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This is only a foretaste of what is to come, and only the shadow
of what is going to be. We have to have some experience with the
machine before we really know its capabilities . . . I do not see why
it should not enter any one of the fields normally covered by the
human intellect, and eventually compete on equal terms.

Alan Turing
(Quoted in The Times, 11 June 1949:

‘The Mechanical Brain’)



This page intentionally left blank 



Foreword

Donald W. Davies

It was on May 10 1950 that the Pilot Model of the Automatic Computing
Engine (ACE) ran its first program. This lit the lamps along the top of the
control desk, one at a time, at a rate that could be controlled by the input
keys. It was a great event for those who had been building the machine,
simple though the program was. That small beginning culminated in the
National Physical Laboratory’s commercial computing service and led on to
several ranges of computers.

The Second World War saw scientific research projects of a size and
complexity that reached new levels. Underlying much of the work were
complex mathematical models, and the only way to get working solutions
was to use numerical mathematics on a large scale. In the Tube Alloys project,
for example, which became the UK part of the Manhattan Project to make
a fission bomb, we had to determine the critical size of a shape of enriched
uranium and then estimate mathematically what would happen when it
exploded. For this problem we used about a dozen ‘computers’—young men
and women equipped with hand calculators (such as the Brunsviga). These
human computers were ‘programmed’ by physicists like myself. The same
story, with different physics and different mathematics, was repeated in many
centres across the United Kingdom.

In meetings which began in 1943 it was decided that a centre of excellence
would be formed, as soon as possible after the war ended, in order to develop
numerical mathematics for peaceful applications of complex mathematical
models. This centre became the Mathematics Division of the National
Physical Laboratory. The Division began life in 1945 under its first
superintendent, J. R. Womersley.

At the same time the idea was born of building a large, fast, programmed
digital computer which the new Division could use to exploit its numerical
expertise. The ENIAC electronic calculator had illuminated the way forward,
and there were two other major influences on this plan. One was the
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extraordinary paper written by Alan Turing in 1936, where, in the course
of resolving a fundamental problem in mathematical logic, Turing had
described the design of a computer that could calculate anything capable
of being calculated by means of an algorithm. Turing’s design was, to
an extent, idealized, but it became the basis for all the following work
on programmed computation. The second major influence was the ultra-
secret work on codebreaking machines at Bletchley Park, in particular the
‘Colossus’. A large, fast electronic machine, Colossus was not itself a general-
purpose programmed computer, but it demonstrated the technology needed
to convert Turing’s ideas of 1936 into reality.

Putting all these things together, it is not surprising that in the NPL
Mathematics Division a computer project soon began, with Turing at its head,
and involving two of the builders of Colossus. Turing rapidly wrote his report
‘Proposed Electronic Calculator’, which set out a detailed design study for the
ACE. This brilliant report covered all aspects of the computer, from the physics
of the ‘delay lines’ that formed its memory to the principles of programming.
Alan Turing is celebrated as a genius, both for his mathematical work in 1936

and later, and for his codebreaking skill, exemplified by the now famous
‘Bombe’, the machine used to break the German Enigma code. Turing’s
brilliance showed again in the design of the ACE. The Pilot Model of the
ACE could calculate faster than any computer of its generation and many of
the next generation too.

Turing was joined in 1946 by Jim Wilkinson, who would later become
a world expert in matrix inversion, eigenvalue calculations, and related
numerical processes. (His breakthroughs in these areas were only possible
with a fast computer—the Pilot ACE—on which to test his work.) Then
Mike Woodger joined, followed by Gerald Alway, myself, Betty Curtis, Henry
Norton, and others. Turing’s innovative design was a brilliant start. Moreover,
we had the mathematicians who were to make the ACE into a great working
machine, expertise from Colossus, the major electronic digital project of the
Second World War, and the resources of the National Physical Laboratory to
fund and build the computer.

But then followed an unfortunate part of the story—delays that cost us
two years. The chance to be the builders of the first stored-program computer
escaped us. Several things rescued us from the log-jam. A key figure was
Harry Huskey, who joined us in 1947 after working on the ENIAC. Huskey got
things done and without him another year would have been lost. He proposed
to build a small-scale version of the ACE, called the Test Assembly, to test the
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electronics and construction. I’m not sure how much Turing approved of
this particular effort! The next important development was the recruiting of
two expert electronic engineers from EMI, Edward (Ted) Newman and David
(Tubsy) Clayden. Clayden’s chapter ‘Circuit Design of the Pilot ACE and the
Big ACE’ (Chapter 19) describes the revolutionary style of logic device they
brought with them, employing what was called ‘current-steering’. When
Huskey left us to return to the United States his Test Assembly was partly
built. A battle ensued between those who had been designing it and Newman,
for whom its style of circuits, based on the ENIAC precedent, was anathema.
In the end Huskey’s design work was largely abandoned, but not entirely so,
for we kept to the logical design of the Test Assembly in building the Pilot
Model ACE.

Once the Pilot Model was working reliably, the whole machine was moved
across the NPL site from Bushy House, where it had been constructed, into
a new room where it became a working computing service. The machine
was running again a very short time after the move, a tribute to its sound
engineering. Not only was it the fastest computer of its day (and the hardest
to program!) but with 1000 electronic valves it was by far the most compact.
The Pilot Model ACE enabled Mathematics Division to make great advances
in numerical analysis, and provided industry with the first commercial
electronic computing service.

The main honours for the design and construction of the Pilot Model ACE
are shared by Alan M. Turing, James H. Wilkinson, and Edward A. Newman,
aided by a sharp nudge from Harry D. Huskey, who really started the Pilot
Model idea rolling.
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Preface to the paperback edition

Alan Turing was born in London a century ago, on 23 June 1912. Educated at
Sherborne School in Dorset and at King’s College, Cambridge, he graduated
in 1934 with a degree in Mathematics. Twenty years later, after a short but
brilliant career, he died. His ideas lived on, however, and at the turn of the
millennium Time magazine listed him among the twentieth century’s 100

greatest minds, alongside the Wright brothers, Albert Einstein, DNA busters
Crick and Watson, and the discoverer of penicillin, Alexander Fleming.

Turing’s achievements during his short life were legion. Best known as the
genius who broke some of Germany’s most secret codes during the war of
1939-45, Turing was also the father of the modern computer. Today, all who
click or touch to open are familiar with the impact of his ideas. To Turing we
owe the brilliant innovation of storing applications, and the other programs
necessary for computers to do our bidding, inside the computer’s memory,
ready to be opened when we wish. We take for granted that we use the same
slab of hardware to shop, manage our finances, type our memoirs, play our
favourite music and videos, and send instant messages across the street or
around the world. Like many great ideas this one now seems as obvious as
the cart and the arch, but with this single invention—the stored-program
universal computer—Turing changed the world.

Turing was a theoretician’s theoretician, yet like Leonardo da Vinci and
Isaac Newton before him he also had immensely practical interests. In 1945

he designed a vast stored-program electronic computer called the Automatic
Computing Engine—or ACE. The name was a homage to 19th century
visionary and computing pioneer Charles Babbage, who had proposed giant
mechanical calculating ‘engines’. Turing’s sophisticated ACE design achieved
commercial success as the English Electric Company’s DEUCE, one of the
earliest electronic computers to go on the market. In those days—the first
eye-blink of the Computer Age—the new machines sold at a rate of no more
than a dozen or so a year. One top government advisor even argued that a
single one should be sufficient for all Britain’s scientific needs! But Turing’s
universal machine caught on like wildfire—today personal computer sales
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Preface to the paperback edition

hover around the million a day mark. In less than four decades, Turing’s ideas
transported us from an era where ‘computer’ was the term for a human clerk
who did the sums in the back office of an insurance company or science lab,
into a world where our children have never known life without the Internet.

This book describes Turing’s many fundamental contributions to modern
computing, and focuses especially on the story of his groundbreaking
‘electronic brain’, the ACE.
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Introduction
B. Jack Copeland

As anyone who can operate a personal computer knows, the way
to make the machine perform some desired task is to open the
appropriate program stored in the computer’s memory. Life was
not always so simple. The earliest large-scale electronic digital

computers, the British Colossus (1944) and the American ENIAC (1945), did
not store programs in memory. To set up these computers for a fresh task,
it was necessary to modify some of the machine’s wiring, re-routing cables
by hand and setting switches. The basic principle of the modern computer—
the idea of controlling the machine’s operations by means of a program of
coded instructions stored in the computer’s memory—was conceived by Alan
Turing. His abstract ‘universal computing machine’ of 1936, soon known
simply as the universal Turing machine, consists of a limitless memory,
in which both data and instructions are stored, and a scanner that moves
back and forth through the memory, symbol by symbol, reading what it
finds and writing further symbols.1 By inserting different programs into the
memory, the machine is made to carry out different computations. It was
a fabulous idea—a single machine of fixed structure that, by making use
of coded instructions stored in memory, could change itself, chameleon-
like, from a machine dedicated to one task into a machine dedicated to a
quite different one. Turing showed that his universal machine is able to
accomplish any task that can be carried out by means of a rote method
(hence the characterization ‘universal’). Nowadays, when so many people
possess a physical realization of the universal Turing machine, Turing’s idea
of a one-stop-shop computing machine might seem as obvious as the wheel.
But in 1936, when engineers thought in terms of building different machines
for different purposes, Turing’s concept was revolutionary.

By the end of 1945, thanks to wartime developments in digital electronics,
groups in Britain and in the United States had embarked on creating
a universal Turing machine in hardware. Turing headed a group situated at
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the National Physical Laboratory (NPL) in Teddington, London. His technical
report ‘Proposed Electronic Calculator’, dating from the end of 1945 and
containing his design for the Automatic Computing Engine (ACE), was the
first relatively complete specification of an electronic stored-program digital
computer. Turing saw that speed and memory were the keys to computing
(in the words of his assistant, Jim Wilkinson, Turing ‘was obsessed with
the idea of speed on the machine’2). Turing’s design for the ACE had
much in common with today’s RISC (Reduced Instruction Set Computer)
architectures and called for a high-speed memory of roughly the same capa-
city as an early Apple Macintosh computer (enormous by the standards
of his day).

In the United States the Hungarian American mathematician John von
Neumann shared Turing’s dream of building an electronic universal stored-
program computing machine. Von Neumann had learned of the universal
Turing machine before the war—he and Turing came to know each other
during 1936–8, when both were at Princeton University. Like Turing, von
Neumann became aware of the potential of high speed digital electronics
as a result of wartime work. Von Neumann’s ‘First Draft of a Report on
the EDVAC’, completed in the spring of 1945, also set out a design for an
electronic stored-program digital computer (‘EDVAC’ stood for ‘Electronic
Discrete Variable Computer’). Von Neumann’s report, to which Turing
referred in ‘Proposed Electronic Calculator’, was more abstract than Turing’s,
saying little about programming or electronics. Harry Huskey, the electronic
engineer who subsequently drew up the first detailed hardware designs for
the EDVAC, said that the information in von Neumann’s report was of no
help to him in this.3 Turing, in contrast, supplied detailed circuit designs,
full specifications of hardware units, specimen programs in machine code,
and even an estimate of the cost of building the ACE.

Turing’s ACE and the EDVAC differed fundamentally in design. The ACE
was a ‘low level’ machine (a point taken up in the chapter ‘Computer
Architecture and the ACE Computers’)—programs were made up entirely
of instructions like ‘Transfer the contents of Temporary Store 15 to Tem-
porary Store 16’. The EDVAC had (what is now called) a central processing
unit or CPU, whereas in the ACE the different Temporary Stores and other
memory locations had specific logical or numerical functions associated with
them. For example, if two numbers were transferred to a certain destina-
tion in memory their sum would be formed there, ready to be transferred
elsewhere by a subsequent instruction. Instead of writing mathematically
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significant instructions such as

Multiply x by y and store the result in z,

the programmer composed a series of low-level transfer instructions
producing that effect. A related difference was that, in Turing’s design,
complex behaviour was to be achieved by complex programming rather
than by complex equipment: his philosophy was to dispense with additional
hardware (such as a multiplier, divider, and hardware for floating-point
arithmetic) in favour of software, and he spoke disparagingly of ‘the American
tradition of solving one’s difficulties by means of much equipment rather than
thought’.4

In order to increase the speed of a program’s execution, Turing proposed
that instructions be stored, not consecutively, but at carefully chosen positions
in memory, with each instruction containing a reference to the position of
the next. Also with a view to speed, he included a small fast-access memory
for the temporary storage of whichever numbers were used most frequently
at a given stage of a computation. According to Wilkinson in 1955, Turing
‘was the first to realise that it was possible to overcome access time difficulties
with . . . mercury lines . . . or drum stores by providing a comparatively small
amount of fast access store. Many of the commercial machines in the USA
and . . . in this country make great use of this principle.’5

The delays mentioned by Davies in the Foreword (and described more fully
in the chapter ‘The Origins and Development of the ACE Project’) meant that
it was several years after the completion of ‘Proposed Electronic Calculator’
before any significant progress was made on the physical construction of
the ACE. While waiting for the hardware to be built, Turing and his group
pioneered the science of computer programming, writing a library of sophist-
icated mathematical programs for the planned machine. The result of these
delays, which were not of Turing’s making, was that the NPL lost the race to
build the world’s first stored-program electronic digital computer—an honour
that went to the University of Manchester, where the ‘Manchester Baby’ ran
its first program on 21 June 1948. As its name implies, the Baby was a very
small computer, and the news that it had run what was only a tiny program—
just 17 instructions long—for a mathematically trivial task was ‘greeted with
hilarity’ by Turing’s group.6

The Manchester computer project was the brainchild of Turing’s friend and
colleague Max Newman, whose section at Britain’s wartime codebreaking
headquarters, Bletchley Park, had contained 10 Colossus computers working
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around the clock to break German codes. Newman, like von Neumann in
the United States, was profoundly influenced by Turing’s pre-war conception
of a universal computing machine. Frustrated by the delays at the NPL, and
eager to get his hands at last on a stored-program computer, Turing accepted
his friend’s offer of a job and left London for Manchester.

Had Turing’s ACE been built as planned, it would have been in a different
league from the other early computers, but his colleagues at the NPL thought
the engineering work too ambitious and a considerably smaller machine was
built. Known as the Pilot Model ACE, this machine ran its first program on
10 May 1950. With a clock speed of 1 MHz it was for some time the fastest
computer in the world. Despite having only a few per cent of the memory
capacity that Turing had specified, the Pilot ACE in other respects adhered
closely to what Turing called ‘Version V’ of his ACE design.

The Pilot ACE was preceded by several other electronic stored-program
computers. The EDSAC, built by Maurice Wilkes at the University of
Cambridge Mathematical Laboratory, was the second to run, in May 1949.
Later in 1949 came the BINAC, built by the creators of the ENIAC, Presper
Eckert and John Mauchly, at their Electronic Control Company, Philadelphia
(opinions differ as to whether the BINAC ever actually worked, however),
the CSIR Mark 1, built by Trevor Pearcey at the Commonwealth Scientific
and Industrial Research Organisation Division of Radiophysics, Sydney,
Australia, and Whirlwind I, built by Jay Forrester at the Digital Computer
Laboratory, Massachusetts Institute of Technology. The SEAC, built by Samuel
Alexander and Ralph Slutz at the US Bureau of Standards Eastern Division,
Washington DC, first ran in April 1950. The EDVAC itself was not completed
until 1952 but most of the computers just mentioned were influenced by
the EDVAC design.

The English Electric Company built a production version of the Pilot Model
ACE called the ‘DEUCE’ (Digital Electronic Universal Computing Engine).
The first DEUCE was delivered in March 1955 (to the NPL). The DEUCE was
a huge success and more than 30 were sold—confounding the suggestion,
made in 1946 by the Director of the NPL, Sir Charles Darwin, that ‘it is very
possible that . . . one machine would suffice to solve all the problems that are
demanded of it from the whole country’.7 The last DEUCE went out of service
in about 1970.

The basic principles of Turing’s ACE design were used in the G15 computer,
built and marketed by the Detroit-based Bendix Corporation. The G15 was
designed by Huskey, who spent 1947 at the NPL, working in the ACE Section.
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The G15 was arguably the first personal computer. By following Turing’s
philosophy of minimizing hardware in favour of software, Huskey was able to
make the G15 small enough (it was the size of a large domestic refrigerator)
and cheap enough to be marketed as a single-user computer. Yet thanks
to the ACE-like design, the G15 was as fast as computers many times its
size. The first G15 ran in 1954.8 Over 400 were sold worldwide and the G15

remained in use until about 1970.
Other derivatives of Turing’s ACE design include the MOSAIC (Ministry of

Supply Automatic Integrator and Computer), which played a role in Britain’s
air defences during the Cold War period, the EMI Business Machine, a relat-
ively slow electronic computer with a large memory, designed for the shallow
processing of large quantities of data that is typically demanded by busi-
ness applications, the low-cost transistorized Packard-Bell PB250, and the
‘Big ACE’, constructed at the NPL and fully operational in 1960.9

This book tells the story of the ACE computers. Much of it is in the words of
the pioneers who designed or programmed these machines: Clayden, Davies,
Hayes, Huskey, Norton, Vowels, Vickers, Wilkinson, Woodger, and, of course,
Alan Turing himself. Wilkes compares the electronic techniques that he used
in the EDSAC with those adopted in the Pilot ACE. Chapters by Magnello,
Croarken, and Copeland explain how Britain’s first attempt to build an elec-
tronic stored-program computer came to take place at the NPL and describe
the ups and downs of the ACE project. Chapters by Copeland and Proudfoot,
Campbell-Kelly, Numerico, and Doran assess the ACE computers, evaluate
their impact, and investigate the claim—based upon the influence of his
pre-war work—that Turing is the father of the modern computer. Turing’s
work on Artificial Intelligence and Artificial Life is also described.10
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The Daily Telegraph, 7 November 1946.

Source: By permission of Telegraph Group Ltd.
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The Daily Telegraph, 8 November 1946.

Source: By permission of Telegraph Group Ltd.
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The Daily Telegraph, 31 January 1950.

Source: By permission of Telegraph Group Ltd.
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The Times, 30 November 1950.

Source: By permission of Times Newspapers Ltd.
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The DEUCE, the production model of the Pilot ACE, manufactured by the English

Electric Company. This DEUCE, photographed in 1956, was installed at the National

Physical Laboratory in 1955.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.
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1 The National Physical
Laboratory
Eileen Magnello

The campaign for the endowment of science

The National Physical Laboratory (NPL), one of the world’s great national
standards laboratories, has its origins in the campaign for the endowment of
science in the latter part of the nineteenth century. The first serious debate
about the role of science in British industry took place in response to the Paris
International Exhibition of 1867, at which continental manufacturers won
a significantly larger proportion of the prizes than at previous exhibitions.
Although the finest examples of British industry (such as the 1866 Atlantic
telegraph cable) were not represented, many agreed on the basis of the
Paris Exhibition that unless scientific education was increased, Britain was
bound eventually to be eclipsed by competitor nations.1 In response to
this threat the Liberal Government of 1870 enacted a scheme of universal
primary education, in order to promote a minimum standard of literacy and
numeracy in the workforce. More tellingly, industrial communities across the
country (notably in Leeds, Birmingham, and Sheffield) sponsored the creation
of their own new civic colleges, later universities, with little support from the
government. These soon developed their own facilities for laboratory research.

The campaign for the endowment of science found a strong ally in the
journal Nature, established in 1869. Even in its early issues it lobbied for
an enquiry into the state of science in Britain. The journal’s editor, Norman
Lockyer, drew attention to the involvement of the German government in
promoting science, noting that Britain had resources and talent of the same
order as Germany, but lacked government help.2

In February 1870 the Liberal prime minister, William Gladstone, agreed to
appoint a Royal Commission under William Cavendish, the seventh Duke of
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Devonshire, to study the existing national provision for scientific instruction
and for the advancement of science. Lockyer’s persistence, and the testi-
mony of sympathetic witnesses from the scientific community, succeeded
in persuading the Devonshire Commission that government aid, especially
in the form of funds for the establishment of public laboratories, was essen-
tial to the future of science. In 1874 the Commission recommended that
a national technical laboratory and physical observatory be built.3

A national standards laboratory

Although Nature conceded that the recent establishment of the Davy–Faraday
Laboratory at the Royal Institution met some existing industrial needs, it
argued that much more was required. In his presidential address to the
British Association in 1895, Sir Douglas Galton uttered a plea for the found-
ation of a national physical laboratory supported by government funding.
He proposed that the new laboratory be managed by the Royal Society, with
a substantial sum of money allotted by the government for an extension to the
Kew Observatory, along the lines of the Reichsanstalt in Berlin (the German
state repository for determining standards).4 The Kew Observatory had
long been the national centre for calibrating magnetic and meteorological
instruments.

It was resolved that a public institution should be established to determine
and verify instruments, test materials, determine physical constants, and
undertake investigations into the strength and durability of materials. The
first NPL Executive Committee meeting was held on 16 May 1899, with Lord
Rayleigh (brother-in-law of Arthur Balfour, First Lord of the Treasury) in the
Chair. Members of the General Board of the NPL were named. At a second
meeting on 5 July it was recommended that Richard Tetley Glazebrook be
appointed director of the Laboratory, from 1 January 1900.5 Glazebrook had
established his reputation as a manager while Senior Bursar of Trinity College,
Cambridge (a position he held from 1895).6

Finding a site for the NPL

The Executive Committee still had to determine the most suitable location
for building the Laboratory. They visited sites at Eltham in Kent, Oxshott in
Surrey, and Hainault Forest in Essex, all of which were deemed unsatisfactory.
Hints reached Glazebrook that Bushy House in Teddington, near London,
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Bushy House today. The Pilot Model of the Automatic Computing Engine was built

here in what was originally the butler’s pantry.

might be offered as an alternative to Kew.7 He and his Executive Committee
decided that Bushy House suited their requirements. The Laboratory was
established in the existing building and opportunities for work opened in
many directions (including the standards and verification work previously
carried out at the Kew Observatory).

In May 1901 the Finance Committee of the NPL recommended that,
in order to help create a feeling of institutional camaraderie, Glazebrook and
his family take the second floor of the north wing of Bushy House as a private
residence. Glazebrook’s residence had a wine cellar, a coal cellar, a bicycle
shed, and a small enclosed yard—accommodation not unlike that of an
Oxbridge college, and Glazebrook had similar status to the head of a college.8

The work of the NPL to 1918

In 1901 work began on converting the ground floor and basement of Bushy
House into a physics laboratory. Other parts of the building were arranged
as temporary laboratories for electrical, magnetic, and thermometric work,
in addition to metallurgical and chemical research, all of which were
considered to be the most fundamental areas, and had to be accommodated
first. By April the contract for an engineering building had been settled and
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construction had begun. In the early part of 1905 plans were made to erect
an electrotechnics building and a building for metrology.9

By 1908 the Executive Committee had extended its research programmes
to include the study of problems of travel by air and sea. A tank was installed
to enable shipping research to be carried out and plans were drawn up
for a pioneering programme of aeronautical research. A division was set
up to deal with the testing of road materials. With the approach of war,
a programme was put in place for research into the production of optical
glass—required urgently for telescopes, binoculars, range-finders, prismatic
compasses, and periscopes.10

In 1915 the Executive Committee of the NPL considered for the first time
the idea of employing women. Some members of the Committee thought
that this would lead to objections from among the gauge-makers, and the
scheme was dropped. Just a few months later, however, increasing demands
from the Munitions Department resulted in the enlistment of women. On the
insistence of Glazebrook and the Executive Committee, the women who joined
the NPL were paid at the same rates as men.

The interwar period

In 1916 Lord Haldane had announced the government’s intention of form-
ing a Department of Scientific and Industrial Research (DSIR).11 Heated
debate followed over whether the Royal Society or the new department should
control the NPL. Glazebrook wanted the President and Council of the Royal
Society to have scientific control of the NPL, and at first the DSIR was out-
manoeuvred by the Royal Society.12 However, with Glazebrook’s retirement
in 1919 and the impact on the NPL of the unsatisfactory economic climate of
the 1920s, the Royal Society lost effective control of the Laboratory.

The interwar period saw a decline of the older established industries
like heavy engineering and shipbuilding, and the growth of new science-
based industries such as radio, electrical power generation and transmission,
non-ferrous metallurgy, synthetic polymers, aeronautics, motor engineering,
and motion pictures. Industry became more responsive to the need for
scientific expertise. In 1919 the engineer and physicist Sir Joseph Petavel
was appointed director of the NPL. Previously Petavel had worked at the
Davy–Faraday Laboratory at the Royal Institution, where he had estab-
lished the primary standard of light and had designed an indicator for
measuring pressures set up in exploding gaseous mixtures (later known as
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the ‘Petavel Gauge’).13 With his background in engineering, Petavel tended
to value short-term research for direct industrial gain more than longer-term
speculative research. This attitude found favour with the DSIR. Under Petavel
the Laboratory became oriented toward the pursuit of scientific innovation
for industrial application.

The Laboratory also became involved in practical projects affecting the
daily lives of the public. Illumination problems were regarded as being of
great national importance, since they affected the health and safety of the
public in relation to the lighting of homes and other buildings, vehicles,
streets, and open spaces. In 1924 the DSIR directed the NPL to undertake
illumination research for the entire nation. A Sound Division was added to
the Laboratory in 1922, carrying out work on the acoustics of buildings and
studying sound transmission problems in connection with the telephone,
the gramophone, and radio broadcasting. Other research of the Laboratory
included investigation into the wind forces on roofs and structures, the vibra-
tions of buildings, the expansion of concrete, and the acoustical problems of
the Royal Albert Hall.

Relations between the NPL and the DSIR deteriorated as Britain entered
the depression. The Treasury reduced expenditure in all government
departments and basic innovative research received little attention from
the government. A rapid change of directors at the NPL during the 1930s
did not help its position, preventing the implementation of any plans for long-
term development. Following Petavel’s death in 1936, Sir Frank Edward Smith
(employed at the NPL since 1900) became its acting director. In 1937 Smith
was replaced by Sir William Lawrence Bragg, who left after only ten months
to take up the Chair of Experimental Physics at the Cavendish Laboratory in
Cambridge.

Bragg was succeeded by Sir Charles Darwin, grandson of the famous
evolutionary biologist. Darwin remained director until 1949. His adminis-
trative talents were demonstrated by his reorganization of the Laboratory
both before and after the Second World War. Darwin played a leading role in
the decision to involve the NPL in the construction of an electronic digital
computer, the Automatic Computing Engine.

The Second World War

By 1941 all departments of the Laboratory were providing assistance to the
Armed Services and most of its staff were involved full time in the war effort.
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Darwin was seconded to the position of director of the Central Scientific
Office British Supply Council in Washington DC, his brief to improve Anglo-
American scientific cooperation. He stayed in Washington for six months.
Edward Appleton, Secretary of the DSIR, acted as director of the NPL during
Darwin’s absence. When Darwin returned to Britain he was made scientific
advisor to the Army Council, in addition to continuing as director at the NPL.
He resumed his full-time duties at the Laboratory in 1943.

During the early 1930s a Radio Research Station had been established
by the DSIR and a Wireless (later Radio) Division was created at the NPL
to cooperate in this work. By 1933 radio direction finding, later known
as ‘radar’, was being pursued. It was claimed at the end of the war that
radar (which offered a method of detecting the position of aircraft by boun-
cing radio waves off them) was the most important national asset to have
emerged from the NPL.14 Other important war work undertaken at the NPL
included the organization of the British research on the atomic bomb, and
research in ‘electronics’—a term that was used to include investigations into
the principles and design of electronic valve circuits and also the study of
their very wide applications.

Because of the increasing emphasis on industrial quality control, brought
about largely by the demands of the war, industry was growing more receptive
to the adoption of various statistical tools. It became evident to Darwin that
there was a need to establish a centre for statistical and other mathematical
research. The result, with the arrival of peace in 1945, was the creation at
the NPL of a Mathematics Division (Chapter 2).

In 1945 both mathematics and electronics stood on the brink of a new,
digital, future. Alan Turing, who joined the newly formed Mathematics
Division in October of that year, could see this future clearly.
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2 The creation of the NPL
Mathematics Division

Mary Croarken

Introduction

In April 1945 the journal Nature announced that the National Physical
Laboratory was to ‘extend its activities by the establishment of a Mathematics
Division’.1 This announcement coincided with John Womersley’s official
appointment to the post of superintendent of the Division and saw the begin-
ning of computer research at the NPL. The new Mathematics Division was
intended to act as a ‘central mathematics station’ and was the first of the
three main centres of early electronic computer development in Britain.
The Division had two main functions: to undertake research into new com-
puting methods and machines, and to provide computing services and advice
to government departments and to industry. It was soon providing a national
computing service, and became a leading centre for numerical analysis.

This chapter sets the stage for these developments in computing, focusing
on the circumstances surrounding the creation of the NPL Mathematics
Division. Four questions are discussed. Why was a central mathematics
station needed? Why was it established at the NPL? Why was Womersley
chosen as superintendent? And finally, to what extent did the NPL
Mathematics Division succeed as a central mathematics station?

A Central Mathematics Station

The Second World War had a huge effect on how computation—i.e.
calculation—was perceived and undertaken. The war increased the demand
for scientific and statistical computation (in terms both of bulk and com-
plexity). The increase was most pronounced in two areas: ballistics, and
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applied research into new forms of weapons and defence. Several specialist
calculating groups were set up around the country in response to the
increasing demand for computation.

The newly created Ministry of Supply was particularly active in promoting
such groups, since it supported a great deal of applied research. Just
before war was declared, the Ministry of Supply’s External Ballistics Depart-
ment took over the newly created Cambridge Mathematical Laboratory.2

The Cambridge Laboratory had been created by John Lennard-Jones as a
central computing resource for Cambridge scientists. (Lennard-Jones was
Plummer Professor of Theoretical Chemistry at Cambridge and worked for
the Ministry of Supply during the war, holding the positions of chief super-
intendent of Armament Research and, in 1945, director general of Scientific
Research in the Ministry of Supply.) The Cambridge Mathematical Labor-
atory housed a type of mechanical analogue computing machine called a
differential analyser, and was also equipped with desk calculating machines
(see the photograph on the following page), a model differential analyser,
and a machine for solving simultaneous equations (known as the ‘Mallock
machine’ after its inventor). Lennard-Jones recruited several mathematicians
to work for the External Ballistics Department, including E. T. (Charles)
Goodwin, James Wilkinson, and Tom Vickers, all of whom were later closely
associated with the Automatic Computing Engine (ACE). During the war
some of the staff were transferred to computational work at the Armaments
Research Department at Fort Halstead, and others moved into the Admiralty.

In addition the Ministry of Supply took over Professor Douglas Hartree’s
differential analyser at the University of Manchester and also had a group
working on internal ballistics problems at Woolwich, where Womersley was
employed. In July 1942, the Ministry of Supply created a statistical service
called S. R. 17 headed by Womersley.

The Ministry of Aircraft Production used R. V. Southwell’s group at the
University of Oxford to help with stress calculations for aircraft structures.
One of Southwell’s young students was Leslie Fox. The Royal Aircraft
Establishment at Farnborough was also trying to cope with overwhelming
computational difficulties and had a computing section whose staff inclu-
ded T. B. Boss. Boss and Fox were both to join the NPL Mathematics
Division.

The War Office, the Air Ministry, and the Ministry of Supply contracted
out some of their calculating work to the Scientific Computing Service Ltd.
This was a commercial computing bureau set up in 1937 by L. J. Comrie,
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Types of desk calculating machine. Before the advent of electronic computers

such as the Pilot ACE, many large-scale calculations were done by teams of

clerks—known as ‘human computers’—equipped with desk machines.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

ex-superintendent of the Nautical Almanac Office, and Britain’s leading
mathematical table maker.3 Comrie and his staff were in very great demand
during the war, working throughout the Blitz to provide calculations
for the service ministries. The type of work that they performed varied
from producing ballistics tables to calculations for locating German radio
transmitters.4

The Ministry that took the most decisive steps to resolve its computational
problems was the Admiralty. The Admiralty already had an extensive com-
puting facility in the form of the Nautical Almanac Office, which produced
astronomical and navigational tables on an annual basis. By the standards
of the day it was very well equipped with desk calculators and account-
ing machines, and it had a well-trained staff. During the 1930s the then
superintendent, Comrie, had carried out work for the War Office using
Nautical Almanac Office facilities and had been dismissed for doing so.5 It was
ironic that it was the Nautical Almanac Office to which the Admiralty and
others turned for computational help during the war. By January 1942,
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30 per cent of the Nautical Almanac Office’s work was specifically war-
related. The Office was under-resourced for the amount of work it was
being asked to take on, and as early as 1941 the superintendent, Donald
Sadler, suggested to the Hydrographer of the Navy that a National Com-
puting Service be set up.6 Sadler’s suggestion came to nothing at the time,
however.

The less ambitious idea to create an Admiralty Computing Service
came from elsewhere. John Todd was on the staff of the director of
Scientific Research Admiralty. Todd’s previous postings had involved him
in calculations concerning the design of mines and had convinced him that
computations within applied departments were being carried out by inex-
perienced workers who regarded calculation as a chore.7 He concluded that
it would be both more effective and more efficient to centralize computing
efforts within the Admiralty. Todd’s superior, J. A. Carroll (an astronomer in
peacetime), suggested that the Nautical Almanac Office would be a good place
to carry out the actual computations involved. In late 1942 Sadler was asked
to report on the suggestion that an Admiralty Computing Service be created.
He endorsed the idea and by March 1943 the Admiralty Computing Service
had been set up, its brief to advise on and to carry out computational tasks
for Admiralty establishments.

The Service was administered in London by Todd and a small mathematical
staff, and the computations that were required were carried out at the
Nautical Almanac Office (evacuated to Bath by that time). Sadler began to
recruit staff for the Service, which at its peak employed some 15–20 people.
Those recruited included Goodwin, Fox, and Frank Olver. In addition the
Admiralty Computing Service used a variety of mathematical consultants
to help guide their work. This is not the place to give a full account of the
work of the Service, but of its usefulness there is no doubt.8 It carried out
two kinds of work: large, repetitive calculations and complex mathematics.
Its success was one of the main factors in the creation of the NPL Mathematics
Division.

Todd and Sadler realized the limitations of the Admiralty Computing
Service within a year of its getting started. It did not operate on a large enough
scale to run a fully equipped computing service, and was too small to justify
the purchase of punched-card tabulating machines, a differential analyser, or
a more diverse selection of hand calculating machines. Consequently Todd,
Sadler, and Arthur Érdelyi (a mathematical consultant who worked for the
Admiralty Computing Service) wrote their Memorandum on the Centralization
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of Computation in a National Mathematical Laboratory9 and sent it to Sir Edward
Appleton, Secretary of the Department of Scientific and Industrial Research
(DSIR). In it they presented a case for a National Mathematical Laboratory
(emphasizing operating efficiency and economies of scale). They also recog-
nized that the Admiralty Computing Service’s role as a computing bureau
could be extended to include research, and pointed out that the development
of new computing methods and machines would be a valuable additional
function of the National Laboratory.

For a number of reasons Appleton and the DSIR took the proposal to
create a National Laboratory seriously. First, the proposals were based on the
practical experience of running the Admiralty Computing Service. Second,
the extensive use that the armed services were making of Comrie’s Scientific
Computing Service proved that government scientists needed extra com-
puting resources. (Appleton himself had made use of Comrie’s Service for
calculations concerning the height variations in the E-layer of the iono-
sphere.) Third, a similar suggestion had been voiced in other influential
quarters.

That voice belonged to Sir Charles Galton Darwin, director of the
NPL. In March 1943 Darwin had remarked to a meeting of the DSIR
Advisory Council that ‘He was inclining more and more to the opinion that
a Mathematical Department should be established at the National Physical
Laboratory’.10 Appleton had been at that meeting. Darwin followed up these
remarks in a paper to the NPL Executive Committee sometime in mid- to
late-1943.11 He identified a need for a statistical department at the NPL,
aimed especially at quality control problems for mass production in industry.
Darwin also commented, in a small paragraph tucked away in the middle
of the paper, ‘that there may well be scope in making new inventions of
mathematical machines’.

Earlier in the war Darwin had spent a year in Washington as director
of a project to improve liaison between Britain and the United States over
the scientific war effort (in what later became known as the British Central
Scientific Office). Darwin was privy to the work of the MAUD committee on
the atomic bomb and would probably have heard about calculating machine
projects such as Howard Aiken’s Sequence Controlled Calculator at Harvard
University (see Chapter 3). He may also have been familiar with the compu-
tational work being done with differential analysers at the Moore School of
Electrical Engineering, part of the University of Pennsylvania. (Later, in the
spring of 1943, the influential ENIAC project started at the Moore School.)
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Perhaps Darwin’s suggestion that computing machine research be carried
out at the NPL was to some extent based on his knowledge of American
developments.

Darwin sounded out other senior scientific figures. Darwin, Lennard-Jones
(originator of the Cambridge Mathematical Laboratory), and R. H. Fowler
(Plummer Professor of Mathematical Physics at Cambridge and a member
of the NPL Executive Committee) discussed the possibility of a National
Mathematical Laboratory over lunch on 27 May 1943. From Lennard-Jones’s
notes of the meeting12 it is clear that Hartree too had been consulted. Hartree,
a leading expert on calculating machines (and soon to become a member
of the NPL Executive Committee), was privy to information about the US
wartime calculating machine projects.

Overall, then, the time was ripe for the creation of a National Mathematical
Laboratory. The DSIR set up an Interdepartmental Technical Committee to
report on the issue and to work out the details.

The DSIR Interdepartmental Technical Committee

The Committee consisted of 20 members, drawn from 11 different govern-
ment departments (see Table 1). Familiar faces included Darwin as chairman,
Sadler, Todd, Hartree, and Womersley.

Many members of the Committee had practical computing or statistical
experience. The Committee’s report reflected a realization that computing
machinery research needed to be sponsored by the government—a year
ahead of von Neumann’s 1945 draft report on the EDVAC.

The Committee reported to the DSIR Advisory Council on 10 May
1944,13 recommending that a Central Mathematical Station be established
which would:

1. Undertake research into new computing methods and machines.
2. Encourage the development of new computing methods and machines by

the dissemination of knowledge.
3. Deal with statistical problems arising from industry, the physical sciences

and engineering.
4. Advise on and, if necessary, prepare mathematical tables.
5. Provide computing services for government departments, industry, and

universities.
6. Act as a consultant on mathematical and statistical techniques.
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Table 1 The DSIR Interdepartmental Technical Committee membershipa

Member Representing

Sir Harold Spencer-Jones Admiralty

Prof. J. A. Carroll Admiralty

Mr D. H. Sadler Admiralty

Mr J. Todd Admiralty

Dr F. Yates Agricultural Research Council

Prof. W. J. Duncan Ministry of Aircraft Production

Dr S. H. Hollingdale Ministry of Aircraft Production

Mr J. R. N. Stone War Office Central Statistical Office

Mr A.W. Taylor Customs and Excise

Dr Christopherson Ministry of Home Security

Dr David Ministry of Home Security

Prof. D. R. Hartree Ministry of Supply

Dr J. W. Maccoll Ministry of Supply

Mr J. R. Womersley Ministry of Supply

Major Gen. G. Cheetham Ordnance Survey Department

Mr A. W. Mattocks Treasury

Mr G. F. Peaker Treasury

Major E. H. Thompson War Office, Directorate of Military Survey

Dr S. Goldstein DSIR

a Chairman—Sir Charles Darwin

Source: Report on an Interdepartmental Technical Committee. Public Records Office

1944 DSIR 2/204.

The Committee recommended that the Station be staffed by 25 scientific
officers and by 50 ancillary staff. The next question was where such an insti-
tution should be based. The Committee considered three main points in the
choice of a site (all of which were based on earlier suggestions by Darwin
to the NPL Executive Committee). The Laboratory should be attached to an
intellectual centre, should be conveniently placed for government depart-
ments and industry, and should be close to engineering workshops that could
be used for the development of new machines.

Cambridge, while offering the benefits of a thriving intellectual centre,
was at that time very inconvenient for industry. It was felt that London,
although home to many industries and intellectual centres, was short of
easily accessible workshop space. The Committee’s recommendation was that
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a new Division be set up at the NPL. Given Darwin’s interest in establishing
a mathematical and statistical section at the NPL, and his chairmanship of
the Committee, this was more or less a foregone conclusion. By July 1944 the
NPL Executive Committee approved the proposal, and the search was on for
a suitable superintendent.

The appointment of Womersley

There were only two candidates for the post of superintendent of the pro-
posed new Division, Womersley and Sadler, both of whom had sat on the
Interdepartmental Technical Committee. Sadler, on paper much the stronger
candidate, had been pressed into applying by Darwin, but did not really
want to make the move from the Nautical Almanac Office.14 Womersley had
worked with Hartree on the Manchester differential analyser before the war
and had set up S. R. 17. He had also, according to his own recollection,15

read Turing’s ‘On Computable Numbers’16 and had already considered
the possibility of using telephone relays to build a machine implementing
Turing’s ideas (see Chapter 3). Womersley indeed made this suggestion to the
Interdepartmental Technical Committee.

Womersley was appointed superintendent of the new NPL Mathematics
Division in September 1944, but did not take up his post until the following
April. In the light of the subsequent electronic computer developments at the
NPL, the Mathematics Division might have benefited from the appointment of
a more technically able superintendent. But in many other ways Womersley
was a good choice. His forte was the political manoeuvring required to set up a
new organization. He had the personality needed to address meetings, and the
political acumen to court favour in order to push plans through. His friendly
relationships with both Darwin and Hartree ensured Womersley coopera-
tion from the NPL Executive Committee and, crucially, gave him access to
information about the then classified computing developments in the United
States. It was through Hartree and Darwin that Womersley gained access
to the ENIAC during his visit to the United States in spring 1945, and also
access to von Neumann’s draft report on the EDVAC.17 Womersley’s key
role was to show Turing von Neumann’s draft report and to recruit Turing
for the NPL.

Womersley also did a good job of recruiting other senior staff to the Maths
Division. Goodwin, Fox, Olver, Robertson and others came directly from
the Admiralty Computing Service, Wilkinson and Vickers came from the
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Fig. 1 Organization of the NPL Mathematics Division 1946.

Armaments Research Department at Fort Halstead, and Boss came from the
Royal Aircraft Establishment.

Initial structure of the NPL Maths Division

The Mathematics Division was up and running by 1946. It was divided into
five sections (see fig. 1). The General Computing Section, headed by Goodwin,
was divided into two parts. The first concentrated primarily on numerical
analysis and consisted of a strong team of mathematicians, including Fox,
Olver, and Wilkinson (part time). The other arm of the General Comput-
ing Section was made up of a well-trained junior team of desk calculator
operators, led by the experienced Vickers. Vickers and his team carried out
many of the computational problems submitted to the Mathematics Division.

The Punched Card Machine Section, initially headed by Boss and his
deputy F. Rigg, was staffed predominantly by school leavers trained at the NPL.
They worked in groups of up to three, applying Hollerith Punched Card
machines to a range of statistical and mathematical jobs for a variety of
users. (See the photograph on the following page.) Where necessary the
mathematicians of the General Computing Section contributed mathematical
methods for use with the machines.

The Differential Analyser Section was headed by Jack Michel and took
over the Manchester differential analyser. The staff was quite small and
much time was taken up with moving the differential analyser to Teddington
(which did not happen until 1948) and also with planning for the installation
of a larger machine. The Section took on only a small amount of outside
computational work. It did, however, provide an advisory service on all types
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The Hollerith Room in the Babbage Building at the NPL. Turing adopted

Hollerith punched-card equipment to provide input/output for the ACE.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

of analogue computing (including nomograms, harmonic analysers, and
differential analysers).

The Statistics Section staff, under E. C. Fieller, ran a statistical service
for government and industry. Its role was predominantly advisory, and
the service work it did carry out was performed by staff of the General
Computing or Punched Card Sections. Its main work was data analysis,
production analysis, and quality control analysis. In 1951 the whole section
was transferred to the Ministry of Supply.

The ACE Section, established to design and develop a large-scale electronic
digital computer, was headed by Turing. Chapter 3 describes the origins and
development of the ACE project.

Did the NPL Mathematics Division succeed
as a Central Mathematics Station?

The initial organization of the Mathematics Division reflected the proposals
of the 1944 Interdepartmental Technical Committee. Did the Maths Division
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fulfil the expectations of the Technical Committee? This section considers in
turn each of the six tasks set by the Committee.

Undertake research into new computing methods and machines. In this the
Maths Division was spectacularly successful. The Pilot ACE went into regular
service in 1952 and was the first of a series of computer developments under-
taken by the Maths Division. The Division also became a leading centre for
the new discipline of numerical analysis. Goodwin, Fox, Olver, and Wilkinson
all became well-known numerical analysts.

Encourage the development of new computing methods and machines by the
dissemination of knowledge. Maths Division staff, and particularly the numer-
ical analysts, published the results of their work widely in leading academic
journals (as well as in internal reports). As early as December 1946 Turing
gave a series of lectures about the ACE to an invited audience at the Ministry
of Supply in London (see Chapter 22, ‘The Turing–Wilkinson Lecture Series
(1946–7)’). The Maths Division also hosted a computer conference in 1953 to
help disseminate knowledge.

Deal with statistical problems arising from industry, the physical sciences, and
engineering. Between 1946 and 1951 (when it was transferred to the Ministry
of Supply) the Statistics Section dealt with a range of problems. Much of the
Section’s work was on an advisory level.

Advise on and, if necessary, prepare mathematical tables. The General
Computing Section prepared tables for users. In addition, Goodwin and
Olver were important members of the Royal Society Mathematical Tables
Committee, which prepared and published high quality mathematical tables
in the post-war period. They were also involved in discussions concerning the
future of mathematical tables in the light of computer developments.18

Provide computing services for Government departments, industry, and
universities. From the beginning the Punched Card Machine Section and
the desk machine arm of the General Computing Section carried out com-
puting work for a very wide variety of clients. In the period 1946–51

the Mathematics Division had approximately 50 users (see Table 2). The
scale of the service increased tremendously when the Pilot ACE became
available.

Act as a consultant on mathematical and statistical techniques. The Maths
Division acted as consultant to many organizations on digital and analogue
computing, on statistics, on numerical analysis, on the features of different
makes of desk calculators, and on many other topics.
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Table 2 NPL Mathematics Division users 1946–51

Admiralty Medical Research Council

Armament Research Establishment Ministry of Agriculture

AERE, Harwell Ministry of Civil Aviation

Australian National Standards Lab Ministry of Education

Bank of England Ministry of Health

Birmingham University Ministry of Supply

Board of Trade Ministry of Works

British Cotton Industry Research NPL Aerodynamics Division

Association NPL Metallurgy Division

British Electricity Authority NPL Metrology Division

British Iron and Steel Association NPL Physics Division

British Railways NPL Ship Division

British Standards Institute Ordnance Survey

Building Research Station Oxford University

Civil Service Commission Road Research Laboratory

Colonial Survey Department Royal Aircraft Establishment

DSIR HQ and ‘F’ Division Royal Society Mathematical Tables

Electrical Research Association Committee

Fuel Research Station Sir Edward Appleton

Home Office Swedish Government Computer

Committee on Servo Mechanisms Laboratory

London Passenger Transport Sperry Gyroscope Company

London University Treasury Training Division

Manchester University United Steel Companies Ltd.

Mechanical Engineering Research UCL Statistics Deptartment

Organization War Office

Source: NPL Annual Reports.

Notes

The bulk of the research for this chapter was carried out as part of a 1986 Ph.D.

thesis while I was in receipt of a grant from the Science and Engineering Research

Council. I would like to thank the many ex-employees of the Admiralty Computing

Service and the NPL Mathematics Division, including E. T. Goodwin, D. H. Sadler,

J. Todd, T. Vickers, M. Woodger, and many more, who have patiently answered

my questions and put me straight on a number of things. Thanks also to Jack

Copeland for his editorial work on the chapter.
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3 The origins and development
of the ACE project

B. Jack Copeland

Womersley and Turing join the NPL

The name ‘Automatic Computing Engine’ was due to Womersley1 and the
story of the ACE begins with his appointment as superintendent of the newly
created Mathematics Division of the National Physical Laboratory (see
the previous chapter).2 Womersley’s proposed research programme for his
new division included the items ‘To explore the application of switching
methods (mechanical, electrical and electronic) to computations of all kinds’,
‘Investigation of the possible adaptation of automatic telephone equipment
to scientific computing’, and ‘Development of electronic counting device
suitable for rapid computing’.3

Womersley had himself been a member of the Interdepartmental Technical
Committee that in April 1944 had recommended the creation at the NPL of
a Mathematics Division whose primary objective was to ‘undertake research
into new computing methods and machines’.4 In its report the Committee
emphasized that the new division should be provided with ‘facilities for
designing new machines and perhaps for constructing pioneer ones’, noting
‘it is probable that new machines may be called for of patterns that cannot be
foreseen now’.5

In December 1944 Womersley addressed the Executive Committee of the
NPL on the potential of electronic computing. The minutes of the meeting
summarize his speech:

Electronic counting devices . . . can be used

and machines can be constructed which have a

high degree of flexibility and which can be

continually improved and extended. Electronic
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counting can be done at the rate of one

operation per microsecond, a vast improvement

on anything previously attempted. All the

processes of arithmetic can be performed and

by suitable inter-connections operated by

uniselectors a machine can be made to perform

certain cycles of operations mechanically. . . .

[T]here is no reason why the instructions to

the machine should not depend on the result of

previous operations so that various iterative

types of method could become fully automatic.6

In November 1946 Womersley wrote a synopsis of the principal events that
led to the establishment of the ACE project:

1936-37 Publication of paper by A. M. Turing

‘On Computable Numbers, with an Application to

the Entscheidungsproblem’. . . .

1937-38 Paper seen by J.R.W. [J. R. Womersley]

and read. J.R.W. met C. L. Norfolk, a telephone

engineer who had specialised in totalisator

design and discussed with him the planning of

a ‘Turing machine’ using automatic telephone

equipment. Rough schematics prepared, and

possibility of submitting a proposal to N.P.L.

discussed. It was decided that machine would

be too slow to be effective.

June 1938 J.R.W. purchased a uniselector and

some relays on Petty Cash at R. D. Woolwich for

spare-time experiments. Experiments abandoned

owing to pressure of work on ballistics. . . .

1942 Aiken’s machine [the Sequence-Controlled

Calculator at Harvard University] completed and

working.

1943 Stibitz constructed the Relay Computor at

Bell Telephone Laboratories.7

Late 1943 J.R.W. first heard of these American

machines.

1944 Interdepartmental Committee on a Central

Mathematical Station. D. R. Hartree mentioned

at one meeting the possible use of automatic
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telephone equipment in the design of large

calculating machines. J.R.W. submitted

suggestions for a research programme to

be included in Committee’s Report.

1944 Sept. J.R.W. chosen for Maths. Division.

1944 Oct. J.R.W. prepares research programme

for Maths. Division which includes an item

covering the A.C.E.

1944 Nov.8 J.R.W. addresses Executive

Committee of N.P.L. Quotation from M/S

(delivered verbatim) . . . ‘Are we to have a

mixed team developing gadgets of many kinds . . .

Or are we, following Comrie . . . to rely on sheer

virtuosity in the handling of the ordinary

types of calculating machines? I think either

attitude would be disastrous . . . We can gain

the advantages of both methods by adopting

electronic counting and by making the

instructions to the machine automatic . . .’

1945 Feb-May J.R.W. sent to the U.S.A. by

Director. Sees Harvard machine and calls it

‘Turing in hardware’. (Can be confirmed by

reference to letters to wife during visit).

J.R.W. sees ENIAC and is given information

about EDVAC by Von Neumann and Goldstine.

1945 June J.R.W. meets Professor M. H. A.

Newman. Tells Newman he wishes to meet Turing.

Meets Turing same day and invites him home.

J.R.W. shows Turing the first report on the

EDVAC and persuades him to join N.P.L. staff,

arranges interview and convinces Director and

Secretary.9

Persuading Turing to join the embryonic ACE project was a great
coup, testifying to Womersley’s vision and initiative (even locating Turing,
who was at that time engaged in secret work, could not have been
straightforward). Turing was even more highly qualified for the job than
Womersley realized. While Womersley clearly understood the importance of
Turing’s pre-war article ‘On computable numbers, with an application to the
Entscheidungsproblem’—the birthplace of the stored-program concept—he
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Colossus at Bletchley Park.
Source: The National Archives. © Crown copyright; reproduced by permission of the National
Archives Image Library.

was completely unaware of the highly secret developments in electronic
computing that had taken place during the war at Bletchley Park
(headquarters of the codebreaking organization known as the Government
Code and Cypher School). At Bletchley Park Turing was among the few
who knew of Colossus, the first large-scale electronic digital computer
(see Chapter 5, ‘Turing and the Computer’). Designed by Thomas Flowers,
Colossus made its first successful codebreaking runs at Bletchley Park in
February 1944 (two years before the American ENIAC was operational). Once
Turing had seen Colossus it was, according to Flowers, just a matter of his
waiting for an opportunity to put the ideas of his 1936 article into practice.10

Probably Turing did not need much persuasion to join Mathematics
Division.

Proposed electronic calculator

Turing’s employment at the NPL commenced on 1 October 1945, by which
time Mathematics Division was ‘functioning on a limited scale’.11 Turing
set to work on the design of the Automatic Computing Engine. By the
end of 1945 he had completed his technical report ‘Proposed Electronic
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Calculator’.12 ‘Proposed Electronic Calculator’ contained the first relatively
complete specification of an electronic stored-program digital computer (see
the Introduction to this book).

Womersley’s next step was to present Turing’s design to the director of the
NPL, Darwin, in order to secure the support necessary for the project. He
wrote to Darwin:

"ACE" Machine Project.

With this minute I present three reports.

The first is a short account, by Hartree and

myself, of recent developments in the U.S.A.

in the field of automatically controlled

calculating machines. The second is a report

by Dr. A. M. Turing which shows how such a

machine could be constructed (by combining

electrical apparatus already well-developed and

having known properties) which would be capable

of solving a wide variety of problems at speeds

hitherto unattainable.

It is very important to mention that this

device is not a calculating machine in the

ordinary sense of the word. One does not need

to limit its functions to arithmetic. It is

just as much at home in algebra, i.e. it can

work out matrix multiplications in which the

elements are algebraic polynomials, or problems

in Boolean Algebra, or the enumeration of group

characters. Methods of successive

approximation, i.e. the Southwell ‘Relaxation’

process, are equally possible, since the

machine will contain a device which enables

it to choose between two sets of instructions

according to the sign of some number in it.

The cost is, naturally, a doubtful point.

I put it, after careful consideration, at

£60,000--£70,000, though it is difficult to be

sure of a "ceiling". It will, I believe, be one

of the best bargains the D.S.I.R. [Department

of Scientific and Industrial Research] has ever

made. To give some idea of the speed of the
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machine, it will calculate a gun trajectory,

from muzzle to point of fall, in less than

30 seconds, and it would carry through the

preparation of the whole of the ballistic

bombing tables for the R.A.F. in a few weeks,

apart from printing. By its use we can explore

whole fields of both pure and applied

mathematics at present closed to us by the

formidable magnitude of the computing

programmes involved.

We can attack complicated integral equations,

integro-differential equations and partial

differential equations by replacing them by

large blocks of simultaneous linear equations

in 700--1000 unknowns and solve them with ease

and speed. We can take T. Smith’s theory of the

design of optical instruments and use it on

practical design problems at a speed which will

enable answers to be given to the firms by

telephone in a few hours. We can revolutionise

the study of compressible fluid flow, and of

aircraft stability. Problems now slowly

attacked piecemeal will be capable of solution

as a whole. The machine will also grapple

successfully with problems of heat-flow in

non-uniform substances, or substances in which

heat is being continuously generated. It will

enable the study of materials with peculiar

elastic properties (e.g. plastics) to be

advanced in a way that is impossible with

present computing resources. . . . [W]e could

alter the whole tempo of the numerical

mathematical work associated with the

scientific research of this country if the

machine were available.

The possibilities inherent in this equipment

are so tremendous that it is difficult to state

a practical case to those who are not au

fait with the American developments without

it sounding completely fantastic. But if anyone

is going to suggest that this equipment
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is expensive, may I point out that two machines

in the U.S.A., the Harvard Sequence Controlled

Calculator, and the Bell Telephone Laboratory

Relay Computer, cost as much as this, work at

1/1000th the speed, will have neither the

versatility nor the storage capacity, and yet

were thought by the Americans to be worth

while.

The third document is an attempt to state

a practical case for the equipment. In view

of the unique nature of the equipment this is

difficult, but I believe that in this direction

the promised support of Commander Sir Edward

Travis, of the Foreign Office, will be

invaluable.13 . . .

As regards the manufacture of the machine,

I think that the Post Office Engineering

Research Station is the right place, if they

can see their way to do it. Mr. Flowers, of

that Station, has had wartime experience in the

right field, and, during his recent visit to

the U.S.A., visited the places where these

developments have been going on.14

Approval for the ACE project rested with the Executive Committee of the
NPL and Womersley duly prepared a paper for presentation to the Committee:

Memorandum by Mr. J. R. Womersley, Superintendent,

Mathematics Division

The research programme of the Mathematics

Division contains an item "To explore the

application of switching methods (mechanical,

electrical and electronic) to computations of

all kinds." . . . Dr. A. M. Turing was appointed

to the staff of the Division, and began to

consider the possibilities of electronic

methods . . . Dr. Turing has now completed a long

report, which makes definite proposals for the

construction of a machine, capable of solving

a wide variety of problems at speeds hitherto

unattainable. . . .

43



B. Jack Copeland

Summary of Part I of Dr. Turing’s Report

It is intended that the ACE machine shall

tackle whole problems, i.e. that instead of

repeatedly using human labour for taking

material out of the machine and putting it back

at the appropriate moment, all this will

be done by the machine itself. It will not be

limited to carrying out a sequence of

prescribed operations. Provision is made for

making the behaviour of the machine to depend

on the results of its own calculations.

Once the human element is eliminated, the

increase in speed is enormous. For example,

it is intended that the multiplication of two

ten-figure numbers shall be carried out in

500 microseconds, about 20,000 times the speed

of a normal calculating machine. This speed is

not attained by making the equipment more

expensive and more elaborate than it need be.

It is the natural result of the unconventional

methods used, and once this is granted, there

is no economy to be obtained by reducing it.

The basic principle is that numbers contained

in the machine are stored dynamically, not

statically as in other machines. The internal

working of the machine is entirely in the

binary system, and a number is represented by

a series of 1’s and 0’s, the 1’s being pulses,

and the 0’s the spaces between them. The digit

of least significance comes first in point of

time. The problem is to find a way of storing

a number in this form, so that it can be kept

circulating in the machine until it is needed

again for use in a subsequent calculation.

Dr. Turing describes a ‘delay line,’ the

‘circulating memory’ used in radar, which

he shows to be suitable for this purpose.

The manufacture of memories capable of

accommodating 1000 binary digits is shown

to be practicable.
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The machine then divides into two main parts,

an arithmetical organ, and a logical control,

with input and output organs for communication

with the outside world. The instructions to the

machine can themselves be expressed in the form

of numbers in the binary scale, and fed into

the logical control part of the machine at the

beginning of a problem. There they circulate in

the appropriate delay lines until the numerical

information (‘initial conditions’) has been fed

in, the final information being another

instruction, the ‘instruction to proceed.’

. . . The original intention was that each unit

would consist of 32 binary digits, the first

digit being ‘0’ or ‘1’ according to the nature

of the ‘number’ i.e. whether it is a number or

an instruction, the second being an indication

of sign. Dr. Turing has extended this idea to

make it more flexible. Each ‘number’ consists

of two units of 32 binary digits. One of these

contains a number in the binary system between

zero and unity, the other gives its

‘significance,’ i.e. a power of 2 by which it

must be multiplied, its sign, and some spare

digits which are used to identify the number.

The processes of arithmetic are very simple.

To add two numbers they are taken out of

storage and by passing them through a simple

network of radio valves, they are ‘glued’

together and the sum deposited in another

storage element.

Multiplication is done by repetitions of this

process, with appropriate time delays. It is

proposed to do division by multiplication by

the reciprocal, the reciprocal being calculated

by successive approximation. This is quite

practicable in view of the high speed of the

unit processes.

The scope of the machine is very wide. It is

envisaged that the construction of a set of
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range tables could be treated as a single

problem, and that once experience is gained,

could be run off in a few days. As an

indication of speed, it should be possible to

calculate a gun trajectory by ‘small arcs’ from

muzzle to point of fall, in about half a

minute. All types of ‘relaxation’ calculation

can be fully mechanised---indeed all methods

of successive approximation. Matrices of degree

less than 30 whose elements are polynomials of

the tenth degree can be multiplied, giving

another matrix with polynomial coefficients.

Other examples are given in the report. Some

attention is also given to the problem of

checking, since the machine must inspire

confidence in its results. This cannot be dealt

with adequately until actual manufacture

begins. . . .

The cost of the proposed machine will be

about the same as the ENIAC constructed for the

Aberdeen Proving Ground, and somewhat less than

the Bell Telephone Relay Computer. The cost of

the Harvard University machine is not known

with accuracy, but is reputed to be

half-a-million dollars. If it is granted that

this country should possess one of these large

machines, the Mathematics Division of the

N.P.L. is the obvious place for it. The machine

envisaged by Dr. Turing would have an output

equal to the total output of all the large

machines so far constructed in the U.S.A.

In fact we are now in a position to reap

handsome benefits from the pioneer work done in

the United States, and it is undoubtedly

advisable that we should build this type of

machine at once, rather than begin with relay

equipment.15

As mentioned previously, Womersley had no knowledge of Colossus.
Consequently his view of the technological developments in computing was
distorted, and he tended to exaggerate the intellectual debt owed by the
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ACE to the ENIAC and to the relay (i.e. non-electronic) machines at Harvard
and Bell Labs.

Womersley’s Memorandum and Turing’s ‘Proposed Electronic Calculator’
were submitted to the Executive Committee of the NPL in February 1946.
Discussion was deferred until the March meeting, when the ‘Committee
resolved unanimously to support with enthusiasm the proposal that
Mathematics Division should undertake the development and construction of
an automatic computing engine of the type proposed by Dr. A. M. Turing’.16

The minutes of the meeting recorded the historic discussion:

Large Electronic Calculating Machine ACE

The Committee had before it Paper E.881

(Memorandum by Mr. J. R. Womersley,

Superintendent, Mathematics Division,

concerning the "ACE" Machine Project) and Paper

E.882 (Report by Dr. A. M. Turing On Proposals

for the Development of an Automatic Computing

Engine (ACE)).

The Chairman invited Mr. Womersley to outline

the reasons why a machine of the type proposed

by Dr. Turing should be constructed for the

Mathematics Division.

Mr. Womersley said that he believed it

possible to see these proposals in their

true perspective if one had knowledge of what

had been done in the U.S.A. during the war.

He therefore proposed to begin by sketching in

some of the background of recent developments.

Mr. Womersley then gave a brief description

of three large calculating devices constructed

in the U.S.A. during the war---the I.B.M.

Sequence Controlled Calculator at Harvard

University, the Relay Computer designed by

Dr. G. R. Stibitz of Bell’s Telephone

Laboratories, and the ENIAC, constructed at the

Moore School of Electrical Engineering,

University of Pennsylvania for the Ballistics

Research Laboratories, Aberdeen Proving Ground.

Each one of these machines had cost from

£80,000--£100,000. It was interesting to note
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that Dr. Turing’s machine, when fully

completed, would have a potential output

of work greater than the three of them put

together. In other words, we now had the

opportunity to begin work in this field at

a most favourable moment. The machine proposed

had not only a greater output, but greater

versatility than the machines so far made,

because of the greater elaboration of the

logical controls proposed by Dr. Turing. This

was possible by reason of the different mode

of operation, and the fact that in Dr. Turing

we had available an expert in the field of

mathematical logic.

Mr. Womersley then introduced Dr. A. M. Turing,

who was invited to describe the principles

underlying his proposal.

Dr. Turing explained that if a high overall

computing speed was to be obtained it was

necessary to do all operations automatically.

It was not sufficient to do the arithmetical

operations at electronic speeds: provision must

also be made for the transfer of data (numbers,

etc.) from place to place. This led to two

further requirements---‘storage’ or ‘memory’ for

the numbers not immediately in use, and means

for instructing the machine to do the right

operations in the right order. There were then

four problems, two of which were engineering

problems and two mathematical or combinatory.

Problem (1) (Engineering). To provide a

suitable storage system.

Problem (2) (Engineering). To provide high

speed electronic switching units.

Problem (3) (Mathematical). To design circuits

for the ACE, building these circuits up from

the storage and switching units described under

Problems 1 and 2.

Problem (4) (Mathematical). To break down the

computing jobs which are to be done on the ACE
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into the elementary processes which the ACE is

designed to carry out (as determined in the

solution of Problem 3). To devise tables of

instructions which translate the jobs into

a form which is understood by the machine.

Taking these four problems in order,

Dr. Turing said that a storage system must be

both economical and accessible. Teleprinter

tape provided an example of a highly economical

but inaccessible system. It was possible to

store about ten million binary digits at a cost

of £1, but one might spend minutes in unrolling

tape to find a single figure. Trigger circuits

[‘flip-flops’---Ed.] incorporating radio valves

on the other hand provided an example of

a highly accessible but highly uneconomical

form of storage; the value of any desired

figure could be obtained within a microsecond

or less, but only one or two digits could be

stored for £1. A compromise was required; one

suitable system was the ‘acoustic delay line’

which provided storage for 1000 binary digits

at a cost of a few pounds, and any required

information could be made available within

a millisecond. Dr. Turing explained the

principle of the delay line, which involved

transmitting compression waves down a tube of

liquid, using piezo crystals both as

transmitters and receivers of sound. The output

of the receiving crystal was amplified,

restored to its ideal shape and fed back to the

transmitter. On account of the shape restoring

process it was possible for a signal to travel

down the tube many millions of times and remain

recognisable.

Dr. Turing then gave a brief account of the

high speed switching problems involved in the

ACE (Problems (2) and (3)). Numbers were to

be represented in the binary scale and valves

were only to be used as ‘on-off’ devices.
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Although switching units had not yet been made

there was every hope of success because the

limiting factors were electron transit time,

and the allied quantity Oag/gm, and the

frequencies at which these became serious were

well above those at which the ACE would be

operated (viz. about 1 Mc/s). Switching circuit

design (Problem (3)) was illustrated by means

of the adder circuit.

Time did not permit of an adequate account of

Problem (4).

In reply to a question from Professor

Tyndall, Dr. Turing explained that an elaborate

system of checks would be incorporated, so that

the failure of any part would be immediately

indicated. It was not possible entirely to

guard against the failure of the checking

system itself, but the probability of an

undetected error could be reduced to very small

proportions. The majority of the checks would

be introduced through instruction tables and

would therefore require no special equipment.

The Director asked what would happen if the

machine were instructed to sum a series which

actually diverged although thought to converge.

Dr. Turing replied that it was left to the

discretion of the man who constructed the

instruction tables (the controller) to state

what the machine should do in these cases. The

summation could be specified to a given number

of terms regardless of convergence, or until

the last term was less than a given amount;

preferably the controller should have worked

out the theory of the convergence to some

extent so as to be able to incorporate a

suitable test. The Director asked what would

happen in cases where the machine was

instructed to solve an equation with several

roots. Dr. Turing replied that the controller

would have to take all these possibilities into
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account, so that the construction of

instruction tables might be a somewhat

‘finicky’ business.

Professor Hartree pointed out that the

serial operation of the machine makes it very

economical in its use of radio valves.

It requires only 2000 valves as against 18000

in the ENIAC, and gives a ‘memory’ capacity of

6000 numbers compared with the 20 numbers of

the ENIAC. This greater capacity (and the

higher speed) are attained at no greater cost

than the ENIAC. The greater storage capacity is

facilitated by the high speed, and this is an

important factor in gaining the economy in

equipment.

Professor Hartree also pointed out that if

the ACE is not developed in this country the

U.S.A. will sweep the field, and reminded

the Committee that this country has shown much

greater flexibility than the Americans in the

use of mathematical hardware. He urged that

the machine should have every priority over

the existing proposal for the construction of

a large differential analyser.

Director enquired whether the machine could

be used for other purposes if it did not fulfil

completely Dr. Turing’s hopes. Dr. Turing

replied that this would depend largely on what

part of the machine failed to operate, but that

in general he felt that many purposes could be

served by it.

There was next some discussion as to the

possible cost of the machine and Mr. Womersley

said that a pilot set-up could possibly be

built for approximately £10,000, and it was

generally agreed that no close estimate of the

overall cost of the full machine could be made

at this stage. As regards financing the

project, the Secretary stated that the

initiation of the work could be undertaken
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within the terms of the existing research

programme of Mathematics Division and that

it was probable that sufficient financial

provision had been made for possible

expenditure during the 1946--7 financial year.

It appeared desirable, however, that the

possible magnitude of the project should be

understood by Headquarters and the Treasury

so that, as far as possible, assurance could be

obtained that work on the machine could be

continued in succeeding years in so far as

financial provisions are concerned.

Professor Hartree said that such a machine

would be a means for tackling completely new

ranges of problems, and Dr. Southwell reported

that Professor G. I. Taylor had expressed the

opinion that the machine would be more useful

than ENIAC. He hoped, however, that when the

machine was constructed, charges made for its

use would not be so high as to discourage its

use by Universities, etc. He felt that there

should be no attempt at amortisation of the

cost of the machine, which might well run into

£100,000, but that this should be regarded

as a contribution of the Laboratory to the

general good of the country.

The Committee resolved unanimously to

support with enthusiasm the proposal that

Mathematics Division should undertake the

development and construction of an automatic

computing engine of the type proposed by

Dr. A. M. Turing and Director agreed to

discuss the financial and other aspects of

the matter with Headquarters.

In a letter, Dr. E. T. Paris expressed

the interest of Ministry of Supply in the

development of such a machine, and stated

that he had consulted Colonel Phillips,

Superintendent of Applied Ballistics, and

Dr. McColl, Superintendent of Theoretical

Research in Armaments, who foresaw that
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from their point of view the main use of the

machine would be for---(a) The calculations

of trajectories for all types of projectiles

(shell, bombs, rockets and guided missiles);

(b) Internal ballistic calculations (the motion

of projectiles down the bore); (c) The solution

of partial differential equations by

relaxation and characteristic methods.

Dr. Paris also enquired how soon the machine

was likely to be a working concern and to what

extent it was likely to be available for use by

his Ministry, adding that if the project goes

well, at a later date it would be possible to

consider whether it would be advisable to have

a machine of the same general type made for

armaments research and allied work.

In reply to a question by Dr. Carroll,

Mr. Womersley said that as a very rough

estimate he thought the cost of duplicating

the machine would be approximately 25 per cent

of the original cost, although the capacity of

the machine would be such that duplicates would

not be needed. He pointed out, however, that

when such a machine is in use in his Division

it will require the employment of a higher

proportion of senior officers in the scientific

class, because the machine itself will do much

of the work of the lower staff classes.17

In April 1946 Darwin wrote as promised to ‘Headquarters’, the Department
of Scientific and Industrial Research (DSIR). Notice his claim that a single
electronic computer might suffice for ‘the whole country’—a national
computer, housed at the NPL!

Automatic Computing Engine (ACE)

This is a proposal to construct a computing

machine of very much greater potentialities

than anything done hitherto, though a similar

project is being worked out at present in

America. The proposal has already been

foreshadowed in the research programme of
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Mathematics Division, Item 6502 ‘To explore

the application of switching methods

(mechanical, electrical and electronic) to

computations of all kinds.’ In the past the

processes of computation ran in three stages,

the mathematician, the computer [i.e. the human

computer], the machine. The mathematician

set the problem and laid down detailed

instructions which might be so exact that the

computer could do his work completely without

any understanding of the real nature of the

problem; the computer would then use the

arithmetical machine to perform his operations

of addition, multiplication, etc. In recent

times, especially with use of punched card

machines, it has been possible gradually for

the machine to encroach on the computer’s

field, but all these processes have been

essentially controlled by the rate at which

a man can work.

The possibility of the new machine started

from a paper by Dr. A. M. Turing some years

ago, when he showed what a wide range of

mathematical problems could be solved, in idea

at any rate, by laying down the rules and

leaving a machine to do the rest. Dr. Turing

is now on the staff of N.P.L., and is

responsible for the theoretical side of the

present project, and also for the design of

many of the more practical details. The

principles he enunciated have now become

practicable since it is possible to use

electronics in the machine so that its rate of

operation is about a hundred thousand times as

fast as a man’s. The proposed machine is

primarily a system of electronic circuits some

of which do the arithmetic, while others give

the instructions in a codified form, also as

numbers. But there is another feature necessary

in computation, which may be called the memory;
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this corresponds to the fact that the human

computer has at intervals to turn back to the

results of some previous calculation and bring

them forward again. In many ways the memory is

the most serious problem in the machine, but a

variety of methods have been proposed and some

instruments have been made, and the choice

among them is largely a matter of economy,

since there will need to be several hundred

organs of this type. At present it appears that

the best solution may be one developed for use

in radar, which consists in sending a stream of

ultra-sonic pulses down a tube of liquid. These

are known as delay lines and it is proposed

that attention shall primarily be concentrated

on their use for this purpose. As at present

planned the electronics will work at a rate of

microseconds, and the memory tubes will store

the information for a millisecond, or for any

desired multiple of a millisecond.

Dr. Turing’s proposals are set out in a paper

(E.882) considered at the March, 1946 meeting

of the Executive Committee of N.P.L. The

Committee after discussing the problem with

Mr. Womersley, Superintendent of Mathematics

Division, and Dr. Turing, resolved unanimously

to give the project its enthusiastic support.

An example of the sort of problem that could

be solved is the calculation of ballistic

trajectories. It is estimated that a full

trajectory from muzzle to strike, worked out by

small arcs, should be solved in half a minute.

Or again a large number of simultaneous

equations, as in a geodetic survey, could be

solved in a few minutes: or the distribution of

electric field round a charged conductor of

specified shape.

The complete machine will naturally be

costly; it is estimated that it may call for

over £50,000, but probably not twice as much.
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A smaller one, containing the essential

characteristics, could be constructed first,

perhaps for a cost of £10,000, but its chief

function would be to reveal some of the details

of design that cannot be planned without trial,

and its scope would be too limited to be worth

constructing for its own sake. This would

involve development work on delay lines and

trigger circuits and this part of the work

would be undertaken by the Post Office where

facilities and specially trained staff exist,

with the collaboration of Dr. Turing and his

assistants. The Post Office are expecting to be

able to profit by the development for their own

purposes.

The small machine would not be a miniature

substitute for the large machine but would

later constitute a part of the full scale

machine in due course. It is hoped that

the complete machine can be constructed in

three years and the financial requirement will

be heaviest in the final year. It is proposed

to proceed immediately, and with high priority,

in the design and construction of this

preliminary machine, but in doing so it is

important to know that if it fulfils its

promise there will be full backing for the

greater sums required for the real operating

machine. In view of its rapidity of action, and

of the ease with which it can be switched over

from one type of problem to another it is very

possible that the one machine would suffice to

solve all the problems that are demanded of it

from the whole country. As far as can be

estimated at the moment, two Scientific and one

Experimental Officer will be required for this

work in addition to Dr. Turing. Part of this

staff would work at the Post Office Research

Station during the development period. No

estimate can as yet be given of the staff
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required to use the machine when completed.

This staff would, however, in the main need

to be in the Scientific Class since the machine

itself will do the work of a very large number

of Laboratory Assistants and Experimental

Officers.18

The Advisory Council of the DSIR agreed in May 1946 that ‘in the event
of the first-stage machine fulfilling expectations, they would be prepared to
recommend further expenditure on a complete machine, bringing the total
up to perhaps £100,000 in the next three years’.19 It only remained to build
the computer. However, as a result of ineffective management this would take
much longer than anyone expected.

Further development of the ACE design

In May 1946 Wilkinson joined the NPL and was assigned to Turing on a half-
time basis (see Chapter 4, ‘The Pilot ACE at the National Physical Laboratory’
by J. H. Wilkinson).20 The ACE Section grew to a staff of three with the
arrival of Woodger (who also joined the NPL in May but soon after fell ill with
glandular fever and was absent from work until September).21

During 1946 Turing continually modified the design of the ACE. By the
time of Wilkinson’s arrival Turing had reached what he called ‘Version V’ of
the design. (Woodger explains: ‘My understanding is that the original report
[‘Proposed Electronic Calculator’] was not a Version as such but a general
proposal. There is no trace of Versions I to IV; I assume they were sketches
in Turing’s possession, probably done between March and May 1946.’22)
By the end of 1946 Turing had reached Version VII. From December 1946 to
February 1947Turing and Wilkinson gave a series of nine lectures on Versions
V, VI, and VII of the design (see the Chapter 22, ‘The Turing–Wilkinson
Lecture Series’).

In ‘Proposed Electronic Calculator’ Turing had emphasized that work
on instruction tables—that is to say, programs—should ‘start almost
immediately’ since the ‘earlier stages of the making of instruction tables will
have serious repercussions on the design’ of the ACE. Moreover, this policy
would, he said, ‘avoid some of the delay between the delivery of the machine
and the production of results’. Turing made this point again in a letter to
Darwin: ‘A large body of programming must be completed beforehand, if any
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serious work is to be done on the machine when it is made’.23 So it was that
during 1946 Turing and Wilkinson, joined later by Woodger, pioneered the
science of computer programming. An end-of-year report summarized their
achievements:

Unless means can be found for the rapid

preparation of problems in a form suitable

for the machine the value of its high speed

will largely be lost, though many other

advantages would still remain. The first

step, therefore, in planning such a machine,

is to study the way in which programmes of

work should be prepared. This has formed the

main work of the A.C.E. section during the past

year. It is intended to prepare the

instructions to the machine on Hollerith cards,

and it is proposed to maintain a library of

these cards with programmes for standard

operations. In setting up the machine to do a

particular job all that will be necessary

(instead of preparing the instructions in

detail) will be to select a number of groups of

standard instructions and to link them together

with a few special cards. In planning the

oganisation of the work on the machine it has

become clear that a long and careful study of

the many possible ways of setting out these

instructions is essential, and even after

more than a year of work on this problem, the

final form is only now being reached. Apart

from these general questions of organisation a

number of basic instruction routines have been

decided upon and prepared in detail. These are:-

Division.

Extracting square roots.

Indication of failures.

Testing the accuracy of a given table.

Exponential function.

Sine and cosine.
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Logarithm.

Multiplication of complex numbers.

Formation of scalar product of vectors.

Formation of product of two matrices.

Solution of sets of linear equations.

Some work has also been done on developing

known methods of solving both ordinary and

partial differential equations in a form

suitable for use on the A.C.E.24

All this work was, of course, directed toward a machine that existed only
on paper. The ACE Section, consisting only of three mathematicians, had no
facilities to construct the computer.

The first attempt to build the ACE: the Flowers era

Turing knew that Flowers, who had designed and built Colossus, was uniquely
qualified to undertake the construction of the ACE. Flowers was asked to
organize the building of the ACE at his headquarters, the Post Office Research
Station at Dollis Hill in North London, where Colossus was built.25 He agreed.
Early in 1946 W. G. Radley, Controller of Research at Dollis Hill (and who knew
about Colossus), wrote to Womersley to confirm the arrangement:

Thank you for your letter received on Saturday

morning. I had heard from Flowers that you were

thinking of constructing an electronic

numerical computing machine at the N.P.L. and

share your hopes that it will far transcend in

both facility and speed anything previously

attempted. We should be very happy to

co-operate, firstly by giving assistance with

regard to the technical design of the machine

and, later on when this has taken shape, by

arranging to have it constructed for you within

the Post Office organisation. . . .

With regard to the other aspect, that of

time, we have very considerable arrears of work

to overtake for our own Department. Some of it

is most urgently required and the manpower
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position is difficult. I fully appreciate what

you say, however, with regard to the

fascinating nature of the task and the prestige

value and it shall have the highest degree of

priority possible in the circumstances.26

At first things seemed to be going rather well:

Status of the Delay Line Computing Machine

at the P.O. Research Station.

March 7, 1946

They have constructed a long and a short

delay line and have more or less successfully

circulated pulses in these.27 . . . They plan to

start very soon work on clock and pulse source

circuits and on frequency control (use of

a pilot mercury line to vary the frequency

to compensate for change of temperature in

the delay lines).

Mr. Flowers states that they can have ready

for N.P.L. a minimal ACE by August or

September. . . . Mr. Flowers, in fact, proposed

the following time table:

By May 1st: Have circulating circuits

decided upon, and the frequency

control circuits ready.

By June 1st: Have a 32 long delay line unit

built, have made the clock and

pulse source circuits, and have

made the short delay lines.

By July 1st: Have made 32 circulating

circuits for the delay lines.28

Unfortunately it proved impossible to keep to Flowers’ time-table. Dollis Hill
was occupied with a backlog of urgent work on the national telephone system
(at that time managed by the Post Office). Flowers could spare only two people
to work on the ACE, William Chandler and Allen Coombs, his right-hand
men from the Colossus days. His section was, he said, ‘too busy to do other
people’s work’.29 By the summer of 1946 warning bells had begun to ring at
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the NPL. In August Darwin observed that the Post Office was ‘not in a position
to plunge very deep’ and by November he was expressing concern to Radley
and others at the Post Office about the ‘slow rate of progress’ on the ACE.30

Clearly it was time to make new arrangements. Initially the NPL persisted
with the idea of placing a contract for the construction of the ACE with an
outside organization. But this proved very difficult. Engineers experienced in
the new art of digital electronics were scarce. Larger firms were ‘likely to be
too tied up with television and other consumer goods’, and a suitable smaller
company could not be found.31

The NPL also attemped to enlist the help of other public institutions.
In August 1946 Darwin wrote to Sir Edward Appleton at the DSIR concerning
the possibility of the Telecommunications Research Establishment at Malvern
taking on the construction:

As I told you Womersley was down at T.R.E.

[Telecommunications Research Establishment]

to see whether they could do any work about the

A.C.E. machine. He tells me that it looks

a most promising chance, and I think we should

go ahead on it. Their lay-out for the job looks

good, and I gather it appealed strongly to

F. C. Williams as a job he would like to do,

so that it should get a good chance. I am

kicking myself for not having thought of it

months ago as a possibility.32

Later that year, however, Williams took up the position of Professor of Electro-
Technics at the University of Manchester and the desired assistance never
materialized. Williams went on to build his own computer at Manchester (see
Chapter 5).

The NPL also approached Wilkes, who was planning his own computer
at the Cambridge Mathematical Laboratory (the EDSAC, which first ran in
1949). Hartree (Plummer Professor of Mathematical Physics at Cambridge
and a member of the NPL Executive Committee) sounded him out and
reported to the Executive Committee that Wilkes was ‘prepared to give as
much help as he could on the ACE’.33 Wilkes ‘had experience of making
up [d]elay lines and would exchange information with Dr. Turing’, Hartree
said.34 However, the chances of Turing’s cooperating fruitfully with Wilkes
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may be judged by a memo from Turing to Womersley:

I have read Wilkes’ proposals for a pilot

machine, and agree with him as regards the

desirability of the construction of some such

machine somewhere. I also agree with him as

regards the suitability of the number of delay

lines he suggests. The ‘code’ which he suggests

is however very contrary to the line of

development here, and much more in the American

tradition of solving one’s difficulties by

means of much equipment rather than thought.

I should imagine that to put his code (which is

advertised as ‘reduced to the simplest possible

form’) into effect would require a very much

more complex control circuit than is proposed

in our full-size machine. Furthermore certain

operations which we regard as more fundamental

than addition and multiplication have been

omitted.

It might be argued that if one is to have so

little memory then it is necessary to have a

complex control to make up. In so far as this

is true I would say that it is an argument for

either having no pilot model, or for not using

it for serious problems. It is clearly rank

folly to develop a complex control merely for

the sake of the pilot model. I favour a model

with a control of negligible size which can

later be expanded if desired. Only test

problems would be worked on the minimal

machine.35

By the beginning of 1947 there were no new initiatives to report. ‘With
regard to the design of actual equipment . . . progress has been slow owing to
staff shortage’ was the lame summary in the end-of-year report for 1946.36

The slow pace of the construction work at Dollis Hill was not entirely the
fault of the Post Office. As previously mentioned, during 1946 Turing kept
changing the logical design of the machine. Moreover, in November 1946 the
NPL considered making a radical change to the way the memory was to be
constructed, with cathode ray tubes (CRT) taking the place of mercury delay
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lines. This change would have meant that most of the work done up to that
point by Chandler and Coombs was wasted.37 (In the end CRT memory was
used at Manchester but not for the ACE.)

Coombs described the situation from the engineers’ point of view:

One of the problems was, I remember, that NPL kept on changing its

ideas, and every time we went down there and said ‘Right now! What

do you want us to make?’, we’d find that the last idea, that they gave

us last week, was old hat and they’d got a quite different one, and we

couldn’t get a consolidated idea at all until eventually we dug our toes

in and said ‘Stop! Tell us what to make’.38

Eight years later Chandler and Coombs finally completed a computer,
named the MOSAIC, based on Version VII of Turing’s ACE design (see below).

The second attempt to build the ACE: the Huskey era

The situation improved when Huskey—an engineer—arrived in Maths
Division on a fixed-term contract. Huskey had worked on the ENIAC project
and in 1946 was offered the Directorship of the EDVAC project, although
complications prevented him from accepting (see his Chapter 13, ‘The ACE
Test Assembly, the Pilot ACE, the Big ACE, and the Bendix G15’). Hartree, the
ACE’s guardian angel on the NPL Executive Committee, had met Huskey while
visiting the ENIAC in the spring of 1946; in July Huskey received a telegram
offering him a twelve-month visiting position at the NPL. Huskey began work
in Maths Division on 4 January 1947.39 A number of other new recruits
joined the ACE Section during the course of 1947, in an expansion initiated
by Turing40: Gerry Alway in August, Donald Davies in September, Henry
John Norton in October, Betty Curtis in November.

Huskey soon suggested that the ACE Section itself make a start on
constructing the computer and he proposed to Womersley that a small
test assembly be built. With Womersley’s blessing, Huskey, Wilkinson, and
Woodger began work. They planned to build a simplified form of Turing’s
Version V known as Version H (for ‘Huskey’). The new machine—soon called
the ‘Test Assembly’—was to be housed in the Babbage Building, a short
distance from Maths Division.41 Womersley summarized the situation in
a report written in the middle of 1947:

At the beginning of 1947 Dr. H. D. Huskey,

a member of the team working on the EDVAC
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and ENIAC machines at the University of

Pennsylvania, Philadelphia, joined the staff

of the Mathematics Division for one year.

In the Spring of 1947 it was decided that the

Laboratory itself should undertake some

experimental work and Dr. Huskey, with two

assistants, began the collection of equipment

with a view to constructing a small pilot

model.42

Turing was not in favour of this development. On the one hand the Test
Assembly was to be a small computer in its own right, involving much more
equipment than was strictly necessary to test the fundamentals of Turing’s
design, and yet on the other it fell far short of being the ACE. Probably
Turing saw Huskey’s project as diverting effort from his own. According to
Wilkinson, Turing ‘tended to ignore the Test Assembly’, simply ‘standing to
one side’.43 Woodger described how he ‘was writing a program for [Version H]
when Turing came in . . . looked over my shoulder and said, “What is this?
What’s Version H?”. So I said, “It’s Huskey’s.” “W H A T!” . . . [T]here was a
pretty good scene about that.’44

Huskey and the others pushed ahead with the Test Assembly. By about
the middle of 1947, the NPL workshops were fabricating a mercury delay
line to Huskey’s specifications, valve types had been chosen and circuit
block diagrams made, source and destination decisions had been taken,
and programs were being written to check these decisions.45 A main
frame was built and construction of the plug-in chassis holding the
circuitry was planned.46 Huskey’s first goal was to run a simple stored
program using an absolute minimum of equipment and a single full-
length delay line.47 Then the group would develop a substantial computer
capable of solving practical problems; this would contain approximately
thirteen delay lines, and would involve punched card input and output
and a hardware multiplier.48 In October 1947 Womersley and Fieller
expected—very optimistically—that the Test Assembly would ‘be ready by
the end of November’.49 (Huskey said: ‘I never hoped to have the Test
Assembly working before I left in December. I certainly hoped the group
would have it working in 1948.’50) Then, in what was one of the
worst administrative decisions of the whole ACE saga, Darwin summarily
stopped the work. ‘Morale in the Mathematics Division collapsed’, Huskey
recalled.51
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The man behind Darwin’s decision was Horace Augustus Thomas, head of
the newly formed electronics group in the NPL’s Radio Division.

The third attempt to build the ACE: the Thomas era

In January 1947 Turing had gone to the United States, visiting several of the
groups that were attempting to build an electronic stored-program computer.
In his report on this visit he wrote:

One point concerning the form of organisation

struck me very strongly. The engineering

development work was in every case being done

in the same building with the more mathematical

work. I am convinced that this is the right

approach. It is not possible for the two parts

of the organisation to keep in sufficiently

close touch otherwise. They are too deeply

interdependent. We are frequently finding that

we are held up due to ignorance of some point

which could be cleared up by a conversation

with the engineers, and the Post Office find

similar difficulty; a telephone conversation

is seldom effective because we cannot use

diagrams. Probably more important are the

points which are misunderstood, but which

would be cleared up if closer contact were

maintained, because they would come to light

in casual discussion. It is clear that we

must have an engineering section at the ACE

site eventually, the sooner the better,

I would say.52

Darwin decided that NPL’s Radio Division was the best place for the experi-
mental engineering work to be carried out. The minutes of the March 1947

meeting of the Executive Committee outlined the new arrangements:

A.C.E. Director reported that he had had a

meeting with members of the staff concerned.

With a view to helping on progress with this

machine it had been suggested that Dr. Thomas
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of Radio Division should be put in charge of

the work of making by a suitable firm

a prototype model. Dr. Thomas was very keen on

electronic technique in industrial problems and

he felt that the best way in which we could get

progress would be to have a pre-prototype model

started in Radio and Metrology workshops before

approaching an outside firm. It was agreed that

Dr. Thomas should prove a very suitable man for

this work. In reply to a question from

Professor Hartree, Director said that Metrology

and Radio workshops could get on with the

hardware part of the job straight away.

Director stated that he had had a letter from

the Post Office giving the position of their

work which appeared to be most encouraging.

Sir Edward Appleton said that he had heard from

Dr. Radley that they were finding it difficult

to keep to their delivery dates, and Dr. Radley

will be seeing Director about this.53

The wheels of administration turned slowly and the idea of an in-house
electronics section took several months to implement. At the end of April
1947 a joint minute to Darwin from Womersley and R. L. Smith-Rose,
Superintendent of Radio Division, suggested that individuals be transferred
from other Divisions to Radio Division in order to form ‘the nucleus of a future
electronics section’:

The present state of the project requires

that the group should work together in one

place as a whole in close contact with the

planning staff in the Mathematics Division.

The various parts are so interwoven that

it is not practicable at present to farm out

portions of the work to isolated groups. Our

experience with the Post Office confirms this.

. . . The re-allocation of staff within the

Laboratory requires . . . careful consideration,

but if you are in agreement with our proposal,

could you advise us as to what action could be

taken in the immediate future.54
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By August the months of ‘careful consideration’ finally came to an end and
notes were sent out by E. S. Hiscocks (the Secretary of the NPL) to the
superintendents of various divisions instructing them to transfer staff to
Radio Division for a period of six months. Smith-Rose reported to Darwin: ‘We
are now in a position to commence experimental work in the development
of the A.C.E. for Mathematics Division’.55 Two members of Maths Division
(Gill and Wise) were transferred, and Wilkinson, although not formally
transferred, was expected by Womersley to work with Thomas’s group for
the first few months of the project.56 Edward Newman joined the group at
the beginning of September.57 Recruited from Electric and Musical Industries
(EMI) Research Laboratories, Newman would play an important role in the
eventual construction of the Pilot ACE, as would David Clayden, who followed
Newman from EMI later that month (see Chapter 19, ‘Circuit Design of the
Pilot ACE and the Big ACE’ by D. O. Clayden.)

In August 1947 a formal meeting was held to inaugurate the new state
of affairs:

A.C.E. Project

A meeting was held in the large Conference

Room on the 18th August to initiate the A.C.E.

Project in the Radio Division. The following

were present:-

Director

Secretary

Superintendent, Radio Division

Superintendent, Mathematics Division

Mr. F. M. Colebrook

Dr. A. M. Turing

Mr. J. W. Christelow

Dr. H. A. Thomas

Dr. F. Aughtie

Dr. H. Huskey

Mr. M. A. Wright

Mr. W. Wilson

Mr. A. F. Brown

Mr. R. G. Chalmers

Mr. B. J. Byrne

Mr. R. F. Braybrook

Mr. A. I. Williams
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The Director opened the meeting by stating

that this was the first time that a large team

had been assembled at the Laboratory to

initiate a research programme, and stressed the

importance of the A.C.E. project. He pointed

out that the Mathematics Division was the

parent Department, and that they had, as it

were, issued a contract to the Radio Division

for the Development and completion of the

machine.

Mr. Womersley followed by giving a historical

summary commencing from the days of Babbage,

and pointed out that the N.P.L. project,

if successful, would give a machine much in

advance of, and much quicker than, any of

the American machines. It would afford a new

approach to the problems of Mathematical

[Physics] and would be of immense value to the

country.58

Even before the inaugural meeting, trouble was brewing behind the scenes.
On 12 August Hiscocks wrote to Darwin to alert him to what seemed to be
empire-building on Thomas’s part:

Thomas has apparently shown some signs of

behaving as if he is starting up a new

Division, and so as to allay certain qualms

which both Smith-Rose and Womersley have,

I think it would be better for it to be

explained to the whole team that Mathematics

Division is the parent Division, and the one

which is to justify the financial outlay on

this work; that the work is being put out on

contract, as it were, to Radio Division, and

that Thomas’s team is a part of Radio Division.

I think, even if only for our own peace of

mind, this is desirable, because Thomas has

already shown some signs of wanting to set up a

separate office, etc.59

An unfortunate rivalry quickly sprang up between Thomas’s group and
the ACE Section in Maths Division. On 17 September Smith-Rose was sent
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an indignant letter complaining about a raid by Thomas’s group on the ACE
Section:

During Dr. Turing’s and Dr. Huskey’s absence on

leave, most of the apparatus in our laboratory

in Teddington Hall has, I believe, been removed

to your Division. It would be of assistance in

maintaining our inventory if we could have a

list of what was, in fact, taken; we understood

from Dr. Huskey that only two items were to be

moved.60

Thomas the empire-builder soon petitioned Darwin to curtail the
construction work in the ACE Section. Wilkinson said in an interview
given in 1976: ‘Thomas particularly didn’t like . . . the idea of this group in
Mathematics Division . . . working independently . . . . Thomas persuaded the
Director to lay it down that all work should be done in the Electronics Section
and Darwin decreed that we should stop work on the Test Assembly.’61

The result was that the construction of the ACE drew almost to a standstill.
Although Newman and Clayden were skilled in digital techniques, Thomas’s
group had much to learn. Thomas’s own background was not in digital
electronics at all but in radio and industrial electronics. The group ‘began
to develop their knowledge of pulse techniques’, said Wilkinson, and ‘for a
while they just did basic things and became more familiar with the electronics
they needed to learn to build a computer.’62 Then, in February 1948, Thomas
delivered another blow to the ACE project, resigning from the NPL to join
Unilever Ltd (the manufacturers of ‘Sunlight’ soap). As Womersley summed
up the situation shortly afterwards, hardware development was ‘probably as
far advanced 18 months ago’.63

It seems probable that, given better management at the NPL, a minimal
computer based on Turing’s Version V could have run a program during
1948. Turing first proposed an in-house electronics section at the NPL in his
report of 3 February 1947. The Radio Division group could have been set
up in six weeks rather than six months. Clearly the new electronics group
should have joined forces with Huskey and the ACE Section to work on the
Test Assembly. In August 1947 Womersley had pressed for this course of
action, but Thomas threw a spanner in the works.64 A rudimentary form of
the Test Assembly might easily have run a trial program before the middle
of 1948, becoming the world’s first functioning electronic stored-program
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digital computer (an honour that in the event went to the Manchester ‘Baby’
in June 1948, itself a very limited machine).

In mid-1947 Turing applied for a period of sabbatical leave to be spent
at his Cambridge college. He proposed to pursue research on machine
intelligence.65 Darwin approved the request, saying in a letter to the DSIR:

As you know Dr. A. Turing . . . is the

mathematician who has designed the theoretical

part of our big computing engine. This has now

got to the stage of ironmongery, and so for the

time the chief work on it is passing into other

hands. I have discussed the matter both with

Womersley and with Turing, and we are agreed

that it would be best that Turing should go off

it for a spell.66

Turing left for Cambridge in the autumn of 1947.67 He returned briefly to
Mathematics Division the following spring (winning the 3-mile run at the
NPL Annual Sports Event).68 Then, in May 1948, no doubt disheartened
by the complete absence of progress on the construction of the ACE,
he gave up his job at the NPL, accepting Newman’s offer of a position
at the Manchester Computing Machine Laboratory. At Manchester Turing
continued his ground-breaking theoretical work on machine intelligence and
pioneered the field now known as ‘Artificial Life’ (see Chapter 5, ‘Turing and
the Computer’). In Mathematics Division, the struggle to bring the ACE into
existence was now led by Wilkinson.

The fourth attempt to build the ACE:
the Wilkinson–Colebrook era

Thomas was replaced by Francis Morley Colebrook, who in March 1948 was
made head of the newly designated Electronics Section of Radio Division.69

Colebrook at last got things moving. In 1976 Wilkinson recollected:

I think quite soon [Colebrook] had an uncomfortable feeling that he’d

inherited something which was in danger of floundering, and I had

the same feeling back in Maths Division—I’d inherited this team from

Turing and everybody was really a little bit demoralised by that time.

And Colebrook rang me up and he came over to see me and had a chat
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about it and said he was not very happy about the position. And . . .

to my absolute astonishment he said: ‘I’ve got a suggestion to make

. . . You chaps have learned a bit of electronics now . . . What about

coming over and joining us and the two groups working together?’

. . . I felt the whole thing was in such a mess it needed quite a decisive

break in order to get it going. . . . Colebrook . . . was a great diplomat

. . . and his goodwill was so evident to everybody that I do think he

played a major part in making it possible for the two groups to go

together.70

The combined group decided that the best course of action was to revive
the Test Assembly, now described as a ‘pilot model’.71 The similarity between
the pilot model they now worked on and the out-of-favour Test Assembly
was, Wilkinson said, ‘more than . . . it was diplomatic to say much about’.72

The ACE Section and the Electronics Section worked harmoniously together,
and at the end of the year Womersley was able to report that ‘[v]ery good
progress has been made’.73 Huskey’s approach to circuit design was replaced
by the Blumlein approach that Newman and Clayden had brought from EMI
(see Chapter 19, ‘Circuit Design of the Pilot ACE and the Big ACE’). The group
completely redesigned the electronics of the machine.

Soon the mathematicians from the ACE Section found themselves in a
novel milieu. Woodger recalled: ‘We set ourselves up in a little assembly
line with . . . a stack of components . . . in front of us. Each of us had a
soldering iron and we produced these things and passed them down the line.
Oh, it was tremendous fun.’74 Following a period of difficulty with the
delay-line amplifiers at the end of 1949,75 the group finally tasted success.
On 10 May 1950 the Pilot Model ACE ran its first program. Later known
affectionately as ‘Succ. Digs’ (successive digits), the program turned on a row
of 32 lights on the control panel at a speed determined by size of the number
on the input switches.

The Pilot Model ACE was (in Colebrook’s words) ‘powerful computing
equipment’.76 Although the ultimate goal remained a large-scale ACE, Maths
Division had been planning since 1948 to use the Pilot Model as a computing
machine in its own right.77 However, there was still considerable work to be
done before the Pilot ACE could be handed over to Maths Division for customer
service. Unreliable components were a problem and it was September 1950

before the machine had an error-free run of half an hour.78 During 1951

the delay lines and the control of input and output were redesigned and the
parallel multiplier was added.79 By about the middle of 1951 the Pilot ACE
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The Pilot ACE in Bushy House, December 1950. On the left are the modified Hollerith

punched-card unit and the control table. The tray slung below the main frame contains

the short delay lines (‘Temporary Stores’).
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

was doing over 50 per cent of the computing work of Maths Division.80

Nevertheless, by October 1951 it had still ‘not yet been put into regular
service’, said Colebrook, ‘and we have not yet built up an adequate “library”
of generally useful sub-routines’.81

At the end of October 1951 the new Director of the NPL, Sir Edward Bullard,
expressed the opinion that

most of the electronic machines, including our

own, do not really work regularly and reliably.

They have been very much over-advertised and

there is a lot of work to be done before we

have anything that is much use.82

Despite Bullard’s pessimism, by February 1952 the Pilot ACE was
reliable enough to be dismantled and transferred to Maths Division.83
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The Pilot ACE in March 1952 after its move to Mathematics Division, where it provided

an industrial computing service. The Hollerith punched-card equipment is at the far

end, next to the table containing the control panel. The stand beneath the main frame

holds the short delay lines. The long delay lines are in the large temperature-controlled

cabinet—known as ‘the coffin’—situated behind the main frame. Two experimental

long delay lines are on stands to the right of the main frame.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

Colebrook wrote:

Full operation was resumed within two weeks

after the removal and has been continuous ever

since, mainly on defence problems. . . . An

analysis of the first eight weeks of operation,

involving 370 power-on hours, gives the

following figures:-

Routine testing and maintenance 92 hrs. 25%

User training, programme 175 hrs. 47%}
75%testing, etc.

Paid-for work84 103 hrs. 28%

The Pilot ACE remained in continuous service until replaced by the first
DEUCE in 1955, by which time ‘the amount of maintenance it require[d]
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preclude[d] it from being used economically as a computer’.85 The Pilot ACE
was a huge success. It was used both to carry out research in numerical
analysis and to do paid work through Mathematics Division’s scientific
computing service (see Chapter 12, ‘Applications of the Pilot ACE and the
DEUCE’). In 1954 alone the Pilot ACE earned the NPL £24,000 for over 80

jobs86—Turing’s annual salary when he designed the ACE was £80087. In the
course of its working life the machine earned approximately £100,000.

The DEUCE

Toward the end of 1948, the NPL’s efforts to find an engineering company
willing to assist with the ACE at last bore fruit. The minutes of the NPL
Executive Committee for September 1948 report:

In connection with the A.C.E., members of Sir

George Nelson’s staff have visited the

Laboratory to see the progress made and to

discuss possible collaboration in the more

detailed design and, later, the construction of

the A.C.E.88

Nelson, chairman of the English Electric Company, had been a member of
the NPL Executive Committee since 1946 (and was present when Turing
addressed the historic meeting of March 1946). Early in 1949 it was proposed
that the NPL place a contract with English Electric:

A.C.E. Project.

Present Position, and request for financial

provision for a Study Contract to be placed

with the English Electric Co. Ltd.

. . . In order to expedite the construction of

[the] pilot assembly and to make possible the

construction of the final machine it is now

proposed that a Study Contract be placed with

the English Electric Co. Ltd. This will have

two great advantages, first it will add to the

labour force working on the construction of the

pilot model, and should make possible its

completion before the end of this year, and it

will familiarise the engineers and the staff
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with the specialised requirements and the

techniques involved. This educational period

before they embark upon the construction of the

final machine is very necessary in view of the

novelty of the whole enterprise.89

This contract was approved by the Treasury in May 1949.90 It ‘provided for
members of the English Electric Company staff to work at the N.P.L., with
N.P.L. staff involved’.91 Engineers and wiremen from English Electric joined
the NPL team to assist in the completion of the Pilot ACE.

In 1951 an NPL memorandum set out a number of reasons for desiring
to ‘continue the collaboration with the E.E.Co.’, including the following:
‘The experience gained by the E.E.Co. would enable them to reproduce the
A.C.E. or a similar machine for any subsequent home or foreign demand.’92

By December 1951 arrangements for producing a commercial version of the
Pilot ACE had been firmed up:

ACE---Arrangements with English Electric Co.

. . . [I]t has been decided that the first move

shall be the construction by the E.E. Co. of an

‘engineered version’ of the present Pilot ACE.

Simultaneously with this some of the detailed

planning and design for the full-scale ACE will

be undertaken.93

A memo from Treasury noted approvingly that

These plans for the development of the A.C.E.

represent a very favourable turn. English

Electric (through Sir George Nelson) offered to

take it upon themselves to construct a properly

‘engineered’ version of the Pilot model at a

cost to N.P.L. of no more than f5,000. . . . The

likelihood is that [this] by no means

represents the full economic cost. But Sir

George Nelson is prepared to think in terms of

such a figure because he would like to see

English Electric getting into the field.94

The engineered version of the Pilot ACE was called—naturally enough—
‘the DEUCE’ (Digital Electronic Universal Computing Engine). The first DEUCE
to be produced was delivered to Maths Division in March 1955.95 The DEUCE
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The NPL DEUCE in 1958.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

became a cornerstone of the British computer industry (see Chapter 6, ‘The
ACE and the Shaping of British Computing’).

The Big ACE

Work began on a full-scale ACE in the autumn of 1954.96 In 1956

J. R. Illingworth outlined the reasons for proceeding to this final stage of
the project:

ACE---Final Model

. . . Experience had already shown . . . that the

DEUCE would not be an efficient proposition for

more than four or five years since the speed

and storage facilities required for this type

of machine were becoming greater year by year.

It was therefore decided about two years ago to

commence work on an entirely new machine and

this started in the Autumn of 1954. . . .
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The whole position, I think, may be summed up

by saying that both the importance and the

significance of this work has changed. In the

early days when the project was envisaged it

was not even known whether the conception of

the ACE would lead to a research "toy" of any

value, whereas events have proved it to be such

a first class computing mechanism that we are

under pressure from the Treasury and other

departments to develop its use as rapidly as

possible for work in office mechanisation.

Moreover, whereas in the early days the project

was regarded as an additional facet to the

Laboratory’s normal work, the whole of this

field of work has become an inherent part of

the Laboratory’s programme.97

Built and housed at the NPL, the Big ACE was in operation by late 1958.
Wilkinson, Clayden, Davies, Newman, and Woodger all contributed to the
final design.98 English Electric played a part in 1954 and 1955 during the
developmental stage, but at that point their contract with the NPL came to an
end.99 With a clock speed of 1.5 MHz and containing some 6000 valves, the
Big ACE filled a room the size of an auditorium.100 The computer remained
in service until 1967. Only one was made.

At a Press Day held in 1958 to inaugurate the Big ACE, A. M. Uttley
(superintendent of the Control Mechanisms and Electronics Division, as the
Electronics Section had by then become) announced: ‘Today, Turing’s dream
has come true’.101 If so, it was a dream whose time had passed. The Big ACE
was not the revolutionary machine that it would have been if completed six
or seven years earlier. Not only did it employ valves in the era of the transistor,
the designers also retained the by then outmoded mercury delay-line memory
proposed by Turing in 1945.102 Nevertheless, the Big ACE was a fast machine
with a large memory, and the decision to stick with the principles used in
the Pilot ACE and the DEUCE was reasonable in the circumstances. In 1953

Colebrook urged that the proposed full-scale ACE ‘be based on well proved
components and techniques, even when revolutionary developments seem to
be just around the corner’.103 ‘Otherwise the [Mathematics] Division will get
nothing but a succession of pilot models’, Colebrook argued.104 As for speed,
the machine’s designers wrote in 1957: ‘The ACE appears in fact to be about
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The Big ACE, November 1958. Raised panels expose the racks of chassis.
Source: National Physical Laboratory. © Crown copyright; reproduced by permission of the
Controller of HMSO.

as fast as present-day parallel core-store computers’ (magnetic core memory
was the most advanced high-speed storage medium at that time).105

A Simple Guide to ACE

One of the world’s largest and fastest

electronic computing machines---popularly called

‘Electronic Brains’---has begun to operate at

the National Physical Laboratory. Its name is

ACE---and it can carry out any calculation

process for which exact rules are known. . . .

ACE incorporates many unique design features.

The operating ‘mechanism’ consists of about

6,000 miniature electronic valves, arranged in

an impressive array of 10 large cabinets. Each

cabinet is fitted with an electrically operated

rising door to give rapid access for fault

finding. It has a cooling system of circulating

air, with heat exchangers and a water cooler.
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The numbers and instructions have 48 binary

digits (equivalent to 14 decimal digits).

The working store consists of 800 words, and

the backing store of four magnetic drums will

contain a total of 32,768 words.

Mercury delay lines and magnetic drums are

used for the storage of numerical data and

instruction sequences, and both punched card

and magnetic tape equipment are provided for

input and output.

The compact control desk has some 160 keys

and 300 signal lamps, in addition to audible

and visual displays of the computation.

Nevertheless, most computations are carried out

entirely by pushing one key---marked ‘Initial

Input’. This key causes punched cards to be

read, which tell ACE what to do.

The most interesting mechanical assemblies in

ACE are the four magnetic drums, entirely

designed and constructed at N.P.L. The drums

rotate at 12,000 r.p.m. so accurately that the

arrival at a given point of a magnetic spot one

hundredth of an inch in length, travelling at

200 miles per hour, is timed to a millionth of

a second. The drums have unique rapidly moving

recording heads and are only a part of the

number store or ‘memory’ of ACE. An idea of the

speed of ACE can be gained from the fact that

these drums are the slowest part of its number

store!

Technical Notes

ACE has three forms of storage. The largest

part of the store consists of four magnetic

drums. . . . The access to these numbers is

limited by the need to wait for the drum to

revolve, and may take up to 7 milliseconds.

These drums are used by the computer for the

large mass of data that it may not want

quickly.

For more rapid access, a mercury delay line

store of 768 numbers is employed. The time
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required for access to these is up to one

millisecond. This store is used for the

program, but instructions are stored in such

a way that no time is wasted in waiting

for them.

The most rapid access store consists of short

delay lines storing one, two or four numbers

each. These are used for the small group of

numbers that the computer is using for a short

while.

By good programming, the full advantages of

the large store can be enjoyed, with a time of

access not much greater than is given by the

short delay lines.

The ACE instructions specify the

addresses---the locations in the store---of two

numbers to be operated on, the operation, and

the addresses of the desired destination of the

result and of the location of the next

instruction. Thus four addresses are used, and

all four accesses occur nearly simultaneously.

[M]ultiplication and division occur in

separate, autonomous devices, so that they can

occur simultaneously with other

operations.

In many cases, the computer will average

15,000 operations per second, each involving

extracting two operands, storing the result and

extracting the next instruction.

Input and output is by punched cards.

Magnetic tapes will be fitted later, but will

be used as an extension to the store. The input

speed from cards will be 7000 binary digits per

second, with a rate of 450 cards per minute

punched in binary.106

The MOSAIC

With the inauguration of Thomas’s electronics group, the NPL had taken
the opportunity to bow out of its formal arrangement with the Post Office.
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In August 1948 Womersley wrote to Darwin:

Post Office Account for Work on A.C.E.

During the period to which this account applies

either Dr. Turing or myself kept in regular

touch with the engineers concerned by regular

monthly visits. I am satisfied that this

account is a reasonable one and represents the

amount of time and effort put in by the Post

Office during that period. In relation to this

amount of time and effort the progress which

the Post Office engineers have made is

satisfactory, but we cannot pretend that the

scale on which the Post Office found it

possible to work was in any way comparable with

the effort we would like to have seen made.

Now that we are establishing a special group

under Dr. Thomas to do development work here,

it is becoming necessary to decide whether we

continue to ask the Post Office to do work on

our behalf. If we discontinue our arrangement

with them (except on a basis of friendly

interchange of information) work will still

continue there. They have, in fact, a contract

with Ministry of Supply to produce a computer

for the reduction of certain data from

ballistic trials, and we shall be expected to

play some part in the planning of it. Since the

original approach was made by you personally to

the Chief Engineer of the Post Office, will it

be necessary for you to inform them yourself if

we bring our contract with them to an end?107

The contract between the Post Office and the Ministry of Supply mentioned
by Womersley led to the MOSAIC (Ministry of Supply Automatic Integrator
and Computer), which first ran a program in 1952 or early 1953.108 The
MOSAIC was based on Version VII of Turing’s logical design for the ACE.109

Working alone, Chandler and Coombs carried out the engineering design
for the MOSAIC. With a pulse rate of 570 kilocycles per second, the MOSAIC
contained approximately 7000 valves and 2000 semiconductors (germanium
diodes).110 Originally a high-speed memory of 96 mercury delay lines was
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Three of the MOSAIC’s racks.
Source: Heritage, Royal Mail. © Crown copyright; reproduced by permission of Royal Mail
Group plc.

planned;111 in the final form of the machine there were 64 long delay lines
and a handful of short delay lines, holding a total of 1030 40-digit words.112

Of the various ACE-type computers that were built, the MOSAIC was (apart
from its pulse rate) the closest to Turing’s conception of the ACE.

The MOSAIC was manufactured and assembled by the All-Power Trans-
former Company and was installed at the Radar Research and Development
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Establishment (RRDE) Malvern, in 1954 or early 1955.113 It was used to
calculate aircraft trajectories from radar data, in connection with anti-
aircraft measures. The details of the computer’s use are still classified.
Two mobile automatic data-recorders worked in conjunction with a radar
tracking system. Each recorder involved approximately 2000 valves, with
‘special cathode-ray tube switches and pneumatic gear to provide a record on
punched paper tape’.114

Given that two engineers working alone succeeded in completing the large
MOSAIC (Coombs emphasized: ‘it was just Chandler and I—we designed every
scrap of that machine’115), there seems little doubt that, given sufficient
manpower, a computer reasonably close to Turing’s Version VII of the ACE
could have been operational in the early 1950s.

Thanks to their wartime involvement with Colossus, Chandler and Coombs
possessed unrivalled expertise in large-scale digital electronics and had a
substantial lead on everyone else in the field. Turing, of course, was well
aware of this, but the Official Secrets Act prevented him from sharing his
knowledge of Colossus with Darwin. Had he been able to do so, the NPL
might have acted to boost the resources available to Chandler and Coombs,
and so made Turing’s dream a reality much sooner.
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4 The Pilot ACE at the National
Physical Laboratory1

James H. Wilkinson

Introduction

The ACE project at the National Physical Laboratory is of particular historical
interest because of its connexion with the work of A. M. Turing. He and
J. von Neumann are now universally acknowledged to be the two outstanding
men of genius of the computer revolution, and it is a matter of some regret
that we know so little of the exchanges which took place between them. . . .

Turing had been interested in automatic digital computing since the thirties
when he had written his now world-famous paper ‘On computable numbers,
with an application to the Entscheidungsproblem’.2 His early research had
been primarily of a theoretical nature but during the war his work at the
Foreign Office had given him a knowledge of pulse techniques and it was this
that led to an interest in the construction of an electronic computer.

For the first few months at NPL Turing worked on this project entirely on
his own, producing a comparatively detailed proposal [‘Proposed Electronic
Calculator’] for the Executive Committee of the NPL, and this was duly accep-
ted. Professor Williams has referred to the reckless doubling of staff which
took place at Manchester University with the addition of a second man to
the team.3 Turing proceeded with greater caution. I was recruited to NPL in
May 1946 but was assigned to Turing for half time only; the other half was to
be spent in the desk computing section acquiring a knowledge of numerical
analysis.

When I arrived Turing was working on what he called Version V of his
Automatic Computing Engine (ACE), the use of the word ‘Engine’ being in
recognition of the pioneering work of Babbage on his Analytic Engine. ACE
was to be a very large computer with a delay line storage of some 6400 words
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of 32 binary digits each, held in 200 long delay lines. Turing was confident
that a megacycle pulse repetition rate would be perfectly practical and since
each delay line stored 32 words the circulation time was 1024 μs, i.e. about
one millisecond. The machine had a highly original code, though since at that
time I had no other experience of digital computers this was not evident to me,
and I only gradually appreciated how far out of step were projects elsewhere!
Turing was obsessed with speed of operation; if consecutive instructions were
to be stored in consecutive positions in a long delay line it would be possible
to perform only one instruction per millisecond. To avoid this, consecutive
instructions were stored in such relative positions that each emerged from
a delay line just as it was required in so far as this was possible. This sub-
sequently came to be known as ‘optimum coding’ though Turing never used
the expression; he thought of it just as coding. The use of optimum coding
made it necessary to indicate in each instruction the storage position of the
next. In order further to increase the speed of operation the computer was
not based on the use of a central accumulator. Each instruction represented
the transfer of information from a source to a destination. Included in the
sources and destinations were, of course, the 200 long delay lines but there
were also a number of short delay lines storing one or two words each and
these were provided with functional sources and destinations. In addition to
the natural arithmetic operations all versions of the ACE included a very full
set of logical operations. Possibly because of his wartime experience Turing
decided quite early on to use punched card equipment for input and output.

Early programming efforts

Later in 1946 M. Woodger joined the ACE Section, followed in 1947 by
D. W. Davies and G. G. Alway and finally by Miss B. Curtis and J. H. Norton.
Our task was to develop the logical design of the ACE in the light of experience
gained in trying to program the basic procedures in mathematical computa-
tion. Version V was quickly abandoned and replaced by Versions VI and VII
which were essentially four-address code machines in which each instruction
was of the form

A function B → C, next instruction D

This code was adopted partly in order to give a closer relationship between
a mathematical algorithm and its coded version and partly to give greater
speed; from Turing’s point of view there is little doubt that the latter was the
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more important consideration. In some situations it virtually replaced three
single-address instructions of the form

A → accumulator; B → accumulator, adding;
accumulator → C

though this example much exaggerates its overall efficiency. The extra speed
was attained at the cost of extra equipment; each delay line had to be fitted
with two independent sources leading into two different highways; these
highways led into a ‘function box’ from which emerged the required function
of the two sources; the result was then fed directly to the required destina-
tion. An operation of the type A + B → C took only one word time; in
Version VII this had become 40 μs (a minor cycle) since the word length had
been increased to 40 binary digits to accommodate the more comprehensive
instruction, though by that time we were more than willing to increase the
word length for purely computational reasons. The maximum rate at which
instructions could be executed was one every two minor cycles, one minor
cycle being required for setting up the instruction and one for executing it.
An intriguing feature is that the transfer of information from A and B to C
could take place for a prolonged period of up to 32 minor cycles (the period of
circulation of a long delay line), the period being determined by the position
of the next instruction D. This made coding excessively untidy but in some
situations it was a very powerful feature. One could, for example, by means of
an instruction

A + B → C continued for 32 minor cycles

add all 32 numbers in delay [line] A to the corresponding numbers in delay
line B and send the resulting sums to delay line C. By having the carry suppres-
sion at the end of every minor cycle, every other minor cycle, or omitting it
altogether, one could deal automatically with single-word numbers, double-
word numbers or multi-length numbers. In this way the fullest advantage
was taken of the fact that ACE was a serial machine.

A great deal of quite detailed coding was done by the ACE team in the period
from 1946–1948. It included basic subroutines for such things as multi-length
arithmetic (including multiplication, division and square roots), floating-
point arithmetic (both single-precision and double-precision) and interval
arithmetic. The subroutines for floating-point arithmetic were particularly
detailed; they were coded by G. G. Alway and myself in 1947 and were
for both Version V and Version VII. They were almost certainly the earliest
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floating-point subroutines and it is interesting that those for the Version V
were essentially the same as the subroutines which were subsequently used
on the Pilot ACE itself. At a time when the arithmetic provided on mod-
ern computers is often so disappointing it is interesting to recall that the
subroutines included provision for accumulating inner-products in double-
precision floating-point arithmetic and all rounding was immaculate. During
this period Turing introduced some of the earliest automatic coding proced-
ures and he and M. Woodger did a fair amount of work in this area. The rather
complicated nature of the code perhaps provided an inducement to develop
such techniques though at the same time making it more difficult to do so.

A considerable effort was made on numerical linear algebra and some
of this work is included in a Progress Report on the Automatic Computing
Engine published in April 1948.4 Solutions of linear systems by the Gauss-
Siedel method and by Gaussian elimination with partial pivoting are included
in this report. An interesting feature of these codes is that they make rather
intensive use of subroutines; the addition of two vectors, multiplication of
a vector by a scalar, inner-products, etc., are all coded in this way.

The hardware effort

The decision was taken quite early on not to set up a hardware section at
NPL but to sub-contract this side of the work to some other government
department, preferably where there had been previous experience with pulse
techniques. Some decisions are seen to have been incorrect only in retrospect;
this appeared to me to be a deplorable decision even at the time. Either the
chosen department would prove not to be interested in the project in which
case it would obviously be a bad decision or it would prove to be interested
in which case NPL would inevitably have lost control of an exciting project.
For the first year or so at NPL Turing continued his association with two of
his former colleagues who were working in the Post Office Station at Dollis
Hill but obviously this could not provide any sort of basis on which to embark
on such an ambitious project.

In 1947 the policy of trying to get the computer built outside was finally
abandoned and an Electronics Section was set up at NPL with responsibility
to R. L. Smith-Rose, Superintendent of the Radio Division. The head of the
Section was H. A. Thomas, an energetic man, but unfortunately his chief
interest was in industrial electronics rather than in the construction of an
electronic computer. ... Turing and Thomas had virtually nothing in common
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and it was evident from the start that collaboration between the two men was
unlikely to be satisfactory.

In January 1947 H. D. Huskey, on the advice of D. R. Hartree, came to the
ACE section of Mathematics Division for a sabbatical year. Huskey had worked
on the ENIAC and had considerable experience in the electronic field. Unfor-
tunately his relationship with Turing was not particularly cordial though
he cooperated extremely well with other members of the ACE section.5 He
made no secret of his views that the idea of getting the computer built else-
where was a mistaken policy and almost from the start pressed for a more
active policy on the hardware side in Mathematics Division. Turing did not
oppose this idea but never fully associated himself with it, possibly because
he was becoming increasingly disillusioned with progress at NPL and had
decided to take a Sabbatical at King’s College, Cambridge, where he was still a
Fellow. Huskey finally persuaded the rest of the group to work with him on the
construction of a pilot machine which for simplicity was based on Version V.
This machine was christened ‘The Test Assembly’. The objective was to build
the smallest computer which could successfully demonstrate the feasibility of
Turing’s grand project. I remember taking as our objective in the design the
ability to solve a system of some eight simultaneous linear equations by the
elimination method. Since it was not thought of as a permanent computer
the full weight was thrown on the programmer and in deciding whether or
not a feature should be included the question we asked ourselves was ‘Could
we possibly make do without it?’.

By the time the Test Assembly was under way Huskey was already half-way
through his year at NPL. He was eager to have the computer working before
he left and in retrospect this was clearly an impractical objective since he
was mainly dependent on the members of the ACE Section of Mathematics
Division for the design. Of these, only Davies had any real background experi-
ence and Alway, Woodger and myself were just learning ‘on the job’. It is not
surprising that this project was unwelcome to Thomas since its success would
obviously have threatened his Electronics Section. Nevertheless, considerable
progress was made with the construction of the Test Assembly before it was
ruled that work on it should cease and the electronics side should be left
entirely to Thomas’s team. By this time morale in the Mathematics group was
at its lowest ebb, with Huskey disillusioned and Turing away at Cambridge.
For the next few months the group worked on the production of the Progress
Report on the ACE. It is a pity that we did not decide to make it more com-
prehensive since many of the programs we had produced were the first in

97



James H. Wilkinson

this field. Turing returned briefly to NPL in May 1948 but was so dissatisfied
with progress that he decided to join F. C. Williams and T. Kilburn on the
Manchester project.

The Pilot ACE

In 1948 Thomas decided to leave NPL for Unilever’s, which was in line with
his natural preference for industrial electronics, and F. M. Colebrook of Radio
Division replaced him as head of the section. It was soon obvious to Colebrook
that the ACE project was in a state of complete disarray and he came to the
conclusion that the lack of communication between Mathematics Division
and the Electronics Section was a severe handicap to progress. He had heard
of the abortive Test Assembly project and was therefore aware that we were
interested in the hardware side. Shortly after his appointment he came to see
me and told me it was his opinion that the enterprise was likely to founder
unless something fairly decisive was done. He then made the remarkable
proposal that the four of us who had been mainly concerned with the Test
Assembly, Alway, Davies, Woodger and myself, should join his team tempor-
arily and that we should all work together on the construction of some pilot
machine. I was a little taken aback by the suggestion but on reflection decided
that there was a lot to be said for it. It was clearly unsatisfactory to remain in
Mathematics Division coding for a series of hypothetical machines and I was
too fascinated by the idea of an automatic digital computer to contemplate
giving it up and joining the desk-computer section. I was delighted to find that
this view was shared by the other three. There remained the problem of squar-
ing this with Womersley but fortunately I persuaded Goodwin (for whom in
theory I was still working half-time!) to back the proposal and this virtually
ensured its acceptance.

That Colebrook should make the suggestion, the four of us should be enthu-
siastic in our acceptance and that Mathematics Division should agree to our
going was a remarkably improbable combination of events. There can be
no doubt that it was an extremely successful experiment. The two groups
were soon collaborating extremely well in spite of the previous unpromising
experience. The comparative absence of friction owed a great deal to the
tactful administration of F. M. Colebrook.

Early in 1949 we started on the detailed design of the Pilot ACE. In concept
this owed more to the abortive Test Assembly than it was wise to emphasize.
Again it was based essentially on Turing’s Version V and the equipment was
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kept as simple as possible consistent with the objective of being able to carry
out significant computations. The original design included no multiplier since
optimum coding made it possible to perform a programmed multiplication in
about 10 milliseconds. A very compact form of construction was decided
upon, with interchangeable plug-in chassis. The logical design could be taken
over without substantial modification from Version V and the earlier Test
Assembly; the circuit design was undertaken by members of both groups.

By the Autumn of 1949 the completed chassis were being delivered from the
NPL workshops and the assembly was under way. Initially the assembly
was done by G. G. Alway and myself but quite soon E. A. Newman joined
us and the three of us then worked together until the computer was in
operation. The first half of the machine was assembled very rapidly but
in December 1949 the main control chassis were added and progress became
slower. By February 1950 sufficient number of chassis had been added for it to
be capable of storing and carrying out a simple program but it was not until
May that it actually did so. In 1950 E. C. Bullard had succeeded Sir Charles
Darwin as Director of NPL and on his tour of inspection of the Laboratory
he paid us a visit. He had obviously heard of the earlier trouble with the ACE
project and was a little sceptical when we said that we would have something
working ‘almost any day’. We promised to let him know when we had and it
was fortunate that this occurred about a week later.

Towards the end of the day on 10th May 1950 we had all the basic pulse
circuits working, the control unit, one long delay line and a short delay
line fitted with an additive and subtractive input. However, our only method
of inserting instructions was via a set of 32 switches on which we could
set up one instruction at a time in binary; our only method of output was
a set of 32 lights to which a binary number could be sent. Unfortunately
the amplifier on the delay line was barely adequate and the probability of
remembering a pulse pattern for as long as a minute was not very high.
We concocted a very elementary program consisting of a few instructions
only; this took the number on the input switches, added it into the short delay
line once per millisecond and put on the next light on the set of 32 output
lights when the accumulator overflowed. The lights therefore came on at
a speed which depended on the size of the number on the input switches.
We laboriously fed this program again and again into the computer but each
time the memory would fail before we could finish. On about the twentieth
occasion we finally succeeded in inserting the whole program and all the
lights flashed up instantaneously. We reduced the input number and they
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came on slowly one by one; we doubled it and the lights came on at twice
the rate and we switched off for the day knowing the computer was working.
It was another two days before we again reached this high peak and could
convince the Director that it was working.

From that point onward we were under constant pressure to have a demon-
stration for the Press, but there was a good deal to do before this was possible
and eventually we fixed on a December date.6 Most early computer builders
have a ‘hard luck story’ for their first demonstration day. Ours was a good
luck story. For the demonstration we had three main programs, two popular
and one serious. Of the popular programs the first took a date in decimal from
input keys and gave out the corresponding day of the week on a cathode-ray
tube while the second took a six-figure decimal number and gave its highest
factor. A bottle of beer was offered to any member of the Press who could
give a six-figure prime. Popular programs provide a merciless test since the
slightest error is readily apparent. The serious program traced the path of
rays through a complex set of lens; it was virtually impossible for anybody
not intimately connected with the computer to know for certain whether this
was working correctly. Up to within a few days of the demonstration period
the computer had never performed the serious program correctly and we were
not even certain that the program was free of errors. In the event the Pilot ACE
worked virtually perfectly for the whole of the demonstration period, a level
of performance which was not achieved again for some considerable time.

The Pilot ACE and DEUCE

The Pilot ACE had been designed purely as an experimental machine with the
object of demonstrating the competence of the team as computer engineers.
It was originally intended that when it was successfully completed a full-scale
computer would be built. In the event it did not work out like this. At the time
when it was successfully demonstrated it was the only electronic computer
in a government department and indeed the only other working computers
were EDSAC at Cambridge, SEAC at the National Bureau of Standards and
an early version of the Manchester machine. We naturally came under very
heavy pressure to use the Pilot ACE for serious computing. We accordingly
embarked on a small set of modifications which included the addition of
an automatic multiplier and improvements to the control unit which made
programming a little less arduous. The computer was then put into general
use and did yeoman service for a number of years.
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Initially its only storage consisted of mercury delay lines which altogether
held some 300 words of 32 binary digits each. This had to cover both instruc-
tions and numbers and the code was, of course, fairly inefficient in terms of
storage space required for a given program. However, for a number of reasons
the Pilot ACE proved to be a far more powerful computer than we initially
expected. Oddly enough much of its effectiveness sprang from what initially
appeared to be weaknesses resulting from the economy in equipment which
dictated its design.

Optimum coding was a controversial matter at the time but much of what
was said about it appears in retrospect to have been irrelevant. Of course
nobody would use optimum coding if the same effect could be produced
without it. However, faced with the same choice as we had then I would
certainly use it. An illustration of its effectiveness is provided by the floating-
point routines on Pilot ACE. Programmed floating-point arithmetic involved
a considerable number of instructions and on a conventional computer such
as EDSAC, which performed only one instruction per circulation time of a
long delay line, it was too slow to be used for any extensive computation. On
Pilot ACE it was only marginally slower than fixed point arithmetic thanks to
optimum coding. The speed was further increased by the elementary nature
of the multiplier. This was an entirely autonomous unit which did not even
deal with signed numbers. However, both the sign correction and the manip-
ulations of the exponents could be carried out while the multiplication was
proceeding and hence this effectively took no extra time. Even double preci-
sion and triple precision floating-point routines were reasonably fast and we
gained extensive experience with such computation long before it was much
used elsewhere. I think it is not unreasonable to claim that the development
of floating-point error analysis at NPL, which was well in advance of that
elsewhere, was an indirect consequence of our use of optimum coding.

Again the very elementary way in which input and output from punched
cards was organized played a decisive role in their use. A great deal of numer-
ical linear algebra with matrices of comparatively high order was done on
the Pilot ACE using storage in binary on cards. The multiplication of a vector
held in the store by a matrix stored on cards was performed by reading the
cards at full speed through the reader, all the computation and red tape being
done in the intervals between rows of cards. This was faster than would have
been possible on EDSAC or SEAC even if they had had adequate high-speed
store. By putting two numbers on each row of a card we could have doubled
this speed.
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Since this use of the punched card equipment required the use of an
operator, it indirectly encouraged user-participation generally and this was
a distinctive feature of Pilot ACE operation. Speaking for myself, I gained
a great deal of numerical experience from user-participation and it was this
that led to my development of backward error analysis. Present day develop-
ments [1974] are again moving in this direction but they do not yet provide
as satisfactory participation as we took for granted on the Pilot ACE. It is
difficult to imagine greater differences in the philosophies of computer usage
than between those which developed at Cambridge on EDSAC and NPL on
the Pilot ACE. I have often wondered whether it was the machines which
determined the development or whether it was the natural characteristics
of the personnel involved which led to the development of such different
computers.

During the period when the Pilot ACE was being built the English Electric
Company became interested in electronic computers and a small group from
the company joined us at NPL, though all the construction was done in NPL
workshops. After the success of the pilot machine English Electric decided to
gain experience by building engineered versions of this computer. I was not
in favour of this decision since it perpetuated something that had originally
been designed merely for experimental purposes and it removed any sense of
urgency from the development of the full scale ACE. However, before these
engineered versions were produced a magnetic drum store was added to the
Pilot ACE and with this addition it was, in spite of its obvious shortcomings,
a very powerful computer. In the event the engineered version, marketed
under the name DEUCE, was undoubtedly a success.
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A Daily Mirror cartoon ( July 1952) portraying the Pilot ACE and (in order of appear-

ance) the reporter Ruggles, Colebrook (drawings 3 and 4), Wilkinson (drawings 5 and

9–16), York (drawing 6), and Goodwin (drawings 7 and 8)—Ed.
Source: By permission of Mirrorpix. (Thanks to Mike Woodger, Tom Vickers, and Heather
Wilkinson for information.)
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Notes

1. Presented at the third Colloquium on the 25th Anniversary of the Stored Program

Computer held at the Royal Society, London, on 12th November 1974. The text of

Wilkinson’s address was first printed in The Radio and Electronic Engineer 45 (1975),

336–340, and is reprinted by permission of the Institution of Electrical Engineers.

Words in square brackets have been added by the editor of this volume; excisions

(chiefly of material overlapping with other chapters) are indicated by ‘. . .’.

2. Proceedings of the London Mathematical Society, Series 2, 42 (1936–37), 230–65.

3. Williams, F. C. (1975) ‘Early Computers at Manchester University’, The Radio and

Electronic Engineer 45, 237–331.

4. Wilkinson, J. H., ‘Progress Report on the Automated Computing Engine’. NPL

Divisional report MA/17/1024, 1948. (In the Woodger Papers, National Museum

of Science and Industry, Kensington, London (catalogue reference N32/13);

a digital facsimile is in the Turing Archive for the History of Computing

<www.AlanTuring.net/wilkinson_report_1948>).

5. Editor’s note. Huskey comments (March 2003):

In all my relations with Turing I found him cooperative and helpful.

Considering what he was like I think I got on very well with him.

Turing had no patience for stupid questions or time for casual

conversation—although on the other hand if someone was working

hard on a problem and having difficulty he would go to great lengths

to help. In the fall of 1947 the NPL Director, Sir Charles Darwin,

gave our hardware project to the Radio Division. After the traumatic

meeting, Turing and I were walking back to the Mathematics Division

and he said that he was sorry about the Director’s action and hoped

I would not feel too bad.

6. Editor’s note. The Press show was held on 29–30 November 1950, with a further

demonstration on 1 December for invited VIPs (Woodger’s diary).
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5 Turing and the computer
B. Jack Copeland and Diane Proudfoot

The Turing machine

In his first major publication, ‘On computable numbers, with an application
to the Entscheidungsproblem’ (1936), Turing introduced his abstract Turing
machines.1 (Turing referred to these simply as ‘computing machines’—
the American logician Alonzo Church dubbed them ‘Turing machines’.2)
‘On Computable Numbers’ pioneered the idea essential to the modern
computer—the concept of controlling a computing machine’s operations by
means of a program of coded instructions stored in the machine’s memory.
This work had a profound influence on the development in the 1940s of the
electronic stored-program digital computer—an influence often neglected or
denied by historians of the computer.

A Turing machine is an abstract conceptual model. It consists of a scanner
and a limitless memory-tape. The tape is divided into squares, each of which
may be blank or may bear a single symbol (‘0’ or ‘1’, for example, or some
other symbol taken from a finite alphabet). The scanner moves back and forth
through the memory, examining one square at a time (the ‘scanned square’).
It reads the symbols on the tape and writes further symbols. The tape is both
the memory and the vehicle for input and output. The tape may also contain
a program of instructions. Although the tape itself is limitless—Turing’s aim
was to show that there are tasks that Turing machines cannot perform, even
given unlimited working memory and unlimited time—any input inscribed
on the tape must consist of a finite number of symbols.

A Turing machine has a small repertoire of basic operations: move left one
square, move right one square, print, and change state. Movement is always
by one square at a time. The scanner can print a symbol on the scanned
square (after erasing any existing symbol). By changing its state the machine
can, as Turing put it, ‘remember some of the symbols which it has “seen”
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(scanned) previously’.3 Turing did not specify a mechanism for changing
state—Turing machines are abstractions and proposing a specific mechanism
is unnecessary—but one can easily be imagined. Suppose that a device within
the scanner consists of a dial with a finite number of positions, labelled ‘a’,
‘b’, ‘c’, and so on, each position counting as a different state. Changing state
consists in shifting the dial’s pointer from one labelled position to another.
This device functions as a simple memory; for example, a dial with three
positions can be used to record whether the square that the scanner has just
vacated contained ‘0’ or ‘1’, or was blank.

The operation of the machine is governed by (what Turing called) a table
of instructions. He gave the following simple example.4 A machine—call it
M—begins work with an endless blank tape and with the scanner positioned
over any square of the tape. M has four states, labelled ‘a’, ‘b’, ‘c’, and ‘d’,
and is in state a when it starts work. In the table below, ‘R’ is an abbreviation
of the instruction ‘move right one square’, ‘P[0]’ is an abbreviation of ‘print
0 on the scanned square’, and analogously ‘P[1]’. The top line of the table
reads: if you are in state a and the square you are scanning is blank, then
print 0 on the scanned square, move right one square, and go into state b.

State Scanned square Operations Next state

a Blank P[0], R b
b Blank R c
c Blank P[1], R d
d Blank R a

Acting in accordance with this table of instructions—or program—M prints
alternating binary digits on the tape, 0 1 0 1 0 1 . . ., working endlessly to the
right from its starting place, leaving a blank square in between each digit.

The universal Turing machine (UTM)

The UTM is universal in that it can be programmed to carry out any
calculation that could in principle be performed by a ‘human computer’—
a clerk who works by rote and has unlimited time and an endless supply
of paper and pencils. Before the advent of the electronic computer, many
thousands of human computers were employed in business, government,
and research establishments.

108



Turing and the computer

The universal machine has a single, fixed table of instructions built into
it—‘hard-wired’, so to speak, into the machine. Operating in accordance
with this one fixed table, the UTM can read and execute coded instructions
inscribed on its tape. This ingenious idea—the concept of controlling the
function of the computing machine by storing a program of instructions in
the machine’s memory—is fundamental to computer science. An instruction
table for carrying out a desired task is placed on the machine’s tape in
a suitably encoded form, the first line of the table occupying the first so
many squares of the tape, the second line the next so many squares, and so
on. The UTM reads the instructions and carries them out on its tape. Different
programs can be inscribed on the tape, enabling the UTM to carry out any task
for which a Turing-machine instruction table can be written—thus a single
machine of fixed structure is able to carry out every computation that can be
carried out by any Turing machine whatsoever.

In 1936 the UTM existed only as an idea. But right from the start Turing
was interested in the possibility of actually building such a machine.5 His
wartime acquaintance with electronics was the key link between his earlier
theoretical work and his 1945 design for an electronic stored-program digital
computer.

The Church–Turing thesis

The Church–Turing thesis (also known simply as ‘Church’s thesis’
and ‘Turing’s thesis’) played a pivotal role in Turing’s argument
(in ‘On Computable Numbers’) that there are well-defined mathematical tasks
that cannot be carried out by a rote method or algorithm.6 One of Turing’s
most accessible formulations of the Church–Turing thesis is found in a report
written in 1948, ‘Intelligent Machinery’:

LCMs [Turing machines] can do anything that could be described as

‘rule of thumb’ or ‘purely mechanical’.7

Turing remarked:

This is sufficiently well established that it is now agreed amongst

logicians that ‘calculable by means of an LCM’ is the correct accurate

rendering of such phrases.8

In ‘On Computable Numbers’, having proved that there are tasks the universal
Turing machine cannot carry out (even given unlimited time and tape),
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Turing appealed to the Church–Turing thesis in moving to the conclusion that
there are tasks that cannot be accomplished by means of any rote method.

The Church–Turing thesis is sometimes said to state the ‘limits of
machines’.9 For example, Newell asserted:

That there exists a most general formulation of machine and that it

leads to a unique set of input–output functions has come to be called

Church’s thesis.10

However, this goes well beyond anything that Turing and Church said
themselves. Turing’s concern was not to give ‘a most general formulation
of machine’, but to state the limits of what can be accomplished by a human
being working by rote. Turing, like Church, aimed to show that some well-
defined tasks cannot be carried out by a human being working in this way;
it does not follow from this (and nor did they claim that it does) that there
are no machines able to carry out these tasks.11

Cryptanalytic machines

Turing completed the logical design of the famous Bombe—built to break
German Enigma messages—in the last months of 1939.12 His designs
were handed over to Keen at the British Tabulating Machine Company in
Letchworth, where the engineering development was carried out.13 The
first Bombe, named ‘Victory’, was installed at the Government Code and
Cypher School (GC & CS) at Bletchley Park early in 1940.14 (An improved
model containing Welchman’s ingenious diagonal board—‘Agnus’, short
for ‘Agnus Dei’, but later corrupted to ‘Agnes’ and ‘Aggie’—was installed
some months later.15) The Bombe was a ‘computing machine’—a term for
any machine able to do work that could be done by a human computer—
but one with a very narrow and specialized purpose, namely searching
through the wheel-positions of the Enigma machine, at superhuman speed,
in order to find the positions at which a German message had been encrypted.
The Bombe produced likely candidates, which were tested by hand on an
Enigma machine (or a replica of one)—if German emerged (even a few
words followed by nonsense), the candidate settings were the right ones.
The Bombe was based on the electromagnetic relay, although some later
versions were electronic (i.e. valve-based) and in consequence faster. Relays
are small switches consisting of a moving metal rod—which opens and closes
an electrical circuit—and an electrical coil, the magnetic field of which moves

110



Turing and the computer

the rod. Electronic valves, called ‘vacuum tubes’ in the United States, operate
very many times faster than relays, as the valve’s only moving part is a beam
of electrons.

During the attack on Enigma, Bletchley Park approached the Post Office
Research Station at Dollis Hill in London to build a relay-based machine
for use in conjunction with the Bombe. Once the Bombe had uncovered
the Enigma settings for a given day, these settings were to be transferred to
the proposed machine, which would then decipher messages and print out the
original German text.16 Dollis Hill sent electronic engineer Thomas Flowers to
Bletchley Park. In the end, the machine Flowers built was not used, but he was
soon to become one of the great figures of Second World War codebreaking.
Thanks to his pre-war research, Flowers was (as he himself remarked) possibly
the only person in Britain who realized that valves could be used on a large
scale for high-speed digital computing.17

The world’s first large-scale electronic digital computer, Colossus, was
designed and built during 1943 by Flowers and his team at Dollis Hill, in
consultation with the Cambridge mathematician Max Newman, head of the
section at Bletchley Park known simply as the ‘Newmanry’. (Turing attended
Newman’s lectures on mathematical logic at Cambridge before the war; these
lectures launched Turing on the research that led to his ‘On Computable
Numbers’.18) Colossus first worked in January 1944,19 almost exactly two
years before the first comparable US machine, the ENIAC, was operational.20

Colossus was used against the Lorenz cipher machine, more advanced than
Enigma and introduced in 1941.21 The British government kept Colossus
secret: before the 1970s few had any idea that electronic computation had
been used successfully during the Second World War, and it was not until
2000 that Britain and the United States finally declassified the complete
account of Colossus’ wartime role.22 So it was that, in the decades following
the war, John von Neumann and others told the world that the ENIAC was
‘the first electronic computing machine’.23

Although Colossus possessed a certain amount of flexibility, it was very far
from universal. Nor did it store instructions internally. As with the ENIAC,
in order to set Colossus up for a new job it was necessary to modify by hand
some of the machine’s wiring, by means of switches and plugs. During the
construction of Colossus, Newman showed Flowers Turing’s ‘On Computable
Numbers’, with its key idea of storing coded instructions in memory, but
Flowers, not being a mathematical logician, ‘didn’t really understand much
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of it’.24 Nevertheless, Flowers established decisively and for the first time that
large-scale electronic computing machinery was practicable.

Flowers said that, once Turing saw Colossus in operation, it was just
a matter of Turing’s waiting to see what opportunity might arise to put
the idea of his universal computing machine into practice.25 There is little
doubt that by 1944 Newman too had firmly in mind the possibility of building
a universal machine using electronic technology. In February 1946, a few
months after his appointment as Professor of Mathematics at the University
of Manchester, Newman wrote to von Neumann in the United States:

I am . . . hoping to embark on a computing machine section here,

having got very interested in electronic devices of this kind during the

last two or three years. By about eighteen months ago I had decided

to try my hand at starting up a machine unit when I got out. . . . I am

of course in close touch with Turing.26

Turing’s own opportunity came when Womersley appeared out of the blue
to recruit him to the National Physical Laboratory (see Chapter 3). By then
Turing had educated himself in electronic engineering (during the later part
of the war he gave a series of evening lectures ‘on valve theory’).27

The ACE and the EDVAC

In the years immediately following the Second World War, the Hungarian
American logician and mathematician John von Neumann, through writings
and charismatic public addresses, made the concept of the stored-program
digital computer widely known. Von Neumann wrote ‘First Draft of a Report
on the EDVAC’ (see the Introduction) and subsequently directed the computer
project at the Princeton Institute for Advanced Study. The ensuing machine,
the IAS computer, although not the first to run in the United States (it
began work in the summer of 195128), was the most influential of the
early US computers and the precursor to the IBM 701, the company’s first
mass-produced stored-program electronic computer.

Von Neumann’s ‘First Draft of a Report on the EDVAC’ was widely read
and was used as a blueprint by, among others, Wilkes, whose EDSAC at the
University of Cambridge was the second stored-program electronic computer
to function (in 1949). Turing certainly expected his readers to be familiar
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with the ‘First Draft’. At the end of the first section of ‘Proposed Electronic
Calculator’ he said:

The present report gives a fairly complete account of the proposed

calculator. It is recommended however that it be read in conjunction

with J. von Neumann’s ‘[First Draft of a] Report on the EDVAC’.

To what extent was the content of ‘Proposed Electronic Calculator’
influenced by the ‘First Draft’? The former follows von Neumann’s
terminology and notation to some extent. This decision was a sensible one in
the circumstances, making it likely that Turing’s report would be more readily
understood. In order to depict the EDVAC’s logic gates, von Neumann had
used a modified version of a diagrammatic notation introduced by McCulloch
and Pitts in connection with neural nets.29 Turing adopted this modified
notation and in fact considerably extended it.30 There is no doubt that
Turing simply borrowed some of the more elementary material from the
‘First Draft’. (For example, his diagram of an adder—figure 10 of ‘Proposed
Electronic Calculator’—is essentially the same as von Neumann’s figure 3.31

A newspaper report of 1946 stated that Turing ‘gives credit for the donkey
work on the A.C.E. to Americans’.32) However, Turing’s logic diagrams
set out detailed designs for the logical control and the arithmetic part of
the calculator and go far beyond anything to be found in the ‘First Draft’.
The similarities between ‘Proposed Electronic Calculator’ and the ‘First Draft’
are relatively minor in comparison to the striking differences in the designs
that they contain (see the Introduction and Chapter 8 ‘Computer Architecture
and the ACE Computers’). Moreover, von Neumann’s minor influence on
‘Proposed Electronic Calculator’ should not be allowed to mask the extent to
which Turing’s universal machine of 1936 was itself a fundamental influence
upon von Neumann (see below).

Notoriously, the universal machine of 1936 received no explicit mention
in ‘Proposed Electronic Calculator’. In his chapter ‘The ACE and the
Shaping of British Computing’ Campbell-Kelly raises the question whether
the universal machine was a ‘direct ancestor’ of the ACE at all, emphasizing
that the ACE’s ‘addressable memory of fixed-length binary numbers had no
equivalent in the Turing Machine’. However, Turing’s previously unpublished
notes on memory (in Part V) cast light on this issue. The notes are fragments
of a draft of ‘Proposed Electronic Calculator’; in them Turing related the ACE
to the universal Turing machine, explaining why the memory arrangement
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described in ‘On Computable Numbers’ could not ‘be taken over as it stood to
give a practical form of machine’.

Turing regarded the ACE as a ‘practical version’ of the UTM:

Some years ago I was researching on what might now be described

as an investigation of the theoretical possibilities and limitations of

digital computing machines. I considered a type of machine which had

a central mechanism, and an infinite memory which was contained on

an infinite tape . . . It can be shown that a single special machine of that

type can be made to do the work of all. . . . The special machine may

be called the universal machine; it works in the following quite simple

manner. When we have decided what machine we wish to imitate we

punch a description of it on the tape of the universal machine. . . .

The universal machine has only to keep looking at this description in

order to find out what it should do at each stage. Thus the complexity

of the machine to be imitated is concentrated in the tape and does

not appear in the universal machine proper in any way. . . . [D]igital

computing machines such as the ACE . . . are in fact practical versions

of the universal machine. There is a certain central pool of electronic

equipment, and a large memory. When any particular problem has

to be handled the appropriate instructions for the computing process

involved are stored in the memory of the ACE . . .33

A letter from Turing to the cyberneticist W. Ross Ashby again highlights
the fundamental point of similarity between the ACE and the UTM:

The ACE is in fact, analogous to the ‘universal machine’ described

in my paper on conputable [sic] numbers . . . [W]ithout altering the

design of the machine itself, it can, in theory at any rate, be used as

a model of any other machine, by making it remember a suitable set

of instructions.34

Turing’s influence on von Neumann

In the secondary literature, von Neumann is often said to have invented
the stored-program computer, but he repeatedly emphasized that the
fundamental conception was Turing’s. Von Neumann became familiar
with ideas in ‘On Computable Numbers’ during Turing’s time at Princeton
(1936–8) and was to become intrigued by Turing’s concept of a universal
computing machine.35 It was von Neumann who placed Turing’s concept
into the hands of American engineers. Stanley Frankel (the Los Alamos
physicist responsible, with von Neumann and others, for mechanizing the
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large-scale calculations involved in the design of the atomic and hydrogen
bombs) recorded von Neumann’s view of the importance of ‘On Computable
Numbers’:

I know that in or about 1943 or ’44 von Neumann was well

aware of the fundamental importance of Turing’s paper of 1936

‘On computable numbers . . .’, which describes in principle the

‘Universal Computer’ of which every modern computer (perhaps not

ENIAC as first completed but certainly all later ones) is a realization.

Von Neumann introduced me to that paper and at his urging I studied

it with care. Many people have acclaimed von Neumann as the ‘father

of the computer’ (in a modern sense of the term) but I am sure that

he would never have made that mistake himself. He might well be

called the midwife, perhaps, but he firmly emphasized to me, and

to others I am sure, that the fundamental conception is owing to

Turing—insofar as not anticipated by Babbage, Lovelace, and others.

In my view von Neumann’s essential role was in making the world

aware of these fundamental concepts introduced by Turing and of the

development work carried out in the Moore school and elsewhere.36

In 1944, von Neumann joined the Eckert–Mauchly ENIAC group at the
Moore School of Electrical Engineering at the University of Pennsylvania.
(At that time he was involved in the Manhattan Project at Los Alamos, where
roomfuls of clerks armed with desk calculating machines were struggling to
carry out the massive calculations required by the physicists.) ENIAC—which
had been under construction since 1943—was, as mentioned above, not a
stored-program computer; programming consisted of re-routing cables and
setting switches. Moreover, the ENIAC was far from universal, having been
designed with only one very specific task in mind, the calculation of trajector-
ies of artillery shells. Von Neumann brought his knowledge of ‘On Comput-
able Numbers’ to the practical arena of the Moore School. Thanks to Turing’s
abstract logical work, von Neumann knew that, by making use of coded
instructions stored in memory, a single machine of fixed structure can in
principle carry out any task for which a program can be written. When Eckert
explained his idea of using the mercury delay line as a high-speed recirculating
memory, von Neumann saw that this was the means to make concrete the
abstract universal computing machine of ‘On Computable Numbers’.37

When, in 1946, von Neumann established his own project to build
a stored-program computer at the Princeton Institute for Advanced Study,
he gave his engineers ‘On Computable Numbers’ to read.38 Bigelow, von
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Neumann’s chief engineer and largely responsible for the engineering design
of the computer built at the Institute, said:

The person who really . . . pushed the whole field ahead was

von Neumann, because he understood logically what [the stored-

program concept] meant in a deeper way than anybody else. . . .

The reason he understood it is because, among other things, he

understood a good deal of the mathematical logic which was implied

by the idea, due to the work of A. M. Turing . . . in 1936–1937 . . .

. Turing’s [universal] machine does not sound much like a modern

computer today, but nevertheless it was. It was the germinal idea. . . .

So . . . [von Neumann] saw . . . that [the ENIAC] was just the first step,

and that great improvement would come.39

Von Neumann repeatedly emphasized the fundamental importance of
‘On Computable Numbers’ in lectures and in correspondence. In 1946

he wrote to the mathematician Norbert Wiener of ‘the great positive
contribution of Turing’—Turing’s mathematical demonstration that ‘one,
definite mechanism can be “universal” ’.40 In 1948, in a lecture entitled ‘The
General and Logical Theory of Automata’, von Neumann said:

The English logician, Turing, about twelve years ago attacked the

following problem. He wanted to give a general definition of what is

meant by a computing automaton. . . . Turing carried out a careful

analysis of what mathematical processes can be effected by automata

of this type. . . . He . . . also introduce[d] and analyse[d] the concept

of a ‘universal automaton’ . . . An automaton is ‘universal’ if any

sequence that can be produced by any automaton at all can also be

solved by this particular automaton. It will, of course, require in

general a different instruction for this purpose. The Main Result of

the Turing Theory. We might expect a priori that this is impossible.

How can there be an automaton which is at least as effective as any

conceivable automaton, including, for example, one of twice its size

and complexity? Turing, nevertheless, proved that this is possible.41

The following year, in a lecture entitled ‘Rigorous Theories of Control and
Information’, von Neumann said:

The importance of Turing’s research is just this: that if you construct

an automaton right, then any additional requirements about the

automaton can be handled by sufficiently elaborate instructions. This

is only true if [the automaton] is sufficiently complicated, if it has
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reached a certain minimal level of complexity. In other words . . . there

is a very definite finite point where an automaton of this complexity

can, when given suitable instructions, do anything that can be done

by automata at all.42

Many books on the history of computing in the United States make no
mention of Turing. No doubt this is in part explained by the absence of
any explicit reference to Turing’s work in the series of technical reports in
which von Neumann, with various co-authors, set out a logical design for an
electronic stored-program digital computer.43 Nevertheless there is evidence
in these documents of von Neumann’s knowledge of ‘On Computable
Numbers’. For example, in the report entitled ‘Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument’ (June 1946),
von Neumann and his co-authors, Burks and Goldstine—both former
members of the ENIAC group, who had joined von Neumann at the Institute
for Advanced Study—wrote the following:

First Remarks on the Control and Code: It is easy to see by formal-

logical methods, that there exist codes that are in abstracto adequate

to control and cause the execution of any sequence of operations

which are individually available in the machine and which are, in

their entirety, conceivable by the problem planner. The really decisive

considerations from the present point of view, in selecting a code, are

more of a practical nature: Simplicity of the equipment demanded by

the code, and the clarity of its application to the actually important

problems together with the speed of its handling of those problems.44

Burks has confirmed that the first sentence of this passage is a reference to the
UTM.45 (The report was not intended for formal publication and no attempt
was made to indicate those places where reference was being made to the
work of others.)

The passage just quoted is an excellent summary of the situation at that
time. In ‘On Computable Numbers’ Turing had shown in abstracto that, by
means of instructions expressed in the programming code of his ‘standard
descriptions’, a single machine of fixed structure is able to carry out any
task that a ‘problem planner’ is able to analyse into effective steps. By 1945,
considerations in abstracto had given way to the practical problem of devising
an equivalent programming code that could be implemented efficiently by
means of electronic circuits. Von Neumann’s embryonic code appeared in
the ‘First Draft’. ‘Proposed Electronic Calculator’ set out Turing’s own very
different and much more fully developed code.
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The Manchester computer

The first stored-program electronic computer, the Manchester ‘Baby’, came
to life in June 1948 in Newman’s Computing Machine Laboratory at the
University of Manchester.46

At the time of the Baby and its successor, the Manchester Mark I, the
electronic engineers Williams and Kilburn, who had translated the logico-
mathematical idea of the stored-program computer into hardware, were
given too little credit by the mathematicians at Manchester—Williams and
Kilburn were regarded as excellent engineers but not as ‘ideas men’.47

Nowadays the tables have turned too far and the triumph at Manchester
is usually credited to Williams and Kilburn alone. Fortunately the words of
the late Freddie Williams survive to set the record straight:

[N]either Tom Kilburn nor I knew the first thing about computers

when we arrived in Manchester University . . . Newman explained the

whole business of how a computer works to us.48

Professor Newman and Mr A. M. Turing . . . knew a lot about

computers . . . They took us by the hand and explained how numbers

could live in houses with addresses . . .49

Going by Williams’ later description (quoted below), Newman’s
explanation of the stored-program computer to Williams and Kilburn, which
probably took place in February 1947, resembled his account in an address
to the Royal Society on 4 March 1948:

In modern times the idea of a universal calculating machine

was independently [of Babbage] introduced by Turing . . . There is

provision for storing numbers, say in the scale of 2, so that each

number appears as a row of, say, forty 0’s and 1’s in certain places or

‘houses’ in the machine. . . . Certain of these numbers, or ‘words’ are

read, one after another, as orders. In one possible type of machine an

order consists of four numbers, for example 11, 13, 27, 4. The num-

ber 4 signifies ‘add’, and when control shifts to this word the ‘houses’

H11 and H13 will be connected to the adder as inputs, and H27 as

output. The numbers stored in H11 and H13 pass through the adder,

are added, and the sum is passed on to H27. The control then shifts to

the next order. In most real machines the process just described would

be done by three separate orders, the first bringing 〈H11〉 (=content

of H11) to a central accumulator, the second adding 〈H13〉 into the

accumulator, and the third sending the result to H27; thus only
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one address would be required in each order. . . . A machine with

storage, with this automatic-telephone-exchange arrangement and

with the necessary adders, subtractors and so on, is, in a sense,

already a universal machine.50

Following this explanation of Turing’s three-address concept (source 1,
source 2, destination, function) Newman went on to describe program
storage (‘the orders shall be in a series of houses X1, X2, . . .’) and
conditional branching. He then summed up:

From this highly simplified account it emerges that the essential

internal parts of the machine are, first, a storage for numbers (which

may also be orders). . . . Secondly, adders, multipliers, etc. Thirdly,

an ‘automatic telephone exchange’ for selecting ‘houses’, connecting

them to the arithmetic organ, and writing the answers in other

prescribed houses. Finally, means of moving control at any stage to

any chosen order, if a certain condition is satisfied, otherwise passing

to the next order in the normal sequence. Besides these there must be

ways of setting up the machine at the outset, and extracting the final

answer in useable form.51

In a letter written in 1972 Williams gave just this account, describing what
he and Kilburn were told by Newman:

About the middle of the year [1946] the possibility of an appointment

at Manchester University arose and I had a talk with Professor

Newman who was already interested in the possibility of developing

computers and had acquired a grant from the Royal Society of

£30,000 for this purpose. Since he understood computers and

I understood electronics the possibilities of fruitful collaboration

were obvious. I remember Newman giving us a few lectures in which

he outlined the organisation of a computer in terms of numbers

being identified by the address of the house in which they were

placed and in terms of numbers being transferred from this address,

one at a time, to an accumulator where each entering number was

added to what was already there. At any time the number in the

accumulator could be transferred back to an assigned address in the

store and the accumulator cleared for further use.The transfers were to

beeffectedbyastoredprograminwhichalistof instructionswasobeyed

sequentially. Ordered progress through the list could be interrupted

by a test instruction which examined the sign of the number in the

accumulator. Thereafter operation started from a new point in the

119



B. Jack Copeland and Diane Proudfoot

list of instructions. This was the first information I received about

the organisation of computers. . . . Our first computer [the Baby] was

the simplest embodiment of these principles, with the sole difference

that it used a subtracting rather than an adding accumulator.52

This was not, though, the first information that Kilburn received about the
organization of computers. During the period December 1946 to February
1947, Turing and Wilkinson gave a series of nine lectures on computer design
(in London), covering versions V, VI, and VII of Turing’s design for the ACE
(see Chapter 22, ‘The Turing–Wilkinson Lecture Series’). Kilburn was in the
audience.53 Kilburn usually said, when asked from where he obtained his
basic knowledge of the computer, that he could not remember;54 e.g., in a
1992 interview he said: ‘Between early 1945 and early 1947, in that period,
somehow or other I knew what a digital computer was . . . Where I got this
knowledge from I’ve no idea’.55 Yet in his first report on his computer research
(dated December 1947) Kilburn referred to ‘unpublished work’ by Turing, and
used a number of Turing’s technical terms (several typical of Turing’s 1946–
47 lectures).56 In this report he presented a detailed design for a ‘hypothetical’
computer, the basic structure of which was that proposed by Turing for the
ACE and described in Turing’s 1946–47 lectures.57 Kilburn’s final design for
the Baby was very different, but it is clear how he first came to know ‘what a
digital computer was’—Turing told him.

There is little doubt that credit for the development of the Manchester
computer belongs not only to Williams and Kilburn but also to Newman and
Turing (themselves both influenced by Flowers’ Colossus).

The Manchester computer and von Neumann

Newman was well aware of von Neumann’s ‘First Draft of a Report on
the EDVAC’. In the summer of 1946 Newman sent David Rees, a lecturer
in his department at Manchester and an ex-member of the Newmanry
(Newman’s section at Bletchley Park), to a series of lectures at the Moore
School, where Eckert, Mauchly, and other members of the ENIAC–EDVAC
group publicized their ideas on computer design.58 In the autumn of 1946

Newman himself went to Princeton for three months.59 After returning
to Manchester, he gave his lectures to Kilburn and Williams, covering the
Princeton plans and (according to Good) including ‘some ideas of his own
concerning notations for programming’.60 Von Neumann’s co-authored
report ‘Preliminary Discussion of the Logical Design of an Electronic
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Computing Instrument’ was studied at Manchester (although not, it is said,
by the engineers—see below). As a consequence of Newman’s lectures,
Good wrote some pages of notes about notational matters, and on what the
fundamental operations of a general-purpose computer should be.61 These
are a mixture of Princeton ideas and contributions from Newman and Good.

In May 1947 Good prepared a short paper, ‘The Baby Machine’, in response
to Kilburn’s request for a basic instruction-set.62 Good supplied a set of 12

instructions; these were a simplification of the instructions given in von
Neumann’s ‘Preliminary Discussion’. Kilburn’s final logical design for the
Baby—he abandoned his earlier ACE-like design in favour of a machine with
a central accumulator—was in fact virtually identical to the 1946 Princeton
design. Kilburn arrived at the Baby’s instruction-set by reducing Good’s 12

elementary instructions to 5 (plus ‘Stop’).
From the beginning Newman’s plan had been that, in order to have a

computer ready for experimental work as soon as possible, ‘one of the types
already under construction in 1946 should be copied.’63 This was a sensible
plan, and Wilkes at Cambridge followed a similar strategy.64 The engineers
working on the Baby may have been unaware, however, of the extent of their
indebtedness to von Neumann and his collaborators. Kilburn spoke scathingly
of the von Neumann ‘dictat’.65 Tootill said, ‘To the best of my recollection FC
[Williams], Tom [Kilburn] and I never discussed . . . von Neumann’s . . . ideas
during the development of [the Baby], nor did I have any knowledge of them
when I designed the Ferranti Mk I. I don’t think FC was influenced at all by
von Neumann.’66 The Baby’s originality did not lie in its logical design, but in
its electronic engineering and cathode ray tube memory.

Turing joins the Manchester project

In May 1948 Turing resigned from the NPL. Work on the ACE had drawn
almost to a standstill (see Chapter 3, ‘The Origins and Development of the
ACE Project’). Newman lured a ‘very fed up’67 Turing to Manchester, where
in May 1948 he was appointed Deputy Director of the Computing Machine
Laboratory (there being no Director). Turing designed the input mechanism
and programming system68 of, and wrote a programming manual69 for, the
full-scale Manchester computer. The first of the production models, marketed
by Ferranti, was completed in February 1951 and was the first commercially
available electronic digital computer.70 (The first US commercial machine,
the Eckert-Mauchly UNIVAC, appeared a few months later.) At last Turing
had his hands on a stored-program computer.
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Artificial Intelligence

The myth

Artificial Intelligence (AI) is often said to have been born in the mid-1950s
in the United States. For example:

Artificial Intelligence, conceived at Carnegie Tech in the autumn

of 1955, quickened by Christmas, and delivered on Johnniac in the

spring, made a stunning debut at the conference from which it later

took its name.71

The AI program ‘delivered on Johnniac’ (a Californian copy of the IAS
computer) was the Logic Theorist, written by Newell, Simon, and Shaw
and demonstrated at a conference, the Dartmouth Summer Research Project
on Artificial Intelligence, held at Dartmouth College, New Hampshire.72

The Logic Theorist was designed to prove theorems from Whitehead and
Russell’s Principia Mathematica.73 In one case the proof devised by the Logic
Theorist was several lines shorter than the one given by Whitehead and
Russell; Newell, Simon, and Shaw wrote up the proof and sent it to the
Journal of Symbolic Logic. This was almost certainly the first paper to have
a computer listed as a co-author, but unfortunately it was rejected.74

The reality

In Britain the term ‘machine intelligence’ pre-dated ‘artificial intelligence’,
and the field of enquiry itself can be traced much further back than
1955. If anywhere has a claim to be the birthplace of AI, it is Bletchley
Park. Turing was the first to carry out substantial research in the area.
At least as early as 1941 he was thinking about machine intelligence—in
particular the possibility of computing machines that solved problems by
means of searching through the space of possible solutions, guided by what
would now be called ‘heuristic’ principles—and about the mechanization of
chess.75 At Bletchley Park, in his spare time, Turing discussed these topics
and also machine learning. He circulated a typescript concerning machine
intelligence among some of his colleagues.76 Now lost, this was undoubtedly
the earliest paper in the field of AI.

The first AI programs ran in Britain in 1951–2, at Manchester and
Cambridge. This was due in part to the fact that the first stored-program
electronic computers ran in Britain and in part to Turing’s influence on the
first generation of computer programmers. Even in the United States, the
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Logic Theorist was not the first AI program to run. Arthur Samuel’s Checkers
(or Draughts) Player first ran at the end of 1952 on the IBM 701, IBM’s first
stored-program electronic digital computer.77 In 1955 Samuel added learning
to the program.

The Bombe

The Bombe is the first milestone in the history of machine intelligence.78

Central to the Bombe was the idea of solving a problem by means of a guided
mechanical search through the space of possible solutions. In this instance,
the space of possible solutions consisted of configurations of the Enigma
machine (in another case it might consist of configurations of a chess board).
The Bombe’s search could be guided in various ways; one involved what
Turing called the ‘multiple encipherment condition’ associated with a crib
(described in Chapter 6 of Turing’s recently declassified Treatise on the Enigma,
written in the second half of 1940).79 A search guided in this fashion, Turing
said, would ‘reduce the possible positions to a number which can be tested
by hand methods’.80 A crib is a word or phrase that the cryptanalyst believes
might be part of the German message. For example, it might be conjectured
that a certain message contains ‘WETTER FUR DIE NACHT’ (weather for the
night). Many Enigma networks were good sources of cribs, thanks both to
the stereotyped nature of German military messages and to lapses of cipher
security. One station sent exactly the same message (‘beacons lit as ordered’)
each evening for a period of several months.81

Modern AI researchers speak of the method of generate-and-test. Potential
solutions to a given problem are generated by means of a guided search. These
potential solutions are then tested by an auxiliary method to find out if any
is actually a solution. Nowadays in AI both processes, generate and test, are
typically carried out by the same program. The Bombe mechanized the first
process. The testing of the potential solutions (the ‘stops’) was then carried
out manually, by setting up a replica Enigma accordingly, typing in the cipher
text, and seeing whether or not German words emerged.

Machine intelligence, 1945–8

In designing the ACE, machine intelligence was not far from Turing’s
thoughts—he described himself as building ‘a brain’82 and declared
‘In working on the ACE I am more interested in the possibility of producing
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models of the action of the brain than in the practical applications to
computing’.83 In ‘Proposed Electronic Calculator’ he said:

‘Can the machine play chess?’ It could fairly easily be made to play a

rather bad game. It would be bad because chess requires intelligence.

We stated at the beginning of this section that the machine should be

treated as entirely without intelligence. There are indications however

that it is possible to make the machine display intelligence at the risk of

its making occasional serious mistakes. By following up this aspect the

machine could probably be made to play very good chess.

Turing’s point was probably that the use of heuristic search brings with it the
risk of the machine’s sometimes making mistakes.

In February 1947 (in the rooms of the Royal Astronomical Society in
Burlington House, London84) Turing gave what is, so far as is known,
the earliest public lecture to mention computer intelligence, providing a
breathtaking glimpse of a new field.85 He described the human brain as
a ‘digital computing machine’86 and discussed the prospect of machines
that act intelligently, learn, and beat human opponents at chess. He stated
that ‘[w]hat we want is a machine that can learn from experience’ and that
‘[t]he possibility of letting the machine alter its own instructions provides
the mechanism for this’.87 (The possibility of a computer’s operating on and
modifying its own program as it runs, just as it operates on the data in its
memory, is implicit in the stored-program concept.) At the end of the 1947

lecture Turing set out what he later called the ‘Mathematical Objection’ to the
hypothesis of machine intelligence. This is now widely known as the Gödel
argument, and has been made famous by John Lucas and Roger Penrose.
(In fact the objection originated with the mathematical logician Emil Post,
as early as 1921.88) Turing proposed an interesting and arguably correct
solution to the objection.89

In mid-1947, with little progress on the physical construction of the
ACE, a thoroughly disheartened Turing applied for a twelve-month period
of sabbatical leave to be spent in Cambridge. The purpose of the leave, as
described by Darwin in July 1947, was to enable Turing

to extend his work on the [ACE] still further towards the biological

side. I can best describe it by saying that hitherto the machine has

been planned for work equivalent to that of the lower parts of the

brain, and [Turing] wants to see how much a machine can do for the

higher ones; for example, could a machine be made that could learn

124



Turing and the computer

by experience? This will be theoretical work, and better done away

from here.90

Turing left the NPL for Cambridge in the autumn of 1947.91

In the summer of 1948 Turing completed a report describing the outcomes
of this research. It was entitled ‘Intelligent Machinery’.92 Donald Michie
recalls that Turing

was in a state of some agitation about its reception by his superiors

at N.P.L.: ‘A bit thin for a year’s time off !’.93

The headmasterly Darwin—who once complained about the ‘smudgy’
appearance of Turing’s work94—was, as Turing predicted, displeased with
‘Intelligent Machinery’, describing it as a ‘schoolboy’s essay’95 and ‘not
suitable for publication’.96 In reality this far-sighted paper was the first
manifesto of Artificial Intelligence; sadly Turing never published it.

‘Intelligent Machinery’ is a wide-ranging and strikingly original survey of
the prospects of AI. In itTuring brilliantly introduced a number of the concepts
thatwerelatertobecomecentralinAI,insomecasesafterreinventionbyothers.
These included the logic-based approach to problem-solving, now widely
used in expert systems, and, in a brief passage concerning what he called
‘genetical or evolutionary search’97, the concept of a genetic algorithm—
important in both AI and Artificial Life. (The term ‘genetic algorithm’ was
only introduced into AI in c.1975.98) In the light of his work with the Bombe,
it is not surprising to find Turing hypothesizing in ‘Intelligent Machinery’
that ‘intellectual activity consists mainly of various kinds of search’.99 Eight
years later the same hypothesis was put forward independently by Newell and
Simon and through their influential work100 became one of the principal
tenets of AI. ‘Intelligent Machinery’ also contains the earliest description of
(a restricted form of) what Turing was later to call the ‘imitation game’ and
is now known simply as the Turing test—and his intriguing claim that the
concept of intelligence is what he called an ‘emotional concept’.101

The first AI programs

Both during and after the war Turing experimented with machine routines
for playing chess: in the absence of a computer, the machine’s behaviour
was simulated by hand, using paper and pencil. In 1948 Turing and David
Champernowne, the mathematical economist, constructed the loose system
of rules dubbed the ‘Turochamp’.102 (Champernowne reported that his wife,
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a beginner at chess, took on the Turochamp and lost.) Turing began to
program the Turochamp for the Manchester Ferranti Mark I but
unfortunately never completed the task.103 He later published a classic early
article on chess programming.104 Dietrich Prinz, who worked for Ferranti,
wrote the first chess program to be implemented.105 It ran in November 1951

on the Ferranti Mark I.106 Unlike the Turochamp, Prinz’s program could
not play a complete game and operated by exhaustive search rather than
under the guidance of heuristics. Prinz ‘learned all about programming the
Mark I computer at seminars given by Alan Turing and Cecily Popplewell’.107

Like Turing, he wrote a programming manual for the Mark I.108 Prinz also
used the Mark I to solve logical problems, and in 1949 and 1951 Ferranti
built two small experimental special-purpose computers for theorem-proving
and other logical work.109

Christopher Strachey’s Draughts Player was—apart from Turing’s ‘paper’
chess-players—the first AI program to use heuristic search. He coded it for the
Pilot Model ACE in May 1951.110 Strachey’s first attempt to get his program
running on the Pilot ACE was defeated by coding errors. When he returned
to the NPL with a debugged version of the program, he found that a major
hardware change had been made, with the result that the program would not
run without substantial revision.111 He finally got his program working on
the Ferranti Mark I in mid-1952, with Turing’s encouragement and utilizing
the latter’s recently completed Programmer’s Handbook112.113 By the summer
of 1952 the program could play a complete game of draughts at a reasonable
speed.114 The essentials of Strachey’s program were taken over by Samuel
in the United States.115

The first AI programs to incorporate learning, written by Anthony
Oettinger at the University of Cambridge, ran in 1951.116 Oettinger wrote his
‘response learning programme’ and ‘shopping programme’ for the Cambridge
EDSAC computer. Oettinger was considerably influenced by Turing’s views
on machine learning,117 and suggested that the shopping program—which
simulated the behaviour of ‘a small child sent on a shopping tour’118—could
pass a version of the Turing test in which ‘the questions are restricted to . . . the
form “In what shop may article j be found?”’119.

Turing’s unorganized computing machines

Turing did not only invent the concept of the stored-program digital
computer; he also pioneered the idea of computing by neural networks. The
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major part of ‘Intelligent Machinery’ is a discussion of (what Turing called)
‘unorganised machines’.120,121 His unorganized computing machines have
been ignored by historians of the computer and merit a detailed introduction.

Turing described three types of unorganized machine. A-type and B-type
unorganized machines consist of randomly connected two-state ‘neurons’
whose operation is synchronized by means of a central digital clock. We
call these networks ‘Turing Nets’. Turing’s P-type unorganized machines
are not neuron-like but are modified Turing machines: they have ‘only two
interfering inputs, one for “pleasure” or “reward” . . . and the other for “pain”
or “punishment” ’.122 Turing studied P-types in the hope of discovering
procedures for ‘training’ a machine to carry out a task. It is a P-type machine
that Turing was speaking of when, in the course of his famous discussion of
strategies for building machines to pass the Turing test, he said ‘I have done
some experiments with one such child-machine, and succeeded in teaching
it a few things’.123

Turing had no doubts concerning the significance of his unorganized
machines. Of Turing Nets, he said

[M]achines of this character can behave in a very complicated manner

when the number of units is large . . . A-type unorganised machines

are of interest as being about the simplest model of a nervous system

with a random arrangement of neurons. It would therefore be of very

great interest to find out something about their behaviour.124

He theorized that ‘the cortex of the infant is an unorganised machine, which
can be organised by suitable interfering training’.125 Turing found ‘this
picture of the cortex as an unorganised machine . . . very satisfactory from
the point of view of evolution and genetics’.126

A-type unorganized machines

Turing introduced the idea of an unorganized machine by means of an
example:

A typical example of an unorganised machine would be as follows.

The machine is made up from a rather large number N of similar units.

Each unit has two input terminals, and has an output terminal which

can be connected to the input terminals of (0 or more) other units.

We may imagine that for each integer r, 1 ≤ r ≤ N, two numbers i(r)

and j(r) are chosen at random from 1 . . . N and that we connect the
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inputs of unit r to the outputs of units i(r) and j(r). All of the units are

connected to a central synchronising unit from which synchronising

pulses are emitted at more or less equal intervals of time. The times

when these pulses arrive will be called ‘moments’. Each unit is capable

of having two states at each moment. These states may be called

0 and 1.127

Turing then gave (what would now be called) a propagation rule and an
activation rule for the network. A propagation rule calculates the net input
into a unit, and an activation rule calculates the new state of a unit, given its
net input. The propagation rule is:

The net input into unit r at moment m, net(r, m), is the product
of the state of i(r) at m-1 and the state of j(r) at m-1.

The activation rule is:

The state of r at m is 1-net(r, m).

A network of the sort that Turing described in the above quotation and whose
behaviour is determined by these two rules is an A-type unorganized machine.

In modern terminology an A-type machine is a collection of NAND units.
The propagation rule in effect takes the conjunction of the values on the
unit’s two input lines, and the activation rule forms the negation of this
value. Alternative choices of propagation rule and/or activation rule will
cause the units to perform other Boolean operations. As is well known, NAND
is a fundamental operation in the sense that any Boolean operation can be
performed by a circuit consisting entirely of NAND units. Thus any such
operation can be performed by an A-type machine.128

B-type unorganized machines

The most significant aspect of Turing’s discussion of unorganized machines
is undoubtedly his idea that an initially random network can be organized
to perform a specified task by means of what he described as ‘interfering
training’.129

Many unorganised machines have configurations such that if once

that configuration is reached, and if the interference thereafter is

appropriately restricted, the machine behaves as one organised for

some definite purpose.130
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Fig. 2 Connection-modifier.

Turing illustrated this idea by means of the circuit shown in fig. 1.131

(He stressed that this particular circuit is employed ‘for illustrative purposes’
and not because it is ‘of any great intrinsic importance’.132) We call a pair of
units (A and B) connected in the way shown an introverted pair. By means of
external interference the state of unit A may be set to either 0 or 1; this state
will be referred to as the determining condition of the pair. The signal produced
in unit B’s free output connection is constant from moment to moment and
the polarity of the signal depends only upon the determining condition of the
pair. Thus an introverted pair functions as an elementary memory.133

Turing defined B-type machines in terms of a certain process of substitution
applied to A-type machines: a B-type results if every unit-to-unit connection
within an A-type machine is replaced by the device shown in fig. 2.134 That
is to say, what is in the A-type a simple connection between points D and E
now passes via the depicted device.135

Depending on the polarity of the constant signal at C, the signal at E is
either 1 if the signal at D is 0 and 0 if the signal at D is 1, or always 1 no
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matter what the signal at D. In the first of these cases the device functions
as a negation module. In the second case the device in effect disables
the connection to which it is attached. That is to say, a unit with the
device attached to one of its input connections delivers an output that is
a function only of the signal arriving along its other input connection. (If
the devices on both the unit’s input connections are placed in disable mode
then the unit’s output is always 0.) Using these devices an external agent
can organize an initially random B-type machine, selectively disabling and
enabling connections within it.

Turing claimed that it is a ‘general property of B-type machines . . . that
with suitable initial [i.e. determining] conditions they will do any required
job, given sufficient time and provided the number of units is sufficient’.136

This follows from the more specific claim that given ‘a B-type unorganised
machine with sufficient units one can find initial conditions which will make
it into a universal [Turing] machine with a given storage capacity’.137 This
claim first opened up the possibility, noted by Turing,138 that the human
brain is (in part) a UTM implemented in a neural network.

B-types redefined

Concerning his claim that one can configure a B-type network (with sufficient
units) such that it is a UTM with a finite tape, Turing remarked: ‘A formal
proof to this effect might be of some interest, or even a demonstration of it
starting with a particular unorganised B-type machine, but I am not giving
it as it lies rather too far outside the main argument’.139 It is unfortunate
that Turing did not give any details of the proof, for this might have cast
some light on what appears to be an inconsistency in ‘Intelligent Machinery’.
It is reasonably obvious that not all Boolean functions can be computed
by B-type machines as defined. (A good way to get a feel for the difficulty
is to attempt to design a B-type circuit for computing XOR—exclusive
disjunction.)

‘Intelligent Machinery’ contains no clues as to Turing’s own procedure
for dealing with this problem. The simplest remedy seems to be to modify the
substitution in terms of which B-type machines are defined: a B-type results if
every unit-to-unit connection within an A-type machine is replaced by two of
the devices shown in fig. 2, linked in series. That is to say, what is in the A-type
a simple connection between two units now passes through two additional
units, each with its own introverted pair attached. It is trivially the case that
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if a function can be computed by some A-type machine then it can also be
computed by some machine satisfying the modified definition of a B-type.

Turing’s anticipation of connectionism

So far as we have been able to discover, Turing was the first person to
consider building computing machines out of simple, neuron-like elements
connected together into networks in a largely random manner. His account
of B-types anticipated the modern approach to AI known as connectionism,
i.e. computation by neural networks.140 Rosenblatt—the inventor of the type
of neural net called the ‘perceptron’—introduced the term ‘connectionist’ in
the following way:

[According to] theorists in the empiricist tradition . . . the stored

information takes the form of new connections, or transmission

channels in the nervous system (or the creation of conditions which

are functionally equivalent to new connections) . . . The theory to be

presented here takes the empiricist, or ‘connectionist’ position.141

Turing’s arrangement of selectively disabling and enabling connections
within a B-type machine is functionally equivalent to one in which the stored
information takes the form of new connections within the network.

Turing also envisaged the procedure—nowadays used extensively by
connectionists—of programming training algorithms into a computer
simulation of the unorganized machine. In modern architectures repeated
applications of a training algorithm (e.g. the ‘back propagation’ algorithm)
cause the encoding of the problem solution to develop gradually within
the network during the training phase. Turing had no algorithm for
training his B-types.142 He regarded the development of training algorithms
for unorganized machines as a central problem. With characteristic
farsightedness Turing ended his discussion of unorganized machines by
sketching the research programme that connectionists are now pursuing:

I feel that more should be done on these lines. I would like to investigate

other types of unorganised machines . . . When some electronic

machines are in actual operation I hope that they will make this more

feasible. It should be easy to make a model of any particular machine

that one wishes to work on within such a UPCM [universal practical

computing machine] instead of having to work with a paper machine

as at present. If also one decided on quite definite ‘teaching policies’
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these could also be programmed into the machine. One would then

allow the whole system to run for an appreciable period, and then

break in as a kind of ‘inspector of schools’ and see what progress had

been made.143

As a result of his lukewarm interest in publication Turing’s work
on neuron-like computation remained unknown to others working in
the area. Modern connectionists regard the work of Donald Hebb144

and Frank Rosenblatt145 as the foundation of their approach. Turing’s
unorganized machines were not mentioned by the other pioneers of neuron-
like computation in Britain—Ross Ashby,146 Beurle,147 Taylor,148 and
Uttley.149 The situation was identical on the other side of the Atlantic.
Rosenblatt seemed not to have heard of Turing’s unorganized machines.150

Nor was Turing’s work mentioned in Hebb’s influential book The Organization
of Behavior—the source of the so-called Hebbian approach to neural learning
studied in connectionism today.151 Modern discussions of the history of
connectionism by Rumelhart, McClelland et al.152 show no awareness of
Turing’s early contribution to the field.153

Turing himself was unable to pursue his research into unorganized
machines very far. At the time, the only electronic stored-program computer
in existence was the Manchester Baby. By the time Turing had access to
the Ferranti Mark I, in 1951, his interests had shifted and he devoted his
time to modelling biological growth. (It was not until 1954, the year of
Turing’s death, that Farley and Clark, working independently of Turing
at MIT, succeeded in running the first computer simulation of a small neural
network.154) In Mathematics Division Davies and Woodger pursued Turing’s
ideas on learning (see Chapter 15, ‘The ACE Simulator and the Cybernetic
Model’). Their Cybernetic Model, constructed in 1949, was a hardware
simulation of six Boolean neurons. In a demonstration on BBC TV in 1950,
the Cybernetic Model mimicked simple learning in an octopus.

McCulloch and Pitts

It is interesting that Turing made no reference in the 1948 report to the work
of McCulloch and Pitts, itself influenced by his ‘On Computable Numbers’.
Their 1943 article represents the first attempt to apply what they refer to as
‘the Turing definition of computability’ to the study of neuronal function.155

McCulloch stressed the extent to which his and Pitts’ work was indebted
to Turing in the course of some autobiographical remarks (made during
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the public discussion of a 1948 lecture by von Neumann):

I started at entirely the wrong angle . . . and it was not until I saw

Turing’s paper [‘On Computable Numbers’] that I began to get going

the right way around, and with Pitts’ help formulated the required

logical calculus. What we thought we were doing (and I think we

succeeded fairly well) was treating the brain as a Turing machine.156

Like Turing, McCulloch and Pitts considered Boolean nets of simple two-
state ‘neurons’. In their 1943 article they showed that such a net, augmented
by an external tape, can compute all (and only) numbers that can be
computed by Turing machines; and that, without the external tape, some
but not all of these numbers can be computed by nets. Unlike modern
connectionists, but like Turing, McCulloch and Pitts made no use of weighted
connections or variable thresholds. (Part of the burden of their argument is
to show that the behaviour of a net of binary units with variable thresholds
can be exactly mimicked by a simple Boolean net without thresholds ‘provided
the exact time for impulses to pass through the whole net is not crucial’.157)
McCulloch and Pitts did not discuss universal machines.

Turing had unquestionably heard something of the work of McCulloch
and Pitts. Von Neumann mentioned the McCulloch–Pitts article—albeit very
briefly—in the ‘First Draft of a Report on the EDVAC’ and (as noted above)
employed a modified version of their diagrammatic notation for neural nets.
Wiener would almost certainly have mentioned McCulloch in the course of
his ‘talk over the fundamental ideas of cybernetics with Mr Turing’ at the NPL
in the spring of 1947.158 (Wiener and McCulloch were founding members
of the cybernetics movement.) Turing and McCulloch seem not to have met
until 1949, and after their meeting Turing spoke dismissively of McCulloch,
referring to him as ‘a charlatan’.159 It is an open question whether the work
of McCulloch and Pitts had any influence whatsoever on the development
of the ideas presented in ‘Intelligent Machinery’. Max Newman remarked of
Turing ‘It was, perhaps, a defect of his qualities that he found it hard to use
the work of others, preferring to work things out for himself ’.160

Whatever the influences were on Turing at that time, there is no doubt
that his work on neural nets goes importantly beyond the earlier work
of McCulloch and Pitts. The latter gave only a perfunctory discussion of
learning, saying no more than that the mechanisms supposedly underlying
learning in the brain—they specifically mentioned threshold change and the
formation of new synapses—can be mimicked by means of nets whose
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connections and thresholds remain unaltered.161 Turing’s idea of using
supervised interference to train an initially random arrangement of units
to compute a specified function was nowhere prefigured.

P-type unorganized machines

Turing’s main purpose in studying P-type machines seems to have been
to search for general training procedures. A P-type machine is a modified
Turing machine. Chief among the modifications is the addition of two input
lines, one for reward (‘pleasure’) and the other for punishment (‘pain’).162

Unlike standard Turing machines a P-type has no tape. Initially a P-type
machine is unorganized in the sense that its instruction table is ‘largely
incomplete’.163 Application of either pleasure or pain by the trainer serves to
alter an incomplete table to some successor table; after sufficient training a
complete table may emerge.

The P-types that Turing explicitly considered have instruction tables
consisting of three columns, unlike the four-column tables of ‘On Computable
Numbers’ (described above). An example (a simplified version of Turing’s
own164) is:

State Control External
symbol action

1 U A
2 D0 B
3 T1 B
4 U A
5 D1 B

‘U’ means ‘uncertain’, ‘T’ means ‘tentative’, and ‘D’ means ‘definite’. (The
nature of the external actions A and B is not specified.) This table is
incomplete in that no control symbol at all is specified for states 1 and 4

and the control symbol 1 has been entered only tentatively in the line for
state 3. Only in the case of states 2 and 5 are definite control symbols listed.
The table is complete only when a definite control symbol has been specified for
each state.

The control symbol determines the state the machine is to go into once
it has performed the specified external action. The rules that Turing gave
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governing the state transitions are:

1. If the control symbol is 1, either definitely or tentatively, then next state is
the remainder of ((2 × present state) + 1) on division by the total number
of states (in this case 5).

For example, if the machine is in state 3 then next state is 2.

2. If the control symbol is 0, either definitely or tentatively, then next state
is the remainder of (2 × present state) on division by the total number of
states.

For example, if the machine is in state 2 then next state is 4.
Let us suppose that the machine is set in motion in state 2. It performs

the external action B, shifts to state 4, and performs the action A. No control
symbol is specified in state 4. In this case the machine selects a binary digit at
random, say 0, and replaces U by T0. The choice of control symbol determines
the next state, in this case 3.

The trainer may apply a pleasure or pain stimulus at any time, with the
effect that ‘[w]hen a pain stimulus occurs all tentative entries are cancelled,
and when a pleasure stimulus occurs they are all made permanent’.165

In other words, pleasure replaces every T in the table by D and pain replaces
all occurrences of T0 and T1 by U.

Turing suggested that ‘it is probably possible to organise these P-type
machines into universal machines’ but warned that this is ‘not easy’.166

He continued:

If, however, we supply the P-type machine with a systematic external

memory this organising becomes quite feasible. Such a memory

could be provided in the form of a tape, and the [external actions]

could include movement to right and left along the tape, and

altering the symbol on the tape to 0 or 1 . . . I have succeeded in

organising such a (paper) machine into a universal machine . . . This

P-type machine with external memory has, it must be admitted,

considerably more ‘organisation’ than say the A-type unorganised

machine. Nevertheless the fact that it can be organised into a universal

machine still remains interesting.167

As a search for ‘teaching policies’ Turing’s experiments with P-types were
not a great success. The method he used to train the P-type with external
memory required considerable intelligence on the part of the trainer and
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he described it as ‘perhaps a little disappointing’, remarking that ‘[i]t is not
sufficiently analogous to the kind of process by which a child would really be
taught’.168

Artificial Life

In his final years Turing worked on (what since 1987 is called) Artificial Life
(A-Life). The central aim of A-Life is a theoretical understanding of naturally-
occurring biological life—in particular of the most conspicuous feature of
living matter, its ability to self-organize (i.e. to develop form and structure
spontaneously). A-Life characteristically makes use of computers to simulate
living and life-like systems. Langton, who coined the term ‘Artificial Life’,
wrote

Computers should be thought of as an important laboratory tool for

the study of life, substituting for the array of incubators, culture

dishes, microscopes, electrophoretic gels, pipettes, centrifuges, and

other assorted wet-lab paraphernalia, one simple-to-master piece of

experimental equipment.169

Turing was the first to use computer simulation to investigate a theory
of ‘morphogenesis’—the development of organization and pattern in living
things.170 He began this investigation as soon as the first Ferranti Mark I to be
produced was installed at Manchester University. In February 1951 he wrote:

Our new machine is to start arriving on Monday. I am hoping

as one of the first jobs to do something about ‘chemical embryology’.

In particular I think one can account for the appearance of Fibonacci

numbers in connection with fir-cones.171

Shortly before the Ferranti computer arrived, Turing wrote about his work
on morphogenesis in a letter to the biologist J. Z.Young.172 The letter connects
Turing’s work on morphogenesis with his interest in neural networks, and to
some extent explains why he did not follow up his suggestion in ‘Intelligent
Machinery’ and use the Ferranti computer to simulate his unorganized
machines.

I am afraid I am very far from the stage where I feel inclined to start

asking any anatomical questions [about the brain]. According to my

notions of how to set about it that will not occur until quite a late

stage when I have a fairly definite theory about how things are done.
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At present I am not working on the problem at all, but on my

mathematical theory of embryology . . . This is yielding to treatment,

and it will so far as I can see, give satisfactory explanations of -

i) Gastrulation.

ii) Polyogonally symmetrical structures, e.g., starfish, flowers.

iii) Leaf arrangement, in particular the way the Fibonacci series

(0, 1, 1, 2, 3, 5, 8, 13, . . .) comes to be involved.

iv) Colour patterns on animals, e.g., stripes, spots and dappling.

v) Patterns on nearly spherical structures such as some Radiolaria,

but this is more difficult and doubtful.

I am really doing this now because it is yielding more easily to

treatment. I think it is not altogether unconnected with the other

problem. The brain structure has to be one which can be achieved by

the genetical embryological mechanism, and I hope that this theory

that I am now working on may make clearer what restrictions this

really implies. What you tell me about growth of neurons under

stimulation is very interesting in this connection. It suggests means by

which the neurons might be made to grow so as to form a particular

circuit, rather than to reach a particular place.

In June 1954, while in the midst of this groundbreaking work, Turing died.
He left a large pile of handwritten notes concerning morphogenesis, and
some programs.173 This material is still not fully understood.
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6 The ACE and the shaping of
British computing

Martin Campbell-Kelly

Origins

In 1957 an anonymous researcher at the National Science Foundation
created a ‘family tree’ of the origins of electronic digital computers, repro-
duced in fig. 1.1 This is perhaps not the place to dispute the researcher’s
contention that the Harvard Mark I was the root-stock out of which the
modern computer grew, but all computer historians would agree that the
ENIAC and the EDVAC have been afforded their proper places at the very
centre of things. The reason this diagram is worth re-examining is that it
presents a late 1950s view of a world of computing in which the United
States had the dominant role, but Britain was a strong second player.
No other nation featured. Had this diagram been drawn twenty years later,
America would have remained the dominant player, but the secondary
players would have included France, Germany, and Japan in addition to
Britain.

Britain’s early computer activity was remarkably vigorous. In the NSF tree,
we can discern no less than three strong branches, representing the three
major centres of UK activity—Manchester University, Cambridge University,
and the National Physical Laboratory (NPL).2 Each of these computing
activities is shown as descending from the ENIAC–EDVAC line. In the case
of Manchester and Cambridge, this was unequivocally true. But for the NPL’s
ACE, the history is not so straightforward, and it is this history that this book
explores and documents.

Before proceeding, some historical background on the US scene is needed.3

The ENIAC computer, which first operated in November 1945, was built at
the Moore School of Electrical Engineering at the University of Pennsylvania.
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The project was begun in April 1943, and the two principal inventors were
J. Presper Eckert and John Mauchly. The ENIAC was an engineering feat for
which Eckert as chief engineer has been justly lauded. However, the archi-
tectural design of the ENIAC had several shortcomings. One failing was that
it was not a general-purpose machine, being designed solely for the integ-
ration of ordinary differential equations (ODEs) for its military sponsor, the
US Army Ballistics Research Laboratory at the Aberdeen Proving Ground,
Maryland. Another shortcoming of the ENIAC was that despite its vast
number of tubes (valves)—about 18,000—it could store only 20 numbers.
Further, the machine was ‘programmed’ by inserting hundreds of plug cords
into the machine, so that photographs are reminiscent of a manual telephone
exchange without the people. It was said that it could take up to three weeks
to set up and debug an ENIAC program.

These limitations of the ENIAC were already apparent when, in August
1944, the great American mathematician John von Neumann began to take
an interest in the Moore School’s computing activity. Von Neumann’s interest
was due, not least, to the fact that he was a consultant to the Manhattan
Project for the creation of the atomic bomb, and his work on shaped explosive
charges involved the integration of very large systems of partial differential
equations (PDEs).4 Because of its feeble storage capacity, the ENIAC was quite
unsuitable for solving PDEs except by the most convoluted processes.5 When
John von Neumann arrived on the scene, the construction of the ENIAC had
passed the point of no return, despite its technical shortcomings, and discus-
sions had already moved on to what kind of a machine should succeed it. Thus
von Neumann was one of a group of five involved in these discussions—the
others were Eckert and Mauchly, Lt Herman H. Goldstine, a mathematician
who was the Ballistics Research Laboratory’s liaison officer, and Arthur
Burks, a logician also involved with the ENIAC. The discussions went on
for the best part of year, and they were finally summarized in the First Draft
of a Report on the EDVAC dated June 1945.6 This report was the foundation on
which today’s world of computers rests. The stored-program computer has
been as central to twentieth-century information processing as the internal
combustion engine has been to transport. Because von Neumann was the sole
author of the EDVAC Report, the contribution of his four colleagues has been
slighted and to speak of the ‘von Neumann architecture’ does a considerable
historical injustice.

The EDVAC design consisted of five functional units: a control unit, an
arithmetic/logic unit, a memory, and input and output devices. The memory
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was to be very large—of the order of 8K words—and it would store both
programs and data. The fact that a program would be able to process its own
instructions was central to the design, and this arrangement later became
known as the ‘stored-program concept’. Diagrams showing the logical inter-
connection of the functional units of a computer appear in every basic text
book on computer science. What is less well appreciated is that von Neumann
drew heavily on a brain metaphor, and the EDVAC Report refers to neur-
ones, memory, and input/output ‘organs’. Only the term ‘memory’ survives
to remind us of the original metaphor. The idea of computer-as-brain was
also one that appealed to Alan Turing.

The ENIAC was inaugurated in February 1946, and the event was of wide-
spread scientific interest. As a result of this publicity the Moore School was
deluged with requests for information. Aware of the need to diffuse the new
ideas, but unwilling to have day-to-day operations disrupted by a stream of
visitors, the School organized a summer school in July and August 1946.7

The course was attended by a representative from all the computer groups
that were interested—almost exclusively in the United States and Britain.
From Britain, Maurice Wilkes attended on behalf of Cambridge University
and David Rees for Manchester. The Moore School Lectures had the effect
of establishing the stored-program computer as the big idea in computing,
and after the lectures computing groups in America and Britain set to work
to turn the design into a reality.

As noted earlier, the NSF family tree of fig. 1 was a late 1950s view of
computer development. As we move forward to the present day, to under-
stand the genesis of the ACE, especially, we have to introduce two factors of
which the NSF researcher was unaware: the Colossus codebreaking computer
constructed at Bletchley Park during the war, and the universal Turing
machine conceived by Turing before the war (see Chapter 5, ‘Turing and
the Computer’).

We know from the many histories that have been written about Bletchley
Park that Turing was not directly involved in the design of the Colossus
computer, although he had been central to the earlier electromechanical
codebreaking machines, the ‘Bombes.’8 It can be argued that although Tur-
ing had no direct involvement in the Colossus, his sphere of influence must
have encompassed it. However, this is perhaps not an issue we need to address
here, because the Colossus was a special purpose computer for codebreak-
ing, just as the ENIAC was a special purpose machine for solving ODEs.
The modern computer is based on the EDVAC, which owed very little to the
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design of ENIAC and absolutely nothing to the Colossus. The EDVAC was
sui generis. My own view is that the Colossus’s legacy was not architectural
or intellectual, but cultural and only in Britain. People who had worked on
the Colossus knew that it was possible to construct very large assemblies of
electronic tubes for information processing, and there was a cohort of people
in the British Post Office who had actually done it. While the people who
worked on the Colossus were bound in utmost secrecy, there was no pro-
scription to their benign optimism regarding the feasibility of constructing
computing machines.

The place of the universal Turing machine in the history of computing is
difficult to assess at the present time. This is particularly so in Britain where
Turing has become lionized, and many people feel that the Turing machine
just has to be one of the foundations of computing. The story is very complex,
and we will probably not resolve it for many years. In all my researches on the
early history of computing, I cannot recall a direct reference to the Turing
machine in the context of computer design. My own view is that the Turing
machine was really a fairly abstruse branch of mathematics that was only
appropriated by computing about a decade after the first machines were built
when computer scientists first began to study computability. Jack Copeland
and Diane Proudfoot present a different view in Chapter 5, ‘Turing and the
Computer’. None of this is to take away anything from Turing’s conception,
which remains one of the towering intellectual triumphs of the twentieth
century. And of course, the Turing machine had a direct influence on Turing’s
other machine, the ACE.9

Three centres, three computers

One can identify approximately a dozen British research organizations
that attempted to build stored-program computers in the decade 1945–55

(Table 1). Of these, three were the first movers that started computer projects
in the immediate postwar years, 1945–7: Manchester University, Cambridge
University, and the NPL. These three centres operated completely independ-
ently of one another, and as a result came up with three quite different
computer architectures, programming styles, and operating regimes. The
other British computer groups were, to a greater or lesser extent, influenced
by one of the original three.
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Table 1 Early British computer groups, 1945–55

Research group Computer Date Notes

Cambridge University EDSAC 1949 First ‘practical’ stored-

program computer

Manchester University Baby 1948 First operational stored-

Machine program computer

Mark I 1949 Prototype of Ferranti

Mark I

Meg 1954 Prototype of Ferranti

Mercury

National Physical Pilot ACE 1950 Prototype of English

Laboratory Electric DEUCE

Birkbeck College, ARC 1948 Based on IAS

University of London Princeton computer

SEC 1952 Re-engineered ARC

APE( )C 1953 Prototype of BTM HEC

Telecommunications TREAC 1953 First ‘parallel’

Research Establishment British computer

Post Office Research MOSAIC 1952 Based on NPL ACE

Station, and Radar computer

Research and Development

Establishment

British Tabulating HEC 1953 Prototype of 1200

Machine Co. series computers

Elliott Brothers Nicholas 1952 Experimental nickel-

delay-line computer

401 1953 Prototype of 402

computer

English Electric DEUCE 1954 Based on NPL Pilot ACE

Ferranti Mark I 1951 Based on Manchester

Mark I

Mark I-Star 1953 Based on Manchester

Mark I

J. Lyons and Co. LEO 1951 Based on Cambridge

EDSAC

Source: Campbell-Kelly, M. (1989) ICL: A Business and Technical History. Oxford University Press,

p. 164.
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All three centres were led by one or more outstanding scientist–engineers,
their contributions subsequently being recognized by their election to the
Royal Society. All three centres made lasting contributions to the devel-
opment of electronic stored-program computing—Manchester University
primarily in hardware innovations, Cambridge University in software, and the
NPL in mathematical computation. All three centres produced commercial
spin-off machines. And, finally, all three centres became foci of national
computer activity and the venue for one of the three early British computer
conferences, held in 1949, 1951, and 1953.10

The first problem facing all the early computer groups was constructing
a reliable electronic memory. Williams and Kilburn devised a system based
on a cathode-ray tube, around which they built a small test computer,
the Manchester ‘Baby’ Machine.11 That machine ran its first program on
21 June 1948. It was the first program for the world’s first stored-program
computer. The storage system—known as the Williams Tube memory—was
patented and used in several commercial computers, including the IBM 701.
After this first success, Williams withdrew from computer research leaving
the field open to Tom Kilburn. Kilburn quickly turned the Baby Machine
into a full-scale prototype, which was subsequently manufactured by the
local electrical engineering firm of Ferranti. The Ferranti Mark I—first
delivered in February 1951—was the world’s first commercially manufac-
tured computer. The Mark I introduced several hardware innovations, the
most important of which was the B-line, subsequently known as the index
register, an invention used in virtually every computer built to the present
day. The Mark I also introduced memory ‘pages’ (a term probably coined by
Turing) which was one of the ideas underlying virtual memory a few years
later.12

Computing activity at Cambridge University had begun before the war
with the formation of a Mathematical Laboratory by Sir John Lennard-Jones,
professor of chemistry, in 1937; Maurice Wilkes was appointed assistant
director.13 During the war the Mathematical Laboratory was put on hold,
and Wilkes was conscripted for work on operations research and radar elec-
tronics. For Wilkes, this turned out to be the perfect background for building
computers after the war. The Mathematical Laboratory was re-opened in
1946, and during the summer of that year Wilkes attended the Moore School
Lectures. Returning home on the Queen Mary he began the design of the
machine that was to become the EDSAC. The name EDSAC, a slightly con-
trived acronym standing for Electronic Delay Storage Automatic Calculator,
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was chosen as conscious echo and tribute to the EDVAC on which it was
directly based.

Wilkes was more interested in using, rather than building, computers and
he opted for a conservative design that he hoped would quickly result in a
working computer on which his group could solve real problems. For example
the EDSAC used a pulse repetition rate of 0.5 Mc/s when ‘any electronic
engineer worth his salt’ would have tried for 1 Mc/s.14 As a result of this
conservative design policy, EDSAC ran its first program on 6 May 1949. Unlike
the earlier Manchester Baby, the EDSAC was a full-scale machine capable of
running realistic problems from the first day of operation. A programming
system was quickly devised for the EDSAC, and a regular computing service
was offered from early 1950. The programming system, largely the work of
Wilkes, his research student David Wheeler, and research officer Stanley Gill,
was subsequently described in the classic textbook The Preparation of Programs
for an Electronic Digital Computer, more commonly known as ‘Wilkes, Wheeler,
and Gill’—or WWG for short.15

Turing began to work on the design of the ACE computer about June 1945.
The name ACE, an acronym for Automatic Computing Engine, was chosen
as a conscious tribute to Babbage’s calculating engines—Babbage’s name,
it should be noted, was honoured by the British computing community long
before his worldwide renaissance in the 1950s. While we can be quite certain
that Babbage’s calculating engines had no influence on the design of the ACE,
one of the questions to be explored here is how much of the ACE design was
derived from the EDVAC Report and how much from the universal Turing
machine. In his well-known lecture to the London Mathematical Society
(LMS) in February 1947 Turing stated:

Some years ago I was researching on what might now be described

as an investigation of the theoretical possibilities and limitations of

digital computing machines. I considered a type of machine which

had a central mechanism, and an infinite memory which was con-

tained on an infinite tape. . . . It was essential in these theoretical

arguments that the memory should be infinite. It can easily be shown

that otherwise the machine could only execute periodic operations.

Machines such as the ACE may be regarded as practical versions of this

same type of machine.16

This suggests that the Turing machine was a rather direct ancestor of the ACE.
However, when one studies the text of Turing’s lecture closely, it is clear that
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there is much more EDVAC in it than Turing machine. Further, in the ACE
Report Turing advises the reader that:

The present report gives a fairly complete account of the proposed

calculator. It is recommended that it be read in conjunction with

J. von Neumann’s ‘Report on EDVAC’.

If one examines the ACE and EDVAC reports side by side, it is plain that
much of Turing’s notation as well as some aspects of the design of the ACE
are derived from the EDVAC. For example, Turing adopted von Neumann’s
computer–brain metaphor, and his anthropomorphic terms such as ‘organ’
and ‘memory’. The use of ‘logical elements’ is derivative, and some of Turing’s
diagrams are almost identical to von Neumann’s. Likewise, the addressable
memory of fixed-length binary numbers had no equivalent in the Turing
machine. Although Turing did not explicitly acknowledge the fact, like every-
one else he accepted the EDVAC Report as the definitive blueprint for practical
electronic computers.

Most computer designers made some enhancement to the EDVAC
design. As noted above, the Manchester group added the index register
to the EDVAC design. In the United States, Eckert and Mauchly’s UNIVAC
used binary coded decimal numbers rather than straight binary. There
are many other examples of these incremental enhancements of the
EDVAC design. Even the EDVAC, when it was finally completed in 1953,
had improved on the original design. This phenomenon, of steadily
improving a foundation invention, occurs in most technological fields and
historians of technology sometimes speak of radical versus incremental
innovations.

However, if one compares the ACE with the EDVAC—and one searches for
the right way to phrase this eloquently—they were much more different than
were the Manchester Mark I and the EDVAC, or the UNIVAC and the EDVAC.
Perhaps the ACE’s most significant departure from the EDVAC design was the
way that programs were arranged in the memory. Instructions were laid out
sequentially in the EDVAC, whereas in the ACE they could be laid out in any
order, because each instruction nominated its successor. This is something
rather close to the way in which ‘tables’ were specified for the Turing machine.
Other fundamental differences between the ACE and the EDVAC are described
in Chapter 7 and Chapter 8.
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Fig. 2 A delay line as sketched by A. M. Turing.

At the heart of the ACE—optimum coding

The most important single idea in the ACE, and what differentiated it from
its contemporaries, was the idea of optimum coding. The term ‘optimum
coding’, it should be noted, was not used until the mid-1950s or later, and
Turing had no vocabulary for the idea.

The ACE design of 1946 was based around a mercury delay-line memory.
In his LMS lecture, Turing attributed the application of the mercury delay
line for computer storage to Eckert (and this was one of the few occa-
sions where Eckert’s contribution was explicitly recognized).17 Eckert had
developed the mercury-filled delay line in connection with a moving target
indicator (MTI) device for radar, a research project originally quite uncon-
nected with computer development.18 However, while the ENIAC was under
construction, it became clear that the delay line would be far superior to
the electronic-tube-based store of the ENIAC, and it was fundamental to
the EDVAC design. At the time of the LMS lecture, February 1947, Turing
had recently returned from the Harvard Symposium on Large-Scale Computing
Machinery, where the recorded discussions indicate that he had a strong and
perceptive technical interest in memory technology.19

As proposed by Eckert, and as subsequently implemented on most serial
computers, the delay line consisted of a 5 ft tube of mercury. Figure 2 shows
Turing’s sketch of a delay line, taken from the manuscript of his LMS lec-
ture. The acoustic delay of a sound pulse transmitted through the tube of
mercury was approximately 1 millisecond, and given a pulse repetition rate
of 1 microsecond, it was possible to store approximately a thousand (or more
conveniently 1024) sonic pulses in the tube before they emerged at the other
end. Pulses emerging from the delay line could be regenerated and re-injected
into the system. In this way it was possible to store 1024 bits indefinitely. The
contents of a delay line were divided up into equal length ‘words’. In the case
of the ACE it was planned to have 32 words of 32 bits in each delay line. The
1 millisecond recirculation period was known in the Moore School termino-
logy (which Turing adopted) as a major cycle, while the period occupied by a
single word was known as a minor cycle.
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More memory could be incorporated in the computer by having more delay
lines, all operating in parallel. Von Neumann had proposed having 256 delay
lines for the EDVAC giving about 8K words of storage, while Turing wanted
200 for the ACE. Both were far too ambitious and the Pilot ACE actually
had less than a dozen full-length delay lines, each containing thirty-two
32-bit words.

The problem with the delay-line memory was its ‘latency’—the time it
took for a word chosen at random to emerge from the end. On average this
took half a major cycle. In a classic single-address machine, an instruction
such as ‘add the number in location n into the accumulator’ took an average
time of one major cycle—half a major cycle to fetch the instruction, and
half a major cycle to fetch the operand. This gave a theoretical maximum
instruction execution rate of one per major cycle. The EDSAC, for example,
which had a 1 millisecond major cycle, had an instruction rate of about 650

instructions per second. Although the Manchester Mark I had a CRT-based
memory which was random access in principle, in practice because of the
need to regenerate the memory each instruction cycle, its speed was much
the same as a delay-line machine—about 1000 instructions per second.

Turing came up with the brilliant idea of eliminating the effect of latency
by having each instruction nominate the address of its successor. In this way,
instead of placing instructions in successive memory locations, as in a con-
ventional design, instructions could be placed in optimal locations, so that
as one instruction finished, the next instruction would just be emerging from
a delay line. The same could be done for operands, so that the time to access
them could in principle be eliminated as well. This gave the Pilot ACE, with its
1 millisecond major cycle, a theoretical maximum speed of 16,000 instruc-
tions per second. Another innovation in the Pilot ACE was to have several
short delay lines that could be used to hold the most frequently used operands
in a program. This arrangement reduced the need to access the main memory
for operands, and hence the need for their optimal placement; while this did
not make the machine any faster theoretically, it greatly simplified program-
ming. Even with this innovation, however, it was very difficult to get perfect
optimization, and programs typically achieved about 5000 instructions per
second. Nevertheless, this was very much faster than either the EDSAC or the
Manchester Mark I, and the Pilot ACE used far less equipment than either of
them. (Turing was in fact thoroughly dismissive of what he regarded as the
unoriginal and pedestrian approaches of Wilkes at Cambridge and Williams
and Kilburn at Manchester.)
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The issue of optimum coding was hotly debated, and Turing’s view was by
no means unchallenged. While optimum coding enabled more computing to
the pound-sterling, as it were, this came at the cost of greatly complicating
the process of programming. In his 1967 Turing Award lecture, Wilkes noted:

I felt that this kind of human ingenuity was misplaced as a long-term

investment, since sooner or later we would have true random access

memories. We therefore did not have anything to do with optimum

coding in Cambridge.20

It is rather difficult to separate the reality from the rhetoric in these early
exchanges on optimum programming. First, the Cambridge and Manchester
University groups were led by formidable personalities and one cannot
discount their natural human tendency to assert that their own way of doing
things was the best for their particular circumstances. Second, the evid-
ence for the superior performance on the Pilot ACE was largely anecdotal.
No benchmark program had ever been written to run on all three machines.
And while it was true that all three machines had similar subroutine lib-
raries and application programs (such as integrating differential equations
or inverting matrices) their performance had never been systematically
compared.

This was one of the questions I set out to explore in my first foray into
computer history in the 1970s. I developed a simulator for each of the three
British machines—the EDSAC, the Manchester Mark I, and the Pilot ACE—
with the aim of systematically comparing their performance. The benchmark
program was the TPK algorithm devised by Donald Knuth and his research
student L. Trabb Pardo.21 The TPK algorithm had originally been devised
for comparing a group of early programming languages, in exactly the
way I was now proposing to compare three early machines. We do not
need to go into the details of the TPK algorithm here, other than to say
that it was designed to exercise all the capabilities needed in a program—
loops, array accessing, subroutines (both library and user written), and
input–output procedures. I like to think of the TPK algorithm as being the
programming equivalent of the basket of groceries one uses to compare
supermarkets.

The results of this experiment are shown in Table 2. The significant line of
the table is the processor time. We see that the Pilot ACE took just 5 seconds
to perform a calculation that took 24 seconds on the EDSAC and 37 seconds
on the Manchester Mark I—giving the Pilot ACE a speed advantage of a
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Table 2 Computing speeds of the Pilot ACE,

the EDSAC and the Manchester Mark I with the

TPK algorithm

Time (sec) Pilot ACE EDSAC Mark I

Processor 5 24 37

Input–output 17 70 44

Total 21 94 82

Table 3 Computing speeds of the Pilot ACE,

the EDSAC and the Manchester Mark I with

floating point operations

Time (ms) Pilot ACE EDSAC Mark I

Add/subtract 8 90 60

Multiply 6 105 80

Divide 34 140 150

factor of 5 and 7, respectively. Even when the slow input–output opera-
tions are included, the Pilot ACE was still faster by a factor of 4. Table 3

makes the same point in a different way. None of the three machines had
hardware floating-point arithmetic and so had to use library subroutines for
floating-point operations. The table shows the execution times for the four
basic floating-point arithmetic subroutines for each machine. The results
are quite astounding, the Pilot ACE being more than 10 times as fast as its
rivals (except for the less-used operation of division). It is important to note
that these subroutines were written to be as efficient as possible and were
honed to perfection by the best programmers the groups had. In all cases
the subroutines were as close to optimal as any human could reasonably
make them.

Finally, one should note that that the Pilot ACE used 800 electronic tubes
compared with the 3000 and 3700 tubes of the Cambridge and Manchester
machines, respectively. If we can allow the tube count to stand as a proxy
for the cost of a processor, it would be reasonable to argue that in terms of
raw computing power, the Pilot ACE was at least 10 times more cost effective
than the EDSAC or the Mark I. Most of this extra performance was due to
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optimum programming. Perhaps we will never know the precise genesis of
optimum programming, but the parallel with the Turing machine, in which
each instruction also nominated its successor, must surely be more than
a coincidence. I would venture to suggest that if Turing had not devised
the Turing machine before the war, he might not have designed the ACE
in the way he did after the war.

The ACE legacy

Turing’s ACE Report spawned several derivative machines. A partial
genealogy is shown in the NSF family tree of fig. 1, although David Yates’s
excellent institutional history of computing at the NPL, Turing’s Legacy, gives
a more exhaustive picture (fig. 3).22

Two full-scale ACE-type machines were built. The first to be completed was
the MOSAIC (Ministry of Supply Automatic Integrator and Computer) which

1946
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1951

1953
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1957

1960/61

Turing's plans
for ACE

Test Assembly

Pilot ACE (1)

Paris Model (1)

ACE (1)

Packard-Bell PB 250 (?)

Bendix G15 (400+)

MOSAIC (1)

English Electric
DEUCE (33)

EMI Electronic
Business Machine (1)

Fig. 3 The ACE family of computers.
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was built by the Post Office for the Radar Research and Development Estab-
lishment over the period 1947–53. The MOSAIC was one of the largest early
British computers, with over 6000 tubes, and was heavily used for data reduc-
tion applications. The second machine, the NPL ACE itself, was completed in
1959 (see the Chapter 3, ‘The Origins and Development of the ACE Project’).
Design of the ACE had begun in earnest in 1953, when the pilot machine
was complete, although physical construction did not get started until 1956.
By that date it was already apparent to some within the NPL (including
Donald Davies) that cyclic memories were a dying technology and the project
should have been cancelled. Unfortunately, such is the nature of government
bureaucracies, that there was no way of diverting the resources to some
more promising development and the ACE stumbled along under its own
inertia. When finally completed it was a machine of awesome proportions
that remained in use until 1967.

Commercially, the most important machines were those descending from
the Test Assembly and the Pilot ACE. In the United States two machines
derived from the Test Assembly—the Bendix G15 and the Packard-Bell 250.
The G15 was designed by Huskey (see Chapter 13, ‘The ACE Test Assembly,
the Pilot ACE, the Big ACE, and the Bendix G15’). A comparatively small
machine, some 400 G15s were sold from 1955 onwards, many to univer-
sities and medium-sized engineering corporations, making it one of the
workhorses of the first generation of American stored-program computers.
Although the G15 used a drum store rather than a mercury delay line
memory, it employed the technique of optimum coding and had a concep-
tually similar instruction format to the Pilot ACE. In the early 1960s the
G15 inspired another American computer, the Packard-Bell 250, of which
historians have so far traced few concrete details.

The Pilot ACE had two significant descendants besides the full-scale
ACE.23 EMI produced a ‘business machine’ under the leadership of Ronald
Clayden, who had previously been one of the English Electric team that
worked on the Pilot ACE and DEUCE. Like the G15, the EMI Business Machine
was drum-based. Only one machine was built, however, the EMI line quickly
evolving into transistor-based, core-memory machines in the early 1960s.

Far and away the most important descendant of the Pilot ACE line was the
English Electric DEUCE, which can be fairly described as one of the corner-
stones of the British computer industry. The DEUCE owed its conception to
the presence of Sir George Nelson, chairman of English Electric, on the NPL
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Executive Committee. In 1951, after the Pilot ACE had been completed, Eng-
lish Electric decided it would like to manufacture a fully engineered version of
the machine, and seconded two of the brightest young engineers at its Nelson
Research Laboratories in Stafford to the project—George Davis and Ronald
Clayden. The DEUCE was somewhat larger than the Pilot ACE since it included
a hardware divider, resulting in a tube count of 1450, 50 per cent more than
the Pilot ACE. As it happened the management of the Nelson Research Labor-
atories was quite bureaucratic, requiring its engineers to produce frequent
written reports. Thanks to those reports written in the 1950s, today we have
a unique insight into how the technology was transferred during this form-
ative period in the development of the British computer industry. The first
DEUCEs were completed in 1955, with machines being produced for English
Electric, NPL, and the Royal Aircraft Establishment.

The DEUCE was a considerable commercial success, some 33 machines
being produced between 1955 and 1962 (see Chapter 14, ‘The DEUCE—a
User’s View’). This success was primarily due to the superb numerical soft-
ware produced by the NPL. Perhaps the best known and most widely used
program was the GIP (General Interpretive Programme) matrix suite pro-
duced by Brian Munday, first for the Pilot ACE and subsequently transferred
to the DEUCE.24 The DEUCE arrived at an opportune moment for aircraft
design. The Comet, the first commercial jet aircraft, had experienced widely
reported crashes in 1952 and 1953. An official inquiry established that wing
‘flutter’ during take-off and flight was a potential cause of instability, and from
1954 flutter calculations became a statutory requirement in aircraft design.
This led to a number of DEUCE sales to aircraft organizations—the Royal
Aircraft Establishment, Short Brothers and Harland, Bristol Aircraft, and
of course to English Electric, itself a major aircraft producer. DEUCEs were
also popular with engineering and scientific organizations that had heavy
computational requirements, such as the National Engineering Laboratory,
the Atomic Weapons Research Establishment, and British Petroleum. A num-
ber of machines were sold to universities, including Glasgow, Liverpool,
and Queen’s University Belfast. All of these were major academic centres
for numerical computation, and this was the primary reason they bought
DEUCEs rather than its more user-friendly competitors.

The DEUCE succeeded in the market place because of its excellent per-
formance in numerical work, itself the consequence of the optimum coding.
It was widely anticipated that the arrival of random access core memory
would cause the demise of optimum programming. While this may have
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been true in the United States, in Britain the demise was caused less by tech-
nological advance than by a brilliant computer design due to Christopher
Strachey—the Pegasus.

Strachey was a school teacher at Harrow School, London, when he
made his entrée into computing in 1951. Strachey was a personal friend
of Mike Woodger of the NPL Mathematics Division, and when the Pilot ACE
began to operate Strachey started to use the machine at weekends. Strachey
was, characteristically, more interested in programming logical problems
than mathematical ones, and he worked on a draughts-playing program.25

The Pilot ACE’s memory was too small to make much progress, so he trans-
ferred his allegiance to the much larger Manchester Mark I. However, in his
time with the Pilot ACE Strachey became intrigued with the possibility of
writing a program so that the Pilot ACE could do its own optimum coding. He
wrote to Woodger in 1951:

I am sufficiently hopeful about the possibility of making a practical

program-coding routine to continue looking into it a bit more, and

even if it finally turns out to be of no practical use, it will be an

interesting example of making the machine do a logical rather than

a mathematical operation.26

Strachey worked on the problem on and off for two years, without success.
However, there is no question that the experience had a major bearing on the
the design of the Pegasus.

In 1952, Strachey was rescued from obscurity as a schoolmaster to
become a research officer for the National Research Development Corpora-
tion (NRDC). There in 1954 he became principal designer of a medium-sized
general purpose computer, to be manufactured by Ferranti. Within the con-
temporary technological and design constraints, the obvious course was for
Strachey to produce a drum-based, optimum-coded machine of a similar type
to the Bendix G15, the IBM 650, or several others. However, Strachey came
up with a design tour de force. It would be out of place to go into the archi-
tectural details of the Pegasus here, but suffice it to say that he eliminated
optimum coding entirely by a number of ingenious design innovations, pro-
ducing an easy to use machine with a very respectable performance, and
costing approximately the same as the DEUCE.27

While the Pegasus was only half as fast as the DEUCE, this was achieved
without any use of optimum coding. Indeed, the Pegasus was something of
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a dream machine to program. The Pegasus’ programming systems, whose
design was not encumbered by the constraints of optimum programming,
marked a high point in the early development of computer programming
in Britain. As a result the Pegasus was a much more popular machine for
pedagogical purposes, and outsold the DEUCE in British universities.

Of course, whether the Pegasus had come along or not, machines based
on optimum programming were doomed to extinction. But it is fitting that
in Britain this came about through design rather than the mere advance
of technology. Although Turing never lived to see the Pegasus, I think it is
fair to speculate that he would have admired Strachey’s work, as being—to
paraphrase Turing’s famous memo to Womersley28—in the British tradition
of solving one’s difficulties by thought rather than equipment.

End of the ACE line

The period 1950 to the early 1960s was an astonishingly fertile time for
the British computer industry. In 1963 there were over two dozen computer
models available from eight manufacturers (Table 4). Whereas in 1950 a
computer had been simply a computer, by the early 1960s the market had
fragmented by machine size, application domain, and technological genera-
tion. Computers were classified into several categories of size, typically small,
medium, large, very large, and giant. In Table 4, small computers were
those costing less than about £35,000; medium machines were those cost-
ing from £35,000 up to about £150,000; very large computers cost in excess
of £250,000; and giant machines, of which the Atlas was the only British
example, cost upwards of £1 million. The application domain could be sci-
entific, commercial, or process control. Finally a machine could be classified
according to the generation of electronics technology employed: tube-based
first generation, or discrete transistor-based second generation. Within this
classification scheme, the DEUCE was a first generation, medium-sized
scientific computer, and its main competitor was the Pegasus.

Not all manufacturers could compete in all the possible classes of
computer, and in the early 1960s English Electric decided to specialize in
the development of medium- and large-size scientific machines—the KDF6

and KDF9—and a small process control computer, the KDN2. (The very
large KDP10, costing £400,000, was in fact an RCA model 501 manu-
factured under licence from the American company. This allowed English
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Table 4 UK manufactured computers, 1951–63

Manufacturer First Model Average Generation Type Number

delivery price sold

(£000s)

AEI 1960 1010 250 2 C B

Elliott- 1955 402 25 1 S B
Automation 1956 405 125 1 C C

1958 802 17 2 P B
1959 803 35 2 P/S E
1961 503 80 2 C C

EMI 1959 1100 180 2 C C
1961 2400 600 2 C A

English 1955 DEUCE 50 1 S C
Electric 1961 KDP10 400 2 C B

1962 KDN2 20 2 P B
1963 KDF6 60 2 S B
1963 KDF9 120 2 S C

Ferranti 1951 Mark I/I* 45 1 S B
1956 Pegasus 50 1 S C
1957 Mercury 120 1 S C
1959 Pegasus II 120 1 C B
1959 Perseus 150 1 C A
1961 Sirius 17 1 S B
1961 Atlas 2000 2 S A
1963 Orion 300 2 C A

Leo 1957 LEO II 95 1 C B
1962 LEO III 200 2 C C

ICT 1955 HEC 2M 25 1 S B
1956 1201 33 1 C D
1959 1202 45 1 C B
1961 1301 100 2 C E

STC 1958 Zebra 28 1 S C

Notes: The table excludes one-of-a-kind machines and prototypes, and imported machines.

Type: C = commercial Sales: A = 5 or less D = 51–100

S = scientific B = 6–15 E = over 100.

P = process control. C = 16–50

Source: Campbell-Kelly, M. (1989) ICL: A Business and Technical History. Oxford University Press,

p. 216.
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Fig. 4 Evolution of ICL.

Electric to offer a high-end commercial data processing machine with
relatively little R&D effort.)

The KDF9 was based on transistor technology and core memory, and
can be regarded as the second-generation successor to the first-generation
DEUCE. However, the design of the KDF9 owed almost nothing tangible to the
DEUCE or the NPL line. This was because the core memory it employed was
truly random access and so optimum programming was no longer needed.
The KDF9 was, nonetheless, a truly radical machine, as radical in its way
as the ACE. It had a zero-address, stack-based architecture, which made it
very much a computer scientist’s machine. So, although the KDF9 cannot be
said to have evolved technologically from the ACE, one can perhaps say that
in its architectural radicalism it captured something of its spirit.

The period 1959 to 1963 saw a wave of consolidation in the British
computer industry (fig. 4). The very fertility of the industry had resulted
in a situation where there were far too many manufacturers and computer
models for the relatively small British market. Most manufacturers were
losing money on computers, and the escalation of development costs for
second-generation machines caused them all to re-evaluate their forward
plans. They had a stark choice: either to invest heavily in new machine
designs, with inevitable short term losses, or to sell out to one of the other
manufacturers. The process of consolidation began in 1959 with the mer-
ger of the two British punched-card machine manufacturers BTM and
Powers-Samas to form ICT. In the next three years GEC, EMI, and Ferranti
all threw in their hands, and ICT—which very much needed to build up its
electronics expertise—was a keen buyer in every case.
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While English Electric did not need to enhance its electronics capability,
it lacked expertise in business data processing. Hence, when J. Lyons decided
to sell Leo Computers, a merger with the English Electric computer division
made good strategic sense. The merger took place in April 1963, and the
enlarged company was named English Electric Leo. Work quickly began on
the design of a new range of machines, code-named Project KLX, which
would harmonize the KDF9 and LEO III computer lines.29

However, on 7 April 1964 IBM astounded the computer world with the
announcement of its System/360 range of computers. The System/360

development—heralded as IBM’s $5 billion dollar gamble—raised the stakes
in the computer industry, and it was clear within English Electric Leo that
Project KLX could not hope to compete with IBM’s initiative. The com-
pany therefore decided to license RCA technology, as it had earlier done
with the KDP10. In September 1964, RCA announced its Spectra 70 range
of computers, a computer family that was architecturally compatible with
the IBM System/360. Shortly afterwards, English Electric announced its
System 4 computer series. With System 4, entirely derived from RCA, any
vestige of a technical legacy from the ACE line was finally lost.

The arrival of System/360 was not the only trauma for the British com-
puter industry in 1964. In October of that year, Harold Wilson’s Labour
Government came into power. Wilson wrote in his memoirs:

My frequent meetings with leading scientists, technologists and indus-

trialists in the last two or three years of Opposition had convinced me

that, if action was not taken quickly, the British computer industry

would rapidly cease to exist, facing, as was the case in other European

countries the most formidable competition from the American giant.

When on the evening we took office, I asked Frank Cousins to become

the first Minister of Technology, I told him that he had, in my view,

about a month to save the computer industry and that this must be

his first priority.30

The Labour Government completed the consolidation that had already
been underway since 1959. First, English Electric absorbed the computer
interests of Marconi in 1964. Then, in 1967, English Electric and Elliott-
Automation rationalized their computer interests: English Electric took over
all mainframe-based computing, while Elliott-Automation took over process
control. Finally, in 1968, in the grandest merger of all, ICT and English
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Electric Computers merged to form ICL, Britain’s only mainframe computer
manufacturer.

ICL was the largest non-American computer firm in the world, with a head-
count of 34,000. Of these workers, 23,500 came from ICT and 9500 from
English Electric Computers. In effect, the ACE legacy represented more than a
quarter of the British computer industry. One could characterize the English
Electric faction within ICL, still based in Kidsgrove, Staffordshire, as its radical
arm: free thinking and lateral thinking. Compared with the stuffy punched-
card machine majority, who were doubtless more business like and sales
minded, the English Electric newcomers were a breath of fresh air. The English
Electric contingent within ICL retained a distinct cultural identity until well
into the 1980s.

To conclude on the ACE’s legacy to British computing, let me turn to
the counter-factual. What if the ACE had never existed? How would the
British computer industry have evolved? We can say with some certainty
that, first, a major part of the British computer industry of the 1950s—
the English Electric computer division—would simply never have existed.
Second, Britain’s ‘national champion’ computer firm ICL would have been
a very different animal, less colourful and less idiosyncratic. Very possibly,
within a risk-averse ICL unleavened by English Electric, ICL’s 2900 series of
the 1970s—a truly radical computer design—would have been some feeble
imitation of an American design. In November 1990, Fujitsu acquired ICL
largely on account of its mainframe design, which had the potential to be
more cost-effective by far than the IBM-compatible mainframes designed
in the 1960s. And had Fujitsu not acquired ICL—well, who knows?
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7 From Turing machine to
‘electronic brain’

Teresa Numerico

Introduction

This chapter analyses the relationships and differences between the various
machines that Alan M. Turing invented, projected, created, and programmed,
in his work in fields ranging from logic and the theory of computabil-
ity to cryptanalysis, computer science and artificial intelligence. Turing’s
apparent position in his article ‘On Computable Numbers’ was one of com-
plete trust in the ability of a machine’s ‘table of instructions’ to achieve
whatever (computable) result the ‘programmer’ desired. Nine years later,
working on the design of the ACE, he put forward a rather different view,
concerning the ability of the stored-program electronic computer to perform
‘intelligent’ tasks. The first surviving document to show Turing’s new attitude
towards machines was his ‘Proposed Electronic Calculator’.1 The machine
that Turing proposed there was different from both the universal Turing
machine and the machine outlined in von Neumann’s ‘First Draft’.2 I com-
pare Turing’s project with von Neumann’s in order to underline similarities
and—above all—the differences.

The logical background

Logic, and especially the Hilbertian formalist school, was Turing’s principal
research subject. The undecidability result of ‘On Computable Numbers’3

contributed to the end of the ‘Hilbert program’. According to Hilbert,
it was possible to create a formal system that proved all mathematical
theorems. Gödel’s4 and Turing’s results awoke mathematicians from this
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dream. In addition to this negative result, ‘On Computable Numbers’ gave
birth to a new field, the theory of computability:

It was stated above that ‘a function is effectively calculable if its values

can be found by some purely mechanical process’. We may take this

statement literally, understanding by a purely mechanical process

one which could be carried out by a machine. It is possible to give a

mathematical description, in a certain normal form, of the structures

of these machines.5

In 1937–8 Turing tried to repair, in a sense, the problems created by Gödel’s
incompleteness theorems for the formalistic approach to mathematics.
Following Gödel’s procedure and results, Turing proposed the construction of
a succession of ‘ordinal logics’. Each of the ordinal logics in the series—one
for each ordinal number, up to some transfinite ordinal—was supposed to
include the Gödel statement (‘I am unprovable in l’) for the previous logic l in
the series. This entire succession was supposed to be complete. Reflecting on
the meaning of his ordinal logics and the role of intuition and heuristics in
mathematical discovery, Turing said:

In pre-Gödel time it was thought by some that it would probably be

possible to carry this programme to such a point that all the intuitive

judgements of mathematics could be replaced by a finite number

of these rules. The necessity for intuition would then be entirely

eliminated. . . .

In consequence of the impossibility of finding a formal logic which

wholly eliminates the necessity of using intuition, we naturally turn

to ‘non-constructive’ systems of logic with which not all the steps in

a proof are mechanical, some being intuitive.6

According to Turing, it was unlikely that interesting theorems would
be demonstrated in mathematics without the use of intuition and
heuristics.

In a letter to M. H. A. Newman Turing explained the conclusions that he
drew from his work on ordinal logics and emphasized the importance of his
concept of the ‘consequences of an assumption’.

I think one wants to distinguish two ideas a) consequence of an

assumption; b) consequence of an assumption relative to a set of

rules of procedure.
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The first of these is an ‘intuitive’ idea which one tries to approximate

by the second with suitable sets of rules of procedure. . . . The idea of

consequences of an assumption relative to given rules of procedure,

I think explains itself. One tries of course to make the rules of proced-

ure such that the consequences will be consequences in the sense a),

but also b) gets as many consequences as are consistent with this.

Of course one cannot get all such a) with one set of rules.7

This position was really innovative. Turing realized that no group of rules
could ever be general enough to include all the possible consequences that
could in principle be drawn from an assumption. According to this approach
the intuitive notion of ‘consequence of an assumption’ is always broader than
any given system of logic. Turing’s new perspective transcended the narrow
borders of the formalist school. In the same letter to Newman, he said:

I think that you take a much more radically Hilbertian attitude about

mathematics than I do. . . . If you take this attitude (and it is this one

that seems to me so extreme . . .) there is little more to be said: we

simply have to get used to the technique of this machine and resign

ourselves to the fact that there are some problems to which we can

never get the answer. . . . However I don’t think you really hold quite

this attitude because you admit that in the case of the Gödel example

one can decide that the formula is true, i.e. you admit that there is

a fairly definite idea of a true formula which is quite different from

the idea of a provable one.

The logic that Turing suggested, and consequently the machine based
on it, had a new structure: it could make mistakes, and it used heuristics,
strategies, and intuition in order to solve problems.

Codebreaking during the Second World War

As is now well known, Turing was a leading figure in the Enigma decryption
project at Bletchley Park. I will not enter too deeply into the details of the
decoding effort but will mention one key element.

Turing’s important hand-method known as Banburismus, dating from the
end of 1939, eliminated as many wrong possibilities as possible, so that the
manual–mechanical test involving the Bombe had to deal with fewer cases
than would be covered in a brute force exhaustive search. Banburismus was
the system used to break ‘Home Waters’ Enigma until July 1943.8 Using an
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inferential method it was possible to deduce the ‘distance’ between the encryp-
ted letters and the real letters, and so to shortlist the possibilities of the Enigma
machine’s ‘wheel order’ (to know the wheel order is to know which of the
machine’s various wheels had been used to encrypt the message and in what
order). Banburismus was based on a mathematical system devised by Turing
for scoring the probabilities of the distances between letters. By this means
it was possible to rule out most of the 336 possible wheel orders. To test all
the 336 possible wheel orders would have used more Bombe time than there
was available; when Banburismus was successful, it meant that the message
could be decrypted before the intelligence it contained was out of date.

This was a new kind of problem-solving procedure, lacking the certainty
of mathematical proof. The key benefit lay in the speed of testing and the
exclusion of a large number of incorrect solutions. The trade-off was the
lack of certainty—the procedure might not work for a given message. Turing
accepted the risks because he took the correct attitude: a quick result was
better than no result or a certain result too late.

I believe that Turing learnt three lessons from his experience with
Enigma:

1. The use of probabilistic techniques. The scoring system underlying
Banburismus was later generalized for use against other systems of
encryption. The modern term for it is ‘sequential analysis’. Probabilistic
techniques were essential in Turing’s later research in morphogenesis
(see Chapter 5, ‘Turing and the Computer’).

2. The importance of ‘just in time’ processes. If the Bletchley codebreakers
took two weeks to break a message, the intelligence would be useless.
In theoretical machines (such as the Turing machine), the process had
to be feasible only in principle—it was irrelevant how much time was
required. In real world situations—such as codebreaking—a procedure
has to be able to solve the problem quickly enough. Mistakes could be
acceptable if the trade-off was an increase in execution speed. It was better
to have a program that might make some mistakes but which terminated
in a reasonable amount of time than to have a precise table of instructions
too large to be executed in real time.

3. The importance of sharing information on an interdisciplinary basis.
During the war Turing was in contact with groups who were in charge
of some of the most advanced technological developments in the United
Kingdom, Poland, and the United States.
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ACE: the first months

The project of building and programming an electronic general-purpose
computer was Turing’s inevitable challenge in the years that followed the
conflict.

At the beginning of the summer of 1945 Turing had a meeting with John
Womersley of the National Physical Laboratory. During this meeting Turing
saw von Neumann’s ‘First Draft’ for the first time. Womersley was one of the
few in the United Kingdom to receive it from Goldstine. Turing accepted the
offer of a job immediately, but could not start until 1 October 1945, when
he was released from his war work. It is likely, however, that he started
working on the ACE soon after the meeting, because ‘Proposed Electronic
Calculator’ was ready before the end of 1945.

Womersley was a very good manager, according to the documentary evid-
ence and various sources of testimony. He showed considerable diplomacy
and was talented in building the right team. Turing’s whereabouts at the end
of the Second World War were secret but, aware of Turing’s work in the theory
of computability, Womersley succeeded in recruiting him for Maths Division,
having approached Newman for information. Womersley’s diplomacy in
presenting and supporting projects was well known and considerably appre-
ciated. He was also a good ‘marketing manager’; the name ‘Automatic
Computing Engine’ was his. Even Turing, who despised Womersley, had
to admit that this name was very well chosen. Donald Davies said about
Womersley:

I think he was a much misunderstood man . . . he was an extraordin-

arily good manager, adept at fighting for his cause. . . . Womersley,

in his inimitable way, sold the project to the Executive Committee.

The decision was delayed twice asking for more information, but by

May 1946 (not a bad delay) it had been agreed. Womersley proposed

to have a Pilot Model Stage which Turing was quite in favour of.9

‘Proposed Electronic Calculator’ was presented to the Executive Committee
of the NPL in March 1946 together with a memorandum written by
Womersley in February. The following extract from the memorandum gives
something of the flavour of those pioneering times.

The research programme of the Mathematics Division contains an

item ‘To explore the application of switching methods (mechanical,

electrical and electronic) to computations of all kinds.’ The first step
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in this exploration was the visit of the newly-appointed Superintend-

ent to the U.S.A. in February, 1945, to gain acquaintance of recent

American developments in this field, and later Dr. A. M. Turing was

appointed to the staff of the Division, and began to consider the pos-

sibilities of electronic methods, in the light of recent progress in the

U.S.A. Dr. Turing has now completed a long report, which makes def-

inite proposals for the construction of a machine, capable of solving

a wide variety of problems at speeds hitherto unattainable.

The recent development in the United States have been in the direction

of automatic operation. . . . It is upon the plans for this last machine

[the EDVAC], not as yet constructed, that Dr Turing’s proposals are

based. Some of the basic ideas are given in Professor von Neumann’s

‘Report on the EDVAC’ a secret report of the Applied Mathematics

Panel of the N.R.D.C.,10 but it contains a number of ideas which are

Dr. Turing’s own, and which are to be found in a paper published by

him in the Proc. Lond. Math. Soc. 1937 . . .

The general case for having such a machine is based upon:

(a) the terms of reference of the Division, which is charged with the

duty of machine development,

(b) the fact that with the aid of such a machine problems can be

attacked which are at present beyond our powers,

(c) Commander Sir Edward Travis, of the Foreign Office, will give his

support,

(d) The Division already has two problems in hand which require

from one to three years of work. These could be completed in

a few weeks with the aid of such a machine. Others would

come forward as soon as the capabilities of the equipment were

known.

(e) This country should possess one of these machines, to keep

up with world progress. Moreover, we are more resourceful

and cunning in our use of machines than the Americans. Past

experience has proved this in relation to:

(i) The National accounting Machine

(ii) ‘Hollerith’ Equipment

(iii) The Differential Analyser.

(f ) The machine is not restricted to arithmetic. It is just as much

at home in algebra, or the enumeration of group characters.

New and fascinating prospects in research in pure mathematics

can be foreseen when some experience has been gained in its use.
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This is not a primary reason for building it, but once built, its

‘spare time’ use in this field should not be neglected entirely.11

Womersley’s report was focused on the economic advantages of the new
machine, and on the importance of competing with the United States. Diplo-
matically, he played down the differences between the ACE and the EDVAC.
Turing’s style during the same meeting of the Executive Committee was very
different. His presentation was hard to understand, technical, and prob-
lematic from the diplomatic point of view. He gave cost forecasts for the
construction of the machine when this was not in his remit.

It was clear from the beginning that, while the NPL wanted a machine to
speed up calculations, Turing wanted to create a genuinely ‘general purpose’
machine. The ACE, as he said in ‘Proposed Electronic Calculator’, would be
able to solve general problems like:

Problem 8 To count the number of butchers due to be demobilised in

June 1946 from cards prepared from the army records. The machine

would be quite capable of doing it, but it would not be a suitable job

for it. . . .

Problem 9 . . . The calculator could be made to find a solution of the

jig-saw, and, if they were not too numerous, to list all solutions.

This particular problem is of no great importance, but it is typical

of a very large class of non-numerical problems that can be treated

by the calculator. . . .

Problem 10 Given a position in chess the machine could be made

to list all the ‘winning combinations’ to a depth of about three moves

on either side.

Nowadays it is obvious that all these problems fall within the scope of the
computer, but at that time few were aware—as Turing was—of the electronic
machine’s potential. The members of the Committee would have found it
difficult to understand Turing’s vision of a truly general-purpose machine.
The minutes of the meeting indicate that the Committee was influenced more
by Hartree—the only one who could comprehend the meaning of Turing’s
project—than by Turing himself.

Turing’s visit to the United States in January 1947

The relationships between Turing and the US groups building general-
purpose electronic computers are elucidated by a report that he wrote of
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his trip to the United States to attend the Symposium on Large Scale Digital
Calculating Machinery held at Harvard University from 7–10 January 1947.

Report on visit to US January 1st-20th 1947

My visit to the USA has not brought any very important new technical

information to light, largely, I think, because the Americans have kept

us so well informed during the last year. I was able, however, to get a

useful impression of the values of the various projects, and the scale

of their organisation. The number of different computing projects is

now so great that it is no longer possible to have a complete list. I think

this is a mistake, and that they are dissipating their energies over too

wide a range. We ought to be able to do much better if we concentrate

all our effort on the one machine, thereby providing a greater drive

than they can afford on any single one. At present, however, our

effort is puny compared with any one of the larger American projects.

To give an idea of the number of people involved in this work in the

U.S.A. I may mention that there were between 200 and 300 present

at the Symposium at Harvard, and that about 40 technical lectures

were given. We are quite unable to match this.

One point concerning the form of organisation struck me very

strongly. The engineering development work was in every case being

done in the same building with the more mathematical work. I am

convinced that this is the right approach. It is not possible for the

two parts of the organisation to keep in sufficiently close touch

otherwise. They are too deeply interdependent. We are frequently

finding that we are held up due to ignorance of some point which

could be cleared up by a conversation with the engineers, and the Post

Office find similar difficulty; a telephone conversation is seldom effect-

ive because we cannot use diagrams. . . . It is clear that we must have

an engineering section at the ACE site eventually, the sooner the better,

I would say.

Looking on the bright side my visit confirmed that our work so far

has been on the right lines. It is probable that the Princeton machine,

based on the Selectron, will have some advantages over the ACE in

speed, but our proposed machine has some compensating advantages,

and I think that, other things being equal, it is better that the two

different types should both be tried. The Princeton group seem to me

to be much the most clear headed and far sighted of these American

organisations, and I shall try to keep in touch with them.
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We shall eventually obtain a word-for-word account of the

conference. All the information given was ‘unclassified’.12

A number of conclusions can be drawn from this document:

1. Turing was not impressed by US progress in the field.
2. Turing was reasonably satisfied by the progress of the ACE project at

that time, offering a favourable comparison with the results of US
projects.

3. Turing understood perfectly—at least in theory—the importance of good
organization for the success of the project. In particular, he was well
aware that his project required an electronic engineering section at the
NPL. He was conscious that the Post Office facilities were not adequate to
the production of a pilot machine.

Calculator or electronic brain?

There are very significant differences between Turing’s ‘Proposed Electronic
Calculator’ and von Neumann’s ‘First Draft’. Turing’s proposal had the
objective of obtaining funding for a real project, while von Neumann’s
‘First Draft’ was written in order to sum up conversations and meetings
which had taken place at the Moore School with the aim of improving on
the ENIAC. Turing’s exposition was in some cases more technical and more
detailed than von Neumann’s. For example, Turing offered a detailed descrip-
tion of the mercury delay line (the memory device) whereas von Neumann
said little about the matter. Von Neumann wrote a generic plan, with no
regard to immediate practical output. One of the greatest differences between
the two documents, however, lies in the general conception of the purpose
and the possibilities of the ACE and the EDVAC. Turing believed that the ACE
would have the ability to emulate the human brain, and was well aware that
it could solve many problems beyond mathematical ones, the kinds of prob-
lems that, if solved by a human being, would be considered ‘intelligent’ tasks.
According to von Neumann:

An Automatic Computing System is a (usually highly composite)

device, which can carry out instructions to perform calculations of

a considerable order of complexity—e.g. to solve a non-linear partial

differential equation in 2 or 3 independent variables numerically.13
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This definition implies a very narrow conception of the machine. Turing, on
the other hand, said in ‘Proposed Electronic Calculator’:

Calculating machinery in the past has been designed to carry out

accurately and moderately quickly small parts of calculations which

frequently recur. . . . It is intended that the electronic calculator now

proposed should be different in that it will tackle whole problems.

Instead of repeatedly using human labour for taking material out of

the machine and putting it back at the appropriate moment all this

will be looked after by the machine itself. This arrangement has very

many advantages.

1) The speed of the machine is no longer limited by the speed of the

human operator.

2) The human element of fallibility is eliminated, although it may to

an extent be replaced by mechanical fallibility.

3) Very much more complicated processes can be carried out than

could easily be dealt with by human labour.

The machine described by Turing would not only help human beings carry
out calculations—it would also be a substitute for human beings, able to carry
out some of the tasks that are considered ‘intelligent’ when accomplished by a
human. In Turing’s project, but not von Neumann’s, we are confronted by
a machine different from all previous machines. Machines of the new kind
will pursue their own tasks, without being constantly or completely guided
by human control. According to Turing, these machines can make mistakes
and learn, following different strategies, before finding the right one, in the
manner of human researchers who try to demonstrate a theorem or find
a solution to a problem.

According to the testimony of Ted Newman (who joined the NPL in
September 1947 but was in contact with Turing even before then), Turing
was very much focused on his special interest, the emulation of the human
brain:

Turing knew perfectly well what the job was he had to do, which was

to manufacture or design a machine that would do the complicated

sort of mathematics that had to be done in the Mathematics Division

of NPL. But he had all sorts of interesting things that he liked to do: for

example, he was really quite obsessed with knowing how the human

brain worked and the possible correspondence with what he was doing

on computers.
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Turing thought that the machine should be made very simple, and at

the same time should make everything possible that could be done.

His particular purpose was to permit the writing of programs that

modify programs, not in the simple way now common but rather in

the way that people think.14

Programs and programming: Turing’s vision

Having contrasted the views of Turing and von Neumann regarding the
scope of their machines, I will outline some of the ways in which Turing’s
thinking about programming was more innovative than von Neumann’s.15

The stored-program concept

There are various meanings of ‘stored program’ and these must be clearly
distinguished.

1. Instructions can be stored in memory coded as numbers. This idea came
directly from the arithmetization technique used in logic by Gödel. In this
sense the stored-program concept was present in the universal Turing
machine of 1936.

2. Instructions and data can be stored together using the same kinds of
symbols. This idea originates with the universal Turing machine.

3. Instructions expressed in the language of numbers can be manipulated
like any other numbers, leading to the idea of program modification.

Von Neumann certainly knew of Gödel’s arithmetization procedure.
However, in the ‘First Draft’ the only instruction element that could be
modified by another program was the addressing bit. In subsequent papers,
von Neumann did make use of the idea of encoding procedures as if they were
data. In contrast, Turing’s treatment of conditional branching in ‘Proposed
Electronic Calculator’ was based from the very beginning on the possibility of
manipulating instructions as if they were data. Carpenter and Doran say:

Von Neumann does not take this step [the manipulation of instruc-

tions as if they were numbers] but Turing is clear about it, and believes

it to be necessary for conditional branching . . . As von Neumann gave

each word a nonoverrideable tag, he could not manipulate instruc-

tions in this way. What we now regard as one of the fundamental

characteristics of the von Neumann machine was, as far as we know,

suggested independently, if not originally, by Turing.16
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Machine structure and the centrality of programming

Turing’s machine was based on a simple hardware structure. Only element-
ary operations were provided in the hardware—essentially the operations of
moving, erasing, and rewriting, logical operations, and basic arithmetical
operations. According to Turing, the most important element of the machine
was the instruction table. This approach to designing a computer is strongly
influenced by the structure of the universal Turing machine. Turing saw
clearly that the power of the machine lay mainly in the memory space and in
the ability of the ‘programmers’.

Turing’s attitude towards computer design was, perhaps, too advanced for
his contemporaries. His contribution to machine architecture can be appreci-
ated better now than during the 1940s, when the ACE group was struggling
with all kinds of technical problems, obstacles and organizational difficulties.
Turing’s purist approach was perhaps one of the reasons for the delay in the
implementation of the machine at the NPL.

The centrality of programming in Turing’s view of the machine enabled
him to foresee many key issues. He remarked in ‘Proposed Electronic
Calculator’:

We also wish to be able to arrange for the splitting up of operations

into subsidiary operations. This should be done in such a way that

once we have written down how an operation is to be done we can use

it as a subsidiary to any other operation.

In order to control the calling of the subroutines during programs, he
invented the concept of the stack algorithm (‘last in first out’ or LIFO).
(See his BURY and UNBURY routines in ‘Proposed Electronic Calculator’.)
This was absolutely new and there was nothing like it in von Neumann’s
‘First Draft’.

Machine form and popular form of instructions

Turing’s vision of the programming process was so clear that even in
‘Proposed Electronic Calculator’ he saw the necessity of different forms of
programming and described different levels of language:

Machine form—the instructions are expressed in full so as to be executed by
the machine.

Popular form—the instructions could be easily read and took the form of print
on paper rather than punching.
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Turing had a clear and accurate view of the programming process as it
would be fifty years later. His idea of a popular form of programming language
shows that he was aware of the difficulty of dealing with machine code and
that he saw the importance of ‘high level languages’ in order to communicate
in a more user-friendly way with the machine. Turing also saw the need for
a ‘general description of a table that will contain a full description of the
process carried out by the machine acting under orders from this table’.

The ‘levels of language’ picture is necessary linked with another issue:
the various simulative layers of the machine and the concept of a virtual
machine. The computer that Turing imagined had the capability of emulating
different machines, and each virtual machine could be used as a basis for
emulating a more complex machine. From this viewpoint, the programmer is
permitted to use various different ‘high-level’ languages and each is translated
into the language at the lowest level (the machine code) in order to be executed
by the computer.

The forking of the way

When he lectured to the London Mathematical Society on 20 February 1947,
Turing still seemed confident regarding the ACE project. A few months later,
however, Turing decided to take a sabbatical year, even though the NPL
group was working hard on the construction of the ‘Test Assembly’, under
the direction of Huskey. One likely explanation for this sudden lack of confid-
ence was the divergence of interests between Turing and the engineers. The
engineers wanted to produce a trial machine quickly to gain experience and
then build a small pilot model. This step-by-step strategy was probably better
than Turing’s own. Turing, however, was confident that the design he had
proposed was correct and would work. He did not want to waste time building
a reduced prototype, too small for the kind of computing that he envisaged.
(He was probably also aware, without waiting for a test machine to be built,
that the memory device chosen by Williams—the cathode-ray tube—was
better than the mercury delay line.)

Turing declared his interest in ‘machine intelligence’ at the outset
(see ‘Proposed Electronic Calculator’). Turing made the following points clear
in a letter to the cyberneticist Lord W. Ross Ashby:

1. Turing viewed the ACE as similar to the ‘Universal machine’ in the sense
that the ACE was able to process every instruction without any change to
the hardware.
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2. Turing planned to program the ACE to try out variations of behaviours
and accept or reject them according to some rules.

3. Turing wanted to use the ACE to construct models of the action of the
brain.

4. Turing proposed using the ACE to emulate the behaviour of neuron
circuits. This appears to be the first time that the simulation method
was described in the context of electronic general-purpose devices.17

Dear Dr. Ashby,

Sir Charles Darwin has shown me your letter, and I am most

interested to find that there is someone working along these lines.

In working on the ACE I am more interested in the possibility of

producing models of the action of the brain than in the practical

applications to computing. I am most anxious to read your paper.

The ACE will be used as you suggest, in the first instance in

an entirely disciplined manner, similar to the action of the lower

centres, although the reflexes will be extremely complicated. The dis-

ciplined action carries with it the disagreeable feature, which you

mentioned, that it will be entirely uncritical when anything goes

wrong. It will also be necessarily devoid of anything that could be

called originality. There is, however, no reason why the machine

should always be used in such a manner: there is nothing in its con-

struction which obliges us to do so. It would be quite possible for

the machine to try out variations of behaviour and accept or reject

them in the manner you describe and I have been hoping to make the

machine to do this. This is possible because, without altering the

design of the machine itself, it can, in theory at any rate, be used as

a model of any other machine, by making it remember a suitable set

of instructions.

The ACE is in fact, analogous to the ‘universal machine’

described in my paper on computable numbers. This theoretical pos-

sibility is attainable in practice, in all reasonable cases, at worst at

the expense of operating slightly slower than a machine specially

designed for the purpose in question. Thus, although the brain may

in fact operate by changing its neuron circuits by the growth of axons

and dendrites, we could nevertheless make a model, within the ACE,

in which this possibility was allowed for, but in which the actual con-

struction of the ACE did not alter, but only the remembered data,

describing the model of behaviour applicable at any time. I feel that

you would be well advised to take advantage of this principle, and do
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your experiments on the ACE, instead of building a special machine.

I should be very glad to help you over this.

I hope you will find time to visit me here next time you are

in town.

Yours sincerely,

A. M. TURING18

We can see in this letter some of the reasons for the divorce between Turing
and the NPL, given what was said above about the engineers’ goals. After
February 1947 his role in the team was less and less influential, because the
need to achieve results quickly was the main priority. Huskey took control
of the team that was supposed to build the Test Assembly and all the effort
was concentrated on this project. Turing was not explicitly against the Test
Assembly, but was not able to perceive its urgency and strategic importance.
He wanted to build the most powerful machine that was feasible and use it
to emulate the brain, while the mathematicians, engineers, and managers at
the NPL wanted to build a very small machine to prove the technology. There
was no room for compromise between these viewpoints and Turing became
increasingly marginalized. No doubt there was reciprocal esteem between
Turing and those on the other side of the debate but, in the end, the two sides
were deaf to one another.

The 1948 report: the start of machine learning studies

Darwin and Womersley agreed when Turing asked to spend a sabbatical year
away from the NPL. Darwin planned to have Turing back once the machine
was built and envisaged Turing rejoining the team when the machine had to
be programmed. The role Darwin imagined for Turing was in fact precisely
the one that Turing took up at the University of Manchester at the end of
his sabbatical—Darwin’s evaluation of the interests and capabilities of this
complicated scientist was correct.

Turing’s year in Cambridge was a turning point. He wrote a report on the
prospects for machine intelligence, a compendium of innovative ideas about
computers, machine intelligence, the learning process, and the theory of
knowledge.19 Some of Turing’s conclusions were:20

1. There is a world of difference between theoretical and practical machines.
In the case of practical machines there are relevant space–time
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considerations that oblige one to develop appropriate strategies if solutions
are to be obtained in a reasonable time. As Turing said:

Although the operations which can be performed by LCMs [Logical

Computing Machines—Turing machines] include every rule-of-thumb

process, the number of steps involved tends to be enormous.21

2. The universal Turing machine has this similarity to a practical computing
machine such as the ACE: in both machines the most important aspect is
programming. Each can emulate any other computing machine, if given
a correct table of instructions.

Nearly all of the PCMs [Practical Computing Machines] now under

construction have the essential properties of the ‘Universal Logical Com-

puting Machines’ mentioned earlier. In practice, given any job which

could have been done on an LCM one can also do it on one of these digital

computers.22

3. It is very important to organize knowledge in such a way as to guaran-
tee a flexible, rapid, efficient access to information. The structure and
organization of knowledge is vital to practical concerns.

Two facts which need to be used together may be stored very far apart

on the tape. There is also rather little encouragement, when dealing with

these machines, to condense the stored expressions at all. . . . As the

simplified Roman system obeys very much simpler laws one uses it instead

of the Arabic system.23

4. It is sometimes uninteresting to demonstrate an equivalence between
theoretical machines and practical ones:

It naturally occurs to ask whether, e.g., the ACE would be truly universal

if its memory capacity were infinitely extended. I have investigated this

question, and the answer appears to be as follows, though I have not

proved any formal mathematical theorem about it. . . . We should . . . have

to store n [a number referring to a block of memory], and in theory it

would be of indefinite size. This sort of process can be extended in all sorts

of ways, but we shall always be left with a positive integer which is of

indefinite size and which needs to be stored somewhere, and there seems

to be no way out of the difficulty but to introduce a ‘tape’. But once this

has been done, and since we are only trying to prove a theoretical result,

one might as well, whilst proving the theorem, ignore all the other forms
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of storage. One will in fact have a ULCM [Universal Logical Computing

Machine] with some complications. This in effect means that one will not

be able to prove any result of the required kind which gives any intellectual

satisfaction.24

The central part of the report, however, is a description of experiments that
Turing made with what he called ‘unorganised machines’ (see Chapter 5).
Unorganized machines behave according to rules that are not determined in
advance. A random element may be involved. Turing’s experiments aimed at
investigating the possibility of creating machines able to emulate aspects of
intelligent behaviour.

Learning and ‘interference’ were crucial to Turing’s method:

If we are trying to produce an intelligent machine, and are follow-

ing the human model as closely as we can, we should begin with

a machine with very little capacity to carry out elaborate opera-

tions or to react in a disciplined manner to orders (taking the form

of interference). Then by applying appropriate interference, mimick-

ing education, we should hope to modify the machine until it could be

relied on to produce definite reactions to certain commands.25

As a result of learning, the machine produces different results for the same
input at different times. Turing emphasized that machines can make mistakes
during the learning process. It is perfectly possible for the machine to fail to
find a solution that does exist or to produce a solution that is incorrect.

External influence is central for the learning process. Man does not develop
his intelligence in isolation. Acquiring new knowledge resembles an inter-
active social activity. Nor are machines closed systems. Turing compared the
training of an unorganized machine with the process of education of a man:

We might say then that in so far as a man is a machine he is one

that is subject to very much interference. In fact interference will be

the rule rather than the exception. He is in frequent communication

with other men, and is continually receiving visual and other stimuli

which themselves constitute a form of interference.26

Turing’s ideas about machine intelligence anticipated the social intelligence
model27 and also the Multi Agent Systems (MAS) approach, now much
followed in Artificial Intelligence.28
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Retrospect

Turing’s vision of the computer was many decades ahead of its time. From
his perspective, computer science and Artificial Intelligence were almost the
same discipline. Despite his consummate familiarity with the technological
state of the art, he was impatient of the technological constraints of the
time, and he tended to find practical difficulties annoying. Paradoxically,
his vision isolated him from the community struggling to create the first
general-purpose electronic machines. Turing’s contributions to computing
were immense. Every programmer should read his Programmers’ Handbook29

for some excellent tips! Modern theorists can learn much from his work.
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8 Computer architecture and the
ACE computers

Robert Doran

Introduction

The style of computer architecture proposed by Turing was very practical,
given the circumstances of the time. He anticipated later ‘low level’ archi-
tectures, and higher layers of abstraction for programming. This chapter
considers the architecture of the ACE computers in the light of developments
in computer architecture over the fifty years that followed. The first part of
the chapter reviews the concept of computer architecture and outlines the
history of the RISC (Reduced Instruction Set Computer) movement.

A student of computer architecture, if introduced to the Pilot ACE as an
historical artefact, might be led to claim that the Pilot ACE was the first
RISC architecture, and also the ultimate RISC, for it had no operation code
and therefore only one instruction! Of course, a claim for such reasons is
ill-founded, since there are ‘op-codes’ in the Pilot ACE, although embedded
in the ‘register’ addresses (see the next chapter). Nevertheless, a closer exam-
ination of the Pilot and the earlier proposals for the ACE does show that the
ACE’s claim to be the first RISC architecture has merit.1

Computer architecture

Let’s define our terms carefully. The architecture of a computer is the interface
between its software and its hardware. The architecture includes the instruc-
tion set. It is what compiler writers and programmers produce code for and
what computer designers implement.

In the beginning, when each individual computer was a new design,
the term was not needed—the computer as designed represented the
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architecture. The concept was required by the late 1950s, when there began to
appear sequences of computers which had different designs and yet could run
the same software—were ‘software compatible’, as we would say nowadays.
The term ‘computer architecture’ itself was defined by IBM to describe the
hardware–software interface as a construct independent of the design of
a particular model of computer.2

Although the use of the term ‘computer architecture’ as just described
is standard, there is a formidable confusion of terminology. The high-level
aspects of a computer’s design (such as caches, pipelines, etc.) are also
collectively called the computer’s architecture. Sometimes the distinction is
marked by using the terms ‘instruction set architecture’ (ISA) and ‘design
architecture’, but often the word ‘architecture’ is simply used ambiguously
and it is very easy to get the two concepts confused. (The confusion is
reinforced by the fact that most of what computer architects discuss, for
example at the annual international symposia,3 is design architecture.) Here
we will use the term ‘architecture’ in the sense of ‘computer architecture’,
the machine-independent interface.

The architect’s task

Having defined the term, let us consider in more detail what the computer
architect has to achieve. Given that the architecture is the interface between
hardware and software, there are two overriding criteria that an architecture
should meet. First, the architecture should allow computers to be reasonably
easy to design and reasonably cheap to manufacture. Second, the architec-
ture should be suited to programming—it should not be difficult to write,
or translate, programs having good performance.4 There is always a tension
between these two goals (and at their extremes they are opposed to each
other). For example, a machine without floating-point instructions is simpler
to design, but it is then impossible to write floating-point programs with
acceptable performance.

The hardware–software trade-off is never simple. If the architecture is to be
reasonable to implement it must always be influenced by issues of hardware
design, by what is feasible at the time. Sometimes this effect is obvious, as with
the restriction of address length in instructions to suit the size of memory
that can be provided. Sometimes the effect is more subtle and general, such
as allowing instructions to overwrite other instructions because they will be
stored in the same kind of memory. In the other direction, the architecture
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will be influenced by programming needs (e.g. in specifying address modes or
supplying some kind of subroutine linkage mechanism). The architect has to
make a judgement about what architectural features will ease programming,
or make programs run faster. Sometimes the course of action is easy and
clear, such as aiding the operating system code with protection-checking
instructions (which are otherwise very difficult for software). However,
it is important not to include architectural detail that aids one particular
program (the operating system excepted), because there are just too many
programs to choose from. It is also possible to include features that look
useful (such as linked-list lookup instructions) but which end up being unused
because they are too restrictive, or because there are better software solutions
(e.g. hashing).

Although always keeping technology in mind, the architect is often not
a technologist, and may therefore have a mental model of technology and
design that is in some respects inaccurate. An architect might well under-
estimate the ingenuity of the hardware designer. Some architectural feature
that on the surface appears difficult or costly may be avoided by the architect,
even though it could in fact be ‘designed around’. For example, the extra
memory references seemingly implied by virtual memory translation can be
bypassed, using a translation look-aside buffer. Or the architect might avoid
specifying too many registers because of their cost, yet find that the designer
has ways of substituting slower memory so that cost can be reduced without
significant loss of performance.

At a given time it might seem appropriate to give more weight to one of the
main criteria than to the other. In the 1960s, for example, when programming
became recognized as a serious problem—indeed, as the perception changed
so that a computer system was viewed as essentially software with hardware
support—more emphasis on software seemed reasonable. If an architecture
gives more weight to software, it is termed ‘high level’, whereas if the emphasis
is on ease of hardware design, the architecture is termed ‘low level’.5 The
question of how high a level the architect should adopt has always been of
interest; it was a topical issue in the 1960s and 1970s, and is still with us
today.

The choice of architecture and its level is complicated by the fact that
neither the hardware design nor the software design are fixtures, but them-
selves respond to the architecture. Sometimes this occurs in an obvious
way. For example, if a virtual memory mechanism is introduced into
the architecture, the hardware designers have to adapt, and software has to
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use the feature. But the influences are often subtle and long term. Hardware
designers might feel constrained in their use of parallelism by the archi-
tecture’s serial nature. Software designers might view some aspects of the
architecture as intrinsic and adapt their programming languages accordingly
(as in the case of goto statements, mirroring branches, and variables,
mimicking memory locations).

It is clear by this stage of the discussion that specifying an architecture
is going to be a delicate task, requiring some wisdom, and the ability to
make judgements. But the job is, in fact, made even more difficult by further
constraints.

Architecture lines

Very few computer architects have the luxury of starting from scratch. Most
computers are software-compatible successors to earlier computers. Because
of the great costs involved (for both customer and vendor) in making changes
to all the software that is dependent on the architecture, successive computers
in a line should be upwards compatible with their predecessors. Even with
a new computer, there is a tradition against which the new architecture is
to be matched, and in any case the architect must keep in mind that this
computer could be the first of a sequence.

Compatibility requires that old architecture be carried forward. For the
manufacturer or vendor of a line of computers, it is essential that the archi-
tecture be as independent of the quirks of particular implementations as
is reasonable. If not, the move from one model to its successor will be
accompanied by the cost of modifying software. Also the architecture will
grow without bound, as it gradually incorporates the design details of all
its implementations. Design detail in the architecture should be avoided,
unless it can be argued that the particular detail will clearly continue to
be valuable in the future. Nevertheless, it can be tempting to allow the
architecture to reflect a feature of a particular design—for example, by
specifying the relative execution time of instructions—because this often
does allow programs to be written that run faster on that design. This can
also ease the design difficulty simply by virtue of describing what has to be
implemented.

The importance of design independence was well understood by the large
computer manufacturers. At IBM, for example, strict procedures were laid
down to maintain architectural purity.6 However, it seems impossible to
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keep the architecture completely separate from design, and architectures do
gradually grow as they are implemented in successive designs. There are times
when there is no other reasonable course than to allow dependence to occur.
Address length is the obvious example. Nevertheless, with some thought
architects can make sensible provision for future expansion (as in the case
of the IBM 360, where the address length was separated physically from the
number of bits in the instruction).

Although the architect of a new line of computers is constrained, he or she
certainly has more freedom to break free from the past. It is a good time to
adapt to current and forthcoming technologies, and to dispose of baggage
resulting from architectures’ past dependencies. It is a natural time to move
the architecture closer to hardware, to a somewhat lower level. The resulting
performance boost and design-cost reduction can be very useful in allowing
a new enterprise to develop in the face of established competition.

In summary, computer architects need to maintain compatibility with
previous architectures, they need to take current technology into account,
they must allow for future developments in technology, and yet they must
keep the architecture independent of technology!

Evaluating architectures

Given that the architect’s task is so difficult, how can one compare
proposals for different architectures in order to decide which is superior?
Quantitative studies have a role to play (programming instruction
frequencies, in particular). The results have to be considered carefully,
however, for the studies are generally based on assumptions regarding both
the design that is to be used for the hardware and the technology that will
be used to generate the software. It is not surprising that the evaluation of
computer architectures has to be partly qualitative, and can therefore be very
contentious.

It may be that there is no absolute answer as to what architecture is best.
Although many details are important and can be judged objectively, perhaps
in the end it does not matter what the architecture is, so long as a sensible
decision is made and the designers can get on with the job. The fact that
such different architectures as Intel, IBM 360, Unisys A-series (Burroughs
B6700), IBM AS400, Power PC, and Alpha, among others, are all surviving
today7 and serving useful purposes perhaps tells us something about the
importance of arguments about architecture.
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The RISC movement

The RISC movement arose in the 1980s with the possibility of high-
performance single-chip computers. Most computer architectures at that time
were suited to a greater number of logic gates than could be achieved in a
single chip (with the circuit densities then possible). It was clear that low-level
architectures would fit more easily on a single chip. ‘A great deal depends on
being able to fit an entire CPU design onto a single chip’, announced an article
in Computer Architecture News.8

Although a fast single-chip computer was the overriding goal of the RISC
movement, the term ‘Reduced Instruction Set Computer’ actually means
a computer with a small number of simple instructions. The claim was
that making computers simple also makes them faster. Some proponents
of RISC took this claim to extremes and it is difficult to give credence to
some of what was said. For example, a 1985 article stated: ‘By leaving out
seldom-used instructions, computer designers may improve supermini and
mainframe performance by a factor of 2 or 3 while reducing costs by an equal
proportion.’9 Despite the doubtful nature of claims made by some of RISC’s
supporters, the general thrust of RISC was to simplify the hardware—a pretty
sensible design principle.

It was also clear that the architectures of some widely available
computers—especially models with which the proponents of RISC were most
familiar—were no longer appropriate, given the current technologies. This
applied particularly to the computers most commonly used in academia,
where the RISC proposals evolved: the DEC PDP11 and its successor,
the VAX.10 (The PDP11 and VAX had many clever address modes; but unfor-
tunately these were obtained with an instruction decode that was intrinsically
serial and which, although appropriate for the first PDP11 designs, placed
a continuing burden on successors.11)

So the RISC designers were after single-chip designs, simple designs,
and unlike-VAX designs. They were willing to go to the low-level extreme
in order to make the architecture appropriate to technology: ‘RISC
theory . . . connotes a willingness to make design tradeoffs freely and
consciously across architecture/implementation, hardware/software, and
compile-time/run-time boundaries in order to maximise performance.’12

However, their models of computer design were often misconceived. The
following statements by proponents of RISC would have been recognized as
questionable at the time by computer designers in industry.
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Microcode leads to slower control paths and adds to interpretive

overhead.13

[T]he peak pipelined execution rate is determined by the longest piece

of the pipeline.14

Traditional pipelined machines can spend a fair amount of their clock

cycle detecting and blocking interlocks.15

The early RISC architectures were extremely design-dependent. This lead
proponents of RISC to include features in their architectures which proved
unwise in terms of product-lines. There were two early proposals, one from
the University of California at Berkeley and one from Stanford University.
The Berkeley machine16 had large register files and a complex register-
windowing mechanism to use these registers.17 In both machines the
characteristics of their four-stage pipelines appeared in the architecture as
delayed branches and register loads. The Stanford machine18 even brought
the pipeline design fully into the architecture and it became the compiler’s job
to produce sequences of instructions that would work correctly—hence the
acronym MIPS: ‘Microprocessor with Independent Pipeline Stages’. (The next
chapter contains an overview of the MIPS instruction format.)

Was there any understanding among RISC’s proponents of the importance
of technology independence? A scan of papers from the time reveals no
mention of this issue. A major (and sensible) theme underlying the RISC
movement was that compiler technology had improved and could be relied
upon to bridge a wider gap between hardware and programming. Perhaps it
was thought that compilers could be modified for each new model, so that
technology independence could be ignored. Certainly this proposal has been
made before, but it has never turned out to be successful in practice, because
there is just too much software to be adapted to each processor model (and
not all the software is controlled by the vendor of the computer).

Nevertheless, there was much that was sensible and good about the early
RISC architectures. The Stanford and Berkeley projects led to commercial
architectural lines as MIPS and SPARC. Other vendors followed the trend
with their own new architecture lines, though the architectures from estab-
lished companies tended to be less design-dependent. In introducing the
RS6000 architecture (later adapted to become the Power PC), IBM even
redefined the term RISC as ‘reduced instruction set cycles’—which just
means ‘fast’!19
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For many years it was widely believed that a change of architecture to
RISC was necessary in order to gain acceptably high performance. Some
companies made a costly across-the-board change to their architectures.
However, Intel, the more established vendor, stayed with a compatible line of
processors.20 The MIPS and SPARC lines also developed over time, increasing
in performance and gradually becoming design-independent.21 Yet the long-
term outcome seems to be that the complex architecture of Intel has managed
to maintain momentum and competitive performance compared to the RISC
architectures.

This perhaps means that many of the arguments for the superiority of RISC
were ill-founded. There is no doubt that changing to new, simpler architec-
tures made many developments possible which otherwise would have been
mired in complexity. But one cannot help wondering whether all the costly
moves to RISC architectures were in fact necessary.

The architecture of the ACE

As mentioned in previous chapters, the architecture of the ACE is strikingly
different from that of other computers. When Turing wrote the first ACE
proposal, he certainly was not constrained by compatibility with the past
(except for the input–output devices, perhaps)—and it is exceedingly doubtful
that he had in mind a future software-compatible product line. He did have
the ‘tradition’ of the EDVAC proposal to draw on, but he characteristically
came up with his own approach to architecture.

Ease of design of a fast computer was the natural immediate goal. (That a
machine could be got working quickly, with wartime urgency, permeates
Turing’s 1945 proposal.) His proposal was at the computer design level.
The architecture proper has to be abstracted from the design. Essentially,
it is what was appropriate to make the design work. For example, the instruc-
tions were of various formats, with the fields of bits corresponding to what
was needed to control the hardware directly (or after a simple decode). There
were no instructions that actually did a complete and useful piece of work,
such as a multiplication; the instructions were rather at the level of the steps
that go into performing a multiplication. Nowadays we would classify the ACE
as a very low-level architecture, a micromachine or inner computer at the
register transfer level.22

Turing does not discuss the issue of high versus low levels of architecture,23

but the modern reader of his proposal gets the impression that he clearly
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knew what he was doing. Later he had this to say, in comments made at the
Inaugural Conference for the Manchester University Computer in July 1951:

In connection with a remark to the effect that it was difficult to do

programming with the A.C.E., Mr Turing (speaking as one who had

at one time been connected with that machine) admitted that this was

so, and that ease of programming had knowingly been sacrificed to

speed.24

It seems reasonable to say that Turing was, in giving emphasis to speed
and ease of hardware design, proceeding down the same path that would be
followed by the RISC movement when the move to a single-chip computer
was contemplated.

Turing’s approach now seems sensible and appropriate. Strangely, though,
it was not the popular path to follow at the time. The fashion was set by the
architecture of the Princeton IAS machine, laid out by von Neumann and
his collaborators.25 Although the von Neumann architecture did have design
dependencies (two instructions packed per word, for example), it was clearly
much more hardware-independent than a computer at Turing’s level. It had
operation codes that actually did something whole for the programmer. In a
sense, the von Neumann machine was a high-level architecture, intended to
be easy to program (though the programming technology to which it was
directed was hand-coding)—a line of development leading ultimately to the
PDP11 and the VAX.

The von Neumann architecture was well publicized and widely followed,
while the ACE languished with few successors, and ACE-style architecture
for programming died away. I have no understanding of why the low-level
approach was not followed at the time, since it seems so sensible in retrospect.
Taking a positive view, perhaps it was the hardware-independence of IAS that
caused its spread—it was a de facto standard that could be accepted without
question, so enabling designers to get on with the job. Less positively, this
is perhaps an early example of victory going to the group with the better
publicity—certainly not the last time that this would happen in the computer
industry!

Layered architectures

There is more to the ACE’s architectural legacy than its being low level and
RISC-like. One of the most profound developments in our understanding
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of architecture is that architectures can be layered. One architecture can be
defined in terms of a lower level which can in turn be defined in terms of a still
lower level, and so on. (This is taken to extremes in data communications with
the ISO OSI seven-layer model, for example.)

A two-level architecture has become standard for computers. This accounts
for some of the confusion in terminology: the two levels are the computer
architecture and the design architecture that implements it.

Wilkes introduced microcode,26 which allowed for two levels of architec-
ture with the mapping between the levels performed by hardware. The inner
level or micromachine has an architecture very like Turing’s ACE. The level
for programming could be as specified by von Neumann, with no significant
loss of performance. With microprogramming, the computer may be high
level in its architecture but low level in its design architecture, which made
the job of satisfying both the main architectural criteria much easier. It also
offered the prospect of using a much higher-level architecture than would
otherwise be sensible (an opportunity taken to extremes in the 1970s).

Turing recognized the need to simplify programming. He never intended
the ACE to be programmed at the machine level, and his 1945 proposal
outlined one way in which the programming process could be organized.27

He proposed that a sequence of subroutines be developed, to be used by
the programmer in a ‘popular’ abbreviated form. The program expressed as
the sequence of subroutines was to be expanded into machine language by
software before execution (what we would now call assembly, loading and
linking).28 In the examples he gave, Turing showed how the ACE could be
programmed as a machine at the level of von Neumann, by using some
‘registers’ as accumulators, some to handle indices, et cetera (here following
the EDVAC architecture). Of course, Turing could also go higher than the
von Neumann model had, and he immediately introduced subroutine linkage
instructions with a stack and BURY/UNBURY ‘instructions’ to push and pop
data to/from the stack.29

This approach to dual levels is a brilliant idea, but has some practical
drawbacks. Some of these, such as reporting errors at the programming
rather than machine-language level, were faced, and gradually dealt with,
by compiler writers over the years. A serious issue arises from the need of
a computer system’s vendor to control the hardware–software interface.
If this interface is itself a software construct, then control is not feasible
unless the vendor restricts the ability of the user to access the real hardware.
The beauty of Wilkes’ approach is that it retains control by the vendor.
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(There was a period in the 1970s when there was a flirtation with user-access
to microcode, but it was quickly stamped out—although not before a plethora
of new instructions was introduced, causing trouble for some architectures
for years to follow.)

Only one computer has used an approach similar to that proposed by
Turing. In the highly successful IBM AS400, the hardware–software interface
is very high level and quite unlike any other (e.g. in its use of instruc-
tion numbers, rather than addresses, for branch destinations). However,
there is also a lower architecture, not available to the user, to which all
programs are translated before execution. No user is allowed to ‘see’ this
lower level, so the vendor maintains control.30 (The lower level was origin-
ally System/370-like, but was later changed to Power PC, with no impact on
customers, showing the flexibility of the approach.)

There is a further approach to architecture layering, which is to emulate
one computer by another. This, although involving a performance penalty,
has many advantages, and is widely used (e.g. for the Java virtual machine
today). This was not part of the Turing proposal originally, but he later
made the following comments (continuing his remarks at the Inaugural
Conference for the Manchester University Computer):

He suggested that, if this difficulty [of programming the ACE] should

prove very burdensome, it might be wise to use the A.C.E. a good deal

in connection with interpretive routines.

An interpretive routine is one which enables the computer to be

converted into a machine which uses a different instruction code

from that originally designed for the computer. The code is applied

by the interpretive routine rather than by the computer direct. A

good example of such a routine was one to make floating binary

(or decimal) point working possible. The chief objection to using such

routines lay in the loss of speed which went with them. With the A.C.E.

this loss could more easily be afforded than with other machines,

and furthermore the programming difficulty would disappear, for

the labour of making the interpretive routine itself is small with

any (machine) code, whilst the labour of programming with the

(interpretive routine) code was independent of the machine code.

Although the kind of interpretation being discussed is different from that in
the original ACE proposal, it does appear that Turing could have been aware,
even in 1945, that the programming level of use of a computer could be
different from the hardware implementation level, and that a simple low-level
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design could allow a more efficient interpreter to be made than is possible
with a higher-level computer.

Conclusion

When reading Turing’s work one is always impressed by the broad scope of
his thought. He clearly had a very deep understanding of computing and of
how it should be organized. Of course, he had been thinking for many years
about issues such as that of one machine interpreting another, in connection
with his theoretical Turing machines. Naturally enough he could also see the
practical applications of these ideas.

It is of great interest that the struggle between high- and low-level archi-
tectures existed even before the first computers were designed. We can indeed
conclude that the ACE is a RISC machine in the sense of having an archi-
tecture heavily influenced by the design of the computer. The concept of
programming at a higher level than the raw machine was an integral part
of the original ACE proposal. With more understanding of the processes
involved, we (unlike the practitioners of the time) can appreciate the virtues
of Turing’s approach.
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30. An earlier continuing line of architecture, Unisys A-series (Burroughs B6700),

also maintained strict control over access to the machine language. All programs

had to be written in a higher-level language and translated by a vendor-supplied

compiler. In this case the restriction is a key part of the security and integrity of

the entire system.
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9 The Pilot ACE instruction
format

Henry John Norton

A boy in a man’s world

I left school at eighteen intending to do my National Service in the RAF before
going up to Cambridge to take a Mathematics degree. When I was declared
medically unfit for armed combat I had to find employment for a year. A group
had been set up at the National Physical Laboratory to make some sort of cal-
culating machine and they were looking for someone to do something called
‘programming’. My first day at the NPL was October 1947. Mike Woodger
showed me round. In one room there was a solitary man, Cyril Cain, sitting
on a lab stool with several vertical copper rods in front of him. He was sol-
dering bits of wire between them according to a diagram on a scruffy bit of
paper. ‘He’s building the ACE’, Mike said. In those days Maths Division had a
growing library of programs, but no computer.

The head of the group I had joined I knew always as Dr Turing (I never
called him Alan to his face). It was only later that I learnt of his fame. He and I
used to compete in middle distance races—he always beat me. I have been told
that he could often be seen striding the streets of Teddington in bare feet—so
as to harden the skin.1 My main memory of him is his irascibility. On one
occasion we were visited by Andrew Booth of Birkbeck College, who later
developed rotating drum storage. Booth said something that annoyed Turing,
who shouted at him as if he were a naughty little child. This was in front of
the whole team. I was amazed that a grown man could behave in such a way.
Another thing I remember is that Turing had a faulty chain on his ancient
bicycle. Rather than repair it, he had found that by counting the number
of rotations of the pedals he could get off and walk a few paces and then
remount and ride without the chain jumping off the sprocket.2 I translated
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several articles about Turing from Russian journals and sent copies to his
mother. In return she wrote at length, telling me that Alan would never have
committed suicide.

Turing’s second in command was Jim Wilkinson, who later earned fame
for error analysis in matrix computation. I always called him Wilkie. Wilkie
claimed to get all his inspiration riding his bicycle. He had a fund of stories.
Snow lay six inches deep over the whole of Kent when he went for a medical at
Fort Halstead at the beginning of the war. During the examination the doctor
made him remove his glasses and, pointing to a window that Wilkie could
hardly see, asked ‘What are those men doing?’. Wilkie made a calculated
guess and said ‘Shovelling snow’. He passed the medical. He also told me that
before his honeymoon he wanted to be as fit as possible and this included a
check-up at the dentist. He felt he was justified because the dentist found a
tooth that needed a filling. Unfortunately something went wrong with the
filling and he had to take aspirin throughout his honeymoon.

Wilkinson told the following story about Turing (the words are Wilkie’s
own, from a letter).

During the early stages of the development of the ACE some of the

practical work was done at Dollis Hill Research Station some fourteen

miles from NPL. The journey from Teddington to Dollis Hill is rather

tiresome and one day Turing announced that he intended to run there

next time. This was regarded as a joke until the next occasion for the

journey came and Turing proceeded to put on his running shorts and

set off at a steady pace. I travelled in a more orthodox manner, by train

and two buses, and arrived to find that Turing had been there for some

time and appeared to regard his behaviour as in no way remarkable!3

The Pilot ACE Instruction Set Architecture

The Instruction Set Architecture (ISA) is an important abstraction for the
interface between the hardware and the low level software. It standardizes
instructions, machine language bit patterns, etc. It has the advantage that
we may use different implementations of the same architecture on different
machines. (One disadvantage is that it acts as an obstacle to innovation.) The
modern ISAs include: 80 × 86/Pentium/K6, Power PC, DEC Alpha, MIPS,
SPARC, and HP.
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One way of classifying instruction sets is according to the number of
operands, as follows:

One-address machine code—as its name suggests, this has a single address
defining an operand. If a second operand is involved, it is contained in a special
word store called the ‘accumulator’, with various associated logic and arith-
metic input gates. Another part of the instruction, the ‘opcode’, defines the
operation to be performed on one or both operands.

Two-address machine code—this has two addresses for the operands. One of
these addresses also indicates where the result is to be stored. The opcode
defines the operation to be performed on the operands.

Three-address machine code—as for two-address, except that a separate address
is given for the storage of the result.

Four-address machine code—as for three-address, with the addition of a part of
the instruction that defines the address of the next instruction.

Some architectures use all these types of instruction format, while others
use a restricted set. The Pilot ACE instruction set was different from all of the
above. It had three addresses—operand, result, and next instruction—and
no opcode.

Today the dominant architecture is 80 × 86, which evolved from the 16 bit
architecture of the 8086 in 1978 to the Pentium Pro of 1995 with MMX
(multimedia extensions) added in 1997. New features were added wily-nily.
This architecture has:

• instructions from 1 to 17 bytes long
• one operand acting as both source and destination
• one operand coming from memory
• complex addressing modes (e.g. ‘base or scaled index with 8 or 32 bit

displacement’).

Despite the architecture’s complexity, the most frequently used instructions
are not too difficult to build and compilers can avoid the portions of the
architecture that are slow.

In contrast the MIPS (Multiprocessor with Independent Pipeline Stages)
architecture is based on a few instruction types and is known as a ‘Reduced
Instruction Set Computer’ (RISC). Like the Pilot ACE, all instructions are
32 bits long. It is very structured with no unnecessary complications. There
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are only three instruction formats:

R-type

opcode rs rt rd shamt function

The opcode defines the type of operation, such as an arithmetic or logic or
shift operation. rs and rt are registers containing the operands and rd is the
register where the result is to be stored. ‘shamt’ is the amount of shift in that
type of operation. ‘function’ defines the type of arithmetic or logic operation,
e.g. floating-point division.

I-type

opcode rs rt 16 bit address

Since all arithmetic, etc, operations can be performed only on words in
registers, there has to be a way of moving words between memory and
registers. This is achieved by the I-type instruction. The word in the memory
position defined by rt and the 16 bit address is put into, or taken out of, register
rs depending on the opcode. This format is also used for conditional jumps.

J-type

opcode 26 bit address

This is used for unconditional jumps.

Of course, the full MIPS instruction set has more facilities than these,
but this description gives the flavour of a modern ISA.

The Pilot ACE

The Pilot ACE instruction format is:

NIS Source Destination Characteristic Wait Number Timing Number Go Digit

Each instruction contains the address of the next instruction. This address
is given in two parts. NIS or ‘Next Instruction Source’ is the address of
the memory unit—a mercury delay line—containing the next instruction
(e.g. DL 1). The Timing Number gives the position in that memory line at
which the instruction is to be found.

Every instruction is of the same form: Transfer data from Source to
Destination. The Source and Destination are always mercury delay lines
(except in some special cases such as input and output, multiplication,
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division, and the alarm). The Characteristic specifies the number of words
that are to be transferred to the Destination. Each word consists of 32 bits.

The Go Digit may be used to halt the execution of an instruction. If the
Go Digit is 1 the instruction is executed straight away. If the Go Digit is 0 the
machine does not execute the instruction until it receives a signal either from
the operator at the console, or from the card reader indicating that the card
is in position to be read, or the card punch indicating that a row of a card is
ready to be punched.

The Wait Number is used to delay execution of the instruction. When
the instruction arrives at TS COUNT—which would nowadays be called the
instruction register—the data that is to be transferred may not yet be avail-
able at the Source. By setting the Wait Number to 1, say, the programmer
causes the instruction to wait one minor cycle—32 ‘ticks’—before executing.
Programming the Pilot ACE required a detailed knowledge of where each
word of data is at each point in time. The programmer’s aim is always to
position data in the Sources in such a way that the Wait Number is as small
as possible—preferably zero.

There is no opcode in the instruction. Which operation the instruction will
perform is implicit in the Source and Destination. For example, if the Source
is S 21 then the data that the instruction transfers is the logical sum of the
contents of the two temporary stores TS 26 and TS 27 (also mercury delay
lines):

S 21 = TS 26 & TS 27.

If the Destination is D 17 then the instruction transfers to that destina-
tion the result of adding the contents of temporary store TS 16 to the
Source:

D 17 = S + TS 16.

Thus the instruction

DL 7 S 21 D 17 1 0 2 1

adds the contents of TS 16 to the logical sum of TS 26 and TS 27 and transfers
the result to D 17. Only one word is transferred. Because the Wait Number
is 0 and the Go Digit is 1, the instruction is carried out without a pause.
The next instruction is the second word in DL 7.
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Notes

I am greateful to Jack Copeland for assembling this chapter from various Sources.

1. Thanks to Geoff Hayes for this information.

2. Editor’s note. It seems that Turing had the same bicycle at Bletchley Park during the

war. He was still riding it after he left the NPL for Manchester University (Tommy

Thomas in interview with Copeland (March 2003)).

3. Letter from Wilkinson to Newman, 10 June 1955 (among the Turing Papers in the

Modern Archive Centre, King’s College, Cambridge (catalogue reference A.7)).
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10 Programming the Pilot ACE
J. G. Hayes

Introduction

I wrote programs for the Pilot ACE from about the time that it was moved
into Mathematics Division in February 1952 until early 1954. (I have never
written a computer program since, so I am probably the only one who did
a fair amount of programming using solely the machine’s first implemen-
ted coding system.) I shall give an overview of the programming process
against the background of the only one of my programs that has stuck in
my mind. This program was for the back-substitution phase of solving a set
of linear algebraic equations, with multiple right-hand sides, up to order 32.
(The program has stuck in my mind because of the considerable effort that
was needed to optimize it.)

Storage

The main features of the Pilot ACE from the point of view of the program-
mer were the storage, the adder, and the multiplier. There was initially no
divider so division had to be achieved by programming. The numbers, or
‘words’, in the store each consisted of 32 binary digits—4 bytes in modern
terminology. (A binary digit is either a one or a zero, these being repres-
ented electronically by a pulse or no pulse, respectively.) The main storage
consisted of 10 delay lines (DLs for short), tubes filled with mercury down
which pulses of sound passed. At one end of the DL the electronic pulses
representing the digits in a word were converted into sonic pulses, and these
were converted back into electronic pulses when they reached the other end
of the DL. The electronic pulses were then fed back into the DL, and the whole
process was repeated again and again. The delay due to the low speed of
sound (relative to electronic) transmission provided the storage capability of
this form of memory.
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The DLs each held 32 words. The time of transmission along a DL for
a single word was called a minor cycle (mc) and the time of transmission for all
32 words in a DL was called a major cycle (Mc). One major cycle occupied
approximately 1 millisecond.

In addition to the DLs there were a handful of shorter delay lines called
Temporary Stores (TSs) and Double Stores (DSs), able to store one word or
two words each. The DLs provided the storage for all the program instructions
as well as for numerical data to be used in the calculation. The TSs and DSs
were there to speed up the computation by saving time that would otherwise
be lost waiting for a particular word to come out of a DL.

The following figures give some idea of how all this compares to today’s
machines.

Pilot Model TSs and DSs: 40 bytes DLs: 1280 bytes
PC (2000) Internal cache: 8160,000 bytes RAM: 384,000,000 bytes

The two stages of programming

A program was constructed from very basic instructions. Each instruction
transferred a number from one place, called the Source, to another, called
the Destination. The transfer could be, say, from the input to a storage
location, or from a storage location to the adder or multiplier.

The first of the two stages of writing a program was the construction of
the ‘flow diagram’. In the flow diagram, transfers were written in the form
‘4–11’, meaning ‘copy the word from DL 4 into TS 11’. Which word in DL 4

would be copied depended on the timing—on which word popped out of the
Delay Line when the transfer took place. So the instruction had in addition to
control the timing of the transfer. The instruction also had to say where the
next instruction was to be found.

Some of the Destinations were not storage locations, but initiated particular
operations. For example, sending a number to Destination 17 would add the
number to the one stored in TS 16. Sending a number to Destination 18 would
subtract it from TS 16. Sending any number to Destination 19 would multiply
the numbers in TS 20 and one half of DS 14 together and give their double-
length product in DS 14. The full list of Sources and Destinations is given in
Table 1 of Chapter 11.

At the second stage of programming, known as ‘coding’, the programmer
produced the instructions that were to be entered into the computer. At this
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stage an instruction would have its full form, explained in the preceding
chapter:

N S D Ch W T G

W is the Wait Number and T is the Timing Number. If W = T = 0 then,
once the instruction was read by the machine, the content of Source S would
be sent to Destination D two minor cycles later. During that same minor cycle
the next instruction would be read from Delay Line N. In the general case,
W and T contributed in the following way: if the instruction was read in minor
cycle k, transfer would start in minor cycle k + W + 2, and would continue
into minor cycle k + T + 2, at which point the next instruction would be read
from Delay Line N. Thus the transfer would take place for (T − W + 1) mc
if T > W, but for (T − W + 33) mc if T < W. This was so if the Characteristic
(or ‘Serial Digit’) Ch was zero, but when this was unity, the transfer went
on for only one minor cycle. The next instruction, though, was still read at
k + T + 2, allowing it to be located in any minor cycle. Finally, the Go Digit G
had no effect when unity, but, when zero, held up the transfer until a signal
was received (e.g. from the card reader, indicating that a row on the card
had reached the reading head).

In the flow diagram, the instructions would be written in the order in which
they were to be carried out, and so were easy to understand. The coding form,
though, was a list of instructions in the order in which they were stored
in each DL. The allocation of instructions into particular positions in the
store—a process known as ‘optimum coding’—aimed generally to minimize
the waiting time and so reduce the computation time.

When an instruction had been allocated to its particular minor cycle in
a DL, the DL’s number, with the number of the minor cycle as a suffix, was
added in front of that instruction as it appeared in the flow diagram, so as
to complete that line of the diagram. The next chapter gives a number of
examples.

So now on to a mathematical computation to be programmed.

Programming back substitution

One standard way of solving a set of linear algebraic equations starts by
subtracting an appropriate multiple of one equation, called the pivotal
equation, from each of the other equations in turn, so as to eliminate from
all of them the first variable, x1, say; then selecting one of these modified
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equations to be the next pivotal equation so as similarly to eliminate x2 from
the rest of them, and so on. The original equations can then be replaced by
the set of pivotal equations, which can be written

a11x1 + a12x2 + a13x3 + a14x4 + · · · · · · · · · · · · · · · · + a1nxn = b1

a22x2 + a23x3 + a24x4 + · · · · · · · · · · · · · · · · + a2nxn = b2

a33x3 + a34x4 + · · · · · · · · · · · · · · · · · + a3nxn = b3

· · · · · · · · · · ·
an−1,n−1xn−1 + an−1,nxn = bn−1

annxn = bn

The last equation contains only one variable and so we can immediately
provide that variable’s value. Substituting that value into the next equation
above makes xn−1 the only unknown variable in that equation, so readily
providing its value, and so on up the chain. This is called back-substitution,
which was the object of my program.

These computed x-values are stored in order in one of the DLs, put there
one at a time as they are computed. The program was aimed at solving a set
of equations containing up to 32 unknowns; thus a whole DL was allocated
to store the solution. Earlier, on desk calculators, then the main means of
computing, it was rare to try to solve more than six equations, though rather
more would be solved using the mechanical Hollerith machines. With the
advent of the Pilot Model, the aim was naturally much higher. However,
the machine’s storage was not sufficient to store all the matrix coefficients, the
a’s in the above equations. The solution process therefore involved reading in
these coefficients from Hollerith cards, with one coefficient on each line of
a card, in binary form. The aim was to do the required calculation with that
coefficient before the next line of the card arrived to be read.

The steps of the program

So let us take an example from the above equations, omitting the row suffix
for simplicity:

a3x3 + a4x4 + a5x5 + · · · · · · · · · · · · · · · · +anxn = b.

At the stage where this equation was being dealt with, all the x-values except
x3 would already have been calculated and put in the chosen DL. The main
part of the process would then be to run the Hollerith cards through the
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reader (with the coefficients in reverse order) and when a coefficient, say a5,
was read in, to do the multiplication a5x5, and the associated organization,
before the coefficient from the next row of the card appeared on the scene.
Before the multiplication was initiated, the value of a5 had to be sent to the
multiplier from the reader and the value of x5 sent there from its DL. The
program had to be able to fetch down any of the x’s, from 1 to 32, when
required, so a whole major cycle had to be allowed for that before starting
the multiplication. The resulting product then had to be added to the sum of
the previous products. So we have:

LOOP 1

1. Take the current coefficient (e.g. a5) from the reader to the multiplier.

2. Take the corresponding x value (here x5) from its place in its DL to the

multiplier.

3. Multiply.

4. Add the result to the partial sum of products already computed.

5. Ask: ‘Is that the last product for this equation?’—which here would be a4x4.

Then, if the answer to that question is ‘no’, go back to the beginning of the
loop and deal with the next coefficient (a4); if the answer is ‘yes’, go on and
calculate the unknown for this particular equation, using the next coefficient
from the reader, and store it in its proper place in its DL; test if that is the last
x to be calculated, that is, x1; if it is, end the computation; if it is not, go back
to start on the next equation.

So now we have:

Loop 1

1.  Compute 
 and store x.
2. The last x?

Yes

No

Yes

END

No

Now let us look at some of the details.
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Details

Discrimination

Destination 24 discriminates between positive and negative numbers sent
to it, whereas Destination 25 discriminates between zero and non-zero. If you
send a number to either Destination, the program will move on to one or other
of two instructions stored in adjacent positions in the same DL, depending on
the sign of the number in the case of D 24, for example. So the first instruction
in a loop and the first instruction after the end of the loop have to be placed
in adjacent positions in the same DL.

Counts

To ensure we go round Loop 1 the correct number of times—(n − 3) times
to deal with the example equation above—we put that number in a store,
say TS 15, before going into the loop. Then, during the loop, we subtract unity
from it, and at the end of the loop send the result to D 25, in order to decide
whether we go round the loop again or not. If we store (n − 3) in the lowest
digits of TS 15, we can use Source 25, which provides P1, a number with one
in only the first digit, to help the count. Thus, during the loop, we would have

TS 15–TS 16 Copy the number in TS 15 into 16.
S 25–D 18 Subtract unity from that number.
TS 16–TS 15 Store the count ready for the next time round the loop.
TS 15–D 25 Test if the count is zero.

Multiplication and addition

To compute the product, a5x5 say, we need one of the two numbers to be
in TS 20 and the other in the upper (most significant) half of DS 14. After
multiplying them, their product appears, double length, in DS 14 and then
has to be added to the partial sum already computed (preferably stored in
DS 12). The instructions are:

S 0–DS 14 Take a5, now at the reader, to the upper half of DS 14.
S 28–DS 14 Make the other half of DS 14 zero.
S 7–TS 20 Take x5, stored in minor cycle 5 of DL 7, say, to TS 20.
S 0–D 19 Do the multiplication.
DS 12–DS 13 Add the old partial sum to the new product.
DS 14–DS 12 Store the new partial sum for the next round.
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On to multiple right-hand sides

Loop 1, plus any preparations needed before entering it, has to be fitted
into the 15 Mc between card rows. As the minimum time to carry out an
instruction is 2 mc, the first of the above two blocks of instructions would
take a minimum of 8 mc, or 9 mc if the count is non-zero. Those in the second
block would take at least 9 mc+the (2 Mc+1 mc) of the multiplication+1 Mc
to allow the fetching of the x-value (since that may be from any minor cycle
in its DL). This totals 3 Mc + 10 mc if carried out as shown and with no time
gaps between the instructions.

Therefore there was no difficulty in fitting Loop 1—for a single right-hand
side—into the time between card-rows (15 Mc). However, my program was for
sets of equations with multiple right-hand sides (that is to say, various sets of
b-values in the set of pivotal equations displayed earlier). Indeed, the program
had to deal with as many of these sets as I could fit into a single passage of the
cards. (So saving time: if, for example, two right-hand sides were dealt with
in a single pass of the cards, the computer time would be halved.) So steps 2,
3, and 4 of Loop 1 had to be carried out several times, with the same value
of a5 in the example, but several different values of x5 and different partial
sums, before exiting. These steps therefore became part of an inner loop. It
was not just a matter, though, of how many times these steps could be done
in the 15 Mc, since treating several right-hand sides complicated the program
significantly.

Treating four right-hand sides, for example, meant that four solutions for
each set of a’s would be obtained. Thus four DLs had to be allocated to store
the solutions, and, on each of the four passes through the inner loop, an x
had to be extracted from a different DL. The instruction to do the extracting
therefore had to be altered on each pass: its source number had to have unity
subtracted from it. For that one needed P5, a number with unity in just the
fifth digit, which was the position of the bottom digit of the Source number
in an instruction. Unlike P1, used earlier, P5 was not provided as standard,
and so had to be created and stored in a DL. That count number could also
be used in the extraction of the different b-values, which also had to be stored
in different DLs in the same minor cycle as each other.

Another complication was that DS 12 could not be used to store the accu-
mulating sum of products (as described above), since there were now four of
these products. Thus four double-length numbers had to be stored in four dif-
ferent DLs, but in the same positions, say minor cycles 2 and 3. Now, to build
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up the summation there had to be an instruction to bring down the previous
summation to DS 13; and another one to put it back a major cycle later—after
the addition of the new product—into the minor cycle it came from. Both
these instructions, like the one above for bringing down the x-values, had to
be modified as the program ran in order to deal with the four different DL
storages. One modification needed P5, as before, the other P10, the latter
requiring an additional count number of its own.

The three central steps of Loop 1 had therefore become part of an inner
loop, with much more complication. With the time needed for fetching the
a-value, and a few other necessary preparations before starting the inner
loop, there was less than 15 Mc available for carrying out this loop the chosen
number of times. Since a multiplication takes just over 2 Mc, the minimum
time taken by a loop that contained just one multiplication and nothing else
would be 3 Mc. The maximum number of right-hand sides one could hope to
deal with on one pass was therefore 4.

An additional complication was the fact that the six available DLs all
became packed with instructions, making it difficult to place the instruc-
tions for optimum timing. It was a great help, though, that other instructions
could be carried out while a multiplication was taking place. Even so, the
effort it must have taken to succeed in getting the inner loop down to the
minimum 3 Mc, and so deal with 4 right-hand sides in one pass, is no doubt
the reason that this is the one program that has stuck in my mind these many
years.

End of program

I stopped programming in 1954 in order to concentrate on work in statistics.
So it is that I claim to be the World’s First Ex-Programmer (though I still have
not made it into the Guinness Book of Records).

Note

I wish to thank my friends and colleagues of yesteryear, Charles Clenshaw,

Frank Olver, and Mike Woodger, for their comments and corrections. My thanks

also to Mike for helping me to sort out some of the fine detail. The coding of

my back substitution program still exists in complete form; an extract from it,

together with a reconstructed flow diagram, are available at

<www.AlanTuring.net/hayes>.
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11 The Pilot ACE:
from concept to reality

Robin A. Vowels

Development of the Pilot ACE from Turing’s design

The original conception

Turing’s 1945 report ‘Proposed Electronic Calculator’ set out a detailed
design, including logic diagrams, for a stored-program general-purpose
computer of the binary serial type. Turing planned for a high clock rate of
1 MegaHertz (i.e. a pulse repetition time of 1 microsecond)—about five times
faster than any other computer project at that time.1 His design specified 200

delay lines of 1024 bits—an extraordinarily large number. A water–alcohol
or mercury delay line was proposed, with a preference for mercury. Turing
included a detailed mathematical treatise on the practicability of the delay
line as a storage medium.

The control unit had two registers; one for holding the current instruction
(now called the instruction register) and the other for holding the position
of the currently executing instruction (now termed the instruction address
register). The machine would have subprograms—‘instruction tables’—to
permit the calling of a subroutine and for returning. The return address was
stored in a push-down pop-up stack embodied in a delay line; a Temporary
Store or TS (i.e. a register) functioned as stack pointer. A word size of 32

bits was proposed, with two instructions per word, a bit for distinguishing
instructions from data, and another for the sign. There would be floating-
point hardware for dual-word values, one word holding the mantissa and the
other holding the exponent. Input and output were to be by means of Hollerith
80-column punch-card equipment, rather than the slow paper tape of other
projects. The pièce de résistance of the design was the ‘discrimination’—now
conditional branch—which (implemented as software) would permit decisions
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to be made based on computed values, thus eliminating the need for a human
operator to be involved at any of the intermediate steps of the calculation.

It is clear, however, and should have been clear at the time, that the plan
for this huge machine—requiring between 6000 and 10,000 radio valves
(vacuum tubes)—was impracticable, on account of the considerable com-
plexity of the control unit.2 The ACE was to have ‘an output equal to the total
output of all the large machines so far constructed in the U.S.A.’.3

Version V

There are no extant records of Turing’s intermediate versions prior to
Version V (the version current when Wilkinson joined in May 1946; see
Chapter 4, ‘The Pilot ACE at the National Physical Laboratory’).4 However,
considerable refinement of the design must have taken place to arrive at
Version V. Instead of the 14 TS (Temporary Stores) principally for internal
use proposed in Turing’s 1945 report, Version V had only two internal TS,
namely INST (the instruction register) and a TS for counting, and moreover
involved an entirely different proposal for the handling of conditional
branch instructions.5 It is obvious that Version V was far more economical
of hardware.

The lectures delivered by Turing and Wilkinson from 12 December 1946 to
13 February 1947 reveal the progression of development of the ACE design
(see Chapter 22, ‘The Turing–Wilkinson Lecture Series’). These lectures cover
aspects of the design of Versions V, VI, and VII of the ACE. The lectures
show that there had been significant progress in the design since Turing’s
1945 proposal. Comparing Turing’s 1945 report and Version V (as set out in
Chapter 22), several striking features are immediately apparent:

1. The mechanism for conditional branching is completely different. In
Turing’s 1945 design, the conditional branch is implemented in software.
In Version V, the mechanism is implemented entirely as part of the control
logic, that is, it was to be realized wholly in hardware (see lecture 13).
The conditional branch mechanism of Version V is similar to those of the
ACE Test Assembly, the Pilot ACE, and DEUCE.

2. The control mechanism has been simplified (see lecture 13). This sim-
plification made possible the new hardware mechanism for conditional
branches. Some of the new terms (TIMCI and TRANSTIM6) are those
used with the Pilot ACE.

3. The 1945 report includes a brief note that a zero word would serve as
a useful instruction (permitting an instruction to pass from the card input
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device to Delay Line 0). Lecture 26 expands this thought, allowing an
instruction to pass from the card input device direct to the control unit,
and covering the filling of a delay line in an empty machine.

The elusive delay line

The linchpin of Turing’s design, namely a reliable delay line, was not available
in 1946 or 1947. At a meeting held on 21 January 1946, Hiscocks (Secretary
to the NPL) reported that the Post Office had successfully kept a number cir-
culating in a delay line for half an hour.7 A subsequent report in March said
that the Post Office was experiencing problems with ‘digit pickup’ (the appear-
ance of extraneous digits in the delay line).8 In April 1947 Thomas stated
that ‘. . . Dollis Hill have after eighteen months’ work produced a tolerably
satisfactory mercury line’.9

Earlier in 1947, frustrated by lack of progress in the construction of hard-
ware, Turing had made a ‘breadboard’ amplifier circuit and begun to conduct
experiments using a drain pipe as a delay line.10 He placed a loudspeaker at
one end of the pipe to generate acoustic pulses and situated a microphone at
the other end.11 According to one witness, ‘we were able to catch glimpses of
Turing, on the ground floor [of Teddington Hall] and in the basement, sitting
with legs off ground, gingerly probing a mass of wires, and fiddling about
with drain pipes’.12

In Chapter 4, Wilkinson recalled that even as late as 1950, the ‘probability
of remembering a pulse pattern for as long as a minute was not very high’.
In the end, an adequately reliable delay line was not produced until 1951.

Thomas’s minimal ACE—a digression

It was decided early in 1947 that the ACE project would be transferred to
the Electronics Section of Radio Division under Thomas (see Chapter 3, ‘The
Origins and Development of the ACE Project’). Smith-Rose, Superintendent
of Radio Division, asked Thomas to prepare a plan for the production of the
ACE, which he did in a report dated 12 April 1947.13 Womersley was presen-
ted with a fait accompli when he receivedThomas’ report together with a memo
from Smith-Rose inviting him to a meeting to discuss staffing arrangements
for the transfer.14

Thomas’ name was not on the list of attendees at the Turing–Wilkinson
lectures, held a few months earlier, and it is strange that Thomas should
have been given a copy of ‘Proposed Electronic Calculator’ from which to
produce his plan, rather than one of the then current (and simpler) Versions V,
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VI, or VII. Was Thomas’ plan prepared without the knowledge of the ACE
group in the Mathematics Division?15 The ACE group would not have been
impressed by this outsider’s gaffes—which included using the wrong name
for the ACE: ‘Analytical Computing Engine’. To his credit, however, Thomas
proposed a prototype with only three delay lines, two temporary stores, and
one adder.

Thomas was sceptical about the high speed proposed by Turing (1 MHz),
quoting from the EDVAC Report to support the view that pulse rates above
100,000 Hz were not achievable: ‘There is a practical lower limit to the pulse
time which may be used and this appears to be about 10 microseconds.’16

Thomas cited problems about wire lengths, when he should have been aware
that a simple cathode follower circuit would provide the low impedance
needed for long inter-chassis connections.17 In estimating equipment needs
he relied on a figure of 8 valves for each delay line, whereas the Post Office
was using 16.18

The Test Assembly

Meanwhile, in the Mathematics Division, events were moving somewhat in
parallel. In the spring of 1947 Huskey convinced the Maths Division ACE
group to build a small machine based on Version V of the ACE.19 This was
called the ACE Test Assembly (see Huskey’s chapter ‘The ACE Test Assembly,
the Pilot ACE, the Big ACE, and the Bendix G15’).20 The embryonic computer
began to take form from about May 1947.21 Later that year a report entitled
‘ACE Test Assembly’ set out specifications that bore a striking resemblance to
the Pilot ACE as it was finally built.22

The ACE Test Assembly was to have eight 1024 microsecond (μs) delay lines
(DL) of 1024 bits, and six 32 μs Temporary Stores of 32 bits. Two of the TS
were to be connected together to give 64 bits. Designed as a transfer machine,
it had 32 Sources and 32 Destinations. Several Sources provided the conveni-
ent constants of 1, 216, 231, 0, and ones. Each instruction consisted of five
fields: Source, Destination, number of words to be transferred, the Delay Line
number, and relative word number of the next instruction. Discrimination
instructions provided the means for decisions based on computed values.
Input and output devices were included in the design, and incorporated
Hollerith punch-card equipment.

A complete and detailed logic design of the control unit was provided,
with explanations for the diagrams. The logic diagrams used terms that
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were retained for the Pilot ACE and DEUCE. Programming details were also
provided, including a description of the manner in which instruction tables
were to be input, and the way in which the initial orders and the instructions
were to be punched on the cards.23 (The means of entering a new program,
while feasible, was not practical or convenient.)

The ACE Test Assembly was to include a multiplier unit. It seems strange
that the project, struggling to achieve the bare basics, should be contem-
plating a multiplier, the logic and construction of which would prove to
be as complex as the control itself—in the end, the multiplication unit was
not built until 1951. The Test Assembly was a substantial machine, virtu-
ally a complete Pilot ACE or DEUCE, when all that was needed was a delay
line that worked, a control unit with TS, and an arithmetic unit with TS.
And the control was more complex than was needed—a control unit taking
instructions sequentially from storage would have been sufficient to demon-
strate that the machine was capable of running at the speeds planned by
Turing.24

Effort was not devoted single-mindedly to the ACE Test Assembly. Just how
much the project was thrown off-course is evident in the curious roster dated
21 November 1947.25 Entitled ‘A.C.E. Problems’, it assigned responsibilities to
Wilkinson and Davies for drawings for a ‘40–41 digit machine’ (Version V and
the ACE Test Assembly were 32-digit machines), to Alway for programming,
to Wilkinson for a multiplier unit, and to Gill for a divider circuit. Huskey was
responsible for setting up the instruction digits from INST (the instruction
register) and for the ‘short tanks for instructions’. This effort had little to do
with the Test Assembly. Apart from Huskey’s work, which would be relevant
to any of the versions, the rest of the effort was directed toward Version VI or
VII of the ACE, and certainly not to a pilot model.

In the end the Mathematics Division Test Assembly was stopped in its tracks
by NPL bureacracy (see Chapter 3, ‘The Origins and Development of the
ACE Project’). The ACE group was left to write a lengthy report26 (because,
Wilkinson said, Womersley ‘decided we really must have something to show
for our work’27).

The Pilot ACE in earnest

The ACE Section devoted 1948 to the development of numerical subroutines
but 1949 saw a fresh start on hardware. A request for new funding was made
on 16 February 194928 and subsequently approved by DSIR. By August 1950
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Bullard, the new Director of the NPL, was able to report to the DSIR that the
Pilot ACE was complete and could do simple calculations.29 (Work on the
full-scale engine was expected to start in September of that year.) However,
the Pilot ACE was still not yet at the stage where it could be used by the NPL,
for it had only one DL and one TS with an adder, and lacked input–output
equipment. There was no multiplier unit. Moreover, work was needed to make
the delay line storage reliable. It was not until 1951 that these enhancements
had been effected and the machine was working again.

In 1954 an experimental magnetic drum was installed. Although small in
capacity, the drum offered 32 words on each of 32 tracks. 1024 words of
storage was more than double the size of the high speed store and there was
the promise of more to come—a drum with 128 tracks. Other enhancements
included improved facilities for addition, subtraction, and the transfer of
double words (whether of 64-bit integers, floating-point values, complex
values, or other data ‘aggregates’).30

How much of the Pilot ACE design was Turing’s? It has generally been
accepted that the Pilot ACE (and therefore the DEUCE) were ‘based’ on a design
by Turing. However, the dependence is much greater than has previously
been acknowledged. The Turing–Wilkinson lectures provide definitive evid-
ence that almost all the design was Turing’s, with assistance from Wilkinson
(although the design of the electronics was largely done by Wilkinson and
his team). Version V—which Turing had nearly completed when Wilkinson
started at NPL on 1 May 1946—was stripped down for the ACE Test Assembly
and this design was subsequently taken forward to the Pilot ACE. The logic
of the multiplier was already part of the ACE design (Chapter 22, lecture 16).
The only things that were added or changed after Turing left the project were
the combination of INST and the count register into a single register called
COUNT,31 and the redesign of Initial Input,32 including the introduction of
the ‘Stop’ instruction that gave the machine a halt state as well as a run
state. (The modifications considerably simplified the input of programs and
the interface with the input–output equipment.)

General description of the Pilot ACE

The Pilot ACE was a general purpose computer of the serial type, with a clock
frequency of 1 MHz. The word size was 32 bits, and dual arithmetic units were
provided. One arithmetic unit supported 32-bit numbers (about 9 decimal
digits), while the other was for 64-bit numbers (about 19 decimal digits).
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The 64-bit accumulator was also capable of functioning as two independent
32-bit accumulators. A multiplication unit was provided, but no divider. The
Pilot ACE had Hollerith 80-column punch-card input and output equipment,
the input device running at 200 cards per minute and the output device at
100 cards per minute. Only 32 columns of the 80 available were used for data.

The main store (the delay-line memory) consisted of eleven 32-word
DLs, supported by five 32-bit TSs33 and two 64-bit double-word stores (DS).
One DS incorporated an accumulator that operated in conjunction with
the multiplier.

Words, minor cycles, and major cycles

Timing considerations necessitated the introduction of terms to represent
events. Each mercury delay line of the main store held 1024 binary digits,
organized as 32 words of 32 bits each (see fig. 1). Data was held acoustic-
ally. Electronic pulses representing the digits were converted to mechanical
vibrations or pulses by a crystal placed at one end of a column of mer-
cury. The acoustic pulses were received at the opposite end of the column
1024 microseconds later, by another crystal that converted the pulses back
to electrical form. The electrical pulses were amplified and fed back to the
opposite end of the mercury column. The acoustic pulses were thus circu-
lated indefinitely until some or all were replaced. The time taken to circulate
the 1024 bits was termed a major cycle. A group of 32 consecutive bits, rep-
resenting a useful number, was termed a minor cycle. There were thus 32

consecutive minor cycles (or words) stored in a delay line. Any one of them
could be accessed by waiting for it to emerge from the end of the delay line.

In contrast, the cycle time of the 32-bit stores was 1 minor cycle
(or 32 microseconds); thus there was no waiting time for data from these
stores, and their content could be transferred to or from any word of the main
stores. The double-word stores were of 64 bits, with a cycle time of 2 minor

Minor cycle (word)

Fig. 1 A mercury delay line of 1024 bits (microseconds), composed of 32 minor

cycles or words. The lower line represents the electronic circulation path outside

the delay line.
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cycles (64 microseconds). The maximum waiting time to access an individual
word of these stores was 1 minor cycle, while the minimum time was 0 minor
cycles. The lower 32 bits of these stores could be transferred to an even-
numbered word of store, and the upper 32 bits could be transferred to an
odd-numbered word of store.

The provision of the double-word stores bridged the gap between the
relatively slow access time of the main store and the fast access time of the
registers. They were also intended to facilitate double-precision arithmetic.

The architecture of the Pilot ACE

Outline

The Pilot ACE was organized as a series of stores (delay lines) attached to
a Highway (data bus). Each store had a separate data path from its output
terminal to the Highway, and to its input terminal from the Highway.
The Temporary Stores were also connected to the Highway. Additional con-
nections were made to the Highway by means of which arithmetic, logical,
and other miscellaneous operations were performed. The card reader and
punch were attached to the Highway. A separate highway called the Instruc-
tion Highway connected eight of the delay lines to the control unit and made
it possible for instructions to be routed to the control unit while an instruc-
tion was being executed. (These highways and connections are set out in
fig. 2.) Turing’s ‘Highway’ can be seen in the Unibus of Digital Equipment
Corporation’s computers34 and in microprocessor systems in which the
input–output equipment and every register and memory are connected to
a single bus.

The Pilot ACE differed considerably from other computers. Present-day
machines typically have, say, an add instruction that consists of an operation
code that signifies add, and which specifies any two registers that contain the
values to be summed. As discussed in previous chapters, an addition instruc-
tion in the Pilot ACE specified only the addresses of the stores involved. Data
was transferred (copied) from a particular store to one specific Destination
address; the operation of addition was implied in the Destination address.
Thus, although Temporary Store 16 (TS 16) was the store associated with the
accumulator, data sent to Destination 17 (D 17) was added to it. Data sent
to Destination 18 was subtracted from it. To store data in TS 16, data was sent
to Destination 16 (see fig. 3).
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Highway

Discrimination (+, – ) 

Card
reader

S 0 CONTROL D 28 Card
punch

I.D. 
front panel

O.S. 
front panel

COUNT D 0
Instruction Highway

S 1 DL 1 D 1

S 2

S 3 to S 7
NIS 0

NIS 1

DL 2 D 2

DL 3 – DL 7

S 11 TS 11 (later, DL 11) D 11

DL 3 to DL 7

S 25
S 23
S 24
S 28
S 29

S 16 TS 16 D 16
S 17 ~TS 26 +

–
D 17
D 18

S 19 × 2
S 18 ÷2

÷2

S 26 TS 26 D 26
S 21 &
S 22 XOR

S 27 TS 27 D 27

S 10 DL 10 D 10

S 20 TS 20 D 20

S 14 DS 14 (even) DS 14 (odd)

S 13
S 12 D 12

S 15 TS 15 D 15

S 8 D 8

DS 12 (even) DS 12 (odd)

1

zero

–1

P17
P32

D 24
D 25 (zero, non-zero)

D 14 
D 13+

DL 8

S 9 D 9DL 9

Fig. 2 Architecture diagram of the Pilot ACE.

S 16 TS 16 (Accumulator) D 16 (Store)

Add  
Subtract

D 17 (Addition)
D 18 (Subtraction)

Circulation path

Fig. 3 Organization of the accumulator and TS 16, showing its three Destina-

tions: 16, 17, and 18.
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Every instruction specified a Source and a Destination, and the particular
operation required was implicit in either the Source address or the Destination
address (or both). The Pilot ACE may thus be considered to be a transfer
machine. An instruction could specify the transfer of from 1 to 32 words from
the Source to the Destination. In general, data could be transferred from any
Source to any Destination, whether it was a Temporary Store, one of the
Delay Lines comprising the main store, or to or from the input–output equip-
ment. Transfers between two delay lines of the main store were restricted to
transfers between word(s) in corresponding position(s), because a word could
be transferred only when it was emerging from a delay line; the word had to
be received by the Destination delay line at that same moment. Some Tempor-
ary Stores had more than one input and/or more than one output (we have
already seen that the accumulator TS 16 had three inputs: one when it was
desired just to transfer (copy) a word into it, one for addition, and a third
for subtraction).

For the convenience of the user, words in a Delay Line were distinguished
from each other by a system of numbering the minor cycles. Thus the first
word was known as minor cycle 0, the second as minor cycle 1, and so on, up
to minor cycle 31. Minor cycle 0 of each Delay Line emerged simultaneously,
as did minor cycle 1, and so on. To facilitate the writing of programs, minor
cycles were identified by Delay Line and position. For example, the first minor
cycle of DL 4 was written 40, the second as 41, the third as 42, and so on up to
431. Minor cycle 0 can be thought of as being at the ‘top’ of a delay line and
minor cycle 31 at the ‘bottom’. (The identification of one particular minor
cycle as minor cycle 0 was entirely arbitrary.)

Another fundamental difference between the Pilot ACE and other
machines of the period lay in the duration of the transfer. A transfer of more
than 1 minor cycle—a multiple-word transfer—enabled consecutive words of
a delay line to be copied to another, or enabled the content of a delay line to be
cleared (initialized to zero). A transfer of more than 1 minor cycle to the adder
terminal of the accumulator enabled multiple copies of a register to be added
to the accumulator. In another Temporary Store, TS 26, a transfer of n minor
cycles enabled a shift of n places. In a transfer a block of words could be tested
to determine whether any was negative or whether all were zero. In the case of
the card reader, a transfer of more than 1 minor cycle propagated a copy of the
word at the reading station into consecutive words of a delay line. (A transfer
of more than 1 minor cycle to the card punch had the effect (curiously)
of performing a logical or on the words transferred.) Turing’s multiple
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transfer and vector arithmetic may be seen in vector processors from
the 1970s.

Optimum coding

This topic has been discussed in previous chapters. Because the storage was
serial in nature, instructions in a program were not placed in consecutive
words of store. If they were, the next instruction would have passed the
output terminal of the delay line before the current instruction could be
executed; consequently a complete cycle of 32 minor cycles would be wasted
before the next instruction would be ready to emerge again from the delay
line. Ideally, instructions were placed so that while the last word of data
was being transferred by the current instruction, the next instruction was
emerging from a delay line and was being transferred into control.

Because instructions to be executed in sequence could be placed in arbitrary
locations in store, each instruction specified the position of the next. Positions
were relative. Thus each instruction specified the delay line where the next
instruction was to be found, as well as the relative position of that instruction
in that delay line. The relative position was called the Timing Number.

Transfer instructions had to wait for the particular word that was to be
transferred to emerge from the delay line. Consequently, each instruction
specified a Wait Number. Since programmers placed instructions in main
memory so as to minimize waiting, the Wait Number was zero or a small
number for many instructions. The Timing Number similarly was kept small,
or at least greater than or equal to the Wait Number. A Timing Number less
than the Wait Number caused a loss of one major cycle, and was avoided
except for certain operations (and in cases where the extra time taken was
unimportant).

Because each instruction specified the relative location of the next instruc-
tion, the system of addressing was called two-plus-one: instructions contained
a Source address, a Destination address, and the address of the next
instruction.

Entering a new program

To resolve the difficulty of entering a new program into an empty machine,
Turing made use of the fact that in an empty machine all the stores—
including the store in the control unit called INST, which held the instruction
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currently being executed—contained zero words. (INST was renamed COUNT
in the Pilot ACE). A zero word appeared as an instruction having Source 0

and Destination 0. By treating the card reader and the operator’s console
as Source 0, and INST (or COUNT) as Destination 0, instructions could
be passed directly from the card reader to INST (COUNT) when the store
was initially empty. Certain of these instructions, called filler instructions
(now bootstrap instructions), enabled the store to be filled with instructions
read from punch cards (see below). These were fed into the card reader by
the operator.

Conditional branching

A means of testing for zero and non-zero was provided. If the test yielded
zero, the next instruction was taken in the usual way. If the test yielded
non-zero, however, the instruction in the word following the normal next
instruction was taken. A similar facility was provided to test for positive
and negative. Loop control was handled using one of these tests, or in a
comparable manner involving modification of the current instruction.

The starting of input and output equipment and the multiplier was
achieved by specifying a particular Destination address. In this special case,
no transfer took place (and the Source address was ignored).

Hardware constants

Certain of the Source addresses supplied constants that were needed on
a frequent basis, for example, zero, unity, 216 (P17), 231 (P32), and minus 1

(32 ones). (See fig. 4.) Other small constants could be generated by a multiple
transfer to one of the accumulators.

S 25
1

S 23
P17

S 24
P32

Zero
S 28

–1
S 29

Fig. 4 Sources providing constants.
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Control

A glimpse of the way in which the control operates the machine is achieved
by considering COUNT. A single Temporary Store (register) like any other in
the machine, COUNT would now be termed the instruction register. Before
an instruction could be executed, it had to be brought into COUNT (which
was Destination 0). While an instruction was stored in this register its Wait
Number and Timing Number were each decremented by unity as each and
every minor cycle passed. When the Wait Number counted down to zero,
the instruction could be executed. When the Timing Number counted down
to zero, the next instruction could be brought into COUNT (provided that
execution of the instruction was complete or due to complete by the end of
the current minor cycle).

In the event that an instruction could not be executed for some reason
(e.g. because its Go Digit was 0), the Wait Number and Timing Number
would continue to count down (modulo 32) with each passing minor cycle.
Once every major cycle (every 32 minor cycles or every 1024 microseconds),
the Wait Number counted down to zero, but execution could not take
place. Likewise the Timing Number counted down to zero once every major
cycle. Counting continued until the inhibition was removed. In the case of
a Stop instruction (i.e. an instruction with Go Digit 0), a Single-Shot from
either the operator or the card equipment released the instruction for execu-
tion. The operator gave a Single-Shot by pressing a key on the console of the
machine.

There were two paths to COUNT. One was from certain of the Delay Lines via
the Instruction Highway and the other was to Destination 0 via the Highway.
The path via the Instruction Highway was the normal way in which instruc-
tions reached COUNT. The path from the Highway enabled instructions to be
sent directly from any store. When an instruction had been modified (e.g. for
indexing, arithmetic shifting), and when returning from a subroutine, the
instruction would be sent from a register to COUNT.

Figure 5 shows the Instruction Highway linking DL 1 to COUNT. (Delay
Lines 2 to 7 and 11 were similar.) The gates (switches) are shown selecting
Next Instruction Source 1 (NIS 1), ready to send the next instruction to
COUNT. The connection to NIS 1 was at the input side to DL 1, after the
switch (*), and not at the exit end. This was to enable a transfer to be made
to a DL and to allow the next instruction to be taken from the new content
of that same DL. In all other cases, it was convenient to conceptualize the
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COUNT D 0

D 1

Instruction 
Highway NIS 1

S 1 DL 1

*

Fig. 5 Instruction Highway (only DL 1 shown; DLs 2–7 and 11 are similar).

NIS as effectively taking the output from the DL in question, because when
the circulation path was complete (as shown in fig. 5), the input to (and output
from) the DL were identical.

Programming the Pilot ACE

This process of constructing instruction tables should be very

fascinating. (A. M. Turing, ‘Proposed Electronic Calculator’)

Considering some aspects of programming the Pilot ACE will provide insight
into the operations of the machine. The operations may be classified as simple
transfers, arithmetic operations, logical operations, multiple word operations,
and discriminations. This section gives examples of instruction sequences
which perform various typical transfers and arithmetic operations. The next
section gives some examples of complete programs. (It will be beneficial to
refer to the Pilot ACE architecture diagram in fig. 2 and to the table of Sources
and Destinations in Table 1.)

Transfers

One of the simplest operations was the transfer of data from one Temporary
Store (TS) to another. To transfer (copy) the content of TS 15 to TS 16, the
instruction was written:

15–16.

In transferring a word to either of the two double-word stores (DS)
of 64 bits, it was necessary to specify which word of the store was to
receive it. The words in a double-word store were referred to as even and
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odd, corresponding to an even-numbered minor cycle of a DL and an
odd-numbered minor cycle, respectively.

To transfer the content of TS 15 to the even minor cycle of DS 12, one wrote

15–12 (e)

and to transfer the content of TS 15 to the odd minor cycle of DS 12, one
wrote

15–12 (o),

where (e) and (o) signified even and odd, respectively. To transfer the content
of minor cycle 27 of DL 4 to TS 15, one wrote

427–15.

Several Sources provided useful constants. S 28 supplied zero, and S 25

provided unity, for example. To clear TS 15 (that is, to initialize it to zero), one
wrote

28–15.

To initialize TS 15 to unity, one wrote

25–15.

A special case involved the transfer of an instruction direct to control.
The instruction

16–0

transferred the content of TS 16—assumed to be an instruction—to COUNT
(control), where it was executed.35

Addition and subtraction

To add the content of TS 15 to the accumulator TS 16, one wrote

15–17,

which transferred the content of TS 15 to Destination 17 (which was the adder
input to TS 16—see fig. 3). Similarly, to subtract the content of TS 15 from
TS 16 one wrote

15–18,
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Destination 18 being the input associated with the subtraction facility
of TS 16.

A commonly required operation was to double the number in the
accumulator TS 16. To do that, one wrote

16–17,

which added a copy of TS 16 to itself, via the adder input, Destination 17.

Logical operations

The logical operations unit was associated with the two storesTS 26 andTS 27.
Sources 26 and 27 transferred the content of TS 26 and TS 27, respectively,
to any desired location. Source 21, however, supplied the logical and of TS 26

and TS 27, while Source 22 supplied the exclusive or (XOR) of TS 26 and TS 27

(see fig. 6). To form the logical and of the contents of TS 26 and TS 27, placing
the result in TS 15, one wrote

21–15.

To form the exclusive or of the contents of TS 26 and TS 27, placing the result
in TS 15, one wrote

22–15.

Two other addresses were associated with TS 26, Source 18, and Source 19.
Source 19 provided double the number that was in TS 26; Source 18 provided
the contents of TS 26 shifted down by one place, that is, half 36 (see fig. 7).
To shift the number in TS 26 one place up,37 that is, to double it, one wrote

19–26.

To place double the content of TS 26 in TS 15 one wrote

19–15.

This instruction did not change the content of TS 26. Similarly, to halve the
number in TS 26, one wrote:

18–26.

(Note that the shift down, halving, was an arithmetic shift, that is, a division
by a power of 2.)
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S 26 TS 26 D 26

S 21 &
S 22 XOR

S 27 TS 27 D 27

Fig. 6 TS 26, TS 27, and logical operations.

S 19 × 2

÷ 2S 18

S 26 TS 26 D 26

Fig. 7 Shifting using TS 26.

The multiplier

The unsigned integer multiplier was associated with DS 14 and TS 20.
To multiply two 32-bit positive integers, the multiplicand (x) was placed in
TS 20, the multiplier (y) was placed in DS 14 (odd), and DS 14 (even) was
set to zero. The instruction 0–19 started multiplication. The 64-bit product
was gradually formed over the next 2 milliseconds in DS 14, and at the end of
that time could be used. The low-order 32 bits were held in DS 14 (even) and
the high-order 32 bits were in DS 14 (odd).

When signed numbers were to be multiplied, a software correction was
required (this is covered in Example 6). The correction was prepared during
the multiplication and was added when the multiplication was complete.
Note that the multiplier was asynchronous, that is, once multiplication had
commenced with the 0–19 instruction, any other instructions could be
executed provided that those instructions did not modify the content of TS 20

and DS 14.
The following sequence of instructions initiated a multiplication of

unsigned numbers. The multiplicand is assumed to be in DL 10 and the
multiplier in DL 13.

10–20 Fetch the multiplicand to TS 20.
13–14 (o) Fetch the multiplier to the upper word of DS 14.
28–14 (e) Clear the low-order word of DS 14.
0–19 Start multiplication.

The product was available in DS 14 after 2 major cycles (2 milliseconds).
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The Double Store DS 14

DS 14 could be used as one 64-bit accumulator or as two independent 32-bit
accumulators. When the instruction

0–23 (1)

was executed, DS 14 behaved thereafter as two independent 32-bit accumu-
lators (‘(1)’ indicating a Characteristic of unity). When the instruction

0–23

was executed, DS 14 behaved thereafter as a single 64-bit accumulator.

Multiple-word transfers

Multiple-word transfers considerably enhanced the utility and speed of
the machine. They permitted a wide variety of operations. The follow-
ing examples use Sources 25 and 28, which supplied the frequently used
constants unity and zero respectively. Consider first the instruction

25–17.

This increments the content of TS 16 by unity. Source 25 supplies unity,
which when transferred to Destination 17 is added to TS 16. The effect of
a multiple-word transfer, using this same instruction, is to add the constant
18 to TS 16. In

25–17 (18 mcs)

the notation ‘(18 mcs)’ indicates that the transfer is to take place for 18 minor
cycles. The instruction added unity to TS 16 eighteen times.

The instruction

28–14 (2 mcs)

placed zero in both words of DS 14 (that is, cleared DS 14). The instruction

28–1 (32 mcs)

cleared all 32 words of DL 1.
In the subsection ‘Addition and subtraction’ it was mentioned that the

instruction 16–17 doubled the content of the accumulator TS 16. A multiple
transfer had the effect of an arithmetic shift (multiplication by a power of 2).
For example, to multiply the content of TS 16 by 16 (i.e. a shift up by 4 places)
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one wrote

16–17 (4 mcs).

A similar operation could be performed in the arithmetic shift register TS 26

as follows:

19–26 (4 mcs),

which shifted TS 26 up by 4 places, while the instruction

18–26 (4 mcs)

shifted down by 4 places (that is, divided TS 26 by 16).
Even DS 14 behaved as an arithmetic shift register. For example,

the instruction

14–13 (e, o)

added DS 14 to itself, thus doubling its contents, while the instruction

14–13 (6 mcs)

added DS 14 to itself 3 times, effectively multiplying the double-word contents
by 8. By the same token, the instruction

13–14 (e, o)

halved the content of DS 14, and

13–14 (6 mcs)

performed an arithmetic shift down by 3 places, that is, divided DS 14 by 8.
(Note that since DS 14 was a double store, the transfer had to be for 2 mcs to
double or halve the entire content, and 6 mcs to shift by three places.)

Discrimination (conditional branching)

Following a test for zero, the machine executed the next instruction as usual
when the value tested was zero, and executed the instruction in the following
minor cycle when the value tested was non-zero (see above).38 Thus, if the
instruction

15–25

normally took the instruction in minor cycle 20 of DL 4 as the next instruc-
tion, and the content of TS 15 were zero, then the instruction in 420 was
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executed next. If the content of TS 15 were non-zero, then the instruction
in 421 was executed next. The test was written showing the two paths, one
leading to 420 and the other to 421:

418 15 – 25
Zero Non-zero

420
421

(Here 418 is the location of the instruction 15–25.) Destination 25 was said to
discriminate on zero.

Destination 24 was said to discriminate on sign. The following instruction
sequence tests whether the accumulator TS 16 is positive or negative.

418 16 – 24
+ –

420
421

The instruction in 420 is executed next if TS 16 contains a zero or positive
value, and the instruction in 421 is executed if TS 16 contains a negative
value.

To test whether any word of a group was non-zero, a single instruction
was required. The following sequence checks whether both words of DS 14

are zero (e.g. following a double-word arithmetic operation).

57
58

14 – 25 (2 mcs)
Both
zero

Non-zero 

The sequence

57
58

24 – 25 (4 mcs)

All zero Non-zero 

tests four consecutive words of DL 2, namely 24–7.
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S 10 DL 10 D 10 

S 20 TS 20 D 20

Fig. 8 The normal circulation path of TS 20 is interrupted while connected to DL 10.

Special effects

DL 10 had a special connection to TS 20. Normally this connection was
disabled. Executing the instruction

0–21 (1)

enabled the connection. This connected DL 10 to the input terminal of TS 20,
disabling the normal circulation path of TS 20 (see fig. 8). A word emerging
from DL 10 was thus fed into TS 20, and emerged from TS 20 one minor cycle
later. The normal operation of DL 10 itself was unaffected.

This special connection enabled the content of DL 10 to be moved into
DL 10 but one minor cycle later. The instruction

20–10 (32 mcs)

caused DL 1031 to be moved to DL 100, DL 1030 to be moved to DL 1031,
DL 1029 to be moved to DL 1030, and so on. The facility enabled the systematic
processing of all 32 words of a delay line, rotating them by one word after
each value had been processed.

An alternative use of the facility provided a push-down stack. For example,
the following instructions caused the content of DL 10 to move down by one
word, leaving room at 100 for a new item to be inserted:

0–21 (1) Enable the connection between DL 10 and TS 20.
20–101 (31 mcs) Move 100 through 1030 into 101 through 1031,

respectively.

To cancel the connection, the instruction

0–21

was executed.
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Instruction format

As explained in an earlier chapter, the Pilot ACE instruction word consisted of
seven parts: the Source, the Destination, the Characteristic (which specified
whether one or more words should be transferred), the address of the next
instruction (as two components: a Next Instruction Source and a Timing
Number), a Wait Number, and a Go bit. They were set out as shown in
fig. 9 (the least significant bit is on the left, and the bit positions are given
underneath).

NIS S D Ch W T G

1 2–4 5–9 10–14 15–16 17–21 22–24 25–29 30–31 32

Fig. 9 The Pilot ACE instruction word.
Notes: NIS = Next Instruction Source (a Delay Line number in the range 0–7; DL 11 is NIS 0);
S = Source address; D = Destination address; Ch = Characteristic; W = Wait Number;
T = Timing Number; G = Go bit.

If the Go bit was 1 the instruction was executed as soon as possible. If the
Go bit was zero, the machine halted (in this case the instruction was said
to be a ‘Stop instruction’). The machine resumed only upon the receipt of
a Single-Shot, which could be given by the computer operator at the console
of the machine (also by the card reader, when the next row of a card was
ready to be read, or by the card punch, when the next row of a card had
reached a position in the mechanism where it could be punched).

The Characteristic specified whether the transfer was to be for one word
or for multiple words. If the Characteristic was 1, the transfer was for one
word (the normal case). If the Characteristic was zero, the transfer started
from the beginning of execution of the instruction and continued until the
next instruction was fetched into control; that is, the transfer moved T−W+1

words (modulo 32).
If the Characteristic was three, the transfer was for two minor cycles,

and was intended to simplify operations on 64-bit values. To transfer the
64-bit value in DS 14 to DS 12 one wrote

14–12 (2 mcs).

To transfer two words from DL 56,7 to DS 14 one wrote

56–14 (2 mcs).

Table 1 lists each Source and Destination address and the store or function
associated with that address.
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Table 1 Source and Destination addresses

Source Function Destination Function
address address

0 Input from the card
reader or from the keys
at the front panel

0 COUNT (Instruction register)

1 DL 1 1 DL 1

2 DL 2 2 DL 2

3 DL 3 3 DL 3

4 DL 4 4 DL 4

5 DL 5 5 DL 5

6 DL 6 6 DL 6

7 DL 7 7 DL 7

8 DL 8 8 DL 8

9 DL 9 9 DL 9

10 DL 10 10 DL 10

11 DL 1139 11 DL 11

12 DS 12 12 DS 12

13 DS 14÷2 13 Add to DS 14

14 DS 14 14 DS 14

15 TS 15 15 TS 15

16 TS 16 16 TS 16

17 ∼TS 26 (ones
complement)

17 Add to TS 16

18 TS 26÷2 18 Subtract from TS 16

19 TS 26 × 2 19 Stimulate multiply (Source is
irrelevant)

20 TS 20 20 TS 20

21 TS 26 & TS 27 21 Modify Source 20 via a connection
to DL 10

22 TS 26 ≡/ TS 27 22 Unassigned
23 P17 (216) 23 0–23 makes DS 14 behave as

a 64-bit accumulator;
0–23 (1) makes DS 14 behave

as two 32-bit accumulators;
(modifies Source 13 and
Destination 13)

24 P32 (231) 24 Discriminate on sign
25 P1 (unity) 25 Discriminate on zero
26 TS 26 26 TS 26

27 TS 27 27 TS 27

28 Zeros 28 Output to the card punch or to the
front panel lights

29 Ones (−1, or P1 to P32) 29 Buzzer
30 Non-zero on last row

of card
30 Stimulate the card punch to

punch one card (the Source is
irrelevant)

31 Unassigned 31 Stimulate the card reader
to read one card (the Source is
irrelevant)
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The Pilot ACE instruction card

Figure 10 shows an ACE Pilot Model Instruction Card. It is a standard
80-column punch card. The card reader read only the first 32 columns.
The twelve rows of the card are identified by the lettering Y, X, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9 from top to bottom in columns 1, 17, 33, 54, 66, and 74.
The alphabetic codes are shown in columns 51 to 53. In the first 32 columns,
the headings ‘N.I.S., SOURCE, DEST., CH, WAIT, TIMING, GO’ along the top
of the card, together with the vertical lines, helped the programmer to read
binary instructions punched on an instruction card. Column 35 has a box
in row 9 (called the nines row) which marks the place for a hole that would
cause the following card to be fed.

Table 2 Next Instruc-

tion Sources and their

corresponding Delay Line

numbers

DL 1 NIS 1

DL 2 NIS 2

DL 3 NIS 3

DL 4 NIS 4

DL 5 NIS 5

DL 6 NIS 6

DL 7 NIS 7

DL 11 NIS 0

Fig. 10 An instruction card for the Pilot Model ACE (actual size 7 3
8

′′ by 3 1
4

′′).
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Some programs

Example 1

This example concerns the reading of binary data from the input device.
The program forms the sum of n binary integers (n < 12). The integer n
and the values to be summed are punched on one card.

The card reader is started and one binary integer n is read from a punch
card. The instruction 0–16 to read this number n is a Stop instruction; the
machine waits for a signal from the card-reader, indicating that the first
row of the card is in a position where it may be copied to TS 16, before
executing the instruction. The instruction is written 0–16X, the ‘X’ signifying
that the machine must wait (in the corresponding machine instruction, the
Go bit is 0). The program then goes on to read in n further binary integers.
As each integer is read in, the integer is added to the partial sum being
formed in DS 14 (e). (14 (e) refers to the even-numbered minor cycle of DS 14,
14 (o) to the odd-numbered minor cycle, and 14 (e, o) to both minor cycles.)
The instructions are as follows.

0 – 31 Stim. (i.e. start) card reader. 
0 – 16X Read in n, to be used as a trip counter, and wait for the card row to be
 in position.
28 – 14 (e,o) Clear the double accumulator.
0 – 13 (e)X Read one integer, adding it to the partial sum.
25 – 18 Decrement the trip counter by one (that is, subtract 1 from TS 16). 
16 – 25 Is the trip counter zero?  If  not, go back to read another integer.

Non-zero
Zero Yes: exit loop.

The sum is left in DS 14 (e), and the card reader stops automatically after
reading the card.

Example 2

This program forms the sum of all 32 words of a DL (DL 5 is chosen). It would
be used, for example, in forming a sum check of an array, or to sum the
elements of an array or the rows of a matrix.

28 – 16 Clear the accumulator TS 16.
5 – 17 (32 mcs) Add all 32 words of DL 5 to TS 16.
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Since all 32 words of a DL would usually be cleared prior to storing values
in it, these same instructions would also serve to sum the first n words
of a DL.

Example 3

The program in this example multiplies two positive integers (or two signed
integers when the product is smaller than 2,147,483,648). The code assumes
that the multiplier is in TS 26, and the multiplicand is in TS 20. The multiplier
unit requires that the multiplicand be in TS 26, and that the multiplier be in
DS 14 (odd). DS 14 (even) must be set to zero prior to starting the multiplier.
It is usually convenient to place the multiplier first in a TS before copying it to
DS 14 (odd) (it can be copied from any minor cycle in any DL).

Location S D
122 28 – 14 (e) Clear the lower word of DS 14

(i.e. the word in the even minor cycle).
125 26 – 14 (o) Place the multiplier in the upper word

of DS 14 (i.e. in the odd minor cycle).
127 0 – 19 (mc 29) Stim. (i.e. start) multiplication in

an odd minor cycle.
128 1 – 1 (mc 31) Waste time.
130 The result is now available in DS 14.

If the product is smaller than 2,147,483,648 it may be taken from DS 14

(even), because the result does not then exceed the capacity of a word.
It is necessary to include an instruction to waste time, since multiplica-

tion takes 65 mcs (or just over 2 milliseconds). The instruction 1–1 transfers
1 minor cycle of DL 1 to itself and thus changes nothing. More than two major
cycles elapse in order to allow the result to be formed in DS 14.

Example 4

This example illustrates the multiplication of two signed integers or signed
fractions. As the hardware multiplier treats the operands as unsigned, sign
correction must be performed. In this program, advantage is taken of the fact
that the multiplier is asynchronous. Thus preparation of the correction may
be performed while multiplication is in progress. The correction is added after
the conclusion of multiplication. The correction is formed in TS 16. Before
executing the code, the multiplier is placed in TS 26, and the multiplicand is
in TS 20. The product is formed in DS 14.
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120 28 – 14 (e) Clear the lower word of  DS 14 (the word in the even minor cycle). 
123 26 – 14 (o) Place the multiplier in the upper word of  DS 14 (the word in the 
  odd minor cycle).  
125 0 – 19 (mc 27) Stim. multiplication in an odd minor cycle. 
130 28 – 16 Clear the accumulator TS 16. 
119 26 – 24 Is the multiplier negative?  
    No    Yes 

126 1 – 1

121 1 – 1

127 20 – 18 If  so, subtract the multiplicand from the accumulator TS 16. 

129 20 – 24 Is the multiplicand negative?
 No 

224 16 – 13 (mc 29)   Adds the correction to DS 14 (o) (the upper word of  the product)
 after multiplication is complete

Yes 

122 26 – 18 Yes, so subtract the multiplier from the accumulator TS 16.

Example 5

This example concerns the punching of data at the output device. The
program punches out on cards the contents of a DL (say DL 4, which contains
32 words). This is useful if the DL contains some results or instructions that
the operator wishes to inspect.

A loop is used. An instruction to fetch a word from the Delay Line needs
to be modified each time around the loop, in order to fetch successive words
of DL 4 (starting with the word in minor cycle 0). This instruction is termed
a pro forma instruction (also known as a ‘quasi instruction’): its Wait Number
is incremented by 1 each time around the loop. The loop terminates after
32 iterations because on the thirty-second execution of the pro forma instruc-
tion, a carry is propagated from the Wait Number into the Timing Number,
increasing its value by 1. For the first 31 executions of the loop, the instruction
4–28 leads to the instruction at 34. On the thirty-second execution, the pro
forma instruction leads to 35 (which is executed next), when the instruction
is said to ‘spill out’ of the loop.

The notation ‘Q29(33)’ in the instruction ‘Q29(33) 431–28X (7)’ means
that the instruction at location 33 is executed as if it were stored in minor
cycle 29. The instruction is termed ‘Quasi 29’, abbreviated Q29. The notation
‘(7)’ refers to bits in an unused part of the instruction P22 − 24, where the
value 7 is held. The bits of a word are numbered P1, P2, P3, . . ., P32.
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Place the pro forma punch instruction in the accumulator.
Start the card punch (inside loop, to force subsequent cards to be fed). 
Increment the wait number of the pro forma punch instruction. This 
allows the pro forma instruction to punch 40, 41, 42, ..., 431.
Send the modified pro forma instruction to control, to be executed next.
Punch one number, starting with 40.  Done 32?  If not, loop back.

Spill out on 32nd time.
34

35 Exit after punching the thirty-second number.

 30 33 – 16
 34 0 – 30
 36 23 – 17

 38 16 – 0
 Q29(33) 431 – 28X (7)

Example 6

The program in this example forms the sum of the last n words of a DL
(DL 5 is chosen). The program illustrates the array capability of the Pilot ACE.
A single instruction is required to sum the numbers. To prepare for the sum-
mation, n needs to be subtracted from the Wait Number of an add instruction,
in order that the transfer commences with the appropriate word.

It is assumed that n is in TS 20, that 1 ≤ n ≤ 32, and that n is given times
P17, that is, as n × 216—so that n is in a position ready to be subtracted from
the Wait Number of the instruction in TS 20.

The line ‘Q30(421) 50–17 (n mcs) (1)’ signifies that the instruction held
in TS 20 is executed Quasi 30 (i.e. as if it were stored in minor cycle 30).
The notation ‘(421)’ means that the instruction was obtained from 421 (see the
first line of the program). The notation ‘(1)’ signifies that the instruction at
421 has a digit at P22. (This digit is needed to prevent the subtraction at 422

from altering the Timing Number of the instruction held in TS 20.)

419 421 – 16 Place the pro forma add instruction
in the accumulator, TS 16, which is
50 – 17 with P22 set (see text).

422 20 – 18 Subtract n from the Wait Number of
the instruction in TS 16.

424 16 – 20 Copy the instruction to TS 20.
426 28 – 16 Clear the accumulator to receive

the sum.
428 20 – 0 Send the modified pro forma add

instruction to the control unit.
Q30(421) 50 – 17 (n mcs) (1) Add DL 532−n through 531 to the

accumulator TS 16.
431 The sum is left in the

accumulator TS 16.

Example 7

In this example a binary value is converted to decimal, for punching on a card.
An image of the decimal part of the card is built up in a DL (DL 7 is chosen)
and is then punched.
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40 0 – 30 Stim. the card punch.
42 47 – 20 (P2) A strobe for card columns 2 to 10.
430 28 – 70 (10 mcs) Clear DL 70–9 in which an image of  rows 0 to 9 of  the punch card will be built.
49 16 – 24 Test v for negative. 

 +   –

314 25 – 28X Positive, so punch 315 16 – 15X
a plus sign. 319 15 – 18 (2 mcs) 

330 1 – 1X 323 25 – 28X

30 16 – 26 Copy TS 16 to TS 26.
32 47 – 27 Place the constant P28–P31 in TS 27.
34 21 – 26 Extract the whole part of  the number, giving one decimal digit, d.
36 26 – 18 Delete d in the upper part of  TS 13, preserving the fraction.
38 410 – 14 (e,o) The pro forma instructions 22 – 7n and 7n – 27 in 410 and 411 respectively.
312 18 – 26 (11 mcs) Shift d to P17 position, shifting TS 26 down by 11 places. 
324 26 – 13 (e,o) Add d to the wait number of  both pro forma instructions. 
327 14 (o) – 0 Send the modified pro forma instruction in 14 (o) to control.

Q29(411) 70 – 27 Select minor cycle d from DL 7 (which will be the d -row of  the card). 
39 20 – 26 Place the strobe in TS 26.
328 14 (e) – 0 Send the modified pro forma instruction to control.

Q30(410) 22 – 70 To store the updated minor cycle d.
310 19 – 20 Move the strobe along by one position to the right and save it. 
313 415 – 27 Place the constant P10 in TS 27. 
318 21 – 25 End of  the loop when the strobe is in P10 position.

Zero Non-zero 

320 16 – 17 Double the  fraction.
326 16 – 26 Copy to TS 26.
329 19 – 17 (2 mcs) Add 8 times the original fraction, thus completing multiplication by 10.

Now punch the contents of  70 to 79 which contain
an image of  rows 0 to 9 of  the card.

321 423– 16 A pro forma instruction to punch one row of  the card.
Send the pro forma instruction to control.428 16 – 0

Q30(423) 70 – 28X Punch one row of  the card.
316 23 – 17 Add P17, which alters the Wait Number of  the instruction in TS 16.
418 30 – 25 Is this the last row of  the card (i.e. have 10 rows been done)?
Zero Non-zero (Yes) 

429 Exit with the card punch halted.

Negative,
so form |v|.
Punch a minus sign. 

The binary value is less than 10 in magnitude and is given to 27 binary
places. In order to convert the value to decimal, the individual decimal digits
need to be obtained. These are obtained one at a time by multiplications
by 10. However, each decimal value thus obtained is in binary; hence the
process is termed conversion to binary coded decimal (each decimal digit is
separately represented by a binary integer). The process begins by extract-
ing the whole number part, then removing the whole number part from
the original number, and then multiplying the fraction that remains by 10.
The new whole number part is extracted and removed from the fraction, as
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before. The successive whole number parts are binary coded decimal digits.
These values are used to select one minor cycle of DL 7 (decimal 0 to 9 select
minor cycles 0 to 9, respectively). Minor cycles 0 to 9 of DL 7 correspond to
rows 0 to 9 of the card to be punched. For each decimal digit, a single bit
(representing a hole to be punched) is stored in one of these corresponding
minor cycles of DL 7.

The program punches a decimal number on a card. The binary value v is
assumed to be in TS 16, and 0 ≤ |v| < 10, with 27 binary places. First the
sign is punched in the Y-row or X-row of the card, and the absolute value is
formed. Then an image of the card rows 0 to 9 is prepared in DL 7. Finally,
that image is punched.

The program uses the concept of a ‘strobe’. This is a bit used as a marker that
will be shifted right (i.e. shifted up) in a register as the conversion progresses.
The bit will determine the position of a decimal digit on a card, and will also
be used to determine when the last decimal digit has been processed.

Example 8

This more elaborate example illustrates the input of a decimal integer from
a punch card and its conversion to binary.40 A decimal value is punched with
the sign in card column 1 (see fig. 10). A single punching in theY-row indicates
a positive integer; a single punching in the X-row indicates a negative integer.
Decimal digits are punched in rows 0 to 9 to represent the digits 0 to 9. It is
assumed that the integer to be input is punched in card columns 1 to 10, with
the sign in column 1, and the digits in card columns 2 to 10. The first row to
be read is the Y-row; that is, the sign is read first.

The first instruction in the subroutine copies the instruction that is in
TS 16 into 130. This action is termed ‘planting a link’. To plant a link is to
place an instruction in a specified location in a DL, so that the subroutine
can return to the program that called it. The last instruction in the sub-
routine leads to this link, and so back to the next instruction in the calling
program.

A decimal punching check is carried out by the subroutine—that is, a
check that there is only one hole in each of the nine columns where decimal
digits are expected. For each of the rows 0 to 9, a ‘strobe’ is used to ascertain
whether a column has been punched. The strobe is used to scan a TS that
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holds a copy of the row. The strobe is compared with each of the bits in the TS
in turn to ascertain whether a hole has been punched in a particular column
of that row. If the column has been punched, a power of 10 is added to the
partially converted binary integer. The power of 10 is initially zero for the
ones row, and increases as each digit in the row is processed.

222 16 – 130 Plant a link. 
28 0 – 31 Stim. card reader. 
23 0 – 12 (e)X Read the Y-row (for a plus sign).
26 0 – 12 (o)X Read the X-row (for a minus sign).
212 215 – 11 Place P2 – P10 in TS 11 for the decimal punch check. 
224 28 – 14 (e,o) Clear the row-counter r to zero.
Once around the following loop for each row 0 to 9.

227 0 – 27X Read one row, and wait for the card row to be in position.
230 14 (e) has 0 for row 0, 1 for row 1, 2 for row 2, etc.
22 11 – 26
25 22 – 26 Update the decimal punching check. 
27 26 – 11
29 211 – 26 P10 is a strobe corresponding to the least-significant digit of 

decimal number.
In this loop, TS 16 holds r, 10r, 100r, etc.

214 21 – 25 Digit punched?

Zero Non-zero (Yes)
(No)

216 1 – 1 217 16 – 13 (o) Yes, so add contribution for this digit, 
that is, add r × 10k.

219 16 – 17

221 16 – 20 To multiply by 10, giving r × 10k.

223 20 – 17 (4 mcs)
229 18 – 26 Move the strobe to a more-significant decimal position.
231 18 – 25 Done 9 times?

Zero
Non-zero (Yes)

213 25 – 13 (e) Yes, so increment the row counter r.
218 30 – 25 Done 10 times? (Test for last row.)

(Yes)
228 11 – 25 Decimally punched card?

   Non-zero Zero (Yes) 
   (No)

226 1 – 1 225 12 (o) – 25 Minus sign?
24 0 – 31X  No Yes 

Re-read card 20 14 (o) – 16 21 28 – 16 Clear TS 16
210 14 (o) – 18 Negate.

130 Exit with the converted integer in TS 16.

14 (e) – 16

(No)

(No)

253



Robin A. Vowels

Entering a program

The significance of Source 0 and Destination 0

It was mentioned earlier that Source 0 and Destination 0 were specially
chosen. The significance of this will now be explained.

One of the problems facing the designer of any computer is that of intro-
ducing a program into an empty machine. Turing solved it rather simply,
by making use of the zero words that would be in every store whenever the
stores were cleared (i.e. set to zero) ready for a new program.

He arranged for Source 0 to be the card reader, and for Destination 0 to
be INST (as mentioned previously, the instruction register INST was renamed
COUNT in the Pilot ACE). A zero word also had to be a useful instruction,
namely 0–0 (this instruction says ‘copy Source 0 to Destination 0’). Further-
more, a zero word had to be a Stop instruction, otherwise the machine would
not wait for the card reader to be ready with a row of a card.41 (Recall that
a Stop instruction had the Go bit set to 0, while an instruction that could be
executed immediately had the bit set to 1.) The use of a zero word as a mean-
ingful instruction allowed a new program to be entered into the machine.
The next subsection describes how, in an empty machine, instructions were
taken from cards in the card reader and executed.

Obeying instructions from the card reader

A completely empty machine contained zero words in every store (except for
COUNT, which had zero in all fields except for the Wait and Timing Number
fields, which were continually counting down). Considered as an instruction,
each zero word specified Source 0 and Destination 0. Since the Go bit was
zero, the instruction could not execute immediately it was sent to control, but
waited until a row of a card was in position to be read. When the row was
in position, the card reader gave a Single-Shot which allowed the machine
to execute the 0–0X instruction. A word on a row of the card was then
transferred into COUNT, where it was executed. In this way, an instruction
could be executed directly from the card reader.

When a new program was to be entered, control and the high speed store
were cleared, and a deck of cards that had been placed in the card reader
began to pass the reading station. The instruction in control after the store
was cleared was 0–0X, with NIS 0, and with Wait and Timing Numbers that
were usually unequal. As soon as the first row of the card was ready to be
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read, the reader gave a Single-Shot and one word of DL 11 was sent to control
(the NIS of zero causing DL 11 to be selected).42

Because DL 11 was also cleared when all the stores were cleared, it con-
tained thirty-two copies of a zero word—that is, the instruction 0–0X with
NIS 0 and with equal Wait and Timing Numbers. One of those words was sent
to control and was executed when the Single-Shot for the second row of the
card was given.

The instruction in the second row of the card was then sent to control.
After the instruction was executed, the NIS specified which of the eight DLs
provided the next instruction. Typically this was another zero word, which
was executed in the same way. Then another instruction was taken from the
third row of the card in the reader, and so on.

Reading in the initial instructions (bootstrap)

This subsection describes how a new program was read in, starting with the
initial orders. (It will be helpful to refer to the Pilot Model Instruction Card in
fig. 10.)

In order to read in a program on cards and to store the instructions in a DL,
a special set of instructions called filler instructions was required. A typical
set of filler instructions, on the first four rows of the card, were:

Y-row: blank
X-row: 1, 0–1 26 25X (1 = NIS; 0–1 are S and D;

26 = Wait Number;
25 = Timing Number)

0-row: 1, 0–1 (1) 30 31X
1-row: 1, 0–1 (1) 30 31X

These instructions function as follows. First, a copy of the instruction in the
0-row is placed in all words of DL 1:

1, 0–1 (1) 30 31X.

Then minor cycle 31 of that delay line is replaced with the instruction

1, 0–1 (1) 30 31X

from the 1-row. The instructions in DL 1 are then executed, starting at
the first one in minor cycle 0. Each instruction reads in one word from a row
of a card. (The remainder of this card is read and two more cards.) The first
instruction—the one in 10—reads in the word at row 2 of the same card, and
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stores that word in 10. That is to say, the instruction that was just executed
is itself replaced by the content of row 2 of the card. Then the instruction in
minor cycle 1 of DL 1 is sent to control. This causes row 3 of the card to be
read and stored in 11. The instruction in 12 reads in row 4 of the card and
stores it in 12. And so on. Each instruction in DL 1 reads in a word from a row
of a card, and overwrites itself with a copy of that word. The last instruction
in minor cycle 31 likewise reads in a word, but is special in that it also breaks
the sequence, either to enter the program just read in (as is the case here),
or to allow another delay line to be similarly filled.

In detail the process is this. When the first row (all blank) is ready to be
read in, a zero word from DL 11 is taken into control.43 The zero word that is
now in control will not be executed until the second row of the card arrives
at the reading station (since the zero word is a Stop instruction). When the
row arrives, the instruction 0–0X is executed, causing the instruction on the
X-row to enter control. When the third row arrives at the reading station,
the instruction 1, 0–1 26 25X is executed. It copies the third row into all
32 words of DL 1, because it is a long transfer, that is, of 32 mcs. DL 1

now contains the instruction 1, 0–1 (1) 30 31X in every word. The NIS of
the instruction just executed is 1, so the instruction in DL 131 is brought
into control and is executed when the fourth row of the card is ready to be
read. This instruction is 1, 0–31 (1) 30 31X. It causes the fourth row of the
card (the 1-row) to be transferred to DL 131, overwriting the instruction that
was recently placed there. Since the Timing Number is 31, the instruction
in DL 10 is fetched to control and is executed, bringing the fifth row of the
card to DL 10 (overwriting the instruction previously placed there), and so
on for the next 31 rows. Now 32 consecutive rows of three cards are stored
in DL 10 to DL 131 respectively, beginning with the 2-row of the first card.
Once the last of the 32 rows has been read, the next instruction is taken
from 10, so initiating the execution of the program that has just been read
in. (If the first instruction in the program is not in the first minor cycle of
DL 1 it is selected by changing the Timing Number of the filler instruction
in the 1-row.)

Performance

Some program times for the Pilot ACE (before the magnetic drum was
installed) are given in Table 3.44
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Table 3 Pilot ACE program timings

Program Order of task Time taken

Matrix multiplication 14 × 14 by 14 × 14 1 1
4 sec

47 × 47 by 47 × 47 15.36 min using card

equipment for interim

storage

Solving simultaneous

equations

13 equations,

2 right-hand sides,

or 10 equations with 10

right-hand sides

A ‘few seconds’ (less than

the time to read the

decimal data)

50 equations Less than 10 min45

Solving equations

(Gauss-Siedel

iteration)

120 equations with 2000

non-zero coefficients

0.835 min per iteration (the

time taken to read the

cards; computation was

carried out between rows

of each card)

Latent roots of matrix Symmetric matrix of

order less than 19

2 1
2 sec

Unsymmetric matrix of

order 15

2 sec

Symmetric matrix of

order 60

1 1
2 min per iteration, using

cards as intermediate

storage

Ordinary Differential

Equations46

Runge-Kutta

(10 simultaneous

equations)

70 + 4T ms per step

(T = time to evaluate the

function F(x, y))

Lagrangian Formulae,

version 1

15 ms per step plus time to

evaluate F(x)

ditto, version 2 10 ms per step plus time to

evaluate F(x)

A comparison with the Manchester University Mark I is given in Table 4.47

In his A History of Manchester Computers, Simon Lavington claims that a
‘contemporary benchmarking exercise rated the Mark I at about the same
raw power as the NPL ACE’.48 This claim does not withstand scrutiny. The
timings in Table 4 show that the instructions of the Pilot ACE were an
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Table 4 Pilot ACE and Manchester Mark I timings

Pilot

ACE

Manchester

Mark I

Units

Clock rate 1000 117 KHz

Integer add/subtract 64 1800 microseconds

Integer multiply 2.06 2.16 ms (Ferranti Mark I of 1951)

Integer multiply with fetch 2.12 3.36 ms (Ferranti Mark I of 1951)

Fixed-point divide (software) 3249 1500 milliseconds (ms)

Square root (fixed point) 32 ms

Floating-point add/subtract

(software)

8 60 ms50

Floating-point multiply

(software)

6 80 ms

Floating-point divide

(software)

34 150 ms

Speed (maximum) 15,625 600 Instructions per second

Speed (average) 7800 600 Instructions per second

Input speed 106 150 Decimal digits per second

1280 750 Bits per second

Output speed 53 15 Decimal digits per second

640 75 Bits per second

order of magnitude faster than the Mark I machine—the only exception
being the multiply instruction, which was about the same speed on both
machines. The times reflect the higher clock rate of the Pilot ACE. Even allow-
ing for the serial nature of storage, the Pilot ACE executed instructions at
a rate at least three times as fast as the Manchester Mark I. But instruc-
tion time was not the only measure of relative performance. In the Pilot
ACE, instructions did more work than in other machines. For example, to
sum 32 words on the Pilot ACE required only one instruction, which per-
formed 32 additions in one major cycle (1 millisecond). To do the same task
on the Manchester Mark I required the execution of 96 instructions. On the
Mark I, where the basic instruction took more than a millisecond, the separate
additions took 96 × 1.8 ms = 172 ms. The Pilot ACE was 172 times faster at
this task.
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Notes

The author is grateful to Jack Copeland for many valuable comments and

suggestions on this chapter and for much editorial work, and also for provid-

ing access to facsimiles of extant correspondence and reports of the NPL through

The Turing Archive for the History of Computing <www.AlanTuring.net>. The

author also extends thanks to John Webster for his comments and suggestions,

and to Michael Woodger for the ACE Pilot Model Instruction Card in fig. 10.

1. The addition rate was 15,625 additions per second (30,300 additions per second

for vector addition). By comparison ENIAC had a pulse rate of 100,000 Hz and

an addition rate of 5000 per second (Goldstine, H. H. and Goldstine, A. (1973)

‘The Electronic Numerical Integrator and Computer (ENIAC)’, in B. Randall (ed.),

The Origins of Digital Computers, 2nd edn, Berlin: Springer-Verlag, p. 335; the

addition rate of the Cambridge EDSAC was 700 per second (Lavington, S. (2000)

The Pegasus Story, London: Science Museum, p. 50; see also the comparison table

in Lavington, S. (1980) Early British Computers, Manchester University, p. 118).

2. Turing was expecting his machine to solve up to 50 linear simultaneous equations,

requiring an estimated 6400 words of storage. No fast storage medium having

greater capacity than delay lines was available at the time. The DEUCE circuitry

associated with a delay line required 27 valves: 23 for the circulation unit, 3 for

the receiver, and 1 for the transmitter, and the ACE circuits would have been

similar. Turing’s design also needed 32 temporary stores. For 200 delay lines

and 32 temporary stores, 6264 valves would have been required. (‘Circulation

Unit. Unit S. Mark II. D.E.U.C.E.’, English Electric Company Ltd. (Nelson Research

Laboratories, Stafford), 30 August 1955, ‘Receiver Units Type I & II. Mark II.

D.E.U.C.E.’, English Electric Company Ltd. (Nelson Research Laboratories), 28 May

1956; ‘Transmitter Unit Type I & II. Mark II. D.E.U.C.E.’, English Electric Company

Ltd. (Nelson Research Laboratories), 28 May 1956.) Turing estimated that the

control unit would require 1000 valves, thus bringing the total to at least 7264

valves. Wilkinson was later able to solve 192 equations with a machine one-tenth

the size of Turing’s. (Wilkinson, J. H. (1954) ‘Linear algebra on the Pilot ACE’,

Automatic Digital Computation: Proceedings of a Symposium Held at the National

Physical Laboratory, 1953. London: HMSO, p. 131.)

3. Womersley, J. R., memo to the Executive Committee of the NPL, E.881,

13 February 1946. The memo accompanied Turing’s report E.882. (Digital facsim-

iles of all NPL and DSIR documents referred to in this chapter are available in The

Turing Archive for the History of Computing <www.AlanTuring.net/aceindex>.)

4. Version III is mentioned in Goldstine, H. H. (1972) The Computer from Pascal to

von Neumann. Princeton, N.J.: Princeton University Press, p. 218. Professor D.

R. Hartree gave ‘ “Circuits for the ACE,” third version’ to Goldstine between c.4

July and 20 July 1946 (ibid., pp. 218, 219, 233). (The term ‘circuits’ did not
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then refer to ‘electronic circuits’ but to logic diagrams, as in ‘control circuit’—

used throughout Chapter 22, ‘The Turing–Wilkinson Lecture Series (1946–7)’.)

I believe that ‘Proposed Electronic Calculator’ was Version I (although Woodger

says not—see his letter to Copeland (25 February 2003), quoted in Chapter 3,

‘The Origins and Development of the ACE Project’). Supporting my view is the time

scale: Versions V, VI, and VII were produced from May to November 1946, taking

about two months per version. ‘Proposed Electronic Calculator’ was completed

late in 1945. It is reasonable to think that three more versions could have been

produced in the four months to the end of April 1946, but four versions seems

less likely. Further support is provided by Goldstine (ibid., p. 218) who refers to

‘Proposed Electronic Calculator’ as ‘first version’.

5. The question facing Turing was: how to design a branch instruction that needed

a branch address, when the instruction already contained the address of the

normal next instruction? The answer was delightfully simple. When a branch

was required, add unity to the Timing Number of an instruction when it was in

the control unit, thereby allowing control to select an adjacent instruction instead

of the normal instruction.

6. TRANSTIM is an acronym for ‘Transfer Time’, while TIMCI is ‘Time to Call the

Next Instruction’.

7. Unconfirmed Minutes, Executive Committee Meeting, 21 January 1946.

8. Memorandum, ‘Status of the Delay Line Computing Machine at the P. O. Research

Station’, 7 March 1946.

9. Thomas, H. A., ‘A Plan for the Design, Development and Production of the “ACE”’,

12 April 1947.

10. Letter from Woodger to Copeland, 21 May 2003.

11. Ibid.

12. NPL News, August 1955, p. 3 (quoted in Yates, D. M. (1997) Turing’s Legacy:

A History of Computing at the National Physical Laboratory 1945–1995, London:

Science Museum, p. 24).

13. Thomas, ‘A Plan for the Design, Development and Production of the “ACE”’.

14. Womersley’s memorandum records that discussions took place between the

Director, Hartree, and Smith-Rose (Womersley, ‘A.C.E. Project’, undated, but

written after 18 August 1947).

15. Huskey testifies: ‘we had no knowledge of any technical activity in the Radio

Division’ (in a letter to Copeland, 16 May 2003).

16. Thomas, ‘A Plan for the Design, Development and Production of the “ACE”’, p.

2. In point of fact the ACE group was considering pulses as short as 0.3 micro-

seconds, which would be required for transmission around the machine and

for clocking purposes (Memorandum to Director, ‘A.C.E. Pilot Test Assembly

and Later Development’, from R. L. Smith-Rose and J. Womersley, 30 April

1947).
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17. Indeed, did Thomas overlook the detailed description of the cathode follower

circuit in Turing’s report (under the heading ‘Use of cathode followers’)? Not only

does Turing give a circuit; he unequivocally states that it has ‘a very large input

impedance and a very low output impedance’, and points out that the output can

have many connections made to it. Turing evidently had considerable knowledge

of electronics.

18. ‘Status of the Delay Line Computing Machine at the P. O. Research Station’.

19. Version V was by far the simplest of the three Versions V, VI, and VII presented

and discussed in the lecture series at the beginning of 1947 and it was natural

for Huskey to adopt it as a starting point. Versions VI and VII used vector to

vector arithmetic, while the earlier Version V allowed limited vector operations

(see Chapter 4). But even Version V needed considerable pruning—for example,

it had 1024 Destinations and 1024 Sources. Strictly speaking, it should not have

been necessary for Huskey to convince anyone of the need to build a small trial

machine, because DSIR had given approval to proceed with a first pilot machine in

July 1946 (Memo on behalf of the Lord President of DSIR to Sir Edward Appleton,

2 July 1946).

20. Woodger, M., ‘ACE Test Assembly’, September–October, 1947.

21. Womersley, ‘A.C.E. Project’. (The content of this memorandum cannot be entirely

relied upon.)

22. Woodger, ‘ACE Test Assembly’.

23. This method was taken directly from Turing’s lecture 26 (see Chapter 22). To input

a new program from cards the machine had to be switched to ‘Stop’. Six punch

cards were required to fill a delay line with a program. The instructions and

constants (words) for the delay line would not be arranged consecutively on the

cards, but were to be punched on alternate rows of the cards, each word preceded

by an instruction that would read in the following word to the delay line. After the

cards had been read in, the machine would be switched to ‘Run’ for the program

to be executed. There was no provision to stop the processor other than to operate

the Stop/Run switch.

24. The successful machines at Manchester and Cambridge consisted of a few stores

and an arithmetic unit.

25. Anon., ‘A.C.E. Problems’, NPL.

26. Wilkinson, J. H., ‘Progress Report on the Automatic Computing Engine’, DSIR,

April 1948.

27. Wilkinson in interview with Christopher Evans in 1976 (The Pioneers of Computing:

An Oral History of Computing. London: Science Museum).

28. DSIR Minutes, 16 February 1949.

29. Letter from Bullard to DSIR, 4 August 1950.

30. Mathematics Division, NPL, Appendix to ‘Programming and Coding for the Pilot

Model ACE (1951)’, 1 March 1954.
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31. Wilkinson, J. H., ‘Report on the Pilot Model of the Automatic Computing Engine.

Part II: The Logical Design of the Pilot Model’, Mathematics Division, NPL,

September 1951, Figure 13.

32. Campbell-Kelly credits S. Gill with assisting in the logical design of input–output

(Campbell-Kelly, M. (1981) ‘Programming the Pilot ACE: early programming

activity at the National Physical Laboratory’, Annals of the History of Computing,

3, 133–68, p. 135). However, Gill’s details of the electromechanical circuits and

the programming of the input–output equipment follow Turing’s design (S. Gill,

‘Description of Hollerith Input Output for the Pilot Model’, Mathematics Division,

NPL, June 1949; see part two.)

33. Initially 10 and 6, respectively. When the magnetic drum was added in 1954,

one of the TS was replaced by a Delay Line (see note 39).

34. Levy, J. V. (1978) ‘Buses, the skeleton of computer structures’, in C. G. Bell,

J. C. Mudge, and J. E. McNamara (eds), Computer Engineering—A DEC View of

Hardware Systems Design. Maynard, MA: Digital Press, p. 277.

35. The Next Instruction Source (NIS) of the instruction 16–0 is ignored.

36. For positive values only.

37. The least-significant bit of a word emerges from a store first, and is displayed

on the console and the monitor (VDU) with the least-significant bit on the left.

A binary word on a punch card has the least-significant digit on the left. The

terms ‘up’ and ‘down’ were used to denote shifts that would now be called ‘left’

and ‘right’. However, on ACE, a doubling was actually a shift to the right, and

a halving was a shift to the left. Even the components of an instruction were

written with the least-significant components on the left, and binary constants

were written and punched with the least-significant bit on the left (hence the term

‘Chinese binary’).

38. Normally an electronic signal, TIMCI (Time to Call the Next Instruction), allowed

one instruction into COUNT. However, when the word being tested was non-zero,

the signal TIMCI was extended by 1 minor cycle, thus allowing two instructions

to enter COUNT. The first was discarded, because the circulation path in COUNT

was broken while the transfer took place. This allowed the second instruction to

enter COUNT and to be executed next.

39. Initially this store was TS 11 (which also was NIS 0). When the magnetic drum

was added in March 1954, TS 11 was replaced by DL 11.

40. In this program, Source and Destination 11 is TS 11, not DL 11 as it became

in 1954.

41. The Go/Stop bit was conceived after Turing had left the NPL, quite possibly by S.

Gill.

42. In the case where the Wait and Timing Numbers are equal, the next instruction is

taken from Source 0, which is the next row to be read by the card reader. This first
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row is usually blank, which is the instruction 0–0X with NIS 0, and with equal

Wait and Timing Numbers.

43. Should the Wait and Timing Numbers of the instruction in control happen to be

equal, then the instruction in control, 0–0X, will cause the Y-row of the card to be

read. In any event, a zero word, coming either from DL 11 or from the card reader,

is transferred to control when the first row of the card is ready to be read in.

44. Wilkinson, ‘Linear Algebra on the Pilot ACE’, pp. 129–36.

45. The Engineer, Vol. CXC, 8 December 1950, London, p. 560.

46. Fox, L. and Robertson, H. H. (1954) ‘The numerical solution of ordinary differen-

tial equations’, in Automatic Digital Computation: Proceedings of a Symposium Held

at the National Physical Laboratory, 1953. London: HMSO.

47. Lavington, S. (1998) A History of Manchester Computers. Swindon: British

Computer Society, pp. 17, 25.

48. Lavington, A History of Manchester Computers, p. 26.

49. Could be programmed as 16 ms, if required.

50. The floating-point times are from Campbell-Kelly, ‘Programming the Pilot ACE’,

p. 159, as are the input and output times for the Mark I (ibid., p. 137). In preparing

Table 4, the author has written DEUCE subroutines to compute floating-point

addition, subtraction, and multiplication. They take 5 ms, 5 ms, and 4 ms,

respectively. The times—which are maximum times and include times for post

normalization and checks for overflow and underflow–would have been exactly

the same for the Pilot ACE. The times compare with those published for DEUCE

of 6 ms, 6 ms, and 5 1
2 ms average, respectively.
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12 Applications of the Pilot ACE
and the DEUCE

Tom Vickers

Practical mathematics

The arrival of Pilot ACE in 1950 had a dramatic effect on practical
mathematics.1 The new wind—it was a hurricane—felled some very fine
trees but at the same time scattered far and wide seeds that have now grown
into substantial forests.

Up until the Second World War practical mathematics was in a primitive
state.2 My own experience provided ample evidence of this. After gradu-
ating in 1940, I was directed to join the External Ballistics Department of
the Ministry of Supply, which had taken over the new Mathematics Labor-
atory in Cambridge. I was a very junior member of a team of about twenty
mathematicians. E. T. Goodwin and J. H. Wilkinson were also members of
the team. Most of our time was spent calculating the trajectories of vari-
ous types of shell. The simple differential equation involved was solved by
an ancient predictor–corrector method due to Adams–Bashforth. We accep-
ted the method without question. Our lecturers had taught us how to prove
the existence of a solution to a differential equation, but finding it was irrel-
evant unless it could be written down directly in terms of known functions.
Indeed, numbers were considered to be infra dig, although we got very familiar
with the Greek alphabet. Only five years later, Goodwin and L. Fox publicized
at least seven methods for the numerical solution of differential equations.
These would have allowed the wartime trajectories to be computed by school-
leavers rather than graduates. When Goodwin, Wilkinson, and I moved to the
National Physical Laboratory, we were pleasantly surprised to discover the fas-
cination of numbers and errors (although other members of the Cambridge
group were glad to escape from the Brunsviga).3
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A unit such as NPL’s Mathematics Division was sorely needed to promote
knowledge of numerical methods; ‘To develop and apply numerical methods
and mathematical statistics’ was included in the terms of reference of the
new Division. From 1945 to 1950, Goodwin, Fox, Olver, and others flushed
out various aids to practical mathematics from obscure publications. Their
work helped to define a new discipline, Numerical Methods, and lead eventu-
ally to the publication in 1957 of the popular book Modern Computing Methods,
written by various members of Maths Division.4 (A second edition in 1961

became a classic, remaining a standard reference for over twenty years.)
Later on, Wilkinson’s investigation of inherent errors led to the new subject
of Numerical Analysis. Maths Division’s extensive knowledge of good prac-
tical methods was a major factor in the successful exploitation of the Pilot
Model ACE.

In 1943, most of my group was relocated to Fort Halstead to join the
newly created Armament Research Department. My work was mainly in
ballistics; the tasks of my many new colleagues and friends were unknown
to me. On occasion I was unaware of the purpose of my own calcula-
tions. One bank holiday, Heather Wilkinson and I were required to carry
out some very urgent sums. When the V2 rockets were launched shortly
afterwards it was obvious that we had been calculating trial trajectories for
them. We were never told officially and even now I may be breaching security
in revealing it!

When I joined NPL in 1946 I found an entirely different ethos. Womersley
had collected a remarkable number of escapees from secret wartime work.
We were expected to share experiences and to interact closely with the rest
of NPL. My main responsibility was to organize problems submitted to the
Laboratory in such a way that they could be solved by our team of school-
leavers. (I shared this task with Joan Staton.) Other responsibilities included
investigating new computing aids, in particular desk calculators and account-
ing machines, providing an advisory service on the acquisition and use of
calculating machines, and organizing the use of the National Accounting
machine for table-making.

Goodwin told the school-leavers: ‘At school, if you made an error you were
punished by loss of marks. Here, errors will be made all the time. They must
not leave the building.’ We all became obsessed with checking and I believe
that our reputation for accuracy was widely recognized. It is not surprising
that the first Quality Manager in NPL was previously the Operations Manager
on DEUCE.
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My first internal investigation was into a minor difference in the results
obtained by new members of staff. ‘Did you use sufficient figures in π?’,
I enquired. Oh yes, 3.14285714—the handy approximation 22/7 taught in
schools. It should have been 3.14159265!

Careful scrutiny of submitted problems often identified poor formula-
tion, where the problem could have been solved more easily at an earlier
stage. Another common failing was to seek the evaluation of a complic-
ated formula which proved to be the analytical solution of an integral or
differential equation, again reflecting the neglect of numerical methods in
mathematics degrees. For example, the solution of the simple differential
equation dy/dx = (y − x)/(y + x) given in standard texts requires logarithms
and inverse tangents, yet it is trivial by a numerical method. In our work
it was necessary to strike a balance between the analytical approach and
a numerical one, a matter completely neglected in formal teaching.

Our ability to assess new machines was soon noted by both the O and M
(Organization and Methods) Unit of H. M. Treasury, responsible for author-
izing office equipment in Civil Departments, and also by His Majesty’s
Stationery Office, who supplied the equipment. Calculators were not in
common use then and these departments were relieved to pass the job of
technical assessment to me. NPL gained by acquiring new machines. This
one-man advisory service was to develop into a major department.

Pilot ACE goes to work

Following the successful demonstration of Pilot ACE in 1950, it was proposed
from above that the machine be abandoned in order to give us freedom to con-
centrate on designing the full-scale ACE. Wilkinson disagreed strongly with
this. Following intervention by Goodwin, who was aware of several poten-
tial customers, the proposal was rapidly overturned. Not long afterwards
Goodwin was appointed Superintendent of Maths Division. We began using
Pilot ACE.

My duties changed dramatically. I was told ‘Here is a computer. We hope
that it will work for a reasonable number of hours. Do what you can with it.’
This was no hardship. I had been looking for desk calculators that might
reduce a multiplication time from 15 seconds to perhaps 12; Pilot ACE took
1/500 of a second. A new accounting machine that I had been hoping to
acquire contained 10 registers rather than 6; Pilot ACE had 350. Ted York—
who had been squeezing the pips out of punched-card machines—also
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jumped at the opportunity to use the ACE. He and I had no doubts that
this move would be interesting, challenging and exciting. We little realized,
though, the extent of the revolution in computing, communications, and
information that was about to take place.5

I was asked to develop an operating and programming section from the
existing junior staff and future recruits. Since all staff in the Division had
received some training in handling punched-card machines, operation of
the new computer was easy to pick up. Many new machine-room duties
were soon identified—the organization of rosters, the printing of results,
the development of a subroutine library and appropriate documentation,
and so on. An evening shift taken by junior staff was established and normally
ran lengthy jobs. Josie Wright (now Snook), who had already organized the
work of the National Accounting machine, quickly rose to the new challenge
of ACE. I feel ashamed that her annual salary was easily covered by the
income from one good day of ACE. Josie supervised the operation of the
machine, prepared suitable jobs, and interacted with the clients, contributing
substantially to the smooth running of jobs and to the high quality of the
output. She needed to be particularly alert when the job was for Sir Edward
Bullard, the director of NPL, who was developing his theory of the origins of
the earth’s magnetic fields. This work involved the solution of twelve second-
order differential equations and was the largest and one of the most difficult
pieces of computation tackled by Maths Division up to that time. Bullard lived
on site and was liable to appear well before official opening time, clamouring
for the results from the night’s operation.

Early applications

Table 1 lists some of the more significant applications of Pilot ACE. I will
discuss a number in more detail.

Linear equations

Initially, the focus of interest was the use of Pilot ACE for problems where
a method of solution was known but lengthy in practice. The solution of
linear simultaneous equations is a prime example. A brief history of this area
illustrates the difference brought about by Pilot ACE.

• Pre-war—Cramer’s Rule was taught at school, mainly to demonstrate the
use of a determinant. In theory, Cramer’s Rule offers an elegant solution,
but in practice is useless other than in the case of three equations.
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Table 1 Use of Pilot ACE and DEUCE at NPL from 1950 to 1960

1950 ‘ACE Test Assembly’ demonstrated at the Physical Society Exhibition

(April). Pilot ACE carried out instructions in one delay line (May).

Press demonstration—factors of numbers, simple differential equation,

ray-tracing (November).

1952 Pilot ACE deemed reliable enough to be moved to Maths Division. Involve-

ment of junior staff for full-time production. Visit by Duke of Edinburgh

(April 22). Solution of 129 simultaneous equations. Problems concern-

ing defence, photogrammetry (Ordnance Survey), aircraft flutter, traffic

simulation. Report by a Department of Scientific and Industrial Research

(DSIR) working party into applying computers to data processing (scientific,

industrial, administrative): ‘It is already clear that in the organisational and

administrative fields, there are, subject to the solution of certain technical

problems, possibilities of immense economies in money and man-power, and

of the release of human effort from machine-like occupations.’

1953 Symposium at NPL entitled ‘Automatic Digital Computation’ (March).

Twelve second-order differential equations solved for Sir E. Bullard, Director

of NPL, in connection with his theory that the centre of the earth is a mass

of spinning molten material. Representation of mathematical functions

by Chebychev series. Problems for CERN (stability of synchroton orbits),

Atomic Energy Authority (AEA), and aircraft industry. Substantial use of

the matrix library. The ‘mechanization of clerical processes’ under active

consideration.

1954 Increasing pressure for computer time. Addition of magnetic drum. Invest-

igation of Comet disaster (8 million multiplications were a small part of

this problem). Budget Day special: we were all set to produce the new PAYE

tables, but in the event the Chancellor of the Exchequer made no change

to PAYE that year. Crystallography. Ray-tracing. Warning system in mines

for the National Coal Board. Computing train time-tables. Wind tunnel

design. Stresses in catapult of Ark Royal (involving 20 nonlinear differential

equations).

1955 DEUCEs delivered to NPL, Royal Aircraft Establishment, and English Electric.

Agreement to share production of software. New tax tables calculated

on Budget Day, 6–11 p.m. The Society of British Aircraft Constructors

(SBAC) set up panels to agree on a common formulation of problems

in aircraft and engine design; this produced a large demand for matrix

programs. Birth of GIP and matrix Schemes A and B. (Scheme A was

the first matrix scheme developed. Because of the machine’s small store,
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Table 1 Continued

Scheme A relied heavily on cards as backing store. Scheme B was a special-

ized use of GIP for handling matrices held in the newly added drum stores;

for very large matrices Scheme A was still available.) Eigenvalues found up

to order 60. Major problems in theoretical physics. Table-making. Mixing

of salt and fresh water in the Thames. Freezing slabs of fish.

1956 Pilot ACE transferred to the Science Museum (June). Publication of

Wage Accounting by Electronic Computer, written by a small group in

NPL’s Autonomics Division.6 Comprehensive set of 100 matrix programs.

Published tables of zeros of Bessel Functions. Problem for Central Elec-

tricity Generating Board on the efficient distribution of power and the

optimum siting of power stations. Crystallography programs made widely

available by J. Rollett. Study of problem of coding the National Insurance

Index (which contained information concerning 30 million people).

1957 Many DEUCEs sold (matrix library a key feature for the aircraft industry).

Publication by Maths Division of first edition of Modern Computing Methods.

Bristol Engines produce TIP for DEUCE. Computing training course at NPL

for senior staff from major Government Departments. Analysis of family

expenditure survey for the Central Statistical Office. NPL’s weekly payroll

program demonstrated. Mass spectrometry for British Petroleum.

1958 The full-scale ACE is available on a limited basis for subroutine devel-

opment (September). Symposium at NPL entitled ‘Mechanisation of

Thought Processes’ attracts wide TV and radio coverage. New approach to

error analysis—birth of ‘Numerical Analysis’. NPL’s eigenvalue programs

claimed to be the most comprehensive in the world. Representation of

the shape of a ship by orthogonal polynomials. Fast programs for infrared

spectroscopy. Automatic data-capture on paper tape.

1959 Maths Division involved with definition of ALGOL. Mechanical transla-

tion (Russian to English). Optimization. Self-consistent fields. Large partial

differential equations. Vibrational spectra of disordered lattices.

1960 Big ACE in full operation. Development of Autocode. Automated data

capture by paper tape from wind tunnel tests and from trials in a weather-

ship. The design of the NPL Standard Interface and BS 4421. Work on

character recognition. Magnetic coding of cheques. Stresses in cooling

towers. The Computer Users Panel and Data Handling Panel manage

interaction with the rest of NPL.

Source: NPL Annual Reports.
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• During the 1930s the Mallock machine and other devices were built.7

On a good day the Mallock machine gave three-figure accuracy with 8–10

equations.
• The Second World War—Wilkinson struggles to solve twelve equations.8

• 1946—Junior staff at NPL routinely solve six equations with no difficulty.
• 1946—Hotelling gives wide bounds for solutions of large sets of equations.

Turing and Fox disagree on the implications of this, but finally agree that
good solutions are possible.

• 1947—With considerable effort a set of sixteen equations is solved on desk
machines at NPL. The computation took about a week (partly because of
malfunctioning of new machines).

• 1948—The solving of eight equations is cited as one of the objectives of
the ACE Test Assembly.

• 1952—Pilot ACE solves seventeen equations. The data arrived in the
morning post; the input was punched and the answers sent out the same
day. (At that time, post was delivered to a central Registry at NPL at
7.30 a.m. but only filtered through to recipients at 10.40 a.m. We insisted
on a change and receipt by 9.10 a.m. became the norm. As a result, a rapid
turn around on standard problems became perfectly feasible.) Later in 1952

a set of 129 equations was submitted to us by the English Electric Com-
pany via John Dennison, their resident contact. He and Ted York worked
overnight and succeeded in solving the equations. The following morn-
ing we found the room piled high with punched cards, and the reader
and punch showing signs of wear and tear. As a result of this episode
we realized that punched cards provided a convenient—and potentially
infinite—backing store. Remember, Pilot ACE only had 350 words of store
for data and program.

Photogrammetry

The use of aerial photography for map-making was in its infancy at this
time and depended on extensive manual calculations. The analysis of each
photograph took almost a day; roughly an hour was required to complete the
readings and several hours to do the sums. A good day’s flying could keep
staff busy for many months. Pilot ACE took about 1 min to do the necessary
iterations. This led to a completely new approach. The bottleneck became the
data collection instead of the calculations and automatic stereo-comparators
were soon developed to cope.
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This work, done for the Ordnance Survey Department, was one of the first
external jobs undertaken by ACE. I took it over from Wilkinson, who had
started it, and it was my first real program other than subroutine develop-
ment. I passed the project to Roy Whiteley, the first of my new programming
team and probably the first non-graduate in the world to write a computer
program. This work evolved throughout the life of Pilot ACE and DEUCE, and
continued to run until the NPL DEUCE closed down.

Traffic simulation

An early elegant application by Donald Davies was the simulation of flow
through traffic lights—initially for fixed-time signals and later for vehicle-
actuated signals, then under development. A random binary number was
used to represent a stream of traffic, ‘1’ representing a car and ‘0’ a gap. The
four streams of traffic could be observed on the console monitor. Simulation
was not new, having been exploited in wartime Operational Research, but
application had been restricted because of the time needed to process large
samples. With a car or a gap appearing every microsecond, ample evidence
was acquired in a very short time. Simulation soon became a booming
application.

Matrix programs

The handling of matrices had featured strongly in our research in linear
algebra and it was also found that many problems in engineering and stat-
istics could be formulated in matrix form. As a result, a library of good
programs became available and attracted a lot of external interest. When
a matrix was sent in, say with a request for it to be inverted, we found
that it paid to be inquisitive. How was the matrix derived? Could we have
saved effort by taking on the problem earlier? What happens to the results?
Would a triangular decomposition be more useful? If a matrix was otherwise
symmetric we became suspicious if two corresponding elements were 67,429

and 64,729.
The arrival of the drum in 1954 had a big impact on matrix work.

Two major schemes, for large and for small matrices, were developed by
M. Woodger and B. Munday. There was already a scheme in use at Manchester
in which the standard operations such as ADD, MULT, and ‘DIVIDE’ (INVERT)
were resident on the drum. A typical instruction might take the form A B C
ADD, where A, B, and C were track addresses and result was left in C. We took
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a self-assembly approach. We had a large number (eventually 100) of routines
known as ‘bricks’, all conforming to a standard format, which fitted together
like LEGO. Bricks were read in with the data. Our instruction format was A B
C 6, say, where 6 referred to the sixth brick read in. Suppose we wished to take
two matrices from tracks A and B, add them, invert the answer and punch
out. We would collect the necessary bricks on triads of cards and number
them in the order of assembly: (1) Read, (2) Add, (3) Invert, (4) Punch. Our
program would then be

1. 0 0 A 1 (read A).
2. 0 0 B 1 (read B).
3. A B C 2 (Add A to B and place in C).
4. C 0 D 3 (Invert C and place in D).
5. D 0 0 4 (Punch out D).

For many standard jobs, only one assembly operation would be needed.
The flexibility offered by the ‘General Interpretive Program’ or GIP

(see Chapter 14, ‘The DEUCE—a User’s View’) was very popular with users
in the aircraft industry and some DEUCEs were purchased solely because
of it. The program could have been used in contexts other than matrices but
I am not aware of such use. A simplified system for dealing with columns,
the Tabular Interpretive Program (TIP) was produced by Bristol Engines Co.
This had the characteristics of the modern ‘Spreadsheet’.9

Demonstration programs

Pilot ACE attracted very many visitors, particularly during the annual NPL
Open Week (when we also entertained many local schools). It was necessary
to find suitable programs catering to a very wide range of interests. At the
initial press launch in 1950 several programs were demonstrated. One found
the smallest factor of a six figure integer. Another calculated the paths of
rays of light through a series of lenses. To our disappointment, this program
aroused little interest in the British optical industry, which seemed reluctant
to discuss its design methods. (It is perhaps not surprising that German optics
were superior to ours at this time.) The popular calendar program was written
at very short notice for the Duke of Edinburgh’s visit early in 1952. It was
tested briefly an hour before his arrival. There was some confusion about the
date actually entered for his birthday and the day of the week given on the
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output lights—the press thought the computer had got it wrong, and this
gave us far more publicity.10

Programs for the calculation of π and e to 100 decimal places remained
popular on all NPL computers. For π , the common form of the subtraction
of two inverse tangents was used. For e one of the methods calculated the
successive digits more quickly than they could be printed by teleprinter.

Crystallography

Lengthy Fourier analyses were already being performed in NPL’s punched-
card section for the important research of Dorothy Hodgkin into molecular
structure. Her research student John Rollett wrote a program enabling the
work to be carried out on Pilot ACE. The calculations concerned the structure
of vitamin B12 and, later, insulin. Other groups working in the same field
quickly took advantage of the new program.

Fallen trees, new forests

Pilot ACE led to a ‘numerical revolution’ which had a number of casual-
ties. The desk calculator no longer provided the main aid to mass calculation
and the mechanical version soon became obsolete when electronic devices
appeared. The production of mathematical tables became unnecessary when
the functions could be derived automatically by subroutine. This was a disap-
pointment at NPL, as it was producing some very high quality tables which
rapidly became redundant. Analogue machines finally bit the dust (as Comrie
had predicted11). The large Differential Analyser at NPL could be replaced
by a Runge-Kutta subroutine on Pilot ACE. (The hybrid Digital Differential
Analyser or DDA did have a further limited life.) Thus the terms of refer-
ence for Maths Division, which had included the exploitation of commercial
calculating machines and the production of mathematical tables, required
substantial revision after only eight years.

On the other hand, experience with Pilot ACE triggered a host of new uses
(see Table 1). As has been mentioned, simulation studies became feasible.
Developments in linear programming by S. Vajda and E. L. M. Beale made the
use of Operational Research a very practical tool. As computer awareness
developed throughout NPL, advances in instrumentation enabled experi-
ments to be adapted for automatic data capture on paper or magnetic tape,
for example in a wind tunnel or on a sea trial.
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Suitable publication outlets were non-existent at first. Eventually, mainly
through the efforts of J. Lighthill, Goodwin, and J. Crank, the Institute of
Mathematics and its Applications (IMA) was started and this brought together
the developing interests in Numerical Methods. At the same time the British
Computer Society was formed, again with strong support from NPL.

The Numerical Algorithms Group (NAG) built up a large library of math-
ematical software. NPL was a major contributor. Initially NAG provided
mathematical software for communal use within universities. Now based
in Oxford in Wilkinson House—named after Jim Wilkinson—NAG Ltd is
a thriving international company. A key contribution to the NAG Library
was NPL’s comprehensive collection of matrix software.

H. M. Treasury, which had sought NPL’s technical advice on desk
machines, was even keener for help when other computers came on the
market, and a request from Shell for NPL to devise acceptance trials for
their Ferranti computer was followed by similar requests regarding other new
computers. As large-scale automatic data processing became feasible in civil
government it was clear that the part-time efforts of one person (me) were
inadequate. I suggested the formation of a specialist group and the Technical
Support Unit was formed. This later became the Central Computer Agency,
now CCTA to include Telecoms.

I will mention briefly some key developments from 1958 onward.12 The
invention at NPL by D. L. A. Barber and D. V. Blake of the Standard Interface of
12 wires, 8 for data and 4 for control (later to become the more robust British
Standard BS4421 with 16 wires), had the effect of uncoupling the I/O from the
device, using a well-defined link, and was analogous to the electric plug and
socket on which one can rely (at least within a country!). It became a require-
ment within NPL for all new computers, peripherals, and data-producers to
have interface sockets. New computing services were developed such as File
Store (Honeywell 516), Scrapbook (or ‘Mailbox’) on the MOD1, word pro-
cessing on the PDP11, laser-scan display on the PDP11, on-line terminals on
the PDP8. Developments in instrumentation led to special-purpose devices
with non-standard input and output. The invention of packet-switching
by D. W. Davies led to an experimental network using the Honeywell 516.
The standard interface was used to link all computers and services through
the network to user terminals and, where appropriate, to experiments. When
I retired in 1977 there were roughly 30 computers, 30 exotic peripherals, and
100 VDU terminals all able to interact through the NPL network. Of course,
dedicated systems existed in banks and airlines, but there was nothing to rival
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NPL’s variety of options, except possibly within ARPANET. At about that time,
Barber organized a very ambitious link from NPL’s network to a conference
in Canada via a European network to France and a satellite. He demonstrated
a number of computing facilities, but the one that attracted most attention
was our experimental link to the BBC’s Teletext, because it offered up-to-date
scores in the cricket Test. By 1987, the number of terminals had increased to
500. Network protocols were developed.

Ingredients for the success of ACE

I have been able to mention only a few of the outcomes of Pilot ACE, but
enough to demonstrate that it was a highly successful computer, in fact
earning around £100,000 in its four years of life. This was a sizeable sum—
my annual salary was around £300 then. The earnings to NPL compared
very favourably with the few pence to test a thermometer or a pound to test
a taxi meter. I will identify some of the key reasons for this success.

Hardware

The insistence by Wilkinson that the full double-length result of a multiplica-
tion should be provided was unique at the time and essential for developments
in linear algebra.

The use of punched cards for input and output proved a boon—although
we had been rather apologetic at first, since it appeared to be slow and cum-
bersome. However, the use of one binary instruction or number per card led to
compact compression: the 15 millisecs available between reading each row of
the card allowed much computation in parallel. Early warnings that the card
would not withstand multi-punching proved to be unfounded and cards were
more reliable than many of the contemporary rival paper-tape alternatives.

Many judged the order code (instruction code) of Pilot ACE to be primitive.
However, after being tidied up on DEUCE, with memory locations in sequence,
it was simple and quite elegant. Every aspect of it was exploited.

Some ingenuity in the hardware (800 valves compared with 3000 in
EDSAC) undoubtedly helped reliability.

The input and output available at the console in the form of lights and
switches, although primitive, proved very effective in many applications,
particularly the solution of eigenvalue problems.
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Software

The powerful ‘all zero’ instruction—‘Clear the machine and obey the contents
of any store’—enabled a fast start.

There were fast floating-point routines and the concept of ‘block floating’.
There was a large support library for the important matrix schemes.
Optimum coding—good or bad? It led to very fast routines but we could

overdo it! I recall that when a built-in divider was available on DEUCE,
I explored the usual iterative method for finding square roots to replace
our digit-by-digit method learned at school. I found that for a floating point
number x in the range 1

2 –2, a starting guess of a + x/2 gave full accuracy
through the range with, if I recall correctly, three iterations. The value for
a was around 0·48. By chance, I spotted an instruction which when converted
to decimal was about this size, so I used it to save a store. Some time later,
a puzzled user had considerable difficulty in understanding my inadequately
documented routine.

Peopleware

Pilot ACE became the servant of a very experienced research team with a wide
background in numerical methods and supported by experienced junior staff.
All staff were dedicated to providing correct answers, in accordance with
the rigorous teachings of Comrie and Sadler at the Nautical Almanac Office.
We were young and energetic: when I arrived at NPL, the oldest member
of Maths Division was 39, whereas in some Divisions, this was almost the
youngest age. (We also produced new challenges on the sports field, with
Turing coming close to being selected for the Olympics.)

Much credit should go to J. R. Womersley for his efforts in setting up
Maths Division and encouraging staff to pursue the very general terms of
reference of the Division. Womersley expected us to be outward looking and
did not interfere too much. Turing and Fox were at times critical because
Womersley was not an experienced numerical analyst, but such animals
were rare. Wilkinson and I were very happy with the support he gave us
when needed.

The design of Pilot ACE stemmed from Alan Turing. However, most
credit for the successful outcome should go to Jim Wilkinson. He was the
‘Capability Brown’ who assisted in the building of Pilot ACE and master-
minded its exploitation, using the very fertile soil provided by NPL staff.
In particular, he insisted on double-length results of multiplications, fought
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for the machine to be put into use, inspired all staff by his enthusiasm, and
used Pilot ACE effectively in his researches in error analysis and to develop
Numerical Analysis as a new subject. However, he found the red tape of the
Civil Service irksome at times. To avoid a boring meeting he would disappear
into a hideout and get on with some useful work. He complained that once,
when a colleague from the United States had handed him an appropriate
number of dollars for a job done, it took him longer to get the money lodged
with the NPL Accounts Department than it had to do the job on Pilot ACE.

The ACE attracted many guest workers, all of whom contributed. Some who
later became key figures in the computing world were E. L. M. Beale, creator
of linear programming, J. van Garvick, who arrived each morning with
a new idea for a machine-code, P. Samet, E. S. Page, J. Ord-Smith (he arrived
as a student in chemistry and quickly switched horses), C. S. Strachey,
A. van Wijngaarden, B. Randell, and J. Howlett.

The decision in 1945 to situate the proposed Central Mathematics Station
at NPL proved to be a very good one.

Notes

Thanks to Jack Copeland for his work on this chapter.
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follows. Too few records remain of the fertile 1950s. Thanks to Mike Woodger for

reading the manuscript.

2. Its primitive state is described in Croarken, M. (1990) Early Scientific Computing in
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3. The Brunsviga was a desk calculating machine.

4. NPL, Modern Computing Methods. HMSO (1957; revised edition, 1961).

5. My association with Pilot ACE and its successors was a long one, lasting from

1950 until 1977.

6. NPL, (1956) Wage Accounting by Electronic Computer. London: HMSO.

7. See Croarken, Early Scientific Computing in Britain.

8. As described by Wilkinson in his lecture delivered on receipt of the Associ-

ation for Computing Machinery Turing Award in 1970—Wilkinson (1971) ‘Some
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Machinery, 18, 137–47.
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‘Programming the Pilot ACE’, Annals of the History of Computing, 3, 133–62.
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13 The ACE Test Assembly,
the Pilot ACE, the Big ACE,

and the Bendix G15
Harry D. Huskey

The ENIAC

In 1943, after graduating from Ohio State University, I accepted an Instruc-
torship in Mathematics at the University of Pennsylvania in Philadelphia.
My salary was not all that large so I applied for part-time work in the
Engineering Department. They had various wartime projects. After some
time I was ‘cleared’ and found I was to work on a huge electronic computer
called the ENIAC, which was to be used to compute firing tables for the
military. I joined the ENIAC project in 1944 and started working on the
punched-card reader and punch that served as the input and output of
the computer. I soon graduated to doing the operation and maintenance
manuals.

The ENIAC consisted of electronic versions of 20 desk calculators—called
‘accumulators’—plus control units which would use certain of the accu-
mulators to do multiplication, division, square root, and input–output. The
ENIAC could store up to 20 numbers of 10 decimal digits each. Each digit
was stored in a ring counter consisting of 10 flip-flops. Digits were transmit-
ted from unit to unit as a string of 0 to 9 nine pulses on 1 of 10 channels.
Addition was accomplished by the pulses stepping the rings, with appropriate
carry occurring.

An accumulator occupied a full panel and had about 550 vacuum tubes
(valves). The whole computer used about 18,000 vacuum tubes (compared to
less than 1000 in the Pilot Model ACE).
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The EDVAC

Some of the ENIAC’s shortcomings were realized before it was completed.
Five hundred and fifty vacuum tubes to store one ten-digit number and to do
addition and subtraction was too many tubes! Thus members of the project
were considering ways of storing information more efficiently.

Mercury delay lines had been used for range measurements in radar.
A pulse was ‘fired’ down the mercury line at the same time that the radar
signal was transmitted. The time for the echo to return was compared with
the fixed time for the pulse to transit the mercury line. J. Presper Eckert,
chief engineer of the ENIAC, suggested using mercury delay lines to store
numbers. A mercury line 5 ft long could store a train of 1000 pulses oper-
ating at a pulse rate of one megacycle. The output from the line could be
amplified, standardized, and re-inserted into the line, storing the equival-
ent of 32 numbers of ten decimal digits each. The associated amplifying
and standardizing circuits required less than ten vacuum tubes. Thus, one
mercury line would store 32 times as many numbers as the 550-tube ENIAC
accumulator.

Sometime in the spring of 1945 Eckert described this re-circulating memory
to me. My first question was: ‘How do you control the operation of the
computer?’ On the ENIAC, the program for solving a problem required a
large number of patch panel interconnections. How does one do this for the
mercury lines? Mechanical control from punched cards or punched paper
tape takes milliseconds, which is much too slow compared to the rate at
which data are available from the mercury lines. Magnetic wire or tape were
not yet developed at that time, and would in any case offer other problems,
such as start/stop.

Eckert said: ‘Store the instructions in the delay lines just like numbers’.
Of course, the answer is obvious! Why didn’t I think of that? It was
the only way that instructions could become available at rates comparable
to the data rates. That was the stored-program computer! This idea gave
a tremendous step in flexibility, making it possible to process programs; this
led to assemblers, compilers, and languages like FORTRAN, ALGOL, COBOL,
etc. A project was started to design a computer called the EDVAC using this
memory.

John von Neumann, as consultant to the military at Aberdeen Proving
Ground, visited the EDVAC project and, after numerous discussions with
the project personnel, produced the First Draft of a Report on the EDVAC,
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dated 30 June 1945. The report, although not formally published, was
widely distributed both in the United States and England. In 1947 the War
Department sent an ‘official’ copy to the Patent Office; included was a state-
ment of von Neumann saying ‘Reference to specific classified devices and
components was avoided . . .’. This was so that distribution of the report
would not be limited for security reasons.

The First Draft of a Report on the EDVAC was of little help to those of us
working on the project, because von Neumann approached the topic from
the more theoretical point of view. His report was of little value to the com-
puter designer. We looked at hardware and tried to decide what could be
constructed in a reasonable time. However, the von Neumann report was of
immeasurable value in acquiring government financial support for computer
development.

Who was responsible for the concept of the stored-program computer?
The von Neumann report gives no credit to other individuals and citations
were never completed; as a result von Neumann has generally received credit
for the stored-program concept. John Mauchly, who had been interested
in numerical applications in meteorology, joined with Eckert, who had the
hardware experience, and they developed a proposal for Aberdeen Proving
Ground which led to the ENIAC. The limited memory of the ENIAC led Eckert,
with his experience of delay lines for radar ranging, to propose delay lines
for computer memory. Storing instructions like data in the delay lines was
the only way that the instructions would be available at the required speed.
I think Eckert deserves credit for the stored-program concept.

In 1946 the ENIAC was completed and visitors were invited to see and—in
some cases—to use the machine. One such visitor was Professor Douglas
Hartree of Cambridge University. He was interested in solving two-point
boundary value problems. Sometime in the spring of 1946 I asked him about
opportunities to work on computers in England. He seemed non-committal.

In the spring of 1946 several senior people left the EDVAC project. Eckert
and Mauchly, unhappy with the University’s approach to the commercial
development of their ideas, resigned and started their own company, plan-
ning to build mercury delay-line computers (the highly successful UNIVACs).
Arthur Burks and Herman Goldstine joined von Neumann’s computer pro-
ject at Princeton. I became the senior person on the EDVAC project and was
offered the job of directing the activity. However, I was still an Instructor
in the Mathematics Department and the chairman of Mathematics blew his
stack. The offer was withdrawn. I was mad and resigned from the University.
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We moved back to Ohio and for a brief time I taught at Ohio State University.
Then in July I received a cable offering me a one-year visiting appointment
at the National Physical Laboratory.

At the National Physical Laboratory

In the aftermath of the war, transatlantic travel was difficult to arrange.
Finally, with the help of the British Embassy, we obtained passage on the
SS United States in December. We sold our car to pay for the tickets. Things
were still in short supply in England, so on the advice of the British Embassy
we arranged to take with us two cases of corned beef. In preparation for
our trip someone had given us a book How to Like an Englishman. It said
the English were very reserved and that it would be difficult to make friends.
At Southampton we transferred to the boat train. In our compartment we
were joined by an English couple. He looked at our baggage and said ‘From
the States, eh?’. He talked all the rest of the trip.

I reported for work at the National Physical Laboratory and found that
Mathematics Division was in two buildings outside the main NPL grounds—
Teddington Hall and Cromer House. Mr Womersley, the superintendent,
introduced me to Jim Wilkinson and Mike Woodger. Turing was at a meeting
in the United States.

With the possible exception of Turing, no one in Mathematics Division
had any electronic experience. The expectation was that hardware would
be made somewhere else. The main theme in the ACE was a design that
encouraged the programmer to locate data and instructions so as to execute
in minimum time. The team concentrated on logical design and did extensive
programming to test ideas.

Mr Womersley took advantage of my presence to learn about the status
of other computer activities in the United Kingdom, sending me to visit each
project. (My original report on these visits is in Part V.) I found Wilkes at
the University of Cambridge circulating data in a mercury line. His system
tended to gain pulses, leading to thoughts of shielding or increasing signal
levels. Williams at the University of Manchester had stored two lines of data
on the face of a cathode-ray tube, using a dot–dash pattern. The change of
charge at the gap could be detected before the beam refreshing the pattern
reached the gap. This could be done sufficiently early that the beam could be
turned off, maintaining the gap.
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Coombs of the Post Office Research Branch at Dollis Hill had both long and
short mercury delay lines working, but not reliably. At that time I knew noth-
ing of the wartime work on Colossus by the Post Office, Turing, or Newman
(initiator of the Manchester computer project). On later trips to Dollis Hill
some of us raced Turing—he was an Olympic class long distance runner.
Wilkinson rode his bicycle and I took the train. The distance was 16 miles
and I had to catch three trains. I carried a satchel with Turing’s clothes and
arrived at the Post Office gate house a few minutes before him. He changed
from his shorts and we went to our meeting.

That spring Turing gave a series of lectures at the Ministry of Supply in
London (see Part V). Turing, Leslie Fox (who worked on relaxation methods),
Wilkinson and I would take the train to London. On the way we talked of
computer design problems. Once we argued about the rounding of floating-
point numbers and Turing became so upset that he could hardly give his
lecture.

At this time Turing was interested in artificial intelligence. I once asked
him what he was working on. He said, ‘How would you chastise a computer?’
It was much later that I appreciated the significance of that question. We all
knew of Turing’s 1936 paper ‘On Computable Numbers’, but the machine
discussed there was so elementary compared to what we were working on
that no one, I think, thought of it as a precursor.

The ACE Test Assembly

There was no hardware effort at the NPL and plans for acquiring hardware at
other places, such as the Post Office, were not moving ahead (see Chapter 3,
‘The Origins and Development of the ACE Project’). So our group proposed
to Womersley that we build a prototype and we started work on a much
simpler ACE that came to be called the ACE Test Assembly. All of us except
Turing worked on the Test Assembly. Turing was never in favour of the project;
he preferred that we all work on the Big ACE. Turing participated to the extent
of answering questions. For example, when we were designing the mercury
delay lines the question arose: What about reflections of the sound waves in
the mercury lines causing spurious pulses? I had expected to set up a test line
to see. But not Turing! He spent more than a day working out mathematically
the probability of spurious pulses.

Late in 1947 Sir Charles Darwin decided, perhaps rightly, that mathem-
aticians did not know enough electronics to build a computer. The Radio
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Division was to be involved. A whole new group had to learn about com-
puters. The Test Assembly was scuttled. I prepared to return to the United
States and Turing went to Cambridge—morale was low! The Mathematics
and Radio Divisions went on to design and build the Pilot Model ACE, which
was similar to the Test Assembly.

The 12-bit ACE

With the demise of the Test Assembly I had time to work on other things.
As an exercise I designed a 12-bit ACE. My goal was the simplest design that
would work and illustrate the principles of Turing’s ideas. My design used
one long delay line. There was only 1 Timing Number in the instruction.
Instructions came from the instruction register, a 12-bit delay line, at the
same time that transfer occurred. This was very restrictive, making the system
unsuitable for general computation, but it was sufficient to illustrate the
principles.

As shown in fig. 1, instructions came from the instruction line and were
complemented at gate a. During TRANSFER gate b opened passing a new
instruction to the half-adder. At the same time gate g was inhibited erasing
the old instruction. Pulse P7 was added to the Timing Number of the instruc-
tion as it passed into the instruction register and during each word time
thereafter. At the end of TRANSFER gate h passed a pulse which cleared the

Source switch

1
pulse
delay

Transfer Destination switch

Instruction
line

half
adder

Instruction
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Clear

P12
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P 12
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Fig. 1 The 12-bit ACE.
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Table 1 Sources and Destinations for the 12-bit ACE

Source Destination Special Remarks

0 Input Output

1 DL DL

2 TS & P12 TS Sign, accumulator

3 TS +TS Bell Accumulator, add

4 P6 Special Read

5 P1 — Punch ‘1’

6 — Instruction

7 I/O ready —

Source and Destination flip-flops. Immediately (at P1 time) the new instruc-
tion emerged from the delay line and, via gate g, circulated through the adder.
For subsequent word times, the first 6 bits of the instruction were gated by
P1 to P6 to set the Source and Destination flip-flops (they were set each word
time, which had no effect after the first). When the count overflowed into
the P12 position, gate d set the transfer flip-flop and the process continued.
Sources and Destinations are shown in Table 1. DL is the single long delay line
and TS is the 12-bit register.

The SEAC

The National Bureau of Standards (NBS) established an Institute for Numer-
ical Analysis (INA) on the campus of the University of California at Los
Angeles. While in England I had applied for a job at the INA, to start in
January 1948.

I was to spend six weeks in Washington to learn how the Bureau operated.
It became almost a year. My job was to monitor the US computer projects.
These were the Eckert–Mauchly UNIVAC in Philadelphia, the EDVAC at the
University of Pennsylvania, the von Neumann project at the Institute for
Advanced Study at Princeton, WHIRLWIND at MIT, and a data reduction
computer being made by Raytheon for the Navy.

During the year in Washington I initiated a project in the Electronics
Division of the Bureau to build a computer. I proposed to use Turing’s ideas
in order to build a fast delay-line computer. However, the Bureau hired
Sam Lubkin from the EDVAC project and it was decided to build a copy of
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the EDVAC. This became the SEAC (National Bureau of Standards Eastern
Automatic Computer).

I proposed to build a parallel computer at the INA using Williams tubes
for memory and in October 1948 my proposal was approved. In December
I moved to Los Angeles.

The ACE

In the meantime the group in the Mathematics Division at NPL transferred
to the Radio Division and worked on a design which became the ACE Pilot
Model (see Chapter 3, ‘The Origins and Development of the ACE Project’).
The success of the Pilot Model and the DEUCE led the team at NPL to continue
with the original ACE design. The result was a computer with sixty-four
Sources and Destinations and the same type of control system.

The Big ACE had twenty-four long (32-word) delay lines, five 4-word lines,
four 2-word lines, and seven 1-word lines. There were four 32K magnetic
drums. The primary input–output was punched cards in row binary mode.
The timing of events in processing a card was handled by the program.
There were two magnetic tape drives with a magnetic core buffer.

As in Turing’s design there were two Source switches and a powerful func-
tion box. (The Test Assembly and Pilot Model had a single Source address and
there was no function box.) The word length was 48 bits and the instruction
used 47 bits. Table 2 (from the 1960 ‘ACE Programming Manual’) shows the
instruction format. (The wait W and next instruction time T are no longer
relative: they refer to the actual time of the event.)

The functions were arranged in eight groups of eight as shown in Table 3.
The LOGICAL operations are of the form D = A op B. Shifts are of the form
D = A shifted B places (or shifted B + 48 places). SHIFTS may be cyclic,
up (more significant), or down. ADDITION/SUBTRACTION works on single-
length, double-length, or mixed operands. The CLEAR group works with A =
A op B zeroing one or two words of A. If A is a 1- or 2-word register, a single
instruction can sum many values of B. In instruction MODIFY an integer
from B is added to W. Carry out of W is added to J and to some combination
of A, B, or D. With an appropriate initial value in J, branch-out of a loop does
not require extra instructions. MULTIPLY and DIVIDE initiate the process
and other computation may be done while they are underway. Interlocks
delay instructions which would disturb multiply or divide results. EXTERNAL
handles input and output and much of the input/output timing is handled
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Table 2 Instruction format for the Big ACE

Bits Group Effect

1–5 W Wait—word time in which operation will start

6–11 A Source for A operand

12–17 B Source for B operand

18–23 F Function (8 × 8 operations)

24–29 D Destination

30 St Stop bit (if console key depressed)

31–35 N Next Instruction Source (1–32)

36–40 J No effect, counting area

41–45 T Next instruction time

46–47 Ch Characteristic bits

48 — Not used

Table 3 Groups of functions in the Big ACE

Group Function

0 LOGICAL

1 SHIFT

2 ADD/SUBTRACT

3 CLEAR and ADD/SUBTRACT

4 INSTRUCTION MODIFY

5 EXTERNAL, STANDARDIZE, MULTIPLY, and DIVIDE

6 MULTIPLY by small integers

7 ADD/SUBTRACT and DISCRIMINATE

by the program. Instructions in group 6 do addition or subtraction with 1, 2,
4, or 8 times the operands. DISCRIMINATION or transfer of control involves
taking the next instruction 1 word later than was normal in the Test Assembly
and Pilot Model. (Destinations 60–63 give discrimination branches if the
result of A op B is zero, non-zero, positive or zero, or negative.)

The SWAC

At the INA in 1949 I started out with an empty room. I hired people, bought
equipment and supplies, and my Williams tube computer began to take shape.
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The computer was dedicated in August 1950—the same year as the SEAC—
and was named the SWAC (National Bureau of Standards Western Automatic
Computer). Punched card input and output was added to the SWAC, and
a magnetic drum auxiliary memory.

In 1953 the Bureau was asked to test a battery additive. It reported that
the additive was of no value. A complaint by the manufacturer led to an
investigation of the Bureau’s activities. The result was a scaling back of the
Bureau. Projects done for the Defense Department were moved to military
laboratories. The INA became a mathematics project in UCLA’s Department
of Mathematics and the SWAC was transferred to the College of Engineering.

The Bendix G15

In 1954, I accepted a joint associate professorship in Mathematics and
Engineering at the University of California at Berkeley. Here I resur-
rected my ACE-type computer design, prepared a description and drawings,
and showed them to companies who might be interested in building the
computer. Figure 2 shows a sketch I prepared, indicating how I expected

Fig. 2 Preliminary sketch for the G15.
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the computer to look. It was to be about 4 ft square and 6 ft high with
a separate typewriter serving as input and output. No air condition-
ing was involved and normal 220 V electric supply was adequate. The
Bendix Corporation made the best offer. I sold them the rights and became

Fig. 3 Advertisement for the Bendix G15.
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a consultant to their Computer Division in Los Angeles. (Bendix lent me one
of the G15s and it was installed at my home in Berkeley. This machine is now
on permanent display in the Smithsonian Museum in Washington DC.)

The problem of locating instructions and data and determining the various
Timing Numbers in order to obtain an optimized program was difficult with
the ACE-type computers. Bendix produced a program called POGO for the
G15 which placed instructions in optimal locations. However, it was never
popular with customers.

A G15 customer from the Humble Oil Company produced a floating-
point interpretive system which addressed memory using consecutive
integers, hiding the memory line and Timing Number structure. Consecutive
addresses were spread cyclically over eight lines and the only instruction to
the user was that placing instructions in low memory addresses and data
in high would produce faster programs. This was called INTERCOM 101.
I produced INTERCOM 500 which used the first 100 locations in memory
lines for program or data and the positions beyond 100 for index registers,
increments, and limits for the index registers. A double precision version
was produced called INTERCOM 1000. These two INTERCOMs were more
popular with customers than the 101. Each instruction address was con-
verted to binary with each execution. Thus, checking code did not involve
conversion from binary.

A digital differential analyser (DDA) was added to the G15. The Northrup
company had produced the MADDIDA which imitated the behaviour of the
analogue differential analysers. Variables were ‘rate’ functions which ranged
in value from zero (000. . .) to one (111. . .). One-half would be represented by
a string of alternate zeros and ones (101010. . .). A problem with the Northrup
design was the difficulty of input and output. That part was more complicated
than the DDA itself ! Bendix bought the rights to the Northrup DDA and were
making their own version. It was natural to add the DDA circuitry to the G15

and use the general purpose computer to control it and to handle input and
output.

Comparison of the Test Assembly, Pilot Model, and G15

None of these computers had a separate arithmetic unit in the Eckert–von
Neumann style. There was a Source switch which connected memory to
a ‘Highway’ (called a ‘bus’ in the United States) and which connected via
a Destination switch back to memory. Arithmetic and control actions were
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Table 4 Structure of the ACE Test Assembly (TA), the Pilot Model (PM), and

the G15

Sources or TA PM G15

Destinations

Delay lines or tracks L 1–L 7, L 26 L 1–L 7 L 0–L 19

4-word lines Q 20–Q 23

2-word lines D 12, D 14, D 26 D 24–D 26

1-word lines T 8–T 12, T 14 T 8–T 10 T 28 (=AR)

AND T 9 & T 10 T 9 & T 10 Q 27 (=(Q 20 & Q 21)

∨ (∼Q 20 & AR))

NOT ∼T 11 ∼T 9

Pulses P1, P16, P32 P1, P17, P32

Units for: 1, W, Sign 1, W, Sign

Precession L 1 via T 11 L 26 via T 11 Characteristica:

(i.e. delay by 1 mc) via AR

ADD T 12 D 14, T 16 T 29, D 30

SUBTRACT T 16 Characteristica

a A 2-bit characteristic determines whether the number(s) from the source switch are negated,

changed to absolute value, or delayed by 1 mc via T 28—see fig. 4.

determined by certain positions on the Source and Destination switches.
Tables 4 and 5 show that the Source, Destination, and memory line struc-
ture, as well as the instruction format, were similar for the three computers.
(Although there were some differences in the terminology used and in the
parts of the instruction assigned to various functions.) Two components of
the Pilot Model (PM) instruction not present in the Test Assembly (TA) were
the Characteristic bit and the Go bit described in previous chapters.

The memory of the G15 consisted of circulating loops on a magnetic drum.
During each revolution all information was erased and re-written. Short
loops for 1-, 2-, and 4-word tracks occupied space between the erase and
write heads for the long tracks. Logically they corresponded exactly to the
mercury delay lines. The TA and PM each had eight mercury delay lines
storing thirty-two 32-bit words (numbers or instructions), one 2-word store
(DS), and five 1-word stores (TS). The G15 had twenty 108-word tracks, four
4-word tracks, three 2-word tracks, and one 1-word track.

Many of the Sources and Destinations provided logical or arithmetic values
or caused other actions. For example, Source 17 of the TA gave TS 9 & TS 10
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Table 5 Instruction format of the ACE Test Assembly (TA), the Pilot Model (PM),

and the G15

TA PM G15

Bits Function Bits Function Bits Function

1–2 Spare 1 Spare 1 Single/Double

3–7 Source 2–4 Next Instruction 2–6 Destination

6–12 Destination 5–9 Source 7–11 Source

13–15 Next Instruction 10–14 Destination 12–13 Characteristic

16–18 Spare 15 Serial/Deferred 14–20 Next Instruction

19–24 Transfer time 16 Spare 21 Breakpoint

25 Spare 17–21 Wait 22–28 Transfer time

26–31 Wait time 22–24 Spare 29 Block/Deferred

32 Spare 25–29 Timing

30–31 Spare

32 Go Digit

(‘&’ is boolean conjunction). This became Source 21 in PM. Source 31 in the
G15 gave Q 20 & Q 21. One word addition involved sending a number to
Destination 13 (+TS 12) in the TA, to Destination 17 (+TS 16) in the PM,
and Destination 29 in the G15. The precession instruction enabled one to
cycle through a list (which was less than Turing wanted in his BURY and
UNBURY—see his ‘Proposed Electronic Calculator’ in Part V). Pulse Pn (at the
nth position of the word) could be used to ‘count’ in the SPARE positions of
the instructions. Overflow spills into the Timing Number and changes the
effect of the instruction.

Figure 4 shows the structure of the G15. Commands with Destination 31

controlled input and output to the typewriter, paper tape, magnetic tape,
and punched cards. Punched paper tape was mounted on the front of the
computer in a magazine when used.

Although the state diagram of fig. 5 (which is from a Bendix publica-
tion) uses the terminology of the G15, all three computers had similar
state diagrams. During a specified word time the instruction or command
is transferred from memory to a control register (READ COMMAND). If the
command is SERIAL in the case of the PM (determined by bit 15) or BLOCK
in the case of the G15 (determined by bit 29), it moves immediately from the
READ COMMAND state to the TRANSFER state. (‘Serial/Deferred’ in the PM
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00 Transfer
01 Complement if  negative
10 Transfer via AR
11 Comp. neg. via AR
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Complement if  negative
Absolute valve
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S & D < 28 (=AR) Else
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Fig. 4 Block diagram of the structure of the G15.

Fig. 5 State diagram for the G15.

corresponds to ‘Block/Deferred’ in the G15; see Table 5.) The transfer Timing
Number determines when the TRANSFER state ends. For DEFERRED instruc-
tions the transfer Timing Number determines when the word or double word
is transferred.
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14 The DEUCE—a user’s view
Robin A. Vowels

Introduction

This chapter describes the origins and development of the English Electric
DEUCE (Digital Electronic Universal Computing Engine), the production
machine derived from the ACE Pilot Model. The DEUCE was an outstand-
ing success. This is attributable to the DEUCE’s high speed, huge program
and subroutine library, fast magnetic drum, enhanced peripheral equipment,
and extraordinary reliability. (The reliability of the DEUCE was the result
not only of the quality of its engineering but also of a rigorous schedule of
preventative maintenance.) Other factors in the commercial success of the
DEUCE included the availability of a backup maintenance team and a user
group sponsored by the manufacturer.

The first DEUCE was installed in early 1955.1 Most DEUCEs saw a decade
of service. Approximately 20 were still operating in 1965, some continuing to
the end of the decade.

The origins and distribution of the DEUCE

The English Electric Company became interested in computers as early as
1949, when it assisted the National Physical Laboratory in building the Pilot
Model ACE. The Company decided to build the DEUCE in 1951. Sir George
Nelson, chairman of English Electric, offered to build an engineered version
of the Pilot ACE for the token sum of £5000, because he wanted ‘to see English
Electric getting into the field’.2 DEUCE was developed in the Nelson Research
Laboratory (NRL) of the English Electric Company.

Transforming the experimental Pilot ACE into the highly reliable produc-
tion model required a modified electronic design and an entirely different
functional organization and physical construction.3 The DEUCE had one
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extra delay line of high-speed storage, two additional quadruple stores, an
automatic divider, and a larger magnetic drum store. These improvements
were the result of experience with the Pilot ACE. The DEUCE was similar in
programming and use to the Pilot ACE.

English Electric continued to develop the machine after the first DEUCEs
were delivered. Some of the smaller enhancements were offered at no cost.
The speed of the card input and output was doubled by means of equipment
that read and punched twice as many columns of the card. Some DEUCEs
used new card equipment that read all 80 columns of the card, buffered the
transfer of data, and performed binary to decimal conversion. Other optional
extras included a magnetic tape backing store, paper tape input and output,
and more main memory. A kind of parity check was added to the magnetic
drum store in about 1961.

Approximately 33 DEUCEs were built. They were used in universities,
industries, and government, in work ranging from scientific research and
technical applications to commercial data processing. DEUCEs were installed
at Queen’s University in Belfast, Liverpool University,4 Glasgow University,
and the New South Wales University of Technology (Kensington, Australia).
Six machines were used for aircraft design, two at the Bristol Aircraft
Company at Filton, two at Bristol Siddeley Engines at Patchway, and two at
the Royal Aircraft Establishment at Farnborough. The British Aircraft Com-
pany at Warton near Preston had two DEUCE Mark I machines. DEUCEs
purchased for government use included three operated by the Ministry of
Agriculture, Fisheries, and Food (one a Mark II), one at the NPL at Tedding-
ton, one at the Department of Scientific and Industrial Research in Glasgow,
one at English Electric’s Main Works at Stafford, and one at their Nelson
Research Laboratory at Stafford, and there were several more employed on
reactor and atomic weapons design, including at least one at the Atomic
Weapons Research Establishment at Aldermaston and one at the Atomic
Energy Authority at Capenhurst. The English Electric Company’s Kidsgrove
Data Centre had a Mark I and Mark IIA machine side-by-side, and its London
Computing Service had at least one Mark I machine and probably a second.
English Electric at Luton had at least one DEUCE, and there were two at the
English Electric Whetstone site, servicing the Mechanical Engineering Labor-
atory and the Atomic Power Division. There was one at the Central Electricity
Generating Board (CEGB), one at Short Brothers and Harland in Ireland, and
one at British Petroleum at Aldgate in London (used for seismology work).
There was at least one DEUCE in Oslo, owned by the Norwegian Government.5
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Overview: storage, instructions, input–output

The high speed section of the DEUCE consisted of a main storage of twelve
mercury delay lines, each containing 32 words. They were written as DL 1

to DL 12. Each delay line was separately addressable, as were the individual
words stored in each delay line.

Three levels of registers, also mercury delay lines, were provided:

1. Four 32-bit Temporary Stores, denoted TS 13 to TS 16. TS 13 was an accu-
mulator in which integer addition and subtraction could be performed.
Logical operations were associated with TS 14 and TS 15, while TS 16 was
associated with the integer multiplier and divider unit. TS 14 could also be
used as an arithmetic shift register.

2. Three Double Stores, denoted DS 19 to DS 21, each consisting of two
32-bit words. DS 21 could be used as a 64-bit accumulator (arithmetic
register), and the integer operations of addition, subtraction, multiplica-
tion, and division were carried out. It could also be used as an arithmetic
shift register. Mixed mode arithmetic could be performed using DS 21

(a 32-bit integer could be added to or subtracted from a 64-bit integer in
DS 21, and the 32-bit integer would be automatically extended to 64-bits,
achieving sign extension). DS 21 could be switched to a second mode,
in which it behaved as two separate 32-bit accumulators, and the opera-
tions of addition, subtraction, and shifting could be carried out in both.
DS 21 was automatically switched to this second mode whenever division
commenced.

3. Two Quadruple Stores, denoted QS 17 and QS 18. Both consisted of four
32-bit words. Initially, however, no arithmetic facilities were provided for
these registers.

Figure 1 shows the organization of the main memory and registers of the
DEUCE.

The hierarchy of storage was intended to provide a more effective inter-
face between the relatively slower main storage (maximum access time 1024

microseconds (μs)) and temporary stores (registers with access time 32 μs).
The design struck a compromise between speed, the number of available
addresses, and the cost of equipment. Each TS could be accessed in every
machine cycle; a word in each DS could be accessed every 64 μs, and a word in
each QS could be accessed every 128 μs. Single words could be transferred
to and from each of the 18 registers. Multiple words could be transferred
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Fig. 1 Architecture diagram of the DEUCE.
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to and from the quadruple and double registers by executing a single
instruction.

A single DEUCE instruction was capable of transferring from one to 33

words to or from any of the registers and main storage. Specific provision
was made to transfer pairs of words (64 bits) to facilitate double-length and
quadruple-length arithmetic. Thus all 32 words of one DL could be transferred
to another by a single instruction. Likewise all 32 words of a DL could be
cleared (set to zero) by a single instruction. Probably the most-frequently
used array operation was the summation of all the words in a DL, again with
a single instruction.

The DEUCE input–output equipment was Hollerith punch-card,6 adapted
from tabulating and gang punch equipment of the day. One person could
barely lift one end of the equipment, which had a heavy cast-iron frame.

Backing storage was realized in a compact magnetic drum having separ-
ately movable reading and writing heads. Mounted in a cast-iron frame, it
weighed about 25 Kg overall.

The organization of the DEUCE was almost the same as that of the Pilot
Model ACE, although different Source and Destination addresses were used
for some of the same registers.

Preventative maintenance

The high reliability of the DEUCE was brought about through a régime of
regular preventative maintenance, and through the daily proving of the
machine under ‘marginal conditions’. When a DEUCE was operated under
high or low margins, a voltage was simultaneously injected into the circuit
of every logic gate.7 These voltages would take the machine one-third of the
way toward the point of failure. The DEUCE had to function correctly under
these conditions. The premise was that if the circuits worked correctly under
adverse conditions, they would certainly function under normal conditions,
with the guarantee of a considerable margin of safety.

A gradually deteriorating circuit would be identified through the mainten-
ance régime of recording and monitoring safety margins of the circuit of each
logic gate. This was carried out progressively over a period of three months.
Circuits that deteriorated more rapidly would be detected earlier, when the
machine failed a marginal test and before the circuit had a chance to cause
an intermittent or permanent fault.
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The design of the DEUCE enabled a fault to be isolated in one of six sub-
circuits in any of the seven bays of electronic chassis. Other fault-finding
facilities enabled engineers to explore the range over which an individual logic
gate would continue to operate correctly, and to change voltages at sensitive
points throughout the machine by means of a single key at the console.

Enhancements of the DEUCE

The first DEUCEs had 80-column punch card input–output equipment (a 200

card-per-minute reader and a 100 card-per-minute punch). However, only
32 columns of the 80 could be used for data. Shortly after the first production
machines were introduced in 1955, it was realized that modifications could be
made to the input–output equipment to double throughput—not by increas-
ing speed, but by doubling the number of card columns read and punched
from 32 to 64.

To make use of this increased throughput, improved instruction modifica-
tion was needed. Although DEUCE had one single and one double-length
accumulator (which could be used as three separate 32-bit accumulators),
those arithmetic facilities would be employed in reading or punching the
64 columns, leaving nothing spare for performing conversion between
decimal and binary. Improved loop control was needed as well, since
performing all incrementing and decrementing through the one register
TS 13 would have meant swapping the trip count in and out. (Because the
DEUCE had no index register, one of the accumulators—usually TS 13—was
occupied for this purpose.) Thus the Automatic Instruction Modifier (AIM)
was conceived. With it, the programmer could perform the functions of
indexing and trip counting (incrementing or decrementing for loop control),
or both combined, all in the one register.

Following a survey of usage of the double and quadruple stores in pro-
grams, the English Electric Company chose the quadruple stores QS 17 and
QS 18 for the AIM, which luckily provided eight registers in which automatic
incrementing and decrementing (now called auto-increment, auto-decrement)
could be done. When used for automatic indexing, the content of the register
was incremented/decremented as it was leaving the register en route to the
control unit, the updated content being written back into the register. When
auto-incrementing/auto-decrementing was required, the transfer to the
control unit was suppressed. Automatic increments and decrements could be
made to the Source address of an instruction, the Destination address,
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the Wait Number (effectively the index), and to an unused part of the
instruction to assist in loop control.

Another important advantage which came with the AIM was that the
control of the most common form of loop required a single instruction,
instead of three instructions and typically a constant under the old method.

The AIM became standard on all DEUCEs (and was retrofitted to all
pre-existing DEUCEs except the first).

The DEUCE magnetic recording drum had separate reading heads and
separate writing heads. The 16 reading heads were all on the one access
shaft, and the 16 writing heads on another access shaft. Although the heads
could move independently, they could not be moved together on early DEUCEs.
The electronics for the drum interlock were completely redesigned to allow
the heads to move simultaneously, and to allow other non-conflicting mag-
netic drum operations to proceed simultaneously, thus speeding up programs
that used the drum. This change influenced programming, because it reduced
the necessity to anticipate data transfers between the drum and memory.

While DEUCE was initially constructed for scientific use, a second version,
Mark II, having completely different IBM input–output equipment, was built
for the commercial market. The original Hollerith card reader and punch
were separate units. They were never intended to be operated simultaneously
and ran at different speeds. The new input–output unit was a combined
card reader and punch. The reader and punch mechanisms could be locked
together to run at 100 cards per minute and to use the same Single-Shot to
indicate that a row was ready to be read and punched. Such an arrange-
ment enabled an update of the card just read to be punched on another card
simultaneously with reading the next card. In the original DEUCE, the card
reader would have had to be stopped after each card, to allow the corres-
ponding card to be punched. Not only would repeated stopping damage the
equipment, but the effective speed of each device would have been about
25 cards per minute instead of 100. In the combined unit the reader could
still be operated separately at 200 cards per minute, and the punch separately
at 100 cards per minute.

With the new IBM input–output equipment came buffered input and
output for all 80 columns, with automatic conversion of alphabetic and
numeric characters to and from binary, stored as 6-bit codes, thus freeing
the processor for computation during the entire card cycle. In 80-column
mode, the ten decimal digits, the 26 upper-case alphabetic characters, and
punctuation characters could be represented. The IBM equipment also read
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programs and data in 64-column mode, and was compatible with the earlier
Hollerith equipment.

To increase the size of main memory, seven extra delay lines could
be installed, giving an additional 224 words of store. Machines having the
extra high-speed store had the letter ‘A’ appended to the model number, as
in ‘Mark IIA’. The extra delay lines became available in 1959 and could be
installed in any DEUCE.

An additional magnetic drum, Decca magnetic tape units, an English
Electric paper tape reader, and Creed paper tape punch equipment could
also be fitted to the DEUCE. The Decca magnetic tape units read and wrote
six-channel half-inch tape at 100 inches per second. Character density was
80 characters per inch, giving a transfer rate of 8000 characters per second
(cps).8 The paper tape reader could read five, seven, and eight-channel paper
tape at 850 cps. The paper tape punch could punch five- and seven-channel
paper tape at 25 cps.

During the production life of the machine, consistent engineering effort
went into improving the basic DEUCE, with circuit changes to enhance its
reliability. Evidence of this is to be found in the engineering changes peri-
odically circulated to each site.9 Furthermore, considerable development of
new equipment for the DEUCE and the associated electronic control circuitry
undoubtedly continued to make the DEUCE an attractive proposition to users.

The DEUCE program library

There is no doubt that the commercial success of the DEUCE was due in part
to the fact that Turing and his team continued to write programs even when
construction of the ACE was in the doldrums. The legacy of this work was the
hundreds of programs that ran on the Pilot ACE and which could, after minor
translation, be run on the DEUCE. Software included subroutines for solving
simultaneous equations, differential equations, double- and triple-precision
fixed-point arithmetic, and the like.

The DEUCE program library was an extensive collection of at least 738

programs plus over 280 subroutines. Many were contributed by DEUCE
users and by the staff of English Electric, and were published by the DEUCE
Library Service, a department of English Electric. In addition some specialist
programs were distributed by individual sites.

The programs were distributed to each site with operating instructions,
technical details of the algorithms used, flow diagrams, and detailed coding
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sheets. Each site was provided with master and sub-master (backup) copies
of the punch cards for each program and subroutine. Perusing the flow
diagrams of DEUCE library programs and subroutines often helped the
programmer to improve his or her coding of programs generally.

One important publication of the DEUCE Library Service was DEUCE News,
a regular bulletin of the latest programming tips and techniques, news about
sites, hardware upgrades, peripheral timing details, corrections to library
programs, programming standards, and the like. Of special importance
were the new techniques for programming the AIM and the 64-column read
and punch facility. The News was essential reading. At least 63 issues were
published.

Machine language

The New South Wales University of Technology DEUCE (withdrawn from ser-
vice at the end of 1966) was opened by the Governor of New South Wales on
11 September 1956 and was fully installed by October 1956 (see fig. 2). My first
recollection, in 1961, of UTECOM—as the machine was known—is of being
given the D.E.U.C.E. Programming Manual10 and setting out to learn machine
language. They said it would take three months to learn thoroughly. And
it did.

The flow diagram, the first stage of producing a program for the DEUCE,
was more than a flowchart—it was the complete machine-language pro-
gram in two-dimensional form. There was more work to perform even after
the flow diagram had been refined and finalized, however. Memory loca-
tions had to be allocated to each of the instructions and constants, using
a check list to ensure that no location was used twice. Only then could the
instructions be written in decimal on a coding sheet. On account of the ‘two-
plus-one’ address system of the DEUCE, the writing of each instruction had
to include the address of the next instruction. The Wait and Timing Numbers
had to be specified. It will be recalled from previous chapters that the Wait
Number specified when the transfer could take place.11 It was the time when
the data was emerging from a storage unit and thus was capable of being
transferred to another part of the machine. The Timing Number specified
the position in a given delay line of the next instruction, which would also
be the moment when the instruction to be executed next was emerging from
a DL. (Both the Wait and Timing Numbers were relative to the position of
the current instruction.) As with the Pilot Model ACE, instructions had to
be placed in memory in such a way as to minimize waiting time both for the
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Fig. 2 The UTECOM.
The left-hand side of the operator’s console had three main rows of lights. The top-most row of 13
white lights displayed the current instruction (NIS, Source, Destination). Beneath that, 32 white
lights displayed Destination 29 (when the card punch was not running). On the next row beneath
were 32 white lights showing the state of the 32 digits of Source 0 (when the card reader
was not running); the row of 32 dark keyswitches beneath them were used to set individual
bits of Source 0. The row of whitish toggle switches toward the bottom of the left side of the
console were used during maintenance to set digit patterns for Source 0. Other switches included
Single-Shot, Request Stop, and Program Display. The left-hand monitor (VDU) displayed the
contents of all the short stores, while the other displayed one DL. A rotary switch beneath
the right-hand monitor permitted the selection of any of the twelve DLs and TS COUNT. The
top rows of push-buttons and lights switched the machine on and off and showed the status
of the power supplies. A telephone dial (obscured by the operator’s head) emitted up to ten
Single-Shots.

Directly behind the operator’s console is part of the mainframe. The large device to the left
of the console is the Hollerith card reader. Punch cards were placed in a race at the top and
were kept steady by a weighted metal plate. The cards slid sideways one-by-one down a vertical
chute, ending up stacked horizontally in the niche half-way down the front of the machine.
To the right of the console is the card punch. Blank cards were placed face down in a hopper
(hidden from view by the top ledge). Under program control the card in front was fed past a
punching station while the next card was fed to the ready position. The two vertical columns of
rotary switches on the lower front panel of the card punch are labelled ‘CARD NUMBER’ (left)
and ‘JOB NUMBER’. The eight job number switches were set manually, causing a job number to
be punched on each card. The four card number dials rotated automatically as each card was
punched and the number displayed on the dials was punched on the card.

Source: Photograph by Keith Titmuss (reproduced with his permission).
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execution of the current instruction and the fetching into control of the next
instruction. (An ideal program was one in which each instruction had zero
waiting time—as each instruction completed execution, the next one was
already in control ready to be executed in the next machine cycle.) Much use
of the DEUCE logic diagram of fig. 1 was made in the early stages of learning
DEUCE programming.

The final stage of programming ( just as difficult to master) was the
hand-translation of the decimal values to ‘Chinese’ binary (binary with
the least-significant digit on the left) and finally to punch each instruc-
tion in binary on cards. (The instructions of my first program, incidentally,
were correct, but the instruction to punch the binary result unfortunately
lacked the bit12 to synchronize the punch with the control unit (CPU).)

Debugging

The creators of machine-language programs for the DEUCE usually debugged
the programs on the machine themselves. Debugging machine-language
programs was slow and often difficult.

Probably the most common cause of malfunction of a program was a
wrong Timing Number. The Timing Number gave the relative position of
the next instruction. In other words, every DEUCE instruction was a branch
instruction. If a Timing Number was wrong, the normal sequence of instruc-
tions comprising the program was ‘broken’, and anything could happen,
such as:

• branching to a location containing a zero word or a positive constant
• executing an entirely different sequence of instructions
• sticking in a loop.

The first of these was easy to diagnose, because the machine ‘dropped out’
(i.e. stopped). If this was the first ‘rogue’ instruction executed, it was usually
the easiest to find. A preliminary diagnosis could be made by examining the
contents of registers and memory on the visual display. If this did not help,
a ‘Post Mortem’ could be taken. Post Mortem was a program that punched
out the contents of all registers and memory (with the exception of one word),
and the entire content of the magnetic drum if required. Punching out the
contents of the entire machine took 4 minutes. The cards produced by the
Post Mortem program could be examined at leisure away from the machine.
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Often it was easiest to re-run the program up to a certain point, stopping it
at a given machine instruction by using the hardware ‘Request Stop’ facility.
The ‘Program Display’ hardware facility would then be used. To use Program
Display, the user set the machine to ‘Augmented Stop’,13 and then pressed the
‘Program Display’ key on the console of the machine. The machine would run
in ‘slow motion’. As each instruction was executed, it would be punched out
by the card punch. Twelve instructions per card were punched out, and quite
soon a sizeable pack of up to several hundred cards could be obtained before
the program halted. Typically, however, several dozen cards were sufficient.

If the program became stuck in a loop, the visual display would be used
to see whether one of the registers was counting up or down. The machine
would be placed on ‘stop’ and instructions executed one at a time, in order
to determine whether the sequence of instructions was one that existed in
the program, or if not, whether it contained some instructions that did exist
(in which case, the rogue instruction could be identified). Sometimes it then
became necessary to use Program Display or Post Mortem. The former could
help considerably in identifying long loops.

When an entirely different sequence of instructions was executed, it was
usually difficult to find out what went wrong, because with each ‘rogue’
instruction executed, the contents of more and more registers became cor-
rupted. There was the danger, too, that even the content of main memory
could change.

Such errors might be found by running the program up to a certain
point—again using the Request Stop facility—and then with the machine on
‘stop’, executing instructions one at a time using the Single-Shot key on the
console. After each instruction was executed, the contents of registers and the
high-speed store might be examined on the visual display. If this strategy did
not succeed, a Program Display would be taken, followed by a Post Mortem.

Another cause of malfunction of a program was a loop count being
‘one off ’—that is, being executed one more time than it should or one fewer
than it should. These kinds of error are not the kind we know today (where
a simple counter is used, decremented at each iteration). In the DEUCE,
an instruction to fetch consecutive words from a delay line (a block of 32

words of high-speed store) would do so by having its Wait Number modified
(the machine not having an index register). The loop would terminate when
the Wait Number exceeded 31, causing a carry bit to be propagated into
the Timing Number field of the instruction. The Timing Number would thus
increase by 1, and instead of the normal next instruction being taken, the
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one in the location after it would be taken instead, thus terminating the loop.
If the programmer miscalculated when this carry occurred, the loop would
terminate prematurely or too late. This type of error was best discovered
by using the Program Display facility, but sometimes could be located from
an examination of the high-speed store, which might indicate that the last
result in a DL had not been computed. A more laborious method would
be to run the program, using the Request Stop facility to stop the program at
a particular instruction in the loop, and noting the number of times that the
loop was executed. Alternatively, an instruction in the loop would be changed
to a Stop instruction (by temporarily plugging the corresponding hole in the
punch card) and noting the number of times the stoppered instruction was
executed (to proceed, the operator would give a Single-Shot from the console).

Other common causes of program malfunction included a wrong Wait
Number (resulting in the wrong minor cycle of a register—the wrong
memory word—being fetched or stored), violation of the timings of the card
reading and punching equipment, and less commonly, accessing a product
or quotient before the result was ready (such a fault would show up only
when the machine was run at normal speed, but would not show up when
the machine was run on ‘stop’ and the program was given a succession of
‘Single-Shots’ (i.e. executed one instruction at a time from the console) or run
under Program Display. This was because the multiplication or division would
have ample time to complete.

One helpful ‘tool’, used both in the normal running of the machine and
during regular maintenance and program testing, was the loudspeaker. This
was driven by an amplifier connected to one of the instruction Source digits.
In normal operation a program would generate musical notes. The pitch
and duration of these depended on the rate at which a particular bit in each
instruction changed as instructions were executed. Each segment of program
(and each program) thus had its own musical ‘signature’—a series of squeaks
and musical notes of rapidly changing pitches. During normal operation, the
signature would indicate to the experienced operator whether a program was
running normally, or whether it had stopped or failed. During preventative
maintenance sessions, test programs were run to check the safety margins of
circuits. If the signature changed, it indicated that the program had failed.
If a program became stuck in a loop during program testing, the speaker
would sound a continuous high-pitched note. In each of these circumstances,
the loudspeaker provided the programmer with an immediate indication of
the state of the machine.
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Fig. 3 The DEUCE playing noughts and crosses.

Source: Photograph of the UTECOM by Keith Titmuss (reproduced with his permission).

A number of demonstration programs was available. One played noughts
and crosses (see fig. 3). Another played popular tunes, including Christmas
carols. Of note was an animated cartoon of the nursery rhyme ‘Hickory
Dickory Dock’. This displayed on the monitor (VDU) at the operator’s console.
The monitor showed the mouse running up the clock, the clock striking one,
and the mouse running down again. Lacking a bell, the DEUCE sounded its
buzzer for the clock striking one o’clock.14

Program cards

Each program had to consist of an initial punch card for synchronization
of certain parts of the machine, followed by one or more triads, each triad
consisting of three cards. Each triad typically contained three filler (i.e. boot-
strap) instructions and 32 instructions and constants comprising all or part
of the program. (A filler is a sequence of instructions that will read in
instructions and data from cards into main storage. Usually, filler instructions
caused 32 or 64 instructions and constants to be read in and stored in one or
two delay lines of main memory.) A typical initial card is shown in fig. 4.

The DEUCE card reader read card columns 17 to 80 (in 64-column mode)
and card columns 21–52 (in 32-column mode). In 64-column mode, card
columns 17 to 48 were called the alpha field, and columns 49 to 80 were
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Fig. 4 A DEUCE initial card.

The twelve rows of a punch card were called Y, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The names of the rows were significant only for decimal data. When decimal
values were punched, the 0 row to the 9 row would be used for digits. Thus, the digit 8 was represented by punching a hole in the eighth row. A plus sign was
represented by a hole in the Y row, and a minus sign was represented by a hole in the X row.
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called the beta field. Card column 1 (column 54 in 32-column mode) was
also read by the DEUCE, a hole causing the reader to stop after reading the
current row (any remaining rows of the card passing through the equipment
unread). In the DEUCE instruction card in fig. 4, the alpha and beta fields are
both partitioned by vertical lines to define the fields of the instruction; the
names of the fields appear along the top margin. The numbers, letters, and
rulings were to help the programmer read the instructions on the card and
had no effect on the card reader, which responded only to holes in the card.

The purpose of the initial punch card of the program was to synchronize
the double-length accumulator with the odd and even cycles of the machine.
The multiplier and divider unit were associated with the double-length
accumulator. The low- and high-order words of the double accumulator
corresponded to the odd and even addresses of a delay line, respectively.
The machine cycles were numbered 0–31, corresponding to the addresses
of the words in a bank of 32 words of main memory. Transfers between
the double-length accumulator and a delay line required that the low-order
word of the accumulator be transferred only to an even-numbered address
in a delay line, and the high-order word be transferred to an odd-numbered
address. When the DEUCE high-speed store (including the control unit) was
cleared ready to accept a new program this relationship could be broken,
since any minor cycle of a delay line could then be established as minor cycle
zero. The initial card served to ensure that an even-numbered minor cycle of
a DL corresponded with the low-order bits of the double store accumulator.

Basic assembler language

Once the basics of machine language were mastered, it then became routine
to use a primitive assembler program called ZP43. DEUCE instructions were
presented in decimal. As well as converting the supplied components of
a given instruction to binary, the details of the next instruction (the Next
Instruction Source address and the Timing Number) were calculated by the
assembler after processing the next assembler statement. Immediately after
all the source statements had been read in, the executable binary program
was punched out, ready to run. The assembler, primitive though it was, helped
considerably in reducing errors in converting to binary and in punching the
seven binary components of an instruction. It also alleviated the great dif-
ficulty of altering a program, because alterations to a few instructions (or
the allocation of new locations for instructions) could be made in a matter
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of minutes, and a quick re-run of the assembler produced a new executable.
The much longer alternative of modifying the executable was often done with
the aid of a reproducing punch, capable of omitting rows of a card at the flick
of a switch (an instruction occupied a row). Minor alterations were carried
out by plugging up holes in a card with ‘chips’ (of which there was always an
abundant supply from punching holes in other cards), and then reproducing
the entire card on the reproducing punch. (One user in Tasmania, who had
no access to a reproducing punch, re-punched the entire card by hand if an
alteration was required!)

Reading integers from cards

Programs (a) and (b) illustrate two ways in which 32 binary integers could be
read in from punch cards, storing the integers in DL 10. In example (a), the
loop is controlled by a counter in TS 13. In example (b), the loop is controlled
using the AIM. (In the read instruction 0–100X, the letter X signifies that the
DEUCE must wait until the card row is in position to be read. The instruction
is pronounced ‘nought to ten nought stop’.)

A ‘pro forma’ instruction is one that will be modified as the program runs
(see the examples in Chapter 11, ‘The Pilot ACE: from concept to reality’).15

In example (a) it is the Wait Number of the pro forma instruction that is
modified.

Source Destination

2 12–24

221 2 –1323 (32P1)

224 226–212
228 21 –0 2

Q30(226) 0–100X

215 27–26

217

Non-zero Zero

220

219  9–24

Explanation

Stim. (i.e. start) the card reader.

Place 32 in TS 13.

Place a pro forma instruction in DS 212.

Send the pro forma instruction to control.

Execute the pro forma instruction, to read in
one row of a card. 
Decrement the trip counter.

Is the trip counter zero?

Increment the Wait Number of the pro forma
instruction.
Stop the card reader.

Location

14

–2813

28–222

(a) Reading in 32 integers from punch cards
Notes: In the DEUCE, the bits of a word are numbered P1, P2, P3, . . ., P32, where P1 represents
the least-significant bit of a word and P32 is the most-significant. P1 thus corresponds to unity
(or 20), P5 corresponds to 24, P17 corresponds to 216, P22 corresponds to 221, and P32 to
231. Q30 denotes Quasi 30, which means that the instruction is obeyed as if it were stored in
minor cycle 30.
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221
223

(2P1)227

Q29(225) 0 –1031

Normal Spill out on the 32nd trip.

228 9-24 Stop the card reader.

X(J15) Execute the pro forma instruction, to read in
one row of a card. 

Send the pro forma instruction to Control, 
after adding P17 to 171.

Place a pro forma instruction in QS 171.
Stim. the card reader.

225 1–17

12–24

171–0(+P17)

(b) Reading in 32 integers from punch cards, using the AIM
Notes: The instruction 171–0 adds a P17 to the content of 171 and also sends the updated
instruction to control, where it is executed in minor cycle 29. As it is the modified instruction that
is executed, the instruction executed is 0–100X. The next time the instruction 171–0 is executed,
the contents of 171 become 0–101X, which is then executed, and so on. The thirty-second time it
is executed, the instruction is 0–1031X. The Wait Number, previously 31, becomes 0, with a carry
of 1 to the P22 position. The P22 position—or ‘Joe field’—holds 15, so the carry is propagated to
the P26 position. (The Joe field was a spare field of the instruction. Spare fields of an instruction
were not sensed by control, and could therefore be used for various purposes by programmers.
The Joe field was often used in connection with loop control.) Thus the Timing Number of the
instruction is incremented by 1, so that the next instruction executed is at 228 instead of 227.
The term ‘normal’ in the flow diagram refers to the path taken when the instruction 0–1031X
is executed for the first (and subsequent) times. The term ‘spill out’ refers to the thirty-second
execution of that instruction, when the loop is exited.

Optimum coding: examples

Every 32 minor cycles the same word in a DL would reappear at the ‘entrance’
to the DL. Consider the following four instructions to sum the contents of
TS 14, TS 15, and TS 16, using the accumulator associated with TS 13, and
leaving the result in TS 16.

14–13 Copy TS 14 to TS 13.
15–25 Add TS 15 to TS 13.
16–25 Add TS 16 to TS 13.
13–16 Store the sum in TS 16.

If these four instructions were placed in the first four minor cycles of DL 1,
they would be encoded thus:

S D W T
10 14 – 13 0 31

11 15 – 25 0 31

12 16 – 25 0 31

13 13 – 16 0 31

14 . . .
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where S and D are the Source and Destination, W and T the Wait and Timing
Numbers.

The first instruction has a Wait Number of 0, meaning that the earliest
time that the instruction can be executed is in minor cycle 2 (each instruction
takes two minor cycles to enter control and to be set up ready for execution).
But by the time the instruction can be executed, the next instruction, which is
in minor cycle 1, has already passed the ‘entrance’ to DL 1, and the machine
must wait a complete ‘revolution’ for it to come around again before it can
be copied to the control unit for execution. Similarly for the instruction in
11. It is executed in minor cycle 3, but as the next instruction is in minor
cycle 2, another revolution must elapse before the next instruction can be
accessed. To avoid such inordinate delays, these instructions would be placed
in alternate minor cycles of DL 1, thus:

S D W T
10 14–13 0 0

12 15–25 0 0

14 16–25 0 0

16 13–16 0 0

18 . . .

At the same time as the instruction 14–13 is being executed in minor cycle 2,
the instruction in 12 is being copied to the control unit, ready to be executed
in minor cycle 4, when the instruction in 14 is available. This arrangement
gives the fastest possible execution speed for these instructions.

The aim of optimum coding is to ensure that the Wait Number is as
small as possible, and that the Timing Number is equal to the Wait Number
or slightly greater than it. A large Wait Number and/or a large Timing
Number (or a Timing Number smaller than the Wait Number) indicates
that a substantial amount of time is being wasted.

A program for counting the bits in a word will give a better feel for optimum
coding.16 TS 14 contains the word whose bits are to be counted. TS 13 is used
for the tally. In this example the instruction in location 111 has a Timing
Number of 22 so that the next instruction is taken from 13 (zero path).
The instruction in 16 is coded with Timing Number 1 rather than 0. This
is because of the constraint that the instruction in 17 can lead at the earliest
to an instruction in minor cycle 9. In this short loop, each path around the
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12 0

14 0

  +ve –ve

16  1–1  10 17 27–25 0 0

19 0

111

 Non-zero Zero

13

 30–13 0 Clear TS 13.

 14–27 0 Test if TS 14 is negative.

Add 1 to TS 13 if TS 14 is negative.

 24–14 0 Double TS 14.

 14–28 0 22 Test if TS 14 is zero; if it is, we are
finished.

Exit.

loop takes 1 major cycle, and so the instructions could have been ‘spread out’
in the delay line without increasing the time taken for the loop.

Optimum coding, then, involved allocating locations for instructions and
data so as to minimize waiting. Instructions were not placed in consecutive
locations. For example, if only the single-length registers (32 bits) were used,
instructions would be placed in alternate locations in main store. Instructions
using the double stores might be placed in even or odd locations in main store,
or in every fourth location. Sometimes the programmer coded instructions
in a different order so as to reduce waiting time and thus to increase speed.
Great attention was given to loops.

Almost inevitably the size of a program exceeded available storage.
Consequently, instructions were re-used, and in some cases constants doubled
as instructions, in order to cut down on storage requirements.

When a task involved extensive reading of cards or punching of cards,
as much computing as possible was done between each card in order to
reduce the overall time for the job. If a task required considerable use of
the multiplier or divider—in a long loop, for example—then the programmer
overlapped other computation with the multiplication or division. Overlap-
ping was possible because multiplication and division were asynchronous
operations. Once multiplication or division had been started, all the facilities
of the machine were available for use, except registers 16 and 21 (in which
multiplication and division were carried out).

Magnetic drum operations also were asynchronous; since these took
considerable time (a head shift took 35 ms, reading and writing a track
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took 15 ms), head shifts were initiated ahead of time (if possible) and reading
and writing a track were often overlapped with computation.

A more complex program

The program shown on the next page will read in 16 positive 32-bit integers
from punch cards and place the integers in storage, compute and store their
squares as 64-bit integers, and finally punch the squares on cards (as 64-bit
integers). For clarity, separate loops will be used for each of the three parts.
The AIM is used for loop control (so keeping loop control instructions to a
minimum) and also for instruction modification. Each row of a punch card
contains one integer.

Symbolic assembly language

A considerable improvement over hand-coded machine language arrived
with the publication of STAC in 1959. The STAC (STorage Allocation and
Coding Programme) was a symbolic macro assembler—though the extent
of symbols and macro facilities was minimal. The symbolic instructions
(i.e., instruction mnemonics) extended only to the ‘superinstructions’ MULT
and DIV, transfers between the magnetic drum and main storage, and
automatic linking to DEUCE library subroutines.17

The principal feature of STAC was the automatic allocation of storage to
instructions and data (in a form that was generally as good as could be done
by a programmer), along with the computation of Wait and Timing numbers
and the next instruction source. It also had facilities for merging binary
object code for one or more subroutines, and for reading binary and decimal
fixed-point constants. It produced an executable object program. Designated
sections of instructions could be given priorities, and STAC would code blocks
of high-priority instructions first. This would enable STAC to give the best
locations to critical sections of code (loops, especially inner loops), coding
each instruction so as to minimize the amount of waiting before it could be
executed.

Once the advantages of STAC became appreciated—the elimination of
most of the hand allocation, a reduction in the amount of typing (it being
no longer necessary to type most of the instruction locations), the ease
of changing, inserting, or deleting instructions, the automatic allocation
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    Read in 16 positive binary integers.

     20 12–24

     22 218–172

(5P1)228 172–0(1) +P17 + P22

 Q30(218) 0–1031X Read in one integer; wait for the row of

the card to be ready to read.
Loop back to 228; exit on 16th trip to 229.

     229    9–24 Clear read (i.e. stop reader).

    Form the squares of the integers in storage.

     118 122–172(2mcs)

(2P1)120 172–0

 Q30(122) 1031–16 Fetch one integer (the multiplicand).

     119 16–213

     121 30–212

     125 0–24(mc 29)

     128 1–1

27 171–0(1) +P18 + P22

 Q29(123) Store one 64-bit square.

Punch the results.

Stim. read (i.e. start card reader).

Set up loop control.

Loop back to120; exit on 16th trip to 121.

Waste time, to allow mult. to complete.

Start multiplication.

Copy the integer to the multiplier register.

Clear 212.

Set up loop control.

+P17

     121 10–24 Stim. card punch.

     219 126–172 Set up loop control.

21 172–0(1) +P18 + P22

1130–212(2mcs) J=15 Fetch a 64-bit square.

     222 223 next; exit on

     223 212–29X

     225 8–24(1)

     227 213–29

     224 9–24 Stop the card punch.

     230 12–24 Start the card reader.

     10 Finish, with the reader called for the next program.

(7P1)1

 Q30(126)

(7P1)2

Clear the output staticizers ready to

Loop back to221.

Normally executes 

17th trip to 224.

Punch the 32 least-significant bits; wait for

the card punch to be ready to punch the row.

punch the 32 most-significant bits.

212–1130(2mcs)

DEUCE program to square 16 positive integers

Notes: P1 corresponds to unity (or 20), P5 corresponds to 24, P17 corresponds to 216, P22 cor-
responds to 221, and P32 to 231. The notation Q30(126) signifies that the instruction originally
stored in 126 (and now also in 172) is obeyed as if it were stored in minor cycle 30. The instruction
221 172–0 (1) +P18 +P22 means that the content of 172 is sent to control to be executed, and
that in doing so the content of 172 is incremented by P18 and P22. The P18 increments the
Wait Number by 2, while the P22 increments the Joe field and serves as a trip counter. On the
seventeenth time that the instruction in 172 is executed, the P22 that is added causes a carry to
the P26 position, which increments the Timing Number, and hence causes the next instruction
to be taken from 224 instead of 223, thus terminating the loop.
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of instructions, and the elimination of simple translation and keyboard
errors—its use increased.

General Interpretive Programme

The General Interpretive Programme (GIP), with its large suite of numerical
algorithms, was one of the most important programs in the DEUCE library.18

GIP was developed at the NPL in 1955. One of the difficulties of machine
language was the long time that it took to write programs. The GIP scheme
enabled programs to be prepared in a few minutes to hours (instead of weeks
to months). GIP programs ran as fast as any hand-written in machine code.

The GIP scheme consisted of self-contained programs called bricks. Each
was capable of performing some numerical algorithm, such as matrix inver-
sion or solving simultaneous equations. The bricks, being written in machine
code, were optimized for the DEUCE. They were supported by several dozen
bricks for reading decimal values and for punching decimal results. In all
some 230 bricks were available in the DEUCE library.

To make a GIP program it was first necessary to decide which operations
were required (e.g. a program to invert a matrix would require bricks to read
in a matrix (in decimal), to invert a matrix, and to punch a matrix in decimal).
The codewords required to direct the operations would then be prepared.

GIP codewords were of the form:

Source address 1, Source address 2, Destination address, Operation.

An address is a track address of the magnetic drum (in the range 0–8191).
The codewords for the above operations could be:

a1 a2 a3 op
0 0 0 1 Read a matrix in decimal to track 0.
0 0 36 2 Invert the matrix at track 0, placing

the result at track 36.
36 0 0 3 Punch the matrix at track 36 in decimal.

Next, copies of the punch cards for these three bricks and the GIP control
program were made, by means of a Hollerith card reproducer. The user would
assemble a deck of cards with the GIP control program followed by a card
containing three (the number of bricks), the three bricks (in the order: read
decimal matrix, invert matrix, punch decimal matrix), followed by a set of
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three cards containing the three codewords (in binary). The decimal data
would be placed last.

The first card of the data contained the number of rows and columns of
the matrix. The bricks took the sizes of the matrices from dimensions stored
with each matrix, and thus any size of matrix was automatically handled, the
maximum sizes depending on the spaces reserved by the user and by the sizes
of the bricks. It was the user’s responsibility to allocate areas on the magnetic
drum for storing data and for intermediate results. (Some of the drum, from
track 8191 downwards, was reserved for GIP and its bricks and could not
normally be used for storing data.)

One feature of the GIP scheme was a sum check carried out by each brick
on any arrays that it used. Whenever a brick produced an array, a sum check
was stored along with the dimensions of the array.19 GIP was one of the
few schemes to incorporate self-checking, despite the fact that the DEUCE
hardware did not provide parity checking. Even if parity checking had been
provided, the sum check would still have been employed, because the sum
check helped to protect against the inadvertent (partial) overwriting of one
array with another.

The GIP language included mechanisms for looping, loop control, and
conditional statements. It had debugging facilities that were employed from
the front panel, including the ability to stop before executing each codeword,
to ‘request stop’ on a given codeword, to replace a codeword with another,
to inject a new codeword into the program, to continue from any given
codeword, to obey a brick read in by the card reader, and the like. If a brick
failed (either because of invalid data, a hardware fault, a surge of the power
supply, or a brick under test having a programming error), a ‘restore control’
card could be executed from the card reader, and any of the above-mentioned
debugging facilities could be used to continue. If desired, the failed codeword
could be repeated, or partial results punched out. There was even a program
to re-synchronize the drum with the high-speed store, should a power supply
surge cause the magnetic drum to lose synchronism.

Bricks available for use with GIP included those for solving linear simultan-
eous equations, for solving differential equations, for matrix multiplication,
matrix inverse and transpose, term-by-term matrix operations (addition,
subtraction, multiplication, division, sine, cosine, square root, logarithm,
reciprocal, power), latent roots, determinants, residuals, linear program-
ming, regression analysis, statistical tabulation, interpolation, decimal and
binary input and output, and various utility bricks and programs including
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extraction of a submatrix, attaching rows and/or columns to a matrix, and
eliminating columns from a matrix.

It is interesting to compare GIP with the contemporary Matrix Interpret-
ive Scheme of the Ferranti Pegasus computer. On the Pegasus, each matrix
instruction contained the addresses of the matrix operands as well as their
dimensions. GIP codewords, on the other hand, specified only the addresses
of the matrices. Thus GIP was a form of object-oriented programming. This
accounts for its usefulness—once written, a program ran unaltered for differ-
ently sized matrices. The Ferranti scheme required the program to be changed
whenever the size of matrix changed. Under the Pegasus Matrix Interpretive
Scheme it took 42.4 seconds to multiply a 10 × 12 matrix by a 12 × 16

matrix.20 GIP took 26.6 seconds.21

GEORGE

GEORGE was a translation scheme using an addressless language. GEORGE
was conceived and developed by Charles Hamblin at the NSW University
of Technology. The GEORGE language had all the elements of a modern
programming language, in a simple form—including loop control, con-
ditional operations, subroutines, arithmetical and trigonometrical built-in
functions, and the ability to deal with scalars, vectors, and matrices.22

A compiler was available in 1957.
GEORGE relied on a push-down pop-up stack, arithmetic being carried out

on the value at the top of the stack, or the top pair of values as appropriate.
For example, a read instruction caused one decimal number to be read from
the card reader and placed in the accumulator (the top of the stack). An add
instruction would remove the top two values on the stack and place the
result on the top of the stack. Using the name of a variable, for example k,
would bring the contents of that variable to the top of the stack. The reverse
operation, a store, was indicated by using the variable name in parentheses,
for example (k), which would copy the value on the top of the stack and
place it in storage. (An exception to this rule about parentheses was the
keyword ‘(punch)’.) The semicolon was used to remove the value on the top
of the stack, that is, to cancel the accumulator. Several other operations were
available to manipulate the stack, such as dup (to take a copy of the top of
the stack and push it on the top), and rev, which would interchange the top
two values on the stack.
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The following example of a GEORGE program forms the sum of n values
(keywords are shown in bold face, and the right square bracket indicates the
end of the loop):

read (n) ; Read in one number, store it in variable n and then
cancel the accumulator.

0, Initialize the accumulator to receive partial sums.
1, n rep (k) Loop n times with k taking the values 1 to n.
read + ] Read one number and then add it to the partial sum;

end of loop.
(punch) Punch the final sum.
; Cancel the accumulator.
stop

Expressions were written in reverse Polish notation (suffix notation).
For example, to evaluate y = ax2 + bx + c, one writes:

x dup × a × bx × +c + (y).

When the elements in this expression are processed from left to right, the
expression is evaluated and the result stored in y. The steps of the evaluation
are as follows:

Symbol Meaning
x Bring x into the accumulator.

dup Make a copy of x, leaving the copy on the top of the stack.
× Multiply, giving x2.
a Bring a into the accumulator.
× Multiply by a, giving ax2.
b Bring b into the accumulator.
x Bring x into the accumulator.
× Multiply, giving bx.
+ Add bx to ax2, giving ax2 + bx.
c Bring c into the accumulator.
+ Add, giving ax2 + bx + c.
(y) Store the result in variable y.

The following GEORGE program performs the operation of the DEUCE
machine-language program given earlier, namely to read in 16 values, to
compute their squares, and to print out the results. All arithmetic is performed
in single precision floating-point, including loop control.
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1, 16 R1 (a) Vector Read into a1 to a16 (does not use
the accumulator).

1, 16 rep ( j) Loop 16 times, with j taking the values 1 to 16.
j | a dup × j(a);] Replace aj with its respective square.
1, 16 P1 (a) Vector Punch the values of a1 to a16 (does not

use the accumulator).
stop

Note that a subscripted variable is written with the subscript first, and is
separated from the variable name by a vertical bar ( | ). Thus aj is written j | a.
The sequence j | a in the third line of the above example means fetch aj into
the accumulator; dup will make a copy of it and push it on the top of the
stack; × forms a2

j , while j | (a) stores that result in aj. The semicolon cancels
the square a2

j from the accumulator ready for the next iteration.
After writing out the program in the above form, the programmer would

encode the symbols using a look-up table. The resultant codes, in decimal,
would then be punched on a card. Figure 5 shows the codes for the above
program; each symbol of the program is represented by the pair of numbers
beneath it. In reality, alphanumeric input was not provided for GEORGE
programs. Consequently, each operation, name, etc, was encoded in decimal.
Later versions of GEORGE still had this form of input, but could print a copy
of the program in alphanumeric form, on standard paper tape (or, in the case
of the NSW site, via an on-line Siemens M100 teleprinter running at 75 Baud
(10 cps), installed in 1963).

An interpreter and a compiler were provided for GEORGE. The interpreter
permitted the machine to be halted after executing each code (such as rep,
dup, ×, +, –, and so on). The accumulator and stack could be viewed on

1 , 1 6 R1 (a)
1 2 1 0 1 2 6 2 8 15 0 6

1 , 1 6 rep (j)
1 2 1 0 1 2 6 2 8 1 9 6

j | |a j (a) ; ]dup ×
9 4 0 1 0 4 12 0 7 0 9 4 0 1 0 6 2 0 5 1

1 , 1 6 P1 (a)
1 2 1 0 1 2 6 2 9 15 0 6

stop
14 15

Fig. 5 Decimal codes for the GEORGE program to square 16 values.
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the video display as the codes were executed. The compiler did not permit
program testing, as the codes were compiled into machine instructions.

The ‘GEORGE pack’, which consisted of about 100 cards, was first read in
and stored on the magnetic drum (taking half a minute). A special initial
card followed by the GEORGE program codes was then read in. As long as the
special initial card was used, any number of GEORGE programs could be read
in without having to re-read the GEORGE pack. It was thus ideal for running
a batch of programs.

GEORGE was probably the first program in which a software push-down
stack used a hardware push-down stack. The GEORGE commands dup and
rev used the hardware stack. The two machine instructions for dup that
used the stack were 3–24 and 16–10n.

Alphacode

Alphacode, developed by English Electric, provided comparable facilities to
GEORGE and could be used to solve similar problems. An interpreter was
available by 1958 and a compiler by 1959.23 Instructions were given one per
card, with each instruction consisting of an operation and up to three oper-
ands. In no way did the source resemble the more modern algebraic forms
of GEORGE and other later high-level languages. Alphacode did, however,
contain all the characteristics of such languages, including mechanisms
for loop control, conditional operations, subroutines, and arithmetical and
trigonometrical built-in functions. It could deal with scalars and vectors
(but not matrices).

The basic forms of an arithmetic instruction were: A = B + C, and A =
function B. Other types of instruction (including input/output) took the form
a b c function d.

Alphacode had the advantage that there were two translators. One was
an interpreter that enabled a program to run virtually immediately after it
had been read in and translated. The other was a compiler, which could be
used for a very long job to substantially reduce execution time. Unfortunately,
an interpreted Alphacode program needed to run for more than hour before
compilation became worthwhile, as compilation took from 30 to 75 minutes.
The compiler itself was huge, consisting of 22,000 instructions, and had to
be read in for each compilation. Just reading in those cards—a stack about
half a meter high—took 10 minutes.
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Even so, running an Alphacode program using the interpreter required
two stages. In the first stage, the Alphacode translator read in the Alphacode
source statements and punched out a translated binary program on cards.
In the second stage, the interpreter program cards were read in, which in
turn read in the translated binary program, and then interpreted it.24

The GEORGE program to form the squares of 16 numbers (see above) is as
follows for Alphacode.

r R Field 1 Field 2 Field 3 Field 4

23 0016 DATA X0001 Read 16 DATA into
X1 to X16.

0 N0001 0000 MOVED N1 = 0. Set the initial value
for loop control.

12 01 N0001 N0001 MODIFY N0001 Modifies the address of
X0001 in corresponding
fields on the next line.

3 X0001 X0001 MULTIP X0001 X1 = X1 multiplied by X1,
subscript N1 in each case
taken from the previous
line.

10 N0001 UP TO 0016 R01 Count N1 up to 16 jumping
to R01 on completion.

23 0016 RESULT X0001 Punch 16 results X1 to X16.
18 FINISH

DEUCE Alphacode program to square 16 numbers
Notes: The ‘r’ field is a decimal function number, identifying the operation (such as ‘MOVED’).
The alphanumeric function shown under the heading ‘Field 3’ was optional, but if supplied had
to agree with the ‘r’ field. The ‘R’ field is a statement label. ‘01’ is the destination of the branch
address R01 given in the ‘UP TO’ statement. Variables have pre-defined types and the name ‘X’ is
a pre-defined array name.

Speed

The DEUCE was a fast machine for its time. Its clock rate was about three
times faster than its contemporaries. The Ferranti Pegasus was almost the
same price but ran at about one-third of the speed of the DEUCE. Single-
precision addition time on the DEUCE was 64 micoseconds, double-precision
addition time was 96 microseconds, array addition 33 microseconds per word
for 32 words, integer multiplication and division about 2 milliseconds. As to
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software floating-point arithmetic, addition took 6 ms, multiplication took
5.5 ms, and division took 4.5 ms.25 Floating-point square root took 3 ms to
15 ms, using Newton’s method.26 Table 1 gives additional details.

Table 1 Comparison of the DEUCE and the Pegasus

DEUCE Pegasusa

Clock rate 1000 333 KHz
Word size 32 39 bits
Addition, single precision 64 315b microseconds
Addition, double precision 96 microseconds
Addition (mixed double and 64 microseconds

single precision)
Array addition, per word 33 microseconds

(32 words)
Integer multiplication 2080 2000 microseconds
Integer division 2112 5400 microseconds
Floating-point addition 6 18 milliseconds
Floating-point multiplication 5.5 milliseconds
Floating-point division 4.5 milliseconds
Square root 3–15 40 milliseconds
Block floating-point addition 1 milliseconds
Block floating-point multiplication 3 milliseconds
Maximum input rate

Cards 426 cps (decimal)c

213 cps (64 column)
266 cps (80 column)
2560 bits per second

Paper tape 850 200 cps
Maximum output rate 4250–6800 1000 bits per second

Cards 106 cps
1280 bits per second

Paper tape 25 25 cps
125–175 125 bits per second

a Lavington, The Pegasus Story, pp. 31, 33, 36.
b Average of two additions.
c Vowels, R. A. (1963) LR23BM General Decimal (Matrix) Read to Drum. Kidsgrove: English

Electric-Leo Computers Ltd. Based on 64 signed integers per card (128 characters including

signs and digits). Typical 8 signed integers per card (72 characters including signs) gives

240 characters per second (cps).
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Notes

The author wishes to thank Jack Copeland for valuable comments and editing

and John Webster for valuable comments.

1. Three DEUCEs were demonstrated at the English Electric works on 17 February

1955 (‘ “DEUCE” A computer for solving complex problems at high speed’,

Engineering, 11 March 1955, 313).

2. Memorandum from I. G. Evans to C. Jolliffe of 15 December 1951 (a digital

facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/evans_jolliffe_15dec51>). The amount is exclusive

of input–output equipment. A memorandum from E. S. Hiscocks to Jolliffe on

10 December (<www.AlanTuring.net/hiscocks_jolliffe_10dec51>) confirms the

offer, but without quoting an amount.

3. The English Electric Journal, 14(8), Dec. 1956, 49.

4. Removed to Stafford Technical College in 1964.

5. Thanks to Brian Randell, Garry Tee, Keith Titmuss, Jeremy Walker and John

Barrett for information about DEUCE sites.

6. Manufactured by the British Tabulating Machine Company Ltd.

7. Specifically, the control grid circuit of the valve associated with the gate, which

was the most sensitive part of the circuit.

8. ‘Guide to the Use of Magnetic Tape Equipment on the N.P.L. DEUCE’, June

1959 (a digital facsimile is in The Turing Archive for the History of Computing

<www.AlanTuring.net/deuce_magnetic_tape_jun59>).

9. Of the many, I recall only three: an improved earthing system to prevent electrical

disturbances from altering the contents of the delay lines (termed ‘digit pickup’),

an improvement to the magnetic drum interlock system to prevent a magnetics

instruction from being ignored (termed ‘sneak CMI’), and replacement of a certain

type of capacitor that was prone to breakdown.

10. ‘ “English Electric” D.E.U.C.E. Programming Manual’, Report NS-y-16, May 1956.

Kidsgrove: English Electric Co. Ltd.

11. A DEUCE instruction consisted of seven main components: Data was transferred

from a Source address to a Destination address. The address of the next instruc-

tion was given in two parts: a Next Instruction Source (NIS) being the address

of a DL, and the relative position of the next instruction in that DL (the Timing

Number). The moment when the data could be transferred was specified by the

Wait Number. Another field specified whether two or more words were to be trans-

ferred. The remaining field specified whether the instruction was to be executed

immediately or was to wait for peripheral equipment or for the computer oper-

ator. The term ‘two-plus-one address’ referred to the need to specify the address

of the next instruction, in addition to the Source and Destination addresses. The

structure of an instruction is illustrated in the following diagram, the first line of
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which applies to all instructions not using the AIM, while the second is for those

using AIM. The ‘extra delay line’ bit is of significance only when the seven extra

delay lines are fitted.

extra delay line NIS Source Destination Characteristic Wait Joe Timing Go

Director (4 bits) Source Destination Characteristic Wait Joe Timing Go
1 bit 3 bits 5 bits 5 bits 2 bits 5 bits 4 bits 5 bits 1 bit 1 bit

The least-significant bit of an instruction is on the left. Although the Joe bits and

the bit between the Timing and Go fields were not used by the control unit, they

could participate in instruction modification.

12. Termed a ‘stop bit’; explained in the section titled ‘Debugging’.

13. A keyswitch on the console had three settings: NORMAL, STOP, and AUG. STOP

(Augmented Stop).

14. An extensive programmer’s and operator’s manual was issued in 1959: Burnet-

Hall, D. G. and Samet, P. A. (April 1959) A Programming Handbook for the Computer

DEUCE. Farnborough: Royal Aircraft Establishment. A simulator for the DEUCE

is available from the author.

15. I use the term ‘pro forma’ to refer to an instruction that has been placed in

a register to be executed ‘as is’ and in modified form. Burnet-Hall and Samet used

the term ‘basic instruction’, English Electric used the term ‘planted instruction’.

I cannot recall any particular name being used at UTECOM other than ‘quasi

instruction’. In fact, none of these terms is altogether appropriate, as the content

of the register need not even be an instruction. (Burnet-Hall and Samet, A Pro-

gramming Handbook for the Computer DEUCE, p. 39; ‘ “English Electric” D.E.U.C.E.

Programming Manual’ (see note 10), p. 32.)

16. This example is for illustrative purposes only. A more efficient method relied on

the multiplier, and required 2.5 ms, as follows: 30–13; 30–213; 14–212; 0–24

(even mc); 21–26 (32 mcs); 22–26 (32 mcs); 13–25 (16 mcs). The example using

the loop required up to 32 ms.

17. Birchmore, A. and Gilmour, A. ‘DEUCE STAC Programming Manual’, DEUCE

News No. 38, Report K/AA y 1, June 1959. Kidsgrove: DEUCE Library Service,

Data Processing and Control Systems Division, English Electric Co. Ltd.

18. ‘DEUCE General Interpretive Programme’, 2nd edn., DEUCE News No. 63, Report

K/AA y 32, c.1962. Kidsgrove: English Electric Co. Ltd.

19. The first four elements at the specified drum address were, in order, the sum

check, number of rows, number of columns, and number of binary places. Then

followed the elements of the matrix in row-major order.

20. Lavington, S. (2000) The Pegasus Story. London: Science Museum, p. 35.
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21. ‘DEUCE General Interpretive Programme’ (see note 18). Times are quoted for

the brick LM08B. This was the slower version. A faster version, LM08B/1, was

produced.

22. Hamblin, C. L. (1957) ‘Computer languages’, Australian Journal of Science, 20,

135–9; reprinted in Australian Computer Journal, 17 (1985), 195–8.

23. Denison, S. J. M., Hawkins, E. N., and Robinson, C. (1958) ‘DEUCE Alphacode’,

DEUCE News No. 20, Report NSy 87. Kidsgrove: English Electric Co. Ltd.

24. For information on Alphacode programming see Denison, Hawkins, and

Robinson ‘DEUCE Alphacode’. For information about the translator see

Duncan, F. G. and Hawkins, E. N. (1959) ‘Pseudo-code translation on multi-level

storage machines’, Proceedings of the International Conference on Information Pro-

cessing, UNESCO, Paris, London: Butterworths, p. 144; and Duncan, F. G. and

Huxtable, D. H. R. (1960) ‘The DEUCE Alphacode translator’, The Computer Journal,

3(1), 98–107.

25. ‘General Description of “DEUCE” Digital Electronic Universal Computing Engine’,

August 1958, English Electric Co. Ltd.

26. Hamblin, C. L. ‘GEORGE Flow Diagrams’, unpublished, c.1957. (Author’s

collection.) The square root was computed to 32-bit precision, and truncated

to 22 bits.
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15 The ACE Simulator and
the Cybernetic Model

Michael Woodger

The ACE Simulator

During the early days of the ACE work, when digital processing was novel,
a demonstration machine was built as an aid to the visualization of binary
operations. (Now that computers and binary arithmetic are commonplace, it
is perhaps less easy to appreciate the need that there was at the time for such
a machine.)

Constructed out of Post Office relays and lamps, the ACE Simulator occu-
pied a 6-ft rack. Five panels made of an early form of white plastic showed
constituents of the ACE. The panels could be interconnected by means of
wander-plugs. Behind the rack was a hinged frame containing banks of Type
3000 relays, also a box which held a stepping uniselector, and another holding
a thyratron valve with potentiometer for speed control. A ‘Westat’ power
supply gave +50V DC stabilized for the relays, and 2V AC for the lamps.

The lamps displayed the flow of binary digits in the ACE. The problem
of showing a flow of digits without confusing transient and static states
was partially solved by using white lamps for the positions of digits and
extra green lamps for digits in transit between one position and the next.
The basic pulse time had four parts. In the second and third parts the white
lamps would remain lit while the green lamps came on. Then these would
be extinguished at the same moment that the white lamps following would
be lit. An impression of flow resulted.

Control of a one minor cycle transfer was illustrated by holding the ‘one-
shot control’ key down until a lamp lit. At that moment, the transfer trigger
went on and remained on until the lamp lit again. The transfer signal could
be plugged to the transfer control socket of a delay line, when one minor cycle
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of bits from the input of the delay line would displace the existing content
of the minor cycle. To fill the delay line from the input dynamicizer switches,
one connected the source dynamicizer socket to the input of the transfer gate,
and the output from the gate to the input of the delay line. To ‘read’ the
contents of either delay line one connected its output to the output staticizer,
where the bits remained until cleared by the key. Use of the adder input of
the accumulator showed binary addition in action, including any carries
produced during the process. Two manual input sockets could be used for
a constant stream of bits, or could be operated ‘on the fly’ to perform tricks
such as accumulating via the ‘exploded’ adder and the delay line to build up
the Fibonacci numbers.

The ACE Simulator was designed by D. W. Davies and myself in the winter
of 1949/1950, and I wired it up and demonstrated it on 30 January 1950

as part of the NPL Jubilee demonstrations to the Royal Society at Burlington
House. It was also shown at the Physical Society exhibition at City and Guilds
College from 29 March to 5 April 1950. At the time of writing it stands in the
computer gallery in the Science Museum, next to the Pilot ACE.

The Cybernetic Model

The Cybernetic Model was constructed in May 1949, before even the first
chassis of the Pilot Model ACE had been delivered. ‘Cybernetics’ is the term
introduced by the mathematician Norbert Wiener to mean ‘control and
communication in man and the machine’. The Cybernetic Model was built
in order to explore some of Turing’s ideas about learning. (It had nothing to
do with the development of the ACE.)

The Cybernetic Model contained only a modest amount of equipment.
It comprised six free-standing units of aluminium, each with a lamp on top,
connected by wander-plugs to the control unit. Each unit represented a binary
digit in a 1-bit store; the lamp was lit for 1 and was extinguished for 0.

For each unit one could set any boolean function on the controls. The inputs
to the function could be plugged from any of the units. As the machine passed
through a four-point timing cycle, representing one pulse time, the six func-
tions would be applied to the current states of the units to compute six new
states, which then became the new current states of the units. The machine
could be stepped one pulse at a time, or allowed to run indefinitely.

Publicity for the ACE work led to visits by television teams, and I proposed
demonstrating the Cybernetic Model during a BBC program called ‘How the
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Brain Works’. The program, which went to air on 13 November 1950, was
the first in a series of Reith Lectures given by the distinguished biologist
J. Z. Young. Young showed how an octopus would learn not to attack a crab
when a white plate was exposed followed by an electric shock. I used the
Cybernetic Model to mimic the octopus’s learning. The following extracts are
from my draft script for the program.1

My colleague Mr Davies and I made this machine to study some

suggestions of Dr Turing about the possibility of imitating learning.

It shows the various patterns of behaviour that can arise from the

interaction of things such as electric relays or nerve cells which

are always in one or other of two conditions—on or off—excited or

quiescent.

It consists mainly of six identical units with a switchboard to set up

connections between them. The lamps go on when a unit is stimulated

and off when the unit is inhibited.

The draft script indicates that I went on to emphasize the essential simplicity
of the units of which the machine is composed, and the fact that the
complication lies in the wiring. I then moved to the specific example
of the octopus.

Four units [are] arranged to illustrate nerve cells in an octopus given

an electric shock to ‘teach it’ not to devour a marked crab.

. . . This light represents the tendency of the octopus to seize the crab.

These two lights represent cells in the brain. So long as their state

is not changed, the octopus will continue in its tendency to seize

the crab. (slow motion) When however their state is disturbed as for

example when this fourth light is brought into play—it could be said

to represent the stimulus of pain—the state of two cells in the brain

is changed. (slow motion) With the result that, after the first painful

experience, the octopus no longer seizes the crab, i.e. the light no

longer goes on. (slow motion; repeat at speed to show sequence of

events)

The set-up I used in this demonstration of ‘learning’ consisted of two
units representing ‘memory neurons’ (denoted 1 and 2 in the table below),
a third unit (3)—a ‘motor neuron’—representing attack, and a ‘perceptual
neuron’ (4), the stimulation of which represented the receipt of a shock after
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seeing a white plate. I supplied the stimulus to unit 4 manually at the right
moment, and then discontinued it.

The function settings and behaviour were as follows:

Unit Function Time

0 1 2 3 4 5 6 7 8

1 2 0 0 0 0 0 1 0 1 0

2 1 + 4 0 0 0 0 1 0 1 0 1

3 Not (1 + 2) 1 1 1 1 1 0 0 0 0

4 Manual 0 0 0 1 0 0 0 0 0

At time 3, I gave the ‘shock’. Up to that time units 1 and 2 were copying each
other and staying in state 0, so unit 3 stayed in state 1 (the octopus was happily
attacking the crab). At time 4, 2 has got the message, but it takes another
moment to affect 3. At time 5, 3 has stopped the attack, and 1 and 2 continue
to ‘remember’ the shock. 3 will not come on again.

At the end of January 1951, Norbert Wiener and Howard Aiken visited
NPL to see the Pilot ACE. Aiken was particularly impressed by the Cybernetic
Model, saying ‘That is the way of the future’.

The Cybernetic Model was demonstrated at the NPL ‘open day’ on
23 May 1951.2 The machine was later dismantled because it was considered
a distraction from the work on ACE.

Detailed descriptions of the ACE Simulator and the Cybernetic Model
are available on the Internet at www.AlanTuring.net/woodger_ace_sim and
www.AlanTuring.net/woodger_cyber.

Notes

1. The draft script is in the Woodger Papers, National Museum of Science and

Industry, Kensington, London (catalogue reference N 27).

2. As reported in Nature, June 23, 1951, 167, p. 1006.
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16 The Pilot Model and the
Big ACE on the web

Benjamin Wells

Preserving the Pilot ACE
A National Physical Laboratory memorandum dated 30 January 1956

broached the topic of the final resting place of the Pilot Model, by then
superseded by the NPL’s DEUCE.

Disposal of Pilot ACE

Pilot ACE has now reached the stage where the amount of

maintenance it requires precludes it from being used economically

as a computer, and in the circumstances we have had informal

discussions with the Science Museum about the possibility of it being

handed over to the Museum for display there.

The Museum have informed us that they will not have room for

the complete equipment even if we could let it go but they would

be able to spare enough room to make a display which would be

intelligible to visitors and for this purpose they would require the

large rack of valves and electronic circuits together with the control

desk and an example of a mercury delay line.

Authority is sought to transfer to the Science Museum these

and any other sections of Pilot ACE which they may be able to

accommodate.1

A large fragment of the Pilot ACE is on permanent display in the London
Science Museum. The Pilot ACE now also enjoys the functional reincarna-
tion that many outdated and outmoded machines experience: it has been
emulated.
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The USF ACE emulators

An emulator is a computer program that makes the machine it is running on
capable of resembling or mimicking the target machine. An emulator should
not only simulate the running of programs by the target computer, but also
provide a simulation of the interface and controls of the target.2

The first known software emulator of the Pilot ACE was built in Visual
BASIC by Donald Davies in the early 1990s. In a file accompanying his
program, he indicated a wish that it be rewritten in a more modern language,
but he died before he could accomplish this task. In spring 2001, two graduate
students at the University of San Francisco, Athena Huang Shih-Yun and
Nicola Rugai, ported Davies’s code to Java as part of their Master’s Project,
directed by Greg Benson. Huang wrote additional Java code and improved and
extended the interface. The improved emulator was written for The Turing
Archive for the History of Computing (directed by Jack Copeland and Diane
Proudfoot) and was inspired by the desire to offer a Pilot ACE emulation in
a platform-independent format. I served as proxy client and mentor. Huang,
Rugai, Benson, and I consulted a distinguished panel: Mike Woodger, David
Clayden, Harry Huskey, and Roger Scantlebury.3

As this book makes clear, the architecture of the Pilot ACE differed
profoundly from today’s architectures. Moreover, there was no high-level
language divorced from the internal workings of the machine. The students,
like the original users, had to grasp the use of functional ports and mercury
delay line timing before they could write programs for the emulator, much
less write the emulator itself. And they had to be mindful that the Pilot ACE’s
input and output were punched cards—something they had never seen.

The Pilot ACE control panel could display the contents of two ‘fast memory’
delay lines directly. Davies included a facility in his emulator for viewing any
two additional delay lines. The USF emulator goes a step further by providing
optional views of all 11 delay lines at once, so showing the next instruction
location and allowing easier memory modification. A speed control allows
the simulation to proceed at close to the original pace.

Documents cited on the emulator webpages are helpful for understanding
how to program the Pilot ACE. Huang wrote several sample programs to flex
the emulator and to demonstrate some subtle features of the architecture.
These are tracked in a PowerPoint slide presentation on the website.

Huang subsequently adapted the Pilot ACE emulator to the architecture of
the Big ACE. The Big ACE emulator is also available on the website.
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The Pilot ACE and Big ACE emulators are located at:
<www.AlanTuring.net/ace_emulators>.

Notes

1. Memorandum from Hiscocks to the DSIR, 30 Jan 1956 (PRO document refer-

ence DSIR 10/275; a digital facsimile is in the Turing Archive for the History of

Computing <www.AlanTuring.net/hiscocks_dsir_30jan1956>). I am grateful to

Jack Copeland for drawing Hiscocks’ memorandum to my attention.

2. For more on simulation versus emulation, see A. Mulder, <www.mediamatic.net/

cwolk/view/3139>.

3. Scantlebury collaborated with Donald Davies on an early paper about packet-

switching networks (Davies coined the term ‘packet’). With Davies ill, Scantlebury

demonstrated Davies’ emulator at the ACE 2000 Conference (organized by

Copeland and held in May 2000 at the London Science Museum and the NPL).
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17 How valves work
David O. Clayden

What is a valve?

Very little design work using valves has been done in the last thirty years and
it is reasonable to expect that many readers of this book will have had no
experience with valves. I provide some background for those chapters which
describe valve circuits.1

A valve consists of an evacuated glass envelope containing a number
of electrodes. These are connected to the outside by wires passing though
special seals.

The innermost electrode is the cathode. This consists of a metal tube coated
with a material that emits electrons when it is heated. The heat is provided
by a tungsten wire, situated inside the cathode and connected to a 6 or 12 V
supply.

In the simplest form of valve, called a diode, the cathode is surrounded by
a metal cylinder called the anode. If the anode is connected to a voltage that is
positive relative to the cathode, the anode attracts electrons from the cathode,
and a current flows. Current cannot flow in the other direction.

Triodes

In the type of valve called a triode, a grid of fine wires is inserted between the
cathode and the anode. A voltage on this grid (normally a few volts negative
relative to the cathode) can control the flow of electrons to the anode. This
enables the valve to be used as an amplifier, the current depending on both
the grid voltage and the anode voltage.
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Pentodes

The pentode has five electrodes. As well as the anode, cathode, and grid,
there are the screen and the suppressor. The screen consists of fine wires
(like the grid). The screen surrounds the grid and is normally connected to
a fixed voltage of about +200V, which causes it to attract electrons through
the grid. Most of these electrons pass though the screen and aim for the
anode. The anode current is much less dependent on the anode voltage than
it is in the triode.

The fifth electrode, the suppressor, is another grid of wires, located
between the screen and the anode, and normally connected to the cathode.
Alternatively the suppressor can be connected to a variable voltage, giving
it the ability to control the proportion of electrons reaching the anode.
(This method of control is not as effective as using the grid, however, for
reasons explained in my chapter ’Circuit Design of the Pilot ACE and the
Big ACE’ (Chapter 19).)

Valves as amplifiers and switches

Valves were initially developed as linear amplifiers. When a valve is used in
this way, the anode current is related to the grid voltage. For small signal
amplitudes, the distortion is small. Valves are used either as radio frequency
or as audio frequency amplifiers.

When television started in the 1930s, it was an easy step to use valves
as on–off or change-over switches. When the valve is used in this way, the
current is either on (at some controlled level) or off . (The current was usually
controlled by negative feedback in some form.) This is how valves were used
in digital computers.

Power consumption

The ACE Pilot Model used small valves designed to dissipate 2 watts of power.
Larger valves (e.g. the KT66) were used for power supply stabilizers and for
driving magnetic drums.

Designing for variations

Within their power limitations, valves vary considerably from their
specification. Much of this variation is due to mechanical tolerances. Cathode
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temperature is another variable. Also the coating of the cathode deteriorates
over the life of the valve. In time the hardness of the vacuum deteriorates.
Because of these sources of variation it is desirable to employ design methods
that will work over a range of valve characteristics and prolong the useful life
of the valve as much as is possible.

Note

1. Numerous text books describing valve circuits exist. A famous one of the period

is Terman, F. E. (1943) Radio Engineers Handbook. London: McGraw-Hill.
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18 Recollections of early
vacuum tube circuits

Maurice Wilkes

The birth of electronics

A remark made by Donald Davies in the Foreword to this book brings back to
me very vividly the climate of the late 1940s when the first stored-program
digital computers were being designed. Davies said that Harry Huskey’s
circuits for the ACE Test Assembly were anathema to Ted Newman, who
preferred to design the real Pilot ACE in his own way.

The early radio engineers were concerned with sine waves of various
frequencies—radio, intermediate, audio—and nothing else. By the 1930s
cathode ray tubes were coming into use and bringing with them new and
strange wave forms, particularly time bases and strobes. Primitive analogue
computing devices were also appearing. A new term, ‘electronics’, was coined
for the new technology.

Electronic techniques were much to the fore in ionosphere research and in
television. They were vigorously exploited during the war for radar and other
applications and, by the end of the war, knowledge of electronics had become
widespread.

The designers of the early digital computers felt entirely confident that
electronic techniques would meet the challenge. In fact, electronics offered
them an embarrassingly wide range of alternative techniques to choose from.
The first thing they had to do was to decide on the best way to realize
gates and flip-flops and to evolve a consistent set of principles for putting
them together to make a computer. There was not time for a careful and
exhaustive appraisal, and each designer made his choice largely on the
basis of personal preference. Although their experience in other applica-
tions of electronics stood them in good stead, computer designers soon found
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they had to learn a few new tricks, such as how to handle non-repetitive
wave forms.

Design choices

There were three main approaches to the design of trees and gating circuits.
One was to use a form of threshold logic, consisting of a simple resistor net-
work feeding an amplitude discriminator. This was essentially an analogue
approach. The circuits were sometimes referred to as ‘Kirchoff circuits’, the
reference being to Kirchoff ’s laws which were widely taught at the period in
question. Another approach was to make use of pentodes with independent
inputs applied to the control grid and to the suppressor grid. Third, use could
be made of diodes.

Obviously vacuum tubes would be used for amplifiers and this seemed
straightforward enough. However, the output was at a much higher voltage
than the input, and the interstage coupling circuits had to allow for this.
The designer could either use capacitors or pulse transformers for interstage
coupling, with diodes for zero restoration (otherwise called clamping), or he
could use a resistor chain, perhaps with capacitors for frequency correction.

Having made his choice, every designer was firmly convinced that his way
was the best. This was only natural. I myself was no exception to the rule.
I would stand up stoutly for the superior merits, as I saw them, of the EDSAC
design philosophy. Likewise, it was inevitable that Ted Newman, an ex-EMI
man and a disciple of Blumlein, should have no time at all for Harry Huskey’s
ENIAC-style circuits.

Yet in spite of all the strong feelings, it was found, when the chips were
down, that all the early computers worked with much the same degree of
reliability. It was not that the doubts which had been expressed about pat-
tern sensitivity, stability and so on were not well founded. What experience
showed was that, if the engineering were carefully and competently done,
most schemes could be made to work.

Table 1 illustrates the great diversity that existed in the way selected circuit
functions were implemented in the first wave of computers. It was constructed
partly from memory and I make no great claim for its accuracy. Not all the
functions required in a computer are included in the chart; for example, there
is no mention of control logic.

Events moved fast in the first few years. Threshold logic dropped out
and pentode gates became unpopular. Germanium diodes, which were not

346



Recollections of early vacuum tube circuits

available when the EDSAC design started, soon came along. At first, there
were doubts about their reliability and recovery time, but confidence was
soon established, and the SEAC made free and elegant use of them. The merits
of parallel architectures became recognized, one being that they opened the
way to DC interstage connection. Finally, when all seemed set for a great
future with vacuum tubes, transistors came along and we were all back at
square one.

Table 1 First generation computers

ENIAC SSEM EDSAC Pilot ACE SEAC SWAC IAS

Interstage coupling

Threshold �

Capacitor and

DC restorer � �

Pulse transformer

and DC restorer �

DC �

Trees

Threshold � �

Diode � �

Adder

Threshold � �

Pentode � � �

Triode �

Diode � �

Flip-flops

Static � � � � � �

Dynamic �

The computers were: ENIAC—Electronic Numerical Integrator and Calculator (University of

Pennsylvania); SSEM—Small-Scale Experimental Machine (also known as the ‘Baby Machine’,

Manchester University); EDSAC—Electronic Delay Storage Automatic Calculator (Cambridge

University); Pilot ACE (National Physical Laboratory); SEAC—Standards Eastern Automatic

Computer (US National Bureau of Standards); SWAC—Standards Western Automatic Computer

(US National Bureau of Standards); and the IAS computer (named after the Princeton Institute

for Advanced Study where it was built).
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Blumlein and the long-tailed pair

The great designer Alan Blumlein died early in the war (see the next chapter)
and we can only speculate as to what his approach to the design of digital
computers would have been. He is famous for his insistence that a circuit
should be designed on paper, with the expectation that it would work first
time. This used to puzzle me, until I realized that he must have been refer-
ring to analogue circuits. How right he was! Anyone who has worked with
such circuits will have found that to proceed without working out a properly
toleranced design in advance is a good way to hang oneself !

Blumlein would have approved of one feature in the design of the EDSAC,
namely the use of cathode-coupled amplifiers. These are essentially long-
tailed pairs, a special favourite of Blumlein’s (see the next chapter). If the tail
is not made too long they have very good clipping properties and they do not
invert the pulses. For this latter reason the EDSAC contained no inverters.

Note

An earlier version of this chapter appeared in the bulletin of the Computer

Conservation Society, ‘Computer Resurrection’ (issue 24, Autumn 2000).
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19 Circuit design of
the Pilot ACE and the Big ACE

David O. Clayden

Introduction

The ACE Pilot Model project started in the NPL’s Radio Division with a team
of mathematicians and engineers drawn from Mathematics Division, Radio
Division, and Electricity Division (see Chapter 3, ‘The Origins and Devel-
opment of the ACE Project’). The engineers of Radio Division had long
experience of radio receiver and transmitter design. In 1947, the team was
joined by Ted Newman from EMI (Electric and Musical Industries) Research
Laboratories. At EMI Newman gained extensive experience of radar and tele-
vision camera design. I followed Newman from EMI in September 1947.
At that time the logic design of the Pilot Model had been settled by the
members of the Mathematics Division, including Alan Turing, Jim Wilkinson,
and Donald Davies, and a decision had been made that the main store would
be mercury delay lines.1

The EMI connection

Newman, the main architect of the circuit design of the Pilot Model, brought
to Radio Division some of the practices common at EMI and due to the brilliant
electronic engineer Alan Blumlein. Before the war Blumlein produced 128

patents, many concerning the EMI television system. Newman worked on
radar with Blumlein during the war. The Blumlein style circuits that Newman
designed for the ACE Pilot Model were advanced for the time.

Alan Dower Blumlein

Alan Blumlein2 was born in 1903 in London.3 His father, a mining engineer,
was a naturalized British subject from Germany. Alan was awarded a first
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class BSc degree in 1923 following education at Highgate School and City and
Guilds College. He joined International Western Electric Corp and Standard
Telephones and Cables in 1924, and was involved in long distance telephonic
communication in Europe, receiving a prize for his contribution at the age of
twenty-three.

In 1929 Blumlein started work for the Columbia Graphophone Company.
Within a short time he produced an advanced moving coil wax cutting
machine for cutting gramophone record masters. He also designed a moving
coil microphone. Around 1930 he became interested in stereophonic record-
ing and reproduction. His work resulted in an outstanding patent on the
subject and a new method of cutting stereo disks.

About this time Blumlein developed some circuit design principles aimed at
making the behaviour of circuits less dependent on valve characteristics. In
those days valves came from the manufacturer with parameters varying up to
30 per cent from their nominal values. (The current passed by a valve with a
fixed bias varied so much from valve to valve that sometimes on the production
line valves were selected for particular characteristics.) Blumlein’s philosophy
was that if a circuit is properly designed then it will work without any need
to adjust component values on test, and fundamental to this philosophy
was the notion of circuits in which the current is controlled within close
limits with little dependence on valve characteristics. Blumlein developed
the principle of defined current circuits in which the valve’s current was
defined either by a cathode resistance to a considerably lower potential, or by
employing negative feedback. These principles were patented in about 1936.
Upon these principles were built other circuit ideas including the wide-band
DC couplings described below. During the war these principles survived the
rigours of quantity production in a factory under military specifications and,
after the war, were used in the design of the ACE Pilot Model, the DEUCE, and
the Big ACE.

Before the opening of the London television station at Alexandra Palace in
1936, Blumlein’s activities were devoted to the engineering of the 405 line
television system. In 1931 the Gramophone Company (HMV) merged with the
Columbia Graphophone Company to form EMI. The merger initiated major
research into the design and manufacture of vacuum cathode-ray tubes. This
research lead to the development of the iconoscope tube for cameras and was
crowned by the outside televising of the Coronation procession in 1937. The
cameras were linked by an eight mile cable to the transmitter. A new type of
aerial was required and Blumlein invented the resonant slot aerial.
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In 1939 EMI developed a 60 MHz radar patented by Blumlein and
E. L. C. White. Blumlein was involved with a visual display for the stereo
sound locators. By 1940 this system was delivering airborne interception
radar for Beaufighters. In 1941 work began on H2S, a radar system to help
bombers find their targets. It was during the testing of this equipment that
Blumlein, Browne, and Blythen of EMI Research Laboratories were killed in
a disastrous air crash. In spite of this, H2S became operational in 1943. Some
units were allocated to the detection of enemy submarines and H2S made
a substantial contribution to the Battle of the Atlantic.

Newman joined EMI Research Laboratories at about the beginning of the
war, and after Blumlein’s death became responsible for the further devel-
opment of H2S and other military projects. He was later involved in the
development of television cameras. I joined the Laboratory in 1941 and like
Newman absorbed Blumlein’s design principles.

Other techniques invented by Blumlein included current steering logic,
using common cathode circuits (equivalent to emitter coupled logic), and
negative feedback. The method used to define the valve current was to use
‘long tails’, in which each valve’s cathode current is determined by a resist-
ance, typically 10k ohms, to a negative voltage, typically −100V. The cathode
settles at a voltage which produces the right bias for the grid at this cur-
rent (10 milliamps). If the bias varies by a few volts from the nominal value,
this makes little difference to the current. At that time resistances with a tol-
erance within 5 per cent were obtainable, and these determined the current.

Another problem with valve circuits at that time was parasitic oscillation at
very high frequencies. Various ad hoc methods of dealing with this were used,
but EMI’s practice was to give every grid a grid-stopper of about 47 ohms so
that the oscillation never occurred. This practice was copied in the ACE Pilot
Model and we had no trouble from parasitic oscillation.

The long tailed pair

Conventional valve amplifiers traditionally had a bias resistor connected
between a valve’s cathode and earth (0V), the grid of the valve being biassed
to earth. The value of this resistor, a few hundred ohms, was chosen so that
the cathode worked at a few volts above earth, thus providing an appropriate
grid bias voltage corresponding to the valve’s advertised characteristics at
the desired working current. (Calculating the value of the resistor involved
Ohm’s Law.) An undesirable feature of this arrangement is that the valve
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current can vary from one valve to another by a considerable margin, depend-
ing on the characteristics of the particular valve. This feature can be avoided
by increasing the value of the resistor to a few thousand ohms and connect-
ing it, not to earth, but to a negative voltage of, say, −100V. The current
through the resistor and the valve is then determined by this voltage and the
value of the resistor, the valves operating clear of grid current. If the resistor
is 10,000 ohms then the current is close to 10 milliamps, the characteristics
of the valve having little influence. This high-value resistor is known as a
long tail.

This principle can be extended by having two valves (triodes or pentodes)
working side by side, with their cathodes connected together and sharing
the current from one long-tail resistor. Their anodes are connected to some
suitable positive voltage, say +200V. The way in which the two valves share
the current is then controlled by the relative voltage of the two grids. The input
signal is connected to one of the grids, while the other one is typically con-
nected to a fixed potential. If one grid is 10V above the other, then all the
current goes to its anode. Thus it is possible to switch all the current from
one valve to the other (or, at smaller signal amplitudes, to create a balanced
push–pull amplifier). This arrangement is the long tailed pair. One double
triode valve may be used in place of two triodes (see fig. 1).

Blumlein patented the long tailed pair in 1936.4 There are two distinct
functions of the long tailed pair. It was first developed as a small signal
amplifier producing a well balanced push–pull pair of outputs from the two
anodes. The other function is as a switch where all of the cathode current is
switched to one or other anode (the anode current of one valve being reduced
to zero).5 As an amplifier it was used at both audio frequency and radio
frequency. As a switch it was used in television and radar circuits.

These functions were used extensively in the ACE Pilot Model and its
decendants.

Switching advantages of the long tailed pair

An important advantage of the long tailed pair in digital circuits is its switch-
ing speed. In general the switching speed of a circuit is a function of the
valve’s maximum power rating, the anode load resistance and the stray capa-
citance. For high switching speed the anode load resistance needs to be as
low as possible subject to producing an adequate signal size for operating
the next valve. The valve current needs to be as high as possible subject to
not exceeding the valve’s maximum power rating. The ‘miniature’ double
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triodes available in the 1950s were ideal for such applications, running at
about 10 milliamps with 20V signals and producing switching times of about
a tenth of a microsecond. The ACE Pilot Model ran at a speed of a million bits
per second, and its successor, the ‘Big ACE’, which also used this technology,
ran at a speed of 1·5 million bits per second.

To achieve an AND gate it was possible to feed the anode current of a valve
to the cathode of another, the lower valve having its cathode at about −200V
and being fed current from −300V. This provided two input grids supplying
signals which were used for various logical operations.

A contending circuit technology used in some computers at that time was
the pentode with both the grid and the suppressor being used as signal
inputs. Although this circuit provides an AND gate in one valve there are
two important disadvantages of the circuit. First, the action of the suppressor
is to divert the cathode current from the anode to the screen. Unfortunately
in general the maximum screen dissipation is much lower than that of the
anode, in the range 20–30 per cent of the anode rating. As a consequence
the cathode current has to be limited to about a quarter of the valve’s normal
current, and the anode load resistance has to be increased by a factor of 4

to achieve the same output signal size. This increases the switching time in
proportion. The second disadvantage is that the suppressor provides a much
lower gain than the first grid so that its signal amplitude needs to be several
times larger. The extent of this depends on the valve type, but the machines
of the 1950s which used this technology ran at a rate of about a tenth of
a million bits per second.

Figure 1 shows the long tailed double triode from which most of the other
circuit modules were developed. The input grid can be switched between −10

and +10V while the other grid remains at earth potential. Because the two

+200 V

–100 V

+10 V
–10 V

2.2 k ohm

0 V

10 mA

10 k ohm

Fig. 1 A long tailed double triode.
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0
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–210

–200

10 k

A

B

Fig. 2 A half-adder.

cathodes are joined, this steers the current to either anode circuit. With a
2·2k ohm resistance in each anode an output signal of 20V is available at a
level of +200V.

The half-adder and adder

One of the circuits developed from the long tailed double triode was the half-
adder, shown in fig. 2. This used three double triodes. A complete adder
needed two half-adders. This circuit introduces the idea of two layers of
valves, one with cathodes at about earth and one with cathodes at about
−200V. There is then a need to couple the signal from the anodes at about
+200V to the next grids at earth or −200V.

Signal coupling

There are two distinct methods of conveying the signal to a lower level for
feeding the grid of another valve, both of which were used in appropriate
circumstances. One method was to make use of a wide band DC coupling.
This will be described later. The other method was to convey the data in the
form of narrow pulses which could be AC coupled by a capacitor and DC
restored by a diode at a lower voltage.
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It is also important to be able to restore the timing of data signals.
In particular, mercury delay lines are temperature dependent and need not
only a temperature stabilized enclosure, but also re-timing. A clock pulse gate
was used to sample the output of each delay line in order to re-time the signal,
reducing each bit to a narrow pulse of 0·25 microsec and then AC couple and
DC restore it at a lower level of either earth or −200V.

The circulation unit

Initially most of the circuit modules were developed for the circulation unit,
that is the unit which maintains the information circulating in the mercury
delay lines. The Pilot Model had 19 delay lines storing 32, 64, or 1024 bits, so
these circulation units amounted to a large proportion of the total machine.
Figure 3 shows the major components of a circulation unit.

The following is a list of the main modules and their function in the
circulation unit:

1. Signal from the transducer, a crystal at the end of the delay line.
2. Receiver to amplify the signal, a 15 MHz carrier modulated by the data at

1 microsecond intervals.
3. Detector to rectify the amplified signal producing bits 1 microsecond wide.

Mercury
delay
line

Modulator

Widener

DESTINATION
GATE

Destination
highway

1 MHz
CLOCK

Instruction
highway

Source
highway

Receiver

Detector

Transmitter

2

2

2

2

15 MHz

Fig. 3 The Pilot ACE circulation unit.
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4. Clock pulse gate for re-timing purposes. The clock pulse width was
0·25 microsecond at 1 MHz.

5. Source gate, which, when selected, sends data to the Source highway
leading to the arithmetic unit.

6. Destination gate, interupting the circulation and switching in data from
the Destination highway.

7. Instruction Source gate to Instruction highway leading to the
control unit.

8. Pulse widener widening the data from clock pulse width to 1 micro-
second.

9. Modulator modulating the 15 MHz carrier.
10. Transmitter to a transducer on the mercury delay line.

The data is in the form of 1 microsecond wide pulses from the pulse widener,
through the mercury, to the clock pulse gate, and in the form of 0·25 micro-
second wide pulses from the clock pulse gate, through the output and input
gates and the highways, to the pulse widener.

The modulator, transmitter, and receiver operated at a carrier frequency of
15 MHz. The receiver had three staggered stages and had to have an adjustable
and stable gain.

The clock pulse gate

The clock pulse gate (fig. 4) is a double triode gate whose cathodes are supplied
with current from the anode of a pentode diode gate. The clock pulses are AC
coupled down to the grid of the pentode at about −207V, the cathode being
supplied with about 12mA through an 8200 ohm resistance from −300V.
The cathode is joined to a diode which stops the cathode falling below −200V,
thus cutting off the pentode’s current when the clock pulses are down. The
left grid of the double triode is fed with the wide signal from the detector and
the left anode provides negative output pulses via an AC coupling to one input
of the Destination gate.

At the time that this circuit was being developed, germanium diodes
became available and were used in the pentode diode gate as well as for DC
restoration in some of the AC couplings. Much later they created a reliability
problem.

The Destination gate

The Destination gate (fig. 5) consists of three double triodes, two at about
earth and one at about −200V. The lower one feeds current to one of the
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Fig. 4 The clock pulse gate.

upper ones and is controlled by a signal from the central control unit when
the circulation is to be interrupted and external data fed in. The left grid of the
lower double triode is switched from −190 to −210V to achieve this, the grid
of the right valve remaining at −200V. The left grid has to be DC coupled from
the anode of a pentode that is in the region at about +200V. This introduces
the idea of wide band DC coupling (see later).

In the Destination gate the lower double triode feeds current for multiples
of 32 microsec to one of the upper double triodes so that either the data from
the clock pulse gate or the data from the Destination highway is fed to the
pulse widener.

The Source gate

The Source gate (fig. 6) was controlled similarly by the central control unit,
but is simpler than the Destination gate, since it is an on–off switch and can
operate slowly in a few microseconds.
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Fig. 5 The Pilot ACE Destination gate.

The pulse widener

The pulse widener consists of two double triodes, each of which is a mono-
stable trigger with a period of 0·5 microsec, the second one being fired by
a differentiated edge from the first. Their outputs are combined, producing
a 1 microsec wide pulse which is used to operate the modulator.

Wide band DC coupling

The circuits for the Source and Destination gates employ the wide band DC
coupling patented by E. L. C. White in 1932. As shown in figs 5 and 6, this is
used to couple the signal from an anode at about +200V to a grid at about
−200V without distortion. At high frequencies the anode load of the pentode
is 4·7K ohms and this is coupled down through a capacitor to the left grid of
the double triode, producing a step of about 20V. At low frequencies the anode
load of the pentode is 22K + 4·7K ohms giving a much larger signal. This
signal is conveyed by a voltage divider consisting of two resistances whose
values are chosen so that a signal of about 20V arrives at the grid. At inter-
mediate frequencies the ratio of the coupling and decoupling capacitors is
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chosen to make the time constants equal, so that the step size at the grid is
constant at all frequencies, and it is possible to achieve switching speeds of
about 0·1 microsecond.

Figure 7 shows an alternative configuration of the wide band DC coupling,
as used in the clock pulse gate and trigger of the ACE computer, described
below. In this the anode load at high frequencies comprises two resistors in
parallel.

The data distribution system and its control

Nearly all calculations were performed by transfering data from a Source to a
Destination under the control of the control unit at the centre of operations.
The task of the control unit was to receive an instruction from the Instruction
highway, staticise it into a set of valve registers and use the output of these
to set the input to three resistance trees. These trees ran the length of the
machine and controlled which of the 32 Sources and Destinations was to
open. All the Destination gates were under the control of a signal called
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Transtim (for transfer time) which opened the particular Destination gate
selected by the Destination tree for the required time. The control unit then
selected the Source of the next instruction, and continued the cycle of events.

The highway amplifier

To convey the signal from the selected Source to the selected Destination
required a highway amplifier (fig. 7). The input to this was connected to 32

anodes distributed along the machine. This implied a high stray capacitance
and required an amplifier with a low input impedance provided by the cathode
of a valve. This signal was then amplified and distributed to 32 grids in
Destination gates with associated stray capacitance. This was one of the
important applications for the assisted cathode follower shown on the right-
hand side of the figure.

The assisted cathode follower

The conventional cathode follower has the property that it can turn on quite
a lot of current on a rising edge in order to charge the stray capacitance, but
on a falling edge it can only turn off the standing current from the cathode
resistance and so falling edges can be slow. The ‘assisted cathode follower’
uses an additional valve to provide current to pull the output down. This
gets its control signal from the anode of the cathode follower, so that when
the cathode follower runs out of current, its anode rises, and this signal is AC
coupled to the grid of the valve below. The cathode of this valve is decoupled to
earth by a capacitor, so that when its grid rises, it turns on a burst of current.
Other applications for the assisted cathode follower included the distribution
of clock pulses.

The origin of this assisted cathode follower is not clear. It may have come
from EMI with Newman or it may have been developed by Newman. It makes
use of negative feedback, the subject of one of Blumlein’s patents.

The magnetic drum store of the ACE Pilot Model

As larger problems were programmed on the Pilot Model, the need for more
storage became apparent and various options were explored. The develop-
ment of high speed magnetic recording with in-contact heads was considered
to be a long term research project beyond our resources. It was decided to
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build a high speed drum with out-of-contact heads and each track storing
1024 bits, the contents of a long delay line.6 Each transfer copied the whole
of the 1024 bits. To achieve this without a buffer store it was necessary
to synchronize the drum to the machine, at exactly one-ninth of its speed.
This enabled a transfer of 1024 bits in 9 milliseconds.

Synchronization was achieved with the aid of a steel disk having 1024

teeth on its periphery, made by the NPL’s Metrology Division workshop, and
fixed to the top of the drum. The drum was powered by an integral hysteresis
motor driven by six KT66 valves, with negative feedback to maintain syn-
chronization. At the time this drum was designed it was amongst the fastest
in the world. It was not intended to be large enough for mass storage, for
which a magnetic tape system was anticipated.

Initially the drum had 16 read heads and 16 write heads, which could be
shifted to one of two positions, giving access to 512 words in each position.
Then an eight position head-shifting mechanism was developed. This was
a novel device, known as the ‘string of sausages’. It consisted of four steel
cylinders, loosely connected in series, with the gaps between them accurately
limited to 0·016, 0·032, and 0·064 in. by means of connecting rods and
pistons as shown in fig. 8. Each gap was surrounded by a steel magnetic

Gap = 0.016

Fixed end

Gap = 0.032

Gap = 0.064

Coil

Fig. 8 The Pilot Model magnetic drum head shifting mechanism.
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circuit containing a coil. By energizing the three coils independently, it was
possible to move the heads to one of eight accurate positions. The device
pulled the heads up against a return spring, giving a maximum shift time of
50 milliseconds. This resulted in a total capacity of 4192 words of 32 bits.
Although the ‘string of sausages’ made a noise as of galloping horses, it
proved to be remarkably reliable. Special magnetic coatings were developed
by Bill Gleed. The recording heads were developed by Lew Page. Fred Osborne
was responsible for the precision engineering design.

The magnetic drum of the DEUCE computer worked at the same frequency,
but employed a moving coil head shifting mechanism having 16 positions.

The Big ACE

After completing the ACE Pilot Model it was decided to make use of our
experience to design and build a larger and faster machine.7 Although other
options were considered, it was decided to continue with mercury delay lines
for the main store, since we had experienced no reliability problems with
them. It was decided to double the number of long delay lines to 24 and to
increase the clock rate by 50 per cent to 1·5 MHz.

As a consequence the word length was increased to 48 bits. This provided
enough bits in an instruction to change from a two-address code to a three-
address code, with 64 sets of Sources and Destinations, and 64 functions. This
was a step towards Turing’s original design, which was for a three-address
machine with a function box. It was also expected that the longer word length
would result in less need to program in floating point, which was somewhat
time-consuming on the Pilot Model. Another advance was to eliminate the
setup time between transfers, allowing operations at a maximum rate of
30,000 per second.

The Pilot Model, which dissipated about 2 kilowatts, was designed without
forced air cooling, and since it had no cabinet, heat was dissipated by con-
vection and radiation. This surprised mathematicians, who were used to cold
mechanical desk calculators. The Big ACE had a cooling system (designed by
Fred Osborne) and was laid out spaciously in order to avoid temperature prob-
lems. Together with the increase in store size, this produced a considerable
increase in the dimensions of the ACE.

It was anticipated that this increase in dimensions might lead to timing
problems, particularly in view of the increase in clock rate. To alleviate
this, the highways were divided into eight parts, each part being handled
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Fig. 9 The clock gate and bistable of the ACE.

by a distribution unit. Variations in transit times were thereby reduced to
satisfactory levels and the need to adjust timing on test was eliminated.

The circuit design principles were similar to those adopted for the Pilot
Model, with minor changes. The voltages used were increased to +330 and
−330V, and a number of specially designed stabilized intermediate voltages
were incorporated. The circuits in the circulation units between the detector
and the modulator, including the highways, were DC coupled. Figure 9 shows
a sample of the circuits: the clock pulse gate and bistable trigger. This figure
shows an alternative version of the wide band DC coupling.

During the later stages of designing the ACE, transistors of adequate speed
and reliability had become available, and these were used in some emitter
coupled circuits for lower speed peripheral applications.

The Big ACE magnetic drum store

This was similar in design to the one on the Pilot Model but considerably
faster, and included four drums which could all transfer data simultan-
eously. Each drum revolved in 5 milliseconds (12,000 rpm), during which
1536 bits could be transfered to or from a delay line. The transfer rate was
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3 microseconds per bit. The number of head positions was increased to 16

by using a moving coil mechanism, giving a total of 1024 tracks, each with
a capacity of 32K words of 48 bits. This rotation speed required the use of
special bearings as used in gyroscopes.
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20 Proposed electronic
calculator (1945)

Alan M. Turing

Turing completed his report ‘Proposed Electronic Calculator’ toward the

end of 1945.1 It was submitted to the Executive Committee of the NPL

in February 1946, under the description ‘Report by Dr. A.M. Turing on

Proposals for the Development of an Automatic Computing Engine (ACE)’.2

The design set out in ‘Proposed Electronic Calculator’ was the basis for all

the ACE computers.3

B. J. C.

1 Michael Woodger (Turing’s assistant at the National Physical Laboratory from 1946) sighted

an NPL file showing that ‘Proposed Electronic Calculator’ was completed in 1945; unfortunately,

this file was destroyed in 1952 (Woodger, M., handwritten note (undated), in the Woodger Papers,

National Museum of Science and Industry, Kensington, London (catalogue reference M15/78);

letter from Woodger to Copeland, 27 November 1999).
2 Minutes of the NPL Executive Committee, 19 March 1946 (a digital facsimile is in The Turing

Archive for the History of Computing <www.AlanTuring.net/npl_minutes_mar1946>).
3 A copy of the original typewritten report is in the Public Record Office (document reference

DSIR 10/385) and it is this which is reproduced here. The diagrams (which are not included in

the copy of the report in the PRO) are from the NPL library. The report and diagrams are Crown

Copyright and are printed here by permission of the NPL. A number of typographical errors in

the original typescript have been corrected. Occasionally a punctuation mark has been added or

removed. Material in the text appearing within square brackets has been added by the editor.
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PART I.

Descriptive Account.

1. Introductory.

Calculating machinery in the past has been designed to carry out accurately
and moderately quickly small parts of calculations which frequently recur.
The four processes addition, subtraction, multiplication and division, together
perhaps with sorting and interpolation, cover all that could be done until quite
recently, if we except machines of the nature of the differential analyser and
wind tunnels, etc. which operate by measurement rather than by calculation.

It is intended that the electronic calculator now proposed should be
different in that it will tackle whole problems. Instead of repeatedly using
human labour for taking material out of the machine and putting it back at
the appropriate moment all this will be looked after by the machine itself. This
arrangement has very many advantages.

(1) The speed of the machine is no longer limited by the speed of the human
operator.

(2) The human element of fallibility is eliminated, although it may to an
extent be replaced by mechanical fallibility.

(3) Very much more complicated processes can be carried out than could
easily be dealt with by human labour.

Once the human brake is removed the increase in speed is enormous. For
example, it is intended that multiplication of two ten figure numbers shall be
carried out in 500 μs. This is probably about 20,000 times faster than the
normal speed with calculating machines.

It is evident that if the machine is to do all that is done by the normal
human operator it must be provided with the analogues of three things, viz.
firstly, the computing paper on which the computer writes down his results
and his rough workings; secondly, the instructions as to what processes are
to be applied; these the computer will normally carry in his head; thirdly,
the function tables used by the computer must be available in appropriate
form to the machine. These requirements all involve storage of information
or mechanical memory. This is not the place for a detailed discussion of the
various kinds of storage available

∗
and the considerations which govern their

∗
See § 16.
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usefulness and which limit what we can expect. For the present let us only
remark that the memory needs to be very large indeed by comparison with
standards which prevail in most valve and relay work, and that it is necessary
therefore to look for some more economical form of storage.

It is intended that the setting up of the machine for new problems shall be
virtually only a matter of paper work. Besides the paper work nothing will
have to be done except to prepare a pack of Hollerith cards in accordance
with this paper work, and to pass them through a card reader connected with
the machine. There will positively be no internal alterations to be made even
if we wish suddenly to switch from calculating the energy levels of the neon
atom to the enumeration of groups of order 720. It may appear somewhat
puzzling that this can be done. How can one expect a machine to do all this
multitudinous variety of things? The answer is that we should consider the
machine as doing something quite simple, namely carrying out orders given
to it in a standard form which it is able to understand.

The actual calculation done by the machine will be carried out in the binary
scale. Material will however be put in and taken out in decimal form.

In order to obtain high speeds of calculation the calculator will be entirely
electronic. A unit operation (typified by adding one and one) will take
1 microsecond. It is not thought wise to design for higher speeds than this
as yet.

The present report gives a fairly complete account of the proposed cal-
culator. It is recommended however that it be read in conjunction with
J. von Neumann’s ‘Report on the EDVAC’.

2. Composition of the Calculator.

We list here the main components of the calculator as at present conceived:-

(1) Erasible memory units of fairly large capacity, to be known as dynamic
storage (DS). Probably consisting of between 50 and 500 mercury tanks
with a capacity of about 1000 digits each.

(2) Quick reference temporary storage units (TS) probably numbering about
50 and each with a capacity of say 32 binary digits.

(3) Input organ (IO) to transfer instructions and other material into the cal-
culator from the outside world. It will have a mechanical part consisting
of a Hollerith card reading unit, and an electronic part which will be
internal to the calculator.
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(4) Output organ (OO), to transfer results out of the calculator. It will
have an external part consisting of a Hollerith card reproducer and
an internal electronic part.

(5) The logical control (LC).This is the very heart of the machine. Its purpose
is to interpret the instructions and give them effect. To a large extent it
merely passes the instructions on to CA. There is no very distinct line
between LC and CA.

(6) The central arithmetic part (CA). If we like to consider LC as the
analogue of a computer then CA must be considered a desk calculat-
ing machine. It carries out the four fundamental arithmetical processes
(with possible exception of division, see p. [402]), and various others
of the nature of copying, substituting, and the like. To a large extent
these processes can be reduced to one another by various roundabout
means; judgment is therefore required in choosing an appropriate set of
fundamental processes.

(7) Various ‘trees’ required in connection with LC and CA for the selection
of the information required at any moment. These trees require much
more valve equipment than LC and CA themselves.

(8) The clock (CL). This provides pulses, probably at a recurrence frequency
of a megacycle, which are applied, together with gating signals, to the
grids of most of the valves. It provides the synchronisation for the whole
calculator.

(9) Temperature control system for the delay lines. This is a somewhat
mundane matter, but is important.

(10) Binary to decimal and decimal to binary converters. These will have
virtually no outward and visible form. They are mentioned here, lest it
be thought they have been forgotten.

(11) Starting device.
(12) Power supply.

3. Storages.

(i) The storage problem. As was explained in § 1 it is necessary for the calcu-
lator to have a memory or information storage. Actually this appears to be the
main limitation in the design of a calculator, i.e. if the storage problem can
be solved all the rest is comparatively straightforward. In the past it has not
been possible to store very large quantities of information economically in
such a way that the information is readily accessible. There were economical
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methods such as storage on five-unit tape, but with these the information was
not readily accessible, especially if one wishes to jump from point to point.
There were also forms with good accessibility, such as storage on relays and
valves, but these were quite prohibitively uneconomical. There are now sev-
eral possibilities for combining economy with accessibility which have been
developed, or are being developed. In this section we describe the one which
will most probably be used in the calculator.

(ii) Delay line storage. All forms of storage depend on modifying in some
way the physical state of some storage medium. In the case of ‘delay line
storage’ the medium consists of mercury, water, or some other liquid in a
tube or tank, and we modify its state of compression at various points along
the tube. This is done by forcing supersonic waves into the tube from one
end. The state of the storage medium is not constant as it would be for
instance if the storage medium were paper or magnetic tape. The inform-
ation moves along the tube with the speed of sound. Unless we take some
precautions the sound carrying the information will pass out of the end of
the tube and be lost. We can effectively prevent this by detecting the sound
in some way (some form of microphone) as it comes out, and amplifying
it and putting it back at the beginning. The amplifying device must correct
for the attenuation of the tube, and must also correct for any distortion of
form caused by the transmission through the tube, otherwise after many pas-
sages through the tube the form will be eventually completely lost. We can
only restore the form of the signal satisfactorily if the various possible ideal
signal forms are quite distinct, for otherwise it will not be possible to distin-
guish between the undistorted form of one signal and a distorted form of
another. The scheme actually proposed only recognizes 21024 distinct states
of compression of the water medium, these being sequences of 1024 pulses
of two different sizes, one of which will probably be zero. The amplifier at
the end of the line always reshapes the signal to bring it back to the nearest
ideal signal.

Alternatively we may consider the delay line simply as providing a delay,
as its name implies. We may put a signal into the line, and it is returned to
us after a certain definite delay. If we wish to make use of the information
contained in it when it comes back after being delayed we do so. Otherwise
we just delay it again, and repeat until we do require it. This aspect loses sight
of the fact that there is still a storage medium of some kind, with a variety of
states according to the information stored.
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There are, of course, other forms of delay line than those using acoustic
waves.

(iii) Technical proposals for delay line. Let us now be more specific. It is pro-
posed to build ‘delay line’ units consisting of mercury or water tubes about 5′

long and 1′′ diameter in contact with a quartz crystal at each end. The velocity
of sound in either mercury or water is such that the delay will be 1·024 ms.
The information to be stored may be considered to be a sequence of 1024

‘digits’ (0 or 1), or ‘modulation elements’ (mark or space). These digits will be
represented by a corresponding sequence of pulses. The digit 0 (or space) will
be represented by the absence of a pulse at the appropriate time, the digit 1

(or mark) by its presence. This series of pulses is impressed on the end of
the line by one piezo-crystal, it is transmitted down the line in the form of
supersonic waves, and is reconverted into a varying voltage by the crystal at
the far end. This voltage is amplified sufficiently to give an output of the order
of 10 volts peak to peak and is used to gate a standard pulse generated by the
clock. This pulse may be again fed into the line by means of the transmitting
crystal, or we may feed in some altogether different signal. We also have the
possibility of leading the gated pulse to some other part of the calculator, if
we have need of that information at the time. Making use of the information
does not of course preclude keeping it also. The figures above imply of course
that the interval between digits is 1 μs.

It is probable that the pulses will be sent down the line as modulation on a
carrier, possibly at a frequency of 15 Mc/s.

(iv) Effects of temperature variations. The temperature coefficient of the
velocity of sound in mercury is quite small at high frequencies. If we keep
the temperatures of the tanks correct to within one degree Fahrenheit it will
be sufficient. It is only necessary to keep the tanks nearly at equal temperat-
ures. We do not need to keep them all at a definite temperature: variations
in the temperature of the room as a whole may be corrected by altering the
clock frequency.

4. Arithmetical Considerations.

(i) Minor cycles. It is intended to divide the information in the storages up
into units, probably of 32 digits or thereabouts. Such a storage will be appro-
priate for carrying a single real number as a binary decimal or for carrying

375



Alan M. Turing

a single instruction. Each sub-storage of this kind is called a minor cycle or
word. The longer storages of length about 1000 digits are called major cycles.
It will be assumed for definiteness that the length of the minor cycle is 32 and
that of the major 1024, although these need not yet be fixed.

(ii) Use of the binary scale. The binary scale seems particularly well suited
for electronic computation because of its simplicity and the fact that valve
equipment can very easily produce and distinguish two sizes of pulse. Apart
from the input and output the binary scale will be used throughout in the
calculator.

(iii) Requirements for an arithmetical code. Besides providing a sequence of
digits the statement of the value of a real number has to do several other
things. All included, (probably) we must:

(a) State the digits themselves, or in other words we must specify an integer
in binary form.

(b) We must specify the position of the decimal point.
(c) We must specify the sign.
(d) It would be desirable to give limits of accuracy.
(e) It would be desirable to have some reference describing the significance of

the number. This reference might at the same time distinguish between
minor cycles which contain numbers and those which contain orders or
other information.

None of these except for the first could be said to be absolutely indispens-
able, but, for instance, it would certainly be inconvenient to manage without
a sign reference. The digit requirements for these various purposes are
roughly:

(a) 9 decimal digits, i.e. 30 binary,
(b) 9 digits,
(c) 1 digit,
(d) 10 digits,
(e) very flexible.

(iv) A possible arithmetical code. It is convenient to put the digits into one
minor cycle and the fussy bits into another. This may perhaps be qualified
as far as the sign digit is concerned: by a trick it can be made part of the
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normal digit series, essentially in the same way as we regard an initial series
of figures 9 as indicating a negative number in normal computing. Let us
now specify the code without further beating about the bush. We will use two
minor cycles whose digits will be called i1 . . . i32, j1 . . . j32. Of these j24 . . . j32

are available for identification purposes, and the remaining digits make the
following statement about the number ξ.

There exist rational numbers β, γ and an integer m such that

|ξ − 2mβ| < γ

β =
31∑

s=1

2s−1is − 231i32

m =
9∑

t=1

2t−1jt − 512

γ =
17∑

u=10

2u+m−nju

n =
23∑

v=18

2v−18jv

This code allows us to specify numbers from ones which are smaller than
10−70 to ones which are larger than 1086, mentioning a value with sufficient
figures that a difference of 1 in the last place corresponds to from 2·5 to 5

parts in 1010. An error can be described smaller than a unit in the last place
or as large as 30,000 times the quantity itself (or by more if this quantity has
its first few ‘significant’ digits zero).

(v) The operations of CA. The division of the storage into minor cycles is
only of value so long as we can conveniently divide the operations to be
done into unit operations to be performed on whole minor cycles. When we
wish to do more elaborate types of process in which the digits get individual
treatment we may find this form of division rather awkward, but we shall still
be able to carry these processes out in some roundabout way provided the
CA operations are sufficiently inclusive. A list is given below of the operations
which will be included. Actually this account is distinctly simplified, and
an accurate picture can only be obtained by reading § 12. The account is
however quite adequate for an understanding of the main problems involved.
The list is certainly theoretically adequate, i.e. given time and instruction
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tables any required operation can be carried out. The operations are:

(1) Transfers of material between different temporary storages, and between
temporary storages and dynamic storage.

(2) Transfers of material from the DS to cards and from cards to DS.
(3) The various arithmetical operations, addition, subtraction, and multi-

plication (division being omitted), also ‘short multiplication’ by numbers
less than 16, which will be much quicker than long multiplication.

(4) To perform the various logical operations digit by digit. It will be sufficient
to be able to do ‘and’, ‘or’, ‘not’, ‘if and only if ’, ‘never’ (in symbols
A & B, A v B, ∼A, A ≡ B, F). In other words we arrange to do the
processes corresponding to xy, x + y + xy, 1 + x, 1 + (x + y)2, 0 digit
by digit, modulo 2, where x and y are two corresponding digits from two
particular TS (actually TS 9 and TS 10).

5. Fundamental Circuit Elements.

The electronic part of the calculator will be somewhat elaborate, and it will
certainly not be feasible to consider the influence of every component on
every other. We shall avoid the necessity of doing this if we can arrange that
each component only has an appreciable influence on a comparatively small
number of others. Ideally we would like to be able to consider the circuit as
built up from a number of circuit elements, each of which has an output
which depends only on its inputs, and not at all on the circuit into which it
is working. Besides this we would probably like the output to depend only on
certain special characteristics of the inputs. In addition we would often be
glad for the output to appear simultaneously with the inputs.

These requirements can usually be satisfied, to a fairly high accuracy,
with electronic equipment working at comparatively low frequencies. At
megacycle frequencies however various difficulties tend to arise. The input
capacities of valves prevent us from ignoring the nature of the circuit into
which we are working; limiting circuits do not work very satisfactorily: capa-
cities and transit times are bound to cause delays between input and output.
These difficulties may be best resolved by bending before the storm. The delays
may be tolerated by accepting them and working out a time table which takes
them into account. Indefiniteness in output may be tolerated by thinking in
terms of ‘classes of outputs’. Thus instead of saying ‘The inputs A and B give
rise to the output C’, we shall say ‘Inputs belonging to classes P and Q give rise
to an output in class R’. The various classes must be quite distinct and must be
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far from overlapping, i.e. topologically speaking we might say that they must
be a finite distance apart. If we do this we shall have made a very definite
division of labour between the mathematicians and the engineers, which will
enable both parties to carry on without serious doubts as to whether their
assumptions are in agreement with those of the other party.

For the present we shall merely ignore the difficulties because we wish
to illustrate the principles. We shall assume the circuit elements to have all
the most agreeable properties. It may be added that this will only affect our
circuits in so far as we assume instantaneous response, and that not very
seriously. The questions of stable output only involve the mathematician to
the extent of a few definitions.

In the present section we shall only be concerned with what the circuit
elements do. A discussion of how these effects can be obtained will be given
in § 15. The circuit elements will be divided into valve-elements and delay
elements.

(i) Delay line, with amplifier and clock gate. This is shown as a rectangle
with an input and output lead

1024

REF

The arrow at the input end faces towards the rectangle and at the output end
faces away. The name of the delay line, if any, will be written outside and the
delay in pulse periods inside.

This circuit element delays the input by the appropriate number of pulse
periods and also standardizes it, i.e. converts it into the nearest standard form
by correcting amplitude shape and time.

(ii) The unit delay. This is represented by a triangle, thought of as a modified
form of arrow

The input to output direction is indicated by the arrow.
This delay element ideally provides a delay of one pulse period.

(iii) Limiting amplifier. Ideally this valve-element is intended to give no
output for inputs of less than a certain standard value, and to give a standard
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pulse as output when the input exceeds a second standard value. Intermediate
input values are supposed not to occur. If we combine this with a resistance
network in which a number of input signals are combined the condition
takes the form that if the input signals are s1 s2 . . . sn there will be zero output
unless α1 s1 + · · · + αnsn � β1 and a standard or unit output if α1 s1 + · · · +
αnsn > β2. This may be simplified by assuming that the inputs s1 . . . sn are
always either 0 or 1 and the coefficients α1 . . . αn either 1 or −∞ and also by
requiring the integral parts of β1 β2 to be the same. We represent the valve
element by a circle, and the inputs with a line and an arrow facing towards
it, the outputs with lines and arrows facing away (Fig. 1).

1
A coefficient −∞

(inhibitory coupling) is shown with a small circle cutting a large circle (Fig. 2).
The smallest total for which an output is obtained (i.e. integral part of β1 or
β2 plus 1) is shown inside the circle, but is omitted if it is 1. This number we
may call the threshold.

When we require coefficients α larger than 1 we may show more than one
connection from one source. Negative coefficients may effectively be shown
by means of the negation circuit —|—−→— which interchanges 0 and 1. Thus in
the circuit of Fig. 3 the valve element D will be stimulated (i.e. emit a standard
pulse) if either A is stimulated or both B and C are not.

(iv) Trigger circuits. A trigger circuit, which is shown as an ellipse, differs
from a limiting amplifier circuit in that once the inputs have reached the
threshold so that it emits one pulse, it will continue to emit pulses until it
receives an inhibitory stimulus. It is in fact equivalent to a limiting amplifier
with a number of excitatory connections from itself with a delay of one unit.
Thus for instance the two circuits shown in Fig. 4 are equivalent. We show
the trigger circuits with a different notation partly to simplify the drawing
and partly because they will in fact be made up from different circuits. There
is also another practical difference. The output from a trigger circuit will be a
D.C. voltage, so long as it is not disturbed one way or the other, whereas the
output from a limiting amplifier with feedback is more or less pulsiform.

(v) Differentiator circuit and change circuit. We sometimes wish to indicate
an output from a trigger circuit either at the beginning or the end of its stim-
ulation. This would in fact be done with a capacity resistance ‘differentiator’
circuit. Such a circuit designed to produce a positive (excitatory) pulse at the
beginning will be denoted by —– �B —- and one at the end by —– �E —-. These

1
Editor’s note. The figures begin on page 429.
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are understood to be respectively equivalent to the two circuits of Fig. 5.
We may also occasionally wish to make connection to a trigger circuit in such
a way that stimulus always changes the condition of the trigger circuit, either
from stimulation to non-stimulation or vice-versa. This is indicated by a small
square at the connection point thus

and is equivalent to Fig. 6.

(vi) The trigger limiter. Sometimes we wish a continuously varying voltage
to initiate a train of pulses, the pulses to be synchronous with the clock and
to start approximately when the continuous voltage reaches a certain value.
All of the pulses that occur must be of the standard or unit size. There must
definitely be no half-size pulses possible. The train of pulses may be stopped
by pulses from some other source.

This valve element is indicated by a somewhat squat rectangle containing
the letters TL. The continuous voltage input is shown as in an excitatory
connection and the stopping pulse as an inhibitory connection, as in Fig.7.

(vii) The adder and other examples. We may now illustrate the use of these
circuit elements by means of some simple examples.

The simplest circuit perhaps is that for the logical ‘or’ (cf. p. [395]). In the
circuit of Fig. 8 there is an output pulse from the unnamed element if there
is one from any one of A, B, C. We shall find it convenient in such cases to
describe this element as A v B v C. The circuits of Fig. 9 are self explanatory
in view of our treatment of A v B v C.

An adder network is shown in Fig. 10. It will add two numbers which enter
along the leads shown on the left in binary from, with the least significant
digit first, the output appearing on the right. An input signal from the top
will inhibit any output. The method of operation is as follows. The three valve
elements on the left all have stimulation from the same three sources, viz.
the two inputs and one corresponding to the carry digit from the last figure,
which was formed by the element with threshold 2. We can distinguish the
four different possible totals 0, 1, 2, 3 according to which of the valve elements
are stimulated. We wish to get an output pulse if the total is 1 or 3. This may
be expressed as a pulse if the total is 3 or if it is 1 and not 2 or more. If we
write Tn to mean ‘the total is n or more’ the condition is T3 v (T1 & ∼T2).
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Using our standard networks for A v B and for A & ∼B and observing that the
three valve elements on the left of the adder are stimulated respectively in the
cases T1, T2, T3 we finally obtain the circuit given.

The adder will be shown as a single block as in Fig. 11. The input with
the inhibiting circle being of course that shown at the top in the complete
diagram.

6. Outline of Logical Control.

A simple form of logical control would be a list of operations to be carried
out in the order in which they are given. Such a scheme can be made to
cover quite a number of jobs, e.g. calculations from explicit formulae, and has
been used in more than one machine. However it lacks flexibility. We wish to
be able to arrange that the sequence of orders can divide at various points,
continuing in different ways according to the outcome of the calculations to
date. We also wish to be able to arrange for the splitting up of operations into
subsidiary operations. This should be done in such a way that once we have
written down how an operation is to be done we can use it as a subsidiary to
any other operation.

These requirements can largely be met by having the instructions on a
form of erasible memory, such as the delay lines. This gives the machine the
possibility of constructing its own orders; i.e. there is always the possibility
of taking a particular minor cycle out of storage and treating it as an order
to be carried out. This can be very powerful. Besides this we need to be able to
take the instructions in an order different from their natural order if we are
to have the flexibility we desire. This is sufficient.

It is convenient to divide the instructions into two types A and B. An
instruction of type A requires the central arithmetic part CA to carry out
certain operations. Such an instruction, translated from its symbolic form
into English might run:-

Instruction 491. A. Multiply the content of TS 23 by the content of TS 24

and store the result in TS 25. Then proceed to carry out the next instruction
(i.e. No. 492).

Instructions of type [B] merely specify the number of the next instruction.

Instruction 492. B. Proceed with instruction 301.

We must now explain in more detail how it comes about that we can
branch the sequence of instructions and arrange for subsidiary operations.
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Let us take branching first. Suppose we wish to arrange that at a certain
point instruction 33 will be applied if a certain digit is 0 but instruction 50

if it is 1. Then we may copy down these two instructions and then do a little
calculation involving these two instructions and the digit D in question. One
form the calculation can take is to pretend that the instructions were really
numbers and calculate

D × Instruction 50 + (1 − D) × Instruction 33.

The result may then be stored away, let us say in a box which is permanently
labelled ‘Instruction 1’. We are then given an order of type B saying that
instruction 1 is to be followed, and the result is that we carry out instruction
33 or 50 according to the value of D.

When we wish to start on a subsidiary operation we need only make a note
of where we left off the major operation and then apply the first instruction of
the subsidiary. When the subsidiary is over we look up the note and continue
with the major operation. Each subsidiary operation can end with instruc-
tions for this recovery of the note. How is the burying and disinterring of the
note to be done? There are of course many ways. One is to keep a list of these
notes in one or more standard size delay lines (1024), with the most recent
last. The position of the most recent of these will be kept in a fixed TS, and
this reference will be modified every time a subsidiary is started or finished.
The burying and disinterring processes are fairly elaborate, but there is for-
tunately no need to repeat the instructions involved each time, the burying
being done through a standard instruction table BURY, and the disinterring
by the table UNBURY.

7. External Organs.

(i) General. It might appear that it would be difficult to put information into
the calculator and to take it out, on account of the high speeds associated
with the calculator, and the slow speeds associated with mechanical devices;
but this difficulty is not a real one. Let us consider for instance the output
organ. We will allow the mechanical part of the output organ to work at
whatever pace suits it, to take its own time in fact. However we will require
it to give out signals stating when it is ready to accept information. This
signal provides a gate for the feeding of the information out to the output
organ, and also signifies to the calculator that it may note that information
as recorded and proceed to feed out some more. The preparation for feeding
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the information out consists merely in transferring it from dynamic storages
onto trigger circuits.

In the case of the output arrangements we have the full power of the
calculator behind us, i.e. we can do the conversion of the information into
the required form as an ITO.∗ In the case of the input organ we must go more
warily. If we are putting the instruction tables into delay lines, then when
the power has been turned off all memory will have been effaced, including
the instruction tables. We cannot use instruction tables to get the information
back, because the instruction tables are not there. We are able to get over this
difficulty as will be seen below.

(ii) Output Organ. The output will go on to 32 columns of some Hollerith
cards. All the 12 rows may be used. On the receipt of a signal from the
calculator a card will begin to pass through a punch or ‘reproducer’. Shortly
before each row comes into position for punching a signal is sent back to
the calculator and trigger circuits controlling the punches are set up. After
the punching another signal is sent to the calculator and the trigger circuits
are cleared. The reproducer punch also gives a signal on the final exit of the
card. The circuit is shown in connection with CA (Fig. 26).

(iii) Input Organ. Let us first describe the action of this without worrying
about the difficulty concerning absence of instruction tables. It is very similar
to the output organ in many ways. The input is from 32 columns and 12 rows
of a Hollerith card. When the calculator is ready a card release signal goes
out to the card reader and a card begins to pass through. As each row comes
into position for reading a signal is sent back to the calculator, which then
prepares to accept the output from the reader at the moment appropriate for
sending it to its destination in the delay line. It is assumed that this destination
is already decided by the calculator. A signal is sent back to the calculator on
the final exit of the card.

Now let us consider what is done right at the beginning. Arrangements are
made for setting into CI and CD a certain invariable initial order and IN. These
state that the card is to be transferred into a particular delay line, and that
the next order is to be taken from a particular spot, which will actually be in
this same delay line. The information in this delay line can contain sufficient
orders to ‘get us started’. The first few orders obeyed will probably be to take
in a few more cards. The information on these will later be sorted to its final

∗ ITO = Instruction Table Operation.
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destination. When the final instructions are in place it will be as well to ‘read
them back’.

Actually it has been arranged that the special initial order consists of 0

throughout so that there is no need to set it up.

(iv) Binary-decimal conversion. It is proposed to do binary-decimal and
decimal-binary conversion as ITO. This will be appreciably assisted by the
fact that short multiplication is a CAO.∗

(v) Instruction-table cards. It was explained in connection with the input
organ that the instructions would be on cards, of whose columns all but 32

were available for external use. A proposed use of the 80 columns is suggested
below, without proper explanation; the explanation comes later.

Columns

Genuine input 41–72

Repeat of destination 26–40

Popular name of group 1–8

Detail figure (popular) 9–11

Instruction (popular) 12–25

Job number 73–77

Spare 78–80

Of these the genuine input has already been spoken of to some extent, and
will be spoken of again further. The job number and the spare columns do
not require explanation. The popular data describe the instruction in letters
and figures in a manner appropriate for the operator to appreciate quickly if
for instance the cards are listed. In this respect we might say that the popular
data is like a telephone number Mol 1380 whereas the genuine input is like the
pulses used in dialling: indeed we shall probably carry the analogy further and
really only distinguish 10 different letters, as is done on automatic exchanges.
The popular data have also another important function, which only appears
when we consider that the same instructions will be used on quite different
jobs. If we were just to number the instructions serially throughout all the
instructions ever used on any job, then, in the set of instructions actually used
in any particular job there would be large gaps in the numbering. Suppose
now that these instructions were stored in the DS with positions according

∗ CAO = Central Arithmetic Operation.
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to their numbers there would be a lot of wasted space, and we should need
elaborate arrangements for making use of this space. Instead, when a new
job appears we take the complete set of cards involved and make a new
copy of each of them; these we sort into the order of popular group name
and detail figure. We then renumber them consecutively in the binary scale.
This number goes into the columns described as ‘repeat of destination’. The
renumbering may be done either with a relay counter attached to a collator,
or by interleaving a set of master cards with the binary numbers in serial
order. To complete the process we have to fill in other instruction numbers in
binary form into the genuine input, e.g. if an instruction in popular form were
“. . . and carry out instruction Potpan 15” the genuine input will have to be
of form “ . . . and carry out instruction 001101. . .1” where 001101. . .1 is the
new number given to Potpan 15 in this particular job. This is a straightforward
sorting and collating process.

It would be theoretically possible to do this rearrangement of orders within
the machine. It is thought however that this would be unwise in the earlier
stages of the use of the machine, as it would not be easy to identify the orders
in machine form and popular form. In effect it would be necessary to take an
output from the calculator of every order in both forms.

8. Scope of the Machine.

The class of problems capable of solution by the machine can be defined fairly
specifically. They are those problems which can be solved by human clerical
labour, working to fixed rules, and without understanding, provided that

(a) The amount of written material which need be kept at any one stage is
limited to the equivalent of 5,000 real numbers (say), i.e. about what can
conveniently be written on 50 sheets of paper.

(b) That the human operator, doing his arithmetic without mechanical aid,
would not take more than a hundred thousand times the time avail-
able on the calculator, this figure representing the ratio of the speeds of
calculation by the two methods.

(c) It should be possible to describe the instructions to the operator in ordin-
ary language within the space of an ordinary novel. These instructions
will not be quite the same as the instructions which are normally given to
a computer, and which give him credit for intelligence. The instructions
must cover every possible eventuality.
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Let us now give real examples of problems that do and problems that do
not satisfy these conditions.

Problem 1. Construction of range tables. The complete process of range-table
construction could be carried out as a single job. This would involve calcu-
lation of trajectories by small arcs, for various different quadrant elevations
and muzzle velocities. The results at this stage would be checked by differen-
cing with respect to other parameters than time. The figures actually required
would then be obtained by interpolation and these would finally be rearranged
in the most convenient form. All of this could in theory be done as a single
job. In practice we should probably be wiser to do it in several parts in order
to throw less responsibility on to the checking arrangements. When we have
acquired more practical experience with the machine we will be bolder.

It is estimated that the first job of this kind might take one or two months,
most of which would be spent in designing instruction tables. A second job
could be run off in a few days.

Problem 2. To find the potential distribution outside a charged conducting
cube. This is a problem which could easily be tackled by the machine by a
method of successive approximations; a relaxation process would probably
be used. In relaxation processes the action to be taken at each major step
depends essentially on the results of the steps that have gone before. This
would normally be considered a serious hindrance to the mechanisation of a
process, but the logical control of the proposed calculator has been designed
largely with such cases in view, and will have no difficulty on this score. The
problem proposed is one which is well within the scope of the machine, and
could be run off in a few minutes, assuming it was done as one of a sequence
of similar problems. It is quite outside the scope of hand methods.

Problem 3. The solution of simultaneous linear equations. In this problem
we are likely to be limited by the storage capacity of the machine. If the
coefficients in the equations are essentially random we shall need to be able to
store the whole matrix of coefficients and probably also at least one subsidiary
matrix. If we have a storage capacity of 6400 numbers we cannot expect to
be able to solve equations in more than about 50 unknowns. In practice,
however, the majority of problems have very degenerate matrices and we
do not need to store anything like as much. For instance problem (2) above
can be transformed into one requiring the solution of linear simultaneous
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equations if we replace the continuum by a lattice. The coefficients in these
equations are very systematic and mostly zero. In this problem we should be
limited not by the storage required for the matrix of coefficients, but by that
required for the solution or for the approximate solutions.

Problem 4. To calculate the radiation from the open end of a rectangular
wave-guide. The complete polar diagram for the radiation could be calcu-
lated, together with the reflection coefficient for the end of the guide and
interaction coefficients for the various modes; this would be done for any
given wavelength and guide dimensions.

Problem 5. Given two matrices of degree less than 30 whose coefficients
are polynomials of degree less than 10, the machine could multiply the
matrices together, giving a result which is another matrix also having poly-
nomial coefficients. This has important applications in the design of optical
instruments.

Problem 6. Given a complicated electrical circuit and the characteristics of
its components, the response to given input signals could be calculated.
A standard code for the description of the components could easily be devised
for this purpose, and also a code for describing connections. There is no need
for the characteristics to be linear.

Problem 7. It would not be possible to integrate the area under a curve, as
the machine will have no appropriate input.

Problem 8. To count the number of butchers due to be demobilised in June
1946 from cards prepared from the army records. The machine would be
quite capable of doing this, but it would not be a suitable job for it. The speed
at which it could be done would be limited by the rate at which cards can be
read, and the high speed and other valuable characteristics of the calculator
would never be brought into play. Such a job can and should be done with
standard Hollerith equipment.

Problem 9. A jig-saw puzzle is made up by cutting up a halma-board into
pieces each consisting of a number of whole squares. The calculator could be
made to find a solution of the jig-saw, and, if they were not too numerous, to
list all solutions.
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This particular problem is of no great importance, but it is typical of a very
large class of non-numerical problems that can be treated by the calculator.
Some of these have great military importance, and others are of immense
interest to mathematicians.

Problem 10. Given a position in chess the machine could be made to list all the
‘winning combinations’ to a depth of about three moves on either side. This
is not unlike the previous problem, but raises the question ‘Can the machine
play chess?’ It could fairly easily be made to play a rather bad game. It would
be bad because chess requires intelligence. We stated at the beginning of this
section that the machine should be treated as entirely without intelligence.
There are indications however that it is possible to make the machine display
intelligence at the risk of its making occasional serious mistakes. By following
up this aspect the machine could probably be made to play very good chess.

9. Checking.

It will be almost our most serious problem to make sure that the calculator
is doing what it should. We may perhaps distinguish between three kinds of
error.

(1) Permanent faults that have developed in the wiring or components, e.g.
condensers that have become open circuit.

(2) Temporary errors due to interference, noise reaching unexpected levels,
unusual combinations of voltages at some point in the circuit, etc.

(3) Errors due to the use of incorrect instruction tables, or even due to
mistaken views as to what the circuit should do.

It will be our intention to install monitoring circuits to detect errors of
form (1) fairly soon. The ideal to aim at should be that each conceivable form
of failure would give a different indication on the monitor. In practice we
should probably simply localise the error to some part, e.g. an adder, which
could be changed and then examined at leisure.

Errors of type (2) should not occur when the apparatus is in proper working
order, however when a component is beginning to age its deficiencies will
often show themselves first in this sort of way. For instance, if the emission
of a valve in a Kipp relay circuit is beginning to fail it will eventually not
pass on any of the pulses it should, but this will begin with some occasional
failures to react. The worst of this can probably be eliminated by frequent test
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runs in which the conditions of H.T. volts, interference, etc., are all modified
in a way calculated to accentuate the deficiencies of the components. Those
which are rather down at heel may then be removed, and when the conditions
are restored to normal there should be a good margin of safety. We cannot
of course rely on this 100%. We need a second string. This will be provided
by a variety of checks of the types normally employed in computing, i.e.
wherever we can find a simple identity which should be satisfied by the results
of our calculations we shall verify it. For instance, if we were multiplying
polynomials algebraically we should check by taking a particular value for
the variable. If we were calculating the values of an analytic function at equal
intervals we should check by differencing. Most of these checks will have to
be set up as part of the instruction tables, and the appropriate action to be
taken will also be put into them. A few checks will be made part of the circuit.
For instance, all multiplications and additions will be checked by repeating
them modul[o] 255.

Incorrect instruction tables (3) will often be shown up by the checks which
have been put into these same instruction tables. We may also apply a special
check whenever we have made up a new instruction table, by comparing
the results with the same job done by means of a different table, probably
a more straightforward but slower one. This should eliminate all errors
on the part of the mathematicians, but would leave the possibility of lost
cards, etc., when the table is being used a second time. This may perhaps be
corrected by running a test job as soon as the cards have been put into the
machine.

There are three chief functions to be performed by the checking. It must
eliminate the possibility of error, help to diagnose faults, and inspire confid-
ence. We have not yet spoken at all of this last requirement. It would clearly
not be satisfactory if the checking system in fact prevented all errors, but
nobody had any confidence in the results. The device would come to no better
end than Cassandra. In order to inspire confidence the checking must have
some visible manifestations. Certainly whenever a check fails to work out
the matter must be reported by the machine. There would not be time for all
checks which do work out to be reported, but there could be a facility by which
this could be laid on temporarily at moments of shaken confidence. Another
facility which should have a good effect on morale is that of the artificial error.
By some means the behaviour of the machine is disturbed from outside, and
one waits for some error to be reported. This could be managed quite easily.
One could arrange to introduce an unwanted pulse at any point in the circuit.
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In fact of course we cannot do very much about checking until the machine
is made. We cannot really tell what troubles of this kind are in store for us,
although one can feel confident that none of them will be insurmountable.
We can only prepare against the difficulties we can foresee and hope that they
will represent a large percentage of the whole.

10. Time-table, Cost, Nature of Work, Etc.

The work to be done in connection with the machine consists of the following
parts:

(1) Development and production of delay lines.
(2) Development and production of other forms of storage.
(3) Design of valve-elements.
(4) Final schematic circuit design of LC and CA.
(5) Production of the electronic part, i.e. LC and CA.
(6) Making up of instruction tables.
(7) External organs.
(8) Building, power supply cables, etc.

(1) Delay lines have been developed for R.D.F. purposes to a degree consid-
erably beyond our requirements in many respects. Designs are available to us,
and one such is well suited to mass production. An estimate of £20 per delay
line would seem quite high enough.

(2) The present report has only considered the forms of storage which
are almost immediately available. It must be recognized however that other
forms of storage are possible, and have important advantages over the delay
line type. We should be wise to occupy time which falls free due to any kind of
hold-up by researching into these possibilities. As soon as any really hopeful
scheme emerges some more systematic arrangement must be made.

We must be ready to make a change over from one kind of storage to
another, or to use two kinds at once. The possibility of developing a new and
better type of storage is a very real one, but is too uncertain, especially as
regards time, for us to wait for it; we must make a start with delay lines.

(3) Work on valve element design might occupy four months or more. In
view of the fact that some more work needs to be done on schematic circuits
such a delay will be tolerable, but it would be as well to start at the earliest
possible moment.
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(4) Although complete and workable circuits for LC and CA have been
described in this report these represent only one of a considerable number of
alternatives. It would be advisable to investigate some of these before making
a final decision on the circuits. Too much time should not however be spent on
this. We shall learn much more quickly how we want to modify the circuits
by actually using the machine. Moreover if the electronic part is made of
standard units our decisions will not be irrevocable. We should merely have
to connect the units up differently if we wanted to try out a new type of LC
and CA.

(5) In view of the comparatively small number of valves involved the actual
production of LC and CA would not take long; six months would be a generous
estimate.

(6) Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability. There will
probably be a great deal of work of this kind to be done, for every known
process has got to be translated into instruction table form at some stage.
This work will go on whilst the machine is being built, in order to avoid
some of the delay between the delivery of the machine and the production
of results. Delay there must be, due to the virtually inevitable snags, for
up to a point it is better to let the snags be there than to spend such
time in design that there are none (how many decades would this course
take?). This process of constructing instruction tables should be very fas-
cinating. There need be no real danger of it ever becoming a drudge, for
any processes that are quite mechanical may be turned over to the machine
itself.

The earlier stages of the making of instruction tables will have serious
repercussions on the design of LC and CA. Work on instruction tables will
therefore start almost immediately.

(7) Very little need be done about the external organs. They will be
essentially standard Hollerith equipment with special mounting.

(8) It is difficult to make suggestions about buildings owing to the great
likelihood of the whole scheme expanding greatly in scope. There have been
many possibilities that could helpfully have been incorporated, but which
have been omitted owing to the necessity of drawing a line somewhere. In
a few years time however, when the machine has proved its worth, we shall
certainly want to expand and include these other facilities, or more probably
to include better ideas which will have been suggested in the working of the
first model. This suggests that whatever size of building is decided on we
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should leave room for building-on to it. The immediate requirements are:

Room for 200 delay lines. These each require about 6 inches of wall space if
they are to be individually accessible, and if this is partly provided by cubicle
construction 300 square feet is probably a minimum. To this we might add
another 100 square feet for the temperature correction arrangements.

Space for LC and CA. This is difficult to estimate, but 5 eight foot racks might
be a reasonable guess and would require another 200 square feet or more. In
the same room we would put the input and output organs which might occupy
40 square feet. We should also provide another 100 square feet for operators
tables, etc. 400 square feet would not be unreasonable for this room.

Card storage room. We would probably keep a stock of about 100,000 cards,
a very insignificant number by normal Hollerith standards. 200 square feet
would be quite adequate.

Maintenance workshop. We would do well to be liberal here. 400

square feet.

This total of 1400 square feet does not allow for the planning of operations,
which would probably be done in an office building elsewhere, nor for the
processing of Hollerith cards which will probably be done on machinery
already available to us.

Cost. It appears that the cost of the equipment will not be very great. An
estimate of £20 per delay line would be liberal, so that 200 of these would
cost us £4000. The valve equipment at £5 per inch of rack space might total
£5000. The power supply might cost £200. The Hollerith equipment would
be hired, which would be advantageous because of the danger of it going out
of date. The capital cost of such Hollerith equipment even if bought would
not exceed £2,000. With this included the total is £11,200.

PART II.

Technical Proposals.

11. Details of Logical Control.

In this section we shall describe circuits for the logical control in terms of
the circuit elements introduced in § 5. It is assumed that § 5, 6 are well
understood.
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The main components of LC are as follows:-

(1) A short storage (like a TS) called current data CD. This contains nothing
but the appropriate instruction number IN, i.e. the position of the next
instruction to be carried out.

(2) A short storage called current instructions CI. This contains the instruc-
tion being or about to be carried out.

(3) A tree for the selection of a particular delay line, with a view to finding a
particular instruction.

(4) Timing system for the selection of a particular minor cycle from a delay
line.

(5) Timing system for the selection of particular pulses from within a minor
cycle.

(6) Arrangements for controlling CA, i.e. for passing instructions on to CA.
(7) Arrangements for the continual change of the contents of CD, CI.
(8) Timing arrangements for LC itself.
(9) Starting device.

Let us first describe the starting device. This merely emits pulses synchron-
ously with the clock from a certain point onwards, on the closing of a switch
manually. The switch causes a voltage to rise and this eventually operates a
trigger limiter. This starting mechanism sets a pulse running round a ring of
valve elements providing the timing within a minor cycle (Fig. 12, 13).

In order to check that this circuit is behaving we compare P32 with a signal
which should coincide with it and which is obtained in another way, stimu-
lating an SOS signal when there is failure. This forms one of the monitoring
devices. We are not showing many of them in the present circuits (Fig. 14).

The timing system for the selection of minor cycles is quite simple, consist-
ing chiefly of a ‘slow counter’ SCA, which counts up to 255 in the scale of 2,
keeping the total in a delay line of length 8. The pulses counted are restricted
to appearing at intervals which are multiples of eight. As shown (Fig. 15) it
is counting the pulses P10. The suppression of the outputs at P9 prevents
undesirable carries from the most significant digit to the least.

The information in CD and CI being in dynamic (time) form is not very
convenient for control purposes. We therefore convert this information into
static form, i.e. we transfer it on to trigger circuits (Fig. 16).

It will be convenient to make use of a symbolic notation in connection with
the valve circuits. We write A & B (or manuscript A + B) to mean ‘A and B’.
If A and B are thought of as numbers 0 or 1 then A & B is just AB. We write
A v B for ‘A or B’. With numbers A v B is 1 − (1 − A) (1 − B). We also write

394



Proposed electronic calculator (1945)

−A (manuscript ∼A) for ‘not A’ or 1 − A. Other logical symbols will not be
used. Where a whole sequence of pulses is involved, it is to be understood
that these operations are to be carried out separately pulse by pulse. We shall
combine these symbols with the symbol + which refers to the operations of
the adder. Thus for example (A + (P3 v P4) & −P5 means that we take the
signal A and add to it a signal consisting of pulses in positions 3 and 4 and
nowhere else (addition in the sense of the adder circuit), and that we then
suppress any pulses in position 5, as in Fig. 17. We will also abbreviate such
expressions as P5 v P6 v P7 v . . . P19 to P5–19, and expressions such as
A & P14–18 to A14–18.

In circuit diagrams we have the alternatives of showing the logical com-
binations by formulae or by circuits. There is little to choose but there may be
something to be said for an arrangement by which purely logical combination
is not shown in circuit form, in order that the circuits may bring out more
clearly the time effects.

We have agreed that there shall be two kinds of instructions, A and B.
These are distinguished by CI3. The standard forms for the two types of
instructions are:

Type A. Carry out the CA operations given by digits CI5–32, and construct a
new CD according to the equation CD = (CD′ + P19) & −P17.

Type B. Construct a new CD according to the equation CD = CI17–32. Pass
the old CD into TS 13.

CD′ here represents the old CD. The significance of the formula for CD in
case A is this. Normally it is intended that after an operation of type A the
next instruction to be followed will be that with the next number, and it
might be supposed therefore that the formula CD = CD′ + P17 would apply.
Actually we deviate from this simple arrangement in two ways. Firstly we find
it convenient to have a facility by which an instruction may be taken from a
TS, viz. TS 6: this has considerable time saving effects. The convention is that
a digit 1 in column 17 indicates that the next instruction is to be taken from
TS 6. This will involve our having only the digits CI18–32 available to indicate
normal positions for instructions and would suggest that the formula should
be CD = CD′ + P18. However if we did this we should always be obliged to
have orders of type B in TS 6, for if we had an order of type A we should find
that we had to go on repeating that order. If however we have the formula
CD = (CD′ + P18) & −P17 we can obey an instruction in TS 6 and then revert
to the instruction given by CI18–32; a much more convenient arrangement.
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It remains to explain why we have P19 rather than P18. This is due to the fact
that we wish to avoid the necessity of waiting a long time for our instructions.
If the equation were the one with P18 it would mean that the next instruction
to be obeyed, after one of type A, is always adjacent to it in time. This would
mean that even with the shortest CA operations the next instruction would
have gone by before we were ready to apply it; we should always just miss the
boat. By putting P19 instead of P18 we give ourselves an extra minor cycle
of time which is normally just what we need. In order that the consecutive
instructions may be consecutively numbered in spite of this it is best to adopt a
slightly unconventional numbering system for the minor cycles (see Fig. 19).

A number of trigger circuits are employed to keep track of the stages which
the various processes have reached at any moment. The most important of
these are listed below with a short description of the functions of each.

OKCI. This is stimulated when the new instruction has been found and is
available at the input of CI, and the CA operations belonging to the last
instruction have been carried out. Stimulation begins simultaneously with
stimulation of P1, and ends on a P32. The end of OKCI has to wait for the
gating of CD, indicating that the new CD is available at its input.

OKCA. Only applies in case A and indicates that the CA operations have been
finished.

OKLK.
2

Indicates that we may now begin to look for the next instruction with
a view to putting it into CI. It is stimulated when OKCI is extinguished, and is
itself extinguished when the new CI has been found.

We may now describe the time cycle of LC. Let us begin at the point where
OKLK is stimulated indicating that the search for the new CI may now begin,
because we have finished with the old one and information for finding the
new one is now available in CD. The new CI is determined by digits 17–32 of
CD. Of these digits 23–32 determine the delay line and 18–22 determine the
minor cycle within the delay line. A digit 1 in column 17 indicates that the
order is to be taken from TS 6 instead of from the longer delay lines. This digit
is erased whenever we obey an instruction of type A. Digits 23–32 are set
up on trigger circuits and operate via trees as described below. Digits 18–22

determine the time at which we must take the output of the delay line. We
compare these digits with the output of the slow counter SCA (Fig. 15) and
when they agree we know that the right moment has come. It is convenient

2
Editor’s note. Corrected from the mis-typed ‘OKCK’.
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to arrange that the slow counter is always one minor cycle ahead of time, so
as to give us time to organise ourselves before taking the required output. As
has been mentioned the order of the digits in CD is arranged rather uncon-
ventionally in order to put consecutively numbered minor cycles in alternate
positions; this has time saving effects. The required minor cycle now passes
into CI and the signal OKSS is given; OKLK is suppressed. When the CA opera-
tions belonging to the last instruction have been finished OKCA is stimulated
and with it OKCI. We are now able to initiate any new CA operations (case A)
and to set up the new CD. When this has been done we have finished with
CI and suppress OKCI, which automatically stimulates OKLK beginning the
cycle over again (Figs. 22, 22a).

The digits 23–32 determine the delay line required. This amounts to 10

digits and will certainly be adequate for our present programme. Treeing is
done in two stages, going first through trees for three or four digits only. These
are TRA 000 . . . TRA 111, TRB 000 . . . TRB 111, TRC 0000 . . . TRC 1111.
These number 32 valve elements. At the second stage there are 1024 valve
elements TREECI 0000000000 . . . TREECI 1111111111. The connections are
shown for TREECI 1011101101. The connection from CI17 prevents any of the
TREECI elements being stimulated when CI17 is stimulated. This is required
to deal with the case where the next order is taken from TS 6 and not from the
delay lines (Fig. 20).

It is very probable that some other form of tree circuit, not capable of being
drawn in terms of our valve elements, will be used, and the same will apply
to many parts of the circuit. It is thought worthwhile however to draw these
circuits, if only to clarify what it is intended the circuits should do.

We have a similar tree system for the selection of temporary storages.

12. Detailed Description of the Arithmetic Part (CA).

We shall divide the CA operations into a number of types. We shall make
provision for 16 types, but for the present will only use nine. The types are
distinguished by digits CI5–8.

Type K. Pass the content of TS 6 into a given minor cycle.

Type L. Pass the content of a given minor cycle into TS 6.

Type M. Pass the content of a given TS into TS 6.

Type N. Pass the content of TS 6 into a given TS other than TS 4 or TS 5, or
TS 8 or TS 1.
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Type O. Pass the content of the first 12 minor cycles of a given DL out onto a
card via the reproducer.

Type P. Pass the content of the card at present in the card reader on to a
given DL.

Type Q. Pass CI17–32 into TS 6.

Type R. Various logical operations and others yielding results forming one
minor cycle, to be performed on the contents of TS 9 and TS 10 and transferred
to TS 8.

Type S. Arithmetical operations yielding a result requiring more than one
minor cycle for its retention. Results go into TS 4 and TS 5.

Type T. Stimulate a given valve element.

A trigger circuit is associated with each type. With the exception of Q these
are all excited for a period consisting of a number of complete minor cycles
beginning with a P1 and ending with a P32.

The main components of CA are the 32 temporary storages TS 1–32.
Of these TS 1–12 have some special duties.

TS 1 is used to carry the retiring data, i.e. the CD which applied just before
the last instruction of type B.

TS 2 and TS 3 contain the arguments for the purely arithmetical operations,
or most of them, and for the logical operations.

TS 4 and 5 contain the results of the arithmetical operations. They are
frequently connected up in series to form a DL 64. This is because the results
of most of the arithmetical operations are sequences of more than 32 but not
more than 64 digits.

TS 6 is used as a shunting station for the transfer of information from place
to place.

TS 7 is used to carry the digits of a number m when it is proposed to multiply
by 2m.

TS 8 is used to carry the result of logical operations and other operations
not requiring more than one minor cycle.

TS 9 and TS 10 are the inputs for the logical operations.
TS 11 will usually be used in connection with error calculations, and

accordingly has a special role in the production of multipliers.
TS 12 is used for the timing in ‘automatic’ multiplication and for the selec-

tion of unusual combinations of digits in the multiplier. The word ‘automatic’
is used because of an analogy from desk machines.
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To decide between types K to T we use CI5–8. Digits 5, 6, 7 are treed out to
the valve elements TRG 000 . . . TRG 111, as in Fig. 23. These tree elements
are each associated with two types, which are distinguished by CI8. Thus
TRG 000 would be identical with K v L if it were not for timing. For this timing
we introduce CATIM which is to be stimulated during the appropriate time in
CA operations. K v L is identical with TRG 000 & CATIM (Fig. 24).

In case K we pass the output of TS 6 to COMMIN and hence to the inputs
of all the delay lines. We gate the appropriate one of these at the appropriate
time, given by TIMCA by comparison of the output of the slow counter SCA
with CI.

In case L we do somewhat similarly, passing the appropriate output to
COMMOUT and thence to the input of TS 6 at the appropriate time given by
TIMCA.

In case M we gate the appropriate output and pass into TS 6.
In case N we pass the output of TS 6 to the inputs of the other TS, only

gating the one required.
In case O the first effect is to set the mechanism in motion to pass a card

through the reproducer. By means of a commutator arrangement or other-
wise the reproducer sends back a series of pulses which indicate the times
when the reproducer punches are ready to accept current. In the circuit
diagram (Fig. 25) two sets of pulses are shown which are intended to mark
the beginnings and ends of these periods. They may be separately provided by
the reproducer, or one may be derived from the other by delaying or otherwise.
The two sets of pulses each control trigger limiters connected up so as to extin-
guish one another. (Do not confuse this with the two mutually extinguishing
triodes that will normally form part of a trigger circuit or trigger limiter.) One
of the trigger limiters TIMOUTCARD stimulates the trigger circuit OUTIM
on the first admissible P10. A pulse on the stimulation of OUTIM goes into
a slow counter SCB and enables us to keep track of the number of rows
of the card that have been punched. The content of SCB is compared with
that of SCA and when they agree we know that the minor cycle which we
wish to pass out is now available, and TIMCA is accordingly stimulated.
TIMCA and OUTIM together permit COMMOUT to pass out to the trigger
circuits OUT 1 . . . OUT 32 on which it is set up statically and controls the
punches.

On the final exit of the card the reproducer sends back a signal to the calcu-
lator, which, in combination with O operates a trigger limiter CARDEXOUT.
This suppresses CATIM and hence O. CARDEXOUT has feedback to suppress
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itself, and this will be successful because O will have been suppressed by the
time it comes to act.

The behaviour in case P (input) is very similar. The chief difference is that
whereas OUTIM was used to gate the output from the calculator INTIM is
used to gate the input.

It should be noticed that a completely blank instruction has a definite
meaning, viz. to pass the material on the card in the reader into
DL 0000000000.

In Fig. 27 TS 01101 typifies any of the TS as regards output connections
shown on other diagrams. It is also typical as regards input connections,
except as regards TS 4, 5, 8, 1, which have no input connections except those
shown on other diagrams.

In the case of operations of type R we shall calculate all of the expressions
involved and select them by means of tree elements, digits 18 to 23 being
used. The operations so far are:

Digits 000000 TS 8 = TS 9 & TS 10.

Digits 001000 TS 8 = TS 9 v TS 10.

Digits 010000 TS 8 = −TS 10.

Digits 011000 TS 8 = (TS 9 & TS 10) v (−TS 9 & −TS 10).

Digits 100000 TS 8 = 0.

As we shall have very much to say about type S we shall make a few remarks
first about type T. In order to be able to obtain a rather direct access from the
instructions to the valves we shall introduce a number of valve elements
which can be stimulated to order. We may have 64 of these, say FLEX 000000

to FLEX 111111. The circuit will be simply as shown in Fig. 31. It is intended
that the outputs of these valve elements should be connected in various ways
into the circuit when it is desired to try out new circuit arrangements. It is
thought that they may often provide means for doing things simply which
could be done lengthily as an ITO. To an extent this represents a compromise
between the new system of ‘control by paper’ and the old plugboard and
soldering-iron techniques.

We shall also describe the timing arrangements before passing on to type S.
We have already mentioned CATIM which determines the timing but we have
still to mention what controls CATIM. CATIM is stimulated as soon as the first
P1 appears after the signal A, or, in case Q, the first P17. It is extinguished by
a variety of means. In cases K and L it is extinguished by the ending of TIMCA
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indicating that the required minor cycle has just passed through. In cases M,
N, R, T, it is only permitted to last for one minor cycle. In case Q it is also only
allowed to last for half a minor cycle. In cases O, P the extinguishing signal is
CARDEX, which is given by the card reproducer or reader on the final exit of
the card, via a trigger-limiter. In case S the signal comes from FINARITH.

The facilities provided under type S are not easily enumerated, because
they do not consist of a number of different operations stimulated by different
tree valve elements, as for instance applies in the case of the logical processes.
Rather they are to be thought of as one process which can be modified in
various ways. The standard process always involves converting the content
of TS 4 and TS 5 into ‘series form’, i.e. instead of connecting the outputs of
TS 4 and TS 5 to their own inputs they are connected to each other’s. When
they are so connected their content will be described as the ‘partial sum’.
Some quantities are then added to or subtracted from the partial sum. If the
quantity is to be added then POS is stimulated, otherwise they are subtracted.
We may if we wish cancel the original partial sum before adding, in which
case we must stimulate CANCEL for a period of two minor cycles. The quantity
to be added or subtracted is expressible as the product of a quantity known as
the ‘multiplicand’ and an integer which may be taken to lie in the range −7

to 15, positive values being the more normal. The multiplicand may be taken
from TS 3 or from the partial sums register itself. This latter case is convenient
for the purpose of multiplying the partial sum by a small integer without
a complicated series of previous transfers; if the multiplicand is taken from
the partial sums register then SELF is stimulated. The multiplier may also be
taken from a variety of sources. It may be taken from TS 2 or from CI or from
TS 11, and we accordingly stimulate NOR, GIV or ERR. The multiplier consists
of four consecutive digits from whichever source is chosen. The choice of the
digits is made by means of a choice of one of the pulses P1 to P32 to enter on
a certain line (DIGIT). At present it is suggested that in case NOR this should
be P1, resulting in the use of digits 1, 2, 3, 4, in case [GIV] it should be P23

resulting in the use of digits 23, 24, 25, 26, in case ERR1 it should be P10,
and in case ERR2 it should be P14. In case DIFF these arrangements are to be
overridden and the pulse will be stored in TS 12 and taken from there.

In case AUTO the above fundamental process is repeated eight times. In
each repetition the multiplicand is taken from TS 3, but it is modified each
time by multiplication by 24, this effect being obtained by allowing it to
circulate in a DL 34 during AUTO. We also wish to take different digits of
the multiplier at each repetition of the process; this is done by taking our
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pulse from TS 12 but allowing it to circulate in a DL 34 also. Facilities are
also provided for multiplying the partial sum by a power of 2. Although the
circuits are arranged so that this could be combined with other operations,
it is not intended that this should be done. The facility consists in enabling
the partial sums to be delayed by any time up to 63 and passed through for a
period of 2 or 3 minor cycles as desired. The amount of delay is taken from
digits 1–5 of TS 7. We stimulate ROTATE 2 or ROTATE 3 according as we wish
the rotation to last for 2 or 3 minor cycles.

It may be as well to describe how some rather definite operations are done.

Addition. We do not have a facility for addition of two given numbers so
much as for the addition of a given number into the partial sum. To add the
content of TS 3 into the partial sum we must stimulate S, POS, GIV, and must
also set up the number 1 in columns 24–27. The multiplicand is then TS 3

and the multiplier is 1.

Subtraction. As addition but we do not stimulate POS.

Short multiplication (A). To multiply TS 3 by 6 (say) proceed as for addition
with 0110 in columns 24–27 instead of 1000. We shall very likely also want to
cancel the original content of the partial sums register and therefore stimulate
CANCEL.

Short multiplication (B). To multiply the partial sum by 6 we must stimulate
S, POS, CANCEL, SELF, GIV, and set up 0110 in CI24–27.

Short multiplication (C). As B but do not cancel and put 1010 in CI24–27.

Short multiplication with addition. We wish to multiply TS 3 by TS 2 and add
into the partial sum. We stimulate POS, NOR, AUTO, DIFF.

Long multiplication with subtraction. If we wish to subtract from the partial
sum we do not stimulate POS.

Division is an ITO and will probably be carried out by means of the recurrence
relation u0 = 3/4, un + 1 = un(2 − aun). The limit of the sequence un is a−1

provided 1 < a < 2.

The appropriate instructions for these operations will be found in Fig. 37.
The content of TS 2 or TS 3 is best considered to be a binary integer, i.e. that

the least significant digit is in the units position. We must also consider that
the most significant digit has reversed sign. The least significant digit appears
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at time P1 and the most significant at P32. In the partial sums register sim-
ilarly the least significant digit is to be considered to be in the units position
and the most significant to have reversed sign and to appear 63 pulses later.
In order to keep track of which part of the partial sum is available at any
moment we have a signal ODD which is stimulated during the first minor
cycle of the stimulation of S, and thereafter in alternate minor cycles so long
as S is stimulated. When the multiplicand is taken from TS 3 we have to make
some slight modifications to it before it is in suitable condition for adding into
the partial sum. We have to convert the periodic signal with period 32 or 34

into a sequence of 64 digits of which 32 form the original content of TS 3, and
the rest is a sort of padding. We may call the 32 digits the genuine digits. Those
digits of padding which are less significant than the genuine digits are to be
all zero, those which are more significant are to be the same as the most signi-
ficant genuine digit. It will be seen that this modified multiplicand MUCAND 2

has the same meaning as the original multiplier, but expressed in the code
which is appropriate to the partial sum, and multiplied by the power of 2

which is required at the time. It may be necessary to change the sign of this
multiplicand, if POS was not stimulated. A simple circuit will do this (Fig. 34).

Owing to the fact that the partial sums register is a closed cycle of 64 there
is a danger of carries from the most significant digit on to the least significant.
This has to be prevented, and it is done by suppressing the carry in the
appropriate adder at the time P32 & −ODD. This is shown by an inhibiting
connection on to the adder.

The detailed correctness of the circuits is best verified by working through
various particular cases. It is necessary to work several different ones in
order to bring out the various different special points involved. In Fig. 35

the preliminaries to a long multiplication have been worked. This shows the
setting up of the new CI and the transfer of digits to the valve elements Z1, Z2,
Z3, Z4. It brings out the point of adding 2 rather than 1 to the CD in cases A,
B, for we are just in time to catch the next instruction. The final stages of the
multiplication are shown in Fig. 36. Here it has been assumed that the minor
cycle is of length 16, in order to reduce the space occupied by the working.

13. Examples of Instruction Tables.

In this chapter a short account of the paper technique of using the machine
will be given. I shall try to give some idea of what the instruction tables for a
job will be like and how they are related to the job and to the machine. This
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account must necessarily be very incomplete and crude because the whole
project as yet exists only in imagination.

Each instruction will appear in a number of different forms, probably three
or four.

Machine form. When the instruction is expressed in full so as to be under-
stood by the machine it will occupy one minor cycle. This we call machine
form.

Permanent form. The same instruction will appear in different machine
forms in different jobs, on account of the renumbering technique as described
in pp. [385–6]. Each of these machine form instructions arises from the per-
manent form of the instruction. These permanent forms are on Hollerith
cards and are kept in a sort of library.

Popular form. Besides the cards we need some form of the table which can be
easily read, i.e. is in the form of print on paper rather than punching. This will
be the popular form of the table. It will be much more abbreviated than the
machine form or the permanent form, at any rate as regards the descriptions
of the CAO. The names of the instructions used will probably be the same as
those in the permanent form.

In addition to these we must recognise the ‘general description’ of a table.
This will contain a full description of the process carried out by the machine
acting under orders from this table. It will tell us where the quantities or
expressions to be operated on are to be stored before the operation begins,
where the results are to be found when it is over and what is the relation
between them. It will also tell us other important information of a rather
dryer kind, such as the storages that must be left vacant before the operation
begins, those that will get cleared or otherwise altered in the process, what
checks will be made, and how various possible different outcomes of the
process are to be distinguished. It is intended that when we are trying to
understand a table all the information that is needed about the subsidiaries
to it should be obtainable from their general descriptions.

The majority of actual instruction tables will consist almost entirely of
the initiation of subsidiary operations and transfers of material. It should be
recognised however that the time spent will be in quite different proportions.
The three most time consuming operations are multiplication, waiting for
material in long delay lines, and transfers of material. In some jobs the input
and output of material may also be very time-consuming.
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In order to give a fairly complete picture of what the tables are like I am
giving examples of two tables, of which one is elementary and does not
involve subsidiaries; the other is a more advanced table and consists largely
of such orders. Besides these I have added a number of general descriptions
of tables.

The fundamental table chosen is INDEXIN, used for finding a minor cycle
whose position has been written down in a particular place.

In these tables DL m, n will denote the nth minor cycle of DL m.

INDEXIN (General Description). The minor cycle whose position is
described in digits 17–32 of TS 27 is transferred to TS 28. The contents of
TS 2, 3, 4, 5, 6, 8, 9, 10 get altered in the process.

Now follows the popular form of the table.

INDEXIN.

1 Q, 0000,0100,0000,0000 2

2 TS 6 – TS 2 3

3 ADD ‘A’ 4

4 ROTATE 16 5

5 TS 4 – TS 6 6

6 TS 6 – TS 9 7

7 TS 27 – TS 6 8

8 TS 6 – TS 10 9

9 OR 10

10 TS 8 – TS 6 11

11 B,1, INDEXIN 11

12 TS 6 – TS 28 13

13 B, BURY

The first column gives the popular form of the name of the instruction,
and the last column that of the next instruction to be followed. In most
cases this could in theory be omitted because of the instructions being of
type A. When the instructions are of type A the middle column describes
them in abbreviated form. For instance TS 6 – TS 3 describes the operation of
transferring the content of TS 6 into TS 3. Expressions of form Q, . . . mean
an instruction of type Q, and the expression after the comma describes what
is in columns 17–32. ADD ‘A’ is to mean ‘Add TS 2 into TS 4 cancelling the
partial sums’, ROTATE 16 means ‘Rotate the content of TS 4, TS 5 forwards
16 places’, OR is a logical operation.
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The expression B, 1, INDEXIN 11 is intended to stand for B in column 3, 1

in column 17 and INDEXIN 11 in columns 17–32.

Outline of operation (INDEXIN). From 1 to 10 we are constructing the
instruction which tells us to make the appropriate transfer and putting that
instruction into TS 6. The instruction B, 1, INDEXIN 11 requires us to carry
out the instruction in TS 6. The new IN formed will be 0, INDEXIN 12 so that
we then continue with instruction INDEXIN 12.

The table for INDEXIN is shown in full in Fig. 38.
We use the convention that no digit is shown if the value of the digit is not

significant. Both 0 and 1 are shown if either value is possible, and significant.

DISCRIM (General Description). If TS 8 contains any digit 1 then TS 15 is
passed into TS 24, otherwise TS 16 is passed into TS 24. The contents of TS 2,
TS 3, TS 4, TS 5, TS 8 are altered.

Outline of operation. TS 8 is transferred to TS 2 and then subtracted from
zero, passing into the partial sums register TS 4, TS 5. By taking out TS 5 we
obtain a minor cycle full of digits 1 or of digits 0 according as there was or
was not a digit 1 in TS 8 originally. We then form (TS 5 & TS 15) v (∼TS 5 &
TS 16) by logical operations and pass it on to TS 24.

This table provides the main means of deciding between two alternative
procedures, by setting up one or the other of two instructions, contained in
TS 15 or TS 16.

PLUSIND (General Description). 1 is added to the position reference in
TS 27, e.g. DL 7, 9 becomes DL 7, 10, but DL 7, 32 becomes DL 8, 1.

TRANS 45 (General Description). The following set of transfers is made

TS 22 – TS 20, TS 23 – TS 21.

BURY (General Description). The content of TS 1 with 1 added is transferred
to the position indicated in TS 31, and 1 is added to the reference in TS 31. We
then proceed to carry out the instruction in TS 1.

UNBURY (General Description). The minor cycle whose position is given in
TS 31 is taken to be position of the next instruction.

MULTIP (General Description). The number in TS 18, 19 is multiplied by
the number in TS 20, 21: the result is brought to standard form by shift of
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decimal point. An error is obtained for the product by using the errors in the
given numbers and allowing for rounding off. The result is stored in TS 22, 23.

ADD is analogous to MULTIP.
As an example of a more complicated process, I have chosen the calculation

of the value of a polynomial.

CALPOL (General Description). The minor cycles of DL 3 taken in pairs
contain the coefficients of a polynomial in descending order. Evidently we are
restricted to degrees not exceeding 15, and we assume the degree always to be
15, filling up with appropriate zero coefficients. The value of this polynomial
will be calculated for the argument in TS 13, TS 14 and the result will be
transferred to TS 25, 26. Before starting we require special contents in DL 1, 14

and DL 1, 15. There are

DL 1, 14 0000, 0101, 0000, 0000, 0100, 0110, 0000, 0000

DL 1, 15 0000, 0000, 0000, 0000, 0000, 0100, 0000, 0000

the expression in DL 1, 14 representing the order to transfer DL 3, 1 to TS 6.

CALPOL.

CALPOL 1. Clear TS 22, 23; DL 1, 14 – TS 27; DL 1, 15 – TS 29. CALPOL 8.

CALPOL 8. B, BURY; B, INDEXIN; TS 28 – TS 18; B, BURY; B, PLUSIND;
B, BURY; B, INDEXIN; TS 28 – TS 19; B, BURY; B, ADD; B, BURY; B,
PLUSIND; TS 27 – TS 2; TS 29 – TS 3; AND; Q, CALPOL 40; TS 6 – TS 15;
Q, CALPOL 37; TS 6 – TS 16; B, BURY; B, DISCRIM; B, 1.

CALPOL 37. TS 13 – TS 18; TS 14 – TS 19; B, BURY; B, TRANS 45; B,
BURY; B, MULTIP; B, BURY; B, TRANS 45. CALPOL 49.

CALPOL 49. B, CALPOL 8.

CALPOL 50. TS 22 – TS 25; TS 23 – TS 26; B, UNBURY.

The above table for CALPOL has been expressed in a more abbreviated
form than the one we gave for INDEXIN, several operations being listed at a
time. AND is of course the logical operation and B,1 indicates B with a 1 in
column 17.

Outline of operation (CALPOL). If we denote the polynomial by a1 x15 +
a2 x14 + · · · the calculation proceeds by the equations b1 = a1, c1 = b1x,
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b2 = c1 + a2, c2 = b2x, . . . After the calculation of each br we have to
determine whether this is the one required, viz. b16 or not. This is done by
examining the content of TS 27 which includes the number r and is also, one
might say principally, used to describe the position of the next coefficient ar+1.
If it is the one required we find ourselves at CALPOL 40 and have to pass br

out to TS 25, 26. Otherwise we go to CALPOL 31, and after multiplying br by
x to give cr we find ourselves back at CALPOL 8 and repeating processes we
have done before.

It will be evident that the table CALPOL is somewhat wasteful of space.
Each time a subsidiary operation is required we have to repeat B, BURY, and
each time we make a transfer we have to do it in two stages, each of which
uses a whole minor cycle of which most is wasted. It is possible to avoid
this waste of space by keeping the instruction tables in some abbreviated
form, and expanding each table whenever we want it. This will require a
table EXPAND, and will require each table to include appropriate references
to the table EXPAND. These references will however be put in by EXPAND
itself (when working under contract to a higher authority), just as EXPAND
will put in the references to BURY and UNBURY.

BINDEC (General Description). The number in TS 13, 14 is translated into
decimal form of the type α × 10m where 1 � α < 10, and is transferred into
DL 10. The notation of the decimal form is such that the content of DL 10 can
be passed out onto a card in the usual way and if the card is then listed the
digits of the numbers α, m will then appear on the listing paper in the usual
way. Or in other words only the first 10 minor cycles of DL 10 are used, and a
decimal digit is represented by the minor cycle in which a pulse occurs, and
its significance by the position of it within the minor cycle.

(This account is incomplete as regards signs and some other details.)

14. The Design of Delay Lines.

(i) General. A considerable amount of work has been done on delay lines
for R. D. F. purposes. On the whole our problems coincide with the R. D. F.
problems but there are a few differences.

(a) Owing to the fact that there will be more than one tank used in the
calculator the stability of the delay is of importance. In R. D. F. the
delay is allowed to determine the recurrence frequency and the effects
of variations in it are thereby eliminated.
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(b) In R. D. F. it is required that the delayed signal should not differ from
the undelayed by an error signal which is less than 60 dB (say) down
on the signal proper. We are less difficult to please in this respect. We
only require to be able to distinguish mark from space with a very high
probability (e.g. at least 1–10−32). This requires a high signal to noise
ratio, so far as the true random noise and the interference are concerned,
but it does not require much as regards hum, frequency distortion and
other factors producing unwanted signals of fairly constant amplitude.

Our main concerns then in designing a delay line will be:

(1) To ensure sufficient signal strength that noise does not cause serious
effects.

(2) To eliminate or correct frequency and phase distortion sufficiently that
we may correctly distinguish mark and space.

(3) To stabilise the delay to within say 0·2 pulse periods.
(4) To eliminate interference.
(5) To provide considerable storage capacity at small cost.
(6) To provide means for setting the crystals sufficiently nearly parallel.

The questions of noise and signal strength are treated in some detail in
the following pages. It is found that there is plenty of power available unless
either very long lines or very high frequencies are used. The elimination
of interference is mainly a matter of shielding and is a very standard radio
problem, which in our case is much less serious than usual. Various means
have been found by the R. D. F. workers for setting the crystals. Some prefer
to machine the whole delay line very accurately, others to provide means for
moving the crystals through small angles, e.g. by bending the tank. All are
satisfactory.

I list below a number of questions which must be answered in our design
of delay lines. In order to fix ideas I have added the most probable answers in
brackets after each question.

(1) What liquid should be used in the line? (Either mercury or a water-alcohol
mixture.)

(2) Should we use a carrier? If so, of what frequency? (Yes, certainly use a
carrier. Frequency should be about 10 Mc/s with water-alcohol mixture,
but may be higher if desired when mercury is used.)

(3) What should be the clock-pulse frequency? (1 Mc/s.)
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(4) What should be the dimensions of the crystals? (Diameter might be half
that of the tank, e.g. 1 cm. Thickness should be such that the first res-
onances of the two crystals are two or three megacycles on either side of
the carrier, if water-alcohol is used. With mercury the thickness is less
critical and may be either as with water-alcohol or may have resonance
equal to carrier.)

(5) Should the inside of the tank be rough or smooth? (Smooth.)
(6) What should be the dimensions of the tank? (Standard tanks to give a

delay of 1 ms. should be about 5′ long whether water-alcohol or mercury.
Diameter 1/2′′.3

)

(Keep all the tanks within one degree Fahrenheit in temperature. Correct
systematic temperature changes by altering the pulse frequency.)

In order to be able to answer these questions various mathematical
problems connected with the delay lines will have to be solved.

(ii) Electromagnetic conversion efficiency. The delay line may best be
considered as forming an electrical network of the kind usually (rather
misleadingly) described as ‘four-pole’, i.e. a network which has one input
current and one input voltage which together determine an output voltage
and current. Such a network is described by three complex numbers at each
frequency. In the case where there is little coupling between the output and
input, which will apply to our problem, we may take these quantities to be the
input and output admittances and the ‘transfer admittance’. Strictly speaking
we should specify whether the output is open circuit or short circuit when
stating the input impedance, but with weak coupling these are effectively the
same; similarly for the output impedance. The transfer admittance is the cur-
rent produced at one end due to unit voltage at the other, and does not depend
on which end has the voltage applied to it. In the case of the delay lines the
input and output admittances will be effectively the capacities between the
crystal electrodes. We need only determine the transfer admittance.

We shall consider the following idealised case. Two crystals of thicknesses
d and d′ are immersed in a liquid, with their faces perpendicular to the
x-axis. The liquid extends to infinity in both the positive and the negative
x-directions, and both liquid and crystals extend to infinity in the y and z
directions (Fig. 40). The distance between the near side faces of the crystals is

3
Editor’s note. The typescript has ‘1/2′’.
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�. It is assumed that there is considerable attenuation of sound waves over a
distance of the order of � but hardly any over a distance of the order of d or d′.

These assumptions are introduced largely with a view to eliminating the
possibility of reflections. In practice the reflections would be eliminated by
other means. For instance, the infinite liquid on the extreme right and left
would be replaced by a short length of liquid in a stub of not very regular
shape, so that the reflected waves would not be parallel to the face of the
crystal. More likely still, of course, we should have some entirely different
medium there.

The physical quantities involved are:

(a) The density ρ. We write ρ for the density of the crystal and ρ1 for that of
the liquid. Likewise a suffix 1 will indicate liquid values throughout.

(b) The pressure p. In the case of the crystal this is understood to mean the
xx-component of stress.

(c) The displacement ξ in the x-direction.
(d) The velocity v in the x-direction.
(e) The radian frequency w.
(f ) The elasticity η. This is the rate of change of pressure per unit decrease

of logarithm of volume due to compression.
(g) The velocity of propagation c.
(h) The mechanical characteristic impedance ζ.
(i) The reciprocal radian wave length β.
(j) The piezo-electric constant ε. This gives the induced pressure due to an

electric field strength of unity. This field strength should normally be
thought of as in the x-direction, but we shall have to consider the case of
a field in the y or z direction briefly also.

These quantities are related by the equations

c = √
η/ρ, ζ = √

ηρ, β = w
c

, v = iwξ,

iwρv = −dp
dx

, p = −η
dζ

dx
+ Eε.

In what follows we assume that all quantities such as p, v, ξ depend on time
according to a factor eiwt, which we omit.

We now consider the ‘transmitting crystal’, which we suppose extends from
x = −a to x = a where d = 2a. The solution of the equations will be of form

p = Eε + B cos βx
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within the crystal, i.e. for |x| < a. Since the pressure is continuous we
shall have

p = (Eε + B cos βa)eiβ1(a−|x|) if |x| > a.

This gives for the velocity

v = 1

wρ
· −Bβ sin βx = −iBζ−1 sin βx if |x| < a

v = ζ−1
1 (Eε + B cos βa)eiβ1(a−|x|) sgn x if |x| > a.

Continuity of velocity now gives

B
(

cos βa + iζ1

ζ
sin βa

)
= −Eε

and therefore the velocity at a is

−iB sin βa
ζ

= iEε sin βa
ζ cos βa + iζ1 sin βa

i.e. the velocity at the inside edge of the crystal is

iEε

ζ
· 1

cot dw
2c + iu

where u = ζ1/ζ.
Assuming that the exciting voltage is longitudinal we may say that

Velocity
Exciting voltage

= iε
ζd

· 1

cot dw
2c + iu

.

The effect of the medium between the two crystals we will not consider just
yet. Let us simply assume that

Velocity at inside edge of receiving crystal
Velocity at inside edge of transmitting crystal

= ϑ.

We have now to consider the effect of the receiving crystal. Fortunately we
can deal with this by the principle of reciprocity. When applied to a mixed
electrical and mechanical system this states that the velocity produced at the
mechanical end by unit voltage at the electrical end is equal to the current
produced at the electrical end by unit force at the mechanical end. Hence

Current at receiving end
Force on receiving crystal

= iε
d′ζ

· 1

cot d′w
2c + iu

.
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To these equations we may add that the ratio of force to pressure is the
area A′ of the receiving crystal, and that the ratio of pressure to velocity is
the mechanical characteristic impedance ζ1. Combining we obtain

Y = Transfer admittance = ϑ
A′ε2ζ1

dd′ζ2

1(
cot dw

2c + iu
) (

cot d′w
2c + iu

) .

Let us now assume that the input to the valve from the receiving crystal
consists of a tuned circuit with a fairly low ‘Q’ as in Fig. 41. Then

Voltage attenuation and phase change factor = Grid voltage
Input voltage

= Y
1

Liw + Ciw + 1
R

= Y
Ciw0

ww0(
w + w0 + iw0

2Q

) (
w − w0 + iw0

2Q

)

where LCw0
2 l + 1

4Q2
= 1, C = Cs + Cx

Q = RCw0

= ϑ
Cx

Cx + Cs
· 2πε2

κη
· R(w)

where κ = Dielectric constant of crystal.

ϑ = Attenuation due to viscosity of medium and geometrical causes.

R(w)= u
dw0
2c

(
cot dw

2c + iu
)(

cot d′w
2c + iu

) · ww0(
w + w0 + iw0

2Q

)(
w − w0 − iw0

2Q

) .

The quantity 2πε2

κη
depends only on the crystal, i.e. on the material of

which it is made and its cut and form of excitation. Both ε2 and η are of
the dimensions of a pressure. 4πε is of the dimensions of an electric field,
and may be thought of as a constant electric field which has to be added to
the varying field in order that the combination should produce the correct
pressure variations, somewhat like the permanent magnet field in a telephone
receiver. A typical value for 2πε2

κη
is 0·004.

Let us now consider the frequency-dependent factor, R(w). The parameter
u entering here is the ratio of the characteristic impedances of the crystal and
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the liquid. It is equal to

Velocity of sound in liquid × density of liquid
Velocity of sound in crystal × density of crystal

.

The velocity of sound in the crystal (X-cut quartz) is 5·72 km/sec. and its
density is 2·7. The velocity in water is 1·44 km/sec., and the density 1, hence

u(water) = 0·1 abt.

The velocity in mercury is much the same but the density is 13.5. Hence

u(mercury) = 1·3 abt.

These figures suggest that we consider the two cases where u is small and
where u is 1. The latter case may be described by saying that the liquid
matches the crystal.

It may be assumed for the moment that our object is to make the minimum
value of |R(w)| in a certain given band of frequencies as large as possible.
If the width of the band is 2Ω and it is centred on w0 and if we ignore the
variations in ϑ we shall find that the optimum value of u is of the form N �

w0

where N is some numerical constant probably not too far from 1. The value of
Q should be as large as possible. With � = 1 Mc/s, w0 = 10 Mc/s this seems
to suggest that water (u = 0·1) is very suitable. In practice the differences due
to the value of ϑ are more serious than those due to u, and there is in any
case plenty of power. We would not in practice take Q as large as we could but
would rather try to arrange that |R(w)| was fairly constant throughout the
band concerned and arg R(w) fairly linear when plotted against w. If water
were used one would probably choose the thicknesses of the crystals and the
value of Q to give poles of |R(w)| somewhat as shown in Fig. [42]. With this
arrangement of the poles the gain corresponding to |R(w)| is 9 dB throughout
the range 8 Mc/s and the phase characteristic lies within 5◦ of the straight
line within this range.

With mercury where u is nearly 1 we should put

dw0

2c
= π

2
,

d′w0

2c
= π

2
,

and then

|R(w)| = 2

π

(
sin

π

2

w
w0

)2
∣∣∣∣∣∣

ww0(
w + w0 + iw0

2Q

) (
w − w0 + iw0

2Q

)
∣∣∣∣∣∣
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We should probably find it desirable to omit the tuned circuit, in which case
R(w) would represent a fairly constant loss of 4 dB. One could use a Q of 2 if
one wished, giving a gain of 2 dB instead.

We have assumed above that the crystal is longitudinally excited. If it
were transversely excited the figures would be much less satisfactory. At the
transmitting end a far larger voltage would have to be applied in order to
obtain the same field strength, and at the receiving end the stray capacities
will have a more serious effect with transverse electrodes, although if the
stray capacity were zero transverse electrodes at the receiving end would
actually be more efficient.

(iii) Geometrical attenuation. If a rectangular crystal is crookedly placed in
a plane parallel beam, the tilt being such that the one edge of the crystal is
advanced in phase by an angle ψ then the attenuation due to the tilt is

sin 1
2 ψ

1
2 ψ

.

With a square crystal whose side is 1 cm. and a frequency of 15 Mc/s this
would mean that we get the first zero in the response for a tilt of about 16′.
The setting is probably not really as critical as this owing to curvature of the
wave fronts. If the crystals are operating in a free medium without the tube
this effect is easily estimable and we find that, for crystals sufficiently far apart
the allowable angles of tilt are of the order of the angle subtended at one
crystal by the other. It has been found experimentally with tubes operating at
15 Mc/s that tilts of the order of half a degree are admissible.

Now let us consider the loss due to boundary effects. We assume a wave
inside the tank of form p = J0(β′r)e−iβz+iwt and assume a boundary condi-
tion of form 1

p
dp
dn = ζ where we do not know ζ nor even whether it is real

or complex. The radius of the tank is a, so that the boundary condition

becomes β′
aJ1(β

′
a)

J0(β′
a)

= ζa. Let the solution of uJ1(u)

J0(u)
= y be u(y). Then we have

β2 + (u(ζa)

a

)2 = w2

c2 and therefore RβJβ + 1

a2 RuJu = 0. But since u(ζa)

βa
is

small this means approximately Jβ = cRuJu
a2w , and the loss in a length � of

the tank is �c
a2w RuJu nepers. For a given value of ζ there are many solutions

of uJ1

J0
= ζa but there is a bounded region of the u plane in which there is

always a solution whatever value ζa may have. This means to say that for any
boundary condition there is always a mode in which the attenuation does not
exceed τ

c
a2w where τ is some numerical constant.

The value of τ is about 1·9. It is the largest value of xy such that
(x + iy)J1(x + iy)/J0(x + iy) is pure imaginary and y > 0, 0 < x < 2·4.

Taking �c/a2w0 = 0·31 (as p. [418]) the maximum loss in this mode is 6 dB.
We should however probably add a certain amount to allow for the fact that
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not all of the energy will be in this mode. A total loss of 10 dB would probably
not be too small.

(iv) Attenuation in the medium. The attenuation coefficient is given by 2w2ν

3c3

where υ is the dynamic coefficient of viscosity, i.e., the ratio of viscosity
to density. With water (υ = ·013 c = 1·44 Km/sec.) at a frequency of
10 megacycles and a delay of 1 ms we have a loss of 12 dB. With mercury
under the same circumstances the loss is only 1 dB.

These figures suggest that if water is used the frequency should not be
much above 10 Mc/s, but that we can go considerably higher with mercury.

(v) Noise. Before leaving the subject of attenuation we should verify how
much can be tolerated. The limiting factor is the noise, due to thermal agit-
ation and to shot effect in the first amplifying valve. The effect of these
is equivalent to an unwanted signal on the grid of the first valve, whose
component in a narrow band of width f cycles has an R. M. S. value of

VN = 4kTf(R + Re)

where T is the absolute temperature, k is Boltzmann’s constant and R is
the resistive component of the impedance of the circuit working into the
first valve, including the valve capacities. Re is a constant for the valve and
describes the shot effect for the valve. In the case that we use mercury and do
not tune the input the value of R will be quite negligible in comparison with
Re, which might typically be 1000 ohms. For a pulse frequency of 1 megacycle
we must take f = 106 (the theoretical figure is 1

2106 but this is only attainable
with rather peculiar circuits). At normal temperatures 4kT = 1·6 × 10−20

and therefore VN = 4 μV. In the case that we use water and tune the input,
we have R = Q

w(Cx+Cs)
at the worst frequency. Assuming w

2πQ = 2 Mc/s (see
Fig. 41) and Cx + Cs = 20 pf and ignoring the fact that the effect will not be
so bad at other frequencies, we have VN = 9 μV.

Now suppose that we wish to make sure that the probability of error is less
than p, and that the difference in signal voltage between a digit 0 and a digit 1

is V. Then we shall need

2

∫ ∞

V/2VN

e− 1
2 x2

dx < p.

(This follows from the fact that a random noise voltage is normally distributed
in all its coordinates.) If we put p = 10−32 we find V

VN
� 24, V � 0·1 mV.

416



Proposed electronic calculator (1945)

(vi) Summary of output power results. Summarising the voltage attenu-
ation and noise questions we have:

(a) There is an attenuation factor depending on the material of the crystal
and its cut and for quartz typically giving a loss of 48 dB.

(b) There is a factor R depending on the ratio of band width required to car-
rier frequency, and the matching factor u between crystal and liquid. In
practical cases this amounts to gains of 10 dB with water and 2 dB with
mercury.

(c) There is a loss factor Cx/Cx + Cs due to stray capacity Cs across the
receiving crystal. This might represent a loss of 6 dB.

(d) There is a loss due to the viscosity of the medium. For a water tank with
a delay of 1 ms. and a carrier of 10 Mc/s the loss may be 12 dB: with
mercury and a carrier of 20 Mc/s it may be 4 dB.

(e) Losses in the walls of the tank. Apparently this should not exceed 10 dB.
(f ) The noise voltage may be 4×10−6 volts RMS (mercury) or 9×10−6 volts

RMS (water).
(g) The signal voltage (peak to peak) should exceed the noise voltage (RMS)

by a factor of 24 for safety.

These figures require input voltages (peak to peak) of 0·2 volts or 4·5 volts
with mercury and water respectively. We could quite conveniently put
200 volts on, so that we have 60 dB (or 53 dB) to spare. There is no danger of
breaking the crystals when they are operated with so much damping.

(vii) Phase distortion due to reflections from the walls. We cannot easily
treat this problem quantitatively because of lack of information about the
boundary conditions and because the ratio of diameter of crystal to dia-
meter of tank is significant. Let us however try to estimate the order of
magnitude by assuming the pressure zero on the boundary and considering
the gravest mode. In this case the pressure is of form J0

( k1r
a

)
e−iβz+iwt where

2a is the diameter of the tank and k1 = 2·4 is the smallest zero of J0, and
β2 + k1

2

a2 = w2

c2 . In this case the change of phase down the length � of tank

is φ = �w2

c2 − k1
2

a2 . If we are using carrier working we are chiefly interested in
d2φ
dw2 which turns out to be − k1

2c�
w0

3a2 where w0 is the carrier frequency. If we
suppose that the band width involved is 2Ω, then the greatest phase error
which is introduced is k1

2�2c�
2w0

3a2 . Let us suppose that the greatest admissible
error is 0·2 radians, then we must have

�c
a2w0

� 0·4
k1

2

(w0

Ω

)2
.

417



Alan M. Turing

Taking w0 = 10 Mc/s
� = 1 Mc/s
c = 1·4 × 105 cm/sec.
� = 1·4 × 102 cm.
a = 1 cm.

Then c
w0

= 2·2 × 10−3 cm.

�c
a2w0

= 0·31

0·4
k1

2

(w0

Ω

)2 = 6·95

The situation is thus entirely satisfactory. The carrier frequency could even be
halved.

(viii) The choice of medium. In choosing the medium we have to take into
account

(a) That a medium with a small characteristic impedance such as water has
a slight advantage as regards the factor R(w).

(b) That water is more attenuative than mercury.
(c) That mercury gives wide band widths more easily than water because of

closer matching, but that adequate band widths are nevertheless possible
with water.

(d) That a water-alcohol mixture can be made to have a zero temperature
coefficient of velocity at ordinary temperatures.

On the whole the advantages seem to be slightly on the side of mercury.

(ix) Long lines. The idea of using delay lines with a long delay, e.g. of the order
of 0·1 second, is attractive because of the very large storage capacity that such
a line would have. Although the long delay would make these unsuitable
for general purposes they would be very suitable for cases where very large
amounts of information were to be stored: in the majority of such cases the
material is used in a fairly definite order and the long delay does not matter.

However such long lines do not really seem to be very hopeful. In order
to reduce the attenuation to reasonable proportions it would be necessary to
abandon carrier working, or else to use mercury. In either case we should
probably be obliged to make the tank in the form of a bath rather than a
tube; in the former case in order to avoid the phase distortion arising from
reflections from the walls, and in the latter to economise mercury, using a
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system of mirrors in the bath. In any case the technique would involve much
development work.

We propose therefore to use only tanks with a delay of 1 ms.

(x) Choice of parameters. Considerations affecting the carrier frequency are:

(a) The higher the carrier frequency the greater the possible band width.
(b) The difficulty of cutting thin crystals, somewhat modified by the absence

of necessity of frequency stability.
(c) The attenuation at high frequencies of the sound wave in the liquid.
(d) The difficulty of setting the crystals up sufficiently nearly parallel if the

wavelength is short.
(e) The difficulty of amplification at high frequencies.

Of these (a) and (c) are the most important. A reasonable arrangement
seems to be to choose a frequency at which the attenuation in the medium is
about 15 dB.

With the comparatively low frequencies and with wide tanks the setting up
difficulty will not be serious. With long lines we should probably not attempt
to do temperature correction, but would rephase the output.

Considerations affecting the pulse frequency are:

(a) The limitation of the pulse frequency to a comparatively small fraction
of the carrier frequency if water is the transmission medium, and the
limitation of this carrier frequency.

(b) The finite reaction times of the valves.
(c) The greater capacity of a line if the frequency is high.
(d) Greater speed of operation of the whole machine if the pulse frequency

is high.
(e) Cowardly and irrational doubts as to the feasibility of high frequency

working.

If we can ignore (e) the other considerations appear to point to a pulse
frequency of about 3 megacycles or even higher. We are however somewhat
alarmed by the prospect of even working at 1 megacycle since the difficulty (b)
might turn out to be more serious than anticipated.

Considerations affecting the diameter of the tank are:

(a) That the crystals are most conveniently adjusted to be parallel by bending
the tanks and that the diameter should therefore not be too large.
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(b) That the diameter should be at least large enough to accommodate the
crystal.

(c) That small diameters give phase distortion (p. [417]).
(d) That with mercury small diameters are economical. At a price of £1

sterling per 1 lb. avoirdupois of mercury a 1 ms. tank of diameter 1′′

would contain mercury to the value of about £2–2–6.

A diameter of 1′′ or rather less is usual in R. D. F. tanks and appears
reasonable in view of these conditions.

(xi) Temperature control system. The temperature coefficient of the velocity
of propagation in mercury is quite small at 15 Mc/s, being only 0·0003/degree
centigrade. This means that if the length of a 1 ms. line is to be correct to
within 0·2 ms. then the temperature must be correct to within two-thirds of
a degree centigrade.

15. The Design of Valve-elements.

(i) Outline of the problem. To design valve-elements with properties as
described in § 5 and to work at a frequency of say 30 or 100 kilocycles would
be very straightforward. When the pulse recurrence frequency is as high as a
megacycle we shall have to be more careful about the design, but we need not
fear any real difficulties of principle about working at these frequencies, and
with such band widths. The successful working of television equipment gives
us every encouragement in this respect. A word of warning might perhaps be
in order at this point. One is tempted to try and carry the argument further
and try to infer something from the success of R. D. F. at frequencies of several
thousands of megacycles. Such an analogy would however not be in order for
although these very high frequencies are used the bandwidth of intelligence
which can be transmitted is still comparatively small, and it is not easy to see
how the band width could be greatly increased.

In this chapter I shall discuss the limitations inherent in the problem,
and shall also show very tentative circuit diagrams by way of illustration.
These circuits have not yet been tried out, and I have too much experience
of electronic circuits to believe that they will work well just as they stand.
(This does not represent a superstitious belief in the cussedness of circuits
and the inapplicability of mathematics thereto. Rather it means that normally
the amount of mathematical argument required to get a reliable prophecy of
the behaviour of a circuit is out of proportion to the small trouble required
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to try it out, at any rate if one is in an electrical laboratory. In practice one
compromises with a rough mathematical argument and then follows up with
experiment. The apparent ‘cussedness’ of electronic circuits is due to the
fact that it is necessary to make rather a lot of simplifying assumptions in
these arguments, and that one is very liable to make the wrong ones, by
false analogy with other circuits one has dealt with on previous occasions.
The cussedness lies more in the minds dealing with the problem than in the
electronic circuits themselves.)

(ii) Sources of delay. There are two main reasons why vacuum tubes should
cause delays, viz. the input capacity and the transit time. Of these perhaps
the first is in practice the more serious, the second the more theoretically
unavoidable.

The delay due to the input capacity, when the valves are driven to saturation
or some other limiting arrangement is used, is of the order of C/gm, where C
is the input capacity and gm is the mutual conductance of the valve. We may,
for instance consider the idealised circuit Fig. 44. (Coupling with a battery is
of course not practical politics, but it produces essentially the same effects as
more practical circuits, and is more easily understood.) If I is the saturation
current then the grid swing required to produce it is I/gm and the charge
which must flow into the grid to produce this voltage is CI/gm. If the whole
saturation current is available the time required is C/gm. This argument is
only approximate, and omits some small purely numerical factors. However
it illustrates the more important points. In particular we can see that Miller
effect is not a very serious matter because of the limiting, which reduces the
effective amplification factor to 1. On the other hand, if one valve is used to
serve several inputs the delay will be correspondingly increased because the
capacity has become multiplied by the number of grids served.

This connecting of several grids to one anode, and a number of other
practical points will tend to make the actual delay due to input capacity
several times greater than C/gm, e.g. 10 C/gm.

The delay due to transit time may be calculated, in the case of a plane
structure, to be 3d(m/2eV)

1
2 where m, e are respectively the mass and

charge of the electron, V is the voltage of the grid referred to cut-off and
d is the grid-cathode spacing. In other words the transit time may be calcu-
lated on the assumption that the average velocity of the electrons between
cathode and grid is one-third of the velocity when passing the grid. This
time may be compared with C/gm which, if C is calculated statically, has
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the value 3
2 d(m/2eV)

1
2 , i.e. half of the transit time. That there should be

some such relation between C/gm and transit time can be seen by calculating
C/(g × Transit time), where C is the grid-cathode capacity and g is the actual
conductance, i.e., the ratio of current to V.

C
g × Transit time

= CV
I × Transit time

= Charge on grid
Charge in transit

.

Let us now calculate actual values. The voltage V by which the grid exceeds
cut-off might be 10 volts which corresponds to a velocity about 1/300 of
velocity of light (Note: annihilation energy of electron is half a million volts)
or one metre per microsecond. If d is 0·2 cm. the transit time is 0·006 μs.
A typical value for C/gm is 0·002 μs.

The relation between C/gm and transit time brings up an important point,
viz. that these two phenomena of time delay are really inseparable. The
input capacity of the tube when ‘hot’ really consists largely of a capacity to
the electrons. When the motion of the electrons is taken into account the
capacity is found to become largely resistive (Ferris effect).

Before proceeding further I should try to explain the way I am using the
word ‘delay’. When I say that there is a delay of so many microseconds in
a circuit I do not mean to say that the output differs from the input only in
appearing that much later. I wish I did. What I mean is something much
less definite, and also less agreeable. Strictly speaking I should specify very
much more than a single time. I should specify the waveform of the output for
every input waveform, and even this would be incomplete unless it referred
both to voltages and currents. We have not space to consider these questions,
nor is it really necessary. I should however give some idea of what kind of
distortion of output these ‘delays’ really involve. In the case of the input
capacity the distortion may be taken to be of the form that an ideal input
pulse of unit area is converted into a pulse of unit area with sharp leading
edge and exponentially decaying trailing edge, the time constant of the delay
being the ‘delay’, thus Fig. 44a. In the case of the transit time the curve is
probably more nearly of the ‘ideal’ form (Fig. 44b).

To give the word ‘delay’ a definite meaning, at any rate for networks, I shall
understand it to mean the delay for low frequency sine waves. This is equal to
the displacement in time of the centre of gravity in the case of pulses.
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In order to give an idea of the effect of these delays we have shown in
Fig. 45 a pulse of width 0·2 μs and the same pulse delayed, after the manner
of Fig. 44a, by 0·03 μs, this representing our calculated value of 0·003

multiplied by 10 to allow for numerous grids, etc. etc. It will be seen that
the effect is by no means to be ignored, but nevertheless of a controllable
magnitude.

(iii) Use of cathode followers. In order to try and separate stages from one
another as far as possible we shall make considerable use of cathode followers.
This is a form of circuit which gives no amplification, and indeed a small
attenuation (e.g. 0·5 dB); but has a very large input impedance and a very
low output impedance. This means chiefly that we can load a valve with
many connections into cathode followers without its output being seriously
affected.

Fig. 46 shows a design of cathode follower in which the input capacity
effect has been reduced by arranging that the anode is screened from the grid
and that the screen voltage as well as that of the cathode moves with the grid.
If one could ignore transit time effects this would have virtually zero input
capacity.

(iv) The ‘limiting amplifier’ circuit. When low frequencies are used the
limiter circuit can conveniently be nothing more nor less than an amplifier,
the limiting effect appearing at cut-off and when grid and cathode voltages
are equal. At high frequencies we cannot get a very effective limiting effect
at cathode voltage, owing to the fact that the grid must be supplied from a
comparatively low impedance source to avoid a large delay arising from input
capacity, but on the other hand, in order to get a limiting effect we need a
high impedance, high compared with the grid conduction impedance (about
2000 ohms probably).

At high frequencies it is probably better to use a ‘Kipp relay’ circuit. This is
nothing more than a multivibrator in which one leg has been made infinitely
long (and then some), i.e. one of the two semi-stable states has been made
really stable. An impulse will however make the system occupy the other
state for a time and then return, producing a pulse during the period in which
it occupies the less stable state. This pulse can be taken in either polarity.
It is fairly square in shape and its amplitude is sensibly independent of the
amplitude of the tripping pulse, although its time may depend on it slightly.
These are all definite advantages.
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A suggested circuit is shown in Fig. 47, and the waveforms associated with
it at various points in Fig. 48.

(v) Trigger circuit. The trigger circuit need only differ very little from the
limiter or Kipp relay. It needs to have two quite stable states, and we therefore
return both of the grids of the 6SN7 to −15 volts instead of returning one to
ground. Secondly the inhibitory connection is different. In the case of the
limiter it simply consists of an opposing or negative voltage on the cathode
follower; in the case of the trigger circuit it must trip the valve back, and
therefore we need a second cathode follower input connected to the other grid
of the 6SN7.

(vi) Unit delay. The essential part of the unit delay is a network, designed to
work out of a low impedance and into a high one. The response at the output
to a pulse at the input should preferably be of the form indicated in Fig. 50,
i.e. there should be a maximum response at time 1 μs after the initiating
pulse, and the response should be zero by a time 2 μs after it, and should
remain there. It is particularly important that the response should be near
to zero at the integral multiples of 1 μs after the initiating pulse (other than
1 μs after it).

A simple circuit to obtain this effect is shown in Fig. 51a. The response is
shown in Fig. [51b]. It differs from the ideal mainly in having its maximum
too early. It can be improved at the expense of a less good zero at 2 μs by using
less damping, i.e. reducing the 500 ohm resistor. It is also possible to obtain
altogether better curves with more elaborate circuits.

The 1000 ohm resistors at input and output may of course be partly
or wholly absorbed into the input and output circuits. Further the whole
impedance scale may be altered at will.

The fact that the pulse has become greatly widened in passing through the
delay network does not signify. It will only be used to gate a clock pulse or to
assist in tripping a Kipp relay, and therefore will give rise to a properly shaped
pulse again.

(vii) Trigger limiter. We can build up a trigger limiter out of the other
elements, although we cannot replace it by such a combination in the circuit
diagrams because we are not putting a legitimate form of input into all of
them. The circuit is (Fig. 52).
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The valve P is merely a frequency divider. It can be used to supply all the
trigger limiters. The trigger circuit Q should be tripped by the combination of
pulse from P and continuous input, and will itself trip R. The arrangement
of two trigger circuits prevents any danger of half-pulse outputs, which we
are most anxious to avoid. In order that there might be a half-pulse out-
put the trigger circuit Q would have to remain near its unstable state of
equilibrium for a period of time of 1 μs. In order that this may happen the
magnitude of the continuous input voltage has to be exceedingly finely adjus-
ted; the admissible range is of the form Ae−t gm/C where A might be say
100 volts (it doesn’t matter really) and t is the time between pulses, C and
gm the input capacity and mutual conductance of the valves used in the
trigger circuit; C/gm might be 0·002 μs (we do not need to allow for Miller
effect), so that the admissible voltage range is about 10−200 volts which is
adequately small.

16. Alternative Forms of Storage.

(i) Desiderate for storage systems. A storage system should have a high
monetory economy, i.e. we wish to be able to store a large number of digits
per pound sterling of outlay: it should also have a high spacial economy. For
the majority of purposes we like a form of storage to be erasible, although
there are a number of purposes, such as function tables and the greater part
of the instruction tables, for which this is not necessary. For the majority of
purposes we also like to have a short accessibility time, defining the accessib-
ility time to be the average time which one has to wait in order to find out the
value of a stored digit. Normally we shall be interested in the values of a group
of digits which are all stored close together, and very often it does not take
much longer to obtain the information about the whole group than about the
single digit. Let us say that the additional time necessary per digit required is
the digit time (reading). We may also define the accessibility and digit times
for recording in the obvious analogous way, though they are usually either
equal to the reading time or else exceedingly long.

(ii) Survey of available storage methods. The accompanying table [p. 428]
gives very rough figures for the various available types of storage and the
quantities defined above. This table must not be taken too seriously. Many of
the figures are based on definite numerical data, but most are guesses. In spite
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of the roughness of the figures the table brings out a number of points quite
clearly.

(1) All the well established forms of storage (excepting the cerebral cortex) are
either very expensive and bulky, or else have a very high accessibility time.

(2) The really economical systems consist of layers packed into the form of a
solid. They are read by exposing the layer wanted.

(3) The systems which are both economical and fairly fast have the inform-
ation arranged in two dimensions. This apparently applies even to the
cerebral cortex.

(4) Much the most hopeful scheme, for economy combined with speed, seems
to be the ‘storage tube’ or ‘iconoscope’ (in J. v. Neumann’s terminology).

(5) Some use could probably also be made of magnetic tape and of film for
cases where the accessibility time is not very critical.

(iii) Storage tubes. In an iconoscope as used in television a picture of a scene
is stored as a charge pattern on a mosaic, and is subsequently read by scan-
ning the pattern with an electron beam. The electron beam brings the charge
density back to a standard value and the charge lost by the mosaic registers
itself through its capacity to a ‘signal plate’ behind the mosaic. The informa-
tion stored in this way on an iconoscope, using a 500 line system, corresponds
to a quarter of a million digits.

One might possibly use an actual iconoscope as a method of storage, but
there are better arrangements. Instead of putting the charge pattern on to the
‘mosaic’ with light we can put it on with an electron beam. The density of the
charge pattern left by the beam can be varied by modulating either the voltage
of the signal plate or the current in the beam. The advantages of this are:

(a) The charge pattern can be set up more quickly with an electron beam
than with light.

(b) Less apparatus is required.
(c) The same beam can be used for reading and recording, so that distortion

of the pattern does not matter.

It seems probable that a suitable storage system can be developed without
involving any new types of tube, using in fact an ordinary cathode ray tube
with tin-foil over the screen to act as a signal plate. It will be necessary to
furbish up the charge pattern from time to time, as it will tend to become
dissipated. The pattern is said to last for days when there is no electron beam,
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but if we have a beam scanning one part of the target it will send out sec-
ondary electrons which will tend to destroy the remainder of the pattern. If
we were always scanning the pattern in a regular manner as in television
this would raise no serious problems. As it is we shall have to provide fairly
elaborate switching arrangements to be applied when we wish to take off
a particular piece of information. It will be necessary to stop the beam from
scanning in the refurbishing cycle, switch to the point from which the inform-
ation required is to be taken, do some scanning there, replace the information
removed by the scanning, and return to refurbishing from the point left off.
Arrangements must also be made to make sure that refurbishing does not get
neglected for too long because of more pressing duties. None of this involves
any fundamental difficulty, but no doubt it will take time to develop.
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Monetory Spacial Access. Digit Access. Digit Remarks
economy economy time time time time
(digits/£) (digits/litre) (reading) (reading) (recording) (recording)

Inerasible systems.

Punched Paper Tape 107 5·106 �1 min. ·03 sec. (= reading) ·03 sec.

Hollerith Cards 106 3·105 �1 min. 1 ms. (= reading) 1 ms. Permutable

Print on Paper 108 108 30 secs. 10 ms. Human use. Not very convenient for

mechanical or electrical reading.

Film (a) Displayed 104 104 5 μs 1 μs 1 μs

stationary

(b) Wound on reels 109 3·1010 �1 min. 1 μs 1 μs

Soldered Connections 1000 200 <1 μs <1 μs 15 mins. 1 min.

Erasible Systems.

Plugboards 50 50 <1 μs <1 μs 30 secs. 10 secs.

Wheels, etc. 20 2·103 30 ms. 30 ms. 30 ms. 30 ms. (Mechanically read.)

Relays 2 2 <1 μs <1 μs 10 ms. 10 ms.

Thyratrons 2 2 <1 μs <1 μs 10 μs 10 μs

Neons 20 50 <1 μs <1 μs 30 μs 30 μs

Trigger Circuits 3 3 <1 μs <1 μs 1 μs <1 μs

Cerebral Cortex 105 109 5 sec. 30 ms. 30 sec. 5 sec. Man at £300 p.a. capitalised.

Acoustic delay lines 200 50 1 ms. 1 μs 1 ms. 1 μs More optimistic estimate

than in § 10.

Electric delay lines 100 200 100 μs <1 μs 100 μs <1 μs Circular wave guide with

1 cm. waves. Numerous carriers.

Storage tubes 104 104 5 μs 1 μs 5 μs 1 μs Described as ‘Iconoscope’

by J. v. Neumann.

Magnetic tape 108 3·108 1 min. 10−4 sec. 1 min. 10−4 sec.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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Fig. 6

Fig. 7

Fig. 8
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Fig. 9

Fig. 10 Adder network.
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Fig. 11

Fig. 12

Fig. 13
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Fig. 14 A checking circuit.

Fig. 15 Slow counter SCA.
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Fig. 16 Staticisers for CI, CD.

Fig. 17 Illustrating a convention.

Fig. 18
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Fig. 19 Meanings of digits in minor cycles.
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Fig. 20 A tree.

Fig. 21

Fig. 22 Circuit for CD [part of LC].
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Fig. 22(a) Timing of LC.

Fig. 23
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Fig. 24

Fig. 25 Output circuit.
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Fig. 26 Input circuit.
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Fig. 27 Transport of information.
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Fig. 28 Minor cycle selection for CA.
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Fig. 29 Logical operations and TS 8.

Fig. 30 CATIM.

Fig. 31 Type T.
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Fig. 32 Truly arithmetic operations.
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Fig. 33 The rotater.

Fig. 34 Sign changer.
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Fig. 35 LC preliminaries to a multiplication.
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Fig. 36 A multiplication.
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Fig. 38 Instruction cards for INDEXIN (genuine input).
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Fig. 40 Ideal arrangement of crystals.4

Fig. 41 Receiving crystal circuit.

Fig. 42 Suggested arrangement of poles of R(w).

4 Editor’s note. Figures 39, 43 and 49 are absent and are not mentioned in the text.
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Fig. 44

Fig. 44a

Fig. 44b

450



Proposed electronic calculator (1945)

Fig. 45 Probable effect of input capacity on a square pulse such as the clock pulse.

Fig. 46
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Fig. 47 ‘Limiting amplifier’ circuit.
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Fig. 48

Fig. 50 Indicial response derivative for unit delay (preferable form).
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Fig. 51a

Fig. 51b A possible unit delay circuit and corresponding indicial response derivative.

Fig. 52
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21 Notes on memory (1945)
Alan M. Turing

The following fragments by Turing are from a draft of ‘Proposed Electronic

Calculator’.1 The fragments survive only because Turing used the typed

sheets as scrap paper, covering the reverse sides with rough notes

on circuit design.2 This material is of interest chiefly because of its

remarks concerning the universal machine of Turing’s 1936 paper ‘On

Computable Numbers’.3 Notoriously, the universal machine received no

explicit mention in the final version of ‘Proposed Electronic Calculator’,

which has encouraged a mistaken view among modern commentators

that there was no conceptual connection between the universal Turing

machine and the ACE. In fact Turing described electronic stored-program

digital computers as ‘practical versions of the universal machine’ (in 1947).

The present fragments place it beyond dispute that in designing the ACE,

Turing’s aim was in effect to replace the paper tape of the universal machine

with a practical form of memory for holding instructions and data and to

replace the abstract ‘scanner’ of the universal machine by a ‘central pool

of electronic equipment’.4

B. J. C.

1 Woodger in interview with Copeland ( June 1998); Woodger’s comments on item M15/76,

typescript, February 2000 in the Woodger papers. National Museum of Science and Industry,

Kesington, London. The title ‘Notes on Memory’ originates with this volume.
2 Woodger kept the notes, which are in the Woodger Papers (catalogue reference M15/76).
3 Turing, A. M. (1936) ‘On computable numbers, with an application to the Entscheidungs-

problem’, Proceedings of the London Mathematical Society, Series 2, 42 (1936–7), 230–65.
4 Turing, A. M. (1947) ‘Lecture on the Automatic Computing Engine’, in B. J. Copeland (ed.) The

Essential Turing, Oxford: Oxford University Press; the quotations are from p. 383.
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General considerations and limitations5

Logarithmic accessibility.6 In ‘Computable numbers’ it was assumed that all
the stored material was arranged linearly, so that in effect the accessibility
time was directly proportional to the amount of material stored, being essen-
tially the digit time multiplied by the number of digits stored. This was the
essential reason why the arrangement in ‘Computable numbers’ could not be
taken over as it stood to give a practical form of machine. Actually we can
make the digits much more accessible than this, but there are two limiting
considerations to the accessibility which is possible, of which we describe one
in this paragraph. If we have N digits stored then we shall need about log2N
digits to describe the place in which a particular digit is stored. This will mean
to say that the time required to put in a request for a particular digit will be
essentially log2N × digit time. This may be reduced by using several wires
for the transmission of a request, but this might perhaps be considered as
effectively decreasing the digit time.

Organisation of large storages. Unit storages.7 In any very large storage sys-
tem it is to be expected that the whole is divisible into a large number
of comparatively small unit storages. Each of these unit storages may be
responsible for the storage of a number of digits which is neither particu-
larly large nor particularly small; 10,000 might be considered a reasonable
number to store in a unit storage. Each unit storage is provided with a ‘muni-
cipal’ administration. The purpose of the municipal administration is to
accept orders coming along ‘telephone’ lines from the central administra-
tion (or central control CC8) requesting particular information, to set going
its municipal machinery to obtain this information, and to send it back over
the telephone lines. . . .

Purely electrical delay lines.9 Delay lines of this kind, other than wave
guides, would be useful for storing a single minor cycle. Two forms suggest

5
Editor’s note. This heading is labelled ‘C’ by Turing.

6
Editor’s note. This paragraph is numbered ‘(i)’ by Turing.

7
Editor’s note. Numbered ‘(iii)’.

8
The term ‘CC’ is from von Neumann’s ‘First Draft of a Report on the EDVAC’. By the time of the

final version of ‘Proposed Electronic Calculator’ Turing was using the term ‘LC’ (logical control).
9

Editor’s note. Numbered ‘(xix)’.
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themselves, those made with continuously distributed capacity and induct-
ance and those with lumped constants. In the latter case the number of
sections should be at least equal to the delay in radians for the highest
frequency passed, and should probably be several times this. The delay in
radians is of the order of hundreds, so that we may ignore this possibility.
The distributed type will probably consist of a closely wound coil, with a high
permeability core, and having capacity to a concentric sheath. . . .
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22 The Turing–Wilkinson
lecture series (1946–7)

Alan M. Turing and James H. Wilkinson

The Lectures1

The nine lectures published here were given by Turing and his assistant Jim
Wilkinson during the period December 1946 to February 1947.2 The lectures
add substantially to our knowledge of the evolution of the design of the ACE.
Turing and Wilkinson describe Versions V, VI, and VII of the design.

In 1980 Wilkinson wrote:

I joined NPL in May 1946 . . . When I arrived Turing was working on

what he called Version V . . . Documentation was not a strong point of

Turing’s work, and I never saw anything of Versions I to IV. . . . Later in

1946, M. Woodger joined the ACE section, and the three of us worked

together. Our main effort was devoted to modifying the logical design

of ACE in the light of experience gained in trying to program the basic

procedures of numerical analysis. Version V was quickly abandoned

and replaced by Versions VI and VII, which were essentially

1
This introduction by Jack Copeland.

2 The account of the lectures provided by Hodges in his biography of Turing is inaccurate

(Hodges, A. (1983) Alan Turing: The Enigma. London: Burnett). Hodges stated that the lectures

ended in January 1947 (p. 353) and that Turing gave ‘[o]nly the first two and part of the last’

(p. 559). In fact, the series ran until 13 February 1947 and Turing gave half the lectures.
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four-address code machines in which each instruction was of the form

A FUNCTION B → C, NEXT INSTRUCTION D.3

Version V was simpler than Versions VI and VII, each instruction essentially
having the form:

SOURCE, DESTINATION, POSITION OF NEXT INSTRUCTION.

Both Huskey’s Test Assembly (also known as Version H) and the Pilot Model
ACE were based on Version V.4 Little is known about Versions I to IV, said by
Woodger to post-date Turing’s ‘Proposed Electronic Calculator’.5

The lecture series was proposed in a memo dated 16 November 1946 from
Womersley, Superintendent of the Mathematics Division, to Darwin, Director
of the NPL:

ACE. Proposal for Lectures by Dr Turing

At an informal meeting yesterday with some Service representatives

and Dr Porter of the Military College of Science, a suggestion was

made that Dr Turing, rather than explaining his machine to a number

of isolated people on many different occasions, should conserve his

time by giving a course of lectures intended primarily for those who

will be concerned with the technical development of the machine

and possibly also with giving advice on matters connected with its

components. In view of the fact that the Post Office have a contract

for a computing machine for a specific Service application which it

is intended shall be constructed on ACE principles, though of course

on a very much smaller scale, the future users of the small machine

should also be invited. After some discussion the following list of

those who should be invited was drawn up.

Post Office 4 Military College of Science 2

The Gramophone Co. 1 A.5 2

British Thomson Houston Co. 1 T.R.E. 2

Standard Telephones 1 A.G.E. 1

Cinema Television Ltd 1 R.R.D.E. 1

A.S.E. 1

3 Wilkinson, J. H. (1980) ‘Turing’s work at the National Physical Laboratory and the construc-

tion of Pilot ACE, DEUCE, and ACE’, in N. Metropolis, J. Howlett, and G. C. Rota (eds) A History of

Computing in the Twentieth Century. New York: Academic Press; the quotation is from pp. 102–3.
4 See Wilkinson’s chapter ‘The Pilot ACE at the National Physical Laboratory’.
5 Letter from Woodger to Copeland, 25 February 2003.

460



Turing–Wilkinson lecture series (1946–7)

Additional invitations:

Prof. D. R. Hartree Dr M. V. Wilkes

Prof. H. S. W. Massey 3 members of the staff of the

Mathematics Div.

It will be noted that no-one is invited from Professor Newman’s

department in Manchester; this is because they have already had dis-

cussions with Dr Turing. The number from the Mathematics Division

is limited to 3 because Dr Turing has already given a series of lec-

tures to members of our staff. After some discussion it was agreed

that the Ministry of Supply should provide a suitable lecture room

in the Adelphi. This has already been arranged. . . . The reason for

holding these lectures at the Adelphi is that it will be possible in

the particular room chosen to provide desk space for each person

attending so that he can take copious notes. This will be necessary for

those who are to be engaged in the actual design and construction of

equipment.6

The lectures were held between 2 p.m. and 5 p.m. on successive Thursday
afternoons from 12 December 1946 to 13 February 1947 (Boxing Day
excepted), in a rather dingy underground room at the Headquarters of the
Ministry of Supply, then housed in the Adelphi Hotel, Baker Street, London.7

Advertised by Womersley as ‘lecture–discussions’, the lectures resembled
tutorials in style.8 (Womersley’s timetable set aside 50 minutes of each weekly
session for discussion and criticism by the audience.9) It was initially proposed

6 Memo from Womersley to the Director, 16 November 1946 (in the Woodger Papers (National

Museum of Science and Industry, Kensington, London; catalogue reference M15); a digital fac-

simile is in The Turing Archive for the History of Computing <www.AlanTuring.net/womersley_

darwin_16nov46>). Womersley’s handwritten notes and correspondence concerning the

arrangements for the lectures are also in the Woodger Papers (catalogue reference M15); digital

facsimiles are in The Turing Archive for the History of Computing <www.AlanTuring.net/

womersley_notes_22nov46>. In the end Kilburn attended from the Manchester group; see

Chapter 5.
7 Letter from Wilkes to Copeland, 11 April 1997; Womersley’s handwritten notes (see note 6).
8 Letter from Wilkes to Copeland (see note 7).
9 Hodges inferred from the fact that Womersley invited ‘[d]iscussion - in particular, criticism

of Dr Turing’s technical proposals’ (the quotation is from Womersley’s memo announcing the

lectures) that ‘[t]hey did not trust him to know what he was talking about’ (Hodges, Alan

Turing: The Enigma, p. 353). This seems far fetched. Critical discussion is, after all, a normal and

healthy feature of academic life.
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that Wilkes should take an official record of the lectures.10 Wilkes presumably
declined, and the task fell to T. A. H. (Tommy) Marshall, of the Mechanical and
Optical Instruments Branch of the Military College of Science, Shrivenham.
(Marshall’s specialism was servomechanisms.) It is Marshall’s notes of the
lectures that are published here.11 Two other sets of lecture notes are known
to survive: a complete set of handwritten notes taken by J. G. L. Michel,12 of
the NPL Mathematics Division, and handwritten notes concerning Lectures
6 and 7 taken by Hartree.13

Marshall had his notes typed, dividing them into numbered, headed
sections. The notes were distributed in booklet form under the title ‘The
Automatic Computing Engine’ (Military College of Science, Shrivenham,
February 1947). Comparison of the three sets of notes indicates that Marshall
did not supplement the lecture material and kept it in more or less its original
order. The few exceptions are as follows (section numbers refer to the table of
contents below).

1. Marshall placed material concerning delay lines that originally straddled
Lectures 1 and 2 into a single appendix, which he located following the
text of Lecture 9. This appendix now forms Section 3: ‘Supersonic Mercury
Delay Lines’.

2. The material in Section 10, ‘Sources and Destinations’, is drawn mostly
from the beginning of Wilkinson’s first lecture, but Marshall seems to have
prefaced the section with some material drawn from the previous lectures
by Turing.

10 ‘Notes of a meeting held in the Director’s room’, 22 November 1946 (in the Woodger

Papers (catalogue reference M15); a digital facsimile is in The Turing Archive for the History

of Computing <www.AlanTuring.net/womersley_notes_22nov46>).
11 Marshall’s notes are published by permission of the Principal of Cranfield University.

(The notes were first published in Copeland, B. J. (ed.) (1999) ‘The Turing–Wilkinson lecture

series on the Automatic Computing Engine’, in K. Furukawa, D. Michie, and S. Muggleton

(eds.), Machine Intelligence 15. Oxford: Oxford University Press.) A number of typographical

errors have been corrected and punctuation marks have been added and removed. The figures

have been renumbered. Handwritten corrections marked on Marshall’s typescript and initialled

‘JHW’ have been incorporated.
12 Michel’s notes are in the Woodger Papers (catalogue reference M15/79).
13 These are among Hartree’s papers in the Library of Christ’s College, Cambridge. A note by

Wilkes that is attached to them wrongly states that the series contained only seven lectures and

ran from December 1946 to January 1947. Wilkes himself attended only the first two lectures

of the series (letter from Wilkes to Copeland (see note 7)). Hartree attended most or all of the

lectures, but the remainder of his notes seem not to have been preserved.
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3. Section 14, ‘Source and Destination Trees’, appears to be part of Lecture 8,
and was originally flanked by the material in Sections 24 and 25.
Why Marshall moved this section to an earlier position in the exposi-
tion is not clear, especially since doing so destroys the otherwise smooth
progression in the lectures from Version V through Version VI to Version
VII. However, Marshall’s arrangement has not been disturbed.

4. Section 15, ‘Some Examples of Simple Instructions’, came earlier in the
exposition, originally lying between the material in Sections 11 and 12.

5. Hartree’s lecture notes show that Marshall reversed the order of
Sections 23 and 24. The original order has been restored.

6. Sections 27, 28, and 29 are the text of Turing’s final lecture (which is titled
‘Mechanical Details’ in Michel’s notes). Marshall relegated this lecture to
an appendix, which he called ‘Some Possible Circuits’.

Except in respects just noted, the correspondence between the table of con-
tents and the actual lectures is this. Lecture 1 (December 12): Sections 1–4;
Lecture 2 (December 19): Sections 5–9; Lectures 3–4 (January 2 and 9):
Sections 10, 11, 15, 12, 13 (it is not known where the break between these
lectures fell); Lecture 5 (January 16): Sections 16–18; Lecture 6 (January 23):
Sections 19–22; Lecture 7 (January 30): Sections 23, 24; Lecture 8

(February 6): Sections 14, 25, 26; Lecture 9 (February 13): Sections 27–29.
As the table of contents shows, 14 of the 30 sections were delivered in

whole or part by Wilkinson. Womersley’s original intention was that the lec-
tures be given by Turing alone. However, at Darwin’s request Turing attended
a symposium on digital calculating machinery held at Harvard from 7 to 10

January, and Wilkinson deputized for him during the period of his absence.14

Wilkinson had joined the NPL only seven months previously, with no prior
experience of either electronic engineering or computer design. His official
position was that of Turing’s half-time assistant.15 To what extent Wilkinson
made use of lecture material provided for him by Turing is a matter for con-
jecture. Marshall thanks only Turing for ‘permission to publish this account
in its present form’.

14 Minutes of the NPL Executive Committee, Paper E.910, 15 April 1947 (NPL library; a

digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/

npl_minutes_apr1947>).
15 Wilkinson, in interview with Christopher Evans in 1976 (The Pioneers of Computing: An Oral

History of Computing, London: Science Museum).
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1. Introduction.

Digital computing machines of various sorts have been built frequently
during the last 300 years with varying degrees of success and have resulted
in the various well-known commercial machines of the Brunsviga and
Comptometer types. Such machines are invaluable for carrying out simple
routine calculations. Their main defect however when used for more com-
plex operations is the amount of labour involved in setting numbers into
them and recording intermediate results for use in subsequent parts of the
calculations.

The Hollerith machines did much to overcome these difficulties by using
high speed electro-mechanical techniques with punched cards as a means of
input and output. Even so these machines lacked an effective ‘Memory’ which
is essential for the rapid solution of protracted calculations.

Much work was therefore devoted to the development of analogue
type machines, familiar in most Service computing instruments, and
the Differential Analyser became a very powerful and useful tool for the
mathematician.

The requirements of the ballisticians during the war years brought about
the rapid development of digital machines once again and in America the
Automatic Sequence Controlled Calculator (ASCC) and the Electronic Numer-
ical Integrator and Calculator (ENIAC) were built. The ENIAC was the most
ambitious machine to date and was capable of very high working speeds. Its
memory however was still inadequate for many problems.

The machine described here is the Automatic Computing Engine (ACE)
which is being designed by the Mathematics Division of the National Physical
Laboratory. It is to be a digital computer capable of performing algebraic
processes at very high speeds by arithmetical methods. It will be completely
flexible and able to cope with a variety of problems and will be fully automatic
in operation. Computation will be performed in the binary scale by electronic
means and the machine will incorporate a large ‘Memory’ for the storage
of both data and instructions. The normal operating speed of the machine
will be one million binary digits per second when all the required data is held
within the ‘Memory’. Input and output, which is by Hollerith machinery, is of
necessity somewhat slower; some 2500 digits per second.

The final version of the ACE will probably contain about 512 ‘Memory’ units
capable of storing some 500,000 binary digits and will utilise something like
8000 valves.
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2. Representation of Binary Numbers.

In the binary scale only the digits 0 and 1 exist, all numbers being composed
of a series of these two digits. Since timing is an essential feature in a machine
of this sort and since in graphical representation the time scale is normally
from left to right on the paper, and further since in arithmetic processes
it is necessary to commence operations with the least significant digit of
a number, binary numbers are normally written with the least significant
digit first, i.e. to the left. This is the reverse of normal decimal notation.
An example will make this clear.

Decimal notation Binary notation
0 000000. . . . . .

1 100000. . . . . .

2 010000. . . . . .

10 010100. . . . . .

47 111101. . . . . .

etc.

In the machine, the digit 1 is represented by a pulse of 1 μs duration; the
digit 0 by the absence of a pulse. There is no separation between pulses. Thus
a binary number might be represented by a voltage waveform as below:

Fig. 1

The above waveform is idealised and is hardly achieved in practice since it
would require an infinite bandwidth. In some portions of the machine the
pulses are simple voltage pulses and in others are pulses of 15 Mc/s carrier.

Similar pulses are used for timing and sequencing operations throughout
the machine.

The position of a pulse with respect to the time scale standard or
nominal time may vary in different sections due to a variety of [causes];
similarly due to distortion and attenuation the pulses may be shortened.
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Hence waveforms depart considerably from the ideal. Some typical shapes are
shown below [Fig. 2].

In addition to representing 1, a pulse indicates ‘Truth’ in logical operations,
and a 0 ‘Untruth’.

Since binary numbers composed of 32 digits are to be handled, it is conveni-
ent to consider 32 pulses (or ‘no-pulses’) as a group. Such a group is termed
a Word and the time period during which it occurs, namely 32 μs, is termed
a Minor Cycle. A group of 32 words occurs in 1024 μs and it is convenient to
refer to this time period as a Major Cycle.

Fig. 2

3. Supersonic Mercury Delay Lines.

The method adopted in the machine for producing a time delay in the trans-
mission of a pulse is an electro-mechanical one. The electrical pulse is
converted to a longitudinal pressure wave in a column of mercury, which
passes down the columns and is received at the far end after a finite time.

The mercury column is contained in a steel tube of diameter 1 inch. In order
to achieve a delay of 1024 μs the tube is approx. 5 feet long.

At either end of the tube is fitted a piezo-electric quartz crystal arranged as
shown diagrammatically below.
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Fig. 3

The mercury forms one electrode and the brass plate the other, there being
an air gap between the brass and the crystal to eliminate mechanical coupling.

The pulses are applied to the crystal as pulses of 15 Mc/s carrier of duration
1 μs. Carrier working is adopted for several reasons, chief amongst which is
that in non-carrier working the variation of delays of various frequencies is
excessive (as much as 4 μs in total non-carrier working for a band pass of
0 to 1

2 Mc/s). Mercury is chosen as the medium for the propagation of the
pressure wave since it has a reasonably constant attenuation of frequencies
around 15 Mc/s and the variation of velocity of propagation with temper-
ature at normal air temperatures is small. Further, the acoustic impedance
of mercury is more closely equal to that of quartz at normal temperatures
and therefore better acoustic matching is achieved than with other possible
materials.

A comparison table of the pertinent constants of mercury, water and quartz
are given for illustration.

Mercury Water Quartz
Density 13.5 gms/ml 1.00 2.65

Velocity of propagation 1.5 Km/s 1.44 5.71

Temp. coeff. of velocity at 10◦C 0.00030 per ◦C 0.001 —
Acoustic impedance 2.025 × 106 1.44 × 105 1.52 × 106

The conversion efficiency of a quartz-mercury combination is such as to
produce a loss of 48 dB.

In order to keep the delay of a mercury line constant to within ±0.5 μs at
10◦C (the maximum permissible tolerance) the temperature of the line must
be kept within ±1.63◦C. This is easily achievable in practice.

Trouble from multiple reflections and standing waves is not present in the
long lines since the attenuation is sufficiently great to render the standing
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wave ratio very small. In the short lines, however, it is necessary to introduce
an acoustic diffraction grating to produce artificial attenuation.

The use of lines for storage of pulses.

In order to store pulses in a line it is necessary to receive them as they arrive at
the end and feed them back to the beginning. During the feed back the pulses
must be amplified and reshaped. Facilities must also be provided to enable
pulses to be put into and removed from the line.

The block arrangement is as below.

Fig. 4

The precise circuitry is by no means fixed at present, but it is probable that
a super-regenerative amplifier will be used which in itself will provide the
necessary gating.

4. Symbols Used in Diagrams.

A direct connection. This assumes the instantaneous
transmission of pulses between points thus connected.
The arrow indicates the direction of flow of signals.

A delay of 1 μs (‘unit delay’). The triangle is directional.

A short delay line of ‘length’ 32 μs. It is thus capable
of storing a word of 32 binary digits.

A long delay line of ‘length’ 1024 μs. (Other ‘lengths’
may be indicated by the insertion of suitable figures.)

An element which emits a single pulse when it receives
on any of its r input lines n or more simultaneous
pulses. No pulse is emitted if less than n pulses are
simultaneously received. The number n is called the
Threshold of the element and elements are referred to
by their threshold numbers e.g. a ‘Three element’. In the
symbol for ‘One element’ the figure 1 is usually omitted.
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This indicates an inhibitory
connection to an element. No
pulse is emitted by such an ele-
ment in the microsecond during
which it receives a pulse via an
inhibitory connection, irrespect-
ive of all other inputs.

A Trigger Circuit. Such a circuit
of threshold n emits a continuous
stream of pulses when it receives
n or more simultaneous input
pulses. It continues to emit pulses
until such time as it receives a
pulse on its inhibitory connec-
tion, when it stops.

A trigger circuit may be pro-
duced from a simple element by
the insertion of a unit delay in
an output lead and feeding back
into the element on n input leads.
For example, a trigger circuit
of threshold 3 may be produced
from a 3-element as shown.

This indicates a connection to a
trigger circuit such that when a
pulse is received the state of the
circuit is changed; i.e., if it was
emitting pulses it stops, and vice
versa. This connection is equival-
ent to the additional circuitry on
a trigger circuit as shown.
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An End element. This gives a pulse out during
the microsec after the termination of a series of
input pulses.
e.g.

Input 001110001100

Output 000001000010

It is made up of two one-elements interconnec-
ted as shown.

A Beginning element. This gives a pulse out
during the first microsec of a series of input
pulses.
e.g.

Input 001110001100

Output 001000001000

It is made up of two one-elements interconnec-
ted as shown.

A polarity changer. Pulses are changed to
no-pulses and vice versa.
e.g.

Input 001110001100

Output 110001110011

This may be made up as shown.

The above notation covers all the simple units from which the computing
and control circuits are constructed. Details of the circuitry of each unit is
given in [Sections 27–29].

5. Logical Operations.

It is desirable to have circuits which perform the equivalent of the terms ‘and’
‘or’ and ‘not’.

These may be very simply developed from the elements already described
as indicated below. In these logical operations a pulse indicates True and no
pulse indicates False.
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A ‘and’ B. (A & B)

Suppose it is required to ascertain if two pulses coexist in two channels
simultaneously, i.e. A & B.

Fig. 5

If each channel is fed to a 2-element, then the element will emit a pulse only
when pulses occur on A and B simultaneously, i.e. a pulse on the output
indicates ‘A & B’.

A ‘or’ B. (or both) (A ∨ B)

In this case each channel is fed to a 1-element.

Fig. 6

The element emits a pulse when there occurs a pulse on A or B or both.

A ‘and not’ B. (A & ∼B)

Fig. 7

In this case a pulse is emitted only when a pulse exists on A and no pulse on B.

Fig. 8

6. Adding Circuit.

The process of addition is obviously of fundamental importance in a comput-
ing machine. It should be borne in mind that the addition of two numbers in
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reality involves the addition at each stage of three digits, since in general a
carry digit has to be added as well as the two addends.

Further, since binary numbers are written with the least significant figure
to the left, addition commences at the left and proceeds to the right. An
example is given below.

Carry digit 01111100110

A 010111001100

B 111001011001

Sum 100001110011

An adding circuit, operating digit by digit, must therefore be able to
distinguish the following combinations of input signals and react in the
corresponding manner.

Input Output
A B Carry Sum Carry
0 0 0 0 0

1 0 0 (or permutation) 1 0

1 1 0 0 1

1 1 1 1 1

Since there are three possible input and output signals, ignoring the
‘0 & carry 0’ answer which is implicit, three elements will be required to
construct the circuit. It is shown below [Fig. 9].

A single pulse on any one of the A, B, or Carry channels will cause the
1-element to emit a pulse. The output of the 1-element therefore goes straight
to the adder output.

Two simultaneous input pulses should, however, produce a 0 in the sum
and a carry 1. The 2-element output is therefore used to inhibit the 1-element
(which therefore gives 0) and also, when delayed by 1 μs, the next carry digit.

Three simultaneous input pulses produce a carry 1 in the same way and the
1-element is inhibited. The 1 in the sum is produced by the 3-element which
is now stimulated.

The adding circuit is usually drawn as below [Fig. 10].
It should be noted that the outputs of the 3-element and the 1-element can

be connected together directly, since if the 3-element is emitting the 1-element
is always inhibited and vice-versa.

Such a circuit as described will add continuous streams of pulses, digit by
digit. However, in the machine it is usually desired to add together words of
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32 digits. Since there is no spacing between successive words, a carry digit
formed by the addition of the last two digits in the words would be added in
to the first pair of the next words. To prevent this, i.e. to break the trains of
pulses up into their correct words, the carry digit is suppressed during the
first microsec of each word.

End of Word Beginning of Word
Carry . . . . .01001 [1]0001. . . . . ([1] suppressed by carry
A . . . . .10111 1011. . . . . suppression)
B . . . . .10011 0101. . . . .

A + B . . . . .01101 1110. . . . .

This is achieved by the modification to the circuit as below [Fig. 11].

Fig. 9

Fig. 10
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Fig. 11

7. Ring Counter.

It was seen that in the adding circuit it was necessary to suppress the carry
digit every 32 μs in order to divide a continuous train of pulses up into words.
This calls for some device to count up to 32 μs and then emit a pulse. This
may be done by a ring-counter.

Fig. 12

This is a ring of 32 1-elements connected together through unit delays.
When once stimulated, a pulse continues to go round the ring, making the
complete circuit in 32 μs.
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Timing pulses may be taken from any of the 1-elements and these are
termed P1, P2 etc., to P32. P1 corresponds to the first microsec of a word and
P32 to the last.

Hence in the adder circuit the carry suppression pulse would be P1.
These timing pulses are used throughout the machine for gating

operations.

8. Staticiser.

This is a means of converting a word which is available in a minor cycle onto
a set of 32 trigger circuits.

Fig. 13

The 32 trigger circuits each of threshold 2 are connected as shown. When
it is required to set up a word on them, the gate (the 2-element) is opened by
the control signal and the pulses are applied to all the trigger circuits. To each
of the triggers, however, is fed P1 to P32 respectively and therefore only those
circuits which received a digit pulse together with a P pulse are turned on, the
rest remaining off.

The triggers may be cleared by a pulse on the inhibitor connection which
turns all of them off ready for the next word to be staticised.

9. Dynamiciser.

This is a circuit which performs the reverse process to the staticiser in that it
converts a set of voltages available on 32 trigger circuits, or from some other
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source, into a 32 digit word occupying a minor cycle.

Fig. 14

10. Sources and Destinations.

The ‘Memory’ of the ACE is composed of a large number of supersonic mer-
cury delay lines. In general, these are either of ‘length’ 32 μs or 1024 μs,
i.e. they delay a pulse by a time corresponding to their length.

If now the output of a line is fed back, after amplification, to the input,
a pulse may be caused to travel repeatedly down a line and back through the
amplifier for as long as required. Since the lines are either of 32 μs or 1024 μs
length they can, with the feedback circuit, be used to store 32 or 1024 pulses
each respectively.

Notation.

A short line is designated by a reference number.
A pulse is designated by a subscript at the corresponding position from the

output end at the beginning of a minor cycle.
Throughout the machine, pulses are fed from one part to another via the

HIGHWAY.
Transfer of numbers is achieved by indicating a SOURCE and a

DESTINATION by the control system. Operations are performed on the
numbers by coded instructions also from the control system.

Fig. 15

All D and S pulses have a duration of 1 minor cycle (32 μs). Thus a word
on the HW may be put into Temporary Storage Line 5 (TS 5) by a pulse D 5.
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This opens the 2-element and admits the word to the line, at the same time
inhibiting the feedback loop and therefore clearing any pulses that might have
previously been in the line.

D 5 ceases at the end of the minor cycle and the word therefore continues
to circulate indefinitely in the line circuit.

To obtain the word from the line a pulse S 5 of duration one minor cycle
opens the 2-element and the word passes out to the HW.

This system is adopted throughout the machine.
Certain lines are used exclusively for certain purposes, in Version V.
For example, lines 2 and 3 are always used for addition.

Fig. 16

The arrangement is as above. D 2 admits a word to TS 2 and D 3 to TS 3.
The lines feed to an adder and the sum of the words in TS 2 and TS 3 may be
passed to HW by a pulse S 145.

The contents of TS 2 and TS 3 may be obtained separately by pulses S 2 and
S 3 respectively.
Note. S 145 always gives the sum of whatever is in TS 2 and TS 3 and all
addition is carried out here in Version V.

Similarly TS 8 and TS 9 are always used for logical operations, in Version V
[Fig. 17].

S 131 gives TS 8 & TS 9

S 132 gives TS 8 ∨ TS 9

S 133 gives TS 8 �≡ TS 9

S 134 gives ∼TS 8

Another special facility is for the multiplication of small numbers by 2n

(where n = 1, 2, 3, 4 or 5) in TS 5 [Fig. 18].
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The doubling, quadrupling etc., is performed by delaying words 1, 2 μs
etc. E.g.

Decimal Binary
13 1011000. . . . .
26 0101100. . . . .
52 0010110. . . . .

etc.

Fig. 17

11. Table of Standard Sources.

This table gives the more commonly used Sources and Destinations.
Note. TS refers to short line (32 μs)

DL refers to long line (1024 μs)

0
1

}
TS for instructions.

2
3

}
TS for addition.

479



Alan M. Turing and James H. Wilkinson

4

5

6
7

⎫⎪⎪⎬
⎪⎪⎭

TS for general work.

8

9

}
TS for logical operations.

16

to
31

⎫⎪⎬
⎪⎭ Ring of 16 TS’s.

64

65

}
Lines of length 64 μs.

66 64 + 65

67 −64 (i.e. 232 − TS 67).

84 64 � 1 μs (64 delayed 1 μs), i.e. multiplied by 2.
85 64 � 2 μs
to

89 64 � 32 μs

96 TC 96 special discriminating trigger circuit.
97 Inhibit TC 96.

98

99

}
Trigger circuits.

131 TS 8 & TS 9

132 TS 8 ∨ TS 9

133 TS 8 �≡ TS 9

134 ∼ TS 8 (i.e. 232 − 1 − TS 8).
135 0 a stream of 0’s.
136 232 − 1 a stream of 1’s.
137 ∼ (8 & 9)
145 2 + 3

146 −3 (i.e. 232 − TS 3).
148 Multiplier
149 −2 (i.e. 232 − TS 2).
150

151
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152 5 � 1 μs
to

156 5 � 16 μs

158 260 � 32 μs

160 P32

161 P1 Ring counter
to

191 P31

Fig. 18

Fig. 19
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This [Fig. 19] is a special trigger circuit which is ON if stimulated by D 96

and is put OFF by D 97.

12. Programming (Version V).

An instruction must order the transfers of words to take place and order the
operations to be performed on them in correct sequence.

For example, a series of instructions might be ‘Take the fourth word in DL
270 and the sixth word in DL 280, add them and put the sum in DL 10’.

This would be ordered as:

1) DL 270.4 routed to TS 2

2) DL 280.6 routed to TS 3 (since TS 2 & TS 3 have adding facilities)
3) S 145 (output of adder) routed to DL 10.

More complicated instructions are built up in this manner and must be
followed by the machine in the correct sequence. Since transfer of words
and operations take definite time periods to be achieved, the instructions
must include information to show the machine how long to allow for each
successive stage of the whole series of instructions.

Only one instruction can be obeyed at any one time, in general.

Form of instruction.

Each instruction is in the form of one word of 32 binary digits. The digits form
groups as follows.

Digits 1–2 3–12 13–22 23–26 27–32

Spare Source Destination Characteristic Timing
(not used) Numbers Numbers Number

(0–1023) (0–1023) (0–63)

Source number. This indicates from where a word is to be taken, e.g. TS 10.

Destination number. This indicates to where a word is to be routed, e.g. TS 11.

Characteristics.
(1) Digit 23. 0 indicates external operation.

1 indicates internal operation.
(This use is obsolete. All operations are internal and 23 is therefore
always 1.)

(2) Digit 24. This affects the timing number (q.v.).
(3) Digits 25 & 26. These two digits indicate the origin of the next instruction.
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All instructions come from one of four sources. The four possible
combinations of 0 and 1 for digits 25 and 26 indicate from which source
the next instruction is to be drawn as follows.

Digits Source
00 TS 0 (Length 32)
10 TS 1 (Length 32)
01 DL 256 (Length 1024) (Usually used)
11 DL 128 (Length 512)

Timing Number.
This may have any value t from 0 to 63 minor cycles and is obeyed in

conjunction with digit 24 in the characteristic.
If digit 24 is a 1 the instruction is said to be ‘immediate’ and carries on for

t minor cycles after instruction has been set up.
If digit 24 is a 0 the instruction is said to be ‘deferred’ and is not obeyed

until t minor cycles have elapsed. It is then obeyed in one minor cycle.

13. Control Circuit (Version V).

[Figure 20] shows the control circuit. Its function is to receive an instruction,
set it up in a form in which it can be obeyed and time the operation correctly.
The main portions are a staticiser in which the instruction is set up, a slow
counter for timing and two trigger circuits for bringing about the transfers.

Its action will be considered in parts. An instruction of 32 digits comes in
from the 32 μs delay line INST.

TRANSTIM & TIMCI.

These are the names given to two special trigger circuits which initiate the
obedience to an instruction [Fig. 21].

Suppose TRANSTIM is initially off. A pulse gated by P1, i.e. at the com-
mencement of a minor cycle, applied to the ‘change state’ connection will put
TRANSTIM on and it will remain on until put off by a second pulse on the
same connection. It can therefore only be put on or off at the commencement
of a minor cycle.

When TRANSTIM goes off the E-element will send a pulse to TIMCI which
will be put on. This is the only way in which TIMCI can be put on. TIMCI will
put itself off at the start of the next minor cycle by the 32nd pulse of the pre-
vious minor cycle, delayed by 1 μs and gated by P1. TIMCI runs for one minor
cycle only, during which time a complete instruction runs into the staticiser.
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Note. A transfer in the machine can only take place when TRANSTIM is on.
(See [Section 14].)

Fig. 20

Slow counter.

This is essentially an adder without the 3-element [Figs 22 and 23].
The slow counter is required to count up to a maximum of 64 minor cycles.

Suppose the circuit is as above and initially is clear of all pulses. In each minor
cycle a digit is added in the 27th place and the total accumulated. When 64

minor cycles have elapsed there will be a carry digit in the 1st place of the
next minor cycle and this passes to TRANSTIM and changes its state. This
carry digit is also inhibited from performing a further cycle and so the circuit
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Fig. 2116

Fig. 22

Fig. 23

16 Editor’s note. It has perhaps not been made sufficiently clear that there are two ways in which

TRANSTIM may be put on. (1) by a pulse from A at time P1. (2) By a pulse from B at time P1

when CI 24 = 1. It can be put off in two ways. (1) By a pulse from A at time P1. (2) By a pulse

from C at time P1 when CI 24 = 0.
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reverts to its state in the first cycle. This is illustrated below.

Position 27 28 29 30 31 32 1 2

Minor Cycle 1, 0 0 0 0 0 0 0 0

" " 2, 1 0 0 0 0 0 0 0 (i.e., after 1 mc)
" " 3, 0 1 0 0 0 0 0 0

" " 4, 1 1 0 0 0 0 0 0

" " 5, 0 0 1 0 0 0 0 0

" " 64, 1 1 1 1 1 1 0 0

" " 65, 0 0 0 0 0 0 1∗ 0

* This is used to change over TRANSTIM and is inhibited from passing again
into the adder. Hence state at 65 is identical with that at 1 i.e. TRANSTIM will
be changed over at intervals of 64 minor cycles.

Now consider the circuit arrangements below.

Fig. 24

Suppose that for the first minor cycle TIMCI is delivering a continuous series
of pulses and then shuts down. This inhibits the total already in the adder
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delay line and a complete instruction of 32 digits passing to the inhibitor
connection of the lower 1-element goes out of this element as ∼INSTR and
up to the adder. Here a digit is added in the 27th place and the total traverses
the delay line and back to the adder where the process is repeated.

Since a digit is added in the 27th place, only places 27–32 need be con-
sidered and these places, it will be remembered, in the instruction are for the
timing number. If this timing number is t, the number passed to the adder
will be ∼t, i.e. 26 − 1 − t = 63 − t. The slow counter runs until a total 64

is accumulated as has already been shown, i.e. it runs for t + 1 minor cycles
before a carry digit in the first place operates TRANSTIM.

This is illustrated below. Suppose t is 7.

Timing Number = 7

Position 27 28 29 30 31 32 1 2 etc.
Instruction 1 1 1 0 0 0 0 0 . . .

Passed to adder 1, 0 0 0 1 1 1

Total at 2, 1 0 0 1 1 1

3, 0 1 0 1 1 1

8, 1 1 1 1 1 1

9, 0 0 0 0 0 0 1

Thus a pulse goes to TRANSTIM after 8 minor cycles.
Immediate instructions.

Now consider the complete control circuit. Suppose the instruction in the
INSTR delay line is an immediate one ordering the transfer of a number from
A to B (32 digits).

The timing number will be 1 and instruction will be:

A–B, 11, 1

i.e. Digits: 1, 2 3–12 13–22 23 24 25 26 27 28 29 30 31 32

Spare A B 1 1 0 1 1 0 0 0 0 0

Digit 24 is a 1 since instruction is immediate.
Suppose TIMCI is ON.
The instruction runs out of INSTR and is set up on the staticiser during the

first minor cycle.
∼INSTR is simultaneously sent up into the slow counter, anything already

in the counter delay line being inhibited by TIMCI.
After the first minor cycle TIMCI puts itself off, and since digit 24 was a 1,

CI 24 is on, and therefore TRANSTIM is simultaneously started.
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During the second minor cycle, the instruction in the staticiser is being
obeyed, after which time the slow counter has produced a carry digit in
position (1) which puts TRANSTIM off.

TIMCI is started therefore and the staticiser cleared, ready for the next
instruction.

Thus it will be seen that in general, with an immediate instruction of timing
number t, the instruction will be set up in the staticiser in the first minor cycle
and held there while being obeyed for t minor [cycles], i.e. until the end of the
(t + 1)th minor cycle.

The action is illustrated by the following table for a timing number t.

Minor cycle
11 TRANSTIM off, TIMCI on. Instruction starts to run in.
21 TIMCI off, TRANSTIM on. Instruction set up and starts being

obeyed.
(2 + t)1 TRANSTIM off, TIMCI on, Staticiser cleared.

Total time for whole operation (t+1) minor cycles.

Deferred instruction.

In this case digit 24 is a 0. As before, the instruction runs into the staticiser
during the first minor cycle while TIMCI is ON.

This time, however, TRANSTIM will not come on and allow the transfer to
take place until the slow counter stimlates it. TRANSTIM therefore comes on
at (t + 1)1 and stays on for 1 minor cycle only before putting itself off.

Minor cycle
11 TRANSTIM off, TIMCI on. Instruction starts to run in.
21 TRANSTIM off, TIMCI off.
(2 + t)1 TRANSTIM on. Instruction starts being obeyed.
(3 + t)1 TRANSTIM off, TIMCI on. Staticiser cleared.

Total time for whole operation (t + 2) minor cycles.

Discrimination (use of TC 96).

The inhibitor connection fed with P27 and TC 96 provides the facility for the
machine to adopt one of two courses of action according to whether TC 96

is on or off. A deferred instruction, say number n, with timing number 0 is
given.

If TC 96 is off, the next instruction to be obeyed will be (n + 2), but if
TC 96 is on, a timing number of 1 will be supplied by (TC 96 & P27) and the
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next instruction will be (n + 3). The examples given later will illustrate this
function.

14. Source and Destination Trees.

In order that a combination of 10 signals from a group of CI triggers may be
used to tap any source or open any destination a system of inter-connection
is arranged, which is known as a TREE.

This may be illustrated by a case of 2 trigger circuits used to select one of
22 = 4 sources say [Fig. 25]. Hence, for example, if CI x is on and CI y is off, a
signal will flow to C.

In Versions V and VI the Source and Destination trees control 1024 Sources
and Destinations. In Version VII this number is reduced to 512.

Fig. 25

Fig. 26

Note. The inhibition from TRANSTIM controls when transfer takes place,
i.e. TRANSTIM must be on for transfer.
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In Version VII there are only 512 Sources and Destinations, each con-
trolled by 9 trigger circuits. In this case the Destination tree is built up as
described above with modifications introduced for reasons of available power
from trigger circuits.

The 9 triggers are formed into two groups of 4 and 5 each. The 4 group
controls 16 4-elements and the 5 group controls 32 5-elements.

The outputs of the 4- and 5-elements are then combined in pairs to select
any one of the 512 destinations [Fig. 27].

The Source trees in Version VII are combined with the actual Highways
by elements arranged in the manner below [Fig. 28], which illustrates the
use of two triggers to control four Sources. In practice, 9 triggers control 512

Sources in this way.
In Versions V and VI there are four lines which can store instructions and

feed them as required to INSTR [Fig. 29]. The appropriate one is selected by
the four possible combinations of signals from CI 25 and CI 26 as shown.

Fig. 27

Fig. 28

490



Turing–Wilkinson lecture series (1946–7)

Fig. 29

15. Some Examples of Simple Instructions.

Example 1.

Numbers A and B are in TS 10 and TS 11 respectively. Form A + B and put
result in TS 12.

Instruction

(1) 10–2, 11, 1 Immediate instruction, A sent to TS 2.
(3) 11–3, 11, 1 B sent to TS 3.
(5) 145–12, 11, 1 S 145 is TS 2 + TS 3. This is sent to TS 12.

Example 2.

Numbers A and B are in TS 10 and TS 11 respectively. If A = B put A in TS 12.
If A �= B put (A + B) in TS 12.
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Instruction

(1) 10–8, 11, 1 Puts A into TS 8.
(3) 11–9, 11, 1 Puts B in TS 9. (8 & 9 have facilities

for logical operations.)
(5) 133–96, 11, 1 S 133 gives a pulse if A �= B and this

will put TC 96 on. If A = B TC 96

will not be put on.
(7) 136–97, 9, 0 This is to put TC 96 off if it is on. It is

ordered as a delayed instruction
with zero timing number. There is
however an inhibitor connection
in the slow counter feed which is
operated by (TC 96 & P27). Hence
if TC 96 is not on, next instruction
will be (9), but if TC 96 is on,
a timing number of 1 will be
supplied and next instruction will
therefore be (10).

If A = B (9) 10–12, 11, 1 A put into TS 12. Result.
If A �= B (10) 10–2, 11, 1 A put into TS 2.

(12) 11–3, 11, 1 B put into TS 3.
(14) 145–12, 11, 1 S 145 is (TS 2 + TS 3) and therefore

A + B is sent to TS 12. This is the
other result.

In this case the next instruction will be (16). If, however, A = B, the last
instruction of the table will have been (9), and it is desirable to make the next
instruction (16) in this case also. A dummy ‘time wasting’ instruction is given
as (11) with a timing number of 4.

(11) 1023–1023, 11, 4.

The next instruction will now be (16) whichever the result.
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16. Multiplier.

Fig. 30

Multiplication in the binary scale is very simple since it is by a 0 or a 1 only.
Consider two numbers A and B each of 32 digits. The product AB may be
written:

A(B1 + 2B2 + 22B3 + · · · + 231B32)

where B1 to B32 are successive digits in the number B.
The multiplier is illustrated above. It consists of two special lines of 65 μs

delay each and an adder. The operation is as follows. The number A is first
put into TS 2. Number B is then put into the upper delay line. After one minor
cycles B occupies the last 32 positions in the line. At the end of the three
minor cycles B32 is in position one in the line. If B32 is a 1 the trigger circuit
feeding the adder is stimulated by B32 & P1. This opens the 2-element and A
runs into the adder. If B32 is a 0, the 2-element is not opened and a stream of
0’s runs into the adder.

The output of the adder runs into the lower 65 μs delay line. After a further
two minor cycles B31 is picked out of the upper line, multiplied by A and fed
to the adder, where it is added to the total already in the lower line displaced
1 μs. The process is repeated for all the digits in B.
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The following table illustrates the action.17

A × B = C

Thus if A and B are 32 digits each, the final total will be running out of the
adder during the 66th and 67th minor cycles.

17 Editor’s note. Numbers such as the 33 in the top delay line refer to strings of zeroes, e.g.

33 zeroes.
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An instruction table ordering 32 digit numbers A in 10 and B in 11 to be
multiplied together, the product being placed in DL 64, would be as follows.

(1) 10–2, 11, 1 A sent to TS 2.
(3) 11–148, 11, 1 B sent to multiplier upper delay line.
(5) a–b, x, y

etc.

}
Other instructions to use up time until (68).

(68) 148–64, 11, 2 64 digits product sent to DL 64.
(71) Next instruction.

It will be seen from the above table that it requires 70 minor cycles to achieve
the multiplication of two 32 digit numbers. The time may usefully be filled in
by other processes since none of the Highways are in use during this period.

Note. The trigger opening the feedback circuits of the two 65 μs lines is
only put off when it receives a pulse from the E-element which is fed with
(S 148 & ∼TIMCI), i.e. it is put off only when transfer of 64 digit product to
a storage line has been effected.

17. Cumulative Adder (D150 and D151).

The function of this device is to count up (to a total consisting of 32 digits)
any numbers which are sent to D 150, to store the total and make it available
when required.

Fig. 31
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A number may be put direct into the line by D 151. Numbers coming in
on D 150 are added to whatever is already in the line by the adder and put
back into the line. The accumulated total may be obtained at S 150 when
required.

The facilities offered by S 192, S 193 and S 194 are that the 8th, 16th or
32nd digit of the accumulated total may be examined. This is of use in certain
problems.

18. Examples of Repetitive Processes.

Example 1.

Numbers A1, A2 . . . A32 are in DL 300. Determine how many are odd and put
result in TS 10.
Note. Odd numbers have a 1 in first place. Hence if (P1 & Ar) is formed (S 131)
it will be a 1 if Ar is odd. The number of such 1’s is stored in the cumulative
adder D 150.

Instructions

(1) 161–9, 11, 1 Puts P1 into TS 9.
(3) 300–260, 11, 32 Puts all numbers A1 . . . A32

into DL 260.
(36) = (4) 260–8, 11, 1 Puts A5 in TS 8.

(6) 131–150, 11, 1 Forms (8 & 9) and sends result to
D 150 (cumulative adder)
(a 1 if number is odd).

(8) 171–150, 11, 1 P11 sent to D 150. This is done
so that after 32 repetitions
of the table S 193 will give
a pulse.

(10) 158–260, 11, 32 A1, A2 etc. now delayed by 1 minor
cycle and put back into DL 260.
Next number picked out by (4)
will be A6 and so on.

(43) = (11) 193–96, 11, 1 TC 96 put on if table has been
repeated 32 times.

(13) 136–97, 9, 0 Discrimination.
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Either (15) 1023–1023, 11, 20 Returns to (4) if TC 96 is not on.
If TC 96 is on, process is finished
but the 1 in 16th place (accumulated
from instruction (8)) must be
removed from total in 150.

or (16) 150–2, 11, 1 Total of ‘odds’ in 150 sent to TS 2.
(18) 176–3, 11, 1 P16 sent to TS 3.
(20) 159–10, 11, 1 TS 3 subtracted from TS 2 and

result sent to DL 10.
(22) 135–151, 11, 1 Clears cumulative adder for next

operation.

Example 2.

To find the larger of two positive numbers.
In order to represent negative numbers, the complementary notation

is adopted, i.e. −A is represented by (232 − A) and |A| is restricted to a
value <231.

Thus to find the larger of two numbers A and B, both of which are <231,
the difference A − B is formed and if negative (i.e. a 1 in 32nd place) B > A
and vice versa.

Suppose A is in 10 and B in 11. The larger is to be put into 12.

Instructions
(1) 10–2, 11, 1 A sent to TS 2.
(3) 11–3, 11, 1 B sent to TS 3.
(5) 159–8, 11, 1 (TS 2 − TS 3) sent to TS 8.
(7) 160–9, 11, 1 P32 sent to TS 9.
(9) 131–96, 11, 1 Forms (TS 8 & TS 9). If TS 8 contains

a negative number, TC 96 is put on.
(11) 136–97, 9, 0 Discrimination.

Either (13) 10–12, 11, 2 If TC 96 not on, A > B and A sent to DL 12.
or (14) 11–12, 11, 1 If TC 96 is on, B > A and B sent to DL 12.

Note. The above method is applicable also to values of A and B positive or
negative provided A and B are then both restricted to the range 230 to −230.
This is necessary since if A = −B = 231 say, the difference A − B would have
a 1 in 32 place and it would appear to the machine that the difference was
negative, i.e. B > A, which is clearly absurd. Hence the further restriction on
the values of A and B if either may be negative.
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Example 3.

Numbers A1, A2 . . . A32 (230 > Ar > 2−30) are in DL 300. It is required to
find the largest and place it in DL 12.

The method is to compare a pair of numbers, find the larger and compare
that with a third and so on until 32 have been examined.

Instructions

(1) 300–260, 11, 32 A1, A2 . . . A32 sent to DL 260.
(34) = (2) 260–2, 11, 1 A3 picked out and sent to TS 2.

(4) 160–8, 11, 1 P32 sent to TS 8.
(6) 163–150, 11, 1 P3 sent to D 150 (cumulative

adder). Thus after 32 repetitions of
the table S 192 will give a pulse
(i.e. in 8th place).

(8) 260–3, 11, 1 A10 sent to TS 3.
(10) 159–9, 11, 1 Forms difference (A3 − A9) and

sends to TS 9.
(12) 131–96, 11, 1 Forms (TS 8 & TS 9) and stimulates

TC 96 if (A3 − A9) is negative (i.e.
if A9 > A3).

(14) 136–97, 9, 0 Discrimination.
Either (16) 1023–1023, 11, 2 If TC 96 not on (A3 > A9) A3

already in TS 2.
or (17) 3–2, 11, 1 If TC 96 is on (A9 > A3) A9

sent to TS 2.
(19) 158–260, 11, 32 All numbers in DL 26 delayed

one minor cycle.
(52) = (20) 192–96, 11, 1 If S 192 stimulates TC 96, process

has been repeated 32 times.
(22) 136–97, 9, 0 Discrimination.

Either (24) 1023–1023, 11, 13 If TC 96 not on, returns to (6) and
repeats table.

or (25) 2–12, 11, 1 If TC 96 is on, process is finished
and largest number is sent
to DL 12.

(26) 135–151, 11, 1 Clears cumulative adder for next
operation.
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19. Control and Instruction (Version VI).

A major difficulty in the machine described to date was the permanent asso-
ciation of certain operations with certain delay lines. For example TS 2 and
TS 3 were associated with an adder. Thus in order to add two numbers, one
had to be put in TS 2, the other in TS 3 and S 145 routed to the required
destination.

A table for such a simple process would be, for example:

(1) 10–2, 11, 1

(3) 11–3, 11, 1

(5) 145–12, 11, 1

Three separate instructions are required.
A shortening and simplification of the instruction table would result if

two numbers could be taken from any sources A and B, have an operation F
performed on them, the result delayed D microseconds and then put in C all
by means of one instruction.

Such an operation may now be performed by means of two word instructions.
These two word instructions may be used at any time in addition to the

original single word instructions.

Form of two word instruction.

Digits 1, 2 3–12 13–32 23–26 27–32

1st word Spare Source A Destination C Characteristic Timing
2nd word Spare Source B Delay D (0–1023 μs) Operation F Spare

The first word of a two word instruction is similar to the original one
word type except for the characteristic. This must now indicate whether the
instruction is a one word instruction or whether it is the first word of a two
word instruction.

The significance of digits 23–26 is therefore as follows.

Digit Meaning
23 0

1

24 0

1

External operation
Internal operation
Deferred operation
Immediate operation

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

as before

499



Alan M. Turing and James H. Wilkinson

25, 26, 0 0 Next instruction from TS 0 and present
word is a one-word instruction.

1 0 Next instruction from TS 1 and present
word is a one-word instruction.

0 1 Next instruction from DL 256 and present
word is a one-word instruction.

1 1 Next instruction from DL 256 and present
word is 1st word of a two-word instruction.

The second word digits 23–26, i.e. therefore the value of F, determines the
nature of the operation to be performed on the numbers from sources A and
B by an operation tree.

The code is as follows.

Value of F Operation Op. TREE

0 A − B with no Round Carry Suppressions.
1 A − B with odd R.C.S.
2 A − B with even R.C.S.
3 A − B with odd and even R.C.S.
4 A + B with no R.C.S.
5 A + B with odd R.C.S.
6 A + B with even R.C.S.
7 A + B with odd and even R.C.S.
8 A & B
9 A ∨ B

10 A �≡ B
11 to 17 not yet allocated.

The ability to add or subtract with various R.C.S. is very useful, since it
enables numbers composed of any number of words to be added or subtracted.
For example, if the numbers are each 64 digits long, then they must be added
with even R.C.S.

Arrangement of secondary control circuit.

A secondary staticiser is arranged in the control circuits as shown [in Fig. 32].
While the first word is running into the primary staticiser (the original one)
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the second word is running into the secondary staticiser and setting up trigger
circuits CJ 3 – CJ 26 [Fig. 33].

Triggers CJ 3 to CJ 12 select the secondary sources SS 0 to SS 1023 by means
of a secondary source tree.

Triggers CJ 13 to CJ 26 feed into a delay unit and select the required delay.

Fig. 32

Fig. 33

Delay unit.

This unit is constructed so that any delay from 0–1023 μs may be selected.
The arrangement is as below.

Fig. 34
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Thus if the required delay is, for example, 39 μs triggers CJ 13, 14, 15 and
18 will be on and a total delay of 39 μs introduced in the delay unit.

Highway arrangements.

All sources may now be fed into either or both of two Highways. These are
known as HW 1 and HW 2 and an S signal puts the source to HW 1 and an
SS signal puts the source to HW 2.

Fig. 35

B 0 to B 17 are the units in which the addition, subtraction and logical
operations are performed.

Consider first a one word instruction. It will be set up on the primary
staticiser in the normal way and the next one word instruction will be set up
on the secondary staticiser. Since the first instruction is of one word only, its
digits 25 and 26 will be one of 00, 01, or 10 but not 11. Hence (CI 25 and
CI 26) will be 0’s and the number on HW 1 will pass directly through to the
destination highway.

The source tapped to HW 2 by the instruction in the secondary staticiser
will pass to the B units together with the number on HW 1 and will have some
operation performed on it, but will not reach the delay unit and destination
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HW since the 2-element is not opened by (CI 25 & CI 26). The action is thus
quite normal.

If the instruction is the first word of a two word instruction, then digits 25

and 26 will be 11. Thus (CI 25 & CI 26) will be 1’s, the direct route from HW
1 to destination HW will be inhibited and the operation selected by F will be
performed on the numbers. The result will be delayed D in the delay unit and
then passed to the destination highway.

20. Examples of Two-word Instructions.

Example 1.

It is required to add a series of 32 words in DL 300 to a series of words in DL
301, the results to be placed in DL 302 with no delay.

Instructions

This is 1111
↘

(1) 300–302, 15, 32 (Since 32 pairs are to be added.)
(2) 301–0, 7, —

Example 2.

There are 32 numbers each of 32 digits, in DL 300. Find how many of them
are odd and put result in DL 10.

Note. All odd numbers have a 1 in first place. Hence if a number is, say, Ar

and (P1 & Ar) is formed, this will be a 1 if Ar is odd.
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Instruction

(1) 300–150, 15, 32

(2) 161–0, 8, —
(34) 150–10, 9, 1

= (2)

Compare this simple table with the table required to solve the same problem
in the original machine with only one word instruction.

Example 3.

Given 32 numbers of 32 digits each in DL 300 arranged

at the commencement of a major cycle, delay them by 1 minor cycle so that
they are arranged

at the commencement of a major cycle.

Note. Process is to add SS.135 (a series of 0’s), delay result by 32 μs and
feed back.

I.e., if timed for 33 and then stopped, arrangement at the commencement of
a major cycle has become

Instruction

(1) 300–300, 15, 33

(2) 135–32, 7, —
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In general.

With n word notation for a series of numbers (i.e. of 32 n digits each) to move
up by one complete number (i.e. n minor cycles) instruction is

(1) 300–300, 15, (32 + n)

(2) 135–32 n, 7, —

Example 4.

Given A in TS 10 and B in TS 11 form 8 (A + B) and put in TS 12.

Instruction

(1) 10–12, 15, 1

(2) 11–3, 15, —

21. A Special Source in the Version VI Control System.

This is S 157. Its function is to enable a particular number of 32 digits to be
fed into the machine, for use in the computation, via the instruction table.

The arrangement is as below.

Fig. 36

Instruction

(1) 157–2, 11, 1

(2) NUMBER
(3) etc.

(1) & (2) are a two-word instruction which causes instruction (2), which is
the number, to be sent via the destination HW to TS 2.

The operation then continues normally.
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22. Changing Instruction Tables.

It is frequently necessary that while using a main table, say Table I, at a certain
stage another table, say Table II, be brought into use, after which the main
table (or a third) be reverted to. This may be effected by link instructions.

Suppose Table I is in DL 301 and Table II in DL 300. A blank is left in the
subsidiary Table II at a convenient point at the end for the link.

The link instruction will be supplied by the main table using the facility
of S 157.

Main Table I (in DL 301).

(1) L–M, 11,
to

(9) N–O, 11,

1

1

⎫⎪⎬
⎪⎭ Normal instructions.

(11) 157–300, 9, 4 This is a delayed instruction ordering
INSTR (16) into the blank in Table II
(which is INSTR (17) in Table II).
Hence timing number 4.

(16) 301–256, 11, x This is the link instruction.
(17) 300–256, 11, y (47) This orders Table II into use.

Subsidiary Table II (in DL 300).

(1) A–B, 11,
to

(15) C–D, 11,

1

1

⎫⎪⎬
⎪⎭ Normal instructions.

(17) LINK (301–256, 11, x) Supplied by Table I and brings Table I
back into use.

Note. x & y must be chosen to order the new table into use at the correct
minor cycle.

Thus y = 32 + (32 − 17) = 47

& x = 32 + (32 − 17) = 47 also, if both tables commence at (1).

23. Input and Output Units.

The input and output to and from the A.C.E. is by means of Hollerith units
and punched cards. The standard Hollerith code is illustrated below. Each
card may be punched in 12 rows comprising 80 columns.
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The numbering of rows and columns is as shown.

Fig. 37

As normally used in the decimal scale, a ten figure number, say, could be
represented by punching holes at positions in the first ten columns corres-
ponding to the value of the digit in each place. Thus a number of 5 digits, for
example 62049, would be represented as shown below.

Fig. 38

Cards so punched are used to feed numbers to be used in a computation
into the machine. The A.C.E. itself converts such decimal numbers into binary
form and stores them.

Cards, however, may be used to record binary numbers directly. Either one
or two 32 digit binary numbers may be punched in each row. At the present
time only columns 41 to 72 inclusive are being used, with the convention that
a ‘hole’ corresponds to a 1 and ‘no-hole’ to a 0. Thus a total of twelve (or 24)
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binary numbers may be punched on each card. The remaining columns are
used for indexing and coding of the cards. This method of punching is used
for recording output data and also for feeding in instruction tables. In the
latter case, the instructions are punched in the normal decimal fashion on
cards. The cards are then fed through a Hollerith machine which converts
the information to binary form and assembles 12 instructions and punches
them on a single card.

Input card reader.

The data is taken from the cards by means of a series of 80 brushes under
which the cards pass. As a hole passes under a brush a circuit is completed.
The case of card data in binary form only will be considered at present, i.e.
instructions.

The cards pass through the reader at a rate of 150 cards/min. Each card
has 12 rows and there are 4 ‘dead’ rows between cards, i.e. 25 ms per row.

Each row is actually being read for a period of 8–10 ms out of the 25 ms.
In order to read a card, the necessary instructions must be in the A.C.E. in

advance. The table is as follows.

(1) 136–138, 11, 1 D 138 controls a knife edge which pushes
a card into the reader.

A signal is now required to indicate when the card is in position for the first
row (y) to be read. This is obtained from the reader itself (mechanical contact)
and is S 132+.

(3) 132+ − 96, 11, 1 If a card is in position, TC 96 will be put on
and vice versa.

(5) 0–5, 11, 1 Dynamiciser contents sent to TS 5.
(7) 136–97, 9, 26 Discrimination. If TC 96 is off (card not yet

ready) brings back to (3). (3) and (7)
repeated until TC 96 comes on when (5)
is applied.
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Wait 15 ms (approx.) and then take next row.

Fig. 39

Fig. 40

To record an output number, the number is sent to D 129 to set up the
staticiser. These trigger circuits operate the punch relays in the punch unit.
Then card is punched (15 ms) and the staticiser cleared.

An alternative output is to a print unit.
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24. Arithmetical Operations with Positive or
Negative Numbers.

In all the following operations the numbers concerned are composed of a
maximum of 32 binary digits, i.e. the modulus of all numbers is less than 232

in magnitude.
It should be remembered that in the A.C.E., as in most digital computers, a

negative quantity, say −A, is represented by the number (A max − A) where
(A max − 1) is maximum possible number which can be handled.

Thus in a 32 digit number in the A.C.E. −A would be represented by 232−A.
If |A| is restricted to a value <231, the 32nd digit of the word will be a

0 if the number is positive and a 1 if negative. This is the accepted code for
negative numbers.

Operation A + B.

A and B may be positive or negative numbers.
A two word instruction

(1) A–C, 15, 1

(2) B–0, 7, —

carries out the operation and puts the result in C. Similarly the instruction

(1) A–C, 15, 1

(2) B–0, 3, —
forms A − B.

Operation A + nB.

In this case, B is added n times to A.

(1) A–A, 15, n
(2) B–0, 7, —

The answer accumulates in the A line and method words for positive or
negative numbers.
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Operation 2nA where n < 31 and positive.

This may be achieved by delaying the word for n μs provided that A has less
than 31 − n digits.

(1) A–B, 15, 1

(2) 135–2, 7, —

Method is to add a series of 0’s (S 135) and delay result 2 μs and put in B.
Works for A positive or negative with above restrictions.

Note. To move a number round n places in a line (and not multiply it by 2n)
e.g., n = z

(1) A–B, 15, 2

(2) 135–2, 7, —

In this case add zero’s and put into B with a delay of 2 μs. The number
cannot be fed back into the same line in this case, since this would introduce
zero’s within the number.

Operation 2n (A ± B).

(1) A–C, 15, 1

(2) B–n, 7, —
or 3 for −B.

Operation 2−nA, A positive.

For example, 2−4A.
An advance of 4 μs is the same as a delay of 28 μs.

(1) A–A, 15, 2

(2) 135–28, 7, —
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This works for positive A and number must be returned to original line.
If A is positive or negative, perform a discrimination to determine the sign.

If negative, find complement, perform operation, and replace sign afterwards.

Operation A × B (A and B positive or negative).

If A and B are both positive the operation is straightforward. However, if
either or both A and B are negative and expressed in the usual convention
difficulties arise.

For example, suppose A is negative.
The product formed will be

(232 − A)B = 232B − AB.

But the required product is known to be 264 − AB, in a 64 μs delay line.
Hence the quantity 232(232 − B) must be added to the answer to obtain the
correct product.

Similarly if B is negative

232(232 − A)

must be added.
If both A and B are negative, answer produced will be

(232 − A)(232 − B) = 264 − 232(A + B) + AB.

Hence in this case 232(A + B) must be added. (The 264 has no effect.)
An instruction table for signed multiplication will make the operation clear.
A is in line 11 and B in 12. A and B may be positive or negative. The product

is to be formed and put in line 64.

(1) 11–2, 11, 1 A put in TS 2.
(3) 12–148, 11, 1 B put in 148.

The multiplication now proceeds normally and the product will be available
in minor cycles (3 + 67) and (3 + 68), i.e. in (6) and (7). This time interval is
used to determine the corrections, if any, that are required, as follows.

(5) 135–65, 11, 2 Clears out 65 in case it has something
left in it. 65 is used for holding the
correction term.
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(8) 11–96, 15,
(9) 160–0, 8,

1

—

} Determines sign of A by forming
(A & P32) and passing result to TC 96.
TC 96 put on if A is negative.

(10) 136–97, 9, 0 Discrimination. Puts off TC 96 if on.
Either
(12) 1023–1023, 11, 2 If A is positive wastes time until (15).
or
(13) 12–65, 11, 1 If A is negative sends B to DL 65.

(15) 160–96, 15,
(16) 12–0, 8,

1

—

} Determines sign of B by forming
(A & P32) and passing result to TC 96.
TC 96 put on if B is negative.

(17) 136–97, 9, 0 Discrimination.
Either
(19) 1023–1023, 11, 3 If B is positive, wastes time until (23).
or
(20) 11–65, 13,
(21) 65–0, 7,

1

—

}
Delayed instruction which adds A to
correct half of DL 65.

(23) 148–64, 15,
(24) 65–0, 1,

48

—

} Subtracts number in DL 65 from
product and puts in DL 64. Timing
number is chosen to obtain result when
product is coming from the multiplier.

Next instruction will be (72) = (8).

Note. The total time required for signed multiplication is the same as for
unsigned.

25. Version VII.

In this version the instructions are in a modified form. Either one- or two-
word instructions can be used, the form of the instruction being thus:

Digits 1, 2–10, 11–19, 20–21, 22–26, 27–32,
1st Word Spare Source Destination Characteristic Source of Timing

next instr.
2nd Word Spare Sec. Delay (21 not used) Operation Spare

Source (26 not
used)

In this new instructional form, it will be seen that only nine digits are used
to describe a source or destination and this limits the total number of sources

513



Alan M. Turing and James H. Wilkinson

to 512. It is considered that with the increased flexibility of the machine this
number will be adequate.

The Characteristic is of [two] digits and is used to indicate whether the
instruction is of one word or two and whether immediate or deferred.

0 = 00 Deferred one-word instruction.
1 = 10 Immediate one-word instruction.
2 = 01 Deferred two-word instruction.
3 = 11 Immediate two-word instruction.

The use of five digits to describe the source of the next instruction facilitates
the use of 32 possible sources. These are DL 256 to DL 287 inclusive, and are
selected by a small tree in the usual manner:

Thus 0 for digits 22–26 selects DL 256

1 for digits 22–26 selects DL 257

n for digits 22–26 selects DL (256 + n)

In the second word of a two-word instruction, the delay required is repres-
ented by digits 11–20, 21 not being used, and the operation by digits 22–25,
26 being spare also. The operation code is as before, namely:

Value Operation
0 HW1 − HW2 with NO R.C.S.18

1 HW1 − HW2 with ODD R.C.S.
2 HW1 − HW2 with EVEN R.C.S.
3 HW1 − HW2 with ODD & EVEN R.C.S.
4 HW1 + HW2 with NO R.C.S.
5 HW1 + HW2 with ODD R.C.S.
6 HW1 + HW2 with EVEN R.C.S.
7 HW1 + HW2 with ODD & EVEN R.C.S.
8 HW1 & HW2

9 HW1 ∨ HW2

10 HW1 �≡ HW2

11 (HW1 & 157) ∨ (HW2 & ∼157)
12–15 Not yet allocated.

The circuits for the new selector arrangements and new coding are shown
below and are self-explanatory [Figs 41 and 42]. The operation of these
portions of the circuit is identical with those in the Version VI, though some

18 Editor’s note. Round Carry Suppression.
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of the units have somewhat different internal construction. Of these, the
function unit is noteworthy.

Fig. 41

Fig. 42
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Function unit.

The operation tree of Version VI has been dispensed with and the circuit is
operated direct from trigger circuits CJ 22 and CJ 25 inclusive.

The circuit is shown below.

Fig. 43

The upper portion of the circuit is the adder, which is provided with either
Odd, Even, Both or No Round Suppression. (Note: EVEN is a multivibrator
which is on and off during alternate minor cycles.)
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For subtraction (HW1 − HW2), CJ 24 is off and the number on HW2 has
its digits inverted, i.e. 0’s for 1’s and vice versa, by the polarity changer. Thus
the number sent to the adder is 232 − 1 − B, where B is the original 32 digit
number on HW2. But the true complement of B is 232 − B. Hence one must
be added to the result in the adder. This is achieved by adding in the carry
suppression pulse at the beginning of the minor cycle concerned. It will be
seen that the method works for numbers of 32 or 64 digits, but does not for
numbers of more digits than 64. If it is essential to correct an answer for a
greater number of digits than 64 this must be done separately.

The lower portions of the circuit are for the logical operations and are self
explanatory.

The timing circuits of Version VII.

Several changes have been introduced into the timing circuits of the control.
The slow counter has been redesigned and the whole circuit simplified as in
Fig. [44].

The length of the INSTRUCTION line is now 31 μs. As before, when TIMCI
is on, an instruction is allowed to run into the staticiser. Since, however, the
INSTR line is of length 31 only, an extra 1 μs delay has to be inserted before
the staticiser. TIMCI can be put on only by a pulse from the E-element, i.e.
only when TRANSTIM goes off, and puts itself off after one minor cycle by its
32 pulse delayed by 1 μs and gated by P1.

Consider now a single word instruction of the immediate variety with
a timing number of 5. The Characteristic (digits 20 & 21) will be 1 and
therefore CI 20 will come on. The instruction then runs into the staticiser and
simultaneously into the slow counter portion. The BORROW trigger circuit
will be on as a result of a P1 pulse at the commencement of the minor cycle
and will be put off again during the 26th μs of the minor cycle by P26.
While BORROW is off, the 1-element above the counter delay line will be
inhibited, and the 2-element will be opened. During the 26th μs, therefore,
digit 27 of the instruction will pass to the counter delay line via the polarity
changer and the 2-element. Thus if originally a 0 it will enter the line as a
1 and vice versa. The 27th digit will arrive at BORROW during the 27th μs
and if a 1 will put BORROW on again. The 28th and subsequent digits of
the instruction will therefore pass to the counter delay line unchanged. The
action is best illustrated by the following table for an instruction of timing
number 5.
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Fig. 44

Digit numbers
27 28 29 30 31 32

Instruction 1 0 1 0 0 0

(timing number 5)
Digits passed to counter line

Minor cycle (Position in minor cycle)
26 27 28 29 30 31 32

End of 1 0 0 1 0 0 0 0

BORROW off during 26th μs and therefore 27th digit of INSTR passed
as a 0.
BORROW put on by 27th digit on 27th μs and next passed unchanged.
End of 2 1 1 0 0 0 0 0

518



Turing–Wilkinson lecture series (1946–7)

BORROW off during 26th μs and not put on until 29th μs by the 28th digit
delayed 1 μs. Rest of digits pass unchanged.
End of 3 0 1 0 0 0 0 0

End of 4 1 0 0 0 0 0 0

End of 5 0 0 0 0 0 0 0

Now TRANSTIM is not put off until it receives a pulse during the 32nd μs
of a minor cycle from BORROW, i.e. until BORROW is off at this time. It will
be seen from the example that this will not occur until the end of minor cycle
6 in this case.

Hence this timing circuit produces precisely the same result as the
Version VI, i.e. an instruction of timing number t is set up in the first minor
cycle and takes place during the next t minor cycles. The next instruction will
be set up in minor cycle (t + 2) as before.

The procedure with a deferred instruction is along similar lines. The
instruction runs into the staticiser during the first minor cycle. The counter
operates as before. CI 20 is off in this case (deferred instruction), and therefore
TRANSTIM has put itself off. The transfer does not take place until TRAN-
STIM goes on again, i.e. until BORROW is off during the 32nd μs of a minor
cycle. This occurs after (t + 1) minor cycles. TRANSTIM then goes on for one
minor cycle and puts itself off.

Discrimination.

As in the earlier control circuits discrimination facilities are provided by the
use of TC 96. Since in Version VII two-word instructions will largely be used it
is desirable that after a discrimination instruction number n the next instruc-
tion will be either (n + 2) or (n + 4). This is achieved by the input of (P27 &
TC 96 & TIMCI) which, if TC 96 is on, adds a 1 in the 27th place of the number
circulating in the counter and hence delays the operation of TRANSTIM by 2

minor cycles.

26. Initial Starting Procedure.

The problem of starting up the A.C.E. is a complex one, since after switching
on, all the lines will have a random assortment of spurious pulses in them.
The first thing to be done, therefore, is to clear out a line of all spurious
pulses.
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Three manually operated switches are provided in the control circuit.
The first is a switch operating on TRANSTIM and called ‘PARALYSIS PERIOD’.
This has three settings:

‘0’ – Normal working
‘10 ms’ – 10 ms delay after working
‘∞’ – used in conjunction with a SINGLE TRANSFER switch to

operate TRANSTIM one at a time.

The third switch is ‘P32 PULSES’. It has 3 positions:

‘ON’ – Normal
‘Hollerith’ – P32 pulses gated by card reader and only supplied

when a card is in a position to be read.
‘OFF’ – no P32 at all.

With the aid of these switches, the starting up is as follows:

(1) Check that P32 pulses are on.
(2) Set PARALYSIS to ∞ to ensure TRANSTIM off.
(3) Set P32 PULSES to Hollerith.
(4) Set PARALYSIS to 10 ms. TRANSTIM put on only when a card is in

position.
(5) Clear the CI staticiser by a manual switch.
(6) Start card feed with a pack of ‘Initial Input Cards’.

Initial input cards.

Since the CI staticiser has been cleared, it is set up with a row of zeros, i.e. with
an instruction in the Version VII code of 0–0, 0, 0, 0, the last figure the timing
number, going to the counter.

The meaning of this instruction is, ‘Feed the input dynamiciser to the
INSTR line, the instruction being a deferred one-word instruction. The next
instruction will come from DL 256 and the timing number of this instruction
is 0.’

This means that the 1st row of the first Initial Input Card is fed to
the INSTR line. The instructions on these cards then go as shown in the
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table below.

Minor cycle Input to INSTR Origin Effect
(30) 135–256, 1, 0, 0, Row 1 A string of 0’s pass to 256

for two major cycles (due to
10 ms paralysis of
TRANSTIM) and clears
the line. Row 2 is wasted.

(31) 0–0, 0, 0, 0, 256 Row 3 to INSTR.
(1) 0–258, 0, 0, 29, Row 3 Row 4 to DL 258.
(0) 0–0, 0, 0, 0, 256 Row 5 to INSTR.
(2) 0–258, 0, 0, 29, Row 5 Row 6 to DL 258.

and so on

DL 258 can thus be filled with 32 instructions by having odd rows on cards
of the required instructions alternating with the instruction 0–258, 0, 0, 29.
The first table thus introduced into the machine should be one enabling the
more easy assimilation of further instructions.

Synchronisation of EVEN (S 157) with the machine.

This is another starting-up problem. The EVEN multivibrator, which is on and
off in even and odd minor cycles respectively, has to be made to synchronise
with the arbitrary numbering of the minor cycle. It is found simpler in practice
however to achieve the reverse, i.e. to number the minor cycles to correspond
to the already functioning multivibrator.

This is done, as soon as sufficient initial instructions have been introduced
into the machine, by forming the result ∼ (EVEN & P27).

1 2–10 11–19 20 21 22–26 27 28 29 30 31 32

P27 0 0–0 0–0 0 0 0–0 1 0 0 0 0 0

1 1–1 1–1 1 1 1–1 0 1 1 1 1 1 If EVEN is on.∼(EVEN
& P27)

}
1 1–1 1–1 1 1 1–1 1 1 1 1 1 1 If EVEN is off.

This result will have two possible values depending on whether EVEN is on
or off during the minor cycle in which the operation is performed. If the result
is interpreted as an instruction, the two possibilities will be:

511–511, 3, 31, 62 if EVEN was on
or 511–511, 3, 31, 63 if EVEN was off.
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In either case, the instruction is a ‘waste-time’ one and if obeyed by the
machine, will carry it on for either 62 or 63 minor cycles, depending on the
original state of EVEN.

The action will be illustrated by reference to a complete instruction table
for the process.

Minor cycle
n

⎫⎪⎪⎬
⎪⎪⎭

EVEN–8, 1, 0, 1 Sends EVEN to TS 8.
n + 2 187–9, 1, 0, 1 P27 to TS 9.
n + 4 137–0, 1, 0, 1 Forms ∼ (8 & 9) and sends to INSTR.
n + 6 511–511, 3, 31, 62 or 63{
n + 69 Next instruction if n was an even minor cycle.
n + 70 Next instruction if n was an odd minor cycle.

The next instruction obeyed after (n + 6) is always odd, since if n had been
odd then that instruction would be (n + 70), i.e. odd also. If n had been even,
then the next instruction followed after (n + 6) would be (n + 69), i.e. odd.

Hence, to synchronise the machine with EVEN, a table of the above form is
fed through and results in the determination of an odd minor cycle.

27. Polarity Changer.

The following circuits [Figs 45–54] represent possible methods of producing
the required effects of the various units. At present it is by no means certain
that any of these schemes will be finally adopted. They are intended only to
indicate possible solutions.

Fig. 45
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A single valve connected as shown will act as a polarity changer for the
conversion of 1’s to 0’s and vice versa. A 1 is normally represented as a voltage
pulse in the positive sense.

The valve is normally biassed to cutoff and the input pulses are large
enough to take the valve up to saturation.

t

Fig. 46

The circuit is so designed that the input and output pulses are of equal
amplitude.

28. N-Elements.19

Fig. 47

Such an element has to respond to n or more simultaneous input pulses.
Consider the simple network below.

Fig. 48

19 Editor’s note. This title added by Copeland.
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There are m input voltages applied to the resistors. The output voltage,
V0, is therefore given by

V0 = 1

m
(V1+V2+V3+ · · · +Vm).

If the only possible values of V1, V2, . . . , Vm are either 0 or v (i.e. no pulse
or a pulse) then when the threshold number of pulses n is received

V0 = nv
m

.

Such an input network connected to a valve can constitute an n-element
[Fig. 49].

The valve is so biassed that a voltage >nv/m is required to produce
conduction. If the input voltage is <((n − 1)/m)v, then conduction must
not occur [Fig. 50].

The system will work provided v/m is greater than the grid base from
cutoff to saturation and is in fact achievable for m = 4 or 5, say, if the pulse
amplitude is 50 volts.

Normally, a stage as described above would be followed by an inverter stage
in order that positive pulses can be obtained. An inhibitor connection can be
conveniently incorporated in this stage [Fig. 51].

With such an inhibitor connection it is necessary to ensure that the pulse
it carries is sufficiently large to maintain the second valve in a state of
conduction irrespective of the anode potential of the first stage.

Fig. 49
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Fig. 50

Fig. 51

So far the use of triodes only has been considered. Pentodes, however,
increase the scope of the circuitry, since both control and suppressor grids
may be used as inputs. For instance it is convenient to construct a 2-element
which has but two input connections using a pentode.

A circuit as [below] is the basis of a very reliable 2-element [Fig. 52].

29. Trigger Circuit.

A trigger circuit must have two stable conditions and must be capable of being
changed from one to the other. A suitable circuit is given below [Fig. 53].

In the off condition A is cutoff and B conducting. When the threshold
number of pulses is received on the grid of A it goes into conduction and
B is cut off. This is the alternative stable condition and corresponds to the on
condition, since the anode of B is now near HT potential.
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Fig. 52

Fig. 53

The trigger is put off by a pulse on the inhibitor connection to the grid of B.
It is necessary to ensure that the inhibitor pulse is large enough to put the
trigger off irrespective of the input to the grid of A.

If an output is taken from the anode of A, this consitutes a ‘NOT’
output.
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A ‘change-state’ connection to a trigger circuit may be achieved by applying
the change pulse to both grids simultaneously. As illustration, a possible
circuit for TRANSTIM of Version V is given below. Inputs are marked IN and
outputs OUT to correspond on symbol and circuit.

Fig. 54
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23 The state of the art in
electronic digital computing in
Britain and the United States

(1947)
Harry D. Huskey

Huskey came to the NPL ACE Section in January 1947 from the United

States, where he had been involved with the ENIAC and its projected

successor, the EDVAC. Shortly after Huskey’s arrival, Womersley suggested

that he visit Manchester and Cambridge, and prepare a report setting

out the status of each of the several computer projects in Britain and the

United States.1

B. J. C.

Part I. Memory.

1.1. P. O. Research.2

After many efforts they finally have long and short [mercury delay] lines
working to a certain extent. That is, lines circulated pulses up to periods of

1 The report is in the Woodger Papers (National Museum of Science and Industry, Kensington,

London; catalogue reference M12/105). It seems originally to have had no title. The title adopted

here is suggested by a phrase of Woodger’s in a letter to Huskey about the report on 8 January

1982 (also at M12/105). Some spelling mistakes in the original report have been corrected and

in places the punctuation has been altered. Material appearing within square brackets has been

added by the editor.
2

Editor’s note. The Post Office Research Station at Dollis Hill, London.
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20 minutes or so. On January 17, 1947 their delay line lost pulses when
other electrical disturbances occurred in the vicinity such as switching on
other equipment. Later this condition was improved, so they said, by added
shielding but they still had difficulty when the power shut down started. Their
position on March 7th is very much as described above.

They have a short delay line which they asserted worked satisfactorily.
The construction details of circuits and delay lines looked very neat.

They expect (with the resumption of power) to continue checking the
operation of the circulating circuits and to look into the design of the asso-
ciated amplifying circuits. They also expect to start design of 32 delay line
units and to work on other circuits such as the clock and frequency control
circuits.

Their delay line was mounted inside a pipe of about 4′′ diameter with screw
adjustments at the center to remove sag. No other adjustment (for example,
to make the crystals parallel) seems necessary for their one long delay line.

1.2. Cambridge.

In a relatively short time Dr. Wilkes has got a delay into operation and is
successful in circulating pulses. In contrast to P. O. Research his delay line is
prone to gain pulses instead of losing them. In fact, his method of inserting
pulses was to crank a magneto in the room.

This situation (Jan. 29, 1947) led him to favour a screened room in which
to place the machine.

Since then I have heard that by raising the levels in the associated ampli-
fier circuits he has overcome this difficulty. This was apparently done at the
suggestion of a Mr. Gold.

1.3. Manchester.

A standard cathode ray tube has a [metal] gauze placed in front of the target
face and the signal from this [is] amplified and fed through a clocked multi-
vibrator to the control grid of the CRT. If a sweep with gaps (of fixed length)
is now placed on the tube and one continues to have it swept the pattern is
maintained.

The transit time of the amplifier is accounted for by the fact that there is an
accumulation of charge preceding the gap which enables one to anticipate
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the actual gap. The signal resulting from a particular pattern is plotted on the
following amplitude-time graph.

Signal

Time

Sweep pattern

Experiments have been done in which two sweeps are brought together to
where they begin to interfere. This experiment seems to indicate that at least
32 lines can be placed on a 5′′ scope.

Two identical lines were established and swept alternately and the patterns
persisted for some time.

The delay in Prof. Williams present amplifier is such that the sweep time
must be 250 microseconds giving an effective pulse frequency of about
125 kilocycles. He has constructed and is testing (March 3rd) a wideband
amplifier that should enable him to decrease the sweep time to 100 microsecs,
giving an effective frequency of about 330 KC.

The sweep has been triggered at a frequency of 100 cycles per second
showing that the persistence of the charge is such that the whole tube can be
scanned so as to retain the charge pattern indefinitely.

1.4. Moore School.

People at the Moore School have been successful in circulating pulses in
mercury delay lines. There has been a split in the personnel that worked
on delay lines, Sheppard who started the work on delay lines has gone with
Eckert (The Electronic Control Corporation). The Moore School also tried CRT
storages but gave this up as being too difficult.

1.5. Princeton.

Apparently a satisfactory experimental model of the ‘selectron’ has not yet
been made by R. C. A. (Dec. 1946).
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1.6. Memory Summary.

Delay Lines CRT

Art Few made. Each works alone. One connected in circuit.

Experiments hopeful but

not conclusive.

Volume for 213

32 digit binary

numbers

6′ × 6′ × 7′ = 252 ft.3 8′ × 8′ × 2′ = 128 ft.3

Temperature All lines must be

the same temperature

(within 1 degree).

Immaterial.

Weight Heavy. Relatively light.

Cost At least £10. £2 to £3.

Reliability Unknown, may last

indefinitely.

Manufactured in quantity,

easily replacible.

Logical Aspects Numbers are accessible

only when they transit

the amplifier.

Immediate accessibility.

Restoration of

memory

Continuously cycled. Maximum period unknown.

If continuously restored

then it is just as good

as a delay line.

Part II. Input and output.

2.1. Princeton.

They have been carrying on experiments on magnetic wire and tape.
They have built an experimental set-up using two bicycle wheels and
a servo-control to take up slack in transfering from one to the other. They
seem to be definitely decided in favour of magnetic wire or tape.

2.2. Moore School.

For a year they have been experimenting with wire and tape and low
inertia motors to use in the associated servo-controls. Results there indicate
that tape or wire can be used to give an input of 30 KC or better.
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2.3. N. P. L.

All logical development thus far is based on the use of Hollerith equipment.
Experience of IBM and Hollerith is that relay equipment is not as reliable
as desired by a factor of, say 104. However, proper checking methods can
perhaps be devised to cope with these failures to some extent.

2.4. ENIAC.

The ENIAC used two IBM machines (a reader and a gang summary punch) as
input and output. These machines accounted for a very considerable portion
of the time that the ENIAC was out of operation.

2.5. Manchester.

They intend to have Princeton fabricate their input and output equipment.

2.6. Cambridge.

Dr. Wilkes intends to use Hollerith equipment.

2.7. P. O. Research.

The Ministry of Supply machine will use special paper tape.

2.8. Input and Output Summary.

Hollerith Magnetic wire or tape

Development Well established. Just beginning.

Speed 1280 binary digits per

second (present plans).

At least 30,000 per input unit.

(Estimates to 50 KC.)

Sorting Done on a separate Hollerith

machine.

Done internally using erasibility of

the tape. 3 or 4 input tapes may

be used to to facilitate sorting.

Much faster than Hollerith.

Filing

subroutines

On groups of cards in

drawers. Problems made

up by assembling these

with any special cards.

On one spool of wire. Probably

a separate wire is used for any

special instructions.

Assembling

subroutines

By hand. By machine, one spool of wire

holds enough to fill a 256 delay

line machine 30 times.
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Part III. Computer.

All groups generally agree that the computing machine should do addition,
subtraction (either directly or by use of complements), and the multiplication
of signed numbers as well as some process of discrimination. From this point
on there is some difference of opinion. On the other hand, it is generally
agreed that operations such as division and square rooting should be left to
programming.

3.1. Moore School.

It was agreed that a large machine should have floating decimal point as
a built-in feature. However, in the interests of economy of equipment, any
small machine would probably be a fixed decimal point machine with what
few facilities needed to have a programmed floating decimal point.

3.2. Manchester.

The question of floating decimal point has not been seriously considered
here, probably primarily because Prof. Newman is interested in working with
whole numbers.

3.3. N. P. L.

So far all plans leave the floating of the decimal point up to the programming.

3.4. Summary.

It is generally agreed that built in floating decimal facilities would be desir-
able. However, this necessitates considerable extra equipment in a delay line
machine, and so seems undesirable in a small machine. In a larger machine
the added equipment does not seem out of proportion.

I do not think enough consideration has been given to the CRT type
machine to make any decision. The ease of obtaining delays by delayed
triggering of the memory sweep may make it much more feasible here.

Part IV. Logical aspects.

4.1. Moore School.

The Moore School developed plans for coded decimal and binary computers
with and without floating decimal facilities. As of June, 1946, these had
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reached their more complicated state and since then the tendency has been
to simplify the system as much as possible.

The general tendency at the Moore School was to make, at the price
of some extra equipment, one order or instruction do as much as possible.
To illustrate, an instruction was of the following form:

a R b = c, t, r.

This order caused at time t the numbers in positions a and b of the memory
to be brought out of the memory, the operation R applied and the result
placed in position c of the memory. The number r caused this operation to be
repeated to the r − 1 consecutive pairs of numbers following a and b (at times
t +1, t +2, . . ., t + r −1) and the results went into consecutive places starting
with c.

This type of order is particularly convenient with small machines where the
whole of the instruction is not taken up with the numbers representing a, b,
and c. On the other hand the length of a number or instruction doesn’t need
to be a power of two long (in contrast to the fact that switching circuits or
trees should [have] channels which number a power of 2) so 40-digit numbers
and instructions are feasible if needed for this purpose.

4.2. Princeton.

In the von Neumann plan the machine consists essentially of a memory and
a static accumulator. All transfers from the memory to the accumulator are
essentially additions. The orders used are of the following type:

(1) Clear A This clears the accumulator.
(2) x to A Adds the number in position x in the memory to the

contents of the accumulator.
(3) A to x Transfers the number in the accumulator to

position x of the memory.
(4) C to x Transfers control to x; i.e., the next order to be

obeyed is in position x in the memory.
(5) CC to x Conditional transfer of control; i.e., control is transferred

to x in the memory if the number in A is negative.
Otherwise, control obeys consecutive orders in the
memory.
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Routines are established once and for all (with appropriate blanks in them)
and stored on the wire or tape. These are read into the memory as needed.

To assist in preparing a problem they have devised ‘flow diagrams’ to
simplify the actual coding process.

4.3. Manchester.

They are planning to more or less copy the von Neumann scheme. The main
difference in their machine is that CRT memory (as against the selectron)
leads to a dynamic accumulator (i.e., another CRT tube with a pulse-time
adder in series with the restoring circuit).

(It is interesting to note that this method leads to an efficient method of
multiplication (using multiplier pulses to trigger the sweep in the memory)
wherein a 32×32 binary multiplication takes, on the average, 16 addition
operations instead of 32.)

4.4. Cambridge.

Dr. Wilkes has (as of 1-2-47) done no development work on the logical plans.
He intends to follow the Moore School pattern very closely.

4.5. N. P. L.

At N. P. L. all efforts have been on the logical developments. Various plans have
evolved leading to more and more complicated machines. Certain principles
have been established of which one is:

USE THE MINIMUM AMOUNT OF EQUIPMENT,

that is, do everything possible by programming unless it has to be done
extremely frequently (the turning on of the machine is not considered a
frequent operation). Strangely, this has led to a machine which is a combina-
tion of the Moore School and the von Neumann machines. That is, version
VIIC (the latest one, 10-3-47) has an accumulative adder (exactly like the
von Neumann and Newman-Williams machines) and a function unit (a com-
puter in the Moore School terminology) which comprises an adder (with
odd, even, and no round carry suppression), an ‘and’ unit, an ‘or’ unit, a
‘not-equivalent to’ unit, as well as a special device for combining orders to
form new orders and a built in multiplier.
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This machine has been planned on the premise that switching can be
accomplished between pulses (not setting up the resistance network or tree
but the final opening and closing of the relevant gates). There are arguments
for leaving space between words. For example, in a 256-delay line machine
256 gating circuits (probably 512 tubes) must operate safely inside the dis-
tance between consecutive pulses, say .7 microseconds. That is, the gating
circuits must operate in .2 microseconds and this will require a consider-
able amount of power with consequent use of extra valves. By leaving space
between words these circuits can be operated more slowly and the only thing
lost is the facility of carry over (which can be regained by adding a trigger
circuit in the adder) and somewhat inefficient use of the memory (that is,
delay lines must be somewhat longer or only 30 digit, say, binary numbers
would be used).

This machine has two-word orders (it also uses single word orders for
simpler operations) that have many of the aspects of the single word orders of
the Moore School plan; that is, they name two sources, an operation, a timing
number, and moreover a delay number.

The fact that repetition of subroutines require[s] large numbers of orders
has led to the abbreviated code methods whereby not only standard orders are
used but special words containing parameters are converted into orders by
an interpretation table. The general idea is that these describe the entries to
subroutines, the values of certain parameters in the subroutine, how many
times the subroutine is to be used, and where to go after the subroutine
is finished.

4.6. Summary of Logical Aspects.

This can to some extent be summarized as a ‘battle of principles’.

Moore School

1. Simplify set up procedure of the problem to the extent that any math-
ematician, theoretical engineer, or physicist, can lay out the problem in
a form ready to be coded or typed out for the machine. He should be able
to do this with the help of a manual of not more than 15 to 20 pages.

2. To assist the operator by having the machine count its own time cycles
so that orders do not have to be dovetailed with respect to time.

3. To have as few rules, drills, or manual routines for the operators
as possible.
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N. P. L.
To minimize equipment. This leads to quite complex manual routines in run-
ning the machine. Although this is a stated principle, the operation portions
of the machine are larger than any of the other present plans (Princeton,
Moore School, Manchester, or Cambridge).

Many people (Prof. Hartree in his lecture before the I. E. E., among others)
have expressed the opinion that it will take a huge staff to prepare problems for
such an automatic computing machine and keep it going. This idea has been
proven by experience with the ENIAC. Several times I have heard Dr. Dederick
say that the bottle-neck was in the preparation of problems for the ENIAC.
Principles (1) and (2) of the Moore School seem well worthwhile from this
point of view.

Part V. Checking.

5.1. Moore School.

The Moore School favors duplicating portions of the apparatus to detect
failures and where duplication is not feasible to build in checks which
will tend to quickly detect failures (both transient and permanent failures).
Use of checking procedures or test problems in the ENIAC has shown the
inadequacy of this type of test.

5.2. Princeton.

The von Neumann group has considered building two machines with facilities
for comparing between the two.

5.3. Manchester.

They have not given much thought to this problem as yet.

5.4. N. P. L.

Portions of the control should be duplicated for checking purposes (the Moore
School intends to duplicate the computing unit). No built-in checking in
the memory. Input and output checking is to be programmed as is periodic
systematic checks of the memory. Also the operator is expected to produce
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various identities which can be used to check the numbers resulting from the
computations.

Part VI. My general opinion.

1. ENIAC experience has shown that systematic before and after checks
do not guarantee correct results. Furthermore, that transient failures
leading to such phenomena (successful before and after checking but
incorrect results) are extremely hard to find, in fact, some have taken as
long as two weeks to find on the ENIAC.

2. Since heater-failure is by far the most frequent type of failure systematic
built-in checks should be had to immediately detect these and assist in
their being found.

3. Ideally, the machine should have duplicate parts except for the memory.
Then when accuracy is desired the memory can be divided into two parts
and the computation can be carried on in complete duplicate. When
accuracy is not so important the memory is not divided and one has
available a much larger capacity machine, or else the comparing cir-
cuits can be deenergized and the machine can work on two problems
simultaneously.

4. The plan (3) is probably not practical for a small machine but I certainly
believe in (2) for any machine. In fact, if space is left between words (with
a probable saving of equipment as mentioned above, see 4.5) checking
pulses can be inserted in every word space. These will detect not only
permanent failures but will probably (with probability ranging from zero
to one as the length of the transient failure varies from 0 to one minor
cycle) detect transient failures.

5. There are logical facilities in the ACE not needed in most computing
problems. The numerical operations of addition, subtraction (with com-
plements), and multiplication, along with a discrimination process seem
sufficient. With these other logical operations can be programmed.

6. The computing portions of the ACE can be considerably simplified and
certainly should be in any small machine that is built.

7. To facilitate the programming of problems any small machine should
count its own time scale (see 4.6).

8. In planning future machines it should be kept in mind that (a) charge
storage tube methods are very distinct from delay line methods, (2) that
charge storage tube methods will most surely be realized either in the
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CRT technique of Williams or in the ‘selectrons’ of RCA, (c) magnetic
input and output methods will (with their increase in speed) make it
more necessary to have simple coding methods.

9. The logical development at N. P. L. is far ahead of practical results. In fact,
so far ahead that changes in the art may to some extent make it obsolete.
Prof. Newman has said that it would seem that N. P. L. must go ahead
and build a delay line machine since they have gone so far.

10. I think that the best plan would be to construct a small delay line machine
on a plan which is a compromise between the N. P. L. and the Moore
School plans; and in the future look toward charge storage tube methods
with magnetic input and output.
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