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History
by Antonino Saggio

History, which we lItalians are so interested in, and whose relation
with design we have studied so intensely — just what relation
does history have with computers?

This is an apparently absurd question, but Michael Leyton
answers it in this book. Let’s take things one step at a time.

As you know, the great Italian architectural historian Bruno Zevi
has always vehemently defended two theses. The first is that his-
tory is at the center of architectural activity. Zevi's view of history
was a “critical” vision that emphasized the moments of change,
the capacity to work within crises to formulate new hypotheses.
His history was “non-" encyclopedic, “non-" philological; it was
a history of architecture formed by successive breaks, by “here-
sies.” It was, therefore, both a “counter-history” and a “con-
stant” history of modernity.

Zevi's second fundamental thesis was the construction of a series
of invariants like the elenco, overhanging structures, four-dimen-
sional compositions and more. The invariants represented a series
of transcendental values which were implicitly open and dynamic
in their essence, which opposed academic rules. Zevi abhorred
the static nature of forms, symmetry, the golden rules of propor-
tion, the schema of treaty, manual and positivist typologies.

Up until now, these two theses, the centrality of the “critical”
idea of history and the “dynamic” invariants, have lacked a con-
clusive connection tying the one to the other.

This connection has finally been provided by Michael Leyton,
who explains in an incontrovertible manner that symmetry simul-
taneously kills both history and form!

Leyton is a prolific author of scientific texts for publishers like MIT
Press and Springer; he is also a musician, a painter and a design-
er. But above all, he is a scholar who has codified a new way of
thinking in this book. This is a new formalism. And the adjective
“new,” when dealing with formalism, is not a word to be used
lightly.

The basis of Leyton’s formalism is revolutionarily procedural in its
nature. Let’s try to understand how. Normally, a CAD (a program
of the vector family which is now a part of every architect’s com-
puter) works on the “results.” A CAD uses a series of lines of
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code to describe the geometric forms created on the screen; it
describes geometry through formulas that are primarily based on
two large geometric families: mesh triangulations — by which
even a very complex form can be reduced to a series of triangles —
and the spline family, which organizes forms through sequences
of mathematical equations.

If the object that is to be described is simple, just a few lines of
code are needed; a complex object will require a great number
of lines of code.

The basic idea of Leyton’s reasoning, which is presented in this
book, is: let’s change the way we do things! Instead of thinking
about the results, describing them in a geometric manner, let's
concentrate on the process.

In one of Leyton’s standard examples, take a piece of paper and
crumple it up. The ensuing form is complex and, naturally, can
be described and reproduced (with an enormous number of lines
of code). But instead, think about creating a formalism based on
the idea of process. In this case, to reproduce the form, | must
simply say which force is to be applied to the specific “action” of
crumpling. | therefore begin with a piece of paper and then
apply the “formalism” of the act of crumpling it up.

The rise of this procedural way of thinking has important implica-
tions. First of all, from a practical point of view. It is no coinci-
dence that big companies like IBM are very interested in the the-
ses that Leyton has formulated as the basis of new computer
languages. But an impressive series of implications can also be
had in the biological, medical, and physical sciences and, natural-
ly, in architectural science as well. Leyton has also resolved other
questions along the way, like the relation with Gestalt, finally
explaining a few unresolved points.

Let's go back to the point that is so important to us architects,
and which brings us back to the title of the book, Shape as
Memory, and to Zevi's two theories. Imagine a face with wrin-
kles, imagine a car that has a scratch on its door: these grooves
reveal a history. Then, imagine a car and a face without history,
without those signs. This is the basis of this book. And its rele-
vant thesis. Form is the result of history or, in other words, form
is memory!

A key aspect of Leyton’s system is this: symmetrical choices (stat-
ic, typological, blocked) represent the negation of form, the idea
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of a form “with no history.” This perfect, absolute ideal, which
of course can be, as it has been, a pursued and a pursuable
ideal, denies the very essence of form. As Leyton says: Form is
history: form is not just the conscious acceptance of crises, agita-
tion, difficulties; form itself is history. History, through this new
formalism, is rooted in the past, but above all, it is launched
toward the future. Form becomes open to new actions, to new
processes.

Those like me, who have been brought up on Bruno Zevi’s theo-
ries, find this logical connection exciting because this book backs
it up with concise reasoning that is analytically incontrovertible.
Michael Leyton’s book opens a new, and perhaps difficult, way
of dealing with the computer revolution. Michael, with the intu-
ition of a genius, but also with the hard work of a scholar, tries a
new pathway that cannot not be explored further.

http./mvwwi.citicord.uniromal.it/saggio/



Chapter 1
Geometry and Memory

1.1 Introduction

In my published books and papers, | have developed new foun-
dations to geometry that are directly opposed to the foundations
to geometry that have existed from Euclid to modern physics,
including Einstein. These new foundations imply an entire
restructuring of science, the replacement of its separate systems
of laws (e.g., in quantum mechanics, relativity, etc.) with a com-
mon system of inference rules that unfold the environment as a
world of deep “forensic information.” In addition, there is a radi-
cal alteration in our understanding of design, and in particular,
architecture: New foundations to geometry mean new founda-
tions to architecture.

In order to see this, we must first contrast the foundations of
geometry, as they have existed for almost 3,000 years, with the
entirely opposite foundations presented in my books. The follow-
ing statement summarizes the basic difference. It is then fol-
lowed by a more detailed explanation of this difference.

Geometry

CONVENTIONAL FOUNDATIONS FOR GEOMETRY: The geometric part of an
object is that aspect which cannot store information about past action.
Thus, in the conventional foundations, geometry is taken to be the
study of memorylessness.

NEew FOUNDATIONS FOR GEOMETRY: The geometric part of an object is that
aspect which stores information about past action. Thus, in the new
foundations, geometry is taken to be equivalent to memory storage.

1.2 Conventional Geometry: Euclid to Einstein

Radical as Einstein's theory of relativity might seem to be, it in
fact goes back to the simple notion of congruence that is basic
to Euclid. Thus, to understand the foundations of modern
physics (including quantum mechanics), we should first look at
the notion of congruence. Fig. 1.1 shows two triangles. To test if
they are congruent, one translates and rotates the upper triangle
to try to make it coincident with the lower one. If exact coinci-



9

dence is possible, one says that they are congruent. This allows
one to regard the triangles as essentially the same.

In contrast, in the theory of geometry which | have developed,
the two triangles are different because they must have different
histories. For example, to convert the upper one into the lower
one, it is necessary to add a history of translation and rotation.
Let us return to the Euclidean view. Simple as the notion of con-
gruence is, it has been a major component of geometry for near-
ly 3,000 years, and was generalized in the late 19th century by
Felix Klein in what is probably the most famous single lecture in
the entire history of mathematics — his inaugural lecture at
Erlangen. In this lecture, Klein defined a program, which is the
most frequently cited foundation for geometry:

KLEIN'S ERLANGEN PROGRAM
A geometric object is an invariant under some chosen system of trans-
formations.

This statement can be illustrated in the following way: Consider
the upper triangle in Fig. 1.1. It has a number of properties: (1) It
has three sides, (2) it points upward, (3) it has two equal angles,
and so on. Now apply a movement to make it coincident with
the lower triangle. Properties (1) and (3) remain invariant
(unchanged); i.e., the lower triangle has three sides and has two
equal angles. In contrast, property (2) is not invariant, i.e., the tri-
angle no longer points upwards. Klein said that the geometric
properties are those that remain invariant; i.e., properties (1) and

Figure 1.1: Establishing congruence
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(3). Most crucially for our concern: Because these properties are
unchanged (invariant) under the movement, it is impossible to
infer from them that the movement has taken place. Only the
non-invariant property, the direction of pointing, allows us to
recover the movement. In the terminology of my geometric
research, | therefore argue this:

KLEIN'S PROGRAM CONCERNS MEMORYLESSNESS

Past actions cannot be inferred from features that are unchanged
under those actions, i.e., from invariants. Therefore, invariants cannot
act as memory stores. Thus, Klein views geometry as the study of
memorylessness.

Klein's approach became the basis of 20th-century mathematics
and physics. As an example, let us turn to Special and General
Relativity.

1.3 Special and General Relativity

The significance of Einstein’s theory of relativity is that it is the
first theory in physics that was founded on Klein's program for
geometry. Since then, all the other branches of physics, such as
guantum mechanics and quantum field theory, have been based
on Klein's program. Let us now show the relationship between
Einstein’s work and Klein’s. Einstein’s theory of relativity is found-
ed on the following principle:

EINSTEIN'S PRINCIPLE OF RELATIVITY
The proper objects of physics are those that are invariant (unchanged)
under changes of reference frame.

To illustrate this principle, consider Fig. 1.2. Each of the planes
represents the reference frame of a different observer. Let us sup-
pose that each observer measures the length of the same inter-
val in space (i.e., between two known points such as the ends of
a building). Because the observers are in different reference
frames, they find that the length is different in their different
frames. Therefore according to Einstein’s Principle of Relativity
(above), length is not a proper object of physics — because it is
not an invariant under changes of reference frame. However, if
one takes a space-time interval, rather than just a space interval,
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Figure 1.2: Transformations between reference frames.

this turns out to have the same length in the different frames;
i.e., it is an invariant under changes of reference frame. Thus,
according to Einstein’s Principle of Relativity (above), space-time
intervals are proper objects of physics.

Notice that Fig. 1.2 also shows the transformations (arrows) that
go between the reference frames, i.e., that change the frames
into each other. Einstein’s Principle of Relativity says that the
proper objects of physics are those that are invariant under the
transformations that change one frame into another. For exam-
ple, a space-time interval is an invariant (unchanged) under the
transformations that go between reference frames.

It is important now to see that this is an example of Klein’s theory
of geometry. Recall from section 1.2 that Klein said that a geo-
metric object is an invariant under some chosen system of trans-
formations. In relativity, the chosen transformations are those
that go between the reference frames of different observers.
Since Klein says that a geometric object is an invariant under the
chosen transformations, Einstein’s Principle of Relativity says that
a space-time interval is a geometric object; i.e., an invariant
under the transformations between reference frames. Generally,
therefore, Einstein’s Principle of Relativity says that the proper
objects of physics are the geometric objects (invariants) of the
transformations between reference frames. Thus Einstein is cred-
ited with what is called the geometrization of physics.

In Special Relativity, the chosen transformations (between refer-
ence frames) are called the Lorentz transformations. In General
Relativity, the chosen transformations are more general — they
are arbitrary deformations. Therefore we say:
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EINSTEIN'S GEOMETRIZATION OF PHYSICS

The proper objects of physics are the geometric objects (invariants)
under changes of reference frame. In Special Relativity, these are the
geometric objects (invariants) of the Lorentz transformations. In
General Relativity, these are the geometric objects (invariants) of arbi-
trary deformations.

Now recall from section 1.2 that Klein's invariants program con-
cerns memorylessness.

This is because past action cannot be inferred from an invariant.
Thus, | argue the following:

EINSTEIN IS ANTI-MEMORY
Since Einstein’s Theory of Relativity is aimed at the extraction of invari-
ants, it concerns memorylessness.

The same situation exists in Quantum Mechanics. For example,
the modern classification of particles was invented by Eugene
Wigner, and is carried out by the extraction of invariants of mea-
surement operators. We can therefore say that the two corner-
stones of modern physics — Relativity and Quantum Mechanics —
are founded on memorylessness.

It is important now to observe that Klein’s invariants program
really originates with Euclid’s notion of congruence: Invariants are
those properties that allow congruence. Therefore, the congru-
ent properties are those that have no history. In conclusion, |
argue the following:

MEMORYLESSNESS FROM EUCLID TO MODERN PHYSICS

The basis of modern physics can be traced back to Euclid’s concern
with congruence. We can therefore say that the entire history of
geometry, from Euclid to modern physics, has been founded on the
notion of memorylessness.

1.4 New Foundations to Geometry

The previous sections have described the conventional founda-
tions of geometry. We now turn to the entirely opposite founda-
tions which have been elaborated in my books. In particular, the
conceptual foundations were presented in my book Symmetry,
Causality, Mind (MIT Press, 630 pages); and the full mathemati-
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Figure 1.3: Shape as history

cal theory was presented in my book A Generative Theory of
Shape (Springer-Verlag, 550 pages). Let us understand the fun-
damental difference between the conventional foundations and
new foundations.

As we have seen, the conventional foundations state that the
proper objects of geometry are invariants, i.e., those features that
do not retain past history. In contrast, my new foundations state
that geometry should really be the study of those features that
retain information about the past; i.e., geometry is the study of
memory. We will now begin to understand these new foundations.
Consider the shape in Fig. 1.3. One clearly sees it as the conse-
guence of various deforming actions — protrusion, indentation,
squashing, resistance. These actions occurred in the past, and
yet, somehow, one is able to infer this history from the shape
itself. The claim | am making is this:

Shape is the means of reconstructing history.

In relation to this, let us return to the important term, memory.
An object from which one can recover information about the
past is generally called a memory store. Therefore, what is being
proposed here is this:

Shape is the means by which past actions are stored.
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In fact, according to my new foundations for geometry, shape
and memory storage are equivalent. In other words:

Shape = Memory Storage

| will later propose the basic rules by which memory is stored in
shape. But first it is necessary to clearly understand that part of a
shape in which memory cannot be stored. For this, return to Fig.
1.1 which shows the two triangles. We noted that the upper tri-
angle has a number of properties: (1) three sides, (2) points
upward, (3) two equal angles. We saw that, after applying the
translation and rotation to make it coincident with the lower tri-
angle, properties (1) and (3) remain invariant (unchanged); i.e.,
the lower triangle has three sides and has two equal angles.
Most crucially, because these properties are unchanged (invari-
ant) under the movement, it is impossible to infer from them
that the movement has taken place. Therefore, we are led to the
following fundamental conclusion:

Invariants cannot act as memory stores.

Only non-invariant properties can act as memory stores.

The inverse relation between invariance and memory storage can
be illustrated by considering the shape of the human body. One
can recover, from the shape, the history of embryological develop-
ment and subsequent growth, that the body underwent. The
shape is full of its history. Simultaneously, one should observe the
following: There is very little that is congruent between the devel-
oped body and the original spherical egg from which it arose.
There is very little that has remained invariant from the origin state.
The new foundations of geometry state that the shape, e.g., of
the human body, is equivalent to the history that can be recov-
ered from it. Furthermore, | argue that this view of geometry is
the appropriate one for the computational age. A computational
system is founded on the use of memory stores. Our age is con-
cerned with the retention of memory rather than the loss of it.
We try to buy computers with greater memory, not less. People
are worried about declining into old age, because memory
decreases. Intelligence is dependent on memory.

Now let us turn to architecture. What | am going to argue is this:
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FOUNDATIONS FOR ARCHITECTURE

Conventional foundations: There is a correspondence between geom-
etry of the last 3,000 years and architecture of the last 3,000 years.
Both are concerned with maximizing memorylessness.

New foundations: There is a correspondence between the new foun-
dations for geometry, developed in my previous books, and the new
foundations for architecture, developed in the present book. These
foundations are concerned with maximizing memory storage.

1.5 The Memory Roles of Symmetry and Asymmetry

The fundamental proposals will now be given for the new theory
of geometry, and this will lead to a new approach to architec-
ture. Since the architectural theory is based on maximizing mem-
ory storage, it is necessary to answer the following question:
How can an object become a memory store, i.e., a source of
information about the past? Before we can understand this, let
us first understand what form memory stores can take.
According to the new foundations for geometry, every feature of
the world is a memory store. Let us consider some examples. A
scar on a person’s face is, in fact, a memory store. It gives us
information about the past: It tells us that, in the past, the sur-
face of the skin was cut. A dent in a car door is also a memory
store; i.e., information about the past can be extracted from this.
The dent tells us that, in the past, there was an impact on the
car. Any growth is a memory store. For example, the shape of a
person’s face gives us information of the past history of growth
that occurred; e.g., the nose and cheekbones grew outward, the
wrinkles folded in, etc. Similarly, the shape of a tree gives us
information about how it grew. Therefore, from both a face and
a tree, we can retrieve information about the past. A scratch on
a piece of furniture is a memory store, because we can extract
from it information that, in the past, the surface had contact
with a sharp moving object. A crack in a vase is a memory store
because it informs us that, in the past, the vase underwent some
impact; i.e., this information is retrievable from the crack.

| argue that the world is, in fact, simply layers and layers of mem-
ory storage (information about the past). One can illustrate this
by looking at the relationships between the examples just listed.
For instance, consider a scar on a person’s face. First, the scar is
information about the past scratching. However, this is on a per-
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son’s face which is information about past growth. Thus the scar
is @ memory store that sits on the face which is a memory store.
As another example consider a crack on a vase. The crack stores
the information about the past hitting. However, this sits on a vase
which stores the information about how the vase was formed
from clay on the potter's wheel. For example, the vertical height of
the vase is information about the past process that pushed the clay
upwards; and the outline of the vase, curving in and out, is infor-
mation of the past changing pressure that occurred in the potter’s
hands. Therefore, the crack is a memory store of hitting which sits
on the vase which is a memory store of clay-manipulation.

We have seen that, on a concrete level, memory stores can take
an enormous variety of forms — e.g., scars, dents, growths,
scratches, cracks, etc. In fact, there are probably infinitely many
types of memory stores. However, | argue that, on an abstract
level, all stores have only one form:

Memory is stored in Asymmetries.
Correspondingly:

Memory is erased by Symmetries.
These two principles will be illustrated many times in this book;
but let us begin with a simple example: Consider the sheet of
paper shown on the left in Fig. 1.4. Even if one had never seen

that sheet before, one would conclude that it had undergone
the action of twisting. The reason is that the asymmetry in the

B\

(a) (b}

Figure 1.4: A twisted sheet is a source of information about the past. A non-twisted
sheet is not.
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sheet allows one to retrieve the past history. Thus, the asymmetry
is acting as a memory store.

Now let us un-twist the paper, thus obtaining the straight sheet
shown on the right in Fig. 1.4. Suppose we show this straight
sheet to any person on the street. They would not be able to
infer from it that it had once been twisted. The reason is that the
symmetry of the straight sheet has wiped out the ability to recov-
er the past history. That is, the symmetry has erased the memory
store. Notice that there is a feature associated with the fact that
the symmetry erases the memory store: From the symmetry, the
inference is that the straight sheet had always been like this. For
example, when you take a sheet from a box of paper you have
just bought, you do not assume that it had once been twisted or
crumpled. Its very straightness (symmetry) leads you to conclude
that it had always been straight.

The two above statements — one about asymmetries and the
other about symmetries — will now be formulated as the follow-
ing two inference rules.

ASYMMETRY PRINCIPLE

An asymmetry in the present is understood as having originated from
a past symmetry.

SYMMETRY PRINCIPLE

A symmetry in the present is understood as having always existed.

At first, it might seem as if there are many exceptions to these
two rules. In fact, all the apparent exceptions are due to incorrect
descriptions of situations. These rules cannot be violated for logi-
cal reasons, as was shown in my previous books.

Now some important observations should be made: First, it is
crucial to understand that the Asymmetry and Symmetry
Principles are inference rules. Thus memory storage is viewed
here as a process of inference. In fact, we have this:

MEMORY RETRIEVAL AS FORENSIC INFERENCE

The following theory of memory retrieval is being proposed here:
Memory retrieval is the application of a set of inference rules to an
object such that the rules extract information about past actions
applied to the object. Thus, memory retrieval is viewed as a process of
forensic inference.
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This also leads to the following:

FORENSIC THEORY OF GEOMETRY

Whereas the conventional theory of geometry is founded on descrip-
tive axioms (e.g., statements such as “two distinct points lie on exactly
one line”), my theory of geometry is founded on inference rules. In
fact, since these inference rules are forensic, my theory can be regard-
ed as a forensic theory of geometry.

1.6 Basic Procedure for Recovering the Past
I will now argue that the recovery of the past can be carried out
by the following simple procedure:

PROCEDURE FOR RECOVERING THE PAST

(1) Partition the presented situation into its asymmetries and symmetries.
(2) Apply the Asymmetry Principle to the asymmetries.

(3) Apply the Symmetry Principle to the symmetries.

An extended example will now be considered that will illustrate
the power of this procedure, as follows: In a set of psychological
experiments that | carried out in 1982 in the psychology depart-
ment in Berkeley, | found that when subjects are presented with
a rotated parallelogram, as shown in Fig. 1.5a, their minds go
through the sequence of shapes shown in Fig. 1.5. It is important
to understand that the subjects are presented with only the first
shape. The rest of the shapes are actually generated by their own
minds, as a response to the presented shape.

J. 7.0,

() (b} (©) @

Figure 1.5: The history inferred from a rotated parallelogram.
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Examination of the results indicates that what the subjects are
doing is explaining how the first shape (Fig. 1.5a) was created. In
other words, they are saying that, in the previous stage, the
rotated parallelogram was non-rotated (Fig. 1.5b); and in the
stage before that, it was a rectangle (Fig. 1.5¢); and in the stage
before that, it was a square (Fig. 1.5d).

Notice that this means that the sequence shown in Fig. 1.5 rep-
resents the reversal of time from the rotated parallelogram. This,
and many examples in my research, lead me to the following
conclusion:

The mind runs time backwards from objects.

We shall now see that the method by which the subjects create
this sequence is by using the Asymmetry Principle and the
Symmetry Principle, i.e., the two above laws for the reconstruction
of history. Recall that the way one uses the two laws is to apply
our simple three-stage Procedure for Recovering the Past, given
above: (1) Partition the presented situation into its asymmetries
and symmetries, (2) apply the Asymmetry Principle to the asym-
metries, and (3) apply the Symmetry Principle to the symmetries.
Thus, to use this procedure on the rotated parallelogram, let us
begin by identifying the asymmetries in that figure. First, it is
important to note that the most fundamental definition of asym-
metries (in both mathematics and physics) is this: Asymmetries
are distinguishabilities; i.e., differences.

Now, in the rotated parallelogram, there are three distinguish-
abilities (differences):

(1) The distinguishability between the orientation of the shape and the
orientation of the environment — indicated by the difference between
the bottom edge of the shape and the horizontal line which it touches.
(2) The distinguishability between adjacent angles in the shape: they
are different sizes.

(3) The distinguishability between adjacent sides in the shape: they are
different lengths.

Therefore, examining the sequence, from the rotated parallelo-
gram to the square, we see that these three distinguishabilities
are removed successively backwards in time, as follows: (1) The
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removal of the first distinguishability, that between the orienta-
tion of the shape and the orientation of the environment, results
in the transition from the rotated parallelogram to the non-rotat-
ed one. (2) The removal of the second distinguishability, that
between adjacent angles, results in the transition from the non-
rotated parallelogram to the rectangle, where the angles are
equalized. (3) The removal of the third distinguishability, that
between adjacent sides, results in the transition from the rectan-
gle to the square, where the sides are equalized.

The conclusion is therefore this: Each successive step in the
sequence is a use of the Asymmetry Principle, which says that an
asymmetry must be returned to a symmetry backwards in time.
We have just identified the asymmetries in the rotated parallelo-
gram, and applied the Asymmetry Principle to each of these. We
now identify the symmetries in the rotated parallelogram and
apply the Symmetry Principle to each of these. First, it is impor-
tant to note that the most fundamental definition of symmetries
(in both mathematics and physics) is this: Symmetries are indistin-
guishabilities; i.e., equalities.

In the rotated parallelogram, there are two indistinguishabilities
(equalities):

(1) The opposite angles are indistinguishable in size.
(2) The opposite sides are indistinguishable in size.

Now, the Symmetry Principle requires that these two symmetries
in the rotated parallelogram must be preserved backwards in
time. And indeed, this turns out to be the case. Thus, the first
symmetry, the equality between opposite angles, in the rotated
parallelogram, is preserved backwards through the sequence.
That is, each subsequent shape, from left to right, has the prop-
erty that opposite angles are equal. Similarly, the other symmetry,
the equality between opposite sides in the rotated parallelogram,
is preserved backwards through the sequence. That is, each sub-
sequent shape, from left to right, has the property that opposite
sides are equal.

Thus, to summarize the full example: The sequence from the
rotated parallelogram to the square is determined by two rules:
the Asymmetry Principle which returns asymmetries to symme-
tries, and the Symmetry Principle which preserves the symme-



Figure 1.6: An administration building conforming to the conventional foundations
for geometry.

Figure 1.7: The first Administration Building.
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tries. These two rules allow us to recover the history, i.e., run
time backwards.

1.7 Architecture

| argue this: The conventional foundations for geometry corre-
spond to the conventional foundations for architecture. The new
foundations for geometry correspond to new foundations for
architecture.

Let us examine this in more detail. We saw in section 1.2 that the
conventional foundations of geometry, which have existed for
almost 3,000 years, are based on congruence and its generaliza-
tion as invariance. Indeed, in these foundations, a geometric
object is defined as an invariant.

Invariance is closely related to symmetry in the following way: In
mathematics, one says that an object is symmetric if it is indistin-
guishable from transformed versions of itself; e.g., an object is
reflectionally symmetric if it is indistinguishable from its reflected
versions, or an object is rotationally symmetric if it is indistin-
guishable from its rotated versions. Therefore an object is sym-
metric if it is invariant under certain transformations. This has
been the basis of the conventional foundations of geometry. For
example, in Einstein’s theory, the system of transformations that
act between reference frames, and produce the invariants of re-
lativity theory, necessarily act symmetrically on space-time.
Generally, therefore, a geometry based on maximizing invariants
is based on maximizing symmetry.

However, one of my basic principles says that memory (informa-
tion about the past) is not extractable from a symmetry; in fact,
symmetry erases memory storage. Therefore, conventional
geometry is based on maximizing memorylessness.

In relation to this, consider architecture. It is clear that the con-
ventional foundations of geometry produced the type of build-
ings that have been seen since the beginning of architecture.
Whether one considers the Greek temple, the Gothic cathedral,
the Renaissance palace, the French chateau, the 19th-century
bank, the 20th-century skyscraper, each is governed by symme-
try. Each, therefore, concerns the erasure of memory.

In contrast, consider my new foundations for geometry. Rather
than defining the geometric object as the memoryless object (the
invariant), as in the conventional foundations, the new founda-
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tions define the geometric object as the opposite: the memory
store. In fact, according to my new foundations, shape is equiva-
lent to memory storage. In particular, the claim is that all memory
storage takes place via shape. The goal of these new founda-
tions is to set up a system of rules that maximize memory stor-
age. These rules are inference rules for the recovery of process-
history. The fundamental rule is that memory is stored only in
asymmetries.

This gives an entirely new basis for architecture: Whereas con-
ventional architecture is based on symmetry — and therefore era-
sure of memory — the new architecture is based on asymmetry —
and therefore the storage of memory.

The goal of my architectural theory and practice, therefore,
becomes the elaboration of means by which memory can be
stored in the structure of a building. This book develops the
mathematical principles by which this is possible. My designs for
The Administration Building illustrate the use of these principles
to create a new type of building.

This section ends with photographs of the two opposite kinds of
buildings. First, Fig. 1.6 shows a conventional type of adminstra-
tion building — i.e., based on the conventional foundations of
geometry. It is a symmetrical structure. It stores nothing. It is
impervious to the vicissitudes of time. It stands aloof, disinterest-
ed, dull, and institutional.

In contrast, Fig. 1.7 shows one of my own administration build-
ings. This alive structure is highly asymmetric and therefore allows
us to recover the history of the diverse processes that produced it
— bending, cutting, twisting, breaking, grappling, bludgeoning,
etc. It is, therefore, the store of a past history. It is no longer dull
and aloof, like the conventional building. It is alive with time,
and, because it is filled with memory, it is alive with mind.



Chapter 2
A Process-Grammar for Shape

2.1 Curvature as Memory Storage

The purpose of this chapter is to illustrate the principles of the
previous chapter, by showing that a large amount of memory can
be stored in a particular type of asymmetry: the curvature extrema
of a shape. Thus, if the architect uses curvature extrema, he or
she can significantly increase the history stored in a building.

First let us understand clearly what a curvature extremum is. For
curves in the plane, the term curvature can be regarded simply as
the amount of bend. Fig. 2.1 illustrates this. The line at the top
has no bend and thus has zero curvature. As one moves down
the series of lines, the amount of bend (curvature) increases.

An important feature about the bottom line in Fig. 2.1 should
now be observed. It has a special point E where the curvature is
greater than at any other point on the line. For example, notice
that at points G and H the curve is actually flatter. Thus one says
that E is a curvature extremum.

According to Chapter 1, memory is constructed by the use of
inference rules; i.e., this is a forensic theory of geometry. Thus, |
will show that curvature extrema are powerful information
sources for the inference of the past history of an object. To do
this, I will be applying the two fundamental inference rules intro-
duced in section 1.5: the Asymmetry Principle and Symmetry
Principle. For illustration purposes, the discussion will be confined
to smooth closed curves in the 2D plane. Such curves can repre-
sent the outlines of many biological shapes, e.g., amoebas,
embryos, biological organs, human beings, etc., as well as non-
living entities such as spilt coffee, rain puddles, etc. My mathe-

Figure 2.1: Successively increasing curvature.
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Figure 2.2: How can one construct a symmetry axis between these two curves?

matical research shows that it is easy to extend the argument to
non-smooth shapes, and to 3D shapes.

2.2 General Symmetry Axes

It is first necessary to understand how symmetry can be defined
in complex shape. Clearly, in a simple shape, such as an equilat-
eral triangle, a symmetry axis is easy to define. One simply places
a straight mirror across the shape such that one half is reflected
onto the other. The straight line of the mirror is then defined to
be a symmetry axis of the shape. However, in a complex shape, it
is often impossible to place a mirror that will reflect one half of
the figure onto the other. Fig. 1.3 on page 13 is an example of
such a shape. However, in such cases, one might still wish to
regard the figure, or part of it, as symmetrical about some
curved axis. Such a generalized axis can be constructed in the
following way.

Consider Fig. 2.2. It shows two curves cq and ¢y, which can be
understood as two sides of an object. Notice that no mirror
could reflect one of these curves onto the other. The goal is to
construct a symmetry axis between the two curves. One pro-
ceeds as follows: As shown in Fig. 2.3, introduce a circle that is
tangential simultaneously to the two curves. Here the two tan-
gent points are marked as A and B.

Figure 2.3: The points Q define the simmetry axis.
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Next, move the circle continuously along the two curves, ¢q and
Cy, while always ensuring that it maintains the property of being
tangential to the two curves simultaneously. To maintain this
double-touching property, it might be necessary to expand or
contract the circle. Finally, on any circle, mark the point shown as
Q in Fig. 2.3. This is the point on the circle, half-way between the
two tangent points. As the circle moves along the curves, the
points Q trace out a trajectory, as indicated by the sequence of
dots shown in the figure. | define this to be the symmetry axis of
the two curves.

2.3 Symmetry-Curvature Duality

Recall that the goal of this chapter is to show that curvature
extrema can act as powerful memory stores; i.e., valuable histori-
cal information can be inferred from them. However, our rules
for the extraction of memory depend on the phenomenon of
symmetry. This means that we must find a connection between
symmetry and curvature.

In fact, forming such a connection presents a problem that is
deep in the foundations of mathematics. There are two main
branches of mathematics: algebra and topology. Algebra is the
study of structures of combination; whereas topology is the
study of neighborhood structures. Reflectional symmetry belongs
to the first branch, and curvature belongs to the second. Thus,
on shape, symmetry is constructed across regions, whereas cur-
vature is measured within a region. Reflectional symmetry is a
discrete property, whereas curvature is a smooth property.
Despite the fact that there is a fundamental difference between
symmetry and curvature, a deep link was shown between the
two in a theorem that | proposed and proved in the journal
Computer Vision, Graphics, Image Processing. This theorem will
be a crucial step in our argument:

SYMMETRY-CURVATURE DUALITY THEOREM (LEYTON, 1987):

Any section of curve, that has one and only one curvature extremum,
has one and only one symmetry axis. This axis is forced to terminate at
the extremum itself.

The theorem can be illustrated by looking at Fig. 2.4. On the
curve shown, there are three extrema: m1, M, m2. Therefore, on



27

)

— m1 ‘m2

Figure 2.4: lllustration of the Symmetry-Curvature Duality Theorem.

Figure 2.5: Sixteen extrema imply sixteen symmetry axes.

the section of curve between extrema m1 and m2, there is only
one extremum, M. What the theorem says is this: Because this
section of curve has only one extremum, it has only one symme-
try axis. This axis is forced to terminate at the extremum M. The
axis is shown as the dashed line in the figure.

It is valuable to illustrate the theorem on a closed shape, for exam-
ple, that shown in Fig. 2.5. This shape has sixteen curvature ex-
trema. Therefore, the above theorem tells us that there are sixteen
unigue symmetry axes associated with, and terminating at, the
extrema. They are given as the dashed lines shown in the figure.

2.4 The Interaction Principle

With the Symmetry-Curvature Duality Theorem, it now becomes
possible to use our two fundamental principles for the extraction
of history from shape: the Asymmetry Principle and the Sym-
metry Principle. In this section, we use the Symmetry Principle,
and in the next, we use the Asymmetry Principle.

The Symmetry Principle says that a symmetry in the present is
preserved backwards in time. Notice that this means that sym-
metry axes must be preserved backwards in time. In my previous
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research, | have shown that this occurs if the processes run along
the axes. The result is the following rule, which has been corrob-
orated extensively in both shape and motion perception:

INTERACTION PRINCIPLE (LEYTON, 1984):
Symmetry axes are the directions along which processes are hypothe-
sized as most likely to have acted.

2.5 Undoing Curvature Variation

Although the Interaction Principle tells us that the processes must
have acted along the symmetry axes, it does not tell us what the
processes actually did to the shape. For that, we must use the
Asymmetry Principle, which states that, in running time back-
ward, asymmetry is removed. In the present case, the asymmetry
to be considered will be distinguishability in curvature; i.e., differ-
ences in curvature (bend) around the curve. Therefore, differ-
ences in curvature must be removed backwards in time. Observe
that this means that one eventually arrives back at a circle,
because the circle is the only smooth closed curve without curva-
ture distinguishability; i.e. every point on a circle has the same
curvature as every other point. To conclude: The Asymmetry
Principle implies that the ultimate past of any smooth closed
curve must have been a circle.

With respect to this, consider again the Interaction Principle,
which says that the past processes moved along the symmetry
axes evident in the present shape. Incorporating this now with
the use of the Asymmetry Principle, we conclude that the past
processes moved along the axes pushing the boundary to create
the distinguishabilities in curvature. For instance: Each protrusion
in Fig. 2.5 was the result of pushing the boundary out along its

Figure 2.6: The processes inferred by the rules.
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Figure 2.7: The inferred histories on the shapes with 4 extrema.

Figure 2.8: The inferred histories on the shapes with 6 extrema.

associated axis, and each indentation was the result of pushing
the boundary in along its axis. One therefore sees that each axis
is the trace or record of boundary-movement. Taking the earlier
shape, Fig. 2.5, one now understands the axes as arrows, along
which the processes went, as shown in Fig. 2.6.

In particular, one can now understand the significance of the cur-
vature extrema. These are the end-points of the processes as
they moved along the traces. In fact, one can consider the traces
to be those of the curvature extrema as they were being pushed
along the axes.

2.6 Extensive Application
So far, in this chapter, we have developed three rules for the
extraction of history from curvature extrema. They are:

RuLE 1. The Symmetry-Curvature Duality Theorem: This says that each
curvature extremum has a unique axis leading to, and terminating at,
the extremum.

RuLe 2. A particular version of the Symmetry Principle, called the
Interaction Principle: This says that the processes, which created the
shape, went along symmetry axes.

RuLE 3. A particular use of the Asymmetry Principle: This use says that
differences in curvature must be removed backwards in time.



Figure 2.9: The inferred histories on the shapes with 8 extrema.

To obtain extensive corroboration for the above rules, let us now
apply them to all shapes with up to eight curvature extrema.
These are shown as the outlines in Figs. 2.7-2.9. When our infer-
ence rules are applied to these outlines, they produce the arrows
shown as the inferred histories. One can see that the results
accord remarkably well with intuition.

Further considerations should be made: Any individual outline,
together with the inferred arrows, will be called a process dia-
gram. The reader should observe that on each process diagram
in Figs. 2.7-2.9, a letter-label has been placed at each extremum
(the end of each arrow). There are four alternative labels, M+, m-
, m*, and M-, and these correspond to the four alternative types
of curvature extrema. The four types are shown in Fig. 2.10 and
are explained as follows:
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M+ m- mt M-

Figure 2.10: The four types of extrema.

The first two have exactly the same shape: They are the sharpest
kinds of curvature extrema. The difference between them is that,
in the first, the solid (shaded) is on the inside, and, in the second,
the solid (shaded) is on the outside. That is, they are figure/ground
reversals of each other. The remaining two extrema are also fig-
ure/ground reversals of each other. Here the extrema are the flat-
test points on the respective curves.

Now notice the following important phenomenon: In surveying
the shapes in Figs. 2.7-2.9, it becomes clear that the four
extrema types correspond to four English terms that people use
to describe processes:

EXTREMUM TYPE <~ PROCESS TYPE
M+ < protrusion
m- - indentation
m+ < squashing
M- < resistance

2.7 A Grammatical Decomposition of the Asymmetry
Principle

The third of the three curvature rules proposed above was a par-
ticular example of the Asymmetry Principle. What we will now
do is decompose this rule into components that yield additional
information concerning the past history of the shape.

To understand this approach, let us imagine that we have two
stages in the history of the shape. For example, imagine yourself
to be a doctor looking at two X-rays of a tumor taken a month
apart. Observe that any doctor examines two such X-rays (e.g., on
a screen), in order to assess what has happened in the intervening
month. This is exactly the type of problem we will solve now.
Problem: What is the deformational history that bridges any two
stages in the evolution of a shape?
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Figure 2.11: The downward squashing arrow (left shape) continues till it indents (right

shape).
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Figure 2.12: The upward resistance arrow (left shape) continues till it protrudes (right
shape).

Solution: In a paper | published in 1988, | showed that mathe-
matically, the deformational history can be composed of only six
types of events at curvature extrema; i.e., these six types consti-
tute a grammar that can construct any deformational history. |
called this the Process-Grammar. Although the six types of
events were defined mathematically, they are very easy to
describe intuitively, thus:

1. SQUASHING CONTINUES TILL IT INDENTS: This is illustrated in Fig. 2.11.
Observe that the downward squashing arrow in the left shape
explains the flattening that exists at the top of that shape relative
to the sharpening that exists toward the sides of the shape. In
this situation, the squashing arrow continues to push and even-
tually indents, as shown in the right shape.

2. RESISTANCE CONTINUES TILL IT PROTRUDES: This is illustrated in Fig.
2.12. We are considering the upward bold arrow in the left
shape. The process at this extremum is an internal resistance. In
order to understand this process, let us suppose that the left
shape represents an island. Initially, this island was circular. Then,
there was an inflow of water at the top (creating a dip inwards).
This flow increased inward, but met a ridge of mountains along
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Figure 2.14: The downward arrow (left shape) branches to form a bay (right shape).

the center of the island. The mountain ridge acted as a resistance
to the inflow of water, and thus the bay was formed. In the cen-
ter of the bay, the point labelled M- is a curvature extremum,
because it is the point on the bay with the /east amount of bend
(i.e., extreme in the sense of “least”).

Now, our concern here, with this resistance arrow, is the follow-
ing: What happens when the process is continued along the
direction of the arrow? This could happen, for example, if there
is a volcano in the mountains that erupts, sending lava down
into the sea. The result would therefore be the shape shown on
the right of Fig. 2.12. In other words, a promontory would be
formed into the sea.

3. SHIELD-FORMATION: This is illustrated in Fig. 2.13. Here the
upward bold arrow, in the left shape, branches, to create a shield
in the right shape, against the downward squashing process at
the top of the right shape. Notice that the extremum M+ at the
top of the left shape has split into two copies of itself on either
side of the right shape.

4. BAY-FORMATION: This is illustrated in Fig. 2.14. Here the down-
ward bold arrow, in the left shape, branches, to create a bay in
the right shape, against the upward resisting process in the cen-
ter of the right shape. Notice that the extremum m- at the center
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Figure 2.15: The main effect is the breaking-through of the upward bold arrow in the
right shape. This has caused the downward squashing arrow in the left shape to split
into two copies of itself, which move to the two sides of the right shape.
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Figure 2.16: The main effect is the breaking-through of the downward bold arrow in
the right shape. This has caused the upward resisting arrow in the center of the left
shape to split into two copies of itself, which move to the two sides of the bay in the
right shape.

of the left shape has split into two copies of itself on either side
of the bay in the right shape.

5. BREAKING-THROUGH OF A PROTRUSION: This is illustrated in Fig. 2.15.
The situation starts with the left shape, where, at the top, there
is the downward squashing arrow. This changes to the right
shape where the upward bold protruding arrow has broken
through. In breaking through, it has split the previous downward
squashing arrow into two copies of itself, which have moved to
either side of the shape; i.e. they are now seen as the two side
arrows on the right shape.

6. BREAKING-THROUGH OF AN INDENTATION: This is illustrated in Fig.
2.16. The situation starts with the left shape, where, in the cen-
ter of the bay, there is the upward resisting arrow. This changes
to the right shape where the downward bold indenting arrow
has broken through. In breaking through, it has split the previous
upward resisting arrow into two copies of itself, which have
moved to either side of the bay in the right shape.
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Above, | have given the six types of events or operations, into
which any deformation can be decomposed with respect to the
effects at extrema. | call this the Process-Grammar. The six opera-
tions are listed in the table below. For each operation, the table first
gives the intuitive description in English, and then the rigorous ef-
fect in terms of the curvature extrema involved. The rigorous de-
finitions can be checked on the figures illustrating these operations.

PROCESS GRAMMAR

1. Squashing continues till it indents: m+ > 0m0

2. Resistance continues till it protrudes: M- > OM+0

3. Shield-formation: M+ > M+m*+M+
4. Bay-formation: m > mMm
5. Breaking-through of a protrusion: m+ 2> m+M+m*
6. Breaking-through of an indentation: M > Mm M

2.8 Process-Grammar and Asymmetry Principle

Now the following observation is fundamentally important: Each
of the six rules of the Process Grammar represents an increase in
asymmetry over time. This is because each increases the distin-
guishability in curvature — which is the asymmetry being studied
here. To confirm this, observe that each of the right-hand shapes,
in Figs. 2.11-2.16, fluctuates more than the corresponding left-
hand shapes.

Mathematically, this is due to the fact that each of the operations
in the Process-Grammar replaces one curvature symbol by a triple
of curvature symbols — thus increasing the distinguishability.
Therefore, we conclude: each of the six rules of the Process
Grammar is an example of the Asymmetry Principle.

Now, recall my basic principle that memory is stored only in
asymmetries. This leads to the following conclusion: The six rules
of the Process Grammar are the six possible ways in which mem-
ory storage can increase at curvature extrema.

Finally, observe this: The purpose of this chapter has been to illus-
trate the fact that my new foundations for geometry give sys-
tematic rules for the extraction of memory from shape. In this
chapter, the rules presented were those that extract memory
from curvature extrema. However, my other books elaborate a
system of several hundred rules that extract memory from other
asymmetries in shape.
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2.9 Scientific Applications of the Process-Grammar

A basic claim of my new foundations for geometry is that they
give a unified basis for all the sciences and all the arts — i.e., the
claim is that the sciences and the arts are all determined by the
single goal of maximization of memory storage, and that this
gives them an underlying mathematical equivalence.

Almost as soon as | published the Process-Grammar in the jour-
nal Artificial Intelligence (1988), scientists began to apply it in
several disciplines; e.g., radiology, meteorology, computer vision,
chemical engineering, geology, computer-aided design, anatomy,
botany, forensic science, software engineering, urban planning,
linguistics, mechanical engineering, computer graphics, art, semi-
otics, archaeology, anthropology, etc.

It is worth considering a number of applications here, to illustrate
various concepts of the theory. In meteorology, Evangelos Milios
used the Process-Grammar to analyze and monitor high-altitude
satellite imagery in order to detect weather patterns. This
allowed the identification of the forces involved; i.e., the forces
go along the arrows. It then becomes possible to make substan-
tial predictions concerning the future evolution of storms. This
work was done in relation to the Canadian Weather Service.

OOQ@
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Figure 2.17: Continuous realization of the Process-Grammar for biological applica-
tions, by Steven Shemlon, using an elastic string equation.
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It is also worth considering the applications by Steve Shemlon, in
biology. Shemlon developed a continuous model of the grammar
using an elastic string equation. For example, Fig. 2.17 shows the
backward time-evolution, provided by the equation. It follows
the laws of the Process-Grammar. Notice how the shape goes
back to a circle, as predicted in section 2.5. Fig. 2.18 shows the
corresponding tracks of the curvature extrema in that evolution.
In this figure, one can see that the rules of the Process-Grammar
mark the evolution stages. Shemlon applied this technique to
analyze neuronal growth models, dental radiographs, electron
micrographs and magnetic resonance imagery.

Let us now turn to an application by Jean-Philippe Pernot to the
manipulation of free-form features in computer-aided design.
Pernot’s method begins by defining a limiting line for a feature as
well as a target line. For example, the first surface in Fig. 2.19
has a feature, a bump, with a limiting line given by its oval
boundary on the surface, and its target line given by the ridge
line along the top of the bump. The Process-Grammar is then
used to manipulate the limiting line of the feature. Thus, apply-
ing the first operation of the grammar to the left-hand squashing
process m+ in the surface, this squashing continues till it indents

Figure 2.18: Shemlon’s use of the Process-Grammar to label the transitions in the bio-
logical example in Fig. 2.17.



38

in the second surface shown in Fig. 2.19. With this method, the
designer is given considerable control over the surface to pro-
duce a large variety of free-form features.

A profound point can be made by turning to the medical appli-
cations for illustration. Let us consider the nature of medicine. A
basic goal of medicine is diagnosis. In this, the doctor is present-
ed with the current state of, let’s say, a tumor, and tries to recov-
er the causal history which led to the current state. Using the ter-
minology of this book, the doctor is trying to convert the tumor
into a memory store. Generally, | argue: Medicine is the conver-
sion of biological objects into memory stores.

Thus one can understand why the Process-Grammar has been
used extensively in medical applications.

However, in section 4.2, | argue that all of science is the conver-
sion of external physical objects into memory stores; in fact, that
science is the extension of the human computational system to
encompass the environment as extra memory stores.

With respect to this, it is particularly instructive to look at the
application of the Process-Grammar to chemical engineering by
John Peter Lee. Here the grammar was used to model molecular
dynamics — in particular, the dynamical interactions within mix-
tures of solvent and solute particles. Fig. 2.20 represents the data
shape, in velocity space, of a single solute molecule as it interacts
with other molecules.

The initial data shape is given by a sphere (in velocity space). This is
deformed by the successively incoming data in such a way that, at
any time, one can use my curvature inference rules on the current
shape, in order to infer the history of the data. In other words,
one does not have to keep the preceding data — one can use the
rules to infer it. Incidently, the lines in Fig. 2.20 correspond to the
axes associated with curvature extrema as predicted by the rules.
Lee stated that the advantage of basing the system on my rules
was that inference can be made as to how the shape-altering
"data-forces” have acted upon the data shape over the time
course, thus giving insight into the nature of the computational
force itself. In this, Lee shows a particularly deep understanding
of my work. As | say in section 4.4, because the inference rules
give a method of converting objects into memory stores, they
give a method of extending the computational system to include
those objects as memory stores.
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Figure 2.19: Application of the Process-Grammar to computer-aided design by Jean-
Pilippe Pernot.

Figure 2.20: Application of the Process-Grammar to molecular dynamics by John Peter
Lee.
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2.10 Artistic Applications of the Process-Grammar

In section 2.9, we saw that the Process-Grammar has been
applied in several scientific disciplines. In fact, Chapter 4 shows
that the new foundations for geometry give a basis for the sci-
ences and the arts. Thus, in my book the Structure of Paintings, |
show the power of the grammar to reveal the compositions of
paintings. In fact, the main argument of that book is this:
Paintings are structured by the rules of memory storage. That Is,
the rules of artistic composition are the rules of memory storage.
The book demonstrates this by giving detailed and lengthy analy-
ses of paintings by Picasso, Modigliani, Gauguin, Holbein, Ingres,
Balthus, Raphael, Cezanne, De Kooning, etc.

In Fig. 2.21, the rules for the extraction of history from curvature
extrema are applied to Picasso’s Still Life. The reader can see that
this gives considerable insight into the composition of the paint-
ing.

Figure 2.21: Curvature extrema and their inferred processes in Picasso’s Still Life.
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2.11 Architectural Applications of the Process-Grammar
The Process-Grammar was a significant tool used in the creation
of my Administration Buildings, some of which are shown in this
book. To illustrate this in detail, we will look at the Fourth
Administration Building, shown in Fig. 2.28.

Much of the generation of the building was based on two relat-
ed sequences of operations which | call (1) the Deepened-Bay
Scenario, and (2) the Double-Bay Scenario. Both sequences come
from the Process-Grammar. We will examine them in turn:

(1) THE DEEPENED-BAY SCENARIO.

This scenario starts with a single extremum shown in Fig. 2.22a.
In accord with my Symmetry-Curvature Duality Theorem, the
extremum has a single process-arrow as shown. In the next
stage, this arrow branches, forming a bay as shown in Fig.
2.22b. This is the use of operation 4, from the Process-Grammar,
i.e., bay-formation. Notice that this involves not only the branch-
ing effect, but also the introduction of the upward process that
creates the flattening in the center of the bay.

Figure 2.22: The Deepened-Bay Scenario.



Figure 2.23: The lower curve is an example of stage 1, a single extremum, in the
Deepened Bay Scenario. The upper curve is an example of stage 2, the ordinary bay.
(Fourth Administration Building.)

Figure 2.24: Four Deepened bays in the Fourth Administration Building.
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Next, there is a breaking-through of the central downward
plunging arrow, in Fig. 2.22c. This splits the previous upward
arrow into two copies that go left and right. The event is the use
of operation 6, from the Process-Grammar, i.e., breaking
through of an indentation. The resulting shape shown in Fig.
2.22c s called the deepened bay.

The three-stage sequence in Fig. 2.22, which | call the Deep-
ened-Bay Scenario, is used prolifically throughout my Fourth Ad-
ministration Building. For instance, the lower curve in Fig. 2.23
shows an example of the first stage, the single extremum. Then,
the upper curve in Fig. 2.23 shows the branching of the single
extremum into the ordinary bay, i.e., the second stage of the sce-
nario. Finally, Fig. 2.24 shows four examples of the deepened
bay, i.e., the third stage. The reader will be able to identify over a
hundred examples of this three-stage scenario in this administra-
tion building (Fig. 2.28).

(2) THE DOUBLE-BAY SCENARIO.

Here we start with two extrema, in opposite directions as shown
in Fig. 2.25a. In the next stage, one of these two extrema is pre-

Figure 2.25: The Double-Bay Scenario.



Figure 2.26: The lower curve has a double extremum. The upper curve takes this dou-
ble extremum and preserves one extremum while branching the other to form a bay.
(Fourth Administration Building.)

served — the left one in Fig. 2.25b — and the other branches to
become a bay — the right part of Fig. 2.25c. Therefore, this stage
is created by the application of the 4th Process-Grammar opera-
tion (bay-formation) to one of the two starting extrema. Notice
that the other extremum might swing around to compensate, as
seen on the left in Fig. 2.25b.

The third stage is shown in Fig. 2.25c. Here, two things have
happened: (1) The previously preserved extremum — the left one
in stage 2 — has now undergone branching, i.e., bay-formation,
which is the 4th Process-Grammar operation. (2) The bay of
stage 2 — on the right — has now undergone the transformation
into a deepened bay; i.e., breaking-through of indentation,
which is the 6th operation of the Process-Grammar.

The three-stage scenario in Fig. 2.25, which | call the Double-Bay
Scenario, is used prolifically throughout my Fourth Administra-
tion Building. For example, the lower curve in Fig. 2.26 is an
example of the first stage — a curve with the two extrema facing



Figure 2.27: Then the preserved extremum in the previous curve is branched to form a
bay, and the bay in the previous curve is branched to form a deepened bay. (Fourth
Administration Building.)

in opposite directions. Then the upper curve in Fig. 2.26 preserves
one of the extrema, while bifurcating the other into an ordinary
bay, i.e., the second stage in the scenario. Finally, Fig. 2.27 shows
the third stage. That is, the preserved extremum in the previous
stage is branched into a bay, and the bay in the previous stage is
branched into a deepened bay’. The reader will be able to identi-
fy many examples of this three-stage scenario in the Fourth
Administration Building (Fig. 2.28).

In addition, Fig. 2.29 to Fig. 2.31 show three further versions of
the Fourth Administration Building — all using multiple examples
of the Deepened-Bay Scenario and Double-Bay Scenario.

1. Because the bays face in opposite directions, one of them is rigorously a
shield, in the sense used in the Process-Grammar. This merely involves the
figure-ground reversal of part of the above scenario.
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Figure 2.28: The Fourth Administration Building, first version.







Figure 2.29: The Fourth Administration Building, second version.







Figure 2.30: The Fourth Administration Building, third version.







Figure 2.31: The Fourth Administration Building, fourth version.






Chapter 3
Architecture as Maximal Memory Storage

3.1 Introduction

My argument is that architecture up till now has been concerned
with the minimization of memory storage, whereas the architec-
ture | am proposing is concerned with the maximization of mem-
ory storage. This opposition exactly corresponds to the opposi-
tion between the conventional foundations for geometry (which
concern the minimization of memory storage) and my new foun-
dations for geometry (which concern the maximization of mem-
ory storage). As stated in section 1.1: New foundations to geom-
etry mean new foundations to architecture.

The purpose of this chapter is to show more deeply how memo-
ry storage can be increased in architecture.

3.2 The Two Fundamental Principles

In my book A Generative Theory of Shape, | argue that maxi-
mization of memory storage requires the fulfillment of two fun-
damental principles: The first is this:

MAXIMIZATION OF RECOVERABILITY. Maximize the retrievability of past
states.

The means by which retrievability is made possible has been
shown in Chapters 1 and 2. For example, we saw that past
states are retrievable only from asymmetries.

However, | also argue that the maximization of memory storage
is based on another principle, maximization of transtfer, which
means this: A situation is not seen as new, but as the transfer of
a previous situation. Note that it is a basic cognitive fact about
human beings that they see any situation they encounter in
terms of previous situations. This is an essential way in which the
cognitive system makes sense of the world. It allows previous
solutions to be adapted to new situations.

To see a situation B, not as new, but as the transfer of a previous
situation A, is to represent B as a memory store for A. In fact, as
explained later, we will not describe transfer in terms of “situa-
tions” but in terms of actions — a set of actions is transferred
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from one part of the history to another part of the history.
However, observe that the process of transfer must itself be car-
ried out by a set of actions. Therefore, in transfer, there are two
levels of actions: the set of actions being transferred, and the set
of actions doing the transfer. Now, since these two sets of actions
constitute history that the object undergoes, we have this:

Transfer is the history of history
The maximization of transfer is therefore expressed like this:
MAXIMIZATION OF TRANSFER. Maximize the transfer of history by history.

The profound relationship between transfer and memory storage
will be defined in this chapter.

3.3 Groups
The phenomenon of transfer will be analyzed using the mathe-
matical concept of a group.

A group is a complete system of transformations.
Examples of groups are:

(1) RotaTions. The complete system of rotations around a circle.
(2) TRANSLATIONS. The complete system of translations along a line.
(3) DerormATIONS. The complete system of deformations of an object.

The word “complete” is defined as follows: Let us suppose we
can list the collection of transformations 7;in a group G, thus:

G={To, T1, T2, ..}.

For example, the transformations 7; might be rotations. The con-
dition that this collection is complete, means satisfying the fol-
lowing three properties:

(1) Closure. For any two transformations in the group, their com-
bination is also in the group. For example, if the transformation,
rotation by 30°, is in the group, and the transformation, rotation
by 60°, is in the group, then the combination, rotation by 90°, is
also in the group.
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(2) Identity Element. The collection of transformations must con-
tain the “null” transformation, i.e., the transformation that has
no effect. Thus, if the transformations are rotations, then the null
transformation is rotation by zero degrees. Generally, one labels
the null transformation e, and calls it the identity element. In the
above list, we can consider Ty to be the identity element.

(3) Inverses. For any transformation in the group, its inverse
transformation is also in the group. Thus, if the transformation,
clockwise rotation by 30°, is in the group, then its inverse, anti-
clockwise rotation by 30°, is also in the group.

There is a fourth condition on groups, called associativity, which
is so simple that it need not be considered here.

3.4 Generating a Shape by Transfer

As argued in section 3.2, the maximization of memory storage is
dependent on satisfying two criteria: (1) maximization of recover-
ability, and (2) maximization of transfer. The previous chapters dis-
cussed recoverability. We now turn to transfer. The first thing we
will do is illustrate the means of generating a shape by transfer.
Fig. 3.1 shows a deformed cylinder. To generate it entirely by
transfer, we proceed as follows:

STaGE 1. Create a single point in space.

STAGE 2. Transfer the point around space by rotating it, thus pro-
ducing a circle. This is illustrated in Fig. 3.2.

STAGE 3. Transfer the circle through space by translating it, thus
producing a straight cylinder. This is illustrated in Fig. 3.3.

STAGE 4. Transfer the straight cylinder onto the deformed cylinder
by deforming it.

Figure 3.1: A deformed cylinder.
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Figure 3.2: A point is transferred by rotations, producing a circle.
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Figure 3.3: The circle is then transferred by translations, producing a straight cylinder.

Now observe that the four successive stages created a succession
of four structures:

Point »  Circle =  Straight cylinder = Deformed cylinder.

Most importantly, observe that each of the successive stages cre-
ated its structure by transferring the structure created at the pre-
vious stage; i.e., there is transfer of transfer of transfer. This
means that the final object was created by a hierarchy of
transfer. Furthermore, the transfer at each stage was carried out
by applying a set of actions to the previous stage, thus:

Stage 2 applied the group RoTATIONS to Stage 1.
Stage 3 applied the group TRANSLATIONS to Stage 2.
Stage 4 applied the group DEFORMATIONS to Stage 3.
This hierarchy of transfer can be written as follows:

PoINT @ RoOTATION @ TRANSLATIONS @ DEFORMATIONS.

The symbol ® means “transfer.” Each group, along this expres-
sion, transfers its left-subsequence, i.e., the entire sequence to its
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left. That is, going successively, left-to-right along the sequence:
(1) the group RoTaTIONS transfers its left-subsequence PoINT to cre-
ate a circle; then (2) the group TRANSLATIONS transfers its left-sub-
sequence POINT @ Rorarons (the circle) to create a straight cylin-
der, and finally, (3)_DerormATIONS transfers its left-subsequence
Pont @ Rotamons @ TransLATIONS (the straight cylinder) to create
the deformed cylinder.

It is important to notice that the hierarchical transfer structure
means that there are no actual objects, only actions. For exam-
ple, Fig. 3.3 shows that each cross-section is described as a circu-
lar action, and the relation between the cross-sections is
described by a translational action. Thus, as stated earlier, trans-
fer is a set of actions applied to a set of actions. That is:

Transfer is the application of history to history; i.e., transfer is the his-
tory of history.

For example, the rotational history that produced the cross-sec-
tion, itself undergoes a translational history.

3.5 Fiber and Control
Section 3.4 introduced the transfer operation @. This operation
always relates two groups, thus:

G @ G..

The lower group, that to the left of @, is transferred by the up-
per group, that to the right of ©. The lower group will be called
the FBER GROUP; and the upper group will be called the controL
GROUP. That is, we have:

Fieer Grour (@ ControL Group.

The reason for this terminology can be illustrated with the
straight cylinder. Here, the lower group was RoTATIONS, which
generated the cross-section, and the upper group was
TRANSLATIONS, Which transferred the cross-section along the cylin-
der, thus:

Rotarions @ TRANSLATIONS.
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The thing to observe is that this transfer structure causes the
cylinder to decompose into fibers, the cross-sections, as shown in
Fig. 3.4. Each fiber, a cross-section, is individually generated by
the lower group RoTaTIoNs. It is for this reason that | call the lower
group, the fiber group. Notice, also from Fig. 3.4, that the other
group TRANSLATIONS, controls the position of the fiber along the
cylinder. This is why | call the upper group, the control group.
Generally, a transfer structure causes a fibering of some space.
As a further illustration, consider what happened when we creat-
ed the deformed cylinder by adding DEFORMATIONS, above the
straight cylinder thus:

RoOTATIONS @ TRANSLATIONS @ DEFORMATIONS.

Here, DEFORMATIONS acts as a control group, and the group to its
left, Rotations @ TransLATIONS, acts as its fiber group. In this case,
the fibers are now the various deformed versions of the cylinder.
For example, the straight cylinder is the initial fiber, and any of its
deformed versions (created by the control group), are also fibers.
In my mathematical work, | showed that the transfer operation

can be powerfully modelled by the group-theoretic operation
called a wreath product.

3.6 Projection as Memory

It is instructive now to consider the shape shown in Fig. 3.5. This
is a square that has been projected onto a screen, i.e., it is pro-
jectively distorted. To generate it entirely by transfer, proceed as
follows:

Figure 3.4: Under transfer, a cylinder decomposes into fibers.
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Figure 3.5: A square distorted by projection.

Figure 3.6: The generation of a side, using translations.

Figure 3.7: Transfer of translation by rotation.

StaGe 1. Create a single point in space.

STAGE 2. Transfer the point along a line by translating it, thus pro-
ducing a straight line. This is shown in Fig. 3.6.

STAGE 3. Transfer the line by rotating it by 90° steps, thus produc-
ing a regular square. This is shown in Fig. 3.7.

STAGE 4. Transfer the regular square onto the distorted one, by
projecting it. This produces the projectively distorted square in
Fig. 3.5.

Observe that the four successive stages created a succession of
four structures:
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Point > Line = Regular Square =  Distorted square.

Most importantly, each of the successive stages created its struc-
ture by transferring the structure created at the previous stage.
This means that the final object was created, all the way up from
a point, by transfer.

Let us introduce some terminology. The group used in Stage 3,
rotating the side successively around the square, is the group of
four successive 90° rotations. This group will be labelled 4-Ro-
TATIONS. Then, the group used in Stage 4, creating the projectively
distorted square from the regular square, is the group of projec-
tive transformations of an object. We wiill label this group, Pro-
JECTIONS. It is called the projective group.

Now observe that the transfer, at each stage, was carried out by
applying a set of actions to the previous stage, thus:

Stage 2 applied the group TRANSLATIONS to Stage 1.
Stage 3 applied the group 4-RoTaTions to Stage 2.
Stage 4 applied the group PrOJECTIONS to Stage 3.

This hierarchy of transfer can be written as follows:
Pont @ Transtations @ 4-Romarions @ ProsecTions.
Notice that the fiber, consisting of the first three levels:
Pont @ Transtations @ 4-Rotamions

corresponds to the regular square.

The present section was given in order to show two things: (1)
The projective process in perception can be described by transfer.
For instance, in the above case, the regular square is transferred,
as fiber, onto the projected square as fiber. Formulating projec-
tion as transfer gives a much more powerful mathematics than
that encountered in current research in perceptual psychology
and computer vision. (2) Because transfer is used to describe
both the internal structure of objects, e.g., the internal structure
of the regular square, and external actions applied to the object,
such as projection, we have remarkable scientific unity across the
two domains.
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We should also note that projection acts to asymmetrize an
object. Therefore, according to the Asymmetry Principle (section
1.5), a projected object stores the memory of the projective
process; i.e., it is an increased memory store.

3.7 Regularity in Classical Architecture

Classical architecture is dominated by regular objects and regular
arrangements. Examples include columns, lines of columns,
reflectional sets of windows, etc. Using my new foundations for
geometry, | will now give a theory of what regularity means, and
then apply it to architecture:

THEORY OF REGULARITY

(1) The generative actions are_structured as an n-fold hierarchy of
transfer: Gy @ G2 @ .............. @ Gn.

(2) Each level can be specified by one parameter, e.g., angle around a
circle, distance along a line. This parameter represents the parameter
of time. Thus, the transfer hierarchy represents the transfer of time by
time.

(3) Each level consists of a group of actions that preserve shape and
size. Mathematically, there are only three kinds of actions that pre-
serve shape and size: translations, rotations, and reflections (together
with their combinations). The mathematical term for such transforma-
tions is isometries.

It should be noted that, with respect to condition (2) above, a
group given by one parameter can be specified by repeating a
single generator. In the continuous case (e.g., continuous rota-
tion around the circle), the generator is infinitesimal. In the dis-
crete case (e.g., movement by regular steps along the ground),
the generator is finite.

The class of groups satisfying the above three properties were
invented by me in my mathematical research, and | call them
Iso-REGULAR GROUPS. Let me give some illustrations:

Observe first that a straight cylinder is given by an iso-regular

group:

RoTATIONS @ TRANSLATIONS.

That is, it satisfies the above three properties: (1) It is an n-fold
hierarchy of transfer; (2) each level is specified by one parameter
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(RotaTions specified by angle, and TRaNsLATIONS by distance along
a line); and (3) each level preserves shape and size.
In contrast, consider the deformed cylinder:

ROTATIONS @ TRANSLATIONS @ DEFORMATIONS.

This requires an extra level of transfer, the group DEFORMATIONS,
which breaks conditions (2) and (3) of our theory of regularity:
for example, DEFORMATIONS does not preserve shape and size.
Therefore, whereas the transfer hierarchy for a straight cylinder is
an iso-regular group (i.e., it satisfies all three conditions), the
transfer hierarchy for a deformed cylinder is not an iso-regular
group. | will say, in the latter case, that the added level (deforma-
tions) breaks the iso-reqularity.

Now let us turn to the example of the square. Observe first that
the regular square is given by an iso-regular group:

TRANSLATIONS @ 4-ROTATIONS.

That is, it satisfies the above three properties: (1) It is an n-fold
hierarchy of transfer; (2) each level is specified by one parameter
(TRANSLATIONS is specified by distance along a line, and 4-RoTATIONS
by repeating the generator, 90°-rotation); and (3) each level pre-
serves shape and size.

In contrast, consider the projectively distorted square:

TRANSLATIONS @ 4-ROTATIONS @ PROJECTIONS.

This requires an extra level of transfer, the group PROJECTIONS,
which breaks conditions (2) and (3) of our theory of regularity:
for example, ProJECTIONS does not preserve shape and size.
Therefore, whereas the transfer hierarchy for a regular square is
an iso-regular group (i.e., it satisfies all three conditions), the
transfer hierarchy for a projectively distorted square is not an iso-
regular group. | will say again that the added level (projections)
breaks the iso-reqularity.

The theory of regularity, given above, allows us to develop an
understanding of regularity in classical architecture. | will argue:

REGULARITY IN CLASSICAL ARCHITECTURE
The regular surfaces and regular arrangements in classical architecture
correspond to iso-regular groups.
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Let us first consider regular surfaces in classical architecture. The
claim that regular surfaces are given by iso-regular groups allows
us to give a systematic classification of such surfaces. This classifi-
cation is shown in Table 3.1, which we will now explain.

The term level-continuous means that all levels are continuous.
Level-discrete means that at least one level is discrete. Consider
first the level-continuous surfaces. Mathematically, it is known
that there are only two continuous groups based on one para-
meter: (1) the group RoTATIoNs around a point in a plane, and (2)
the group TRANSLATIONS along a line. Since we want to maximize
transfer, these primitives are generated simply by taking all possi-
ble 2-level transfer hierarchies using ROTATIONS and TRANSLATIONS.
Notice that the table gives the cylinder in two forms, which | call
the cross-section cylinder and the ruled cylinder. These reverse
the order of RoTATIONS and TRANSLATIONS.

The two versions are illustrated in Fig. 3.8. The cross-section
cylinder is shown on the left, and is the transfer of the circular
cross-section (fiber) along the axis (control). In contrast, the ruled
cylinder is shown on the right, and is the transfer of a straight
line (fiber), around the circular cross-section (control).

The lower half of the table gives what | call the level-discrete
primitives. The cross-section block and ruled block correspond to
the two cylinder cases just discussed, where the continuous rota-
tion group RoTaTIONS is replaced by the discrete group of n equal-

Level-Continuous

Plane TRANSLATIONS @  TRANSLATIONS
Sphere RoTaTioNs @  ROTATIONS
Cross-Section Cylinder RoTaTIONs @  TRANSLATIONS
Ruled Cylinder TRANSLATIONS @ ROTATIONS

Level-Discrete

Cross-Section Block TRANSLATIONS @ n-RoTATIONS @ TRANSLATIONS
Ruled or Planar-Face Block ~ TranstaTions @ TRANSLATIONS @ n-ROTATIONS
Cube TRANSLATIONS @ TRANSLATIONS @ REFLECTION

® 3-ROTATIONS

Table 3.1: The reqular surfaces of classical architecture are given by iso-regular groups.
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Figure 3.8: Two alternative ways of generating a cylinder

ly-spaced rotations around a center, called n-RoTaTions. The cross-
section in the two types of block is an n-sided polygon, given by
the component TRANSLATIONS @ n-Rotarions in the entries shown
for these two blocks in the table. Notice that Transtations @ n-
RoTaTIoNs is the n-degree generalization of TRANSLATIONS @ 4-
RoTtaTIONS, given earlier for a square. The table shows that, in the
cross-section block, the cross-section component TRANSLATIONS
n-RoTaTioNs is the fiber, and TRANSLATIONS is the control that
sweeps this through space. In the ruled block, these two compo-
nents are reversed.

The final entry in the table is the cube. This is constructed as fol-
lows: The first two components, TRANSLATIONS @TRANSLATIONS, de-
fine a plane, i.e., the face of a cube. The next component, RE-
FLECTION, Creates a pair of reflectionally opposite faces from this.
The final component, 3-RoTaTioNs, generates all three pairs of
opposite faces of the cube, by rotating them onto each other.
Now let us turn to regular arrangements in architecture. The
rules are still the same: that is, | argue that regular arrangements
are given by iso-regular groups. To illustrate, let us consider
arrangements of columns. However the entire argument to be
given applies to all the arrangements in classical architecture.

We have seen that a column is given by an iso-regular group
which we can assume is the ruled-cylinder TRANSLATIONS ©)
RoTtaTIONs. A colonnade, shown in Fig. 3.9, is the transfer of a col-
umn by successive equal translations, i.e., by the group EQuAL-
TrANsLATIONS. Therefore, the entire group of the colonnade is the
following hierarchy of transfer:

TRANSLATIONS @ RoOTATIONS @ EQUAL-TRANSLATIONS
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Figure 3.9: A colonnade as the transfer of a column by successive equal translations.

This is an iso-regular group. That is, (1) it is an n-fold hierarchy of
transfer; (2) each level is specified by one parameter or genera-
tor; and (3) each level preserves shape and size.

Thus, we see that not only is a column given by an iso-regular
group, but so is this standard arrangement of columns.

Now let us show that other arrangements of columns, in classical
architecture, are given by iso-regular groups. Fig. 3.10 shows an
arrangement of columns in Palladio’s Villa Cornaro. Consider the
arrangement of the six columns on the upper level. All columns
are equally spaced from each other, except the middle two
which are slightly further apart. In the figure, this can be seen
clearly in the bottom set of columns, since this set does not have
the additional guide-lines that have been placed on the top set.
The extra spacing between the two middle columns separates
the left three columns from the right three columns as two visual
groupings. Now consider the left three columns. It is reflectional-
ly symmetric about the vertical line marked A. Similarly the right
three columns are reflectionally symmetric about the line marked
C. But observe that the central line marked B reflects the left
three columns onto the right three columns. This means the re-
flection structure A, in the left grouping, is transferred onto the
reflection structure C, in the right grouping, by the reflection
structure B. In other words, the reflection structure A and the
reflection structure C are two fibers, and the reflection structure
B is the control, that sends the two fibers onto each other. That
is, we get the transfer of reflection by reflection:

REFLECTION @ REFLECTION
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Figure 3.10: The transfer of reflection by reflection, in Palladio’s Villa Cornaro.

This, once again, is an iso-regular group. That is, (1) it is an n-fold
hierarchy of transfer; (2) each level is specified by one parameter
or generator; and (3) each level preserves shape and size.
Therefore, again it illustrates my claim that the regularities of
classical architecture are given by iso-regular groups.

The reader should note that Palladio uses this reflection-trans-
fers-reflection structure not only for columns, but for other com-
ponents such as windows. This can be seen, for example, by the
arrangement of windows in the facade of this building, and in
many of his other buildings. In fact, | have identified this as a fre-
guent component of standard architecture. It is driven by having
a centrally placed doorway, creating the control reflection group,
and then organizing each individual half (to the left and right of
the doorway) as a reflection structure in its own right, i.e., as a
reflection fiber. Examples of this reflection-transfers-reflection
structure range in diversity from St. Peter’s in Rome to the Empire
State Building in New York.

Let us return to Palladio’s Villa Cornaro. The colonnade shown in
Fig. 3.10 is at the back of the building, and this is itself reflected
onto the colonnade at the front of the building. This means that
there is a still higher level of transfer. That is, we add a further
level of reflection onto the two-level reflection structure just
given, thus obtaining a three-level transfer hierarchy of reflection:

REFLECTION @ REFLECTION @ REFLECTION

This, again, is an iso-regular group. In fact, let us now consider
Palladio’s Villa Rotunda. This building involves a major square
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Figure 3.11: Plan of Palladlio’s Villa Rotunda.

floor-plan, as shown in Fig. 3.11. Furthermore, as seen in the fig-
ure, the six-column structure exists on each of the four sides. This
can, of course, be modelled by adding the group of four rotations
4-RoTATIONS as the control group — transferring the six-column set
successively around the four sides. Once again, this would be
given by an iso-regular group. However, there is another iso-regu-
lar group that is equally relevant, and gives further insight into the
situation, as follows: Fig. 3.12 shows three of the four reflection
axes of a square. They are reflection m,, about the vertical axis,
reflection my about the horizontal axis, and reflection mp about
one of the diagonal axes. The important thing to observe is this:
The diagonal reflection transfers the vertical reflection onto the
horizontal reflection. This transfer structure is critical. It allows us
to regard the vertical reflection and the horizontal reflection as
fibers, and the diagonal reflection as control, that sends the two
fibers onto each other.

Now return to the Villa Rotunda. The six-column structure of the
front, combined with the six-column structure of the back, is
given by the same three-level hierarchy of reflections as in the
Villa Cornaro, which has the same combination of front and
back. However, in the Villa Rotunda this combination is itself
transferred onto the combination of the left and right sides. This
is done by the diagonal reflection axis — in the same way that mp
transfers my onto my in Fig. 3.12. The diagonal reflection is
therefore a still higher level of reflection. The Villa Rotunda is
thus given by a four-level hierarchy of reflection — each reflection
layer transferring the previous layer, thus:

REFLECTION @ REFLECTION @ REFLECTION @ REFLECTION
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Figure 3.12: Transtfer of reflection by reflection in a square.

Observe, once again, that this group is an iso-regular group, thus
reinforcing my claim that regular structures in classical architec-
ture are given by iso-regular groups.

3.8 Breaking the Iso-Regularity

We can now understand the enormous difference between the
buildings discussed in the previous section, e.g., by Palladio, and
my administration buildings shown in the plates of this book.
Whereas the buildings of Palladio are structured by iso-regular
groups, my adminstration buildings are not. Recall also that both
the components (e.g., columns) and the arrangements of com-
ponents (colonnades, etc.), in Palladio’s buildings, are structured
by iso-regular groups. In contrast, in my administration buildings,
the components are highly deformed objects, and the arrange-
ments are complex and highly irregular. In fact, since my build-
ings often involve extremely deformed cylinders, it is as if the
colonnades of classical architecture have been mangled, broken,
bludgeoned, twisted, and finally thrown into a pile as rejected
garbage. Thank God, someone has taste! To the conventional
aesthetic in architecture, my approach would be regarded very
negatively. But, in the remainder of the book, we shall see its real
value — first from a mathematical and computational point of
view, and then from a psychological one.

At this stage, it is worth viewing the two approaches next to
each other. For this, the reader should return to page 23, where
Fig. 1.6 shows a colonnade of a classical administration building,
and Fig. 1.7 shows what one can call a colonnade of one of my
buildings. Architecture begins with the latter. Why?
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The answer is that Palladio tries to minimize memory storage in a
building, and | try to maximize it. Palladio is given the task of cre-
ating a set of rooms, and even though functional considerations
might force the presence of some asymmetry, he will neverthe-
less try to minimize it, thus erasing memory as much as possible.
In contrast, my purpose is to maximize the memory storage, and
we have seen that this is done by breaking the iso-regular group,
wherever possible.

It should be noted that, in my published mathematical work, |
used this theory of iso-regular groups, and their breaking, to give
a reformulation of the foundations of General Relativity and
Quantum Mechanics. For example, the conservation laws of
Special Relativity correspond to the iso-regular groups that are
broken by General Relativity; and in Quantum Mechanics, the
hierarchical description of an atom, through its fine and hyper-
fine splittings, correspond to the breaking of iso-regular groups.

3.9 Reference Frames

My published psychological work on perception has shown that
the fundamental structure of the visual system is the Cartesian
reference frame and that this is given by a reflection structure.
For a 3D reference frame, the structure is as follows: Each of the
three coordinate planes is visually understood as a reflection
plane. These three reflection planes are three fibers, that are
rotated onto each other by the order-3 rotation group, which
acts as a control group. In fact, this transfer hierarchy is the same
one as that given for the cube in Table 3.1. That is:

The 3D Cartesian frame is given by an iso-regular group.
This is the same iso-regular group as that of a cube.

We shall see that this is fundamental to the generation of build-
ings as maximal memory stores. My mathematical work has
shown that most memory stores begin with the breaking of this
iso-regular group.

3.10 New Theory of Symmetry-Breaking

The Asymmetry Principle states that recoverability of history is
possible only if each asymmetry in the present goes back to a
past symmetry. This means that, forward in time, the history
must have been symmetry-breaking. That is, according to my



71

new foundations for geometry, memory-stores are created only
by symmetry-breaking.

The new foundations present a new theory of symmetry-break-
ing, which will now be explained in order to understand how
memory storage can be maximized in a building.

First, my new theory of symmetry-breaking opposes the theory
that has dominated mathematics and physics for over a century.
According to the standard theory, symmetry-breaking is
described by reduction of a group, for the following reason: A
symmetrical object is described by a group of transformations
that send the figure to itself (e.g., reflections). In fact, the sym-
metries of the object are given by these transformations. When
some of the symmetries are destroyed, then correspondingly
some of those transformations are lost and, therefore, the group
is reduced. This means a loss of information.

However, in our system, symmetry-breaking is associated with
the expansion of the group. For instance, recall from section 3.4
the case of the cylinder. The straight cylinder was given by the

group:
POINT (0] RoOTATIONS 0] TRANSLATIONS

Then the deformed cylinder was given by taking this group as
fiber, and extending it by the group DeFORMATIONS, via the transfer
operation @, thus:

PoINT @ ROTATIONS @ TRANSLATIONS @ DEFORMATIONS

The added group, DerFormATIONS, breaks the symmetry of the
straight cylinder. However, the group of the straight cylinder is
not lost in the above expression. It is retained as fiber. In fact, it is
transferred onto the deformed cylinder, and it is this that allows
us to see the latter cylinder as a deformed version of the straight
cylinder. That is, the deformed cylinder stores the memory of the
straight one.

Thus, we have a new view of symmetry-breaking:

NEw VIEW OF SYMMETRY-BREAKING. When breaking the symmetry of

an object which has symmetry group Gi, take this group as

%er, and extend it by the group Gy, via the transfer operation
| thus:
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G 0] G>

where G is the group of the asymmetrizing action. As a result,
we have this: The present is seen as a transferred version of the
past.

3.11 Maximizing Memory Storage

In section 3.2, | argued that the maximization of memory storage
requires two principles: (1) maximizing the recoverability of the
past, and (2) maximizing the transfer of history by history. | will
now show that there is a deep connection between these two
principles.

Let us go back to the example of the deformed cylinder. Section
3.4 showed how this cylinder can be generated, all the way up
from a point, by layers of transfer: One starts with a point, then
one transfers the point by rotations to create a circle, then one
transfers the circle by translations to create a straight cylinder,
and finally one transfers the straight cylinder by deformations to
produce the deformed cylinder. This means that, forward in time,
one goes through a sequence of four stages that create a succes-
sion of four structures:

FORWARD TIME
Point 2 Circle =  Straight cylinder 2 Deformed cylinder

Each stage creates its structure by transferring the structure cre-
ated in the previous stage.

Now let us consider how one recovers that history. This means
that one must reverse the arrows; i.e., go backward in time.

BACKWARD TIME
Deformed cylinder = Straight cylinder 2 Circle 2 Point

Thus, starting with the deformed cylinder in the present, one
must recover the backward history through these stages. We
now ask how this recovery of the past is possible. The answer
comes from our Asymmetry Principle (section 1.5), which says
that, to ensure recoverability of the past, any asymmetry in the
present must go back to a symmetry in the past.
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Now the word asymmetry, in mathematics and physics, really
means distinguishability, and the word symmetry really means
indistinguishability. Thus the Asymmetry Principle really says that,
to ensure recoverability, any distinguishability in the present must
go back to an indistinguishability in the past. In fact, the back-
ward-time sequence, given above, is recovered exactly in this
way, as follows:

(1) DEFORMED CYLINDER = STRAIGHT CYLINDER: The deformed cylin-
der has distinguishable (different) curvatures at different points
on its surface. By removing these distinguishabilities (differences)
in curvature, one obtains the straight cylinder, which has the
same curvature at each point on its surface, i.e., indistinguishable
curvature across its surface.

(2) STRAIGHT cYUNDER > CIRCLE: The straight cylinder has a set of
cross-sections that are distinguishable by position along the cylin-
der. By removing this distinguishability in position for the cross-sec-
tions, one obtains only one position for a cross-section, the start-
ing position. That is, one obtains the first circle on the cylinder.

(3) CRCLE =2 PoINT: The first circle consists of a set of points
that are distinguishable by position around the circle. By remov-
ing this distinguishability in position for the points, one obtains
only one position for a point, the starting position. That is, one
obtains the first point on the circle.

We see, therefore, that each stage, in the backward-time direc-
tion, is recovered by converting a distinguishability into an indis-
tinguishability. This means that each stage, in the forward-time
direction, creates a distinguishability from an indistinguishability
in the previous stage. Let us check this with the example of the
deformed cylinder. The sequence of actions used to generate the
deformed cylinder from a point are:

Pont @ Romatons @ Transiations @  Derormations

Observe that each level creates a distinguishability from an indis-
tinguishability in the previous level. That is, RoTATIONS produces a
cross-section by creating distinguishability in position for the
single point on the previous level. Then TRANSLATIONS produces a
straight cylinder by creating distinguishability in position for the
single cross-section on the previous level. And finally,
DerorMATIONS produces a deformed cylinder by creating distin-
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guishability in curvature on the surface of the straight cylinder of
the previous level.

The fact that each level creates a distinguishability (asymmetry)
from an indistinguishability (symmetry) in the previous level,
means that each level is symmetry-breaking on the previous
level. However, we have also seen that each level transfers the
previous level. This is a fundamental point: Each level must act by
both symmetry-breaking and transferring its previous level. To
fully understand the importance of this point, let us state it with-
in the main argument of this section:

MAXIMIZATION OF MEMORY STORAGE

Maximization of memory storage requires (1) maximizing the recover-
ability of the past, and (2) maximizing the transfer of history by history.
This means that each stage of the history must fulfill two conditions:
(1) It must be symmetry-breaking on the previous stage. (2) It must act
by transferring the previous stage.

That is, each stage must be a symmetry-breaking transfer of the previ-
ous stage.

The concept of symmetry-breaking transfer is fundamental to my
new foundations for geometry. It accords with the statement
made at the end of section 3.10. Also it implies that, when one
breaks a regularity, one does not lose the internal memory that
was stored in it. That is, the actions generating the irregularity do
not erase the previous regular actions in the memory store, but
are actually added to the memory store. Therefore, the memory
store increases.

The concept of symmetry-breaking transfer explains this phe-
nomenon as follows: The actions creating the irreqularity transfer
the actions creating the regularity onto the irregularity. As an
example, the actions that deform a regular cylinder transfer the
regular cylinder onto the deformed cylinder. In other words,
there is an “imprint” of the regular cylinder on the deformed
cylinder. This means that the deformation was a symmetry-
breaking transfer — i.e., it broke the symmetry of the past regu-
larity, but transferred it onto the current irregularity. This allows
the recoverability of the entire history; i.e., we can recover both
the actions that generated the past regularity and the actions
that generated the current irregularity. Therefore, memory stor-
age has been maximized.
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Thus, one can see that the concept of symmetry-breaking trans-
fer is fundamental to any architecture that tries to maximize
memory storage in a building. This concept is basic to that given
in the next section, which is the culminating concept in our theo-
ry of how to maximize memory storage in a building — the con-
cept of unfolding.

3.12 Theory of Unfolding

We will now use the principles developed in the previous sec-
tions to develop a generative theory of complex shape, such that
it becomes possible to create buildings of arbitrarily large memo-
ry storage.

It is first necessary to solve the fundamental problem of com-
bining objects. Consider Fig. 3.13. Each of the two objects indi-
vidually has a high degree of symmetry. However, the com-
bined structure shown loses much of this symmetry; i.e., causes
a severe reduction in symmetry group. For example, the contin-
uous rotational symmetry of the cylinder is not retained in the
combined structure of the cylinder and cube. We want to
develop a group that encodes exactly what the eye can see. In
particular, in the combined situation, one can still see the indi-
vidual objects. Therefore, we want to develop a group of the
concatenated structure in which the groups of the individual
objects are preserved, and yet there is the extra information of
concatenation.

The new foundations solve this problem in the following way:
the generative history of the configuration starts out with the
two independent objects, and therefore the group of this start-
ing situation is given by the group

chlinder X chbe

where the groups Gginder and Geupe are the iso-regular groups of
the two objects, and the symbol X means direct product, which,
in group theory, always encodes the independence of the two
groups on either side of the product symbol.

Now, by the maximization of transfer, this starting group, i.e., the
direct product group shown above, must be transferred onto
subsequent states in the generative history, and therefore it must
be the fiber of a transfer hierarchy in which the control group
creates the subsequent generative process. Let us denote the
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control group by ConTtroL which we will take to be the group of
translations and deformations of three-dimensional space. The
full structure, fiber plus control, is therefore the following trans-
fer hierarchy:

[ch/fnder X chbe] @ C ONTROL

The way this group will act will be as follows: First, by our theory
of recoverability, the control group must have an asymmetrizing
effect. Thus, the initial copy of the fiber Geiinder X Geube Must be
the most symmetrical configuration possible. This exists only
when the cube and the cylinder are coincident with their symme-
try structures maximally aligned. This will be called the ALGNMENT
KerNEL. For example, their centers, reflection planes, rotation
axes, must be maximally coincident.

Next, choose one of the two objects to be a reference object.
This will remain fixed at the origin of the coordinate system. Let
us choose the cube as the referent.

Given this, now describe the action of the control group ConTroL
translating and deforming the cylinder relative to the cube. Each
subsequent copy of the fiber will therefore be some configura-
tion of this system. The crucial concept is that the control group
transtfers configurations onto configurations.

Let us now understand how to add a further object, for example
a sphere. First of all, the fiber becomes:

Gsphere X ch/inder X Geube

Figure 3.13: Combination breaks symmetry.
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where we have added the iso-regular group of the sphere. In
such expressions, our rule will be that each object encoded along
this sequence provides the reference for its left-subsequence of
objects. Thus the cube is the referent for the cylinder-and-sphere,
and the cylinder is the referent for the sphere. Accordingly, there
are now two levels of control, each of which is ConTtroL, and
each of which is added via the transfer product @. Thus we
obtain the 3-level transfer hierarchy:

[GsphereX ch/inderX chbe] ® CONTROL1 @ CONTROLZ

This is interpreted in the following way: Initially, the three objects
(cube, cylinder, sphere) are coincident with their symmetry struc-
tures maximally aligned. This is the fiber copy | have called the
alignment kernel. The higher control group ConTROL, moves the
cylinder-sphere pair in relation to the cube. The lower control
group CoNTROL; moves the sphere in relation to the cylinder.

The above discussion has been illustrating a class of groups |
invented, called TeLescope Groups. To get an intuitive sense of a
telescope group, think of an ordinary telescope. In an ordinary
telescope, you have a set of rings that are initially maximally coin-
cident. Then you pull them successively out of alignment with
each other. A telescope group is a group structured like this. In
fact, it is part of a still larger class of groups which | invented,
called UnrobiNg Groups. Unfolding groups are the most impor-
tant class of generative structures in my new foundations for
geometry. The basic idea is that any complex structure can be
unfolded from a maximally collapsed version of itself which [ call
the alignment kernel.

Unfolding groups are characterized by the following two properties:

SeLecTION: The control group acts selectively on only part of its fiber.
MIsALGNMENT: The control group acts by misalignment.

My published mathematical work has invented three kinds of
unfolding groups that are particularly valuable in the creation of
memory stores:

(1) Telescope groups.
(2) Super-local unfoldings.
(3) Sub-local unfoldings.
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We have so far described the first type, telescope groups. Now let
us move on to the second type, super-local unfoldings. These add
an extra control level above the existing hierarchy such that it
affects only some part of that hierarchy. These groups are useful
because they can model cross-hierarchy selection and modifica-
tion; i.e., they can cut across the existing hierarchy without
respecting its boundaries, e.g., they can fracture the entire design.
The third type, sub-local unfoldings, add an extra fiber level
below only some part of the existing hierarchy. They can be re-
garded as generalizations of telescope groups. Intuitively, if a tele-
scope group is regarded as an octopus with one arm, then a sub-
local unfolding group can be regarded as an octopus with several
arms; indeed the arms can themselves have arms, and so on.

An important result of defining sub-local unfoldings was that it
allowed me to give an extensive algebraic theory of software. For
example, | showed that such unfoldings provide a deep under-
standing of designer-created inheritance, which is a basic part of
CAD, robotics, and animation. For instance, in designing a serial-
link manipulator (like an arm), one specifies an inheritance hierar-
chy in which each link is the parent of the link below, which
becomes its child. This means that the child link inherits the trans-
form applied to its parent, but then adds its own. | gave the first
algebraic theory of inheritance, showing that it is best formulated
as a transfer (i.e., wreath) product of groups in which the child
corresponds to the fiber and the parent corresponds to the con-
trol. This has a crucial relation to my theory of memory storage, as
follows: Recall from section 3.9 that | proposed that a frame is
actually a symmetry structure. Initially, in the design process, all
object-frames are coincident (i.e., in their default values), and the
successive design actions move the frames out of alignment.
Thus, by my geometric theory, the design process breaks the sym-
metries of a frame. In this way, | showed that inheritance is given
by symmetry-breaking transfer, which is the fundamental require-
ment given in section 3.11 for maximizing memory storage.

Also, | showed that sub-local unfoldings give a new formulation
of the Boolean operations: All three Boolean operations are gen-
erated by an unfolding group.

A further powerful property of unfoldings is that they handle anom-
alies. This leads to the following understanding of complex shape:
Complex-shape generation is the generation of anomalies.
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Figs. 3.16-3.20 illustrate the mathematical principles of this sec-
tion with some of my Administration Buildings, as follows:

FIRST ADMINISTRATION BUILDING.

The First Administration Building, shown in Fig. 3.16, was creat-
ed by unfolding groups based on an alignment kernel containing
two iso-regular groups: the world frame (as triple-reflection
structure) and the cylinder. This means that, initially, the symme-
tries were maximally aligned, and unfolding successively mis-
aligned the symmetries, thus creating the building as a memory
store. For example, sub-local unfolding selected the horizontal
reflection plane from the world-frame triple and rotated it, creat-
ing the fan of large planes shown in the center of the building —
thus breaking the symmetry of the world frame. Furthermore,
above this sub-local unfolding, a telescope unfolding group was
then added, successively moving the rotation axis of the fan in
the same way that the rotation axis of a joint undergoes succes-
sive Euclidean motions down the successive joints of a serial-link
manipulator. This successive movement of rotation joints is
shown along the bottom of Fig. 3.14.

SECOND ADMINISTRATION BUILDING.

The Second Administration Building, shown in Fig. 3.17, was cre-
ated by unfolding groups based on an alignment kernel of three
iso-regular groups — the cube, cylinder, and sphere — all aligned
with the worldframe (which is an example of the cube as triple-
reflection structure). This means that, initially, their symmetries
were all maximally aligned, and unfolding successively misaligned
these symmetries, thus creating the building as a memory store.

Figure 3.14: Succession of moved rotation axes in the First Administration Building.
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Figure 3.15: (a) Initially, the cylinder-sphere pair share the same horizontal reflection
plane. (b) Unfolding has the effect of misaligning those reflection planes.

For example, the cube was unfolded out of alignment to become
the set of four adjacent boxes shown in the middle (Fig. 3.17),
which correspond roughly to four quadrants of the world frame.
Then, they were successively misaligned further outwards from
these four positions, to create successively increasing anomalies
(broken cubes, dislodged planes, etc.). This is an example of sub-
local unfolding. Also, within each unfolded box, there is a set of
tubes which inherit (as parent to child) the position of the box
but then undergo their own personal process of anomalization
as inheritance children.

In addition, along the bottom, there are streams of cylinders that
were unfolded as inheritance chains, independently from those
tubes created within the boxes. The level of detail with which the
theory works is considerable. For example, each tube along the
bottom is an example of a telescope group, as follows: Each is a
parent-child pair consisting of a cylinder (parent) and a sphere
(child). Initially, the cylinder and sphere have their symmetries
maximally aligned, as shown in Fig. 3.15a, where they share the
same horizontal reflection plane through the center of the cylin-
der and the equator of the sphere. Fig. 3.15a, therefore, shows
the alignment kernel. Then, the sphere is unfolded out to one
end of the cylinder, as shown in Fig. 3.15b, thus misaligning their
horizontal reflection planes. Notice that the transition from Fig.
3.15a to 3.15b has the telescope-opening effect that is basic to a
telescope group.

THIRD ADMINISTRATION BUILDING.

Like the First Administration Building, the Third Administration
Building, shown in Fig. 3.18, was created by unfolding groups
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based on an alignment kernel containing two iso-regular groups:
the world frame and cylinder. However, whereas in the first
building, sub-local unfolding was applied to the horizontal reflec-
tion plane from the triple reflection structure of the world frame,
here, in contrast, unfolding was applied to all three planes. The
planes shown in Fig. 3.18, therefore, represent a dislodged ver-
sion of the original Cartesian frame; i.e., the building is actually a
comment on the world frame, and it is so by having injected me-
mory storage into that frame.

Fig. 3.19 illustrates some additional concepts using the Third
Administration Building. First, a typical part of New York City was
developed further using sub-local unfoldings, as follows: It
should be noted that an ordinary apartment building has highly
regular sub-structures (e.g., repeating windows) corresponding
to iso-regular groups. In Fig. 3.19, perspective transformations
were applied to such buildings. These transformations increase
the memory storage because, as was shown in section 3.6, pro-
jection causes asymmetrization of iso-regular groups, thus ensur-
ing the recoverability of the projective action. Notice that these
projections were applied sub-locally, i.e., to the individual apart-
ment buildings, not to the global city-scape.

A final crucial stage was added to this unfolded structure: The
Third Administration Building was Boolean-subtracted from it. In
other words, the administration building was carved out of the
city-scape. This building is, therefore, not present in any way as
positive space. It is present only as memory, its imprint left on the
world, as a virulent ghost, holding together the projectively pol-
luted landscape with its dislocated grasp.

FOURTH ADMINISTRATION BUILDING.

The Fourth Administration Building was discussed in section
2.11, where it was shown as Fig. 2.28. With the ideas of the pre-
sent chapter, we can discuss it further. This building was created
by unfolding groups based on an alignment kernel containing
two iso-regular groups: the world frame and cylinder. The actions
applied to the cylinder were discussed in detail in section 2.11,
where it was shown that they follow the Deepened-Bay and
Double-Bay Scenarios, compiled from the Process-Grammar. In
the present section, we will therefore discuss the actions on the
other iso-regular group, the world frame. Whereas the First
Administration Building applied sub-local unfolding to the hori-
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zontal reflection plane from the triple-reflection structure of the
world frame, the Fourth Administration Building applied sub-
local unfolding to the vertical plane in that triple-reflection struc-
ture. This is a crucial psychological difference, because the hori-
zontal and vertical planes have different relationships to the grav-
itational field — the horizontal plane is in stable equilibrium and
the vertical plane is in unstable equilibrium. Now, the particular
vertical plane, selected by sub-local unfolding, is shown as the
flat back plane that directly faces the viewer in Fig. 2.28. As can
be seen, it has undergone stretching to a rectangle, which, being
an asymmetrization, has increased its memory storage. The sub-
local unfolding is continued further, as follows: The plane is then
contracted to a narrow long vertical rectangle which is repeated
by the iso-regular group of equal translations and Boolean sub-
tracted from the back plane to produce the sequence of repeat-
ed rectangular holes along that plane. The rectangular holes
destroy the continuous translational symmetry across the plane,
thus increasing the memory storage further. Next, this structure —
the back plane together with its sequence of rectangular holes —
undergoes unfolding through various types of misalignments
involving shearing, rotation and bending — which produce the
large structures in front of the plane. This substantially increases
the memory storage. The reader should note that the particular
storage involved is related to the history inferred from a rotated
parallelogram, in Fig. 1.5.

At this stage, it is worth illustrating the use of super-local unfold-
ing. Fig. 3.20 shows the same building at a further stage of
development. The added stage is a super-local unfolding. The
reader will recall that, in such an unfolding, an extra control
group is placed above the existing transfer hierarchy, and, there-
fore, in its selective action, it can cut across the inheritance hier-
archy, ignoring the borders within that hierarchy. This is exactly
what has happened here. The version of the Fourth Admin-
istration Building discussed in the previous paragraph now
undergoes various cross-hierarchy selections plus misalignments
that completely violate the hierarchy. As the reader can see, this
results in a strong sense of fracturing. This asymmetrization has
further increased the memory storage.



Figure 3.17: The Second Administration Building.




Figure 3.18: The Third Administration Building.
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Figure 3.20: A further development of the Fourth Administration Building.



Chapter 4
Architecture and Computation

4.1 Introduction

My new foundations for geometry give a relationship between
architecture and computation that is entirely different from the
relationship that is standardly discussed. The standard relationship
concerns the use of computers in architecture — both as tools for
imaginative design, and also enabling manufacturing and con-
struction. In this, the computer’s role is one of facilitation.
However, it is actually dispensable. Theoretically, it is possible to
construct the buildings without the use of computers — except that
this would take considerably longer. Therefore, what is used here
is the standard property of a computer: speed based on miniatur-
ization of a symbolic process — a process which could be carried
out with a pencil and paper, and indeed was carried out with a
pencil and paper in Turing’s original formulation of a computer.
However, in contrast to this, my foundations of geometry define
an entirely new relationship between architecture and computa-
tion. This relationship is not dispensable. In order to understand
the new relationship, it is necessary to understand that the new
theory of geometry gives new foundations for each of the fol-
lowing three areas: science, art, and computation. These will be
described, successively, in the following sections.

4.2 New Foundations for Science

As a result of the new foundations for geometry, | have, in my
mathematical research, been able to give new foundations for
science. According to these foundations, science is the conver-
sion of objects into memory stores. Let us illustrate this with gen-
eral relativity and quantum mechanics.

In general relativity, empty space-time is flat. However, when one
introduces mass, e.g., a planet, the resulting gravitational force
causes space-time to become curved. We shall now see that this
conforms with our Asymmetry Principle (section 1.5), which says
that memory is stored only in asymmetries: The flatness of empty
space-time is the most symmetrical condition possible. Then, the
introduction of the gravitational force causes space-time to lose
this symmetry, i.e., it becomes curved. Therefore, the asymmetry
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in curved space-time acts as a memory store for the action of the
gravitational force.

Now let us turn to quantum mechanics. Consider, for example,
the modelling of the hydrogen atom. The atom involves a num-
ber of forces between components of the electron and proton.
The way this is modelled is as follows. One starts with the free-
particle situation — that in which there is no force. Here, the
potential energy is zero throughout space. This is the most sym-
metrical situation possible. That is, the potential energy is sym-
metric (indistinguishable) under translations across space and
rotations around any point in space. Then one adds the most
important force of the hydrogen atom — the electrostatic interac-
tion between the electron and proton. This makes the situation
asymmetrical. The reason is that the electrostatic force destroys
the translational symmetry of the energy across space, as well as
the rotational symmetry around any point, except the center of
the atom. Then, in the next stage, one adds the force between
the electron’s spin and orbital angular momentum. This makes
the energy still more asymmetrical. Then, in the next stage, one
adds the force between the spins of the proton and electron.
This makes the energy still more asymmetrical.

Thus, the successively added forces have the effect of successive-
ly adding asymmetries. Therefore, the successive asymmetries act
as memory stores for the successive forces.

The above discussion has illustrated one of the basic principles of
my new foundations for science: The purpose of science is to
convert environmental objects into memory stores. This gives a
deep analysis of scientific activity, as follows: Conventionally, one
says that the main concern of science is explaining how things
are caused. However, my book Symmetry, Causality, Mind (MIT
Press, 630 pages) shows that “explaining how things are
caused” is the same as “converting them into memory stores.”
That is, extracting the causal history from an object is the same
as viewing the object as a memory store of that history. However,
the latter formulation is more powerful, since it is tied to the very
concept of computation. Furthermore, | have shown that the
new foundations lead to an entire re-structuring of science, in
which the conventional systems of laws (e.g., Newton’s laws,
Einstein’s field equations) are replaced by inference rules for
memory retrieval.
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For the present discussion, the crucial point is this: Whereas the
conventional goal of science is to give the maximal amount of
causal explanation, my new foundations give the goal of science
as this: Science is the conversion of the environment into maxi-
mal memory stores.

4.3 New Foundations for Art

The new foundations for geometry lead to a new theory of aes-
thetics. By an extensive analysis of painting, music, and design,
my mathematical work has shown the following:

Aesthetics is the theory of memory storage.

In fact, this proposal covers both the arts and the sciences. In the
arts, | argue that the reason why art is so highly prized is this:

Artworks are maximal memory stores.

In the sciences, | argue that the reason why aesthetics is known
to control much of scientific discovery is that science is the means
of converting the environment into memory stores, and that aes-
thetics is the means of extracting the memory from those stores.
In other words, both the sciences and the arts are driven to cre-
ate maximal memory, and aesthetics is the means of accessing
that memory. Consider, as an analogy, a computer connected to
an external memory store via a cable: Aesthetics would be the
means by which the computer communicated with the memory
store via the cable.

Since, according to this theory, the sciences and the arts are dri-
ven by the same aim, what is the difference between them?

I argue this: Computation involves two basic operations: (1) read-
ing a memory store, and (2) writing a memory store. The claim
then becomes this: Science is the process of reading a memory
store; and art is the process of writing a memory store.

Let us consider this proposal in more detail: According to the
above theory, both the scientist and artist are interested in the
maximization of memory information. The scientist focuses on
maximizing the information obtained by reading. As stated in
section 4.2, the scientist converts the environment into memory
stores; in other words the scientist is interested in forcing the
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existing states in the environment to be memory stores. In con-
trast, the artist focuses on maximizing the memory information
by actually creating new memory stores in the environment:

4.4 New Foundations for Computation

My new foundations for geometry are equivalent to new founda-
tions for computation. The reason is this: In the new foundations for
geometry, shape is equivalent to memory storage, and, in particular,
all memory storage takes place via shape. Furthermore, the geomet-
ric theory consists of two inter-related components: (1) the inference
rules for the extraction of history from shape; and (2) the generative
operations which create the shape. The first of these components
can be regarded as the reading operation in a computational
process, and the second can be regarded as the writing operation.
These reading and writing operations are far more sophisticated
than the reading and writing operations of conventional com-
puters, where reading the state of a memory store means merely
registering the state, and writing the state means merely switch-
ing it (by interchanging 0's and 1%). In contrast, in the new foun-
dations, the reading and writing operations are, respectively, the
extraction and creation of history, and this is based on new and
very deep relations between asymmetry and symmetry, defined
in our geometric theory, e.g., symmetry-breaking transfer
described in Chapter 3.

Now, recall from section 4.3 that, according to the new founda-
tions, aesthetics is the theory of memory storage. Furthermore,
we said that this theory has two components: reading a memory
store (which, according to the new foundations, is the function
of science) and writing a memory store (which, according to the
new foundations, is the function of art and design). Therefore,
this claim establishes aesthetics as equivalent to computation.
However, we have already said that, according to the new foun-
dations, computation is equivalent to geometry. Therefore, this
book sets up the following three-way equivalence:

GEOMETRY = COMPUTATION = AESTHETICS
Notice that the three-way equivalence exists because each of the

three components is shown mathematically to be the reading
and writing of memory storage.
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Now, as seen above, there is a fundamental difference between
the conventional theory of computation (which is the basis of
contemporary computers) and the theory of computation
offered in this book: the reading and writing operations that
constitute the conventional theory are merely the registration
and interchange of 0's and 1's; whereas in our new theory, the
reading and writing operations are, respectively, the inference
and generation of stored history based on symmetries and asym-
metries. In fact, there is another fundamental reason why the
conventional theory is different from the new theory. The con-
ventional model of computation is that of an instruction-obeying
mechanism carrying out a sequence of operations in time. In
contrast, according to the new foundations for geometry, time is
constructed from asymmetries within the present data set. That
is, whereas in the conventional view, the computing system
exists within time, in the new view, the computing system pro-
duces and contains time.

The production of time from asymmetries occurs as a result of
converting the asymmetries into memory stores. The objects con-
taining the asymmetries thereby become part of the computa-
tional system, i.e., become memory stores within the computa-
tional system. That is, by converting the object into a memory
store, the computational system is extending itself to contain that
object. Thus, according to my new foundations for geometry:

Computation is the self-creation of mind.

This contrasts with a conventional computer, which involves not
only a computational process within time, but a mechanism that
remains invariant through time. Opposed to this, the new theory
involves not only a computational process that creates and con-
tains time, but a mechanism that achieves this by creating itself.
Most importantly, the system creates itself by its own reading
and writing operations that act by converting and creating envi-
ronmental objects as memory stores.

4.5 What is a Building?

As stated at the beginning of this chapter, the conventional view
of the relationship between architecture and computation is that
computers are tools in the design, manufacturing, and construc-
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tion of a building. However, it was noted that this relationship is
dispensable, since it uses the standard property of a computer:
speed based on miniaturization of a symbolic process — a process
which could be carried out by hand.

However, the above sections allow us to define an entirely new
relationship between architecture and computation — one that
goes to the very function of architecture, and is not dispensable.
We saw that my new foundations for geometry are equivalent to
new foundations for computation, in which the reading opera-
tion is the inference of past history from shape, and the writing
operation is the generation of shape. Furthermore, whereas sci-
ence is defined as the reading operation, art and design are
defined as the writing operation.

Therefore, according to this theory, architecture is an example of
the writing operation in a computational process. That is, accord-
ing to my new foundations for architecture: A building must act
as an external hard-drive for the computational processes of a
human being.

Notice, therefore, that the relationship of a computer to architec-
ture is not the usual one of a tool in the creation of a building.
The relationship is much deeper than this: It is the person that is
the computer, and the building is a hardware component that is
part of this computer.

Notice the relation between this statement and the theory of time
given in section 4.4: According to my new foundations for com-
putation, time is produced by the conversion of objects into mem-
ory stores —i.e., the inference of history from shape. This contrasts
with the standard theory of computation, in which the computa-
tional process takes place in time.

Therefore, my new foundations for computation, in which time is
produced by the computational system, imply that time is pro-
duced by reading a building. In fact, since the new foundations
for architecture say that a building should be a maximal memory
store, the conclusion is that a building must be an object that is a
maximal source of time.

However, the deepest aspect of the theory is this: Since the build-
ing is @ memory store that extends the computational system of a
person, the new foundations lead to the following principle:

A building should be an extension of the person’s mind.
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It is here that we have the fundamental difference between the
classical foundations of architecture and the foundations pro-
posed in this book. We have seen that, because the classical foun-
dations are based on symmetry, they attempt to minimize memo-
ry storage in a building. In fact, when people describe the sym-
metrical arrangement of columns on all four sides of Palladio’s
Villa Rotunda as the epitome of classical perfection, | argue that
they are making the following correspondence:

In the standard foundations for architecture,
perfection is equated with amnesia.

The consequence of this is that the computational processes of a
human being cannot be carried out with a standard building. In
other words:

A standard building is that component of the environment
that cannot be used as part of one’s mind.

In contrast, my new foundations state that a building must be an
object that maximally provides the capacity to be part of a per-
son’s mind; i.e., a maximal memory store. This means that a
building must be an object used in the computational processes
of a human being. Furthermore, these computational processes
must not be the simplistic ones of a conventional computer. For,
according to the new foundations, computation is the self-cre-
ation of mind. Most importantly, the mind creates itself by read-
ing and writing the environment as maximal memory stores.
Buildings are parts of the environment. In fact, they are the most
significant parts of the environment that human beings can pro-
duce; and therefore they can be the most significant memory
stores that people can actually write. This is what the new archi-
tecture must provide. That is:

The computational process is one in which the mind undergoes
self-creation by reading and writing itself as history.
The architectural principles, proposed in this book,
are the means by which buildings can be read and written
as the self-creation of mind. These new architectural principles
are illustrated with the administration buildings.
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