ordinal formulae
representing all the ordinals less than o without repetitions other than repetitions of the ordinal 0.

To prove that there is no general method for determining about a formula whether it is an ordinal
formula, we use an argument akin to that leading to the Burali-Forti paradox; but the emphasis and
the conclusion are different. Let us suppose that such an algorithm is available. This enables us
to obtain a recursive enumeration 1, &,,... of the ordinal formulae in normal form. There is a
formula Z such that Z(n) conv £5,. Now Lim (Z) represents an ordinal greater than any represented
by an 2, and it has therefore been omitted from the enumeration.

170 Part 1

This argument proves more than was originally asserted. In fact, it proves that, if we take any
class E of ordinal formulae in normal form, such that, if A is any ordinal formula. then there is a
formula in E representing the same ordinal as A, then there is no method whereby one can determine
whether a W.EF. in normal form belongs to E.

8. Ordinal logics.

An ordinal logic is a W.E.E. A such that A(S2) is logic formula whenever 2 is an ordinal formula.

This definition is intended to bring under one heading a number of ways of constructing logics
which have recently been proposed or which are suggested by recent advances. In this section I
propose to show how to obtain some of these ordinal logics.

Suppose that we have a class W of logical systems. The symbols used in each of these systems
are the same, and a class of sequences of symbols called “formulae” is defined, independently of
the particular system in W. The rules of procedure of a system C define an axiomatic subset of the
formulae, which are to be described as the “provable formulae of C”. Suppose further that we have a
method whereby from any system C’ of W, we can obtain a new system C’, also in W, and such that
the set of provable formulae of C’ includes the provable formulae of C (we shall be most interested
in the case in which the y are included as a proper subset). It is to be understood that this “method”
is an effective procedure for obtaining the rules of procedure of C’ from those of C.

Suppose that to certain of the formulae of W we make number-theoretic theorems correspond:
by modifying the definition of formula, we may suppose that this is done for all formulae. We shall
say that one of the systems C is valid if the provability of a formula in C implies the truth of the
corresponding number-theoretic theorem. Now let the relation of C’ to C be such that the validity of
C implies the validity of C’, and let there be a valid system Cy in W. Finally, suppose that, given any
computable sequence Ci,C»,... of systems in W, the “limit system” in which a formula is provable
if and only if it is provable in one of the systems Cj, also belongs to W. These limit systems are
to be regarded, not as functions of the sequence given in extension, but as functions of the rules
of formation of their terms. A sequence given in extension may be described by various rules of
formation, and there will be several corresponding limit systems. Each of these may be described
as a limit system of the sequence.

In these circumstances we may construct an ordinal logic. Let us associate positive integers with
the systems in such a way that to each C there corresponds a positive integer mc, and that mc¢
completely describes the rules of procedure of C. Then there is a W.EFE. K, such that

K(mc¢) conv m¢

for each C in W and there is a W.EF. © such that if D(r) conv mc;, . for each positive integer r, then
® (D) conv m¢, where C is a limit system of Cy,C,.... With each system C of W it is possible
to associate a logic formula L¢: the relation between them is that, if G is a formula of W and the
number-theoretic theorem corresponding to G (assumed expressed in the conversion calculus form)
asserts that B is dual, then L (B) conv 2 if and only if G is provable in C. There is a W.E.FE. G such
that

G(m¢) conv L¢

for each C of W. Put
N — 1a.G(a(0,K,mc,)).

I assert that N(A) is a logic formula for each C-K ordinal formula A, and that, if A < B, then N(B)
is more complete than N(A), provided that there are formulae provable in C’ but not in C for each
valid C of W.

Systems of Logic Based on Ordinals 171

To prove this we shall show that to each C-K ordinal formula A there corresponds a unique
system C[A] such that:

(i) A(@, K, mco) conv mC[A],
and that it further satisfies:

(ii) C[U]is alimit system of C;,,Cy, ...,
(iii) C [Suc (A)]is (C[A]),
@iv) Cl[rufx.u(R)] is alimit system of C[Aufx.R(1)], C[ufx.R(2)],...,

A and ‘ufx.u(R) being assumed to be C-K ordinal formulae. The uniqueness of the system follows
from the fact that mc determines C completely. Let us try to prove the existence of C[A] for each
C-K ordinal formula A. As we have seen (p. 165) it is sufficient to prove

(a) C[U] exists,
(b) if C[A] exists, then C[Suc(A)] exists,
(c) if Cufx.R(1)], C[rufx.R(2)],... exist, then C[lufx.u(R)] exists.
Proof of (a).
{Ay.K(y(I,m¢,))}(n) conv K(mc,) conv mc

for all positive integers n, and therefore, by the definition of ®, there is a system, which we call
C[U] and which is a limit system of C, C.. .., satisfying

Oy K(y(,m¢,))) conv mcyy).
But, on the other hand,
U(©,K,mc¢,) conv (Ay.K(y(I,mc,))).
This proves (a) and incidentally (ii).
Proof of (D).
Suc(A, 0, K, mc¢,) conv K(A(O,K,m¢,))
conv K(mcja))
conv m(cjajy -
Hence C[Suc(A)] exists and is given by (iii).
Proof of (c).
{{Aufx.R}(©,K,mc,)}(n) conv {Aufx. R(n)}(0,K,mc,)
conv Mcyufx.R(n)]
by hypothesis. Consequently, by the definition of ®, there exists a C which is a limit system of
Cliufx R(1)], Clrufx.R(2)],...,
and satisfies
O ({Aufx.u(R)}(©,K,mc¢,)) conv mc.
We define C[Aufx.u(R)] to be this C. We then have (iv) and
{Aufru®R)}(O,K,mc,) conv O ({Aufx.R}(O,K,mc,))

conv Mcupr.u(R)]-

172 Part 1

This completes the proof of the properties (i)—(iv). From (ii), (iii), (iv), the fact that Cy is valid, and
that C’ is valid when C is valid, we infer that C[A] is valid for each C-K ordinal formula A: also
that there are more formulae provable in C[B] than in C[A] when A < B. The truth of our assertions
regarding N now follows in view of (i) and the definitions of N and G.

We cannot conclude that N is an ordinal logic, since the formulae A are C-K ordinal formulae;
but the formula H enables us to obtain an ordinal logic from N. By the use of the formula Gr we
obtain a formula Tn such that, if A has a normal form, then Tn(A) enumerates the G.R.’s of the
formulae into which A is convertible. Also there is a formula Ck such that, if & is the GR. of a
formula H(B), then Ck(h) conv B, but otherwise Ck (h) conv U. Since H(B) is an ordinal formula
only if B is a C-K ordinal formula Ck (Tn (£2,n)) is a C-K ordinal formula for each ordinal formula
© and each integer n. For many ordinal formulae it will be convertible to U, but, for suitable €2, it
will be convertible to any given C-K ordinal formula. If we put

A — Awa.I'On.N(Ck(Tn(w,n))),a),

A is the required ordinal logic. In fact, on account of the properties of I', A (£2,A) will be convertible
to 2 if and only if there is a positive integer n such that

N(Ck (Tn (£,n)),A) conv 2.

If £ conv H(B), there will be an integer n such that Ck (Tn(£2,n)) conv B, and then

N(Ck (Tn (2,n)),A) conv N(B,A).

For any n, Ck (Tn (£2,n)) is convertible to U or to some B, where 2 conv H(B). Thus A(2,A)
conv 2 if & conv H(B) and N(B,A) conv 2 or if N(U,A) conv 2, but not in any other case.

We may now specialize and consider particular classes W of systems. First let us try to construct
the ordinal logic described roughly in the introduction. For W we take the class of systems arising
from the system of Principia Mathematica' by adjoining to it axiomatic (in the sense described on
p. 155) sets of axioms*. Godel has shown that primitive recursive relations® can be expressed by
means of formulae in P. In fact, there is a rule whereby, given the recursion equations defining a
primitive recursive relation, we can find a formulal 2[xo, ...,zo] such that

Q[[f(ml)o’ _“,f(mr)o]

is provable in P if F(m1,...,m,) is true, and its negation is provable otherwise. Further, there is a
method by which we can determine about a formula 2[xy, .. .,zo] whether it arises from a primitive
recursive relation in this way, and by which we can find the equations which defined the relation.
Formulae of this kind will be called recursion formulae. We shall make use of a property that they
possess, which we cannot prove formally here without giving their definition in full, but which is

T Whitehead and Russell [1]. The axioms and rules of procedure of a similar system P will be found in a convenient form
in Godel [1], and I follow Godel. The symbols for the natural numbers in P are 0,f0,ff0,...,f (). ... Variables with the
suffix “0” stand for natural numbers.

¥ It is sometimes regarded as necessary that the set of axioms used should be computable, the intention being that it
should be possible to verify of a formula reputed to be an axiom whether it really is so. We can obtain the same effect
with axiomatic sets of axioms in this way. In the rules of procedure describing which are the axioms, we incorporate a
method of enumerating them, and we also introduce a rule that in the main part of the deduction, whenever we write
down an axiom as such, we must also write down its position in the enumeration. It is possible to verify whether this has
been done correctly.

§ A relation F(my,...,m,) is primitive recursive if it is a necessary and sufficient condition for the vanishing of a primitive
recursive function ¢ (my,...,m,).

1 Capital German letters will be used to stand for variable or undetermined formulae in P. An expression such as 1[,]
stands for the result of substituting B and € for xp and yo in 2.

Systems of Logic Based on Ordinals 173

essentially trivial. Db [xg,yo] is to stand for a certain recursion formula such that Db [f(’”)O, f 0]
is provable in P if m = 2n and its negation is provable otherwise. Suppose that A[xg], B[xo] are
two recursion formulae. Then the theorem which I am assuming is that there is a recursion relation
Cq s[x0], such that we can prove

oy slxo] = Fyo) (Dblxoyo]- Alyol) V (Dblfxo,fy0]-Blyol)) (8.1)
in P.
The significant formulae in any of our extensions of P are those of the form
(x0) (3yo0)2U[x0, 01, (8.2)

where 2[x¢,yo] is a recursion formula, arising from the relation R(m, n) let us say. The corresponding
number-theoretic theorem states that for each natural number m there is a natural number n such that
R(m,n) is true.

The systems in W which are not valid are those in which a formula of the form (8. 2) is provable,
but at the same time there is a natural number, m say, such that, for each natural number n, R(m,n)
is false. This means to say that ~ A[f"0,f™0] is provable for each natural number n. Since (8.2)
is provable, (Eixo)Ql[f(’”) 0,y0] is provable, so that

Go)A[™0,v0l, ~AF™0,01, ~AF™0,101,... (8.3)

are all provable in the system. We may simplify (8.3). For a given m we may prove a formula of the
form Ql[f(’”)O, yol = B[yo] in P, where B[xp] is a recursion formula. Thus we find that a necessary
and sufficient condition for a system of W to be valid is that for no recursion formula B[xg] are all
of the formulae

(3x0)Blxol, ~ B[0], ~ B[fO],... (8.4)
provable. An important consequence of this is that, if
i [xol, KAalxol, ... Anlxol
are recursion formulae, if
Fxo)2Ai[xo] Vv ... v Fxo)2An[x0] (8.5)

is provable in C, and C is valid, then we can prove er[f(“)O] in C for some natural numbers r,a,
where 1 < r < n. Let us define D, to be the formula

Fxo) 21 [x0] V... v Fxo) A, [x0]

and then define €, [xo] recursively by the condition that &; [xo] is ; [xo] and &, [xo] be ¢, 21, | [x1-
Now I say that

D, D (Ixo) &, [x0] (8.6)

is provable for 1 < r < n. Itis clearly provable for r = 1: suppose it to be provable for a given . We
can prove

(o) (3x0)Db[xo,y0]
and (y0) (3x0)Db[fxo, o],

from which we obtain

&, [yo]l D (3xo) ((Db[xo,y0].€-[yo]) V (Db[fxo,fyol-&rr1ly0]))

174 Part 1

and

Arr1lyo] D (Fxo) (Db[xo,¥0]-€,[yo]) V (Dblfxo, Yol 2r11[y0D)-

These together with (8.1) yield

Fyo)€r[yol v @yo)&Ar+1v0] D Fxo) e, 21, [¥0],

which is sufficient to prove (8. 6) for r+ 1. Now, since (8. 5) is provable in C, (3xp)&,[xo] must
also be provable, and, since C is valid, this means that &,[f"”0] must be provable for some natural
number m. From (8.1) and the definition of &,[xg] we see that this implies that 2, [f(“)O] is provable
for some natural numbersaandr, 1 <r <n.

To any system C of W we can assign a primitive recursive relation Pc(m,n) with the intuitive
meaning “m is the GR. of a proof of the formula whose GR. is n”. We call the corresponding
recursion formula Proofc [xg,yo]. (ie. Proofc[f(m)O, f(”)O] is provable when Pc(m,n) is true, and
its negation is provable otherwise). We can now explain what is the relation of a system C’ to its
predecessor C. The set of axioms which we adjoin to P to obtain C’ consists of those adjoined in
obtaining C, together with all formulae of the form

(3Xo)Proofclxo,f™0] O F, (8.7)

where m is the GR. of §.

We want to show that a contradiction can be obtained by assuming C’ to be invalid but C to be
valid. Let us suppose that a set of formulae of the form (8.4) is provable in C’. Let 21,2, ...,2 be
those axioms of C’ of the form (8.7) which are used in the proof of (Ixo)B[xp]. We may suppose
that none of them is provable in C. Then by the deduction theorem we see that

A1 .. . %) D (Fxo)Blxo] (8.8)

is provable in C. Let 2(; be (3xp)Proofc[xg,f (m)()] > F;. Then from (8.8) we find that

(Fxo)Proof[xo, f™0] v ... v (Fxg)Proofc[xo, 0] v (Ixp) Bxo]

is provable in C. It follows from a result which we have just proved that either B[f(©)0] is provable
for some natural number ¢, or else Proofc[f0,f")0] is provable in C for some natural number u
and some /,1 <[< k: but this would mean that J; is provable in C (this is one of the points where
we assume the validity of C) and therefore also in C’, contrary to hypothesis. Thus B[f)0] must
be provable in C’ ; but we are also assuming ~ B[f(©0] to be provable in C’. There is therefore a
contradiction in C’. Let us suppose that the axioms Ql’l, .. ,?2[,’(,, of the form (8. 7), when adjoined to
C are sufficient to obtain the contradiction and that none of these axioms is that provable in C. Then

~AV A~ A VLV~
is provable in C, and if 2; is (3xp) Proofc [xo,f (’"90] D §, then

(Fxo]Proof[xo,f™0] v - - v (Ixg)Proofxg, f 0]

is provable in C. But, by repetition of a previous argument, this means that 2; is provable for some
I, 1 <1<k, contrary to hypothesis. This is the required contradiction.

We may now construct an ordinal logic in the manner described on pp. 170-172. We shall,
however, carry out the construction in rather more detail, and with some modifications appropriate
to the particular case. Each system C of our set W may be described by means of a W.EF. M which

Systems of Logic Based on Ordinals 175

enumerates the G.R.’s of the axioms of C. There is a W.F.F. E such that, if a is the GR. of some
proposition §, then E(M,,a) is convertible to the GR. of

(3x0)Proofc[xg,f@0] O 3.

If a is not the GR. of any proposition in P, then E(Mc,a) is to be convertible to the GR. of 0 = 0.
From E we obtain a W.EF. K such that K(M¢,2n+ 1) conv Mc(m), K(Mc,2n) conv E(Mc). The
successor system C’ is defined by K(M¢) conv M’C. Let us choose a formula G such that G(M¢,A)
conv 2 if and only if the number-theoretic theorem equivalent to “A is dual” is provable in C. Then
we define Ap by

Ap — Awa.I'(Ly.G(Ck(Tn(w,y), Amn.m(w (2,n),w (3,n)),K,Mp)),a).

This is all ordinal logic provided that P is valid.

Another ordinal logic of this type has in effect been introduced by Church’. Superficially this
ordinal logic seems to have no more in common with Ap than that they both arise by the method
which we have described, which uses C-K ordinal formulae. The initial systems are entirely differ-
ent. However, in the relation between C and C’ there is an interesting analogy. In Church’s method
the step from C to C’ is performed by means of subsidiary axioms of which the most important
(Church [2], p. 88,1,,) is almost a direct translation into his symbolism of the rule that we may
take any formula of the form (8.4) as an axiom. There are other extra axioms, however, in Church’s
system, and it is therefore not unlikely that it is in some respects more complete than Ap.

There are other types of ordinal logic, apparently quite unrelated to the type that we have so far
considered. I have in mind two types of ordinal logic, both of which can be best described directly
in terms of ordinal formulae without any reference to C-K ordinal formulae. I shall describe here a
specimen Ay of one of these types of ordinal logic. Ordinal logics of this kind were first considered
by Hilbert (Hilbert [1], 183ff), and have also been used by Tarski (Tarski [1], 395ff); see also Godel
[1], foot-note 48¢.

Suppose that we have selected a particular ordinal formula 2. We shall construct a modification
Pgq of the system P of Godel (see foot-note 1 on p. 172. We shall say that a natural number 7 is a type
if it is either even or 2p — 1, where §2(p, p) conv 3. The definition of a variable in P is to be modified
by the condition that the only admissible subscripts are to be the types in our sense. Elementary
expressions are then defined as in P: in particular the definition of an elementary expression of type
0 is unchanged. An elementary formula is defined to be a sequence of symbols of the form 2,21,
where 21,,, 2, are elementary expressions of types m,n satisfying one of the conditions (a), (b), (c).

(a) m and n are both even and m exceeds n,
(b) mis odd and n is even,
(c) m=2p—1,n=2¢g—1, and £(p,q) conv 2.

With these modifications the formal development of Pg is the same as that of P. We want,
however, to have a method of associating number-theoretic theorems with certain of the formulae
of Pg. We cannot take over directly the association which we used in P. Suppose that G is a formula
in P interpretable as a number-theoretic theorem in the way described in the course of constructing
Ap (p. 172). Then, if every type suffix in G is doubled, we shall obtain a formula in Pg which is
to be interpreted as the same number-theoretic theorem. By the method of §6 we can now obtain
from Pg a formula Lg which is a logic formula if Pg is valid; in fact, given there is a method of
obtaining Lg, so that there is a formula Ay such that Ag(2) conv Lg for each ordinal formula €2.

Having now familiarized ourselves with ordinal logics by means of these examples we may
begin to consider general questions concerning them.

 In outline Church [1], 279-280. In greater detail Church [2], Chap. X.

176 Part 1

9. Completeness questions.

The purpose of introducing ordinal logics was to avoid as far as possible the effects of Godel’s
theorem. It is a consequence of this theorem, suitably modified, that it is impossible to obtain a
complete logic formula, or (roughly speaking now) a complete system of logic. We were able, how-
ever, from a given system to obtain a more complete one by the adjunction as axioms of formulae,
seen intuitively to be correct, but which the Godel theorem shows are unprovable’ in the original
system; from this we obtained a yet more complete system by a repetition of the process, and so
on. We found that the repetition of the process gave us a new system for each C-K ordinal formula.
We should like to know whether this process suffices, or whether the system should be extended in
other ways as well. If it were possible to determine about a W.EF. in normal form whether it was
an ordinal formula, we should know for certain that it was necessary to make extensions in other
ways. In fact for any ordinal formula A it would then be possible to find a single logic formula
L such that, if A(£2,A) conv 2 for some ordinal formula 2, then L(A) conv 2. Since L. must be
incomplete, there must be formulae A for which A($2,A) is not convertible to 2 for any ordinal
formula . However, in view of the fact, proved in §7, that there is no method of determining about
a formula in normal form whether it is an ordinal formula, the case does not arise, and there is still
a possibility that some ordinal logics may be complete in some sense. There is a quite natural way
of defining completeness.

Definition of completeness of an ordinal logic

We say that an ordinal logic A is complete if corresponding to each dual formula A there is an
ordinal formula §2 such that A(24,A) conv 2.

As has been explained in §2, the reference in the definition to the existence of 24 for each A is
to be understood in the same naive way as any reference to existence in mathematics.

There is room for modification in this definition: we might require that there is a formula X such
that X(A) conv 24, X(A) being an ordinal formula whenever A is dual. There is no need, however,
to discuss the relative merits of these two definitions, because in all cases in which we prove an
ordinal logic to be complete we shall prove it to be complete even in the modified sense; but in
cases in which we prove an ordinal logic to be incomplete, we use the definition as it stands.

In the terminology of §6, A is complete if the class of logics A(f2) is complete when 2 runs
through all ordinal formulae.

There is another completeness property which is related to this one. Let us for the moment
describe an ordinal logic A as all inclusive if to each logic formula L there corresponds an ordinal
formula 1,y such that A(€2(y,)) is as complete as L. Clearly every all inclusive ordinal logic is
complete; for, if A is dual, then §(A) is a logic with A in its extent. But, if A is complete and

Ai — Mow.T (kra.8<4,8 (2,k(w, V(Nm(r)))) + 8 (2, Nm(r, a)))),
then Ai(A)is an all inclusive ordinal logic. For, if A is in the extent of A(24) for each A, and we

put) — Ly, then I say that, if B is in the extent of L, it must be in the extent of Ai (A, 2(r,)).
In fact, we see that Ai (A, Ry (r,),B) is convertible to

F(Ara.6<4,8(2,A(52v(L), V(Nm(r)))) + 5(2,Nm(r,a))>, B).

 In the case of p we adjoined all of the axioms (3xg) Proof [xp,f’ m0] > §,where m is the G.R, of §; the Godel theorem
shows that some of them are unprovable in P.

Systems of Logic Based on Ordinals 177

For suitable n, Nm(n) conv L and then
A(Ryr,), V(Nm(n))) conv 2,
Nm(n, B) conv 2,

and therefore, by the properties of I" and §
Ai(A, SZV(L), B) conv 2.

Conversely Ai(A,Ryq), B) can be convertible to 2 only if both Nm (n,B) and
A(Ry@),V(Nm(m))) are convertible to 2 for some positive integer n; but, if
A(Ryw), V(Nm(n))) conv 2, then Nm(n) must be a logic, and, since Nm(n,B) conv2, B
must be dual.

It should be noticed that our definitions of completeness refer only to number-theoretic theo-
rems. Although it would be possible to introduce formulae analogous to ordinal logics which would
prove more general theorems than number-theoretic ones, and have a corresponding definition of
completeness, yet, if our theorems are too general, we shall find that our (modified) ordinal logics
are never complete. This follows from the argument of §4. If our “oracle” tells us, not whether any
given number-theoretic statement is true, but whether a given formula is an ordinal formula, the
argument still applies, and we find that there are classes of problem which cannot be solved by a
uniform process even with the help of this oracle. This is equivalent to saying that there is no ordinal
logic of the proposed modified type which is complete with respect to these problems. This situation
becomes more definite if we take formulae satisfying conditions (a) — (e), (f”) (as described at the
end of §12) instead of ordinal formulae; it is then not possible for the ordinal logic to be complete
with respect to any class of problems more extensive than the number-theoretic problems.

We might hope to obtain some intellectually satisfying system of logical inference (for the proof
of number-theoretic theorems) with some ordinal logic. Godel’s theorem shows that such a system
cannot be wholly mechanical; but with a complete ordinal logic we should be able to confine the
non-mechanical steps entirely to verifications that particular formulae are ordinal formulae.

We might also expect to obtain an interesting classification of number-theoretic theorems accord-
ing to “depth ”. A theorem which required an ordinal « to prove it would be deeper than one which
could be proved by the use of an ordinal 8 less than «. However, this presupposes more than is
justified. We now define

Invariance of ordinal logics

An ordinal logic A is said to be invariant up to an ordinal a if, whenever £, ' are ordinal formulae

representing the same ordinal less than «, the extent of A () is identical with the extent of A ().

An ordinal logic is invariant if it is invariant up to each ordinal represented by an ordinal formula.
Clearly the classification into depths presupposes that the ordinal logic used is invariant.
Among the questions that we should now like to ask are

(a) Are there any complete ordinal logics?

(b) Are there any complete invariant ordinal logics?

To these we might have added “are all ordinal logics complete? ” : but this is trivial; in fact, there
are ordinal logics which do not suffice to prove any number-theoretic theorems whatever.

We shall now show that (a) must be answered affirmatively. In fact, we can write down a
complete ordinal logic at once. Put

0d — Aa.{Afmn.Dt(f (m).f () } (As.P(rr.(I,a(s)), 1,5))
and Comp — Awa.8(w,0d(a)).

178 Part 1

I shall show that Comp is a complete ordinal logic.
For if, Comp (£2,A) conv 2, then

© conv Od (A)
conv Amn. Dt (fP()»r.r(I,A(m)),l,m), fP(kr.r(I,A(n)), 1,n)))
2 (m,n) has a normal form if € is an ordinal formula, so that then
P(rr.r(1,A(m)),1)

has a normal form; this means that r(/,A(m)) conv 2 some 7, i.e. A(m) conv 2. Thus, if Comp
(2,A) conv 2 and 2 is an ordinal formula, then A is dual. Comp is therefore an ordinal logic. Now
suppose conversely that A is dual. I shall show that Od(A) is an ordinal formula representing the
ordinal w. For

Pour.r(I,A(m)),1,m) conv P(rr.r(1,2),1,m)
conv 1(m) conv m,
Od(A,m,n) conv Dt(m,n),
i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But
Comp (Od (A) A) conv §(Od (A), Od (A)) conv 2.

This proves the completeness of Comp.

Of course Comp is not the kind of complete ordinal logic that we should really wish to use.
The use of Comp does not make it any easier to see that A is dual. In fact, if we really want to
use an ordinal logic a proof, of completeness for that particular ordinal logic will be of little value;
the ordinals given by the completeness proof will not be ones which can easily be seen intuitively
to be ordinals. The only value in a completeness proof of this kind would be to show that, if any
objection is to be raised against an ordinal logic, it must be on account of something more subtle
than incompleteness.

The theorem of completeness is also unexpected in that the ordinal formulae used are all formu-
lae representing w. This is contrary to our intentions in constructing A p for instance; implicitly we
had in mind large ordinals expressed in a simple manner. Here we have small ordinals expressed in
a very complex and artificial way.

Before trying to solve the problem (b), let us see how far Ap and Apy are invariant. We should
certainly not expect A p to be invariant, since the extent of Ap($2) will depend on whether €2 is con-
vertible to a formula of the form H(A): but suppose that we call an ordinal logic A “C-K invariant
up to o the extent of A(H(A)) is the same as the extent of A(H(B)) whenever A and B are C-K
ordinal formulae representing the same ordinal less than «. How far is Ap C-K invariant? It is not
difficult to see that it is C-K invariant up to any finite ordinal, that is to say up to w. It is also C-K
invariant up to w + 1, as follows from the fact that the extent of

Ap(H(Aufr.u(R)))
is the set-theoretic sum of the extents of
Ap(H(Oufx.R(1))), ApHQGAufx.R(2))),

However, there is no obvious reason for believing that it is C-K invariant up to w + 2, and in fact it
is demonstrable that this is not the case (see the end of this section). Let us find out what happens if
we try to prove that the extent of

Systems of Logic Based on Ordinals 179

Ap(H(Suc (ufru(Ry))))
is the same as the extent of
Ap(H(Suc (Aufx.u(Ry)))),

where Aufx.u(R1) and Aufx.u(Ry) are two C-K ordinal formulae representing w. We should have to
prove that a formula interpretable as a number-theoretic theorem is provable in C[Suc (Aufx.u(Ry))]
if, and only if, it is provable in C[Suc (Aufx.u(R3))]. Now C[Suc (Aufx.u(R1))] is obtained from
C[rufx.u(Ry)] by adjoining all axioms of the form

(3xo0) Proofcpuupe.u®ilxo.f m0o) > 3, O. D

where m is the GR. of §, and C [Suc (Aufx.u(Ry))] is obtained from C[Aufx.u(R>)] by adjoining all
axioms of the form

(EI_X()) PrOOfC[Aufx.u(Rz)][xo,f(’")()] D S (9 2)

The axioms which must be adjoined to P to obtain C[Aufx.u(R1)] are essentially the same as those
which must be adjoined to obtain the system C[Aufx.u(Ry)]: however the rules of procedure which
have to be applied before these axioms can be written down are in general quite different in the two
cases. Consequently (9.1) and (9.2) are quite different axioms, and there is no reason to expect their
consequences to be the same. A proper understanding of this will make our treatment of question
(b) much more intelligible. See also footnote % on page 172.

Now let us turn to Ag. This ordinal logic is invariant. Suppose that 2, ' represent the same
ordinal, and suppose that we have a proof of a number-theoretic theorem G in Pg. The formula
expressing the number-theoretic theorem does not involve any odd types. Now there is a one-one
correspondence between the odd types such that if 2m — 1 corresponds to 2m’ — 1 and 2n—1 to
2n’ — 1 then (m,n) conv 2 implies 2'(m’,n’) conv 2. Let us modify the odd type-subscripts occur-
ring in the proof of G, replacing each by its mate in the one-one correspondence. There results a
proof in Pg/, with the same end formula G. That is to say that if G is provable in Pg it is provable
in Pg’. Ap is invariant.

The question (b) must be answered negatively. Much more can be proved, but we shall first
prove an even weaker result which can be established very quickly, in order to illustrate the method.

I shall prove that an ordinal logic A cannot be invariant and have the property that the extent
of A(R) is a strictly increasing function of the ordinal represented by 2. Suppose that A has these
properties; then we shall obtain a contradiction. Let A be a W.FF. in normal form and without free
variables, and consider the process of carrying out conversions on A(1) until we have shown it
convertible to 2, then converting A(2) to 2, then A(3) and so on: suppose that after r steps we are
still performing the conversion on A(m,). There is a formula Jh such that Jh (A,r) conv m, for each
positive integer . Now let Z be a formula such that, for each positive integer n,Z(n) is an ordinal
formula representing ", and suppose B to be a member of the extent of A(Suc(Lim (Z))) but not
of the extent of A(Lim (Z)). Put

K* — Aa.A(Suc(Lim(Ar.Z(Jh(a,r)))), B);
then K* is a complete logic. For, if A is dual, then
Suc (Lim(Ar.Z(Jh(A,r))))
represents the ordinal w® + 1, and therefore K*(A) conv 2; but, if A(c) is not convertible to 2, then
Suc (Lim(Ar.Z(Jh(A,r))))

represents an ordinal not exceeding w® + 1, and K*(A) is therefore not convertible to 2. Since there
are no complete logic formulae, this proves our assertion.

We may now prove more powerful results.

180 Part 1

Incompleteness theorems.

(A) If an ordinal logic A is invariant up to an ordinal ¢, then for any ordinal formula €2 representing
an ordinal 8, B < «, the extent of A () is contained in the (set-theoretic) sum of the extents
of the logics A (P), where P is finite.

(B) If an ordinal logic A is C-K invariant up to an ordinal «, then for any C-K ordinal formula A
representing an ordinal 8, B < «, the extent of A(H(A)) is contained in the (set-theoretic) sum
of the extents of the logics A (H(F)), where F is a C-K ordinal formula representing an ordinal

less than w?.

Proof of (A). It is sufficient to prove that, if € represents an ordinal y,w <y < «, then the
extent of A () is contained in the set-theoretic sum of the extents of the logics A ('), where '
represents an ordinal less than y. The ordinal y must be of the form yy + p, where p is finite and
represented by P say, and yy is not the successor of any ordinal and is not less than w. There are
two cases to consider; ygp = w and yp > 2w. In each of them we shall obtain a contradiction from the
assumption that there is a W.E.F. B such that A(£2, B) conv 2 whenever 2 represents y, but is not
convertible to 2 if € represents a smaller ordinal. Let us take first the case yp > 2w. Suppose that
Y0 = @ + y1, and that €1 is an ordinal formula representing y;. Let A be any W.F.F. with a normal
form and no free variables, and let Z be the class of those positive integers which are exceeded by
all integers n for which A(n) is not convertible to 2. Let E be the class of integers 2p such that
2(p,n) conv 2 for some n belonging to Z. The class E, together with the class Q of all odd integers,
is constructively enumerable. It is evident that the class can be enumerated with repetitions, and
since it is infinite the required enumeration can be obtained by striking out the repetitions. There is,
therefore, a formula En such that En (2, A,r) runs through the formulae of the class E + Q without
repetitions as r runs through the positive integers. We define

Rt — Awamn. Sum (Dt w, En (w,a,m),En(w,a,n)).

Then Rt (1,A) is an ordinal formula which represents jp if A is dual, but a smaller ordinal
otherwise. In fact

Rt (221,A,m,n) conv {Sum (Dt, £;)}(En(21,A,m), En (21,A,n)).
Now, if A is dual, E + Q includes all integers m for which
{Sum (Dt, £1)} (m,m) conv 3.

(This depends on the particular form that we have chosen for the formula Sum.) Putting
“En (1,A,p) conv q” for M(p,q), we see that condition (7. 4) is satisfied, so that Rt (21,A) is
an ordinal formula representing yo. But, if A is not dual, the set E + Q consists of all integers m for
which

{Sum (Dt, £1)} (m,r) conv 2,

where r depends only on A. In this case Rt (£21,A) is an ordinal formula representing the same
ordinal as Inf(Sum (Dt, 1), r), and this is smaller than yy. Now consider K:

K — Aa.A(Sum(Rt(21,A),P),B). ©.1)

If A is dual, K(A) is convertible to 2 since Sum (Rt (£21,A),P) represents y. But, if A is not dual,
it is not convertible to 2, since Sum (Rt (21,A),P) then represents an ordinal smaller than y. In K
we therefore have a complete logic formula, which is impossible.

Now we take the case yp = w. We introduce a W.E.F. Mg such that if n is the D.N. of a computing
machine M , and if by the m-th complete configuration of M the figure 0 has been printed, then
Mg (n,m) is convertible to Apq. Al (4(P,2p +2q),3,4) (which is an ordinal formula representing

Systems of Logic Based on Ordinals 181

the ordinal 1, but if 0 has not been printed it is convertible to Apq.p(q,1,4) (which represents 0).
Now consider

M — An.A(Sum (Lim Mg(n)), P), B).

If the machine never prints 0, then Lim (Ar. Mg(n, r)) represents w and Sum (Lim (Mg(n)), P)
represents y. This means that M(n) is convertible to 2. If, however, never prints 0,
Sum(Lim(Mg(n)),P) represents a finite ordinal and M(n) is not convertible to 2. In M we there-
fore have means of determining about a machine whether it ever prints 0, which is impossible’
(Turing[1], §8). This completes the proof of (A).

Proof of (B). It is sufficient to prove that, if C represents an ordinal y, w? < y < «, then the
extent of A(H(C)) is included in the set-theoretic sum of the extents of A (H(G)), where G repre-
sents an ordinal less than y. We obtain a contradiction from the assumption that there is a formula B
which is in the extent of A(H(G)) if G represents y, but not if it represents any smaller ordinal. The
ordinal y is of the form 8§ 4+ w? 4+ &, where & < w?. Let D be a C-K ordinal formula representing &
and Aufx - Q(u,f,A(u,f,x)) one representing « 4+ £ whenever A represents .

We now define a formula Hg. Suppose that A is a W.EF. in normal form and without free
variables; consider the process of carrying out conversions on A(l) until it is brought into the form
2, then converting A(2) to 2, then A(3), and so on. Suppose that at the r-th step of this process we are
doing the n,-th step in the conversion of A(m,). Thus, for instance, if A is not convertible to 2, m,
can never exceed 3. Then Hg(A,r) is to be convertible to Af - f(my,n;) for each positive integer 7.
Put

Sq— Admn.n(Suc, m(kaufxou()»yoy(Suc,a(u,f,x))), d(u,f,x))),

M — Aaufx - Q(u,f,u(ky . Hg(a,y,Sq(D)))),
K| — 1a-A(M(a), B),

then I say that K; is a complete logic formula. Sq (D,m,n) is a C-K ordinal formula representing
8 + mw + n, and therefore Hg(A,r, Sq (D)) represents an ordinal ¢, which increases steadily with
increasing r, and tends to the limit § + w? if A is dual. Further

Hg(A,r,Sq(D)) < Hg(A,S(r),Sq(D))

for each positive integer r. therefore Aufx-u(ry. Hg (A,y, Sq (D))) is a C-K ordinal formula
and represents the limit of the sequence {1, &2, ¢3, This is § + @? if A is dual, but a smaller
ordinal otherwise. Likewise M(A) represents y if A is dual, but is a smaller ordinal otherwise.
The formula B therefore belongs to the extent of A(H(M(A))) if and only if A is dual, and this
implies that Kj is a complete logic formula, as was asserted. But this is impossible and we have the
requiredcontradiction.

As acorollary to (A) we see that Ay is incomplete and in fact that the extent of Ay (Dt) contains
the extent of Ay (f2) for any ordinal formula . This result, suggested to me first by the solution
of question (b), may also be obtained more directly. In fact, if a number-theoretic theorem can be
proved in any particular Pg, it can also be proved in Pj.m(n,1,4). The formulae describing number-
theoretic theorems in P do not involve more than a finite number of types, type 3 being the highest
necessary. The formulae describing the number-theoretic theorems in any Pg will be obtained by
doubling the type subscripts. Now suppose that we have a proof of a number-theoretic theorem G in

T This part of the argument can equally well be based on the impossibility of determining about two W.F.F. whether they
are interconvertible. (Church [3], 363.)

182 Part 1

Pgq and that the types occurring in the proof are among 0, 2, 4, 6, 1, f2, 13, We may suppose that
they have been arranged with all the even types preceding all the odd types, the even types in order
of magnitude and the type 2m — 1 preceding 2n — 1 if (m,n) conv 2. Now let each ¢, be replaced
by 10 4 2r throughout the proof of G. We thus obtain a proof of G in Pj . (n,1,4)-

As with problem (a), the solution of problem (b) does not require the use of high ordinals [e.g.
if we make the assumption that the extent of A(f2) is a steadily increasing function of the ordinal
represented by £ we do not have to consider ordinals higher than w + 2]. However, if we restrict
what we are to call ordinal formulae in some way, we shall have corresponding modified problems
(a) and (b), the solutions will presumably be essentially the same, but will involve higher ordinals.
Suppose, for example, that Prod is a W.EF. with the property that Prod (£21,€2,) is an ordinal
formula representing «jorp when 1, €2, are ordinal formulae representing o1,y respectively, and
suppose that we call a W.EF. a I-ordinal formula when it is convertible to the form Sum (Prod(€2,
Dt), P), where ,P are ordinal formulae of which P represents a finite ordinal. We may define 1-
ordinal logics, 1-completeness and I-invariance in an obvious way, and obtain a solution of problem
(b) which differs from the solution in the ordinary case in that the ordinals less than to w? take
the place of the finite ordinals. More generally the cases that I have in mind are covered by the
following theorem.

Suppose that we have a class V of formulae representing ordinals in some manner which we do
not propose to specify definitely, and a subset” U of the class V such that:

(i) There is a formula ® such that if T enumerates a sequence of members of U representing an
increasing sequence of ordinals, then ®(T) is a member of U representing the limit of the
sequence.

(i1) There is a formula E such that E(m,n) is a member of U for each pair of positive integers m,n
and if it represents €, ,, then €,,,, < €,y v if eitherm <m' orm=m',n <n'.

(iii) There is a formula G such that, if A is a member of U, then G(A) is a member of U representing
a larger ordinal than does A, and such that G(E(m,n)) always represents an ordinal not larger
than €, 1.

We define a V-ordinal logic to be a W.EF. A such that A(A) is a logic whenever A belongs to
V. A is V-invariant if the extent of A(A) depends only on the ordinal represented by A. Then it is
not possible for a V-ordinal logic A to be V-invariant and have the property that, if C; represents a
greater ordinal than C; (C; and C; both being members of U), then the extent of A(C1) is greater
than the extent of A(Cy).

We suppose the contrary. Let B be a formula belonging to the extent of A ((® (Ar-E(r,1)))) but
not to the extent of A (® (Ar-E(r,1))), and let K' — Aa.A (G (® (Ar-Hg(a,r,E))),B).

Then K’ is a complete logic. For

Hg (A,r,E) conv E(m;,n;).

E(m,n;) is a sequence of V-ordinal formulae representing an increasing sequence of ordinals.
Their limit is represented by ®(Ar. Hg (A,r,E)); let us see what this limit is. First suppose that A
is dual: then m, tends to infinity as r tends to infinity, and ®(Ar. Hg (A,r,E)) therefore represents
the same ordinal as ® (Ar.E(r,1)). In this case we must have

K'(A) conv 2.

Now suppose that A is not dual: m, is eventually equal to some constant number, a say, and ®(Ar.
Hg (A, r,E)) represents the same ordinal as ® (Ar.E(a,r)), which is smaller than that represented by

¥ The subset U wholly supersedes V in what follows. The introduction of V serves to emphasise the fact that the set of
ordinals represented by member of U may have gaps.

Systems of Logic Based on Ordinals 183

®(Ar.E(r,1)).B cannot therefore belong to the extent of A (G (® (Ar-Hg(A,r,E)))), and K'(A) is
not convertible to 2. We have proved that K’ is a complete logic, which is impossible.

This theorem can no doubt be improved in many ways. However, it is sufficiently general to
show that, with almost any reasonable notation for ordinals, completeness is in compatible with
invariance.

We can still give a certain meaning to the classification into depths with highly restricted kinds
of ordinals. Suppose that we take a particular ordinal logic A and a particular ordinal formula ¥
representing the ordinal « say (preferably a large one), and that we restrict ourselves to ordinal
formulae of the form Inf(W¥,a). We then have a classification into depths, but the extents of all the
logics which we so obtain are contained in the extent of a single logic.

We now attempt a problem of a rather different character, that of the completeness of Ap. Itis to
be expected that this ordinal logic is complete. I cannot at present give a proof of this, but I can give
a proof that it is complete as regards a simpler type of theorem than the number-theoretic theorems,
viz. those of form “@(x) vanishes identically”, where 6(x) is primitive recursive. The proof will
have to be much abbreviated since we do not wish to go into the formal details of the system P.
Also there is a certain lack of definiteness in the problem as at present stated, owing to the fact
that the formulae G, E, Mp were not completely defined. Our attitude here is that it is open to the
sceptical reader to give detailed definitions for these formulae and then verify that the remaining
details of the proof can be filled in, using his definition. It is not asserted that these details can be
filled in whatever be the definitions of G, E, Mp consistent with the properties already required of
them, only that they can be filled in with the more natural definitions.

I shall prove the completeness theorem in the following form. If B[xg] is a recursion formula and
if B[0],B[f0],... are all provable in P, then there is a C-K ordinal formula A such that (x¢)2B[xo]
is provable in the system PA of logic obtained from P by adjoining as axioms all formulae whose
GR.’s are of the form

A(Amn -m(w (2,n),@w (3,n)),K,Mp,r)
(provided they represent propositions).

First let us define the formula A. Suppose that D is a W.E.F. with the property that D(n) conv 2 if
%[f(”’])O] is provable in P, but D(n) conv 1 if ~ %[f(”’l)O] is provable in P (P is being assumed
consistent). Let ® be defined by

O — {Mu-u(v(iv,u)} Avuu@(v,u))),

and let Vi be a formula with the properties

Vi (2) conv Au.u(Suc, U),
Vi (1) conv Au.u(l,®(Suc)).

The existence of such a formula is established in Kleene [1], corollary on p. 220. Now put

A* — dufeu(ry.Vi(D(y),y,u,f,x)),
A — Suc(A™).

I assert that A*, A are C-K ordinal formulae whenever it is true that B[0],B[f0],... are all provable
in P. For in this case A* is Aufx - u(R), where

R — Ay.ViD®©),y,u,f,x),

184 Part 1

and then
Aufx.R(mn) conv Aufx. Vi (D(n),n,u,f,x)
conv Aufx. Vi (2,n,u,f,x)
conv Aufx.{An.n (Suc, U) }(n,u,f,x)
conv Aufx.n(Suc, U,u,f,x), which is a C-K ordinal formula,
and
Aufx.S(m,Suc, U,u,f,x) conv Suc (Aufx-n(Suc,U,u,f,x)).

These relations hold for an arbitrary positive integer n and therefore A* is a C-K ordinal formula
[condition (9) p. 164]: it follows immediately that A is also a C-K ordinal formula. It remains to
prove that (xg)®B[xo] is provable in PA. To do this it is necessary to examine the structure of A* in
the case in which (xp)®B[xo] is false. Let us suppose that ~ %V(“’I)O] is true, so that D(a) conv 1,
and let us consider B where

B — Aufx-Vi(D(a),a,u,f,x).
If A* was a C-K ordinal formula, then B would be a member of its fundamental sequence; but

B conv Aufx- Vi(l,a,u,f,x)
conv Aufx - {Au.u(I,®(Suc))} (a,u,f,x)
conv Aufx - ®(Suc, u,f,x)
conv Aufx - {Au - u(® w))} (Suc,u,f,x)
conv Aufx - Suc(®(Suc),u,f,x)
conv Suc(Aufx - ®(Suc,u,f,x))
conv Suc(B) 9.3)

This, of course, implies that B < B and therefore that B is no C-K ordinal formula. This, although
fundamental in the possibility of proving our completeness theorem, does not form an actual step in
the argument. Roughly speaking, our argument amounts to this. The relation (9.3) implies that the
system PB is inconsistent and therefore that PA" is inconsistent and indeed we can prove in P (and
a fortiori in PA) that ~ (x0)®B[xo] implies the inconsistency of PA”. On the other hand in PA we
can prove the consistency of PA" . The inconsistency of PP is proved by the Godel argument. Let us
return to the details.
The axioms in PP are those whose G.R.’s are of the form

B(Amn.m(w(Z,n),w(S,n)),K,M ,r).
When we replace B, by Suc (B), this becomes
Suc (B, \mn.m(w (2,n),@w (3,n)),K,Mp,r)
conv K(B (Amn -m(w (2,n),w (3,n)),K,Mp,r))
conv B(Amn.m(m (2,n),@ (3,n)),K,Mp,p)
ifrconv2p+1,
conv E B(mn.m(w (2,n),w (3,n)),K,Mp),p)

if r conv 2p.

Systems of Logic Based on Ordinals 185

When we remember the essential property of the formula E, we see that the axioms of PP include
all formulae of the form

(3x0)Proofps [x0,f?0] D G,

where ¢ is the GR. of the formula §.
Let b be the G.R. of the formula 2.

~ (Ixo) (Fyo) {Proofps [x0, y0].Sb[z0, 20, Y01} (20

Sb [x0,0,z0] is a particular recursion formula such that Sb [f(l)O, f m, f 0] holds if and only if n
is the G.R. of the result of substituting £ 0 for zq in the formula whose G.R. is [at all points where
70 is free. Let p be the GR. of the formula €.

~ (3x0) Gyo){Proofps [xo, yol - S 0.0, o). ©
Then we have as an axiom in P
(3x0)Proofps [xof 0] D €,
and we can prove in PA
(0){Sb[F*0,£0,x0] = xo =0}, 9:4)
since € is the result of substituting)0 for zo in 2; hence
~ (3yo)Proofps [yo,f 0] 9.5)

is provable in P. Using (9.4) again, we see that ¢ can be proved in PB. But, if we can prove ¢ in PB
then we can prove its provability in PB, the proof being in P; i.e. we can prove

(3x0) Proofps [xo,f P0]
in P (since p is the GR. of €). But this contradicts (9.5), so that, if
~ B[=Do]

is true, we can prove a contradiction in PP or in PA”. Now I assert that the whole argument up to
this point can be carried through formally in the system P, in fact, that,if c is the GR. of ~ (0 =0),
then

~ (x0)B[x0) D (Ivg) Proofpas [vo,f 0] (9.6)

is provable in P. I shall not attempt to give any more detailed proof of this assertion.
The formula

(Fx0)Proofpa [xo,f 0] D~ (0 = 0) 9.7)

is an axiom in PA. Combining (9.6), (9.7) we obtain (xq)B[xo] in PA.

The completeness theorem as usual is of no value. Although it shows, for instance, that is pos-
sible to prove Fermat’s last theorem with Ap (if it is true) yet the truth of the theorem would really
be assumed by taking a certain formula as an ordinal formula.

That Ap is not invariant may be proved easily by our general theorem; alternatively it follows
from the fact that, in proving our partial completeness theorem, we never used ordinals higher than
w + 1. This fact can also be used to prove that A p is not C-K invariant up to w + 2.

186 Part 1

10. The continuum hypothesis. A digression.

The methods of §9 may be applied to problems which are constructive analogues of the continuum
hypothesis problem. The continuum hypothesis asserts that 280 = Ry, in other words that, if w;
is the smallest ordinal « greater than w such that a series with order type « cannot be put into
one-one correspondence with the positive integers, then the ordinals less than w; can be put into
one-one correspondence with the subsets of the positive integers. To obtain a constructive analogue
of this proposition we may replace the ordinals less than w; either by the ordinal formulae, or by
the ordinals represented by them; we may replace the subsets of the positive integers either by
the computable sequences of figures 0,1, or by the description numbers of the machines which
compute these sequences. In the manner in which the correspondence is to be set up there is also
more than one possibility. Thus, even when we use only one kind of ordinal formula, there is still
great ambiguity concerning what the constructive analogue of the continuum hypothesis should be.
I shall prove a single result in this connection’. A number of others may be proved in the same way.

We ask “Is it possible to find a computable function of ordinal formulae determining a one-one
correspondence between the ordinals represented by ordinal formulae and the computable sequences
of figures 0,1?” More accurately, “Is there a formula F such that if € is an ordinal formula and n
a positive integer then F(2,n) is convertible to 1 or to 2, and such that F(£,n) conv F(',n) for
each positive integer n, if and only if £ and &' represent the same ordinal ?” The answer is “No”,
as will be seen to be a consequence of the following argument: there is no formula F such that
F(f2) enumerates one sequence of integers (each being 1 or 2) when 2 represents @ and enumerates
another sequence when €2 represents 0. If there is such an F, then there is an a such that F(£2,a)
conv (Dt, a) if 2 represents w but F(2,a) and F(Dt, a) are convertible to different integers (1 or
2) if @ represents 0. To obtain a contradiction from this we introduce a W.E.F. Gm not unlike Mg.
If the machine. M whose D.N. is n has printed 0 by the time the m-th complete configuration is
reached then

Gm (n,m) conv Amn.m(n,1,4);

otherwise Gm (n,m) conv Apq.Al (4(P,2p +2q),3,4). Now consider F(Dt,a) and F(Lim(Gm
(m)),a). If. M never prints 0, Lim(Gm(n)) represents the ordinal w. Otherwise it represents 0.
Consequently these two formulae are convertible to one another if and only M never prints 0. This
gives us a means of determining about any machine whether it ever prints 0, which is impossible.
Results of this kind have of course no real relevance for the classical continuum hypothesis.

11. The purpose of ordinal logics.

Mathematical reasoning may be regarded rather schematically as the exercise of a combination of
two faculties”, which we may call intuition and ingenuity. The activity of the intuition consists in
making spontaneous judgments which are not the result of conscious trains of reasoning. These
judgments are often but by no means invariably correct (leaving aside the the question what is
meant by “correct”). Often it is possible to find some other way of verifying the correctness of an
intuitive judgment. We may, for instance, judge that all positive integers are uniquely factorizable
into primes; a detailed mathematical argument leads to the same result. This argument will also
involve intuitive judgments, but they will be less open to criticism than the original judgment about
factorization. I shall not attempt to explain this idea of “intuition” any more explicitly.

A suggestion to consider this problem came to me indirectly from F. Bernstein. A related problem was suggested by P.
Bernays.

¥ We are leaving out of account that most important faculty which distinguishes topics of interest from others; in fact,
we are regarding the function of the mathematician as simply to determine the truth or falsity of propositions.

Systems of Logic Based on Ordinals 187

The exercise of ingenuity in mathematics consists in aiding the intuition through suitable
arrangements of propositions, and perhaps geometrical figures or drawings. It is intended that when
these are really well arranged the validity of the intuitive steps which are required cannot seriously
be doubted.

The parts played by these two faculties differ of course from occasion to occasion, and from
mathematician to mathematician. This arbitrariness can be removed by the introduction of a formal
logic. The necessity for using the intuition is then greatly reduced by setting down formal rules for
carrying out inferences which are always intuitively valid. When working with a formal logic, the
idea of ingenuity takes a more definite shape. In general a formal logic, will be framed so as to admit
a considerable variety of possible steps in any stage in a proof. Ingenuity will then determine which
steps are the more profitable for the purpose of proving a particular proposition. In pre-Godel times
it was thought by some that it would probably be possible to carry this programme to such a point
that all the intuitive judgments of mathematics could be replaced by a finite number of these rules.
The necessity for intuition would then be entirely eliminated.

In our discussions, however, we have gone to the opposite extreme and eliminated not intuition
but ingenuity, and this in spite of the fact that our aim has been in much the same direction. We have
been trying to see how far it is possible to eliminate intuition, and leave only ingenuity. We do not
mind how much ingenuity is required, and therefore assume it to be available in unlimited supply.
In our metamathematical discussions we actually express this assumption rather differently. We are
always able to obtain from the rules of a formal logic a method of enumerating the propositions
proved by its means. We then imagine that all proofs take the form of a search through this enumer-
ation for the theorem for which a proof is desired. In this way ingenuity is replaced by patience. In
these heuristic discussions, however, it is better not to make this reduction.

In consequence of the impossibility of finding a formal logic which wholly eliminates the neces-
sity of using intuition, we naturally turn to “non-constructive” systems of logic with which not all
the steps in a proof are mechanical, some being intuitive. An example of a non-constructive logic
is afforded by any ordinal logic. When we have an ordinal logic, we are in a position to prove
number-theoretic theorems by the intuitive steps of recognizing formulae as ordinal formulae, and
the mechanical steps of carrying out conversions. What properties do we desire a non-constructive
logic to have if we are to make use of it for the expression of mathematical proofs? We want it to
show quite clearly when a step makes use of intuition, and when it is purely formal. The strain put
on the intuition should be a minimum. Most important of all, it must be beyond all reasonable doubt
that the logic leads to correct results whenever the intuitive steps are correct’. It is also desirable
that the logic shall be adequate for the expression of number-theoretic theorems "in order that it may
be used in metamathematical discussions (cf. §5).

Of the particular ordinal logics that we have discussed, Ay and Ap certainly will not satisfy
us. In the case of Ay we are in no better position than with a constructive logic. In the case of Ap
(and for that matter also Ay) we are by no means certain that we shall never obtained any but true
results, because we do not know whether all the number-theoretic theorems provable in the system
P are true. To take Ap as a fundamental non-constructive logic for metamathematical arguments
would be most unsound. There remains the system of Church which is free from these objections. It
is probably complete (although this would not necessarily mean much) and it is beyond reasonable
doubt that it always leads to correct results® . In the next section I propose to describe another ordinal

¥ This requirement is very vague. It is not of course intended that the criterion of the correctness of the intuitive steps
be the correctness of the final result. The meaning becomes clearer if each intuitive step is regarded as a judgment that a
particular proposition is true. In the case of an ordinal logic it is always a judgment that a formula is an ordinal formula,
and this is equivalent to judging that a number-theoretic proposition is true. In this case then the requirement is that the
reputed ordinal logic is an ordinal logic.

¥ This ordinal logic arises from a certain system Cp in essentially the same way as Ap arose from P. By an argument
similar to one occurring in §8 we can show that the ordinal logic leads to correct results if and only if Cy is valid; the
validity of Cy is proved in Church [1], making use of the results of Church and Rosser [1].

188 Part 1

logic, of a very different type, which is suggested by the work of Gentzen and which should also be
adequate for the formalization of number-theoretic theorems. In particular it should be suitable for
proofs of metamathematical theorems (cf. §5).

12. Gentzen type ordinal logics.

In proving the consistency of a certain system of formal logic Gentzen (Gentzen [1]) has made
use of the principle of transfinite induction for ordinals less than €(, and has suggested that it is to
be expected that transfinite induction carried sufficiently far would suffice to solve all problems of
consistency. Another suggestion of basing systems of logic on transfinite induction has been made
by Zermelo (Zermelo [1]). In this section I propose to show how this method of proof may be put
into the form of a formal (non-constructive) logic, and afterwards to obtain from it an ordinal logic.

We can express the Gentzen method of proof formally in this way. Let us take the system P
and adjoin to it an axiom 2g with the intuitive meaning that the W.EF. € is an ordinal formula,
whenever we feel certain that € is an ordinal formula. This is a non-constructive system of logic
which may easily be put into the form of an ordinal logic. By the method of §6 we make correspond
to the system of logic consisting of P with the axiom 2lg adjoined a logic formula Lg : Lg is an
effectively calculable function of €2, and there is therefore a formula A ;1 such that A 51 (2) conv Lg
for each formula €2. A1 is certainly not an ordinal logic unless P is valid, and therefore consistent.
This formalization of Gentzen’s idea would therefore not be applicable for the problem with which
Gentzen himself was concerned, for he was proving the consistency of a system weaker than P.
However, there are other ways in which the Gentzen method of proof can be formalized. I shall
explain one, beginning by describing a certain logical calculus.

The symbols of the calculus are f, x, 11,0,S,R,T,AE, [,0,!,(,),=, and the comma “,”. For
clarity we shall use various sizes of brackets (,) in the following. We use capital German letters to
stand for variable or undetermined sequences of these symbols.

It is to be understood that the relations that we are about to define hold only when compelled to
do so by the conditions that we lay down. The conditions should be taken together as a simultaneous
inductive definition of all the relations involved.

Suffixes.
1 a suffix. If & a suffix then & is a suffix.

Indices.
! is an index. If ¥ is an index then I is an index.

Numerical variables.
If & is a suffix then x& is a numerical variable.

Functional variables.
If & is a suffix and J is an index, then f&J a functional variable of index J.

Arguments.
(,) is an argument of index U If () is an argument of index J and ¥ is a term, then (A%,) is

an argument of index J 1

Numerals.

0 is a numeral.

If 91 is a numeral, then S(, 91,) is a numeral.

In metamathematical statements we shall denote the numeral in which S occurs r times by
50(,0,).

Systems of Logic Based on Ordinals 189

Expressions of a given index.

A functional variable of index J is an expression of index J.

R, S are expressions of index ', ! respectively.

If 91 is a numeral, then it is also an expression of index 1

Suppose that & is an expression of index J, $ one of index 3! and £ one of index J!!; then
(') and (A®) are expressions of index J, while (E®) and (&]9) and (& © &) and (&!5!K) are
expressions of index J!.

Function constants.
An expression of index J in which no functional variable occurs is a function constant of
index J. If in addition R does not occur, the expression is called a primitive function constant.

Terms.
0 is a term.
Every numerical variable is a term.
If & an expression of index J and 2l is an argument of index J, then &(A) is a term.

Equations.
If T and ¥’ are terms, then T = ¥’ is an equation.

Provable equations.
We define what is meant by the provable equations relative to a given set of equations as
axioms.

(a) The provable equations include all the axioms. The axioms are of the form of equations in
which the symbols I', A, E, |, ®, ! do not appear.

(b) If & is an expression of index J 1T and (2) is an argument of index J, then

T'6)(Gxy,x11,) = G(Axq1,x1,)

is a provable equation.

(c) If & is an expression of index J 1 and (20) an argument of index J, then
(AG)(RAxy,) = 6(,x12)

is a provable equation.

(d) If & is an expression of index J, and (%) is an argument of index J, then
(E6)(RUx1,) = &)

is a provable equation.

(e) If & is an expression of index J and $ is one of index J 1, and (2() is an argument of index J
then

(B]9)) = HERASG),)

is a provable equation.
(f) If 7N is an expression of index I thenM(,) =Nisa provable equation.

(g) If & is an expression of index J and & one of index 11 and () an argument of index J 1
then

(GO KRR, =6
and (& 0 R)RAS(x1,),) = AQAx1,5(x1,), (& © B) (Ax1,),)

190

(h)
®

@

k)

Part 1

are provable equations. If in addition § is an expression of index J' and
R(,&AS(,x1,),),x1,) =0
is provable, then
(B!R!9H)(R0,) =6
and

(BRI H)(RAS(x1),)
= R(AHES(x1,),), SGx1), (BRI H) AHAS(x1).),),)

are provable.

If €= and Y =4 are provable, where ¥, ¥, 4 and Y are terms, then 4’ = 4 and the
result of substituting $’ for 4 at any particular occurrence in T = ¥’ are provable equations.

The result of substituting any term for a particular numerical variable throughout a provable
equation is provable.

Suppose that &, &’ are expressions of index J', that () is an argument of index J not
containing the numerical variable X and that &(2(0,) = &'(210,) is provable. Also suppose
that, if we add

B(RAX,) = &' (AX,)
to the axioms and restrict (i) so that it can never be applied to the numerical variable %, then
BARIS(X,),) = &' (AS(,X),)

becomes a provable equation; in the hypothetical proof of this equation this rule (j) itself
may be used provided that a different variable is chosen to take the part of X.
Under these conditions & (AX,) = &’ (2X, a provable equation.

Suppose that &, &', § are expressions of index J 1 that (2) is an argument of index J not
containing the numerical variable X and that

B(R10,) = &' (0,) and R(, H(AS(,X,),),S(X),) =0
are provable equations. Suppose also that, if we add
BRAHAAS(X,),)) = &' AHAAS(X,),))
to the axioms, and again restrict (i) so that it does not apply to X, then
BRAX,) =6 (AX,) (12. 1)

becomes a provable equation; in the hypothetical proof of (12.1) the rule (k) may be used if
a different variable takes the part of X.

Under these conditions (12.1) is a provable equation.

We have now completed the definition of a provable equation relative a given set of
axioms. Next we shall show how to obtain an ordinal logic from this calculus. The first step
is to set up a correspondence between some of the equations and number-theoretic theorems,
in other words to show how they can be interpreted as number-theoretic theorems.

Systems of Logic Based on Ordinals 191

Let ® be a primitive function constant of index !''. & describes a certain primitive
recursive function ¢ (m,n), determined by the condition that, for all natural numbers m, n,
the equation

&(,5™(,0,),57(,0,),) = @™ (0,)

is provable without using the axioms (a). Suppose also that §) is an expression of index J.
Then to the equation

6(’)(195(’)61’)7) - O

we make correspond the number-theoretic theorem which asserts that for each natural num-
ber m there is a natural number n such that ¢ (m,n) = 0. (The circumstance that there is
more than one equation to represent each number-theoretic theorem could be avoided by a
trivial but inconvenient modification of the calculus.)

Now let us suppose that some definite method is chosen for describing the sets of axioms
by means of positive integers, the null set of axioms being described by the integer 1. By
an argument used in §6 there is a W.EF. ¥ such that, if r the integer describing a set A
of axioms, then X (r) is a logic formula enabling us to prove just those number-theoretic
theorems which are associated with equations provable with the above described calculus,
the axioms being those described by the number r.

I explain two ways in which the construction of the ordinal logic may be completed.

In the first method we make use of the theory of general recursive functions (Kleene [2]).
Let us consider all equations of the form

R(,S"(,0,),5"(,0,),) = S?(,0,) (12.2)

which are obtainable from the axioms by the use of rules (%), (i). It is a consequence of the
theorem of equivalence of A-definable and general recursive functions (Kleene [3]) that, if
r(m,n) is any A-definable function of two variables, then we can choose the axioms so that
(12.2) with p = r(m,n) is obtainable in this way for each pair of natural numbers m,n, and
no equation of the form

$™(,0,) =5"(0,) (m#n) (12.3)
is obtainable. In particular, this is the case if r(m,n) is defined by the condition that

Q(m,n) conv S(p) implies p = r(m,n),
r(O,n)=1, all n>0 r(0,0)=2,

where 2 is an original formula. There is a method for obtaining the axioms given the
ordinal formula, and consequently a formula Rec such that, for any ordinal formula €2,
Rec () conv m, where m is the integer describing the set of axioms corresponding to €2.
Then the formula

Az — Aw. X (Rec(w))

is an ordinal logic. Let us leave the proof of this aside for the present.

Our second ordinal logic is to be constructed by a method not unlike the one which
we used in constructing Ap. We begin by assigning ordinal formulae to all sets of axioms
satisfying certain conditions. For this purpose we again consider that part of the calculus
which is obtained by restricting “expressions” to be functional variables or R or S and
restricting the meaning of “term” accordingly; the new provable equations are given by
conditions (a), (h), (i), together with an extra condition (/).

192 Part 1

(1) The equation
R(,0,5(x1,),) =0
is provable.

We could design a machine which would obtain all equations of the form (12.2), with m # n,
provable in this sense, and all of the form (12.3), except that it would cease to obtain any more equa-
tions when it had once obtained one of the latter “contradictory” equations. From the description of
the machine we obtain a formula € such that

Q(m,n) conv2 if R(,5"D(0,),5"7D(0,),)=0
is obtained by the machine,

Q@m,n) conv 1 if R(,$"Y(0,),5"1D(0,),)=0
is obtained by the machine, and
Q(m,m) conv 3 always.

The formula 2 is an effectively calculable function of the set of axioms, and therefore also of m:
consequently there is a formula M such that M(m) conv £ when m describes the set of axioms.
Now let Cm be a formula such that, if b is the G.R. of a formula M(m), then Cm (b) conv m, but
otherwise Cm (b) conv 1. Let

Ag — Awa.l (An.2(Cm(Tn(w,n)),a).

Then A53(£2,A) conv 2 if and only if £ conv M(m), where m describes a set of axioms which,
taken with our calculus, suffices to prove the equation which is, roughly speaking, equivalent to
“A is dual”. To prove that A3 is an ordinal logic, it is sufficient to prove that the calculus with
the axioms described by m proves only true number-theoretic theorems when 2 is an ordinal for-
mula. This condition on m may also be expressed in this way. Let us put m < n if we can prove
R(,5"(,0,),5"(,0,)) = 0 with (a), (h), (i), (I): the condition is that m < n is a well-ordering of the
natural numbers and that no contradictory equation (12.3) is provable with the same rules (a), (h),
(1), (I). Let us say that such a set of axioms is admissible. A3 is an ordinal logic if the calculus
leads to none but true number-theoretic theorems when an admissible set of axioms is used.

In the case of A2, Rec (R2) describes an admissible set of axioms whenever €2 is an ordinal
formula. A therefore is an ordinal logic if the calculus leads to correct results when admissible
axioms are used.

To prove that admissible axioms have the required property, I do not attempt to do more than
show how interpretations can be given to the equations of the calculus so that the rules of inference
(a) — (k) become intuitively valid methods of deduction, and so that the interpretation agrees with
our convention regarding number-theoretic theorems.

Each expression is the name of a function, which may be only partially defined. The expression
S corresponds simply to the successor function. If & is either R or a functional variable and has p + 1
symbols in its index, then it corresponds to a function g of p natural numbers defined as follows. If

&(,S"(,0,), S72(,0,),...,57(,0,),) = 5P(,0,)

is provable by the use of (a), (h), (i), (1) only, then g(r1,72,...,7p) has the value p. It may not be
defined for all arguments, but its value is always unique, for otherwise we could prove a “contra-
dictory” equation and M(m) would then not be an ordinal formula. The functions corresponding

Systems of Logic Based on Ordinals 193

to the other expressions are essentially defined by (b) — (f). For example, if g is the function
corresponding to & and g that corresponding to (I'®), then

§rir,. .. rplim) =g(ri,ra, ... ,rp,m,0).

The values of the functions are clearly unique (when defined at all) if given by one of (b) — (e).
The case (f) is less obvious since the function defined appears also in the definiens. I do not treat
the case of (& © R), since this is the well-known definition by primitive recursion, but I shall show
that the values of the function corresponding to (&!£!$) are unique. Without loss of generality
we may suppose that () in (f) is of index !. We have then to show that, if 4(m) is the function
corresponding to $) and r(m,n) that corresponding to R, and k(u,v,w) is a given function and a a
given natural number, then the equations

1(0) =a, (@)
Im+1) =k(h(m+1),m+ 1,1(h(m+1))) (B)

do not ever assign two different values for the function /(m). Consider those values of r for which
we obtain more than one value of /(r), and suppose that there is at least one such. Clearly O is
not one, for /(0) can be defined only by (a). Since the relation « is a well ordering, there is an
integer rqy such that ro > 0,/(rp) is not unique, and if s # r¢ and I(s) is not unique then ry < 5. We
may put s = h(ryp), for, if I(h(rg)) were unique, then I(rg), defined by (8), would be unique. But
r(h(rg),ro) =0 i.e. s < ro. There is, therefore, no integer r for which we obtain more than one
value for the function /(7).

Our interpretation of expressions as functions gives us animmediate interpretation for equations
with no numerical variables. In general we interpret an equation with numerical variables as the
(infinite) conjunction of all equations obtainable by replacing the variables by numerals. With this
interpretation (k), (i) are seen to be valid methods of proof. In (j) the provability of

QS(Q'[S(?-XI?)’) = 6/(9(5(’)“7)’)

when &(0x1,) = &' (Axy,) is assumed to be interpreted as meaning that the implication between
these equations holds for all substitutions of numerals for xj. To justify this, one should satisfy
oneself that these implications always hold when the hypothetical proof can be carried out. The
rule of procedure (j) is now seen to be simply mathematical induction. The rule (k) is a form
of transfinite induction. In proving the validity of (k) we may again suppose () is of index !.
Let r(m,n),g(m),g1(m),h(n) be the functions corresponding respectively to R,®,®’,$. We shall
prove that, if g(0) = g’(0) and r (h(n),n) = 0 for each positive integer n and if g(n+ 1) = g'(n+ 1)
whenever g(h(n+ 1)) = g'(h(n+ 1)), then g(n) = g’(n) for each natural number n. We consider the
class of natural numbers for which g(n) = g’(n) is not true. If the class is not void it has a positive
member ng which precedes all other members in the well ordering <. But k(ng) is another member
of the class, for otherwise we should have

g (h(ng)) = g’ (h(no))

and therefore g(ng) = g’ (ngp), i.e. ny would not be in the class. This implies ng < h(ng) contrary to
r(h(ng),ng) = 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact that £ is an ordinal
formula. It suffices that £ should satisfy conditions (a) — (e) (p. 163) for ordinal formulae, and in
place of (f) satisfy (f/).

(f) There is no formula T such that T(n) is convertible to a formula representing a positive
integer for each positive integer n, and such that (T (n),n) conv 2, for each positive integer n for
which £2(n,n) conv 3.

194 Part 1

The problem whether a formula satisfies conditions (a) — (e), (f’) is number-theoretic. If we use
formulae satisfying these conditions instead of ordinal formulae with A ;2 or A3, we have a non-
constructive logic with certain advantages over ordinal logics. The intuitive judgments that must
be made are all judgments of the truth of number theoretic-theorems. We have seen in §9 that the
connection of ordinal logics with the classical theory of ordinals is quite superficial. There seem to
be good reasons, therefore, for giving attention to ordinal formulae in this modified sense.

The ordinal logic A3 appears to be adequate for most purposes. It should, for instance, be
possible to carry out Gentzen’s proof of consistency of number theory, or the proof of the uniqueness
of the normal form of a well-formed formula (Church and Rosser [1]) with our calculus and a fairly
simple set of axioms. How far this is the case can, of course, only be determined by experiment.

One would prefer a non-constructive system of logic based on transfinite induction rather simpler
than the system which we have described. In particular, it would seem that it should be possible to
eliminate the necessity of stating explicitly the validity of definitions by primitive recursions, since
this principle itself can be shown to be valid by transfinite induction. It is possible to make such
modifications in the system, even in such a way that the resulting system is still complete, but no
real advantage is gained by doing so. The effect is always, so far as I know, to restrict the class of
formulae provable with a given set of axioms, so that we obtain no theorems but trivial restatements
of the axioms. We have therefore to compromise between simplicity and comprehensiveness.

Systems of Logic Based on Ordinals 195

Index of definitions.

No attempt is being made to list heavy type formulae since their meanings are not always constant
throughout the paper. Abbreviations for definite well-formed formulae are listed alphabetically.

Page Page
Ai 176 Prod 182
Al 169 0 161
Bd 169 Rec 191
Ck 172 Rt 180
Cm 192 S 153
Comp 178 Sum 169
Dt 155 Sq 181
E 175 Tn 172
form 154 Ug 169
G 175 Vv 162
Gm 186 Vi 183
Gr 154 w 161
H 165, 168 w’ 161
H 168 X 160
Hf 169 z 179
Hg 181
1 153 r 162
Inf 169 8 152
Jh 179 e 183
K 175 Agi 188
Lim 169 Ag 191
Ls 168 Ags 192
M 192 Ag 175
Mp 175 Ap 175
Mg 180 w 155
Nm 162 z 191
Od 177 1,2,3 153
P . (1 P S L/

(The following refer to §§1-10 only.)

All-inclusive (logic formula) e e .. 176
Axiomatic (class or property) e .. 155
Circle-free (Turing [1], 233)
Computable function . e . . . e 155
Completeness, of class of logics e e e 161

of logic 162

of ordinal logic 176
Convertible 152

196

Description number (D.N.)
Dual (W.EF.)

Effectively calculable function
Enumerate (to)

Formally definable function
General recursive function
Godel representation (G.R.)
Immediately convertible
Invariance (of ordinal logics)

Limit system

Logic formula, logic

Normal form

Number-theoretic
(theorem or problem)

Oracle

Ordinal

Ordinal formula

C-K ordinal formula

Ordinal logic

Primitive recursive (function or relation)

(function or relation)
Recursion formula

Representation of ordinals, by ordinal formulae

by C-K ordinal formulae
Standardized logic
Type
Validity of system
Well-formed formula (W.F.F.)
Well ordered series

Miscellaneous (in order of appearance).

%

A-definable function
G(x,y),D(x)

“<” between W.F. F
ZA

Class C, systems W

C[A] (A a C-K ordinal formula)

System P
Proofc[xo,yo0]
Systems Pg
Systems PA

Part 1

(Turing [1], 240)

157

154

154

154

154

154

152

177
(see also 178, 179)

170

160
152, 154

156

159
163
163
164
170
156, 172

172
163
164
160
175
170
152
163

153
154
162
164
165
170
171

(foot-note) 172

174
175
183

Systems of Logic Based on Ordinals 197

Bibliography.

Alonzo Church, [1]. “A proof of freedom from contradiction”, Prec. Nat. A cad. Sci., 21 (1935),
275-281.

——, [2]. Mathematical logic, Lectures at Princeton University (1935-6), mimeographed, 113
pp-

——, [3]. “An unsolvable problem of elementary number theory”, American J. of Math., 58
(1936), 345-363.
, [4]. “The constructive second number class”, Bull. American Math. Soc., 44 (1938), 224—

238.

G. Gentzen, [i]. “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Math. Annalen, 112
(1936), 493-565.

K. Godel, [1]. “Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme, I, Monatshefte fiir Math. und Phys., 38 (1931), 173-189.

——, [2]. On undecidable propositions of formal mathematical systems, Lectures at the Institute
for Advanced Study, Princeton, N.J., 1934, mimeographed, 30 pp.

D. Hilbert, [1]. “Uber das Unendliche”, Math. Annalen, 95 (1926), 161-190.

S. C. Kleene, [1]. “A theory of positive integers in formal logic”, American J. of Math., 57
(1935), 153—-173 and 219-244.
, [2]. “General recursive functions of natural numbers”, Math. Annalen, 112 (1935-6), 727—

742.

——, [3] “A-definability and recursiveness”, Duke Math. Jour., 2 (1936), 340-353.

E. L. Post, [1]. “Finite combinatory processes—formulation 17, Journal Symbolic Logic, 1
(1938), 103-105.

J. B. Rosser, [1]. “Godel theorems for non-constructive logic”, Journal Symbolic Logic,2 (1937),
129-137.

A. Tarski, [1]. “Der Wahrheitsbegriff in den formalisierten Sprachen”, Studia Philoso. phica, 1
(1936), 261405 (translation from the original paper in Polish dated 1933).

A. M. Turing, [1]. “On computable numbers, with an application to the Entscheidungsproblem”,
Proc. London Math. Soc. 2, (42) (1937), 230-265. A correction to this paper appeared in the same
periodical, 43 (1937), 544-546.

, [2]. “Computability and A-definability”, Journal Symbolic Logic, 2 (1937), 153-163.

E. Zermelo, [1]. “Grundlagen einer allgemeiner Theorie der mathematischen Satzsysteme, I,
Fund. Math., 25 (1935), 136-146.

Alonzo Church and S. C. Kleene, [1]. “Formal definitions in the theory of ordinal numbers”,
Fund. Math., 28 (1936), 11-21.

Alonzo Church and J. B. Rosser, [1]. “Some properties of conversion”, Math. Soc., 39 (1936),
472-482.

D. Hilbert and W. Ackermann, [1]. Grundziige der theoretischen Logik(2nd edition revised,
Berlin, 1938), 130 pp.

A. N. Whitehead and Bertrand Russell, [1]. Principia Mathematica(2nd edition, Cambridge,
1925-1927), 3 vols.

King’s College
Cambridge

198 Part 1

Examining the Work and Its Later Impact

Michael Rathjen looks at —

TURING’S ‘ORACLE’ IN PROOF THEORY

Turing’s paper on ordinal logics (Turing, 1939) greatly influenced research in proof theory in the
1960s, especially in Feferman’s (1964, 1968) and Schiitte’s (1964, 1965) work on the limits of
predicativity. His idea to overcome Godel’s incompleteness results by means of a hierarchy of
introspective theories is a very natural one.! The essential difference between Turing’s ordinal log-
ics and the proof-theoretic hierarchies, though, is that the latter concern autonomous progressions
of theories. The most direct influence of Turing (1939) was on Feferman’s extension of it in his
paper (Feferman, 1962) on non-autonomous transfinite recursive progressions of axiomatic theo-
ries.> Notably the idea of autonomous progressions holds a great deal of attraction and has seen
renewed interest in discussions on FOM (an automated e-mail list for discussing foundations of
mathematics) of the scope of predicative theories.’

It is perhaps less well-known that Turing’s oracle computations, which he introduced in the brief
Section 4 of Turing (1939), played a central role in another part of proof theory. The main passage
from Turing (1939) reads as follows:

“Let us suppose that we are supplied with some means of solving number-theoretic prob-
lems; a kind of oracle as it were ... With the help of the oracle we could form a new kind
of machine (call them o-machines), having as one of its processes that of solving a given
number-theoretic problem”.

Much later in the work of Goodman (1976), the oracle was going to be used in showing that the
axiom of choice can be eliminated from proofs of arithmetic statements in intuitionistic higher order
theories. By the same token, it can be put to use in proving that the axiom of dependent choices can
be removed from proofs of arithmetic statements in a number of intuitionistic set theories. This
paper is aimed at giving a brief presentation of the ideas leading to these results.

1. Realisability

In 1930, the nature of intuitionism was greatly clarified when Heyting published a formalisation
of intuitionistic predicate logic and intuitionistic arithmetic (later christened Heyting Arithmetic,
HA). A few years later in 1933, Gentzen and Godel independently provided translations which
illuminated the relationship between classical and intuitionistic arithmetic.* Their so-called negative
translations showed that, in a sense, Peano Arithmetic is contained in HA, and, moreover, that for

! This is discussed in Sol Feferman’s contribution to this volume.
2 More recently, Nash seems to be concerned with just non-autonomous progressions of theories.
3 For example, Nik Weaver challenged the ‘traditional’ view on FOM and in his work Weaver (2005).

4 Apparently unbeknownst to Heyting, Gentzen, and Godel, Kolmogorov (1925) had previously given a formalisation
(albeit an incomplete one) of intuitionistic logic and observed the translatability of classical into intuitionistic logic.

Turing’s ‘Oracle’ in Proof Theory 199

formulas not containing Vv or 3, provability in PA and HA amount to the same.”> One moral drawable
from this result is that (at least for the realm of arithmetic) rather than being a restriction, Brouwer’s
intuitionism turns out to be an extension of classical logic brought about by adding the constructive
3 and V. Surprisingly, though none of this touched on the meaning of intuitionistic implication,
negation and V,® which were still a matter of great concern to Dummett (1975, 2000) and thought
to be infelicitous by Bishop and Bridges (1985, p. 13). It appears that the nature of —,—,V was not
viewed as problematic at all in the early days of intuitionism. The most common explanation of the
intuitionistic meaning of the logical connectives is the Brouwer—Heyting—Kolmogorov explanation
(BHK for short). Whereas BHK gives a valuable heuristics for the meaning of the connectives
in terms of constructions and is particularly good at explicating 3 and V, on closer inspection it
provides at best an interpretation of —, =,V by means of an as yet unexplained or primitive notion of
construction and at worst resolves into circularity.” Thus, a deep contribution to the enlightenment
period of intuitionism, which started with Kolmogorov, is owed to Kleene (1945), who gave a
semantics or model for intuitionistic knowledge of a closed formula A of arithmetic in terms of
number codes that ‘realise’ A. In the case of an implication or universally quantified formula, these
realisers can be identified with (codes of) Turing machines. The definition of realisability is by
induction on the complexity of A:

A realiser of has the form
A atomic any e providing A is true.
AN B (a,b), where a is a realiser of A

and b is a realiser of B.
A— B e, where e is the Godel number of a Turing machine
M, such that M, halts with a realiser for B whenever a
realiser of A is run on M,.
—A any e providing there is no realiser for A.
AV B (0,a), where a is a realiser of A,
or (1,b), where b is a realiser of B
VxB(x) e, where e is a Godel number of a Turing machine M,
such that M, outputs a realiser for A(n) when run on .
IxB(x) (n,b), where b is a realiser of B(n).
Here (a,b) is some standard coding of pairs of natural numbers and 7 is the standard numeral
corresponding to .
There are now many different notions of realisability. They have become the most plentiful
source of models for intuitionistic theories, ranging from arithmetic to higher type systems and set
theories.

2. Heyting arithmetic in higher types

Hilbert in his paper Uber das Unendliche from 1925 considered a hierarchy of functionals over the
natural numbers, not only of finite but also of transfinite type.® The finite levels of this hierarchy

5 Kolmogorov already in 1925 drew from this the conclusion that, contrary to Brouwer’s views on the matter, a finitary
statement proved by classical means is intuitionistically true.

6 As witnessed by Gentzen’s negative translation that leaves these particles undisturbed.

7 Takeuti (1987, p.101) deprecated it as impredicative.

8 Intriguingly, Hilbert (1926) also defined dependent types, thereby introducing the germinal idea of Martin-L&f type the-
ory.

I oywe this observation to Peter Hancock.

200 Part 1

where used by Godel (1933) to give an interpretation (known as functional or Dialectica interpre-
tation) of first order arithmetic. The finite types are inductively defined by starting with the type o
of natural numbers and the rule that given types o and 7, o (7) is a type, too. Here o (7) is the type
of functions from objects of type o to objects of type t. The objects of type # o are addressed as
functionals. HA® denotes the extension of HA by variables x%,y?, ... for each finite type o as well
as constants for special functionals together with their defining axioms. Included among the latter
are recursor functionals R,, for all finite types o which allow one to define functionals by recursion
on N. Moreover, the schema of mathematical induction is extended to all formulae of the language.
It is also interesting to add choice principles for all type levels to HA®:

(ACyr) VX% T AR, yT) — IO W AT, 170 (x%)). 2.1

Let ACrr :={AC,; | 0, T types).

Instead of HA one could also extend the classical theory PA to a version PA® with higher
type functionals. The theory PA® + ACpr is much stronger than PA. With aid of a realisability
interpretation, however, one can show that HA® + ACpr is not stronger than HA, but a much more
difficult question remains: Does HA” + ACpr prove more statements of arithmetic than HA? The
answer was given by Goodman.

THEOREM 1. (Goodman, 1976, 1978). HA® + ACFkr is conservative over HA®.

The proof used Goodman’s ‘theory of constructions”, and was rather long and involved
(Goodman, 1976). His second proof is more direct and also conceptually clearer (Goodman, 1978).
It combines the ideas of forcing and realisability. The technology was then used by Beeson (1979,
1985) and Gordeev (1988), and in more recent times by Ray-Ming Chen and the author of this note
to establish a plethora of conservativity results.

3. Realisability relative to an oracle

Realisability for HA is not co-extensive with deducibility in HA. Whilst all theorems of HA are
realisable, there are realisable sentences which have no proof in HA. In order to ensure conserva-
tivity results, one needs an abstract form of realisability that entails deducibility. The two steps of
Goodman’s second proof have been neatly separated by Beeson to construct a general methodol-
ogy for showing an intuitionistic theory T to be conservative over another theory S for arithmetic
statements. The idea is to find a sequence of interpretations:

So S

realisability forcing

It is worth pointing out that the realisability interpretation of T in Sp is very similar to Kleene’s
realisability by numbers as we have defined above, but instead of being based on ordinary Turing
machines it uses oracle Turing machines, where the oracle O is a fixed partial function from N to
{0, 1}. Thus, as Beeson remarked, it could have been introduced by Kleene in 1945. In the course of
a computation the oracle may be consulted about the value of O(n) for some n. If O(n) is defined
it will return that value and the computation will continue, but if O(n) is not defined no response
will be coming forward and the computation will never come to a halt. The theory Sp results from
S by adding a constant O to the language of S together with an axiom expressing that O is a partial
function from N to {0, 1}, but no specifics about O. The idea of the second interpretation step is
that on account of O’s arbitrariness, forcing can be used in the background theory S to interpret the
constant by a generic partial function. Given an arithmetic statement A a partial function i can be
engineered so that in the forcing model realisability of A entails the truth of A. The final step, then,
is achieved by noticing that for arithmetic statements forceability (where the forcing conditions are
finite partial functions on N) and validity coincide.

Turing’s ‘Oracle’ in Proof Theory 201

As an application of this technology one can show that Constructive Zermelo Fraenkel Set
Theory, CZF, augmented by the axiom of dependent choices, DC, is conservative over CZF with
respect to arithmetic sentences (cf. Gordeev (1988); Chen and Rathjen) and that the same obtains
for Intuitionistic Zermelo Fraenkel Set Theory, IZF, when separation is restricted to bounded for-
mulae (Chen and Rathjen). Another result obtainable in this way is that (full) IZF extended by the
Uniformity Principle

(UP) Vx3neNgp(,n) — In e NVxp(x,n)

remains conservative over IZF with respect to arithmetic sentences (cf. Chen (2010); Chen and
Rathjen). UP roughly asserts that all (class) functions from the universe of sets into the set of
natural numbers are constant.

Since for classical ZF arithmetical conservativity of ZF 4+ DC over ZF is an immediate con-
sequence of the fact that L is a model of ZF one might wonder why this method does not carry
over to the intuituitionistic setting. The answer is that albeit L can be defined in the same way in
the latter setting, the ordinals cannot be shown to be linearly ordered, rendering L a rather useless
construction.

References

Beeson, M., 1979. Goodman’s theorem and beyond. Pacific J. Math. 84.

Beeson, M., 1985. Foundations of Constructive Mathematics, Springer, Berlin.

Bishop, E., Bridges, D., 1985. Constructive Analysis. Springer, Berlin.

Chen, R.-M., 2010. Independence and conservativity results for intuitionistic set theory, Ph.D. Thesis,
University of Leeds.

Chen, R.-M., Rathjen, M., Conservativity results for intuitionistic set theories, in preparation.

Dummett, M., 1975. The philosophical basis of intuitionistic logic. In: Rose, H.E., Shepherdson, J.C. (Eds.),
Logic Colloquium 1973, North-Holland, Amsterdam.

Dummett, M., 2000. Elements of Intuitionism. Second edn. Clarendon Press, Oxford.

Feferman, S., 1962. Transfinite recursive progressions of axiomatic theories. J. Symbol. Logic 27, 259-316.

Feferman, S., 1964. Systems of predicative analysis. J. Symbolic Logic 29, 1-30.

Feferman, S. 1968. Autonomous transfinite progressions and the extent of predicative mathematics. In: Logic,
Methodology, and Philosophy of Science III, Proc. 3rd Internat. Congr., Amsterdam, 1967, North-Holland,
Amsterdam, pp. 121-135.

Gentzen, G., 1974. Uber das Verhaltnis zwischen intuitionistischer und klassischer Logik (1933) Originally to
appear in the Mathematische Annalen, reached the stage of galley proofs but was withdrawn. It was finally
published in Arch. ML 16, 119-132.

Godel, K., 1933. Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen
Kolloquiums 4, 34-38.

Goodman, N., 1976. The theory of the Godel functionals. J. Symbolic Logic 41, 574-583.

Goodman, N., 1978. Relativized realizability in intuitionistic arithmetic of all finite types. J. Symbolic Logic
43.

Gordeev, L., 1988. Proof-theoretic analysis: Weak systems of functions and classes. Ann. Pure Appl. Log. 38,
1-121.

Hilbert, D., 1926. Uber das Unendliche. Mathematische Annalen, 143—151.

Kleene, S.C., 1945. On the interpretation of intuitionistic number theory. J. Symbolic Logic 10, 109-124.

Kolmogorov, A.N., 1925. On the principle of the excluded middle (Russian). Mat. Sb. 32, 646-667 (translated
in van Heijenoort (1967) 414—437).

Nash Jr., A.N., Hierarchical Introspective Logics, www.math.princeton.edu/jfnj/texts_and_graphics/
Main.Content/Various_Etc./Logic/talk. CMU/HILdos38.txt.

Schiitte, K., 1964. Eine Grenze fiir die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik,
Archiv fiir Mathematische Logik und Grundlagenforschung 67, 45-60.

http://www.math.princeton.edu/jfnj/texts_and_graphics/Main.Content/Various_Etc./Logic/talk.CMU/HILdos38.txt
http://www.math.princeton.edu/jfnj/texts_and_graphics/Main.Content/Various_Etc./Logic/talk.CMU/HILdos38.txt

202 Part 1

Schiitte, K., 1965. Predicative well-orderings. In: Crossley, J.N., Dummet, M.A.E., (Eds.). Formal systems
and recursive functions, Proceedings of the Eighth Logic Collogium, Oxford, July 1963. North Holland,
Amsterdam, pp.176-184.

Takeuti, G. 1987. Proof Theory, second edn. North Holland, Amsterdam.

Turing, A.M. 1939. Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2, 161-228.

van Heijenoort, J. (Eds.) 1967. From Frege to Godel. A Source Book in Mathematical Logic 1879-1931,
Harvard University Press, Cambridge Mass, (Reprinted 1970).

Weaver, N. Predicativity Beyond I'g, ArXiv Mathematics e-prints, arXiv:math/0509244, 38pages.

Philip Welch takes a set-theoretical view of —
TRUTH AND TURING

We should like to link Turing’s construction in Systems of logic based on ordinals on progressions
of theories, with some recent similar looking progressions of axiomatisations of truth sets. However,
we first set the scene by sketching the original paper. It is interesting for two fundamental reasons.
Firstly he introduces, in a rather understated fashion, the notion of a variant of his original Turing
Machine, which was to be the ‘o-machine’ for ‘oracle-machine.” The latter is the well-known ver-
sion of the basic machine, the ‘a-machine’, introduced in his 1936 paper ‘On computable numbers’.
The a-machine is of course the standard Turing machine equipped with an oracle tape. In the paper,
Turing describes rather a program that is allowed input at a stage of the computation when a special
instruction is reached to ask for such input from the oracle tape. He envisaged then that in this way
‘non-computable’ functions could be introduced by calling for values. In the paper, after introducing
this idea, he then repeats the argument that the halting problem was undecidable by such machines.
He called this the ‘circularity question’: whether a particular TM M would eventually loop on a
particular input. [I shall use TM to abbreviate Turing machines (with or without oracle tapes).]

Just as the a-machine became the standard model for a computer (in Turing’s terms) so the
o-machine has become for us the standard model for relativised computability: the notion that a set
A C N can be computed ‘relative to a set B C N’ is that membership questions as to whether n € A
or not can be ‘reduced’ to finitely many similar queries of the set B, where we imagine the oracle
tape of the machine to have the characteristic function of B written out as a series of 0’s and 1’s. We
write nowadays in this case ‘A <7 B’ for this relation. Sets A, B of numbers equivalent under <7 are
then declared to be in the same ‘Turing degree’ of incomputability. Thus, the whole theory of such
algorithmic degrees can be effected using this model.

This however only occupies a page and a half. This is not what the paper is about. It is only a
tool in his investigation of the second fundamental idea to emerge from the paper: the notion of an
‘ordinal progression’. One has to admire the sweep of the paper: merely eight years after Godel’s
paper on the Incompleteness Phenomenon, and only three years after his own paper On Computable
Numbers he attempted to grapple with the incompleteness phenomena of formal systems by system-
atically extending theories T = Top € T C --- by adding at each stage a consistency statement about
the preceding theory. The assumption is that our acceptance of a theory 7' somehow also impels us
to accept its consistency. Who would work in Peano Arithmetic (PA) if they believed Con(PA) was
false? And of course it is the consistency statement ‘Con(PA)’ that Godel showed was a statement
unprovable in PA (assuming that it was itself consistent).

Martin Davis refers to the paper in his introduction in a volume of collected sources as ‘diffi-
cult’ and in several ways it is: the ideas are not immediately transparent; the notation sticks with

Truth and Turing 203

that of Church’s A-calculus (under whom Turing was at this time writing his Ph.D. thesis, which
contained this research); the underlying extensions take place along a system of notations, related
to one devised by Kleene. We now would use a system called ‘Kleene’s O’, but again the lan-
guage is different: instead of asking whether a certain integer n can be seen to be in O, Turing asks
whether a certain formula is an ‘ordinal formula’: the latter are formulae used to name (what will
be) constructive ordinals, and there is a list of seven conditions in terms of A-conversion for them.
He also gives a definition of ‘C(hurch)-K(leene) ordinal formulae’, which contain in essence a defi-
nition (equivalent to that) of O. Discussing this in today’s notation we have the following definition
(where suc(n) can be taken to be 2" and lim(n) to be 3"):

DEFINITION 1. By simultaneous recursion we define ‘n € O’ and ‘n <o m’ for n,m € N together
with an ordinal |n| for each n € O:

0e Oand|0]=0;

Ifn € O, then suc(n) € O, n <o suc(n) and |suc(n)| =n+1;

If {e} is an index of a total recursive function, and Vn({e}(n) <o {e}(n+ 1)) then lim(e) € O,
{e}(n) <o lim(e) for every n, and |lim(e)| = sup{|{e}(n)| : n € N}.

Ifn<pmAm<pop —n<opp.

By this means notations can be assigned to any constructive ordinal: that is any ordinal less than
the first non-recursive ordinal wfk, with n <o m — |n| < |m| (but not conversely). However, the
relation ‘n € O’ is complex being necessarily H}. A totally ordered subset of Field(<p) is a path
and the restriction of <@ to a path of the form {n: n <o m} allows us to see that the latter set is
actually recursively enumerable. Kleene’s O then gives us a constructive framework to which we
may attach objects, in this case theories.

DEFINITION 2. A consistency progression based on a theory T is a primitive recursive map-
ping n — @, where ¢,(vo) is a X1 formula that defines T,, and that PA proves: (i) To =T (ii)
Vn(Tsuc(n) =T,+ CO”(QOn)); (iii) Tlim(n) = Um T{n}(m)~

DEFINITION 3. A progressive (consistency) sequence is then the restriction of a consistency
progression to a path through O.

The existence of progressive sequences along paths has to be justified through the use of the
Recursion Theorem. With these tools, Turing proved a form of Completeness Theorem.

THEOREM 1. (Turing’s Completeness Theorem) For any true T1| sentence of arithmetic, o, there
isan a=a(o) € O with |la| =w+1, so that T, + o. The map o — a(o) is given by a primitive
recursive function.

Thus, we may for any true o find a path of length w + 1, T = Ty, T4, ..., Ty+1 = T, with the last
proving o. At first glance it looks as if Turing’s theorem is giving us an insight into mathematical
knowledge, but this is illusory. There is a trick here: what one does is construct for any I1; sentence
o an extension T, proving o with |a(o)| =w+ 1; then if o is true we deduce that T,y is
a consistency extension. The set O is, as we have remarked, a complex set of numbers, and the
argument draws on this complexity.

In the paper, Turing stated that he had tried to prove a theorem for statements at the level he
called that of ‘number theoretic problems’, which in effect are those expressible as IT, sentences. He
expressed the hope that this might yet be proven. However, it was not until Feferman extended this
work much later in the fundamental paper (Feferman, 1962), which used the somewhat strengthened
Reflection Principles below, was it possible to prove a ‘Completeness Theorem’ in the above sense
for I, sentences.

There is the possibility of adding other statements than just consistency alone to progressions.
The work of Feferman here has been far-reaching. Subsequent research of Beklemishev, Schmerl,

204 Part 1

Franzen and others have extended this, and no doubt will be commented on elsewhere in this
volume.

It is possible to formalise the notion that: ‘if T+ o,where o € X, then o is true’ and this
‘n-reflection’ may be abbreviated REFLY. in that the theory T reflects the X, truth of the mat-
ter. For T extending PA this can be expressed by a single IT,4+; formula. Full reflection for
all ¥, formulae, REFL7 is then the assertion of n-reflection for all n. Instead of consistency
sequences it is possible to talk of n-, or full-reflection progressions and so forth. These turn out
to have different properties from those of the simpler consistency statement studied by Turing,
and the extensive study of these has been developed by Feferman (1962), which, as mentioned,
showed how there were I, and indeed full, Completeness Theorems concerning paths through
O, of the kind that Turing discussed. (See, e.g., the discussion of Kreisel (1972) on the subject
of such putative paths delivering mathematical knowledge.) There is also a broad literature on
the kinds of paths or progressions one have: autonomous progressions are those of a more self-
justifying flavour. We shall not go into these details, but refer the reader to the excellent surveys of
Franzen (2004a,b).

The notion of such progressions can be used in a number of arenas, with rather differing lev-
els of significance. I would like to highlight one current area of work: iterated reflection principles
in truth theories. In a truth theory one explicitly adds axioms concerning a truth predicate T say.
One typically takes a base language of interest (and it is almost always Peano Arithmetic PA, since
(i) mathematicians are very much interested in number theory and (ii) in PA the mechanisms of
coding effectively given languages by numbers or ‘Godel codes’ is available. Let us call this lan-
guage L. To this is added a predicate symbol 7 and for numbers 7 that code sentences the intention
is that ‘T'(n)’ is to be interpreted as the ‘sentence coded by n is true’. Truth theorists discuss the
interplay of notions of truth with various languages (for example we may extend £ to Lr and
allow n to range over codes of sentences not just of £ but of L7); we may also consider axioma-
tising truth: we add a selection of axioms, axiom schemes, deduction rules etc., to the axioms of
PA that express our beliefs about how the notion of ‘truth’ should behave. Depending on how
this is done, theories of various types and strengths emerge. (One such is specified in more detail
below.)

Just as Turing added consistency statements to make a progression of number theories, we may
do the same for truth theories. [For example, cf. the recent works done by Fujimoto (2011).] We
shall link this notion of progression with some current work in sequences of truth sets in a moment,
but we point out that although superficially looking like Turing’s progressions, the motivations are
admittedly rather different.

Let So = PA and S| be an axiom set of the kind just roughly described in the language £1 =4¢ L7,
using the new predicate symbol Tp =g4¢ T that is allowed into the induction scheme. S; is now a
numerical theory, extending PA to which we can repeat this process: we add a new truth predicate
Ty so that T7(n) will be interpreted as saying that if n codes a sentence of £, then that sentence
is true. Again extend the axiom set to include the induction scheme for properties in the language
with the new symbol 7. At the limit stage @ we obtain a language L, 2 (Jicn Lk, and again take
the union of the previous axiom sets to obtain S,. We then continue with adding a truth predicate
T, in the next language £, 1, and obtain thereafter S, 1,...,Sg,... etc. up to some ordinal A say.
We ensure that the axioms of S, are given by some Xi-arithmetic formula v, (vo) at each stage.
With some care this can be effected in a way that ensures, inductively, that the theories S, are
arithmetically sound, that is assuming the axioms of S =S are true, every theorem of S, is true
foro < A.

As a simple example of how this can work, we define the axioms of Positive Friedman Sheard
which I shall call P for brevity. The first axiom set below is PAT, Peano Arithmetic extended into a
language L7 containing 7, the formulae of which are allowed into the induction scheme.

Truth and Turing 205

PAT,

V atomic ¢ € Lp4 : T(¢) coincides with truth and 7T'(—¢) with falsity;

Vo, U € Lr:T(@AY) < (T(P) AT(WY));

Vo, € L1 (T(=9) VT (=) = T(—(p A¥));

Vo0 € L1 (T(@) Ay — TW);

Vox) € L IxT(—p(x)) — T(—=Vxd(x));

CONS: V¢ € L7 : ~(T(¢p) AT(—¢));

(Deduction Schemes): From A (respectively T(A)) deduce T'(A) (respectively A).

PN R P

The axioms are dubbed positive because they only make claims as to which sentences are in
the extension of 7. Note there is no direct clause concerning simple negations. It is important
for this axiomatisation that the Deduction Schemes are just that: schemes (the axiomatic ver-
sions would make the system inconsistent). ‘CONS’ asserts consistency. 7" (A) abbreviates n-fold
T(T(---T(A)---). The strength of this theory is known.

It is possible to iterate such theories: set Ap to be ‘0 =0, and Py to be P.

DEFINITION 4. Set: (i) Ps to be PU{Ag | B < 8}; (ii) As =V¢ € Lr[Provp;(¢) — T(¢)].

As one can see by the subscripts to the predicate expressing provability in a recursively given
axiom system S, Provg, we are considering extensions of the system P by adding iterations of
‘S-provability implying truth’. We have left vague what we mean by the ordinals there, or what the
statements A, actually are. Also, although superficially resembling systems of axioms of increasing
strength in order to form the reflexive closure of a theory, we are not doing this so as to form, as
in that process, a theory encapsulating all of our commitments to the theory P. Rather we can use
it to axiomatise some truth sets, those that arise as various levels of a so-called Herzberger truth
sequence. Set Hy = (:

Hyi1={p € Lr| (N,Hy) = ¢}. Forlimit A : Hy, = {¢p | Ja < AVB € (@, 1) ¢ € Hy}.

Here, each H, is the extension of the T predicate of each model in turn. Note the ‘liminf” rule
for limit stages: ¢ is put in the A’th set if from some point o onwards it is in. Such limit rules
have been used by a variety of philosophical logicians to build truth sets. Field (2008) constructs
a similar hierarchy (Fy). It would go too far into the theory to discuss these here, but essentially
these hierarchies run up to some ordinal ¢. The question has been asked: can we axiomatise in some
way the sets H for A < ¢? On general grounds a simple first order axiomatisation is ruled out, but
it might be possible to do so on an initial segment, or in some larger language. It turns out that for
A < ¢ some iterations of the theories P 4 A, axiomatise H, in that they become true first at H, and
no earlier H,,. (And we may do the same for the F},.)

In view of the previous comments about building hierarchies of Reflection Principle theories T,
for a € N, where we thought of a as a notation, the reader may wonder as how one can precisely do
this, as the ‘«a’ efc., above are not part of the language, (as they were not for Turing) but here they are
very much larger than the constructive ordinals, and were left vague. There are two possible answers
here: one can show that within the system of building up the H- or F-hierarchies for any o < ¢ there
are certain sentences B, that can themselves be construed as notations for those ordinals, and we
may use these as devices for referring indirectly to them, and incorporate these somehow into our
iterated truth theories. The other possibility is to extend Kleene’s O itself to a system O D O. To do
this we extend the notion of ‘computability’: whereas O is a system of notation for the computable
ordinals; using ordinary Turing machines we now allow the system of notion to run transfinitely
and thus we have a new notion of ‘decidable’ corresponding to ‘having some fixed output, O or
1 from some point on’. The beauty of this is that we don’t even have to change Definition 1 at
all beyond replacing the word ‘recursive’ by ‘transfinitely computable’ in the above sense. The
Turing machines programs are not altered; the finite computations are just a special subclass of the
transfinite ones, and the resulting system subsumes O and then stretches out precisely to ¢. If we are

206 Part 1

willing to indulge in this use of ‘decidable’, we can use these members of O as notations applicable
for our theories T,. Of course we no longer have the possibility of {a | a <g b} being c.e. in the
ordinary sense any more, for b € (5, but this set has to be ‘c.e.” in this new, wider sense. This would
mean that any pursuit of analogies to the Turing/Feferman theorems would have to leave behind the
notion of theories being (ordinarily) computably axiomatised. However for the analysis of the truth
sets Hy, Fy, as explained by Horsten et al. (2012), through Turing-style iterations of the Positive
Friedman Sheard theory, these kind of notations look good enough.

Time will tell whether this kind of approach (or indeed the underlying truth set constructions)
will prove to be of any value.

References

Feferman, S., 1962. Transfinite recursive progressions of axiomatic theories. J. Symbolic Logic, 27 (3), 259—
316.

Field, H., 2008. Saving Truth from Paradox, Oxford University Press, Oxford, New York.

Franzen, T., 2004a. Inexhaustibility: A non-exhaustive treatment, vol. 16 of Lecture Notes in Logic.
ASL/A K.Peters.

Franzen, T., 2004b. Transfinite progressions: A second look at completeness. Bull. Symbolic Logic, 10 (3),
367-389.

Fujimoto, K., 2011. Autonomous progression and transfinite iteration of self-applicable truth. J. Symbolic
Logic, 76 (3), 914-945.

Horsten, L., Leigh, G., Leitgeb, H., Welch, P.D, 2012. Revision Revisited. Review of Symbolic Logic.

Kreisel, G., 1972. Which number theoretic problems can be solved in recursive progressions on H{-Paths
through O? J. Symbolic Logic, 37 (2), 311-334.

Alastair Abbott, Cristian Calude and Karl Svozil describe —

A QUANTUM RANDOM ORACLE!

1. Turing’s oracles

Turing’s oracles have been used for many years to successfully understand the world of the incom-
putable. Are these tools only pure mathematical constructs or are they more ‘real’? We will
show how quantum measurements performed in specifically designed environments can produce
incomputable sequences of bits, and discuss why they can hence be seen as physical Turing oracles.

An oracle is a black box capable of answering a set of questions, and an oracle Turing machine
is a Turing machine which can query an oracle. According to Turing (1939, p.173),

We shall not go any further into the nature of this oracle apart from saying that it cannot be a
machine.

In current terms, a Turing oracle is an incomputable set O of natural numbers or strings. The
oracle Turing machine can perform all of the usual operations of a Turing machine, and can also

! We thank Mike Stay for illuminating discussions and Marcus Hutter for useful comments which improved the
commentary.

A Quantum Random Oracle 207

query the oracle for an answer to finitely many questions of the form ‘is n in O?’. Because O is
incomputable, an oracle Turing machine is a hypercomputer: it performs tasks which no Turing
machine can do.

Turing studied oracles asserting the truth/falsity of ‘number-theoretic statements’, i.e., state-
ments of the form ‘6 (x) vanishes for infinitely many natural numbers’, where 6 (x) is a primitive
recursive function. The class of number-theoretic statements includes, but does not coincide with,
the class of I1; statements, i.e., statements of the form ‘Vn P(n)’, where P(n) is a computable pred-
icate. Both Fermat’s Last Theorem and the Riemann Hypothesis are I1; statements, and hence
number-theoretic statements. Some number-theoretic statements are (trivially) computable, but
most of them are not, so they satisfy the Turing incomputability condition.

In cryptography, a ‘random oracle’ is a black box that responds to every query with a ‘randomly’
chosen response,” picked uniformly from its output domain subject to the restriction that for any
fixed query the answer returned is the same every time it receives that query. In the framework
known as the ‘random oracle model’, random oracles are used in schemes where the system or
protocol is proved secure because an attacker is (seems to be) required to extract impossible infor-
mation from the oracle. This approach has known limits: e.g., in the works done by Canetti et al.
(1998), it is proved that there exist signature and encryption schemes that are secure in the random
oracle model, but for which any implementation of the random oracle results in insecure schemes.

Let O be a subset of the set of natural numbers and let X = x1x---x,--- be an infinite binary
sequence. The map x — Oy defined by Ox = {i | x; = 1} is bijective, so we can equally speak about
oracles as infinite binary sequences or sets of natural numbers (or strings, by using, say, the quasi-
lexicographical bijective enumeration of strings over a finite alphabet). Incomputability is preserved
under this bijection. A query ‘is nin O? is equivalent to ‘is x,, = 17’.

The condition imposed in the ‘random oracle’ model requires that the oracle O is given by a
uniformly distributed binary sequence. Some ‘random oracles’ may be Turing oracles, others may
not. Champernowne’s sequence

01000110110000010100111001011101110000...

is uniformly distributed, so it is a ‘random oracle’; this ‘random oracle’ is computable (primitive
recursive), so not a Turing oracle.

The set of codes of halting Turing machines (computably enumerable but not computable), as
well as the set of algorithmically random strings (immune, i.e., strongly incomputable) are examples
of Turing oracles (Calude, 2002).

Are Turing oracles ‘real’ or just pure theoretical mathematical notions?

2. Value indefiniteness and the Kochen—Specker Theorem

Computability is based on Turing’s model of a computing machine, a fundamentally determinis-
tic concept. Quantum mechanics, however, has confronted physicists with a world that appears
to behave randomly and is essentially non-deterministic. The failures of a deterministic view-
point to account for the predictions of quantum mechanics are exemplified by ‘no-go’ theorems,
which exclude the possibility of assigning ‘hidden variables’ that predict the outcome of quantum
measurements.

According to Bell’s Theorem, there is no hidden variable theory that gives the same statistical
predictions as quantum mechanics and satisfies value definiteness (i.e., all possible observables —

2 “True’ or ‘pure’ randomness does not exists from a mathematical point of view (Calude, 2002).

208 Part 1

including non-compatible ones — simultaneously have predefined values) and locality (i.e., two
space-like separated events cannot influence each other in any way).

Bell’s Theorem manifests itself in statistical inequalities — the class of which are called Bell-
type inequalities — which pose a bound on the possible correlation between outcomes of spatially
separated events subject to local realism, but of which quantum mechanics predicts violations. As
Bell’s Theorem deals with the statistical predictions of quantum mechanics, it might not be totally
unreasonable to ask whether there are ‘stronger’ no-go theorems, which can tell us something deeper
about the outcome of individual quantum measurements. The answer is affirmative.

A measurement context is a maximal set of pairwise co-measurable observables. For a mea-
surement context C = {A,A»,...}, the values corresponding to outcomes of measurements of
observables Ay,A»,... are v(A{,C), v(A2,C),... The Kochen-Specker Theorem states that for a
quantum mechanical system represented by a Hilbert space of dimension greater than two, it is
impossible for a hidden variable theory to fulfill the predictions of quantum mechanics and satisfy
the following two conditions: value definiteness and non-contextuality (i.e., the value corresponding
to the outcome of a measurement of an observable A, v(A), is independent of the other compatible
observables measured alongside it).

3. An example of a quantum random oracle

Consider a quantum random number generator that outputs bits produced by successive prepara-
tion and measurement of a state in which each outcome has probability one-half. By envisaging this
device running ad infinitum, we can consider the infinite sequence x it produces. If we assume a stan-
dard picture of quantum mechanics, i.e., a Copenhagen-like interpretation in which measurement
irreversibly alters the quantum state,’ that the experimenter has freedom in the choice of measure-
ment basis* (the ‘free-will assumption”), and that we reject the notion of contextual hidden variables
and can hence, by the uniformity and symmetry of the Kochen—Specker construction conclude that
all observables are value indefinite, then some surprising conclusions about x can be made (Calude
and Svozil, 2008). If x were computable, then (in principle) it would be possible to predict the out-
come of each measurement in advance. This amounts to the existence of hidden variables for these
observables and hence is in contradiction with the value indefiniteness due to the Kochen—Specker
Theorem forbidding the existence of such a consistent, context-independent pre-assignment of mea-
surement outcomes. The free-will assumption guarantees that even for an unknown initial state
preparation the measurement basis in general is not pre-determined, thereby avoiding the possibil-
ity that only the measured observable together with a particular context had a definite pre-assigned
value (Hall, 2010). Put differently, if x were computable then the device would behave determinis-
tically (and hence classically) rather than quantum mechanically, and would contain infinitely many
computable correlations. Hence, we have to conclude that x must be incomputable. In fact, the
argument is readily seen to prove the stronger property of bi-immunity of x.

Bi-immunity is the weakest possible notion of randomness: every binary sequence that is not
bi-immune contains an infinite computable subsequence, i.e., a computable subset. This fact allows
a computable martingale® to succeed on this sequence, so the unpredictability of the sequence is
infinitely many times compromised (Kjos-Hanssen et al., 2010).

3 A ‘many-worlds’ interpretation is excluded.

4 In a truly deterministic theory — sometimes called superdeterminism — the experimenter might have the illusion of
exercising her independent free choice, but in reality she just obeys the rules of the theory.

3 A sequence X is bi-immune if only finitely many bits of x are computable. Every bi-immune sequence is incomputable,
but the converse is not true.

6 A martingale is a function M from binary strings to positive reals satisfying the following fairness condition: M (o) =
(M(00) +M(o1))/2. The martingale M succeeds on a sequence X if limsup, M(x | n) = oo.

A Quantum Random Oracle 209

A sequence X is called Martin-L&f random if it is not contained in any effective null set.” A
sequence x is called Kurtz random if it belongs to every computable open class of Lebesgue mea-
sure one. Every Omega number — or halting probability, cf. Calude (2002) — is Martin-L6f random
and every Martin-Lo6f random real is Kurtz random; the converse implications are not true. Open
question: Is the quantum random sequence previously described Kurtz random?

4. A quantum random number generator certified
by value indefiniteness

Can a quantum device generating a bi-immune sequence really be constructed? Many quantum ran-
dom number generators have been described and, while it is not readily clear which of the existing
devices do produce an incomputable sequence of bits, it is not difficult to conceive designs which
are explicitly certified by value indefiniteness to do so. One such device was proposed by Abbott
et al. (2010).

5. Hypercomputation via quantum random oracles

As noted before, an oracle Turing machine is a hypercomputer. In particular, a Turing machine
working with a bi-immune quantum random oracle (Abbott et al., 2010) is a hypercomputer.

The undecidability proof of the halting problem still applies to such machines; although they
determine whether particular Turing machines will halt on specific inputs, they cannot determine,
in general, if machines equivalent to themselves will halt. This fact creates a hierarchy of machines,
closely related to the arithmetical hierarchy in mathematical logic, each with a more powerful
halting oracle and an even harder halting problem.

Arguably the most important open question regarding quantum random oracles is: What is the
computational power of a Turing machine working with a bi-immune quantum random oracle? We
believe that such an oracle Turing machine cannot solve the halting problem, but it may solve a
weaker undecidable problem, for example, the lesser limited principle of omniscience which states
that, if the existential quantification of the conjunction of two decidable predicates is false, then one
of their separate existential quantifications is false (Bridges and Richman, 1987).

References

Abbott, A.A., Calude, C.S., Svozil, K. 2010. A quantum random number generator certified by value indefi-
niteness. CDMTCS Res. Rep. 396.

Bridges, D., Richman, F., 1987. Varieties of Constructive Mathematics. Number 97 in London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge.

Calude, C.S., 2002. Information and Randomness: An Algorithmic Perspective, 2nd ed., Springer-Verlag,
Berlin.

Calude, C.S., Svozil, K., 2008. Quantum randomness and value indefiniteness. Adv. Sci. Lett. 1, 165-168.

Canetti, R., Goldreich, O., Halevi, S. 1998. The random oracle methodology, revisited. In: Proceedings of the
30th Annual ACM Symposium on the Theory of Computing, ACM, New York, pp. 209-218.

7 The set of all infinite sequences beginning with a string o — the cylinder generated by o — is a basic open set in Cantor
space. The Lebesgue measure of the cylinder generated by o is 27191, Every open subset of Cantor space is the union
of a countable sequence of disjoint basic open sets, and the measure of an open set is the sum of the measures of any
such sequence. A computably (computable) open set is an open set that is the union of the sequence of basic open sets
determined by a computably enumerable (computable) sequence of binary strings. A constructive null set is a computably
enumerable sequence X; of effective open sets such that X;; € X; and Lebesgue measure of X; is smaller than 27 for
each i. The intersection of the sets X; has Lebesgue measure zero.

210 Part 1

Hall, M.J.W., 2010. Local deterministic model of singlet state correlations based on relaxing measurement

independence. Phys. Rev. Lett. 105 (250404).
Kjos-Hanssen, B., Stephan, F., Teutsch, J.R. 2010. Enumerating randoms. http://arxiv.org/abs/1008.4825,

arXiv:1008.4825v1.
Turing, A.M. 1939. Systems of logic based on ordinals. Proc. Lond. Math. Soc. Ser. 2, 45, 161-228.

Practical Forms of Type Theory
(J. Symbolic Logic, vol. 13 (1948), pp. 80-94)

Some background remarks' from Robin Gandy’s —

PREFACE

The first draft of this paper (A Practical Form of type theory) shows that it was originally intended
as one of several. One aim, which became the main aim, is set out in The Reform of Mathematical
Notation. Turing wished to encourage ‘mathematicians-in-the-street’ to use notation and forms of
argument which would safeguard their work from ambiguity and inconsistency; but to do this with-
out forcing their work into the straitjacket of a particular logical system, or even requiring them to
have detailed knowledge of such a system. To the end of his life, he thought this aim a proper one
for a logician, and from time to time gave talks to mathematicians in which he would expound par-
ticular logical points. As a logician, however, he was interested in devising formal systems which
could act as bridges between the formal and the informal, and this motivated him to produce the
two systems set out in this paper. In SI, besides describing the intended universe of the nested-type
system, he also explains a number of elementary logical points. He did not expect mathematicians
to use the system, but it looks as if he hoped that some mathematicians would read the paper, even
though ignorant of symbolic logic. In this, as in some of his other papers and lectures, he was overly
optimistic about the abilities of his intended audience. Not only is it not obvious that the rules and
axioms do correctly formalise the informal notions, but, more explicitly, a reader unfamiliar with
symbolic logic will not appreciate the vital distinction between mathematical and metamathemat-
ical statements. (When in 1948 Turing tried to explain the Deduction Theorem to me, I failed to
understand it because I did not distinguish between ‘B can be inferred from A’ and ‘A D B’.)

Work on the nested-type theory, including the writing of A Practical Form of type theory had
mostly been done before the summer of 1945, when Turing moved from Hanslope Park to the
National Physical Laboratory. There, during the second half of 1945, he was fully occupied working
out his proposals for the ACE computer (The Collected Works, Mechanical Intelligence, pp. 1-86).
During 1946 he completed Practical Forms. I do not know whether he merely shelved or completely
abandoned further work on Reform and the project described in it.

The first two pages [of the first draft, A Practical Form of type theory] give a fuller account of
Turing’s motivation than does Practical Forms, so 1 quote them in full.

It is usual for mathematicians to pay-lip service to the theory of types, but they will not usu-
ally make any attempt to bring their mathematics into line with it. An occasional paradox
may perhaps be attributed to neglect of types, but no suggestions are made for the avoidance
of these paradoxes short of the expression of all mathematics in the formalism of Principia
Mathematica (say). In the present paper a system will be described which takes account of

! These introductory remarks are extracted from the Preface to the 1948 Turing paper, pp. 179-185 of the Collected
Works of A. M. Turing: Mathematical Logic. See the Collected Works for further technical comments, and unpublished
material of Turing on the same topic.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00007-2 21 1
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00007-2

212 Part 1

type theory, but at the same time follows very closely the normal mathematical outlook. The
type theory intrudes itself on the system only very slightly, and its effect may be summed
up in the form of one or two simple and natural cautions, which are easily carried over to
unformalised mathematics: this should, I hope, enable all such serious mathematics as is sup-
posedly based on the theory of types to be brought genuinely into line with it, at the cost of
very little additional trouble to mathematicians.

This paper will appear in two parts. The first part is written chiefly for the mathematician
who wishes to increase the rigour of his proofs along the lines indicated in the previous para-
graph, rather than for the logician. The emphasis will be on notation and meaning rather than
on axioms and rules of procedure; these will, however, be given for the sake of complete-
ness. The second part will be devoted to a little axiomatic development, and the justification
of the system in the case of the ‘finite universe’ i.e. the case where there is only a finite
number of individuals. It will establish a very complete connection between this system and
that of Church. This connection seems to be valuable because Church’s system has greater
theoretical simplicity than the proposed ‘practical system’, but is less convenient for the for-
malisation of proofs. Consequently, it will be natural to express proofs in the practical system,
but metamathematical results in terms of Church’s system.

The author wishes to repudiate any implication that may be suggested by this paper to the
effect that he believes the Russell philosophy of mathematics to be the truest. He does
believe, however, that it is the one which is most easily understood, and also that it describes
most closely the accepted form of present-day mathematical thinking. This paper is con-
cerned with giving accurate expression to that thinking. When that is done it will be easier to
see the limitations of the outlook which goes with this form of thinking.

Practical Forms of Type Theory 213

PRACTICAL FORMS OF TYPE THEORY

A. M. TURING

Russell’s theory of types,' though probably not providing the soundest possible foundation for
mathematics, follows closely the outlook of most mathematicians. The present paper is an attempt
to present the theory of types in forms in which the types themselves only play a rather small part, as
they do in ordinary mathematical argument. Two logical systems are described (called the “nested-
type” and “concealed-type” systems). It is hoped that the ideas involved in these systems may help
mathematicians to observe type theory in proofs as well as in doctrine. It will not be necessary to
adopt a formal logical notation to do so.

1. The nested-type system for a finite universe

In this section the notation of the nested-type system will be explained. The explanation will be in
terms of the ‘finite universe,’ i.e. we start with a finite number of objects or ‘individuals’ and build
up other entities from these. We can then formulate certain rules which give valid results in this
case and hope that they will apply in the infinite case also. We cannot of course hope that all such
rules will work. We have to imagine that many rules of this kind have been tried, found wanting
and rejected, and that others are still in use. This rather unsatisfactory-sounding process is as good
an account as the author feels can be given of the way in which current mathematical procedure has
grown up. But whatever the truth of this may be the finite universe provides a first class ground on
which to describe the nested-type system, and we proceed accordingly.

Our finite universe has initially as its members the ‘individuals’ Uy, -, Uy. Although these
include all the individuals, they need not exhaust our stock-in-trade, for we can also bring in func-
tions taking the individuals as arguments and having them also as values. With our increased range
of commodities we can then go into business again and produce a still greater variety of objects,
and repeat without limit. There obviously arises a great variety of different kinds of functions which
may need to be distinguished, but for the present system we need only trouble ourselves with the
very broadest divisions, which will be called types. These divisions are described below.

The individuals Uy, - -- , Uy form type 0.

The functions of individuals, taking individuals as values, together with the individuals them-
selves, form type 1.

The functions of arguments in type 1, taking values also in type 1, together with the members
of type 1, form type 2.

The functions of arguments in type n, taking values also in type n, together with the members
of type n, form type n+ 1.

It must be understood that by a “function” we mean the function itself and not merely one of its
values. To illustrate the point by analogy with functions of a real variable, we should say that “sin”

Received January 6, 1947.
' A. N. Whitehead and Bertrand Russell, Principia mathematica, Cambridge, England, 1925.

214 Part 1

denotes a function, but that “sin 0.3” and “sin x”” do not, although the latter is often used (incorrectly
in the author’s opinion) as if synonymous with “sin”.

It is convenient to require functions to be defined throughout the appropriate type, i.e. not to
permit such definitions as “f(0) = 0, but if x is different from O then f(x) is undefined.” In order to
cover such cases we shall set apart from the outset a particular individual Uy, which we shall rename
“C”, to be the value of a function in all cases where it would normally be regarded as undefined. So
far as possible we try to keep C on a par with the other individuals. We deviate from this principle
by adopting the convention that the value of a function is always C unless the function is of higher
type than the argument. (More strictly, if the function belongs to every type to which the argument
belongs.) We respect the principle by refraining from considering every expression containing “C”
to have the value C.

The functions and individuals together will be known as terms. With our finite universe it is
convenient to think of the functions as given by tables, consisting of two columns, in the first of
which appear all the necessary arguments, and opposite them in the second column the appropriate
values. Thus with N = 4 a typical member of type 1 would be represented by the table

Uy Us
Uy U)
Us U
Uy Uy

It would be a convenience to have the table rearranged with the first column in natural order. In the
case of the above table (1) we should simply have to interchange the first two rows. Such a table
may be said to be in normal form. We can do this for all tables of type 1, and when we have done so
we are in a position to define a natural order for the members of type 1. With both tables in normal
form, the earlier table is to be the one which has the earlier value in the last row in which the two
tables differ. Thus the table (1) above precedes

Ui Ui
V2 G @)
Us Us
Uy Uy

since when (1) is put into normal form the two tables differ last in the third row, and there (1) has the
value Uj but (2) has the value Uz. We shall also adopt the convention that the individuals in type 1
precede the tables. We may now continue the numbering of terms so as to include all type 1, simply
numbering them in the natural order just defined. The numbers will extend from 1 to N +NV. It
may be verified that the above tables (1) and (2) are Usps and U»4; respectively. A similar process
may now be carried out for type 2 and then for type 3. In general when we are dealing with type n
we have already numbered the members of type n — 1. It is easily verified that those tables which
have already appeared as members of type n — 1 have the order which they had in that type, and
precede all the new tables. The order of any two tables (new or old) is that of the last pair of values
in which they differ.

Let us now introduce the notation (UV) to denote the result of looking up V in the table U; in
slightly different words it is the entry against V in the table U.” In other words again it is the value

2 We shall use heavy type letters throughout to represent variables or undetermined formulas or tables. They occur
only in metamathematical discussions. All our statements are understood to be true whatever substitutions of formulas
(or tables, as the case may be) are made for the heavy type capital letters, and whatever substitutions of variables are
made for the small heavy type letters.

Practical Forms of Type Theory 215

of the function U for the argument V, and might therefore, in agreement with current mathematical
practice have been denoted by U(V). Our conventions require (UV) to be C in cases where the
table gives no information: these are just the cases where the lowest type to which U belongs does
not exceed the lowest for V. We may also introduce the notation U = V to denote the identity of
the terms U and V. It should be noticed that so long as U and V are tables known to belong to
some particular type n we can establish their identity by showing that they have the same values
throughout type n — 1 (this is known as the principle of extensionality and gives rise to the “axiom
of extensionality”). The principle fails for individuals, for if U and V are individuals then (UX) is
always identical with (VX), both being C, and yet U and V may well be different. The principle also
fails when the types of the terms are unknown, for we can never then be sure that we have examined
sufficient arguments for the functions. There may be some argument in a higher type than we have
yet considered for which the two functions differ.

The expression U = V which we have just introduced denotes a proposition, unlike (UV') which
was a term. Propositions may be thought of as having a value which is either true (T) or falsity (F).
By taking T and F to be individuals we could have arranged for the propositions to be included
amongst the terms, but we have not in fact done so.

There are several other ways of forming propositions. If P and @ are propositions then (~P) is
a proposition whose value is opposite to that of P and (P D Q) is one whose value is F if and only if
Pis T and Q is F. We may read (~P) as “not P” and (P D Q) as “P implies Q.” If U is a term then
D’ U represents the proposition that U is in type r, i.e. it is T if and only if U is in type r.

We could of course introduce a great variety of further means for forming terms and proposi-
tions. We could for instance define (P & Q) as a proposition whose value is T if and only if both P
and Q are T. We shall be content however with comparatively few, namely those we have already
introduced, together with one further way of forming propositions and one of forming terms. These
cannot be described without bringing in the ideas of “variable” and “formula with variables.” Vari-
ables are of little importance except as parts of formulas. All we need say about them is that as a
matter of notation small italic letters with any number of primes will be used as variables. The letters
D, q, 1 S, t, (possibly with primes) will be proposition variables and the others term variables. Small
heavy type letters may be used to stand for any variable, with an obvious convention concerning
the kind of variable. An example of a “formula with variables” is the expression x = Us. On sub-
stituting a term, e.g. Ujq for the the term variable x it becomes a proposition. Similarly (Ujosx) is
a formula with variables: in this case substitution yields a term. In general a formula with variables
or more briefly a formula is an expression which yields a term or proposition on substituting terms
and propositions for the (free) term and proposition variables respectively. The formulas may be
called term formulas or proposition formulas according as they give rise to terms or propositions on
substitution. The word free in the definition should be ignored for the present.

We can now describe our remaining ways of forming terms and propositions. If P is a proposition
formula with only the one free term variable x and no proposition variables then (ix,r) P is a term
and (x, r) P is a proposition. Of these the term (1x,)P has the value C unless there is one and only
one term U in type r for which the result S;,P | of substituting U for x in P is T: if there is a unique
U with this property then the value of (ix, r) P is that U. The value of the proposition (x,7) P is T
if and only if all the results of substitution, Sy,P |, with U in type r, have the value T. We may read
(mx,r) P as “the x in type r such that P” and (x,r) P as “P, for all x in type r.”

Now consider the expression (x,3)(x =y). In it there occur the two variables x and y. If we
substitute a term, e.g. Us, for y we shall obtain a proposition, but if at the same time we substitute
Uy for x we shall obtain nonsense. We would like to excuse ourselves from making this second
substitution and admit (x,3)(x =y) to membership of the class of formulas. Our excuse is that
substitution should only be made for the free occurrences of a variable, and that the occurrences
of x in (x,3)(x = y) are not free but bound. We say that a variable u occurs bound in a formula if
the occurrence in question is in a part of form (1u,7)P or (u, r)P. Thus the first occurrence of x in

216 Part 1

(v, D[x = (x, 0)(x = x)] is free and the others are bound. This expression is a proposition formula
according to our definition. To verify this, first note that x = x is a proposition formula with no free
variables other than x and that (sx, 0)(x = x) is therefore a term. Consequently U = (1x, 0)(x = x)
is a proposition, and a fortiori a proposition formula, for any term U. It has no free variables rather
than y (indeed it has none at all), and therefore (y, 1)[U = (1x, 0)(x = x)] must be a proposition for
any term U, i.e. (y, 1)[x = (1x,0)(x = x)] is a proposition formula.

It will now be seen that terms and propositions are just term formulas and proposition formulas
without free variables.

Free and bound variables are familiar in mathematics though they are seldom consciously rec-

ognized. A typical example of a bound variable is that of x in the integral fol xdx; x occurs free
in the equation x(x — 1) = 0. A convenient method of distinguishing between bound and free vari-
ables is to make a substitution of a constant (of the appropriate kind) for the variable in question.
If nonsense results the variable is certainly bound: if sense results it is most probably free. Sense
may perhaps result from substitution for a bound variable if the result of the substitution and the
original expression are interpreted according to different conventions. The double suffix summation
convention of tensor theory provides an example of this. Using this convention the variable j in the
expression a;;bjy is bound, but we can substitute 1 for j and obtain a perfectly sensible expression;
it is sensible because it is interpreted without applying the double suffix convention.

The outcome of our definition of “formulas” is that they will include terms, propositions, and
variables. Also if A and B are term formulas, P and Q proposition formulas, x a term variable,
and r a numeral representing a nonnegative integer, then (A B) and (ix,r)P are also term formulas
and (A =B), D'A, (~P), (P D> Q), and (x,r)P are proposition formulas. Our use of the letter “r”
in these cases must not of course be confused with its use as a proposition variable. One further
method of constructing formulas is worth mentioning although it is possible to do without it, and
define it in terms already explained. This is “abstraction.” If A is a term formula then (Ax,r)A is a
term formula of type r+ 1. It stands for the function whose value for the argument U in type r is
SPA |, provided that SjA | is in type r for every U in type r: if however there is a single argument
U in type r for which S/A | is not in type r then (Ax, r)A is C. We can define (Ax,7)A in previously
explained terms as

(y,r+ D(~[(x, N(yx =A) > D%])

where y is any variable not occurring free in A.

In the case of a finite universe the individuals Uy, ... Uy form a part of the system. When dealing
with an infinite universe this does not seem to be necessary, but it is convenient to retain symbols
for three of them; these are U; which is called C and which we have already mentioned, U, which
is called T’ and Uz which is called F'. . These last two may be regarded as unofficial representatives
of truth and falsity, looking after their interests amongst the terms: their official representatives are
T and F which are propositions. The chief use of 7’ and F’ is in connection with propositional
functions. If we wish to express ‘x is mortal’ we form a function M which is defined for individ-
uals (supposed to include mammals) and has the value T’ for mortal arguments, F’ for immortal
arguments. Then “x is mortal” is written as Mx = T".

At this point we should pause and consider what we have done. We have defined a class of
expressions which we have called term-formulas and proposition-formulas, and which roughly cor-
respond to the terms and propositions of mathematics. These formulas are given interpretations in
the finite universe in terms of individuals and tables. Each term formula without free variables has
an interpretation as a particular individual or table, and each proposition formula has an interpre-
tation which is truth or falsity. We are able to determine whether a proposition formula without
free variables is true by working out its interpretation, although this will be a very lengthy business
unless the formula is very simple and N very small. The work involved in establishing the truth of

Practical Forms of Type Theory 217

formulas can be greatly reduced by the use of various rules, e.g. that if two formulas P, Q are true
then ~(P D ~Q) is true. A process of application of such rules may be allowed to oust the process
of working out the interpretation.

Since the majority of the rules involved do not make any reference to the number N it is easy
to forget the finite universe, and to allow the various rules to become reflex action. Eventually we
break off almost all connection with the finite universe picture: in particular we repudiate such
propositions as

(x, Ny, N(x#y) D () # () D (x, N@y,N((fy) =x)

which are especially connected with such a picture. Finally we even repudiate the picture more
violently by adopting an “axiom of infinity.”

This, in my opinion, is a very idealised but essentially correct account of how the present math-
ematical argument-form has grown up. The last step or two may appear very lame, but I think this
cannot be helped: I think that these last steps are not really sound.

One set of rules which can replace the finite universe picture is given below in §2 (rules I-X,
XI,).

ABBREVIATIONS. At this point we are obliged to introduce a few conventions which permit us to
abbreviate our formulas. The unabbreviated formulas would be disagreeably cumbrous.

(a) We may introduce abbreviations by means of the arrow: a formula standing to the left of an
arrow is understood to be an abbreviation of that on the right of it. If heavy type letters appear
in these expressions it is understood that the formula on the left is an abbreviation of that on
the right for any meaningful substitutions of formulas for the heavy-type letters. With these
conventions we introduce the abbreviations:

P& Q) — (~(P>(~0Q)))
PvQ) — (~P)>0)
P=0)—>(PDQ) &(@DP)
Ex, NP — (~((x, r)(~P)))
Alx, nP — (3x, NP & (x,r)(y,r)(P # S;PI Dx=y))
(A#B) — (~A =B))
T— (x,0)x=x

F— (~T)

The variable y must not be free in P.

(b) formulas of form A & B &...& P we consider not to need any more brackets, since they have
the same meaning in whatever manner the brackets are put in. Strictly speaking this equivalence
only applies in virtue of rule IV below, and the reader may prefer to adopt some definite con-
vention of his own as to the way the missing brackets are to be supplied. Similar considerations
apply to formulas of formA VBV ...V P.

(c) We shall often leave brackets out in cases where it is quite obvious how they should be replaced.
Excessive bracketing often makes the formulas difficult to read. It is not thought worth while to
introduce definite conventions in the present paper: we rely on common sense instead. Likewise
we permit alterations in the form of a pair of brackets. These common sense conventions have
already been applied to some extent.

218 Part 1

2. Formal account of the nested-type system

We now describe the practical system in the usual formal manner, specifying what series of symbols
are to be regarded as term-formulas, proposition formulas, variables, provable formulas, etc. We do
not follow this aspect very far in the present paper, believing that mathematics is suffering more
from lack of sound notation than from lack of rules of procedure.

Term variables. The symbols a,b, ..., n,o,u,v,w,x,y,z,a’,b’,... are term variables.
Proposition variables. The symbols p,q,r,s,1,p,’ ¢ , ... are proposition variables.

Term formulas, proposition formulas, and formulas. Term variables are term-formulas. Terms
wh, Ug ,...) are term formulas. Prosposition variables are proposition formulas. If A and B
are term formulas and P and Q are proposition formulas and x is a term-variable and r a
numeral representing a non-negative integer, then (AB) and (ix,r)P are term formulas and
(A=B),(~P), (P> Q),D"A, (x,r)P are proposition formulas. Term formulas and proposition
formulas are formulas. No expression is a term variables, term formula, proposition variable,
proposition formula, or formula unless compelled to be so by the foregoing.

Free and bound occurrences of variables. Each occurrence of a variable in a formula is either
a bound or a free occurrence, but cannot be both. Occurrences of proposition variables are
always free. The occurrence of the term variable X in the formula X is free. In the formulas
(AB),(1X,r)P,(A =B),(~P),(P D Q),D"A, (X, r)P the occurrences of the various variables are
free or bound according as they were free or bound in their corresponding occurrences in A, B, P,
or Q except that the occurrences of X in (X,r)P, (1X, r)P are bound.

It may be observed that all four possible combinations concerning the presence or absence
of a variable bound or free in a formula can occur. Examples are T’ x, (2x,0) (x = x),x = (1x,0)
(x=x).

Formulas and tautological formulas of the propositional calculus. The formulas of the proposi-
tional calculus are defined to be the least class of formulas containing the propositional variables,
and containing (P D Q) and (~P) whenever it contains P and Q. Tautological formulas of the
propositional calculus are those which always give the value T if a substitution of values T
or F is made for the variables, and the result then evaluated as follows: TO T is F, TDF is
F,FOTisT, FOFisT,~TisF,~FisT.

The rules of procedure (provable formulas). We word our rules of procedure in the form of a
definition of the “provable formulas”. Throughout, r is any numeral representing a non-negative
integer.

Rule I (Change of bound variables). The formulas

(x,r)P = (y,r) S;P|
(X,r)P = (7y,r)S;P|

are provable if P is a proposition formula in which y does not occur free, and x is not free at
a place where y would be bound.

Rule II (Substitution). If P is provable, then S% P| and S‘éP| are provable, where A and Q are
respectively term and proposition formulas, and the bound variables of P are distinct both
from x and ¢ and from the free variables of A and of Q.

Rule 1T (Quantifiers). If either of the two formulas H D (D"x D P),H D (x,r)P is provable,
and x is not free in H, then the other is also provable.

Rule IV (Propositional calculus). Any tautologous formula of the propositional calculus is
provable.

Rule V (Modus ponens). If the formulas P D Q and P are both provable then Q is provable.

Practical Forms of Type Theory

219

Rule VI (Descriptions). If P is a proposition formula in which x does not occur bound, then

the formulas
@A'x, nPD S’(C1x,r)pP|
~@A!x,r) PD (ix, n)P=C
D" (ix, r)P

are provable.
Rule VII. The formula

(x, PD'A D @y, r+)(~D% & (x, r)yx=A)

is provable provided y does not appear free in the term formula A.

Rule VIII (Axioms). For any numeral r representing a non-negative integer the following

formulas numbered Al to C2 are provable:
Al. C#T &C#F &T #F
A2. D°C & DT & D°F'
A3. [D%xv (D'tx &~D"y)| Dxy=C
Ad. D'xD Dty
A5. D'tlx>D'xy
Bl. x=x
B2, y=x&y =2Dx=z
B3. x=yD(x =zy&xz=y2)
Cl. (x,)fx=gxD[f=gVvDv Dlgv ~Dtlfv~prtlg]
(Axiom of extensionality.)
C2. @i, r +2)(f,r+1)(Ax, Nx=T)DfGI) =T']

(Axiom of choice.)
Rule IX (Axiom of infinity). The following formula is provable:

C3. @h, DH(@v,0)(x, 0)(y, O)[(hx = hy D x = y) & v # hx]

If we have a finite universe with N individuals instead of an infinite one we must replace rule

IX by:

Rule IXy. The following, DI and D2, are provable:
DL Dx=(@x=Uv..vUl)
D2. U £yt

where m and n are different and not greater than N.

We may make a number of remarks about these axioms and rules:

(1) Axioms D1, D2 are rather stronger than is really necessary. Instead we could use the one axiom

Dx>@x=Ulv.. . vx=Ul)

which would be more nearly analogous to C3, but would admit the possibility of there being

fewer than N individuals.

(2) The second formula under rule VI might have been omitted. If this had been done it would have
been necessary to define a new description operator in terms of the old one in such a way that

the second formula would apply for the new operator.

220 Part 1

(3) It may be wondered why rules VI and VII do not appear under the axioms, yx = T’ being written
for P and yx for A. If there had been any more rules of this kind they could have been replaced
by axioms, by making similar substitutions, but these axioms would only be equivalent to the
corresponding rule in the presence of rules VI, VII. It will now be clear why rules VI, VII
cannot themselves be written as axioms.

(4) A term U,, and its corresponding formula U¥ are not regarded as identical as they were in §1.
We have introduced a distinction rather similar to the distinction between the real and complex
numbers 7. This distinction will be of value in any attempt to provide a formal justification of
the system in terms of tables: it would then be very embarrassing to have the same notation
both for a formula and its interpretation. The author has carried through such a justification in
detail, together with a proof that the system is complete for the finite universe. This provides
a good check that no essential axioms have been omitted. The theorem mentioned in the next
section provides a similar check.

(5) Although rule III does not permit H D (D"x D P) to be deduced directly from H D (x,r)P if x
is free in H, the deduction may be made indirectly.

(6) The axiom of choice is optional, i.e. we may drop this axiom and still retain a system adequate
for the greater part of mathematics.

(7) We shall not carry out any proofs in this paper, but the following provable formulas are of
interest:

x=yD(D'xD>Dy)
(x,r)(P=Q) D (ix,r) P = (ix, r)Q
(x, PA =B D (Ax, A = (Ax,r) B
(x, ’D"A D (x,)[((Ax,r)A)x = A]
Dt () A
(f,n g Nllx, r+ Df =xg) D f =gl
D x=[(y,r + 1)(D'y &D'yVxy=C)} & D"x]

3. Equivalence with Church’s system

The nested-type system described above may be proved equivalent, in a certain sense, to Church’s
simplified theory of types.® The proof is long and tedious, and would not justify publication, but it
may be of interest to give an exact statement of the equivalence theorem. The form of “equivalence”
used has a certain interest in itself.

DEFINITION. A logical system 1 will be said to be equivalent to the logical system 2 if to each
proposition-like formula A of 1 we can make correspond a proposition-like formula A2 of 2,
and conversely to each proposition-like formula P of 2 we can make correspond a proposition-like
formula P of 1, in such a way that

(i) If A is provable in 1 then A1 is provable in 2.
(ii) If P is provable in 2 then P> is provable in 1.
(iii) If A is a proposition-like formula of 1 then (41?)@D = A is provable in 1.

3 Alonzo Church, A formulation of the simple theory of types, this JOURNAL, vol. 5 (1940), pp. 56-68.

Practical Forms of Type Theory 221

(iv) If P is a proposition-like formula of 2 then (P>1)(1-2) = P is provable in 2.

(v) If A and B are proposition-like formulas of 1 then we can prove (A =B)12 = (A(l’z) =
B2y in 2.

(vi) If P and Q are proposition-like formulas of 2 then we can prove (P = 0)%) = PeD =
0%Dyin 1.
The formula A2 must be an effectively calculable function of A and P! of P.

It is understood that for each system there is defined a special kind of formulas called
‘proposition-like formulas’; that every provable formula is necessarily proposition-like, and that
it is a comparatively trivial matter to determine whether a formula is proposition-like or not. Specif-
ically we may say that the statement “A is a proposition-like formula” should be equivalent to some
statement of the form “¢(n) = 0” where n is the Godel representation of A and ¢ is some primitive
recursive function. It is also understood that both systems “include the propositional calculus’: this
is required in connection with the logical equivalence signs in (iii) to (vi).

We are justified in describing this relation as the equivalence of the two systems, for the relation
is transitive, symmetric, and reflexive, as I shall now show. The symmetry of the relation follows at
once from the fact that interchange of systems 1 and 2 simply interchanges conditions (i) and (ii),
(iii) and (iv), (v) and (vi). Reflexiveness is proved by taking ALY tobe A. Transitivity is not quite
s0 easy. We shall have to bring in a third system 3. We will define A"*3 to be (41?)%3) and AG:D
to be (A32)2D We assume conditions (i) to (vi) to hold for the pairs 1,2 and 2,3 and attempt to
prove them for the pair 1, 3. Because of the symmetry it is sufficient to prove (i), (iii), (v). To prove
(i) we must prove (A1?)23) in 3 assuming A provable in 1. Now by (i) for the pair 1,2 we see that
A2 is provable in 2, and then by (i) for the pair 2,3 we get (A1"?)23) in 3. To prove (iii) we must
prove ((A12)230)B2y2D = 4 in 1.

Using (iii) for the pair 2,3 gives us ((A12)23)3.2) = A(02) (ip 2), whence by (ii) for the pair
1,2 we have

(A12)23)3.2) = 41.2)y2D
Also by (vi) for the pair 1,2 we have
(((A(1’2))(2’3))(3’2) EA(IQ))(Z,I) = ((((A(1’2))(2’3))(3’2))(2’1) = (A(1,2))(2,1))
and by (iii) for the pair 1,2 we have
Q022D — 4
Combining these last three results by the rules of the propositional calculus we obtain
(A1D)23 By — 4

as required.
To prove (v) for the pair 1,3 we must prove

(A= B)(I’Z))(Z’S) = ((A(I,Z))(2,3) = (B(l’z))(2’3))
By an application of (v) to the pair 1,2 followed by an application of (i) to the pair 2,3 we get
(A EB)(LZ) = (A(LZ) EB(I’Z)))(2’3)
and by an application of (v) to the pair 2,3 we have

(A EB)(1’2) = (A(ll) EB(1,2)))(2,3) =(A= B)(1,2))(2,3) = (A(ll) EB(LZ))(2,3))

222 Part 1

Combining these by the propositional calculus gives
(A = B)1:)23) = (4012 = p(12)y23)

Condition (v) applied to 2,3 also gives
(A(ll) EB(1,2))(2,3) = ((A(1,2))(2,3) = (B(I,Z))(Zﬁ))

from which we now obtain the required result.

Our definition of the equivalence of two systems could be summed up by saying that they are
equivalent if we can translate from either system to the other in such a way that provable propo-
sitions translate into provable propositions again, and so that a double translation gives rise to a
proposition equivalent to the original. This explanation ignores the last two conditions (v) and (vi),
which are rather too tenuous for such rough handling.

The equivalence theorem then states that the nested-type system is equivalent to Church’s sys-
tem, if the proposition-like formulas of the nested-type system are taken to be the proposition
formulas without free variables, and the proposition-like formulas of Church’s system are those
of type o without free variables.

4. Relaxation of type notation

The form of type theory which we have described is one in which the types themselves do not
intrude very much. Even so they do still intrude to an appreciable extent, and it would be desirable
to see how much further they can be relegated to the background. A possible way of doing so will
be described in this section.

We could sum up the effect of type theory as it appears in this system by saying that we give
no meaning to the expressions ‘for all x, A,” ‘there exists an x, such that A,” ‘the x, such that
A, ‘the function whose value for argument x is A’ (usually expressed symbolically as (x)A,
(@v)A, (x)A, (Ax)A, respectively). Instead we give meaning to the expressions
(x,nA, (Ix, A, (x,r)A, (Ax,r)A. Nevertheless in a large class of cases we can assign meanings to
(x) A, (Ix)A, (x)A, (Ax)A in a satisfactory manner. A typical case is that of a formula of the form
(1x)P where P is such that we can prove P O D'%x, say. In this case for any integers r,s > 10 we can
prove (1x,r)P = (1x,s)P and it is therefore natural to stipulate that (2x)P shall stand for the common
value of (2, 10)P, (1x,11)P, ---. We may say more generally that if (ax,rg)P = (1x,r)P is provable
for all r = ry then (1x)P shall be said to be interpretable and to have the interpretation (ix,ro) P.
This is of course still only the beginning of a definition of “the interpretation of a formula with
some type bounds omitted.” In order to give the complete definition we must deal properly with
formulas having free variables: results such as P > D'%x (quoted above) are not normally provable
if P has free variables other than x. On this account we introduce the idea of “interpretability under
hypotheses”; the hypotheses involved are usually of the form D"x. The complete definition is as
follows:

All variables and C,T’, F’ provide their own interpretations under any hypotheses.

If A, B, P, Q have interpretations A’,B’,P',Q’ under certain hypotheses, then (AB), (A =
B), D'A, (P> Q), (~P) have the interpretations (A’B’),(A’=B’), D'A’, (P’ D> Q'),(~P)
respectively under the same hypotheses.

If, for each r 2 ry, P has the interpretation P, under hypothesis H & D"x where H does not
contain x free and we can prove

(A) H D (ix, ro)Pry = (1x,r)P;
then (2x)P has the interpretation (1x, r9)P,, under hypothesis H. If instead of (A) we can prove

H D> [(x,r0)Pyy = (x, NP;]

Practical Forms of Type Theory 223

then (x)P has the interpretation (x, r9)P under H.
No formula has any interpretation unless compelled to by the foregoing.

It may be observed that every formula of the nested-type system is interpretable and provides
its own interpretation. Also that if H D K is provable and a formula has a certain interpretation
under K then it has the same interpretation under H.

If P has the interpretation P, under H & D’x and we wish to show either that (sx)P has the
interpretation (1x,79)Py,, or that (3x)P has the interpretation (3x, ro)P,, under H, it is sufficient
to prove P, D D"0x(r 2 rp).

It will be seen that this definition does not provide an effective means of determining whether
or not an expression is interpretable. This need not be considered a serious drawback, as we seldom
need to establish that an expression is not interpretable.

The most natural cases where we can apply the above definitions are those of (x)(A D B), (Ix)
(A & B), (1x)(A & B) where A D D"x is provable for some ry. It is fairly easy to remember which
are the most important expressions A of this kind: e.g. in almost any formalisation we shall have “ ‘x
is areal number’ D D"0x” with ry = 10 say; this fact would be remembered in the form “the class of
real numbers is all right.” It is not so easy to remember the appropriate numbers rp, but it is hardly
necessary to do so if the notations (x)A etc. are adhered to throughout. When A is such that for
some rp we can prove A D D"0x I shall call the class of x for which A is true a “noun-class.” “There
is a very close connection between the part played by the formulas A in our system and nouns in
ordinary language; so much so that one might say that type theory had been instinctively obeyed
for thousands of years before its discovery by Russell. This connection may be seen by translating
x)(ADB), (Ix) (A & B), (1x) (A & B) roughly as “All A satisfy B,” “There exists an A satisfying
B” and “The A which satisfies B.” In each case A is translated in the form of a noun. It seems that
the necessity to use nouns prevents us automatically from committing type fallacies in common
speech. We can probably only break down this ‘safety device’ by using nouns such as ‘thing’ or
‘object’ with the intended meaning ‘anything whatever.” In the case of the Russell paradox (‘class
of all classes which are not members of themselves’) we use the word ‘class’ in very much that way.
We use it to mean ‘class of anythings whatever.’

There are various ways in which we might make use of the idea of interpretable formulas to
transform what we have called the ‘nested type system’ into something rather more closely anal-
ogous to common mathematical practice. One possibility is simply to regard the formulas without
types as abbreviations of the appropriate formulas of the nested-type system, such formulas only
being used when the appropriate metamathematical result justifying the interpretation has been
established. This does not seem to be really satisfactory because of the frequent need to prove such
metamathematical results. Alternatively we may set up some new symbolic system in which the for-
mulas form a considerably wider class than those of the nested-type system, and are all interpretable
as defined above. The author has investigated two such systems. In one of them the expression.
(x,A)P had the meaning which we have assigned to (x)(Ax = T" D P). This is always interpretable
if A is interpretable and without free variables. This scheme leads to rather heavy formulas in the
elementary stages, though it may have advantages when more advanced branches of mathematics
are reached. The second system appears rather more hopeful, and will now be described briefly. It
may be called the “concealed type” system.

The formulas in the concealed type system will be described as “admissible formulas” to dis-
tinguish them from the formulas of the nested-type system. The admissible formulas will in fact be
included amongst the interpretable formulas associated with the nested-type system. There will be
admissible term formulas (ATF) and admissible proposition formulas (APF). We define APF, ATF,
and provable formula by a simultaneous induction. Consequently there is no rule for determining
whether an expression is an admissible formula or not: this is not usual in logical systems, but there

224 Part 1

seems to be no good reason for a positive taboo on such an arrangement. We now give the inductive
definitions.

Every term variable is an ATF and every proposition variable is an APF.
The symbols E, C,T’,F’ are ATF.

If A, B, F are ATF and P, Q, R, S are APF, and P D Ax =T',~Q D Ax =T’ are provable for-
mulas then (Ax)P, (x)Q, (B=F),(R D S),~R are APF, and (»x)P, (BF) are ATF. The variable
Xx must not occur free in A.

Free and bound occurrences of variables are defined as in the nested-type system.

The symbol E corresponds to (Ax,0)7" of the nested type system. Its main purpose is to take
the place of D? and indirectly to replace the other D". For any formula A we can prove
((2x,0)T")A = DA in the nested-type system.

If A and B are ATF not containing x, y, or z free then the two expressions below are ATF, viz.
) @[xvyx =C) &~Ey & (yjx= (AxV Bx))]
() ®)[x Vyx = C) &~Ey & (yx = (z){(Bz D A(xz) & (Bz D xz = C)}]

They may be abbreviated respectively to Sum A B and Pot A B. In these formulas we have
adopted the useful convention that a formula of form A = T" may be abbreviated to A. The
context will always enable one to determine when this abbreviation has been applied. We shall
continue to use this convention.

Strictly speaking the definitions of Sum AB and Pot AB are invalid because the bound variables
x, y, z were not specified. This technical difficulty may be resolved by requiring x, y, z to be the
three earliest variables not appearing free in A, B.

The remainder of the definition consists of the axioms and rules of procedure. It may be
remembered that these took the form of a definition in the nested-type system also

Rules of procedure (concealed-type system).
Rule I. The formulas

xX)P = (y)S*P|
(x)P = (1y)S)P|

are provable if (x)P is an APF in which x is not bound in P,y does not occur free, x does not
occur at a place where y would be bound, and (2x)P is an ATF.

Rule II. If P is provable, then $% P| and S’éP| are provable, where A and P are respectively an
ATF and an APF, and the bound variables of P are distinct both from x and ¢ and from the free
variables of A and of Q.

Rule IIl. If HD P and H D (x)P are both APF and one of them is provable then the other is
provable also.

Rule IV. Any tautologous formula of the propositional calculus is provable.
Rule V. If the formulas P D Q and P are both provable then Q is provable.
Rule VI. If P is an APF in which x does not occur bound, then the formulas

@A'x)P > S)(Cm) pP|
~@Alx)PD (x)P=C

are provable provided they are APF.

Practical Forms of Type Theory 225

Rule VII. 1f A is an APF in which x, y, z, u do not occur free, then
() (ux D zA) D @) [(Potzu)y & (x)(ux D yx =A)]

is provable.
In rule VI the definition

@lx)P — @0P & (x)(y) (P& 3P| Dx =)

is understood, y standing for a variable not occurring free in P.
The axioms are:

Al C£T'&C#F & T #F

A2 EC & ET & EF

A3 ExDxy=C

Bl x=x

B2 y=x&y =2)Dx=z

B3 x=y)D(x =zy &xz=y2)

Cl [(Pot yu)f & (Pot yu)g & (x)(ux D fx=gx)] Df =g

C2 3i)[(Pot u(Pot Eu))i & (f) {[(Pot Eu)f & (Ax)fx] D f(if)}]

C3 3N[(PotE E)t & (Av)[Ev & (x)(»){(Ex &EY)

D (x=1yDdx=y) &vF#m)}l

To complete our inductive definition we need only add that no expression is an ATF, APF, or

provable formula unless compelled to be so by the foregoing.

the

We may say that roughly speaking type theory appears in the concealed type system only through
condition that P D Ax = T’ must be provable if (1x)P is to be an ATF, and a similar condition for

(x)P. The system is related to the nested-type system by the following metamathematical results:

ey
©))

If we substitute (Ax, 0)T’ for E throughout an admissible formula without free variables we
obtain an interpretable formula.

If in a provable formula of the concealed-type system without free variables we make the
substitution mentioned in (1) and then form an interpretation of the resulting formula we obtain
a provable formula of the nested-type system.

(3) Every provable formula of the nested-type system is obtainable as in (2).

A valuable aid in the proof of these is the following result which concerns the nested-type system
only:

(4) If A is a term formula containing only the variables x1, x», ..., x, free, and my,my, ..., my

are non-negative integers, then there is an integer k such that D™x; &---& D™ x, D D*A is
provable.

NATIONAL PHYSICAL LABORATORY, TEDDINGTON

This page intentionally left blank

The use of Dots as Brackets in Church’s System
(J. Symbolic Logic, vol. 7 (1942), pp. 146-156)

Lance Fortnow discovers —

TURING’S DOTS

Alan Turing’s rarely cited paper ‘The Use of Dots as Brackets in Church’s System’ defines a new
notation for Church’s A-calculus using what Turing calls dots, the symbols °.” and “:’.

Turing states that he intended to make use of this notation in forthcoming papers entitled ‘Some
theorems about Church’s systems’ and ‘The theory of virtual types’. I can find no record of those
later papers. Likely Turing’s activities during World War II curtailed his scientific research, and his
interests shifted after the war.

Even though this paper had little to no direct influence to logic and computer science, it shows
once again Turing’s ability to reason about important issues in computer science before there were
digital computers to reason about. In this case, Turing essentially studies an important aspect of
programming languages, a syntax for trees.

To understand the paper, consider precedence operations on formulas such as

4x—3y* +7

To parse this equation, we need to know that exponentiation has precedence over multiplication,
which has precedence over addition and subtraction. Operations with the same precedence occur
left to right. The expression above can be written with parenthesis as

() — BOHN+T)

Turing creates virtual precedence operations he calls dots and shows how it can replace balance
parentheses used by Church (“A Formulation of the Simple Theory of Types,” J. Symbolic Logic 5,
pp. 56-68 (1940)).

Zero dots has highest precedence, then one dot (.), two dots (:), three dots (:.) etc. At the same
precedence, application is done left to right. So the expression

a:.cd:e.fg

is evaluated as

(a((cd)(e(f2))))

Thanks to my student Arefin Huq for helping me with ‘breaking the code’ of Turing’s dot notation and to Robby Findler
for helpful discussions.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00008-4 227
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00008-4

228 Part 1

Although Turing doesn’t discuss trees, both notations describe binary trees. In this case

N
N

/NN

c d e
/\
I 9

Every binary tree can be expressed through dots or through parentheses. Turing acknowledges
that for simplicity, sometimes dot can be mixed with parenthesis or other precedence operators.

Today we have a common method for creating trees known as Extensible Markup Language
(XML). The tree above can be described by

<t

a

<t2>

<t3> ¢ d</t3>
<t4> e

<th> f g </th>
</t4>

</t2>

</t1>

The tags (<t1>, <t2>...) act like parentheses. According to Northwestern Professor Robby
Findler, an expert in programming languages, no major system uses virtual precedence operations
akin to Turing’s dots.

The reason is modularity. Suppose we wanted to replace g with a subtree consisting of r and s.
With parentheses we can do a simple replacement

(a((cd)(e(f2))))
becomes
(a((cd)(e(f(rs)))))-
With dots although we have to readjust the whole formula,
a:.cd:e.fg
becomes
a:cd:.e:f.rs

In short, Turing’s dots gave him a way to think about the order of operations in a structure that
was more intuitive to him to prepare him for planned future work on Church’s A-calculus. Unlike
the Turing machine, the dot notation did not catch on for reasons Turing did not appreciate: that
someone might want to modify the code.

The Use of Dots as Brackets in Church’s System 229

THE USE OF DOTS AS BRACKETS
IN CHURCH’S SYSTEM

A. M. TURING

Any logical system, if its use is to be carried beyond a rather elementary stage needs powerful
conventions about abbreviations: in particular one usually wants to modify the bracketing so as to
make the formulae more readable, and also possibly shorter. The present note has been written in
the belief that Church’s formulation of the simple theory of types' is particularly suitable as a basis
for work on that theory, and that it is therefore worth while introducing special conventions which
take into account the needs of this particular system. The conventions which I shall describe are
ones which I have used a good deal myself, and have always found adequate. I intend to make use
of them in forthcoming papers.” They may be regarded as an extension of Curry’s conventions.”

I shall begin with a general discussion of punctuation by means of groups of dots. This gen-
eral theory is applicable, with some modifications, to Russell’s,* Quine’s,5 and Curry’s3 bracketing
systems as well as to the present one.

General bracketing theory

We consider a logical system in which every formula is either:

An irreducible formula (or foken in Curry’s terminology).
Of form R(A) where R is a monadic operator and A a formula.
Of form (A)S(B) where S is a dyadic operator and A and B are formulae.

We need not of course enquire further into the nature of the irreducible formulae, monadic operators,
and dyadic operators, but to fix our ideas we may think of irreducible formulae as consisting of a
single letter with suffixes etc., e.g. x, Jg (f) Typical of monadic operators would be ~, [3x,] and of
dyadic operators D and =. The formulae in this sense will be described in future as unabbreviated
formulae: the word ‘formula’ without qualification will be liable to be used of various kinds of
series of symbols.

We may also recognise another kind of formulae which we call abbreviated formulae and which
consist of series of symbols which are irreducible formulae, brackets, monadic and dyadic operators,
and a new kind of symbol called a point, which may be thought of as a group of dots. To be an
abbreviated formula the series of symbols must satisfy the conditions:

(a) The brackets must be properly paired, i.e., if we go on removing pairs of brackets which face
each other and have no other brackets between them there should eventually be no brackets left.

Received June 17, 1942.

I Alonzo Church, A formulation of the simple theory of types, this JOURNAL, vol. 5 (1940), pp. 56—68.

2 A. M. Turing, Some theorems about Church’s system, and The theory of virtual types, forthcoming.

3 H. B. Curry, On the use of dots as brackets in logical expressions, this JOURNAL, vol. 2 (1937), pp. 26-28.
4 Whitehead and Russell, Principia mathematica, vol. 1, pp. 9-11.

5 'W. V. Quine, Mathematical logic (New York 1940), pp. 37-42.

230 Part 1

The brackets appearing in an abbreviated formula will often be described as ‘explicitly shown
brackets.’

(b) Of a pair of brackets one must occur adjacent to an operator and one not. The expression ‘adja-
cent to an operator’ is used here and elsewhere to mean ‘adjacent to a dyadic operator or adjacent
to and on the right of a monadic operator.’

(c) If in the formula we replace dyadic operators by ‘D’, monadic operators by ‘M’, irreducible
formulae by ‘x’ and points by °:’, calling the result the ‘projected formula,’ then the first symbol
of a projected abbreviated formula must be ‘(’, ‘x’, or ‘M’ and the last,)’ or ‘x’. A pair of
consecutive symbols in the projected formula must be ‘x)’, ‘(x’,))’, ‘M(, ‘D(,)D’, ‘(M’ or
‘((C or else part of one of the following series of three: ‘x:D’, ‘D:x’, ‘M:x’, *):D’, ‘D:(, ‘M:(,
‘D:M’, ‘M:M’: in the latter case the whole series of three symbols must be part of the projected
formula.

We want one and only one formula to correspond to each abbreviated formula. Such a correspon-
dence is defined below in terms of an ordering of the points. I shall follow Russell’s terminology and
speak of the earlier of two points in the ordering as being of higher power than the other. Curry uses
the expression ‘senior to’ and Quine, whose points are called ‘joints,” uses ‘looser than.” The power
of a point may depend on any formal relationships between the point and the formula it occurs in,
and varies from system to system.

The rule for replacing the abbreviated formula by the unabbreviated may be put into two forms,
of which the first is the more natural theoretically, and the second, which seems rather arbitrary, is
the easier to apply.

First form of rule

The rule operates by reducing the number of points in the formula whose unabbreviated form is to
be found.

Suppose first that the formula has explicit brackets, e.g. that it is of form A(B) C, where A, B,
C are not required to be formulae in any special sense, but just rows of symbols, and the brackets
shown are properly paired. Then the unabbreviated form of A(B)C may be obtained from the unab-
breviated forms E of AwC and F of B by substituting (/) for w in E. The symbol w is to be some
symbol not occurring in A or C. In other words the interior of an explicitly shown bracket is to be
worked out as if it were a whole formula, and the part of the formula outside the bracket is to be
worked out as if the bracketed part were a single letter.

If the formula has no explicitly shown brackets we find the point of highest power and replace it
by a bracket. This bracket is to be right facing if the point is right facing, i.e., if it is on the right of
its operator: similarly the bracket is left facing if the point is left facing. Another bracket, oppositely
facing, must be put at one end of the formula to balance the first.

Second form of rule

We first define the enclosing brackets of a symbol other than an explicitly shown bracket. They are
paired explicitly shown brackets, enclosing the symbol in question, but not enclosing any other pair
of brackets which enclose the symbol. If the enclosing brackets are always to be defined there must
be a pair of brackets enclosing the whole formula. We imagine these supplied.

To find the unabbreviated formula we clearly have to replace each point by a similarly facing
bracket, and to put in a balancing bracket somewhere. The interval from the point to the balancing
bracket is called the scope of the point: in reckoning scopes, points and brackets will be neglected,

The Use of Dots as Brackets in Church’s System 231

so that for instance if two similarly facing points are to have their partnering brackets immedi-
ately following one another their scopes will be regarded as ending at the same place. The rule for
determining the scope is that it is to be as short as possible, subject to the following scope condition:

The balancing bracket 8 of a point 7 is either adjacent to one of the enclosing brackets of
7, or else to some point p facing oppositely to 7w and having the same enclosing brackets
as 7 in which case 8 must be on the side of p which is nearer to 7. The point p must be of
higher power than 7 or any point between p and facing similarly to = and having the same
enclosing brackets as 7.

Equivalence theorem

There are three things to be proved about these rules:

(i) When we use the first rule it does not matter in what order the pairs of explicit brackets are
taken.
(i) The result of applying the first rule to an ‘abbreviated formula’ (satisfying by definition
conditions (a), (b), (c) above) is to give us an ‘unabbreviated formula’ as originally defined.
(iii)) The two rules are equivalent.

To prove (i) let A(B) C be one of the shortest formulae for which the result of applying the
rule is not unique. We are justified in assuming that explicit brackets occur for otherwise the first
step in applying the rule is uniquely determined and consists in introducing brackets. Whatever
transformation we apply to the formula it remains of the form A’(B")C’ where A’'w C’ is obtained
from AwC and B’ from B by a (possibly incomplete) application of the rule. In particular this is true
of the final result of applying the rule. In this case In this case AwC’ contains no points: it is therefore
the final result of applying the rule to AwC and since AwC is shorter than A(B) C the formula must
be unique. Similarly B’ is unique, and therefore A’(B)C’ is unique.—The word ‘shortest’ as used
in this argument must be interpreted as ‘having the smallest number of symbols, points however
being reckoned as two symbols.’

To prove (ii) it is sufficient to show that the application of the transformations described in the
rule always leaves us with an abbreviated formula, and that if an abbreviated formula has no points
then it is an unabbreviated formula. The transformations always consist of the removal of a point
and the introduction of a pair of brackets. The brackets have no other brackets between them, so that
the brackets remain properly paired, i.e., (a) remains satisfied. One of the brackets replaces a point,
and therefore by (c) applied to the original formula is adjacent to an operator. The other bracket is
put in either at the end of the formula or adjacent to a similarly facing bracket, facing away from
it. It cannot be adjacent to an operator, for if it were there would have been an operator adjacent to
the end of the formula, or to a bracket facing towards it in the original formula, contradicting (c).
This shows that (b) remains true. To show that (c) remains true we have only to notice that when
we replace points by similarly facing brackets in the admissible combinations the results are made
up of admissible combinations, and that admissible combinations always result when a bracket is
introduced at the end of the formula or adjacent to a similarly facing bracket.

To prove the second requirement let us see what condition (¢) amounts to when there are no
points in the formula. The allowable pairs of symbols in the projected formula are ‘x)’, ‘M, ‘D(,
D,), f(x, ‘(M°, ‘(C and a formula must start with (", ‘M’, or ‘x’ and end with ‘x’ or ©)’. If it
starts with ‘x’ it can only continue with ‘(’, and this bracket can have no partner: i.e., if the projected
formula starts with ‘x’ then ‘x’ is the whole of it. If it starts with ‘M’ it continues with ‘(’, and this
bracket has a partner, so that the whole is of form M(A)B, and by (b) of form M(A). If the formula
starts with ‘(’ this has a partner which by (b) is adjacent to an operator: i.e., the formula is of form
(A)DB and therefore of form (A)D(C)E. Applying (b) we see it is of form (A)D(C). Thus we have

232 Part 1

shown that abbreviated formulae without points are always either irreducible formulae or of one of
the forms R(A) or (A)S(B), where R is a monadic and S a dyadic operator. The formulae A and B
necessarily satisfy the conditions (a), (b), (c) since the whole formula satisfies them, and the symbols
allowed at the ends of a formula by (c) are just the ones which may follow a right facing bracket
or precede a left facing bracket: these formulae are therefore themselves ‘abbreviated formulae.’
An induction over the length of the formula will now prove that every abbreviated formula without
points is an unabbreviated formula, as required.

To prove (iii) notice that the second rule agrees with the first as regards the replacement of the
points of highest power, for with either rule we may suppose that the enclosing brackets of the point
to be replaced are at the ends of the formula. It will therefore be sufficient to prove that the order of
replacement of two points may be interchanged when we are using the second rule.

The case when the two points did not originally have the same enclosing brackets is trivial, for
then the replacement of the one point does not alter the set of symbols having the same enclosing
brackets as the other, and therefore does not alter its scope. We may therefore suppose that the
enclosing brackets of both points are at the ends of the formula. We may also suppose that there are
no other brackets in the formula, for if any pair of brackets, together with what is between them, is
replaced by a single letter, the scope of neither of the points is altered.

The scopes of two points can never be strictly overlapping. Suppose that the scope of one point
is limited by brackets « and 8 of which « is the one further to the left, and the other by y and § of
which y is to the left; also that « is to the left of 8 and that the scopes strictly overlap, so that the
brackets form a figure like this

[G P
o y B 46

The points from which these brackets arise can be either at & and y, or at & and §, or at 8 and y
or at B8 and §. The consideration of the last alternative can be omitted as it is the same as the first
apart from interchange of left and right. In the case that the points are at « and y the brackets «, 8
must satisfy the scope condition, so that the point at 8 must be of higher power than those at « and
y or any right facing point between « and §; in particular it is of higher power than those at y and
between y and B, and therefore by the scope condition the bracket § partnering y must have the
same position as £, in which case the scopes do not strictly overlap. Next suppose that the points
are at o« and §. Then applying the scope condition to the brackets o and 8 we find that the point at 8
is stronger than that at y, and this means that the scope condition cannot be satisfied for a point at &
whose partnering bracket is at y. Finally suppose that the points are at 8 and y. Applying the scope
condition to y and § we see that either y or some right facing point between it and 8 is of higher
power than 8: but if this is so the scope condition cannot be satisfied for o and 8.

This completes the proof that the scopes of two points can never be strictly overlapping, and we
now apply it to the interchange of order of removal of brackets under the second rule. Suppose that
the scope of the first point is from « to $, the point itself being at o, which we suppose to be to
the left of B, and the scope of the second from y to §;y being to the left of §, but no assumption
being made as to whether the point was at y or §. We wish to show that the scope of the first point
as calculated by the scope condition is unaltered if the other point is replaced by its brackets y, 8.
To fix our ideas we suppose that the scopes « to 8 and y to § are as calculated before either pair of
brackets has been put in. The scope of the first point is certainly unaltered by the replacement of the
second in the case that the scopes do not overlap at all, for then neither the points within the interval
a to B, nor the left facing point (or possibly bracket) at B can be altered by the introduction of y and
4, and the application of the scope condition gives exactly the same result for the position of . As
the scopes cannot strictly overlap we must suppose that either the interval « to B is wholly contained
in the interval y to § or wholly contains it. In the first case the data for the application of the scope
condition to the bracket 8 are again not relevantly altered. If the interval y to § is wholly contained
in the interval « to B we consider separately the possibilities that 8 might be moved farther to the

The Use of Dots as Brackets in Church’s System 233

right or farther to the left by the introduction of y and §. To show that 8 is not moved farther to the
right it will be sufficient to show that the interval still satisfies the scope condition. This is certainly
the case, for the effect of the introduction of y and §, so far from introducing new right facing points
is to enclose some in brackets, thereby as it were disqualifying them, and also to remove the point
from which y and § themselves arose. To show that g is not moved farther to the left we have to
show that there can be no left facing points p between o and 8 which satisfy the scope condition.
Such a point would certainly have to be between 6 and B, for if it were between y and § it would
not have the same enclosing brackets as «, and if it were between « and y the position of 8 would
have been at p regardless of whether the brackets y and § had been put in or not. If p between &
and B satisfies the scope condition, then in the original formula there must have been a right facing
point o either at y, or in the interval y to §, which was more powerful than p and less powerful
than the point at 8. However, as the scope of the bracket y, 8, if it arises from a point at y, extends
only as far as , there must have been a point at § more powerful than ¢ and therefore than p and
all right facing points in the interval « to y. The original position of 8 would therefore have been
the position of é. If on the other hand the brackets y and § arise from a point at §, then p must have
been less powerful than some right facing point o in the interval y to § without the alternative of o
being y itself. We may suppose that o is the right facing point of highest power in the interval y to
8. But then as the bracket from § extends as far as y, either the point at § or some left facing point
T in the interval o to § must be of greater power than o and therefore than p:7 would then be of
higher power than all right facing points in the interval « to y and also in the interval y to §, and
therefore would have been the original position of §.

Jutaxposition and omitted points

In most systems there is some operation which is described simply by juxtaposition, without any
special operator. In Church’s system this is the application of a function to its argument; in Russell’s
it is conjunction and in algebra it is multiplication. In such systems the abbreviated formulae will
be less restricted than the abbreviated formulae in the sense defined here. It is also usual to omit
some of the points in the abbreviated formulae, it being understood that a point is to be introduced
wherever one is necessary in order to satisfy the conditions (a), (b), (c), above. The power of such
points may be settled at the same time as the other power conventions. There is one matter which
has been left doubtful about the introduction of these points. When a pair of brackets is adjacent to
operators at each end one of the brackets must be ‘protected’ from its operator by a point, but only
one, in order to satisfy (b); which bracket should it be? The following three rules are equivalent:

(1) One may put in a point in both places. In this case (b) is no longer satisfied, and the final result
of removing the points, by either of the rules, leaves an otiose pair of brackets which have to
be removed before we have an unabbreviated formula.

(2) Both points are put in and then the weaker one removed.

(3) If the conventions below are adopted one may put the point in after the brackets.

With this practical kind of system, where juxtaposition is used and some points are omitted,
the abbreviated formulae do not satisfy the conditions (b), (c) above: they satisfy (a), however, and
also (¢), below. To distinguish these formulae from the abbreviated formulae proper I will call
them practical formulae. The conditions (a), (¢’) are necessary and sufficient for being a practical
formula.

(¢") No pair of consecutive symbols in the projected formula may be one of the following: ‘()’,
‘2, 4D, 0y, e, M), *MID?, ‘D)’ ‘DD’ . No three consecutive symbols may be ‘M:D’ or ‘D:D’.
The projected formula may begin only with ‘(’, ‘x’, or ‘M’ and may end only with)’ or ‘x’.

From a practical formula we can obtain an abbreviated formula by first introducing an operator
* to take the place of juxtaposition, and afterwards the omitted points. Wherever a point 7 is not
adjacent to an operator we replace it by ‘m x7’. We replace ‘)’ by) x (’,)A’ by)xA’, ‘A(C by

234 Part 1

‘A% (’ and ‘AB’ by ‘A x B’ if A and B are irreducible formulae. We then replace the omitted points.
We may use small circles to represent them: thus the sequences ‘xD’, ‘Dx’, ‘Mx’, ‘MM’, ‘DM",
‘xM’,)M’ in a projected formula become ‘x,D’, ‘Dox’, ‘Mox’, ‘MM, ‘DoM’, ‘xoM’, *)oM’. The
last two of these must be again modified by the introduction of %, giving ‘x, %, M and), %, M’ but
the process then comes to an end.

Application to Church’s system

In Church’s system the irreducible formulae are the variables and other single letter formulae,
including, if we wish, abbreviations such as Sy, . The monadic operators are ~, [x], [3x,], [txo], Axy
and [Ax,], of which the last two may be regarded as the same so far as the unabbreviated formulae
are concerned. The dyadic operators are D, v,=,&,=,#, to which we may add . If we adopt the
conventions of the last section it is only necessary to decide on the relative powers of the points
in order that the unabbreviated form of a practical formula should be determined. The conventions
recommended are as follows:

We divide the operators into two classes:

Class of high power containing D, v, &, =,~,[xy], [Axy], [tx¢], [Ax«], =, 7, and others which
may be added from time to time such as >, <, /.

Class of low power containing Ax,,%*, and others which may be added from time to time such
as +, —.

In the class of high power we distinguish some operators as handicapped: these are =, # (and
>, <). A point adjacent to an operator in the high power class is always of higher power than one in
the low power class. In the case of two points adjacent to operators of the same class the one with the
greater number of dots is of the higher power, with the provisos that if the operator is handicapped
the number of dots must be reduced by one, and that a point which is either omitted or represented
by , counts as of ‘zero dots.” Amongst points of the same class, and having the same (corrected)
number of dots the left facing points are of higher power than the right facing. There is no need to
decide which shall be the more powerful of two similarly facing points, since this is irrelevant to
the scope condition, but for definiteness let us say that the one on the left is the more powerful.

The ‘unabbreviated formula’ which results from a ‘practical formula’ by the application of one
of our rules is not strictly speaking a formula of Church’s system nor even an abbreviation of one
which would be recognised by Church. If A is the unabbreviated formula, and A®™ the correspond-
ing formula recognised by Church. then A® is A if it is an irreducible formula, and otherwise is
defined inductively by the conditions that:

(A*B)D is AP BD),
(@) > B)Pis [P 5 BP),
(AvB)P is [APvBP)],

etc.;
(~A))H® is [~AP)],
([xo1(A))® is [(xe)AP)],
etc.;
(xa1(AN® is (e)AD),
(1 A)® is (xeA™).

The Use of Dots as Brackets in Church’s System 235

Discussion of the conventions

These power conventions appear to differ markedly from the Russell conventions because the oper-
ator against which a point is placed is made to be of greater effect in determining the power than the
number of dots. However in Russell’s system the operators in our class of low power do not occur
at all, and the difference must be thought of as a rejection of his distinctions between operators for
punctuation purposes, together with a special new treatment of the new operators. Our ‘handicap of
one dot’ convention for =, >, etc. may however be regarded as taking the place of some of Russell’s
distinctions.

It is easy to remember which are the operators in the class of high power. They are the ones which
normally either operate on propositions or form propositions. The ones which are handicapped are
those which form propositions but do not normally operate on propositions. The case of [Axy]
is exceptional, but again it is easy to remember its power because the notation has been made
analogous to that of the other high power operators. One would not normally use the form [Ax,]
unless it is operating on a proposition.

The reason for adopting our high and low power class conventions is that in practice it is
extremely seldom that we want the scope of a bracket starting from one of the low power oper-
ators to include one of the high power operators. The low power operators are in fact just the ones
that we should use in formalising the mathematical formulae in a mathematical book. We should
use the high power operators in formalising the English connecting matter. It is hardly necessary to
point out that a bracket in one of the formulae never pairs with one in another formula, with English
intervening. Our convention has the desired effect of closing automatically all brackets outstanding
in the ‘mathematical formulae’ before going on to the English text. The reasons for adopting the
handicap convention are similar. A bracket starting from an equality sign will not usually enclose
another high power operator, although a bracket from an operator of low power will not enclose an
equality sign.

The convention by which left facing points are made more powerful than right facing is conve-
nient to complete the conventions, and is also in agreement with two of Church’s own conventions,
viz. that in the absence of other indication association is to the left, and that in the absence of dots
an omitted bracket has the minimum possible scope.

The use of square brackets in connection with some of the operators, e.g. [3x,], is necessary
in a theoretical treatment, but it is not suggested that such a notation should be generally adopted.
With very few exceptions one can tell whether the round brackets are part of an operator or not. One
exception is the formula (po0)(qo)-

Examples

(1) As a first example of the effects of our conventions I shall take a very simple formula and remove
the dots by the first rule. The formula which I shall take is ab.c and even this will be found quite
sufficiently complicated for the purpose. We must first transform the ‘practical formula’ into an
‘abbreviated formula’ by introducing the operator %, and the points . This gives us a, *, b. % .c. We
now take the point of highest power, which is the one following the b and replace it by a bracket
facing left, i.e., away from its operator, and balance it with a bracket at the left end, giving us
(ao, %, b) % .c. We now have to evaluate separately a, %, b and & % .c. The stronger point in a, *, b
is the left one and this formula is therefore equivalent to (a) %, b, i.e., to the result of substituting
(a) for n in the unabbreviated form of 1 %, b, i.e., in n % (b). The unabbreviated form of (a, %, b) is
therefore ((a) * (b)): also the unabbreviated form of & *.c is & x (¢), and therefore the unabbreviated
form of (a, %, b) % .c is the result of substituting ((a) * (b)) for & in & % (c), i.e., is ((a) * (b)) * (c).
Transforming this back to a formula of Church’s system, properly speaking, we get ((ab)c).

In the remaining examples we will always use the second rule. No type suffixes will be shown.

236 Part 1

(i) We will first deal with formulae without operators, or at least without operators of high
power. As one example,

(a((cd)(e(f2))))
can be abbreviated to
a:.cd:efg.
As another,
a.cd.efg
is an abbreviation of

((a(cd))((ef)))-

The association to the left rule has been used here: in other words we have had to apply the rule
that a dot is more powerful in its left facing than its right facing aspect. The structure of a formula
is often more easily taken in if we slightly increase the number of dots and do not rely on this rule,
e.g. the same formula may be written

a.cd : efg,
or again as
a.cd : ef .g.

Similarly it is often not advisable to replace all of the brackets in a formula by dots. As a group of
dots never replaces more than four brackets it can hardly ever be worth while having as many as six
dots, say, in a group. A few dots can however be made to go a long way by mixing them judiciously
with explicitly shown brackets e.g.

bed:i.eif:.ghij
is the best form of a certain formula when expressed without any explicit brackets, but
bed : ef (g2 h.ij)

is a much better form of it.
As an example of a formula involving A,

h: Mixfx:g
is an abbreviation of
(h((Af (Ax(fx)))8))-
(iii) As an example of a more general type of formula,
[m].Nm D[pl . NpDm#S:pSm
is an abbreviation of

[m]((Nm) > ([p1((Np) D (m # S((pS)m)))))).

The Use of Dots as Brackets in Church’s System 237

If we did not have the ‘handicap of one dot’ convention we should have to put in a dot after ‘Np O’.
In this case the effect is slight, but sometimes it can be considerable, e.g. without the convention

[xlx=y&y=zDx=z

would have to become
[x]:x=y.&y=zDx=2
(iv) The expressions

pD.gD:rvs.&t: &u
and

pD (gD ((rvs)&t)) &u
and

pDO(@D.rvs&t)&u

are all abbreviations of the same formula. Notice that in the first of these expressions the bracket
starting after ‘p O’ does not close when we reach the stronger point on the left of ‘& #’, because the
former is reinforced by the even stronger point after ‘g O’. The most legible form of this formula,
if it is standing by itself, is probably

pDOigDirvs. &t 1 &u.
(v) A formula similar to the last example in one respect is
poOgq&r,
which with our conventions is an abbreviation of
PDq &,
but with Russell’s or Church’s conventions would be an abbreviation of
p>O(q&r)

on account of the subdivision of our ‘class of high power’ into smaller classes of different powers.

(vi) Normally we shall not want to put dots against equality signs, or other operators which form
propositions but do not operate on propositions. A typical exception is

[tXe]. goaXa D foaXa :=Ya-

Another type of freak formula, difficult to abbreviate, occurs when we have functions which take
propositions as arguments, €.g.

hao(Pa D q0)-

The only way of avoiding explicit brackets in such a case is to express the implication, not with the
implication operator but with the implication function Co,, thus

ho{o-COOOPOQO-

KING’S COLLEGE, CAMBRIDGE

This page intentionally left blank

The Reform of Mathematical Notation and
Phraseology

(unpublished manuscript ca. 1944)

Stephen Wolfram connects —

COMPUTATION, MATHEMATICAL
NOTATION AND LINGUISTICS

Much like ordinary natural languages, most of the mathematical notation we have today has grown
up over a long period of time by a kind of natural selection. Occasionally, explicit efforts to
systematise the notation have been made — though they have been remarkably few and far between.

In the late 1600s, Leibniz, for example, was quite concerned with mathematical notation — seeing
it as an opportunity to move toward a more universal language, free of the controversies of partic-
ular ordinary languages. He invented the integral sign, the d/dx notation for derivatives (where he
worried people would try to ‘cancel the d’s’), and attacked the use of * for multiplication (‘will be
confused with the letter x’).

o ; L e A

F1c. 124.—Facsimile of manuscript of Leibniz, dated Oct. 29, 1675, in which
his sign of integration first appears. (Taken from C, 1. Gerhardt's Briefwechsel
von G. W. Leibniz mil Mathemalikern [18990].)

Fig. 1: Leibniz was serious about developing notation for math. His most famous piece of notation
was invented in 1675. For integrals, he had been using ‘omn.’, presumably standing for omnium.
But on Friday 29 October 1675 he used, for the first time, the symbol that is used today.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00009-6 239
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00009-6

240 Part 1

In the 1800s Babbage wrote polemics about mathematical notation, and by the 1880s Frege,
Peano and others were trying hard to create more systematic ways to represent mathematical
processes. And no doubt that systematisation was a necessary precursor to Hilbert’s programme,
Godel’s theorem, and ultimately Turing’s own work on defining what amounts to a universal
mechanism for mathematical processes.

In a sense, though, a Turing machine is a very low-level representation of mathematical pro-
cesses. And I suspect Turing was curious about what would be involved in creating a higher level
representation: a full systematic language for mathematics at the level people actually do it.

As it happens, I have spent a significant part of my life developing Mathematica — which among
other things aims to provide just such a language.

And in fact the core concept of Mathematica as such a language owes an important debt to the
paradigm initiated by Turing’s work. In the early 1900s, when people thought about systematising
mathematics, they had a definite idea about what had to be done: one had to find a way to represent
mathematical proofs — as a sort of modern version of something like logical syllogisms.

And, for example, Whitehead and Russell in their Principia Mathematica developed an elaborate
and arcane scheme for doing this (see Figure 2 below).

But is systematising proofs really the only meaningful way to systematise mathematical pro-
cesses? The Turing machine in a sense makes it clear that it is not. For a Turing machine provides a
representation not of a proof, but of a computation.

Of course, practical mathematics had involved computation ever since Babylonian times. But
pure mathematics — following the ideas of Euclid, and later of logic — had concentrated instead on
proof. The concept of a Turing machine connected pure mathematics to computation in a systematic
and universal way.

And when I came to develop Mathematica, 1 did so within the paradigm of computation rather
than proof.

Mathematica represents mathematics in an actionable way: its purpose is not to show, or find,
the steps in proofs, but rather to find results, and find what is true, by explicitly computing output
from input.

As a direct consequence of universal computation, Mathematica can internally represent any
possible computation. But then the challenge — as Turing in effect recognised — is to connect those
possible computations to ones that humans can describe.

I have spent more than three decades designing languages — most importantly Mathematica —
that allow computations to be specified conveniently. And in a sense the way I have worked is to try
to imagine all the computations that people might want to do, and then to identify repeated chunks
of computational work that occur in those — and then to give names to those chunks.

The result — if one succeeds — is an artificial language in which typical computations and
programs can be expressed in the shortest and clearest possible way. And indeed, after countless
millions of lines of Mathematica language have been written, I believe I can claim a certain degree
of success.

But what about traditional mathematics? How can we represent it, as Turing wondered, in a
systematic way?

If one is going to be able to automate mathematical computations, then ultimately one has to
have a precise and systematic representation of the mathematics.

And with all the precision traditional in pure mathematics, one might imagine that its notation
would somehow have evolved to a high degree of precision. But it has not. Traditional mathematical
notation is full of implicit conventions, strange elisions and historical accidents.

The Reform of Mathematical Notation and Phraseology 241

SECTION A] THE CARDINAL NUMBER 1 351

#52601. F:zael .3:.¢(‘t"a).z trea. D pri=:(fa).vea. pa

Dem.
F.%5215.2F . Hp.D:El)
[%304] dizta.=.z=1'.
[#52:6] =.z¢a (2)

F.(1).%30:33.D
I-::Hp.D:.:f:(t’a).E:xta.),.cp:c:z:(Hx).x\;a.cpx (3)
F.(2).(3).DF. Prop

#52602. F:.2(pz)el.D:yr(12) (P2) . =. pa Dz . =. () . Pz, Yz

[#3212 . ¥14°26]

*5261. F:.ael.)::‘aeﬁ.e.ac,ﬁ.E.[;[!(anﬁ) [*52‘601?;}@}

~

#5262 F:.a,ﬁel.):a:ﬁ.‘—_‘.r‘a=t‘ﬂ
Dem.
F.%52:601.DFz: Hp. Dz tla= 18,
[#52:6] iTed. D e
[%52-46] ta=pf::DF. Prop
#5263. F:aBel.a%B.D.anB=A [¥5246.Transp]
#5264 lF:ael.D.anBelvi‘A

Dem.
F.%5243. DOF:Hp.gql!anpB.D.anpBel:

[#5°6.%2454] DF:.Hp.D:anB=A.v.anBel:
[¥51:286] D:anBelvi‘A:.DF.Prop
#627. L:B—ael.aCE.ECB.D:f=a.v.E=R

N
twea.d . o=t8:

e m

Dem.

F.%2241. OF:Hp.(Ca.D.E=a (1)
F.%24'55 . dF:i~(ECa).D.qlE~a (2)
F.%22:48. SF:Hp.. . D.t-aCB—a (3)
F.(2).(3). ODF:Hp.~(ECa).D.qlé—a.E—aCR—a (4)
F.%521. 2F:Hp.d.(ga). B—a=t= (5)
F.(4).(5).#514.DF:Hp.~(¥Ca).D.E—a=8—u.

[%24:411] dD.t=p (6)

F.(1).(6).DF. Prop

Fig. 2: A page from Whitehead and Russell’s monumental work Principia Mathematica devoted to
showing how the truths of mathematics could be derived from logic.

In designing the mathematical components of the Mathematica language (Wolfram, 2010), how-
ever, I had to create a systematic form of the notation. But to make Mathematica easy for humans
to learn and understand, I wanted to stay as close as possible to traditional notation.

The result is that I undertook an extensive study of the way that mathematical notation is used
in practice. In a sense, this study was similar in character to the way a linguist might try to infer the

242 Part 1

grammar and syntax of some ordinary spoken human language. But the literature of mathematics
provides a somewhat more systematic corpus than is usually available.

And somewhat to my surprise, despite the diversity of the mathematical literature, there was a
remarkable degree of consistency in the way notation tended to be used — down even to consistent
unwritten conventions about the precedence of all sorts of mathematical operators.

And it took only a modest set of innovations to go from this notation to something completely
precise and computable. (It helped that Mathematica can support not just linear textual input, but
also full two-dimensional input, like traditional mathematical notation.)

| O Basic Math...

800 # Untitled-3 { -

n ot

1 :
In[4]:= J dzx G Ve
x€-1 j-du d.m

1 T

Outi4l= T (Ic}g[_vc2 —x+1)-log(x* +x+1)+ J = da)d;

2log(1 — x) — 2log(x + 1) — Sal[]s

2222y (221))) [

b’
x
i
i

ins:= EdgeDetect [3] = ; =

il
=
o
s || v
o | m

=

=
-

Lo T = S - R
=

o m [=m

= | B s
o
@

Qutfs)=

Fig. 3: Mathematical and other notation in Mathematica. Note the two-dimensional character of the
input.

A great deal of mathematics has now been described in the precise notation of Mathematica (see
http://www.wolfram.com/mathematical/).

But a few years ago, I became curious about the extent to which it would be possible to handle
by computer completely free-form mathematical notation and input.

For in developing Wolfram|Alpha (see http://www.wolframalpha.com/) my goal was to
allow people to specify their queries — whether about mathematics or anything else — just in the way
that they think of them, without having to convert them to any kind of precise formal language (see
Figure 4).

At first, it seemed as if this kind of free-form linguistic input might simply be impossible, or
impractical. But thanks to a series of breakthroughs, we have been able to make this work in a
highly successful way.

http://www.wolfram.com/mathematica/
http://www.wolframalpha.com/

The Reform of Mathematical Notation and Phraseology 243

¥ WolframAlpha s

[find the integral of 1/(x"6-1) wrt x EJ

Indefinite integral: Show steps

fx‘sl—ldx:

l_]:? log(x? —x + 1) - log{x® + x+ 1) + 2 log(1 — x) — 2 log(x + 1) -

zﬁtan'l[zjél]—zv’?tan-l[zgln + constant

tan™! (x) istheinverse tangent function »
log(x) is the natural logarithm »

Plots of the integral:

-2 -1 1 2 xfrom-2to2)
-1
— real part
-2 imaginary part
2.0k

Fig. 4: Wolfram|Alpha understands free-form natural language specifications of mathematical
operations.

Indeed, when it comes to textually typed mathematical input, we can now recognise what a
person meant in very close to 100% of all cases — at least those that a trained human would find
recognisable. Of course, it helps that we have been able to study many, many millions of inputs that
have been fed to Wolfram|Alpha.

And among the results of this is that we can say with some precision the extent to which people
do or do not use the various notational conventions that Turing describes in his notes.

In Mathematica, we try to do what Turing advocates: to create a completely systematic and
precise notation for mathematics. And indeed this is a very powerful thing. But in Wolfram|Alpha,
we have now succeeded in doing something that is in a sense maximally convenient for humans: just
taking mathematical notation in the form that humans think of it, and interpreting it into a precise
computable form.

I rather suspect — and hope — that Turing would appreciate the notation of Mathematica — set
up as it is to provide a precise and unambiguous representation that can immediately be computed
with.

And perhaps he would be surprised — as I was — that it is possible in Wolfram|Alpha to go
from the strange and inconsistent notation that has grown up in mathematics, and in a sense use
the sparsity of typical mathematical questions to be able to deduce what the corresponding precise
notation should be.

244 Part 1

In his work at the dawn of systematic computation, Turing could only begin to imagine what
it would be like to make mathematics computational. Today — especially with Mathematica and
Wolfram|Alpha — we have succeeded in making large swaths of mathematics computational.

One issue that has remained is the style of mathematics traditional in the twentieth century, which
centers around the creation of mathematical structures (‘Let F be a field...”). A recent realisation
is that the basic paradigm of Wolfram|Alpha is exactly what is needed to make such mathematics
computational.

In Wolfram|Alpha, it is common to enter some entity (say a city or a chemical), and then have
Wolfram|Alpha automatically generate a report on what might be considered ‘interesting’ about that
entity. The same can be done for mathematical structures.

In effect, Wolfram|Alpha must take the structure and then deduce what facts or theorems are
‘interesting’ about it. In part, this can be done from a curation of known mathematical theorems. In
part, it must be done by a collection of mathematical and meta-mathematical algorithms and heuris-
tics. But the result, I believe, will be that the vast majority of the parts of the human activity that
we call ‘mathematics’ will successfully be completely automated. The concept of systematisation —
and computation — that Turing had will have been realised.

And, as it happens, thanks to the likes of Wolfram|Alpha technology, there would not even be a
need to ‘reform’ mathematical notation in order for humans to successfully describe what they want
to do.

References

Wolfram, S., 2000. Mathematical Notation: Past and Future, Transcript of a keynote address
presented at MathML and Math on the Web: MathML International Conference.
<http://www.stephenwolfram.com/publications/recent/mathml/mathmlZ.
html> (accessed 20.10.00).

Wolfram, S., 2010. The Poetry of Function Naming, blog post. <http://blog.stephenwolfram.
com/2010/10/the-poetry-of-function-naming/> (accessed 18.10.10).

http://www.stephenwolfram.com/publications/recent/mathml/mathml2.html
http://www.stephenwolfram.com/publications/recent/mathml/mathml2.html
http://blog.stephenwolfram.com/2010/10/the-poetry-of-function-naming/
http://blog.stephenwolfram.com/2010/10/the-poetry-of-function-naming/

The Reform of Mathematical Notation and Phraseology 245

THE REFORM OF MATHEMATICAL NOTATION
AND PHRASEOLOGY

A. M. TURING

It has long been recognised that mathematics and logic are virtually the same and that they may be
expected to merge imperceptibly into one another. Actually this merging process has not gone at all
far, and mathematics has profited very little from researches in symbolic logic. The chief reasons for
this seem to be a lack of liaison between the logician and the mathematician-in-the-street. Symbolic
logic is a very alarming mouthful for most mathematicians, and the logicians are not very much
interested in making it more palatable. It seems however that symbolic logic has a number of small
lessons for the mathematician which may be taught without it being necessary for him to learn very
much of symbolic logic.

In particular it seems that symbolic logic will help the mathematicians to improve their notation
and phraseology, which are at present exceedingly unsystematic, and constitute a definite handicap
both to the would-be-learner and to the writer who is unable to express ideas because the necessary
notation for expressing them is not widely known. By notation I do not of course refer to such
trivial questions as whether pressure should be denoted by p or P, but deeper ones such as whether
we should say ‘the function f(z) of z” or ‘the function f~.

It would not be advisable to let the reform take the form of a cast-iron logical system into which
all the mathematics of the future are to be expressed. No democratic mathematical community
would stand for such an idea, nor would it be desirable. Instead one must put forward a number
of definite small suggestions for improvement, each backed up by good argument and examples. It
should be possible for each suggestion to be adopted singly. Under these circumstances one may
hope that some of the suggestions will be adopted in one quarter or another, and that the use of all
will spread.

Although it is not desirable to try and put mathematics into the straight-jacket of a logical system,
it may be desirable to use such a system when investigating notation. One is likely to be taking
typical phrases from mathematical text-books and analysing their meaning. It is useful to have
a logical system for expressing these meanings in a fairly unambiguous way. It may not greatly
matter what system is used for this purpose, and it would be quite possible for different workers to
use different systems.

To be specific I am inclined to suggest the following programme

i) An extensive examination of current mathematical and physical and engineering books and
papers with a view to listing all commonly used forms of notation.

ii) Examination of these notations to discover what they really mean. This will usually involve
statements of various implicit understandings as between writer and reader, it may also include
the equivalent of the notation in question in a standard notation.

iii) Laying down a code of minimum requirements for desirable notations. These requirements
should be exceedingly mild. In my opinion the points which should be covered by this code
should include the following

a) Free and bound variables should be understood by all and properly respected.

b) Some sort of provision should be made for falling in line with the theory of types. This
assumes a Russelian Weltenscheung, as applies I think to the majority of mathematicians-
in-the-street.

246 Part 1

¢) The deduction theorem should be taken account of, i.e. it should be recognised that
numerous forms of argument consist in one form or another of applications of the deduc-
tion theorem. The deduction theorem should therefore be as well known as the rule for
integration by parts.
d) Very clear statements of the fundamental nature of the symbols should be made. There
should be no danger of mistaking a real variable for a function taking real values.
iv) New notations suggested by symbolic logic.

v) Examples of the development of comparatively elementary parts of mathematics in obedience
to the new code and embodying the new notations. These examples should only incorporate the
new notations in cases where great advantage results. The effects of the various independent
reforms should be shown separately, so far as possible, to facilitate their independent adoption.

Free and bound variables. Deduction theorem. Constants and
parameters

In this section a) and c) of iii) above will be examined in greater detail.
The symbols used in mathematics may be classified as follows.

1) Symbols used entirely in punctuation, such as (,), ‘etc.
These do not concern us at the moment.
ii) Absolute constants, typified by X, 1,= +log etc, etc.
These also do not concern us at the moment.
iii) Letters representing constants, usually taken from the beginning of the alphabet, e.g., ‘Let a
be the radius of the sphere’.
iv) Letters representing genuine variables, for which substitution may be made, e.g., x in x = x.
v) Letters for which we can substitute other letters (most of them) to get a true result, but certainly
cannot substitute constants; in the latter case nonsense results. Examples are provided by the

occurrence of x in
1 1
xdx ==
0 2

and in ‘for all numbers x greater than 2, x2 > 3°. Substitution of 1 for either of these yields
nonsense.

Letters described under iv) and v) above are known respectively as free and bound variables. Free
variables are really comparatively rare. This is because we do not often make statements such as
‘x = x’ but more often something like ‘for all real numbers x, x = x’: in this the opening phrase
‘binds’ the variable. Thus x is bound in the whole statement, but is free in the part x = x. The
difference between the constants iii) and the free variables is somewhat subtle. The constants appear
in the formula superficially as if they were free variables, but we cannot substitute for them. In these
cases there has always been some assumption made about the variable (or constant) previously; thus
we may have the equation
V= i7'l.' (13
3

in which we cannot substitute for v and a, these being constants because we have made these
assumptions about them ‘a is the radius and v is the volume of the sphere’. The ‘deduction the-
orem’ states that in such a case, where we have obtained a result by means of some assumptions, we
can state the result in a form where the assumptions are included in the result, e.g., ‘If a is the radius
and v is the volume of the sphere then v = %mf’. In this statement a and v are no longer constants.

The Reform of Mathematical Notation and Phraseology 247

We are now able to substitute for them: we might substitute v for a and get a statement with the
same meaning, or we could substitute 2 for both a and v getting a true statement, but one of rather
unorthodox character. This process whereby we pass from P proved under an assumption H to ‘If
H then P’ may be called ‘absorption of hypotheses’. The process converts constants or ‘restricted
variables’ into free variables. Variables whose character changes in this way from restricted to free
usually seem to be described as ‘parameters’, although it is very difficult to give any very definite
meaning to the term.

Theory of types and domains of definition

We are taught that the theory of types is necessary for the avoidance of paradoxes, but we are not
usually taught how to work the theory of types into our day-to-day mathematics: rather we are
encouraged think that it is of no practical importance for anything but symbolic logic. This has a
most unfortunate psychological effect. We tend to suspect the soundness of our arguments all the
time because we do not know whether we are respecting the theory of types or not. Actually it is not
difficult to put the theory of types into a form in which it can be used by the mathematician-in-the-
street without having to study symbolic logic, much less use it. The statement of the type principle
given below was suggested by lectures of Wittgenstein, but its shortcomings should not be laid at
his door.

The type principle is effectively taken care of in ordinary language by the fact that there are
nouns as well as adjectives. We can make the statement ‘All horses are four-legged’, which can be
verified by examination of every horse, at any rate if there only a finite number of them. If however
we try to use words like ‘thing” or ‘thing whatever’ trouble begins. Suppose we understand ‘thing’
to include everything whatever, books, cats, men, women, thoughts, functions of men with cats as
values, numbers, matrices, classes of classes, procedures, propositions,. .. Under these circumstances
what can we make of the statement ‘All things are not prime multiples of 6’. We are of course inclined
to maintain that it is true, but that is merely a form of prejudice. What do we mean by it? Under no
circumstances is the number of things to be examined finite. It may be that some meaning can be
given to statements of this kind, but for the present we do not know of any. In effect then the theory
of types requires us to refrain from the use of such nouns as ‘thing’, ‘object’ etc., which are intended
to convey the idea ‘anything whatever’. The most important places where this matters are

1) In connection with the word ‘all’. We may for instance say ‘All real numbers x have the
property...” but not ‘All things...”. In particular we should avoid putting the former in the
form ‘For all things x, if x is a real number...’.

2) In connection with ‘there exists’. We allow ‘there exists a real number such that...” but not
‘There exists a thing x, such that x is a real number and...’.

3) In connection with descriptions. We allow ‘The real number x such that...” but not ‘The thing,
such that x is a real number and...’.

4) In connection with abstraction, but this may be considered a special case of 3).

All this leaves open the question as to what are to be regarded as appropriate nouns to take the
place of ‘real number’ in the above examples. This would probably be really treated on a fairly
common sense basis, but the following rules certainly apply. The word noun-class is used to mean
a class such as the class of real numbers in the examples above.

The sum of two noun-classes is a noun-class.
A sub-class of a noun-class is a noun-class.
The class of functions with arguments in one noun-class and values in another is a noun-class.

These rules do not lead to any noun-classes unless we know of some already. To many logicians it
will be sufficient to add ‘the null-class is a noun-class’, but such a procedure will not be satisfactory

248 Part 1

to the average mathematician, who has but little concern with the null class, and certainly does not
propose to build up the integers from it. The sensible thing to do seems to be to take for granted
certain noun-classes such as the integers, and possibly also the real numbers and the points of three-
dimensional space. In fact we may take as given noun-classes any classes of objects which, in
the branch of mathematics concerned are usually considered as given a priori. Such assumptions,
combined with the above three rules will be found quite adequate.

Although it is not intended that symbolic logic should take the place of English connecting
matter in proofs it is as well to be able to express anything symbolically if required. The usual form
of expression of ‘For all x,...” is ‘(x)...". As we have seen this is fundamentally unsound. Instead
we want a notation for ‘For all integers x,...". For this I propose (x, Int).. ., where Int is the notation
used for the class of integers. Likewise we may use (3x, Int) for “There exists an integer x” and (x,
Int) for “The integer x’. It may also be desirable to have a notation for ‘The class of functions whose
arguments are integers and values real numbers’. No notation for this is suggested at the present
moment.

[the next 4 pages of the typescript are missing]

Discussion of the system and application to normal mathematics

Let us now try to picture what would happen if we try to develop such subjects as the theory of real
numbers or set theory in this system. How will it differ from the normal ‘straightforward rigorous’
development? Apart from the fact that implications etc. are symbolically expressed the only real
difference will be that instead of saying ‘for all x,...” we shall have to say ‘for all x in segment
15.. . (say) which may be taken as the way we read (x, 15).... Now in most cases the statements
to be transformed will be something more like ‘For all real numbers x,...” or ‘For all x, if x is a
real number, then...’; in such a case it will not really be necessary to express the condition that
x belongs to any particular segment, for the real numbers will have already been defined so as
to be all included in some one segment. In all such cases therefore we agree to omit this phrase.
Likewise in descriptions instead of saying “The unique member of segment 15, which is a real
number and...” we may say ‘The real number such that...” on the ground that all real numbers are
members of segment 15. It may perhaps be objected that this omission will sometimes give wrong
results because the meaning of the formula may depend on the segment quoted. This is so, but it
will normally be the case that an increase in the values quoted will not affect the meaning of the
formula; by this I mean that the formula may be proved equivalent to any formula which can be
obtained from it by increasing the segment bounds. A formula without free variables, which can
be proved equal or equivalent to any formula obtained from it by increasing the segment bounds,
may be called a regular formula. It should be noticed that even if we had not explicitly excluded
them there would not usually be any reason for expecting formulae with free variables to be regular.
The explicit exclusion simplifies matters. We should try to avoid the use of formulae, which are
not regular. This can always be done essentially by the following device if necessary: suppose that
somewhere there occurs (x, s) and that increasing s alters the meaning; then we may write instead
x,)D’XD---.

It may perhaps be argued that (x, r) ... means just the same as (x)D"x D - - -, both being rendered
into English by the phrase ‘For all x in segment r...” or ‘All members of segment r have the property
that...” This is true, and the only reason for our using this different notation is that we thereby
automatically ensure that some condition D"x will be included in the proposition. It is perhaps
worth making a comparison here with the syntax of ordinary language, where we have two distinct
types of property, adjectives and nouns; the mathematician is inclined to regard this distinction as
unreal and arbitrary, and so in a sense it is, but it does have the effect that it is impossible to refer
to anything without associating a ‘noun property’ with it, and so if we compare the nouns with the
segments we see that ordinary language has a remarkable tendency to respect the theory of types.

The Reform of Mathematical Notation and Phraseology 249

We can make use of this fact to help make mathematics sound from the point of type theory. If
each of the nouns used in mathematics defines a set completely contained in some segment, then
ordinary syntax will keep us straight. I shall not of course attempt to give a formal proof of this,
the informal character of language making it inappropriate: assuming however that this principle is
essentially correct let us go further and see how much modification in common practice will have
to be made; it actually amounts to surprisingly little. We have to be sure that the nouns used are
‘legitimate nouns’. It is probably best therefore to manage with comparatively few nouns. We can
make up some simple rules for the construction of legitimate nouns.

These rules may be taken to be
1) The set of functions of one noun that have values in another noun is a noun.
ii) The things, which are either one noun or another noun, may be collectively described by a
third.
iii) We may use a noun to describe a subset of the things described by another noun.

To this we might perhaps add that the word ‘individual’ may be used as a noun.

It may now be seen our nouns are essentially the ‘mengen’ of Zermelo and the ‘sets’ of Bernays
and of Godel. However in this discussion I am not trying to set up a formal system, but merely
to suggest how normal rigorous mathematics can be made to take account of type theory without
serious upheaval.

A glance through a number of mathematical books provides the following examples of nouns.

a) Number, real number, integer, complex number, point, line, plane, manifold, operator, curve.
b) Group, ring, algebra, base, polynomial.

c) Set, class, pair, object, element.

d) Frontier, conjugate, derivative.

e) Integral, expression, equation, series, sequence, term.

The nouns listed under a) may be regarded as the most reasonable kind. Those under b) are like
those under a) but are more complex in meaning, and might in some contexts be used illegitimately.
Let us take the word group for example, and for the sake of argument let us pretend that it means
what is normally meant by ‘group of finite order’. If then we define a group as follows ‘A group is
a pair consisting of a finite class G of integers and a function K(x, y) defined for x and y in G, and
such that for all x, y, zin G, K(x, K(y, z)) = K(K(x, y), z) and if K(x, y) = K(x, z) then y = 7’ the
word group will be legitimate. If however the words ‘of integers’ are omitted such a wide range of
possibilities is admitted that the expression is no longer legitimate. Of course the inclusion of these
words does not vastly hamper group theory, but they are usually omitted for the sake of the extra
generality apparently obtained. It would of course also be legitimate to use instead of the phrase
‘of integers’ ‘of integers or classes of integers’ or restrict G by some other ‘legitimate noun’, but
to do so would not give the same intellectual satisfaction as leaving every possibility still open;
if however we take this last course the word group will not be a ‘legitimate noun’. The examples
given under c¢) are not normally legitimate unless used in such phrases as ‘set of points’, ‘pair of real
numbers’ etc. The word ‘object’ is of course the most serious offender, being in fact the outcome
of an attempt to evade the salutary restrictions of English syntax. The examples d) really represent
functions, because they are used in the form ‘the frontier of...” etc. However these functions take
values restricted to one segment, and so may be regarded as legitimate. The examples e) may be
regarded as purely syntactical, i.e. they do not themselves describe mathematical entities, but rather
mathematical expressions, and therefore do not appear in the mathematical argument proper, and
may be ignored for our purposes.

The difficulty in the above example concerning ‘group of finite order’ may be resolved to some
extent by using the phrase ‘member of segment N’ in place of ‘integer’. It is then understood that
one is at liberty to substitute any object for NV throughout the book (say).

250 Part 1

Examining the Work and Its Later Impact

Juliet Floyd explores —

TURING, WITTGENSTEIN AND TYPES:
PHILOSOPHICAL ASPECTS OF TURING’S
‘THE REFORM OF MATHEMATICAL NOTATION
AND PHRASEOLOGY’ (1944-5)

Turing is explicit that ‘the statement of the type principle’ in this essay ‘was suggested by lec-
tures of Wittgenstein’. The disputatious record of exchanges between them at Wittgenstein’s 1939
Cambridge lectures Diamond (1939) are deservedly well known, but Turing’s constructive uses of
Wittgensteinian ideas are not. The essay’s interest lies here, and in its articulation of a powerful
attitude toward the development of mathematical notation, an attitude that runs throughout Turing’s
and Wittgenstein’s works, but whose philosophical significance is easy to overlook.

Wittgenstein and Turing are often regarded, in a misleading caricature, as philosophical oppo-
nents. Wittgenstein is taken to be a humanistic philosopher of meaning and ‘forms of life’, hostile
to mathematical logic and the very idea of a Turing machine; Turing is taken to be a mechanistic or
behaviouristic theorist of the mind, intent on reducing the concept of meaning to that of information.
Neither picture is correct — see Floyd (2012).

Yet Wittgenstein and Turing shared, as they both explicitly acknowledged, a particular sort of
anti-reductionist attitude toward logical and conceptual analysis. On their view, it is the every-
day, purposeful uses we humans make of language that crucially animate and frame the notions of
meaning and information. Attention to ordinary ways of speaking is crucial for insight into, and
development of, those formal features of language that mathematical logicians are interested in sys-
tematising. As Turing put it already in 1933, in an undergraduate lecture to the Moral Sciences
Club, ‘The purely logistic view of mathematics is inadequate; mathematical propositions possess a
variety of interpretations, of which the logistic is merely one’ (Hodges, 1983, p. 86).

On this view, formal logic is simply one approach, a tool, neither good nor bad in itself. Its results
and significance should be articulable, ideally, in everyday scientific language, perspicuously and
intelligibly. Like Wittgenstein, Turing wished to ward off the ideal of a ‘cast-iron logical system into
which all the mathematics of the future are to be expressed’. Though a standardised notation ‘may’
be used in particular cases, transparency, opportunistic pluralism and usefulness for communication
in an informal sense are essential factors to consider in the design of notations.

This is far from the sort of logistic purity of method embraced in Carnap’s 1934 proposal to
transform philosophy into the logical syntax of the language of science via a generalisation of
Hilbert’s axiomatic method (Carnap, 2002). It is also distinct from the kind of information-theoretic
reductionism that construes Shannon’s isolation of a (quantitative) notion of information (a notion
purged of any articulable relation to the notion of meaning) as utterly fundamental.

Turing was perfectly aware of the importance of notational precision for rigor, and this essay
is intended to make a contribution to the use of formal logic. He hopes to revitalise the ‘liaison’
between the logician and ‘the mathematician-in-the-street’. But his attitude towards the development
and use of notation is, as he says, Wittgensteinian in flavor: look to everyday uses. Mathematical

Examining the Work and Its Later Impact 251

logicians have, Turing says, shown insufficient interest in explaining to ordinary mathematicians the
significance of what they do: for most ordinary mathematicians symbolic logic is ‘a very alarming
mouthful’. Turing’s means to a newfound liaison will be through an analysis of everyday (mathe-
matical and other) language. By this means a number of lessons may be drawn ‘without it being
necessary for [a mathematician] to learn very much of symbolic logic’.

Turing’s aim is to show that ‘normal rigorous mathematics’ can take account of the theory of
types without ‘serious upheaval’. ‘We are taught’, he says, ‘that the theory of types is necessary for
the avoidance of paradoxes, but we are not usually taught how to work the theory of types into our
day-to-day mathematics: rather we are encouraged to think that it is of no practical importance for
anything but symbolic logic’. This he wishes to change.

He assumes that a ‘Russellian Weltanschauung’ with regard to the theory of types is charac-
teristic of ‘the majority of mathematicians-in-the-street’. But he takes the elucidation of types to
originate in, and apply to, everyday language, which, unlike Russell, he respects as a locus of mean-
ing. In English, a chair may be said to be heavy, but not (in the same sense) a baby’s smile. A group
may be said to be non-abelian or Lie, but not said to be composed of integers alone. We do not won-
der whether the number one may or may not be identical with Barack Obama. Everyday language,
even in mathematics, distinguishes between nouns and adjectives, arriving on the scene already
typed, as the quantitative notion of information does not. This, for Turing, is logically relevant in a
fundamental way.

The method Turing endorses turns on accepting an ‘exceedingly mild” set of minimal require-
ments on notations — mild in the sense that they may be seen to grow naturally out of everyday
ways of speaking in mathematics but may allow for the development of notations as complicated
or detailed as one might like. As the first step, one conducts ‘an extensive examination of current
mathematical and physical and engineering books and papers with a view to listing all commonly
used forms of notation’, examining these to discover ‘what they really mean’, that is, what ‘implicit
understandings as between writer and reader’ are at work. Then one develops types from there.

Turing’s Wittgensteinian approach to types offers a piecemeal conception of the justification of
notations, differing markedly from that of Carnap or Quine. They looked for the development of
notations to rationally reconstruct the ontological and metaphysical commitments of entire theories,
languages or conceptual schemes as a whole. On the view Turing shares with Wittgenstein, our
everyday ways of speaking and using language forms the place from which we begin, and the place
where we must end in developing formal systems. Interface with linguistic practice is fundamental
for the logician.

For this reason, Turing singles out the deduction theorem as a fundamental rule. This is not
only because it gives an assurance of the existence of rigorous formal derivations as counterparts to
metatheoretic claims, but because it illustrates in practice the importance of the interplay between
claims to theoremhood and formal derivations. Its use legitimates the informal but perspicuous
articulation of results by relieving us of the burden of having actually to write down every step of
the formal derivation when we accept the metatheoretic claim.

According to Gandy (2001), at the time he wrote this essay (1944), Turing was reading Quine’s
Mathematical Logic (1940) and took a strong dislike to what he regarded as the needlessly arcane
quality of Quine’s attention to syntax. Neither Russell in Principia nor Quine formulate the deduc-
tion theorem, for they interpret ‘B can be logically derived from A’ as = A D B. Thus, the steps in a
proof which would in everyday mathematical language be regarded as derivations from hypotheses
are instead assumed always to take the form A; D A D Az D ... B, where the A; are the hypotheses
or in force. By contrast Turing takes the theorem as a primitive rule.

A key practical role the deduction theorem plays in Turing’s eyes is its clarifying the ‘subtle’
roles of the free and the bound variable. For it can be used, through ‘absorption’ of hypotheses,
to make explicit assumptions governing the (informal or formal) use of parameters. The problem
had led Wittgenstein to conceive the role of certain apparent concept words (e.g. number words)
as grammatical rules concerning the use of variables, rather than second-order functions taking

252 Part 1

arbitrary concepts or properties as inputs (Wittgenstein, 1974, p. 348). The idea was to take all
uses of free variables to be governed, implicitly or explicitly, by parameters and/or types. Turing
uses the fact that a quantifier as used in ‘normal’ mathematics generally assumes parameters to
motivate his recognition of the deduction theorem’s central role and to develop Wittgenstein’s idea
in a constructive direction.

He shows, giving several everyday examples from mathematics, how free variables (e.g. ‘x = x”)
can in practice be eliminated in favour of typed bindings (e.g. ‘for all real numbers x, x = x”). There
is no expressive loss, he argues, because the general notion of a ‘thing’ or ‘object’ is, as Wittgen-
stein always maintained, a ‘serious offender’, having (anyway so far) no ordinary mathematical
use or point.

Turing’s proposals require, just as Wittgenstein’s do, an intensional understanding of the uses
of quantifiers. Frege worried that using his equivalence class construction for the natural numbers
invited the question whether the number one is or might possibly turn out to be identical to Julius
Caesar. Turing’s proposed solution is to take noun-classes as basic. For example, instead of ‘All
things...” or ‘For all things x, if x is a real number...” we may say ‘All real numbers x have the
property This, as Wittgenstein argued in the lectures Turing attended (Diamond, 1939, p. 167),
is closer to ordinary usage and avoids numerous confusions. Turing lays out rules governing the use
of ‘noun-classes’ echoing basic axioms of set theory (versions of union, separation and power set).
The final section of the paper, an ‘application to normal mathematics’, discusses ‘regular’ formulae
that may be proved to hold when lifted into wider domains. General notions like ‘group’, Turing
admits, will not be expressible by means of a ‘legitimate’ noun. This, he thinks, ‘does not vastly
hamper group theory’, for it leaves us with a choice: we can leave every possibility open (and have
the notion of ‘group’ not counted as a legitimate noun) or we can restrict the noun to a specific
domain (‘group of integers’) in which case it is admissible.

Turing realises that his account ‘leaves open’ the question as to what are to be regarded as
appropriate nouns to take the place of specific domains used to type statements (‘real number’,
‘abelian group’). But he remarks, here ‘a fairly common sense basis’ would ‘probably’ serve.

Is this a philosophically appropriate remark? Actually, Turing took what he repeatedly called
‘common sense’ quite seriously. Discussion of this arose explicitly with Wittgenstein, when Turing
suggested that he appeared to be relying on common sense in his philosophical remarks (Diamond,
1939, p. 219ff). Though Wittgenstein savagely denied this at first, he revisited the issue more sympa-
thetically in the next lecture, admitting that he did want to say something ‘similar’ to this (p. 223ff).

In an essay (Turing, 1954) published in the last year of his life, Turing states that one implication
of the incompleteness theorems is that an appeal to common sense is inevitable for a mathematician:

These [limitative] results, and some other results of mathematical logic may be regarded as
going some way towards a demonstration, within mathematics itself, of the inadequacy of
‘reason’ unsupported by common sense.

Wittgenstein sought other ways of articulating the significance of incompleteness results and was
inclined to subject the notion of ‘common sense’ to critical scrutiny. But he shared with Turing
an ideal of rigor that included concrete attention to what makes sense by the lights of our current
purposes, needs and uses of language.

Rather than a ‘common sense basis’ for developing mathematics, one might emphasise the value
for mathematics and science of making ‘very clear statements of the fundamental nature of the
symbols’, as Turing calls for here. This strong value placed on the vernacular, on lucidity and
communicability, on perspicuity, is one that Turing and Wittgenstein shared. Turing was a master
simplifier. His analysis of computability by means of the notion of Turing machine is more vivid,
more pertinent and (as Godel himself maintained) more epistemologically satisfying than Church’s
or Godel’s extensionally equivalent demarcations of the class of recursive functions (Godel, 1986,
p. 195). This is because, as a way of thinking, it is not entangled with the limitations of any particular
formal system. It is everyday, perspicuous, simple, direct or ‘common sensical’.

Examining the Work and Its Later Impact 253

What was wanted, in the context in which Turing developed the notion of a Turing machine,
was a clarification. To resolve Hilbert’s famous Entscheidungsproblem what was required was not
merely the development of a new formal system, but a way of thinking about what formal systems
are and are used for. What was needed was a persuasive (perspicuous) analysis of the notion of a
formal system itself, that is, of a ‘definite method’ in a sense relevant to the problem context, i.e. to
the notion of a ‘mechanical’ or ‘effective’ ‘procedure’ that can be carried out by human beings, with
only limited cognitive steps (recognising a symbolic configuration, seeing that one of finitely many
rules applies, shifting attention stepwise to a new symbolic configuration and so on). An analysis
like Turing’s that intuitively analyses the very notion of a formal system by drawing an analogy
with certain limited aspects of possible human cognitive activity was precisely what was wanted.
The Turing machine offers us that way of thinking. It plays a role analogous to what Wittgenstein
called a ‘language game’: a simplified snapshot of a portion of human use of language, designed for
a particular purpose, to shed light on meaning.

It is sometimes held (for example, by Godel (1990, p. 306)) that Turing’s analogy with a human
computer, drawing on the assumption that a (human) computer scans and works with only a finite
number of symbols and/or states, involves strong and questionable metaphysical, epistemological
and/or psychological assumptions that Turing relied upon to justify his analysis. And it is quite cor-
rect that at one pivotal point in developing the analysis in his famous paper, Turing claims that a
human computer can recognise only a bounded number of different discrete configurations ‘at a
glance’, or ‘immediately’, because human memory is limited (Turing, 1937, p. 231). But from the
perspective adopted here, this is hardly a metaphysically or epistemologically loaded remark. Tur-
ing is only resting upon an everyday observation, and not a theory. He is simply making explicit
certain characteristic features earmarking the concept that is being analysed in the Hilbertian con-
text, namely, the idea of a human making a recogniseable step in a computation or a formal system, a
human following a ‘definite procedure’ or rule in the relevant sense. His simplification does not turn
on a thesis in philosophy of mind or mathematics, nor is it a psychological theory of what is ‘really
going on’ in our minds when we compute. Instead, it is a model for clarification, taken up in a spirit
analogous to Wittgenstein’s idea that a proof must be perspicuous (Ubersichtlich, Ubersehbar), an
idea about which Wittgenstein wrote a great deal after Turing attended his lectures (Wittgenstein,
1978, Part III).

References

Carnap, R., 2002. The Logical Syntax of Language. Open Court, Chicago.

Diamond, C. (Ed.), 1939. Wittgenstein’s Lectures on the Foundations of Mathematics, Cambridge; The
University of Chicago Press, Chicago, 1989.

Floyd, J., 2012. Wittgenstein’s Diagonal Argument: A Variation on Cantor and Turing. In: Dybjer, P., Lind-
strom, S., Palmgren, E., Sundholm, G. (Eds.), Epistemology versus Ontology: Essays on the Philosophy
and Foundations of Mathematics in Honour of Per Martin-Lof, Springer-Verlag, New York/Dordrecht.

Gandy, R.O., 2001. Introduction to Turing’s ‘The reform of mathematical notation and phraseology’ (1944-5).
In: Gandy, R.O., Yates, C. E. M. (Eds.), Collected Works of A. M. Turing: Mathematical Logic, North-
Holland/Elsevier Science, Amsterdam, pp. 211-213.

Godel, K., 1986. Collected Works, vol. I: publications 1929-1936. Oxford University Press, New York.

Godel, K., 1990. Collected Works, vol. II: publications 1938-1974. Oxford University Press, New York.

Hodges, A., 1983. Alan Turing: the Enigma. Burnett Books, London.

Turing, A. M., 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond.
Math. Soc. 2 (42), 230-265.

Turing, A. M., 1954. Solvable and unsolvable problems. Sci. News 31, 7-23.

Wittgenstein, L., 1974. Philosophical Grammar. Blackwell, Oxford.

Wittgenstein, L., 1978. Remarks on the Foundations of Mathematics. M. I. T. Press, Cambridge MA.

This page intentionally left blank

255

Part 11

Hiding and Unhiding Information:
Cryptology, Complexity and Number Theory

This page intentionally left blank

On the Gaussian error function
(Fellowship Dissertation (1935), unpublished)

Sandy L. Zabell delivers an authoritative guide to —

ALAN TURING
AND THE CENTRAL LIMIT THEOREM.!

Although the English mathematician Alan Mathison Turing (1912—1954) is remembered today pri-
marily for his work in mathematical logic (Turing machines and the ‘Entscheidungsproblem’),
machine computation and artificial intelligence (the ‘Turing test’), his name is not usually thought
of in connection with either probability or statistics. One of the basic tools in both of these subjects
is the use of the normal or Gaussian distribution as an approximation, one basic result being the
Lindeberg-Feller central limit theorem taught in first-year graduate courses in mathematical prob-
ability. No one associates Turing with the central limit theorem, but in 1934, Turing, while still
an undergraduate, rediscovered a version of the Lindeberg central limit theorem and much of the
Feller-Lévy converse to it (then unpublished).

1. Introduction

Turing went up to Cambridge as an undergraduate in the Fall Term of 1931, having gained a scholar-
ship to King’s College. (Ironically, King’s was his second choice; he had failed to gain a scholarship
to Trinity.) Two years later, during the course of his studies, Turing attended a series of lectures on
the Methodology of Science, given in the autumn of 1933 by the distinguished astrophysicist Sir
Arthur Stanley Eddington. One topic that Eddington discussed was the tendency of experimental
measurements subject to errors of observation to often have an approximately normal or Gaussian
distribution. But Eddington’s heuristic sketch left Turing dissatisfied; and Turing set out to derive a
rigorous mathematical proof of what is today termed the central limit theorem for independent (but
not necessarily identically distributed) random variables.

Turing succeeded in his objective within the short span of several months (no later than the end
of February 1934). Only then he did find out that the problem had already been solved, 12 years
earlier, in 1922, by the Finnish mathematician Jarl Waldemar Lindeberg (1876-1932). Despite this,
Turing was encouraged to submit his work, suitably amended, as a Fellowship Dissertation. (Turing
was still an undergraduate at the time; persons seeking to become a Fellow at a Cambridge college
had to submit evidence of original work, but did not need to have a Ph.D. or its equivalent.) This
revision, entitled ‘On the Gaussian Error Function’, was completed and submitted in November,
1934. On the strength of this paper, Turing was elected as a Fellow of King’s 4 months later (March
16, 1935) at the age of 22; his nomination supported by the group theorist Philip Hall and the
economists John Maynard Keynes and Alfred Cecil Pigou. Later that year, the paper was awarded
the prestigious Smith’s prize by the University (see Hodges, 1983).

Turing’s dissertation was not published. Only the Preface is reproduced here and in the Collected Works. A scan of the
complete original dissertation is in the Turing Digital Archive.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00010-2 257
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00010-2

258 Part II

Turing never published his paper. Its major result had been anticipated, although, as will be seen,
it contains other results that were both interesting and novel at the time. But in the interim, Turing’s
mathematical interests had taken a very different turn, to mathematical logic, and thus Turing turned
from mathematical probability, never to return.

2. The central limit theorem

The earliest version of the central limit theorem (CLT) is due to Abraham de Moivre (1667-1754).
If X1,X2,X3,... is an infinite sequence of 1s and Os recording whether a success (X,, = 1) or failure
(X, = 0) has occurred at each stage in a sequence of repeated trials, then the sum S, := X; +X> +

--+ X, gives the total number of successes after n trials. If the trials are independent, and the
probability of a success at each trial is the same, say P[X,, = 1] =p,P[X, =0] = 1 —p, then the
probability of seeing exactly k successes in # trials has a binomial distribution:

n! n— k
P[Sn=k]=mp (I1-p)

If n is large (e.g., 10,000), then as de Moivre noted, the direct computation of binomial proba-
bilities ‘is not possible without labour nearly immense, not to say impossible’; and for this reason,
he turned to approximate methods (see Diaconis and Zabell, 1991): using Stirling’s approximation
(including correction terms) to estimate the individual terms in the binomial distribution and then
summing, de Moivre discovered the remarkable fact that

. Sn —np i| / [:|
lim Pla< ——— < exp| —=x |dx;
oo [Vnp(l=p) — V2m

or ®(b) — ®(a), where ®(x) is the cumulative distribution function of the standard normal (or
Gaussian) distribution:

d(x) = F / exp [——t :|dt.

During the 19th and 20th centuries, this result was extended far beyond the simple coin toss-
ing setup considered by de Moivre, important contributions being made by Laplace, Poisson,
Chebyshev, Markov, Liapunov, von Mises, Lindeberg, Lévy, Bernstein and Feller; see Le Cam
(1986), Stigler (1986) and Hald (1998) for further historical information. Such investigations
revealed that if X1,X»,X3,... is any sequence of independent random variables having the same
distribution, then the sum S, satisfies the CLT provided suitable centering and scaling constants
are used: the centering constant np in the binomial case is replaced by the sum of the expectations
E[X,]; the scaling constant ,/np(1 — p) is replaced by the square root of the sum of the variances
Var[X,] (provided these are finite).

Indeed, it is not even necessary for the random variables X,, contributing to the sum S, to have the
same distribution, provided that no one term dominates the sum. Of course this has to be made pre-
cise. The best result is due to Lindeberg. Suppose E[X,,] = 0,0 < Var[X,] < oo, s = Var[S,], and

X\ Xl
Ap(e) —ZE|:< > ?26]

(The notation E[X;Y > €] means the expectation of X is restricted to outcomes w, such that
Y(w) > €). The Lindeberg condition is the requirement that

A,(e) > 0, Ve>0; 2.1

On the Gaussian error function 259

and the Lindeberg central limit theorem (Lindeberg, 1922) states that if the sequence of random
variables X1,X>,. .. satisfies the Lindeberg condition (2.1), then for all a < b,

lim P[ag Sn gb] = d(b) — d(a). (2.2)
n—o0o Sn

Despite its technical appearance, the Lindeberg condition (2.1) turns out to be a natural sufficient
condition for the CLT. There are two reasons for this. First, the Lindeberg condition has a simple
consequence: if Ukz := Var[X], then

02
2. k
pyi=max| — | — 0. (2.3)

Thus, if the sequence X1, X>, X3, satisfies the Lindeberg condition, the variance of an individual term
Xi in the sum S, is asymptotically negligible. Second, for such sequences, the Lindeberg condition
is necessary as well as sufficient for the CLT to hold, a beautiful fact discovered (independently) by
William Feller and Paul Lévy in 1935. In short: (2.1) <> (2.2) + (2.3).

If, in contrast, the Feller—Lévy condition (2.3) fails, then it turns out that convergence to the
normal distribution can only occur in a fashion markedly different from that of the CLT. If the
Feller-Lévy condition fails, then there exists a number p > 0, and two sequences of positive integers
{my} and {ng}, such that {my} is strictly increasing,

X o2
1 <my<mn forallk, and Var[m"] =% 5 p2>0. (2.4)

2
Sny Sp

Feller (1937) showed that if normal convergence occurs (that is, condition (2.2) holds), but
condition (2.4) also obtains, then (‘=" denoting convergence in distribution, N (,u.oz) the normal
distribution with mean s, variance '2)

1X
— =% = N(0,1).
P Spk

That is, there exists a subsequence X,,, whose contributions to the sums S,, are non-negligible
(relative to s,) and which, properly scaled, converges to the standard normal distribution.

3. Turing’s fellowship dissertation

3.1. Basic structure of the paper

The first seven sections of the paper (pp. 1-6) summarise notation and the basic properties of dis-
tribution functions. Section 1 summarises the problem; Section 2 defines the distribution function
F (abbreviated DF) of an ‘error’ €; Section 3 summarises the basic properties of the expectation
and mean square deviation (MSD) of a sum of independent errors; rigorous proofs in terms of the
distribution function are given in Appendix C at the end of the paper. Section 4 discusses the distri-
bution function of a sum of independent errors, the sum distribution function (SDF), in terms of the
distribution functions of each term in the sum, and derives the formula for F & G, the convolution
of two distribution functions. Section 5 then introduces the concept of the shape function (SF); the
standardisation of a distribution function F to have zero expectation and unit MSD; thus, if F has
expectation p and MSD o2(o > 0), then the shape function of F is U(x) := F(o (x — w)). (Turing
uses the symbols ‘a’ and k2’ to denote u and o2; several other minor changes in notation of this
sort are used below.)

260 Part I1

In Section 6, Turing then states the basic problem to be considered: given a sequence of errors
€k, having distribution functions Gy, shape functions Vi, means puj, mean square deviations okz,
sum distribution functions F,, and shape functions U, for each F,, under what conditions do the
shape functions U, (x) converge uniformly to ®(x), the ‘SF of the Gaussian Error’? Turing then
assumes for simplicity that u; = 0 and crkz < 00. In Section 7 (Fundamental Property of the Gaussian
Error), he notes the only properties of @ that are used in deriving sufficient conditions for normal
convergence are that it is an SF, and the self-reproductive property of ®: thatis, if X1 ~ N (O, 012) and
Xo ~N(O, 022) are independent, then X| + X5 ~ N(0, 012 + 022). (The notation X ~ N(,u,az) means
that the random variable X has the distribution N (i, o))

3.2. The Quasi—necessary conditions

It is at this point that Turing comes to the heart of the matter. In Section 8 (The Quasi-Necessary
Conditions), Turing notes

The conditions we shall impose fall into two groups. Those of one group (the quasi—necessary
conditions) involve the MSDs only. They are not actually necessary, but if they are not
fulfilled U,, can only tend to ® by a kind of accident.

The two conditions that Turing refers to as the ‘quasi—necessary conditions’ are:

ee}
Zakz =00 and
k=1

It is easy to see that Turing’s condition (3.1) is equivalent to condition (2.3). (That (2.3) = (3.1)
is immediate. To see (3.1) = (2.3) : given € > 0, choose M > 1 so that a,%/s% < e forn>M, and
NzMsothatsi/s]zv < € for 1 SkSM;ifnzN,thenakz/sﬁ <eforl <k<n)

In his Theorems 4 and 5, Turing explores the consequences of the failure of either part of
condition (3.1). Turing’s proof of Theorem 4 requires his

— 0. (3.1

%}
:Nl:qN

THEOREM 3.1. If X and Y are independent, and both X and X+ Y are Gaussian, then Y is
Gaussian.

This is a special case of a celebrated theorem proven shortly thereafter by Harald Cramér (1936);
if X and Y are independent, and X + Y is Gaussian, then both X and Y must be Gaussian. Lévy had
earlier conjectured Cramér’s theorem to be true (in 1928 and again in 1935) but had been unable
to prove it. Cramér’s proof of this result in 1936 in turn enabled Lévy to arrive at necessary and
sufficient conditions for the CLT of a very general type (using centering and scaling constants other
than the mean and standard deviation), and this in turn led Lévy to write his famous monograph,
Théorie de I’Addition des Variables Aléatoires (Lévy, 1937); see Le Cam (1986, pp. 80-81, 90).

Cramér’s theorem is a hard fact; his original proof appealed to Hadamard’s theorem in the theory
of entire functions. The special case of the theorem needed by Turing is much simpler; it is an
immediate consequence of the characterisation theorem for characteristic functions. To see this, let
¢x () := E[exp(itX)] denote the characteristic function of a random variable X; and suppose that
X and Y are independent, X ~ N(,0%) and X+ Y ~ N(0,6% 4 t2). Then

2, .2 2
o+ o
exp (— 5 z2> = px1v (1) = Ppx(DPy (1) = exp (—72) ¢y (),
hence ¢y (1) = exp(—r2t2/2); thus, ¥ ~ N(0,72) because the characteristic function of a random
variable uniquely determines the distribution of that variable. Turing’s proof, which uses distribution
functions, is not much longer.

On the Gaussian error function 261

It is an immediate consequence of Cramér’s theorem that if S, /s, = N(0, 1), but lim,_, o s,zl <
00, then all the summands X; must in fact be Gaussian. But Turing did not have this fact at his
disposal, only his much weaker Theorem 3. His Theorem 4 (phrased in the language of random
variables) thus makes the much more limited claim that if (a) Za,% < 00, (b) S, converges to a
Gaussian distribution, and (c) Xy is a random variable at once independent of the original sequence
X1,X>,... and having a distribution other than Gaussian, then the sequence S; = Xy +S,, cannot
converge to the Gaussian distribution. In other words, if Zanz < 00, then ‘the convergence ... to
the Gaussian is so delicate that a single extra term in the sequence ... upsets it’ (p. 17).

Turing’s Theorem 5 in turn explores the consequences of the failure of (3.1) in the case that
Y 0?2 =00, but p? :=0?2/s does not tend to zero as n — oo. The statement of the theorem is
somewhat technical in nature, but Turing’s later summary of it captures the essential phenomenon
involved:

If F,, [the distribution function of S,] tends to Gaussian and 0,% / s,% does not tend to zero [but
Zcr,% = oo] we can find a subsequence of G, [the distribution function of X},] tending to
Gaussian.

Thus, Turing had by some 2 years anticipated Feller’s discovery of the subsequence phe-
nomenon. (In Turing’s typescript, symbols such as ‘F,,’ are entered by hand; in the above quotation,
the space for ‘F),” has by accident been left blank, but the paragraph immediately preceding this one
in the typescript makes it clear that ‘F},” is intended.)

3.3. The sufficient conditions

Turing states in his preface that he had been ‘informed that an almost identical proof had been
given by Lindeberg’. This comment refers to the method of proof used by Turing and not the result
obtained. Turing’s method is to smooth the distribution functions F,(x) of the sum by forming
the convolution F, x ®(x/p), expand the result in a Taylor series to third order and then let the
variance p? of the convolution term tend to zero. This is similar to the method employed by Lin-
deberg. (There is an important difference, however: Turing does not use Lindeberg’s ‘swapping’
argument. For an attractive modern presentation of the Lindeberg method, see Breiman (1968, pp.
167-170); for discussion of the method, Pollard’s comments in Le Cam (1986, pp. 94-95.)) Turing
does not, however, succeed in arriving at the Lindeberg condition (2.1) as a sufficient condition for
convergence to the normal distribution; the most general sufficient condition he gives (on p. 27) is
complex in appearance (although it necessarily implies the Lindeberg condition). Turing concedes
that his ‘form of the sufficiency conditions is too clumsy for direct application’, but notes that it
can be used to ‘derive various criteria from it, of different degrees of directness and of compre-
hensiveness’ (p. 28). One of these holds if the summands Xj all have the same shape (that is, the
shape functions Vi (x) := P[Xy/ox < x] coincide) and thus includes the special case of identically
distributed summands having a second moment. (This was no small feat, because even this special
case of the more general Lindeberg result had eluded proof until the publication of Lindeberg’s
paper.)

One formulation of this criterion, equivalent to the one actually stated by Turing, is that there
exists a function J : Rt — R™, such that lim,_, o, J(¢) = 0, and

Xy

Ok

21:|§J(t) forall k>1,1>0. (3.2)

In turn, one simple sufficient condition for this given by Turing (pp. 30-31) is that there exists

2
a function ¢, such that ¢ (x) > 0 for all x, lim,_, 4o ¢ (x) = 00, and sup; E [(}L) 1) (&):| < 00.

k
Ok Ok

262 Part I1

(Note that unfortunately one important special case not covered by either of these conditions is that
the X} are uniformly bounded: |Xy| < C for some C > 0 and all k > 1.)

In assessing this portion of Turing’s paper, it is important to keep two points in mind. First,
Turing states in his preface that ‘since reading Lindeberg’s paper, I have for obvious reasons made
no alterations to that part of the paper which is similar to his’. The manuscript is thus necessarily
incomplete; it presumably would have been further polished and refined had Turing continued to
work on it; the technical sufficient conditions given represent how far Turing had gotten on the prob-
lem prior to seeing Lindeberg’s work. Second, in 1934, the Lindeberg condition was only known to
be sufficient, not necessary; thus even in discussing his results in other sections of the paper (where
he felt free to refer to the Lindeberg result), it may not have seemed important to Turing to con-
trast his own particular technical sufficient conditions with those of Lindeberg; the similarity in the
method must have seemed far more important.

3.4. One counterexample

In Section 14, Turing concludes by giving a simple example of a sequence X1,X»,... that satisfies
the quasi-necessary conditions (3.1), but not the CLT. This example turns out to be quite interesting;
see Zabell (1995).

4. Discussion

I. J. Good (1980, p. 34) has remarked that when Turing ‘attacked a problem he started from first
principles, and he was hardly influenced by received opinion. This attitude gave depth and original-
ity to his thinking, and also it helped him to choose important problems’. This observation is nicely
illustrated by Turing’s work on the CLT. His dissertation is, viewed in context, a very impressive
piece of work. Coming to the subject as an undergraduate, his knowledge of mathematical prob-
ability was apparently limited to some of the older textbooks such as ‘Czuber, Morgan Crofton
and others’ (Preface, p. ii). Despite this, Turing immediately realized the importance of working
at the level of distribution functions rather than densities; developed a method of attack similar to
Lindeberg’s; obtained useful sufficient conditions for convergence to the normal distribution; iden-
tified the conditions necessary for true central limit behaviour to occur; understood the relevance
of a Cramér-type factorisation theorem in the derivation of such necessary conditions; and discov-
ered the Feller subsequence phenomenon. If one realizes that the defects of the paper, such as they
are, must largely reflect the fact that Turing had ceased to work on the main body of it after being
apprised of Lindeberg’s work, it is clear that Turing had penetrated almost immediately to the heart
of a problem whose solution had long eluded many mathematicians far better versed in the subject
than he. (It is interesting to note that Lindeberg was also a relative outsider to probability theory and
only began to work in the field a few years before 1922.)

It is also interesting to note Turing’s approach to the problem in terms of convolutions of distri-
bution functions rather than sums of independent random variables. Feller had similarly avoided the
use of the language of random variables in his 1935 paper, formulating the problem instead in terms
of convolutions. The reason, as Le Cam (1986, p. 87) notes, was that ‘Feller did not think that such
concepts [as random variable] belonged in a mathematical framework. This was a common attitude
in the mathematical community’.

References
Breiman, L., 1968. Probability. Addison—Wesley, Reading, MA.

Cramér, H., 1936. Ueber eine Eigenschaft der normalen Verteilungsfunktion. Mathematische Zeitschrift 41,
405-414.

On the Gaussian error function 263

Diaconis, P.,, Zabell, S., 1991. Closed form summation for classical distributions: variations on a theme of De
Moivre. Stat. Sci. 6, 284-302.

Feller, W., 1935. Uber den zentralen Grenzwertsatz der Wabhrscheinlichkeitsrechnung. Mathematische
Zeitschrift 40, 521-559.

Feller, W., 1937. Uber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung, II. Mathematische
Zeitschrift 42, 301-312.

Good, 1.J., 1980. Pioneering work on computers at Bletchley. In: Metropolis, N., Howlett, J., Rota, G-C.
(Eds.), A History of Computing in the Twentieth Century, Academic Press, New York, pp. 31-45.

Hald, A., 1998. A History of Mathematical Statistics from 1750 to 1930. Wiley Interscience, New York.

Hodges, A., 1983. Alan Turing: The Enigma. Simon and Schuster, New York.

Le Cam, L., 1986. The central limit theorem around 1935 (with discussion). Stat. Sci. 1, 78-96.

Lévy, P, 1935. Propriétés asymptotiques des sommes de variables indépendantes ou enchainées. J. Math. Pures
Appl. 14, 347-402.

Lévy, P., 1937. Théorie de 1’ Addition des Variables Aléatoires. Gauthier—Villars, Paris.

Lindeberg, J.W., 1922. Eine neue Herleitung des Exponential-gesetzes in der Wahrscheinlichkeitsrechnung.
Mathematische Zeitschrift 15, 211-225.

Stigler, S.M., 1986. The History of Statistics. Harvard University Press, Cambridge, MA.

264 Part I1

Turing’s ‘Preface’ (1935) to
‘On the Gaussian error function’

The object of this paper is to give a rigorous demonstration of the “limit theorem of the theory of
probability”. I had completed the essential part of it by the end of February 1934 but when con-
sidering publishing it T was informed that an almost identical proof had been given by Lindeberg!.
The only important differences between the two papers is that I have introduced and laid stress on
a type of condition which I call quasi-necessary (Section 8). We have both used “distribution func-
tions” (§2) to describe errors instead of frequency functions (Appendix B) as was usual formerly.
Lindeberg also uses (D) of §12 and Theorem 6 or their equivalents.

Since reading Lindeberg’s paper I have for obvious reasons made no alterations to that part of
the paper which is similar to his (viz. §9 to §13), but I have added elsewhere remarks on points of
interest and the appendices.

So far as know the results of §8 have not been given before. Many proofs of the completeness of
the Hermite functions are already available (footnote, p.33) but I believe that that given in Appendix
A is original. The remarks in Appendix B are probably not new. Appendix C is nothing more than
a rigorous deduction of well-known facts. It is only given for the sake of logical completeness and
it is of little consequence whether it is original or not.

My paper originated as an attempt to make rigorous the “popular” proof mentioned in Appendix
B. I first met this proof in a course of lectures by Prof. Eddington. Variations of it are given by
Cziiber, Morgan, Crofton and others. Beyond this I have not used the work of others or other sources
of information in the main body of the paper, except for elementary matter forming part of one’s
general mathematical education, but in the appendices I may mention Liapounoff’s papers which I
discuss there.

I consider §9 to §13 is by far the most important part of this paper, the remainder being comment
and elaboration. At a first reading therefore §8 and the appendices may be omitted.

' Math. 7. 15 (1922).

Some Calculations of the Riemann
Zeta function

(Proc. Lond. Math. Soc., series 3 vol. 3 (1953), pp. 99-117)
On a Theorem of Littlewood
(Unpublished manuscript, with S. Skewes, ¢.1952-53)

Dennis Hejhal and Andrew Odlyzko take an in-depth
look at —

ALAN TURING
AND THE RIEMANN ZETA FUNCTION

1. Introduction

Turing encountered the Riemann zeta function as a student and developed a life-long fascination
with it. Though his research in this area was not a major thrust of his career, he did make a number
of pioneering contributions. Most have now been superseded by later work, but one technique that
he introduced is still a standard tool in the computational analysis of the zeta and related functions.
It is known as Turing’s method and keeps his name alive in those areas.

Of Turing’s two published papers (Turing, 1943, 1953) involving the Riemann zeta function
Z(s), the second' is the more significant. In that paper, Turing reports on the first calculation of
zeros of ¢(s) ever done with the aid of an electronic digital computer. It was in developing the
theoretical underpinnings for this work that Turing’s method first came into existence.

Our primary aim in this chapter is to provide an overview of Turing’s work on the zeta func-
tion. The influence that interactions with available technology and with other researchers had
on his thinking is deduced from Turing (1943, 1953) as well as some unpublished manuscripts of his
(available in Turing (1992)) and related correspondence, some newly discovered. To minimise any
overlap with other chapters, we do not discuss Turing’s contributions to computing in general,
even though they did influence the work on ¢(s) that he and those who followed in his footsteps
carried out.

The recent survey article of Booker (2006) has a significant overlap with what we say here and
is highly recommended as a collateral ‘read’.

2. Recollection of some basics

The Riemann zeta function ¢ (s) is defined for complex s with Re(s) > 1 by

1
(= —. 2.1)

n=1

' Some calculations of the Riemann Zeta function, reproduced below.

Alan Turing: His Work and Impact. DOI: 10.1016/B978-0-12-386980-7.00011-4 265
(© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-386980-7.00011-4

266 Part I1

This function can be extended analytically to the entire complex plane except for the point s = 1,
at which there is a pole of order one. The extended function, which is again denoted by ¢ (s), has so-
called trivial zeros at s = —2,—4,—60, The other zeros, called nontrivial zeros, are also infinite in
number and lie inside the critical strip 0 < Re(s) < 1. The Riemann hypothesis (RH) is the assertion
that all the nontrivial zeros p lie in the centre of the critical strip, i.e., on the critical line Re(s) = 1.
Any p’s lying off the critical line necessarily occur in symmetric quadruplets {p,p0,1 — p,1 — p}.

The RH is widely regarded as the most famous unsolved problem in mathematics. It was one of
the 23 famous problems selected by Hilbert in 1900 as among the most important in mathematics,
and it is one of the seven Millennium Problems selected by the Clay Mathematics Institute in 2000
as the most important for the 21st century (Clay, 2000). For general background on the RH, we
shall be content to cite the survey article by Conrey (2003) and Clay (2000). For more technical
information about the zeta function, see Titchmarsh (1985).

The RH was posed by Bernhard Riemann in 1859. (See Clay (2000) for a copy of Riemann’s
paper and an English translation.) The importance of the RH stems from the connection observed
by Riemann between primes and the non-trivial zeros of the zeta function. If, as usual, we let 7 (x)
be the number of primes up to x, then Riemann showed that (for x = 2)

7(x) = Li(x) — %Li(xl/z) — ZLi(xp) + W), (2.2)
P

where Li(x) is the logarithmic integral, a nice and smoothly growing function, and W(x) is of lower
order (relative to the three earlier summands). The terms Li(x”) are special cases of the classical
analytic function Ei(£) defined for Im(£) # 0, which differs insignificantly from ¢ /& whenever
|£] > 1. One simply puts & = pIn(x) for each p.

The main difficulty in using Eq. (2.2) to estimate 7 (x) is that the series is not absolutely con-
vergent. Since m(x) is a step function, and the individual terms on the right side of Eq. (2.2) are
continuous at each prime number p, the sum behaves somewhat like a Fourier series in producing
the discontinuities of 7 (x). Another difficulty is that the sizes of the individual terms depend on the
locations of the non-trivial zeros p.

The leading term in Eq. (2.2), Li(x), grows like x/In(x) as x — oo. The Prime Number Theorem,
first proved in 1896 by Hadamard and de la Vallée Poussin using properties of zeros of the zeta
function, tells us that asymptotically 7 (x) grows like Li(x); hence like x/In(x). The RH has been
shown to be equivalent to the difference function |7 (x) — Li(x)| being bounded by a quantity close
to 4/x, where close means within logarithmic factors or (what amounts to the same thing) the square
root of the leading term in Eq. (2.2).

In his famous 1859 paper, Riemann asserted that most non-trivial zeros of the zeta function are
on the critical line and that it was likely that all of them lie there (which is what we now refer to as
the RH). Riemann did not provide even a hint of a proof for the first, positive, assertion. It remains
unproved to this day, although it is believed to be true, even by those who are skeptical of the truth
of the RH. The RH itself is known to be true for the first 10!3 non-trivial zeros, as well as large
blocks of zeros much higher up, including some around zero number 10?4,

At the end of his paper, Riemann also discussed another conjecture that played a significant
part in Turing’s research, namely 7 (x) < Li(x). As Riemann noted, computations by Gauss and
Goldschmidt had established the validity of this inequality for x < 10°, and if the series over the
non-trivial zeros p in Eq. (2.2) was nicely behaved, the difference Li(x) — 7 (x) would tend to grow
roughly like /x/In(x). From the tone of Riemann’s presentation, it appears that he suspected that
the inequality 7 (x) < Li(x) might well be true generally. (We say ‘suspected’ because Riemann’s
wording is vague.)

Today, we know that 7 (x) < Li(x) holds not just for x < 10°, but even for x < 10'4. In 1914,
however, Littlewood proved that there are infinitely many integers x = 2 for which the inequality

Some Calculations of the Riemann Zeta function 267

fails! The most recent result in this area shows that the inequality fails for some x < 10°!7, but we
still do not know where the first counterexample occurs. There are heuristic arguments suggesting
there are no counterexamples within x < 10%° and likely even higher. Thus, this is one of the many
instances that occur in number theory of a conjecture that is supported by heuristics and extensive
numerical evidence, yet turns out to be false. In a similar way, the validity of the RH is definitely
not something that we can be assured of simply on the basis of its being true for the first 103 cases.

Littlewood’s proof that 77 (x) > Li(x) holds infinitely often relied on Riemann’s expansion (2.2)
and required considerable technical virtuosity to deal with the infinite series that was not absolutely
convergent. In the mid-1930s, another approach became available through the work of Ingham,
which had the advantage of being both simpler and more explicit, but at the cost of requiring some
computations. In very loose terms, Littlewood’s result was shown to follow from knowledge of
some initial set of non-trivial zeros of the zeta function (cf. Section 5 below). This connected numer-
ical verifications of the RH to the 7 (x) < Li(x) conjecture. Turing was intrigued by both problems
and made contributions to each one.

Interestingly enough, it appears that Turing had doubts about the validity of the RH already at
an early stage and that, over time, his skepticism only increased.”

3. On Turing’s computations of the zeta function

The first computations of zeros of the zeta function were performed by Riemann and likely played
an important role in his posing of the RH as a result likely to be true. His computations were carried
out by hand, using an advanced method that is known today as the Riemann-Siegel formula. Both
the method and Riemann’s computations that utilised it remained unknown to the world-at-large
until the early 1930s, when they were found in Riemann’s unpublished papers by C. L. Siegel. In
the meantime, as both the significance and difficulty of the RH were recognised around the turn of
the 20th century, computations using a less efficient method, based on Euler-Maclaurin summation,
were carried out by several investigators. The calculations used tables of logarithms and trig func-
tions, paper and pencil, and mechanical calculators. The largest of those early computational efforts
was that of J. Hutchinson, who showed that there were exactly 138 zeros of the zeta function with
0 < Im(s) < 300 and that they all satisfied the RH. (Hutchinson also provided modestly accurate
values for the 29 zeros in 0 < Im(s) < 100.)

Aside from possible numerical mistakes, these computations are completely rigorous and do
establish the validity of the RH for all the zeros for which it is claimed. As was recognised already
by Riemann, there is a simple variant of the zeta function that is real on the critical line, so that a
sign change of this function has to come from a zero of the zeta function that is right on the critical
line. The final stage was the verification that the sign changes that have been found account for all
the zeros in a given Im(s)- range. Until Turing came out with his method, this step was done by
a rather messy, although in principle not very difficult, computation based on the principle of the
argument. Turing’s method obviates any need for using the argument principle. It involves only the
real-valued function on the critical line. See Turing (1953, Section 4) for a precise statement.

In the mid-1930s, after Siegel’s publication of the Riemann-Siegel formula, Titchmarsh
obtained a grant for a larger computation. With the assistance of L. J. Comrie, tabulating machines,
some ‘computers’ (as the mostly female operators of such machinery were called in those days),
and the recently published algorithm, Titchmarsh established that the 1041 non-trivial zeros in
0 < Im(s) < 1468 all satisfied the RH (Titchmarsh, 1936).

Turing became interested in extending Titchmarsh’s results. He designed and started to build,
with the help of a £40 grant from the Royal Society, a special purpose analog computer to verify

2 Littlewood’s views followed a similar trajectory; see Littlewood (1962; 1982, p. 792)

268 Part I1

whether the RH is satisfied by all the zeros with 0 < Im(s) < 6000 (of which there are 5598). More
details about this machine are available in Booker (2006) and Casselman (2006). Work on this
project was interrupted by the outbreak of World War II, and this computer was never constructed.

We do not know how well Turing’s zeta function machine would have worked, had it been
built. At least one special zeta function computer was constructed to a different design later by
van der Pol (1947). By that time, though, electronic digital computers were becoming available,
and Turing (1953) was the first one to utilise them to investigate the zeta function. In 1950, he used
the Manchester Mark 1 Electronic Computer to extend the Titchmarsh verification of the RH to
the first 1104 zeros of the zeta function, the ones with 0 < Im(s) < 1540. This was a very small
extension, but it represented a triumph of perseverance over a promising new technology that was
still suffering from teething problems. In Turing’s words, ‘[i]f it had not been for the fact that the
computer remained in serviceable condition for an unusually long period from 3 P.M. one afternoon
to 8 A.M. the following morning it is probable that the calculations would never have been done at
all’. These days, when even our simple consumer devices have gigabytes of memory, it is instructive
to recall that the machine available to Turing had a grand total of 25,600 bits of memory and that
Turing worked directly with output ‘punched out on teleprint tape’ in base 32. That Turing stayed
up all through the night conveys some idea of how interesting he found this experiment.

More significant than the extension of the Titchmarsh verification of the RH to an additional 63
zeros was Turing’s earlier computation on that same occasion of the 1054 zeros in 27 632 < Im(s) <
2 642, all of which turned out to lie on the critical line. (Note that 27632 is about 25,000.) Not only
did this produce a substantial increase in the number of zeros that were known to obey the RH, but
it represented an innovation, a realisation that by jumping to larger heights one could obtain a better
view of the asymptotic behaviour of the zeta function.

Today, Turing’s pioneering use of the Manchester Mark 1 for computing the zeta zeros is a
historical footnote. Turing’s results were soon surpassed by a sequence of increasingly extensive
computations. His work was furthermore not an unexpected breakthrough. Development of digital
computers and growing interest in the zeta function would surely have led to someone else carrying
out similar calculations within a few years, even if he had not done so.

For several decades, progress came exclusively from faster computers and longer runs. Begin-
ning, however, in the mid-1980s, new algorithms started appearing, such as the one of Schonhage
and the second author of this chapter for computing large sets of zeros, as well the ones of
Schonhage, Heath-Brown, and Hiary for computation of individual values of ¢(s) when Im(s) is
very large. Combined with growing computing power, these algorithms have enabled calculations
far beyond the reach of Turing and his contemporaries. It is now known that the RH is true for the
first 10'3 non-trivial zeros, for some tens of billions of zeros around zeros number 1023 and 10?4,
and for some hundreds of zeros near zero number 1032, (All these projects have relied on Turing’s
method for proving that all zeros in a given range have been found and are on the critical line.) If
there was a strong motivation to obtain more data, these numbers could be increased by factors of
10 or 100 simply by harnessing more computing power. As machines become more powerful and
more plentiful, and still better algorithms are found, we can look forward to substantial growth in
information about non-trivial zeros.

Among recent computations of zeta zeros, the verifications of the RH — whether for initial
segments or for blocks of zeros high up — carry on traditions that were extended or started by
Turing. Other efforts have involved high precision computations of low zeros. Some of those are
done to obtain improved bounds for the counterexamples to conjectures such as that of Mertens,
or that 7 (x) < Li(x), and are related to projects Turing devoted quite a bit of time to, and where
had he lived he might have carried out such computations himself (cf. Section 5). Others reflect a
desire to test whether zeta zeros satisfy some algebraic relations among themselves or involving
other well-known constants, such as e or 7. (One conjectures that no such relations exist.) The

Some Calculations of the Riemann Zeta function 269

main motivation, however, for recent computations of zeta zeros, as well as zeros of related func-
tions, comes from a conjectured relation between those zeros and eigenvalues of random matrices.
A conjecture made by Hilbert and Pélya in the 1910s was that the RH is true because zeta zeros
correspond to eigenvalues of a positive operator. This initial conjecture was extremely vague and
hard to test. However, a variety of developments in the next half a century provided additional
motivation to consider the Hilbert and Pélya guess more seriously. A particularly important devel-
opment was a theorem of H.L. Montgomery from the early 1970s, which suggested that zeta zeros
should behave like eigenvalues of a particular family, the GUE, of random matrices that had been
explored intensively by mathematical physicists. Subsequent computations by the second author
provided extensive numerical evidence for this connection. Ever since, a large industry has grown
up, exploiting the (still conjectural and empirical) connection between zeta zeros and random matri-
ces. This is regarded by many researchers as the most promising road towards a proof of the RH.
More details and references can be found in Conrey (2003). This work is far from what Turing was
aware of, but one can expect that he would have found it exciting.

4. On Turing’s early work with zeta

Most readers will likely have at least some familiarity with Andrew Hodges’ definitive biography
(Hodges, 1983) of Turing. Pages 94, 133-135, 140-142, and 154-158 therein suffice to give a quick
overview of how Turing’s research interests with ¢ (s) got started around 19367 or so.

By combining the contents of four letters in the Turing Digital Archive (two from Ingham and
one each from Skewes and Titchmarsh) with several other sources, it is possible to view these early
developments in substantially greater depth and, in the process, add some valuable context to the
overall picture. Our aim in the present section is to do this, albeit very succinctly.

The following timeline presents the essential points:

e Turing matriculates at King’s College in 1931. He meets Ingham, one of the two mathemat-
ics supervisors there. Ingham’s now classic Cambridge tract (Ingham, 1932) on prime number
theory appears in 1932; Turing obtains a copy shortly thereafter (Hodges, 1983, p. 133).

e In 1933, Littlewood’s student, Stanley Skewes (1933) proves that if the RH is true, the smallest
x 2 2 for which 7 (x) > Li(x) must satisfy x < 104, where A = 10® and B = 1034, The smallest
such integer x is often called the Skewes number; for ease of reference, we’ll denote this number
by xs. (Skewes and Turing rowed together regularly in Cambridge (Williams, 2007). As will
become clear in Section 5, Turing first heard about Skewes’ work in that setting, with Skewes
‘rowing two’ and Turing positioned at bow.)

e During his first year at Princeton (1936-7), Turing keeps in touch with Ingham; he also speaks
occasionally with Hardy, who was visiting for a semester (Hodges, 1983, p. 117). Sometime prior
to 1 June 1937, the date of Ingham’s first Archive letter, Turing mentions to Ingham that he has
become interested in trying to attack the xs- problem by sharpening the original reasoning used
by Littlewood in 1914; cf. Eq. (2.2) and (Ingham, 1932, p. 92ff). Ingham offers encouragement,
but suggests that his recent, alternate proof (Ingham, 1936) for Littlewood’s theorem may be
more amenable for this purpose. He encloses an offprint, noting that Skewes has apparently
tried the approach — only to come up with (a very likely improvable) upper bound 10'° for B, in
place of the original 1034,

¢ Back in Cambridge during the Summer of 1937, Turing pursues Ingham’s suggestion with
¥ (x) —x, a function closely related to m(x) —Li(x) (still assuming the truth of the RH).
He obtains a bound much better than Skewes’ and communicates this to Ingham. The draft
manuscript for this, which appears to be (Turing, 1992, pp. 147-151) (or something quite simi-
lar) makes use of a variant of Ingham (1936) and several key ¢ (s) estimates, including one from

270 Part II

the paper of Titchmarsh (1936) on the numerical verification of the RH for Im(s) ranging up
to 1468. In his second letter (dated Sept. 18), Ingham reacts positively to Turing’s work [with-
out checking every calculation] and conveys the information that Littlewood and Skewes have
just about finished deriving a bound for xg wherein nothing is assumed about the truth of the
RH. Ingham refers Turing to a recent paper of Littlewood that obliquely touches on the matter;
see Littlewood (1982, pp. 838—843). (N.B. the “1948” appearing on p. 149 of Turing (1992) is
not present in the original Archive manuscript; Turing only wrote p. 324, which corresponds to
the 1933 edition of Jahnke/Emde, Funktionentafeln. See also the comment by Cohen in Turing
(1992, p. 272).)

e Now back in Princeton, Turing’s interests begin to shift more towards ¢(s) per se, especially
its zeros and the matter of extending Titchmarsh (1936) past t = 1468. Apart from the work’s
intrinsic merit (including in exploring further the skepticisms about the RH voiced on the final
pages in the study by Titchmarsh (1935, 1936)), Turing surely realised that gaining control on a
larger initial set of zeta zeros would facilitate a better bound for xs. The idea of building a special
purpose ‘gear-wheel’ computer (Hodges, 1983, p. 140ff) to evaluate the sum function called for
in the main numerical part of Titchmarsh (1936) probably arose during this period. Titchmarsh’s
letter (of 1 December) makes reference to this; he describes the idea as very interesting and
advises Turing that, in the work he proposes, higher-order correction terms may be needed to
secure proper accuracy in p. He also cautions ‘it may be that, like with 7 (x) — Li(x), ;(% + it)
may go on for a very long time before revealing its true character’.

e On9 December 1937, Skewes writes from Cape Town, where he worked, and reacts positively to
Turing’s improved bound for xg from that summer. From the letter’s wording, it is evident that
both are occupied with other work at the moment (for Turing, this was his Ph.D. dissertation
(Hodges, 1983, p.145)). Skewes writes that he cannot get back to Cambridge for another 2
years — but promises to give some details about the ‘RH false case’ in his next letter. No such
letter is found in the Archive. (Although Skewes’ Cambridge dissertation was accepted in 1938,
it was not readied for journal publication until 15 years later (Skewes, 1955); an interesting
popular account can be found in Section 14 of Littlewood (1948).)

e Turing receives his Princeton Ph.D. in June 1938 and, shortly afterwards, returns to England. It
is not until 1939 that he resumes work on ¢ (s). Turing (1943) is submitted for publication on 7
March 1939. In very loose terms, Turing (1943) seeks to address some of the ‘correction term
issue’ that Titchmarsh raised in his 1937 letter by passing to an alternate (smoother) version
of the ¢(s)-expansion utilised in Titchmarsh (1936) whose basic error term appears to be both
smaller and more readily estimable than the one employed previously. Emphasis is placed on
s-regions (both on and off the critical line) likely to be pertinent in a ‘gear-wheel’ setting. The
paper is very technical and, as noted by Heath-Brown in (Turing, 1992, p. 261), was soon made
unnecessary by the advances that occurred when electronic computers became available. The
influence of C. L. Siegel’s celebrated 1931 paper on ¢ (s) based on material found in the Riemann
Nachlass is plainly visible at several places in Turing (1943). Expansions similar in spirit to
Turing (1943) continue to be useful in a variety of other contexts; cf., e.g., Berry and Keating
(1992), Paris (1994) and Rubinstein (2005, Section 3).

¢ Turing submits his £40 proposal for construction of a ‘zeta function machine’ to the Royal Soci-
ety on 24 March 1939 (see Turing (1939)). Its stated aim is to extend the range of Titchmarsh’s
work on the RH by a factor of about 4. Due to the onset of World War II, the proposed machine
is never completed.

Some Calculations of the Riemann Zeta function 271

5. A return to basics

As we just saw, Turing’s fascination with ¢(s) actually originated in a very basic question about
the ordinary prime numbers {2,3,5,7,11,13,17,...}. In light of their structural and aesthetic ‘stark-
ness’, it is not too surprising that, over the years, the primes would continue to retain a certain
attractiveness for Turing.

Most papers dealing with Skewes’ problem of trying to find xg, the smallest integer x for which
m(x) > Li(x), are very technical. The two drafts in Turing (1992) devoted to this topic (viz., pp. 147—
151, 153-174) are no exception. The second, ‘On a theorem of Littlewood’, ostensibly written
jointly with Skewes, is described by Britton on pp. XIV and 273 of Turing (1992) as having been
in all likelihood prepared solely by Turing. Ingham, who studied the manuscript carefully in the
early 1960s, expresses an equivalent view in Hardy (1967, p. 99). Since, as we shall see, the work
is a significant one [its unpolished state notwithstanding], it is only natural to want to understand its
background a little more clearly.? Our efforts in this direction have been aided in no small way by
the fortuitous help that we received from A. M. Cohen, K. Hughes, J. Webb, P. Sarnak, S. B. Cooper
and Stephen Skewes (Stanley Skewes’ son).

We have already outlined the pre-World War II situation in Section 4. To take things further,
we need to say just a few more words about Ingham (1936) . Riemann’s formula in Eq. (2.2) gives
an explicit representation for Li(x) — 7 (x) as a sum over the non-trivial zeros p and the point 1.
(By abuse of language, we can temporarily regard 1/2 as a p.) As was mentioned in Section 2, the
p-sum requires technical virtuosity to handle and, even then, yields relatively poor results. Ingham’s
breakthrough was the observation that certain (sliding) weighted averages of Li(x) — w(x) can be
represented as sums over the p that are far more tractable, with terms that decline rapidly as the
heights of the p grow. Insofar as this type of mollified sum can be made negative, at least some
of the values of Li(x) — 7 (x) that go into the average have to be negative as well, provided that
the weights used in the averages are all non-negative. (When, as in Ingham (1936), the RH can be
assumed, the key issue ultimately boils down to arranging things so that many sinusoidal p-terms
‘all pull in the same direction’ so as to successfully overpower something positive.) As such, the
method usually does not produce any single counterexample to the m(x) < Li(x) conjecture, but
it does disprove it, and, if things are kept explicit enough, at least furnishes a region in which a
counterexample has to lie.

Similar approaches have been developed for other number theoretic conjectures, such as that of
Mertens. Typically, successful applications of such methods require high-precision values for some
initial set of non-trivial zeros p, and knowledge that a considerably larger [finite] set satisfies the
RH (the latter to help ensure the negligibility of all those terms past a certain p-threshhold).

Itis interesting to observe that, already in the manuscript (Turing, 1992, pp. 147-151) from 1937,
the mollification factor adopted by Turing is one of Gaussian type — exactly as would be appropriate
as a ‘first guess’ in a setting in which there were some sporadically occurring off-line zeros in
need of suppression in Eq. (2.2). The mollification choices adopted in Turing’s second unpublished
manuscript on this problem, ‘On a theorem of Littlewood’ (Turing, 1992, pp. 153-174), OTL from
now on, can be seen as building on that used in 1937.%

As the letter reproduced in Figure 2 clearly shows, Ingham and Britton’s view about the
authorship of OTL is correct. (Skewes (1955) was submitted for publication in December 1953.
Consistent with the letter, his exposition makes no mention of OTL. The memorable phrase on

3 As of Spring 2011, neither the original nor Britton’s photocopy could be found in the Turing Digital Archive. Compare
Turing (1992, p. IX(bottom)). Notice, too, that no date is offered for this work in Turing (1992).

4 In Sections 2—5 of OTL, part of the idea is to imitate Ingham (1936) by using an ‘approximate identity” interpretation
of the Gaussian; cf. the bottom half of p. 154, 158(top), and 166 (lines 10, 16,20-21). In this connection, see also lines
22-23 in Ingham’s commentary, op. cit.

272 Part II

p. 50, line 10 may hint at one of Skewes’ complications.”) In light of the unhappy events of the first
part of 1952 (Hodges, 1983, pp. 471-473) and the inherent complexity of its estimates, it seems
reasonably safe to hypothesise that the preparation date of OTL falls somewhere between mid-1952
and early 1953.

Such a timeframe would also be consistent with Turing’s use of the phrases ‘digital computer’
and ‘ten to twenty hours of computation time’ on p. 168 of Turing (1992), not to mention the
general mathematical mindset of the surrounding lines. Also note that some similar ‘accounting-
type’ language occurs in Turing (1953, part I, pp. 112-116).

Although it is possible that the work for certain parts of OTL may actually have transpired some
time prior to the drafting of any manuscript, the general sloppiness of Turing’s typescript (we were
able to secure a copy of A.M. Cohen’s photocopy) tends to suggest that any ‘time gap’ is one
of relatively modest size. Having said this, however, there may still be some value in noting that,
during the 10-year period prior to 1953, there were five occasions on which a ‘rekindling of xg
ideas’ might well have occurred on one level or another:

¢ Prior to moving to Manchester, Turing spent the 19478 academic year in Cambridge. As it turns
out, Skewes was also there on sabbatical for at least the first half of 1948, presumably doing some
(pre-publication) fine tuning of his xg thesis work with Littlewood. A letter dated 30 September
[1948] from Littlewood to Skewes (made available to us by courtesy of John Webb) implicitly
confirms the primary topic of their discussions, as well as Littlewood’s close involvement. After
a 10-year hiatus, one has to assume that Turing and Skewes occasionally talked.

e Littlewood’s (1948, Section 14) popular account of the Skewes number also appeared in 1948
(July, to be more precise).

¢ During the 1949-50 academic year, there is some hint that, beyond his actual June 1950 exper-
iment with the RH on the Manchester Mark 1, Turing may have also contemplated making
calculations to a bit higher accuracy. See p. 99 (lines 6,21-24), 100 (line 4), 104 (lines 5-6),
and 114 (line 13) in Turing (1953); also Digital Archive item AMT/B/32/image 98 and Hodges
(1983, p. 406, footnote).

e In Archive letters dated 19 December 1950 and 2 January 1951, Ingham raises a number of
machine-oriented computational issues closely tied to a possible disproof of Pélya’s conjecture,
a conjecture very similar in spirit to m(x) < Li(x). It is evident from the January letter that
Ingham has prompted Turing to start thinking about this matter.

e In March 1952, Kreisel (1952) appears. Section VI therein is devoted to a discussion of how to
approach the Skewes problem along the lines that Turing originally wrote to Ingham about in
the Spring of 1937. Kreisel presents no bound for xg, however.

From a historical standpoint, it is fair to say that the significance of the first part of OTL (i.e.,
Sections 2-6) rests in Turing’s realisation, already 1952-3, that by a judicious choice of mollifica-
tion factor, it would prove feasible to eliminate the awkward quantitative dichotomy between the
RH being true or false (i.e., ‘H vs. NH’), which was introduced by Littlewood and was required
previously, including in Skewes (1955), to secure an unconditional bound for xg. And, further, that
in so doing, a substantially superior xg-bound would in fact accrue on the basis of using just several
hundred p’s.

Ingham offers a similar assessment in Hardy (1967, p. 99, lines 19-24) with a cautionary note
about the manuscript’s ‘very rough’ state. That Turing’s ideas were fundamentally sound was shown

> Compare Burkill (1979, p.68, middle). The phrasing of item 4 in Turing (2001, p. 266) suggests that Turing may well
have apprised Robin Gandy about his predicament with Skewes at some point.

Some Calculations of the Riemann Zeta function 273

Fig. 1: Professor Stanley Skewes. (Courtesy of the Department of Mathematics and Applied
Mathematics, University of Cape Town.)

by Cohen and Mayhew in their 1965 work (Cohen and Mayhew, 1968) or (Turing, 1992, pp. 183—
205) utilising about 450 zeros, albeit to greater precision than was available in the early 1950s.°

In the second half of OTL (i.e., Section 7), Turing derives a bound for xg on the basis of there
being an ‘appropriately isolated” off-line zero pp in Re(s) > 1. Although the issue of obtaining an
optimal xg-bound in the specific setting of Theorem 3 may not have been looked at yet, results
similar in spirit — even in more general settings — have been available for some years now in con-
nection with the so-called Turdn power sum method and comparative prime number theory. See, for
instance, Knapowski (1961), Knapowski and Turdn (1976), and Pintz (1980). Somewhat curiously,
the latter two references make use of an idea (cf. Theorem H*) found in the aforementioned work
on mathematical logic by Kreisel (1952).

Although the letter in Figure 2 may initially suggest an unsettled, uneasy state of affairs, in
stepping back from it, we find ourselves in agreement with a comment made to us by Andrew
Hodges, particularly vis a vis the period 1952 to early 1953, a time of clear personal difficulty for
Turing. Concerning the letter, Hodges writes:

...what it conveys to me is something else quite marvellous — the timelessness of pure math-
ematics, illustrated in the way AMT refers back to discussions while rowing many years
before. Despite everything that has happened, the war and computers, there are the prime
numbers and their mysteries just the same as ever, something he has thought about from time
to time ever since.

6 The situation calls to mind Robin Gandy’s comments in Turing (2001, p. 9) about Turing’s love of calculating, in
particular Turing’s quip ‘What’s a factor of two between friends’?

274 Part II

. GOMPUTTIHG MACRIVE LABORATORY
UNIVERSITY OF MANCHESTER
MANCHESTER 13

TELEPHONE :
ARDWICK 2681

9%h April, 1953.

S. Skewes, Esq.,
'Shannon?,
Firdale Racod,
Hewlends,

Cape Town.

Dear Sam,

Thank you very much for your letter ond congrotulations. I am sorry that
my 1.S. should hove complicated 1ife for you like that. I feel rather guilty
about having invaded the territory of your number'at 2ll. One might have
supposed that it could remain a vleasznt cormer one could keep to oneself,
However you made the mistake of talking to me sboui it from time to time when
you were rowinif and I ab Hae bow mntil eventuslly I thousht T hed better
find out what ¥t wos all zboub, end having done so , I could not refrain fron
ploying ak it myself, I should be very sorry if I were %o stand in the way
of your publishing your work,

The question as to whether Lit'hlewod{s proof did or did not give a value
of your number "in »nrinciple" scems to me to be rather on a par with the
question as to how mony angels con dance on the point of a needle, I am sure
the gentlemon who first asked it hod a pood laugh for meny years thereafter,
cnd T think you agfvell do likewise: there is a wholc lot by Kreisel on the
subject in the Jowrnel of Symbolic Logic recently.

I spend most of my time nowadays working in one way or another in connection
with a computing machine, It is n father niggly business in a way, like
publication. If you have a sinsle hole in the wrong place on the !tapes you punch
everything goes wrong, ond vherens a veader will forgive two or three misprints
the machine forgives nothing.

Best wishes,

Yours sincerely,
——
H . n « 1 "-a/
A, Y, Turing,

Fig. 2: Copy of a 1953 letter from Turing to Stanley Skewes. (Courtesy of John Webb, University
of Cape Town.)

Some Calculations of the Riemann Zeta function 275

19~
&
Lemma & 3 s
. :~”f)
e &, > 10* and / ﬂéen 4(@{-)ztl~>—e--coqu/r~t,

where , as previously mentioned

-1 SIS
dfﬂ Yo (—Fﬁ—ﬁ)L PSR- N sb@r@z v

¢
|- \ i r‘rqu\,'a'r) o i IO A
[,"\'.ﬂ_k"' rrlé s _/ i : EC‘ 53 ’tn}£
s SRS SRS

6- ¢

]74 then there is a ‘t.{ = ,7;3& ’;\(a\ ll;ih Mt [;rg

U ¢ &
F/«et')> = - L’é‘ /

_LL‘E_I

e have “ e o » ., e , e J:;%
Ey G g 4 2

s and .therefore ' L g

] i arf b i AL
(ru -_.f'_'lf{_'_ R 9 L ~t =g
t- A ot ; [% s o~
g / (e '\Q} (=0) T A s
T (aesdl h
7 I % k—r ﬂ-a-“"“"’ e =
@Nr?r}cgfor some I, it et B LL-“

2 0) nu)ﬁ i e »
Sl ‘“”’ /_j (' %a : . ? h>dor
. ; Th
E‘j - Now we certalnly have L)O SiZor ot rwigs S B CI=E @(()

S0 ot then sce & - SR 5 \]‘ s I

; el ke o bt s Lm
9 26k, Sl e e

! : : WA P i
and therefore : &) s&7

o (G o K 1_.'§_t-,, D

&y
Now if &, »¢. we have Lr\%l:,.,oor E, <6-81¢, und hence-
2001278 (&, - &1 (o- 1275, « to V- ‘
L ettt &, < 053k, |
Ef___{ i L@ then
2wp (o - Co) L 0-05 1 &

E >o0-q4 6,

Fig. 3: A sample page from the draft manuscript, ‘On a theorem of Littlewood.” The corrections
noted in boxes were made by Ingham. (Reproduced from a photocopy, courtesy of Alan M. Cohen,
Cardiff University.)

276 Part I1

Memerriwaixiwn

5 { Computeldonsl Uiophentine spproximestion
If feirly ~ccurrte velue~ of the ,)', were eveilsble it
should be pos-~ible to find s velue for (‘0 by direct commuteéion
with s digitel computer. It would be necescery first to
$ww three
obtrin th e xmxmx first fiwxe humdred zeros or so to s=y seven
vleces of decimels, ‘his might involve ten to twenty houre of
compu t-tion time, We should then choode 200 SRy , SO
th=t ou r sums would extend to 800, Ywing to t e smell welue= of
beyond 78C we would not hsve c~lcul-ted the zeros there, A rersonecble
method of vprocedure for the diovhentine =sporoximetion would be
succes=ively

simply to try out all xmitdpiwxxmf velues of &, which meketth';e

Lirxkxxxiney velue of Ju"dr('o for thie fifst zeromal
to 1, ~et us meke e rough estimate of where, given ressonesble Iwmky
freedom from bed lucl, we might expect to find = solution on this
be-is, Let us esssume th st the femxmx sums of terms other then the
fdrst sre independent and noz;nslly distrivuted , The =kermwdwra

o e o doanrd
veEraee of the distribution/ is ersily celeculeted to be

' 2 the sum) gl
i.e., sbout &&im.:ﬁ' . We pet » solution if thde exceeds ‘;_'"‘— A’
o

i.e O'43 . The probebility of this on the norm=1 distrubtlom

o

is sbout 3 At from which we mey conslude thet there is

36T :
an even chence of finding s velue by this method in the first 5o, cmo
triels ,i.e. with &, 220000 , & (e () Jett e adblal K~

%] ~ O v © % . RS
. Pl o T @ce s @28 Sl SR 6 o R,

Fig. 4: A second page from the same typescript. Note Turing’s use of the phrases ‘digital computer’
and ‘ten to twenty hours of computation time.’

Some Calculations of the Riemann Zeta function 277

6. Turing’s skepticism about the RH

In his pre-World War II work on ¢ (s), Turing seems to have viewed the RH as an open question,
one that might easily be either true or false. In Turing (1943, p. 197), for instance, he remarks
rather nonchalantly that ‘[t]his may be of value for calculation of zeros not on the critical line’. As
suggested in Section 4, this attitude may have arisen partly from the numerically based skepticism
espoused by Titchmarsh (1935, 1936). Titchmarsh’s 1937 letter would have only reinforced this.
(Skeptical attitudes of this kind towards the RH were relatively common at the time.)

Based on the available evidence, it appears that by 1950 or so, Turing’s earlier uncertainty about
the truth of the RH had morphed into an outright skepticism.” Thus, on p. 169 of OTL, it is hard
to ignore (even given the ambient ‘if”) the telling phrase that ‘[i]t seems very probable that the first
zeros off the critical line that are computed will satisfy the conditions ...” It is hard to imagine
anyone with serious doubts about the existence of zeros that violate the RH writing like this. And,
even more to the point, on the very first page of Turing (1953), Turing declares: ‘[t]he calculations
were done in an optimistic hope that a zero would be found off the critical line’. (The calculations
to which Turing refers are those with Im(s) & 25,000. The ones with Im(s) less than 1000t were
aimed more at simply extending (Titchmarsh, 1936); see Turing (1953, p. 116, bottom.)

What is a little puzzling is that Turing expected a counterexample to the RH to lie so low.
The work of A. Selberg during the mid-1940s showed that the root mean square of Im log ¢ (§ + if),
which to a large extent controls the distribution of zeros, grows about like /(loglogT)/2 over
any interval [7,T + H] with, say, H ~ T. Similarly for the real part and for higher moments. In
very rough terms, one also knows that large-scale irregularities in the ‘sequencing’ of p are linked
to large oscillations in the aforementioned imaginary part; see, for instance, the first equation in
Turing (1953, Section 4).

Accordingly, in order to reach regions wherein ‘relatively many pairs of p have popped off the
line’, it seems reasonable that one would need to have ,/(loglogT)/2 fairly large. Since this radical
grows extremely slowly, expecting to ever see any type of systematic collapse in the RH using
machine calculation is probably out of the question. Phrased somewhat differently: any off-line
zeros in Turing’s experiment would likely have been sporadic in nature and required significant
luck to hit upon. It appears, based on Ingham’s January 1951 letter, that Turing was aware of at least
some of the work of Selberg on ¢ (s) from the 1940s. Even without that input, however, one might
have thought that Turing, whose first research project was on random variables (Hodges, 1983, p.
88) and who had extensive experience with statistics in his cryptographic work, might have had
some concerns along these lines. If he did, there are no traces of them recorded in Turing (1953).%

As for skepticism about the RH, some distinguished number theorists, such as Littlewood and
Turdn, died as disbelievers. In general, however, the climate of opinion appears to have moved
substantially towards embrace of the validity of the RH. This is well illustrated by Selberg. In 1946,
he expressed, if not outright disbelief, then at least a concern about the lack of evidence in support
of this conjecture (Selberg, 1946, Section 4). In 2005, however, towards the end of his life, when
he was interviewed by Baas and Skau, Selberg asserted ‘[i]f one believes that there is something in
this world that is as it should be, then I think that must be the truth of the Riemann Hypothesis’. See
Baas and Skau (2008, pp. 631, 618 paragraph 5).

The evolution in the thinking of Selberg and other researchers was driven by the accumulation
of numerical data for the RH as well as heuristics (some from random matrix approaches) and
proofs of analogs of the RH for somewhat similar functions (such as certain zeta functions defined

7 EW.J. Olver recently informed the authors (in a private communication) that, in a conversation at NPL around 1947,
Turing expressed his disbelief quite explicitly.

8 Compare p. 168 (lines 27-32) in OTL, from a few years later.

278 Part II

over finite number fields). Had Turing lived longer, he might have modified his opinions about the
validity of the RH and might well have become involved in some of these researches.

The zeta function was of course just one of Turing’s many interests and not a major one. As can
be seen from the record of his interactions with Skewes, say, he often put this subject aside for a
number of years to concentrate on other topics. Still, the fact that he came back to it several times
shows how interesting it was for him.

Had events transpired a bit differently in 1954, we like to think — as our own sort of ‘optimistic
hope’ — that circumstances would have evolved in such a way that Turing’s creativity would have
continued to become piqued from time to time, prompting him to return occasionally to develop-
ments involving ‘the zeros and primes’. With his insight and rare knowledge of the fields of number
theory, analysis, probability, and computing that go into studying the zeta function, Turing could
easily have emerged as a central player in this area.

References

Baas, N., Skau, C., 2008. The lord of the numbers, Atle Selberg. On his life and mathematics. Bull. Amer.
Math. Soc. 45, 617-649.

Berry, M., Keating, J., 1992. A new asymptotic representation for ¢ <% + it) and quantum spectral determi-

nants. Proc. Royal Soc. Lond. A 437, 151-173.

Booker, A.R., 2006. Turing and the Riemann hypothesis. Notices Amer. Math. Soc. 53(10), 1208-1211.

Burkill, J.C., 1979. John Edensor Littlewood. Bull. Lond. Math. Soc. 11, 59-103.

Casselman, W., 2006. About the cover ... and a bit more. Notices Amer. Math. Soc. 53(10), 1186-1189.

Clay Mathematics Institute, 2000. Website devoted to the Riemann Hypothesis. (http://www.claymath.org/
millennium/Riemann_Hypothesis/). Accessed 9 April 2012.

Cohen, A.M., Mayhew, M.J.E., 1968. On the difference 7 (x) —1i x. Proc. Lond. Math. Soc. Ser. 3, 18,
691-713.

Conrey, J.B., 2003. The Riemann hypothesis. Notices Amer. Math. Soc. 50(3), 341-353.

Hardy, GH., 1967. Collected Papers of G. H. Hardy, vol. 2. Oxford University Press, Oxford.

Hodges, A., 1983. Alan Turing: The Enigma, Simon and Schuster, New York.

Ingham, A.E., 1932. The Distribution of Prime Numbers, Cambridge University Press, Cambridge.

Ingham, A.E., 1936. A note on the distribution of primes. Acta Arithmetica 1, 201-211.

Knapowski, S., 1961. On sign-changes in the remainder-term in the prime-number formula. J. Lond. Math.
Soc. 36, 451-460.

Knapowski, S., Turdn, P.,, 1976. On the sign changes of (7 (x) — lix). I. Colloq. Math. Soc. Janos Bolyai 13,
153-169. (See also: Acta Arithmetica 1965, 11, 193-202.)

Kreisel, G, 1952. On the interpretation of non-finitist proofs. II. J. Symb. Logic, vol. 17, 43-58.

Littlewood, J.E., 1948. Large numbers. Math. Gazette, 32(300), 163-171.

Littlewood, J.E., 1962. The Riemann hypothesis. In: Good, L.J. (Ed.), A Scientist Speculates. Basic Books,
New York, pp. 390-391.

Littlewood, J.E., 1982. Collected Papers of J.E. Littlewood, vol. 2. Oxford University Press, Oxford.

Paris, R.B., 1994. An asymptotic representation for the Riemann zeta function on the critical line. Proc. Royal
Soc. Lond. A 446, 565-587.

Pintz, J., 1980. On the remainder term of the prime number formula. I. Acta Arithmetica 36, 341-365.

Rubinstein, M., 2005. Computational methods and experiments in analytic number theory. In: Mezzadri,
F., Snaith, N. (Eds.), Recent Perspectives in Random Matrix Theory and Number Theory, Cambridge
University Press, Cambridge, pp. 425-506.

Selberg, A., 1946. The zeta-function and the Riemann hypothesis. In: C.R. Dixieme Congres Math. Scan-
dinaves, Copenhague 1946, pp. 187-200. (Reprinted in Collected Papers, vol. 1, Springer-Verlag,
Heidelberg, 1989, pp. 341-355.)

Skewes, S., 1933. On the difference 7 (x) — li(x) (I). J. Lond. Math. Soc. 8, 277-283.

Skewes, S., 1955. On the difference 7 (x) — lix (II). Proc. Lond. Math. Soc. Ser. 3, 5, 48-70.

http://www.claymath.org/millennium/Riemann_Hypothesis/
http://www.claymath.org/millennium/Riemann_Hypothesis/

A Few Comments About Turing’s Method 279

Titchmarsh, E.C., 1935. The zeros of the Riemann zeta-function. Proc. Royal Soc. Lond. A 151, 234-255.

Titchmarsh, E.C., 1936. The zeros of the Riemann zeta-function. Proc. Royal Soc. Lond. A 157, 261-263.

Titchmarsh, E.C., 1985. The Theory of the Riemann Zeta-function, second ed., revised by D. R. Heath-Brown,
Oxford University Press, Oxford (1st edition published 1951.)

Turing, A.M., 1939. Alan Turing’s Zeta-Function Machine, 1939. (http://www.turing.org.uk/sources/
zetamachine.html). Accessed 9 April 2012.

Turing, A.M., 1943. A method for the calculation of the zeta-function. Proc. London Math. Soc. Ser. 2, 48,
180-197.

Turing, A.M., 1953. Some calculations of the Riemann zeta-function. Proc. Lond. Math. Soc. Ser. 3, 3, 99-117.

Turing, A.M., 1992. Collected Works of A.M. Turing: Pure Mathematics, Britton, J.L. (Ed.), North-Holland,
Amsterdam.

Turing, A.M., 2001. Collected Works of A.M. Turing: Mathematical Logic, Gandy, R., Yates, C. (Eds.),
Elsevier, Amsterdam.

van der Pol, B., 1947. An electro-mechanical investigation of the Riemann zeta function in the critical strip.
Bull. Amer. Math. Soc. 53, 976-981.

Williams, H.P., 2007. Stanley Skewes and the Skewes Number. J. Royal Institution Cornwall 70-75.

And Dennis Hejhal adds —

A FEW COMMENTS ABOUT
TURING’S METHOD

A short summary of Turing’s method is available on pp. 255 and 256 of Turing (1992).! The remarks
that follow are intended as a supplement to that; their aim is to show that, by broadening one’s
perspective a bit, the core idea of the method turns out to be both simpler and more versatile than
might be originally suspected from examining just Turing (1953, Section 4).

In the context of the Riemann zeta function ¢ (s), Turing’s method is best viewed as an algorithm
for rigorously establishing — without ever leaving the critical line — that all zeros in a certain Im(s)-
range have been found, are simple, and have real part exactly equal to 1/2. In its original form, the
method can be seen as hinging on three basic ingredients:

(a) A technical estimate (cf. Turing (1953, Theorem 4));

(b) An integration trick (cf. Turing (1953, Theorem 5));

(c) A blending of (b) with the calculation of a small number of auxiliary ¢ (1 + i) -values so as
to determine the total number of zeros (both online and off-line) in the given range, and then
verifying that a standard ‘twist’ of ¢ (s) manifests af least this number of sign changes over the
relevant portion of {Re(s) = 1}.

In (c), the relevant twist is just multiplication by exp[iv}(¢)], where ¥ (¢) is a certain, explicitly
known, elementary function; cf. Turing (1953, Theorem 1). The resulting product with ¢ (§ + i) is
then real valued for 7 € R. By its very nature, success in (c) is by no means pre-ordained.

! In the reference list below.

http://www.turing.org.uk/sources/zetamachine.html
http://www.turing.org.uk/sources/zetamachine.html

280 Part II

In regard to the item (a), the key thing to realise is that (Turing, 1953, Theorem 4) is simply
an ‘effectivisation’ of a very classical estimate due to Littlewood; cf. (Titchmarsh, 1985, Theorem
9.9(A)). Booker (2006) showed that Turing’s reasoning could be revamped so as to yield an analo-
gous effectivisation for a much broader class of ‘zeta-like’ functions L(s). If one is content to work
with constants ‘of merely modest size’, other (more direct) approaches are possible here; see, e.g.,
the line of thought suggested by Titchmarsh (1985, Section 9.6), Turing (1992, p. 170, Lemma 16),
Iwaniec and Kowalski (2004, Eqgs (5.27)—(5.28), (5.31)—(5.33)) and Hejhal (1983, pp. 465 (middle)
and 466 (top)).

In item (b), the crucial thing to keep in mind is that, although complicated looking, Theorem 5
is in reality a special case of a very basic trick; cf. relations (4) and (9) below.

To better appreciate this last point, as well as indicate some wider forms of (what is generally
still referred to as) Turing’s method, it is helpful to ‘back up a bit” and quickly sketch an alternative
certification procedure having a logical structure somewhat simpler than (a)—(c).

One begins by observing [via an integration by parts] that the scaling relation

B B
sup | [0/t] < anaxg') sup | [a1t n
a<f [a,b] a<p
o o

holds anytime g(¢) is piecewise continuous on a given interval [a,b] and the monotonic increasing
C? function ¢ (1) has a second derivative whose sign remains fixed on [a,b]. Guided by the first
equation in Turing (1953, Section 4), we now consider any monotonically increasing sequence
of positive numbers x, in {x > ¢ > 0} having an asymptotic mean spacing of 1. To control things
somewhat, we hypothesise that

Nic<x, <X} =A+X+ RX))
holds with a right continuous remainder function R satisfying

sup
[@,81 & [e.X]

B
/ K(y)dy’ SEX), 3)

wherein E(X) increases with X (for X 2 ¢) while the quotient §(X) = E(X)/X tends to 0 monoton-
ically. The letter ‘E’ stands for explicit; cf., e.g, Turing (1953, Lemma 10). By elementary algebra,
one checks that

E+h

H
h 1 h 1
545 [RoasRe<3+5 [Row o)
E—h 3

forall 0 < h <& —c. Taking h = /£5(§) gives |R(§)| < 2J/E(§) for large £. In particular, for any
E of the aforementioned type, one automatically has R(X) = 0(WX).

For the sake of argument, let us now temporarily assume that the numbers x,, correspond to ordi-
nates of the non-trivial zeros of some zeta-like function L(s) in a certain half-plane {Im(s) > C}
under a transformation x = ¢ (t) akin to the x = ¥ (¢)/wr = 2« (t/2m) appearing in Turing (1953,
Section 4). By virtue of (1) and our comments about item (a), one gets an immediate counterpart
of Lemma 10 in Turing (1953) and its associated function E(X). Let {y,,} be the strictly monotonic
subsequence of {x,} associated with the list of distinct odd order zeros along {Re(s) = %} detected

A Few Comments About Turing’s Method 281

by the machine through its analysis of sign changes.” From an algorithmic standpoint, successfully
verifying ‘RH + simple’ for all Im(s) up to some specific 7 is basically tantamount to showing that
N(c,&] = M(c,&p] holds for a suitable &y, wherein N and M signify the obvious x and y cardinali-
ties. (Since machine precision is finite, it is prudent to tacitly assume that Ty and & are subject to
minor perturbation; we do so.)

Putting A = N(c,&] — M(c,&p], we now evaluate the functional

! &+H
1H(§0)EFI f {M(c.y] —A—y}dy (%)
&o

for suitable H > 1. From the obvious fact that

Eo+H
S [(Ve -Me)dy, ®)
&0
a simple rearrangement produces
§o+H

E@o+H)

T)

1
A+Ino) = - / R ydy <
&

Keeping H large enough to make the final term less than % (say), we then encounter exactly two
possibilities:

3 3 3
@) =g <o)<z ; @) IH(So)é—Z-

Case (i) is the nicer; here, A can only be 0. Finding [Ig(&p)| < % is thus a sufficient condition
for securing ‘RH+simple’ over (c,&p]. In this connection, it is also important to observe that if
‘RH+-simple’ actually holds out to at least & + H and the machine’s zero-detecting algorithm is
working flawlessly (i.e., liickenfrei), the computed value of |Iy(&p)| will necessarily be less than
1/4. (This is seen by noting that N(&y — H, &y + 2H] differs from 3H by a quantity having magnitude
at most 44/E(&p + 2H) and remembering that the tolerance 1 is small.) When (ii) holds, one gets
instead a warning that N(c,& + H] > M(c,&y + H] and a concomitant bound on the size of A (for
the original interval (c,&p]).

In situations where the focus centres on proving N(&o,&5] = M (&0,&;] rather than N(c,&] =
M(c,&p], it is natural to replace Iy (§o) by

H

1
In(0.8) EE/{M(So—v,$5+v]—(2v+§5—éo)}dv. ®)

0

An analogous (i) - (ii) dichotomy clearly ensues.

2 For later use, we assume that each machine-identified Ym is (subsequently) refined to some small tolerance 1 < 1073,
Only the numerical value of y,, has significance not the corresponding » and x,,.

282 Part II

The foregoing certification procedure [which makes crucial use of (3)] has the advantage that it
largely obviates any need for an initial estimate or determination of R(So) (and K(Eé‘)) via some-
thing like Turing (1953, Theorem 5). In zeta-like settings, A is of course even. We have intentionally
avoided any use of this fact in order to stress the technique’s applicability to more general types of
sequences {x,} and {y,}.>

To the best of our knowledge, the first use of an integration trick akin to (6) + (7) in certify-
ing a ‘Riemann Hypothesis’ of some kind is the one found in Section 1 of P.R. Taylor’s (1945)
posthumous paper. Whether Turing was aware of Taylor’s work while preparing Turing (1953) is
unclear.

We now return to Theorem 5 [with an eye on reverting to something closer to Turing’s original
set-up], but in the broader framework of R(X) and relations (2) 4 (3). We assume that &y ‘sits’ in
a grid

So—Hp<é y<---<ép<--<b&<bo+H

having the property that each open interval (§;_1,&;) with j € [1 —£,r] is known to contain some
Xn(j)- Letting M(a, B] count the x,(;)’s it is only natural to imitate (6) by integrating

0= N(&,y1 —M(0,y] and 0= N(,&]—M(®,&]

via elementary calculus. Insofar as H, < &y — ¢, one readily finds that

Ce £ R(&o) < Dy,)
wherein
_r ﬂ
D=+ /9{<y>dy+ 12:330)
R (¢ — Hy)?
C@——E—z——i—— / ﬂ{(v)dwr— > sk

b -1

and &, =&y + v + §(v). The bounds in (9) improve any time the grid is refined [in an obvious sense].
With empty sums being 0, the cases r = 0 and £ = 0 are perfectly legitimate and simply reproduce
estimate (4). Letting (9E) signify the variant of (9) in which the & - integrals are replaced by
E(&+ H) and —E (&), it is evident that Theorem 5 in Turing (1953) basically just corresponds to
(9E) with (H¢,H,€,r) = (R1,R2,R1 — 1,Ry — 1). In prototypical cases of Theorem 5, the numbers
8 (v) will either be zero or else fairly small.

In situations where the x;,, correspond (under a ¢ like before) to ordinates of the non-trivial zeros
of a ‘zeta-like’ function L(s), then just as in Turing (1953, Section 4), K(So) will be known modulo
2 any time £ = exp(in (A +x))L(} + it) is non-zero and (at least approximately) computable at &.
It is a curious fact that, if matters are secretly such that ‘RH-+simple’ also holds near &y and no
two of these nearby zeros are situated ‘maliciously close’ together, the value of K (&) will then be
uniquely determined by (9E) whenever Hy and H are taken appropriately big, and the grid {§;} is
chosen in a manner consistent with knowledge of sgn(£) at a sufficiently fine level of granularity
in x.*

3 In a forthcoming work, Booker and Strombergsson treat a case in which the x, correspond to eigenvalues of the
Laplacian associated with (vibrations of) the modular surface PSL(2,7Z)\H. The relevant E(X) here is basically just
(const)X/(logX)z. Cf. Booker (2006, p. 1211) and Hejhal (1983, p. 466ff). Compare Then (2006, Section 5).

4 There is no need to limit oneself to situations in which the ‘hoped for’ R(SO) is small.

A Few Comments About Turing’s Method 283

[The proof rests on a minor augmentation of (9). The essential point is that once the granularity
level in x is sufficiently small, it becomes possible to derive a lower bound for K(SO) having format
very similar to D, and an upper bound that resembles C;. When this new information is substituted
back into (9E) together with knowledge of the mod 2 situation, all values but one ultimately fall to
the wayside for K(Eo) since 1 4+2(}) < 2. Cf. near (7) concerning ‘1/8".]

In light of these observations, estimate (9E) is actually slightly better suited than Theorem 5 is
for use in making numerical tests of the RH along the lines of (a)—(c).

In the case of ¢ (s), one certainly expects that all but an infinitesimal proportion of the p’s lie on
the critical line. In view of the fact (due to Selberg) that log ¢ (§ +ir)/,/ 4 loglog is distributed like
the Cartesian product of two standard Gaussians for large #, and the further fact (Conrey, 2003) that,
in accordance with the GUE law cited earlier, one expects to see a significant paucity of ‘nearly
multiple’ p’s (i.e., ‘a repulsion of levels’), any problems in the a priori determination of N(&p,&;]
for generically chosen &y and &; should tend to ensue chiefly from difficulties in computing ¢ (5 +- i)

for ¢-values of the necessary size. Barriers on this front will occur long before /loglogz ever has a
chance to get large.

Similarly for a broad class of ‘zeta-like’ functions L(s) whose zeros are also expected to satisfy
GUE statistics in the limit of large |s|. In all such cases, once the height becomes appropriately
large, Turing’s ‘abc’ method provides (what is in all likelihood) a nearly optimal machine-based
certification procedure for the associated RH.

References

Booker, A.R., 2006. Artin’s conjecture, Turing’s method, and the Riemann hypothesis. Exp. Math. 15,
385-407.

Booker, A.R., 2006. Turing and the Riemann hypothesis. Notices Amer. Math. Soc. 53(10), 1208-1211.

Conrey, J.B., 2003. The Riemann hypothesis. Notices Amer. Math. Soc. 50(3), 341-353.

Hejhal, D.A., 1983. The Selberg Trace Formula for PSL(2,R), vol. 2. Lecture Notes in Mathematics, no. 1001,
Springer-Verlag, Heidelberg.

Iwaniec, H., Kowalski, E., 2004. Analytic Number Theory, Colloquium Publications, no. 53, American Math.
Soc., Providence.

Taylor, P.R., 1945. On the Riemann zeta function. Quart. J. Math. 16, 1-21.

Then, H., 2006. Arithmetic quantum chaos of Maass waveforms. In: Cartier, P. et al. (Eds.), Frontiers in
Number Theory, Physics, and Geometry I, Springer-Verlag, Heidelberg, pp. 183-212.

Titchmarsh, E.C., 1985. The Theory of the Riemann Zeta-Function, second ed., revised by D. R. Heath-Brown,
Oxford University Press, Oxford. (1st edition published 1951.)

Turing, A.M., 1953. Some calculations of the Riemann zeta-function. Proc. Lond. Math. Soc. Ser. 3, 3, 99-117.

Turing, A.M., 1992. Collected Works of A. M. Turing: Pure Mathematics, Britton, J.L.. (Ed.), North-Holland,
Amsterdam.

284 Part II

SOME CALCULATIONS OF THE
RIEMANN ZETA-FUNCTION

By A. M. TURING

[Received 29 February 1952—Read 20 March 1952]

Introduction

IN June 1950 the Manchester University Mark 1 Electronic Computer was used to do some calcu-
lations concerned with the distribution of the zeros of the Riemann zeta-function. It was intended
in fact to determine whether there are any zeros not on the critical line in certain particular inter-
vals. The calculations had been planned some time in advance, but had in fact to be carried out in
great haste. If it had not been for the fact that the computer remained in serviceable condition for
an unusually long period from 3 p.m. one afternoon to 8 a.m. the following morning it is probable
that the calculations would never have been done at all. As it was, the interval 2.63% <t < 27 .642
was investigated during that period, and very little more was accomplished.

The calculations were done in an optimistic hope that a zero would be found off the critical line,
and the calculations were directed more towards finding such zeros than proving that none existed.
The procedure was such that if it had been accurately followed, and if the machine made no errors
in the period, then one could be sure that there were no zeros off the critical line in the interval in
question. In practice only a few of the results were checked by repeating the calculation, so that the
machine might well have made an error.

If more time had been available it was intended to do some more calculations in an altogether
different spirit. There is no reason in principle why computation should not be carried through with
the rigour usual in mathematical analysis. If definite rules are laid down as to how the computation
is to be done one can predict bounds for the errors throughout. When the computations are done
by hand there are serious practical difficulties about this. The computer will probably have his own
ideas as to how certain steps should be done. When certain steps may be omitted without serious loss
of accuracy he will wish to do so. Furthermore he will probably not see the point of the ‘rigorous’
computation and will probably say ‘If you want more certainty about the accuracy why not just
take more figures?’ an argument difficult to counter. However, if the calculations are being done
by an automatic computer one can feel sure that this kind of indiscipline does not occur. Even with
the automatic computer this rigour can be rather tiresome to achieve, but in connexion with such
a subject as the analytical theory of numbers, where rigour is the essence, it seems worth while.
Unfortunately, although the details were all worked out, practically nothing was done on these
lines. The interval 1414 < ¢ < 1608 was investigated and checked, but unfortunately at this point
the machine broke down and no further work was done. Furthermore this interval was subsequently
found to have been run with a wrong error value, and the most that can consequently be asserted
with certainty is that the zeros lie on the critical line up to t = 1540, Titchmarsh having investigated
as far as 1468 (Titchmarsh (5)).

Proc. London Math. Soc. (3) 3 (1953)

Some Calculations of the Riemann Zeta-Function 285

This paper is divided into two parts. The first part is devoted to the analysis connected with the
problem. All the results obtained in this part are likely to be applicable to any further calculations to
the same end, whether carried out on the Manchester Computer or by any other means. The second
part is concerned with the means by which the results were achieved on the Manchester Computer.

PART I. GENERAL
1. The O notation

In analysis it is customary to use the notation Of{f (x)} to indicate ‘some function whose ratio to f(x)
is bounded’. In the theory of a computation one needs a similar notation, but one is interested in
the value of the bound concerned. We therefore use the notation ®(«) to indicate ‘some number
not greater in modulus than «’. The symbol ® has been chosen partly because of a typographical
similarity to 0, partly because of the relation with the use of ¢ to indicate ‘a number less than 1°.

2. The approximate functional equation

We shall use throughout the notation of Ingham (1) and Titchmarsh (3) without special definition.
Our problem is to investigate the distribution of zeros of ¢(s) for large ¢. This will presumably
depend on being able to calculate ¢ (o + if) or some closely associated function for large ¢, and o

not too far from % We have to consider what formula to use and what associated function. For
o0

o > 1 it is possible to use the defining series ¢ (s) = Zn_s, but this is too far from o = % For

1
0 < o < 1 there are other formulae which also involve calculating a number of terms of this series,
but it is always necessary to take at least #/27 terms.
Alteratively one can use the functional equation

or (L) xb —gamor (L= L) aeb
‘ 2 =¢ 2 2

o0
and take #/2m terms of the series (1 — 5) = Z n*~!. Another possible method which might suggest

1
itself is to calculate at a number of points in the region o > 1 and extrapolate, but this again involves

much the same amount of work. However, if one considers an interpolation formula involving both
values from the region o > 1 and from the region o < 0 one finds that it is possible to calculate
the function by taking only about _/(¢/27r) terms of the series > n~* and an equal number from

3" n*~!. This result is embodied in

286 Part I1

THEOREM 1. Let m and & be respectively the integral and non-integral parts of 2 and

T>64,

1 .
k(1) = ﬁlog% — %rlogn,

1)
Z(t)=¢ (5 + 2nir) e 2miK(®)

1 1
K](‘L’)=§<‘L’10g‘t—‘t—§>,

cos2 (éz —&— %)

cos2mé

h(¢) =

Then Z(t) is real and

Z(z) = ZZn_% cos2m{rlogn —k(t)} + (—)m“r—%h(g) +0 (1.091—%)’

n=1

k(7)) = K1 (7) + O (0.0061_1> .

It will be seen that Z(t) may also be defined as being {(% +2mit) for T real, 0 < v < 1, and else-
where by analytic continuation. The theorem could be proved by the argument outlined above, but
is more conveniently proved by the method given as Theorem 22 of Titchmarsh (3). The numerical
details are given in Titchmarsh (4). A more elaborate remainder is given there and is valid for t > 4.
The validity of the remainder given here follows trivially from it.

This formula can only give a limited accuracy, although it is nearly always adequate. If greater
accuracy is required the formula given in Turing (6) may be applied. These agree with Titchmarsh’s
expression in the sum of m terms, but i(§) is replaced by another sum.

The function (&) is troublesome to calculate, largely because the numerator and denominator
both vanish at £ = % and £ = %, so that a special method would have to be applied for the neigh-
bourhood of these points. The alternative of using a table and interpolation suggests itself. This
possibility quickly leads to the suggestion of replacing the function by some polynomial which
approximates it well enough in the region concerned.

In fact the polynomial 0-373 +2-160(§ — %)2 is quite adequate, for we have

THEOREM 2. [f | — %l < % we have

h(E) = 0.373 +2.160 (s - %)2 +©(0.0153)

2
and if | — 1 < 0.53, we have h(¢) = 0.373 +2.160 (g - %) +©(0.0243).

This result is rather unexpectedly troublesome to prove. Its proof will be given in slightly more
detail than it deserves, treating it as an example of ‘rigorous computation’.

It may be said: ‘As this is a purely numerical result surely it can be proved by straight computa-
tion.” This is in effect what is done, but it is not possible to avoid theory entirely. The function was
calculated for the values 0, %, %, e, %, % of § — % with an error ® (10’4), and was found to sat-
isfy the inequality with some margin. But nothing further can be deduced even if the differences are
taken into account, unless something is known about the general behaviour of the function. An upper

Some Calculations of the Riemann Zeta-Function 287

bound for the second derivative would be sufficient, but the labour of even the formal differentiation
is discouraging, and the accidental singularities make the situation considerably worse. However,
the function is integral, and it is therefore possible to obtain an inequality for any derivative by
means of Cauchy’s integral formula, taken in combination with an inequality for the function itself
on a suitable contour. The method actually applied will be seen to be very similar to this. Instead of
Cauchy’s integral formula we use

f&)—P&)

_E-E)E-8)E - 5H)E —54)/ f (w)du
j (=& =) —&)(u—E)u—E&)’

2mi
where the function f(£) is regular inside the anti-clockwise contour of integration, and P(£) is the
cubic polynomial agreeing with f(£) at &1, &, &3, &4. This equation follows from the fact that the
right-hand side vanishes at the points &1, &, &3, &1 and is of the form of f(£) added to a cubic
polynomial. We actually take the contour to be the square whose vertices are %:l: i,% 4 1. One
can prove without difficulty that |A(£)| < coshm on this square and that if f(§) = h(§) —0-373 —
2-160(& — %)2 then |[f(£)| < 14-3 on the square. Taking &1, &, &3, &4 to be of form n/30 and two
of them to be on either side of £ one easily deduces |f(§) — P(£)| < 0-0033 if |€ — %| < 0-053, and
a consideration of the values at the calculated points and the differences gives |P(£)| < 0-021 if
& — 1] <0-53 and |P(§)| < 0-012if | — 1| < 1. It will be seen that the use of this approximation

1
to h(§) gives an extra error in Z(t) of the order of ™4 whereas Titchmarsh’s formula has an error
of order only 77 4; but the errors are not equal until 7 is over 2000, and both are then quite small.
. . . 3
In the actual calculation described in Part II there were other errors of order as large as 74.

Titchmarsh’s formula as stated is valid only when the right value of m is used, i.e. if 2 =m +&
and |&€ — %| < % This may be inconvenient as one may occasionally wish to go a little outside the
range. One may justify doing so by means of

THEOREM 3. Theorem 1 is valid with the error @(1.091_%) replaced by @(1.15m_%) if the condi-

tion that m and & be the integral and non-integral parts of t 2 is replaced by the condition that m be

an integer and

1
T2

m+&, & -1 <0.53.

The new error introduced is

1 1

cos2m (E2 - — — cos2m{(E -2 —(6—1)— —

m_—1 16 16

(="t + _
cos2mé cos2m(§ —1)

—2(m+1)"2 cos2 [(m+§)210g(m+ D—x« {(’"JF%')ZH

in the case that 1 < & < 1.03. But we have

cos 2 (sz —&— i) cos 2 {(g -2 —(¢E-1— i}
16 16

=2cos27w (52 —2E— i) .
cos2mé cos2n(§ —1) 16

Also if we put

, 2 SN L 1
JE) = (m+8) loglm+ 1) — k1 {(m+§)7p — sm” —m+ - +E7 -2 — .,

288 Part II

2
m+&°

then j(§) and its first two derivatives vanish at £ = 1 and j””/(§) =
Hence by the mean value theorem |j(£)| < ﬁn:—}r)f) Using also

0.006

2y _ 2y W96
lk{im+8)"} —ri{(m +8)7} < e

we see that the new error is at most

—13]
dre(m+1)"2 (% +0.006(m + 1>—2> +2/(m+£)77 — (m+1)72),

which is less than 0.052(m + 1)_% since m > 7, 1€ — 1| < 0.03. A similar argument applies for the
case —0.03 < £ < 0.

3. Principles of the calculations

We may now consider that with the aid of Theorems 1, 2, 3 we are in a position to calculate Z(t) for
any desired 7. How can we use this to obtain results about the distribution of the zeros? So long as
the zeros are on the critical line the result is clearly applicable to enable us to find their position to an
accuracy limited only by the accuracy to which we can find Z(t). If there are zeros off the line we
can find their position as follows. Suppose we have calculated Z(t) for 71, 12, ..., Ty. Then we can
approximate Z(t) in the neighbourhood of these points by means of the polynomial P(t) agreeing
with Z(t) at these points. The accuracy of the approximation may be determined as in Theorem 2.
Suppose that in this way we find that |Z(t) — P(t)| < € and |P”(t)| < €' for |t — 7’| < § and that
|P(z")| < €” and |P'(t") — a| < €, then we see that

IZ(t) —a(t —1)| <e+€"+ %6/52 +e78

for |t — 1’| < 8, and we may conclude by Rouché’s theorem that Z(z) has a zero within this circle
if |a| > € + %e’ 5+ 6';‘”. This, however, is a tiresome procedure, and should be avoided unless
we have good reason to believe that such a zero is really present. If there are any such zeros we
may expect that the first ones to appear will be rather close to the critical line, and they will show
themselves by the curve of Z(7) approaching the zero line and receding without crossing it: in other
words by behaving like a quadratic expression with complex zeros. In the absence of such behaviour
we wish to prove that there are no complex zeros without using this interpolation procedure. Let us
suppose that we have been investigating the range Ty < v < T} and that we have found a certain
number of real zeros in the interval. If by some means we can determine the total number of zeros
in the rectangle | It]| <2, Ty < '_7{1 < T1 (say) and find it to equal the number of changes of sign
found, then we can be sure that there were no zeros off the critical line in this rectangle. This total
number of zeros can be determined by calculating the function at various points round the rectan-
gle. This might normally be expected to involve even more work than the calculations on the critical
line. Fortunately, with the function concerned, the calculations on the lines | [t| = 2 are not neces-
sary. It is well known that the change in the argument of Z(t) on these lines can be calculated to
within %71 in terms of the gamma function. It remains to find the change on the lines Kr = Tp and
Kr = T. In principle this could be done by approximating Z(t) with a polynomial, using an inter-
polation formula based on values calculated on the critical line. Since this interpolation procedure is
necessary only at the ends of the interval investigated this would be a considerably smaller burden
than the repeated application of it throughout the interval required by the method previously sug-
gested. It will, however, be shown later on that even this application of the interpolation procedure
is unnecessary, but for the sake of argument we will suppose for the moment that it is done. We may

Some Calculations of the Riemann Zeta-Function 289

suppose then that the total number of zeros in the rectangle is known. If this differs from the number
of changes of sign which have been found, then the deficit must be ascribed to a combination of four
causes. Some may be due to pairs of complex zeros, some to pairs of changes of sign which were
missed due to insufficiently many values Z(t) being calculated, some to the accuracy of some of the
values being inadequate to establish that changes of sign had occurred. Finally there may be some
multiple zeros on the critical line. Each source accounts for an even number of zeros provided that
the accuracy is sufficient for there to be no doubt about the signs of Z(Ty) and Z(77). By calculating
further values and increasing the accuracy we can remove some of the discrepancies, but we cannot
do anything about the multiple zeros by mere calculation. Assuming that there are no multiple zeros
it is possible in principle to make sure that all the real zeros have been found by calculating Z(t) at
a sufficient number of real points, but the number of points would be many more than are required
for finding all the real zeros. It is better to find the complex zeros in the manner already described.

To summarize. The method recommended is first to find the total number of zeros in the rectangle
by methods to be described later. Then to calculate the function at sufficient points to account for all
the zeros, either by changes of sign or as complex zeros determined by the use of Rouché’s theorem.
We know no way of dealing with multiple zeros, and simply hope that none are present.

4. Evaluation of N(¢)

For reasons explained in the last section it is desirable to be able to determine the number of zeros
of Z(t) in aregion Ty < t < T. In practice this is best done by determining separately the numbers
in the regions 0 < Kr <Tp and 0 < Rr < T. If we write 7S(f) for the argument of g’(% + i)
obtained by continuation along a line parallel to the real axis from oo + it, where the argument is
defined to be zero, we have

N(T) = 2K(%)+ 1+S(T),

where N(T) is the number of zeros of ¢ (o + if) in the region 0 < ¢ < T. The problem is thus reduced
to the determination of S(7'). If the sign of Z (%) is known, the value of S(7') is known modulo 2. It
is not therefore necessary to obtain S(7) to any great accuracy. The principle of the method is that if

t
S1() = f S(u)du then S1(¢) is known to be O(log?). If then the positions of the zeros are known in
0

an interval of length L, S(¢) will be known modulo 2 in this interval, the additive even integer being
the same throughout. Hence S (#p + L) — S1(#p) will be known modulo 2L, and if L is sufficiently
large this will determine it exactly and thereby determine S(f) throughout the interval. In order to
complete the details of this argument it is necessary to replace the O result by a ® result. It would
also be desirable to try and arrange to manage with very limited knowledge of the positions of the
ZEeros.

THEOREM 4. Ift) > t] > 1687, then
15
Si(t) —Si(t) = O (2.30—1—0.128 log 2—2> .
T

The proof of this follows Theorem 40 of Titchmarsh (3). The essential step is

LEMMA 1. Ift) > 11 > 0, then
ooty 00-+ity

w{S1() = Sit)} =R / log¢(s)ds — R, / log ¢ (s)ds.

1, 1,
7 tit2 7+t

290 Part II

We apply Cauchy’s theorem to log¢(s) and the rectangle with vertices %—i—itl,% +it), R+
it, R+ it; and appropriate detours round the branch lines from zeros within the rectangle. The
real part of the integral is

R+ity 3+t Retity R+tity
—K / log ¢ (s)ds + / arg ¢ (s)(—ids) + K / log ¢ (s)ds — / arg ¢ (s)(—ids),
L+in L4ty 1vin Rtiry

no contribution arising from the detours. The last of these integrals tends to 0 as R — oo and the
second is 7 {S}(t2) — S1 (t1)}.

LEMMA 2. Ift > 64, we have

1
<477,

(3o

Since |h(¢)| < 0-95 we have, by Theorem 1,

L onir)| =1z 2 “2 412778 40957
r§+mr =1Z(7)| < Zr +1.2t74 +0957

1
1<r<e2

and
1
T2
_1 _1 1
r2<l4+ | x 2dc=2t4—-1
1
1<r<r2 1
LEMMA 3.

[£(1.254 01| < ¢(1.25) < 4.6,

oo oo

log¢(s)ds| < /logg“(o)da < 1.17,
1.25+it 1.25
¢ ¢

=15+ < =(1.5) <2.62,

¢ ¢
2.5-+it 2.5

/ log¢(s)ds| < /logg(o)do < 0.548,
1.5+it 15
o0 o0

/ log ¢ (s)ds </log{(o)d0 < 0.997,
1.5+it L5

$logm > 0.572.

These results are all based on the tables in Jahnke-Emde (2), p. 323. An error of two units in the
last place is assumed. To the extent that we do not know how these tables were obtained we depart
from the principles of the ‘rigorous computation’.

Some Calculations of the Riemann Zeta-Function

LEMMA 4. If% <0 < % and t > 168m, then

12(s)| < 4.503/3%

Consider f(s):
§— % —3/8+50 —4mi
) = (s EXp| ——————— | -
f(s) C()(-) p s— 112757
Now

[—4xi } [—47(b—127.57)]
exp| ————— || =exp 5 |-
s—§—127.5mi (t—127.5m)2+ (0 — 1)

Hence, by Lemma 3, |f(s)| < 4 on the line 0 = % Elsewhere, if % <0< %,t > 1287, we have

—3/8+1s
K % [Stas 1
log | =2

Hence on the line o = %,t > 1287 we have

If()l<¢ G) e%(lzsn)—%ﬁ <4,

Finally on the line t = 12871,% <o < % we have

272 1
If @) <¢()exp| 75— [and [{(s)] < (1287)2
FEL T

7 and, since certainly f(s) = O(), we have |f(s)| < 4 throughout the strip by the
Phragmén-Lindel6f theorem. From this it follows that

3
1\ §
12(5)] < 4e! (—s .2>
l

3 1
<4.5t3717 fort > 1687.

by equation (8) on p. 27 of Ingham (1). Hence |f(s)| < 4 on the whole boundary of the strip >
12871,% <o <?2

s

—di
The purpose of the factor exp !

7 is merely to enable us to do without accurate
§s—5 —127-5mi
knowledge of ¢ (s) over the end of the strip.

291

292 Part II

LEMMA 5. Ift > 168w, then
oot
R / log¢(s)ds < 2.3040.121ogt.
L+t
oo+t 1.25
For R / log¢ (s)ds < 1.17 + / log|¢(s)|ds, by Lemma 3,
1+t 0.5
1.25
<117+ / {log4.5 + (g — %o) logt}do, by Lemma 4,
0.5

15
=1.1740.751log4.5 + — logt
+ og + 8 og

< 2.3040.121ogt.

It is certainly possible to improve the coefficient of log# in this result at the expense of the
constant. The coefficient of log# could be reduced at any rate to 0-052 using results stated on pp. 25,
26 of Titchmarsh (3).

LEMMA 6.

t)¢s+2) 2 {TGs+3)) l—[(S—p)(s—,o—i—Z)

Ce+DP? 2-1rds+Drds+2) (s—p+1)2

P
where the product is over the non-trivial zeros of the zeta-function.
This is an immediate consequence of the Weierstrass product for the zeta-function.

LEMMA 7. Ifk=1.49,Ra >0, then

a

K<w<a>+§)=9{ /log : dz+§ > 0.

z+1

a—1

It is easily seen that if Ka =0 then Klp(a) = K(k/a) = 0. Also that R(k/a) >0 for Ka >
0 and that ¥ (a) is continuous at 0. ¥ (a) + (k/a) — 0 as a — oco. Hence applying the maximum
modulus principle (or rather, the minimum real part principle) to ¥ (a) + (k/a) and various regions

Ka}O, 0<e<|al <R,

we see by allowing € — 0, R — oo that the minimum real part must be achieved either on the
boundary R a =0 or on the real axis (which may be a singularity). It only remains therefore to
establish our inequality for the real axis. At any stationary point we must have

k k
0=Q{<1//(a)——2) =—log|l——|—-—
a a
This equation only has solutions near to 0-91 and 1-2 both of which correspond to minima of

a*’
Y (a) + (k/a). There is no ordinary maximum separating them, but there is a singularity at a = 1.
By computations near to these minima, and knowledge of an upper bound for the second derivative

Some Calculations of the Riemann Zeta-Function 293

of the function in intervals enclosing them, one can show that the values at the minima are positive.
The value at the lesser minimum (near 0-91) is about 0-0087. Hence ¥ (a) + (k/a) > 0 on the real
axis as required.

LEmMMA 8. If Kz > 0, then

F(Z)—lo —l—i-@(2)
@ 272 21T - (R221)

We use the formula

I'(2) o 1 +2/ udu
T 877 W2+ 2) (7 —1)
0

and take the line of integration to be Ru = Iu=v > 0. Then

u -V

e
62””—]‘<7[\/2,

W+ 22| > |(I2)* — (R 2.

No poles are encountered in the change of line of integration since Rz > 0.

LEMMA 9. Ift > 50, then

o
1t
-R f log ¢ (s)ds <4.9+0.24510g§.

3+t
We have
2+lt
(5)¢(s+2)
R/log;(s)ds—ﬂ{/ §§(§+1)}2d +‘J{/10g;(s)ds+ﬂ{/1ogg(s)ds
2+lt 2+lt 2+lt 2+lt
R/ QLW
- SEE o
2+tt
by Lemma 3.
Also, by Lemma 6,
34t 3 4ir 1 3+t
[e +2) T I A) B A
log —————-ds = Z log ———ds — log——-ds+ log ds.
{¢(s+ 1)} s—p+1 1 3 s—1
i Pl it F(§S+7) Ltir
2 2 2 2

Now if% <0< % then |s — 1| < |s|, and therefore
3

34t
ﬂ{/log > _ds>0.
s—1

1,
§+lt

294 Part II

Also
3.
5+t
F(%Hl) 1 {1
R [10g ds=—1RI (—it+o)
1/ r(4s+3) 272
it
for some o,% <0< %, by the mean value theorems,
5
o 11 1t2+25 2 n 2
<——log| "+ — |-
4%\a" T1e) T, 25T /1, sl
4+ — a2 -r2-—
4 4 16
by Lemma 8,
11 1t(' t > 50)
< ——log—t (sincet >
2 %2
1 t
< —=log— —0.572, by Lemma 3
2 2
Finally,
34t
— 1
Ry / logs—'olds>—l.499{‘2ﬁ,
Py, S=p+ 4 lt_p+7
5 +it
by Lemma 7,

! 3 1 1 /1 7
= —149K|:% <it+ 5) - 510gﬂ+§F (zil‘"‘ Z>j|,

by the Mittag-Leffler series for %(s),

¢ (. 3\ 1 1 1, 49 7
> 149 R (it+>) - =1 “log(=2 +— |- :
[Rc(’“Lz 2 BT\ T 1) T AT

by Lemma 8,

1
> —1.49| - log —— +2.63 |,
[2 8o T]

using Lemma 3 and ¢ > 50.

Combining these results gives the asserted inequality.

A variant of this method enables us to reduce the coefficient of 7 to %logZ — 4_1L +¢€,e.g.,to
0.097, at the expense of the constant term.

Theorem 4 follows at once from Lemmas 1, 5, 9.

It is convenient to replace Theorem 4 by a similar result with «(t) or «1(t) as the independent
variable. This is because « (7) describes the ‘expected’ position of the zeros, and is therefore more
informative than t.

Some Calculations of the Riemann Zeta-Function 295

LEmMMA 10. If T > 84, then
)
/S(Znt)d/q (r) = ©{0.184log 1, + 0.0103(log 12)2}.
7|
For
1)

1
/S(Zﬂf)d/q(f) = Eki (t{S12712) — $1 27 71)}

71

)
— L/{S1(27m'2) —$127)}k (v)dT
2

71

o
2.30+0.1281o %) ”
-0 E2 Vi) + [k) (0)lde
2
T
2.3040.1281og 1>
=0 logt |.
4

THEOREM 5. Let
64 <T_R <TI_R; <...<T9g<...<TR,—| <TR,

and k(t) =c¢p,8, =cr—co— %}’,SR2 =0_g, =0, and Z(t))Z(t/41) <0 if 1 =R <r< Ry—2,
T_g, > 84. Then
-1

1 2 0.006 2
—s+ = > 8- — —{0.184log 79 + 0.0103(log 7)*}
r=1—R1 TﬁRl Rl

<NQmtg) —2¢co—1

Ry—1

1 2 0.006 2
S+ &+ . + R—1{0.18410grR2 +0.0103(log 7,)*}.

In the interval (t,,7,4+1) we have N2r 1) > NQ2ntp) + rif 0 < r < Ry — 1 and therefore

R R—1
/ NQ@r)dk1(v) >) (¢r1 = e){N Qo) +7)
7 r=0

R

1 1
=R [N(ano) +5(R— 1)} — Z5r~

r=1

Also

0.006(cg — co)
70

1 1 0.003R
=—=R|14+2¢c)+=R)+ O .
2 2 70

/{2K(r) + 1}dk1 (t) = cg — co + (c,% —c(%) + ®<
70

296 Part I1

The second inequality now follows since S(27t) = N(2mt) — 1 — 2k (1) and the first may be
proved similarly.

Example. It is known by computation that within distance 0-05 of each of the half-integers 547%
to 554% there lie values of « such that the corresponding value of Z has the same sign as cos2m«.
It is required to show that if 7 is that one of the points concerned which is within 0-05 of 551 then
NQ2mtp) = 1103.

We take the values concerned to be t_7,7_g, ..., 77 in Theorem 5, and define t_g, 73 to satisfy
8_g =8¢ =0.Then |5,| < 0-1 foreach r, —7 < r < 7. The conditions of Theorem 5 are satisfied and
it gives

—1.0<NQmrtg) —2¢0— 1< 1-0.
N(Q2m1p) is odd since Z(tg) cos2mk (t9) > 0 and we also have
|co — 551 < 0-05.

The required conclusion now follows.

PART II. THE COMPUTATIONS

1. Essentials of the Manchester computer

It is not intended to give any detailed account of the Manchester Computer here, but a few facts must
be mentioned if the strategy of the computation is to be understood. The storage of the machine is
of two kinds, known as ‘electronic’ and ‘magnetic’ storage. The electronic storage consisted of
four ‘pages’ each of thirty-two lines of forty binary digits. The magnetic storage consisted of a
certain number of tracks each of two pages of similar capacity. Only about eight of these tracks
were available for the zeta-function calculations. It was possible at any time to transfer one or both
pages of a track to the electronic storage by an appropriate instruction. This operation takes about
60 ms. (milliseconds). Transfers to the magnetic store from the electronic were also possible, but
were in fact only used for preparatory loading of the magnetic store. The course of the calculations
is controlled by instructions each of twenty binary digits. These are normally magnetically stored,
but must be transferred to the electronic store before they can be obeyed. In the initial state of the
machine (with the magnetic store loaded) the electronic store is filled with zeros. A zero instruction,
however, has a definite meaning, and in fact results in a transfer of instructions to the electronic
store, thus initiating the calculation. Most instructions, such as transfer of ‘lines’ of forty digits,
take 1-8 ms., but transfers to or from the magnetic store take longer, as has been mentioned, and
multiplications take a time depending on the number of digits 1 in the multiplier, ranging from 3-6
ms. for a power of two to 39 ms. for 240 — 1.

The results of the calculations are punched out on teleprint tape. This is a slow process in
comparison with the calculations, taking about 150 ms. per character. The content of a tape may
afterwards automatically be printed out with a typewriter if desired. The significance of what is
printed out is determined by the ‘programmer’. In the present case the output consisted mainly of
numbers in the scale of 32 using the code

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/E@A:SIU%DRJNFCKTZLW

20 21 22 23 24 25 26 27 28 29 30 31
HY P Q OB G ||] M X V ¢£

Some Calculations of the Riemann Zeta-Function 297

and writing the most significant digit on the right. More conventionally the scale of 10 can be used,
but this would require the storage of a conversion routine, and the writer was entirely content to see
the results in the scale of 32, with which he is sufficiently familiar.

2. Outline of calculation method

The calculations had of course to be planned so that the total storage capacity used was within the
capacity of the machine. So long as this was fulfilled it was desirable to make the time of calculation
as short as possible without excessive trouble in programming. The most time-consuming part of
the calculations is of course the computation of the terms

n_% cos2n(tlogn —«)

from given « and 7. By storing tables of logn and n~2 within the machine this was reduced
essentially to two multiplications and the calculation of a cosine, together with arrangements for
‘looking up’ the logarithm and reciprocal square root. The cosines were obtained from a table giv-
ing cos(rm/128) for 0 < r < 64 by linear interpolation and reducing to the first quadrant. This gives
an error of less than 10™*, which is quite sufficient accuracy for the purpose. Very much greater
accuracy was of course required in the logarithms, for an error € in logn gives rise to an error
approaching 2w te in the cosine, and 27t may be very large, e.g. 25,000. These logarithms were
calculated by the machine in a previous computation, and were given with an error not exceeding
2.10719, The reciprocal square roots were given with error not exceeding 10~>. Both the logarithms
and the reciprocal square roots were checked after loading into the magnetic store by automatic
addition, the results obtained being compared with values based respectively on Stirling’s formula
and on the known value of ;(%). The table only went as far as n = 63. The tabular cosines were
built up automatically from the values of cos(sr/128) and sin(;r/128) by using the addition for-
mula. The values of cos(sr/128) and sin(;r/128) were calculated both automatically and manually.
A hand-copying process was used in connexion with this table, but the final results when loaded
were automatically thrice differenced and the results inspected.

The routine as a whole was checked (amongst other methods) by comparing the result given
for a value of v about 20,000 with an entirely different, slower, and simpler routine. This routine
had itself been checked against a hand-computed value for T = 16 and against a value given by
Titchmarsh (5) for T =201-596.

Since it was only necessary to calculate «(7) once for each value of 7 this calculation did not
have to be particularly quickly performed. It was considered sufficient to obtain the logarithm by

means of a slow but simple routine taking about 1-2 sec. The time for each term n"7 cos 2 (tlogn —
k) was about 0-2 sec. With m = 63, and allowing for the calculation of x1(7) this means about
14 secs