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General introduction

General Relativity is a theory proposed by Einstein in 1915 as a unified theory of
space, time and gravitation. The theory’s roots extend over almost the entire previous
history of physics and mathematics.

Its immediate predecessor, Special Relativity, established in its final form by
Minkowski in 1908, accomplished the unification of space and time in the geometry
of a 4-dimensional affine manifold, a geometry of simplicity and perfection on par
with that of the Euclidean geometry of space. The root of Special Relativity is
Electromagnetic Theory, in particular Maxwell’s incorporation of Optics, the theory
of light, into Electrodynamics.

General Relativity is based on and extends Newton’s theory of Gravitation as
well as Newton’s equations of motion. It is thus fundamentally rooted in Classical
Mechanics.

Perhaps the most fundamental aspect of General Relativity however, is its geo-
metric nature. The theory can be seen as a development of Riemannian geometry,
itself an extension of Gauss’ intrinsic theory of curved surfaces in Euclidean space.

The connection between gravitation and Riemannian geometry arose in Einstein’s
mind in his effort to uncover the meaning of what in Newtonian theory is the fortuitous
equality of the inertial and the gravitational mass. Identification, via the equivalence
principle, of the gravitational tidal force with spacetime curvature at once gave a
physical interpretation of curvature of the spacetime manifold and also revealed the
geometrical meaning of gravitation.

One sees here that descent to a deeper level of understanding of physical reality is
connected with ascent to a higher level of mathematics. General Relativity constitutes
a triumph of the geometric approach to physical science.

But there is more to General Relativity than merely a physical interpretation of
a variant of Riemannian Geometry. For, the theory contains physical laws in the
form of equations – Einstein’s equations – imposed on the geometric structure. This
gives a tightness which makes the resulting mathematical structure one of surpassing
subtlety and beauty. An analogous situation is found by comparing the theory of
differentiable functions of two real variables with the theory of differentiable functions
of one complex variable. The latter gains, by the imposition of the Cauchy–Riemann
equations, a tighter structure which leads to a greater richness of results.

The domain of application of General Relativity, beyond that of Newtonian the-
ory, is astronomical systems, stellar or galactic, where the gravitational field is so
strong that it implies the potential presence of velocities which are not negligible in
comparison with the velocity of light. The ultimate domain of application is the study
of the structure and evolution of the universe as a whole.
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General Relativity has perhaps the most satisfying structure of all physical the-
ories from the mathematical point of view. It is a wonderful research field for a
mathematician. Here, results obtained by purely mathematical means have direct
physical consequences.

One example of this is the incompleteness theorem of R. Penrose and its extensions
due to Hawking and Penrose known as the “singularity theorems". This result is
relevant to the study of the phenomenon of gravitational collapse. It shall be covered
in the second volume of the present work. The methods used to establish the result
are purely geometrical – the theory of conjugate points. In fact, part of the main
argument is already present in the theory of focal points in the Euclidean framework,
a theory developed in antiquity.

Another example is the positive energy theorem, the first proof of which, due to
R. Schoen and S. T. Yau, is based on the theory of minimal surfaces and is covered
in the the present volume. In this example a combination of geometric and analytic
methods are employed.

A last example is the theory of gravitational radiation, a main theme for both
volumes of this work. Here also we have a combination of geometric and analytic
methods. A particular result in the theory of gravitational radiation is the so-called
memory effect [11], which is due to the non-linear character of the asymptotic laws at
future null infinity and has direct bearing on experiments planned for the near future.
This result will also be covered in our second volume.

The laws of General Relativity, Einstein’s equations, constitute, when written in
any system of local coordinates, a non-linear system of partial differential equations
for the metric components. Because of the compatibility conditions of the metric with
the underlying manifold, when piecing together local solutions to obtain the global
picture, it is the geometric manifold, namely the pair consisting of the manifold itself
together with its metric, which is the real unknown in General Relativity.

The Einstein equations are of hyperbolic character, as is explained in detail in this
first volume. As a consequence, the initial value problem is the natural mathematical
problem for these equations. This conclusion, reached mathematically, agrees with
what one expects physically. For, the initial value problem is the problem of deter-
mining the evolution of a system from given initial conditions, as in the prototype
example of Newton’s equations of motion. The initial conditions for Einstein’s equa-
tions, the analogues of initial position and velocity of Newtonian mechanics, are the
intrinsic geometry of the initial spacelike hypersurface and its rate of change under a
virtual normal displacement, the second fundamental form. In contrast to the case of
Newtonian mechanics however, these initial conditions are, by virtue of the Einstein
equations themselves, subject to constraints, and it is part of the initial value problem
in General Relativity – a preliminary part – to analyze these constraints. Important
results can be obtained on the basis of this analysis alone and the positive energy
theorem is an example of such a result.
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An important notion in physics is that of an isolated system. In the context of the
theory of gravitation, examples of such systems are a planet with its moons, a star
with its planetary system, a binary or multiple star, a cluster of stars, a galaxy, a pair or
multiplet of interacting galaxies, or, as an extreme example, a cluster of galaxies – but
not the universe as a whole. What is common in these examples is that each of these
systems can be thought of as having an asymptotic region in which conditions are
trivial. Within General Relativity the trivial case is the flat Minkowski spacetime of
Special Relativity. Thus the desire to describe isolated gravitating systems in General
Relativity leads us to consider spacetimes with asymptotically Minkowskian regions.
However it is important to remember at this point the point of view of the initial
value problem: a spacetime is determined as a solution of the Einstein equations
from its initial data. Consequently, we are not free to impose our own requirements
on a spacetime. We are only free to impose requirements on the initial data – to the
extent that the requirements are consistent with the constraint equations. Thus the
correct notion of an isolated system in the context of General Relativity is a spacetime
arising from asymptotically flat initial conditions, namely an intrinsic geometry which
is asymptotically Euclidean and is a second fundamental form which tends to zero at
infinity in an appropriate way. This is discussed in detail in this volume.

Trivial initial data for the Einstein equations consists of Euclidean intrinsic ge-
ometry and a vanishing second fundamental form. Trivial initial data gives rise to the
trivial solution, namely the Minkowski spacetime. A natural question in the context
of the initial value problem for the vacuum Einstein equations is whether or not every
asymptotically flat initial data which is globally close to the trivial data gives rise
to a solution which is a complete spacetime tending to the Minkowski spacetime at
infinity along any geodesic. This question was answered in the affirmative in the joint
work of the present author with Sergiu Klainerman, which appeared in the monograph
[14]. One of the aims of the present work is to present the methods which went into
that work in a more general context, so that the reader may more fully understand
their origin and development as well as be able to apply them to other problems. In
fact, problems coming from fields other than General Relativity are also treated in the
present work. These fields are Continuum Mechanics, Electrodynamics of Continu-
ous Media and Classical Gauge Theories (such as arise in the mesoscopic description
of superfluidity and superconductivity). What is common to all these problems from
our perspective is the mathematical methods involved.

One of the main mathematical methods analyzed and exploited in the present
work is the general method of constructing a set of quantities whose growth can be
controlled in terms of the quantities themselves. This method is an extension of the
celebrated theorem of Noether, a theorem in the framework of the action principle,
which associates a conserved quantity to each 1-parameter group of symmetries of
the action (see [12]). This extension is involved at a most elementary level in the
very definition of the notion of hyperbolicity for an Euler–Lagrange system of partial
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differential equations, as discussed in detail in this first volume. In fact we may
say that such a system is hyperbolic at a particular background solution if linear
perturbations about this solution possess positive energy in the high frequency limit.

The application of Noether’s Principle to General Relativity requires the intro-
duction of a background vacuum solution possessing a non-trivial isometry group,
as is explained in this first volume. Taking Minkowski spacetime as the background,
we have the symmetries of time translations, space translations, rotations and boosts,
which give rise to the conservation laws of energy, linear momentum, angular momen-
tum and center of mass integrals, respectively. However, as is explained in this first
volume, these quantities have geometric significance only for spacetimes which are
asymptotic at infinity to the background Minkowski spacetime, so that the symmetries
are in fact asymptotic symmetries of the actual spacetime.

The other main mathematical method analyzed and exploited in the present work
is the systematic use of characteristic (null) hypersurfaces. The geometry of null hy-
persurfaces has already been employed by R. Penrose in his incompleteness theorem
mentioned above. What is involved in that theorem is the study of a neighborhood
of a given null geodesic generator of such a hypersurface. On the other hand, in the
work on the stability of Minkowski spacetime, the global geometry of a characteristic
hypersurface comes into play. In addition, the properties of a foliation of spacetime
by such hypersurfaces, also come into play. This method is used in conjunction with
the first method, for, such characteristic foliations are used to define the actions of
groups in spacetime which may be called quasi-conformal isometries, as they are
globally as close as possible to conformal isometries and tend as rapidly as possible
to conformal isometries at infinity. The method is introduced in this first volume
and will be treated much more fully in the second volume. It has applications be-
yond General Relativity to problems in Fluid Mechanics and, more generally, to the
Mechanics and Electrodynamics of Continuous Media.

This book is based on Nachdiplom Lectures held at the Eidgenössische Tech-
nische Hochschule Zurich during the Winter Semester 2002/2003. The author wishes
to thank his former student Lydia Bieri for taking the notes of this lecture, from which
a first draft was written, and for making the illustrations.



1 Introduction

The general theory of relativity is a unified theory of space, time and gravitation. The
fundamental concept of the theory is the concept of a spacetime manifold.

Definition 1. A spacetime manifold is a 4-dimensional oriented differentiable mani-
fold M , endowed with a Lorentzian metric g.

Definition 2. A Lorentzian metric g is a continuous assignment of a non-degenerate
quadratic form gp , of index 1, in TpM at each p 2 M .

Here we denote by TpM the tangent space to M at p. Also, non-degenerate
means

gp.X; Y / D 0 8 Y 2 TpM H) X D 0;

while of index 1means that the maximal dimension of a subspace of TpM , on which
gp is negative definite, is 1.

An equivalent definition is the following.

Definition 3. A quadratic form gp in TpM is called Lorentzian if there exists a vector
V 2 TpM such that gp.V; V / < 0 while setting

†V D fX W gp.X; V / D 0g (the “gp-orthogonal complement of V ”),

gpj†V
is positive definite.

We can then choose an orthonormal frame .E0; E1; E2; E3/ at p, by setting

E0 D Vp�g.V; V /
and choosing an orthonormal basis .E1; E2; E3/ for†V . Given any vectorX 2 TpM

we can expand

X D X0E0 CX1E1 CX2E2 CX3E3

D
X

�

X�E� .� D 0; 1; 2; 3/:

Then

g.E�; E�/ D ��� D diag.�1; 1; 1; 1/;
g.X;X/ D �.X0/2 C .X1/2 C .X2/2 C .X3/2

D
X
��

���X
�X� :
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Definition 4. The null cone at p 2 M ,

Np D fX ¤ 0 2 TpM W gp.X;X/ D 0g;
is a double cone Np D NC

p [N�
p .

Denote by IC
p the interior of NC

p and by I�
p the interior of N�

p .

Definition 5. The set of timelike vectors at p 2 M is defined as

Ip WD IC
p [ I�

p D fX 2 TpM W gp.X;X/ < 0g;
where Ip is an open set.

Definition 6. The set of spacelike vectors at p 2 M is defined as

Sp WD fX 2 TpM W gp.X;X/ > 0g;
where Sp is the exterior of Np , a connected open set.

Time orientability. We assume that a continuous choice of positive (future) compo-
nent IC

p of Ip at each p 2 M , is possible. Once such a choice has been made, the
spacetime manifold M is called time oriented.

Definition 7. A causal curve in M is a differentiable curve � whose tangent vector
P� at each point p 2 M belongs to Ip [Np , that is, it is either timelike or null.

Then either P�p 2 IC
p [ NC

p at each p along � in which case � is called future-
directed, or P�p 2 I�

p [N�
p at each p along � in which case � is called past-directed.

Given a point p 2 M , we can then define the causal future of p.

Definition 8. The causal future ofp, denoted by JC.p/, is the set of all points q 2 M
for which there exists a future-directed causal curve initiating at p and ending at q.

Similarly, we can define J�.p/, the causal past of p.

Definition 9. The arc length of a causal curve � between the points corresponding
to the parameter values � D a; � D b is

LŒ��.a; b/ D
Z b

a

p
�g. P�.�/; P�.�// d�:

If q 2 JC.p/, we define the temporal distance of q from p by

�.q; p/ D sup
all future-directed causal

curves from p to q

LŒ��:

The arc length is independent of the parametrization of the curve.
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Let us recall the Hopf–Rinow theorem in Riemannian geometry:

Theorem 1 (Hopf–Rinow). On a complete Riemannian manifold any two points can
be joined by a minimizing geodesic.

In Lorentzian geometry the analogous statement is in general false. It holds how-
ever when the spacetime admits a Cauchy hypersurface (the definition of this concept
will follow). When the supremum in the above definition is achieved and the metric
is C 1 the maximizing curve is a causal geodesic; after suitable reparametrization the
tangent vector is parallelly transported along the curve.

Examples of spacetime manifolds. We take as our model the

• Riemannian spaces of constant curvature:

1

.1C k
4
jxj2/2 jdxj2; k D 0; 1;�1;

where j � j is the Euclidean magnitude, jvj D pP
i .v

i /2. When k D �1 the
manifold is the ball of radius 2 in Rn, jxj < 2.

By analogy, we have the

• Lorentzian spaces of constant curvature:

1

.1C k
4

hx; xi/2 hdx; dxi:

Here h � ; � i is the Minkowski quadratic form. hu; vi D �u0v0 CPn�1
iD1 u

ivi .
For k D 1 we have what is called de-Sitter-space while for k D �1 we
have what is called Anti-de-Sitter-space. In the case k D �1 the manifold is
fx 2 Rn W hx; xi < 4g.

x0

Nx D .x1; : : : ; xn�1/

1 1

q

p

Figure 1
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In Anti-de-Sitter space there are points p and q as shown for which �.p; q/ D 1.
For, the length of the timelike segment of the causal curve joining p and q in the
figure can be made arbitrarily large by making the segment approach the hyperboloid
at infinity hx; xi D 4.

Definition 10. We define the causal future JC.K/ and the causal past J�.K/ of any
set K � M , in particular a closed set, by

J˙.K/ D fq 2 M W q 2 J˙.p/ for some p 2 Kg:

The boundaries of JC.K/, J�.K/, i.e. @JC.K/, @J�.K/ for closed sets K,
are null hypersurfaces. They are realized as level sets of functions u satisfying
the eikonal equation g��@�u@�u D 0. These hypersurfaces are generated by null
geodesic segments, as shall be shown below. They are thus analogous to ruled surfaces
in Euclidean geometry. Moreover, the null geodesics generating JC.K/ have past
end-points only onK and those generating J�.K/ have future end-points only onK.
The null geodesics generating JC.K/may have future end-points, even whenK is a
single point. The set of these end-points forms the future null cut locus corresponding
to K. Similarly for J�.K/. (Null cut loci shall be discussed at length in the second
volume.)

p

Figure 2. The future null cut locus of a point p. Each of the points marked by a dot is a point
where a pair of null geodesics issuing from p intersect.

Definition 11. H is called a null hypersurface if at each point x 2 H the induced
metric gx TxH

is degenerate.

Thus there exists an L ¤ 0 2 TxH such that

gx.L;X/ D 0 8 X 2 TxH:
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Now TxH is a hyperplane in TxM . Such a hyperplane is defined by a covector
� 2 T �

x M ,
TxH D fX 2 TxM W � �X D 0g:

Representing H as the (0-)level set of a function u, we can take

� D du.x/:

If we set L� D �g��@�u (components with respect to an arbitrary frame), we have

g.L;X/ D �du �X
and L is g-orthogonal to H . Then H is a null hypersurface if and only if

Lx 2 TxH 8 x 2 H:
Now let u be a function, each of the level sets of which is a null hypersurface.

Taking then X D L we obtain

g.L;L/ D 0 .g��L
�L� D 0/;

hence L is at each point a null vector, a condition which, expressed in terms of du,
reads

g��@�u@�u D 0;

which is the eikonal equation.
In fact, L is a geodesic vector field, that is, the integral curves of L are null

geodesics. The proof of this fact is as follows.

.rLL/
� D L�r�L

�; (1)

g��.rLL/
� D L�r�L�; (2)

where L� D g��L
� D �@�u. Now the Hessian of a function is symmetric:

r�.@�u/ D r�.@�u/: (3)

Thus,

L�r�L� D L�r� L�

D @�

�
1

2
g.L;L/

�
D 0;

(4)

that is,
rLL D 0: (5)
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Definition 12. A hypersurface H is called spacelike if at each x 2 H , the induced
metric

gx TxH
DW Ngx

is positive definite.

Then .H; Ng/ is a proper Riemannian manifold. The g-orthogonal complement of
TxH is a 1-dimensional subspace of TxM on which gx is negative definite. Thus
there exists a vector Nx 2 IC

x of unit magnitude

gx.Nx; Nx/ D �1
whose span is this 1-dimensional subspace. We call N (the so-defined vector field
along H ) the future-directed unit normal to H .

Definition 13. The 2nd fundamental form k of H is a 2-covariant symmetric tensor
field on H , or quadratic form in TxH at each x 2 H , defined by

k.X; Y / D g.rXN; Y / 8 X; Y 2 TxH: (6)

Definition 14. A Cauchy hypersurface is a complete spacelike hypersurfaceH inM
(i.e., .H; Ng/ is a complete Riemannian manifold) such that if � is any causal curve
through any point p 2 M , then � intersects H at exactly one point.

Examples of Cauchy hypersurfaces

• A spacelike hyperplane in Minkowski spacetime M is a Cauchy hypersurface
for M .

• A spacelike hyperboloid in Minkowski spacetime,

�.x0/2 C
3X

iD1

.xi /2 D �1; x0 > 0;

is a complete Riemannian manifold (of constant negative curvature) but not a
Cauchy hypersurface forM . It is however a Cauchy hypersurface for IC

0 � M .

• The Anti-de-Sitter space does not admit a Cauchy hypersurface.

If we consider only future evolution the above definition is replaced by one in which
� is taken to be any past-directed causal curve. ThenM is a manifold with boundary
and H is the past boundary of M .

Definition 15. A spacetime admitting a Cauchy hypersurface is called globally hy-
perbolic.
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Under the hypothesis of global hyperbolicity we can define a time function. This
is a differentiable function t such that

dt �X > 0 8X 2 IC
p ; 8 p 2 M: (7)

The manifoldM is then diffeomorphic to the product R� SM where SM is a 3-manifold,
each level set†t of t being diffeomorphic to SM . H D †0 is a Cauchy hypersurface.

Definition 16. The lapse function corresponding to a time function t is the function

ˆ D .�g��@�t@�t /
� 1

2 : (8)

This measures the normal separation of the leaves†t (of the foliation by the level
sets of t ). Consider the vector field

T � D �ˆ2g��@�t: (9)

The integral curves of T are the orthogonal curves to the †t -foliation. Moreover,
T t D T �@�t D 1. Thus the orthogonal curves are parametrized by t . That is, the 1-
parameter group	� generated byT takes the leaves onto each other: 	� .†t / D †tC� .
Thus T is a time translation vector field. The unit normal N is given by

N D ˆ�1T: (10)

The integral curves of N are the same orthogonal curves but parametrized by arc
length s. It follows that, along an orthogonal curve,

ds

dt
D ˆ: (11)

We can identify SM with †0 D H . The mapping of M into R � SM or Œ0;1/ � SM ,
taking p 2 M to the pair .t; q/ if p lies on†t and along the orthogonal curve through
q 2 †0, is a diffeomorphism.

In terms of this representation of M we can write

g D �ˆ2dt2 C Ng; (12)

where Ng D Ng.t/ is the induced metric on †t , which is positive definite. Moreover,

T D @

@t
; N D 1

ˆ

@

@t
:

Assume that .E1; E2; E3/ is a frame field for†t , which is Lie transported along (the
integral curves of) T , that is,

ŒT; Ei � D 0; i D 1; 2; 3: (13)
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(In particular we may take .x1; x2; x3/ to be local coordinates on H D †0, and set
Ei D @

@xi .) Then we have

kij D k.Ei ; Ej / D 1

2
.g.rEi

N;Ej /C g.rEj
N;Ei //

D 1

2ˆ
.g.rEi

T;Ej /C g.rEj
T;Ei //

D 1

2ˆ
.g.rTEi ; Ej /C g.rTEj ; Ei //

D 1

2ˆ
T .g.Ei ; Ej //I

that is

kij D 1

2ˆ

@ Ngij

@t
; (14)

where Ngij D Ng.Ei ; Ej / D g.Ei ; Ej / are the components of the induced metric on
†t . The above equation is called the 1st variational formula.



2 The laws of General Relativity

2.1 The Einstein equations

The laws of General Relativity are the Einstein equations linking the curvature of
spacetime to its matter content:

G�� WD R�� � 1

2
g��R D 2T�� : (15)

(We are using rationalized units where 4
 times Newton’s gravitational constant as
well as the speed of light in vacuum are set equal to 1.) Here T�� is the energy-
momentum tensor of matter,G�� the Einstein tensor,R�� the Ricci tensor andR the
scalar curvature of the metric g�� . From the original Bianchi identity

rŒ˛Rˇ��ı� WD r˛Rˇ�ı� C rˇR�˛ı� C r�R˛ˇı� D 0; (16)

one obtains
r�G�� D 0; (17)

the twice contracted Bianchi identity. This identity (17) implies

r�T�� D 0; (18)

the equations of motion of matter. The Einstein vacuum equations

G�� D 0 (19)

correspond to the absence of matter: T�� D 0. The equations are then equivalent to

R�� D 0: (20)

The connection coefficients ��

˛ˇ
and the curvature and Ricci tensor components in

arbitrary local coordinates read as follows:

�
�

˛ˇ
D 1

2
g��.@˛gˇ� C @ˇg˛� � @�g˛ˇ /; (21)

R˛
��� D @��

˛
�� � @��

˛
�� C �˛

ˇ��
ˇ
�� � �˛

ˇ��
ˇ

��
; (22)

R�� D R˛
�˛� D @˛�

˛
�� � @��

˛
�˛ C �˛

ˇ˛�
ˇ
�� � �˛

ˇ��
ˇ
�˛: (23)

Denoting by P.P. the principal part, that is, the part containing the highest (2nd) deriva-
tives of the metric, we have

P.P.fR��g D 1

2
g˛ˇ f@�@˛gˇ� C @�@˛gˇ� � @�@�g˛ˇ � @˛@ˇg��g: (24)
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We shall presently discuss the character of the Einstein equations as reflected in their
symbol. The symbol is defined by replacing in the principal part

@�@�g˛ˇ by ���� Pg˛ˇ ;

where �� are the components of a covector and Pg˛ˇ the components of a possible
variation of g. We then obtain the symbol �	 at a point p 2 M and a covector
� 2 T �

p M , for a given background metric g:

.�	 � Pg/�� D 1

2
g˛ˇ .���˛ Pgˇ� C ���˛ Pgˇ� � ���� Pg˛ˇ � �˛�ˇ Pg��/:

Let us denote

.i	 Pg/� D g˛ˇ �˛ Pgˇ� ;

.�; �/ D g˛ˇ �˛�ˇ ;

.� ˝ /�� D ��� ;

g˛ˇ Pg˛ˇ D tr Pg:
We can then write

.�	 � Pg/ D 1

2
f� ˝ i	 Pg C i	 Pg ˝ � � tr Pg� ˝ � � .�; �/ Pgg:

The notion of the symbol of a system of Euler–Lagrange equations is as follows. Let
us denote by x, the independent variables: x�, � D 1; : : : ; n; by q, the dependent
variables: qa, a D 1; : : : ; m; and by v, the 1st derivatives of dependent variables: va

�,
n �m matrices. Then the Lagrangian L is a given function of .x; q; v/,

L D L.x; q; v/:

A set of functions .ua.x/ W a D 1; : : : ; m/ is a solution of the Euler–Lagrange
equations, if substituting

qa D ua.x/;

va
� D @ua

@x�
.x/

we have
@

@x�

�
@L

@va
�

.x; u.x/; @u.x//

�
� @L

@qa
.x; u.x/; @u.x// D 0: (25)

Defining

p�
a D @L

@va
�

;

fa D @L

@qa
;
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the Euler–Lagrange equations become

@p
�
a

@x�
D fa:

The q, v, p, f are analogous to position, velocity, momentum and force, respectively,
in classical mechanics.

The principal part of the Euler–Lagrange equations is

h
��

ab

@2ub

@x�@x�
.x; u.x/; @u.x//;

where

h
��

ab
D @2L

@va
�@v

b
�

.x; q; v/:

Let us consider the equations of variation. These are the linearized equations, satisfied
by a variation through solutions. If we denote by Pua the variations of the functions ua,
the principal part of the linearized equations is

h
��

ab
.x; u.x/; @u.x//

@2 Pub

@x�@x�
:

Consider in fact oscillatory solutions

Pua D Pwaeiˆ (26)

of the equations of variation. Writing ˆ
�

in place of ˆ, substituting in the linearized
equations and keeping only the leading terms as � ! 0 (high frequency limit), we
obtain

h
��

ab
.x; u.x/; @u.x// Pwb @ˆ

@x�

@ˆ

@x�
D 0: (27)

The left-hand side is the symbol �	 � Pw, where �� D @ˆ
@x� . Thus, the symbol of the

Euler–Lagrange equations is in general given by

.�	 � Pu/a D h
��

ab
���� Pub D �ab.�/ Pub; (28)

where
�ab.�/ D h

��

ab
���� (29)

is an m �m matrix whose entries are homogeneous quadratic polynomials in � .
From a global perspective, the x�, � D 1; : : : ; n are local coordinates on an

n-dimensional manifold M and x denotes an arbitrary point on M , while the qa,
a D 1; : : : ; m are local coordinates on an m-dimensional manifold N and q denotes
an arbitrary point on N . The unknown u is then a mapping u W M ! N and the
functions .ua.x/, a D 1; : : : ; m/ describe this mapping in terms of the given local
coordinates.
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Definition 17. Let M be an n-dimensional manifold. Then the characteristic subset
C �

x � T �
x M is defined by

C �
x D f� ¤ 0 2 T �

x M W null space of �	 ¤ 0g
D f� ¤ 0 2 T �

x M W det �.�/ D 0g:

Thus � 2 C �
x if and only if � ¤ 0 and the null space of �	 is non-trivial.

The simplest example of an Euler–Lagrange equation with a non-empty charac-
teristic is the linear wave equation

�u WD g��r�.@�u/ D 0:

This equation arises from the Lagrangian

L D 1

2
g��v�v� :

The symbol is �	 � Pu D .g������/ Pu and the characteristic is

C �
x D f � ¤ 0 2 T �

x M W .�; �/ D g������ D 0g;
that is, C �

x is the null cone in T �
x M associated to the metric g.

Let us now return to the symbol for the Einstein equations. Let us set

Pg D  ˝ � C � ˝  (30)

for an arbitrary covector  2 T �
x M . Then

i	 Pg D .; �/„ƒ‚…
Dg��
�	�

� C .�; �/  (31)

and
tr Pg D 2.; �/: (32)

We see that
�	 � Pg D 0: (33)

Therefore the null space of �	 is non-trivial for every covector � . This degeneracy is
due to the fact that the equations are generally covariant. That is, if g is a solution
of the Einstein equations and f is a diffeomorphism of the manifold onto itself, then
the pullback f �g is also a solution. If X is a (complete) vector field on M , then X
generates a 1-parameter group fftg of diffeomorphisms of M and

LXg D d

dt
f �

t g
ˇ̌̌
tD0
; (34)
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the Lie derivative with respect to X of g, is a solution of the linearized equations.
Let us recall that the Lie derivative of g with respect to a vector field X is given

by
.LXg/.Y;Z/ D g.rYX;Z/C g.rZX; Y /:

Setting Y D E� and Z D E� , where .E�I � D 0; : : : ; 3/ is an arbitrary frame, we
can write

.LXg/�� D r�X� C r�X�;

where X� D g��X
�. The symbol of a Lie derivative is given by

Pg�� D ��� C ���; where � D PX�:

A simple analogue. The Maxwell equations for the electromagnetic field F�� ,

r�F�� D g��r�F�� D 0; (35)

provide a simple analogue to this situation. Let us recall that F D dA, or F�� D
@�A� � @�A�, where A� is the electromagnetic potential, a 1-form. The Maxwell
equations are the Euler–Lagrange equations of the Lagrangian

L D 1

4
F ��F��

where F �� D g��g��F��. The symbol for these equations is

.�	 � PA/� D g����.��
PA� � ��

PA�/;

that is

�	 � PA D .�; PA/� � .�; �/ PA:
Consider the variation

PA D � �

for any real number �. Then
�	 � PA D 0:

Thus we have a degeneracy here as well: the null space of �	 is non-trivial for all
� 2 T �

x M . This is due to the gauge invariance of the Maxwell equations. If A is a
solution, so is

QA D AC df

for any function f . In fact QA is considered to be equivalent to A, just as f �g is
considered to be equivalent to g. Thus (by linearity) PA� D @�f is a solution of the
linearized equations, for any function f . To remove the degeneracy we must factor
out these trivial solutions. Correspondingly in General Relativity we must factor out
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the solutions of the form LXg D Pg for any vector fieldX . At the level of the symbol
the gauge transformation is

QPA� D PA� C ��
Pf :

So, we introduce the equivalence relation

PA1 � PA2 ” PA2 D PA1 C ��; � 2 R:

We then obtain a quotient space Q of dimension 4 � 1 D 3. Consider now the
null space of �	 with �	 defined on Q. We distinguish two cases: in the first case
.�; �/ ¤ 0 and in the second case .�; �/ D 0.

Case 1. .�; �/ ¤ 0. Then

�	 � PA D 0 H) PA D ��; � D .�; PA/
.�; �/

;

that is PA � 0. Thus we have the trivial null space if � is not a null covector.

Case 2. .�; �/ D 0. In this case we may choose another covector � in the same com-
ponent of the null cone such that .�; �/ D �2. There is then a unique representative
PA in each equivalence class in Q such that

.�; PA/ D 0:

For, take another element PA0 out of the equivalence class of PA, that is PA0 D PAC ��

for some � 2 R. Then
0 D .�; PA0/ D .�; PA/ � 2�

implies that PA is the unique representative of its equivalence class with .�; PA/ D 0.
Let us work with this representation. Then it holds that

�	 � PA D .�; PA/� D 0; � ¤ 0 ” .�; PA/ D 0:

We conclude that the null space of �	 consists of the spacelike 2-dimensional plane
…, the g-orthogonal complement of the timelike plane spanned by � and �. So, …
is the space of the degrees of freedom of the electromagnetic field at a point (two
polarizations).

Returning to the symbol for the Einstein equations, the symbol for the Lie deriva-
tive

.LXg/�� D r�X� C r�X�

reads, as noted above,
��

PX� C ��
PX�;
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where the PX� are the components of an arbitrary covector. Consider then the equiv-
alence relation

Pg1 � Pg2 ” Pg2 D Pg1 C  ˝ � C � ˝ ;  2 T �
x M;

which gives a quotient space Q.
Again we distinguish the two cases according as to whether the covector � satisfies

.�; �/ ¤ 0 or .�; �/ D 0.

Case 1. .�; �/ ¤ 0. If � is not null, then �	 � Pg D 0 implies that

Pg D  ˝ � C � ˝ ; where  D .i	 Pg � 1
2

tr Pg�/
.�; �/

;

thus �	 has only trivial null space on Q.

Case 2. .�; �/ D 0. If � is null, we can choose � in the same component of the null
cone N �

x in T �
x M such that .�; �/ D �2. There is then a unique representative Pg in

each equivalence class f Pgg 2 Q such that

i	 Pg D 0:

So,

�	 � Pg D 0 ” � ˝ i	 Pg C i	 Pg ˝ � � � ˝ � tr Pg D 0:

Taking the inner product with � we see that .i	 Pg; �/ D .i	 Pg; �/ D 0, hence

� 2 i	 Pg C 2 � tr Pg D 0:

Taking again the inner product with � gives

� 4 tr Pg D 0; that is, tr Pg D 0:

Substituting this above yields

i	 Pg D 0:

Conversely, i	 Pg D i	 Pg D 0 and tr Pg D 0 implies that Pg lies in the null space of �	 .
Therefore, if � 2 N �

x , then the null space of �	 can be identified with the space of
trace-free quadratic forms on the 2-dimensional spacelike plane…, the g-orthogonal
complement of the linear span of � and �. This is the space of gravitational degrees
of freedom at a point (two polarizations).
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2.1.1 Regular ellipticity and regular hyperbolicity. We have already introduced
the quadratic form

h
��

ab
D @2L

@va
�@v

b
�

.x; q; v/

in the general context of a Lagrangian theory of mappings u W M ! N . A point
x 2 M is represented in terms of local coordinates in M by (x� W � D 1; : : : ; n).
The position q is a possible value of u.x/, that is, a point in N , represented by
(qa W a D 1; : : : ; m) in terms of local coordinates in N , while the velocity v is a
possible value of du.x/ and is represented by the n�m-matrix va

� D @ua

@x� .x/. Here
n D dimM and m D dim N .

Before stating the definition of regular ellipticity let us have a closer look at the
necessary notions. Let u W M ! N be a background solution, x 2 M , q D u.x/,
and let � 2 T �

x M , Q 2 TqN . Then Q is a variation in position, the value at x
of a possible variation Pu of the background solution. The corresponding variation
in velocity Pv is a linear map from TxM to TqN : Pv 2 L.TxM;TqN /. For any
X 2 TxM the components of the vectorQ D Pv �X 2 TqN areQa D Pva

�X
�, where

the X� are the components of X and the Pva
� are the components of Pv. The space

S2.L.TxM;TqN // of quadratic forms on L.TxM;TqN / splits into the direct sum

S2 D S2C ˚ S2�;

where S2C consists of the even quadratic forms and S2� of the odd quadratic forms.
Thus, a quadratic form h on L.TxM;TqN / decomposes into

h D hC C h�;

wherehC andh� are, respectively, the even and odd parts ofh. In terms of components
we have

h
��

ab
D h

��

Cab
C h

��

�ab
;

where
h

��

ba
D h

��

ab

(h being a symmetric bilinear form), and

h
��

Cab
D h

��

Cba
D h

��

Cab
;

h
��

�ab
D h

��

�ba
D �h��

�ab
:

We also need the following notion:

Definition 18. Rank-1-elements of L.TxM;TqN / are the elements Pv of the form

Pv D � ˝ Q; � 2 T �
x M; Q 2 TqN ;

that is, Pv �X D .� �X/Q for all X in TxM .
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Now consider the quadratic form h. Pv; Pv/ D h
��

ab
Pva
� Pvb

� on the velocity varia-
tions Pva

�.

Regular ellipticity (Legendre–Hadamard condition). A Lagrangian L is called
regularly elliptic at .x; q; v/ if the quadratic formh D @2L

@v2 .x; q; v/ on L.TxM;TqN /

is positive definite on the set of rank-1-elements Pva
� D ��Q

a with � 2 T �
x M and

Q 2 TqN .

IfL andL0 are two Lagrangians giving rise to the same Euler–Lagrange equations,
then the difference h � h0 of the corresponding quadratic forms is an odd quadratic
form.

Remark. The definition of regular ellipticity is independent of the choice of La-
grangian for the same Euler–Lagrange equations because odd quadratic forms vanish
on the set of rank-1-elements.

Next we define regular hyperbolicity, a notion expounded in [12].

Definition 19. A Lagrangian L is called regularly hyperbolic at .x; q; v/ if the
quadratic form h D @2L

@v2 .x; q; v/ on L.TxM;TqN / has the following property:
There exists a pair .�; X/ in T �

x M � TxM with � �X > 0 such that:
1. h is negative definite on the space

L	 D f� ˝Q W Q 2 TqN g;
2. h is positive definite on the set of rank-1-elements of the subspace

†X D fPv 2 L.TxM;TqN / W Pv �X D 0g:
Note that this definition is also independent of the choice of Lagrangian giving

rise to the same Euler–Lagrange equations.

Definition 20. Given a quadratic form h on L.TxM;TqN / and a pair .�; X/ in
T �

x M�TxM with � �X >0, we define a new quadratic formm.�;X/on L.TxM;TqN /

depending linearly on � and X by

m.�;X/. Pv1; Pv2/ D .� �X/h. Pv1; Pv2/ � h.� ˝ Pv1 �X; Pv2/ � h. Pv1; � ˝ Pv2 �X/: (36)

We call this the Noether transform of h defined by .�; X/.

Proposition 1. A LagrangianL is regularly hyperbolic at .x; q; v/ if and only if there
exists a pair .�; X/ in T �

x M � TxM with � �X > 0 such that the Noether transform
m.�;X/ of h corresponding to .�; X/ is positive definite on the set

R	 D f� ˝ P C  ˝Q W 8  2 T �
x M; 8 P;Q 2 TqN g

.which is a set of special rank-2-elements/.
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Remark. Ifh is an odd quadratic form, then the Noether transform ofh corresponding
to .�; X/ vanishes on R	 .

Given h and � ¤ 0 2 T �
x M , we define �.�/, a quadratic form in TqN , by

�.�/.Q1;Q2/ D h.� ˝Q1; � ˝Q2/: (37)

That is,

�ab.�/ D h
��

ab
���� :

Then the characteristic subset C �
x of T �

x M is defined by

C �
x D f � ¤ 0 2 T �

x M W �.�/ is singular g: (38)

Also, given Q ¤ 0 2 TqN , we define a quadratic form ‰.Q/ in T �
x M as follows:

‰.Q/.�1; �2/ D h.�1 ˝Q; �2 ˝Q/; (39)

that is,

‰��.Q/ D h
��

ab
QaQb:

Next, for a given � 2 C �
x we define

ƒ.�/ D f‰.Q/ � � W Q ¤ 0 2 null space of �.�/g
� †	 D fX 2 TxM W � �X D 0g (a hyperplane in TxM ).

(40)

Here ‰.Q/ is considered as a linear map of T �
x M into TxM ,

�� 7! ‰��.Q/�� :

ƒ.�/ is a positive cone in†	 . That is, if X 2 ƒ.�/ and � > 0, then �X lies inƒ.�/.
Also the following holds:

ƒ.��/ D ƒ.�/ 8 � > 0:

If � is a regular point of C �
x , then the null space of �.�/ has dimension 1 andƒ.�/ is

a ray. Otherwise the maximal dimension of ƒ.�/ is dim†	 D n � 1.

Definition 21. The characteristic subset Cx of TxM is defined by

Cx D
[

	2C �
x

ƒ.�/: (41)
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2.2 The Cauchy problem

2.2.1 Cauchy problem for the Einstein equations: local in time, existence and
uniqueness of solutions. In this chapter we shall discuss the work of Y. Choquet-
Bruhat in [8]. This work is based on the reduction of the Einstein equations to wave
equations. To accomplish this reduction one has to introduce harmonic, or wave,
coordinates.

Definition 22. Let .M; g/ be a Riemannian manifold. Then a function ˆ is called
harmonic if

4gˆ D 0; (42)

where 4gˆ D g�� r�.@�ˆ/.

If the metric g is Lorentzian, then the equation 4gˆ D 0 is the wave equation.
Now the problem is the following: Given a coordinate chart .U; x/ with x D

.x0; x1; x2; x3/, find functions ˆ�, � D 0; 1; 2; 3, each of which is a solution of the
wave equation in U ,

4gˆ D 0 in U;

and such that, setting
Nx� D ˆ�.x0; x1; x2; x3/;

we have a diffeomorphism of the rangeV in R4 of the given chart onto another domain
xV in R4.

U

M

V

xV

R4

x

Nx

Figure 3

We thus have another chart .U; Nx/ with domain U , i.e. another system of local
coordinates in U . The equation 4gˆ D 0 in an arbitrary system of local coordinates
reads

4gˆ D g��

�
@2ˆ

@x�@x�
� �˛

��

@ˆ

@x˛

�
D 0: (43)
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Suppose now that we use the functions . Nx0; Nx1; Nx2; Nx3/ as the local coordinates in U ,
i.e. we express things relative to the new chart .U; Nx/. Setting ˆ equal to each one
of the Nxˇ for ˇ D 0; 1; 2; 3; we have a solution of the above equation. Since

@ Nxˇ

@ Nx�
D ıˇ

�

we have
@2 Nxˇ

@ Nx�@ Nx�
D 0:

So, the equation reads
0 D 4g Nxˇ D � Ng�� N�ˇ

�� :

Dropping the bars we can say that a system of local coordinates is harmonic if and
only if the connection coefficients in these coordinates satisfy the condition

�˛ WD g���˛
�� D 0: (44)

Let us set
�˛ WD g˛ˇ�

ˇ :

Then we can write

�� D g˛ˇ@˛gˇ� � 1

2
g˛ˇ@�g˛ˇ :

Hence the principal part of @��� C @��� is the following:

P:P: f@��� C @���g D g˛ˇ f@˛@�gˇ� C @˛@�gˇ� � @�@�g˛ˇ g:
Denoting by R�� the components of the Ricci curvature tensor, let us define

H�� D R�� � 1

2
.@��� C @���/: (45)

Then the principal part of H�� is

P:P: fH��g D � 1

2
g˛ˇ@˛@ˇg�� ;

and we have

H�� D � 1

2
g˛ˇ@˛@ˇg�� C B˛ˇ���

�� @˛g��@ˇg� ; (46)

whereB is a rational function of the metricg of degree �2, the ratio of a homogeneous
polynomial in g of degree 6 to .det g/2. Replacing the Einstein equations

R�� D 0 (47)
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by the reduced (Einstein) equations

H�� D 0; (48)

we have a system of non-linear wave equations for the metric components g�� .
In the approach of Choquet-Bruhat one studies the Cauchy problem for these

reduced equations. Let us write

R�� D H�� C 1

2
S�� ; (49)

where
S�� D @��� C @���:

We have

R�� � 1

2
g��R D H�� � 1

2
g��H C 1

2

�
S�� � 1

2
g��S

�
;

and

r�.S�� � 1

2
g��S„ ƒ‚ …

DW OS��

/ D g��r�
OS�� (50)

D g��.@�
OS�� � ��

��
OS�� � ��

��
OS��/: (51)

If we have a solution of the reduced equations, then by virtue of the twice contracted
Bianchi identities

r�

�
R�� � 1

2
g��R

�
D 0; (52)

this solution also satisfies the equations

r� OS�� D 0: (53)

Now, we have S D 2@��� with @� D g��@�. Therefore

OS�� D @��� C @��� � g��@
���:

The principal part of r� OS�� is

P:P: fr� OS��g D @�.@
���/C @�@��� � @�.@

���/

D g˛ˇ@˛@ˇ��:

In fact, we have
r� OS�� D g˛ˇ@˛@ˇ�� C A˛ˇ

� @˛�ˇ ;
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where A is a linear form in @g with coefficients which are homogeneous rational
functions of g. Therefore the equations

r� OS�� D 0

constitute a system of homogeneous linear wave equations for the ��. Consequently
the �� vanish identically provided that the initial conditions vanish, that is

��j†0
D 0; (54)

@0��j†0
D 0; (55)

where †0 is the initial hypersurface x0 D 0. Given now initial data for the Einstein
equations

R�� D 0 or, equivalently, OR�� D 0; (56)

where
OR�� D R�� � 1

2
g��R;

we construct initial data

g��j†0
; (57)

@0g��j†0
(58)

for the reduced equations H�� D 0, such that the conditions

��j†0
D 0; @0��j†0

D 0

are satisfied. Then the solution g�� of the Cauchy problem for the reduced equations
shall, according to the above, also satisfy the conditions �� D 0, therefore shall be a
solution of the original Einstein equations.

Initial data for the Einstein equations consist of a pair . Ngij ; kij / where Ngij is a
Riemannian metric and kij a 2-covariant symmetric tensor field on the 3-manifold
SM , which is to be identified with the initial hypersurface†0. Once we have a solution
.M; g/ with M D Œ0; T / �†0 and †0 D SM , then Ngij and kij shall be, respectively,
the 1st and 2nd fundamental form of †0 D f0g �†0 in .M; g/. Thus

Ngij D gij j†0
; i; j D 1; 2; 3:

We choose the coordinates to be Gaussian normal along †0, that is

gi0j†0
D 0; (59)

g00j†0
D �1: (60)

Then
@0gij j†0

D 2kij : (61)
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We then choose
@0 g0i j†0

; @0 g00j†0

so as to satisfy the conditions
��j†0

D 0:

A short calculation shows that @0 g0i j†0
D x�i and @0 g00j†0

D 2 tr k, where x�i

are the corresponding (3-dimensional) quantities for the induced metric Ngij . (Re-
call: tr k D Ngijkij .) This completes the specification of initial data for the reduced
equations. Now consider the following: For a solution of the reduced equations,

OR0i j†0
D 1

2
OS0i j†0

D 1

2
f@0�i C @i�0 � g0i .@

���gj†0
D 1

2
@0�i j†0

and
OR00j†0

D 1

2
OS00j†0

D 1

2
f2@0�0 � g00.@

���gj†0
D 1

2
@0�0j†0

:

Therefore, if the initial data . Ngij ; kij / verify the constraint equations

OR0i j†0
D 0; (62)

OR00j†0
D 0; (63)

then the conditions @0��j†0
D 0 are satisfied as well.

In the original work of Choquet-Bruhat a local problem was posed, the initial data
being given on a domain � � †0. As a first step the initial data for the reduced
equations is extended to the whole of R3 in such a way that it becomes trivial outside
a larger domain �0, where �0 � �, with compact closure in R3.

p

�

�0

†0

Figure 4

The next step in the construction of the solution is based on the domain of depen-
dence theorem, to be formulated below. Let .M; g/ be the known spacetime, where
M D Œ0; T � �†0.
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Definition 23. The domain of dependence of� in the spacetime .M; g/ is the subset
of M for which � is a (incomplete) Cauchy hypersurface.

So, the domain of dependence D.�/ of � in M is the set of points p 2 M such
that each past-directed causal curve in M through p intersects �. (It follows that it
cannot intersect more than once.)

†0
�

D.�/

Figure 5

In D.�/ the solution depends only on the initial data in �. In particular, since the
constraint equations are satisfied in �, we have that �� and @0�� all vanish in �.
So, by the domain of dependence theorem applied to the (linear homogeneous) wave
equations for ��, the �� vanish throughout D.�/. Therefore the solution of the
reduced equations is in fact a solution of the Einstein equations

R�� D 0 in D.�/:

If the 3-manifold SM is compact, one can cover SM with a finite number of coordinate
charts and construct a local time solution by putting together these local solutions.
This works by virtue of the domain of dependence theorem for the Einstein equations.
For, suppose that �1 and �2 are two such coordinate charts with �1 \ �2 ¤ ;.
Since we are given initial data . Ng; k/ on the whole 3-manifold SM , the representations
of these data, given by the two charts, are related by the diffeomorphism in the overlap.
Thus there exists a diffeomorphism f of �1 \�2 onto itself such that

Ng2 D f � Ng1; k2 D f �k1:

After making this transformation we may assume that the initial data coincide in
�1 \�2. If g1 and g2 are the two solutions of the reduced equations, corresponding
to the initial conditions in�1 and�2 respectively, the domain of dependence theorem
says that g1 and g2 coincide in the domain of dependence of �1 \ �2 relative to
either g1 or g2.

We can therefore extend either solution

.D.�1/; g1/; .D.�2/; g2/

to the union, the domain of dependence of �1 [�2.
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†0

�1 �2

Figure 6

Remark. The domain of dependence theorem is a refined uniqueness theorem.

Definition 24. Given initial data .�; Ng; k/ where .�; Ng/ is not required to be com-
plete, we say that a spacetime .U; g/ is a development of this data, if � is a Cauchy
hypersurface for U. So� is the past boundary of U and Ng and k are respectively the
first and second fundamental forms of the hypersurface � in .U; g/. Moreover, g
satisfies the Einstein equations

R�� D 0:

An argument analogous to the one just presented shows that if U1 and U2 are
developments of the data .�; Ng; k/, then we can define a development with domain
U1 [ U2 which extends the corresponding metrics g1 and g2. Therefore, the union
of all developments of given initial data is also a development of the same data, the
maximal development of that data.

Theorem 2 (Y. Choquet-Bruhat, R. Geroch [9]). Any initial data set . SM; Ng; k/
.completeness of . SM; Ng/ not assumed/ satisfying the constraint equations, gives rise
to a unique maximal development.

We shall now give an exposition of the domain of dependence theorem in a gen-
eral Lagrangian setting. Recall the Lagrangian for a mapping u W M ! N from
Section 2.1.1. Given a background solution u0, we defined the quadratic form
h D @2L

@v2 .v0/ with h. Pv; Pv/ D h
��

ab
Pva
� Pvb

� where h��

ab
D @2L

Pva
� Pvb

�

and v0 D du0.x/.

Let us denote by fLg the equivalence class of Lagrangians giving rise to the same
Euler–Lagrange equations. Recall Definition 19 from Section 2.1.1.

Definition 25. We say that fLg is regularly hyperbolic at v0 if the quadratic form h

fulfills the following:
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1. There is a covector � 2 T �
x M such that h is negative definite on

L	 WD f� ˝Q W Q 2 TqN g � L.TxM;TqN /;

that is, the elements of the form Pva
� D ��Q

a.

2. There is a vector X 2 TxM with � � X > 0 such that h is positive definite on
the set †1

X of rank-1-elements of the subspace

†X D fPv 2 L.TxM;TqN / W Pv �X D 0g;
that is, the elements of the form Pva

� D �P
a where �X

� D 0.

Definition 26. Let h be regularly hyperbolic. Set

I �
x D f� 2 T �

x M W h is negative definite on L	g (64)

and
Jx D fX 2 TxM W h is positive definite on †1

Xg: (65)

Proposition 2. I �
x and Jx are open cones each of which has two components

I �
x D I �C

x [ I ��
x ;

Jx D JC
x [ J�

x ;

where I ��
x and J�

x are the sets of opposites of elements in I �C
x and JC

x , respectively.
Moreover, each component is convex. The boundary @I �

x is a component .the inner
component/ of C �

x , the characteristic in T �
x M , and @Jx is a component .the inner

component/ of Cx , the characteristic in TxM .

Proof. The proof is in the book [12]. �

Recall the definition of the Noether transform m.�;X/ of h corresponding to a
pair .�; X/ 2 T �

x M � TxM with � �X > 0:

m.�;X/. Pv1; Pv2/ D .�; X/h. Pv1; Pv2/ � h.� ˝ Pv1 �X; Pv2/ � h. Pv1; � ˝ Pv2 �X/:
Proposition 3. Let UC

x � T �
x M � TxM be given by

UC
x D f.�; X/ W � �X > 0g:

Consider the subset of UC
x consisting of those .�; X/ with m.�;X/ positive definite

onR	 D f�˝P C ˝Q W 8  2 T �
x M; 8 P;Q 2 TqN g. Then this subset is given

by
.I �C

x � JC
x / [ .I ��

x � J�
x /:

Moreover, on the boundary of this set m.�;X/ has nullity.
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Let us discuss briefly the notion of variation of a mapping u0 W M ! N . A
variation of u0, namely Pu, is a section of u�

0TN (the pullback by u0 of TN ). In
general, if B is a bundle over N and u0 W M ! N , we denote by u�

0B the pullback
bundle, namely the following bundle over M :

u�
0B D

[
x2M

fxg � Bu0.x/;

where Bq is the fibre of B over q 2 N .

M N

x

u.x/ D y

ut .x/

Figure 7

Thus, a variation Pumaps x 2 M 7! Pu.x/ 2 Tu0.x/N . For a given x 2 M , Pu.x/ is
the tangent vector at u0.x/ of the curve t 7! ut .x/ in N , where ut is a differentiable
1-parameter family of mappings ut W M ! N , i.e., Pu.x/ D dut .x/

dt

ˇ̌
tD0

.
We now explain the meaning of the subset Jx � TxM : Jx is the set of possible

values at x 2 M of a vector fieldX onM with the property that the reduced equations
obtained by considering mappings which are invariant under the corresponding 1-
parameter group of diffeomorphisms of M , form a regularly elliptic system.

On the other hand, the subset I �
x � T �

x M defines the notion of a spacelike
hypersurface.

Definition 27. A hypersurface H in M is called spacelike, if at each x 2 H the
double ray f�� W � ¤ 0 2 Rg defined by the hyperplane TxH in TxM ,

TxH D fY 2 TxM W � � Y D 0g; (66)

is contained in I �
x .

Definition 28. NIx , the causal subset of TxM , is the set of all vectorsX 2 TxM such
that � �X ¤ 0 for all � 2 I �

x .

NIx is a closed subset of TxM with NIx D NIC
x [ NI�

x , where NI�
x is the set of opposites

of elements in NIC
x . One can show that each component is convex. If X 2 @ NIx then
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there exists a covector � 2 @I �
x such that � � X D 0. It follows that each component

I �C
x and I ��

x lies to one side of the plane

…X D f� 2 T �
x M W � �X D 0g

and …X contains a ray of @I �C
x respectively @I ��

x . Thus if @I �
x is differentiable at

this double ray, then …X is the tangent plane to I �
x at this double ray.

Definition 29. A causal curve � in M is a curve in M whose tangent vector P�.t/ at
each point �.t/ belongs to NI�.t/.

The following statements are valid for the future and past components of NIx andJx

separately. In general, we have NIx � Jx . In fact, Jx is the interior of the inner com-
ponent of Cx while NIx is the convex hull of the outer component of Cx . (Remember
that Cx is the characteristic in the tangent space TxM .)

I �
x

T �
x M TxM

Jx NIx D dual of I �
x

Figure 8

We have in general m-sheets in the case dim N D m.

Next, let us give two equivalent definitions of domain of dependence:

Definition 30. Let R be a domain inM on which a solution u of the Euler–Lagrange
equations is defined. Consider a domain D � R and a hypersurface † in R, which
is spacelike relative to du.

1. We say that D is a development of † if we can express

D D
[

t2Œ0;T �

†t

where f†t W t 2 Œ0; T �g is a foliation and where each†t is a spacelike (relative
to du) hypersurface in R homologous to †0 D †. (In particular, @†t D @†

for all t 2 Œ0; T �.)
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2. D is a development of † if each causal curve in R through any point of D

intersects † at a single point.

We sketch the proof of the equivalence of the above two definitions.

Sketch of proof. Suppose that D is a development of† according to Definition 30.2.
Then for each pointp 2 D the causal past J�.p/ (we are considering future develop-
ments; † is the past boundary of D) is compact. We define t .p/ to be the volume of
J�.p/, given a volume form � on R. This defines a time function in Dn†: dt �X > 0

for any vector X 2 NIC
x with x 2 D n †. The level sets of t then define a foliation

f†tg as required in Definition 30.1. Conversely, suppose that D is a development of
† according to Definition 30.1. Then any causal curve in D can be parametrized by
t in a non-singular manner. It follows that each past-directed causal curve from any
point of D must intersect †. One can show that if D1 and D2 are developments of
†, then D1 [ D2 is also a development. So given a domain of definition R and a
spacelike hypersurface†, we can define the domain of dependence of† in R relative
to du to be the maximal development. �

To state the domain of dependence theorem in a precise and general manner, we
reformulate the general Lagrangian setup from a global perspective. Consider maps
u W M ! N . The configuration space is C D M � N . The velocity space V is a
bundle over C :

V D
[

.x;q/2C

L.TxM;TqN /:

We have a projection


 W V ! C;

v 2 L.TxM;TqN / 7! .x; q/ 2 C;
where we write
V ;M for
1 ı
 W V ! C ! M and we write
V ;N for
2 ı
 W V !
C ! N .

Let us list at this point the relevant notions.

TM; the tangent bundle of M ,

ƒrM; the bundle of (fully antisymmetric) r-forms on M ,

S2M; the bundle of quadratic (symmetric bilinear) forms on M ,

and, with n D dimM ,

ƒnM; the bundle of top-degree-forms on M .

So, ƒnM is a bundle over M and


V ;M W V ! M
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is the projection defined above. Then the pullback bundle is


�
V ;M ƒnM;

a bundle over V . An element of this is ! 2 .ƒnM/x with x 2 M , and this ! is
attached to an element v 2 L.TxM;TqN /. The Lagrangian L is actually a C1-
section of 
�

V ;M
ƒnM over V . So,

v 7! L.v/ 2 .ƒnM/xI v 2 L.TxM;TqN /:

Thus
L.v/.Y1; : : : ; Yn/;

with Y1; : : : ; Yn 2 TxM , is an n-linear fully antisymmetric form on TxM .

Definition 31. Given a Lagrangian L, the action of a map u defined in a domain R

in M , corresponding to a subdomain D � R is

A ŒuI D � D
Z

D

L ı du: (67)

Note that L ı du is a section of ƒnM over R (.L ı du/.x/ D L.du.x// 2
.ƒnM/x). Also, note that with dimM D n, dim N D m, we have dimC D nCm,
dim V D .nCm/C nm.

Suppose that M is oriented and � is a C1 volume form on M . That is, � is a
C1-section ofƒnM such that if .E1; : : : ; En/ is a positive basis for TxM (a positive
frame at x), then �.E1; : : : ; En/ > 0. Given then a C1 function L� on V , we define
the corresponding Lagrangian L by

L.v/.Y1; : : : ; Yn/ D L�.v/ �.Y1; : : : ; Yn/

with v 2 L.TxM;TqN / and Y1; : : : ; Yn in TxM . The function L� was called
“Lagrangian” in the previous.

Finally, we state the domain of dependence theorem.

Theorem 3 (Domain of dependence theorem). Let u0 be a C 2 solution of the Euler–
Lagrange equations corresponding to a C1 Lagrangian L; and let u0 be defined in
a domain R inM . Let† be a hypersurface in R, which is spacelike relative to du0.
Let also u1 be another solution of the Euler–Lagrange equations defined and C 1

on R. Suppose that
du0j† D du1j†:

Then u1 coincides with u0 in the domain of dependence of † in R relative to du0.
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2.3 Decomposition of the Einstein equations with respect to the
foliation by the level sets Ht of a time function t

We consider first Lorenzian geometry without the Einstein equations, and afterwards
we impose the Einstein equations.

H0

Ht

Figure 9

Let .E1, E2, E3/ be a (local) frame field for H0. We extend the Ei , i D 1; 2; 3,
to the spacetime by the condition

ŒT; Ei � D 0: (68)

Then the .E1; E2; E3/ define a frame field for each Ht . The spacetime manifold M
is represented as the product Œ0; T � � H0. In this representation T D @

@t
and

g D �ˆ2dt2 C Ng;
where Ng.t/ is the induced metric on Ht and ˆ is the lapse function. Recall the first
variation equations

@ Ngij

@t
D 2ˆkij ; kij D k.Ei ; Ej /: (69)

Here k is the second fundamental form of Ht and the indices i , j refer to the frame
.Ei W i D 1; 2; 3/. The second variation equations are

@kij

@t
D xri

xrjˆ � .Ri0j 0 � kimk
m
j /ˆ: (70)

Here xr is the covariant derivative operator intrinsic to Ht , that is, relative to the
Riemannian connection of .Ht ; Ng.t//. Also, Ri0j 0 D R.Ei ; E0; Ej ; E0/, the frame
field .E1; E2; E3/ being completed byE0 D 1

ˆ
@
@t

, the future-directed unit normal to
the Ht , to a frame field for M . Remark that g00 D �1, g0i D 0 and gij D Ngij D
g.Ei ; Ej /.
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In addition to the 1st and 2nd variation equations we have the Codazzi and Gauss
equations of the embedding of Ht in M . The Codazzi equations are

xrikjm � xrjkim D Rm0ij ; (71)

and the Gauss equations are

xRimjn C kijkmn � kinkmj D Rimjn: (72)

Here xRimjn are the components of the curvature tensor of .Ht ; Ng.t//.
We proceed to impose the Einstein equations. Taking the trace of the Gauss

equations we obtain

xRij C tr k kij � kimk
m
j D Rij CRi0j 0: (73)

Next we substitute for Ri0j 0 from these equations into the 2nd variation equations to
conclude that the part Rij D 0 of the vacuum Einstein equations is equivalent to

@kij

@t
D xri

xrjˆ � . xRij C kij tr k � 2kimk
m
j /ˆ: (74)

The trace of the Codazzi equations is

xrikij � @j tr k D R0j : (75)

The partR0j D 0 of the vacuum Einstein equations is thus equivalent to the constraint
equation

xrikij � @j tr k D 0: (76)

The double trace of the Gauss equations is

xRC .tr k/2 � jkj2 D RC 2R00 D 2 OR00; (77)

where jkj2 D ki
mk

m
i and OR�� D R�� � 1

2
g��R. Thus the vacuum Einstein equation

OR00 D 0 is equivalent to the constraint equation

xRC .tr k/2 � jkj2 D 0: (78)

The constraint equations constrain the initial data

. Ng; k/ on H0.

To derive the 2nd variation equations we must obtain an expression for the accel-
eration of the orthogonal family of curves.
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Acceleration of the integral curves of T . Let us denote the unit normal E0 D N .
Then the geodesic curvature of the orthogonal family of curves is given by

rNN D ˆ�1 xrˆ; (79)

and xrˆ is the gradient of ˆ intrinsic to Ht , a vector field tangent to Ht with com-
ponents

xriˆ D Ngij xrjˆ;

where xrjˆ D Ejˆ. Recall that T D ˆN (the integral curves of T and N are
the same, but differ only by parametrization; T is parametrized by t while N is
parametrized by s, namely arc length.) The formula (79) is derived as follows. We
have (in arbitrary local coordinates)

N� D g��N
� D �ˆ@�t: (80)

Hence, we can write

N �r�N� D �N �r�.ˆ@�t /

D �N �@�ˆ@�t �ˆN �r�.@�t /

D ˆ�1N �N�@�ˆCN �ˆr�.ˆ
�1N�/:

The last term is

�ˆ�1N �N�„ƒ‚…
D�1

@�ˆC N �r�N�„ ƒ‚ …
D 1

2 @� .N
�N�/„ ƒ‚ …

D�1

D0

D ˆ�1@�ˆ:

Thus,
N �r�N

� D ˆ�1…��@�ˆ;

where …�� D g�� C N�N � D g��…
�

�
and …�

�
defines the orthogonal projection

to the Ht :
… �X D X C g.N;X/N

on any vector X 2 TM . We have thus obtained the formula (79). Since T D ˆN ,
an expression for the acceleration rT T of the integral curves of T readily follows.

Now let X , Y be vector fields tangential to the Ht and satisfying

ŒT; X� D ŒT; Y � D 0:

At the end we shall set X D Ei and Y D Ej to obtain T k.Ei ; Ej / D @kij

@t
. We have

k.X; Y / D g.rXN; Y /

D ˆ�1g.rXT; Y /:
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Therefore
T .k.X; Y // D T .ˆ�1g.rXT; Y //:

Now,
T .g.rXT; Y // D g.rT rXT; Y /C g.rXT;rT Y /:

For the first term we apply the definition of the curvature:

rT rXT D rXrT T C rŒT;X�T CR.T;X/T

and
g.Y;R.T;X/T / D R.Y; T; T;X/ D �R.X; T; Y; T /:

For the second term we use

rT Y � rY T D ŒT; Y � D 0;

to write
g.rXT;rT Y / D g.rXT;rY T /:

Substituting T D ˆN , we can express the vector field Z WD rXN in terms of k. In
factZ is tangential to the Ht , henceZ D ZiEi andZigij D g.Z;Ej / D k.X;Ej /.
The 2nd variation equations (70) follow in this manner after substituting for rT T from
the formula (79) for rNN .

To derive the Gauss equations, we recall from Riemannian geometry that the
covariant derivative xr intrinsic to .Ht ; Ng.t// is characterized by the property

xrXY D … � rXY;

whereX , Y are any vector fields tangential to the Ht . We apply this to the definition
of the curvature of .Ht ; Ng.t//. LetX; Y;Z be arbitrary vector fields tangential to Ht .
Then

xR.X; Y /Z D xrX
xrYZ � xrY

xrXZ � xrŒX;Y �Z: (81)

Now let W be another arbitrary vector field tangential to Ht . Then we can write

xR.W;Z;X; Y / D g.W; xR.X; Y /Z/ (82)

D g.W; rX
xrYZ � rY

xrXZ � rŒX;Y �Z/; (83)

since g.W;… � U/ D g.W;U / for any vector field U . At this point we substitute

xrXZ D … � rXZ D rXZ C g.N;rXZ/N:

Thus in rY .xrXZ/ there are terms, in addition to rY rXZ, which involve rYN , thus
the second fundamental form k. The Gauss equations (72) follow in this manner.
The Codazzi equations (71) are straightforward.



3 Asymptotic flatness at spacelike infinity and
conserved quantities in General Relativity

3.1 Conserved quantities

In this chapter we discuss the definitions of total energy, linear momentum and angular
momentum in General Relativity. We then give an overview followed by a rigorous
discussion of the associated conservation laws.

We begin with the definitions of a manifold which is Euclidean at infinity, of an
asymptotically Euclidean Riemannian manifold and of an asymptotically flat initial
data set.

Definition 32. A 3-manifold H is said to be Euclidean at infinity if there exists a
compact set K � H such that H n K is diffeomorphic to R3 n B, where B is a ball
in R3. Thus H n K is contained in the domain of a chart.

Definition 33. An asymptotically Euclidean Riemannian manifold .H ; Ng/ is a com-
plete Riemannian manifold which is Euclidean at infinity and there exists a coordinate
system .x1; x2; x3/ in the complement of K above relative to which the metric com-

ponents Ngij ! ıij as r WD
qP3

iD1.x
i /2 ! 1.

Definition 34. An asymptotically flat initial data set .H ; Ng; k/ is an initial data set
where .H ; Ng/ is an asymptotically Euclidean Riemannian manifold and the compo-
nents of k approach 0 relative to the coordinate system above as r ! 1.

The fall-off of Ngij � ıij and kij with r should be sufficiently rapid for the notions
of total energy, linear momentum and angular momentum below to be well defined
and finite.

The standard definition of these notions is the following:

Definition 35 (Arnowitt, Deser, Misner (ADM) [1]). Let Sr D fjxj D rg be the
coordinate sphere of radius r and dSj the Euclidean oriented area element of Sr . We
then define

• the total energy

E D 1

4
lim

r!1

Z
Sr

X
i;j

.@i Ngij � @j Ngi i / dSj ; (84)
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• the linear momentum

P i D �1
2

lim
r!1

Z
Sr

.kij � Ngij tr k/ dSj ; (85)

• the angular momentum

J i D �1
2

lim
r!1

Z
Sr

�ijmx
j .kmn � Ngmn tr k/ dSn: (86)

The total energy, linear momentum and angular momentum are conserved quan-
tities at spacelike infinity, as shall be shown in the sequel.

We now begin the discussion of where these quantities come from. Let us recall
the fundamental theorem of Noether.

Theorem 4 (Noether’s theorem [22]). In the framework of a Lagrangian theory, to
each continuous group of transformations leaving the Lagrangian invariant there
corresponds a quantity which is conserved.

In particular:

– energy corresponds to time translations,

– linear momentum corresponds to space translations,

– angular momentum corresponds to space rotations.

As discussed in the previous chapter, a Lagrangian corresponds in a local coordi-
nate description to a function

L� D L�.x; q; v/:

We denote by x� (with � D 1; : : : ; n) the independent variables, qa D ua.x/ (with
a D 1; : : : ; m) the dependent variables, and va

� D @ua

@x� .x/ the first derivatives of the
dependent variables. The canonical momentum is given by

p��
a D @L�

@va
�

: (87)

We define the canonical stress by

T ��
� D p��

a va
� � L�ı�

� : (88)

In the following we restrict ourselves to transformations acting only on the domain
of the independent variables. LetX� be a vector field generating a 1-parameter group
of transformations of this domain leaving invariant the Lagrangian form

L� dnx; dnx D dx1 ^ � � � ^ dxn: (89)
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Then the Noether current
J �� D T ��

� X� (90)

is divergence-free, that is
@�J

�� D 0: (91)

By the divergence theorem we conclude that the following conservation law holds:
If †1 and †2 are homologous hypersurfaces (in particular @†1 D @†2), thenZ

†2

J �� d†� D
Z

†1

J �� d†�: (92)

We now turn to General Relativity. The Einstein equations are derived from

Hilbert’s action principle. This corresponds to the following Lagrangian for gravity:

L D �1
4
R d�g ;

where R is the scalar curvature of the metric g and d�g the volume form of g. This
Lagrangian is the only one (up to an additive constant multiple of the volume form)
which gives rise to second order (Euler–Lagrange) equations. Here the metric com-
ponents g�� are the unknown functions and R depends on their second derivatives.
Moreover, it is the only geometric invariant (up to an additive constant) which con-
tains the second derivatives only linearly. (All other invariants give rise to 4th order
equations.) But Noether’s theorem depends on having a Lagrangian containing only
the first derivatives of the unknown functions. Thus it cannot be applied directly to
Hilbert’s principle.

To deal with this difficulty, Einstein and Weyl introduced the Lagrangian

�1
4
RC @˛I

˛ D L�;

where I ˛ D �1
4

p�g .g���˛
�� � g�˛��

��/. Then

L� D �1
4

p�g g��.�ˇ
�˛�

˛
�ˇ � �ˇ

���
˛
ˇ˛/

differs from Hilbert’s invariant Lagrangian �1
4
R

p�g by a divergence, therefore
gives rise to the same field equations. So, one can define

p��˛ˇ D @L�

@v�˛ˇ

to be the canonical momentum, where v�˛ˇ D .@�g˛ˇ /.x/ (qa corresponding to
g˛ˇ .x/). The canonical stress is then

T ��
� D p��˛ˇv�˛ˇ � L�ı�

� :



38 3 Asymptotic flatness at spacelike infinity and conserved quantities

This is called the Einstein pseudo-tensor. The Lagrangian L� is invariant under
translations: x� 7! x� C c�, where the c� are constants. Let

J �� D T ��
� X� ; where X� D c� .X D c� @

@x�
/;

so X is a vector field generating a 1-parameter group of translations. By Noether’s
theorem the current J �� is divergence free, that is

@�J
�� D 0:

Since the c� are arbitrary constants, the following differential conservation laws hold:

@�T
��
� D 0:

Hermann Weyl wrote the following comments about these conservation laws. We
quote from the book [29], p. 273:

In the original German:
Dennoch scheint es physikalisch sinnlos zu sein, dieT ��

� als Energiekom-
ponenten des Gravitationsfeldes einzuführen; denn diese Grössen bilden
weder einen Tensor noch sind sie symmetrisch. In der Tat können durch
geeignete Wahl eines Koordinatensystems alle T ��

� an einer Stelle stets
zum Verschwinden gebracht werden; man braucht dazu das Koordi-
natensystem nur als ein geodätisches zu wählen. Und auf der andern
Seite bekommt man in einer ‘Euklidischen’, völlig gravitationslosen
Welt bei Benutzung eines krummlinigen Koordinatensystems T ��

� , die
verschieden von 0 sind, wo doch von der Existenz einer Gravitations-
energie nicht wohl die Rede sein kann. Sind daher auch die Differential-
relationen (oben) ohne wirkliche physikalische Bedeutung, so entsteht
doch aus ihnen durch Integration über ein isoliertes System ein invari-
anter Erhaltungssatz.

In English translation:
Nevertheless it seems to be physically meaningless to introduce the T ��

�

as energy components of the gravitational field; for, these quantities
are neither a tensor nor are they symmetric. In fact by choosing an
appropriate coordinate system all the T ��

� can be made to vanish at
any given point; for this purpose one only needs to choose a geodesic
(normal) coordinate system. And on the other hand one gets T ��

� ¤ 0

in a ‘Euclidean’ completely gravitationless world when using a curved
coordinate system, but where no gravitational energy exists. Although
the differential relations (@�T

��
� D 0, above) are without a physical

meaning, nevertheless by integrating them over an isolated system one
gets invariant conserved quantities.
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Consider the transformation

x 7! Nx D f .x/;

g 7! f �g:

In components,
Nx� D f �.x/

and

g�� 7! Ng�� ; Ng��.x/ D @f ˛

@x�

@f ˇ

@x�
g˛ˇ . Nx/

(x D f �1. Nx/). As an example we have, in particular, linear transformations

Nx� D a�
� x

� C b�;

where a and b are constants. Then we have

Ng��.x/ D a˛
�a

ˇ
� g˛ˇ . Nx/:

If fftg is a 1-parameter group of transformations generated by a vector field X , then

d

dt
f �

t g
ˇ̌̌
tD0

D LXg (93)

is the Lie derivative of g with respect to X . We have

.LXg/�� D r�X� C r�X�;

where X� D g��X
� . We say that an integrated quantity Q is gauge invariant if for

every such 1-parameter group fftg,

QŒf �
t g� D QŒg�: (94)

This requirement implies

PQ D d

dt
QŒf �

t g�
ˇ̌̌
tD0

D 0 (95)

and conversely. In view of (93), the last reads

PQ WD DgQ � LXg D 0: (96)

Here, we think of Q as a differentiable function of g.
Now, the metric g is not a mapping of the (spacetime) manifold M into another

manifold N , but rather a section of a tensor bundle overM . Thus, Noether’s theorem
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must be extended to sections of tensor bundles. In any case, we have derived, by
considering translations,

@� T
��
� D 0: (97)

Let us now consider rotations. The vector fields

X.ij / D xi @

@xj
� xj @

@xi
; i; j D 1; 2; 3;

are the generators of rotations in the .i; j /-plane. In 3-space-dimensions the vector
fields

X.i/ D �ij�x
j @

@x�

generate rotations about the i th coordinate axis. In Minkowski spacetime the vector
field

X.˛ˇ/ D x˛

@

@xˇ
� xˇ

@

@x˛
; x� D ���x

� ;

generates spacetime-rotations in the .x˛; xˇ /-coordinate plane. Here � D
diag.�1; 1; 1; 1/ is the Minkowski metric in rectangular coordinates. We denote
the vector field generating translations along the ˛-coordinate axis by

X.˛/ D @

@x˛
:

Now, Noether’s theorem in the case of translations applies as it stands if we take the
naive point of view of considering g as a matrix-valued function on M D R4. This
yields

@�J
��

.˛/
D 0; where J ��

.˛/
D T ��

� X�
.˛/ D T ��

˛ :

On the other hand, for spacetime rotations in the .˛; ˇ/-plane we have

J
��

.˛ˇ/
D T ��

� X�
.˛ˇ/ D x˛T

��

ˇ
� xˇT

��
˛

and
@�J

��

.˛ˇ/
D T

��

ˇ
�˛� � T ��

˛ �ˇ�;

noting that @�x˛ D �˛ˇ ı
ˇ
� D �˛�. The last vanishes if and only if the matrix with

entries
S˛ˇ D �˛�T

��

ˇ

is symmetric, that is S˛ˇ D Sˇ˛ . But this is false. Therefore the above argument
does not yield a conservation law corresponding to spacetime rotations. This is not
surprising: The naive point of view fails for rotations, because rotations, in contrast
to translations, bring the tensor character of g into play.
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We shall presently discuss Noether’s theorem from a global geometric point of
view. Consider maps

u W M ! N

with dimM D n and dim N D m. As in Section 2.2, we denote by V the velocity
bundle

V D
[

.x;q/

L.TxM;TqN /;

where u.x/ D q 2 N and du.x/ D v 2 L.TxM;TqN /. A diffeomorphism f of
M onto itself induces a diffeomorphism f� of V onto itself by

v 2 L.TxM;TqN / 7! f�.v/ 2 L.Tf .x/M;TqN /; (98)

where
f�.v/ � Y D v � .df �1 � Y / 8 Y 2 Tf .x/M: (99)

IfX is a vector field onM generating the 1-parameter group fftg, we call the induced
1-parameter group fft�g of diffeomorphisms of V the Lie flow generated byX on V .
Recall that a LagrangianL is a section of the bundle 
�

V ;M
ƒnM over V , the pullback

by the projection 
V ;M W V ! M of the bundle ƒnM of top-degree-forms on M .
The pullback f � by f of L is defined by

.f �L/.v/ � .Y1; : : : ; Yn/ D L.f�.v// � .df � Y1; : : : ; df � Yn/ (100)

for all v 2 L.TxM;TqN / and all Y1; : : : ; Yn 2 TxM . (Recall that f�.v/ 2
L.Tf .x/M;TqN /.) The Lie derivative LXL of L with respect to a vector field X on
M is the derivative of L with respect to the Lie flow generated by X on V :

LXL D d

dt
f �

t L
ˇ̌̌
tD0
; (101)

where fftg is the 1-parameter group generated by X . A current J is a section of

�

V ;M
ƒn�1M . Given a volume form � on M we consider J as equivalent to J �, a

section of 
�
V ;M

TM , as follows:

J.v/ � .Y1; : : : ; Yn�1/ D �.J �.v/; Y1; : : : ; Yn�1/; (102)

for all v 2 L.TxM;TqN / and all Y1; : : : ; Yn�1 2 TxM . We now refer to the
following notion from [12].

Definition 36. Given a Lagrangian L, we say that a current J is compatible with
L, if there exists a section K of 
�

V ;M
ƒnM such that for every solution u of the

Euler–Lagrange equations corresponding to L we have

d .J ı du/ D K ı du: (103)
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In the above definition J ıdu is an .n�1/-form onM whileK ıdu is an n form
on M .

An interesting question is the following: What are all the possible currents com-
patible with a given Lagrangian? In n D 1 dimension all currents are compatible.
However, the question becomes non-trivial in n > 1 dimensions. In fact, the Noether
theorem provides a class of compatible currents in any dimension n of the domain
manifold M .

Definition 37. The domain Noether current corresponding to a Lagrangian L and a
vector field X on M is the current J , given by

J �� D T ��
� X� ; (104)

where T ��
� are the components of the canonical stress. Recall that T ��

� D p
��
a va

� �
L�ı�

� andL.v/ D L�.v/�.x/while p��
a D @L�

@va
�

are the components of the canonical
momentum.

We can now state Noether’s theorem in the domain case.

Theorem 5 (Noether’s theorem in the domain case). The Noether current is a com-
patible current and the corresponding section K of 
�

V ;M
ƒnM is given by

K D �LXL: (105)

In particular, if X generates a Lie flow leaving the Lagrangian invariant, then J is
conserved, that is for every solution u of the Euler–Lagrange equations we have

d.J ı du/ D 0: (106)

Hence, for two homologous hypersurfaces †1 and †2 it holds thatZ
†2

J ı du D
Z

†1

J ı du: (107)

Sections of Tensor Bundles over M . Having in mind the application to General
Relativity we consider the case of the bundle S2M of 2-covariant symmetric tensors
onM . In fact, the configuration space C in General Relativity is the open subbundle
LM of Lorentzian metrics on M :

C D LM D
[

x2M

LxM; (108)

where LxM is the set of quadratic forms on TxM of index 1, an open subset of the
space S2xM of quadratic forms on TxM . The velocity bundle V is

V D
[

x2M

L.TxM;S2xM/:
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The Lagrangian is defined on the bundle product

C �M V D
[

x2M

LxM � L.TxM;S2xM/:

(Note that dim.C �M V/ D dim C C dim V � dimM D nC n.nC1/
2

C n2.nC1/
2

.)
Given a diffeomorphism f ofM onto itself we shall define the action of f on C ,

V and on C �M V . Consider a section s of C (over M ). Thus, s is a Lorentzian
metric on M . We must associate to s a derived section which is a section of V (over
M ). Here, a connection � (on TM ) is needed. We assume that � is symmetric.
The derived section is then rs, the covariant derivative of s with respect to � . To
represent things in terms of duals, we must also choose a volume form � onM . This
must be compatible with � , that is we must have

r� D 0:

Such a choice is possible if and only if

trR.X; Y / D 0 8 X; Y 2 TxM; 8x 2 M;
whereR.X; Y / is the curvature transformation associated to � . (In an arbitrary local
frame this condition reads R�

�˛ˇ
D 0.) We now give the following definitions:

Definition 38. The action of f on C is defined by

q 2 Cx 7! f�.q/ 2 Cf .x/; x 2 M; (109)

where

f�.q/ � .Y1; Y2/ D q � .df �1 � Y1; df
�1 � Y2/ for all Y1; Y2 in Tf .x/M .

Definition 39. The action of f on V is defined by

v 2 Vx D L.TxM;S2xM/ 7! f�.v/ 2 Vf .x/ D L.Tf .x/M;S2f .x/M/; x 2 M;
(110)

where
f�.v/ � Y D f�.v � .df �1 � Y // for all Y in Tf .x/M .

The Lagrangian L is a section of


�
C�M V ;MƒnM:

Thus, if .q; v/ 2 LxM � L.TxM;S2xM/, then

L.q; v/ 2 ƒnxM;
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where ƒnxM is the space of totally antisymmetric n-linear forms in TxM . The
pullback by f of L, namely f �L, is given by

.f �L/.q; v/ � .Y1; : : : ; Yn/ D L.f�.q/; f�.v// � .df � Y1; : : : ; df � Yn/ (111)

for all Y1; : : : ; Yn in TxM . If X is a vector field on M generating the 1-parameter
group fftg of diffeomorphisms ofM onto itself, the induced 1-parameter group fft�g
of diffeomorphisms of C �M V onto itself , is the Lie flow generated byX on C �M V .
It is actually generated by a vector field X� on C �M V which is expressed as the
sum of its horizontal and vertical parts:

X� D XH� CXV� : (112)

We have
d
C�M V ;M �XH� D X (113)

and
d
C�M V ;M �XV� D 0: (114)

The horizontal part XH� D X] is the horizontal lift of X to C �M V defined by the
connection � . The vertical part is given by

XV .q; v/ D
� rft�.q/

rt
ˇ̌̌
tD0
;
rft�.v/

rt
ˇ̌̌
tD0

�
;

(an element of S2xM � L.TxM;S2xM/) which is a vector tangent to the fibre
Cx � L.TxM;S2xM/, an open set in the linear space S2xM � L.TxM;S2xM/.1

Here, ft�.q/ is a field of Lorentzian tensors along the curve ft .x/, namely the inte-
gral curve of X through x.

x

q
ft�.q/

M

C

ft .x/

Figure 10

1Recall that a tangent vector at a point in a linear space can be thought of as an element of the linear
space (a tangent vector at the origin).
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Consider an arbitrary system of local coordinates on M . We can expand q 2 Cx

and v 2 L.TxM;S2xM/ in this system as

q D q˛ˇ dx
˛.x/˝ dxˇ .x/;

where qˇ˛ D q˛ˇ , so q is symmetric, non-degenerate and of index 1. Moreover we
can expand

v D v�˛ˇ dx
�.x/˝ dx˛.x/˝ dxˇ .x/;

where v�ˇ ˛ D v�˛ˇ . Given X 2 TxM , we have X D X˛ @
@x˛

ˇ̌
x

and

v �X D .v �X/˛ˇ dx
˛.x/˝ dxˇ .x/;

.v �X/˛ˇ D v�˛ˇX
�:

The .q˛ˇ / constitute a system of linear coordinates for Cx and the .v�˛ˇ / constitute
a system of linear coordinates for Vx . We can then express

XV� .q; v/ D
�� rft�.q/

rt
ˇ̌̌
tD0

�
˛ˇ

@

@q˛ˇ

;

� rft�.v/
rt

ˇ̌̌
tD0

�
�˛ˇ

@

@v�˛ˇ

�
;

where� rft�.q/
rt

ˇ̌̌
tD0

�
˛ˇ

D �q�ˇ r˛X
� .x/ � q˛�rˇX

� .x/;� rft�.v/
rt

ˇ̌̌
tD0

�
�˛ˇ

D �v�˛ˇ r�X
�.x/ � v��ˇ r˛X

�.x/ � v�˛�rˇX
�.x/:

In conclusion, for any differentiable function F on C �M V we have

X�F D X]F � .q�ˇ r˛X
� C q˛�rˇX

� /

� @F

@q˛ˇ

� .v�˛ˇ r�X
� C v��ˇ r˛X

� C v�˛�rˇX
�/

@F

@v�˛ˇ

:

The derivative of L with respect to the Lie flow generated by X is

LXL D d f �
t L

dt

ˇ̌̌
tD0
; (115)

where L D 1
nŠ

P
L�1:::�n

dx�1 ^ � � � ^ dx�n . We have

.LXL/�1:::�n
D X�.L�1:::�n

/C
nX

iD1

@X�

@x�i
L�1���<�i >�:::�n

:

Here, by < �i > � we mean that in the i th place the suffix �i is missing and in its
place we have the suffix �. Writing L D L��, where � is a differentiable volume
form on M (r� D 0), we have

.LXL/
� D X�.L�/C .r�X

�/L�: (116)

We now give the following definition.
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Definition 40. In a theory of Lorentzian metrics, the Noether current corresponding
to a vector field X is

J ��.q; v/ D p��˛ˇ .X�v�˛ˇ C q�ˇ r˛X
� C q˛�rˇX

�/ � L�X�: (117)

The Euler–Lagrange equations are, in terms of the canonical momentump��˛ˇ D
@L�

@v�˛ˇ
and the canonical force f �˛ˇ D @L�

@q˛ˇ
,

r� .p
��˛ˇ ı .s;rs// D f �˛ˇ ı .s;rs/: (118)

We then compute

r� .J
�� ı .s;rs//

D r� .p
��˛ˇ ı .s;rs// .X�r�s˛ˇ C s�ˇ r˛X

� C s˛�rˇX
�/

C p��˛ˇ ı .s;rs/ fX�r�r�s˛ˇ C s�ˇ r�r˛X
� C s˛�r�rˇX

�

C .r�X
�/.r�s˛ˇ /C .r�s�ˇ /.r˛X

�/C .r�s˛�/.rˇX
�/g

�X].L�/ � @L�

@q˛ˇ

ı .s;rs/rXs˛ˇ

� @L�

@v�˛ˇ

ı .s;rs/rX .r�s˛ˇ / � .r�X
�/L�;

and we have

.LXL/
� D X].L�/ � @L�

@q˛ˇ

.q�ˇ r˛X
� C q˛�rˇX

�/

� @L�

@v�˛ˇ

.v�˛ˇ r�X
� C v��ˇ r˛X

� C v�˛�rˇX
�/C .r�X

�/L�:

Hence, by the definitions of canonical momentum and force as well as the Euler–
Lagrange equations,

r� .J
�� ı .s;rs//C .LXL/

� ı .s;rs/
D p��˛ˇ ı .s;rs/ fX�r�r�s˛ˇ � rXr�s˛ˇ

C s�ˇ r�r˛X
� C s˛�r�rˇX

�g:
(119)

We have

X� .r�r�s˛ˇ � r�r�s˛ˇ / D �X� .R�
˛��s�ˇ CR�

ˇ��s˛�/:

Let us recall that
r�r�X

� CR�
���X

� D .LX�/
�
�� :
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Consequently, the right-hand side of (119) is

p��˛ˇ ı .s;rs/ fs�ˇ .LX�/
�
�˛ C s˛� .LX�/

�
�ˇ g: (120)

In fact, the Lie derivative of a connection � is defined by:

.LX�/ .Y;Z/ D ŒX;rYZ� � rŒX;Y �Z � rY ŒX;Z� (121)

for any three vector fields X , Y , Z. One can readily check that .LX�/ .Y;Z/ is
bilinear in Y and Z with respect to multiplication by the ring of differentiable func-
tions. (That is, we have .LX�/.f Y;Z/ D f .LX�/ .Y;Z/ and .LX�/.Y; f Z/ D
f .LX�/ .Y;Z/, for any differentiable function f .) Moreover, the fact that � is a
symmetric connection implies that .LX /� .Y;Z/ is symmetric in Y;Z. It follows
that LX� is a T 1

2 tensor field which is symmetric in the lower indices. Since we have
ŒU; V � D rUV � rVU for any pair of vector fields U; V , (121) is equivalent to

.LX�/ .Y;Z/ D rXrYZ � rrY ZX � rŒX;Y �Z � rY rXZ C rY rZX

D R.X; Y /Z C r2X .Y;Z/:
(122)

Substituting a frame field, we obtain

.LX�/
�
�� D R�

���X
� C r�r�X

� ; (123)

in agreement with the formula above.
We conclude from the above that the following form of Noether’s theorem holds

for sections of C :

Theorem 6 (Noether’s theorem for sections of C ). The Noether current .from Defi-
nition 40/ is a compatible current, that is

d .J ı .s;rs// D K ı .s;rs/; (124)

and we have

K D �LXL � T; (125)

where

T �� D �p�˛ˇ fq�ˇ .LX�/
�
�˛ C q˛�.LX�/

�
�ˇ g: (126)

In particular, if X generates a flow on M leaving � invariant as well as a Lie flow
on C �M V leaving L invariant, then for every solution s of the Euler–Lagrange
equations we have

d .J ı .s;rs// D 0: (127)
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We are now going to apply the above to General Relativity.

We introduce a background metric
ı
g (in addition to the actual metric g). The

background metric is not to be varied in the variational principle. To
ı
g is associated

its metric connection
ı
� and volume form � D d�ı

g
(which is of course

ı
�-compatible).

We write

� 1

4
.R � g��

ı
R��/ d�g D .L�� ır� I

�/ d�ı
g
: (128)

Defining the positive function ! by

d�g D ! d�ı
g
; (129)

L� is given by

L� D �1
4
! g�� .4ˇ

�˛4˛
�ˇ � 4ˇ

��4˛
ˇ˛/; (130)

where 4 is the difference of the two connections:

4˛
�� D �˛

��� ı
�

˛

��

D 1

2
g˛ˇ .

ır� gˇ�C ır� gˇ�� ırˇ g��/:
(131)

Now L� is a true Lagrangian, as it depends only on g and
ır g. Moreover,

I ˛ D 1

4
! .g�� 4˛

�� � g�˛4�
��/: (132)

The Euler–Lagrange equations corresponding toL� coincide with the Einstein equa-

tions, provided that
ı
g is itself a solution of the Einstein equations, that is

ı
R��D 0: (133)

We take
ı
g to be flat from this point on. The background spacetime is then the

Minkowski spacetime. Let the vector fieldX generate a 1-parameter group of isome-

tries of
ı
g. Then X leaves

ı
� , as well as d�ı

g
D �, invariant. Moreover, the Lie flow

generated by X leaves L� invariant,

X�.L�/ D 0: (134)

We can thus apply Noether’s theorem to conclude that we have a conserved current
JX associated to X .



3.1 Conserved quantities 49

Now, the background Minkowski spacetime has a 10-parameter isometry group,
the Poincaré group. In Minkowski spacetime there is a special preferred class of
coordinates, the rectangular coordinates, in which the metric components are

ı
g��D ��� D diag.�1; 1; 1; 1/; (135)

and
d�ı

g
D dx0 ^ dx1 ^ dx2 ^ dx3:

Moreover, it holds (as in all linear coordinates) that

ı
�

˛

��D 0: (136)

The generators of the Poincaré group are expressed in rectangular coordinates by

X.˛/ D @

@x˛
generators of spacetime translations
along the x˛-coordinate axis,

X.˛ˇ/ D x˛

@

@xˇ
� xˇ

@

@x˛
generators of spacetime rotations in the

.x˛; xˇ /-coordinate plane, where x˛ D �˛ˇx
ˇ .

In terms of components in rectangular coordinates,

X
�

.˛/
D ı�

˛ ;

X
�

.˛ˇ/
D x˛ı

�

ˇ
� xˇ ı

�
˛ :

We therefore have the conserved Noether currents:

J.˛/ associated to the translations X.˛/,

J.˛ˇ/ associated to the rotations X.˛ˇ/.

Substituting in Definition 40 the generators of translations along thex˛-coordinate
axis we obtain

J
��

.˛/
D T

��

.˛/
: (137)

The associated conservation laws coincide with the Einstein–Weyl energy-momentum
conservation laws, discussed in the preceding. But whereas the Einstein–Weyl ap-
proach provides no conservation law corresponding to spacetime rotations, the present
approach does.

Consider the Noether current JX associated to a vector field X generating a 1-

parameter group of isometries of the background Minkowski metric
ı
g. We have
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shown above that JX is conserved. This means that for every solution g of the
Euler–Lagrange equations (the Einstein equations) we have

d .JX ı .g; ır g// D 0; (138)

which implies that if†1 and†2 are homologous hypersurfaces (in particular @†2 D
@†1), then the following holds:Z

†2

JX ı .g; ır g/ D
Z

†1

JX ı .g; ır g/: (139)

Next we are going to show that in fact JX is a boundary current. In the general setting
of a Lagrangian theory of maps u of the domain manifold M into another manifold
N , we have the following definition.

Definition 41. A current J is called a boundary current if there exists a section G
of 
�

V ;M
ƒn�2M (with dimM D n), such that for every solution u of the Euler–

Lagrange equations we have

J ı du D d .G ı du/: (140)

A boundary current is a conserved current; in factZ
†

J ı du D
Z

@†

G ı du: (141)

The integral conservation lawZ
†2

J ı du D
Z

†1

J ı du

trivially follows from the fact that @†2 D @†1 whenever †2 is homologous to †1.
Let us go back to the definition of the Noether current corresponding to a vector

fieldX in a Lagrangian theory of Lorentzian metrics onM . In rectangular coordinates

of the background Minkowski metric
ı
g,

ı
g��D ��� ;

ır�D @�; det
ı
gD �1;

and we have

J
��

X D T ��
� X� C p��˛ˇ .g�ˇ@˛X

� C g˛�@ˇX
�/: (142)

Taking X to be a Killing field of
ı
g, we have

X� D

8̂̂<̂
:̂
X

�

.˛/
D ı

�
˛ for the generators of spacetime

translations,

X
�

.˛ˇ/
D x˛ı

�

ˇ
� xˇ ı

�
˛ ; x� D ���x

� for the generators of spacetime
rotations.
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It holds then that
@�@�X

˛ D 0;

which is the equation

LX

ı
�D 0:

Now, in General Relativity it turns out that we have, identically,

T ��
� D @�F

���
� � 1

2

p� det g OR�
� ; (143)

where F ���
� is an expression which is antisymmetric in � and �, to be given below.

(Recall that OR�� D R�� � 1
2
g��R and OR�

� D g�� OR�� .) Fixing the index � let us
write

T.�/˛ˇ� D T ��
�

ı
��˛ˇ� (144)

and

F.�/˛ˇ D 1

2
F ���

�

ı
���˛ˇ : (145)

Then by (143) for every solution g of the Einstein equations we have

T.�/ D d F.�/; (146)

when composed with .g; @g/. The F ���
� are given by

F ���
� D A���˛ˇ

� @�g˛ˇ ; (147)

where

A���˛ˇ
� D

p� det g

8
f ı˛

� .g
��g�ˇ � g��g�ˇ /C ıˇ

� .g
��g�˛ � g��g�˛/

C 2g˛ˇ .ı�
� g

�� � ı�
� g

��/C g�˛ .g�ˇ ı�
� � g�ˇ ı�

� / (148)

C g�ˇ .g�˛ı�
� � g�˛ı�

� /g:

Using (143) we deduce that for any Killing field X of
ı
g and every solution of the

Einstein equations we have
J

��
X D @�G

���
X ; (149)

where
G

���
X D F ���

� X� CK
���
X ;

and K���
X is an expression which is antisymmetric in � and �:

K
���
X D 1

4
f .p�g g�� � ���/ @�X

� � .p�g g�� � ���/ @�X
� g:
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In fact we have the identity

J
��

X D @�G
���
X � 1

2

p� det g OR�
� X

� : (150)

Thus, for any Killing field X of
ı
g and every solution of the Einstein equations we

have
JX D dGX ;

where

.GX /˛ˇ D 1

2
G��� ı

���˛ˇ :

We shall now investigate the invariance properties of integrated quantities under
gauge transformations, to be explained presently. Remark that we are free to pull-
back the metric g by an arbitrary (orientation preserving) diffeomorphism f of M

while keeping the background Minkowski metric
ı
g fixed:

g 7! f �g;

where

.f �g/��.x/ D @f ˛

@x�
.x/

@f ˇ

@x�
.x/g˛ˇ .f .x//:

We consider the quantity Q associated to X , a given Killing field of
ı
g, and to S , a

2-surface which is homologous to 0 (S D @† for some bounded hypersurface †):

QX .S/ D
Z

S

GX ; (151)

with GX D GX .g; @g/ defined above. Here, S and X are part of the background
Minkowski structure. They are not affected by f . So, f acts like a gauge transfor-
mation. Consider then a 1-parameter group fftg generated by a vector field Y .

Pg D d

dt
f �

t g
ˇ̌̌
tD0

D LY g:

We investigate

PQX .S/ D
Z

S

PGX :

If PQX .S/ were to vanish for all vector fields Y , then QX .S/ would be a geometric
invariant. This would be so if PGX were of the form

PGX D dIX ;
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with IX a 1-form. For, we would then haveZ
S

PGX D 0

as @S D ;. However, this is unfortunately false.
Nevertheless, we shall presently show that, in the case that X is a spacetime

translation, if g is asymptotic to
ı
g at spacelike infinity in an appropriate manner, then

PGX is in fact asymptotically of the form dIX . The case thatX is a spacetime rotation
shall be treated later.

Setting �� D g��Y
� we have

Pg�� D .LY g/�� D r��� C r���

D Y �@�g�� C g��@�Y
� C g��@�Y

�:
(152)

The last equation holds in any system of coordinates, in particular, in the rectangular

coordinates of
ı
g.

Now letg������ D o2.r
�˛/. Here, r D

qP3
iD1.x

i /2 and we say that a function

f of the spacetime coordinates is ok.r
�˛/ if f is C k and its partial derivatives with

respect to the spacetime coordinates of order l are o.r�˛�l/, for all l D 0; : : : ; k. We
are only allowing ‘gauge transformations’ which do not affect this fall-off property.
That is, we assume that

�� D o3.r
1�˛/:

Then we have
Pg�� D @��� C @��� C o1.r

�2˛/: (153)

Note that for translations X.�/ D @
@x� ,

G
���
X.�/

D F ���
� : (154)

Now, we have
PF ���
� D PA���˛ˇ

� @�g˛ˇ„ ƒ‚ …
o1.r�1�2˛/

CA���˛ˇ
� @� Pg˛ˇ ; (155)

hence

PF ���
� D ı

A
���˛ˇ

� @� .@˛�ˇ C @ˇ �˛/C o1.r
�1�2˛/: (156)

Let BR be the largest coordinate ball (r � R) contained in S . Then, if ˛ 	 1
2

,Z
S

o.r�1�2˛/ D o.R1�2˛/ ! 0
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as R ! 1. It thus suffices to show that there is a 1-form I.�/ such that

1

2

ı
A

���˛ˇ

� @� .@˛�ˇ C @ˇ �˛/
ı
����ıD @�I.�/ı � @ıI.�/� : (157)

In fact, defining the totally antisymmetric expressions

I
�˛ˇ�

.�/
D 1

4
f ı˛

� .@
ˇ �� � @��ˇ /C ıˇ

� .@
��˛ � @˛�� /C ı�

� .@
˛�ˇ � @ˇ �˛/ g

we have
ı
A

���˛ˇ

� @� .@˛�ˇ C @ˇ �˛/ D @�I
����:

Hence, setting

I.�/� D 1

6
I

�˛ˇ�

.�/

ı
�˛ˇ��;

(157) indeed holds. We conclude the following:

Proposition 4. Let Sr be the coordinate sphere of radius r on a complete asymptot-
ically flat Cauchy hypersurface †. Then the limiting quantity

QX .S1/ WD lim
r!1QX .Sr/ (158)

associated to a translation X is a geometric invariant provided that g�� � ��� D
o2.r

�˛/ for some ˛ 	 1
2
.

3.2 Asymptotic flatness

What we have just shown implies that the total energy-momentum is a geometric
invariant, provided that the metric g�� is asymptotically flat in the following sense:
There is a coordinate system in the neighbourhood of spatial infinity with respect to
which the metric components satisfy

g�� D ��� C o2.r
�˛/; ˛ >

1

2
: (159)

We shall now show that the energy E and the linear momentum P j are well defined
under the same assumption. The argument here follows [4]. Since we have shown
these quantities to be independent of the particular choice of such a coordinate system,
we may use coordinates such that the spatial coordinate lines .xi D ci ; i D 1; 2; 3/

are orthogonal to the hypersurfaces x0 D c0, that is we can set

g0i D 0:
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(We have g00 D �ˆ2; gij D Ngij .) We then find

F �0i
0 D �ei ; (160)

where

ei D
p

det Ng
4

. Ngjm Ngin � Ngij Ngmn/ @j Ngmn: (161)

Thus, the energy is given by

E D lim
r!1

Z
Sr

ei dSi (162)

(in agreement with the ADM expression). Also, we find

F �0i
j D pi

j D �
p

det Ng
2

. Ngimkjm � ıi
j tr k/; (163)

where

pi
j D �

p
det Ng
2

. Ngimkjm � ıi
j tr k/ (164)

and kij D 1
2ˆ

@ Ngij

@t
is the 2nd fundamental form of the hypersurfaces x0 D c0. Thus,

the linear momentum is given by

P j D lim
r!1

Z
Sr

pi
j dSi (165)

(in agreement with the ADM expression).
The hypotheses on ˆ, Ngij and kij corresponding to (159) are

ˆ D 1C o2.r
�˛/;

Ngij D ıij C o2.r
�˛/;

kij D o1.r
�1�˛/; ˛ >

1

2
:

(166)

In the following, given a function f defined on a hypersurface x0 D t , we shall
take f D ok.r

�˛/ to mean that f is a C k function of the spatial coordinates and its
partial derivatives with respect to the spatial coordinates of order l are o.r�˛�l/, for
all l D 0; : : : ; k. Moreover, if a compact interval Œt1; t2� of values of t is considered,
uniformity of the limit as r ! 1 with respect to t is implied. In particular, the
hypotheses (166) are to be meant in this sense.

We first show that under the hypotheses (166) the limit r ! 1 in (162) and (165)
exists. In fact we show a stronger result, namely that there exists a limit independent
of the exhaustion. That is, we do not assume that the exhaustion of† is by concentric
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coordinate balls. Consider then nested domains Bn (i.e., BnC1 � Bn) such thatS
nBn D † and suppose that the Sn D @Bn are C 1. We claim that

lim
n!1

Z
Sn

ei dSi D E; (167)

lim
n!1

Z
Sn

pi
j dSi D P j : (168)

To show this recall that for the 4-dimensional spacetime manifold we have

@˛I
˛ D 1

4
R
p� det g C L�:

The analogous formula for the 3-dimensional manifold .†; Ng/ is

@i
NI i D 1

4
xRpdet Ng C NL�;

where in fact
NI i D ei :

Also, we have

NL� D �1
4

Ngmn .x�j
mi

x� i
nj � x�j

mn
x� i

j i /:

We now appeal to the constraint equation

xRC .tr k/2 � jkj2 D 0

(the twice contracted Gauss equation) to conclude that, under the hypotheses (166),

xR D o1.r
�2�2˛/:

Also, we have
NL� D o1.r

�2�2˛/:

Consider then two domainsB andB 0 withB 0 � B such thatB contains the coordinate
ball of radius R. Then we haveZ

S 0

ei dSi �
Z

S

ei dSi D
Z

B0nB

@ie
i d3x

� C

Z
Bc

r�2�2˛ d3x

� CR1�2˛ ! 0 as R ! 1;

since ˛ > 1
2

. This establishes our claim in the case of E.
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The case of P j is similar. Writing

@i p
i
j D �1

2
@i fpdet Ng . Ngimkjm � ıi

j tr k/g;

we see that

@i p
i
j D �1

2

p
det Ng fri .k

i
j � ıi

j tr k/C x�m
ij .k

i
m � ıi

m tr k/g:

We now appeal to the constraint equation

ri .k
i
j � ıi

j tr k/ D 0;

(the contracted Codazzi equation) to conclude that, under the hypotheses (166),

@i p
i
j D �1

2

p
det Ng x�m

ij .k
i
m � ıi

m tr k/

D o.r�2�2˛/:

Thus the same argument applies.
We proceed to discuss conservation of the total energy-momentum. Consider first

the total energy. We have

E.t2/ �E.t1/ D lim
r!1

Z t2

t1

Z
Sr

@ei

@t
dSidt (169)

and from (161),

@ei

@t
D @Gijmn

@t
@j Ngmn CGijmn @j

�
@ Ngmn

@t

�
;

where

Gijmn D
p

det Ng
8

. Ngim Ngjn C Ngin Ngjm � 2 Ngij Ngmn/:

Since
@ Ngij

@t
D 2 ˆ kij ;

we have
2 Gijmn @j .ˆkmn/ D 2 Gijmn .ˆ@jkmn„ ƒ‚ …

o.r�2�˛/

C .@jˆ/kmn„ ƒ‚ …
o.r�2�2˛/

/:

Thus we obtain
@ei

@t
D o.r�2�˛/
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hence

r2 @e
i

@t
! 0

uniformly as r ! 1. Therefore we conclude that

E.t2/ �E.t1/ D 0: (170)

Consider next the total linear momentum. We have

P j .t2/ � P j .t1/ D lim
r!1

Z t2

t1

Z
Sr

@pi
j

@t
dSidt (171)

and from (164)

@pi
j

@t
D �1

2

p
det Ng

�
ˆ tr k .ki

j � ıi
j tr k/C @ki

j

@t
� ıi

j

@ tr k

@t

�
: (172)

(Note that @
p

det Ng
@t

D ˆ tr k
p

det Ng.) Appealing to the 2nd variational formula

@kij

@t
D xri

xrjˆ �ˆ . xRij � 2kimk
m
j C kij tr k/;

and using the assumptions (166), we deduce that

@kij

@t
D o.r�2�˛/:

Using this we obtain
@pi

j

@t
D o.r�2�˛/I

hence

r2
@pi

j

@t
! 0

uniformly as r ! 1. Therefore we conclude that

P j .t2/ � P j .t1/ D 0: (173)

3.2.1 The maximal time function. Up to this point we have not made any particular
choice of time function and this arbitrariness is reflected in the fact that the lapse
function ˆ is not subject to any equation.

We now require the level sets †t of the time function t to be maximal spacelike
hypersurfaces. That is, any compact perturbation of †t decreases its volume. Thus
†t satisfies the maximal hypersurface equation

tr k D 0: (174)
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In fact, for a spacetime which is asymptotically flat (in the sense above) and satisfying
a certain barrier condition, there exists a unique complete maximal hypersurface
asymptotic to a spacelike coordinate hyperplane at spatial infinity. This has been
established by R. Bartnic in [3].

Definition 42. A maximal time function is a time function t whose level sets are
maximal spacelike hypersurfaces which are complete and tend to parallel spacelike
coordinate hyperplanes at spatial infinity. Moreover, the associated lapse function ˆ
is required to tend to 1 at spatial infinity.

Remark. We have one such function (up to an additive constant) for each choice
of family of parallel spacelike hyperplanes in the background Minkowski spacetime.
Two such families are related by the action of an element of the Lorentz group.

We now fix the family by requiring

P i D 0; (175)

that is, we require the total linear momentum to vanish. Then for any spacetime other
than Minkowski spacetime we obtain a unique time function t (up to an additive
constant) the canonical maximal time function. This is a consequence of the fact that
any non-trivial spacetime has positive energy, which is the positive energy theorem,
to be discussed in the next section. The choice (175) corresponds to the center-of-
mass-frame in Newtonian mechanics.

Let us consider now the Einstein equations relative to a maximal time function,

tr k D 0:

The constraint equations read

Codazzi: rj kij D 0; (176)

Gauss: xR D jkj2: (177)

The evolution equations read

1st variation:
@ Ngij

@t
D 2 ˆ kij ; (178)

2nd variation:
@kij

@t
D xri

xrjˆ � . xRij � 2 kimk
m
j / ˆ: (179)

Moreover, the trace of the 2nd variation equations yields by virtue of the maximality
condition the lapse equation,

x4 ˆ � jkj2 ˆ D 0: (180)
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Choosing now the canonical maximal time function, we have

Pj D �1
2

lim
r!1

Z
Sr

pi
j dSi D 0

with pi
j D ki

j . This allows us to impose stronger fall-off on kij . We thus introduce
the notion of a strongly asymptotically flat initial data set.

Definition 43. A strongly asymptotically flat initial data set is an initial data set
. SM; Ng; k/ such that:

1. SM is Euclidean at infinity.

2. There exists a coordinate system in the neighbourhood of infinity in SM (that
is on SM n K) in which the metric components satisfy

Ngij D
�
1C 2M

r

�
ıij C o2.r

�1/: (181)

3. In the same coordinate system we have

kij D o1.r
�2/: (182)

The total energy is then given by

E D 4 
 M: (183)

3.2.2 Positivity of the energy. We shall now discuss the positive energy theorem of
Schoen and Yau.

Theorem 7 (Positive energy theorem, Schoen–Yau [26]).

1. Under the assumption

Ngij D
�
1C 2M

r

�
ıij CO2.r

�2/; (184)

it holds that
M 	 0: (185)

2. If also the remainder is O4.r
�2/, then

M D 0 (186)

implies that Ng is the Euclidean metric.
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Here and in the following f D Ok.r
�a) signifies that f is a C � function and its

partial derivatives of order l are O.r�a�l/ for all l D 0; : : : ; k.

Proof. The theorem concerns strongly asymptotically Euclidean 3-manifolds . SM; Ng/
with non-negative scalar curvature xR 	 0. To simplify the notation, we drop the
overlines in the present section.

Proof of Part 1. M 	 0. This consists of three steps.

Step 0: Given such g withM < 0, we can find another metric Qg close enough to g
so that also zM < 0 and such that zR > 0 everywhere.

Step 1: IfM < 0, then barriers would exist for minimal surfaces which can be used
to construct a complete area-minimizing minimal surface.

Step 2: Using the 2nd variation formula for area we show that the existence of the
minimal surface in Step 1 contradicts the fact that R > 0 everywhere.

Step 0. Under a conformal change of g,

Qg D ˆ4 g; (187)

the scalar curvature zR of Qg is related to the scalar curvature R of g by

zR D ˆ�5 .Rˆ � 84ˆ/: (188)

Here 4 is the Laplacian of the metric g. Let us choose a smooth positive function f
on SM such that

f D O2.r
�4/:

We then wish to find ˆ such that

zR D ˆ�4 RC � f;

where � is a positive constant. We shall show that this is possible for suitably small �.
Now, by (188), ˆ is subject to the equation

4 ˆ D �1
8
� f ˆ5:

Setting ˆ D 1C‰, this equation reads

4 ‰ D �1
8
� f .1C‰/5:

The implicit function theorem applies if � is suitably small to give us the existence
of a solution ‰ such that

‰ D O2.� r
�1/:
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In particular, ˆ D 1C‰ is everywhere positive and

zM D M CO.�/ < 0; (189)

if � is suitably small. In fact, we have zM D M C 2N , where

N D lim
r!1 .r‰/ D � 1

4


Z
SM

4‰:

Step 1. This is based on the following lemma.

Lemma. Let S be a C 2 minimal hypersurface .that is, a critical point for the area
functional/, in an n-dimensional smooth Riemannian manifold .M; g/ .dim S D
n� 1/, which is compact with boundary. Let f be a C 2 function onM such that the
values �, for � 2 Œ�0;1/, are non-critical and the corresponding level sets†� have
positive mean curvature with respect to the unit normal pointing in the direction of
increase of f . Then f � �0 on @S implies f � �0 on S .

Proof of the lemma. We consider the restriction Nf of f to the hypersurface S . If the
lemma is not true, then the subset U of S , where Nf > �0 is non-empty, U is open;
Nf then attains a maximum �1 > �0 at a point pM 2 U. We have

.xr Nf /.pM / D 0

and
.xr2 Nf /.pM / � 0:

Choosing a local frame field .Ea; a D 1; : : : ; n � 1/ for S in a neighbourhood of
pM in S , we write

xra
xrb

Nf for xr2f � .Ea; Eb/:

We have

xra
xrb

Nf D Ea.Eb
Nf / � .xrEa

Eb/ Nf
D Ea.Eb

Nf / � .…rEa
Eb/ Nf

where … is the orthogonal projection to S ,

…rEa
Eb D rEa

Eb � g.N;rEa
Eb/ N;

with N the unit normal to S . Moreover, we have

g.N;rEa
Eb/ D �g.rEa

N;Eb/

D ��ab

with � the 2nd fundamental form of S . We thus arrive at the formula

xra
xrb

Nf D rarbf � �abNf (190)

on S .
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Next we take the trace of (190) with respect to the induced metric Ng, Ngab D
g.Ea; Eb/, to obtain

N4 Nf D Ngabrarbf; (191)

recalling that tr � D 0 as S is a minimal hypersurface. At an interior maximum point
pM , the Hessian matrix .xra

xrb
Nf /.pM / is negative semi-definite. We thus have

. N4 Nf /.pM / D . Ngab xra
xrb

Nf /.pM / � 0: (192)

Consider, on the other hand, the level sets†� of f inM . The unit normal vector
field to †�, N 0, pointing in the direction of increase of f is

N 0i D gij @jf

jrf j :

Now, sincepM is a critical point of Nf , the tangent planesTpM
S andTpM

†�1
coincide:

N 0.pM / D N.pM /:

Therefore, the induced metric is the same at pM . Let .E 0
a; a D 1; : : : ; n � 1/ be a

local frame field for †� in a neighbourhood of pM coinciding at pM with the frame
field .Ea; a D 1; : : : ; n � 1/ for S . Then the 2nd fundamental form of †�, � 0

ab
, is

given in this frame field by

� 0
ab D g.rE 0

a
N 0; E 0

b/

D gij E
0k
a rk

�
gil @lf

jrf j
�
E

0j
b

D E 0k
a E 0l

b

rkrlf

jrf j �E 0k
a E

0l
b @lf

@kjrf j
jrf j2 :

The last term vanishes. We thus obtain

� 0
ab D r2f � .E 0

a; E
0
b
/

jrf j :

In particular, at pM we have E 0
a D Ea hence

� 0
ab.pM / D .rarbf /.pM /

jrf .pM /j :

Therefore the following holds:

. Ngab rarb f /.pM / D tr � 0.pM / jrf .pM /j > 0: (193)

In view of equation (191), (193) contradicts (192). This establishes the lemma. �
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We now consider the circles C with � a constant on the coordinate plane x3 D 0

in the neighbourhood of infinity on the manifold . SM;g/.

C D f.x1; x2; 0/ W .x1/2 C .x2/2 D �2g:
We can find a surface of least area S spanning C . Taking a sequence �n " 1, and
we want to find barriers which will allow us to conclude that we can extract a conver-
gent subsequence and thus, passing to the limit, obtain a complete minimal surface S .

C x3 D 0

x3 D �h

x3 D h

Figure 11

We apply the lemma to the functions f D .x1/2C.x2/2 and f D x3. In the first case
the level sets are the coordinate cylindersK D f.x1; x2; x3/ W .x1/2 C.x2/2 D �2g
and in the second case the level sets are the coordinate planes x3 D �, the P�. For
K the mean curvature is

1

�
CO.r�2/ > 0

for sufficiently large � . For Ph and P�h, where h is a positive constant, the mean
curvature is

�2Mh

r3
CO.r�3/: (194)

IfM < 0, this is also > 0, provided that h is taken suitably large. In fact, the x1 and
x2 are coordinates on the planes P� and we have

rarb x
3 D ��3

ab

D M

r3
.xaıb3 C xbıa3 � x3ıab/CO.r�3/:
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Applying then the formula

tr � 0 D Ngab rarbf

jrf j
yields (194). Let

E;h D f.x1; x2; x3/ W .x1/2 C .x2/2 � � and � h � x3 � hg:
By virtue of the lemma, the surfacesSn

are contained inEn;h. We can then appeal to
interior regularity theory for minimal surfaces to obtain uniform interiorC 3 estimates
and thus conclude that we can extract a subsequence Sni

converging uniformly on
compact domains to a complete C 2 area minimizing surface S . This completes the
proof of Step 1.

Proof of Step 2. The surface constructed in Step 1 leads to a contradiction when
considering the 2nd variational formula for area. A variation of a complete surface S
is a 1-parameter family St such that S0 D S . The family fStg may not be a foliation.
Nevertheless, the same approach as for a foliation applies if we consider a smooth
mapping

h W .��; �/ � S ! M:

The curves
hp W .��; �/ ! M

with hp.t/ D h.t; p/ may not be orthogonal to the surfaces

St D ht .S/

with ht .p/ D h.t; p/. We can nevertheless construct an orthogonal family and thus
redefine the homotopy h. The following formulas hold relative to such a normalized
homotopy:

A D
Z

S

d� Ng ;

dA

dt
D
Z

S

f tr � d� Ng :
(195)

This is the first variation of the area. Here f is the lapse function (which measures
the normal separation of the St ), defined by

@

@t
D fN;

where N is the unit normal to St . In fact the 1st variation equations

@ Ngab

@t
D 2f �ab
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imply
@ d� Ng
@t

D f tr � d� Ng :

The second variation of the area is then

d2A

dt2
D
Z

S

�
f
@ tr �

@t
C .f tr �/2 C @f

@t
tr �

�
d� Ng : (196)

In our case S is a minimal surface.

Definition 44. A minimal surface S is a surface for which the first variation of area
vanishes.

This is equivalent to
tr � D 0: (197)

Then
d2A

dt2

ˇ̌̌
tD0

D
Z

S

f
@ tr �

@t
d� Ng : (198)

For a surface of least area one must have

d2A

dt2

ˇ̌̌
tD0

	 0:

To obtain a suitable expression for @ tr �
@t

we consider the 2nd variation equations

@�ij

@t
D f �im�

m
j � xri

xrjf � f RiNjN :

(Here, we have an arbitrary local frame .Ei / for S , complemented withN .) We have

tr � D Ngij �ij ;

@ tr �

@t
D � Ngim Ngjn @ Ngmn

@t
�ij C Ngij @�ij

@t

D �2 f � ij �ij C Ngij @�ij

@t
;

Ngij RiNjN D Ric.N;N / .D RijN
iN j /:

Thus, taking the trace of the 2nd variation equations we obtain

@ tr �

@t
D � N4f � f .j� j2 C Ric.N;N //:

We now substitute for Ric.N;N / from the (twice contracted) Gauss equation (note
that xRij D K Ngij , xR D 2K, with K the Gauss curvature of S )

2K � .tr �/2 C j� j2 D R � 2Ric.N;N /
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to obtain
@ tr �

@t
D � N4f C f

�
K � 1

2
.tr �/2 � 1

2
j� j2 � 1

2
R

�
:

Substituting in (198) and taking into account the fact that tr � D 0 at t D 0 yields

d2A

dt2

ˇ̌̌
tD0

D
Z

S

�
� f N4f C f 2

�
K � 1

2
j� j2 � 1

2
R

��
d� Ng :

This must be 	 0 (surface of least area). Integrating by parts in the first term, this
condition readsZ

S

K f 2 d� Ng 	
Z

S

1

2
.j� j2 CR/ f 2 d� Ng �

Z
S

jxrf j2d� Ng : (199)

Let Q� be the closure of the interior of the coordinate cylinder C�,

Q� D f.x1; x2; x3/ W .x1/2 C .x2/2 � �2g:
Setting

f D

‚
1 on S \Q�,
log. �2

r /

log �
on S \ .Q�2 nQ�/,

0 on S \Qc
�2 ,

we have Z
S

jxrf j2 d� Ng D
Z

S\.Q
�2 nQ�/

jxrf j2 d� Ng

� C

Z �2

�

"
d

dr

 
log.�2

r
/

log �

!#2

r dr

D C

.log �/2

Z �2

�

dr

r

D C

log �
! 0 as � ! 1:

Taking then in (199) the limit � ! 1 yieldsZ
S

K d� Ng 	
Z

S

1

2
.j� j2 CR/ d� Ng > 0: (200)

(Recall that by Step 0 we can assume that R > 0 everywhere.) It follows that S is
homeomorphic to a disk. (Recall the Cohn-Vossen inequality:

R
S
K d� Ng � 2
 �.S/,
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where�.S/ is the Euler characteristic ofS .) We then consider the disksD� D S\Q�

and apply the Gauss–Bonnet theorem with boundary:Z
D�

K d� Ng D 2
 �
Z

@D�

� ds;

where � is the geodesic curvature of @D�. The argument proceeds by showing that

lim sup
�!1

Z
@D�

� ds 	 2
:

Taking a sequence �i ! 1, achieving the lim sup then yields

lim
i!1

Z
D�i

K d� Ng � 0

in contradiction with (200). This establishes Part 1.

Proof of Part 2. M D 0 implies that g is flat. The proof has two steps.

Step 0: If M D 0 and R does not vanish identically, then there exists a metric Qg
in the conformal class of g such that zM < 0 (N. O’Murchadha and J. York
[21]).

By Part 1 we can then conclude that M D 0 implies that R vanishes identically.

Proof of Step 0. Setting Qg D ˆ4g we solve the equation zR D 0 for ˆ (see (188)):

�8 4g ˆCR ˆ D zR ˆ5 D 0:

We solve this linear equation under the asymptotic condition ˆ ! 1 at infinity.
Since R 	 0 the maximum principle applies and we obtain a function ˆ which is
everywhere positive (and less than or equal to 1). Since M D 0 the mass zM of Qg is
contained in the function ˆ. In fact we have

zM D 2 lim
r!1 r .ˆ � 1/

D � 1

2


Z
SM

4 ˆ d�g

D � 1

16


Z
SM
R ˆ d�g < 0:

This proves Step 0.

Step 1: We are now given a metric g withR D 0 andM D 0. Consider the following
variation of g (which may not be admissible because it may not satisfy the condition
that the scalar curvature remains 	 0):

gt D g C t Ric.g/;
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with t 2 .��; �/ where � is to be chosen suitably small. In general,

d R.gt /

dt

ˇ̌̌
tD0

D PR

is given in terms of Pg D dgt

dt

ˇ̌
tD0

by

PR D rirj Pgij � 4 tr Pg � PgijR
ij : (201)

(Here, r is the covariant derivative with respect to g0 D g.) The derivation of this
formula is the following. Since R D gijRij we have

PR D �gimgjn PgmnRij„ ƒ‚ …
� Pgij Rij

Cgij PRij :

Moreover,
PRij D rm

P�m
ij � ri

P�m
mj ;

where P�m
ij is the corresponding variation of the connection, the tensor field

P�m
ij D 1

2
gmn .ri Pgjn C rj Pgin � rn Pgij /:

Substituting in PRij and taking the trace gij PRij the result (201) follows.
Consider now the formula for PR in the case of the variation Pgij D Rij . Then

tr Pg D R D 0 and rj Pgij D rjRij D 0 which is the twice contracted Bianchi
identity in the case R D 0. Then (201) reduces to

PR D �j Ricj2:
Next, we correct the family gt by a suitable conformal change to obtain an admissible
family Qgt . In fact we require zRt D 0. Thus with Qgt D ˆ4

t gt we stipulate (see (188))

4gt
ˆt � 1

8
Rt ˆt D 0; ˆt ! 1 at 1:

Here the maximum principle does not apply as Rt may not be 	 0 but since R0 D
R D 0, if � is suitably small the problem can be solved by appealing to the implicit
function theorem and yields ˆt > 0 everywhere. Now, since Rij D O.r�3/ the
mass of gt is that of g, namely 0. Then the mass of Qgt is contained in the function
ˆt and is given by

zMt D � 1

16


Z
SM
Rt ˆt d�gt

: (202)

Now for each t 2 .��; �/, � suitably small, the metric Qgt defined in this way is
admissible, that is, it satisfies the hypotheses of the theorem. Thus the result of Part 1
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applies and we obtain zMt 	 0. Moreover, since zM0 D M D 0, a minimum is
achieved at t D 0. We thus have

d zMt

dt

ˇ̌̌
tD0

D 0:

Since R0 D 0 and ˆ0 D 1, the formula (202) gives

d zMt

dt

ˇ̌̌
tD0

D � 1

16


Z
SM

PR d� Ng D 1

16


Z
SM

j Ricj2 d� Ng :

The vanishing of this implies Ric.g/ D 0 hence g is flat, SM being 3-dimensional.
This establishes Part 2. And with this the whole proof is completed. �

3.3 Angular momentum

Let us recall (see (149), (151), (158)) that the asymptotic quantity associated to the
Killing field X of the background Minkowski metric is given by

QX D lim
r!1

Z
Sr

G�0i
X dSi : (203)

The part of G�0i
X which involves the first derivatives of X vanishes for the angular

momentum (but does not vanish for the center of mass integrals (see below)). Taking
X to be the generator of space rotations about the xa coordinate axis, we obtain the
angular momentum component

Ja D lim
r!1

Z
Sr

�abj x
b pi

j„ ƒ‚ …
DWAi

a

dSi ; (204)

where pi
j D ki

j � ıi
j tr k, ki

j D Ngimkmj , and �abc is the fully antisymmetric 3-dimen-
sional symbol.

Let us now assume that we have a complete spacelike hypersurface H which is
strongly asymptotically flat. More precisely, let us assume that in an admissible chart
in the neighbourhood of infinity in H we have

Ngij D
�
1C 2M

r

�
ıij CO2.r

�1��/; (205)

kij D O1.r
�2��/ (206)

for some � > 0. This implies that Pj D 0.
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3.3.1 Independence from exhaustion. Let U2 � U1 be domains in H with U1 �
BR where BR is the coordinate ball of radius R. Then we haveZ

@U2

Ai
a dSi �

Z
@U1

Ai
a dSi D

Z
U2nU1

@i A
i
a d

3x:

Writing
@iA

i
a D �aij p

i
j C �abj x

b @ip
i
j ;

the first term is
1

2
�aij .p

i
j � pj

i /

and the difference pi
j � p

j
i reads pi

j � p
j
i D . Ngim � ıim/kmj � . Ngjm � ıjm/kmi .

Thus, 1
2
�aij .p

i
j � pj

i / D O.r�3��/. In regard to the second term we express

@ip
i
j D rip

i
j � � i

imp
m
j C �m

ij p
i
m:

Since by the Codazzi constraint rip
i
j D 0, we then obtain @ip

i
j D O.r�4��/. Thus,

the second term is O.r�3��/ as well. Therefore,ˇ̌̌̌ Z
U2nU1

@i A
i
a d

3x

ˇ̌̌̌
� C

Z
U2nU1

r�3�� d3x � C 0R�� ! 0: (207)

3.3.2 Conservation of angular momentum. Consider the following limit on each
level hypersurface of the canonical maximal time function:

lim
r!1 r2 @A

i
a.r�/

@t
D B i

a.�/; (208)

for each � 2 S2 � R3 (r; � are polar coordinates in R3). Then we have

@Ja

@t
D
Z

	2S2

B i
a.�/ �

i d�	 (209)

where d�	 is the standard measure on S2 D fj�j D 1g � R3. Since tr k D 0, Ai
a

reduces to

Ai
a D �1

2
�abj x

b
p

det Ng ki
j : (210)

Taking account of the fact that

@
p

det Ng
@t

D p
det Ng ˆ tr k D 0;

we then have
@Ai

a

@t
D �1

2
�abj x

b
p

det Ng @k
i
j

@t
: (211)
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Substituting from (178), (179) this becomes

@Ai
a

@t
D �1

2
�abj x

b
p

det Ng .xri xrjˆ � xRi
jˆ/: (212)

Now, only the part of xri xrjˆ � xRi
jˆ which is O.r�3/ contributes to the limit B i

a.
Under the assumptions (205), (206), the lapse equation (180) implies

ˆ D 1 � N

r
CO2.r

�1��/;

where N D 1
4�

R
H

N4 ˆ d� Ng D 1
4�

R
H

jkj2ˆ d� Ng . Hence

xri ˆ D N

r2
� i CO1.r

�2��/;

and

xri xrjˆ D .ıi
j � 3� i�j / N

r3
CO.r�3��/:

Also (205) implies

xRi
j D M

r3
.ıi

j � 3� i�j /CO.r�3��/:

It follows that B i
a.�/ is given by

B i
a .�/ D �1

2
�abj �

b .N �M/ .ıi
j � 3� i�j /

D �1
2
.N �M/ �abi �

b;

which implies
B i

a .�/ �
i D 0: (213)

In view of the formula (209) the conservation of angular momentum follows.

3.4 The center of mass integrals

The center of mass integrals Cj correspond to the vector fields

X.j / D xj @

@t
C t

@

@xj
(214)
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which generate Lorentz boosts. We have (see (149), (160), (163))

G�0i
X D F �0i

0 xj C t F �0i
j CK�0i

X (215)

D �ei xj C t pi
j C 1

4
f .1 �ˆ�1

p
det Ng/ ıi

j C .ıi
j �ˆpdet Ng Ngij / g:„ ƒ‚ …

DW qi
j

The center of mass integrals Cj are then given by

Cj D � lim
r!1

Z
Sr

G�0i
X dSi D lim

r!1

Z
Sr

.ei xj � t pi
j � qi

j / dSi : (216)

Remark. Note that

lim
r!1

Z
Sr

pi
j dSi D Pj

and Pj D 0 by (206). Thus, (216) simplifies to

Cj D lim
r!1

Z
Sr

.ei xj � qi
j / dSi : (217)

We are going to present a sketch of the proof that the limit (217) exists for an exhaustion
by coordinate spheres.

Sketch of the proof. Given r2 > r1 we expressZ
Sr2

.ei xj � qi
j /dSi �

Z
Sr1

.ei xj � qi
j /dSi

D
Z

Br2
nBr1

@i .e
i xj � qi

j /„ ƒ‚ …
DW!j

d3x

D
Z r2

r1

�Z
	2S2

!j .r�/ d�	

�
r2 dr„ ƒ‚ …

DWD.r1;r2/

:

The hypotheses (205) and (206) imply that

!j .r�/ D K �j

r3
CO.r�3��/

where K is a quadratic expression in M , N , and thus depends only on t . SinceZ
	2S2

�j d�	 D 0;
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we then obtain Z
	2S2

!j .r�/ d�	 D O.r�3��/:

It follows that

jD.r1; r2/j � C

Z r2

r1

r�1�� dr

� C 0 r��
1 ! 0; as r1 ! 1:

This proves that the limit (217) exists.

We now investigate the gauge invariance of the Cj ; that is, the invariance of the
Cj under spatial gauge transformations. Recall that thus we are subjecting the metric
g to a diffeomorphism but we are not subjecting the background Minkowski structure
to any transformation. Moreover, we are only allowing transformations which do not
change the asymptotic form (205) and (206).

However, we do not expect the Cj to be invariant under those transformations
which are asymptotic to non-trivial space translations at infinity. For, in Classical
Mechanics the center of mass integrals are affected by space translations. We thus
restrict ourselves to transformations which are asymptotic to the identity at infinity.
Such transformations are generated by vector fields Y whose components Y i in an
admissible coordinate system in the neighbourhood of infinity satisfy

Y i D O3.r
��/:

The variations of ˆ and Ngij are

P̂ D LYˆ D Y i @i ˆ D O1.r
�2��/; (218)

PNgij D LY Ngij D Y k @k Ngij C Ngkj @i Y
k C Ngik @j Y

k

D @i Y
j C @j Y

i„ ƒ‚ …
DO2.r�1��/

CO1.r
�2��/: (219)

We then obtain

Pei D 1

4
.ıim ıjn � ıij ımn/ @j .@m Y

n C @n Y
m/CO.r�3��/

D 1

4
@k .@k Y

i � @i Y
k/CO.r�3��/:

(220)

Furthermore we have

Pqi
j D 1

4
f �.pdet Ng/� ıi

j � .pdet Ng Ngij /� g CO.r�2��/
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and

.
p

det Ng/� D @k Y
k CO.r�2��/;

.
p

det Ng Ngij /� D ıi
j @k Y

k � @i Y
j � @j Y i CO.r�2��/:

Therefore we obtain

Pqi
j D �1

4
.2 ıi

j @k Y
k � @i Y

j � @jY i /CO.r�2��/: (221)

The terms of orderO.r�3��/ in (220) andO.r�2��/ in (221) do not contribute to PCj .
Thus, one finds

PCj D lim
r!1

1

4

Z
Sr

f@k .@k Y
i � @i Y

k/ xj

C 2ıi
j @k Y

k � @i Y
j � @j Y ig dSi

(222)

D lim
r!1

1

4

Z
Br

@if@k .@k Y
i � @i Y

k/xj

C 2 ıi
j @k Y

k � @i Y
j � @j Y ig d3x:

(223)

Now @i@k.@kY
i � @iY

k/ D 0 and @ix
j D ıi

j . Therefore the integrant in the volume
integrals is

@k.@k Y
j � @jY k/C 2@j @k Y

k � @i@i Y
j � @i @jY

i D 0; (224)

which proves the gauge invariance of the Cj .

Remark. In the expression for Cj we can replace qi
j by Nqi

j :

Nqi
j D 1

4
f.1 �p

det Ng/ ıi
j C .ıi

j �p
det Ng Ngij /g; (225)

obtained by replacing ˆ by 1 in the expression for qi
j .

Proof of the remark. Under a variation ıˆ of ˆ we have

ı Cj D lim
r!1

Z
Sr

�ı qi
j dSi

D �1
4

lim
r!1

Z
Sr

.ˆ�2 ıi
j � Ngij / ı ˆ

p
det Ng dSi :

(226)

Now, with

ˆ D �N
r

CO.r�1��/
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the following hold:

ˆ�2 ıi
j � Ngij D 2

N

r
ıi
j C 2M

r
ıi
j CO.r�1��/;

ıˆ D �ıN
r

CO.r�1��/:

Consequently,

ıCj D 1

2
lim

r!1

Z
Sr

DWC‚ …„ ƒ
ıN .N CM/

r2
dSj D C

2

Z
	2S2

�j d�	 D 0

which proves the above remark.

We have thus reached the conclusion that the

Cj D lim
r!1

Z
Sr

.ei xj � Nqi
j / dSi

are invariant under gauge transformations which are asymptotic to the identity at
infinity. They correspond in Classical Mechanics to the components of the moment
of a mass distribution about a given origin, the product of the total mass times the
components of the position vector of the center of mass relative to that origin.

3.4.1 Conservation of center of mass integrals. Consider

d Cj

d t
D
Z

	2S2

Dj .�/ d�	 ; (227)

where

Dj .�/ D lim
r!1 r2

�
@ei

@t
xj � @ Nqi

j

@t

�
.r�/:

From (225) we obtain

@ Nqi
j

@t
D �1

4

p
det Ng @ Ngi

j

@t
D 1

2

p
det Ng ˆ kij D O.r�2��/:

(Recall that for a maximal time function we have @
@t

p
det Ng D 0.) Similarly,

@ei

@t
D p

det Ng 1
4
. Ngin Ngjm � Ngij Ngmn/ @j .@t Ngmn/„ ƒ‚ …

D2ˆkmn

CO.r�4��/
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and

@j .ˆ kmn/ D rj .ˆ kmn/C � l
jm ˆ kln C � l

jn ˆ kml

D rj .ˆ kmn/C O.r�4��/

D ˆ rj kmn CO.r�4��/:

Hence we obtain

@ei

@t
D 1

2

p
det Ng ˆ .rj k

ij � Ngij rj tr k/CO.r�4��/

D O.r�4��/;

the first term vanishing by virtue of the Codazzi equations.
The above imply that

Dj .�/ D lim
r!1 r2

�
@ei

@t
xj � @ Nqi

j

@t

�
.r �/ D 0: (228)

We conclude that
@ Cj

@ t
D 0: (229)

We have thus established the conservation of the center of mass integrals.



4 The global stability of Minkowski spacetime

In this chapter we shall first state the problem of the global stability of Minkowski
spacetime. We shall then treat simpler analogous problems arising in field theories in
a given spacetime. Finally we shall conclude the volume with a sketch of the proof
of the global stability theorem of Minkowski spacetime.

4.1 Statement of the problem

The Minkowski spacetime is the simplest solution of the Einstein equations. This is
the spacetime manifold of Special Relativity,

.R4; �/; where ��� D diag.�1; 1; 1; 1/ in rectangular coordinates.

This is geodesically complete: Every geodesic can be continued ad infinitum in affine
parameter.

The function x0 corresponding to any rectangular coordinate system is a canonical
maximal time function. The level sets †t (x0 D t ) are maximal spacelike hyper-
surfaces. Here they happen to be totally geodesic (not only is tr k D 0 but kij D 0

identically). They are also globally parallel, that is the lapse function is ˆ D 1

identically. (Recall the equation N4ˆ � jkj2ˆ D 0.)

Cauchy problem with initial data on a complete asymptotically flat maximal
hypersurface. Consider initial data sets .H0; Ng0; k0/ with H0 diffeomorphic to R3

and tr k0 D 0, which are strongly asymptotically flat. That is, there exists a coordinate
system in the neighbourhood of infinity in which the metric coefficients obey

Ng0ij
D
�
1C 2M

r

�
ıij CO2 .r

�1��/; � > 0; (230)

and we have
k0 D O1 .r

�2��/: (231)

Note that the total linear momentum of such an initial data set vanishes: P i D 0.
The initial data set is, moreover, required to satisfy the constraint equations

Codazzi equations: xri kij D 0; (232)

Gauss equation: xR D jkj2: (233)
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Our hypotheses are that we are given such an initial data set. Now the problem is
the following:

Problem. Supplement these hypotheses by a suitable smallness condition and show
that we can then construct a geodesically complete solution of the Einstein equations,
tending to the Minkowski spacetime along any geodesic.

4.1.1 Field theories in a given spacetime. Consider Lagrangians of the form

L D L� d�g ;

where L� is a scalar function, constructed out of the fields, their exterior or more
generally covariant derivatives, the metric and connection coefficients. We give the
following three examples.

Example 1 (Scalar field ˆ). Let

� D g�� @� ˆ @� ˆ;

L� D L� .�/:

Here only exterior derivatives are involved. So, the Lagrangian does not depend on
the connection coefficients.

Example 2 (Electromagnetic field F��). Here the spacetime manifold is 4-dimen-
sional and we have

F D dA .F�� D @� A� � @� A�/;

˛ D F �� F�� I F �� D g�� g�� F��;

ˇ D F �� �F�� I �F�� D 1

2
F �� ����� ;

L� D L� .˛; ˇ/:

Also here, only exterior derivatives are involved and the Lagrangian does not depend
on the connection coefficients.

Example 3 (Problem in Riemannian Geometry). Let .M; g/ be a compact Riemann-
ian manifold. Find a vector field U generating an approximate isometry of .M; g/.

The solution is the following: Consider


 D LUg;
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the deformation tensor corresponding to U . This measures the deviation of the 1-pa-
rameter group of diffeomorphisms generated by U from a group of isometries. We
then minimize Z

M

j
j2 d�g

under the constraint Z
M

jU j2 d�g D 1:

The Euler–Lagrange equation is the eigenvalue problem

div
 C � U D 0;

that is

rj 

ij C � U i D 0;

where � is the Lagrange multiplier or eigenvalue. For the analogous problem on a
spacetime manifold

L� d�g D 
�� 
�� d�g ;


�� D g�� g�� 
��;


�� D LUg�� D r� U� C r� U�;

U� D g�� U
� :

Here L� depends on the covariant derivatives of U , therefore the connection coeffi-
cients corresponding to g.

This problem has a direct application to a problem in General Relativity. The
problem in General Relativity is that of preservation of symmetry. Namely, to show
that if the initial conditions possess a continuous isometry group, then the solution
also possesses the same isometry group. The difficulty in General Relativity, which
is absent for the analogous problem in the case of a theory in a given spacetime, is to
extend the action of the group from the initial hypersurface to the spacetime manifold.
More precisely, the problem can be formulated as follows. Given an initial data set
.H ; Ng; k/ for the Einstein equations for which there exists a vector field xU on H such
that L xU Ng D L xUk D 0, the problem is to extend xU to a vector field U defined on the
maximal development .M; g/ so that U is a Killing field of g: LUg D 0. It turns
out that a suitable way to define U is to require that it satisfies the Euler–Lagrange
equation corresponding to the above Lagrangian, namely the equation

div
 D 0:

For a field theory in a given spacetime, the Lagrangian not depending on any other
underlying structure on the manifold other than the metric and the corresponding
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connection coefficients, we can define the gravitational stress T �� by considering
the response of the action

A ŒU� D
Z

U

L d�g

to variations of the underlying metric g. We define T �� by the condition that

PA D �1
2

Z
U

T �� Pg�� d�g

for all variations Pg�� with support in U, for any domain U with compact closure in
M . By definition T �� is symmetric. Thus

T �� D T �� :

Proposition 5. By virtue of the Euler–Lagrange equations for the matter fields, T ��

is conserved. That is
r� T

�� D 0:

Proof. Let us denote by ˆ the collection of matter fields. Consider any smooth
vector field X with compact support in U. This generates a 1-parameter group fftg
of diffeomorphisms of U onto itself leaving the action invariant. That is, if we denote
the action by AŒg;ˆI U�, then, replacing g by gt D f �

t g and ˆ by ˆt D f �
t ˆ

(schematically; whatever the action of ft on ˆ is; for example, if ˆ is a vector field,
the action is f�t�, the push-forward by f�t D f �1

t ) we have

A Œgt ; ˆt I U� D A Œg;ˆI U�:

So A.t/ WD AŒgt ; ˆt I U� is independent of t . We thus have

0 D dA

dt

ˇ̌̌
tD0

D
Z

U

�
� 1

2
T �� Pg�� CE P̂

�
d�g D 0:

E is the variation of A with respect to ˆ, which vanishes by virtue of the Euler–
Lagrange equations. Moreover, one has

Pg D LXg; Pg�� D r� X� C r� X�:

Thus we find

0 D �
Z

U

1

2
T �� .r� X� C r� X�/ d�g

D �
Z

U

T �� r� X� d�g

D
Z

U

.r� T
��/ X� d�g :

As this holds for arbitrary smooth X of compact support in U, the result follows.
�
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Let us write down the gravitational stress corresponding to the three examples
above.

Example 1 (Scalar field). We have

@�

@g��
D @� ˆ @� ˆ:

Then

T �� D 2
dL�

d�
@� ˆ @� ˆ � L� g�� :

Example 2 (Electromagnetic field). We have

@˛

@g��
D 2 F�� F

�
�

and

@ˇ

@g��
D 1

2
ˇ g�� ; in view of the identity F��

�F �
� D 1

4
ˇ g�� :

(It is straightforward to check this identity in an arbitrary orthonormal frame.) The
gravitational stress is then given by

T �� D 4
@L�

@˛
F �

� F
�� C

�
ˇ
@L�

@ˇ
� L�

�
g�� :

Example 3. In this case,
L� D 
�� 
�� :

Under a variation of g,
P
 D LU Pg:

We then have

PA D
Z

U

� �
� 2 
�

� 

�� C 1

2

�� 
�� g

��

�
Pg�� C 2 
�� P
��

�
d�g ;

P
�� D LU Pg�� D U � r� Pg�� C Pg�� r� U
� C Pg�� r� U

� ;

and, integrating by parts,Z
U


�� P
�� d�g D
Z

U

f �r� .U
� 
��/C 
�� r� U

� C 
�� r� U
� g Pg�� d�g :

We thus find that

T �� D 4 
�
� 


�� �
�� 
�� g
�� C 4 f r� .U

� 
��/�
�� r� U
� �
�� r� U

� g:



4.1 Statement of the problem 83

Let us now consider the conformal properties.

Proposition 6. If the action in a domain U is invariant under conformal transforma-
tions of the metric which differ from the identity in a subdomain with compact closure
in U, then the gravitational stress is trace-free.

For, with
Qg D �2 g;

where � differs from 1 in a domain with compact closure in U, let

A Œ QgI U� D A ŒgI U�:

Then with
Pg D � g; where � D 2 � P�

has compact support in U, we have

PA D 0:

Since
PA D �1

2

Z
U

T �� Pg�� d�g ;

this reads

0 D �1
2

Z
U

� tr T d�g :

As this holds for an arbitrary function � with compact support in U, it follows that
tr T D 0.

Example (Maxwell Lagrangian for electromagnetic theory in a vacuum, L� D 1
4
˛).

Under the transformation g 7! �2g we have

F�� 7! F�� ;
�F�� 7!� F�� ;

L� 7! ��4 L�; L D L�d�g 7! L�d�g D L;

the spacetime manifold being 4-dimensional. Thus the action is conformally invariant.
Then

T �� D F �
� F �� � 1

4
F �� F�� g

��

and indeed we have
tr T D 0:
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Now let X be a vector field on M . Consider the vector field

P� D �T �
� X� :

We have

r � P D �.r� T
�
� / X

� � T �
� r� X

�

D �1
2
T �� .r� X� C r� X�/;

by virtue of the symmetry of T �� . That is,

r � P D �1
2
T �� 
�� ;

where 
 D LXg. Moreover, if T �� is trace-free, we can replace 
�� by its trace-free
part O
�� in the above formula. In the case that dimM D 4 this trace-free part is

O
�� D 
�� � 1

4
g�� tr 
:

We conclude that – in general – if X generates a 1-parameter group of isometries of
.M; g/ (that is, X is a Killing field), then P is divergence-free:

r � P D 0:

If A is conformally invariant, the same holds if X generates a 1-parameter group of
conformal isometries of .M; g/ (that is, X is a conformal Killing field). Let us recall
here that a diffeomorphism f of M is called an isometry if f �g D g. It is called a
conformal isometry if there exists a positive function � such that f �g D �2g.

In the case that the canonical stress is related to the gravitational stress by

T ��
� D T ��g�� ; (234)

the conservation ofP is equivalent to Noether’s theorem, sinceP then coincides with
the Noether current.

The divergence theorem gives an integral conservation law corresponding to the
differential law

r � P D 0:

We consider the dual 3-form �P , writing

�P˛ˇ� D P� ��˛ˇ� : (235)

Then it holds that
r � P D 0 ” d �P D 0: (236)
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That is, P being divergence-free is equivalent to �P being closed.
LetH1 andH2 be homologous hypersurfaces inM . IfH1 andH2 have boundary,

then @H1 D @H2. We can then apply the divergence theorem to the domain bounded
by H1 and H2 to obtain Z

H2

�P D
Z

H1

�P:

We can also apply the theorem to two complete Cauchy hypersurfacesH1 andH2 as
in Figure 12.

H2

H1

Figure 12

If we can show that the lateral contribution tends to 0, we again obtain the conservation
law Z

H2

�P D
Z

H1

�P:

Otherwise, we can take the lateral hypersurface to be an incoming null hypersurface
as in Figure 13, in which case its contribution will be non-negative by virtue of the
physical requirement which follows. We then obtain the inequalityZ

H2

�P �
Z

H1

�P:

H2

H1

Figure 13

The following physical requirement is introduced.

Postulate. The energy-momentum tensor (gravitational stress) satisfies the following
positivity condition. Let T .; / be the corresponding quadratic form in the tangent
space at each point. Then we have

T .X; Y / 	 0 (237)
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whenever X; Y are future-directed timelike vectors at a point.

Strong version. We have equality only if the field is trivial at that point.

Remark. The postulate implies thatT .X; Y / 	 0wheneverX; Y are future-directed
non-spacelike vectors at a point.

If now H is a Cauchy hypersurface with unit future-directed timelike normal N ,
then Z

H

�P D
Z

H

PN d� Ng D
Z

H

T .X;N / d� Ng ; (238)

where PN is theN -component of P . That is, complementingN D E0 with a frame
.E1; E2; E3/ for H at a point to a frame for M at that point, we expand:

P D PN N C
3X

iD1

P i Ei : (239)

Then, since g.N;N / D �1, we have

PN D �g .N;P / D T .X;N /: (240)

The postulate then implies that the integral (238) is 	 0wheneverX is non-spacelike
future-directed.

We shall now give an example of a case where the above theory, which is based on
the gravitational stress, does not apply, nevertheless Noether’s theorem still applies.

Example (Electromagnetic theory in a medium). Consider a medium at rest in some
Lorentz frame, the properties of which are invariant under the corresponding time
translations. That is, there is a parallel timelike future-directed unit vector field u
which is the material 4-velocity, and the material properties are invariant under the
group generated by u. Then there are rectangular coordinates .x0; x1; x2; x3/ such
that

u D @

@x0
.x0 D t /

and
L D L .xi ; Ei ; B i I i D 1; 2; 3/;

where
Ei D F 0i ; Fij D �ijk B

k

. �F 0i D �B i /. As usual, F D dA, or, in components, F�� D @�A� � @�A�. The
Ei and B i are the components of the electric and magnetic field respectively. The
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corresponding displacements are defined by

Di D � @L

@Ei
;

H i D @L

@B i
:

The Euler–Lagrange equations are Maxwell’s equations (in the absence of charges
and currents):

r �D D 0;

r �H � @D

@t
D 0:

We also have the condition dF D 0 which reads

r � B D 0;

r �E C @B

@t
D 0:

The simplest case is that of a homogeneous and isotropic medium.

Homogeneous medium. L is invariant under space translations:

@L

@xi
D 0; (241)

thus
L D L.Ei ; B i W i D 1; 2; 3/: (242)

Isotropic medium. L is invariant under space rotations.

If the medium is homogeneous and isotropic, then we have

L D L . jEj2; jBj2; E � B /: (243)

Noting that ˛ D F ��F�� D 2.�jEj2 C jBj2/ and ˇ D F �� �F�� D 4E � B , we
see that even in this case the Lagrangian is more general than that of Example 2. This
is due to the fact that the vector field u is an additional structure on M , besides the
metric g.

Nevertheless, Noether’s theorem still applies to the general medium above. The
invariance under time translations gives rise to the conservation of energy:

E D
Z

†t

" d3x; (244)
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where " D E �DCL is the energy density and†t is the hyperplane x0 D t . In fact,
we have the differential conservation law

@"

@t
C r � f D 0; (245)

where f is the energy flux,
f D E �H; (246)

the vector field

"
@

@x0
C f � r (247)

being the Noether current corresponding to time translations.

We shall confine ourselves in the following to geometric Lagrangians. Such a
Lagrangian possesses the symmetries of the metric, therefore the pullback by an
isometry of a solution of the Euler–Lagrange equations corresponding to a given
metric is also a solution of the same equations. In the case that the Euler–Lagrange
equations are linear, the difference of two solutions is also a solution. It follows that
the Lie derivative of a solution with respect to a vector field generating a 1-parameter
group of isometries is also, in the linear case, a solution, being the limit of a difference
quotient. Moreover, if the action is conformally invariant, the same applies to the
case of a vector field generating a 1-parameter group of conformal isometries.

Given a field ‰, consider the derived fields

‰n D LYi1
: : :LYin

‰ (248)

with i1; : : : ; in D f1; : : : ; mg, and fY1; : : : ; Ymg a set of generators of them parameter
subgroup of the isometry (or conformal isometry) group of g (Killing or conformal
Killing vector fields of g). The construction of the previous paragraph gives a pos-
itive conserved quantity associated to ‰n and to each vector field X generating a
1-parameter subgroup of the isometry (or conformal isometry) group of g which is,
moreover, non-spacelike and future-directed. If we have enough positive conserved
quantities of this type, then Sobolev inequalities imply the uniform decay of solutions.

In the non-linear case the Lie derivative with respect to a Killing vector field
(or conformal Killing vector field) is no longer a solution of the original Euler–
Lagrange equations but it is a solution of the equations of variation, namely the
Euler–Lagrange equations corresponding to the linearized Lagrangian about the given
solution. The underlying structure on which this linearized Lagrangian depends is
not only the metric but also the background solution. Thus the construction which
we have discussed will not yield a conserved quantity unless the background solution
is invariant under the 1-parameter group in question. In general, we will have error
terms which involve the Lie derivative of the background solution with respect to the
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corresponding vector field. The difference of the quantity corresponding to a spacelike
or null hypersurface from the same quantity corresponding to the initial hypersurface
will be the integral of the error terms over the spacetime domain bounded by these
two hypersurfaces.

The aim in the non-linear case is then to achieve closure: obtain enough positive
quantities such that the error integrals can be bounded in terms of the quantities
themselves. Once closure is achieved the global existence theorem for small initial
data will follow by a continuity argument.

We now consider in more detail the conformal group of Minkowski spacetime.

Conformal group of Minkowski spacetime. This group consists of:

1. Spacetime translations. These form an Abelian group. They are generated by
the vector fields (rectangular coordinates)

T� D @

@x�
; � D 0; 1; 2; 3; (249)

of degree �1. T� generates translations along the �-th coordinate axis.

2. Spacetime rotations (Lorentz transformations). These constitute the Lorentz
group SO.3; 1/. They are generated by the vector fields

��� D x�

@

@x�
� x�

@

@x�
; �; � D 0; 1; 2; 3; � < �; (250)

of degree 0. Here
x� D ��˛x

˛:

��� generates rotations in the �; �-coordinate plane.

3. Scale transformations (x 7! ax, a > 0). They are generated by the vector
field

S D x� @

@x�
(251)

of degree 0, which commutes with the spacetime rotations.

4. Inverted spacetime translations. These also form an Abelian group. They are
generated by the vector fields

K� D �2 x� S C .x; x/ T�; � D 0; 1; 2; 3; (252)

of degree 1. Here
.x; x/ D �˛ˇ x

˛ xˇ :

The K� are the generators of the 1-parameter groups

IP�I; (253)
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where P� is a translation along the �-coordinate axis

P� x D .x0; : : : ; x� C t; : : : ; x3/;

and I is the inversion, a discrete conformal isometry of Minkowski spacetime,
defined below.

The inversion I is defined by

I W Qx 7! x D Qx
. Qx; Qx/ ; ..x; y/ D ���x

�y�/: (254)

Note that

. Qx; Qx/.x; x/ D 1:

The inverse is

I�1 W x 7! Qx D x

.x; x/
: (255)

Thus

I�1 D I or I ı I D id:

We have
@x�

@ Qx˛
D ı

�
˛

. Qx; Qx/ � 2 Qx� Qx˛

. Qx; Qx/2 :

The pullback by I of the Minkowski metric � then reads

.I ��˛ˇ / . Qx/ D @x�

@ Qx˛

@x�

@ Qxˇ
��� .x/

D ��2 . Qx/ � �˛ˇ ;

where

�. Qx/ D �. Qx; Qx/:
Thus we have

I � � D ��2 �; (256)

that is, I is a conformal isometry of �.
We shall restrict the inversion mapping to IC.0/ in the x-coordinates. (IC.0/ is

the chronological future of the origin.) Then .x; x/; . Qx; Qx/ < 0. So, � > 0.

Proposition 7. The inversion maps IC.0/ .inx/ to I�.0/ .in Qx/. In fact, the inversion
maps light cones onto light cones.
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c

Qx-coordinates

x-coordinates

Qc

Figure 14

Proof. The light cone with vertex c is given by

.x � c; x � c/ D 0:

Then we have

. Qx � Qc; Qx � Qc/ D . Qx; Qx/ � 2 . Qx; Qc/C . Qc; Qc/
D 1

.x; x/
� 2 .x; c/

.x; x/.c; c/
C 1

.c; c/

D .x � c; x � c/
.x; x/.c; c/

D 0:

This proves the proposition. �

In particular, future light cones are mapped onto future light cones and past light
cones onto past light cones.

Remark. The entire causal future of a point c 2 IC.0/ is mapped onto a bounded
region in I�.0/.

Qx-coordinates

x-coordinates

Qcc
IC

Figure 15

The infinity in IC.0/ (in x) is mapped onto @I�.0/ (in Qx). The cone @I�.0/n0 is
the future null infinity denoted by IC, a concept introduced by R. Penrose (see [24]),
and the origin 0 is the future timelike infinity. Any null geodesic in x is mapped onto
a null geodesic in Qx with a future end-point on IC. Any timelike geodesic in x is
mapped onto a timelike curve in Qx ending at 0.
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Qx-coordinates

H
P

hyperboloid plane

c

O

x-coordinates

Figure 16

The inverse image of a spacelike hyperplane P ,

Qt D �k; k a positive constant

. Qt D Qx0I Qr D
qP3

iD1. Qxi /2 /;

is a spacelike hyperboloid H :

t D 1

2k
C
s�

1

2k

�2

C r2

. t D x0; r D
qP3

iD1.x
i /2 /

This is a hyperboloid through x0 D 1
k

on the x0-axis, which is asymptotic to @IC.c/,
where c is the point x0 D 1

2k
on the x0 axis. This hyperboloid is intrinsically a space

of constant negative curvature �.2k/2.
We shall consider examples where the initial data have compact support as well

as an example where the initial data have non-compact support.

x-coordinates

P

xB

Qx-coordinates
H

O

c

O 0

Figure 17
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Given initial data of compact support, let xB be the smallest closed ball on the initial
hyperplane containing the support of the data. We choose the x0-axis to be the straight
line in Minkowski space orthogonal to the initial hyperplane through the center of xB .

Let O 0 be the point on the x0-axis whose future light cone intersects the initial
hyperplane at @ xB . We then translate the origin of the (rectangular) spacetime coor-
dinates to a point O on the x0-axis which lies properly to the past of the point O 0
and we perform the inversion mapping relative to this new origin. We define the
positive constant k so that 1

k
is equal to the intervalOO 0 and consider the hyperplane

P W Qt D �k in the Qx-space and the corresponding hyperboloid H in the x-space. H
passes through the point O 0.

We suppose that our system of equations is derived from a Lagrangian and that it
admits a trivial global solution, at which it is regularly hyperbolic, with characteristic
cones coinciding with the light cones of the underlying Minkowski spacetime.

Then, if the initial data is sufficiently close to the trivial data, a solution will exist
in the closed spacetime slab (in the original x-space) bounded in the future by the
initial hyperplane and in the past by the parallel hyperplane through O 0. Moreover,
by the domain of dependence theorem, the solution is trivial outside the union of the
causal future and causal past of xB , in particular in the non-compact portion of H
lying to the future of the initial hyperplane.

We shall investigate below the conditions under which the Lagrangian transforms
under the inversion map into a regular Lagrangian in the Qx-space. The corresponding
system of Euler–Lagrange equations will then be a regular system in the Qx-space
equivalent to the original system.

We can then consider the Cauchy problem in the Qx-space with initial data on the
hyperplane P coming through the inversion mapping from the induced data on H .
This initial data is trivial in a neighborhood of the intersection P \ IC, therefore
extends trivially on P outside this intersection. If the initial data on P is sufficiently
close to trivial, which is the case if we require the original data (in x-space) to be
suitably close to trivial, then the solution of the transformed system in Qx-space will
exist in the entire closed slab bounded in the past byP and in the future by the parallel
hyperplane through the origin. Transforming then the solution back to the original
x-space, we obtain a global solution for the given initial data. In this way a global
existence theorem for small initial data is proven. This approach was first generally
expounded in [10].

Setting
g D I ��;

the metric Qg, given by
Qg D �2g; (257)

coincides, according to (256), with the Minkowski metric �:

Qg D �:
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Note that � D 0 on @I�.0/ D IC [ 0 in Qx-space, which corresponds to infinity in
the x-space. In the case of a scalar field ˆ, we also set

ẑ D ��1 ˆ: (258)

Then we have

� D g�� @� ˆ @� ˆ

D �2 Qg�� @� .� ẑ / @� .� ẑ /
D �4 Qg�� .@�

ẑ C ẑ @� log�/ .@�
ẑ C ẑ @� log�/:

� D 0 � D 0

Qx-coordinates

Figure 18

Consider the Lagrangian
L D � d�g :

The corresponding Euler–Lagrange equation is the linear wave equation for ˆ in the
metric g:

� ˆ D 0:

Since
d�g D ��4 d� Qg ;

we then have

L D Qg�� .@�
ẑ C ẑ @� log�/ .@�

ẑ C ẑ @� log�/ d� Qg
D . Q� C 2 Qg�� ẑ @�

ẑ @� log�C Qg�� ẑ 2 @� log� @� log�/ d� Qg

where
Q� D Qg�� @�

ẑ @�
ẑ :

Now

2 Qg�� ẑ @�
ẑ @� log� D @� . ẑ 2/ Qg�� @� log�

D Qr� . ẑ 2 Qg�� @� log�/ � ẑ 2 Q� log�:
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Consider the vector field
V � D ẑ 2 Qg��@� log�: (259)

Then
Qr� V

� d� Qg (260)

is a null Lagrangian: we can subtract it fromLwithout affecting the Euler–Lagrange
equations. After this subtraction the Lagrangian becomes

QL D fQ� C ẑ 2 .� Q� log�C Qg�� @� log� @� log�/g d� Qg : (261)

Here
� Q� log�C Qg�� @� log� @� log� D � Q� ��1 D 0: (262)

For,

Q� ��1 D ��� @2

@ Qx�@ Qx�

�
� 1

. Qx; Qx/
�

D 0:

Therefore, we obtain
QL D Q� d� Qg :

Thus, the Euler–Lagrange equation is equivalent to the linear wave equation for ẑ in
the metric Qg:

Q� ẑ D 0:

Example 1 (Non-linear wave equation in Minkowski spacetime). Consider now a
general Lagrangian of the form

L� D L� .�/ .L D L� d�g/:

The corresponding Euler–Lagrange equation is the non-linear wave equation

r�.G.�/@
�ˆ/ D 0 where G D dL�

d�
: (263)

By subtraction of an appropriate constant fromL� and multiplication by another such
constant we arrive at L� of the form

L�.�/ D � C �2F.�/;

where F is a smooth function in a neighbourhood of 0. The contribution to L of the
non-linear term in L� is

�2F.�/ d�g D . Qg�� @� .� ẑ / @� .� ẑ //2F.�2 Qg�� @� .� ẑ / @� .� ẑ // d� Qg
DW N d� Qg :
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The total Lagrangian is thus equivalent to

. Q� CN/ d� Qg ;

where N is regular at � D 0. In fact, we have

N j�D0 D . Qg�� @� � @� �/
2 � ẑ 2 F .0/ D 0

because the hypersurface � D 0, i.e. IC is null:

Qg��@��@�� D 0 along the hypersurface � D 0:

A particular example of the above kind is the following.

Example (Minimal timelike surfaces in 5-dimensional Minkowski spacetime). Con-
sider the Minkowski metric on R5:

� .dx0/2 C
3X

iD1

.dxi /2 C .dx4/2: (264)

Then an arbitrary graph of x4 over the 4-dimensional Minkowski spacetime is of the
form

x4 D ˆ .x0; x1; x2; x3/:

The area element of such a graph is
p
1C � d4x;

and the equation of minimal surfaces is the Euler–Lagrange equation corresponding
to this Lagrangian.

Example 2 (Non-linear electrodynamics in Minkowski spacetime). Let

˛ D F �� F�� ; ˇ D F �� F �
��

and
L D L� .˛; ˇ/ d�g : (265)

We stipulate that under a conformal transformation g 7! Qg D �2g, the 2-form

F D
X
�<�

F�� dx
� ^ dx� (266)

remains unchanged. Thus, we have

˛ D g�� g�� F�� F�� D �4 Qg�� Qg�� F�� F��„ ƒ‚ …
D Q̨

D �4 Q̨ :
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Expressing

F �
�� D 1

2
F �� ����� D 1

2
g�� g� F� ����� ;

and taking into account the fact that ����� , the volume form of g, is related to Q����� ,
the volume form of Qg, by

����� D ��4 Q����� ;

we see that

F �
�� D 1

2
Qg�� Qg� F� Q����� D F Q�

�� :

Therefore,

ˇ D g�� g�� F�� F
�
��

D �4 Qg�� Qg�� F�� F
Q�

��

D �4 Q̌:
Subtracting from L� an appropriate constant we can bring L� to the form

L� D ˛ G .˛; ˇ/C ˇ H .˛; ˇ/;

where G and H are smooth functions in a neighbourhood of .0; 0/. Thus,

L D f˛ G .˛; ˇ/C ˇ H .˛; ˇ/gd�g :

Since d�g D ��4d� Qg , we then have

L D f Q̨ G .�4 Q̨ ; �4 Q̌/C Q̌ H .�4 Q̨ ; �4 Q̌/g d� Qg :

This is regular at � D 0. In fact,

Lj�D0 D f Q̨ G .0; 0/C Q̌ H .0; 0/g d� Qg :

For a general electromagnetic Lagrangian, the displacement G�� is defined by

G�� D @L�

@F��

: (267)

(Note: In taking the partial derivative with respect to F�� , the equality F�� D �F��

is to be taken into account. Thus, limt!0 t
�1fL�.F C t PF /�L�.F /g D 1

2
@L�

@F��

PF�� .)
So, for the Lagrangian giving rise to the linear Maxwell equations,

L� D 1

4
˛;

G�� D F �� :
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In general, in terms of a splitting into time and space (as given by the choice of a time
coordinate x0):

F 0i D Ei is the electric field,

Fij D �ijkB
k is the magnetic field

(F �0i D �B i ; F �
ij D �ijkE

k), and we have

˛ D �2jEj2 C 2jBj2; ˇ D 2E � B:

Then with

Di D �@L
�

@Ei

; (268)

H i D @L�

@Bi

; (269)

the displacement reads:

G0i D Di electric displacement,

Gij D �ijkH
k magnetic displacement

(G�0i D �H i ; G�
ij D �ijkD

k). Also, setting

� D G�� G�� ; ı D G�� G��� (270)

we have

� D �2jDj2 C 2jH j2; ı D 2D �H:
Let us consider the mapping

F 7! G (271)

We have
@˛

@F��

D 4 F �� ;
@ˇ

@F��

D 4 F ��� ;

hence

G�� D 4
@L�

@˛
F �� C 4

@L�

@ˇ
F ��� : (272)

(Note that F ��
�� D �F�� .) It follows that the mapping

.˛; ˇ/ 7! .�; ı/ (273)



4.1 Statement of the problem 99

is given by

� D
"�

@L�

@˛

�2

�
�
@L�

@ˇ

�2
#
˛ C 2

@L�

@˛

@L�

@ˇ
ˇ;

ı D �2 @L
�

@˛

@L�

@ˇ
˛ C

"�
@L�

@˛

�2

�
�
@L�

@ˇ

�2
#
ˇ:

(274)

The Maxwell equations
d F D 0 .F D d A/ (275)

take the form

r � B D 0; (276)

r �E C @B

@t
D 0: (277)

The remaining Maxwell equations are the Euler–Lagrange equations

d G� D 0: (278)

These take the form

r �D D 0; (279)

r �H � @D

@t
D 0: (280)

The initial conditions consist of the specification of B and D at t D 0 subject to the
constraint equations

r � B D 0; (281)

r �D D 0: (282)

Initial data .B0;D0/which areC1 and of compact support can readily be constructed
by taking curls of C1 vector fields of compact support.

Example 3 (Gauge theory of a complex line bundle over Minkowski spacetime). We
have a complex line bundle over Minkowski spacetime, equipped with a Hermitian
metric. The bundle is topologically trivial, being diffeomorphic to the product R4�C.
Let us choose an orthonormal basis section � , that is j� j D 1. Here j � j is the norm
corresponding to the Hermitian inner product on each complex line fibre. As each
fibre has only one complex dimension, only the condition j� j D 1 has to be fulfilled.
The imaginary line being the Lie algebra of U.1/, one has connection coefficients
iA� defined by the covariant derivative

D�� D iA��:
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The wave function is a section s of the complex line bundle,

s D ˆ�;

where ˆ is a complex-valued function in Minkowski spacetime. We have

jsj D jˆj;

where jˆ.x/j is the absolute value of the complex number ˆ.x/. We then find

D� s D .D� ˆ/ �;

where

D� ˆ D @� ˆC i A� ˆ:

The Lagrangian of the theory reads

L D L� d�g

with

L� D 1

2
D� ˆ D�ˆC �

4
jˆj4 C 1

4
F �� F�� : (283)

Here, F D dA, that is F�� D @�A� � @�A�, iF being the curvature of the bundle.
The 1-form A is identified with the electromagnetic potential and the 2-form F with
the electromagnetic field. The theory describes a charged scalar field in interaction
with the electromagnetic field. The Euler–Lagrange equations are

r� F
�� D J� D Im. N̂ D� ˆ/;

D� D� ˆ D � jˆj2 ˆ: (284)

Here, J� is the electric current density. Under change of basis section

� 7! ei� �;

we have

ˆ 7! e�i� ˆ;

A� 7! A� C @� �:
(285)

The last pair of transformations are the gauge transformations.

Proposition 8. The equivalence class of L is conformally invariant.
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Proof. The last term in (283) is
1

4
˛ d�g

which we have shown to be conformally invariant, being equal to

1

4
Q̨ d� Qg :

The middle term in (283) is also conformally invariant, being equal to

1

4
j ẑ j4 d� Qg I ẑ D ��1ˆ:

The first term is 1
2
�d�g , where now

� D g�� D� ˆ D� ˆ

D �2 Qg�� D�.� ẑ / D�.� ẑ /
D �4 Qg�� .D�

ẑ C ẑ @� log�/ .D�
ẑ C xẑ @� log�/

D �4 Q� C Qr� V
�;

V � D Qg��j ẑ j2@� log�

(see (262)). Therefore,

1

2
� d�g is equivalent to

1

2
Q� d� Qg

and the proposition is proven. �

The initial conditions consist of the specification of ˆ, D0ˆ, E, B at t D 0.
These are subject to the constraint equations

r � B D 0;

r �E D �;
(286)

where
� D J 0 D Im. N̂ D0 ˆ/

is the electric charge density. Here we can take all the data exceptE to have compact
support. Writing

E D U C r h;

where U is a C1 compactly supported divergence-free vector field, r � U D 0, the
function h must satisfy 4h D �. Therefore h is a harmonic function outside the ball
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of support of the rest of the initial data. Outside the future of this ball in Minkowski
spacetime we have

ˆ D 0;

B D 0; (287)

E D r h; independent of t .

For, (287) is a solution of (284). By the domain of dependence theorem it must be
the solution in the domain in question corresponding to the given initial data.

In 3-dimensional Euclidean space .R3; e/ we consider the inversion map

x 7! x0 D i�1.x/ D x

r2
;

where r D jxj. With r 0 D jx0j, we have r 0 D r�1. Then

i�e D ��2 e;

where � D r 02. Thus, setting g D i�e, g0 D e, we have g0 D �2g. Moreover,
setting also h0 D �� 1

2h, we have

4 h D 0 ” 40 h0 D 0:

Now our function h is harmonic in R3n xBR, where xBR is the smallest closed ball
containing the support of the data for ˆ, D0 ˆ, B , U and thus the support of �. It
follows that h0 is analytic in BR0 , where R0 D R�1. We have a convergent Taylor
expansion at the origin, which represents the infinity of the original Euclidean space.
This Taylor expansion

h0 D aC bi x
0i C cij x

0i x0j C � � �

(with 40h0 D 0 , tr c0 D 0; : : : ) corresponds to the multipole expansion of h.
Translating the origin in Minkowski spacetime to a point along the straight line

orthogonal to the initial hyperplane through the center of the ball xBR, a point lying
properly to the past of the point the future light cone of which intersects the initial
hyperplane at @ xBR, we see that the spacetime inversion map I�1 in the exterior
of the causal future and past of xBR, takes the static solution discussed above to a
solution of the same equations in the image of this domain which admits an analytic
extension through IC. The arguments outlined previously then apply yielding a
global existence and decay theorem for small initial data. The decay of the original
fields follows trivially from the boundedness of the transformed fields.
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4.2 Sketch of the proof of the global stability of Minkowski
spacetime

4.2.1 The problem in General Relativity – two main difficulties

1. The definition of the energy-momentum tensor appropriate to a geometric La-
grangian, namely by considering the variation of the action with respect to the
underlying metric, clearly fails, because this variation vanishes for the gravi-
tational Lagrangian

L D �1
4
R d�g :

This vanishing is the statement of the Euler–Lagrange equations for gravitation,
namely the Einstein (vacuum) equations.

An alternative approach is to appeal to Noether’s theorem after subtracting an
appropriate divergence relative to a background metric, as we have done in
defining the total energy (E), linear momentum (P i ), angular momentum (J i )
and center of mass integrals (C i ). Among these the energy has been shown
to be positive. But, the energy (a quantity which scales like length) gives us
control on the solutions only after the isoperimetric constant, a dimensionless
quantity, is assumed under control. Therefore, the energy cannot be used, by
itself, to prove regularity.

2. A general spacetime has no symmetries: the conformal isometry group of a
general spacetime is trivial. Therefore we have no conformal Killing vector
fields at our disposal, to use, in conjunction with energy-momentum tensors,
to construct integral conserved quantities.

4.2.2 Resolution of the first difficulty. The idea of how to overcome the first diffi-
culty is based on the following analogy with Maxwell’s equations of electromagnetic
theory.

Our aim is to derive estimates for the spacetime curvature which will give us the
necessary control on regularity. The idea is to consider the Bianchi identities

rŒ˛ Rˇ��ı� D 0; Œ˛ˇ�� a cyclic permutation, (288)

as differential equations for the curvature, and the Einstein equations

R�� WD g˛ˇ R˛�ˇ� D 0 (289)

as algebraic conditions on the curvature. Breaking the connection between the metric
and the curvature, we define a Weyl field W˛ˇ�ı on a given 4-dimensional spacetime
manifold .M; g��/ to be a tensor field with the same algebraic properties as the Weyl
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(or conformal) curvature tensor. Namely:

Wˇ˛�ı D W˛ˇı� D �W˛ˇ�ı antisymmetry in the first two as well as in the
last two indices,

W˛Œˇ�ı� D 0 cyclic condition,

and the trace condition
g˛ˇ W˛�ˇ� D 0;

the analogue of the Einstein equations. The first two properties imply the symmetry
under exchange of the first and second pair of indices: W�ı˛ˇ D W˛ˇ�ı .

Given a Weyl field W we can define a right dual W � as well as a left dual �W .
The left dual is defined as

�W˛ˇ�ı D 1

2
���˛ˇ W

��
�ı (290)

by freezing the second pair of indices and considering W as a 2-form relative to the
first pair. The right dual is defined as

W �
˛ˇ�ı D 1

2
W˛ˇ

�� ����ı (291)

by freezing the first pair of indices and consideringW as a 2-form in the second pair.
However, by virtue of the algebraic properties of W the two duals coincide:

�W D W �: (292)

We shall thus write only �W in the following. Moreover, �W is also a Weyl field. In
fact, the cyclic condition for �W is equivalent (modulo the other conditions) to the
trace condition for W and vice versa.

AWeyl field is subject, in the absence of sources, to the vacuum Bianchi differential
equations:

rŒ˛ Wˇ��ı� D 0: (293)

We can write these as
D W D 0 (294)

to emphasize the analogy with the exterior derivative. These are the analogues of the
Maxwell equations

dF D 0:

However, D is not an exterior differential operator, so D2 ¤ 0. The equation
D2W D 0, a differential consequence of the vacuum Bianchi equations, is in fact the
algebraic condition

R ˛ˇ�
�

�W�˛ˇ� �R ˛ˇ�
�

�W�˛ˇ� D 0: (295)
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Here, R˛ˇ�ı is the curvature of the underlying metric g�� . One can ask: What about
the analogues of the other Maxwell equations

d F � D 0 (in the absence of sources)?

The remarkable fact is that the equations

D �W D 0 .D W � D 0/ (296)

are equivalent to the equations DW D 0. In components, the equations D �W D 0

read
r˛ W˛ˇ�ı D 0: (297)

We shall presently define an energy-momentum tensor analogous to that for
Maxwell’s equations:

Q˛ˇ D 1

2
. F˛� F

�

ˇ
C F �̨

� F
� �

ˇ
/ (298)

(on a 4-dimensional spacetime manifold). This tensor had already been discovered
by L. Bel and I. Robinson in the case W D R of a metric g satisfying the Einstein
vacuum equations. We define

Q˛ˇ�ı D 1

2
. W˛�� W

� 

ˇ ı
C �W˛��

�W � 

ˇ ı
/: (299)

We call this tensor the Bel–Robinson tensor. It is a totally symmetric quartic form in
the tangent space at each point (a 4-covariant tensor field) which is trace-free with
respect to any pair of indices.

Recall that the electromagnetic energy-momentum tensor satisfies the positivity
condition

Q .X1; X2/ 	 0

for any pair X1; X2 of future-directed timelike vectors at a point with equality if and
only if F vanishes at that point.

Similarly, the Bel–Robinson tensor has the property

Q .X1; X2; X3; X4/ 	 0 (300)

for any quadrupletX1; X2; X3; X4 of vectors at a point all of which are future-directed
timelike, with equality if and only if W vanishes at this point. The above are the
algebraic properties of Q, all of which follow from the algebraic properties of W .
Moreover, ifW is a solution of the vacuum Bianchi equations, thenQ is divergence-
free:

r˛ Q˛ˇ�ı D 0: (301)
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(This is analogous to the fact that, in electromagnetic theory, dF D 0 and d�F D 0

imply r˛Q˛ˇ D 0 .)
Suppose now that we are given three vector fieldsX , Y ,Z all of which are future-

directed, non-spacelike and generate conformal isometries of .M; g/. We denote
by

.U / O
 D 1LUg (302)

the trace-free part of LUg for any vector fieldU . IfU generates conformal isometries,
then

.U / O
 D 0: (303)

We consider the vector field

P� D �Q�

˛ˇ�
X˛ Y ˇ Z� :

Then, we have

r� P
� D �. r� Q

�

˛ˇ�„ ƒ‚ …
D0

/ X˛ Y ˇ Z�

�Q�

˛ˇ�
.r�X

˛/ Y ˇ Z�

�Q�

˛ˇ�
X˛ .r� Y

ˇ / Z�

�Q�

˛ˇ�
X˛ Y ˇ .r� Z

� /:

(304)

We write

Q
�

˛ˇ�
. r� X

˛ / Y ˇ Z� D 1

2
Q

�˛

ˇ�
. r� X˛ C r˛ X� / Y

ˇ Z�

D 1

2
Q

�˛

ˇ�
.X/
�˛ Y

ˇ Z�

D 1

2
Q

�˛

ˇ�
.X/ O
�˛ Y

ˇ Z�

where we have used the symmetric and trace-free nature ofQ, and similarly with X ,
Y ,Z replaced by Y ,Z,X andZ,X , Y respectively. Thus, recalling again the totally
symmetric nature of Q, (304) becomes

r� P
� D �1

2
f Q�˛

ˇ�
.X/ O
�˛ Y

ˇ Z�

CQ� ˇ
˛ � X

˛ .Y / O
�ˇ Z
�

CQ
� �

˛ˇ
X˛ Y ˇ .Z/ O
�� g

D 0:

(305)
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For, .X/ O
 D .Y / O
 D .Z/ O
 D 0, as X; Y;Z are by assumption conformal Killing
fields. Defining then the corresponding 3-form �P

�P��� D P� �����;

the fact that P is divergence-free is equivalent to the fact that �P is closed:

d �P D 0: (306)

We consider the following three cases.

Case 1. We integrate (306) over the domain bounded by the initial Cauchy hypersur-
face H0 and a Cauchy hypersurface Ht to the future of H0.

H0

Ht

Figure 19

Case 2. We integrate (306) over the domain bounded by the initial Cauchy hypersur-
face H0 and an outgoing null hypersurface Cu.

H0

Cu

Figure 20

Case 3. We integrate (306) over the domain bounded by the initial Cauchy hypersur-
face H0 and an outgoing null hypersurface Cu capped in the past by a portion of the
(complete) Cauchy hypersurface Ht .

Cu

H0

Ht

Figure 21
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We then obtain Z
Ht

�P D
Z

H0

�P in Case 1; (307)Z
Cu

�P �
Z

H0

�P in Case 2; (308)Z
C c

u

�P �
Z

H0

�P in Case 3; (309)

where C c
u is Cu capped by Ht in the past. Here, all quantities are non-negative.

In particular,Z
Ht

�P D
Z

Ht

PN d� Ngt
D
Z

Ht

Q .N; X; Y Z/ d� Ngt
	 0;

where N is the future-directed unit (timelike) normal to Ht and d� Ngt
the volume

element of the induced metric Ngt on Ht .
Now, given a Weyl fieldW and a vector fieldX , the Lie derivative with respect to

X of W , that is LXW , is not in general a Weyl field, because it does not satisfy the
vanishing trace condition. We can however define a modified Lie derivative OLXW

which is a Weyl field:

OLX W˛ˇ�ı D LX W˛ˇ�ı � 1

2
. O
 �

˛ W�ˇ�ı C O
 �

ˇ
W˛��ı

C O
 �
� W˛ˇ�ı C O
 �

ı
W˛ˇ�� / (310)

� 1

8
tr 
 W˛ˇ�ı :

Here, as in the preceding, 
˛ˇ D LXg˛ˇ and O
˛ˇ is the trace-free part of 
˛ˇ .
The modified Lie derivative commutes with the Hodge dual,

OLX
�W D � OLX W: (311)

Conformal properties of the Bianchi equations. We consider next the conformal
properties of the Bianchi equations.

Let f be a conformal isometry of the underlying manifold .M; g/,

f �g D �2 g: (312)

If W is a Weyl field satisfying DW D 0 on .M; g/, then ��1f �W is also a Weyl
field satisfying the same equation on .M; g/. This follows from the fact, readily
established by a straightforward calculation, that if W is a Weyl field satisfying the
equationDW D 0 on .M; g/, then, for any conformal factor�, QW D ��1W is also
a Weyl field satisfying the equation QD QW D 0 on .M; Qg/, where Qg D ��2g.
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Remark. Recall that if W is the conformal curvature tensor of .M; g/, then the
conformal curvature tensor QW of .M; Qg/ with Qg D ��2g is

QW D ��2 W:

So the transformation W 7! ��1W considered above is not related to this.

Suppose now that X is a vector field generating a 1-parameter group fftg of
conformal isometries of .M; g/ (a conformal Killing field). Then if W is a solution
of the Bianchi equations, so is ��1

t f �
t W for each t . By the linearity of the Bianchi

equations
d

dt
��1

t f �
t W

ˇ̌̌
tD0

D OLX W (313)

is likewise a solution of the same equations. We see that the term �1
8

tr 
W in OLXW

comes from the conformal weight ��1. Thus, if .M; g/ possesses a non-trivial
conformal isometry group, we can derive conserved quantities of arbitrary order by
placing in the role of W the iterated (modified) Lie derivatives,

OLXi1
: : : OLXin

W;

an n-th order Weyl field. Here, i1; : : : ; in 2 f1; : : : ; mg, with m being the dimension
of the conformal group of .M; g/ and fX1; : : : ; Xmg being the generating conformal
Killing fields.

4.2.3 Resolution of the second difficulty. We turn to the second difficulty, namely
the fact that a general spacetime has only a trivial conformal isometry group.

The crucial observation here is that a spacetime which arises from arbitrary asymp-
totically flat initial data is itself expected to be asymptotically flat at spacelike infinity
and at future null infinity in general, and also, under a suitable smallness restriction
of the initial data, at timelike infinity as well.

We thus expect that, under the present circumstances, the spacetime approaches
the Minkowski spacetime as the time tends to infinity. Now, the Minkowski spacetime
possesses a large conformal isometry group. We thus expect to be able to define ‘in the
limit’ t ! 1 the action of a subgroup, at least, of the conformal group of Minkowski
spacetime, as the action of a conformal isometry group in the limit t ! 1.

Then the problem is to extend this action backwards in time up to the initial
hypersurface in such a way as to obtain an action of the said subgroup globally, which
is globally close to being the action of a conformal isometry group, in the sense that
the deformation tensors O
 of the generating vector fields are globally small, and tend
suitably fast to 0 as t ! 1.

It turns out that we can only define the action of the subgroup of the conformal
group of Minkowski spacetime corresponding to:
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1. The time translations.

2. The scale transformations.

3. The inverted time translations.

4. The spatial rotation group O.3/.

This is due to the fact that a non-trivial spacetime, corresponding to asymptotically
flat initial data, has a non-zero total mass, therefore a non-zero energy-momentum
vector (which can be considered to be a vector at the ideal point at spacelike infinity).
Therefore an O.3/ subgroup is singled out which leaves this vector invariant.

The group of time translations is the easiest to define. This corresponds to the
choice of a canonical time function t . This is the canonical maximal time function
relative to which the (spatial) linear momentum P i vanishes. The generating vector
field T has already been defined. The integral curves of T are the family of timelike
curves orthogonal to the maximal hypersurfaces Ht and are parametrized by t . The
corresponding group ff�g is such that f� is a diffeomorphism of Ht onto HtC� .

The rotation group O.3/ is to satisfy the condition that it takes any given hyper-
surface Ht onto itself. To define the action of O.3/ on Ht we must define the orbit of
O.3/ through a given pointp. The construction is accomplished with the introduction
of another function u, which is called an ‘optical function’ as it is a solution of the
eikonal equation

g�� @� u @� u D 0: (314)

This equation expresses the fact that the level sets Cu of u are null hypersurfaces.
Then the 2-surfaces of intersection,

St;u D Ht \ Cu; (315)

shall be the orbits of the rotation group O.3/ on each Ht . Moreover, the function u
shall also be used to define the vector fields S and K generating the scale transfor-
mations and inverted time translations respectively.

Construction of the optical function u. Thus, the most essential step is the construc-
tion of the appropriate function u. The construction starts by choosing a 2-surface
S0;0, diffeomorphic to S2, in the initial hypersurface H0. We consider @JC.S0;0/,
the boundary of the future of S0;0, in the spacetime which is assumed to have been
constructed. This has an outer as well as an inner component. The outer component
is generated by the congruence of outgoing null geodesic normals to S0;0 and the
inner component is generated by the congruence of incoming null geodesic normals
to S0;0. We define the level set C0 (the 0-level set of u) to be this outer component.
It is an outgoing null hypersurface.
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H0

S0;0

C0

St;u D Ht \ Cu

Ht�

Ht

St;0

St�;0

Figure 22

Now, there is considerable freedom in the choice of S0;0. However, the choice is
subject to the condition that the null geodesic generators of C0 have no future end-
points.

We must now define the other level sets Cu with u ¤ 0. These shall also be
outgoing null hypersurfaces, thus uwill, by construction, be a solution of the eikonal
equation (314)

g�� @� u @� u D 0:

Ht�

H0

S0;0

St�;0

inner

C0

outer

Figure 23
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Consider the surfaces (315)
St;u D Ht \ Cu:

We want to impose the following condition: The surfaces St�;u in Ht� must become
equally spaced as t� ! 1. That is, ujHt�

must tend to minus the signed distance
function from St�;0 on Ht� as t� ! 1.

u < 0

u D 0
u > 0

St�;0

Figure 24

The global stability theorem is established by a continuity argument, in the course
of which we are constructing a spacetime slab bounded in the future by the maximal
hypersurface Ht� . The obvious choice ofu on Ht� , namely minus the signed distance
function fromSt�;0, is inappropriate, because this distance function is only as smooth
as the induced metric Ngt� , not one order of differentiability better, which would
be the maximal possible for a function on .Ht� ; Ngt�/. This loss of one order of
differentiability would result in failure of closure of the estimates. The continuity
argument would then fail.

To overcome this difficulty, we define u on Ht� in a different way, namely by
solving a certain equation of motion of surfaces on Ht� , the initial surface being
St�;0. To keep the discussion simple, we neglect the second fundamental form kt� of
Ht� , and consider the motion of a surface on a (3-dimensional) Riemannian manifold.

Given a function u on such a manifold, a function whose level sets define locally
a foliation, we have the associated lapse function

a D . Ngij @i u @j u/
� 1

2 ; (316)

which measures the normal separation of the leaves. We can think of a as the normal
velocity of a surface, leaf of the foliation. An equation of motion of surfaces is then
a rule which assigns a positive function a to a given surface. Given a surface S
diffeomorphic to S2, let f be the function

f D K � 1

4
.tr �/2; (317)
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where K is the Gauss curvature of S . (So, f D 0 for a round sphere in Euclidean
space.) The rule which defines the equation of motion is

4ı log a D f � Nf ; (318)

where 4ı is the Laplacian of the induced metric � on S . In general, for any function
f on S we denote by Nf the mean value of f on S . Equation (318) determines a up
to a positive multiplicative constant. The freedom which is left corresponds to the
freedom in relabeling the level sets of u. (We can remove the freedom by requiring
log a D 0.)

To see what this equation of motion accomplishes, consider the trace of the 2nd

variation equation for a 2-surface on a 3-dimensional Riemannian manifold, once the
Gauss equation has been employed to express xR33, e3 being the unit outward normal
to S , in terms of xR and K. The Gauss equation reads

2K � .tr �/2 C j� j2 D 2 xR � xR33:

Note also that since u is to decrease outwards, we have e3 D � 1
a

@
@u

. The general
formula we then obtain is the following:

@ tr �

@u
D 4ı aC 1

2
a . xRC j� j2 C .tr �/2 � 2K/: (319)

Now, neglecting the second fundamental form k of Ht� , the Gauss constraint equation
of the imbedding of Ht� in spacetime becomes simply

xR D 0: (320)

It follows that if a is subject to equation (318) above, (319) reduces to the following
propagation equation for tr � :

1

a

@ tr �

@u
D 1

2
j O� j2 C 1

2
.tr �/2 C jr

ı
log aj2 � Nf : (321)

Here, O� is the trace-free part of � . All the curvature terms on the right-hand side have
been eliminated. Moreover, by the Gauss–Bonnet theoremZ

S�

K d�� D 4
;

hence
Nf D 1

A

Z
S�

f d�� D 4


A

�
1 � 1

16


Z
S�

.tr �/2 d��

�
; (322)

where A is the area of S�. This propagation equation of tr � is to be considered in
connection with the Codazzi equations

r
ı B O�AB � 1

2
r
ı

A tr � D xRA3 (323)
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(complementing e3 with .eA W A D 1; 2/ an arbitrary local frame field for S ). These
form an elliptic system on S for O� given tr � . Also, in estimating r

ı
log a from the

equation of motion, we appeal to the Gauss equation which expresses K as

K D 1

4
.tr �/2 � 1

2
j O� j2 � xR33: (324)

Because of the fact that there are no curvature terms on the right-hand side of the
propagation equation (321) and the fact that one order of differentiability is gained
in inverting the 1st order elliptic operator in (323), we are able to obtain estimates
for the second fundamental form � of the level sets of u which are of one order of
differentiability higher than the estimates for the curvature assumed. Then the level
sets of u and u itself is shown to be three orders of differentiability smoother than the
curvature or one order of differentiability smoother than the metric, as required.

The meaning of the equation of motion of surfaces. Here, we will consider the
Hawking mass m (see [17]) of a surface S diffeomorphic to S2 in a 3-dimensional
Riemannian manifold of vanishing scalar curvature: xR D 0. (The energy of S is
4
m.) We first define the area-radius r of S by

Area .S/ D 4
r2:

Definition 45. The Hawking mass m of a surface S diffeomorphic to S2 in a 3-
dimensional Riemannian manifold is

m D r

2

�
1 � 1

16


Z
S

.tr �/2 d��

�
: (325)

If B is a small geodesic ball with center at a point p, then

lim
B&p

m

Vol.B/
D

xR.p/
16


: (326)

Recall that for the general (non-vacuum) Einstein equations,

xR D 4 T 00 (327)

on a hypersurface with vanishing second fundamental form. We see that the limit at
a point (326) captures only the energy density of matter. There is no gravitational
contribution to the density at a point, the gravitational energy being of non-local
character.

Proposition 9. For suitable families of surfaces S whose interiors exhaust the 3-
manifold we have

m .S/ ! M; (328)

the total mass, provided the 3-manifold is strongly asymptotically Euclidean.
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Proof. We are assuming that

Ngij D
�
1C M

2�

�4

ıij CO2 .�
�1��/; � > 0; (329)

where � D jxj. The term O2.�
�1��/ does not contribute to the limit of m. Thus the

proposition follows if we show that the Hawking massm.S/ of the coordinate sphere
S� ! M as � ! 1 in the case of the metric

Ngij D
�
1C M

2�

�4

ıij ; (330)

the Schwarzschild metric. In fact, for any metric of the form

Ng D �4 jdxj2; � D �.jxj/;
changing to polar coordinates, we have

Ng D �4 . d�2 C �2
ı
�AB .y/ dyAdyB„ ƒ‚ …

standard metric on S2

/; � D � .�/:

The arc length s along the rays from the origin is

s D
Z �

0

�2 .�/ d�:

The induced metric on S� is �AB D �2�4
ı
�AB . Then the second fundamental form

�AB of S� is given by

�AB D 1

2

@�AB

@s

D 1

2�2

@�AB

@�

D 1

�2

�
1

�
C 2

�

d�

d�

�
�AB :

Hence

tr � D 2

��2

�
1C 2�

�

d�

d�

�

and
p

det � D �2�4

q
det

ı
� . Thus, we haveZ

S

.tr �/2 d�� D 16 


�
1C 2�

�

d�

d�

�2

:
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Moreover, since 4
r2 D Area.S�/ D R
S�
d�� D 4
�2�4 we have r D ��2. We

thus obtain

m .S�/ D 1

2
��2

"
1 �

�
1C 2�

�

d�

d�

�2
#
:

In the particular case � D 1C M
2�

we find

m .S�/ D M:

Remark. ‘Suitable’ family of surfaces may be taken to mean the following:

tr � D 2

r
CO.r�1��/; � > 0; r D

r
A

4

;

and
j O� j D O.r�1��/:

It is these two properties of the surfaces which are required in the above proof.
�

Definition 46. Given an arbitrary local foliation with lapse function a, the mass
aspect function of each leaf is

� D �4ı log aCK � 1

4
.tr �/2: (331)

By the Gauss–Bonnet theorem,
R

S
Kd�� D 4
 ; hence we haveZ

S

� d�� D 4


�
1 � 1

16


Z
S

.tr �/2 d��

�
D 8
m

r
:

(332)

Thus

N� D 2m

r3
: (333)

Consider now the variation of m as we move through the foliation. We have

dm

du
D 1

2

dr

du

2m

r
� r

32


d

du

Z
S

.tr �/2 d�� : (334)

Now, the general formula (319) reduces in the case xR D 0 under consideration to

@ tr �

@u
D 4ı aC 1

2
a . j� j2 C .tr �/2 � 2 K/:
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We express this in terms of � to obtain

1

a

@ tr �

@u
D 1

2
.tr �/2 C 1

2
j O� j2 C jr

ı
log aj2 � �: (335)

Using the fact that
@d��

@u
D �a tr � d�� ;

we then deduce that

d

du

Z
.tr �/2 d�� D

Z
S

a tr � f j O� j2 C 2 jr
ı

log aj2 � 2 � g d�� : (336)

On the other hand, since

8
r
dr

du
D dA

du
D �

Z
S

a tr � d�� ;

we obtain
dr

du
D �r

2
a tr �: (337)

Now, in the formula for d
du

R
S
.tr �/2d�� we have the term

�2
Z

S

a tr � � d�� :

Writing
� D .� � N�/C N�

we have

� 2
Z

S

a tr � N� d�� D �8
r2 a tr � N� D �16
m
r

a tr �; (338)

by (333). Therefore, substituting (336) and (337) in (334), � r
32�

� .338/ cancels the
first term on the right in (334). We thus remain with

dm

du
D r

16


�
�
Z

S

a tr �
�
1

2
j O� j2 C jr

ı
log aj2

�
d��

C
Z

S

.a tr � � a tr �/ .� � N�/ d��

�
;

(339)

where we have made use of the fact that .� � N�/ has vanishing mean to rewriteZ
S

a tr � .� � N�/ d�� as
Z

S

.a tr � � a tr �/ .� � N�/ d�� :
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The first integral in (339) is 	 0, provided that tr � 	 0. Thus, under this condition,
the vanishing of the second integral implies thatm is a non-increasing function of u.
The second integral vanishes in the following two cases:

Case 1. a tr � D a tr � : This is inverse mean curvature flow.

Case 2. � D N�: This is the equation of motion of surfaces, which we discussed
above and which has the smoothing property required in the continuity argument.

Case 1 is a parabolic equation. The problem can be solved in this case in the
outward direction only.

Case 2 may be thought of as an ordinary differential equation in the space of
surfaces. For, the rule assigning the positive function a to a given surface S according
to (318) assigns a function of the same differentiability class as the surface itself. This
is because in inverting the 2nd order elliptic operator 4ı , two orders of differentiability
are gained. The equation of motion of surfaces can be solved in both directions. We
shall discuss general ordinary differential equations in the space of surfaces in a given
3-dimensional Riemannian manifold at the end of the present section.

The problem in Case 2 is actually solved outward globally (that is, for all u � 0)
and inward up to a surface of area equal to a given fraction of the area of S0.D St�;0/.
(Note that S0 is the 0-level set of u.) It turns out that xR33; xRA3; xRAB have different
decay properties. For fixed u and t� large they decay like r�3; r�2; r�1, respectively.

The proof of this semiglobal existence theorem for the equation of motion of
surfaces is based on the hypothesis that there exists a background function u0 with
level sets S 0

u0 , such that S 0
0 D S0, and suitable assumptions hold on the geometric

properties of this background foliation as well as on the components of xRij in the
decomposition with respect to the unit normal and the tangent plane to S 0

u0 . Once
the surfaces St�;u have been constructed, we define Cu for u ¤ 0 to be the inner
component of the causal past ofSt�;u. In this way the optical functionu is constructed
in the spacetime slab bounded by Ht� and H0.

Next we define the vector fields S (scaling) andK (inverted time translation). The
vector field T (time translation) has already been defined by the maximal foliation.

Consider a surface St;u D Ht \ Cu. At each point on St;u we have two null
normals L and L, respectively outgoing and incoming, normalized by the condition
that their components along T are equal to T . The integral curves of L are the null
geodesic generators of the Cu, parametrized by t .

We define the function
u D uC 2 r;

where

r.t; u/ D
r

Area.St;u/

4

:

Note that

T D 1

2
. LC L /:
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Now let us define S and K according to

S D 1

2
. u LC u L /;

K D 1

2
. u2 LC u2 L /:

To define the action O.3/ in the spacetime slab, we first consider the ‘final’ maximal
hypersurface Ht� . We consider on Ht� the vector field U :

U i D a2 Ngij @j u:

The integral curves of U are orthogonal to the level sets of u on Ht� , namely the
surfaces St�;u and are parametrized by u. (So,Uu D 1.) Let f�g be the 1-parameter
group generated by U . Then � restricts to a diffeomorphism of St�;u onto St�;uC .
In particular,

�u W St�;0 ! St�;u

is a diffeomorphism. The pullback to St�;0 of the induced metric on St�;u rescaled
by r�2, namely

��
u .r

�2 �/St�;u
;

is shown to converge, as u ! �1 (that is, at spacelike infinity on Ht�), to a metric
ı
� t� of Gauss curvature equal to 1. Therefore, .St�;0;

ı
� t�/ is isometric to the standard

sphere. The rotation group O.3/ then acts as the isometry group of .St�;0;
ı
� t�/, the

‘sphere at infinity’.
We then define the action of O.3/ on Ht� by conjugation: Given a pointp 2 St�;u

and an element O 2 O.3/, we consider the integral curve

� 7! � .p/

of U through p. As � ! �1, this tends to a point q on the ‘sphere at infinity’. In

other words since .St�;0;
ı
� t�/ is our model for the sphere at infinity, we can simply

identify q with the point ��u.p/ 2 St�;0. Then Oq 2 .St�;0;
ı
� t�/ is well defined.

Finally, the point Op is the point �u.Oq/ 2 St�;u. The vector fields �.a/ with
a D 1; 2; 3 generating this action then satisfy

ŒU; �.a/� D 0;

Œ .a/�; .b/�� D �abc �
.c/

and are tangential to the surfaces St�;u. The last equations are the commutation
relations of the Lie algebra of O.3/.
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This action of O.3/ on Ht� is then extended to the spacetime slab bounded by
Ht� and H0 by conjugation with the flow of L. The integral curves of L are the
null geodesic generators of the hypersurfaces Cu and are parametrized by t . The
1-parameter group of diffeomorphisms generated by L maps the surfaces St;u cor-
responding to the same value of u but different values of t onto each other. Given a
point p 2 St;u and an element O 2 O.3/, we follow the integral curve of L through
p at parameter value t to the point p� 2 St�;u at parameter value t�. The action of
O.3/ on Ht� defined above leads us to the point Op� 2 St�;u. Finally, Op 2 St;u

is defined to be the point at parameter value t along the integral curve of L through
Op� at parameter value t�.

Ht�

St;u

St�;u

pOp

p�Op�

Figure 25

The �.a/ also satisfy
ŒL; �.a/� D 0;

Œ�.a/; �.b/� D �abc �
.c/

and are tangential to the surfaces St;u. Again, the last equations are the commutation
relations of the Lie algebra of O.3/.

General equations of motion of surfaces. We now give a general discussion of
ordinary differential equations in the space of surfaces in a given Riemannian manifold
.M; g/, outlining how a local existence theorem for such equations is established. Let
A be a rule which assigns to each surface S in M a positive function A.S/ on S ,
of the same differentiability class as S . Then the problem we are considering is
the following. Given an initial surface S0 in M , find a function u defined in a
neighborhood of S0 in M , such that u D 0 on S0 and for each level surface Su of u,

jduj�1
ˇ̌
Su

D A.Su/: (340)
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Here du denotes the differential of u. To solve this problem we first consider the
following simpler problem. Given an initial surface S0 in M and a positive function
a defined in a neighborhood of S0 in M , find a function u defined in a smaller
neighborhood of S0 in M , such that u D 0 on S0 and

jduj�1 D a (341)

in this neighborhood. In other words, find locally a function u whose 0-level set is
S0 and whose associated lapse function is the given function a.

Equation (341) is a special case of the stationary Hamilton–Jacobi equation

H.d	/ D E (342)

for a function 	 on a manifold M , the configuration space. Here H is the Hamilto-
nian,a function on T �M , the phase space, andE is the energy constant. A particular
class of Hamiltonians are Hamiltonians of the form

H.p/ D 1

2
jpj2 C V.q/ 8p 2 T �

q M;8q 2 M: (343)

A Hamiltonian of this form describes the motion of a particle of mass 1 in a potential
V in M . Equation (341) results if we set

	 D u; V D �1
2
a�2; E D 0: (344)

We shall presently discuss how solutions to the general stationary Hamilton–Jacobi
equation (342) are constructed. We consider the canonical equations associated to
the Hamiltonian H . Let .q1; : : : ; qn/ be local coordinates on M . Then for q in the
domain of this chart, we can expand p 2 T �

q M as

p D pidq
i
ˇ̌
q
:

The coefficients .p1; : : : ; pn/ of the expansion constitute a system of linear coordi-
nates for T �

q M . Then .q1; : : : ; qnIp1; : : : ; pn/ are local coordinates on T �M and
the Hamiltonian is represented by a function of these. The canonical equations take
in terms of such local coordinates the form

dqi

dt
D @H

@pi

;
dpi

dt
D �@H

@qi
I i D 1; : : : ; n: (345)

Denoting by t 7! .q.t/; p.t// a solution of the canonical equations, a variation
through solutions of a given solution, denoted by t 7! . Pq.t/; Pp.t//, satisfies the
equations of variation

d Pqi

dt
D @2H

@pi@qj
Pqj C @2H

@pi@pj

Ppj ;

d Ppi

dt
D � @2H

@qi@qj
Pqj � @2H

@qi@pj

Ppj :

(346)
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The canonical form of T �M is the 1-form � on T �M , given in the above local
coordinates by

� D pidq
i : (347)

Evaluating � on a variation through solutions . Pq; Pp/ of a given solution .q; p/ we
have

� � . Pq; Pp/ D pi Pqi ; (348)

where the right-hand side is a function of t . A basic proposition of Classical Mechan-
ics, which readily follows from the above equations, is

d

dt
.� � . Pq; Pp// D dL � . Pq; Pp/ (349)

where L is the Lagrangian, which in the Hamiltonian picture is a function on T �M ,
represented by

L D pi

@H

@pi

�H: (350)

Also dL is the differential of L, thus

dL � . Pq; Pp/ D @L

@qi
Pqi C @L

@pi

Ppi : (351)

Given now a closed surface S0 inM , we construct a solution 	 of (342) vanishing on
S0 as follows. To each point q0 2 S0 we associate a covector p0 2 T �

q0
M which is

required to vanish on Tq0
S0 and satisfyH.q0; p0/ D E. Let t 7! .q.t I q0/; p.t I q0//

be the solution of the canonical equations (345) corresponding to the initial conditions
.q0; p0/. We then set along each solution trajectory

	.q.t I q0// D
Z t

0

L.q.t 0I q0/; p.t
0I q0//dt

0 CEt 8q0 2 S0: (352)

This defines 	 in a neighborhood of S0 in M, and obviously 	 vanishes on S0. We
shall presently show that 	 satisfies (342). Consider a curve � W .�1; 1/ ! S0 on S0

through the point q0 : �.0/ D q0. Let X 2 Tq0
S0 be the tangent vector to this curve

at q0 : X D P�.0/. Consider then the 1-parameter family of solutions of the canonical
equations

ft 7! .q.t I �.s//; p.t I �.s/// W s 2 .�1; 1/g:
The derivative with respect to s at s D 0 is a variation through solutions t 7!
. Pq.t I .q0; X//; Pp.t I .q0; X/// of the solution t 7! .q.t I q0/; p.t I q0//. This varia-
tion is the solution of the equations of variation (346) corresponding to the initial
conditions

Pq.0I .q0; X// D X; Pp.0; .q0; X// D d

ds
p0.�.s//

ˇ̌̌
sD0

:
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Let us take the derivative of both sides of the equation

	.q.t I �.s/// D
Z t

0

L.q.t 0I �.s//; p.t 0I �.s///dt 0 CEt (353)

with respect to s at s D 0. We obtain, for the left-hand side,

@	

@qi

ˇ̌̌
q.t Iq0/

Pqi .t I .q0; X//;

and for the right-hand side,Z t

0

�
@L

@qi
Pqi .t 0I .q0; X//C @L

@pi

Ppi .t
0I .q0; X//

�
dt 0

D
Z t

0

d

dt 0
˚
pi .t

0I q0/ Pqi .t 0I .q0; X//
�
dt 0

D pi .t I q0/ Pqi .t I .q0; X//

by (349). Here we have taken account of the fact that

pi .0I q0/ Pqi .0I .q0; X// D p0 �X D 0:

It follows that�
@	

@qi

ˇ̌̌
q.t Iq0/

� pi .t I q0/

�
Pqi .t I .q0; X// D 0 8X 2 Tq0

S0: (354)

On the other hand, taking the derivative of both sides of (352) with respect to t we
obtain, for the left-hand side,

@	

@qi

ˇ̌̌
q.t Iq0/

dqi

dt
.t I q0/;

and for the right-hand side,

L.q.t I q0/; p.t I q0//CE D .LCH/.q.t I q0/; p.t I q0// D pi .t I q0/
dqi

dt
.t I q0/

by (350) and the first of the canonical equations (345). For, the canonical equations
imply that the Hamiltonian is constant along trajectories, hence

H.q.t I q0/; p.t I q0// D E: (355)

It follows that �
@	

@qi

ˇ̌̌
q.t Iq0/

� pi .t I q0/

�
dqi

dt
.t I q0/ D 0: (356)
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Equations (354) and (356) together imply

@	

@qi
D pi ; (357)

provided that the set of vectors

f Pqi .t I .q0; X// W X 2 Tq0
S0g

together with the vector
dqi

dt
.t I q0/

spanTq.t Iq0/M . Moreover, in view of (355) and (357), 	 is a solution of the stationary
Hamilton–Jacobi equation (342).

We shall now show how the above is applied to construct a local solution of the
problem associated to (340). We set up an iteration as follows. Given a positive
function an defined in a neighborhood of the surface S0 inM , we define the function
un to be the solution of the stationary Hamilton–Jacobi equation

Hn.dun/ D 0; (358)

which is negative in the exterior and positive in the interior of S0. Here Hn is the
Hamiltonian

Hn D 1

2
jpj2 C Vn; Vn D �1

2
a�2

n : (359)

We then define the new positive function anC1 by

anC1jSn
D A.Sn/ (360)

for each level surface Sn of the function un. The starting point of the iteration is the
function a0 D 1, in which case u0 is the signed distance function from S0 onM . The
study of the convergence of this iteration then establishes a limit, limn!1 un D u,
which is a local solution of the equation of motion of surfaces (340).

4.2.4 The controlling quantity. Having defined the approximate conformal Killing
fields, we consider the 1-form

P D P0 C P1 C P2; (361)

where

P0 D �Q .R/ .�; xK;T; T /; (362)

P1 D �Q . OLO R/ .�; xK; xK;T / �Q . OLT R/ .�; xK; xK; xK/; (363)

P2 D �Q . OL2
O R/ .�; xK; xK;T / �Q . OLO

OLTR/ .�; xK; xK; xK/
�Q . OLS

OLTR/ .�; xK; xK; xK/ �Q . OL2
T R/ .�; xK; xK; xK/:

(364)
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Here, xK D K C T is everywhere timelike future-directed (for t 	 0). Also, Q.W /
is the Bel–Robinson tensor associated to the Weyl field W . Moreover, O stands for
f .a/�I a D 1; 2; 3g, the generators of the action of O.3/.

We define

E1 D sup
t

Z
Ht

�P; (365)

E2 D sup
u

Z
Cu

�P: (366)

Then the controlling quantity is

E D maxfE1; E2g: (367)

The quantities E1 E2 are defined in the spacetime slab Ut� D S
t2Œ0;t�� Ht . So, E

depends in fact on t�.

Remark. P1 andP2 vanish for solutions which are invariant under rotations and time
translations. They give us effective control on the solutions because of the following
two facts:

1. The only spherically symmetric solution of the vacuum Einstein equations
besides Minkowski spacetime is the Schwarzschild solution.

2. The only static solution of the vacuum Einstein equations besides Minkowski
spacetime is the Schwarzschild solution.

Note that a static spacetime means a spacetime admitting a hypersurface orthogonal
Killing field which is timelike at infinity. Here the Schwarzschild solution is excluded
in view of the fact that the topology of the maximal hypersurfaces is R3. To control
the spacetime curvature in terms of the quantityE, we consider separately the exterior
region E and its complement, the interior region I. The region E is defined by the
inequality

Area.St;u/ 	 � Area.St;0/;

where � is a constant, 0 < � < 1.

Remark. The last termQ. OL2
T R/. � ; xK; xK; xK/ inP2 is used in controlling the space-

time curvature in the ‘wave zone’, that is, in a neighbourhood of C0 of the formS
u2Œ�c;c� Cu for a fixed positive constant c.

Remark. The termQ. OLS
OLTR/. � ; xK; xK; xK/ in P2 is used to control the top order

derivatives of the spacetime curvature in the interior region.
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Note that the vector fieldS is timelike future-directed in the interior ofC0, it is null
future-directed on C0, and it is uniformly timelike in the region I. We shall presently
outline how control of the spacetime curvature in the interior region is achieved. We
consider the decomposition of a Weyl field W with respect to a family of spacelike
hypersurfaces with unit future-directed timelike normal e0. Complementing e0 with
an arbitrary local frame field .ei W i D 1; 2; 3/ for these hypersurfaces, we define:

Definition 47. The electric and magnetic parts of a Weyl field W with respect to a
given family of spacelike hypersurfaces are the symmetric trace-free tensor fields E
and H on these hypersurfaces given by

Eij D Wi0j 0; (368)

Hij D ��Wi0j 0: (369)

Here we consider the electric-magnetic decomposition relative to the canonical
maximal foliation fHtg. The Bianchi equations for a Weyl fieldW in the presence of
a source J are the equations

D W D J: (370)

The source J is called aWeyl current. Relative to an electric-magnetic decomposition
these equations take the form

divE D �E ; (371)

curlE C OLe0
H D �E ; (372)

divH D �H ; (373)

curlH � OLe0
E D �H : (374)

The right-hand sides here contain lower order terms involving the second fundamental
form and lapse function of the foliation as well as the components of the current. Now
if OLSW is already controlled, we can decompose OLe0

W into a term proportional to
OLSW which we can place on the right-hand side plus a term of the form OLXW , where
X is a vector field tangential to the leaves of the foliation and satisfying

jX j Ng � � < 1; (375)

(� a positive constant) in the interior region I . Then we obtain a system of the form

divE D �0
E ; (376)

curlE C OLXH D � 0
E ; (377)

divH D �0
H ; (378)

curlH � OLXE D � 0
H : (379)

This system is uniformly elliptic in I by virtue of (375), allowing us to obtain interior
estimates for E and H .
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4.2.5 The continuity argument. Since the vector fields T , S ,K, .a/�I a D 1; 2; 3,
are not exact conformal Killing fields, d �P does not vanish. Thus, the integralsR

Ht

�P and
R

Cu

�P differ from an integral over H0 by error integrals which are
spacetime integrals over the part of the spacetime slab bounded by Ht and H0, or
Cu and H0, of expressions which are quadratic in the Weyl fields W and linear in
the deformation tensors O
 of the vector fields. The point is to estimate these error
integrals in terms of the controlling quantity E (see Step 2 below).

We introduce a certain set of assumptions on the main geometric properties of the
two foliations, namely the fHtg and fCug. These are called thebootstrapassumptions.
They involve in particular

1. the quantities
sup
St;u

.r2 K/; inf
St;u

.r2 K/;

where K is the Gauss curvature of St;u and 4
r2 D Area.St;u/;

2. the quantities
sup
St;u

a; inf
St;u

a; sup
St;u

ˆ; inf
St;u

ˆ;

where a and ˆ are the lapse functions of the two foliations

.a�2 D Ngij @iu@ju; ˆ�2 D �g��@�t@�t /:

The isoperimetric constant of each St;u depends on the quantities 1. The Sobolev
inequalities on each Ht depend on these as well as the first of the quantities 2. The
Sobolev inequalities of each Cu depend on the quantities 1 as well as the second of
the quantities 2. The assumption is that the above quantities differ from their standard
values (here: 1) by at most �0.

The above are the most important of the geometric quantities, as they control
the Sobolev constants. There is a long list of additional assumptions involving the
remaining geometric quantities, such as supSt;u

. r tr �
2
/ and infSt;u

. r tr �
2
/, where � is

the second fundamental form of St;u relative to Ht . All these are also to differ from
their standard values by at most �0.

The continuity argument involves the following four steps. There is in addition a
Step 0, which we shall discuss afterwards. We consider the maximal closed spacetime
slab Ut� D S

t2Œ0;t�� Ht for which the bootstrap assumptions on the geometric
properties of the two foliations fHtg and fCug hold with a constant �0.

Step 1 (Estimate of deformation tensors). We show that the bootstrap assumptions
imply that the deformation tensors O
 of the fundamental vector fields T , S ,K, .a/�

are bounded in Ut� , in appropriate norms, by another small constant �1 (depending
continuously on �0 and tending to 0 as �0 ! 0).
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Step 2 (Error estimates). Using the result of Step 1 we estimate the error integrals as
follows:

jerror integrals j � C �1E:

This yields the conclusion
E � C D C C �1E:

Here,E is the controlling quantity andD is a quantity involving only the initial data.
So, if �1 is suitably small, we have

E � C D:

Step 3. By analyzing the structure equations of the two foliations, we deduce that
the geometric quantities entering the bootstrap assumptions are in fact bounded by
CE. Therefore, by Step 2, under a suitable smallness restriction onD (the size of the
initial data) we can conclude that the said geometric quantities are in fact bounded by
�0

2
. Thus the inequalities in the bootstrap assumptions are not saturated up to time t�.

Step 4. We extend the solution to the slab
S

t2Œt�;t�Cı� Ht , for some suitably small
ı > 0. We first extend the optical function ut� , which was defined on the slab Ut�

(with final data on Ht� the solution of the equation of motion of surfaces starting from
St�;0), by extending its level sets as null hypersurfaces, that is, by extending each null
geodesic generator to the parameter interval Œt�; t� Cı�. We use this extension, which
we denote by u0

t�
, or rather its restriction to Ht�Cı , in the role of the background

foliation, on the basis of which we construct new final data on Ht�Cı by solving the
equation of motion of surfaces on Ht�Cı starting from the surface St�Cı;0. With this
final data we then construct the new optical functionut�Cı . We consider the geometric
quantities associated to the maximal foliation fHtg extended to the interval Œ0; t� Cı�
and to the null foliation fCug, where u is now ut�Cı . By continuity, if ı is chosen
suitably small, these quantities remain � �0, contradicting the maximality of t� unless
of course t� D 1, in which case the theorem is proved.

We shall now discuss Step 0. This concerns the hypothesis on the initial data.
Take a point p 2 H0 and a positive real number � (representing a length). Let dp be
the distance function on H0 from p. Setting

D .p; �/ D sup
H0

f ��2 .d2
p C �2/3 j Ric j2 g

C ��3

� Z
H0

3X
lD0

.d2
p C �2/lC1 jxrl kj2 d� Ng (380)

C
Z

H0

1X
lD0

.d2
p C �2/lC3 jxrl Bj2 d� Ng

�
;
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we define the invariant
D D inf

p2H0;�>0
D.p; �/ (381)

optimizing the choice of p and �. This invariant represents the size of the initial data.
In (380), B is the Bach tensor.

Definition 48. On a 3-dimensional Riemannian manifold the tensor field given by

Bij D � ab
j

xra

�
xRib � 1

4
Ngib

xR
�

(382)

is called the Bach tensor.

Remark. We can write

Bij D curl OxRij

D 1

2
.� ab

i
xra

OxRbj C � ab
j

xra
OxRbi /;

(383)

where OxRij is the trace-free part of the Ricci curvature of the 3-manifold, namely

OxRij D xRij � 1

3
Ngij

xR:

Thus, the Bach tensor is symmetric and trace-free.

Theorem 8 (Bach [2]). The vanishing of the Bach tensor is necessary and sufficient
for the 3-manifold to be locally conformally flat. That is,

Bij D 0 ” Ngij D �4 eij ; (384)

where eij is flat, thus locally isometric to the Euclidean metric.

Recall the hypothesis that .H0; Ng/ be strongly asymptotically Euclidean:

Ngij D
�
1C M

2jxj
�4

ıij C o .jxj� 3
2 /

in an appropriate coordinate system in a neighbourhood of infinity. The principal part
at spatial infinity is conformally flat, hence has vanishing contribution to the Bach
tensor.

We now state Step 0.

Step 0. On the basis of the hypothesis that

sup
H0

f ��2 .d2
p C �2/3 j Ric j2 g
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is suitably small for some p 2 H0 and � > 0, we show that expp , the exponential
mapping with base point p is a diffeomorphism of TpH0 onto H0. We then have a
foliation fS�g of H0 by the geodesic spheres with center p and radius �. We consider

the following Hodge-type elliptic system for the traceless symmetric tensor field OxRij :

div �Ric D 1

6
Nd xR D 1

6
Nd .jkj2/; (385)

curl �Ric D B; (386)

(tr �Ric D 0). Here, we denote by Ndf the differential of a function f on H0.

Remark. The equation (385) is simply the Bianchi identity:

xrj xRij � 1

2
@i

xR D 0:

Note thatD.p; �/ gives us control on k and B , thus on the right-hand sides of (385),
(386). The theory of such elliptic systems then gives us estimates for the components

of OxRij , hence for the components of xRij , relative to the foliation by the fS�g. Denoting

…i
a …

j

b
xRab D aab;

…i
a

xRij N
j D ba;

xRij N
i N j D c;

we in fact obtain Z
H0

.d2
p C �2/2 j Oaj2 d� Ng � C D .p; �/;Z

H0

.d2
p C �2/2 jbj2 d� Ng � C D .p; �/;Z

H0

.d2
p C �2/2 jc � Ncj2 d� Ng � C D .p; �/;

where Nc is the mean value of c on S� and Oa is the trace-free part of a. Moreover, we
have

tr aC c D xR D jkj2

and
Nc�3 ! 2M as � ! 1 .� D dpjS�

/:
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4.2.6 Estimates for the geometric quantities associated to the maximal foliation
fHtg. We shall now sketch how Step 3 is accomplished. We begin with the recovery
of the bootstrap assumptions concerning the maximal foliation fHtg. This is done
by considering the structure equations of the foliation.

1. The intrinsic geometry of the Ht is controlled through the contracted Gauss
equation

xRij � kim k
m
j D Eij : (387)

Here, Eij is the electric part of the Weyl curvature.

2. The extrinsic geometry of Ht is controlled through the uncontracted Codazzi
equations

xri kjm � xrj kim D � n
ij Hmn: (388)

Here, Hij is the magnetic part of the Weyl curvature.

3. The lapse function ˆ of the maximal foliation is controlled through the lapse
equation

N4 ˆ � jkj2 ˆ D 0: (389)

The contraction of the Codazzi equations gives the constraint equation

xrj kij � @i tr k D 0: (390)

Here, tr k D 0, consequently equations (388) are equivalent to the following Hodge-
type system for the symmetric trace-free tensor field k:

div k D 0;

curl k D H:
(391)

This is seen from the following remark.

Remark. Let Sij be a symmetric 2-covariant tensor field on a 3-manifold . SM; Ngij /.
Consider

� ab
i

xra Sbj D Cij :

Then the antisymmetric part
Cij � Cj i

is equivalent to its dual
1

2
.Cij � Cj i / �

ij
m:

This is equal to

�ij
m�

ab
i

xra Sbj D . Ngja ı b
m � Ngjb ı a

m /
xra Sbj

D xrj Smj � @m tr S:
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On the other hand the symmetric part is

1

2
.Cij C Cj i / D .curlS/ij

by definition.

4.2.7 Estimates for the geometric quantities associated to the null foliation fCug.
We proceed to discuss the recovery of the bootstrap assumptions concerning the null
foliation fCug.

St;u

Ht
Cu

e3

eC
e0

e�

Figure 26

The geometry of a given null hypersurface Cu is described in terms of its sections
fSt;ug by the maximal hypersurfaces Ht . Let e3 be the unit outward normal to St;u

in Ht . Set
U D �a e3: (392)

The vector field U is characterized by the properties that it is tangential to the Ht ,
orthogonal to the fSt;ug foliation of each Ht and satisfies

U u D 1:

Let f�g be the 1-parameter group of diffeomorphisms generated by U . Then �

maps St;u onto St;uC . Let e0 be the unit future-directed timelike normal to Ht .
Then

T D ˆ e0 .T t D 1/:

Let f �g be the 1-parameter group of diffeomorphisms generated by L. Then  �

maps St;u onto StC�;u. We introduce the normalized null normals eC, e� to St;u by

eC D e0 C e3;

e� D e0 � e3:
(393)
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Then

L D ˆ eC .L t D 1/;

L D ˆ e� .L t D 1/:

The geometry of a given Cu is described by:

1. The intrinsic geometry of its sections St;u, that is, the induced metric � and
corresponding Gauss curvature K.

2. The second fundamental form � of St;u in Cu. This measures the deformation
ofSt;u under displacement along its outgoing null normal eC, which is intrinsic
to Cu. Completing eC; e� with eA; A D 1; 2, an arbitrary local frame for St;u,
� is given by

�AB D g .reA
eC; eB/: (394)

The stacking of the Cu in the foliation fCug is described by:

3. The function a, where
a�2 D Ngij @i u @j u: (395)

That is, a is the lapse function of the foliation of each Ht by the traces of the
level sets of u. The deformation of St;u under displacement along its incoming null
normal e�, which is transversal to Cu, is measured by �, given by

�
AB

D g .reA
e�; eB/: (396)

We have
� D � C �; � D �� C �; (397)

where � is the second fundamental form of St;u relative to Ht ,

�AB D Ng .xreA
e3; eB/; (398)

and � is the restriction of k, the second fundamental form of the maximal hypersurface
Ht to St;u,

�AB D g.reA
e0; eB/ D k.eA; eB/: (399)

The estimate of kij , therefore in particular of �AB , has been discussed in the preceding
section. The estimate of �AB shall be outlined below. The intrinsic geometry of St;u

is controlled by the equation for the Gauss curvature K:

K C 1

4
tr � tr � � 1

2
O� � O� D �� (400)

with � D 1
4
R.e�; eC; e�; eC/. Here O� and O� are the trace-free parts of � and �

respectively.
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We now outline the estimate of �. Recall that Cu is defined to be the inner
component of the boundary of the past of the surface St�;u on the final maximal
hypersurface Ht� . Now, tr � satisfies the following propagation equation along each
generator of Cu (parametrized by t ):

1

ˆ

@ tr �

@t
D � tr � � 1

2
.tr �/2 � j O�j2: (401)

Here

� D �1
2
g.reC

eC; e�/; so reC
eC D �eC: (402)

We have
� D r3 logˆC ı; ı D k33: (403)

The propagation equation (401) is considered with a final condition on Ht� , namely
tr � for the surface St�;u.

Important fact. By virtue of the Einstein equations no curvature term appears on
the right-hand side of (401).

The propagation equation (401) is considered in conjunction with the null Codazzi
equations:

r
ı B O�AB � 1

2
r
ı

A tr � D �B O�AB � 1

2
�A tr � � ˇA: (404)

Here �A D kA3 and ˇA D 1
2
R.eA; eC; e�; eC/. The equations (404) constitute an

elliptic system for O�, given tr �. Because of the fact that there are no curvature terms
on the right-hand side of the propagation equation for tr � and the fact that one order
of differentiability is gained in inverting the 1st order elliptic operator (div

ı
acting on

trace-free symmetric 2-covariant St;u tensor fields) in (404), we are able to obtain
estimates for � which are of one order of differentiability higher than the estimates
for the spacetime curvature assumed.

To estimate a we consider the St;u-tangential 1-form

 D r
ı

log a � �: (405)

We have

A D 1

2
g .re�

eC; eA/: (406)

We also define
�A D g .reC

e�; eA/: (407)

We have
� D r

ı
logˆC �: (408)
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Now, with … the projection to St;u, it holds that

… ŒeC; e�� D �2 . � �/: (409)

Thus .��/ is the obstruction to integrability of the distribution of orthogonal timelike
planes

f .Tp St;u/ ? W p 2 M g: (410)

This manifests itself in the non-commutativity of the 1-parameter groups generated
by L and U :

ŒL; U � D ˆ a . � �/ ¤ 0: (411)

We consider the mass aspect function, defined in general by

� D �div
ı
 CK C 1

4
tr � tr �: (412)

This reduces to the expression (331) when kij D 0. The Hawking mass is defined in
general by

m D r

2

�
1C 1

16


Z
S

tr � tr � d��

�
(413)

and we have

N� D 2m

r3
: (414)

The mass aspect function � satisfies along the generators of Cu the following prop-
agation equation:

1

ˆ

@�

@t
C � tr � D 2 O� � .r

ı Ő / � 2  � ˇ

� 1

2
tr � .div

ı
�C j�j2 C 1

2
O� � O� � �/

C . � �/ � .r
ı

tr � � � tr �/ � 1

4
tr � j O�j2

C  � O� � �:

(415)

Here,

.r
ı Ő /AB D 1

2
.r
ı

A B C r
ı

B A � �AB div
ı
/

is the trace-free part of the symmetrized covariant derivative of  in St;u.

Important fact. By virtue of the Einstein equations the right-hand side of (415) does
not contain derivatives of the curvature.
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The propagation equation (415) with final data on Ht� , the mass aspect function
of the surface St�;u, is considered in conjunction with the following elliptic equation
for a on St;u, which is simply a re-writing of the definition of �:

4ı log a D ��C div
ı
� CK C 1

4
tr � tr �: (416)

Because of the fact that there are no curvature terms on the right-hand side of the
propagation equation for � and the fact that two orders of differentiability are gained
in inverting the 2nd order elliptic operator 4ı in (416), we are able to obtain estimates
for a which are of two orders of differentiability higher than the estimates for the
spacetime curvature assumed.

The equation of motion of surfaces on the final maximal hypersurface Ht� , takes
in the general case the same form as in the special case where kij D 0, namely

� D N�I (417)

however � is now given by formula (412).

Remarks. �AB D kAB is the leading part of kij , namely the part having the slowest
decay. In fact, � can only be bounded by:

j O�j � C f �0 �
�1C �� 3

2� C �2
0 �

�2C g: (418)

The weight functions �C, ��, are defined by

�C D
p
1C u2; �� D

p
1C u2: (419)

Note that
tr �C ı D tr k D 0:

For the remaining components of kij we derive the bounds

j�j � C f �0 �
�2C �� 1

2� C �2
0 �

�2C g; (420)

jıj � C f �0 �
� 5

2C C �2
0 �

�2C g: (421)

On the other hand, we derive for � the bounds

j O�j � C �0 r
�2;ˇ̌̌r

2
tr � � 1

ˇ̌̌
� C �0 r

�1:
(422)

Consider the behavior on a given Cu as t ! 1. Then

r O� tends to a non-trivial limit;



4.2 Sketch of the proof of the global stability of Minkowski spacetime 137

while
r ı ! 0:

Since we have

� D � C �;

� D �� C �;

it follows that
r

2
tr � ! 1;

while

r O� ! �r O� tends to a non-trivial limit;

r O� ! 2 r O� tends to a non-trivial limit:

In particular, j O� j2=.tr �/2 tends to a non-trivial limit. Consequently, the surfaces St;u

on a givenCu do not become umbilical as t ! 1. In fact, the last limit is proportional
to the amount of energy radiated per unit time per unit solid angle at a given retarded
time and a given direction.

4.2.8 Decomposition of a Weyl field with respect to the surfaces St;u. In con-
cluding our sketch of the proof of the global stability of Minkowski spacetime, we
shall show in detail some of the more delicate estimates in Step 2. The discussion
shall make use of the decomposition of a Weyl field and its associated Bel–Robinson
tensor with respect to the surfaces St;u.

Consider the null frame eC; e� supplemented by eA; A D 1; 2, a local frame field
for St;u. The components of a Weyl field W in such a frame are

˛AB D W .eA; eC; eB ; eC/; ˛AB D W.eA; e�; eA; e�/;

ˇA D 1

2
W.eA; eC; e�; eC/; ˇ

A
D 1

2
W .eA; e�; e�; eC/;

� D 1

4
W .e�; eC; e�; eC/; ��.eA; eB/ D 1

2
W .eA; eB ; e�; eC/:

˛; ˛ are symmetric trace-free 2-covariant tensor fields on St;u, ˇ; ˇ are 1-forms on
St;u, �; � are functions on St;u.

Here, � is the area 2-form of St;u.

Each of ˛, ˛ has two algebraically independent components,

each of ˇ, ˇ has two components,

and �, � are two functions.

So, there are ten component-functions in all.
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The components of Q.W /, the Bel–Robinson tensor associated to W , in the
(timelike) plane spanned by eC; e�, are:

Q .W / .e�; e�; e�; e�/ D 2 j˛j2; (423)

Q .W / .eC; e�; e�; e�/ D 4 jˇj2; (424)

Q .W / .eC; eC; e�; e�/ D 4 .�2 C �2/; (425)

Q .W / .eC; eC; eC; e�/ D 4 jˇj2; (426)

Q .W / .eC; eC; eC; eC/ D 2 j˛j2: (427)

Note that e0 D 1
2
.eC C e�/ is the unit future-directed normal to Ht , and that

T D ˆ e0 D 1

2
ˆ .eC C e�/; (428)

xK D K C T D 1

2
ˆ .�2C eC C �2�e�/; (429)

the weight functions �C, �� being given by (419).
Recall now the controlling quantity E D maxfE1; E2g, where E1 is defined in

(365) as the supremum over t of an integral on Ht and E2 in (366) as the supremum
over u of an integral on Cu.

In what follows we shall use the following notation. Letf; g be positive functions.
Then f � g denotes that there exists a constant C > 0 such that:

C�1 f � g � C f:

Let us consider the integrants in E1 and the ones in E2. The integrants in E1 are

Q .W /. xK; xK; T; e0/ for W D OLOR; OL2
OR;

Q .W /. xK; xK; xK; e0/ for W D OLTR; OLO
OLTR; OLS

OLTR

and we have

Q.W /. xK; xK;T; e0/ � �4�j˛j2 C �2��2Cjˇj2 C �4C.�2 C �2 C jˇj2 C j˛j2/ (430)

Q.W /. xK; xK; xK; e0/ � �6�j˛j2 C �4��2C jˇj2 C �2��4C .�2 C �2/C �6C.jˇj2 C j˛j2/:
(431)

The integrants in E2 are

Q .W / . xK; xK; T; eC/ for W D OLOR; OL2
OR;

Q .W / . xK; xK; xK; eC/ for W D OLTR; OLO
OLTR; OLS

OLTR

and we have

Q.W /. xK; xK;T; eC/ � �4�jˇj2 C �2��2C.�2 C �2/C �4C.jˇj2 C j˛j2/; (432)

Q.W /. xK; xK; xK; eC/ � �6�jˇj2 C �4��2C.�2 C �2/C �2��4Cjˇj2 C �6Cj˛j2: (433)
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4.2.9 Theborderline error integrals. We now show how some of the error integrals
in Step 2, requiring more careful treatment, are handled. These are the following:

1:

Z
Ut�

Q .W D OLOR or OL2
OR/˛ˇ�ı

. xK/ O
˛ˇ xK� T ı d�g ;

2:

Z
Ut�

Q .W D OLOR or OL2
OR/˛ˇ�ı

.T / O
˛ˇ xK� xKı d�g ;

3:

Z
Ut�

Q .W D OLTR or OLO
OLTR or OLS

OLTR/˛ˇ�ı
. xK/ O
˛ˇ xK� xKı d�g :

For the error integrals 1 the worst term isZ
Ut�

Q .W /AB�ı
. xK/ O
AB xK� T ı d�g

because . xK/ O
AB contains �2C O�AB which is the part with the slowest decay. In fact
this is merely bounded pointwise by C�1. Moreover, the leading part of the integrant
is obtained by taking the part of xK with the largest weight, namely 1

2
ˆ�2CeC, and the

1
2
ˆe� part of T :Z

Ut�

jQ. xK/
ABC� O
AB j �2C d�g � C �1

Z
Ut�

jQABC�j �2C d�g :

Now, we have
QABC� .W / D f �2 ˇ Ő ˇ C 2 � .�2 C �2/ gAB :

Here, we denote
.x Ő y/AB D xAyB C yAxB � �AB.x � y/:

We estimateZ
Ut�

jˇ Ő ˇj �2C d�g

� C

Z
du

(
��2�

�Z
Cu

�4� jˇj2
� 1

2

�
�Z

Cu

�4C jˇj2
� 1

2

)

� C E

Z
��2� du D C E;

comparing with (432) and noting that
R C1

�1 ��2� du D 
 . Since the geometric mean
of the weights of ˇ; ˇ in (432) is the weight of .�; �/, the term in .�; �/ inQABC�
can be estimated in the same way. We thus obtain

j error integrals 1 j � C �1 E:



140 4 The global stability of Minkowski spacetime

For the error integrals 2 the worst term isZ
Ut�

Q .W /AB�ı
.T / O
AB xK� xKı d�g

because .T / O
AB contains O�AB which decays pointwise only like ��1C ��1� . The lead-
ing part of this comes from the part of xK� xKı of the largest weight, namely from
.1

2
ˆ/2�4Ce

�
CeıC:Z

Ut�

jQABCC .T / O
AB j �4C d�g � C �1

Z
Ut�

jQABCCj �3C ��1� d�g :

Now, we have

QABCC D f 2 � jˇj2 C 2 � ˛ � 2 � �˛ gAB

where � denotes duality on St;u. We estimateZ
Ut�

j.�; �/ � ˛j �3C ��1� d�g

�
Z
du

(
��2�

�Z
Cu

�2� �2C .�2 C �2/

� 1
2
�Z

Cu

�4C j˛j2
� 1

2

)

� C E

Z
��2� du � C E;

comparing with (432). We thus find

j error integrals 2 j � C �1 E:

For the error integrals 3 the worst term isZ
Ut�

QAB�ı
. xK/ O
AB xK� xKı d�g

and the leading part of this comes from .1
2
ˆ/2�4Ce

�
CeıC, the part of xK� xKı of the

largest weight. Also, . xK/ O
AB is pointwise bounded by C�1. Hence, we haveZ
Ut�

jQABCC . xK/ O
AB j �4C d�g � C �1

Z
Ut�

jQABCCj �4C d�g :

Here, the terms 2� jˇj2 and 2.�˛���˛/ inQABCC (see formula above) are on equal
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footing. We estimateZ
Ut�

j.�; �/ � ˛j �4C d�g

�
Z
du

(
��2�

�Z
Cu

�4� �2C .�2 C �2/

� 1
2
�Z

Cu

�6C j˛j2
� 1

2

)

� C E

Z
��2� du � C E;

comparing with (433). A similar estimate holds forZ
Ut�

jˇj2 �4C d�g :

We thus find
j error integrals 3 j � C �1 E:

Note that in the error integrals 1 the principal part is QABC� multiplied by �2C O�AB .
Thus only the trace-free relative to St;u part of QABC� enters. In any case, the
corresponding spacetime trace is 0. That is,

�AB QABC�„ ƒ‚ …
trace relative to St;u

� QC�C�„ ƒ‚ …
D4.�2C2/

D 0:

The absence of an uncontrollable term linear in each of ˛, ˛, O� is an instance of
the following general identity: For any three symmetric trace-free 2-dimensional
matrices A, B , C we have

tr.A B C/ D 0:

Equivalently, there is no product in the space of symmetric trace-free 2-dimensional
matrices, because for any two such matrices A, B we have

A B C B A � tr.A B/ I D 0:

The leading role played by symmetric trace-free 2-dimensional matrices can be traced
back to the symbol of the Einstein equations. For, as we have seen in Chapter 2, the
space of dynamical degrees of freedom of the gravitational field at a point can be
identified with the space of such matrices.
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